Catalyst 3750 Switch
Command Reference
Cisco IOS Release 12.2(25)SEE
February 2006

Corporate Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000
800 553-NETS (6387)
Fax: 408 526-4100

Text Part Number: OL-8552-01
CONTENTS

Preface xix

Audience xix

Purpose xix

Conventions xx

Related Publications xx

Obtaining Documentation xxi

Cisco.com xxi

Product Documentation DVD xxii

Ordering Documentation xxii

Documentation Feedback xxii

Cisco Product Security Overview xxii

Reporting Security Problems in Cisco Products xxiii

Obtaining Technical Assistance xxiv

Cisco Technical Support & Documentation Website xxiv

Submitting a Service Request xxiv

Definitions of Service Request Severity xxv

Obtaining Additional Publications and Information xxv

CHAPTER 1

Using the Command-Line Interface 1-1

Accessing the Switch 1-1

CLI Command Modes 1-2

User EXEC Mode 1-3

Privileged EXEC Mode 1-3

Global Configuration Mode 1-4

Interface Configuration Mode 1-4

config-vlan Mode 1-4

VLAN Configuration Mode 1-5

Line Configuration Mode 1-5

Commands Changed in Cisco IOS 12.2(18)SE 1-6

CHAPTER 2

Catalyst 3750 Switch Cisco IOS Commands 2-1

aaa accounting dot1x 2-1

aaa authentication dot1x 2-3
aaa authorization network 2-5
action 2-6
archive copy-sw 2-8
archive download-sw 2-11
archive tar 2-15
archive upload-sw 2-18
arp access-list 2-20
auto qos voip 2-22
boot auto-copy-sw 2-27
boot bootlpr 2-28
boot config-file 2-29
boot enable-break 2-30
boot helper 2-31
boot helper-config-file 2-32
boot manual 2-33
boot private-config-file 2-34
boot system 2-35
channel-group 2-37
channel-protocol 2-41
class 2-42
class-map 2-44
clear dot1x 2-46
clear eap 2-47
clear ip arp inspection log 2-48
clear ip arp inspection statistics 2-49
clear ip dhcp snooping database 2-50
clear ipc 2-51
clear l2protocol-tunnel counters 2-52
clear lacp 2-53
clear mac address-table 2-54
clear mac address-table move update 2-56
clear pagp 2-57
clear port-security 2-58
clear spanning-tree counters 2-60
clear spanning-tree detected-protocols 2-61
clear vmps statistics 2-62
clear vtp counters 2-63
cluster commander-address 2-64
cluster discovery hop-count 2-66
cluster enable 2-67
cluster holdtime 2-69
cluster member 2-70
cluster outside-interface 2-72
cluster run 2-73
cluster standby-group 2-74
cluster timer 2-76
define interface-range 2-77
delete 2-79
deny (ARP access-list configuration) 2-80
deny (IPv6 access-list configuration) 2-82
deny (MAC access-list configuration) 2-87
diagnostic monitor 2-90
diagnostic schedule 2-93
diagnostic start 2-95
dot1x 2-97
dot1x auth-fail max-attempts 2-99
dot1x auth-fail vlan 2-101
dot1x control-direction 2-103
dot1x critical (global configuration) 2-105
dot1x critical (interface configuration) 2-107
dot1x default 2-109
dot1x guest-vlan 2-110
dot1x host-mode 2-113
dot1x initialize 2-115
dot1x mac-auth-bypass 2-116
dot1x max-reauth-req 2-118
dot1x max-req 2-119
dot1x multiple-hosts 2-120
dot1x pae 2-121
dot1x port-control 2-122
ip igmp snooping 2-185
ip igmp snooping last-member-query-interval 2-187
ip igmp snooping querier 2-189
ip igmp snooping report-suppression 2-191
ip igmp snooping tcn 2-193
ip igmp snooping tcn flood 2-195
ip igmp snooping vlan immediate-leave 2-196
ip igmp snooping vlan mrouter 2-197
ip igmp snooping vlan static 2-199
ip snap forwarding 2-201
ip source binding 2-202
ip ssh 2-204
ip verify source 2-206
ipv6 access-list 2-207
ipv6 mld snooping 2-209
ipv6 mld snooping last-listener-query-count 2-211
ipv6 mld snooping last-listener-query-interval 2-213
ipv6 mld snooping listener-message-suppression 2-215
ipv6 mld snooping robustness-variable 2-217
ipv6 mld snooping tcn 2-219
ipv6 mld snooping vlan 2-221
ipv6 traffic-filter 2-223
l2protocol-tunnel 2-225
l2protocol-tunnel cos 2-228
lacp port-priority 2-229
lacp system-priority 2-231
link state group 2-233
link state track 2-235
logging event power-inline-status 2-236
logging file 2-237
mac access-group 2-239
mac access-list extended 2-241
mac address-table aging-time 2-243
mac address-table move update 2-244
mac address-table notification 2-246
Contents

mac address-table static 2-248
mac address-table static drop 2-249
macro apply 2-251
macro description 2-254
macro global 2-255
macro global description 2-258
macro name 2-259
match (access-map configuration) 2-261
match (class-map configuration) 2-263
mdix auto 2-265
mls qos 2-267
mls qos aggregate-policer 2-269
mls qos cos 2-271
mls qos dscp-mutation 2-273
mls qos map 2-275
mls qos queue-set output buffers 2-279
mls qos queue-set output threshold 2-281
mls qos rewrite ip dscp 2-283
mls qos srr-queue input bandwidth 2-285
mls qos srr-queue input buffers 2-287
mls qos srr-queue input cos-map 2-289
mls qos srr-queue input dscp-map 2-291
mls qos srr-queue input priority-queue 2-293
mls qos srr-queue input threshold 2-295
mls qos srr-queue output cos-map 2-297
mls qos srr-queue output dscp-map 2-299
mls qos trust 2-301
mls qos vlan-based 2-303
monitor session 2-304
mvr (global configuration) 2-309
mvr (interface configuration) 2-312
pagp learn-method 2-315
pagp port-priority 2-317
permit (ARP access-list configuration) 2-319
permit (IPv6 access-list configuration) 2-321
permit (MAC access-list configuration) 2-327
police 2-330
police aggregate 2-332
policy-map 2-334
port-channel load-balance 2-337
power inline 2-339
power inline consumption 2-342
priority-queue 2-344
private-vlan 2-346
private-vlan mapping 2-349
queue-set 2-351
radius-server dead-criteria 2-352
radius-server host 2-354
rcommand 2-356
reload 2-358
remote command 2-360
remote-span 2-361
renew ip dhcp snooping database 2-363
rmon collection stats 2-365
sdm prefer 2-366
service password-recovery 2-371
service-policy 2-373
session 2-376
set 2-377
setup 2-379
setup express 2-382
show access-lists 2-384
show archive status 2-387
show arp access-list 2-389
show auto qos 2-390
show boot 2-394
show cable-diagnostics tdr 2-396
show class-map 2-398
show cluster 2-399
show cluster candidates 2-401
show cluster members 2-403
show controllers cpu-interface 2-405
show controllers ethernet-controller 2-407
show controllers power inline 2-415
show controllers tcam 2-417
show controllers utilization 2-419
show diagnostic 2-421
show dot1q-tunnel 2-424
show dot1x 2-425
show dtp 2-429
show eap 2-431
show env 2-434
show errdisable detect 2-437
show errdisable flap-values 2-439
show errdisable recovery 2-441
show etherchannel 2-443
show flowcontrol 2-446
show idprom 2-448
show interfaces 2-451
show interfaces counters 2-460
show inventory 2-463
show ip arp inspection 2-464
show ip dhcp snooping 2-467
show ip dhcp snooping binding 2-468
show ip dhcp snooping database 2-470
show ip igmp profile 2-472
show ip igmp snooping 2-473
show ip igmp snooping groups 2-476
show ip igmp snooping mrouter 2-478
show ip igmp snooping querier 2-480
show ip source binding 2-482
show ip verify source 2-484
show ipc 2-486
show ipv6 access-list 2-490
show ipv6 mld snooping 2-492
show ipv6 mld snooping address 2-494
show ipv6 mld snooping mrouter 2-496
show ipv6 mld snooping querier 2-498
show l2protocol-tunnel 2-500
show lacp 2-503
show link state group 2-507
show mac access-group 2-509
show mac address-table 2-511
show mac address-table address 2-513
show mac address-table aging-time 2-515
show mac address-table count 2-517
show mac address-table dynamic 2-519
show mac address-table interface 2-521
show mac address-table move update 2-523
show mac address-table notification 2-525
show mac address-table static 2-527
show mac address-table vlan 2-529
show mls qos 2-531
show mls qos aggregate-policer 2-532
show mls qos input-queue 2-533
show mls qos interface 2-535
show mls qos maps 2-539
show mls qos queue-set 2-542
show mls qos vlan 2-544
show monitor 2-545
show mvr 2-548
show mvr interface 2-550
show mvr members 2-552
show pagp 2-554
show parser macro 2-556
show policy-map 2-559
show port-security 2-561
show power inline 2-564
show sdm prefer 2-567
show setup express 2-571
show spanning-tree 2-572
show storm-control 2-579
show switch 2-581
show system mtu 2-584
show udld 2-585
show version 2-588
show vlan 2-590
show vlan access-map 2-595
show vlan filter 2-596
show vmps 2-597
show vtp 2-600
shutdown 2-605
shutdown vlan 2-606
snmp-server enable traps 2-607
snmp-server host 2-611
snmp trap mac-notification 2-615
spanning-tree backbonefast 2-617
spanning-tree bpdufilter 2-618
spanning-tree bpduguard 2-620
spanning-tree cost 2-622
spanning-tree etherchannel guard misconfig 2-624
spanning-tree extend system-id 2-626
spanning-tree guard 2-628
spanning-tree link-type 2-630
spanning-tree loopguard default 2-632
spanning-tree mode 2-634
spanning-tree mst configuration 2-636
spanning-tree mst cost 2-638
spanning-tree mst forward-time 2-640
spanning-tree mst hello-time 2-641
spanning-tree mst max-age 2-642
spanning-tree mst max-hops 2-643
spanning-tree mst port-priority 2-645
spanning-tree mst pre-standard 2-647
spanning-tree mst priority 2-648
spanning-tree mst root 2-649
spanning-tree port-priority 2-651
spanning-tree portfast (global configuration) 2-653
spanning-tree portfast (interface configuration) 2-655
spanning-tree transmit hold-count 2-657
spanning-tree uplinkfast 2-658
spanning-tree vlan 2-660
speed 2-663
srr-queue bandwidth limit 2-665
srr-queue bandwidth shape 2-667
srr-queue bandwidth share 2-669
stack-mac persistent timer 2-671
storm-control 2-673
switch priority 2-676
switch provision 2-677
switch renumber 2-679
switchport 2-681
switchport access 2-683
switchport backup interface 2-685
switchport block 2-688
switchport host 2-689
switchport mode 2-690
switchport mode private-vlan 2-693
switchport nonegotiate 2-695
switchport port-security 2-697
switchport port-security aging 2-702
switchport priority extend 2-704
switchport private-vlan 2-706
switchport protected 2-708
switchport trunk 2-710
switchport voice vlan 2-713
system env temperature threshold yellow 2-715
system mtu 2-717
test cable-diagnostics tdr 2-719
traceroute mac 2-720
tracert mac ip 2-723
trust 2-725
udld 2-727
udld port 2-729
udld reset 2-731
vlan (global configuration) 2-732
vlan (VLAN configuration) 2-738
vlan access-map 2-744
vlan database 2-746
vlan dot1q tag native 2-749
vlan filter 2-751
vmps reconfirm (privileged EXEC) 2-753
vmps reconfirm (global configuration) 2-754
vmps retry 2-755
vmps server 2-756
vtp (global configuration) 2-758
vtp (VLAN configuration) 2-762

APPENDIX A

Catalyst 3750 Switch Boot Loader Commands A-1

boot A-2
cat A-4
copy A-5
delete A-6
dir A-7
flash_init A-9
format A-10
fsck A-11
help A-12
load_helper A-13
memory A-14
mkdir A-16
more A-17
rename A-18
reset A-19
rmdir A-20
set A-21
APPENDIX B

Catalyst 3750 Switch Debug Commands

debug auto qos B-2
debug backup B-4
debug cluster B-5
debug dot1x B-7
debug dtp B-9
debug eap B-10
debug etherchannel B-12
debug ippower B-14
debug ip dhcp snooping B-15
debug ip verify source packet B-16
debug interface B-17
debug ip igmp filter B-19
debug ip igmp max-groups B-20
debug ip igmp snooping B-21
debug lacp B-22
debug mac-notification B-23
debug matm B-24
debug matm move update B-25
debug monitor B-26
debug mvrdbg B-28
debug nvram B-29
debug pagp B-30
debug platform acl B-31
debug platform backup interface B-32
debug platform cli-redirection main B-33
debug platform configuration B-34
debug platform cpu-queues B-35
debug platform device-manager B-37
debug platform dot1x B-38
debug platform etherchannel B-39
debug platform fallback-bridging B-40
<table>
<thead>
<tr>
<th>debug platform forw-tcam</th>
<th>B-41</th>
</tr>
</thead>
<tbody>
<tr>
<td>debug platform frontend-controller</td>
<td>B-42</td>
</tr>
<tr>
<td>debug platform ip arp inspection</td>
<td>B-44</td>
</tr>
<tr>
<td>debug platform ip dhcp</td>
<td>B-45</td>
</tr>
<tr>
<td>debug platform ip igmp snooping</td>
<td>B-46</td>
</tr>
<tr>
<td>debug platform ip multicast</td>
<td>B-48</td>
</tr>
<tr>
<td>debug platform ip unicast</td>
<td>B-50</td>
</tr>
<tr>
<td>debug platform ipc</td>
<td>B-52</td>
</tr>
<tr>
<td>debug platform led</td>
<td>B-53</td>
</tr>
<tr>
<td>debug platform matm</td>
<td>B-54</td>
</tr>
<tr>
<td>debug platform messaging application</td>
<td>B-56</td>
</tr>
<tr>
<td>debug platform phy</td>
<td>B-58</td>
</tr>
<tr>
<td>debug platform pm</td>
<td>B-60</td>
</tr>
<tr>
<td>debug platform port-asic</td>
<td>B-62</td>
</tr>
<tr>
<td>debug platform port-security</td>
<td>B-63</td>
</tr>
<tr>
<td>debug platform qos-acl-tcam</td>
<td>B-64</td>
</tr>
<tr>
<td>debug platform remote-commands</td>
<td>B-65</td>
</tr>
<tr>
<td>debug platform resource-manager</td>
<td>B-66</td>
</tr>
<tr>
<td>debug platform snmp</td>
<td>B-67</td>
</tr>
<tr>
<td>debug platform span</td>
<td>B-68</td>
</tr>
<tr>
<td>debug platform stack-manager</td>
<td>B-69</td>
</tr>
<tr>
<td>debug platform supervisor-asic</td>
<td>B-70</td>
</tr>
<tr>
<td>debug platform sw-bridge</td>
<td>B-71</td>
</tr>
<tr>
<td>debug platform tcam</td>
<td>B-72</td>
</tr>
<tr>
<td>debug platform udld</td>
<td>B-75</td>
</tr>
<tr>
<td>debug platform vlan</td>
<td>B-76</td>
</tr>
<tr>
<td>debug pm</td>
<td>B-77</td>
</tr>
<tr>
<td>debug port-security</td>
<td>B-79</td>
</tr>
<tr>
<td>debug qos-manager</td>
<td>B-80</td>
</tr>
<tr>
<td>debug spanning-tree</td>
<td>B-81</td>
</tr>
<tr>
<td>debug spanning-tree backbonefast</td>
<td>B-83</td>
</tr>
<tr>
<td>debug spanning-tree bpdu</td>
<td>B-84</td>
</tr>
<tr>
<td>debug spanning-tree bpdu-opt</td>
<td>B-85</td>
</tr>
<tr>
<td>debug spanning-tree mstp</td>
<td>B-86</td>
</tr>
<tr>
<td>debug spanning-tree switch</td>
<td>B-88</td>
</tr>
</tbody>
</table>
debug spanning-tree uplinkfast B-90
debug sw-vlan B-91
debug sw-vlan ifs B-93
debug sw-vlan notification B-95
debug sw-vlan vtp B-97
d debug udl d B-99
d debug vqpc B-101

APPENDIX C

Catalyst 3750 Switch Show Platform Commands C-1

show platform acl C-2
show platform backup interface C-3
show platform configuration C-4
show platform etherchannel C-5
show platform forward C-6
show platform frontend-controller C-8
show platform ip igmp snooping C-9
show platform ip multicast C-11
show platform ip unicast C-12
show platform ip unicast vrf compaction C-14
show platform ip unicast vrf tcam-label C-15
show platform ipc trace C-16
show platform ipv6 unicast C-17
show platform layer4op C-19
show platform mac-address-table C-20
show platform messaging C-21
show platform monitor C-22
show platform mvr table C-23
show platform pm C-24
show platform port-asic C-25
show platform port-security C-30
show platform qos C-31
show platform resource-manager C-32
show platform snmp counters C-34
show platform spanning-tree C-35
show platform stp-instance C-36
show platform stack-manager C-37
Audience

This guide is for the networking professional using the Cisco IOS command-line interface (CLI) to manage the Catalyst 3750 switch, hereafter referred to as the switch. Before using this guide, you should have experience working with the Cisco IOS commands and the switch software features. Before using this guide, you should have experience working with the concepts and terminology of Ethernet and local area networking.

Purpose

The Catalyst 3750 switch is supported by either the IP base image, formerly known as the standard multilayer image (SMI), or the IP services image, formerly known as the enhanced multilayer image (EMI). The IP base image provides Layer 2+ features including access control lists (ACLs), quality of service (QoS), static routing, and the Routing Information Protocol (RIP). The IP services image provides a richer set of enterprise-class features. It includes Layer 2+ features and full Layer 3 routing (IP unicast routing, IP multicast routing, and fallback bridging). To distinguish it from the Layer 2+ static routing and RIP, the IP services image includes protocols such as the Enhanced Interior Gateway Routing Protocol (EIGRP) and Open Shortest Path First (OSPF) Protocol.

This guide provides the information that you need about the Layer 2 and Layer 3 commands that have been created or changed for use with the Catalyst 3750 switches. For information about the standard Cisco IOS Release 12.2 commands, see the Cisco IOS documentation set available from the Cisco.com home page by selecting Technical Support & Documentation > Cisco IOS Software.

This guide does not provide procedures for configuring your switch. For detailed configuration procedures, see the software configuration guide for this release.

This guide does not describe system messages you might encounter. For more information, see the system message guide for this release.

For documentation updates, see the release notes for this release.
Conventions

This publication uses these conventions to convey instructions and information:

Command descriptions use these conventions:

- Commands and keywords are in boldface text.
- Arguments for which you supply values are in italic.
- Square brackets ([]) means optional elements.
- Braces ({{}}) group required choices, and vertical bars (|) separate the alternative elements.
- Braces and vertical bars within square brackets ({{ | }}) mean a required choice within an optional element.

Interactive examples use these conventions:

- Terminal sessions and system displays are in screen font.
- Information you enter is in boldface screen font.
- Nonprinting characters, such as passwords or tabs, are in angle brackets (< >).

Notes, cautions, and warnings use these conventions and symbols:

Note
Means reader take note. Notes contain helpful suggestions or references to materials not contained in this manual.

Caution
Means reader be careful. In this situation, you might do something that could result in equipment damage or loss of data.

Related Publications

These documents provide complete information about the switch and are available from this Cisco.com site:

Note
Before installing, configuring, or upgrading the switch, see these documents:

- For initial configuration information, see the “Using Express Setup” chapter in the getting started guide or the “Configuring the Switch with the CLI-Based Setup Program” appendix in the hardware installation guide.
- For device manager requirements, see the “System Requirements” section in the release notes (not orderable but available on Cisco.com).
- For Network Assistant requirements, see the *Getting Started with Cisco Network Assistant* (not orderable but available on Cisco.com).
For cluster requirements, see the Release Notes for Cisco Network Assistant (not orderable but available on Cisco.com).

For upgrade information, see the “Downloading Software” section in the release notes.

You can order printed copies of documents with a DOC-xxxxxx= number from the Cisco.com sites and from the telephone numbers listed in the “Obtaining Documentation” section on page xxi.

- Release Notes for the Catalyst 3750, 3560, 2970, and 2960 Switches (not orderable but available on Cisco.com)
- Catalyst 3750 Switch Software Configuration Guide (not orderable but available on Cisco.com)
- Catalyst 3750 Switch Command Reference (not orderable but available on Cisco.com)
- Device manager online help (available on the switch)
- Catalyst 3750 Switch Hardware Installation Guide (not orderable but available on Cisco.com)
- Catalyst 3750 Switch Getting Started Guide (order number DOC-7816663=)
- Regulatory Compliance and Safety Information for the Catalyst 3750 Switch (order number DOC-7816664)
- Catalyst 3750, 3560, 3550, 2970, and 2960 Switch System Message Guide (not orderable but available on Cisco.com)
- Getting Started with Cisco Network Assistant (not orderable but available on Cisco.com)
- Release Notes for Cisco Network Assistant (not orderable but available on Cisco.com)
- Cisco Small Form-Factor Pluggable Modules Installation Notes (order number DOC-7815160=)
- Cisco CWDM GBIC and CWDM SFP Modules Installation Note (not orderable but available on Cisco.com)
- Cisco RPS 300 Redundant Power System Hardware Installation Guide (order number DOC-7810372=)
- Cisco RPS 675 Redundant Power System Hardware Installation Guide (order number DOC-7815201=)
- For information about the Network Admission Control (NAC) features, see the Network Admission Control Software Configuration Guide (not orderable but available on Cisco.com)

Obtaining Documentation

Cisco documentation and additional literature are available on Cisco.com. Cisco also provides several ways to obtain technical assistance and other technical resources. These sections explain how to obtain technical information from Cisco Systems.

Cisco.com

You can access the most current Cisco documentation at this URL:

http://www.cisco.com/techsupport

You can access the Cisco website at this URL:

http://www.cisco.com
You can access international Cisco websites at this URL:

Product Documentation DVD

The Product Documentation DVD is a comprehensive library of technical product documentation on a portable medium. The DVD enables you to access multiple versions of installation, configuration, and command guides for Cisco hardware and software products. With the DVD, you have access to the same HTML documentation that is found on the Cisco website without being connected to the Internet. Certain products also have .PDF versions of the documentation available.

The Product Documentation DVD is available as a single unit or as a subscription. Registered Cisco.com users (Cisco direct customers) can order a Product Documentation DVD (product number DOC-DOCDVD= or DOC-DOCDVD=SUB) from Cisco Marketplace at this URL:
http://www.cisco.com/go/marketplace/

Ordering Documentation

Registered Cisco.com users may order Cisco documentation at the Product Documentation Store in the Cisco Marketplace at this URL:
http://www.cisco.com/go/marketplace/

Nonregistered Cisco.com users can order technical documentation from 8:00 a.m. to 5:00 p.m. (0800 to 1700) PDT by calling 1 866 463-3487 in the United States and Canada, or elsewhere by calling 011 408 519-5055. You can also order documentation by e-mail at tech-doc-store-mkpl@external.cisco.com or by fax at 1 408 519-5001 in the United States and Canada, or elsewhere at 011 408 519-5001.

Documentation Feedback

You can rate and provide feedback about Cisco technical documents by completing the online feedback form that appears with the technical documents on Cisco.com.

You can submit comments about Cisco documentation by using the response card (if present) behind the front cover of your document or by writing to the following address:
Cisco Systems
Attn: Customer Document Ordering
170 West Tasman Drive
San Jose, CA 95134-9883

We appreciate your comments.

Cisco Product Security Overview

Cisco provides a free online Security Vulnerability Policy portal at this URL:
From this site, you will find information about how to:

- Report security vulnerabilities in Cisco products.
- Obtain assistance with security incidents that involve Cisco products.
- Register to receive security information from Cisco.

A current list of security advisories, security notices, and security responses for Cisco products is available at this URL:

http://www.cisco.com/go/psirt

To see security advisories, security notices, and security responses as they are updated in real time, you can subscribe to the Product Security Incident Response Team Really Simple Syndication (PSIRT RSS) feed. Information about how to subscribe to the PSIRT RSS feed is found at this URL:

Reporting Security Problems in Cisco Products

Cisco is committed to delivering secure products. We test our products internally before we release them, and we strive to correct all vulnerabilities quickly. If you think that you have identified a vulnerability in a Cisco product, contact PSIRT:

- For Emergencies only—security-alert@cisco.com

 An emergency is either a condition in which a system is under active attack or a condition for which a severe and urgent security vulnerability should be reported. All other conditions are considered nonemergencies.

- For Nonemergencies—psirt@cisco.com

In an emergency, you can also reach PSIRT by telephone:

- 1 877 228-7302
- 1 408 525-6532

Tip

We encourage you to use Pretty Good Privacy (PGP) or a compatible product (for example, GnuPG) to encrypt any sensitive information that you send to Cisco. PSIRT can work with information that has been encrypted with PGP versions 2.x through 9.x.

Never use a revoked or an expired encryption key. The correct public key to use in your correspondence with PSIRT is the one linked in the Contact Summary section of the Security Vulnerability Policy page at this URL:

The link on this page has the current PGP key ID in use.

If you do not have or use PGP, contact PSIRT at the aforementioned e-mail addresses or phone numbers before sending any sensitive material to find other means of encrypting the data.
Obtaining Technical Assistance

Cisco Technical Support provides 24-hour-a-day award-winning technical assistance. The Cisco Technical Support & Documentation website on Cisco.com features extensive online support resources. In addition, if you have a valid Cisco service contract, Cisco Technical Assistance Center (TAC) engineers provide telephone support. If you do not have a valid Cisco service contract, contact your reseller.

Cisco Technical Support & Documentation Website

The Cisco Technical Support & Documentation website provides online documents and tools for troubleshooting and resolving technical issues with Cisco products and technologies. The website is available 24 hours a day, at this URL:

http://www.cisco.com/techsupport

Access to all tools on the Cisco Technical Support & Documentation website requires a Cisco.com user ID and password. If you have a valid service contract but do not have a user ID or password, you can register at this URL:

Note

Use the Cisco Product Identification (CPI) tool to locate your product serial number before submitting a web or phone request for service. You can access the CPI tool from the Cisco Technical Support & Documentation website by clicking the Tools & Resources link under Documentation & Tools. Choose Cisco Product Identification Tool from the Alphabetical Index drop-down list, or click the Cisco Product Identification Tool link under Alerts & RMAs. The CPI tool offers three search options: by product ID or model name; by tree view; or for certain products, by copying and pasting show command output. Search results show an illustration of your product with the serial number label location highlighted. Locate the serial number label on your product and record the information before placing a service call.

Submitting a Service Request

Using the online TAC Service Request Tool is the fastest way to open S3 and S4 service requests. (S3 and S4 service requests are those in which your network is minimally impaired or for which you require product information.) After you describe your situation, the TAC Service Request Tool provides recommended solutions. If your issue is not resolved using the recommended resources, your service request is assigned to a Cisco engineer. The TAC Service Request Tool is located at this URL:

http://www.cisco.com/techsupport/servicerequest

For S1 or S2 service requests, or if you do not have Internet access, contact the Cisco TAC by telephone. (S1 or S2 service requests are those in which your production network is down or severely degraded.) Cisco engineers are assigned immediately to S1 and S2 service requests to help keep your business operations running smoothly.

To open a service request by telephone, use one of the following numbers:

Asia-Pacific: +61 2 8446 7411 (Australia: 1 800 805 227)
EMEA: +32 2 704 55 55
USA: 1 800 553-2447
For a complete list of Cisco TAC contacts, go to this URL:

http://www.cisco.com/techsupport/contacts

Definitions of Service Request Severity

To ensure that all service requests are reported in a standard format, Cisco has established severity definitions.

Severity 1 (S1)—An existing network is down, or there is a critical impact to your business operations. You and Cisco will commit all necessary resources around the clock to resolve the situation.

Severity 2 (S2)—Operation of an existing network is severely degraded, or significant aspects of your business operations are negatively affected by inadequate performance of Cisco products. You and Cisco will commit full-time resources during normal business hours to resolve the situation.

Severity 3 (S3)—Operational performance of the network is impaired, while most business operations remain functional. You and Cisco will commit resources during normal business hours to restore service to satisfactory levels.

Severity 4 (S4)—You require information or assistance with Cisco product capabilities, installation, or configuration. There is little or no effect on your business operations.

Obtaining Additional Publications and Information

Information about Cisco products, technologies, and network solutions is available from various online and printed sources.

- The Cisco Product Quick Reference Guide is a handy, compact reference tool that includes brief product overviews, key features, sample part numbers, and abbreviated technical specifications for many Cisco products that are sold through channel partners. It is updated twice a year and includes the latest Cisco offerings. To order and find out more about the Cisco Product Quick Reference Guide, go to this URL:
 http://www.cisco.com/go/guide

- Cisco Marketplace provides a variety of Cisco books, reference guides, documentation, and logo merchandise. Visit Cisco Marketplace, the company store, at this URL:
 http://www.cisco.com/go/marketplace/

- Cisco Press publishes a wide range of general networking, training and certification titles. Both new and experienced users will benefit from these publications. For current Cisco Press titles and other information, go to Cisco Press at this URL:
 http://www.ciscopress.com

- Packet magazine is the Cisco Systems technical user magazine for maximizing Internet and networking investments. Each quarter, Packet delivers coverage of the latest industry trends, technology breakthroughs, and Cisco products and solutions, as well as network deployment and troubleshooting tips, configuration examples, customer case studies, certification and training information, and links to scores of in-depth online resources. You can access Packet magazine at this URL:
 http://www.cisco.com/packet
iQ Magazine is the quarterly publication from Cisco Systems designed to help growing companies learn how they can use technology to increase revenue, streamline their business, and expand services. The publication identifies the challenges facing these companies and the technologies to help solve them, using real-world case studies and business strategies to help readers make sound technology investment decisions. You can access iQ Magazine at this URL:

http://www.cisco.com/go/iqmagazine

or view the digital edition at this URL:

http://ciscoiq.texterity.com/ciscoiq/sample/

Internet Protocol Journal is a quarterly journal published by Cisco Systems for engineering professionals involved in designing, developing, and operating public and private internets and intranets. You can access the Internet Protocol Journal at this URL:

http://www.cisco.com/ipj

Networking products offered by Cisco Systems, as well as customer support services, can be obtained at this URL:

Networking Professionals Connection is an interactive website for networking professionals to share questions, suggestions, and information about networking products and technologies with Cisco experts and other networking professionals. Join a discussion at this URL:

http://www.cisco.com/discuss/networking

World-class networking training is available from Cisco. You can view current offerings at this URL:

Using the Command-Line Interface

The Catalyst 3750 switch is supported by Cisco IOS software. This chapter describes how to use the switch command-line interface (CLI) to configure software features.

For a complete description of the commands that support these features, see Chapter 2, “Catalyst 3750 Switch Cisco IOS Commands.” For information on the boot loader commands, see Appendix A, “Catalyst 3750 Switch Boot Loader Commands.” For information on the debug commands, see Appendix B, “Catalyst 3750 Switch Debug Commands.” For information on the show platform commands, see Appendix C, “Catalyst 3750 Switch Show Platform Commands.” For more information on Cisco IOS Release 12.2, see the Cisco IOS Release 12.2 Command Summary.

For task-oriented configuration steps, see the software configuration guide for this release.

In this document, IP refers to IP version 4 (IPv4) unless there is a specific reference to IP version 6 (IPv6).

Accessing the Switch

You manage the switch stack and the stack member interfaces through the stack master. You cannot manage stack members on an individual switch basis. You can connect to the stack master through the console port of one or more stack members. Be careful with using multiple CLI sessions to the stack master. Commands you enter in one session are not displayed in the other sessions. Therefore, it is possible to lose track of the session from which you entered commands.

Note

We recommend using one CLI session when managing the switch stack.

If you want to configure a specific stack member port, you must include the stack member number in the CLI command interface notation. For more information about interface notations, see the “Configuring Interfaces” chapter in the software configuration guide for this release.

To debug a specific stack member, you can access it from the stack master by using the session stack-member-number privileged EXEC command. The stack member number is appended to the system prompt. For example, Switch-2# is the prompt in privileged EXEC mode for stack member 2, and the system prompt for the stack master is Switch. Only the show and debug commands are available in a CLI session to a specific stack member.
CLl Command Modes

This section describes the CLI command mode structure. Command modes support specific Cisco IOS commands. For example, the `interface interface-id` command only works when entered in global configuration mode.

These are the main command modes for the switch:
- User EXEC
- Privileged EXEC
- Global configuration
- Interface configuration
- Config-vlan
- VLAN configuration
- Line configuration

Table 1-1 lists the main command modes, how to access each mode, the prompt you see in that mode, and how to exit that mode. The prompts listed use the default name `Switch`.

<table>
<thead>
<tr>
<th>Command Mode</th>
<th>Access Method</th>
<th>Prompt</th>
<th>Exit or Access Next Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>User EXEC</td>
<td>This is the first level of access. (For the switch) Change terminal settings, perform basic tasks, and list system information.</td>
<td>Switch></td>
<td>Enter the <code>logout</code> command. To enter privileged EXEC mode, enter the <code>enable</code> command.</td>
</tr>
<tr>
<td>Privileged EXEC</td>
<td>From user EXEC mode, enter the <code>enable</code> command.</td>
<td>Switch#</td>
<td>To exit to user EXEC mode, enter the <code>disable</code> command.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>To enter global configuration mode, enter the <code>configure</code> command.</td>
</tr>
<tr>
<td>Global configuration</td>
<td>From privileged EXEC mode, enter the <code>configure</code> command.</td>
<td>Switch(config)#</td>
<td>To exit to privileged EXEC mode, enter the <code>exit</code> or <code>end</code> command, or press Ctrl-Z.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>To enter interface configuration mode, enter the <code>interface</code> configuration command.</td>
</tr>
<tr>
<td>Interface configuration</td>
<td>From global configuration mode, specify an interface by entering the <code>interface</code> command followed by an interface identification.</td>
<td>Switch(config-if)#</td>
<td>To exit to privileged EXEC mode, enter the <code>end</code> command, or press Ctrl-Z.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>To exit to global configuration mode, enter the <code>exit</code> command.</td>
</tr>
<tr>
<td>Config-vlan</td>
<td>In global configuration mode, enter the <code>vlan vlan-id</code> command.</td>
<td>Switch(config-vlan)#</td>
<td>To exit to global configuration mode, enter the <code>exit</code> command.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>To return to privileged EXEC mode, enter the <code>end</code> command, or press Ctrl-Z.</td>
</tr>
</tbody>
</table>
User EXEC Mode

After you access the device, you are automatically in user EXEC command mode. The EXEC commands available at the user level are a subset of those available at the privileged level. In general, use the user EXEC commands to temporarily change terminal settings, perform basic tests, and list system information.

The supported commands can vary depending on the version of software in use. To display a comprehensive list of commands, enter a question mark (?) at the prompt.

Switch> ?

Table 1-1 Command Modes Summary (continued)

<table>
<thead>
<tr>
<th>Command Mode</th>
<th>Access Method</th>
<th>Prompt</th>
<th>Exit or Access Next Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN configuration</td>
<td>From privileged EXEC mode, enter the vlan database command.</td>
<td>Switch(vlan)#</td>
<td>To exit to privileged EXEC mode, enter the exit command.</td>
</tr>
<tr>
<td>Line configuration</td>
<td>From global configuration mode, specify a line by entering the line command.</td>
<td>Switch(config-line)#</td>
<td>To exit to global configuration mode, enter the exit command. To return to privileged EXEC mode, enter the end command, or press Ctrl-Z.</td>
</tr>
</tbody>
</table>

Privileged EXEC Mode

Because many of the privileged commands configure operating parameters, privileged access should be password-protected to prevent unauthorized use. The privileged command set includes those commands contained in user EXEC mode, as well as the configure privileged EXEC command through which you access the remaining command modes.

If your system administrator has set a password, you are prompted to enter it before being granted access to privileged EXEC mode. The password does not appear on the screen and is case sensitive.

The privileged EXEC mode prompt is the device name followed by the pound sign (#).

Switch#

Enter the enable command to access privileged EXEC mode:

Switch> enable
Switch#

The supported commands can vary depending on the version of software in use. To display a comprehensive list of commands, enter a question mark (?) at the prompt.

Switch# ?

To return to user EXEC mode, enter the disable privileged EXEC command.
Global Configuration Mode

Global configuration commands apply to features that affect the device as a whole. Use the `configure` privileged EXEC command to enter global configuration mode. The default is to enter commands from the management console.

When you enter the `configure` command, a message prompts you for the source of the configuration commands:

```
Switch# configure
Configuring from terminal, memory, or network [terminal]?
```

You can specify either the terminal or NVRAM as the source of configuration commands.

This example shows you how to access global configuration mode:

```
Switch# configure terminal
Enter configuration commands, one per line.  End with CNTL/Z.
```

The supported commands can vary depending on the version of software in use. To display a comprehensive list of commands, enter a question mark (`?`) at the prompt.

```
Switch(config)# ?
```

To exit global configuration command mode and to return to privileged EXEC mode, enter the `end` or `exit` command, or press Ctrl-Z.

Interface Configuration Mode

Interface configuration commands modify the operation of the interface. Interface configuration commands always follow a global configuration command, which defines the interface type.

Use the `interface interface-id` command to access interface configuration mode. The new prompt means interface configuration mode.

```
Switch(config-if)#
```

The supported commands can vary depending on the version of software in use. To display a comprehensive list of commands, enter a question mark (`?`) at the prompt.

```
Switch(config-if)# ?
```

To exit interface configuration mode and to return to global configuration mode, enter the `exit` command. To exit interface configuration mode and to return to privileged EXEC mode, enter the `end` command, or press Ctrl-Z.

config-vlan Mode

Use this mode to configure normal-range VLANs (VLAN IDs 1 to 1005) or, when VTP mode is transparent, to configure extended-range VLANs (VLAN IDs 1006 to 4094). When VTP mode is transparent, the VLAN and VTP configuration is saved in the running configuration file, and you can save it to the switch startup configuration file by using the `copy running-config startup-config` privileged EXEC command. The configurations of VLAN IDs 1 to 1005 are saved in the VLAN database if VTP is in transparent or server mode. The extended-range VLAN configurations are not saved in the VLAN database.
Enter the `vlan vlan-id` global configuration command to access config-vlan mode:

```
Switch(config)# vlan 2000
Switch(config-vlan)#
```

The supported keywords can vary but are similar to the commands available in VLAN configuration mode. To display a comprehensive list of commands, enter a question mark (?) at the prompt.

```
Switch(config-vlan)# ?
```

For extended-range VLANs, all characteristics except the MTU size must remain at the default setting. To return to global configuration mode, enter `exit`; to return to privileged EXEC mode, enter `end`. All the commands except `shutdown` take effect when you exit config-vlan mode.

VLAN Configuration Mode

You can use the VLAN configuration commands to create or modify VLAN parameters for VLAN IDs 1 to 1005.

Enter the `vlan database` privileged EXEC command to access VLAN configuration mode:

```
Switch# vlan database
Switch(vlan)#
```

The supported commands can vary depending on the version of software in use. To display a comprehensive list of commands, enter a question mark (?) at the prompt.

```
Switch(vlan)# ?
```

To return to privileged EXEC mode, enter the `abort` VLAN configuration command to abandon the proposed database. Otherwise, enter `exit` to implement the proposed new VLAN database and to return to privileged EXEC mode. When you enter `exit` or `apply`, the configuration is saved in the VLAN database; configuration from VLAN configuration mode cannot be saved in the switch configuration file.

Line Configuration Mode

Line configuration commands modify the operation of a terminal line. Line configuration commands always follow a line command, which defines a line number. Use these commands to change terminal parameter settings line-by-line or for a range of lines.

Use the `line vty line_number [ending_line_number]` command to enter line configuration mode. The new prompt means line configuration mode. The following example shows how to enter line configuration mode for virtual terminal line 7:

```
Switch(config)# line vty 0 7
```

The supported commands can vary depending on the version of software in use. To display a comprehensive list of commands, enter a question mark (?) at the prompt.

```
Switch(config-line)# ?
```

To exit line configuration mode and to return to global configuration mode, use the `exit` command. To exit line configuration mode and to return to privileged EXEC mode, enter the `end` command, or press `Ctrl-Z`.

Enter the `vlan vlan-id` global configuration command to access config-vlan mode:

```
Switch(config)# vlan 2000
Switch(config-vlan)#
```

The supported keywords can vary but are similar to the commands available in VLAN configuration mode. To display a comprehensive list of commands, enter a question mark (?) at the prompt.

```
Switch(config-vlan)# ?
```

For extended-range VLANs, all characteristics except the MTU size must remain at the default setting. To return to global configuration mode, enter `exit`; to return to privileged EXEC mode, enter `end`. All the commands except `shutdown` take effect when you exit config-vlan mode.

VLAN Configuration Mode

You can use the VLAN configuration commands to create or modify VLAN parameters for VLAN IDs 1 to 1005.

Enter the `vlan database` privileged EXEC command to access VLAN configuration mode:

```
Switch# vlan database
Switch(vlan)#
```

The supported commands can vary depending on the version of software in use. To display a comprehensive list of commands, enter a question mark (?) at the prompt.

```
Switch(vlan)# ?
```

To return to privileged EXEC mode, enter the `abort` VLAN configuration command to abandon the proposed database. Otherwise, enter `exit` to implement the proposed new VLAN database and to return to privileged EXEC mode. When you enter `exit` or `apply`, the configuration is saved in the VLAN database; configuration from VLAN configuration mode cannot be saved in the switch configuration file.

Line Configuration Mode

Line configuration commands modify the operation of a terminal line. Line configuration commands always follow a line command, which defines a line number. Use these commands to change terminal parameter settings line-by-line or for a range of lines.

Use the `line vty line_number [ending_line_number]` command to enter line configuration mode. The new prompt means line configuration mode. The following example shows how to enter line configuration mode for virtual terminal line 7:

```
Switch(config)# line vty 0 7
```

The supported commands can vary depending on the version of software in use. To display a comprehensive list of commands, enter a question mark (?) at the prompt.

```
Switch(config-line)# ?
```

To exit line configuration mode and to return to global configuration mode, use the `exit` command. To exit line configuration mode and to return to privileged EXEC mode, enter the `end` command, or press `Ctrl-Z`.
Commands Changed in Cisco IOS 12.2(18)SE

Table 1-2 lists describes the commands that have the same function but different syntax than they did in software releases before Cisco IOS Release 12.2(18)SE.

<table>
<thead>
<tr>
<th>Releases earlier than Cisco IOS Release 12.2(18)SE</th>
<th>Cisco IOS Release 12.2(18)SE or later</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip igmp snooping multicast</td>
<td>show ip igmp snooping groups</td>
<td>Displays the IGMP(^1) snooping multicast table for the switch or multicast information.</td>
</tr>
<tr>
<td>debug autoqos</td>
<td>debug auto qos</td>
<td>Enables debugging of the auto-QoS(^2) feature.</td>
</tr>
</tbody>
</table>

1. IGMP = Internet Group Management Protocol
2. auto-QoS = automatic quality of service
aaa accounting dot1x

Use the `aaa accounting dot1x` global configuration command to enable authentication, authorization, and accounting (AAA) accounting and to create method lists defining specific accounting methods on a per-line or per-interface basis for IEEE 802.1x sessions. Use the `no` form of this command to disable IEEE 802.1x accounting.

```
aaa accounting dot1x {name | default} start-stop {broadcast group {name | radius | tacacs+} [group {name | radius | tacacs+} ...]} 
  [group {name | radius | tacacs+} ... ]
no aaa accounting dot1x {name | default}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>name</code></td>
<td>Name of a server group. This is optional when you enter it after the <code>broadcast group</code> and <code>group</code> keywords.</td>
</tr>
<tr>
<td><code>default</code></td>
<td>Use the accounting methods that follow as the default list for accounting services.</td>
</tr>
<tr>
<td><code>start-stop</code></td>
<td>Send a start accounting notice at the beginning of a process and a stop accounting notice at the end of a process. The start accounting record is sent in the background. The requested-user process begins regardless of whether or not the start accounting notice was received by the accounting server.</td>
</tr>
<tr>
<td><code>broadcast</code></td>
<td>Enable accounting records to be sent to multiple AAA servers and send accounting records to the first server in each group. If the first server is unavailable, the switch uses the list of backup servers to identify the first server.</td>
</tr>
<tr>
<td><code>group</code></td>
<td>Specify the server group to be used for accounting services. These are valid server group names:</td>
</tr>
<tr>
<td>Radius</td>
<td>(Optional) Enable RADIUS authorization.</td>
</tr>
<tr>
<td>TACACS+</td>
<td>(Optional) Enable TACACS+ accounting.</td>
</tr>
</tbody>
</table>

The `group` keyword is optional when you enter it after the `broadcast group` and `group` keywords. You can enter more than optional `group` keyword.
aaa accounting dot1x

Defaults
AAA accounting is disabled.

Command Modes
Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(20)SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
This command requires access to a RADIUS server.
We recommend that you enter the `dot1x reauthentication` interface configuration command before configuring IEEE 802.1x RADIUS accounting on an interface.

Examples
This example shows how to configure IEEE 802.1x accounting:
```
Switch(config)# aaa new-model
Switch(config)# aaa accounting dot1x default start-stop group radius
```

Note
The RADIUS authentication server must be properly configured to accept and log update or watchdog packets from the AAA client.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>aaa authentication dot1x</code></td>
<td>Specifies one or more AAA methods for use on interfaces running IEEE 802.1x.</td>
</tr>
<tr>
<td><code>aaa new-model</code></td>
<td>Enables the AAA access control model. For syntax information, see the Cisco IOS Security Command Reference, Release 12.2 > Authentication, Authorization, and Accounting > Authentication Commands.</td>
</tr>
<tr>
<td><code>dot1x reauthentication</code></td>
<td>Enables or disables periodic reauthentication.</td>
</tr>
<tr>
<td><code>dot1x timeout reauth-period</code></td>
<td>Sets the number of seconds between re-authentication attempts.</td>
</tr>
</tbody>
</table>
aaa authentication dot1x

Use the `aaa authentication dot1x` global configuration command on the switch stack or on a standalone switch to specify the authentication, authorization, and accounting (AAA) method to use on ports complying with the IEEE 802.1x authentication. Use the `no` form of this command to disable authentication.

```
aaa authentication dot1x {default} method1
no aaa authentication dot1x {default}
```

Syntax Description

- **default**
 - Use the listed authentication method that follows this argument as the default method when a user logs in.

- **method1**
 - Enter the `group radius` keywords to use the list of all RADIUS servers for authentication.

Note

Though other keywords are visible in the command-line help strings, only the `default` and `group radius` keywords are supported.

Defaults

No authentication is performed.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `method` argument identifies the method that the authentication algorithm tries in the given sequence to validate the password provided by the client. The only method that is truly IEEE 802.1x-compliant is the `group radius` method, in which the client data is validated against a RADIUS authentication server.

If you specify `group radius`, you must configure the RADIUS server by entering the `radius-server host` global configuration command.

Use the `show running-config` privileged EXEC command to display the configured lists of authentication methods.

Examples

This example shows how to enable AAA and how to create an IEEE 802.1x-compliant authentication list. This authentication first tries to contact a RADIUS server. If this action returns an error, the user is not allowed access to the network.
Switch(config)# aaa new-model
Switch(config)# aaa authentication dot1x default group radius

You can verify your settings by entering the `show running-config` privileged EXEC command.

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>aaa new-model</td>
<td>Enables the AAA access control model. For syntax information, see the Cisco IOS Security Command Reference, Release 12.2 > Authentication, Authorization, and Accounting > Authentication Commands.</td>
</tr>
<tr>
<td></td>
<td>show running-config</td>
<td>Displays the current operating configuration. For syntax information, select Cisco IOS Configuration Fundamentals Command Reference, Release 12.2 > File Management Commands > Configuration File Management Commands.</td>
</tr>
</tbody>
</table>
aaa authorization network

Use the `aaa authorization network` global configuration command on the switch stack or on a standalone switch to configure the switch to use user-RADIUS authorization for all network-related service requests, such as IEEE 802.1x per-user access control lists (ACLs) or VLAN assignment. Use the `no` form of this command to disable the switch for RADIUS user authorization.

```
aaa authorization network default group radius

no aaa authorization network default
```

Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>Use the list of all RADIUS hosts in the server group as the default authorization list.</td>
</tr>
<tr>
<td>group</td>
<td></td>
</tr>
<tr>
<td>radius</td>
<td></td>
</tr>
</tbody>
</table>

Defaults

Authorization is disabled.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `aaa authorization network default group radius` global configuration command to allow the switch to download IEEE 802.1x authorization parameters from the RADIUS servers in the default authorization list. The authorization parameters are used by features such as per-user ACLs or VLAN assignment to get parameters from the RADIUS servers.

Use the `show running-config` privileged EXEC command to display the configured lists of authorization methods.

Examples

This example shows how to configure the switch for user RADIUS authorization for all network-related service requests:

```
Switch(config)# aaa authorization network default group radius
```

You can verify your settings by entering the `show running-config` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show running-config</td>
<td>Displays the current operating configuration. For syntax information, select Cisco IOS Configuration Fundamentals Command Reference, Release 12.2 > File Management Commands > Configuration File Management Commands.</td>
</tr>
</tbody>
</table>
action

Use the `action` access-map configuration command on the switch stack or on a standalone switch to set the action for the VLAN access map entry. Use the `no` form of this command to return to the default setting.

```
action {drop | forward}

no action
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>drop</th>
<th>forward</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Drop the packet when the specified conditions are matched.</td>
<td>Forward the packet when the specified conditions are matched.</td>
</tr>
</tbody>
</table>

Defaults

The default action is to forward packets.

Command Modes

Access-map configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You enter access-map configuration mode by using the `vlan access-map` global configuration command.

If the action is `drop`, you should define the access map, including configuring any access control list (ACL) names in match clauses, before applying the map to a VLAN, or all packets could be dropped.

In access-map configuration mode, use the `match` access-map configuration command to define the match conditions for a VLAN map. Use the `action` command to set the action that occurs when a packet matches the conditions.

The drop and forward parameters are not used in the `no` form of the command.

Examples

This example shows how to identify and apply a VLAN access map `vmap4` to VLANs 5 and 6 that causes the VLAN to forward an IP packet if the packet matches the conditions defined in access list `al2`:

```
Switch(config)# vlan access-map vmap4
Switch(config-access-map)# match ip address al2
Switch(config-access-map)# action forward
Switch(config-access-map)# exit
Switch(config)# vlan filter vmap4 vlan-list 5-6
```

You can verify your settings by entering the `show vlan access-map` privileged EXEC command.
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>access-list {deny</td>
<td>permit}</td>
</tr>
<tr>
<td>ip access-list</td>
<td>Creates a named access list. For syntax information, select Cisco IOS IP Command Reference, Volume 1 of 3:Addressing and Services, Release 12.2 > IP Services Commands.</td>
</tr>
<tr>
<td>mac access-list extended</td>
<td>Creates a named MAC address access list.</td>
</tr>
<tr>
<td>match (class-map configuration)</td>
<td>Defines the match conditions for a VLAN map.</td>
</tr>
<tr>
<td>show vlan access-map</td>
<td>Displays the VLAN access maps created on the switch.</td>
</tr>
<tr>
<td>vlan access-map</td>
<td>Creates a VLAN access map.</td>
</tr>
</tbody>
</table>
archive copy-sw

Use the **archive copy-sw** privileged EXEC command on the stack master to copy the running image from the flash memory on one stack member to the flash memory on one or more other stack members.

```
archive copy-sw [/destination-system destination-stack-member-number] [/force-reload] [leave-old-sw] [no-set-boot] [overwrite] [reload] [safe] source-stack-member-number
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/destination-system destination-stack-member-number</td>
<td>(Optional) The number of the stack member to which to copy the running image. The range is 1 to 9.</td>
</tr>
<tr>
<td>/force-reload</td>
<td>(Optional) Unconditionally force a system reload after successfully downloading the software image.</td>
</tr>
<tr>
<td>/leave-old-sw</td>
<td>(Optional) Keep the old software version after a successful download.</td>
</tr>
<tr>
<td>/no-set-boot</td>
<td>(Optional) Do not alter the setting of the BOOT environment variable to point to the new software image after it is successfully downloaded.</td>
</tr>
<tr>
<td>/overwrite</td>
<td>(Optional) Overwrite the software image in flash memory with the downloaded one.</td>
</tr>
<tr>
<td>/reload</td>
<td>(Optional) Reload the system after downloading the image unless the configuration has been changed and not been saved.</td>
</tr>
<tr>
<td>/safe</td>
<td>(Optional) Keep the current software image; do not delete it to make room for the new software image before the new image is downloaded. The current image is deleted after the download.</td>
</tr>
<tr>
<td>source-stack-member-number</td>
<td>The number of the stack member from which to copy the running image. The range is 1 to 9.</td>
</tr>
</tbody>
</table>

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The current software image is not overwritten with the copied image.

Both the software image and HTML files are copied.

The new image is copied to the flash: file system.

The BOOT environment variable is changed to point to the new software image on the flash: file system.

Image names are case sensitive; the image file is provided in tar format.

Note

To successfully use the **archive copy-sw** privileged EXEC command, you must have downloaded from a TFTP server the images for both the stack member switch being added and the stack master. You use the **archive download-sw** privileged EXEC command to perform the download.
At least one stack member must be running the image that is to be copied to the switch that has incompatible software.

You can copy the image to more than one specific stack member by repeating the `/destination-system destination-stack-member-number` option in the command for each stack member to be upgraded. If you do not specify the `destination-stack-member-number`, the default is to copy the running image file to all stack members.

Using the `/safe` or `/leave-old-sw` option can cause the new copied image to fail if there is insufficient flash memory. If leaving the software in place would prevent the new image from fitting in flash memory due to space constraints, an error results.

If you used the `/leave-old-sw` option and did not overwrite the old image when you copied the new one, you can remove the old image by using the `delete` privileged EXEC command. For more information, see the “delete” section on page 2-79.

Use the `/overwrite` option to overwrite the image on the flash device with the copied one.

If you specify the command without the `/overwrite` option, the algorithm verifies that the new image is not the same as the one on the switch flash device or is not running on any stack members. If the images are the same, the copy does not occur. If the images are different, the old image is deleted, and the new one is copied.

After copying a new image, enter the `reload` privileged EXEC command to begin using the new image, or specify the `/reload` or `/force-reload` option in the `archive copy-sw` command.

You can enter one or more of these options with the `source-stack-member-number` option:

- `/destination-system destination-stack-member-number`
- `/force-reload`
- `/leave-old-sw`
- `/no-set-boot`
- `/overwrite`
- `/reload`
- `/safe`

If you enter the `source-stack-member-number` option before one of the previous options, you can enter only the `archive copy-sw source-stack-member-number` command.

These are examples of how you can enter the `archive copy-sw` command:

- To copy the running image from a stack member to another stack member and to overwrite the software image in the second stack member’s flash memory (if it already exists) with the copied one, enter the `archive copy-sw /destination destination-stack-member-number /overwrite source-stack-member-number` command.

- To copy the running image from a stack member to another stack member, keep the current software image, and reload the system after the image copies, enter the `archive copy-sw /destination destination-stack-member-number /safe /reload source-stack-member-number` command.
archive copy-sw

Examples

This example shows how to copy the running image from stack member 6 to stack member 8:

Switch# `archive copy-sw /destination-system 8 6`

This example shows how to copy the running image from stack member 6 to all the other stack members:

Switch# `archive copy-sw 6`

This example shows how to copy the running image from stack member 5 to stack member 7. If the image being copied already exists on the second stack member’s flash memory, it can be overwritten with the copied one. The system reloads after the image is copied:

Switch# `archive copy-sw /destination-system 7 /overwrite /force-reload 5`

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>archive download-sw</code></td>
<td>Downloads a new image from a TFTP server to the switch.</td>
</tr>
<tr>
<td><code>archive tar</code></td>
<td>Creates a tar file, lists the files in a tar file, or extracts the files from a tar file.</td>
</tr>
<tr>
<td><code>archive upload-sw</code></td>
<td>Uploads an existing image on the switch to a server.</td>
</tr>
<tr>
<td><code>delete</code></td>
<td>Deletes a file or directory on the flash memory device.</td>
</tr>
</tbody>
</table>
archive download-sw

Use the **archive download-sw** privileged EXEC command on the switch stack or on a standalone switch to download a new image from a TFTP server to the switch or switch stack and to overwrite or keep the existing image.

```
archive download-sw {/force-reload | /imageonly | /leave-old-sw | /no-set-boot | /no-version-check | /destination-system stack-member-number | /only-system-type system-type | /overwrite | /reload | /safe} source-url
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/force-reload</td>
<td>Unconditionally force a system reload after successfully downloading the software image.</td>
</tr>
<tr>
<td>/imageonly</td>
<td>Download only the software image but not the HTML files associated with the embedded device manager. The HTML files for the existing version are deleted only if the existing version is being overwritten or removed.</td>
</tr>
<tr>
<td>/leave-old-sw</td>
<td>Keep the old software version after a successful download.</td>
</tr>
<tr>
<td>/no-set-boot</td>
<td>Do not alter the setting of the BOOT environment variable to point to the new software image after it is successfully downloaded.</td>
</tr>
<tr>
<td>/no-version-check</td>
<td>Download the software image without checking the compatibility of the stack protocol version on the image and on the switch stack.</td>
</tr>
<tr>
<td>/destination-system stack-member-number</td>
<td>Specify the specific stack member to be upgraded. The range is 1 to 9.</td>
</tr>
<tr>
<td>/only-system-type system-type</td>
<td>Specify the specific system type to be upgraded. The range is 0 to FFFFFFFF.</td>
</tr>
<tr>
<td>/overwrite</td>
<td>Overwrite the software image in flash memory with the downloaded one.</td>
</tr>
<tr>
<td>/reload</td>
<td>Reload the system after successfully downloading the image unless the configuration has been changed and not been saved.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>/safe</td>
<td>Keep the current software image; do not delete it to make room for the new software image before the new image is downloaded. The current image is deleted after the download.</td>
</tr>
</tbody>
</table>
| source-url | The source URL alias for a local or network file system. These options are supported:
 - The syntax for the local flash file system on the standalone switch or the stack master:
 - flash:
 - The syntax for the local flash file system on a stack member:
 - flash member number:
 - The syntax for the FTP:
 - ftp://[username[:password]@location]/directory/image-name.tar
 - The syntax for an HTTP server:
 - http://[[username:password]@[hostname | host-ip]]/directory/image-name.tar
 - The syntax for a secure HTTP server:
 - https://[[username:password]@[hostname | host-ip]]/directory/image-name.tar
 - The syntax for the Remote Copy Protocol (RCP):
 - rcp://[username@location]/directory/image-name.tar
 - The syntax for the TFTP:
 - tftp://[//location]/directory/image-name.tar

The image-name.tar is the software image to download and install on the switch.
Defaults

The current software image is not overwritten with the downloaded image.
Both the software image and HTML files are downloaded.
The new image is downloaded to the flash: file system.
The BOOT environment variable is changed to point to the new software image on the flash: file system.
Image names are case sensitive; the image file is provided in tar format.
Compatibility of the stack protocol version on the image to be downloaded is checked with the version on the switch stack.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(20)SE</td>
<td>The http and https keywords were added.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The /imageonly option removes the HTML files for the existing image if the existing image is being removed or replaced. Only the Cisco IOS image (without the HTML files) is downloaded.

Using the /safe or /leave-old-sw option can cause the new image download to fail if there is insufficient flash memory. If leaving the software in place prevents the new image from fitting in flash memory due to space constraints, an error results.

If you used the /leave-old-sw option and did not overwrite the old image when you downloaded the new one, you can remove the old image by using the delete privileged EXEC command. For more information, see the “delete” section on page 2-79.

Use the /no-version-check option if you want to download an image that has a different stack protocol version than the one existing on the switch stack. You must use this option with the /destination-system option to specify the specific stack member to be upgraded with the image.

Note

Use the /no-version-check option with care. All stack members, including the stack master, must have the same stack protocol version to be in the same switch stack. This option allows an image to be downloaded without first confirming the compatibility of its stack protocol version with the version of the switch stack.

You can upgrade more than one specific stack member by repeating the /destination-system option in the command for each stack member to be upgraded.

Use the /overwrite option to overwrite the image on the flash device with the downloaded one.

If you specify the command without the /overwrite option, the download algorithm verifies that the new image is not the same as the one on the switch flash device or is not running on any stack members. If the images are the same, the download does not occur. If the images are different, the old image is deleted, and the new one is downloaded.

After downloading a new image, enter the reload privileged EXEC command to begin using the new image, or specify the /reload or /force-reload option in the archive download-sw command.
Examples

This example shows how to download a new image from a TFTP server at 172.20.129.10 and overwrite the image on the switch:

```
Switch# archive download-sw /overwrite tftp://172.20.129.10/test-image.tar
```

This example shows how to download only the software image from a TFTP server at 172.20.129.10 to the switch:

```
Switch# archive download-sw /imageonly tftp://172.20.129.10/test-image.tar
```

This example shows how to keep the old software version after a successful download:

```
Switch# archive download-sw /leave-old-sw tftp://172.20.129.10/test-image.tar
```

This example shows how to upgrade stack members 6 and 8:

```
Switch# archive download-sw /imageonly /destination-system 6 /destination-system 8 tftp://172.20.129.10/test-image.tar
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>archive copy-sw</code></td>
<td>Copies the running image from the flash memory on one stack member to the flash memory on one or more other stack members.</td>
</tr>
<tr>
<td><code>archive tar</code></td>
<td>Creates a tar file, lists the files in a tar file, or extracts the files from a tar file.</td>
</tr>
<tr>
<td><code>archive upload-sw</code></td>
<td>Uploads an existing image on the switch to a server.</td>
</tr>
<tr>
<td><code>delete</code></td>
<td>Deletes a file or directory on the flash memory device.</td>
</tr>
</tbody>
</table>
archive tar

Use the **archive tar** privileged EXEC command on the switch stack or on a standalone switch to create a tar file, list files in a tar file, or extract the files from a tar file.

```
archive tar {/create destination-url flash:/file-url} | {/table source-url} | {/xtract source-url flash:/file-url [dir/file...]}]
```

Syntax Description

- **/create destination-url flash:/file-url**
 - Create a new tar file on the local or network file system.
 - For `destination-url`, specify the destination URL alias for the local or network file system and the name of the tar file to create. These options are supported:
 - The syntax for the local flash filesystem:
      ```
      flash:
      ```
 - The syntax for the FTP:
      ```
      ftp://[[username:password]@location]/directory]/tar-filename.tar
      ```
 - The syntax for an HTTP server:
      ```
      http://[[username:password]@[hostname | host-ip]]/directory]/image-name.tar
      ```
 - The syntax for a secure HTTP server:
      ```
      https://[[username:password]@[hostname | host-ip]]/directory]/image-name.tar
      ```
 - The syntax for the Remote Copy Protocol (RCP) is:
      ```
      rcp://[[username@location]/directory]/tar-filename.tar
      ```
 - The syntax for the TFTP:
      ```
      tftp://[location]/directory]/tar-filename.tar
      ```
 - The `tar-filename.tar` is the tar file to be created.
 - For `flash:/file-url`, specify the location on the local flash file system from which the new tar file is created.
 - An optional list of files or directories within the source directory can be specified to write to the new tar file. If none are specified, all files and directories at this level are written to the newly created tar file.
/archive tar

Display the contents of an existing tar file to the screen.

For `source-url`, specify the source URL alias for the local or network file system. These options are supported:

- The syntax for the local flash file system:

 `flash:

 - The syntax for the FTP:

 `ftp://[[username]:password]@location]/directory]/tar-filename.tar`

 - The syntax for an HTTP server:

 `http://[[username:password]@]{hostname | host-ip}]/directory]/image-name.tar`

 - The syntax for a secure HTTP server:

 `https://[[username:password]@]{hostname | host-ip}]/directory]/image-name.tar`

 - The syntax for the RCP:

 `rcp://[[username]@location]/directory]/tar-filename.tar`

 - The syntax for the TFTP:

 `tftp://[location]/directory]/tar-filename.tar`

The `tar-filename.tar` is the tar file to display.

/xtract source-url

Extract files from a tar file to the local file system.

For `source-url`, specify the source URL alias for the local file system. These options are supported:

- The syntax for the local flash file system:

 `flash:

 - The syntax for the FTP:

 `ftp://[[username]:password]@location]/directory]/tar-filename.tar`

 - The syntax for an HTTP server:

 `http://[[username:password]@]{hostname | host-ip}]/directory]/image-name.tar`

 - The syntax for a secure HTTP server:

 `https://[[username:password]@]{hostname | host-ip}]/directory]/image-name.tar`

 - The syntax for the RCP:

 `rcp://[[username]@location]/directory]/tar-filename.tar`

 - The syntax for the TFTP:

 `tftp://[location]/directory]/tar-filename.tar`

The `tar-filename.tar` is the tar file from which to extract.

For `flash://file-url [dir/file...]`, specify the location on the local flash file system into which the tar file is extracted. Use the `dir/file...` option to specify an optional list of files or directories within the tar file to be extracted. If none are specified, all files and directories are extracted.

Defaults

None
Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Filenames and directory names are case sensitive.

Image names are case sensitive.

Examples

This example shows how to create a tar file. The command writes the contents of the `new-configs` directory on the local flash device to a file named `saved.tar` on the TFTP server at 172.20.10.30:

```
Switch# archive tar /create tftp:172.20.10.30/saved.tar flash:/new-configs
```

This example shows how to display the contents of the `c3750-ipservices-tar.12-25.SEB` file that is in flash memory. The contents of the tar file appear on the screen:

```
Switch# archive tar /table flash:c3750-ipservices-12-25.SEB.tar
info (219 bytes)
c3750-ipservices-mz.12-25.SEB/ (directory)
c3750-ipservices-mz.12-25.SEB (610856 bytes)
c3750-ipservices-mz.12-25.SEB/info (219 bytes)
info.ver (219 bytes)
```

This example shows how to display only the `c3750-ipservices-12-25.SEB/html` directory and its contents:

```
Switch# archive tar /table flash:c3750-ipservices-12-25.SEB.tar
 c3750-ipservices-12-25/html
c3750-ipservices-mz.12-25.SEB/html/ (directory)
c3750-ipservices-mz.12-25.SEB/html/const.htm (556 bytes)
c3750-ipservices-mz.12-25.SEB/html/xhome.htm (9373 bytes)
c3750-ipservices-mz.12-25.SEB/html/menu.css (1654 bytes)
<output truncated>
```

This example shows how to extract the contents of a tar file on the TFTP server at 172.20.10.30. This command extracts just the `new-configs` directory into the root directory on the local flash file system. The remaining files in the `saved.tar` file are ignored.

```
Switch# archive tar /xtract tftp:/172.20.10.30/saved.tar flash:/ new-configs
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>archive copy-sw</code></td>
<td>Copies the running image from the flash memory on one stack member to the flash memory on one or more other stack members.</td>
</tr>
<tr>
<td><code>archive download-sw</code></td>
<td>Downloads a new image from a TFTP server to the switch.</td>
</tr>
<tr>
<td><code>archive upload-sw</code></td>
<td>Uploads an existing image on the switch to a server.</td>
</tr>
</tbody>
</table>
archive upload-sw

Use the `archive upload-sw` privileged EXEC command on the switch stack or on a standalone switch to upload an existing switch image to a server.

```
archive upload-sw [/source-system-num stack member number | /version version_string] destination-url
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>/source-system-num</code></td>
<td>Specify the specific stack member containing the image that is to be uploaded.</td>
</tr>
<tr>
<td><code>stack member number</code></td>
<td></td>
</tr>
<tr>
<td><code>/version</code></td>
<td>(Optional) Specify the specific version string of the image to be uploaded.</td>
</tr>
<tr>
<td><code>version_string</code></td>
<td></td>
</tr>
<tr>
<td><code>destination-url</code></td>
<td>The destination URL alias for a local or network file system. These options are supported:</td>
</tr>
<tr>
<td></td>
<td>• The syntax for the local flash file system on the standalone switch or the stack master:</td>
</tr>
<tr>
<td></td>
<td><code>flash:</code> The syntax for the local flash file system on a stack member:</td>
</tr>
<tr>
<td></td>
<td><code>flash member number:</code></td>
</tr>
<tr>
<td></td>
<td>• The syntax for the FTP:</td>
</tr>
<tr>
<td></td>
<td><code>ftp://[username[:password]@]location[/directory]image-name.tar</code></td>
</tr>
<tr>
<td></td>
<td>• The syntax for an HTTP server:</td>
</tr>
<tr>
<td></td>
<td>`http://[[username:password]@]hostname</td>
</tr>
<tr>
<td></td>
<td>• The syntax for a secure HTTP server:</td>
</tr>
<tr>
<td></td>
<td>`https://[[username:password]@]hostname</td>
</tr>
<tr>
<td></td>
<td>• The syntax for the Remote Copy Protocol (RCP):</td>
</tr>
<tr>
<td></td>
<td><code>rcp://[username@location[/directory]image-name.tar</code></td>
</tr>
<tr>
<td></td>
<td>• The syntax for the TFTP:</td>
</tr>
<tr>
<td></td>
<td><code>tftp://[location[/directory]image-name.tar</code></td>
</tr>
</tbody>
</table>

The `image-name.tar` is the name of software image to be stored on the server.

Defaults

Uploads the currently running image from the flash: file system.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
Usage Guidelines

You must specify the `/source-system-num` option to use the `/version` option. Using these options together uploads the specified image, not the running image, of a specific stack member.

Use the upload feature only if the HTML files associated with the embedded device manager have been installed with the existing image.

The files are uploaded in this sequence: the Cisco IOS image, the HTML files, and info. After these files are uploaded, the software creates the tar file.

Image names are case sensitive.

Examples

This example shows how to upload the currently running image on stack member 6 to a TFTP server at 172.20.140.2:

```
Switch# archive upload-sw /source-system-num 6 tftp://172.20.140.2/test-image.tar
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>archive copy-sw</code></td>
<td>Copies the running image from the flash memory on one stack member to the flash memory on one or more other stack members.</td>
</tr>
<tr>
<td><code>archive download-sw</code></td>
<td>Downloads a new image to the switch.</td>
</tr>
<tr>
<td><code>archive tar</code></td>
<td>Creates a tar file, lists the files in a tar file, or extracts the files from a tar file.</td>
</tr>
</tbody>
</table>
arp access-list

Use the arp access-list global configuration command on the switch stack or on a standalone switch to define an Address Resolution Protocol (ARP) access control list (ACL) or to add clauses to the end of a previously defined list. Use the no form of this command to delete the specified ARP access list.

```
arp access-list acl-name

no arp access-list acl-name
```

This command is available only if your switch is running the IP services image, formerly known as the enhanced multilayer image (EMI).

Syntax Description

<table>
<thead>
<tr>
<th>acl-name</th>
<th>Name of the ACL.</th>
</tr>
</thead>
</table>

Defaults

No ARP access lists are defined.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(20)SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

After entering the arp access-list command, you enter ARP access-list configuration mode, and these configuration commands are available:

- `default`: returns a command to its default setting.
- `deny`: specifies packets to reject. For more information, see the “deny (ARP access-list configuration)” section on page 2-80.
- `exit`: exits ARP access-list configuration mode.
- `no`: negates a command or returns to default settings.
- `permit`: specifies packets to forward. For more information, see the “permit (ARP access-list configuration)” section on page 2-319.

Use the `permit` and `deny` access-list configuration commands to forward and to drop ARP packets based on the specified matching criteria.

When the ARP ACL is defined, you can apply it to a VLAN by using the `ip arp inspection filter vlan` global configuration command. ARP packets containing only IP-to-MAC address bindings are compared to the ACL. All other types of packets are bridged in the ingress VLAN without validation. If the ACL permits a packet, the switch forwards it. If the ACL denies a packet because of an explicit deny statement, the switch drops the packet. If the ACL denies a packet because of an implicit deny statement, the switch compares the packet to the list of DHCP bindings (unless the ACL is static, which means that packets are not compared to the bindings).
Examples

This example shows how to define an ARP access list and to permit both ARP requests and ARP responses from a host with an IP address of 1.1.1.1 and a MAC address of 0000.0000.abcd:

```
Switch(config)# arp access-list static-hosts
Switch(config-arp-nacl)# permit ip host 1.1.1.1 mac host 0000.0000.abcd
Switch(config-arp-nacl)# end
```

You can verify your settings by entering the `show arp access-list` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>deny (ARP access-list configuration)</td>
<td>Denies an ARP packet based on matches compared against the DHCP bindings.</td>
</tr>
<tr>
<td>ip arp inspection filter vlan</td>
<td>Permits ARP requests and responses from a host configured with a static IP</td>
</tr>
<tr>
<td>permit (ARP access-list configuration)</td>
<td>Permits an ARP packet based on matches compared against the DHCP bindings.</td>
</tr>
<tr>
<td>show arp access-list</td>
<td>Displays detailed information about ARP access lists.</td>
</tr>
</tbody>
</table>
auto qos voip

Use the `auto qos voip` interface configuration command on the switch stack or on a standalone switch to automatically configure quality of service (QoS) for voice over IP (VoIP) within a QoS domain. Use the `no` form of this command to return to the default setting.

```
auto qos voip {cisco-phone | cisco-softphone | trust}
```

```
no auto qos voip [cisco-phone | cisco-softphone | trust]
```

Syntax Description

- `cisco-phone` Identify this port as connected to a Cisco IP Phone, and automatically configure QoS for VoIP. The QoS labels of incoming packets are trusted only when the telephone is detected. This keyword is not supported on a 10-Gigabit Ethernet interface.

- `cisco-softphone` Identify this port as connected to a device running the Cisco SoftPhone, and automatically configure QoS for VoIP. This keyword is not supported on a 10-Gigabit Ethernet interface.

- `trust` Identify this port as connected to a trusted switch or router, and automatically configure QoS for VoIP. The QoS labels of incoming packets are trusted. For nonrouted ports, the CoS value of the incoming packet is trusted. For routed ports, the DSCP value of the incoming packet is trusted.

Defaults

Auto-QoS is disabled on the port.

When auto-QoS is enabled, it uses the ingress packet label to categorize traffic, to assign packet labels, and to configure the ingress and egress queues as shown in Table 2-1.

Table 2-1 Traffic Types, Packet Labels, and Queues

<table>
<thead>
<tr>
<th></th>
<th>VoIP Data Traffic</th>
<th>VoIP Control Traffic</th>
<th>Routing Protocol Traffic</th>
<th>STP(^1) BPDU(^2) Traffic</th>
<th>Real-Time Video Traffic</th>
<th>All Other Traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSCP(^3)</td>
<td>46</td>
<td>24, 26</td>
<td>48</td>
<td>56</td>
<td>34</td>
<td>–</td>
</tr>
<tr>
<td>CoS(^4)</td>
<td>5</td>
<td>3</td>
<td>6</td>
<td>7</td>
<td>3</td>
<td>–</td>
</tr>
<tr>
<td>CoS-to-Ingress Queue Map</td>
<td>2, 3, 4, 5, 6, 7 (queue 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0, 1 (queue 1)</td>
</tr>
<tr>
<td>CoS-to-Egress Queue Map</td>
<td>5 (queue 1)</td>
<td>3, 6, 7 (queue 2)</td>
<td></td>
<td>4 (queue 3)</td>
<td>2 (queue 3)</td>
<td>0, 1 (queue 4)</td>
</tr>
</tbody>
</table>

1. STP = Spanning Tree Protocol
2. BPDU = bridge protocol data unit
3. DSCP = Differentiated Services Code Point
4. CoS = class of service
Table 2-2 shows the generated auto-QoS configuration for the ingress queues.

Table 2-2 Auto-QoS Configuration for the Ingress Queues

<table>
<thead>
<tr>
<th>Ingress Queue</th>
<th>Queue Number</th>
<th>CoS-to-Queue Map</th>
<th>Queue Weight (Bandwidth)</th>
<th>Queue (Buffer) Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRR shared</td>
<td>1</td>
<td>0, 1</td>
<td>81 percent</td>
<td>67 percent</td>
</tr>
<tr>
<td>Priority</td>
<td>2</td>
<td>2, 3, 4, 5, 6, 7</td>
<td>19 percent</td>
<td>33 percent</td>
</tr>
</tbody>
</table>

1. SRR = shaped round robin. Ingress queues support shared mode only.

Table 2-3 shows the generated auto-QoS configuration for the egress queues.

Table 2-3 Auto-QoS Configuration for the Egress Queues

<table>
<thead>
<tr>
<th>Egress Queue</th>
<th>Queue Number</th>
<th>CoS-to-Queue Map</th>
<th>Queue Weight (Bandwidth)</th>
<th>Queue (Buffer) Size for Gigabit-Capable Ports</th>
<th>Queue (Buffer) Size for 10/100 Ethernet Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Priority (shaped)</td>
<td>1</td>
<td>5</td>
<td>10 percent</td>
<td>16 percent</td>
<td>10 percent</td>
</tr>
<tr>
<td>SRR shared</td>
<td>2</td>
<td>3, 6, 7</td>
<td>10 percent</td>
<td>6 percent</td>
<td>10 percent</td>
</tr>
<tr>
<td>SRR shared</td>
<td>3</td>
<td>2, 4</td>
<td>60 percent</td>
<td>17 percent</td>
<td>26 percent</td>
</tr>
<tr>
<td>SRR shared</td>
<td>4</td>
<td>0, 1</td>
<td>20 percent</td>
<td>61 percent</td>
<td>54 percent</td>
</tr>
</tbody>
</table>

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(14)EA1</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(20)SE</td>
<td>The <code>cisco-softphone</code> keyword was added, and the generated auto-QoS configuration changed.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use this command to configure the QoS appropriate for VoIP traffic within the QoS domain. The QoS domain includes the switch, the interior of the network, and edge devices that can classify incoming traffic for QoS.

In releases earlier than Cisco IOS Release 12.2(20)SE, auto-QoS configures the switch only for VoIP with Cisco IP Phones on switch ports.

In Cisco IOS Release 12.2(20)SE or later, auto-QoS configures the switch for VoIP with Cisco IP Phones on switch and routed ports and for VoIP with devices running the Cisco SoftPhone application. These releases support only Cisco IP SoftPhone Version 1.3(3) or later. Connected devices must use Cisco Call Manager Version 4 or later.

To take advantage of the auto-QoS defaults, you should enable auto-QoS before you configure other QoS commands. You can fine-tune the auto-QoS configuration after you enable auto-QoS.
The switch applies the auto-QoS-generated commands as if the commands were entered from the command-line interface (CLI). An existing user configuration can cause the application of the generated commands to fail or to be overridden by the generated commands. These actions occur without warning. If all the generated commands are successfully applied, any user-entered configuration that was not overridden remains in the running configuration. Any user-entered configuration that was overridden can be retrieved by reloading the switch without saving the current configuration to memory. If the generated commands fail to be applied, the previous running configuration is restored.

If this is the first port on which you have enabled auto-QoS, the auto-QoS-generated global configuration commands are executed followed by the interface configuration commands. If you enable auto-QoS on another port, only the auto-QoS-generated interface configuration commands for that port are executed.

When you enable the auto-QoS feature on the first port, these automatic actions occur:

- QoS is globally enabled (`mls qos` global configuration command), and other global configuration commands are added.

- When you enter the `auto qos voip cisco-phone` interface configuration command on a port at the edge of the network that is connected to a Cisco IP Phone, the switch enables the trusted boundary feature. The switch uses the Cisco Discovery Protocol (CDP) to detect the presence or absence of a Cisco IP Phone. When a Cisco IP Phone is detected, the ingress classification on the port is set to trust the QoS label received in the packet. When a Cisco IP Phone is absent, the ingress classification is set to not trust the QoS label in the packet. The switch configures ingress and egress queues on the port according to the settings in Table 2-2 and Table 2-3.

- When you enter the `auto qos voip cisco-softphone` interface configuration command on a port at the edge of the network that is connected to a device running the Cisco SoftPhone, the switch uses policing to decide whether a packet is in or out of profile and to specify the action on the packet. If the packet does not have a DSCP value of 24, 26, or 46 or is out of profile, the switch changes the DSCP value to 0. The switch configures ingress and egress queues on the port according to the settings in Table 2-2 and Table 2-3.

- When you enter the `auto qos voip trust` interface configuration command on a port connected to the interior of the network, the switch trusts the CoS value for nonrouted ports or the DSCP value for routed ports in ingress packets (the assumption is that traffic has already been classified by other edge devices). The switch configures the ingress and egress queues on the port according to the settings in Table 2-2 and Table 2-3.

You can enable auto-QoS on static, dynamic-access, and voice VLAN access, and trunk ports. When enabling auto-QoS with a Cisco IP Phone on a routed port, you must assign a static IP address to the IP phone.

Note

When a device running Cisco SoftPhone is connected to a switch or routed port, the switch supports only one Cisco SoftPhone application per port.

After auto-QoS is enabled, do not modify a policy map or aggregate policer that includes `AutoQoS` in its name. If you need to modify the policy map or aggregate policer, make a copy of it, and change the copied policy map or policer. To use the new policy map instead of the generated one, remove the generated policy map from the interface, and apply the new policy map.

To display the QoS configuration that is automatically generated when auto-QoS is enabled, enable debugging before you enable auto-QoS. Use the `debug auto qos` privileged EXEC command to enable auto-QoS debugging. For more information, see the `debug auto qos` command.
To disable auto-QoS on a port, use the `no auto qos voip` interface configuration command. Only the auto-QoS-generated interface configuration commands for this port are removed. If this is the last port on which auto-QoS is enabled and you enter the `no auto qos voip` command, auto-QoS is considered disabled even though the auto-QoS-generated global configuration commands remain (to avoid disrupting traffic on other ports affected by the global configuration). You can use the `no mls qos` global configuration command to disable the auto-QoS-generated global configuration commands. With QoS disabled, there is no concept of trusted or untrusted ports because the packets are not modified (the CoS, DSCP, and IP precedence values in the packet are not changed). Traffic is switched in pass-through mode (packets are switched without any rewrites and classified as best effort without any policing).

Examples

This example shows how to enable auto-QoS and to trust the QoS labels received in incoming packets when the switch or router connected to the port is a trusted device:

```bash
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# auto qos voip trust
```

You can verify your settings by entering the `show auto qos interface interface-id` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>debug auto qos</code></td>
<td>Enables debugging of the auto-QoS feature.</td>
</tr>
<tr>
<td><code>mls qos cos</code></td>
<td>Defines the default CoS value of a port or assigns the default CoS to all incoming packets on the port.</td>
</tr>
<tr>
<td>`mls qos map {cos-dscp dscp1 ... dscp8</td>
<td>dscp-cos dscp-list to cos}`</td>
</tr>
<tr>
<td><code>mls qos queue-set output buffers</code></td>
<td>Allocates buffers to a queue-set.</td>
</tr>
<tr>
<td><code>mls qos srr-queue input bandwidth</code></td>
<td>Assigns shaped round robin (SRR) weights to an ingress queue.</td>
</tr>
<tr>
<td><code>mls qos srr-queue input buffers</code></td>
<td>Allocates the buffers between the ingress queues.</td>
</tr>
<tr>
<td><code>mls qos srr-queue input cos-map</code></td>
<td>Maps CoS values to an ingress queue or maps CoS values to a queue and to a threshold ID.</td>
</tr>
<tr>
<td><code>mls qos srr-queue input dscp-map</code></td>
<td>Maps DSCP values to an ingress queue or maps DSCP values to a queue and to a threshold ID.</td>
</tr>
<tr>
<td><code>mls qos srr-queue input priority-queue</code></td>
<td>Configures the ingress priority queue and guarantees bandwidth.</td>
</tr>
<tr>
<td><code>mls qos srr-queue output cos-map</code></td>
<td>Maps CoS values to an egress queue or maps CoS values to a queue and to a threshold ID.</td>
</tr>
<tr>
<td><code>mls qos srr-queue output dscp-map</code></td>
<td>Maps DSCP values to an egress queue or maps DSCP values to a queue and to a threshold ID.</td>
</tr>
<tr>
<td><code>mls qos trust</code></td>
<td>Configures the port trust state.</td>
</tr>
<tr>
<td><code>queue-set</code></td>
<td>Maps a port to a queue-set.</td>
</tr>
<tr>
<td><code>show auto qos</code></td>
<td>Displays auto-QoS information.</td>
</tr>
<tr>
<td><code>show mls qos interface</code></td>
<td>Displays QoS information at the port level.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>srr-queue bandwidth shape</td>
<td>Assigns the shaped weights and enables bandwidth shaping on the four egress queues mapped to a port.</td>
</tr>
<tr>
<td>srr-queue bandwidth share</td>
<td>Assigns the shared weights and enables bandwidth sharing on the four egress queues mapped to a port.</td>
</tr>
</tbody>
</table>
boot auto-copy-sw

Use the `boot auto-copy-sw` global configuration command from the stack master to enable the automatic upgrade (auto-upgrade) process. It automatically upgrades a switch in version-mismatch (VM) mode by copying the running software image on any stack member or by copying a tar file image in switch stack flash memory. Use the `no` form of this command to disable the auto-upgrade process.

```
boot auto-copy-sw
no boot auto-copy-sw
```

Syntax Description
This command has no arguments or keywords.

Defaults
Enabled.

Command Modes
Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
A switch in VM mode is a switch that has a different minor version number than the version on the switch stack. A switch in VM mode cannot join the switch stack as a fully functioning member. If the switch stack has an image that can be copied to a switch in VM mode, the auto-upgrade process automatically copies the image from a stack member to the switch in VM mode. The switch then exits VM mode, reboots, and joins the switch stack as a fully functioning member. The auto-upgrade process affects only switches in VM mode. It does not affect existing stack members.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show boot</td>
<td>Displays the settings of the boot environment variables.</td>
</tr>
<tr>
<td>show version</td>
<td>Displays version information for the hardware and firmware.</td>
</tr>
</tbody>
</table>
boot boothlpr

Use the `boot boothlpr` global configuration command on the switch stack or on a standalone switch to load a special Cisco IOS image, which when loaded into memory, can load a second Cisco IOS image into memory and launch it. This variable is used only for internal development and testing. Use the no form of this command to return to the default setting.

```
boot boothlpr filesystem:/file-url
no boot boothlpr
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>filesystem:</td>
<td>Alias for a flash file system. Use <code>flash:</code> for the system board flash device.</td>
</tr>
<tr>
<td>file-url</td>
<td>The path (directory) and name of a bootable helper image.</td>
</tr>
</tbody>
</table>

Defaults

No helper image is loaded.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Filenames and directory names are case sensitive.

This command changes the setting of the BOOTHLPR environment variable. For more information, see Appendix A, “Catalyst 3750 Switch Boot Loader Commands.”

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show boot</code></td>
<td>Displays the settings of the boot environment variables.</td>
</tr>
</tbody>
</table>
boot config-file

Use the `boot config-file` global configuration command on a standalone switch to specify the filename that Cisco IOS uses to read and write a nonvolatile copy of the system configuration. Use the `no` form of this command to return to the default setting.

```
boot config-file flash:/file-url
no boot config-file
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>flash:/file-url</code></td>
<td>The path (directory) and name of the configuration file.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Defaults</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The default configuration file is <code>flash:config.text</code>.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Modes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global configuration</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>12.1(11)AX</code></td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usage Guidelines</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This command works properly only from a standalone switch.</td>
</tr>
<tr>
<td></td>
<td>Filenames and directory names are case sensitive.</td>
</tr>
<tr>
<td></td>
<td>This command changes the setting of the CONFIG_FILE environment variable. For more information, see Appendix A, “Catalyst 3750 Switch Boot Loader Commands.”</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show boot</code></td>
<td>Displays the settings of the boot environment variables.</td>
</tr>
</tbody>
</table>
boot enable-break

Use the `boot enable-break` global configuration command on a standalone switch to enable interrupting the automatic boot process. Use the `no` form of this command to return to the default setting.

```
boot enable-break
no boot enable-break
```

Syntax Description

This command has no arguments or keywords.

Defaults

Disabled. The automatic boot process cannot be interrupted by pressing the Break key on the console.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command works properly only from a standalone switch.

When you enter this command, you can interrupt the automatic boot process by pressing the Break key on the console after the flash file system is initialized.

Note

Despite the setting of this command, you can interrupt the automatic boot process at any time by pressing the MODE button on the switch front panel.

This command changes the setting of the ENABLE_BREAK environment variable. For more information, see Appendix A, “Catalyst 3750 Switch Boot Loader Commands.”

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show boot</code></td>
<td>Displays the settings of the boot environment variables.</td>
</tr>
</tbody>
</table>
boot helper

Use the **boot helper** global configuration command on the switch stack or on a standalone switch to dynamically load files during boot loader initialization to extend or patch the functionality of the boot loader. Use the **no** form of this command to return to the default.

```
boot helper filesystem:file-url ...
no boot helper
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>filesystem:</code></td>
<td>Alias for a flash file system. Use <code>flash:</code> for the system board flash device.</td>
</tr>
<tr>
<td><code>file-url</code></td>
<td>The path (directory) and a list of loadable files to dynamically load during loader initialization. Separate each image name with a semicolon.</td>
</tr>
</tbody>
</table>

Defaults

No helper files are loaded.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This variable is used only for internal development and testing.

Filenames and directory names are case sensitive.

This command changes the setting of the HELPER environment variable. For more information, see Appendix A, “Catalyst 3750 Switch Boot Loader Commands.”

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show boot</td>
<td>Displays the settings of the boot environment variables.</td>
</tr>
</tbody>
</table>
boot helper-config-file

Use the boot helper-config-file global configuration command on the switch stack or on a standalone switch to specify the name of the configuration file to be used by the Cisco IOS helper image. If this is not set, the file specified by the CONFIG_FILE environment variable is used by all versions of Cisco IOS that are loaded. Use the no form of this command to return to the default setting.

```
boot helper-config-file filesystem:/file-url
no boot helper-config file
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>filesystem:</code></td>
<td>Alias for a flash file system. Use <code>flash:</code> for the system board flash device.</td>
</tr>
<tr>
<td><code>/file-url</code></td>
<td>The path (directory) and helper configuration file to load.</td>
</tr>
</tbody>
</table>

Defaults

No helper configuration file is specified.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This variable is used only for internal development and testing.

Filenames and directory names are case sensitive.

This command changes the setting of the HELPER_CONFIG_FILE environment variable. For more information, see Appendix A, “Catalyst 3750 Switch Boot Loader Commands.”

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show boot</td>
<td>Displays the settings of the boot environment variables.</td>
</tr>
</tbody>
</table>
boot manual

Use the boot manual global configuration command on a standalone switch to enable manually booting the switch during the next boot cycle. Use the no form of this command to return to the default setting.

 boot manual
 no boot manual

Syntax Description
This command has no arguments or keywords.

Defaults
Manual booting is disabled.

Command Modes
Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
This command works properly only from a standalone switch.

The next time you reboot the system, the switch is in boot loader mode, which is shown by the switch: prompt. To boot the system, use the boot boot loader command, and specify the name of the bootable image.

This command changes the setting of the MANUAL_BOOT environment variable. For more information, see Appendix A, “Catalyst 3750 Switch Boot Loader Commands.”

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show boot</td>
<td>Displays the settings of the boot environment variables.</td>
</tr>
</tbody>
</table>
boot private-config-file

Use the `boot private-config-file` global configuration command on a standalone switch to specify the filename that Cisco IOS uses to read and write a nonvolatile copy of the private configuration. Use the `no` form of this command to return to the default setting.

```plaintext
boot private-config-file filename
no boot private-config-file
```

Syntax Description
- `filename`: The name of the private configuration file.

Defaults
The default configuration file is `private-config`.

Command Modes
- Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
This command works properly only from a standalone switch. Filenames are case sensitive.

Examples
This example shows how to specify the name of the private configuration file to be `pconfig`:

```plaintext
Switch(config)# boot private-config-file pconfig
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show boot</td>
<td>Displays the settings of the boot environment variables.</td>
</tr>
</tbody>
</table>
boot system

Use the `boot system` global configuration command on the switch stack or on a standalone switch to specify the Cisco IOS image to load during the next boot cycle. Use the `no` form of this command to return to the default setting.

\[
\text{boot system } \{\text{filesystem:}/\text{file-url} \ldots \text{switch } \{\text{number | all}\}\}\]

\[
\text{no boot system}
\]

\[
\text{no boot system switch } \{\text{number | all}\}\]

Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>filesystem:</code></td>
<td>Alias for a flash file system. Use <code>flash:</code> for the system board flash device.</td>
</tr>
<tr>
<td><code>/file-url</code></td>
<td>The path (directory) and name of a bootable image. Separate image names with a semicolon.</td>
</tr>
<tr>
<td><code>switch</code></td>
<td>Specify the switches on which the Cisco IOS image is loaded.</td>
</tr>
<tr>
<td><code>number</code></td>
<td>Specify a stack member.</td>
</tr>
<tr>
<td><code>all</code></td>
<td>Specify all stack members.</td>
</tr>
</tbody>
</table>

Defaults

The switch attempts to automatically boot the system by using information in the BOOT environment variable. If this variable is not set, the switch attempts to load and execute the first executable image it can by performing a recursive, depth-first search throughout the flash file system. In a depth-first search of a directory, each encountered subdirectory is completely searched before continuing the search in the original directory.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(25)SEA</td>
<td>The <code>switch</code> `{number</td>
</tr>
</tbody>
</table>

Usage Guidelines

Filenames and directory names are case sensitive.

If you enter the `boot system filesystem:/file-url` command on the stack master, the specified software image is loaded only on the stack master during the next boot cycle.

On the stack master, use the `boot system switch number` command to specify that the software image is loaded on the specified stack member during the next boot cycle. Use the `boot system switch all` command to specify that the software image is loaded on all the stack members during the next boot cycle.
When you enter the **boot system switch number** or the **boot system switch all** command on the stack master, the stack master checks if a software image is already on the stack member (except on the stack master). If the software image does not exist on the stack member (for example, stack member 1), an error message like this appears:

```
%Command to set boot system switch all xxx on switch=1 failed
```

If you are using the **archive download-sw** privileged EXEC command to maintain system images, you never need to use the **boot system** command. The **boot system** command is automatically manipulated to load the downloaded image.

This command changes the setting of the BOOT environment variable. For more information, see Appendix A, “Catalyst 3750 Switch Boot Loader Commands.”

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show boot</td>
<td>Displays the settings of the boot environment variables.</td>
</tr>
</tbody>
</table>
channel-group

Use the `channel-group` interface configuration command on the switch stack or on a standalone switch to assign an Ethernet port to an EtherChannel group, to enable an EtherChannel mode, or both. Use the `no` form of this command to remove an Ethernet port from an EtherChannel group.

```
channel-group channel-group-number mode {active | {auto [non-silent]} | {desirable [non-silent]} | on | passive}

no channel-group
```

PAgP modes:
```
channel-group channel-group-number mode { {auto [non-silent]} | {desirable [non-silent]} }
```

LACP modes:
```
channel-group channel-group-number mode {active | passive}
```

On mode:
```
channel-group channel-group-number mode on
```

Syntax Description

<table>
<thead>
<tr>
<th><code>channel-group-number</code></th>
<th>Specify the channel group number. The range is 1 to 48.</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mode</code></td>
<td>Specify the EtherChannel mode.</td>
</tr>
<tr>
<td><code>active</code></td>
<td>Unconditionally enable Link Aggregation Control Protocol (LACP). Active mode places a port into a negotiating state in which the port initiates negotiations with other ports by sending LACP packets. A channel is formed with another port group in either the active or passive mode.</td>
</tr>
<tr>
<td><code>auto</code></td>
<td>Enable the Port Aggregation Protocol (PAgP) only if a PAgP device is detected. Auto mode places a port into a passive negotiating state in which the port responds to PAgP packets it receives but does not start PAgP packet negotiation. A channel is formed only with another port group in desirable mode. When <code>auto</code> is enabled, silent operation is the default.</td>
</tr>
<tr>
<td><code>desirable</code></td>
<td>Unconditionally enable PAgP. Desirable mode places a port into an active negotiating state in which the port starts negotiations with other ports by sending PAgP packets. An EtherChannel is formed with another port group that is in the desirable or auto mode. When <code>desirable</code> is enabled, silent operation is the default.</td>
</tr>
<tr>
<td><code>non-silent</code></td>
<td>(Optional) Use in PAgP mode with the <code>auto</code> or <code>desirable</code> keyword when traffic is expected from the other device.</td>
</tr>
<tr>
<td><code>on</code></td>
<td>Enable <code>on</code> mode. In <code>on</code> mode, a usable EtherChannel exists only when both connected port groups are in the <code>on</code> mode.</td>
</tr>
<tr>
<td><code>passive</code></td>
<td>Enable LACP only if a LACP device is detected. Passive mode places a port into a negotiating state in which the port responds to received LACP packets but does not initiate LACP packet negotiation. A channel is formed only with another port group in active mode.</td>
</tr>
</tbody>
</table>
channel-group

Defaults

No channel groups are assigned.
No mode is configured.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(14)EA1</td>
<td>The active and passive keywords were added.</td>
</tr>
<tr>
<td>12.2(25)SE</td>
<td>The channel-group-number range was changed from 1 to 12 to 1 to 48.</td>
</tr>
<tr>
<td>12.2(25)SEC</td>
<td>LACP can now negotiate cross-stack EtherChannel.</td>
</tr>
</tbody>
</table>

Usage Guidelines

For Layer 2 EtherChannels, you do not have to create a port-channel interface first by using the interface port-channel global configuration command before assigning a physical port to a channel group. Instead, you can use the channel-group interface configuration command. It automatically creates the port-channel interface when the channel group gets its first physical port if the logical interface is not already created. If you create the port-channel interface first, the channel-group-number can be the same as the port-channel-number, or you can use a new number. If you use a new number, the channel-group command dynamically creates a new port channel.

You do not have to disable the IP address that is assigned to a physical port that is part of a channel group, but we strongly recommend that you do so.

You create Layer 3 port channels by using the interface port-channel command followed by the no switchport interface configuration command. You should manually configure the port-channel logical interface before putting the interface into the channel group.

After you configure an EtherChannel, configuration changes that you make on the port-channel interface apply to all the physical ports assigned to the port-channel interface. Configuration changes applied to the physical port affect only the port where you apply the configuration. To change the parameters of all ports in an EtherChannel, apply configuration commands to the port-channel interface, for example, spanning-tree commands or commands to configure a Layer 2 EtherChannel as a trunk.

If you do not specify non-silent with the auto or desirable mode, silent is assumed. The silent mode is used when the switch is connected to a device that is not PAgP-capable and seldom, if ever, sends packets. A example of a silent partner is a file server or a packet analyzer that is not generating traffic. In this case, running PAgP on a physical port prevents that port from ever becoming operational. However, it allows PAgP to operate, to attach the port to a channel group, and to use the port for transmission. Both ends of the link cannot be set to silent.

In the on mode, an EtherChannel exists only when a port group in the on mode is connected to another port group in the on mode.

Caution

You should use care when using the on mode. This is a manual configuration, and ports on both ends of the EtherChannel must have the same configuration. If the group is misconfigured, packet loss or spanning-tree loops can occur.
A cross-stack EtherChannel supports up to two 10-Gigabit Ethernet interfaces.

Do not configure an EtherChannel in both the PAgP and LACP modes. EtherChannel groups running PAgP and LACP can coexist on the same switch or on different switches in the stack (but not in a cross-stack configuration). Individual EtherChannel groups can run either PAgP or LACP, but they cannot interoperate.

If you set the protocol by using the `channel-protocol` interface configuration command, the setting is not overridden by the `channel-group` interface configuration command.

Do not configure a port that is an active or a not-yet-active member of an EtherChannel as an IEEE 802.1x port. If you try to enable IEEE 802.1x authentication on an EtherChannel port, an error message appears, and IEEE 802.1x authentication is not enabled.

Note
If IEEE 802.1x authentication is enabled on a not-yet active port of an EtherChannel in software releases earlier than Cisco IOS Release 12.2(18)SE, the port does not join the EtherChannel.

Do not configure a secure port as part of an EtherChannel or an EtherChannel port as a secure port.

For a complete list of configuration guidelines, see the “Configuring EtherChannels” chapter in the software configuration guide for this release.

Caution
Do not enable Layer 3 addresses on the physical EtherChannel ports. Do not assign bridge groups on the physical EtherChannel ports because it creates loops.

Examples
This example shows how to configure an EtherChannel on a single switch in the stack. It assigns two static-access ports in VLAN 10 to channel 5 with the PAgP mode `desirable`:

```
Switch# configure terminal
Switch(config)# interface range gigabitethernet2/0/1 - 2
Switch(config-if-range)# switchport mode access
Switch(config-if-range)# switchport access vlan 10
Switch(config-if-range)# channel-group 5 mode desirable
Switch(config-if-range)# end
```

This example shows how to configure an EtherChannel on a single switch in the stack. It assigns two static-access ports in VLAN 10 to channel 5 with the LACP mode `active`:

```
Switch# configure terminal
Switch(config)# interface range gigabitethernet2/0/1 - 2
Switch(config-if-range)# switchport mode access
Switch(config-if-range)# switchport access vlan 10
Switch(config-if-range)# channel-group 5 mode active
Switch(config-if-range)# end
```
This example shows how to configure a cross-stack EtherChannel. It uses LACP passive mode and assigns two ports on stack member 2 and one port on stack member 3 as static-access ports in VLAN 10 to channel 5:

```
Switch# configure terminal
Switch(config)# interface range gigabitethernet2/0/4-5
Switch(config-if-range)# switchport mode access
Switch(config-if-range)# switchport access vlan 10
Switch(config-if-range)# channel-group 5 mode passive
Switch(config-if-range)# exit
Switch(config)# interface gigabitethernet3/0/3
Switch(config-if)# switchport mode access
Switch(config-if)# switchport access vlan 10
Switch(config-if)# channel-group 5 mode passive
Switch(config-if)# exit
```

You can verify your settings by entering the `show running-config` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>channel-protocol</code></td>
<td>Restricts the protocol used on a port to manage channeling.</td>
</tr>
<tr>
<td><code>interface port-channel</code></td>
<td>Accesses or creates the port channel.</td>
</tr>
<tr>
<td><code>show etherchannel</code></td>
<td>Displays EtherChannel information for a channel.</td>
</tr>
<tr>
<td><code>show lacp</code></td>
<td>Displays LACP channel-group information.</td>
</tr>
<tr>
<td><code>show pagp</code></td>
<td>Displays PAgP channel-group information.</td>
</tr>
<tr>
<td><code>show running-config</code></td>
<td>Displays the current operating configuration. For syntax information, select Cisco IOS Configuration Fundamentals Command Reference, Release 12.2 > File Management Commands > Configuration File Management Commands.</td>
</tr>
</tbody>
</table>
channel-protocol

Use the channel-protocol interface configuration command on the switch stack or on a standalone switch to restrict the protocol used on a port to manage channeling. Use the no form of this command to return to the default setting.

```
channel-protocol { lacp | pagp }
no channel-protocol
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lacp</td>
<td>Configure an EtherChannel with the Link Aggregation Control Protocol (LACP).</td>
</tr>
<tr>
<td>pagp</td>
<td>Configure an EtherChannel with the Port Aggregation Protocol (PAgP).</td>
</tr>
</tbody>
</table>

Defaults

No protocol is assigned to the EtherChannel.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(14)EA1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the channel-protocol command only to restrict a channel to LACP or PAgP. If you set the protocol by using the channel-protocol command, the setting is not overridden by the channel-group interface configuration command.

You must use the channel-group interface configuration command to configure the EtherChannel parameters. The channel-group command also can set the mode for the EtherChannel.

You cannot enable both the PAgP and LACP modes on an EtherChannel group.

PAgP and LACP are not compatible; both ends of a channel must use the same protocol.

Examples

This example shows how to specify LACP as the protocol that manages the EtherChannel:

```
Switch(config-if)# channel-protocol lacp
```

You can verify your settings by entering the show etherchannel [channel-group-number] protocol privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel-group</td>
<td>Assigns an Ethernet port to an EtherChannel group.</td>
</tr>
<tr>
<td>show etherchannel protocol</td>
<td>Displays protocol information the EtherChannel.</td>
</tr>
</tbody>
</table>
class

Use the class policy-map configuration command on the switch stack or on a standalone switch to define a traffic classification match criteria (through the police, set, and trust policy-map class configuration commands) for the specified class-map name. Use the no form of this command to delete an existing class map.

```plaintext
class class-map-name

no class class-map-name
```

Syntax Description

<table>
<thead>
<tr>
<th>class-map-name</th>
<th>Name of the class map.</th>
</tr>
</thead>
</table>

Defaults

No policy map class-maps are defined.

Command Modes

Policy-map configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Before using the class command, you must use the policy-map global configuration command to identify the policy map and to enter policy-map configuration mode. After specifying a policy map, you can configure a policy for new classes or modify a policy for any existing classes in that policy map. You attach the policy map to a port by using the service-policy interface configuration command.

After entering the class command, you enter policy-map class configuration mode, and these configuration commands are available:

- **exit**: exits policy-map class configuration mode and returns to policy-map configuration mode.
- **no**: returns a command to its default setting.
- **police**: defines a policer or aggregate policer for the classified traffic. The policer specifies the bandwidth limitations and the action to take when the limits are exceeded. For more information, see the police and police aggregate policy-map class commands.
- **set**: specifies a value to be assigned to the classified traffic. For more information, see the set command.
- **trust**: defines a trust state for traffic classified with the class or the class-map command. For more information, see the trust command.

To return to policy-map configuration mode, use the exit command. To return to privileged EXEC mode, use the end command.

The class command performs the same function as the class-map global configuration command. Use the class command when a new classification, which is not shared with any other ports, is needed. Use the class-map command when the map is shared among many ports.
Examples

This example shows how to create a policy map called *policy1*. When attached to the ingress direction, it matches all the incoming traffic defined in *class1*, sets the IP Differentiated Services Code Point (DSCP) to 10, and polices the traffic at an average rate of 1 Mbps and bursts at 20 KB. Traffic exceeding the profile is marked down to a DSCP value gotten from the policed-DSCP map and then sent.

```plaintext
Switch(config)# policy-map policy1
Switch(config-pmap)# class class1
Switch(config-pmap-c)# set dscp 10
Switch(config-pmap-c)# police 1000000 20000 exceed-action policed-dscp-transmit
Switch(config-pmap-c)# exit
```

You can verify your settings by entering the *show policy-map* privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>class-map</td>
<td>Creates a class map to be used for matching packets to the class whose name you specify.</td>
</tr>
<tr>
<td>police</td>
<td>Defines a policer for classified traffic.</td>
</tr>
<tr>
<td>policy-map</td>
<td>Creates or modifies a policy map that can be attached to multiple ports to specify a service policy.</td>
</tr>
<tr>
<td>set</td>
<td>Classifies IP traffic by setting a DSCP or IP-precedence value in the packet.</td>
</tr>
<tr>
<td>show policy-map</td>
<td>Displays quality of service (QoS) policy maps.</td>
</tr>
<tr>
<td>trust</td>
<td>Defines a trust state for the traffic classified through the class policy-map configuration command or the class-map global configuration command.</td>
</tr>
</tbody>
</table>
class-map

Use the class-map global configuration command on the switch stack or on a standalone switch to create a class map to be used for matching packets to the class whose name you specify and to enter class-map configuration mode. Use the no form of this command to delete an existing class map and to return to global configuration mode.

```
class-map [match-all | match-any] class-map-name
no class-map [match-all | match-any] class-map-name
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>match-all</td>
<td>(Optional) Perform a logical-AND of all matching statements under this class map. All criteria in the class map must be matched.</td>
</tr>
<tr>
<td>match-any</td>
<td>(Optional) Perform a logical-OR of the matching statements under this class map. One or more criteria must be matched.</td>
</tr>
<tr>
<td>class-map-name</td>
<td>Name of the class map.</td>
</tr>
</tbody>
</table>

Defaults

No class maps are defined.

If neither the match-all or match-any keyword is specified, the default is match-all.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use this command to specify the name of the class for which you want to create or modify class-map match criteria and to enter class-map configuration mode.

The class-map command and its subcommands are used to define packet classification, marking, and aggregate policing as part of a globally named service policy applied on a per-port basis.

After you are in quality of service (QoS) class-map configuration mode, these configuration commands are available:

- **description**: describes the class map (up to 200 characters). The show class-map privileged EXEC command displays the description and the name of the class-map.
- **exit**: exits from QoS class-map configuration mode.
- **match**: configures classification criteria. For more information, see the match (class-map configuration) command.
- **no**: removes a match statement from a class map.
- **rename**: renames the current class map. If you rename a class map with a name that is already used, the message A class-map with this name already exists appears.
To define packet classification on a physical-port basis, only one **match** command per class map is supported. In this situation, the **match-all** and **match-any** keywords are equivalent.

Only one access control list (ACL) can be configured in a class map. The ACL can have multiple access control entries (ACEs).

Examples

This example shows how to configure the class map called *class1* with one match criterion, which is an access list called *103*:

```
Switch(config)# access-list 103 permit any any dscp 10
Switch(config)# class-map class1
Switch(config-cmap)# match access-group 103
Switch(config-cmap)# exit
```

This example shows how to delete the class map *class1*:

```
Switch(config)# no class-map class1
```

You can verify your settings by entering the **show class-map** privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>class</td>
<td>Defines a traffic classification match criteria (through the police, set, and trust policy-map class configuration commands) for the specified class-map name.</td>
</tr>
<tr>
<td>match (class-map configuration)</td>
<td>Defines the match criteria to classify traffic.</td>
</tr>
<tr>
<td>policy-map</td>
<td>Creates or modifies a policy map that can be attached to multiple ports to specify a service policy.</td>
</tr>
<tr>
<td>show class-map</td>
<td>Displays QoS class maps.</td>
</tr>
</tbody>
</table>
clear dot1x

Use the clear dot1x privileged EXEC command on the switch stack or on a standalone switch to clear IEEE 802.1x information for the switch or for the specified port.

```
clear dot1x {all | interface interface-id}
```

Syntax Description
- all: Clear all IEEE 802.1x information for the switch.
- interface interface-id: Clear IEEE 802.1x information for the specified interface.

Defaults
No default is defined.

Command Modes
Privileged EXEC

Command History
- Release: 12.2(25)SEE
 - Modification: This command was introduced.

Usage Guidelines
You can clear all the information by using the clear dot1x all command, or you can clear only the information for the specified interface by using the clear dot1x interface interface-id command.

Examples
This example shows how to clear all IEEE 802.1x information:
```
Switch# clear dot1x all
```

This example shows how to clear IEEE 802.1x information for the specified interface:
```
Switch# clear dot1x interface gigabithernet1/0/1
```

You can verify that the information was deleted by entering the show dot1x privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show dot1x</td>
<td>Displays IEEE 802.1x statistics, administrative status, and operational status for the switch or for the specified port.</td>
</tr>
</tbody>
</table>
clear eap

Use the **clear eap** privileged EXEC command on the switch stack or on a standalone switch to clear Extensible Authentication Protocol (EAP) session information for the switch or for the specified port.

```
clear eap sessions [credentials name [interface interface-id] | interface interface-id | method name | transport name] [credentials name | interface interface-id | transport name] ...
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>credentials name</td>
<td>Clear EAP credential information for the specified profile.</td>
</tr>
<tr>
<td>interface interface-id</td>
<td>Clear EAP information for the specified interface.</td>
</tr>
<tr>
<td>method name</td>
<td>Clear EAP information for the specified method.</td>
</tr>
<tr>
<td>transport name</td>
<td>Clear EAP transport information for the specified lower level.</td>
</tr>
</tbody>
</table>

Defaults

No default is defined.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SEE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You can clear all counters by using the **clear eap** command, or you can clear only the specific information by using the keywords.

Examples

This example shows how to clear all EAP information:

```
Switch# clear eap
```

This example shows how to clear EAP-session credential information for the specified profile:

```
Switch# clear eap sessions credential type1
```

You can verify that the information was deleted by entering the **show dot1x** privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show eap</td>
<td>Displays EAP registration and session information for the switch or for the specified port</td>
</tr>
</tbody>
</table>
clear ip arp inspection log

Use the `clear ip arp inspection log` privileged EXEC command on the switch stack or on a standalone switch to clear the dynamic Address Resolution Protocol (ARP) inspection log buffer.

```
clear ip arp inspection log
```

Syntax Description
This command has no arguments or keywords.

Defaults
No default is defined.

Command Modes
Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(20)SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples
This example shows how to clear the contents of the log buffer:

```
Switch# clear ip arp inspection log
```

You can verify that the log was cleared by entering the `show ip arp inspection log` privileged command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>arp access-list</td>
<td>Defines an ARP access control list (ACL).</td>
</tr>
<tr>
<td>ip arp inspection log-buffer</td>
<td>Configures the dynamic ARP inspection logging buffer.</td>
</tr>
<tr>
<td>ip arp inspection vlan logging</td>
<td>Controls the type of packets that are logged per VLAN.</td>
</tr>
<tr>
<td>show inventory log</td>
<td>Displays the configuration and contents of the dynamic ARP inspection log buffer.</td>
</tr>
</tbody>
</table>
clear ip arp inspection statistics

Use the clear ip arp inspection statistics privileged EXEC command on the switch stack or on a standalone switch to clear the dynamic Address Resolution Protocol (ARP) inspection statistics.

```
clear ip arp inspection statistics [vlan vlan-range]
```

Syntax Description

vlan vlan-range

(Optional) Clear statistics for the specified VLAN or VLANs.

You can specify a single VLAN identified by VLAN ID number, a range of VLANs separated by a hyphen, or a series of VLANs separated by a comma. The range is 1 to 4094.

Defaults

No default is defined.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(20)SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to clear the statistics for VLAN 1:

```
Switch# clear ip arp inspection statistics vlan 1
```

You can verify that the statistics were deleted by entering the `show ip arp inspection statistics vlan 1` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show inventory statistics</td>
<td>Displays statistics for forwarded, dropped, MAC validation failure, and IP validation failure packets for all VLANs or the specified VLAN.</td>
</tr>
</tbody>
</table>
clear ip dhcp snooping database

Use the `clear ip dhcp snooping database` privileged EXEC command on the switch stack or on a standalone switch to clear the DHCP binding database agent statistics.

`clear ip dhcp snooping database statistics`

This command is available only if your switch is running the IP services image, formerly known as the enhanced multilayer image (EMI).

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>statistics</code></td>
<td>Clear the DHCP snooping binding database agent statistics.</td>
</tr>
</tbody>
</table>

Defaults

No default is defined.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(20)SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When you enter the `clear ip dhcp snooping database statistics` command, the switch does not update the entries in the binding database and in the binding file before clearing the statistics.

Examples

This example shows how to clear the DHCP snooping binding database agent statistics:

```
Switch# clear ip dhcp snooping database statistics
```

You can verify that the statistics were cleared by entering the `show ip dhcp snooping database` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip dhcp snooping</code></td>
<td>Enables DHCP snooping on a VLAN.</td>
</tr>
<tr>
<td><code>ip dhcp snooping database</code></td>
<td>Configures the DHCP snooping binding database agent or the binding file.</td>
</tr>
<tr>
<td><code>show ip dhcp snooping binding</code></td>
<td>Displays the status of DHCP snooping database agent.</td>
</tr>
</tbody>
</table>
clear ipc

Use the `clear ipc` privileged EXEC command on the switch stack or on a standalone switch to clear Interprocess Communications Protocol (IPC) statistics.

```
clear ipc {queue-statistics | statistics}
```

Syntax Description
- `queue-statistics` Clear the IPC queue statistics.
- `statistics` Clear the IPC statistics.

Defaults
No default is defined.

Command Modes
Privileged EXEC

Command History
- **Release** 12.2(18)SE
 - **Modification** This command was introduced.

Usage Guidelines
You can clear all statistics by using the `clear ipc statistics` command, or you can clear only the queue statistics by using the `clear ipc queue-statistics` command.

Examples
This example shows how to clear all statistics:
```
Switch# clear ipc statistics
```

This example shows how to clear only the queue statistics:
```
Switch# clear ipc queue-statistics
```

You can verify that the statistics were deleted by entering the `show ipc rpc` or the `show ipc session` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>`show ipc {rpc</td>
<td>session}`</td>
</tr>
</tbody>
</table>
clear l2protocol-tunnel counters

Use the `clear l2protocol-tunnel counters` privileged EXEC command on the switch stack or on a standalone switch to clear the protocol counters in protocol tunnel ports.

`clear l2protocol-tunnel counters [interface-id]`

Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface-id</td>
<td>(Optional) Specify interface (physical interface or port channel) for which protocol counters are to be cleared.</td>
</tr>
</tbody>
</table>

Defaults

No default is defined.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use this command to clear protocol tunnel counters on the switch or on the specified interface.

Examples

This example shows how to clear Layer 2 protocol tunnel counters on an interface:

```
Switch# clear l2protocol-tunnel counters gigabitethernet0/3
```
clear lacp

Use the clear lacp privileged EXEC command on the switch stack or on a standalone switch to clear Link Aggregation Control Protocol (LACP) channel-group counters.

```
clear lacp {channel-group-number counters | counters}
```

Syntax Description
- `channel-group-number` (Optional) Channel group number. The range is 1 to 48.
- `counters` Clear traffic counters.

Defaults
No default is defined.

Command Modes
Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(14)EA1</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(25)SE</td>
<td>The <code>channel-group-number</code> range was changed from 1 to 12 to 1 to 48.</td>
</tr>
</tbody>
</table>

Usage Guidelines
You can clear all counters by using the clear lacp counters command, or you can clear only the counters for the specified channel group by using the clear lacp `channel-group-number counters` command.

Examples

This example shows how to clear all channel-group information:
```
Switch# clear lacp counters
```

This example shows how to clear LACP traffic counters for group 4:
```
Switch# clear lacp 4 counters
```

You can verify that the information was deleted by entering the show lacp counters or the show lacp 4 counters privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show lacp</td>
<td>Displays LACP channel-group information.</td>
</tr>
</tbody>
</table>
clear mac address-table

Use the **clear mac address-table** privileged EXEC command on the switch stack or on a standalone switch to delete from the MAC address table a specific dynamic address, all dynamic addresses on a particular interface, all dynamic addresses on stack members, or all dynamic addresses on a particular VLAN. This command also clears the MAC address notification global counters.

```plaintext
clear mac address-table {dynamic [address mac-addr | interface interface-id | vlan vlan-id | notification}]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dynamic</td>
<td>Delete all dynamic MAC addresses.</td>
</tr>
<tr>
<td>dynamic address</td>
<td>(Optional) Delete the specified dynamic MAC address.</td>
</tr>
<tr>
<td></td>
<td><code>mac-addr</code></td>
</tr>
<tr>
<td>dynamic interface</td>
<td>(Optional) Delete all dynamic MAC addresses on the specified physical port or port channel.</td>
</tr>
<tr>
<td></td>
<td><code>interface-id</code></td>
</tr>
<tr>
<td>dynamic vlan</td>
<td>(Optional) Delete all dynamic MAC addresses for the specified VLAN. The range is 1 to 4094.</td>
</tr>
<tr>
<td></td>
<td><code>vlan-id</code></td>
</tr>
<tr>
<td>notification</td>
<td>Clear the notifications in the history table and reset the counters.</td>
</tr>
</tbody>
</table>

Defaults

No default is defined.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(19)EA1</td>
<td>The <code>clear mac-address-table</code> command (with the hyphen) was replaced by the <code>clear mac address-table</code> command (without the hyphen).</td>
</tr>
</tbody>
</table>

Examples

This example shows how to remove a specific MAC address from the dynamic address table:

```plaintext
Switch# clear mac address-table dynamic address 0008.0070.0007
```

You can verify that the information was deleted by entering the `show mac address-table` privileged EXEC command.
<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mac address-table notification</td>
<td>Enables the MAC address notification feature.</td>
</tr>
<tr>
<td></td>
<td>show mac address-table</td>
<td>Displays the MAC address table static and dynamic entries.</td>
</tr>
<tr>
<td></td>
<td>show mac address-table notification</td>
<td>Displays the MAC address notification settings for all interfaces or the specified interface.</td>
</tr>
<tr>
<td></td>
<td>snmp trap mac-notification</td>
<td>Enables the Simple Network Management Protocol (SNMP) MAC address notification trap on a specific interface.</td>
</tr>
</tbody>
</table>
clear mac address-table move update

Use the `clear mac address-table move update` privileged EXEC command on the switch stack or on a standalone switch to clear the mac address-table-move update-related counters.

```
clear mac address-table move update
```

Syntax Description

This command has no arguments or keywords.

Defaults

No default is defined.

Command Modes

Privileged EXEC

Command History

```
<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SED</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
```

Examples

This example shows how to clear the mac address-table move update related counters.

```
Switch# clear mac address-table move update
```

You can verify that the information was cleared by entering the `show mac address-table move update` privileged EXEC command.

Related Commands

```
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mac address-table move update {receive</td>
<td>Configures MAC address-table move update on the switch.</td>
</tr>
<tr>
<td>show mac address-table move update</td>
<td>Displays the MAC address-table move update information on</td>
</tr>
</tbody>
</table>
```
clear pagp

Use the **clear pagp** privileged EXEC command on the switch stack or on a standalone switch to clear Port Aggregation Protocol (PAgP) channel-group information.

```
clear pagp {channel-group-number counters | counters}
```

Syntax Description
- **channel-group-number** (Optional) Channel group number. The range is 1 to 48.
- **counters** Clear traffic counters.

Defaults
No default is defined.

Command Modes
Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(25)SE</td>
<td>The <code>channel-group-number</code> range was changed from 1 to 12 to 1 to 48.</td>
</tr>
</tbody>
</table>

Usage Guidelines
You can clear all counters by using the **clear pagp counters** command, or you can clear only the counters for the specified channel group by using the **clear pagp channel-group-number counters** command.

Examples
This example shows how to clear all channel-group information:

```
Switch# clear pagp counters
```

This example shows how to clear PAgP traffic counters for group 10:

```
Switch# clear pagp 10 counters
```

You can verify that information was deleted by entering the **show pagp** privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show pagp</td>
<td>Displays PAgP channel-group information.</td>
</tr>
</tbody>
</table>
clear port-security

Use the clear port-security privileged EXEC command on the switch stack or on a standalone switch to delete from the MAC address table all secure addresses or all secure addresses of a specific type (configured, dynamic, or sticky) on the switch or on an interface.

```
clear port-security {all | configured | dynamic | sticky} [[address mac-addr | interface interface-id] [vlan {vlan-id | {access | voice}}]]
```

Syntax Description

- `all`: Delete all secure MAC addresses.
- `configured`: Delete configured secure MAC addresses.
- `dynamic`: Delete secure MAC addresses auto-learned by hardware.
- `sticky`: Delete secure MAC addresses, either auto-learned or configured.
- `address mac-addr`: (Optional) Delete the specified dynamic secure MAC address.
- `interface interface-id`: (Optional) Delete all the dynamic secure MAC addresses on the specified physical port or VLAN.
- `vlan`: (Optional) Delete the specified secure MAC address from the specified VLAN. Enter one of these options after you enter the `vlan` keyword:
 - `vlan-id`: On a trunk port, specify the VLAN ID of the VLAN on which this address should be cleared.
 - `access`: On an access port, clear the specified secure MAC address on the access VLAN.
 - `voice`: On an access port, clear the specified secure MAC address on the voice VLAN.

Note The `voice` keyword is available only if voice VLAN is configured on a port and if that port is not the access VLAN.

Defaults

No default is defined.

Command Modes

Privileged EXEC

Command History

- **Release** | **Modification**
 - 12.2(25)SEA | This command was introduced.
 - 12.2(25)SEB | The `access` and `voice` keywords were added.

Examples

This example shows how to clear all secure addresses from the MAC address table:

```
Switch# clear port-security all
```

This example shows how to remove a specific configured secure address from the MAC address table:

```
Switch# clear port-security configured address 0008.0070.0007
```
This example shows how to remove all the dynamic secure addresses learned on a specific interface:

Switch# `clear port-security dynamic interface gigabitethernet1/0/1`

This example shows how to remove all the dynamic secure addresses from the address table:

Switch# `clear port-security dynamic`

You can verify that the information was deleted by entering the `show port-security` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>switchport port-security</code></td>
<td>Enables port security on an interface.</td>
</tr>
<tr>
<td><code>switchport port-security mac-address mac-address</code></td>
<td>Configures secure MAC addresses.</td>
</tr>
<tr>
<td><code>switchport port-security maximum value</code></td>
<td>Configures a maximum number of secure MAC addresses on a secure interface.</td>
</tr>
<tr>
<td><code>show port-security</code></td>
<td>Displays the port security settings defined for an interface or for the switch.</td>
</tr>
</tbody>
</table>
clear spanning-tree counters

Use the clear spanning-tree counters privileged EXEC command on the switch stack or on a standalone switch to clear the spanning-tree counters.

```
clear spanning-tree counters [interface interface-id]
```

Syntax Description
- `interface interface-id` (Optional) Clear all spanning-tree counters on the specified interface. Valid interfaces include physical ports, VLANs, and port channels. The VLAN range is 1 to 4094. The port-channel range is 1 to 48.

Defaults
No default is defined.

Command Modes
Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(14)EA1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
If the `interface-id` is not specified, spanning-tree counters are cleared for all interfaces.

Examples
This example shows how to clear spanning-tree counters for all interfaces:
```
Switch# clear spanning-tree counters
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show spanning-tree</td>
<td>Displays spanning-tree state information.</td>
</tr>
</tbody>
</table>
clear spanning-tree detected-protocols

Use the clear spanning-tree detected-protocols privileged EXEC command on the switch stack or on a standalone switch to restart the protocol migration process (force the renegotiation with neighboring switches) on all interfaces or on the specified interface.

```
clear spanning-tree detected-protocols [interface interface-id]
```

Syntax Description
- `interface interface-id` (Optional) Restart the protocol migration process on the specified interface. Valid interfaces include physical ports, VLANs, and port channels. The VLAN range is 1 to 4094. The port-channel range is 1 to 48.

Defaults
No default is defined.

Command Modes
Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(14)EA1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

A switch running the rapid per-VLAN spanning-tree plus (rapid-PVST+) protocol or the Multiple Spanning Tree Protocol (MSTP) supports a built-in protocol migration mechanism that enables it to interoperate with legacy IEEE 802.1D switches. If a rapid-PVST+ switch or an MSTP switch receives a legacy IEEE 802.1D configuration bridge protocol data unit (BPDU) with the protocol version set to 0, it sends only IEEE 802.1D BPDUs on that port. A multiple spanning-tree (MST) switch can also detect that a port is at the boundary of a region when it receives a legacy BPDU, an MST BPDU (Version 3) associated with a different region, or a rapid spanning-tree (RST) BPDU (Version 2).

However, the switch does not automatically revert to the rapid-PVST+ or the MSTP mode if it no longer receives IEEE 802.1D BPDUs because it cannot learn whether the legacy switch has been removed from the link unless the legacy switch is the designated switch. Use the clear spanning-tree detected-protocols command in this situation.

Examples

This example shows how to restart the protocol migration process on a port:

```
Switch# clear spanning-tree detected-protocols interface gigabitethernet2/0/1
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show spanning-tree</td>
<td>Displays spanning-tree state information.</td>
</tr>
<tr>
<td>spanning-tree link-type</td>
<td>Overrides the default link-type setting and enables rapid spanning-tree changes to the forwarding state.</td>
</tr>
</tbody>
</table>
clear vmps statistics

Use the clear vmps statistics privileged EXEC command on the switch stack or on a standalone switch to clear the statistics maintained by the VLAN Query Protocol (VQP) client.

clear vmps statistics

Syntax Description

This command has no arguments or keywords.

Defaults

No default is defined.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to clear VLAN Membership Policy Server (VMPS) statistics:

```bash
Switch# clear vmps statistics
```

You can verify that information was deleted by entering the show vmps statistics privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show vmps</td>
<td>Displays the VQP version, reconfirmation interval, retry count, VMPS IP addresses, and the current and primary servers.</td>
</tr>
</tbody>
</table>
clear vtp counters

Use the `clear vtp counters` privileged EXEC command on the switch stack or on a standalone switch to clear the VLAN Trunking Protocol (VTP) and pruning counters.

```
clear vtp counters
```

Syntax Description
This command has no arguments or keywords.

Defaults
No default is defined.

Command Modes
Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples
This example shows how to clear the VTP counters:

```
switch# clear vtp counters
```

You can verify that information was deleted by entering the `show vtp counters` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show vtp</code></td>
<td>Displays general information about the VTP management domain, status, and counters.</td>
</tr>
</tbody>
</table>
cluster commander-address

You do not need to enter this command from the switch stack or from a standalone cluster member switch. The cluster command switch automatically provides its MAC address to cluster member switches when these switches join the cluster. The cluster member switch adds this information and other cluster information to its running configuration file. Use the no form of this global configuration command from the cluster member switch console port to remove the switch from a cluster only during debugging or recovery procedures.

```
cluster commander-address mac-address [member number name name]
```

```
no cluster commander-address
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mac-address</td>
<td>MAC address of the cluster command switch.</td>
</tr>
<tr>
<td>member number</td>
<td>(Optional) Number of a configured cluster member switch. The range is 0 to 15.</td>
</tr>
<tr>
<td>name name</td>
<td>(Optional) Name of the configured cluster up to 31 characters.</td>
</tr>
</tbody>
</table>

Defaults

The switch is not a member of any cluster.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command is available only on the cluster command switch stack or the cluster command switch. A cluster member can have only one cluster command switch.

The cluster member switch retains the identity of the cluster command switch during a system reload by using the `mac-address` parameter.

You can enter the `no` form on a cluster member switch to remove it from the cluster during debugging or recovery procedures. You would normally use this command from the cluster member switch console port only when the member has lost communication with the cluster command switch. With normal switch configuration, we recommend that you remove cluster member switches only by entering the `no cluster member n` global configuration command on the cluster command switch.

When a standby cluster command switch becomes active (becomes the cluster command switch), it removes the cluster commander address line from its configuration.
Examples

This is partial sample output from the running configuration of a cluster member.

Switch(config)# show running-configuration

<output truncated>

cluster commander-address 00e0.9bc0.a500 member 4 name my_cluster

<output truncated>

This example shows how to remove a member from the cluster by using the cluster member console.

Switch # configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# no cluster commander-address

You can verify your settings by entering the show cluster privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show cluster</td>
<td>Displays the cluster status and a summary of the cluster to which the switch belongs.</td>
</tr>
</tbody>
</table>
cluster discovery hop-count

Use the `cluster discovery hop-count` global configuration command on the switch stack or on the a cluster command switch on the cluster command switch to set the hop-count limit for extended discovery of candidate switches. Use the `no` form of this command to return to the default setting.

```
cluster discovery hop-count number

no cluster discovery hop-count
```

Syntax Description

- `number` Number of hops from the cluster edge that the cluster command switch limits the discovery of candidates. The range is 1 to 7.

Defaults

The hop count is set to 3.

Command Modes

Global configuration

Command History

+ **Release** | **Modification**
+--------------|---------------------
+ 12.1(11)AX | This command was introduced.

Usage Guidelines

This command is available only on the cluster command switch stack or cluster command switch. This command does not operate on cluster member switches.

If the hop count is set to 1, it disables extended discovery. The cluster command switch discovers only candidates that are one hop from the edge of the cluster. The edge of the cluster is the point between the last discovered cluster member switch and the first discovered candidate switch.

Examples

This example shows how to set hop count limit to 4. This command is executed on the cluster command switch.

```
Switch(config)# cluster discovery hop-count 4
```

You can verify your setting by entering the `show cluster` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show cluster</code></td>
<td>Displays the cluster status and a summary of the cluster to which the switch belongs.</td>
</tr>
<tr>
<td><code>show cluster candidates</code></td>
<td>Displays a list of candidate switches.</td>
</tr>
</tbody>
</table>
cluster enable

Use the cluster enable global configuration command on a command-capable switch or switch stack to enable it as the cluster command switch, assign a cluster name, and to optionally assign a member number to it. Use the no form of the command to remove all members and to make the cluster command switch a candidate switch.

```
cluster enable name [command-switch-member-number]
no cluster enable
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>Name of the cluster up to 31 characters. Valid characters include only alphanumerics, dashes, and underscores.</td>
</tr>
<tr>
<td>command-switch-member-number</td>
<td>(Optional) Assign a member number to the cluster command switch of the cluster. The range is 0 to 15.</td>
</tr>
</tbody>
</table>

Defaults

- The switch is not a cluster command switch.
- No cluster name is defined.
- The member number is 0 when the switch is the cluster command switch.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Enter this command on any command-capable switch that is not part of any cluster. This command fails if a device is already configured as a member of the cluster.

You must name the cluster when you enable the cluster command switch. If the switch is already configured as the cluster command switch, this command changes the cluster name if it is different from the previous cluster name.

Examples

This example shows how to enable the cluster command switch, name the cluster, and set the cluster command switch member number to 4.

```
Switch(config)# cluster enable Engineering-IDF4 4
```

You can verify your setting by entering the `show cluster` privileged EXEC command on the cluster command switch.
<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>show cluster</code></td>
<td>Displays the cluster status and a summary of the cluster to which the switch belongs.</td>
</tr>
</tbody>
</table>
cluster holdtime

Use the `cluster holdtime` global configuration command on the switch stack or on the a cluster command switch to set the duration in seconds before a switch (either the command or cluster member switch) declares the other switch down after not receiving heartbeat messages. Use the `no` form of this command to set the duration to the default value.

```
cluster holdtime holdtime-in-secs
no cluster holdtime
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>holdtime-in-secs</code></td>
<td>Duration in seconds before a switch (either a command or cluster member switch) declares the other switch down. The range is 1 to 300 seconds.</td>
</tr>
</tbody>
</table>

Defaults
The default holdtime is 80 seconds.

Command Modes
Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
Enter this command with the `cluster timer` global configuration command only on the cluster command switch. The cluster command switch propagates the values to all its cluster members so that the setting is consistent among all switches in the cluster.

The holdtime is typically set as a multiple of the interval timer (`cluster timer`). For example, it takes (holdtime-in-secs divided by the interval-in-secs) number of heartbeat messages to be missed in a row to declare a switch down.

Examples
This example shows how to change the interval timer and the duration on the cluster command switch.

```
Switch(config)# cluster timer 3
Switch(config)# cluster holdtime 30
```

You can verify your settings by entering the `show cluster` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show cluster</code></td>
<td>Displays the cluster status and a summary of the cluster to which the switch belongs.</td>
</tr>
</tbody>
</table>
cluster member

Use the `cluster member` global configuration command on the cluster command switch to add candidates to a cluster. Use the `no` form of the command to remove members from the cluster.

```
cluster member [n] mac-address H.H.H [password enable-password] [vlan vlan-id]
```

```
no cluster member n
```

Syntax Description

- `n`: The number that identifies a cluster member. The range is 0 to 15.
- `mac-address H.H.H`: MAC address of the cluster member switch in hexadecimal format.
- `password enable-password`: Enable password of the candidate switch. The password is not required if there is no password on the candidate switch.
- `vlan vlan-id`: (Optional) VLAN ID through which the candidate is added to the cluster by the cluster command switch. The range is 1 to 4094.

Defaults

A newly enabled cluster command switch has no associated cluster members.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Enter this command only on the cluster command switch to add a candidate to or remove a member from the cluster. If you enter this command on a switch other than the cluster command switch, the switch rejects the command and displays an error message.

You must enter a member number to remove a switch from the cluster. However, you do not need to enter a member number to add a switch to the cluster. The cluster command switch selects the next available member number and assigns it to the switch that is joining the cluster.

You must enter the enable password of the candidate switch for authentication when it joins the cluster. The password is not saved in the running or startup configuration. After a candidate switch becomes a member of the cluster, its password becomes the same as the cluster command-switch password.

If a switch does not have a configured hostname, the cluster command switch appends a member number to the cluster command-switch hostname and assigns it to the cluster member switch.

If you do not specify a VLAN ID, the cluster command switch automatically chooses a VLAN and adds the candidate to the cluster.
Examples

This example shows how to add a switch as member 2 with MAC address 00E0.1E00.2222 and the password key to a cluster. The cluster command switch adds the candidate to the cluster through VLAN 3.

```bash
Switch(config)# cluster member 2 mac-address 00E0.1E00.2222 password key vlan 3
```

This example shows how to add a switch with MAC address 00E0.1E00.3333 to the cluster. This switch does not have a password. The cluster command switch selects the next available member number and assigns it to the switch that is joining the cluster.

```bash
Switch(config)# cluster member mac-address 00E0.1E00.3333
```

You can verify your settings by entering the `show cluster members` privileged EXEC command on the cluster command switch.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show cluster</td>
<td>Displays the cluster status and a summary of the cluster to which the switch belongs.</td>
</tr>
<tr>
<td>show cluster candidates</td>
<td>Displays a list of candidate switches.</td>
</tr>
<tr>
<td>show cluster members</td>
<td>Displays information about the cluster members.</td>
</tr>
</tbody>
</table>
cluster outside-interface

Use the `cluster outside-interface` global configuration command on the switch stack or on the a cluster command switch to configure the outside interface for cluster Network Address Translation (NAT) so that a member without an IP address can communicate with devices outside the cluster. Use the `no` form of this command to return to the default setting.

```
cluster outside-interface interface-id

no cluster outside-interface
```

Syntax Description

- `interface-id` Interface to serve as the outside interface. Valid interfaces include physical interfaces, port-channels, or VLANs. The port-channel range is 1 to 48. The VLAN range is 1 to 4094.

Defaults

The default outside interface is automatically selected by the cluster command switch.

Command Modes

Global configuration

Command History

- **Release**: 12.1(11)AX
 - **Modification**: This command was introduced.

Usage Guidelines

Enter this command only on the cluster command switch. If you enter this command on a cluster member switch, an error message appears.

Examples

This example shows how to set the outside interface to VLAN 1:

```
Switch(config)# cluster outside-interface vlan 1
```

You can verify your setting by entering the `show running-config` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show running-config</code></td>
<td>Displays the current operating configuration. For syntax information, select the Cisco IOS Configuration Fundamentals Command Reference, Release 12.2 > File Management Commands > Configuration File Management Commands.</td>
</tr>
</tbody>
</table>
cluster run

Use the **cluster run** global configuration command to enable clustering on a switch. Use the **no** form of this command to disable clustering on a switch.

```
cluster run
no cluster run
```

Syntax Description
This command has no arguments or keywords.

Defaults
Clustering is enabled on all switches.

Command Modes
Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
When you enter the **no cluster run** command on a cluster command switch or cluster command switch stack, the cluster command switch is disabled. Clustering is disabled, and the switch cannot become a candidate switch.

When you enter the **no cluster run** command on a cluster member switch, it is removed from the cluster. Clustering is disabled, and the switch cannot become a candidate switch.

When you enter the **no cluster run** command on a switch that is not part of a cluster, clustering is disabled on this switch. This switch cannot then become a candidate switch.

Examples
This example shows how to disable clustering on the cluster command switch:

```
Switch(config)# no cluster run
```

You can verify your setting by entering the **show cluster** privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show cluster</td>
<td>Displays the cluster status and a summary of the cluster to which the switch belongs.</td>
</tr>
</tbody>
</table>
cluster standby-group

Use the `cluster standby-group` global configuration command to enable cluster command-switch redundancy by binding the cluster to an existing Hot Standby Router Protocol (HSRP). Entering the routing-redundancy keyword enables the same HSRP group to be used for cluster command-switch redundancy and routing redundancy. Use the `no` form of this command to return to the default setting.

```
cluster standby-group HSRP-group-name [routing-redundancy]
```

```
no cluster standby-group
```

Syntax Description

- **HSRP-group-name**: Name of the HSRP group that is bound to the cluster. The group name is limited to 32 characters.
- **routing-redundancy**: (Optional) Enable the same HSRP standby group to be used for cluster command-switch redundancy and routing redundancy.

Defaults

The cluster is not bound to any HSRP group.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Enter this command only on the cluster command switch. If you enter it on a cluster member switch, an error message appears.

The cluster command switch propagates the cluster-HSRP binding information to all cluster-HSRP capable members. Each cluster member switch stores the binding information in its NVRAM. The HSRP group name must be a valid standby group; otherwise, the command exits with an error.

The same group name should be used on all members of the HSRP standby group that is to be bound to the cluster. The same HSRP group name should also be used on all cluster-HSRP capable members for the HSRP group that is to be bound. (When not binding a cluster to an HSRP group, you can use different names on the cluster commander and the members.)

Examples

This example shows how to bind the HSRP group named `my_hsrp` to the cluster. This command is executed on the cluster command switch.

```
Switch(config)# cluster standby-group my_hsrp
```

This example shows how to use the same HSRP group named `my_hsrp` for routing redundancy and cluster redundancy.

```
Switch(config)# cluster standby-group my_hsrp routing-redundancy
```
This example shows the error message when this command is executed on a cluster command switch and the specified HSRP standby group does not exist:

```
Switch(config)# cluster standby-group my_hsrp
%ERROR: Standby (my_hsrp) group does not exist
```

This example shows the error message when this command is executed on a cluster member switch:

```
Switch(config)# cluster standby-group my_hsrp routing-redundancy
%ERROR: This command runs on a cluster command switch
```

You can verify your settings by entering the `show cluster` privileged EXEC command. The output shows whether redundancy is enabled in the cluster.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>standby ip</td>
<td>Enables HSRP on the interface. For syntax information, select Cisco IOS IP Command Reference, Volume 1 of 3:Addressing and Services, Release 12.2 > IP Services Commands.</td>
</tr>
<tr>
<td>show cluster</td>
<td>Displays the cluster status and a summary of the cluster to which the switch belongs.</td>
</tr>
<tr>
<td>show standby</td>
<td>Displays standby group information. For syntax information, select Cisco IOS IP Command Reference, Volume 1 of 3:Addressing and Services, Release 12.2 > IP Services Commands.</td>
</tr>
</tbody>
</table>
cluster timer

Use the `cluster timer` global configuration command on the switch stack or on the a cluster command switch to set the interval in seconds between heartbeat messages. Use the `no` form of this command to set the interval to the default value.

```
cluster timer interval-in-secs
no cluster timer
```

Syntax Description

<table>
<thead>
<tr>
<th>interval-in-secs</th>
<th>Interval in seconds between heartbeat messages. The range is 1 to 300 seconds.</th>
</tr>
</thead>
</table>

Defaults

The interval is 8 seconds.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Enter this command with the `cluster holdtime` global configuration command only on the cluster command switch. The cluster command switch propagates the values to all its cluster members so that the setting is consistent among all switches in the cluster.

The holdtime is typically set as a multiple of the heartbeat interval timer (`cluster timer`). For example, it takes (holdtime-in-secs divided by the interval-in-secs) number of heartbeat messages to be missed in a row to declare a switch down.

Examples

This example shows how to change the heartbeat interval timer and the duration on the cluster command switch:

```
Switch(config)# cluster timer 3
Switch(config)# cluster holdtime 30
```

You can verify your settings by entering the `show cluster` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show cluster</code></td>
<td>Displays the cluster status and a summary of the cluster to which the switch belongs.</td>
</tr>
</tbody>
</table>
define interface-range

Use the define interface-range global configuration command on the switch stack or on a standalone switch to create an interface-range macro. Use the no form of this command to delete the defined macro.

```
define interface-range macro-name interface-range
no define interface-range macro-name interface-range
```

Syntax Description

<table>
<thead>
<tr>
<th>Macro Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>macro-name</code></td>
<td>Name of the interface-range macro; up to 32 characters.</td>
</tr>
<tr>
<td><code>interface-range</code></td>
<td>Interface range; for valid values for interface ranges, see “Usage Guidelines.”</td>
</tr>
</tbody>
</table>

Defaults

This command has no default setting.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The macro name is a 32-character maximum character string.

A macro can contain up to five ranges.

All interfaces in a range must be the same type; that is, all Fast Ethernet ports, all Gigabit Ethernet ports, all EtherChannel ports, or all VLANs, but you can combine multiple interface types in a macro.

When entering the `interface-range`, use this format:

- `type {first-interface} - {last-interface}`
- You must add a space between the first interface number and the hyphen when entering an `interface-range`. For example, `gigabitethernet 1/0/1 - 2` is a valid range; `gigabitethernet 1/0/1-2` is not a valid range

Valid values for `type` and `interface`:

- `vlan vlan-id - vlan-ID`, where the VLAN ID is 1 to 4094
- VLAN interfaces must have been configured with the `interface vlan` command (the `show running-config` privileged EXEC command displays the configured VLAN interfaces). VLAN interfaces not displayed by the `show running-config` command cannot be used in `interface-ranges`.
- `port-channel port-channel-number`, where `port-channel-number` is from 1 to 48
- `fastethernet stack member/module/{first port} - {last port}`
- `gigabitethernet stack member/module/{first port} - {last port}

For physical interfaces:

- stack member is the number used to identify the switch within the stack. The number ranges from 1 to 9 and is assigned to the switch the first time the stack member initializes.
• module is always 0.
• the range is type stack member/0/number - number (for example, gigabitethernet 1/0/1 - 2).

When you define a range, you must enter a space before the hyphen (-), for example:

`gigabitethernet1/0/1 - 2`

You can also enter multiple ranges. When you define multiple ranges, you must enter a space after the first entry before the comma (,). The space after the comma is optional, for example:

`fastethernet1/0/3, gigabitethernet1/0/1 - 2`

`fastethernet1/0/3 - 4, gigabitethernet1/0/1 - 2`

Examples

This example shows how to create a multiple-interface macro:

```
Switch(config)# define interface-range macro1 fastethernet1/0/1 - 2, gigabitethernet1/0/1 - 2
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>interface range</code></td>
<td>Executes a command on multiple ports at the same time.</td>
</tr>
<tr>
<td><code>show running-config</code></td>
<td>Displays the current operating configuration, including defined macros.</td>
</tr>
</tbody>
</table>

delete

Use the delete privileged EXEC command on the switch stack or on a standalone switch to delete a file or directory on the flash memory device.

```
delete [/force] [/recursive] filesystem:/file-url
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/force</td>
<td>(Optional) Suppress the prompt that confirms the deletion.</td>
</tr>
<tr>
<td>/recursive</td>
<td>(Optional) Delete the named directory and all subdirectories and the files contained in it.</td>
</tr>
<tr>
<td>filesystem:</td>
<td>Alias for a flash file system.</td>
</tr>
<tr>
<td></td>
<td>The syntax for the local flash file system on the stack member or the stack master: flash:</td>
</tr>
<tr>
<td></td>
<td>From the stack master, the syntax for the local flash file system on a stack member: flash member number:</td>
</tr>
<tr>
<td>/file-url</td>
<td>The path (directory) and filename to delete.</td>
</tr>
</tbody>
</table>

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If you use the /force keyword, you are prompted once at the beginning of the deletion process to confirm the deletion.

If you use the /recursive keyword without the /force keyword, you are prompted to confirm the deletion of every file.

The prompting behavior depends on the setting of the file prompt global configuration command. By default, the switch prompts for confirmation on destructive file operations. For more information about this command, see the Cisco IOS Command Reference for Release 12.1.

Examples

This example shows how to remove the directory that contains the old software image after a successful download of a new image:

```
Switch# delete /force /recursive flash:/old-image
```

You can verify that the directory was removed by entering the dir filesystem: privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>archive download-sw</td>
<td>Downloads a new image to the switch and overwrites or keeps the existing image.</td>
</tr>
</tbody>
</table>
deny (ARP access-list configuration)

Use the **deny** Address Resolution Protocol (ARP) access-list configuration command on the switch stack or on a standalone switch to deny an ARP packet based on matches against the DHCP bindings. Use the **no** form of this command to remove the specified access control entry (ACE) from the access list.

```
```

```
```

This command is available only if your switch is running the IP services image, formerly known as the enhanced multilayer image (EMI).

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>request</td>
<td>(Optional) Define a match for the ARP request. When request is not specified, matching is performed against all ARP packets.</td>
</tr>
<tr>
<td>ip</td>
<td>Specify the sender IP address.</td>
</tr>
<tr>
<td>any</td>
<td>Deny any IP or MAC address.</td>
</tr>
<tr>
<td>host sender-ip</td>
<td>Deny the specified sender IP address.</td>
</tr>
<tr>
<td>sender-ip sender-ip-mask</td>
<td>Deny the specified range of sender IP addresses.</td>
</tr>
<tr>
<td>mac</td>
<td>Deny the sender MAC address.</td>
</tr>
<tr>
<td>host sender-mac</td>
<td>Deny a specific sender MAC address.</td>
</tr>
<tr>
<td>sender-mac sender-mac-mask</td>
<td>Deny the specified range of sender MAC addresses.</td>
</tr>
<tr>
<td>response ip</td>
<td>Define the IP address values for the ARP responses.</td>
</tr>
<tr>
<td>host target-ip</td>
<td>Deny the specified target IP address.</td>
</tr>
<tr>
<td>target-ip target-ip-mask</td>
<td>Deny the specified range of target IP addresses.</td>
</tr>
<tr>
<td>mac</td>
<td>Deny the MAC address values for the ARP responses.</td>
</tr>
<tr>
<td>host target-mac</td>
<td>Deny the specified target MAC address.</td>
</tr>
<tr>
<td>target-mac target-mac-mask</td>
<td>Deny the specified range of target MAC addresses.</td>
</tr>
<tr>
<td>log</td>
<td>(Optional) Log a packet when it matches the ACE.</td>
</tr>
</tbody>
</table>

Defaults

There are no default settings. However, at the end of the ARP access list, there is an implicit **deny ip any mac any** command.

Command Modes

ARP access-list configuration
deny (ARP access-list configuration)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(20)SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You can add deny clauses to drop ARP packets based on matching criteria.

Examples

This example shows how to define an ARP access list and to deny both ARP requests and ARP responses from a host with an IP address of 1.1.1.1 and a MAC address of 0000.0000.abcd:

```
Switch(config)# arp access-list static-hosts
Switch(config-arp-nacl)# deny ip host 1.1.1.1 mac host 0000.0000.abcd
Switch(config-arp-nacl)# end
```

You can verify your settings by entering the `show arp access-list` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>arp access-list</td>
<td>Defines an ARP access control list (ACL).</td>
</tr>
<tr>
<td>ip arp inspection filter vlan</td>
<td>Permits ARP requests and responses from a host configured with a static IP address.</td>
</tr>
<tr>
<td>permit (ARP access-list configuration)</td>
<td>Permits an ARP packet based on matches against the DHCP bindings.</td>
</tr>
<tr>
<td>show arp access-list</td>
<td>Displays detailed information about ARP access lists.</td>
</tr>
</tbody>
</table>
deny (IPv6 access-list configuration)

Use the `deny` command in IPv6 access list configuration mode on the switch stack or on a standalone switch to set deny conditions for an IPv6 access list. Use the `no` form of this command to remove the deny conditions.

```
deny {protocol} {source-ipv6-prefix/prefix-length | any | host source-ipv6-address} [operator [port-number]] {destination-ipv6-prefix/prefix-length | any | host destination-ipv6-address} [operator [port-number]] [dscp value] [fragments] [log] [log-input] [sequence value] [time-range name]
```

```
no deny {protocol} {source-ipv6-prefix/prefix-length | any | host source-ipv6-address} [operator [port-number]] {destination-ipv6-prefix/prefix-length | any | host destination-ipv6-address} [operator [port-number]] [dscp value] [fragments] [log] [log-input] [sequence value] [time-range name]
```

Internet Control Message Protocol

```
deny icmp {source-ipv6-prefix/prefix-length | any | host source-ipv6-address} [operator [port-number]] {destination-ipv6-prefix/prefix-length | any | host destination-ipv6-address} [operator [port-number]] [icmp-type [icmp-code] | icmp-message] [dscp value] [log] [log-input] [sequence value] [time-range name]
```

Transmission Control Protocol

```
deny tcp {source-ipv6-prefix/prefix-length | any | host source-ipv6-address} [operator [port-number]] {destination-ipv6-prefix/prefix-length | any | host destination-ipv6-address} [operator [port-number]] [ack] [dscp value] [established] [fin] [log] [log-input] [neq {port | protocol}] [psh] [range {port | protocol}] [rst] [sequence value] [syn] [time-range name] [urg]
```

User Datagram Protocol

```
deny udp {source-ipv6-prefix/prefix-length | any | host source-ipv6-address} [operator [port-number]] {destination-ipv6-prefix/prefix-length | any | host destination-ipv6-address} [operator [port-number]] [dscp value] [log] [log-input] [neq {port | protocol}] [range {port | protocol}] [sequence value] [time-range name]
```

Note

This command is available only if the switch stack is running the advanced IP services image and you have configured a dual IPv4 and IPv6 Switch Database Management (SDM) template on the switch.
Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>protocol</td>
<td>Name or number of an Internet protocol. It can be one of the keywords <code>ahp</code>, <code>esp</code>, <code>icmp</code>, <code>ipv6</code>, <code>pcp</code>, <code>sctp</code>, <code>tcp</code>, or <code>udp</code>, or an integer in the range from 0 to 255 representing an IPv6 protocol number.</td>
</tr>
<tr>
<td>source-ipv6-prefix/prefix-length</td>
<td>The source IPv6 network or class of networks about which to set deny conditions. This argument must be in the form documented in RFC 2373 where the address is specified in hexadecimal using 16-bit values between colons. Note Although the CLI help shows a prefix-length range of /0 to /128, the switch supports IPv6 address-matching only for prefixes in the range of /0 to /64 and extended universal identifier (EUI)-based /128 prefixes for aggregatable global unicast and link-local host addresses.</td>
</tr>
<tr>
<td>any</td>
<td>An abbreviation for the IPv6 prefix ::/0.</td>
</tr>
<tr>
<td>host source-ipv6-address</td>
<td>The source IPv6 host address for which to set deny conditions. This <code>source-ipv6-address</code> argument must be in the form documented in RFC 2373 where the address is specified in hexadecimal using 16-bit values between colons.</td>
</tr>
<tr>
<td>operator [port-number]</td>
<td>(Optional) Specify an operator that compares the source or destination ports of the specified protocol. Operators are <code>lt</code> (less than), <code>gt</code> (greater than), <code>eq</code> (equal), <code>neq</code> (not equal), and <code>range</code> (inclusive range). If the operator is positioned after the <code>source-ipv6-prefix/prefix-length</code> argument, it must match the source port. If the operator is positioned after the <code>destination-ipv6-prefix/prefix-length</code> argument, it must match the destination port. The <code>range</code> operator requires two port numbers. All other operators require one port number. The optional <code>port-number</code> argument is a decimal number or the name of a TCP or a UDP port. A port number is a number from 0 to 65535. TCP port names can be used only when filtering TCP. UDP port names can be used only when filtering UDP.</td>
</tr>
<tr>
<td>destination-ipv6-prefix/prefix-length</td>
<td>The destination IPv6 network or class of networks for which to set deny conditions. This argument must be in the form documented in RFC 2373 where the address is specified in hexadecimal using 16-bit values between colons. Note Although the CLI help shows a prefix-length range of /0 to /128, the switch supports IPv6 address-matching only for prefixes in the range of /0 to /64 and EUI-based /128 prefixes for aggregatable global unicast and link-local host addresses.</td>
</tr>
<tr>
<td>host destination-ipv6-address</td>
<td>The destination IPv6 host address for which to set deny conditions. This <code>destination-ipv6-address</code> argument must be in the form documented in RFC 2373 where the address is specified in hexadecimal using 16-bit values between colons.</td>
</tr>
<tr>
<td>dscp value</td>
<td>(Optional) Match a differentiated services code point value against the traffic class value in the Traffic Class field of each IPv6 packet header. The acceptable range is from 0 to 63.</td>
</tr>
</tbody>
</table>
deny (IPv6 access-list configuration)

- **fragments** (Optional) Match non-initial fragmented packets where the fragment extension header contains a non-zero fragment offset. The `fragments` keyword is an option only if the protocol is `ipv6` and the `operator [port-number]` arguments are not specified.

- **log** (Optional) Send an informational logging message to the console about the packet that matches the entry. (The level of messages sent to the console is controlled by the `logging console` command.)

 The message includes the access list name and sequence number, whether the packet was denied; the protocol, whether it was TCP, UDP, ICMP, or a number; and, if appropriate, the source and destination addresses and source and destination port numbers. The message is generated for the first packet that matches, and then at 5-minute intervals, including the number of packets denied in the prior 5-minute interval.

 Note Logging is not supported for port ACLs.

- **log-input** (Optional) Provide the same function as the `log` keyword, except that the logging message also includes the receiving interface.

- **sequence value** (Optional) Specify the sequence number for the access list statement. The acceptable range is from 1 to 4294967295.

- **time-range name** (Optional) Specify the time range that applies to the deny statement. The name of the time range and its restrictions are specified by the `time-range` and `absolute` or `periodic` commands, respectively.

- **icmp-type** (Optional) Specify an ICMP message type for filtering ICMP packets. ICMP packets can be filtered by an ICMP message type. The type is a number from 0 to 255.

- **icmp-code** (Optional) Specify an ICMP message code for filtering ICMP packets. ICMP packets that are filtered by ICMP message type can also be filtered by the ICMP message code. The code is a number from 0 to 255.

- **icmp-message** (Optional) Specify an ICMP message name for filtering ICMP packets. ICMP packets can be filtered by an ICMP message name or an ICMP message type and code. The possible names are listed in the “Usage Guidelines” section.

- **ack** (Optional) Only for the TCP protocol: Acknowledgment (ACK) bit set.

- **established** (Optional) Only for the TCP protocol: Means the connection has been established. A match occurs if the TCP datagram has the ACK or RST bits set. The nonmatching case is that of the initial TCP datagram to form a connection.

- **fin** (Optional) Only for the TCP protocol: Fin bit set; no more data from sender.

- **neq [port] protocol** (Optional) Match only packets that are not on a given port number.

- **psh** (Optional) Only for the TCP protocol: Push function bit set.

- **range [port] protocol** (Optional) Match only packets in the range of port numbers.

- **rst** (Optional) Only for the TCP protocol: Reset bit set.

- **syn** (Optional) Only for the TCP protocol: Synchronize bit set.

- **urg** (Optional) Only for the TCP protocol: Urgent pointer bit set.
deny (IPv6 access-list configuration)

Note
Although visible in the command-line help strings, the flow-label, routing, and undetermined-transport keywords are not supported.

Defaults
No IPv6 access list is defined.

Command Modes
IPv6 access list configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SED</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `deny` (IPv6 access-list configuration mode) command is similar to the `deny` (IPv4 access-list configuration mode) command, except that it is IPv6-specific.

Use the `deny` (IPv6) command after the `ipv6 access-list` command to enter IPv6 access list configuration mode and to define the conditions under which a packet passes the access list.

Specifying IPv6 for the protocol argument matches against the IPv6 header of the packet.

By default, the first statement in an access list is number 10, and the subsequent statements are numbered in increments of 10.

You can add `permit`, `deny`, or `remark` statements to an existing access list without re-entering the entire list. To add a new statement anywhere other than at the end of the list, create a new statement with an appropriate entry number that falls between two existing entry numbers to show where it belongs.

Note
Every IPv6 ACL has implicit `permit icmp any any nd-na`, `permit icmp any any nd-ns`, and `deny ipv6 any any` statements as its last match conditions. The two `permit` conditions allow ICMPv6 neighbor discovery. To disallow ICMPv6 neighbor discovery and to deny `icmp any any nd-na` or `icmp any any nd-ns`, there must be an explicit `deny` entry in the ACL. For the implicit `deny ipv6 any any` statement to take effect, an IPv6 ACL must contain at least one entry.

The IPv6 neighbor discovery process uses the IPv6 network layer service. Therefore, by default, IPv6 ACLs implicitly allow IPv6 neighbor discovery packets to be sent and received on an interface. In IPv4, the Address Resolution Protocol (ARP), which is equivalent to the IPv6 neighbor discovery process, uses a separate data-link layer protocol. Therefore, by default, IPv4 ACLs implicitly allow ARP packets to be sent and received on an interface.

Both the `source-ipv6-prefix/prefix-length` and `destination-ipv6-prefix/prefix-length` arguments are used for traffic filtering. (The source prefix filters traffic based upon the traffic source; the destination prefix filters traffic based upon the traffic destination.)

The switch supports only prefixes from /0 to /64 and EUI-based /128 prefixes for aggregatable global unicast and link-local host addresses.

The `fragments` keyword is an option only if the protocol is `ipv6` and the `operator [port-number]` arguments are not specified.
This is a list of ICMP message names:

- beyond-scope
- echo-reply
- header
- mld-query
- mld-report
- nd-ns
- no-admin
- packet-too-big
- parameter-problem
- reassembly-timeout
- renum-result
- router-advertisement
- router-solicitation
- unreachable
- destination-unreachable
- echo-request
- hop-limit
- mld-reduction
- nd-na
- next-header
- no-route
- parameter-option
- port-unreachable
- renum-command
- renum-seq-number
- router-renumbering
- time-exceeded
- unreachable

Examples

This example configures the IPv6 access list named CISCO and applies the access list to outbound traffic on a Layer 3 interface. The first deny entry in the list prevents all packets that have a destination TCP port number greater than 5000 from leaving the interface. The second deny entry in the list prevents all packets that have a source UDP port number less than 5000 from leaving the interface. The second deny also logs all matches to the console. The first permit entry in the list permits all ICMP packets to leave the interface. The second permit entry in the list permits all other traffic to leave the interface. The second permit entry is necessary because an implicit deny-all condition is at the end of each IPv6 access list.

```plaintext
Switch(config)# ipv6 access-list CISCO
Switch(config-ipv6-acl)# deny tcp any any gt 5000
Switch(config-ipv6-acl)# deny ::/0 lt 5000 ::/0 log
Switch(config-ipv6-acl)# permit icmp any any
Switch(config-ipv6-acl)# permit any any
Switch(config-ipv6-acl)# exit
Switch(config)# interface gigabitethernet1/0/3
Switch(config-if)# no switchport
Switch(config-if)# ipv6 address 2001::/64 eui-64
Switch(config-if)# ipv6 traffic-filter CISCO out
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ipv6 access-list</code></td>
<td>Defines an IPv6 access list and enters IPv6 access list configuration mode.</td>
</tr>
<tr>
<td><code>ipv6 traffic-filter</code></td>
<td>Filters incoming or outgoing IPv6 traffic on an interface.</td>
</tr>
<tr>
<td><code>permit (IPv6 access-list configuration)</code></td>
<td>Sets permit conditions for an IPv6 access list.</td>
</tr>
<tr>
<td><code>show ipv6 access-list</code></td>
<td>Displays the contents of all current IPv6 access lists.</td>
</tr>
</tbody>
</table>
deny (MAC access-list configuration)

Use the `deny` MAC access-list configuration command on the switch stack or on a standalone switch to prevent non-IP traffic from being forwarded if the conditions are matched. Use the `no` form of this command to remove a deny condition from the named MAC access list.

```
{ deny | permit } { any | host src-MAC-addr | src-MAC-addr mask } { any | host dst-MAC-addr | dst-MAC-addr mask } { type mask | aarp | amber | cos | cos | dec-spanning | decnet-iv | diagnostic | dsm | etype-6000 | etype-8042 | lat | lavc-sca | lsap lsap mask | mop-console | mop-dump | msdos | mumps | netbios | vines-echo | vines-ip | xns-idp }
```

Syntax Description

- **any**
 - Keyword to specify to deny any source or destination MAC address.

- **host src-MAC-addr | src-MAC-addr mask**
 - Define a host MAC address and optional subnet mask. If the source address for a packet matches the defined address, non-IP traffic from that address is denied.

- **host dst-MAC-addr | dst-MAC-addr mask**
 - Define a destination MAC address and optional subnet mask. If the destination address for a packet matches the defined address, non-IP traffic to that address is denied.

- **type mask**
 - (Optional) Use the Ethertype number of a packet with Ethernet II or SNAP encapsulation to identify the protocol of the packet.
 - The `type` is 0 to 65535, specified in hexadecimal.
 - The `mask` is a mask of *don’t care* bits applied to the Ethertype before testing for a match.

- **aarp**
 - (Optional) Select Ethertype AppleTalk Address Resolution Protocol that maps a data-link address to a network address.

- **amber**
 - (Optional) Select EtherType DEC-Amber.

- **cos cos**
 - (Optional) Select a class of service (CoS) number from 0 to 7 to set priority. Filtering on CoS can be performed only in hardware. A warning message reminds the user if the `cos` option is configured.

- **dec-spanning**
 - (Optional) Select EtherType Digital Equipment Corporation (DEC) spanning tree.

- **decnet-iv**
 - (Optional) Select EtherType DECnet Phase IV protocol.

- **diagnostic**
 - (Optional) Select EtherType DEC-Diagnostic.

- **dsm**
 - (Optional) Select EtherType DEC-DSM.

- **etype-6000**
 - (Optional) Select EtherType 0x6000.

- **etype-8042**
 - (Optional) Select EtherType 0x8042.

- **lat**
 - (Optional) Select EtherType DEC-LAT.

- **lavc-sca**
 - (Optional) Select EtherType DEC-LAVC-SCA.
deny (MAC access-list configuration)

lsap lsap-number mask (Optional) Use the LSAP number (0 to 65535) of a packet with 802.2 encapsulation to identify the protocol of the packet. mask is a mask of don’t care bits applied to the LSAP number before testing for a match.

mop-console (Optional) Select EtherType DEC-MOP Remote Console.
mop-dump (Optional) Select EtherType DEC-MOP Dump.
msdos (Optional) Select EtherType DEC-MSDOS.
mumps (Optional) Select EtherType DEC-MUMPS.
netbios (Optional) Select EtherType DEC- Network Basic Input/Output System (NETBIOS).
vines-echo (Optional) Select EtherType Virtual Integrated Network Service (VINES) Echo from Banyan Systems.
vines-ip (Optional) Select EtherType VINES IP.
xns-idp (Optional) Select EtherType Xerox Network Systems (XNS) protocol suite (0 to 65535), an arbitrary Ethertype in decimal, hexadecimal, or octal.

Note

Though visible in the command-line help strings, appletalk is not supported as a matching condition.

To filter IPX traffic, you use the type mask or lsap lsap mask keywords, depending on the type of IPX encapsulation being used. Filter criteria for IPX encapsulation types as specified in Novell terminology and Cisco IOS terminology are listed in Table 2-4.

Table 2-4 IPX Filtering Criteria

<table>
<thead>
<tr>
<th>IPX Encapsulation Type</th>
<th>Cisco IOS Name</th>
<th>Novel Name</th>
<th>Filter Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>arpa</td>
<td>Ethernet II</td>
<td>Ethertype 0x8137</td>
<td></td>
</tr>
<tr>
<td>snap</td>
<td>Ethernet-snap</td>
<td>Ethertype 0x8137</td>
<td></td>
</tr>
<tr>
<td>sap</td>
<td>Ethernet 802.2</td>
<td>LSAP 0xE0E0</td>
<td></td>
</tr>
<tr>
<td>novell-ether</td>
<td>Ethernet 802.3</td>
<td>LSAP 0xFFFF</td>
<td></td>
</tr>
</tbody>
</table>

Defaults

This command has no defaults. However; the default action for a MAC-named ACL is to deny.

Command Modes

MAC-access list configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
Usage Guidelines

You enter MAC-access list configuration mode by using the `mac access-list extended` global configuration command.

If you use the `host` keyword, you cannot enter an address mask; if you do not use the `host` keyword, you must enter an address mask.

When an access control entry (ACE) is added to an access control list, an implied `deny any any` condition exists at the end of the list. That is, if there are no matches, the packets are denied. However, before the first ACE is added, the list permits all packets.

For more information about named MAC extended access lists, see the software configuration guide for this release.

Examples

This example shows how to define the named MAC extended access list to deny NETBIOS traffic from any source to MAC address 00c0.00a0.03fa. Traffic matching this list is denied.

```
Switch(config-ext-macl)# deny any host 00c0.00a0.03fa netbios.
```

This example shows how to remove the deny condition from the named MAC extended access list:

```
Switch(config-ext-macl)# no deny any 00c0.00a0.03fa 0000.0000.0000 netbios.
```

This example denies all packets with Ethertype 0x4321:

```
Switch(config-ext-macl)# deny any any 0x4321 0
```

You can verify your settings by entering the `show access-lists` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mac access-list extended</code></td>
<td>Creates an access list based on MAC addresses for non-IP traffic.</td>
</tr>
<tr>
<td><code>permit (MAC access-list configuration)</code></td>
<td>Permits non-IP traffic to be forwarded if conditions are matched.</td>
</tr>
<tr>
<td><code>show access-lists</code></td>
<td>Displays access control lists configured on a switch.</td>
</tr>
</tbody>
</table>
To configure the health-monitoring diagnostic testing, use the **diagnostic monitor** command. Use the **no** form of this command to disable testing.

```bash
diagnostic monitor switch {num} test {test-id | test-id-range | all}
diagnostic monitor interval switch {num} test {test-id | test-id-range | all} {hour:mm:ss} [milliseconds] {day}
diagnostic monitor syslog

diagnostic monitor threshold switch {num} test {test-id | test-id-range | all} count {count}
no diagnostic monitor switch {num} test {test-id | test-id-range | all}
no diagnostic monitor interval switch {num} test {test-id | test-id-range | all} {hour:mm:ss} [milliseconds] {day}
no diagnostic monitor syslog
no diagnostic monitor threshold switch {num} test {test-id | test-id-range | all} count {count}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch num</td>
<td>Specify the module number.</td>
</tr>
<tr>
<td>test</td>
<td>Specify a test to run.</td>
</tr>
<tr>
<td>test-id</td>
<td>Identification number for the test to be run; see the “Usage Guidelines” section for additional information.</td>
</tr>
<tr>
<td>test-id-range</td>
<td>Range of identification numbers for tests to be run; see the “Usage Guidelines” section for additional information.</td>
</tr>
<tr>
<td>all</td>
<td>Run all the diagnostic tests.</td>
</tr>
<tr>
<td>interval</td>
<td>Specify an interval between tests to be run.</td>
</tr>
<tr>
<td>hour:mm:ss</td>
<td>Specify the number of time between tests; see the “Usage Guidelines” section for formatting guidelines.</td>
</tr>
<tr>
<td>milliseconds</td>
<td>Specify the time in milliseconds; valid values are 0 to 999.</td>
</tr>
<tr>
<td>day</td>
<td>Specify the number of days between tests; see the “Usage Guidelines” section for formatting guidelines.</td>
</tr>
<tr>
<td>syslog</td>
<td>Enable the generation of a syslog message when a health-monitoring test fails.</td>
</tr>
<tr>
<td>threshold</td>
<td>Specify the failure threshold.</td>
</tr>
<tr>
<td>count count</td>
<td>Specify the failure threshold count.</td>
</tr>
</tbody>
</table>

Defaults

The defaults are as follows:
- Depending on the test, monitoring is enabled or disabled.
- Depending on the test, the default monitoring interval varies.
- **syslog** is enabled.
Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SEE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use these guidelines when scheduling testing:

- **test-id**—Enter the `show diagnostic content` command to display the test ID list.
- **test-id-range**—Enter the `show diagnostic content` command to display the test ID list. Enter the range as integers separated by a comma and a hyphen (for example, 1,3-6 specifies test IDs 1, 3, 4, 5, and 6).
- **hh**—Enter the hours from 1 to 24.
- **mm**—Enter the minutes from 1 to 60.
- **ss**—Enter the seconds from 1 to 60.
- **milliseconds**—Enter the milliseconds from 0 to 999.
- **day**—Enter the day of the week as a number from 1 to 7 (1 is Sunday).

Enter the `[no] diagnostic monitor test {test-id | test-id-range | all}` command to enable or disable the specified health monitoring test.

When entering the `diagnostic monitor {module num} test {test-id | test-id-range | all}` command, observe the following:

- **Required**
 - Isolate network traffic by disabling all connected ports, and do not pump test packets during the test.
 - Remove all modules for testing FIB TCAM and SSRAM on the PFC of the supervisor engine.
 - Reset the system or the test module before putting the system back into the normal operating mode.

- **Recommended**
 - If the DFC module is present, remove all modules, and then reboot the system before starting the memory test on the central PFC3B of the supervisor engine.
 - Turn off all background health-monitoring tests on the supervisor engine and on the modules before using the `no diagnostic monitor {module num} test {test-id | test-id-range | all}` command.

The FIB TCAM test for central PFC3BXL or PFC3B (on the supervisor engine) takes approximately 4 hours and 30 minutes.

The FIB TCAM test for the distributed PFC3BXL or PFC3B (on the DFC module) takes approximately 16 hours.

You can simultaneously run the FIB TCAM test on multiple DFC3BX modules.

Examples

This example shows how to configure the specified test to run every 2 minutes:

```
Switch(config)# diagnostic monitor interval switch 1 test 1 00:02:00 0 1
Switch(config)#
```
This example shows how to run the test on the specified switch if health monitoring has not previously been enabled:

Switch(config)# diagnostic monitor switch 1 test 1

This example shows how to set the failure threshold for test monitoring on a switch:

Switch(config)# diagnostic monitor threshold switch 1 test 1 count 50
Switch(config)#

This example shows how to enable the generation of a syslog message when any health monitoring test fails:

Switch(config)# diagnostic monitor syslog
Switch(config)#

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>show diagnostic</td>
<td>Displays online diagnostic test results.</td>
</tr>
</tbody>
</table>
diagnostic schedule

To set the scheduling of test-based diagnostic testing for a specific module or to schedule a supervisor engine switchover, use the **diagnostic schedule** command. Use the **no** form of this command to remove the scheduling.

```
diagnostic schedule switch {num} test {test-id | test-id-range | all} {on mm dd yyyy hh:mm} | {daily hh:mm} | {weekly day-of-week hh:mm}
```

```
no diagnostic schedule switch {num} test {test-id | test-id-range | all} {on mm dd yyyy hh:mm} | {daily hh:mm} | {weekly day-of-week hh:mm}
```

Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch num</td>
<td>Specify the switch number.</td>
</tr>
<tr>
<td>test</td>
<td>Specify the test to be scheduled.</td>
</tr>
<tr>
<td>test-id</td>
<td>Identification number for the test to be run; see the “Usage Guidelines”</td>
</tr>
<tr>
<td>test-id-range</td>
<td>section for additional information.</td>
</tr>
<tr>
<td>all</td>
<td>Run all diagnostic tests.</td>
</tr>
<tr>
<td>on mm dd yyyy</td>
<td>Specify the scheduling of a test-based diagnostic task; see the “Usage</td>
</tr>
<tr>
<td>hh:mm</td>
<td>Guidelines” section for formatting guidelines.</td>
</tr>
<tr>
<td>daily hh:mm</td>
<td>Specify the daily scheduling of a test-based diagnostic task; see the</td>
</tr>
<tr>
<td>weekly day-of-week hh:mm</td>
<td>Specify the weekly scheduling of a test-based diagnostic task; see</td>
</tr>
</tbody>
</table>

Defaults

This command has no default settings.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SEE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use these guidelines when scheduling testing:

- **test-id**—Enter the **show diagnostic** content command to display the test ID list.
- **test-id-range**—Enter the **show diagnostic** content command to display the test ID list. Enter the range as integers separated by a comma and a hyphen (for example, 1,3-6 specifies test IDs 1, 3, 4, 5, and 6).
- **num-range**—Enter the range as integers separated by a comma and a hyphen (for example, you can enter 1,3-6 to specify ports 1, 3, 4, 5, and 6).
diagnostic schedule

- **mm**—Spell out the month, such as January, February … December (either upper case or lower case characters).

- **dd**—Enter the day as a 2-digit number.

- **yyyy**—Enter the year as a 4-digit number.

- **hh:mm**—Enter the time as a 2-digit number (for a 24-hour clock) for hours:minutes; the colon (:) is required.

- **day-of-week**—Spell out the day of the week, such as Monday, Tuesday... Sunday (either upper case or lower case characters).

Enter the **show diagnostic content** command to display the test ID list.

You can use the **diagnostic schedule module active-sup-slot test test-id** command to schedule a switchover from the active supervisor engine to the standby supervisor engine.

Enter the **show diagnostic content active-sup-slot** command to display the test ID list and look for the test ID in the ScheduleSwitchover field.

You can specify a periodic switchover (daily or weekly) or a single switchover occurrence at a specific time by using these commands:

- **diagnostic schedule module active-sup-slot test test-id on mm dd yyyy hh:mm**
- **diagnostic schedule module active-sup-slot test test-id daily hh:mm**
- **diagnostic schedule module active-sup-slot test test-id weekly day-of-week hh:mm**

Note

To avoid system downtime if the standby supervisor engine cannot switch over the system, we recommend that you schedule a switchover from the standby supervisor engine to the active supervisor engine 10 minutes after the switchover occurs. See the “Examples” section for additional information.

Examples

This example shows how to schedule diagnostic testing on a specific date and time for a specific switch:

```
Switch(config)# diagnostic schedule switch 1 test 1,2,4-6 on january 3 2006 23:32
```

```
Switch(config)#
```

This example shows how to schedule diagnostic testing to occur weekly at a certain time for a specific switch:

```
Switch(config)# diagnostic schedule switch 1 test 1,2,4-6 weekly friday 09:23
```

```
Switch(config)#
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show diagnostic</td>
<td>Displays online diagnostic test results.</td>
</tr>
</tbody>
</table>
To run the specified diagnostic test, use the `diagnostic start` command.

```
diagnostic start switch {num} test {test-id | test-id-range | basic | non-disruptive | all}
```

Syntax Description

- `switch num` Specify the module number.
- `test` Specify a test to run.
- `test-id` Identification number for the test to be run; see the “Usage Guidelines” section for additional information.
- `test-id-range` Range of identification numbers for tests to be run; see the “Usage Guidelines” section for additional information.
- `basic` Run basic on-demand diagnostic tests.
- `non-disruptive` Run the nondisruptive health-monitoring tests.
- `all` Run all diagnostic tests.

Defaults

This command has no default settings.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SEE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Note

Do not enter the `diagnostic start module x test all` command on systems that are configured with a DFC3A because this command causes the TCAM test to fail.

Enter the `show diagnostic content` command to display the test ID list.

Enter the `test-id-range` or `port#-range` as integers separated by a comma and a hyphen (for example, 1,3-6 specifies test IDs 1, 3, 4, 5, and 6).

Use the `diagnostic stop` command to stop the testing process.

Examples

This example shows how to start a diagnostic test on a specific switch:

```
Switch# diagnostic start switch 1 test 1
Switch# 06:27:50: %DIAG-6-TEST_RUNNING: Switch 1: Running TestPortAsicStackPortLoopback(ID=1) ... (switch-1)
Switch# 06:27:51: %DIAG-6-TEST_OK: Switch 1: TestPortAsicStackPortLoopback(ID=1) has completed successfully {switch-1}
Switch#
```
This example shows how to start diagnostics test 2 on a switch that will disrupt normal system operation:

Switch# **diagnostic start switch 1 test 2**
Switch 1: Running test(s) 2 will cause the switch under test to reload after completion of the test list.
Switch 1: Running test(s) 2 may disrupt normal system operation
Do you want to continue? [no]: y

Switch#
16:43:29: %STACKMGR-4-STACK_LINK_CHANGE: Stack Port 2 Switch 2 has changed to state DOWN
16:43:30: %STACKMGR-4-STACK_LINK_CHANGE: Stack Port 1 Switch 9 has changed to state DOWN
16:43:30: %STACKMGR-4-SWITCH_REMOVED: Switch 1 has been REMOVED from the stack
Switch#
16:44:35: %STACKMGR-4-STACK_LINK_CHANGE: Stack Port 1 Switch 2 has changed to state UP
16:44:37: %STACKMGR-4-STACK_LINK_CHANGE: Stack Port 2 Switch 2 has changed to state UP
16:44:45: %STACKMGR-4-SWITCH_ADDED: Switch 1 has been ADDED to the stack
16:45:00: %STACKMGR-5-SWITCH_READY: Switch 1 is READY
16:45:00: %STACKMGR-4-STACK_LINK_CHANGE: Stack Port 1 Switch 1 has changed to state UP
16:45:00: %STACKMGR-4-STACK_LINK_CHANGE: Stack Port 2 Switch 1 has changed to state UP
00:00:20: %STACKMGR-4-SWITCH_ADDED: Switch 1 has been ADDED to the stack (Switch-1)
00:00:20: %STACKMGR-4-SWITCH_ADDED: Switch 2 has been ADDED to the stack (Switch-1)
00:00:25: %SPANTREE-5-EXTENDED_SYSID: Extended SysId enabled for type vlan (Switch-1)
00:00:29: %SYS-5-CONFIG_I: Configured from memory by console (Switch-1)
00:00:29: %STACKMGR-5-SWITCH_READY: Switch 2 is READY (Switch-1)
00:00:29: %STACKMGR-5-MASTER_READY: Master Switch 2 is READY (Switch-1)
00:00:30: %STACKMGR-5-SWITCH_READY: Switch 1 is READY (Switch-1)
00:00:30: %DIAG-6-TEST_RUNNING: Switch 1: Running TestPortAsicLoopback{ID=2} ...
(Switch-1)
00:00:30: %DIAG-6-TEST_OK: Switch 1: TestPortAsicLoopback(ID=2) has completed successfully
(Switch-1)

This message appears if the test can cause the switch to lose stack connectivity:

Switch 3: Running test(s) 2 will cause the switch under test to reload after completion of the test list.
Switch 3: Running test(s) 2 may disrupt normal system operation
Do you want to continue? [no]:

This message appears if the test will cause a stack partition:

Switch 6: Running test(s) 2 will cause the switch under test to reload after completion of the test list.
Switch 6: Running test(s) 2 will partition stack
Switch 6: Running test(s) 2 may disrupt normal system operation
Do you want to continue? [no]:

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>show diagnostic</td>
<td>Displays online diagnostic test results.</td>
</tr>
</tbody>
</table>
dot1x

Use the `dot1x` global configuration command on the switch stack or on a standalone switch to globally enable IEEE 802.1x authentication. Use the `no` form of this command to return to the default setting.

```
dot1x {critical {eapol | recovery delay milliseconds} | system-auth-control}

no dot1x {credentials | critical {eapol | recovery delay} | system-auth-control}
```

Note
Though visible in the command-line help strings, the `credentials name` keywords are not supported.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>`critical {eapol</td>
<td>recovery delay milliseconds}`</td>
</tr>
<tr>
<td><code>system-auth-control</code></td>
<td>Enable IEEE 802.1x authentication globally on the switch.</td>
</tr>
</tbody>
</table>

Defaults

IEEE 802.1x authentication is disabled.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(14)EA1</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(25)SE</td>
<td>The <code>guest-vlan supplicant</code> keywords were added.</td>
</tr>
<tr>
<td>12.2(25)SEE</td>
<td>The `critical {eapol</td>
</tr>
<tr>
<td></td>
<td>The <code>guest-vlan supplicant keyword</code> was removed.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You must enable authentication, authorization, and accounting (AAA) and specify the authentication method list before globally enabling IEEE 802.1x authentication. A method list describes the sequence and authentication methods to be used to authenticate a user.

Before globally enabling IEEE 802.1x authentication on a switch, remove the EtherChannel configuration from the interfaces on which IEEE 802.1x authentication and EtherChannel are configured.

If you are using a device running the Cisco Access Control Server (ACS) application for IEEE 802.1x authentication with EAP-Transparent LAN Services (TLS) and with EAP-MD5 and your switch is running Cisco IOS Release 12.1(14)EA1, make sure that the device is running ACS Version 3.2.1 or later.

Examples

This example shows how to globally enable IEEE 802.1x authentication on a switch:

```
Switch(config)# dot1x system-auth-control
```
You can verify your settings by entering the `show dot1x [interface interface-id]` privileged EXEC command.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dot1x critical (global configuration)</code></td>
<td>Configures the parameters for the inaccessible authentication bypass feature on the switch.</td>
</tr>
<tr>
<td><code>dot1x guest-vlan</code></td>
<td>Enables and specifies an active VLAN as an IEEE 802.1x guest VLAN.</td>
</tr>
<tr>
<td><code>dot1x port-control</code></td>
<td>Enables manual control of the authorization state of the port.</td>
</tr>
<tr>
<td><code>show dot1x [interface interface-id]</code></td>
<td>Displays IEEE 802.1x status for the specified port.</td>
</tr>
</tbody>
</table>
dot1x auth-fail max-attempts

Use the `dot1x auth-fail max-attempts` interface configuration command on the switch stack or on a standalone switch to configure the maximum allowable authentication attempts before a port is moved to the restricted VLAN. To return to the default setting, use the `no` form of this command.

```
dot1x auth-fail max-attempts max-attempts
no dot1x auth-fail max-attempts
```

Syntax Description

| max-attempts | Specify a maximum number of authentication attempts allowed before a port is moved to the restricted VLAN. The range is 1 to 3, the default value is 3. |

Defaults

The default value is 3 attempts.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SED</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If you reconfigure the maximum number of authentication attempts allowed by the VLAN, the change takes effect after the re-authentication timer expires.

Examples

This example shows how to set 2 as the maximum number of authentication attempts allowed before the port is moved to the restricted VLAN on port 3:

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface gigabitethernet1/0/3
Switch(config-if)# dot1x auth-fail max-attempts 2
Switch(config-if)# end
Switch(config)# end
Switch#
```

You can verify your settings by entering the `show dot1x [interface interface-id]` privileged EXEC command.
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dot1x auth-fail vlan [vlan id]</code></td>
<td>Enables the optional restricted VLAN feature.</td>
</tr>
<tr>
<td><code>dot1x max-reauth-req [count]</code></td>
<td>Sets the maximum number of times that the switch restarts the authentication process before a port changes to the unauthorized state.</td>
</tr>
<tr>
<td><code>show dot1x [interface interface-id]</code></td>
<td>Displays IEEE 802.1x status for the specified port.</td>
</tr>
</tbody>
</table>
dot1x auth-fail vlan

Use the `dot1x auth-fail vlan` interface configuration command on the switch stack or on a standalone switch to enable the restricted VLAN on a port. To return to the default setting, use the `no` form of this command.

```
dot1x auth-fail vlan vlan-id

no dot1x auth-fail vlan
```

Syntax Description

- `vlan-id` Specify a VLAN in the range of 1 to 4094.

Defaults

No restricted VLAN is configured.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SED</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You can configure a restricted VLAN on ports configured as follows:
- single-host (default) mode
- auto mode for authorization

You should enable re-authentication. The ports in restricted VLANs do not receive re-authentication requests if it is disabled. To start the re-authentication process, the restricted VLAN must receive a link-down event or an Extensible Authentication Protocol (EAP) logoff event from the port. If a host is connected through a hub, the port might never receive a link-down event when that host is disconnected, and, as a result, might not detect any new hosts until the next re-authentication attempt occurs.

If the supplicant fails authentication, the port is moved to a restricted VLAN, and an EAP success message is sent to the supplicant. Because the supplicant is not notified of the actual authentication failure, there might be confusion about this restricted network access. An EAP success message is sent for these reasons:
- If the EAP success message is not sent, the supplicant tries to authenticate every 60 seconds (the default) by sending an EAP-start message.
- Some hosts (for example, devices running Windows XP) cannot implement DHCP until they receive an EAP success message.

A supplicant might cache an incorrect username and password combination after receiving an EAP success message from the authenticator and re-use that information in every re-authentication. Until the supplicant sends the correct username and password combination, the port remains in the restricted VLAN.

Internal VLANs used for Layer 3 ports cannot be configured as restricted VLANs.
You cannot configure a VLAN to be both a restricted VLAN and a voice VLAN. If you do this, a syslog message is generated.

When a restricted VLAN port is moved to an unauthorized state, the authentication process restarts. If the supplicant fails the authentication process again, the authenticator waits in the held state. After the supplicant has correctly re-authenticated, all IEEE 802.1x ports are reinitialized and treated as normal IEEE 802.1x ports.

When you reconfigure a restricted VLAN as a different VLAN, any ports in the restricted VLAN are also moved, and the ports stay in their currently authorized state.

When you shut down or remove a restricted VLAN from the VLAN database, any ports in the restricted VLAN are immediately moved to an unauthorized state, and the authentication process restarts. The authenticator does not wait in a held state because the restricted VLAN configuration still exists. While the restricted VLAN is inactive, all authentication attempts are counted so that when the restricted VLAN becomes active, the port is immediately placed in the restricted VLAN.

The restricted VLAN is supported only in single host mode (the default port mode). For this reason, when a port is placed in a restricted VLAN, the supplicant’s MAC address is added to the MAC address table, and any other MAC address that appears on the port is treated as a security violation.

Examples

This example shows how to configure a restricted VLAN on port 1:

Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# dot1x auth-fail vlan 40
Switch(config-if)# end
Switch(config)# end
Switch#

You can verify your configuration by entering the `show dot1x [interface interface-id]` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dot1x auth-fail max-attempts</code></td>
<td>Configures the number of authentication attempts allowed before assigning a supplicant to the restricted VLAN.</td>
</tr>
<tr>
<td><code>[max-attempts]</code></td>
<td></td>
</tr>
<tr>
<td><code>show dot1x [interface interface-id]</code></td>
<td>Displays IEEE 802.1x status for the specified port.</td>
</tr>
</tbody>
</table>
dot1x control-direction

Use the `dot1x control-direction` interface configuration command to enable the IEEE 802.1x authentication with the wake-on-LAN (WoL) feature and to configure the port control as unidirectional or bidirectional. Use the `no` form of this command to return to the default setting.

```
dot1x control-direction | both | in

no dot1x control-direction
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>both</code></td>
<td>Enable bidirectional control on port. The port cannot receive packets from or send packets to the host.</td>
</tr>
<tr>
<td><code>in</code></td>
<td>Enable unidirectional control on port. The port can send packets to the host but cannot receive packets from the host.</td>
</tr>
</tbody>
</table>

Defaults
The port is in bidirectional mode.

Command Modes
Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SEC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
Use the `both` keyword or the `no` form of this command to return to the default setting, bidirectional mode.

For more information about WoL, see the “Using IEEE 802.1x Authentication with Wake-on-LAN” section in the “Configuring IEEE 802.1x Port-Based Authentication” chapter in the software configuration guide.

Examples
This example shows how to enable unidirectional control:

```
Switch(config-if)# dot1x control-direction in
```

These examples show how to enable bidirectional control:

```
Switch(config-if)# dot1x control-direction both
```

You can verify your settings by entering the `show dot1x all` privileged EXEC command.

The `show dot1x all` privileged EXEC command output is the same for all switches except for the port names and the state of the port. If a host is attached to the port but is not yet authenticated, a display similar to this appears:

```
Supplicant MAC 0002.b39a.9275
AuthSM State = CONNECTING
BendSM State = IDLE
PortStatus = UNAUTHORIZED
```
If you enter the `dot1x control-direction` in interface configuration command to enable unidirectional control, this appears in the `show dot1x all` command output:

```
ControlDirection = In
```

If you enter the `dot1x control-direction` in interface configuration command and the port cannot support this mode due to a configuration conflict, this appears in the `show dot1x all` command output:

```
ControlDirection = In (Disabled due to port settings)
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>`show dot1x [all</td>
<td>interface interface-id]`</td>
</tr>
</tbody>
</table>
dot1x critical (global configuration)

Use the dot1x critical global configuration command on the switch stack or on a standalone switch to configure the parameters for the inaccessible authentication bypass feature, also referred to as critical authentication or the authentication, authorization, and accounting (AAA) fail policy. To return to default settings, use the no form of this command.

```
dot1x critical {eapol | recovery delay milliseconds}

no dot1x critical {eapol | recovery delay}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>eapol</td>
<td>Specify that the switch sends an EAPOL-Success message when the switch puts the critical port in the critical-authentication state.</td>
</tr>
<tr>
<td>recovery delay milliseconds</td>
<td>Set the recovery delay period in milliseconds. The range is from 1 to 10000 milliseconds.</td>
</tr>
</tbody>
</table>

Defaults

The switch does not send an EAPOL-Success message to the host when the switch successfully authenticates the critical port by putting the critical port in the critical-authentication state.

The recovery delay period is 1000 milliseconds (1 second).

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SEE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the eapol keyword to specify that the switch sends an EAPOL-Success message when the switch puts the critical port in the critical-authentication state.

Use the recovery delay milliseconds keyword to set the recovery delay period during which the switch waits to re-initialize a critical port when a RADIUS server that was unavailable becomes available. The default recovery delay period is 100 milliseconds. A port can be re-initialized every second.

To enable inaccessible authentication bypass on a port, use the dot1x critical interface configuration command. To configure the access VLAN to which the switch assigns a critical port, use the dot1x critical vlan vlan-id interface configuration command.

Examples

This example shows how to set 200 as the the recovery delay period on the switch:

```
Switch# dot1x critical recovery delay 200
```

You can verify your configuration by entering the show dot1x privileged EXEC command.
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dot1x critical (interface configuration)</code></td>
<td>Enables the inaccessible authentication bypass feature, and configures the access VLAN for the feature.</td>
</tr>
<tr>
<td><code>show dot1x</code></td>
<td>Displays IEEE 802.1x status for the specified port.</td>
</tr>
</tbody>
</table>
dot1x critical (interface configuration)

Use the `dot1x critical` interface configuration command on the switch stack or on a standalone switch to enable the inaccessible authentication bypass feature, also referred to as critical authentication or the authentication, authorization, and accounting (AAA) fail policy. You can also configure the access VLAN to which the switch assigns the critical port when the port is in the critical-authentication state. To disable the feature or return to default, use the `no` form of this command.

```
dot1x critical [recovery action reinitialize | vlan vlan-id]

no dot1x critical [recovery | vlan]
```

Syntax Description

<table>
<thead>
<tr>
<th>Recovery Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>reinitialize</td>
<td>Enable the inaccessible-authentication-bypass recovery feature, and specify that the recovery action is to authenticate the port when an authentication server is available.</td>
</tr>
<tr>
<td>vlan vlan-id</td>
<td>Specify the access VLAN to which the switch can assign a critical port. The range is from 1 to 4094.</td>
</tr>
</tbody>
</table>

Defaults

- The inaccessible authentication bypass feature is disabled.
- The recovery action is not configured.
- The access VLAN is not configured.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SED</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(25)SEE</td>
<td>The <code>vlan vlan-id</code> keywords were added.</td>
</tr>
</tbody>
</table>

Usage Guidelines

To specify the access VLAN to which the switch assigns a critical port when the port is in the critical-authentication state, use the `vlan vlan-id` keywords. The specified type of VLAN must match the type of port, as follows:

- If the critical port is an access port, the VLAN must be an access VLAN.
- If the critical port is a private VLAN host port, the VLAN must be a secondary private VLAN.
- If the critical port is a routed port, you can specify a VLAN, but this is optional.

If the client is running Windows XP and the critical port to which the client is connected is in the critical-authentication state, Windows XP might report that the interface is not authenticated.

If the Windows XP client is configured for DHCP and has an IP address from the DHCP server, receiving an EAP-Success message on a critical port might not re-initiate the DHCP configuration process.
You can configure the inaccessible authentication bypass feature and the restricted VLAN on an IEEE 802.1x port. If the switch tries to re-authenticate a critical port in a restricted VLAN and all the RADIUS servers are unavailable, the switch changes the port state to the critical authentication state, and it remains in the restricted VLAN.

You can configure the inaccessible bypass feature and port security on the same switch port.

Examples

This example shows how to enable the inaccessible authentication bypass feature on port 1:

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# dot1x critical
Switch(config-if)# end
Switch(config)# end
Switch#
```

You can verify your configuration by entering the `show dot1x [interface interface-id]` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dot1x critical (global configuration)</td>
<td>Configures the parameters for the inaccessible authentication bypass feature on the switch.</td>
</tr>
<tr>
<td>show dot1x [interface interface-id]</td>
<td>Displays IEEE 802.1x status for the specified port.</td>
</tr>
</tbody>
</table>
dot1x default

Use the `dot1x default` interface configuration command on the switch stack or on a standalone switch to reset the IEEE 802.1x parameters to their default values.

```
dot1x default
```

Syntax Description
This command has no arguments or keywords.

Defaults
These are the default values:
- The per-port IEEE 802.1x protocol enable state is disabled (force-authorized).
- The number of seconds between re-authentication attempts is 3600 seconds.
- The periodic re-authentication is disabled.
- The quiet period is 60 seconds.
- The retransmission time is 30 seconds.
- The maximum retransmission number is 2 times.
- The host mode is single host.
- The client timeout period is 30 seconds.
- The authentication server timeout period is 30 seconds.

Command Modes
Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(14)EA1</td>
<td>This command was changed to the interface configuration mode.</td>
</tr>
</tbody>
</table>

Examples
This example shows how to reset the IEEE 802.1x parameters on a port:

```
Switch(config-if)# dot1x default
```

You can verify your settings by entering the `show dot1x [interface interface-id]` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show dot1x [interface interface-id]</code></td>
<td>Displays IEEE 802.1x status for the specified port.</td>
</tr>
</tbody>
</table>
dot1x guest-vlan

Use the `dot1x guest-vlan` interface configuration command on the switch stack or on a standalone switch to specify an active VLAN as an IEEE 802.1x guest VLAN. Use the `no` form of this command to return to the default setting.

```
dot1x guest-vlan vlan-id

no dot1x guest-vlan
```

Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>vlan-id</code></td>
<td>Specify an active VLAN as an IEEE 802.1x guest VLAN. The range is 1 to 4094.</td>
</tr>
</tbody>
</table>

Defaults

No guest VLAN is configured.

Command Modes

Interface configuration

Command History

- **Release**: 12.1(14)EA1
 - **Modification**: This command was introduced.

- **Release**: 12.2(25)SE
 - **Modification**: This command was modified to change the default guest VLAN behavior.

- **Release**: 12.2(25)SEC
 - **Modification**: The usage guidelines were modified.

Usage Guidelines

You can configure a guest VLAN on one of these switch ports:

- A static-access port that belongs to a nonprivate VLAN.
- A private-VLAN port that belongs to a secondary private VLAN. All the hosts connected to the switch port are assigned to private VLANs, whether or not the posture validation was successful. The switch determines the primary private VLAN by using the primary- and secondary-private-VLAN associations on the switch.

For each IEEE 802.1x port on the switch, you can configure a guest VLAN to provide limited services to clients (a device or workstation connected to the switch) not running IEEE 802.1x authentication. These users might be upgrading their systems for IEEE 802.1x authentication, and some hosts, such as Windows 98 systems, might not be IEEE 802.1x-capable.

When you enable a guest VLAN on an IEEE 802.1x port, the switch assigns clients to a guest VLAN when it does not receive a response to its Extensible Authentication Protocol over LAN (EAPOL) request/identity frame or when EAPOL packets are not sent by the client.

With Cisco IOS Release 12.2(25)SE and later, the switch maintains the EAPOL packet history. If another EAPOL packet is detected on the interface during the lifetime of the link, the guest VLAN feature is disabled. If the port is already in the guest VLAN state, the port returns to the unauthorized state, and authentication restarts. The EAPOL history is reset upon loss of link.
Before Cisco IOS Release 12.2(25)SE, the switch did not maintain the EAPOL packet history and allowed clients that failed authentication access to the guest VLAN, regardless of whether EAPOL packets had been detected on the interface. In Cisco IOS Release 12.2(25)SE, you can use the `dot1x guest-vlan supplicant` global configuration command to enable this optional behavior.

However, in Cisco IOS Release 12.2(25)SEE, the `dot1x guest-vlan supplicant` global configuration command is no longer supported. You can use a restricted VLAN to allow clients that failed authentication access to the network by entering the `dot1x auth-fail vlan vlan-id` interface configuration command.

Any number of non-IEEE 802.1x-capable clients are allowed access when the switch port is moved to the guest VLAN. If an IEEE 802.1x-capable client joins the same port on which the guest VLAN is configured, the port is put into the unauthorized state in the RADIUS-configured or user-configured access VLAN, and authentication is restarted.

Guest VLANs are supported on IEEE 802.1x ports in single-host or multiple-hosts mode.

You can configure any active VLAN except an Remote Switched Port Analyzer (RSPAN) VLAN, a primary private VLAN, or a voice VLAN as an IEEE 802.1x guest VLAN. The guest VLAN feature is not supported on internal VLANs (routed ports) or trunk ports; it is supported only on access ports.

After you configure a guest VLAN for an IEEE 802.1x port to which a DHCP client is connected, you might need to get a host IP address from a DHCP server. You can change the settings for restarting the IEEE 802.1x authentication process on the switch before the DHCP process on the client times out and tries to get a host IP address from the DHCP server. Decrease the settings for the IEEE 802.1x authentication process (`dot1x timeout quiet-period` and `dot1x timeout tx-period` interface configuration commands). The amount to decrease the settings depends on the connected IEEE 802.1x client type.

The switch supports MAC authentication bypass in Cisco IOS Release 12.2(25)SEE and later. When MAC authentication bypass is enabled on an IEEE 802.1x port, the switch can authorize clients based on the client MAC address when IEEE 802.1x authentication times out while waiting for an EAPOL message exchange. After detecting a client on an IEEE 802.1x port, the switch waits for an Ethernet packet from the client. The switch sends the authentication server a RADIUS-access/request frame with a username and password based on the MAC address. If authorization succeeds, the switch grants the client access to the network. If authorization fails, the switch assigns the port to the guest VLAN, if one is specified. For more information, see the “Using IEEE 802.1x Authentication with MAC Authentication Bypass” section in the “Configuring IEEE 802.1x Port-Based Authentication” chapter of the software configuration guide.

Examples

This example shows how to specify VLAN 5 as an IEEE 802.1x guest VLAN:

```
Switch(config-if)# dot1x guest-vlan 5
```

This example shows how to set 3 as the quiet time on the switch, to set 15 as the number of seconds that the switch waits for a response to an EAP-request/identity frame from the client before resending the request, and to enable VLAN 2 as an IEEE 802.1x guest VLAN when an IEEE 802.1x port is connected to a DHCP client:

```
Switch(config-if)# dot1x timeout quiet-period 3
Switch(config-if)# dot1x timeout tx-period 15
Switch(config-if)# dot1x guest-vlan 2
```

This example shows how to enable the optional guest VLAN behavior and to specify VLAN 5 as an IEEE 802.1x guest VLAN:

```
Switch(config)# dot1x guest-vlan supplicant
Switch(config)# interface gigabitethernet2/0/1
```
Switch(config-if)# `dot1x guest-vlan 5`

You can verify your settings by entering the `show dot1x [interface interface-id]` privileged EXEC command.

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>dot1x</code></td>
<td>Enables the optional guest VLAN supplicant feature.</td>
</tr>
<tr>
<td></td>
<td><code>show dot1x [interface interface-id]</code></td>
<td>Displays IEEE 802.1x status for the specified port.</td>
</tr>
</tbody>
</table>
dot1x host-mode

Use the `dot1x host-mode` interface configuration command on the switch stack or on a standalone switch to allow a single host (client) or multiple hosts on an IEEE 802.1x-authorized port that has the `dot1x port-control` interface configuration command set to `auto`. Use the `no` form of this command to return to the default setting.

```
dot1x host-mode {multi-host | single-host}
no dot1x host-mode [multi-host | single-host]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>multi-host</td>
<td>Enable multiple-hosts mode on the switch.</td>
</tr>
<tr>
<td>single-host</td>
<td>Enable single-host mode on the switch.</td>
</tr>
</tbody>
</table>

Defaults

The default is single-host mode.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(14)EA1</td>
<td>This command was introduced. It replaces the <code>dot1x multiple-hosts</code> interface configuration command.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use this command to limit an IEEE 802.1x-enabled port to a single client or to attach multiple clients to an IEEE 802.1x-enabled port. In multiple-hosts mode, only one of the attached hosts needs to be successfully authorized for all hosts to be granted network access. If the port becomes unauthorized (re-authentication fails or an Extensible Authentication Protocol over LAN [EAPOL]-logoff message is received), all attached clients are denied access to the network.

Before entering this command, make sure that the `dot1x port-control` interface configuration command is set to `auto` for the specified port.

Examples

This example shows how to enable IEEE 802.1x authentication globally, to enable IEEE 802.1x authentication on a port, and to enable multiple-hosts mode:

```
Switch(config)# dot1x system-auth-control
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# dot1x port-control auto
Switch(config-if)# dot1x host-mode multi-host
```

You can verify your settings by entering the `show dot1x [interface interface-id]` privileged EXEC command.
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show dot1x [interface interface-id]</code></td>
<td>Displays IEEE 802.1x status for the specified port.</td>
</tr>
</tbody>
</table>
dot1x initialize

Use the `dot1x initialize` privileged EXEC command on the switch stack or on a standalone switch to manually return the specified IEEE 802.1x-enabled port to an unauthorized state before initiating a new authentication session on the port.

```
dot1x initialize [interface interface-id]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>interface interface-id</code></td>
<td>(Optional) Port to be initialized.</td>
</tr>
</tbody>
</table>

Defaults

There is no default setting.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(14)EA1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use this command to initialize the IEEE 802.1x state machines and to set up a fresh environment for authentication. After you enter this command, the port status becomes unauthorized.

There is not a `no` form of this command.

Examples

This example shows how to manually initialize a port:

```
Switch# dot1x initialize interface gigabitethernet2/0/2
```

You can verify the unauthorized port status by entering the `show dot1x [interface interface-id]` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show dot1x [interface interface-id]</code></td>
<td>Displays IEEE 802.1x status for the specified port.</td>
</tr>
</tbody>
</table>
dot1x mac-auth-bypass

Use the `dot1x mac-auth-bypass` interface configuration command on the switch stack or on a standalone switch to enable the MAC authentication bypass feature. Use the `no` form of this command to disable MAC authentication bypass feature.

```
dot1x mac-auth-bypass [eap]
no dot1x mac-auth-bypass
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>eap</td>
<td>(Optional) Configure the switch to use Extensible Authentication Protocol (EAP) for authentication.</td>
</tr>
</tbody>
</table>

Defaults

MAC authentication bypass is disabled.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SEE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Unless otherwise stated, the MAC authentication bypass usage guidelines are the same as the IEEE 802.1x authentication guidelines.

If you disable MAC authentication bypass from a port after the port has been authenticated with its MAC address, the port state is not affected.

If the port is in the unauthorized state and the client MAC address is not the authentication-server database, the port remains in the unauthorized state. However, if the client MAC address is added to the database, the switch can use MAC authentication bypass to re-authorize the port.

If the port is in the authorized state, the port remains in this state until re-authorization occurs.

If an EAPOL packet is detected on the interface during the lifetime of the link, the switch determines that the device connected to that interface is an IEEE 802.1x-capable supplicant and uses IEEE 802.1x authentication (not MAC authentication bypass) to authorize the interface.

Clients that were authorized with MAC authentication bypass can be re-authenticated.

For more information about how MAC authentication bypass and IEEE 802.1x authentication interact, see the “Understanding IEEE 802.1x Authentication with MAC Authentication Bypass” section and the “IEEE 802.1x Authentication Configuration Guidelines” section in the “Configuring IEEE 802.1x Port-Based Authentication” chapter of the software configuration guide.

Examples

This example shows how to enable MAC authentication bypass and to configure the switch to use EAP for authentication:

```
Switch(config-if)# dot1x mac-auth-bypass eap
```
You can verify your settings by entering the `show dot1x [interface interface-id]` privileged EXEC command.

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>show dot1x [interface interface-id]</code></td>
<td>Displays IEEE 802.1x status for the specified port.</td>
</tr>
</tbody>
</table>
dot1x max-reauth-req

Use the `dot1x max-reauth-req` interface configuration command on the switch stack or on a standalone switch to set the maximum number of times that the switch restarts the authentication process before a port changes to the unauthorized state. Use the `no` form of this command to return to the default setting.

```plaintext
dot1x max-reauth-req count

no dot1x max-reauth-req
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>count</code></td>
<td>Number of times that the switch restarts the authentication process before the port changes to the unauthorized state. The range is 0 to 10.</td>
</tr>
</tbody>
</table>

Defaults

The default is 2 times.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(18)SE</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(25)SEC</td>
<td>The <code>count</code> range was changed.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You should change the default value of this command only to adjust for unusual circumstances such as unreliable links or specific behavioral problems with certain clients and authentication servers.

Examples

This example shows how to set 4 as the number of times that the switch restarts the authentication process before the port changes to the unauthorized state:

```plaintext
Switch(config-if)# dot1x max-reauth-req 4
```

You can verify your settings by entering the `show dot1x [interface interface-id]` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dot1x max-req</code></td>
<td>Sets the maximum number of times that the switch forwards an EAP frame (assuming that no response is received) to the authentication server before restartining the authentication process.</td>
</tr>
<tr>
<td><code>dot1x timeout tx-period</code></td>
<td>Sets the number of seconds that the switch waits for a response to an EAP-request/identity frame from the client before resending the request.</td>
</tr>
<tr>
<td><code>show dot1x [interface interface-id]</code></td>
<td>Displays IEEE 802.1x status for the specified port.</td>
</tr>
</tbody>
</table>
dot1x max-req

Use the `dot1x max-req` interface configuration command on the switch stack or on a standalone switch to set the maximum number of times that the switch sends an Extensible Authentication Protocol (EAP) frame from the authentication server (assuming that no response is received) to the client before restarting the authentication process. Use the `no` form of this command to return to the default setting.

```
dot1x max-req count
no dot1x max-req
```

Syntax Description

`count` Number of times that the switch resends an EAP frame from the authentication server before restarting the authentication process. The range is 1 to 10.

Defaults
The default is 2 times.

Command Modes
Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(14)EA1</td>
<td>This command was changed to the interface configuration mode.</td>
</tr>
</tbody>
</table>

Usage Guidelines
You should change the default value of this command only to adjust for unusual circumstances such as unreliable links or specific behavioral problems with certain clients and authentication servers.

Examples

This example shows how to set 5 as the number of times that the switch sends an EAP frame from the authentication server to the client before restarting the authentication process:

```
Switch(config-if)# dot1x max-req 5
```

You can verify your settings by entering the `show dot1x [interface interface-id]` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dot1x timeout tx-period </code></td>
<td>Sets the number of seconds that the switch waits for a response to an EAP-request/identity frame from the client before resending the request.</td>
</tr>
<tr>
<td><code>show dot1x [interface interface-id]</code></td>
<td>Displays IEEE 802.1x status for the specified port.</td>
</tr>
</tbody>
</table>
dot1x multiple-hosts

This is an obsolete command.

In past releases, the `dot1x multiple-hosts` interface configuration command was used on the switch stack or on a standalone switch to allow multiple hosts (clients) on an IEEE 802.1x-authorized port.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(14)EA1</td>
<td>The <code>dot1x multiple-hosts</code> interface configuration command was replaced by</td>
</tr>
<tr>
<td></td>
<td>the <code>dot1x host-mode</code> interface configuration command.</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dot1x host-mode</td>
<td>Sets the IEEE 802.1x host mode on a port.</td>
</tr>
<tr>
<td>show dot1x</td>
<td>Displays IEEE 802.1x statistics, administrative status, and operational</td>
</tr>
<tr>
<td></td>
<td>status for the switch or for the specified port.</td>
</tr>
</tbody>
</table>
dot1x pae

Use the `dot1x pae` interface configuration command on the switch stack or on a standalone switch to configure the port as an IEEE 802.1x port access entity (PAE) authenticator. Use the `no` form of this command to disable IEEE 802.1x authentication on the port.

```
dot1x pae authenticator
no dot1x pae
```

Syntax Description

This command has no arguments or keywords.

Defaults

The port is not an IEEE 802.1x PAE authenticator, and IEEE 802.1x authentication is disabled on the port.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SEE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `no dot1x pae` interface configuration command to disable IEEE 802.1x authentication on the port.

When you configure IEEE 802.1x authentication on a port, such as entering the `dot1x port-control` interface configuration command, the switch automatically configures the port as an IEEE 802.1x authenticator. After the `no dot1x pae` interface configuration command is entered, the Authenticator PAE operation is enabled.

Examples

This example shows how to disable IEEE 802.1x authentication on the port:

```
Switch(config-if)# no dot1x pae
```

You can verify your settings by entering the `show dot1x` or `show eap` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show dot1x</code></td>
<td>Displays IEEE 802.1x statistics, administrative status, and operational status for the switch or for the specified port.</td>
</tr>
<tr>
<td><code>show eap</code></td>
<td>Displays EAP registration and session information for the switch or for the specified port.</td>
</tr>
</tbody>
</table>
dot1x port-control

Use the dot1x port-control interface configuration command on the switch stack or on a standalone switch to enable manual control of the authorization state of the port. Use the no form of this command to return to the default setting.

`dot1x port-control { auto | force-authorized | force-unauthorized }

no dot1x port-control`

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>auto</td>
<td>Enable IEEE 802.1x authentication on the port and cause the port to change to the authorized or unauthorized state based on the IEEE 802.1x authentication exchange between the switch and the client.</td>
</tr>
<tr>
<td>force-authorized</td>
<td>Disable IEEE 802.1x authentication on the port and cause the port to transition to the authorized state without an authentication exchange. The port sends and receives normal traffic without IEEE 802.1x-based authentication of the client.</td>
</tr>
<tr>
<td>force-unauthorized</td>
<td>Deny all access through this port by forcing the port to change to the unauthorized state, ignoring all attempts by the client to authenticate. The switch cannot provide authentication services to the client through the port.</td>
</tr>
</tbody>
</table>

Defaults
The default is force-authorized.

Command Modes
Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
You must globally enable IEEE 802.1x authentication on the switch by using the dot1x system-auth-control global configuration command before enabling IEEE 802.1x authentication on a specific port.

The IEEE 802.1x protocol is supported on Layer 2 static-access ports, voice VLAN ports, and Layer 3 routed ports.

You can use the auto keyword only if the port is not configured as one of these:

- Trunk port—If you try to enable IEEE 802.1x authentication on a trunk port, an error message appears, and IEEE 802.1x is not enabled. If you try to change the mode of an IEEE 802.1x-enabled port to trunk, an error message appears, and the port mode is not changed.
- Dynamic ports—A port in dynamic mode can negotiate with its neighbor to become a trunk port. If you try to enable IEEE 802.1x authentication on a dynamic port, an error message appears, and IEEE 802.1x authentication is not enabled. If you try to change the mode of an IEEE 802.1x-enabled port to dynamic, an error message appears, and the port mode is not changed.
Dynamic-access ports—If you try to enable IEEE 802.1x authentication on a dynamic-access (VLAN Query Protocol [VQP]) port, an error message appears, and IEEE 802.1x authentication is not enabled. If you try to change an IEEE 802.1x-enabled port to dynamic VLAN assignment, an error message appears, and the VLAN configuration is not changed.

EtherChannel port—Do not configure a port that is an active or a not-yet-active member of an EtherChannel as an IEEE 802.1x port. If you try to enable IEEE 802.1x authentication on an EtherChannel port, an error message appears, and IEEE 802.1x authentication is not enabled.

Note

In software releases earlier than Cisco IOS Release 12.2(18)SE, if IEEE 802.1x authentication is enabled on a not-yet active port of an EtherChannel, the port does not join the EtherChannel.

Switched Port Analyzer (SPAN) and Remote SPAN (RSPAN) destination ports—You can enable IEEE 802.1x authentication on a port that is a SPAN or RSPAN destination port. However, IEEE 802.1x authentication is disabled until the port is removed as a SPAN or RSPAN destination. You can enable IEEE 802.1x authentication on a SPAN or RSPAN source port.

To globally disable IEEE 802.1x authentication on the switch, use the `no dot1x system-auth-control` global configuration command. To disable IEEE 802.1x authentication on a specific port or to return to the default setting, use the `no dot1x port-control` interface configuration command.

Examples

This example shows how to enable IEEE 802.1x authentication on a port:

```
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# dot1x port-control auto
```

You can verify your settings by entering the `show dot1x [interface interface-id]` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show dot1x [interface interface-id]</code></td>
<td>Displays IEEE 802.1x status for the specified port.</td>
</tr>
</tbody>
</table>
dot1x re-authenticate

Use the `dot1x re-authenticate` privileged EXEC command on the switch stack or on a standalone switch to manually initiate a re-authentication of the specified IEEE 802.1x-enabled port.

```
dot1x re-authenticate [interface interface-id]
```

Syntax Description
- `interface interface-id` (Optional) Stack switch number, module, and port number of the interface to re-authenticate.

Defaults
There is no default setting.

Command Modes
Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
You can use this command to re-authenticate a client without waiting for the configured number of seconds between re-authentication attempts (re-authperiod) and automatic re-authentication.

Examples
This example shows how to manually re-authenticate the device connected to a port:

```
Switch# dot1x re-authenticate interface gigabitethernet2/0/1
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dot1x reauthentication</code></td>
<td>Enables periodic re-authentication of the client.</td>
</tr>
<tr>
<td><code>dot1x timeout reauth-period</code></td>
<td>Sets the number of seconds between re-authentication attempts.</td>
</tr>
</tbody>
</table>
dot1x re-authentication

This is an obsolete command.

In past releases, the dot1x re-authentication global configuration command was used on the switch stack or on a standalone switch to set the amount of time between periodic re-authentication attempts.

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td></td>
<td>12.1(14)EA1</td>
<td>The dot1x reauthentication interface configuration command replaced the dot1x re-authentication global configuration command.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dot1x reauthentication</td>
<td>Sets the number of seconds between re-authentication attempts.</td>
</tr>
<tr>
<td></td>
<td>show dot1x</td>
<td>Displays IEEE 802.1x statistics, administrative status, and operational status for the switch or for the specified port.</td>
</tr>
</tbody>
</table>
dot1x reauthentication

Use the `dot1x reauthentication` interface configuration command on the switch stack or on a standalone switch to enable periodic re-authentication of the client. Use the `no` form of this command to return to the default setting.

```
dot1x reauthentication

no dot1x reauthentication
```

Syntax Description
This command has no arguments or keywords.

Defaults
Periodic re-authentication is disabled.

Command Modes
Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(14)EA1</td>
<td>This command was introduced. It replaces the <code>dot1x re-authentication</code> global configuration command (with the hyphen).</td>
</tr>
</tbody>
</table>

Usage Guidelines
You configure the amount of time between periodic re-authentication attempts by using the `dot1x timeout reauth-period` interface configuration command.

Examples
This example shows how to disable periodic re-authentication of the client:
```
Switch(config-if)# no dot1x reauthentication
```

This example shows how to enable periodic re-authentication and to set the number of seconds between re-authentication attempts to 4000 seconds:
```
Switch(config-if)# dot1x reauthentication
Switch(config-if)# dot1x timeout reauth-period 4000
```

You can verify your settings by entering the `show dot1x [interface interface-id]` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dot1x re-authenticate</code></td>
<td>Manually initiates a re-authentication of all IEEE 802.1x-enabled ports.</td>
</tr>
<tr>
<td><code>dot1x timeout reauth-period</code></td>
<td>Sets the number of seconds between re-authentication attempts.</td>
</tr>
<tr>
<td><code>show dot1x [interface interface-id]</code></td>
<td>Displays IEEE 802.1x status for the specified port.</td>
</tr>
</tbody>
</table>
dot1x timeout

Use the `dot1x timeout` interface configuration command on the switch stack or on a standalone switch to set IEEE 802.1x timers. Use the `no` form of this command to return to the default setting.

```
dot1x timeout [quiet-period seconds | ratelimit-period seconds | reauth-period [seconds | server]] | server-timeout seconds | supp-timeout seconds | tx-period seconds]

no dot1x timeout [quiet-period | reauth-period | server-timeout | supp-timeout | tx-period]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>quiet-period seconds</code></td>
<td>Number of seconds that the switch remains in the quiet state following a failed authentication exchange with the client. The range is 1 to 65535.</td>
</tr>
<tr>
<td><code>ratelimit-period seconds</code></td>
<td>Number of seconds that the switch ignores Extensible Authentication Protocol over LAN (EAPOL) packets from clients that have been successfully authenticated during this duration. The range is 1 to 65535.</td>
</tr>
</tbody>
</table>
| `reauth-period [seconds | server]` | Set the number of seconds between re-authentication attempts. The keywords have these meanings:
 • `seconds`—Sets the number of seconds from 1 to 65535; the default is 3600 seconds.
 • `server`—Sets the number of seconds as the value of the Session-Timeout RADIUS attribute (Attribute[27]). |
| `server-timeout seconds` | Number of seconds that the switch waits for the retransmission of packets by the switch to the authentication server. The range is 30 to 65535. |
| `supp-timeout seconds` | Number of seconds that the switch waits for the retransmission of packets by the switch to the IEEE 802.1x client. The range is 30 to 65535. |
| `tx-period seconds` | Number of seconds that the switch waits for a response to an EAP-request/identity frame from the client before retransmitting the request. The range is 5 to 65535. |

Defaults

These are the default settings:

- `reauth-period` is 3600 seconds.
- `quiet-period` is 60 seconds.
- `tx-period` is 5 seconds.
- `supp-timeout` is 30 seconds.
- `server-timeout` is 30 seconds.
- `rate-limit` is 0 seconds.

Command Modes

Interface configuration
dot1x timeout

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(14)EA1</td>
<td>The <code>supp-timeout</code> and <code>server-timeout</code> keywords were added, and the command was changed to the interface configuration mode.</td>
</tr>
<tr>
<td>12.2(18)SE</td>
<td>The ranges for the <code>server-timeout</code>, <code>supp-timeout</code>, and <code>tx-period</code> keywords were changed.</td>
</tr>
<tr>
<td>12.2(25)SEC</td>
<td>The range for <code>tx-period</code> keyword was changed, and the <code>reauth-period server</code> keywords were added.</td>
</tr>
<tr>
<td>12.2(25)SEE</td>
<td>The <code>ratelimit-period</code> keyword was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You should change the default value of this command only to adjust for unusual circumstances such as unreliable links or specific behavioral problems with certain clients and authentication servers.

The `dot1x timeout reauth-period` interface configuration command affects the behavior of the switch only if you have enabled periodic re-authentication by using the `dot1x reauthentication` interface configuration command.

During the quiet period, the switch does not accept or initiate any authentication requests. If you want to provide a faster response time to the user, enter a number smaller than the default.

When the `ratelimit-period` is set to 0 (the default), the switch does not ignore EAPOL packets from clients that have been successfully authenticated and forwards them to the RADIUS server.

Examples

This example shows how to enable periodic re-authentication and to set 4000 as the number of seconds between re-authentication attempts:

```
Switch(config-if)# dot1x reauthentication
Switch(config-if)# dot1x timeout reauth-period 4000
```

This example shows how to enable periodic re-authentication and to specify the value of the Session-Timeout RADIUS attribute as the number of seconds between re-authentication attempts:

```
Switch(config-if)# dot1x reauthentication
Switch(config-if)# dot1x timeout reauth-period server
```

This example shows how to set 30 seconds as the quiet time on the switch:

```
Switch(config-if)# dot1x timeout quiet-period 30
```

This example shows how to set 45 seconds as the switch-to-authentication server retransmission time:

```
Switch(config)# dot1x timeout server-timeout 45
```

This example shows how to set 45 seconds as the switch-to-client retransmission time for the EAP request frame:

```
Switch(config-if)# dot1x timeout supp-timeout 45
```

This example shows how to set 60 as the number of seconds to wait for a response to an EAP-request/identity frame from the client before re-transmitting the request:

```
Switch(config-if)# dot1x timeout tx-period 60
```
This example shows how to set 30 as the number of seconds that the switch ignores EAPOL packets from successfully authenticated clients:

```
Switch(config-if)# dot1x timeout ratelimit-period 30
```

You can verify your settings by entering the `show dot1x` privileged EXEC command.

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>dot1x max-req</code></td>
<td>Sets the maximum number of times that the switch sends an EAP-request/identity frame before restarting the authentication process.</td>
</tr>
<tr>
<td></td>
<td><code>dot1x reauthentication</code></td>
<td>Enables periodic re-authentication of the client.</td>
</tr>
<tr>
<td></td>
<td><code>show dot1x</code></td>
<td>Displays IEEE 802.1x status for all ports.</td>
</tr>
</tbody>
</table>
Use the `duplex` interface configuration command on the switch stack or on a standalone switch to specify the duplex mode of operation for a port. Use the `no` form of this command to return the port to its default value.

```
duplex { auto | full | half }

no duplex
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>auto</td>
<td>Enable automatic duplex configuration; port automatically detects whether it should run in full- or half-duplex mode, depending on the attached device mode.</td>
</tr>
<tr>
<td>full</td>
<td>Enable full-duplex mode.</td>
</tr>
<tr>
<td>half</td>
<td>Enable half-duplex mode (only for interfaces operating at 10 or 100 Mbps). You cannot configure half-duplex mode for interfaces operating at 1000 or 10,000 Mbps.</td>
</tr>
</tbody>
</table>

Defaults

The default is `auto` for Fast Ethernet and Gigabit Ethernet ports.

The default is `full` for 100BASE-x (where `x` is -BX, -FX, -FX-FE, and -LX) SFP modules.

Duplex options are not supported on the 1000BASE-x (where `x` is -BX, -CWDM, -LX, -SX, and -ZX) SFP modules.

For information about which SFP modules are supported on your switch, see the product release notes.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(20)SE</td>
<td>Support for the <code>half</code> keyword was added for the 100BASE-FX SFP module.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command is not available on a 10-Gigabit Ethernet interface.

For Fast Ethernet ports, setting the port to `auto` has the same effect as specifying `half` if the attached device does not autonegotiate the duplex parameter.

For Gigabit Ethernet ports, setting the port to `auto` has the same effect as specifying `full` if the attached device does not autonegotiate the duplex parameter.

Note Half-duplex mode is supported on Gigabit Ethernet interfaces if the duplex mode is `auto` and the connected device is operating at half duplex. However, you cannot configure these interfaces to operate in half-duplex mode.
Certain ports can be configured to be either full duplex or half duplex. Applicability of this command depends on the device to which the switch is attached.

If both ends of the line support autonegotiation, we highly recommend using the default autonegotiation settings. If one interface supports autonegotiation and the other end does not, configure duplex and speed on both interfaces; do use the `auto` setting on the supported side.

If the speed is set to `auto`, the switch negotiates with the device at the other end of the link for the speed setting and then forces the speed setting to the negotiated value. The duplex setting remains as configured on each end of the link, which could result in a duplex setting mismatch.

Beginning with Cisco IOS Release 12.2(20)SE1, you can configure the duplex setting when the speed is set to `auto`.

Caution

Changing the interface speed and duplex mode configuration might shut down and re-enable the interface during the reconfiguration.

For guidelines on setting the switch speed and duplex parameters, see the “Configuring Interface Characteristics” chapter in the software configuration guide for this release.

Examples

This example shows how to configure an interface for full-duplex operation:

```
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# duplex full
```

You can verify your setting by entering the `show interfaces` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show interfaces</code></td>
<td>Displays the interface settings on the switch.</td>
</tr>
<tr>
<td><code>speed</code></td>
<td>Sets the speed on a 10/100 or 10/100/1000 Mbps interface.</td>
</tr>
</tbody>
</table>
errdisable detect cause

Use the **errdisable detect cause** global configuration command on the switch stack or on a standalone switch to enable error-disabled detection for a specific cause or all causes. Use the no form of this command to disable the error-disabled detection feature.

```
errdisable detect cause { all | arp-inspection | dhcp-rate-limit | dtp-flap | gbic-invalid | l2ptguard | link-flap | loopback | pagp-flap }

no errdisable detect cause { all | arp-inspection | dhcp-rate-limit | dtp-flap | gbic-invalid | l2ptguard | link-flap | pagp-flap }
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Enable error detection for all error-disabled causes.</td>
</tr>
<tr>
<td>arp-inspection</td>
<td>Enable error detection for dynamic Address Resolution Protocol (ARP) inspection.</td>
</tr>
<tr>
<td>dhcp-rate-limit</td>
<td>Enable error detection for DHCP snooping.</td>
</tr>
<tr>
<td>dtp-flap</td>
<td>Enable error detection for the Dynamic Trunking Protocol (DTP) flapping.</td>
</tr>
<tr>
<td>gbic-invalid</td>
<td>Enable error detection for an invalid Gigabit Interface Converter (GBIC) module.</td>
</tr>
<tr>
<td>Note</td>
<td>On the Catalyst 3750 switch, this error refers to an invalid small form-factor pluggable (SFP) module.</td>
</tr>
<tr>
<td>l2ptguard</td>
<td>Enable error detection for a Layer 2 protocol-tunnel error-disabled cause.</td>
</tr>
<tr>
<td>link-flap</td>
<td>Enable error detection for link-state flapping.</td>
</tr>
<tr>
<td>loopback</td>
<td>Enable error detection for detected loopbacks.</td>
</tr>
<tr>
<td>pagp-flap</td>
<td>Enable error detection for the Port Aggregation Protocol (PAgP) flap error-disabled cause.</td>
</tr>
</tbody>
</table>

Command Default

Detection is enabled for all causes.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(14)EA1</td>
<td>The loopback keyword was added.</td>
</tr>
<tr>
<td>12.1(19)EA1</td>
<td>The dhcp-rate-limit keyword was added.</td>
</tr>
<tr>
<td>12.2(20)SE</td>
<td>The arp-inspection keyword was added.</td>
</tr>
<tr>
<td>12.2(25)SE</td>
<td>The l2ptguard keyword was added.</td>
</tr>
</tbody>
</table>
Usage Guidelines

A cause (all, dhcp-rate-limit, and so forth) is the reason why the error-disabled state occurred. When a cause is detected on an interface, the interface is placed in an error-disabled state, an operational state that is similar to a link-down state.

If you set a recovery mechanism for the cause by entering the `errdisable recovery` global configuration command for the cause, the interface is brought out of the error-disabled state and allowed to retry the operation when all causes have timed out. If you do not set a recovery mechanism, you must enter the `shutdown` and then the `no shutdown` commands to manually recover an interface from the error-disabled state.

Examples

This example shows how to enable error-disabled detection for the link-flap error-disabled cause:

```
Switch(config)# errdisable detect cause link-flap
```

You can verify your setting by entering the `show errdisable detect` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show errdisable detect</code></td>
<td>Displays error-disabled detection information.</td>
</tr>
<tr>
<td><code>show interfaces status err-disabled</code></td>
<td>Displays interface status or a list of interfaces in the error-disabled state.</td>
</tr>
</tbody>
</table>
Use the **errdisable recovery** global configuration command on the switch stack or on a standalone switch to configure the recover mechanism variables. Use the **no** form of this command to return to the default setting.

```
errdisable recovery [cause {all | arp-inspection | bpduguard | channel-misconfig |
    dhcp-rate-limit | dtp-flap | gbic-invalid | l2ptguard | link-flap | loopback | pagp-flap |
    psecure-violation | security-violation | udlld | vmps} | {interval interval}]
```

```
o errdisable recovery [cause {all | arp-inspection | bpduguard | channel-misconfig |
    dhcp-rate-limit | dtp-flap | gbic-invalid | l2ptguard | link-flap | loopback | pagp-flap |
    psecure-violation | security-violation | udlld | vmps} | {interval interval}]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cause</td>
<td>Enable the error-disabled mechanism to recover from a specific cause.</td>
</tr>
<tr>
<td>all</td>
<td>Enable the timer to recover from all error-disabled causes.</td>
</tr>
<tr>
<td>bpduguard</td>
<td>Enable the timer to recover from the bridge protocol data unit (BPDU) guard error-disabled state.</td>
</tr>
<tr>
<td>arp-inspection</td>
<td>Enable the timer to recover from the Address Resolution Protocol (ARP) inspection error-disabled state.</td>
</tr>
<tr>
<td>channel-misconfig</td>
<td>Enable the timer to recover from the EtherChannel misconfiguration error-disabled state.</td>
</tr>
<tr>
<td>dhcp-rate-limit</td>
<td>Enable the timer to recover from the DHCP snooping error-disabled state.</td>
</tr>
<tr>
<td>dtp-flap</td>
<td>Enable the timer to recover from the Dynamic Trunking Protocol (DTP) flap error-disabled state.</td>
</tr>
<tr>
<td>gbic-invalid</td>
<td>Enable the timer to recover from an invalid Gigabit Interface Converter (GBIC) module error-disabled state.</td>
</tr>
<tr>
<td></td>
<td>Note On the Catalyst 3750 switch, this error refers to an invalid small form-factor pluggable (SFP) error-disabled state.</td>
</tr>
<tr>
<td>l2ptguard</td>
<td>Enable the timer to recover from a Layer 2 protocol tunnel error-disabled state.</td>
</tr>
<tr>
<td>link-flap</td>
<td>Enable the timer to recover from the link-flap error-disabled state.</td>
</tr>
<tr>
<td>loopback</td>
<td>Enable the timer to recover from a loopback error-disabled state.</td>
</tr>
<tr>
<td>pagp-flap</td>
<td>Enable the timer to recover from the Port Aggregation Protocol (PAgP)-flap error-disabled state.</td>
</tr>
<tr>
<td>psecure-violation</td>
<td>Enable the timer to recover from a port security violation disable state.</td>
</tr>
<tr>
<td>security-violation</td>
<td>Enable the timer to recover from an IEEE 802.1x-violation disabled state.</td>
</tr>
<tr>
<td>udlld</td>
<td>Enable the timer to recover from the UniDirectional Link Detection (UDLD) error-disabled state.</td>
</tr>
</tbody>
</table>
errdisable recovery

<table>
<thead>
<tr>
<th>vmps</th>
<th>Enable the timer to recover from the VLAN Membership Policy Server (VMPS) error-disabled state.</th>
</tr>
</thead>
<tbody>
<tr>
<td>interval interval</td>
<td>Specify the time to recover from the specified error-disabled state. The range is 30 to 86400 seconds. The same interval is applied to all causes. The default interval is 300 seconds.</td>
</tr>
</tbody>
</table>

Note The error-disabled recovery timer is initialized at a random differential from the configured interval value. The difference between the actual timeout value and the configured value can be up to 15 percent of the configured interval.

Defaults

Recovery is disabled for all causes.
The default recovery interval is 300 seconds.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(14)EA1</td>
<td>The security-violation keyword was added. The gbic-invalid keyword is supported for SFP module ports.</td>
</tr>
<tr>
<td>12.1(19)EA1</td>
<td>The dhcp-rate-limit keyword was added.</td>
</tr>
<tr>
<td>12.2(18)SE</td>
<td>The channel-misconfig keyword was added.</td>
</tr>
<tr>
<td>12.2(20)SE</td>
<td>The arp-inspection keyword was added.</td>
</tr>
<tr>
<td>12.2(25)SE</td>
<td>The l2ptguard keyword was added.</td>
</tr>
</tbody>
</table>

Usage Guidelines

A cause (**all, bpduguard**, and so forth) is defined as the reason that the error-disabled state occurred. When a cause is detected on an interface, the interface is placed in the error-disabled state, an operational state similar to link-down state. If you do not enable the recovery for the cause, the interface stays in the error-disabled state until you enter the **shutdown** and the **no shutdown** interface configuration commands. If you enable the recovery for a cause, the interface is brought out of the error-disabled state and allowed to retry the operation again when all the causes have timed out.

Otherwise, you must enter the **shutdown** and then the **no shutdown** commands to manually recover an interface from the error-disabled state.

Examples

This example shows how to enable the recovery timer for the BPU guard error-disabled cause:

```
Switch(config)# errdisable recovery cause bpduguard
```

This example shows how to set the timer to 500 seconds:

```
Switch(config)# errdisable recovery interval 500
```

You can verify your settings by entering the **show errdisable recovery** privileged EXEC command.
<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>show errdisable recovery</td>
<td>Displays error-disabled recovery timer information.</td>
</tr>
<tr>
<td></td>
<td>show interfaces status err-disabled</td>
<td>Displays interface status or a list of interfaces in error-disabled state.</td>
</tr>
</tbody>
</table>
exception crashinfo

Use the `exception crashinfo` global configuration command on the switch stack or on a standalone switch to configure the switch to create the extended crashinfo file when the Cisco IOS image fails. Use the `no` form of this command to disable this feature.

```
exception crashinfo

no exception crashinfo
```

Syntax Description

This command has no arguments or keywords.

Defaults

The switch creates the extended crashinfo file.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SEC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The basic crashinfo file includes the Cisco IOS image name and version that failed, a list of the processor registers, and a stack trace. The extended crashinfo file includes additional information that can help determine the cause of the switch failure.

If you enter the `exception crashinfo` global configuration command on a stack master, it configures all the stack members to create the extended crashinfo file if the Cisco IOS image on the stack members fail.

Use the `no exception crashinfo` global configuration command to configure the switch to not create the extended crashinfo file.

Examples

This example shows how to configure the switch to not create the extended crashinfo file:

```
Switch(config)# no exception crashinfo
```

You can verify your settings by entering the `show running-config` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show running-config</code></td>
<td>Displays the operating configuration, including defined macros. For syntax information, select Cisco IOS Configuration Fundamentals Command Reference, Release 12.2 > File Management Commands > Configuration File Management Commands.</td>
</tr>
</tbody>
</table>
flowcontrol

Use the `flowcontrol` interface configuration command on the switch stack or on a standalone switch to set the receive flow-control state for an interface. When flow control `send` is operable and on for a device and it detects any congestion at its end, it notifies the link partner or the remote device of the congestion by sending a pause frame. When flow control `receive` is on for a device and it receives a pause frame, it stops sending any data packets. This prevents any loss of data packets during the congestion period.

Use the `receive off` keywords to disable flow control.

```
flowcontrol receive { desired | off | on }
```

Note
The Catalyst 3750 switch can receive, but not send, pause frames.

Syntax Description

- `receive` Set whether the interface can receive flow-control packets from a remote device.
- `desired` Allow an interface to operate with an attached device that is required to send flow-control packets or with an attached device that is not required to but can send flow-control packets.
- `off` Turn off the ability of an attached device to send flow-control packets to an interface.
- `on` Allow an interface to operate with an attached device that is required to send flow-control packets or with an attached device that is not required to but can send flow-control packets.

Defaults

The default is `flowcontrol receive off`.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The switch does not support sending flow-control pause frames.

Note that the `on` and `desired` keywords have the same result.

When you use the `flowcontrol` command to set a port to control traffic rates during congestion, you are setting flow control on a port to one of these conditions:

- **receive on** or **desired**: The port cannot send pause frames, but can operate with an attached device that is required to or is able to send pause frames. The port can receive pause frames.
- **receive off**: Flow control does not operate in either direction. In case of congestion, no indication is given to the link partner, and no pause frames are sent or received by either device.
Table 2-5 shows the flow control results on local and remote ports for a combination of settings. The table assumes that receive desired has the same results as using the receive on keywords.

Table 2-5 Flow Control Settings and Local and Remote Port Flow Control Resolution

<table>
<thead>
<tr>
<th>Flow Control Settings</th>
<th>Flow Control Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Device</td>
<td>Remote Device</td>
</tr>
<tr>
<td>send off/receive on</td>
<td>send on/receive on</td>
</tr>
<tr>
<td></td>
<td>send on/receive off</td>
</tr>
<tr>
<td></td>
<td>send desired/receive on</td>
</tr>
<tr>
<td></td>
<td>send desired/receive off</td>
</tr>
<tr>
<td></td>
<td>send off/receive on</td>
</tr>
<tr>
<td></td>
<td>send off/receive off</td>
</tr>
<tr>
<td>send off/receive off</td>
<td>send on/receive on</td>
</tr>
<tr>
<td></td>
<td>send on/receive off</td>
</tr>
<tr>
<td></td>
<td>send desired/receive on</td>
</tr>
<tr>
<td></td>
<td>send desired/receive off</td>
</tr>
<tr>
<td></td>
<td>send off/receive on</td>
</tr>
<tr>
<td></td>
<td>send off/receive off</td>
</tr>
</tbody>
</table>

Examples

This example shows how to configure the local port to not support flow control by the remote port:

Switch(config) # interface gigabitethernet1/0/1
Switch(config-if) # flowcontrol receive off

You can verify your settings by entering the show interfaces privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show interfaces</td>
<td>Displays the interface settings on the switch, including input and output flow control.</td>
</tr>
</tbody>
</table>
interface port-channel

Use the interface port-channel global configuration command on the switch stack or on a standalone switch to access or create the port-channel logical interface. Use the no form of this command to remove the port-channel.

```
interface port-channel port-channel-number
no interface port-channel port-channel-number
```

Syntax Description

```
port-channel-number          Port-channel number. The range is 1 to 48.
```

Defaults

No port-channel logical interfaces are defined.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(25)SE</td>
<td>The port-channel-number range was changed from 1 to 12 to 1 to 48.</td>
</tr>
</tbody>
</table>

Usage Guidelines

For Layer 2 EtherChannels, you do not have to create a port-channel interface first before assigning a physical port to a channel group. Instead, you can use the channel-group interface configuration command. It automatically creates the port-channel interface when the channel group gets its first physical port. If you create the port-channel interface first, the channel-group-number can be the same as the port-channel-number, or you can use a new number. If you use a new number, the channel-group command dynamically creates a new port channel.

You create Layer 3 port channels by using the interface port-channel command followed by the no switchport interface configuration command. You should manually configure the port-channel logical interface before putting the interface into the channel group.

Only one port channel in a channel group is allowed.

⚠️ **Caution**

When using a port-channel interface as a routed port, do not assign Layer 3 addresses on the physical ports that are assigned to the channel group.

⚠️ **Caution**

Do not assign bridge groups on the physical ports in a channel group used as a Layer 3 port-channel interface because it creates loops. You must also disable spanning tree.
Follow these guidelines when you use the `interface port-channel` command:

- If you want to use the Cisco Discovery Protocol (CDP), you must configure it only on the physical port and not on the port-channel interface.
- Do not configure a port that is an active member of an EtherChannel as an IEEE 802.1x port. If IEEE 802.1x is enabled on a not-yet active port of an EtherChannel, the port does not join the EtherChannel.

For a complete list of configuration guidelines, see the “Configuring EtherChannels” chapter in the software configuration guide for this release.

Examples

This example shows how to create a port-channel interface with a port channel number of 5:

```
Switch(config)# interface port-channel 5
```

You can verify your setting by entering the `show running-config` privileged EXEC or `show etherchannel channel-group-number detail` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>channel-group</code></td>
<td>Assigns an Ethernet port to an EtherChannel group.</td>
</tr>
<tr>
<td><code>show etherchannel</code></td>
<td>Displays EtherChannel information for a channel.</td>
</tr>
<tr>
<td><code>show running-config</code></td>
<td>Displays the current operating configuration. For syntax information, select Cisco IOS Configuration Fundamentals Command Reference, Release 12.2 > File Management Commands > Configuration File Management Commands.</td>
</tr>
</tbody>
</table>
interface range

Use the interface range global configuration command on the switch stack or on a standalone switch to enter interface range configuration mode and to execute a command on multiple ports at the same time. Use the no form of this command to remove an interface range.

```bash
interface range { port-range | macro name }

no interface range { port-range | macro name }
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>port-range</code></td>
<td>Port range. For a list of valid values for <code>port-range</code>, see the “Usage Guidelines” section.</td>
</tr>
<tr>
<td><code>macro name</code></td>
<td>Specify the name of a macro.</td>
</tr>
</tbody>
</table>

Defaults

This command has no default setting.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When you enter interface range configuration mode, all interface parameters you enter are attributed to all interfaces within the range.

For VLANs, you can use the interface range command only on existing VLAN switch virtual interfaces (SVIs). To display VLAN SVIs, enter the `show running-config` privileged EXEC command. VLANs not displayed cannot be used in the interface range command. The commands entered under `interface range` command are applied to all existing VLAN SVIs in the range.

All configuration changes made to an interface range are saved to NVRAM, but the interface range itself is not saved to NVRAM.

You can enter the interface range in two ways:

- Specifying up to five interface ranges
- Specifying a previously defined interface-range macro

All interfaces in a range must be the same type; that is, all Fast Ethernet ports, all Gigabit Ethernet ports, all EtherChannel ports, or all VLANs. However, you can define up to five interface ranges with a single command, with each range separated by a comma.

Valid values for `port-range` type and interface:

- `vlan vlan-ID - vlan-ID`, where VLAN ID is from 1 to 4094
- `fastethernet stack member/module/{first port} - {last port}`, where module is always 0
interface range

- **gigabitethernet** stack member/module/[first port] - [last port], where module is always 0
 For physical interfaces:
 - stack member is the number used to identify the switch within the stack. The number ranges from 1 to 9 and is assigned to the switch the first time the stack member initializes.
 - module is always 0
 - the range is type stack member/0/number - number (for example, **gigabitethernet1/0/1 - 2**)

- **port-channel** port-channel-number - port-channel-number, where port-channel-number is from 1 to 48

Note When you use the **interface range** command with port channels, the first and last port channel number in the range must be active port channels.

When you define a range, you must enter a space between the first entry and the hyphen (-):
```
interface range gigabitethernet1/0/1 -2
```
When you define multiple ranges, you must still enter a space after the first entry and before the comma (,):
```
interface range fastethernet1/0/1 - 2, gigabitethernet1/0/1 - 2
```
You cannot specify both a macro and an interface range in the same command.

You can also specify a single interface in **port-range**. The command is then similar to the **interface interface-id** global configuration command.

For more information about configuring interface ranges, see the software configuration guide for this release.

Examples

This example shows how to use the **interface range** command to enter interface-range configuration mode to apply commands to two ports:
```
Switch(config)# interface range gigabitethernet1/0/1 - 2
Switch(config-if-range)#
```

This example shows how to use a port-range macro **macro1** for the same function. The advantage is that you can reuse **macro1** until you delete it.
```
Switch(config)# define interface-range macro1 gigabitethernet1/0/1 - 2
Switch(config-if-range)# interface range macro macro1
Switch(config-if-range)#
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>define interface-range</td>
<td>Creates an interface range macro.</td>
</tr>
<tr>
<td>show running-config</td>
<td>Displays the configuration information currently running on the switch. For syntax information, select Cisco IOS Configuration Fundamentals Command Reference, Release 12.2 > File Management Commands > Configuration File Management Commands.</td>
</tr>
</tbody>
</table>
interface vlan

Use the interface vlan global configuration command on the switch stack or on a standalone switch to create or access a dynamic switch virtual interface (SVI) and to enter interface configuration mode. Use the no form of this command to delete an SVI.

interface vlan vlan-id

no interface vlan vlan-id

Syntax Description

<table>
<thead>
<tr>
<th>Command Line Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan-id</td>
<td>VLAN number. The range is 1 to 4094.</td>
</tr>
</tbody>
</table>

Defaults

The default VLAN interface is VLAN 1.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

SVIs are created the first time that you enter the interface vlan vlan-id command for a particular VLAN. The vlan-id corresponds to the VLAN-tag associated with data frames on an ISL or IEEE 802.1Q encapsulated trunk or the VLAN ID configured for an access port.

Note

When you create an SVI, it does not become active until it is associated with a physical port.

If you delete an SVI by entering the no interface vlan vlan-id command, the deleted interface is no longer visible in the output from the show interfaces privileged EXEC command.

Note

You cannot delete the VLAN 1 interface.

You can re-instate a deleted SVI by entering the interface vlan vlan-id command for the deleted interface. The interface comes back up, but the previous configuration is gone.

The interrelationship between the number of SVIs configured on a switch stack and the number of other features being configured might have an impact on CPU utilization due to hardware limitations. You can use the sdm prefer global configuration command to reallocate system hardware resources based on templates and feature tables. For more information, see the sdm prefer command.
Examples

This example shows how to create a new SVI with VLAN ID 23 and to enter interface configuration mode:

Switch(config)# interface vlan 23
Switch(config-if)#

You can verify your setting by entering the `show interfaces` and `show interfaces vlan vlan-id` privileged EXEC commands.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show interfaces vlan vlan-id</code></td>
<td>Displays the administrative and operational status of all interfaces or the specified VLAN.</td>
</tr>
</tbody>
</table>
ip access-group

Use the `ip access-group` interface configuration command on the switch stack or on a standalone switch to control access to a Layer 2 or Layer 3 interface. Use the `no` form of this command to remove all access groups or the specified access group from the interface.

```
ip access-group {access-list-number | name} {in | out}

no ip access-group [access-list-number | name] {in | out}
```

Syntax Description

- `access-list-number` The number of the IP access control list (ACL). The range is 1 to 199 or 1300 to 2699.
- `name` The name of an IP ACL, specified in the `ip access-list` global configuration command.
- `in` Specify filtering on inbound packets.
- `out` Specify filtering on outbound packets. This keyword is valid only on Layer 3 interfaces.

Defaults

No access list is applied to the interface.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(14)EA1</td>
<td>This command support was extended to Layer 2 interfaces.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You can apply named or numbered standard or extended IP access lists to an interface. To define an access list by name, use the `ip access-list` global configuration command. To define a numbered access list, use the `access list` global configuration command. You can used numbered standard access lists ranging from 1 to 99 and 1300 to 1999 or extended access lists ranging from 100 to 199 and 2000 to 2699.

You can use this command to apply an access list to a Layer 2 or Layer 3 interface. However, note these limitations for Layer 2 interfaces (port ACLs):

- You can only apply ACLs in the inbound direction; the `out` keyword is not supported for Layer 2 interfaces.
- You can only apply one IP ACL and one MAC ACL per interface.
- Layer 2 interfaces do not support logging; if the `log` keyword is specified in the IP ACL, it is ignored.
- An IP ACL applied to a Layer 2 interface only filters IP packets. To filter non-IP packets, use the `mac access-group` interface configuration command with MAC extended ACLs.
You can use router ACLs, input port ACLs, and VLAN maps on the same switch. However, a port ACL takes precedence over a router ACL or VLAN map:

- When an input port ACL is applied to an interface and a VLAN map is applied to a VLAN that the interface is a member of, incoming packets received on ports with the ACL applied are filtered by the port ACL. Other packets are filtered by the VLAN map.

- When an input router ACL and input port ACLs exist in a switch virtual interface (SVI), incoming packets received on ports to which a port ACL is applied are filtered by the port ACL. Incoming routed IP packets received on other ports are filtered by the router ACL. Other packets are not filtered.

- When an output router ACL and input port ACLs exist in an SVI, incoming packets received on the ports to which a port ACL is applied are filtered by the port ACL. Outgoing routed IP packets are filtered by the router ACL. Other packets are not filtered.

- When a VLAN map, input router ACLs, and input port ACLs exist in an SVI, incoming packets received on the ports to which a port ACL is applied are only filtered by the port ACL. Incoming routed IP packets received on other ports are filtered by both the VLAN map and the router ACL. Other packets are filtered only by the VLAN map.

- When a VLAN map, output router ACLs, and input port ACLs exist in an SVI, incoming packets received on the ports to which a port ACL is applied are only filtered by the port ACL. Outgoing routed IP packets are filtered by both the VLAN map and the router ACL. Other packets are filtered only by the VLAN map.

You can apply IP ACLs to both outbound or inbound Layer 3 interfaces.

A Layer 3 interface can have one IP ACL applied in each direction.

You can configure only one VLAN map and one router ACL in each direction (input/output) on a VLAN interface.

For standard inbound access lists, after the switch receives a packet, it checks the source address of the packet against the access list. IP extended access lists can optionally check other fields in the packet, such as the destination IP address, protocol type, or port numbers. If the access list permits the packet, the switch continues to process the packet. If the access list denies the packet, the switch discards the packet. If the access list has been applied to a Layer 3 interface, discarding a packet (by default) causes the generation of an Internet Control Message Protocol (ICMP) Host Unreachable message. ICMP Host Unreachable messages are not generated for packets discarded on a Layer 2 interface.

For standard outbound access lists, after receiving a packet and sending it to a controlled interface, the switch checks the packet against the access list. If the access list permits the packet, the switch sends the packet. If the access list denies the packet, the switch discards the packet and, by default, generates an ICMP Host Unreachable message.

If the specified access list does not exist, all packets are passed.

Examples

This example shows how to apply IP access list 101 to inbound packets on a port:

```
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# ip access-group 101 in
```

You can verify your settings by entering the **show ip interface**, **show access-lists**, or **show ip access-lists** privileged EXEC command.
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>access list</td>
<td>Configures a numbered ACL. For syntax information, select Cisco IOS IP Command Reference, Volume 1 of 3:Addressing and Services, Release 12.2 > IP Services Commands</td>
</tr>
<tr>
<td>ip access-list</td>
<td>Configures a named ACL. For syntax information, select Cisco IOS IP Command Reference, Volume 1 of 3:Addressing and Services, Release 12.2 > IP Services Commands.</td>
</tr>
<tr>
<td>show access-lists</td>
<td>Displays ACLs configured on the switch.</td>
</tr>
<tr>
<td>show ip access-lists</td>
<td>Displays IP ACLs configured on the switch. For syntax information, select Cisco IOS IP Command Reference, Volume 1 of 3:Addressing and Services, Release 12.2 > IP Services Commands.</td>
</tr>
<tr>
<td>show ip interface</td>
<td>Displays information about interface status and configuration. For syntax information, select Cisco IOS IP Command Reference, Volume 1 of 3:Addressing and Services, Release 12.2 > IP Services Commands.</td>
</tr>
</tbody>
</table>
ip address

Use the `ip address` interface configuration command on the switch stack or on a standalone switch to set an IP address for the Layer 2 switch or an IP address for each switch virtual interface (SVI) or routed port on the Layer 3 switch. Use the `no` form of this command to remove an IP address or to disable IP processing.

```
ip address ip-address subnet-mask [secondary]
no ip address [ip-address subnet-mask] [secondary]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip-address</code></td>
<td>IP address.</td>
</tr>
<tr>
<td><code>subnet-mask</code></td>
<td>Mask for the associated IP subnet.</td>
</tr>
<tr>
<td><code>secondary</code></td>
<td>(Optional) Specifies that the configured address is a secondary IP address. If this keyword is omitted, the configured address is the primary IP address.</td>
</tr>
</tbody>
</table>

Defaults

No IP address is defined.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If you remove the switch IP address through a Telnet session, your connection to the switch will be lost. Hosts can find subnet masks using the Internet Control Message Protocol (ICMP) Mask Request message. Routers respond to this request with an ICMP Mask Reply message.

You can disable IP processing on a particular interface by removing its IP address with the `no ip address` command. If the switch detects another host using one of its IP addresses, it will send an error message to the console.

You can use the optional keyword `secondary` to specify an unlimited number of secondary addresses. Secondary addresses are treated like primary addresses, except the system never generates datagrams other than routing updates with secondary source addresses. IP broadcasts and ARP requests are handled properly, as are interface routes in the IP routing table.

Note

If any router on a network segment uses a secondary address, all other devices on that same segment must also use a secondary address from the same network or subnet. Inconsistent use of secondary addresses on a network segment can very quickly cause routing loops.

When you are routing Open Shortest Path First (OSPF), ensure that all secondary addresses of an interface fall into the same OSPF area as the primary addresses.
If your switch receives its IP address from a Bootstrap Protocol (BOOTP) or a DHCP server and you remove the switch IP address by using the `no ip address` command, IP processing is disabled, and the BOOTP or the DHCP server cannot reassign the address.

A Layer 3 switch can have an IP address assigned to each routed port and SVI. The number of routed ports and SVIs that you can configure is not limited by software; however, the interrelationship between this number and the number of other features being configured might have an impact on CPU utilization due to hardware limitations. You can use the `sdm prefer` global configuration command to reallocate system hardware resources based on templates and feature tables. For more information, see the `sdm prefer` command.

Examples

This example shows how to configure the IP address for the Layer 2 switch on a subnetted network:

```
Switch(config)# interface vlan 1
Switch(config-if)# ip address 172.20.128.2 255.255.255.0
```

This example shows how to configure the IP address for a port on the Layer 3 switch:

```
Switch(config)# ip multicast-routing
Switch(config)# interface gigabitethernet6/0/1
Switch(config-if)# no switchport
Switch(config-if)# ip address 172.20.128.2 255.255.255.0
```

You can verify your settings by entering the `show running-config` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show running-config</code></td>
<td>Displays the running configuration on the switch. For syntax information, select Cisco IOS Configuration Fundamentals Command Reference, Release 12.2 > File Management Commands > Configuration File Management Commands.</td>
</tr>
</tbody>
</table>
ip arp inspection filter vlan

Use the `ip arp inspection filter vlan` global configuration command on the switch stack or on a standalone switch to permit or deny Address Resolution Protocol (ARP) requests and responses from a host configured with a static IP address when dynamic ARP inspection is enabled. Use the `no` form of this command to return to the default settings.

```
ip arp inspection filter arp-acl-name vlan vlan-range [static]
no ip arp inspection filter arp-acl-name vlan vlan-range [static]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>arp-acl-name</code></td>
<td>ARP access control list (ACL) name.</td>
</tr>
<tr>
<td><code>vlan-range</code></td>
<td>VLAN number or range.</td>
</tr>
</tbody>
</table>

You can specify a single VLAN identified by VLAN ID number, a range of VLANs separated by a hyphen, or a series of VLANs separated by a comma. The range is 1 to 4094.

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>static</code></td>
<td>(Optional) Specify <code>static</code> to treat implicit denies in the ARP ACL as explicit denies and to drop packets that do not match any previous clauses in the ACL. DHCP bindings are not used. If you do not specify this keyword, it means that there is no explicit deny in the ACL that denies the packet, and DHCP bindings determine whether a packet is permitted or denied if the packet does not match any clauses in the ACL.</td>
</tr>
</tbody>
</table>

Defaults

No defined ARP ACLs are applied to any VLAN.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(20)SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When an ARP ACL is applied to a VLAN for dynamic ARP inspection, only the ARP packets with IP-to-MAC address bindings are compared against the ACL. If the ACL permits a packet, the switch forwards it. All other packet types are bridged in the ingress VLAN without validation.

If the switch denies a packet because of an explicit deny statement in the ACL, the packet is dropped. If the switch denies a packet because of an implicit deny statement, the packet is then compared against the list of DHCP bindings (unless the ACL is `static`, which means that packets are not compared against the bindings).

Use the `arp access-list acl-name` global configuration command to define the ARP ACL or to add clauses to the end of a predefined list.
This example shows how to apply the ARP ACL static-hosts to VLAN 1 for dynamic ARP inspection:

```
Switch(config)# ip arp inspection filter static-hosts vlan 1
```

You can verify your settings by entering the `show ip arp inspection vlan 1` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>arp access-list</code></td>
<td>Defines an ARP ACL.</td>
</tr>
<tr>
<td>`deny (ARP access-list</td>
<td>Denies an ARP packet based on matches against the DHCP bindings.</td>
</tr>
<tr>
<td>configuration)`</td>
<td></td>
</tr>
<tr>
<td>`permit (ARP access-list</td>
<td>Permits an ARP packet based on matches against the DHCP bindings.</td>
</tr>
<tr>
<td>configuration)`</td>
<td></td>
</tr>
<tr>
<td><code>show arp access-list</code></td>
<td>Displays detailed information about ARP access lists.</td>
</tr>
<tr>
<td><code>show inventory vlan</code></td>
<td>Displays the configuration and the operating state of dynamic ARP inspection for the specified VLAN.</td>
</tr>
</tbody>
</table>
ip arp inspection limit

Use the `ip arp inspection limit` interface configuration command on the switch stack or on a standalone switch to limit the rate of incoming Address Resolution Protocol (ARP) requests and responses on an interface. It prevents dynamic ARP inspection from using all of the switch resources if a denial-of-service attack occurs. Use the `no` form of this command to return to the default settings.

```
ip arp inspection limit { rate pps [burst interval seconds] | none }
no ip arp inspection limit
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rate pps</td>
<td>Specify an upper limit for the number of incoming packets processed per second. The range is 0 to 2048 packets per second (pps).</td>
</tr>
<tr>
<td>burst interval seconds</td>
<td>(Optional) Specify the consecutive interval in seconds, over which the interface is monitored for a high rate of ARP packets. The range is 1 to 15 seconds.</td>
</tr>
<tr>
<td>none</td>
<td>Specify no upper limit for the rate of incoming ARP packets that can be processed.</td>
</tr>
</tbody>
</table>

Defaults

- The rate is 15 pps on untrusted interfaces, assuming that the network is a switched network with a host connecting to as many as 15 new hosts per second.
- The rate is unlimited on all trusted interfaces.
- The burst interval is 1 second.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(20)SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

- The rate applies to both trusted and untrusted interfaces. Configure appropriate rates on trunks to process packets across multiple dynamic ARP inspection-enabled VLANs, or use the `none` keyword to make the rate unlimited.

- After a switch receives more than the configured rate of packets every second consecutively over a number of burst seconds, the interface is placed into an error-disabled state.

- Unless you explicitly configure a rate limit on an interface, changing the trust state of the interface also changes its rate limit to the default value for that trust state. After you configure the rate limit, the interface retains the rate limit even when its trust state is changed. If you enter the `no ip arp inspection limit` interface configuration command, the interface reverts to its default rate limit.

- You should configure trunk ports with higher rates to reflect their aggregation. When the rate of incoming packets exceeds the user-configured rate, the switch places the interface into an error-disabled state. The error-disabled recovery feature automatically removes the port from the error-disabled state according to the recovery setting.
The rate limit is calculated separately on each switch in a switch stack. For a cross-stack EtherChannel, this means that the actual rate limit might be higher than the configured value. For example, if you set the rate limit to 30 pps on an EtherChannel that has one port on switch 1 and one port on switch 2, each port can receive packets at 29 pps without causing the EtherChannel to become error-disabled.

The rate of incoming ARP packets on EtherChannel ports equals the sum of the incoming rate of ARP packets from all the channel members. Configure the rate limit for EtherChannel ports only after examining the rate of incoming ARP packets on all the channel members.

Examples

This example shows how to limit the rate of incoming ARP requests on a port to 25 pps and to set the interface monitoring interval to 5 consecutive seconds:

```
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# ip arp inspection limit rate 25 burst interval 5
```

You can verify your settings by entering the `show ip arp inspection interfaces interface-id` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show inventory</code></td>
<td>Displays the trust state and the rate limit of ARP packets for the specified interface or all interfaces.</td>
</tr>
<tr>
<td><code>interfaces</code></td>
<td></td>
</tr>
</tbody>
</table>
ip arp inspection log-buffer

Use the `ip arp inspection log-buffer` global configuration command on the switch stack or on a standalone switch to configure the dynamic Address Resolution Protocol (ARP) inspection logging buffer. Use the `no` form of this command to return to the default settings.

```
ip arp inspection log-buffer { entries number | logs number interval seconds }
nip arp inspection log-buffer { entries | logs }
```

Syntax Description

<table>
<thead>
<tr>
<th>entries number</th>
<th>Number of entries to be logged in the buffer. The range is 0 to 1024.</th>
</tr>
</thead>
<tbody>
<tr>
<td>logs number interval seconds</td>
<td>Number of entries needed in the specified interval to generate system messages. For logs number, the range is 0 to 1024. A 0 value means that the entry is placed in the log buffer, but a system message is not generated. For interval seconds, the range is 0 to 86400 seconds (1 day). A 0 value means that a system message is immediately generated (and the log buffer is always empty).</td>
</tr>
</tbody>
</table>

Defaults

When dynamic ARP inspection is enabled, denied or dropped ARP packets are logged.

The number of log entries is 32.

The number of system messages is limited to 5 per second.

The logging-rate interval is 1 second.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(20)SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

A value of 0 is not allowed for both the logs and the interval keywords.

The logs and interval settings interact. If the logs number X is greater than interval seconds Y, X divided by Y (X/Y) system messages are sent every second. Otherwise, one system message is sent every Y divided by X (Y/X) seconds. For example, if the logs number is 20 and the interval seconds is 4, the switch generates system messages for five entries every second while there are entries in the log buffer.

A log buffer entry can represent more than one packet. For example, if an interface receives many packets on the same VLAN with the same ARP parameters, the switch combines the packets as one entry in the log buffer and generates a system message as a single entry.

If the log buffer overflows, it means that a log event does not fit into the log buffer, and the output display for the `show ip arp inspection log` privileged EXEC command is affected. A -- in the output display appears in place of all data except the packet count and the time. No other statistics are provided for the entry. If you see this entry in the display, increase the number of entries in the log buffer, or increase the logging rate.
The log buffer configuration applies to each stack member in a switch stack. Each stack member has the specified **logs number** entries and generates system messages at the configured rate. For example, if the interval (rate) is one entry per second, up to five system messages are generated per second in a five-member switch stack.

Examples

This example shows how to configure the logging buffer to hold up to 45 entries:

```
Switch(config)# ip arp inspection log-buffer entries 45
```

This example shows how to configure the logging rate to 20 log entries per 4 seconds. With this configuration, the switch generates system messages for five entries every second while there are entries in the log buffer.

```
Switch(config)# ip arp inspection log-buffer logs 20 interval 4
```

You can verify your settings by entering the `show ip arp inspection log` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>arp access-list</code></td>
<td>Defines an ARP access control list (ACL).</td>
</tr>
<tr>
<td><code>clear ip arp inspection log</code></td>
<td>Clears the dynamic ARP inspection log buffer.</td>
</tr>
<tr>
<td><code>ip arp inspection vlan logging</code></td>
<td>Controls the type of packets that are logged per VLAN.</td>
</tr>
<tr>
<td><code>show inventory log</code></td>
<td>Displays the configuration and contents of the dynamic ARP inspection log buffer.</td>
</tr>
</tbody>
</table>
ip arp inspection trust

Use the `ip arp inspection trust` interface configuration command on the switch stack or on a standalone switch to configure an interface trust state that determines which incoming Address Resolution Protocol (ARP) packets are inspected. Use the `no` form of this command to return to the default setting.

```
   ip arp inspection trust
   no ip arp inspection trust
```

This command is available only if your switch is running the IP services image, formerly known as the enhanced multilayer image (EMI).

Syntax Description
This command has no arguments or keywords.

Defaults
The interface is untrusted.

Command Modes
Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(20)SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
The switch does not check ARP packets that it receives on the trusted interface; it simply forwards the packets.

For untrusted interfaces, the switch intercepts all ARP requests and responses. It verifies that the intercepted packets have valid IP-to-MAC address bindings before updating the local cache and before forwarding the packet to the appropriate destination. The switch drops invalid packets and logs them in the log buffer according to the logging configuration specified with the `ip arp inspection vlan logging` global configuration command.

Examples
This example shows how to configure a port to be trusted:

```
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# ip arp inspection trust
```

You can verify your setting by entering the `show ip arp inspection interfaces interface-id` privileged EXEC command.
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip arp inspection log-buffer</code></td>
<td>Configures the dynamic ARP inspection logging buffer.</td>
</tr>
<tr>
<td><code>show inventory interfaces</code></td>
<td>Displays the trust state and the rate limit of ARP packets for the specified interface or all interfaces.</td>
</tr>
<tr>
<td><code>show inventory log</code></td>
<td>Displays the configuration and contents of the dynamic ARP inspection log buffer.</td>
</tr>
</tbody>
</table>
ip arp inspection validate

Use the **ip arp inspection validate** global configuration command on the switch stack or on a standalone switch to perform specific checks for dynamic Address Resolution Protocol (ARP) inspection. Use the no form of this command to return to the default settings.

```
ip arp inspection validate [src-mac] [dst-mac] [ip]

no ip arp inspection validate [src-mac] [dst-mac] [ip]
```

This command is available only if your switch is running the IP services image, formerly known as the enhanced multilayer image (EMI).

Syntax Description

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>src-mac</td>
<td>Compare the source MAC address in the Ethernet header against the sender MAC address in the ARP body. This check is performed on both ARP requests and responses. When enabled, packets with different MAC addresses are classified as invalid and are dropped.</td>
</tr>
<tr>
<td>dst-mac</td>
<td>Compare the destination MAC address in the Ethernet header against the target MAC address in ARP body. This check is performed for ARP responses. When enabled, packets with different MAC addresses are classified as invalid and are dropped.</td>
</tr>
<tr>
<td>ip</td>
<td>Compare the ARP body for invalid and unexpected IP addresses. Addresses include 0.0.0.0, 255.255.255.255, and all IP multicast addresses. Sender IP addresses are compared in all ARP requests and responses. Target IP addresses are checked only in ARP responses.</td>
</tr>
</tbody>
</table>

Defaults

No checks are performed.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(20)SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You must specify at least one of the keywords. Each command overrides the configuration of the previous command; that is, if a command enables **src-mac** and **dst-mac** validations, and a second command enables IP validation only, the **src-mac** and **dst-mac** validations are disabled as a result of the second command.

If you first specify the **src-mac** keyword, you also can specify the **dst-mac** and **ip** keywords. If you first specify the **ip** keyword, no other keywords can be specified.

The no form of the command disables only the specified checks. If none of the options are enabled, all checks are disabled.
Examples

This example shows how to enable source MAC validation:

```
Switch(config)# ip arp inspection validate src-mac
```

You can verify your setting by entering the `show ip arp inspection vlan vlan-range` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show inventory vlan vlan-range</code></td>
<td>Displays the configuration and the operating state of dynamic ARP inspection for the specified VLAN.</td>
</tr>
</tbody>
</table>
ip arp inspection vlan

Use the **ip arp inspection vlan** global configuration command on the switch stack or on a standalone switch to enable dynamic Address Resolution Protocol (ARP) inspection on a per-VLAN basis. Use the **no** form of this command to return to the default setting.

```
ip arp inspection vlan vlan-range
no ip arp inspection vlan vlan-range
```

This command is available only if your switch is running the IP services image, formerly known as the enhanced multilayer image (EMI).

Syntax Description

| vlan-range | VLAN number or range. You can specify a single VLAN identified by VLAN ID number, a range of VLANs separated by a hyphen, or a series of VLANs separated by a comma. The range is 1 to 4094. |

Defaults

ARP inspection is disabled on all VLANs.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(20)SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You must specify the VLANs on which to enable dynamic ARP inspection. Dynamic ARP inspection is supported on access ports, trunk ports, EtherChannel ports, or private VLAN ports.

Examples

This example shows how to enable dynamic ARP inspection on VLAN 1:

```
Switch(config)# ip arp inspection vlan 1
```

You can verify your setting by entering the **show ip arp inspection vlan vlan-range** privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>arp access-list</td>
<td>Defines an ARP access control list (ACL).</td>
</tr>
<tr>
<td>show inventory vlan vlan-range</td>
<td>Displays the configuration and the operating state of dynamic ARP inspection for the specified VLAN.</td>
</tr>
</tbody>
</table>
ip arp inspection vlan logging

Use the **ip arp inspection vlan logging** global configuration command on the switch stack or on a standalone switch to control the type of packets that are logged per VLAN. Use the **no** form of this command to disable this logging control.

```
      ip arp inspection vlan vlan-range logging { acl-match { matchlog | none } | dhcp-bindings { all | none | permit } }

      no ip arp inspection vlan vlan-range logging { acl-match | dhcp-bindings }
```

This command is available only if your switch is running the IP services image, formerly known as the enhanced multilayer image (EMI).

Syntax Description

<table>
<thead>
<tr>
<th>vlan-range</th>
<th>Specify the VLANs configured for logging.</th>
</tr>
</thead>
<tbody>
<tr>
<td>You can specify a single VLAN identified by VLAN ID number, a range of VLANs separated by a hyphen, or a series of VLANs separated by a comma. The range is 1 to 4094.</td>
<td></td>
</tr>
</tbody>
</table>

| **acl-match { matchlog | none }** | Specify that the logging of packets is based on access control list (ACL) matches. |
|-------------------------------------|--|
| The keywords have these meanings: |--|
| • **matchlog**—Log packets based on the logging configuration specified in the access control entries (ACE). If you specify the **matchlog** keyword in this command and the **log** keyword in the **permit** or **deny** ARP access-list configuration command, Address Resolution Protocol (ARP) packets permitted or denied by the ACL are logged. |
| • **none**—Do not log packets that match ACLs. |

| **dhcp-bindings { permit | all | none }** | Specify the logging of packets is based on Dynamic Host Configuration Protocol (DHCP) binding matches. |
|---|--|
| The keywords have these meanings: |--|
| • **all**—Log all packets that match DHCP bindings. |
| • **none**—Do not log packets that match DHCP bindings. |
| • **permit**—Log DHCP-binding permitted packets. |

Defaults

All denied or all dropped packets are logged.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(20)SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
Usage Guidelines

The term *logged* means that the entry is placed into the log buffer and that a system message is generated. The *acl-match* and *dhcp-bindings* keywords merge with each other; that is, when you configure an ACL match, the DHCP bindings configuration is not disabled. Use the **no** form of the command to reset the logging criteria to their defaults. If neither option is specified, all types of logging are reset to log when ARP packets are denied. These are the options:

- **acl-match**—Logging on ACL matches is reset to log on deny.
- **dhcp-bindings**—Logging on DHCP binding matches is reset to log on deny.

If neither the *acl-match* or the *dhcp-bindings* keywords are specified, all denied packets are logged. The implicit deny at the end of an ACL does not include the **log** keyword. This means that when you use the **static** keyword in the **ip arp inspection filter vlan** global configuration command, the ACL overrides the DHCP bindings. Some denied packets might not be logged unless you explicitly specify the **deny ip any mac any log** ACE at the end of the ARP ACL.

Examples

This example shows how to configure ARP inspection on VLAN 1 to log packets that match the **permit** commands in the ACL:

```
Switch(config)# arp access-list test1
Switch(config-arp-nacl)# permit request ip any mac any log
Switch(config-arp-nacl)# permit response ip any any mac any any log
Switch(config-arp-nacl)# exit
Switch(config)# ip arp inspection vlan 1 logging acl-match matchlog
```

You can verify your settings by entering the **show ip arp inspection vlan vlan-range** privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>arp access-list</td>
<td>Defines an ARP ACL.</td>
</tr>
<tr>
<td>clear ip arp inspection log</td>
<td>Clears the dynamic ARP inspection log buffer.</td>
</tr>
<tr>
<td>ip arp inspection log-buffer</td>
<td>Configures the dynamic ARP inspection logging buffer.</td>
</tr>
<tr>
<td>show inventory log</td>
<td>Displays the configuration and contents of the dynamic ARP inspection log buffer.</td>
</tr>
<tr>
<td>show inventory vlan vlan-range</td>
<td>Displays the configuration and the operating state of dynamic ARP inspection for the specified VLAN.</td>
</tr>
</tbody>
</table>
ip dhcp snooping

Use the `ip dhcp snooping` global configuration command on the switch stack or on a standalone switch to globally enable DHCP snooping. Use the `no` form of this command to return to the default setting.

```
   ip dhcp snooping

   no ip dhcp snooping
```

Syntax Description
This command has no arguments or keywords.

Defaults
DHCP snooping is disabled.

Command Modes
Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(19)EA1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
For any DHCP snooping configuration to take effect, you must globally enable DHCP snooping.

DHCP snooping is not active until you enable snooping on a VLAN by using the `ip dhcp snooping vlan vlan-id` global configuration command.

Examples
This example shows how to enable DHCP snooping:

```
Switch(config)# ip dhcp snooping
```

You can verify your settings by entering the `show ip dhcp snooping` user EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip dhcp snooping vlan</code></td>
<td>Enables DHCP snooping on a VLAN.</td>
</tr>
<tr>
<td><code>show ip dhcp snooping</code></td>
<td>Displays the DHCP snooping configuration.</td>
</tr>
<tr>
<td><code>show ip dhcp snooping binding</code></td>
<td>Displays the DHCP snooping binding information.</td>
</tr>
</tbody>
</table>

ip dhcp snooping binding

Use the `ip dhcp snooping binding` privileged EXEC command on the switch stack or on a standalone switch to configure the DHCP snooping binding database and to add binding entries to the database. Use the `no` form of this command to delete entries from the binding database.

```
ip dhcp snooping binding mac-address vlan vlan-id ip-address interface interface-id expiry seconds
```

```
no ip dhcp snooping binding mac-address vlan vlan-id ip-address interface interface-id
```

This command is available only if your switch is running the IP services image, formerly known as the enhanced multilayer image (EMI).

Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mac-address</td>
<td>Specify a MAC address.</td>
</tr>
<tr>
<td>vlan vlan-id</td>
<td>Specify a VLAN number. The range is 1 to 4094.</td>
</tr>
<tr>
<td>ip-address</td>
<td>Specify an IP address.</td>
</tr>
<tr>
<td>interface</td>
<td>Specify an interface on which to add or delete a binding entry.</td>
</tr>
<tr>
<td>interface-id</td>
<td></td>
</tr>
<tr>
<td>expiry</td>
<td>Specify the interval (in seconds) after which the binding entry is no longer valid.</td>
</tr>
<tr>
<td>seconds</td>
<td></td>
</tr>
</tbody>
</table>

Defaults

No default database is defined.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(20)SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use this command when you are testing or debugging the switch.

In the DHCP snooping binding database, each database entry, also referred to a binding, has an IP address, an associated MAC address, the lease time (in hexadecimal format), the interface to which the binding applies, and the VLAN to which the interface belongs. The database can have up to 8192 bindings.

Use the `show ip dhcp snooping binding` privileged EXEC command to display only the configured bindings. Use the `show ip source binding` privileged EXEC command to display the dynamically and statically configured bindings.
Examples

This example shows how to generate a DHCP binding configuration with an expiration time of 1000 seconds on a port in VLAN 1:

```
Switch# ip dhcp snooping binding 0001.1234.1234 vlan 1 172.20.50.5 interface gigabitethernet1/0/1 expiry 1000
```

You can verify your settings by entering the `show ip dhcp snooping binding` or the `show ip dhcp source binding` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip dhcp snooping</code></td>
<td>Enables DHCP snooping on a VLAN.</td>
</tr>
<tr>
<td><code>show ip dhcp snooping binding</code></td>
<td>Displays the dynamically configured bindings in the DHCP snooping binding database and the configuration information.</td>
</tr>
<tr>
<td><code>show ip source binding</code></td>
<td>Displays the dynamically and statically configured bindings in the DHCP snooping binding database.</td>
</tr>
</tbody>
</table>
ip dhcp snooping database

Use the `ip dhcp snooping database` global configuration command on the switch stack or on a standalone switch to configure the DHCP snooping binding database agent. Use the `no` form of this command to disable the agent, to reset the timeout value, or to reset the write-delay value.

```
ip dhcp snooping database 
{flash[number]:/filename | ftp://user:password@host/filename |
   http://[[username:password]@] [hostname | host-ip]/directory/image-name.tar |
   rcp://user@host/filename | tftp://host/filename} | timeout seconds | write-delay seconds}

no ip dhcp snooping database [timeout | write-delay]
```

This command is available only if your switch is running the IP services image, formerly known as the enhanced multilayer image (EMI).

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>flash[number]:/filename</code></td>
<td>Specify that the database agent or the binding file is in the flash memory. (Optional) Use the <code>number</code> parameter to specify the stack member number of the stack master. The range for <code>number</code> is 1 to 9.</td>
</tr>
<tr>
<td><code>ftp://user:password@host/filename</code></td>
<td>Specify that the database agent or the binding file is on an FTP server.</td>
</tr>
<tr>
<td>`http://[[username:password]@] [hostname</td>
<td>host-ip]/directory/image-name.tar`</td>
</tr>
<tr>
<td><code>rcp://user@host/filename</code></td>
<td>Specify that the database agent or the binding file is on a Remote Control Protocol (RCP) server.</td>
</tr>
<tr>
<td><code>tftp://host/filename</code></td>
<td>Specify that the database agent or the binding file is on a TFTP server.</td>
</tr>
<tr>
<td><code>timeout seconds</code></td>
<td>Specify (in seconds) how long to wait for the database transfer process to finish before stopping. The default is 300 seconds. The range is 0 to 86400. Use 0 to define an infinite duration, which means to continue trying the transfer indefinitely.</td>
</tr>
<tr>
<td><code>write-delay seconds</code></td>
<td>Specify (in seconds) the duration for which the transfer should be delayed after the binding database changes. The default is 300 seconds. The range is 15 to 86400.</td>
</tr>
</tbody>
</table>

Defaults

The URL for the database agent or binding file is not defined. The timeout value is 300 seconds (5 minutes). The write-delay value is 300 seconds (5 minutes).

Command Modes

Global configuration
ip dhcp snooping database

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(20)SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The DHCP snooping binding database can have up to 8192 bindings.

To ensure that the lease time in the database is accurate, we recommend that Network Time Protocol (NTP) is enabled and configured for these features:

- NTP authentication
- NTP peer and server associations
- NTP broadcast service
- NTP access restrictions
- NTP packet source IP address

If NTP is configured, the switch writes binding changes to the binding file only when the switch system clock is synchronized with NTP.

Because both NVRAM and the flash memory have limited storage capacities, we recommend that you store a binding file on a TFTP server. You must create an empty file at the configured URL on network-based URLs (such as TFTP and FTP) before the switch can first write bindings to the binding file at that URL.

Use the `ip dhcp snooping database flash[number]:/filename` command to save the DHCP snooping binding database in the stack master NVRAM. The database is not saved in a stack member NVRAM.

If you set the `ip dhcp snooping database timeout` command to 0 seconds and the database is being written to a TFTP file, if the TFTP server goes down, the database agent continues to try the transfer indefinitely. No other transfer can be initiated while this one is in progress. This might be inconsequential because if the server is down, no file can be written to it.

Use the `no ip dhcp snooping database` command to disable the agent.

Use the `no ip dhcp snooping database timeout` command to reset the timeout value.

Use the `no ip dhcp snooping database write-delay` command to reset the write-delay value.

Examples

This example shows how to store a binding file at an IP address of 10.1.1.1 that is in a directory called `directory`. A file named `file` must be present on the TFTP server.

```
Switch(config)# ip dhcp snooping database tftp://10.1.1.1/directory/file
```

This example shows how to store a binding file called `file01.txt` in the stack master NVRAM:

```
Switch(config)# ip dhcp snooping database flash:file01.txt
```

You can verify your settings by entering the `show ip dhcp snooping database` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip dhcp snooping</td>
<td>Enables DHCP snooping on a VLAN.</td>
</tr>
<tr>
<td>ip dhcp snooping binding</td>
<td>Configures the DHCP snooping binding database.</td>
</tr>
<tr>
<td>show ip dhcp snooping database</td>
<td>Displays the status of DHCP snooping database agent.</td>
</tr>
</tbody>
</table>
ip dhcp snooping information option

Use the `ip dhcp snooping information option` global configuration command on the switch stack or on a standalone switch to enable DHCP option-82 data insertion. Use the `no` form of this command to disable DHCP option-82 data insertion.

```
ip dhcp snooping information option
no ip dhcp snooping information option
```

Syntax Description
This command has no arguments or keywords.

Defaults
DHCP option-82 data is inserted.

Command Modes
Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2.1(19)EA1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
You must globally enable DHCP snooping by using the `ip dhcp snooping` global configuration command for any DHCP snooping configuration to take effect.

When the option-82 feature is enabled and a switch receives a DHCP request from a host, it adds the option-82 information in the packet. The option-82 information contains the switch MAC address (the remote ID suboption) and the port identifier, `vlan-mod-port`, from which the packet is received (circuit ID suboption). The switch forwards the DHCP request that includes the option-82 field to the DHCP server.

When the DHCP server receives the packet, it can use the remote ID, the circuit ID, or both to assign IP addresses and implement policies, such as restricting the number of IP addresses that can be assigned to a single remote ID or a circuit ID. Then the DHCP server echoes the option-82 field in the DHCP reply.

The DHCP server unicasts the reply to the switch if the request was relayed to the server by the switch. When the client and server are on the same subnet, the server broadcasts the reply. The switch inspects the remote ID and possibly the circuit ID fields to verify that it originally inserted the option-82 data. The switch removes the option-82 field and forwards the packet to the switch port that connects to the DHCP host that sent the DHCP request.

Examples

This example shows how to enable DHCP option-82 data insertion:

```
Switch(config)# ip dhcp snooping information option
```

You can verify your settings by entering the `show ip dhcp snooping` user EXEC command.
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ip dhcp snooping</code></td>
<td>Displays the DHCP snooping configuration.</td>
</tr>
<tr>
<td><code>show ip dhcp snooping binding</code></td>
<td>Displays the DHCP snooping binding information.</td>
</tr>
</tbody>
</table>
ip dhcp snooping information option allow-untrusted

Use the `ip dhcp snooping information option allow-untrusted` global configuration command on an aggregation switch to configure it to accept DHCP packets with option-82 information that are received on untrusted ports that might be connected to an edge switch. Use the `no` form of this command to return to the default setting.

```
ip dhcp snooping information option allow-untrusted
no ip dhcp snooping information option allow-untrusted
```

Syntax Description

This command has no arguments or keywords.

Defaults

The switch drops DHCP packets with option-82 information that are received on untrusted ports that might be connected to an edge switch.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SEA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You might want an edge switch to which a host is connected to insert DHCP option-82 information at the edge of your network. You might also want to enable DHCP security features, such as DHCP snooping, IP source guard, or dynamic Address Resolution Protocol (ARP) inspection, on an aggregation switch. However, if DHCP snooping is enabled on the aggregation switch, the switch drops packets with option-82 information that are received on an untrusted port and does not learn DHCP snooping bindings for connected devices on a trusted interface.

If the edge switch to which a host is connected inserts option-82 information and you want to use DHCP snooping on an aggregation switch, enter the `ip dhcp snooping information option allow-untrusted` command on the aggregation switch. The aggregation switch can learn the bindings for a host even though the aggregation switch receives DHCP snooping packets on an untrusted port. You can also enable DHCP security features on the aggregation switch. The port on the edge switch to which the aggregation switch is connected must be configured as a trusted port.

Note

Do not enter the `ip dhcp snooping information option allow-untrusted` command on an aggregation switch to which an untrusted device is connected. If you enter this command, an untrusted device might spoof the option-82 information.
ip dhcp snooping information option allow-untrusted

Examples

This example shows how to configure an access switch to not check the option-82 information in untrusted packets from an edge switch and to accept the packets:

```
Switch(config)# ip dhcp snooping information option allow-untrusted
```

You can verify your settings by entering the `show ip dhcp snooping` user EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ip dhcp snooping</code></td>
<td>Displays the DHCP snooping configuration.</td>
</tr>
<tr>
<td><code>show ip dhcp snooping binding</code></td>
<td>Displays the DHCP snooping binding information.</td>
</tr>
</tbody>
</table>
ip dhcp snooping information option format remote-id

Use the `ip dhcp snooping information option format remote-id` global configuration command on the switch stack or on a standalone switch to configure the option-82 remote-ID suboption. Use the `no` form of this command to configure the default remote-ID suboption.

```
ip dhcp snooping information option format remote-id [string ASCII-string | hostname]
no ip dhcp snooping information option format remote-id
```

Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>string ASCII-string</code></td>
<td>Specify a remote ID, using from 1 to 63 ASCII characters (no spaces).</td>
</tr>
<tr>
<td><code>hostname</code></td>
<td>Specify the switch hostname as the remote ID.</td>
</tr>
</tbody>
</table>

Defaults
The switch MAC address is the remote ID.

Command Modes
Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SEE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
You must globally enable DHCP snooping by using the `ip dhcp snooping` global configuration command for any DHCP snooping configuration to take effect.

When the option-82 feature is enabled, the default remote-ID suboption is the switch MAC address. This command allows you to configure either the switch hostname or a string of up to 63 ASCII characters (but no spaces) to be the remote ID.

Note
If the hostname exceeds 63 characters, it will be truncated to 63 characters in the remote-ID configuration.

Examples

This example shows how to configure the option-82 remote-ID suboption:

`Switch(config)# ip dhcp snooping information option format remote-id hostname`

You can verify your settings by entering the `show ip dhcp snooping` user EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip dhcp snooping vlan information option format-type circuit-id string</code></td>
<td>Configures the option-82 circuit-ID suboption.</td>
</tr>
<tr>
<td><code>show ip dhcp snooping</code></td>
<td>Displays the DHCP snooping configuration.</td>
</tr>
</tbody>
</table>
ip dhcp snooping limit rate

Use the `ip dhcp snooping limit rate` interface configuration command on the switch stack or on a standalone switch to configure the number of DHCP messages an interface can receive per second. Use the `no` form of this command to return to the default setting.

```
ip dhcp snooping limit rate rate
no ip dhcp snooping limit rate
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rate</td>
<td>Number of DHCP messages an interface can receive per second. The range is 1 to 2048.</td>
</tr>
</tbody>
</table>

Defaults

DHCP snooping rate limiting is disabled.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(19)EA1</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(18)SE</td>
<td>The range was changed to 1 to 2048.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Normally, the rate limit applies to untrusted interfaces. If you want to configure rate limiting for trusted interfaces, keep in mind that trusted interfaces might aggregate DHCP traffic on multiple VLANs (some of which might not be snooped) in the switch, and you will need to adjust the interface rate limits to a higher value.

If the rate limit is exceeded, the interface is error-disabled. If you enabled error recovery by entering the `errdisable recovery dhcp-rate-limit` global configuration command, the interface retries the operation again when all the causes have timed out. If the error-recovery mechanism is not enabled, the interface stays in the error-disabled state until you enter the `shutdown` and `no shutdown` interface configuration commands.

Examples

This example shows how to set a message rate limit of 150 messages per second on an interface:

```
Switch(config-if)# ip dhcp snooping limit rate 150
```

You can verify your settings by entering the `show ip dhcp snooping` user EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>errdisable recovery</td>
<td>Configures the recover mechanism.</td>
</tr>
<tr>
<td>show ip dhcp snooping</td>
<td>Displays the DHCP snooping configuration.</td>
</tr>
<tr>
<td>show ip dhcp snooping binding</td>
<td>Displays the DHCP snooping binding information.</td>
</tr>
</tbody>
</table>
ip dhcp snooping trust

Use the `ip dhcp snooping trust` interface configuration command on the switch stack or on a standalone switch to configure a port as trusted for DHCP snooping purposes. Use the `no` form of this command to return to the default setting.

```
ip dhcp snooping trust
no ip dhcp snooping trust
```

Syntax Description

This command has no arguments or keywords.

Defaults

DHCP snooping trust is disabled.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(19)EA1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Configure as trusted ports those that are connected to a DHCP server or to other switches or routers. Configure as untrusted ports those that are connected to DHCP clients.

Examples

This example shows how to enable DHCP snooping trust on a port:

```
Switch(config-if)# ip dhcp snooping trust
```

You can verify your settings by entering the `show ip dhcp snooping` user EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ip dhcp snooping</code></td>
<td>Displays the DHCP snooping configuration.</td>
</tr>
<tr>
<td><code>show ip dhcp snooping binding</code></td>
<td>Displays the DHCP snooping binding information.</td>
</tr>
</tbody>
</table>
ip dhcp snooping verify

Use the `ip dhcp snooping verify` global configuration command on the switch stack or on a standalone switch to configure the switch to verify on an untrusted port that the source MAC address in a DHCP packet matches the client hardware address. Use the `no` form of this command to configure the switch to not verify the MAC addresses.

```
ip dhcp snooping verify mac-address
no ip dhcp snooping verify mac-address
```

Syntax Description

This command has no arguments or keywords.

Defaults

The switch verifies the source MAC address in a DHCP packet that is received on untrusted ports matches the client hardware address in the packet.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(18)SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

In a service-provider network, when a switch receives a packet from a DHCP client on an untrusted port, it automatically verifies that the source MAC address and the DHCP client hardware address match. If the addresses match, the switch forwards the packet. If the addresses do not match, the switch drops the packet.

Examples

This example shows how to disable the MAC address verification:

```
Switch(config)# no ip dhcp snooping verify mac-address
```

You can verify your settings by entering the `show ip dhcp snooping` user EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ip dhcp snooping</code></td>
<td>Displays the DHCP snooping configuration.</td>
</tr>
</tbody>
</table>
ip dhcp snooping vlan

Use the `ip dhcp snooping vlan` global configuration command on the switch stack or on a standalone switch to enable DHCP snooping on a VLAN. Use the `no` form of this command to return to the default setting.

```
  ip dhcp snooping vlan vlan-range
  no ip dhcp snooping vlan vlan-range
```

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>vlan vlan-range</code></td>
<td>Specify a VLAN ID or a range of VLANs on which to enable DHCP snooping. The range is 1 to 4094. You can enter a single VLAN ID identified by VLAN ID number, a series of VLAN IDs separated by commas, a range of VLAN IDs separated by hyphens, or a range of VLAN IDs separated by entering the starting and ending VLAN IDs separated by a space.</td>
</tr>
</tbody>
</table>

Defaults

DHCP snooping is disabled on all VLANs.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(19)EA1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You must first globally enable DHCP snooping before enabling DHCP snooping on a VLAN.

Examples

This example shows how to enable DHCP snooping on VLAN 10:

```
Switch(config)# ip dhcp snooping vlan 10
```

You can verify your settings by entering the `show ip dhcp snooping` user EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ip dhcp snooping</code></td>
<td>Displays the DHCP snooping configuration.</td>
</tr>
<tr>
<td><code>show ip dhcp snooping binding</code></td>
<td>Displays the DHCP snooping binding information.</td>
</tr>
</tbody>
</table>
ip dhcp snooping vlan information option format-type circuit-id string

Use the **ip dhcp snooping vlan information option format-type circuit-id string** interface configuration command on the switch stack or on a standalone switch to configure the option-82 circuit-ID suboption. Use the **no** form of this command to configure the default circuit-ID suboption.

```
no ip dhcp snooping vlan vlan information option format-type circuit-id string
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>vlan vlan</code></td>
<td>Specify the VLAN ID. The range is 1 to 4094.</td>
</tr>
<tr>
<td><code>string ASCII-string</code></td>
<td>Specify a circuit ID, using from 3 to 63 ASCII characters (no spaces).</td>
</tr>
</tbody>
</table>

Defaults

The switch VLAN and the port identifier, in the format `vlan-mod-port`, is the default circuit ID.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SEE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You must globally enable DHCP snooping by using the **ip dhcp snooping** global configuration command for any DHCP snooping configuration to take effect.

When the option-82 feature is enabled, the default circuit-ID suboption is the switch VLAN and the port identifier, in the format `vlan-mod-port`. This command allows you to configure a string of ASCII characters to be the circuit ID.

Note

When configuring a large number of circuit IDs on a switch, consider the impact of lengthy character strings on the NVRAM or flash memory. If the circuit-ID configurations, combined with other data, exceed the capacity of the NVRAM or the flash memory, an error message appears.

Examples

This example shows how to configure the option-82 circuit-ID suboption:

```
Switch(config-if)# ip dhcp snooping vlan 250 information option format-type circuit-id string customerABC-250-0-0
```

You can verify your settings by entering the **show ip dhcp snooping** user EXEC command.
The `show ip dhcp snooping` user EXEC command only displays the global command output, including a remote-ID configuration. It does not display any per-interface, per-VLAN string that you have configured for the circuit ID.

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>ip dhcp snooping information option format remote-id</code></td>
<td>Configures the option-82 remote-ID suboption.</td>
</tr>
<tr>
<td></td>
<td><code>show ip dhcp snooping</code></td>
<td>Displays the DHCP snooping configuration.</td>
</tr>
</tbody>
</table>
ip igmp filter

Use the `ip igmp filter` interface configuration command on the switch stack or on a standalone switch to control whether or not all hosts on a Layer 2 interface can join one or more IP multicast groups by applying an Internet Group Management Protocol (IGMP) profile to the interface. Use the `no` form of this command to remove the specified profile from the interface.

```
ip igmp filter profile number
no ip igmp filter
```

Syntax Description

- **profile number**

The IGMP profile number to be applied. The range is 1 to 4294967295.

Defaults

No IGMP filters are applied.

Command Modes

Interface configuration

Command History

- **Release**

- **Modification**

 - 12.1(11)AX

 This command was introduced.

Usage Guidelines

You can apply IGMP filters only to Layer 2 physical interfaces; you cannot apply IGMP filters to routed ports, switch virtual interfaces (SVIs), or ports that belong to an EtherChannel group.

An IGMP profile can be applied to one or more switch port interfaces, but one port can have only one profile applied to it.

Examples

This example shows how to apply IGMP profile 22 to a port:

```
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# ip igmp filter 22
```

You can verify your setting by using the `show running-config` privileged EXEC command and by specifying an interface.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip igmp profile</td>
<td>Configures the specified IGMP profile number.</td>
</tr>
<tr>
<td>show ip igmp profile</td>
<td>Displays the characteristics of the specified IGMP profile.</td>
</tr>
<tr>
<td>show running-config interface</td>
<td>Displays the running configuration on the switch interface, including the IGMP profile (if any) that is applied to an interface. For syntax information, select Cisco IOS Configuration Fundamentals Command Reference, Release 12.2 > File Management Commands > Configuration File Management Commands.</td>
</tr>
</tbody>
</table>
ip igmp max-groups

Use the **ip igmp max-groups** interface configuration command on the switch stack or on a standalone
switch to set the maximum number of Internet Group Management Protocol (IGMP) groups that a
Layer 2 interface can join or to configure the IGMP throttling action when the maximum number of
entries is in the forwarding table. Use the **no** form of this command to set the maximum back to the
default, which is to have no maximum limit, or to return to the default throttling action, which is to drop
the report.

```
ip igmp max-groups {number | action {deny | replace}}
no ip igmp max-groups {number | action}
```

Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>The maximum number of IGMP groups that an interface can join. The range is 0 to 4294967294. The default is no limit.</td>
</tr>
<tr>
<td>action</td>
<td>When the maximum number of entries is in the IGMP snooping forwarding table, drop the next IGMP join report. This is the default action.</td>
</tr>
<tr>
<td></td>
<td>When the maximum number of entries is in the IGMP snooping forwarding table, replace the existing group with the new group for which the IGMP report was received.</td>
</tr>
</tbody>
</table>

Defaults

The default maximum number of groups is no limit.

After the switch learns the maximum number of IGMP group entries on an interface, the default
throttling action is to drop the next IGMP report that the interface receives and to not add an entry for
the IGMP group to the interface.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(19)EA1</td>
<td>The action {deny</td>
</tr>
</tbody>
</table>

Usage Guidelines

You can use this command only on Layer 2 physical interfaces and on logical EtherChannel interfaces.
You cannot set IGMP maximum groups for routed ports, switch virtual interfaces (SVIs), or ports that
belong to an EtherChannel group.
Follow these guidelines when configuring the IGMP throttling action:

- If you configure the throttling action as **deny** and set the maximum group limitation, the entries that were previously in the forwarding table are not removed but are aged out. After these entries are aged out, when the maximum number of entries is in the forwarding table, the switch drops the next IGMP report received on the interface.

- If you configure the throttling action as **replace** and set the maximum group limitation, the entries that were previously in the forwarding table are removed. When the maximum number of entries is in the forwarding table, the switch replaces a randomly selected multicast entry with the received IGMP report.

- When the maximum group limitation is set to the default (no maximum), entering the `ip igmp max-groups {deny | replace}` command has no effect.

Examples

This example shows how to limit to 25 the number of IGMP groups that a port can join:

```
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# ip igmp max-groups 25
```

This example shows how to configure the switch to replace the existing group with the new group for which the IGMP report was received when the maximum number of entries is in the forwarding table:

```
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# ip igmp max-groups action replace
```

You can verify your setting by using the **show running-config** privileged EXEC command and by specifying an interface.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show running-config interface interface-id</td>
<td>Displays the running configuration on the switch interface, including the maximum number of IGMP groups that an interface can join and the throttling action. For syntax information, select [Cisco IOS Configuration Fundamentals Command Reference, Release 12.2 > File Management Commands > Configuration File Management Commands](https://www.cisco.com/c/en/us/td/docs/switches LAN-SW/ios/ja/configuration/12-2/configuration/12-2-configuration-file-management.html).</td>
</tr>
</tbody>
</table>
ip igmp profile

Use the `ip igmp profile` global configuration command on the switch stack or on a standalone switch to create an Internet Group Management Protocol (IGMP) profile and enter IGMP profile configuration mode. From this mode, you can specify the configuration of the IGMP profile to be used for filtering IGMP membership reports from a switchport. Use the `no` form of this command to delete the IGMP profile.

```
ip igmp profile profile number
no ip igmp profile profile number
```

Syntax Description

| profile number | The IGMP profile number being configured. The range is 1 to 4294967295. |

Defaults

No IGMP profiles are defined. When configured, the default action for matching an IGMP profile is to deny matching addresses.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When you are in IGMP profile configuration mode, you can create the profile by using these commands:

- **deny**: specifies that matching addresses are denied; this is the default condition.
- **exit**: exits from igmp-profile configuration mode.
- **no**: negates a command or resets to its defaults.
- **permit**: specifies that matching addresses are permitted.
- **range**: specifies a range of IP addresses for the profile. This can be a single IP address or a range with a start and an end address.

When entering a range, enter the low IP multicast address, a space, and the high IP multicast address.

You can apply an IGMP profile to one or more Layer 2 interfaces, but each interface can have only one profile applied to it.

Examples

This example shows how to configure IGMP profile 40 that permits the specified range of IP multicast addresses:

```
Switch(config)# ip igmp profile 40
Switch(config-igmp-profile)# permit
Switch(config-igmp-profile)# range 233.1.1.1 233.255.255.255
```

You can verify your settings by using the `show ip igmp profile` privileged EXEC command.
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip igmp filter</code></td>
<td>Applies the IGMP profile to the specified interface.</td>
</tr>
<tr>
<td><code>show ip igmp profile</code></td>
<td>Displays the characteristics of all IGMP profiles or the specified IGMP profile number.</td>
</tr>
</tbody>
</table>
ip igmp snooping

Use the `ip igmp snooping` global configuration command on the switch stack or on a standalone switch to globally enable Internet Group Management Protocol (IGMP) snooping on the switch or to enable it on a per-VLAN basis. Use the `no` form of this command to return to the default setting.

```
ip igmp snooping [vlan vlan-id]
no ip igmp snooping [vlan vlan-id]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>vlan vlan-id</code></td>
<td>(Optional) Enable IGMP snooping on the specified VLAN. The range is 1 to 1001 and 1006 to 4094.</td>
</tr>
</tbody>
</table>

Defaults

IGMP snooping is globally enabled on the switch.

IGMP snooping is enabled on VLAN interfaces.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When IGMP snooping is enabled globally, it is enabled in all the existing VLAN interfaces. When IGMP snooping is globally disabled, it is disabled on all the existing VLAN interfaces.

VLAN IDs 1002 to 1005 are reserved for Token Ring and FDDI VLANs and cannot be used in IGMP snooping.

Examples

This example shows how to globally enable IGMP snooping:

```
Switch(config)# ip igmp snooping
```

This example shows how to enable IGMP snooping on VLAN 1:

```
Switch(config)# ip igmp snooping vlan 1
```

You can verify your settings by entering the `show ip igmp snooping` privileged EXEC command.
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip igmp snooping report-suppression</code></td>
<td>Enables IGMP report suppression.</td>
</tr>
<tr>
<td><code>show ip igmp snooping</code></td>
<td>Displays the snooping configuration.</td>
</tr>
<tr>
<td><code>show ip igmp snooping groups</code></td>
<td>Displays IGMP snooping multicast information.</td>
</tr>
<tr>
<td><code>show ip igmp snooping mrouter</code></td>
<td>Displays the IGMP snooping router ports.</td>
</tr>
<tr>
<td><code>show ip igmp snooping querier</code></td>
<td>Displays the configuration and operation information for the IGMP querier configured on a switch.</td>
</tr>
</tbody>
</table>
ip igmp snooping last-member-query-interval

Use the `ip igmp snooping last-member-query-interval` global configuration command on the switch stack or on a standalone switch to enable the Internet Group Management Protocol (IGMP) configurable-leave timer globally or on a per-VLAN basis. Use the `no` form of this command to return to the default setting.

```
ip igmp snooping [vlan vlan-id] last-member-query-interval time
no ip igmp snooping [vlan vlan-id] last-member-query-interval
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>vlan vlan-id</code></td>
<td>(Optional) Enable IGMP snooping and the leave timer on the specified VLAN. The range is 1 to 1001 and 1006 to 4094.</td>
</tr>
<tr>
<td><code>time</code></td>
<td>Interval time out in seconds. The range is 100 to 5000 milliseconds.</td>
</tr>
</tbody>
</table>

Defaults

The default timeout setting is 1000 milliseconds.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SEB</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When IGMP snooping is globally enabled, IGMP snooping is enabled on all the existing VLAN interfaces. When IGMP snooping is globally disabled, IGMP snooping is disabled on all the existing VLAN interfaces.

VLAN IDs 1002 to 1005 are reserved for Token Ring and FDDI VLANs and cannot be used in IGMP snooping.

Configuring the leave timer on a VLAN overrides the global setting.

The IGMP configurable leave time is only supported on devices running IGMP Version 2.

The configuration is saved in NVRAM.

Examples

This example shows how to globally enable the IGMP leave timer for 2000 milliseconds:
```
Switch(config)# ip igmp snooping last-member-query-interval 2000
```

This example shows how to configure the IGMP leave timer for 3000 milliseconds on VLAN 1:
```
Switch(config)# ip igmp snooping vlan 1 last-member-query-interval 3000
```

You can verify your settings by entering the `show ip igmp snooping` privileged EXEC command.
ip igmp snooping last-member-query-interval

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip igmp snooping</td>
<td>Enables IGMP snooping on the switch or on a VLAN.</td>
</tr>
<tr>
<td>ip igmp snooping vlan immediate-leave</td>
<td>Enables IGMP Immediate-Leave processing.</td>
</tr>
<tr>
<td>ip igmp snooping vlan mrouter</td>
<td>Configures a Layer 2 port as a multicast router port.</td>
</tr>
<tr>
<td>ip igmp snooping vlan static</td>
<td>Configures a Layer 2 port as a member of a group.</td>
</tr>
<tr>
<td>show ip igmp snooping</td>
<td>Displays the IGMP snooping configuration.</td>
</tr>
</tbody>
</table>
ip igmp snooping querier

Use the `ip igmp snooping querier` global configuration command on the switch stack or on a standalone switch to globally enable the Internet Group Management Protocol (IGMP) querier function in Layer 2 networks. Use the command with keywords to enable and configure the IGMP querier feature on a VLAN interface. Use the `no` form of this command to return to the default settings.

```
ip igmp snooping querier [vlan vlan-id] [address ip-address | max-response-time response-time | query-interval interval-count | tcn query [count count | interval interval] | timer expiry | version version]
```

```
no ip igmp snooping querier [vlan vlan-id] [address | max-response-time | query-interval | tcn query { count count | interval interval} | timer expiry | version]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>vlan vlan-id</code></td>
<td>(Optional) Enable IGMP snooping and the IGMP querier function on the specified VLAN. The range is 1 to 1001 and 1006 to 4094.</td>
</tr>
<tr>
<td><code>address ip-address</code></td>
<td>(Optional) Specify a source IP address. If you do not specify an IP address, the querier tries to use the global IP address configured for the IGMP querier.</td>
</tr>
<tr>
<td><code>max-response-time response-time</code></td>
<td>(Optional) Set the maximum time to wait for an IGMP querier report. The range is 1 to 25 seconds.</td>
</tr>
<tr>
<td><code>query-interval interval-count</code></td>
<td>(Optional) Set the interval between IGMP queriers. The range is 1 to 18000 seconds.</td>
</tr>
</tbody>
</table>
| `tcn query[count count | interval interval]` | (Optional) Set parameters related to Topology Change Notifications (TCNs). The keywords have these meanings:
 - `count count`—Set the number of TCN queries to be executed during the TCN interval time. The range is 1 to 10.
 - `interval interval`—Set the TCN query interval time. The range is 1 to 255. |
| `timer expiry` | (Optional) Set the length of time until the IGMP querier expires. The range is 60 to 300 seconds. |
| `version version` | (Optional) Select the IGMP version number that the querier feature uses. Select 1 or 2. |

Defaults

The IGMP snooping querier feature is globally disabled on the switch.

When enabled, the IGMP snooping querier disables itself if it detects IGMP traffic from a multicast-enabled device.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SEA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
Usage Guidelines

Use this command to enable IGMP snooping to detect the IGMP version and IP address of a device that sends IGMP query messages, which is also called a *querier*.

By default, the IGMP snooping querier is configured to detect devices that use IGMP Version 2 (IGMPv2) but does not detect clients that are using IGMP Version 1 (IGMPv1). You can manually configure the `max-response-time` value when devices use IGMPv2. You cannot configure the `max-response-time` when devices use IGMPv1. (The value cannot be configured and is set to zero).

Non-RFC compliant devices running IGMPv1 might reject IGMP general query messages that have a non-zero value as the `max-response-time` value. If you want the devices to accept the IGMP general query messages, configure the IGMP snooping querier to run IGMPv1.

VLAN IDs 1002 to 1005 are reserved for Token Ring and FDDI VLANs and cannot be used in IGMP snooping.

Examples

This example shows how to globally enable the IGMP snooping querier feature:

```
Switch(config)# ip igmp snooping querier
```

This example shows how to set the IGMP snooping querier maximum response time to 25 seconds:

```
Switch(config)# ip igmp snooping querier max-response-time 25
```

This example shows how to set the IGMP snooping querier interval time to 60 seconds:

```
Switch(config)# ip igmp snooping querier query-interval 60
```

This example shows how to set the IGMP snooping querier TCN query count to 25:

```
Switch(config)# ip igmp snooping querier tcn count 25
```

This example shows how to set the IGMP snooping querier timeout to 60 seconds:

```
Switch(config)# ip igmp snooping querier timeout expiry 60
```

This example shows how to set the IGMP snooping querier feature to version 2:

```
Switch(config)# ip igmp snooping querier version 2
```

You can verify your settings by entering the `show ip igmp snooping` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip igmp snooping report-suppression</code></td>
<td>Enables IGMP report suppression.</td>
</tr>
<tr>
<td><code>show ip igmp snooping</code></td>
<td>Displays the IGMP snooping configuration.</td>
</tr>
<tr>
<td><code>show ip igmp snooping groups</code></td>
<td>Displays IGMP snooping multicast information.</td>
</tr>
<tr>
<td><code>show ip igmp snooping mrouter</code></td>
<td>Displays the IGMP snooping router ports.</td>
</tr>
</tbody>
</table>
ip igmp snooping report-suppression

Use the **ip igmp snooping report-suppression** global configuration command on the switch stack or on a standalone switch to enable Internet Group Management Protocol (IGMP) report suppression. Use the **no** form of this command to disable IGMP report suppression and to forward all IGMP reports to multicast routers.

Syntax Description

This command has no arguments or keywords.

Defaults

IGMP report suppression is enabled.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(19)EA1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

IGMP report suppression is supported only when the multicast query has IGMPV1 and IGMPV2 reports. This feature is not supported when the query includes IGMPV3 reports.

The switch uses IGMP report suppression to forward only one IGMP report per multicast router query to multicast devices. When IGMP router suppression is enabled (the default), the switch sends the first IGMP report from all hosts for a group to all the multicast routers. The switch does not send the remaining IGMP reports for the group to the multicast routers. This feature prevents duplicate reports from being sent to the multicast devices.

If the multicast router query includes requests only for IGMPV1 and IGMPV2 reports, the switch forwards only the first IGMPV1 or IGMPV2 report from all hosts for a group to all the multicast routers. If the multicast router query also includes requests for IGMPV3 reports, the switch forwards all IGMPV1, IGMPV2, and IGMPV3 reports for a group to the multicast devices.

If you disable IGMP report suppression by entering the **no ip igmp snooping report-suppression** command, all IGMP reports are forwarded to all the multicast routers.

Examples

This example shows how to disable report suppression:

```
switch(config)# no ip igmp snooping report-suppression
```

You can verify your settings by entering the **show ip igmp snooping** privileged EXEC command.
ip igmp snooping report-suppression

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip igmp snooping</td>
<td>Enables IGMP snooping on the switch or on a VLAN.</td>
</tr>
<tr>
<td>show ip igmp snooping</td>
<td>Displays the IGMP snooping configuration of the switch or the VLAN.</td>
</tr>
</tbody>
</table>
ip igmp snooping tcn

Use the `ip igmp snooping tcn` global configuration command on the switch stack or on a standalone switch to configure the Internet Group Management Protocol (IGMP) Topology Change Notification (TCN) behavior. Use the `no` form of this command to return to the default settings.

```
ip igmp snooping tcn {flood query count count | query solicit}
nop igmp snooping tcn {flood query count | query solicit}
```

Syntax Description

- `flood query count count` Specify the number of IGMP general queries for which the multicast traffic is flooded. The range is 1 to 10.
- `query solicit` Send an IGMP leave message (global leave) to speed the process of recovering from the flood mode caused during a TCN event.

Defaults

The TCN flood query count is 2.
The TCN query solicitation is disabled.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SEB</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use `ip igmp snooping tcn flood query count` global configuration command to control the time that multicast traffic is flooded after a TCN event. If you set the TCN flood query count to 1 by using the `ip igmp snooping tcn flood query count` command, the flooding stops after receiving 1 general query. If you set the count to 7, the flooding of multicast traffic due to the TCN event lasts until 7 general queries are received. Groups are relearned based on the general queries received during the TCN event.

Use the `ip igmp snooping tcn query solicit` global configuration command to enable the switch to send the global leave message whether or not it is the spanning-tree root. This command also speeds the process of recovering from the flood mode caused during a TCN event.

Examples

This example shows how to specify 7 as the number of IGMP general queries for which the multicast traffic is flooded:

```
Switch(config) # no ip igmp snooping tcn flood query count 7
```

You can verify your settings by entering the `show ip igmp snooping` privileged EXEC command.
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip igmp snooping</code></td>
<td>Enables IGMP snooping on the switch or on a VLAN.</td>
</tr>
<tr>
<td><code>ip igmp snooping tcn flood</code></td>
<td>Specifies flooding on an interface as the IGMP snooping spanning-tree TCN behavior.</td>
</tr>
<tr>
<td><code>show ip igmp snooping</code></td>
<td>Displays the IGMP snooping configuration of the switch or the VLAN.</td>
</tr>
</tbody>
</table>
ip igmp snooping tcn flood

Use the **ip igmp snooping tcn flood** interface configuration command on the switch stack or on a standalone switch to specify multicast flooding as the Internet Group Management Protocol (IGMP) snooping spanning-tree Topology Change Notification (TCN) behavior. Use the **no** form of this command to disable the multicast flooding.

```
ip igmp snooping tcn flood
no ip igmp snooping tcn flood
```

Syntax Description
This command has no arguments or keywords.

Defaults
Multicast flooding is enabled on an interface during a spanning-tree TCN event.

Command Modes
Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SEB</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
When the switch receives a TCN, multicast traffic is flooded to all the ports until two general queries are received. If the switch has many ports with attached hosts that are subscribed to different multicast groups, the flooding might exceed the capacity of the link and cause packet loss.

You can change the flooding query count by using the **ip igmp snooping tcn flood query count count** global configuration command.

Examples
This example shows how to disable the multicast flooding on an interface:

```
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# no ip igmp snooping tcn flood
```

You can verify your settings by entering the **show ip igmp snooping** privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip igmp snooping</td>
<td>Enables IGMP snooping on the switch or on a VLAN.</td>
</tr>
<tr>
<td>ip igmp snooping tcn</td>
<td>Configures the IGMP TCN behavior on the switch.</td>
</tr>
<tr>
<td>show ip igmp snooping</td>
<td>Displays the IGMP snooping configuration of the switch or the VLAN.</td>
</tr>
</tbody>
</table>
ip igmp snooping vlan immediate-leave

Use the **ip igmp snooping immediate-leave** global configuration command on the switch stack or on a standalone switch to enable Internet Group Management Protocol (IGMP) snooping immediate-leave processing on a per-VLAN basis. Use the **no** form of this command to return to the default setting.

```
ip igmp snooping vlan vlan-id immediate-leave

no ip igmp snooping vlan vlan-id immediate-leave
```

Syntax Description

| `vlan-id` | Enable IGMP snooping and the Immediate-Leave feature on the specified VLAN. The range is 1 to 1001 and 1006 to 4094. |

Defaults

IGMP immediate-leave processing is disabled.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

VLAN IDs 1002 to 1005 are reserved for Token Ring and FDDI VLANs and cannot be used in IGMP snooping.

You should configure the Immediate-Leave feature only when there is a maximum of one receiver on every port in the VLAN. The configuration is saved in NVRAM.

The Immediate-Leave feature is supported only with IGMP Version 2 hosts.

Examples

This example shows how to enable IGMP immediate-leave processing on VLAN 1:

```
Switch(config)# ip igmp snooping vlan 1 immediate-leave
```

You can verify your settings by entering the `show ip igmp snooping` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip igmp snooping report-suppression</code></td>
<td>Enables IGMP report suppression.</td>
</tr>
<tr>
<td><code>show ip igmp snooping</code></td>
<td>Displays the snooping configuration.</td>
</tr>
<tr>
<td><code>show ip igmp snooping groups</code></td>
<td>Displays IGMP snooping multicast information.</td>
</tr>
<tr>
<td><code>show ip igmp snooping mrouter</code></td>
<td>Displays the IGMP snooping router ports.</td>
</tr>
<tr>
<td><code>show ip igmp snooping querier</code></td>
<td>Displays the configuration and operation information for the IGMP querier configured on a switch.</td>
</tr>
</tbody>
</table>
ip igmp snooping vlan mrouter

Use the **ip igmp snooping mrouter** global configuration command on the switch stack or on a standalone switch to add a multicast router port or to configure the multicast learning method. Use the **no** form of this command to return to the default settings.

```
ip igmp snooping vlan vlan-id mrouter {interface interface-id | learn {cgmp | pim-dvmrp}}
no ip igmp snooping vlan vlan-id mrouter {interface interface-id | learn {cgmp | pim-dvmrp}}
```

Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>vlan-id</code></td>
<td>Enable IGMP snooping, and add the port in the specified VLAN as the multicast router port. The range is 1 to 1001 and 1006 to 4094.</td>
</tr>
<tr>
<td><code>interface interface-id</code></td>
<td>Specify the next-hop interface to the multicast router. The keywords have these meanings:</td>
</tr>
<tr>
<td></td>
<td>• <code>fastethernet interface number</code>—a Fast Ethernet IEEE 802.3 interface.</td>
</tr>
<tr>
<td></td>
<td>• <code>gigabitethernet interface number</code>—a Gigabit Ethernet IEEE 802.3z interface.</td>
</tr>
<tr>
<td></td>
<td>• <code>port-channel interface number</code>—a channel interface. The range is 0 to 48.</td>
</tr>
<tr>
<td>`learn {cgmp</td>
<td>pim-dvmrp}`</td>
</tr>
<tr>
<td></td>
<td>• <code>cgmp</code>—Set the switch to learn multicast router ports by snooping on Cisco Group Management Protocol (CGMP) packets.</td>
</tr>
<tr>
<td></td>
<td>• <code>pim-dvmrp</code>—Set the switch to learn multicast router ports by snooping on IGMP queries and Protocol-Independent Multicast-Distance Vector Multicast Routing Protocol (PIM-DVMRP) packets.</td>
</tr>
</tbody>
</table>

Defaults

By default, there are no multicast router ports.

The default learning method is **pim-dvmrp**—to snoop IGMP queries and PIM-DVMRP packets.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

VLAN IDs 1002 to 1005 are reserved for Token Ring and FDDI VLANs and cannot be used in IGMP snooping.

The CGMP learn method is useful for reducing control traffic.

The configuration is saved in NVRAM.
This example shows how to configure a port as a multicast router port:

```
Switch(config)# ip igmp snooping vlan 1 mrouter interface gigabitethernet1/0/2
```

This example shows how to specify the multicast router learning method as CGMP:

```
Switch(config)# ip igmp snooping vlan 1 mrouter learn cgmp
```

You can verify your settings by entering the `show ip igmp snooping` privileged EXEC command.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip igmp snooping report-suppression</code></td>
<td>Enables IGMP report suppression.</td>
</tr>
<tr>
<td><code>show ip igmp snooping</code></td>
<td>Displays the snooping configuration.</td>
</tr>
<tr>
<td><code>show ip igmp snooping groups</code></td>
<td>Displays IGMP snooping multicast information.</td>
</tr>
<tr>
<td><code>show ip igmp snooping mrouter</code></td>
<td>Displays the IGMP snooping router ports.</td>
</tr>
<tr>
<td><code>show ip igmp snooping querier</code></td>
<td>Displays the configuration and operation information for the IGMP querier configured on a switch.</td>
</tr>
</tbody>
</table>
Use the `ip igmp snooping static` global configuration command on the switch stack or on a standalone switch to enable Internet Group Management Protocol (IGMP) snooping and to statically add a Layer 2 port as a member of a multicast group. Use the `no` form of this command to remove ports specified as members of a static multicast group.

```plaintext
ip igmp snooping vlan vlan-id static ip-address interface interface-id
no ip igmp snooping vlan vlan-id static ip-address interface interface-id
```

Syntax Description

- **vlan-id**: Enable IGMP snooping on the specified VLAN. The range is 1 to 1001 and 1006 to 4094.
- **ip-address**: Add a Layer 2 port as a member of a multicast group with the specified group IP address.
- **interface interface-id**: Specify the interface of the member port. The keywords have these meanings:
 - `fastethernet interface number`—a Fast Ethernet IEEE 802.3 interface.
 - `gigabitethernet interface number`—a Gigabit Ethernet IEEE 802.3z interface.
 - `port-channel interface number`—a channel interface. The range is 0 to 48.

Defaults

By default, there are no ports statically configured as members of a multicast group.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

VLAN IDs 1002 to 1005 are reserved for Token Ring and FDDI VLANs and cannot be used in IGMP snooping.

The configuration is saved in NVRAM.

Examples

This example shows how to statically configure a host on an interface:

```
Switch(config)# ip igmp snooping vlan 1 static 0100.5e02.0203 interface gigabitethernet1/0/1
Configuring port gigabitethernet1/0/1 on group 0100.5e02.0203
```

You can verify your settings by entering the `show ip igmp snooping` privileged EXEC command.
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip igmp snooping report-suppression</code></td>
<td>Enables IGMP report suppression.</td>
</tr>
<tr>
<td><code>show ip igmp snooping</code></td>
<td>Displays the snooping configuration.</td>
</tr>
<tr>
<td><code>show ip igmp snooping groups</code></td>
<td>Displays IGMP snooping multicast information.</td>
</tr>
<tr>
<td><code>show ip igmp snooping mrouter</code></td>
<td>Displays the IGMP snooping router ports.</td>
</tr>
<tr>
<td><code>show ip igmp snooping querier</code></td>
<td>Displays the configuration and operation information for the IGMP querier configured on a switch.</td>
</tr>
</tbody>
</table>
Use the `ip snap forwarding` global configuration command on the switch stack or on a standalone switch to enable forwarding of IP Version 4 (IPv4) and IP Version 6 (IPv6) frames with Subnetwork Access Protocol (SNAP) encapsulation. Use `no` form of this command to disable forwarding of these frames.

```
ip snap forwarding
no ip snap forwarding
```

Syntax Description
This command has no arguments or keywords.

Defaults
The switch does not forward IPv4 and IPv6 frames with SNAP encapsulation.

Command Modes
Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SEC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
Use the `ip snap forwarding` global configuration command to enable forwarding of IPv4 and IPv6 frames with SNAP encapsulation.

If a switch that is joining the stack does not support forwarding of IPv4 and IPv6 frames with SNAP encapsulation, all the switches in the stack do not forward the IPv4 and IPv6 frames, and this forwarding feature is disabled.

Examples
This example shows how to enable forwarding of IPv4 and IPv6 frames with SNAP encapsulation:

```
Switch(config)# ip snap forwarding
```

You can verify your settings by entering the `show running-config` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show running-config</code></td>
<td>Displays the running configuration on the switch. For syntax information, select Cisco IOS Configuration Fundamentals Command Reference, Release 12.2 > File Management Commands > Configuration File Management Commands.</td>
</tr>
</tbody>
</table>
ip source binding

Use the ip source binding global configuration command on the switch stack or on a standalone switch to configure static IP source bindings on the switch. Use the no form of this command to delete static bindings.

```
ip source binding mac-address vlan vlan-id ip-address interface interface-id

no source binding mac-address vlan vlan-id ip-address interface interface-id
```

This command is available only if your switch is running the IP services image, formerly known as the enhanced multilayer image (EMI).

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mac-address</td>
<td>Specify a MAC address.</td>
</tr>
<tr>
<td>vlan vlan-id</td>
<td>Specify a VLAN number. The range is from 1 to 4094.</td>
</tr>
<tr>
<td>ip-address</td>
<td>Specify an IP address.</td>
</tr>
<tr>
<td>interface interface-id</td>
<td>Specify an interface on which to add or delete an IP source binding.</td>
</tr>
</tbody>
</table>

Defaults

No IP source bindings are configured.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(20)SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

A static IP source binding entry has an IP address, its associated MAC address, and its associated VLAN number. The entry is based on the MAC address and the VLAN number. If you modify an entry by changing only the IP address, the switch updates the entry instead creating a new one.

Examples

This example shows how to add a static IP source binding:

```
Switch(config)# ip source binding 0001.1234.1234 vlan 1 172.20.50.5 interface gigabitethernet1/0/1
```

This example shows how to add a static binding and then modify the IP address for it:

```
Switch(config)# ip source binding 0001.1357.0007 vlan 1 172.20.50.25 interface gigabitethernet1/0/1
Switch(config)# ip source binding 0001.1357.0007 vlan 1 172.20.50.30 interface gigabitethernet1/0/1
```

You can verify your settings by entering the `show ip source binding` privileged EXEC command.
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip verify source</td>
<td>Enables IP source guard on an interface.</td>
</tr>
<tr>
<td>show ip source binding</td>
<td>Displays the IP source bindings on the switch.</td>
</tr>
<tr>
<td>show ip verify source</td>
<td>Displays the IP source guard configuration on the switch or on a specific interface.</td>
</tr>
</tbody>
</table>
ip ssh

Use the **ip ssh** global configuration command on the switch stack or on a standalone switch to configure the switch to run Secure Shell (SSH) Version 1 or SSH Version 2. This command is available only when your switch is running the cryptographic (encrypted) software image. Use the **no** form of this command to return to the default setting.

```
ip ssh version [1 | 2]
```

```
no ip ssh version [1 | 2]
```

Syntax Description

- **1** (Optional) Configure the switch to run SSH Version 1 (SSHv1).
- **2** (Optional) Configure the switch to run SSH Version 2 (SSHv2).

Defaults

The default version is the latest SSH version supported by the SSH client.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(19)EA1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If you do not enter this command or if you do not specify a keyword, the SSH server selects the latest SSH version supported by the SSH client. For example, if the SSH client supports SSHv1 and SSHv2, the SSH server selects SSHv2.

The switch supports an SSHv1 or an SSHv2 server. It also supports an SSHv1 client. For more information about the SSH server and the SSH client, see the software configuration guide for this release.

A Rivest, Shamir, and Adelman (RSA) key pair generated by an SSHv1 server can be used by an SSHv2 server and the reverse.

Examples

This example shows how to configure the switch to run SSH Version 2:

```
Switch(config)# ip ssh version 2
```

You can verify your settings by entering the **show ip ssh** or **show ssh** privileged EXEC command.
<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>show ip ssh</code></td>
<td>Displays if the SSH server is enabled and displays the version and configuration information for the SSH server. For syntax information, select Cisco IOS Release 12.2 Configuration Guides and Command References > Cisco IOS Security Command Reference, Release 12.2 > Other Security Features > Secure Shell Commands.</td>
</tr>
</tbody>
</table>
ip verify source

Use the `ip verify source` interface configuration command on the switch stack or on a standalone switch to enable IP source guard on an interface. Use the `no` form of this command to disable IP source guard.

```
ip verify source [port-security]
```

```
no ip verify source
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>port-security</code></td>
<td>(Optional) Enable IP source guard with IP and MAC address filtering. If you do not enter the <code>port-security</code> keyword, IP source guard with IP address filtering is enabled.</td>
</tr>
</tbody>
</table>

Defaults

IP source guard is disabled.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(20)SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

To enable IP source guard with source IP address filtering, use the `ip verify source` interface configuration command.

To enable IP source guard with source IP and MAC address filtering, use the `ip verify source port-security` interface configuration command.

To enable IP source guard with source IP and MAC address filtering, you must enable port security on the interface.

Examples

This example shows how to enable IP source guard with source IP address filtering:

```
Switch(config-if)# ip verify source
```

This example shows how to enable IP source guard with source IP and MAC address filtering:

```
Switch(config-if)# ip verify source port-security
```

You can verify your settings by entering the `show ip source binding` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip source binding</code></td>
<td>Configures static bindings on the switch.</td>
</tr>
<tr>
<td><code>show ip verify source</code></td>
<td>Displays the IP source guard configuration on the switch or on a specific interface.</td>
</tr>
</tbody>
</table>
ipv6 access-list

Use the ipv6 access-list global configuration command on the switch stack or on a standalone switch to define an IPv6 access list and to place the switch in IPv6 access list configuration mode. To remove the access list, use the no form of this command.

```
ipv6 access-list access-list-name

no ipv6 access-list access-list-name
```

Note
This command is available only if the switch stack is running the advanced IP services image and you have configured a dual IPv4 and IPv6 Switch Database Management (SDM) template on the switch.

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>access-list-name</td>
<td>Name of the IPv6 access list. Names cannot contain a space or quotation mark or begin with a numeric.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Defaults</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No IPv6 access list is defined.</td>
</tr>
</tbody>
</table>

Command Modes
Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SED</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

To configure the dual IPv4 and IPv6 template, enter the sdm prefer dual-ipv4-and-ipv6 {default | vlan} global configuration command and reload the switch.

The ipv6 access-list command is similar to the ip access-list command, except that it is IPv6-specific.

Note
IPv6 ACLs are defined by a unique name (IPv6 does not support numbered ACLs). An IPv4 ACL and an IPv6 ACL cannot share the same name.

See the ipv6 access-list and permit (IPv6 access-list configuration) commands for more information on filtering IPv6 traffic based on IPv6 option headers and optional, upper-layer protocol-type information. See the “Examples” section for an example of a translated IPv6 ACL configuration.

Note
Every IPv6 ACL has implicit permit icmp any any nd-na, permit icmp any any nd-ns, and deny ipv6 any any statements as its last match conditions. The two permit conditions allow ICMPv6 neighbor discovery. To disallow ICMPv6 neighbor discovery and to deny icmp any any nd-na or icmp any any nd-ns, there must be an explicit deny entry in the ACL. For the implicit deny ipv6 any any statement to take effect, an IPv6 ACL must contain at least one entry.

The IPv6 neighbor discovery process makes use of the IPv6 network layer service; therefore, by default,
IPv6 ACLs implicitly allow IPv6 neighbor discovery packets to be sent and received on an interface. In IPv4, the Address Resolution Protocol (ARP), which is equivalent to the IPv6 neighbor discovery process, uses a separate data-link layer protocol; therefore, by default, IPv4 ACLs implicitly allow ARP packets to be sent and received on an interface.

Use the `ipv6 traffic-filter` interface configuration command with the `access-list-name` argument to apply an IPv6 ACL to an IPv6 interface. You can apply inbound and outbound IPv6 ACLs to Layer 3 physical interfaces or switch virtual interfaces for routed ACLs, but only inbound IPv6 ACLs to Layer 2 interfaces for port ACLs.

Note
An IPv6 ACL applied to an interface with the `ipv6 traffic-filter` command filters traffic that is forwarded by the switch and does not filter traffic generated by the switch.

Examples

This example puts the switch in IPv6 access list configuration mode and configures the IPv6 ACL named list2 and applies the ACL to outbound traffic on an interface. The first ACL entry prevents all packets from the network FE80:0:0:2::/64 (packets that have the link-local prefix FE80:0:0:2 as the first 64 bits of their source IPv6 address) from leaving the interface. The second entry in the ACL permits all other traffic to leave the interface. The second entry is necessary because an implicit deny-all condition is at the end of each IPv6 ACL.

```plaintext
Switch(config)# ipv6 access-list list2
Switch(config-ipv6-acl)# deny FE80:0:0:2::/64 any
Switch(config-ipv6-acl)# permit any any
Switch(config-ipv6-acl)# exit
Switch(config)# interface gigabitethernet1/0/3
Switch(config-if)# no switchport
Switch(config-if)# ipv6 address 2001::/64 eui-64
Switch(config-if)# ipv6 traffic-filter list2 out
```

Note
IPv6 ACLs that rely on the implicit deny condition or specify a `deny any any` statement to filter traffic should contain `permit` statements for link-local addresses to avoid the filtering of protocol packets. Additionally IPv6 ACLs that use `deny` statements to filter traffic should also use a `permit any any` statement as the last statement in the list.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>deny (IPv6 access-list configuration)</code></td>
<td>Sets deny conditions for an IPv6 access list.</td>
</tr>
<tr>
<td><code>ipv6 traffic-filter</code></td>
<td>Filters incoming or outgoing IPv6 traffic on an interface.</td>
</tr>
<tr>
<td><code>permit (IPv6 access-list configuration)</code></td>
<td>Sets permit conditions for an IPv6 access list.</td>
</tr>
<tr>
<td><code>show ipv6 access-list</code></td>
<td>Displays the contents of all current IPv6 access lists.</td>
</tr>
</tbody>
</table>
ipv6 mld snooping

Use the `ipv6 mld snooping` global configuration command on the switch stack or on a standalone switch without keywords to enable IP version 6 (IPv6) Multicast Listener Discovery (MLD) snooping globally or on the specified VLAN. Use the `no` form of this command to disable MLD snooping on the switch or switch stack or the VLAN.

```
ipv6 mld snooping [vlan vlan-id]
no ipv6 mld snooping [vlan vlan-id]
```

Note

This command is available only if the switch stack is running the advanced IP services image and you have configured a dual IPv4 and IPv6 Switch Database Management (SDM) template on the switch.

Syntax Description

`vlan vlan-id` (Optional) Enable or disable IPv6 MLD snooping on the specified VLAN. The VLAN ID range is 1 to 1001 and 1006 to 4094.

Defaults

MLD snooping is globally disabled on the switch.

MLD snooping is enabled on all VLANs. However, MLD snooping must be globally enabled before VLAN snooping will take place.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SED</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

To configure the dual IPv4 and IPv6 template, enter the `sdm prefer dual-ipv4-and-ipv6 {default | vlan}` global configuration command and reload the switch.

When MLD snooping is globally disabled, it is disabled on all the existing VLAN interfaces. When you globally enable MLD snooping, it is enabled on all VLAN interfaces that are in the default state (enabled). VLAN configuration will override global configuration on interfaces on which MLD snooping has been disabled.

If MLD snooping is globally disabled, you cannot enable it on a VLAN. If MLD snooping is globally enabled, you can disable it on individual VLANs.

When the IPv6 multicast router is a Catalyst 6500 switch and you are using extended VLANs (in the range 1006 to 4094), IPv6 MLD snooping must be enabled on the extended VLAN on the Catalyst 6500 switch in order for the Catalyst 3750 or Catalyst 3560 switch to receive queries on the VLAN. For normal-range VLANs (1 to 1005), it is not necessary to enable IPv6 MLD snooping on the VLAN on the Catalyst 6500 switch.

VLAN numbers 1002 through 1005 are reserved for Token Ring and FDDI VLANs and cannot be used in MLD snooping.
Examples

This example shows how to globally enable MLD snooping:

```
Switch(config)# ipv6 mld snooping
```

This example shows how to disable MLD snooping on a VLAN:

```
Switch(config)# no ipv6 mld snooping vlan 11
```

You can verify your settings by entering the `show ipv6 mld snooping` user EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>sdm prefer</code></td>
<td>Configures an SDM template to optimize system resources based on how the switch is being used.</td>
</tr>
<tr>
<td><code>show ipv6 mld snooping</code></td>
<td>Displays MLD snooping configuration.</td>
</tr>
</tbody>
</table>
ipv6 mld snooping last-listener-query-count

Use the `ipv6 mld snooping last-listener-query-count` global configuration command on the switch stack or on a standalone switch to configure IP version 6 (IPv6) Multicast Listener Discovery Multicast Address Specific Queries (MASQs) or that will be sent before aging out a client. Use the `no` form of this command to reset the query count to the default settings.

```
ipv6 mld snooping [vlan vlan-id] last-listener-query-count integer_value

no ipv6 mld snooping [vlan vlan-id] last-listener-query-count
```

Note

This command is available only if the switch stack is running the advanced IP services image and you have configured a dual IPv4 and IPv6 Switch Database Management (SDM) template on the switch.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>vlan vlan-id</code></td>
<td>(Optional) Configure last-listener query count on the specified VLAN. The VLAN ID range is 1 to 1001 and 1006 to 4094.</td>
</tr>
<tr>
<td><code>integer_value</code></td>
<td>The range is 1 to 7.</td>
</tr>
</tbody>
</table>

Command Default

The default global count is 2.

The default VLAN count is 0 (the global count is used).

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SED</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

To configure the dual IPv4 and IPv6 template, enter the `sdm prefer dual-ipv4-and-ipv6 {default | vlan}` global configuration command and reload the switch.

In MLD snooping, the IPv6 multicast router periodically sends out queries to hosts belonging to the multicast group. If a host wants to leave a multicast group, it can silently leave or it can respond to the query with a Multicast Listener Done message (equivalent to an IGMP Leave message). When Immediate Leave is not configured (which it should not be if multiple clients for a group exist on the same port), the configured last-listener query count determines the number of MASQs that are sent before an MLD client is aged out.

When the last-listener query count is set for a VLAN, this count overrides the value configured globally. When the VLAN count is not configured (set to the default of 0), the global count is used.

VLAN numbers 1002 through 1005 are reserved for Token Ring and FDDI VLANs and cannot be used in MLD snooping.
Examples

This example shows how to globally set the last-listener query count:

```
Switch(config)# ipv6 mld snooping last-listener-query-count 1
```

This example shows how to set the last-listener query count for VLAN 10:

```
Switch(config)# ipv6 mld snooping vlan 10 last-listener-query-count 3
```

You can verify your settings by entering the `show ipv6 mld snooping [vlan vlan-id]` user EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ipv6 mld snooping last-listener-query-interval</code></td>
<td>Sets IPv6 MLD snooping last-listener query interval.</td>
</tr>
<tr>
<td><code>sdm prefer</code></td>
<td>Configures an SDM template to optimize system resources based on how the switch is being used.</td>
</tr>
<tr>
<td><code>show ipv6 mld snooping querier</code></td>
<td>Displays MLD snooping configuration.</td>
</tr>
</tbody>
</table>
ipv6 mld snooping last-listener-query-interval

Use the `ipv6 mld snooping last-listener-query-interval` global configuration command on the switch stack or on a standalone switch to configure IP version 6 (IPv6) Multicast Listener Discovery (MLD) snooping last-listener query interval on the switch or on a VLAN. This time interval is the maximum time that a multicast router waits after issuing a Multicast Address Specific Query (MASQ) before deleting a port from the multicast group. Use the `no` form of this command to reset the query time to the default settings.

```
ipv6 mld snooping [vlan vlan-id] last-listener-query-interval integer_value

no ipv6 mld snooping [vlan vlan-id] last-listener-query-interval
```

Note
This command is available only if the switch stack is running the advanced IP services image and you have configured a dual IPv4 and IPv6 Switch Database Management (SDM) template on the switch.

Syntax Description
- `vlan vlan-id` (Optional) Configure last-listener query interval on the specified VLAN. The VLAN ID range is 1 to 1001 and 1006 to 4094.
- `integer_value` Set the time period (in thousands of a second) that a multicast router to wait after issuing a MASQ before deleting a port from the multicast group. The range is 100 to 32,768. The default is 1000 (1 second).

Command Default
The default global query interval (maximum response time) is 1000 (1 second).
The default VLAN query interval (maximum response time) is 0 (the global count is used).

Command Modes
Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SED</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
To configure the dual IPv4 and IPv6 template, enter the `sdm prefer dual-ipv4-and-ipv6 {default | vlan}` global configuration command and reload the switch.

In MLD snooping, when the IPv6 multicast router receives an MLD leave message, it sends out queries to hosts belonging to the multicast group. If there are no responses from a port to a MASQ for a length of time, the router deletes the port from the membership database of the multicast address. The last listener query interval is the maximum time that the router waits before deleting a nonresponsive port from the multicast group.

When a VLAN query interval is set, this overrides the global query interval. When the VLAN interval is set at 0, the global value is used.

VLAN numbers 1002 through 1005 are reserved for Token Ring and FDDI VLANs and cannot be used in MLD snooping.
Examples

This example shows how to globally set the last-listener query interval to 2 seconds:

```
Switch(config)# ipv6 mld snooping last-listener-query-interval 2000
```

This example shows how to set the last-listener query interval for VLAN 1 to 5.5 seconds:

```
Switch(config)# ipv6 mld snooping vlan 1 last-listener-query-interval 5500
```

You can verify your settings by entering the `show ipv6 MLD snooping [vlan vlan-id]` user EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6 mld snooping last-listener-query-count</td>
<td>Sets IPv6 MLD snooping last-listener query count.</td>
</tr>
<tr>
<td>sdm prefer</td>
<td>Configures an SDM template to optimize system resources based on how the switch is being used.</td>
</tr>
<tr>
<td>show ipv6 mld snooping querier</td>
<td>Sets IPv6 MLD snooping last-listener query interval.</td>
</tr>
</tbody>
</table>
ipv6 mld snooping listener-message-suppression

Use the `ipv6 mld snooping listener-message-suppression` global configuration command on the switch stack or on a standalone switch to enable IP version 6 (IPv6) Multicast Listener Discovery (MLD) snooping listener message suppression. Use the `no` form of this command to disable MLD snooping listener message suppression.

```
ipv6 mld snooping listener-message-suppression
no ipv6 mld snooping listener-message-suppression
```

Note

This command is available only if the switch stack is running the advanced IP services image and you have configured a dual IPv4 and IPv6 Switch Database Management (SDM) template on the switch.

Command Default

The default is for MLD snooping listener message suppression to be disabled.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SED</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

To configure the dual IPv4 and IPv6 template, enter the `sdm prefer dual-ipv4-and-ipv6 {default | vlan})` global configuration command and reload the switch.

MLD snooping listener message suppression is equivalent to IGMP snooping report suppression. When enabled, received MLDv1 reports to a group are forwarded to IPv6 multicast routers only once in every report-forward time. This prevents the forwarding of duplicate reports.

Examples

This example shows how to enable MLD snooping listener-message-suppression:

```
Switch(config)# ipv6 mld snooping listener-message-suppression
```

This example shows how to disable MLD snooping listener-message-suppression:

```
Switch(config)# no ipv6 mld snooping listener-message-suppression
```

You can verify your settings by entering the `show ipv6 mld snooping [vlan vlan-id]` user EXEC command.
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6 mld snooping</td>
<td>Enables IPv6 MLD snooping.</td>
</tr>
<tr>
<td>sdm prefer</td>
<td>Configures an SDM template to optimize system resources based on how the switch is being used.</td>
</tr>
<tr>
<td>show ipv6 mld snooping</td>
<td>Displays MLD snooping configuration.</td>
</tr>
</tbody>
</table>
ipv6 mld snooping robustness-variable

Use the `ipv6 mld snooping robustness-variable` global configuration command on the switch stack or on a standalone switch to configure the number of IP version 6 (IPv6) Multicast Listener Discovery (MLD) queries that the switch sends before deleting a listener that does not respond, or enter a VLAN ID to configure on a per-VLAN basis. Use the `no` form of this command to reset the variable to the default settings.

```
ipv6 mld snooping [vlan vlan-id] robustness-variable integer_value

no ipv6 mld snooping [vlan vlan-id] robustness-variable
```

Note

This command is available only if the switch stack is running the advanced IP services image and you have configured a dual IPv4 and IPv6 Switch Database Management (SDM) template on the switch.

Syntax Description

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>vlan vlan-id</code></td>
<td>(Optional) Configure the robustness variable on the specified VLAN. The VLAN ID range is 1 to 1001 and 1006 to 4094.</td>
</tr>
<tr>
<td><code>integer_value</code></td>
<td>The range is 1 to 3.</td>
</tr>
</tbody>
</table>

Command Default

The default global robustness variable (number of queries before deleting a listener) is 2.

The default VLAN robustness variable (number of queries before aging out a multicast address) is 0, which means that the system uses the global robustness variable for aging out the listener.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SED</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

To configure the dual IPv4 and IPv6 template, enter the `sdm prefer dual-ipv4-and-ipv6 {default | vlan}` global configuration command and reload the switch.

Robustness is measured in terms of the number of MLDv1 queries sent with no response before a port is removed from a multicast group. A port is deleted when there are no MLDv1 reports received for the configured number of MLDv1 queries. The global value determines the number of queries that the switch waits before deleting a listener that does not respond and applies to all VLANs that do not have a VLAN value set.

The robustness value configured for a VLAN overrides the global value. If the VLAN robustness value is 0 (the default), the global value is used.

VLAN numbers 1002 through 1005 are reserved for Token Ring and FDDI VLANs and cannot be used in MLD snooping.
Example

This example shows how to configure the global robustness variable so that the switch sends out three queries before it deletes a listener port that does not respond:

```
Switch(config)# ipv6 mld snooping robustness-variable 3
```

This example shows how to configure the robustness variable for VLAN 1. This value overrides the global configuration for the VLAN:

```
Switch(config)# ipv6 mld snooping vlan 1 robustness-variable 1
```

You can verify your settings by entering the `show ipv6 MLD snooping [vlan vlan-id]` user EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6 mld snooping last-listener-query-count</td>
<td>Sets IPv6 MLD snooping last-listener query count.</td>
</tr>
<tr>
<td>sdm prefer</td>
<td>Configures an SDM template to optimize system resources based on how the switch is being used.</td>
</tr>
<tr>
<td>show ipv6 mld snooping</td>
<td>Displays MLD snooping configuration.</td>
</tr>
</tbody>
</table>
ipv6 mld snooping tcn

Use the `ipv6 mld snooping tcn` global configuration commands on the switch stack or on a standalone switch to configure IP version 6 (IPv6) Multicast Listener Discovery (MLD) Topology Change Notifications (TCNs). Use the `no` form of the commands to reset the default settings.

```
ipv6 mld snooping tcn {flood query count integer_value | query solicit}
no ipv6 mld snooping tcn {flood query count integer_value | query solicit}
```

Note: This command is available only if the switch stack is running the advanced IP services image and you have configured a dual IPv4 and IPv6 Switch Database Management (SDM) template on the switch.

Syntax Description

| `flood query count` | Set the flood query count, which is the number of queries that are sent before forwarding multicast data to only those ports requesting to receive it. The range is 1 to 10.
| `integer_value` |

| `query solicit` | Enable soliciting of TCN queries. |

Command Default
TCN query soliciting is disabled.
When enabled, the default flood query count is 2.

Command Modes
Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SED</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
To configure the dual IPv4 and IPv6 template, enter the `sdm prefer dual-ipv4-and-ipv6 {default | vlan}` global configuration command and reload the switch.

Examples
This example shows how to enable TCN query soliciting:

```
Switch(config)# ipv6 mld snooping tcn query solicit.
```

This example shows how to set the flood query count to 5:

```
Switch(config)# ipv6 mld snooping tcn flood query count 5.
```

You can verify your settings by entering the `show ipv6 MLD snooping [vlan vlan-id]` user EXEC command.
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>sdm prefer</code></td>
<td>Configures an SDM template to optimize system resources based on how the switch is being used.</td>
</tr>
<tr>
<td><code>show ipv6 mld snooping</code></td>
<td>Displays MLD snooping configuration.</td>
</tr>
</tbody>
</table>
ipv6 mld snooping vlan

Use the `ipv6 mld snooping vlan` global configuration command on the switch stack or on a standalone switch to configure IP version 6 (IPv6) Multicast Listener Discovery (MLD) snooping parameters on the VLAN interface. Use the `no` form of this command to reset the parameters to the default settings.

```
ipv6 mld snooping vlan vlan-id [immediate-leave | mrouter interface interface-id | static ipv6-multicast-address interface interface-id]
no ipv6 mld snooping vlan vlan-id [immediate-leave | mrouter interface interface-id | static ip-address interface interface-id]
```

Note

This command is available only if the switch stack is running the advanced IP services image and you have configured a dual IPv4 and IPv6 Switch Database Management (SDM) template on the switch.

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>vlan vlan-id</code></td>
<td>Specify a VLAN number. The range is 1 to 1001 and 1006 to 4094.</td>
</tr>
<tr>
<td><code>immediate-leave</code></td>
<td>(Optional) Enable MLD Immediate-Leave processing on a VLAN interface. Use the <code>no</code> form of the command to disable the Immediate Leave feature on the interface.</td>
</tr>
<tr>
<td><code>mrouter interface interface-id</code></td>
<td>(Optional) Configure a multicast router port. The <code>no</code> form of the command removes the configuration.</td>
</tr>
<tr>
<td><code>static ipv6-multicast-address interface interface-id</code></td>
<td>(Optional) Configure a multicast group with the specified IPv6 multicast address.</td>
</tr>
<tr>
<td><code>interface interface-id</code></td>
<td>Add a Layer 2 port to the group. The mrouter or static interface can be a physical port or a port-channel interface in the range of 1 to 48.</td>
</tr>
</tbody>
</table>

Command Default

MLD snooping Immediate-Leave processing is disabled.

By default, there are no static IPv6 multicast groups.

By default, there are no multicast router ports.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SED</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

To configure the dual IPv4 and IPv6 template, enter the `sdm prefer dual-ipv4-and-ipv6 {default | vlan}` global configuration command and reload the switch.

You should only configure the Immediate-Leave feature when there is only one receiver on every port in the VLAN. The configuration is saved in NVRAM.

The `static` keyword is used for configuring the MLD member ports statically.
The configuration and the static ports and groups are saved in NVRAM.

When the IPv6 multicast router is a Catalyst 6500 switch and you are using extended VLANs (in the range 1006 to 4094), IPv6 MLD snooping must be enabled on the extended VLAN on the Catalyst 6500 switch in order for the Catalyst 3750 or Catalyst 3560 switch to receive queries on the VLAN. For normal-range VLANs (1 to 1005), it is not necessary to enable IPv6 MLD snooping on the VLAN on the Catalyst 6500 switch.

VLAN numbers 1002 through 1005 are reserved for Token Ring and FDDI VLANs and cannot be used in MLD snooping.

Examples

This example shows how to enable MLD Immediate-Leave processing on VLAN 1:

```
Switch(config)# ipv6 mld snooping vlan 1 immediate-leave
```

This example shows how to disable MLD Immediate-Leave processing on VLAN 1:

```
Switch(config)# no ipv6 mld snooping vlan 1 immediate-leave
```

This example shows how to configure a port as a multicast router port:

```
Switch(config)# ipv6 mld snooping vlan 1 mrouter interface gigabitethernet1/0/2
```

This example shows how to configure a static multicast group:

```
Switch(config)# ipv6 mld snooping vlan 2 static FF12::34 interface gigabitethernet1/0/2
```

You can verify your settings by entering the `show ipv6 mld snooping vlan vlan-id` user EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ipv6 mld snooping</code></td>
<td>Enables IPv6 MLD snooping.</td>
</tr>
<tr>
<td><code>ipv6 mld snooping vlan</code></td>
<td>Configures IPv6 MLD snooping on the VLAN.</td>
</tr>
<tr>
<td><code>sdm prefer</code></td>
<td>Configures an SDM template to optimize system resources based on how the switch is being used.</td>
</tr>
<tr>
<td><code>show ipv6 mld snooping</code></td>
<td>Displays IPv6 MLD snooping configuration.</td>
</tr>
</tbody>
</table>
ipv6 traffic-filter

Use the `ipv6 traffic-filter` interface configuration command on the switch stack or on a standalone switch to filter IPv6 traffic on an interface. You can filter both incoming or outgoing IPv6 traffic on Layer 3 interfaces (router ACLs), but only incoming traffic on Layer 2 interfaces (port ACLs). Use the `no` form of this command to disable the filtering of IPv6 traffic on an interface.

```
ipv6 traffic-filter access-list-name {in | out}
```

```
no ipv6 traffic-filter access-list-name {in | out}
```

Note

This command is available only if the switch stack is running the advanced IP services image and you have configured a dual IPv4 and IPv6 Switch Database Management (SDM) template on the switch.

Syntax Description

- `access-list-name` Specify an IPv6 access name.
- `in` Specify incoming IPv6 traffic.
- `out` Specify outgoing IPv6 traffic.

Note

This keyword is not supported on Layer 2 interfaces.

Defaults

Filtering of IPv6 traffic on an interface is not configured.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SED</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

To configure the dual IPv4 and IPv6 template, enter the `sdm prefer dual-ipv4-and-ipv6 {default | vlan})` global configuration command and reload the switch.

You can use the `ipv6 traffic-filter` command on physical interfaces (Layer 2 or Layer 3 ports), Layer 3 port channels, or switch virtual interfaces (SVIs).

The switch supports inbound and outbound filtering on Layer 3 interfaces (router ACLs), but only inbound filtering on Layer 2 ports (port ACLs).

If any port ACL (IPv4, IPv6, or MAC) is applied to an interface, that port ACL is used to filter packets, and any router ACLs attached to the SVI of the port VLAN are ignored.
Examples

This example filters inbound IPv6 traffic on an IPv6-configured interface as defined by the access list named *cisco*:

```
Switch (config)# interface gigabitethernet1/0/1
Switch(config-if)# no switchport
Switch(config-if)# ipv6 address 2001::/64 eui-64
Switch(config-if)# ipv6 traffic-filter cisco in
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6 access-list</td>
<td>Defines an IPv6 access list and sets deny or permit conditions for the defined access list.</td>
</tr>
<tr>
<td>show ipv6 access-list</td>
<td>Displays the contents of all current IPv6 access lists.</td>
</tr>
<tr>
<td>show ipv6 interface</td>
<td>Displays the usability status of interfaces configured for IPv6.</td>
</tr>
</tbody>
</table>
l2protocol-tunnel

Use the l2protocol-tunnel interface configuration command on the switch stack or on a standalone switch to enable tunneling of Layer 2 protocols on an access port, IEEE 802.1Q tunnel port, or a port channel. You can enable tunneling for Cisco Discovery Protocol (CDP), Spanning Tree Protocol (STP), or VLAN Trunking Protocol (VTP) packets. You can also enable point-to-point tunneling for Port Aggregation Protocol (PAgP), Link Aggregation Control Protocol (LACP), or UniDirectional Link Detection (UDLD) packets. Use the no form of this command to disable tunneling on the interface.

```
l2protocol-tunnel [cdp | stp | vtp] [point-to-point [pagp | lacp | uddl]] | [shutdown-threshold [cdp | stp | vtp] [point-to-point [pagp | lacp | uddl]]] value] | [drop-threshold [cdp | stp | vtp] [point-to-point [pagp | lacp | uddl]]] value
```

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>l2protocol-tunnel</td>
<td>Enable point-to-multipoint tunneling of CDP, STP, and VTP packets.</td>
</tr>
<tr>
<td>cdp</td>
<td>(Optional) Enable tunneling of CDP, specify a shutdown threshold for CDP, or specify a drop threshold for CDP.</td>
</tr>
<tr>
<td>stp</td>
<td>(Optional) Enable tunneling of STP, specify a shutdown threshold for STP, or specify a drop threshold for STP.</td>
</tr>
<tr>
<td>vtp</td>
<td>(Optional) Enable tunneling or VTP, specify a shutdown threshold for VTP, or specify a drop threshold for VTP.</td>
</tr>
<tr>
<td>point-to-point</td>
<td>(Optional) Enable point-to-point tunneling of PAgP, LACP, and UDLD packets.</td>
</tr>
<tr>
<td>pagp</td>
<td>(Optional) Enable point-to-point tunneling of PAgP, specify a shutdown threshold for PAgP, or specify a drop threshold for PAgP.</td>
</tr>
<tr>
<td>lacp</td>
<td>(Optional) Enable point-to-point tunneling of LACP, specify a shutdown threshold for LACP, or specify a drop threshold for LACP.</td>
</tr>
<tr>
<td>uddl</td>
<td>(Optional) Enable point-to-point tunneling of UDLD, specify a shutdown threshold for UDLD, or specify a drop threshold for UDLD.</td>
</tr>
<tr>
<td>shutdown-threshold</td>
<td>(Optional) Set a shutdown threshold for the maximum rate of Layer 2 protocol packets per second to be received before an interface is shut down.</td>
</tr>
<tr>
<td>drop-threshold</td>
<td>(Optional) Set a drop threshold for the maximum rate of Layer 2 protocol packets per second to be received before an interface drops packets.</td>
</tr>
<tr>
<td>value</td>
<td>Specify a threshold in packets per second to be received for encapsulation before the interface shuts down, or specify the threshold before the interface drops packets. The range is 1 to 4096. The default is no threshold.</td>
</tr>
</tbody>
</table>

Defaults

The default is that no Layer 2 protocol packets are tunneled.

The default is no shutdown threshold for the number of Layer 2 protocol packets.

The default is no drop threshold for the number of Layer 2 protocol packets.
Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You must enter this command, with or without protocol types, to tunnel Layer 2 packets.

If you enter this command for a port channel, all ports in the channel must have the same configuration.

Layer 2 protocol tunneling across a service-provider network ensures that Layer 2 information is propagated across the network to all customer locations. When protocol tunneling is enabled, protocol packets are encapsulated with a well-known Cisco multicast address for transmission across the network. When the packets reach their destination, the well-known MAC address is replaced by the Layer 2 protocol MAC address.

You can enable Layer 2 protocol tunneling for CDP, STP, and VTP individually or for all three protocols.

In a service-provider network, you can use Layer 2 protocol tunneling to enhance the creation of EtherChannels by emulating a point-to-point network topology. When protocol tunneling is enabled on the service-provider switch for PAgP or LACP, remote customer switches receive the protocol data units (PDUs) and can negotiate automatic creation of EtherChannels.

To enable tunneling of PAgP, LACP, and UDLD packets, you must have a point-to-point network topology. To decrease the link-down detection time, you should also enable UDLD on the interface when you enable tunneling of PAgP or LACP packets.

You can enable point-to-point protocol tunneling for PAgP, LACP, and UDLD individually or for all three protocols.

Caution

PAgP, LACP, and UDLD tunneling is only intended to emulate a point-to-point topology. An erroneous configuration that sends tunneled packets to many ports could lead to a network failure.

Enter the shutdown-threshold keyword to control the number of protocol packets per second that are received on an interface before it shuts down. When no protocol option is specified with the keyword, the threshold is applied to each of the tunneled Layer 2 protocol types. If you also set a drop threshold on the interface, the shutdown-threshold value must be greater than or equal to the drop-threshold value.

When the shutdown threshold is reached, the interface is error-disabled. If you enable error recovery by entering the errdisable recovery cause l2ptguard global configuration command, the interface is brought out of the error-disabled state and allowed to retry the operation again when all the causes have timed out. If the error recovery mechanism is not enabled for l2ptguard, the interface stays in the error-disabled state until you enter the shutdown and no shutdown interface configuration commands.

Enter the drop-threshold keyword to control the number of protocol packets per second that are received on an interface before it drops packets. When no protocol option is specified with a keyword, the threshold is applied to each of the tunneled Layer 2 protocol types. If you also set a shutdown threshold on the interface, the drop-threshold value must be less than or equal to the shutdown-threshold value.
When the drop threshold is reached, the interface drops Layer 2 protocol packets until the rate at which they are received is below the drop threshold.

The configuration is saved in NVRAM.

For more information about Layer 2 protocol tunneling, see the software configuration guide for this release.

Examples

This example shows how to enable protocol tunneling for CDP packets and to configure the shutdown threshold as 50 packets per second:

```
Switch(config-if)# l2protocol-tunnel cdp
Switch(config-if)# l2protocol-tunnel shutdown-threshold cdp 50
```

This example shows how to enable protocol tunneling for STP packets and to configure the drop threshold as 400 packets per second:

```
Switch(config-if)# l2protocol-tunnel stp
Switch(config-if)# l2protocol-tunnel drop-threshold stp 400
```

This example shows how to enable point-to-point protocol tunneling for PAgP and UDLD packets and to configure the PAgP drop threshold as 1000 packets per second:

```
Switch(config-if)# l2protocol-tunnel point-to-point pagp
Switch(config-if)# l2protocol-tunnel point-to-point udld
Switch(config-if)# l2protocol-tunnel drop-threshold point-to-point pagp 1000
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>l2protocol-tunnel cos</td>
<td>Configures a class of service (CoS) value for all tunneled Layer 2 protocol packets.</td>
</tr>
<tr>
<td>show errdisable recovery</td>
<td>Displays error-disabled recovery timer information.</td>
</tr>
<tr>
<td>show l2protocol-tunnel</td>
<td>Displays information about ports configured for Layer 2 protocol tunneling, including port, protocol, class of service (CoS), and threshold.</td>
</tr>
</tbody>
</table>
l2protocol-tunnel cos

Use the l2protocol-tunnel cos global configuration command on the switch stack or on a standalone switch to configure class of service (CoS) value for all tunneled Layer 2 protocol packets. Use the no form of this command to return to the default setting.

l2protocol-tunnel cos value

no l2protocol-tunnel cos

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>Specify CoS priority value for tunneled Layer 2 protocol packets. If a CoS value is configured for data packets for the interface, the default is to use this CoS value. If no CoS value is configured for the interface, the default is 5. The range is 0 to 7, with 7 being the highest priority.</td>
</tr>
</tbody>
</table>

Defaults

The default is to use the CoS value configured for data on the interface. If no CoS value is configured, the default is 5 for all tunneled Layer 2 protocol packets.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When enabled, the tunneled Layer 2 protocol packets use this CoS value. The value is saved in NVRAM.

Examples

This example shows how to configure a Layer-2 protocol-tunnel CoS value of 7:

Switch(config)# l2protocol-tunnel cos 7

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show l2protocol-tunnel</td>
<td>Displays information about ports configured for Layer 2 protocol tunneling, including CoS.</td>
</tr>
</tbody>
</table>
lACP port-priority

Use the `lACP port-priority` interface configuration command on the switch stack or on a standalone switch to configure the port priority for the Link Aggregation Control Protocol (LACP). Use the `no` form of this command to return to the default setting.

```
lACP port-priority priority

no lACP port-priority
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>priority</code></td>
<td>Port priority for LACP. The range is 1 to 65535.</td>
</tr>
</tbody>
</table>

Defaults

The default is 32768.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(14)EA1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `lACP port-priority` interface configuration command determines which ports are bundled and which ports are put in hot-standby mode when there are more than eight ports in an LACP channel group.

An LACP channel group can have up to 16 Ethernet ports of the same type. Up to eight ports can be active, and up to eight ports can be in standby mode.

In port-priority comparisons, a numerically lower value has a higher priority: When there are more than eight ports in an LACP channel-group, the eight ports with the numerically lowest values (highest priority values) for LACP port priority are bundled into the channel group, and the lower-priority ports are put in hot-standby mode. If two or more ports have the same LACP port priority (for example, they are configured with the default setting of 65535) an internal value for the port number determines the priority.

Note

The LACP port priorities are only effective if the ports are on the switch that controls the LACP link. See the `lACP system-priority` global configuration command for determining which switch controls the link.

Use the `show lACP internal` privileged EXEC command to display LACP port priorities and internal port number values.

For information about configuring LACP on physical ports, see the “Configuring EtherChannels” chapter in the software configuration guide for this release.
Examples

This example shows how to configure the LACP port priority on a port:

```plaintext
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# lacp port-priority 1000
```

You can verify your settings by entering the `show lacp [channel-group-number] internal` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel-group</td>
<td>Assigns an Ethernet port to an EtherChannel group.</td>
</tr>
<tr>
<td>lacp system-priority</td>
<td>Configures the LACP system priority.</td>
</tr>
<tr>
<td>show lacp [channel-group-number] internal</td>
<td>Displays internal information for all channel groups or for the specified channel group.</td>
</tr>
</tbody>
</table>
lacp system-priority

Use the `lacp system-priority` global configuration command on the switch stack or on a standalone switch to configure the system priority for the Link Aggregation Control Protocol (LACP). Use the `no` form of this command to return to the default setting.

```
lacp system-priority priority

no lacp system-priority
```

Syntax Description

| `priority` | System priority for LACP. The range is 1 to 65535. |

Defaults

The default is 32768.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(14)EA1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `lacp system-priority` command determines which switch in an LACP link controls port priorities.

An LACP channel group can have up to 16 Ethernet ports of the same type. Up to eight ports can be active, and up to eight ports can be in standby mode. When there are more than eight ports in an LACP channel-group, the switch on the controlling end of the link uses port priorities to determine which ports are bundled into the channel and which ports are put in hot-standby mode. Port priorities on the other switch (the noncontrolling end of the link) are ignored.

In priority comparisons, numerically lower values have higher priority. Therefore, the system with the numerically lower value (higher priority value) for LACP system priority becomes the controlling system. If both switches have the same LACP system priority (for example, they are both configured with the default setting of 32768), the LACP system ID (the switch MAC address) determines which switch is in control.

The `lacp system-priority` command applies to all LACP EtherChannels on the switch.

Use the `show etherchannel summary` privileged EXEC command to see which ports are in the hot-standby mode (denoted with an H port-state flag in the output display).

For more information about configuring LACP on physical ports, see the “Configuring EtherChannels” chapter in the software configuration guide for this release.

Examples

This example shows how to set the LACP system priority:

```
Switch(config)# lacp system-priority 20000
```

You can verify your settings by entering the `show lacp sys-id` privileged EXEC command.
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel-group</td>
<td>Assigns an Ethernet port to an EtherChannel group.</td>
</tr>
<tr>
<td>lACP port-priority</td>
<td>Configures the LACP port priority.</td>
</tr>
<tr>
<td>show lACP sys-id</td>
<td>Displays the system identifier that is being used by LACP.</td>
</tr>
</tbody>
</table>
link state group

Use the **link state group** interface configuration command to configure a port as a member of a link-state group. Use the **no** form of this command to remove the port from the link-state group.

```
link state group [number] {upstream | downstream}
no link state group [number] {upstream | downstream}
```

Syntax Description

- **number** *(Optional) Specify the link-state group number. The group number can be 1 to 10. The default is 1.*
- **upstream** Configure a port as an upstream port for a specific link-state group.
- **downstream** Configure a port as a downstream port for a specific link-state group.

Defaults

The default group is group 1.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SEE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the **link state group** interface configuration command to configure a port as an upstream or downstream port for a specific link-state group. If the group number is omitted, the default group is assumed.

An interface can be an aggregation of ports (an EtherChannel), a single switch port in access or trunk mode, or a routed port. Each downstream interface can be associated with one or more upstream interfaces. Upstream interfaces can be bundled together, and each downstream interface can be associated with a single group consisting of multiple upstream interfaces, referred to as link-state groups.

The link state of the downstream interfaces are dependent on the link state of the upstream interfaces in the associated link-state group. If all of the upstream interfaces in a link-state group are in a link-down state, the associated downstream interfaces are forced into a link-down state. If any one of the upstream interfaces in the link-state group is in a link-up state, the associated downstream interfaces are allowed to change to, or remain in, a link-up state.

Follow these guidelines to avoid configuration problems:

- An interface that is defined as an upstream interface cannot also be defined as a downstream interface in the same or a different link-state group. The reverse is also true.
- An interface cannot be a member of more than one link-state group.
- You can configure only ten link-state groups per switch.
Examples

This example shows how to configure the interfaces as **upstream** in group 2:

```plaintext
Switch# configure terminal
Switch(config)# interface range gigabitethernet1/0/11 - 14
Switch(config-if-range)# link state group 2 downstream
Switch(config-if-range)# end
Switch(config-if)# end
```

You can verify your settings by entering the `show running-config` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>link state track</td>
<td>Enables a link-state group.</td>
</tr>
<tr>
<td>show link state group</td>
<td>Displays the link-state group information.</td>
</tr>
<tr>
<td>show running-config</td>
<td>Displays the current operating configuration. For syntax information, select Cisco IOS Configuration Fundamentals Command Reference for Release 12.2 > Cisco IOS File Management Commands > Configuration File Commands.</td>
</tr>
</tbody>
</table>
link state track

Use the **link state track** user EXEC command to enable a link-state group. Use the **no** form of this command to disable a link-state group.

```
link state track [number]
no link state track [number]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>number</th>
<th>(Optional) Specify the link-state group number. The group number can be 1 to 10. The default is 1.</th>
</tr>
</thead>
</table>

Defaults

Link-state tracking is disabled for all groups.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SEE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the **link state track** global configuration command to enable a link-state group.

Examples

This example shows how enable link-state group 2:

```
Switch(config)# link state track 2
```

You can verify your settings by entering the **show running-config** privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>link state group</td>
<td>Configures an interface as a member of a link-state group.</td>
</tr>
<tr>
<td>show link state group</td>
<td>Displays the link-state group information.</td>
</tr>
<tr>
<td>show running-config</td>
<td>Displays the current operating configuration. For syntax information, select Cisco IOS Configuration Fundamentals Command Reference for Release 12.2 > Cisco IOS File Management Commands > Configuration File Commands.</td>
</tr>
</tbody>
</table>
logging event power-inline-status

Use the logging event power-inline-status interface configuration command to enable the logging of Power over Ethernet (PoE) events. Use the no form of this command to disable the logging of PoE status events; however, the no form of this command does not disable PoE error events.

logging event power-inline-status

no logging event power-inline-status

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>power-inline-status</td>
<td>Enable the logging of PoE messages.</td>
</tr>
</tbody>
</table>

Defaults

Logging of PoE events is enabled.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(19)EA1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The power-inline-status keyword is available only on PoE interfaces.

Examples

This example shows how to enable logging of PoE events on a port:

```
Switch(config-if)# interface fastethernet1/0/1
Switch(config-if)# logging event power-inline-status
Switch(config-if)#
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>power inline</td>
<td>Configures the power management mode for the specified PoE port or for all PoE ports.</td>
</tr>
<tr>
<td>show controllers power inline</td>
<td>Displays the values in the registers of the specified PoE controller.</td>
</tr>
</tbody>
</table>
logging file

Use the **logging file** global configuration command on the switch stack or on a standalone switch to set logging file parameters. Use the **no** form of this command to return to the default setting.

```
logging file filesystem:filename [max-file-size | nomax [min-file-size]] [severity-level-number | type]

no logging file filesystem:filename [severity-level-number | type]
```

Syntax Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>**filesystem:**filename</td>
<td>Alias for a flash file system. Contains the path and name of the file that contains the log messages.</td>
</tr>
<tr>
<td>max-file-size</td>
<td>(Optional) Specify the maximum logging file size. The range is 4096 to 2147483647.</td>
</tr>
<tr>
<td>nomax</td>
<td>(Optional) Specify the maximum file size of 2147483647.</td>
</tr>
<tr>
<td>min-file-size</td>
<td>(Optional) Specify the minimum logging file size. The range is 1024 to 2147483647.</td>
</tr>
<tr>
<td>severity-level-number</td>
<td>(Optional) Specify the logging severity level. The range is 0 to 7. See the type option for the meaning of each level.</td>
</tr>
<tr>
<td>type</td>
<td>(Optional) Specify the logging type. These keywords are valid:</td>
</tr>
<tr>
<td></td>
<td>• emergencies—System is unusable (severity 0).</td>
</tr>
<tr>
<td></td>
<td>• alerts—Immediate action needed (severity 1).</td>
</tr>
<tr>
<td></td>
<td>• critical—Critical conditions (severity 2).</td>
</tr>
<tr>
<td></td>
<td>• errors—Error conditions (severity 3).</td>
</tr>
<tr>
<td></td>
<td>• warnings—Warning conditions (severity 4).</td>
</tr>
<tr>
<td></td>
<td>• notifications—Normal but significant messages (severity 5).</td>
</tr>
<tr>
<td></td>
<td>• informational—Information messages (severity 6).</td>
</tr>
<tr>
<td></td>
<td>• debugging—Debugging messages (severity 7).</td>
</tr>
</tbody>
</table>

Defaults

The minimum file size is 2048 bytes; the maximum file size is 4096 bytes.
The default severity level is 7 (**debugging** messages and numerically lower levels).

Command Modes

Global configuration
The log file is stored in ASCII text format in an internal buffer on a standalone switch, and in the case of a switch stack, on the stack master. If a standalone switch or the stack master fails, the log is lost unless you had previously saved it to flash memory by using the `logging file flash:filename` global configuration command.

After saving the log to flash memory by using the `logging file flash:filename` global configuration command, you can use the `more flash:filename` privileged EXEC command to display its contents.

The command rejects the minimum file size if it is greater than the maximum file size minus 1024; the minimum file size then becomes the maximum file size minus 1024.

Specifying a `level` causes messages at that level and numerically lower levels to be displayed.

This example shows how to save informational log messages to a file in flash memory:

```
Switch(config)# logging file flash:logfile informational
```

You can verify your setting by entering the `show running-config` privileged EXEC command.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
</table>
mac access-group

Use the **mac access-group** interface configuration command on the switch stack or on a standalone switch to apply a MAC access control list (ACL) to a Layer 2 interface. Use the **no** form of this command to remove all MAC ACLs or the specified MAC ACL from the interface. You create the MAC ACL by using the **mac access-list extended** global configuration command.

```plaintext
mac access-group {name} in
no mac access-group {name}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>Specify a named MAC access list.</td>
</tr>
<tr>
<td>in</td>
<td>Specify that the ACL is applied in the ingress direction. Outbound ACLs are not supported on Layer 2 interfaces.</td>
</tr>
</tbody>
</table>

Defaults

No MAC ACL is applied to the interface.

Command Modes

Interface configuration (Layer 2 interfaces only)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(14)EA1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You can apply MAC ACLs only to ingress Layer 2 interfaces. You cannot apply MAC ACLs to Layer 3 interfaces.

On Layer 2 interfaces, you can filter IP traffic by using IP access lists and non-IP traffic by using MAC access lists. You can filter both IP and non-IP traffic on the same Layer 2 interface by applying both an IP ACL and a MAC ACL to the interface. You can apply no more than one IP access list and one MAC access list to the same Layer 2 interface.

If a MAC ACL is already configured on a Layer 2 interface and you apply a new MAC ACL to the interface, the new ACL replaces the previously configured one.

If you apply an ACL to a Layer 2 interface on a switch, and the switch has an input Layer 3 ACL or a VLAN map applied to a VLAN that the interface is a member of, the ACL applied to the Layer 2 interface takes precedence.

When an inbound packet is received on an interface with a MAC ACL applied, the switch checks the match conditions in the ACL. If the conditions are matched, the switch forwards or drops the packet, according to the ACL.

If the specified ACL does not exist, the switch forwards all packets.

For more information about configuring MAC extended ACLs, see the “Configuring Network Security with ACLs” chapter in the software configuration guide for this release.
This example shows how to apply a MAC extended ACL named `macacl2` to an interface:

```
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# mac access-group macacl2 in
```

You can verify your settings by entering the `show mac access-group` privileged EXEC command. You can see configured ACLs on the switch by entering the `show access-lists` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show access-lists</code></td>
<td>Displays the ACLs configured on the switch.</td>
</tr>
<tr>
<td><code>show mac access-group</code></td>
<td>Displays the MAC ACLs configured on the switch.</td>
</tr>
<tr>
<td><code>show running-config</code></td>
<td>Displays the running configuration on the switch. For syntax information, select Cisco IOS Configuration Fundamentals Command Reference, Release 12.2 > File Management Commands > Configuration File Management Commands.</td>
</tr>
</tbody>
</table>
mac access-list extended

Use the `mac access-list extended` global configuration command on the switch stack or on a standalone switch to create an access list based on MAC addresses for non-IP traffic. Using this command puts you in the extended MAC access-list configuration mode. Use the `no` form of this command to return to the default setting.

```
mac access-list extended name
no mac access-list extended name
```

Syntax Description

| name | Assign a name to the MAC extended access list. |

Defaults

By default, there are no MAC access lists created.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

MAC named extended lists are used with VLAN maps and class maps.

You can apply named MAC extended ACLs to VLAN maps or to Layer 2 interfaces; you cannot apply named MAC extended ACLs to Layer 3 interfaces.

Entering the `mac access-list extended` command enables the MAC access-list configuration mode. These configuration commands are available:

- **default**: sets a command to its default.
- **deny**: specifies packets to reject. For more information, see the `deny (MAC access-list configuration)` command.
- **exit**: exits from MAC access-list configuration mode.
- **no**: negates a command or sets its defaults.
- **permit**: specifies packets to forward. For more information, see the `permit (MAC access-list configuration)` command.

For more information about MAC extended access lists, see the software configuration guide for this release.
Examples

This example shows how to create a MAC named extended access list named `mac1` and to enter extended MAC access-list configuration mode:

```
Switch(config)# mac access-list extended mac1
Switch(config-ext-macl)#
```

This example shows how to delete MAC named extended access list `mac1`:

```
Switch(config)# no mac access-list extended mac1
```

You can verify your settings by entering the `show access-lists` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>deny (MAC access-list configuration)</code></td>
<td>Configures the MAC ACL (in extended MAC-access list configuration mode).</td>
</tr>
<tr>
<td><code>permit (MAC access-list configuration)</code></td>
<td></td>
</tr>
<tr>
<td><code>show access-lists</code></td>
<td>Displays the access lists configured on the switch.</td>
</tr>
<tr>
<td><code>vlan access-map</code></td>
<td>Defines a VLAN map and enters access-map configuration mode where you can specify a MAC ACL to match and the action to be taken.</td>
</tr>
</tbody>
</table>
mac address-table aging-time

Use the `mac address-table aging-time` global configuration command on the switch stack or on a standalone switch to set the length of time that a dynamic entry remains in the MAC address table after the entry is used or updated. Use the `no` form of this command to return to the default setting. The aging time applies to all VLANs or a specified VLAN.

```
mac address-table aging-time {0 | 10-1000000} [vlan vlan-id]
```

```
no mac address-table aging-time {0 | 10-1000000} [vlan vlan-id]
```

Syntax Description

0	This value disables aging. Static address entries are never aged or removed from the table.
10-1000000	Aging time in seconds. The range is 10 to 1000000 seconds.
vlan vlan-id	(Optional) Specify the VLAN ID to which to apply the aging time. The range is 1 to 4094.

Defaults

The default is 300 seconds.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(19)EA1</td>
<td>The <code>mac-address-table aging-time</code> command (with the hyphen) was replaced by the <code>mac address-table aging-time</code> command (without the hyphen).</td>
</tr>
</tbody>
</table>

Usage Guidelines

If hosts do not send continuously, increase the aging time to record the dynamic entries for a longer time. Increasing the time can reduce the possibility of flooding when the hosts send again.

If you do not specify a specific VLAN, this command sets the aging time for all VLANs.

Examples

This example shows how to set the aging time to 200 seconds for all VLANs:

```
Switch(config)# mac address-table aging-time 200
```

You can verify your setting by entering the `show mac address-table aging-time` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show mac address-table aging-time</code></td>
<td>Displays the MAC address table aging time for all VLANs or the specified VLAN.</td>
</tr>
</tbody>
</table>
mac address-table move update

Use the `mac address-table move update` global configuration command on the switch stack or on a standalone switch to enable the MAC address-table move update feature. Use the `no` form of this command to return to the default setting.

```
mac address-table move update {receive | transmit}
no mac address-table move update {receive | transmit}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>receive</td>
<td>Specify that the switch processes MAC address-table move update messages.</td>
</tr>
<tr>
<td>transmit</td>
<td>Specify that the switch sends MAC address-table move update messages to</td>
</tr>
<tr>
<td></td>
<td>other switches in the network if the primary link goes down and the standby</td>
</tr>
<tr>
<td></td>
<td>link comes up.</td>
</tr>
</tbody>
</table>

Command Modes

Global configuration.

Defaults

By default, the MAC address-table move update feature is disabled.

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SED</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The MAC address-table move update feature allows the switch to provide rapid bidirectional convergence if a primary (forwarding) link goes down and the standby link begins forwarding traffic.

You can configure the access switch to send the MAC address-table move update messages if the primary link goes down and the standby link comes up. You can configure the uplink switches to receive and process the MAC address-table move update messages.

Examples

This example shows how to configure an access switch to send MAC address-table move update messages:

```
Switch# configure terminal
Switch(config)# mac address-table move update transmit
Switch(config)# end
```

This example shows how to configure an uplink switch to get and process MAC address-table move update messages:

```
Switch# configure terminal
Switch(config)# mac address-table move update receive
Switch(config)# end
```

You can verify your settings by entering the `show mac address-table move update` privileged EXEC command.
mac address-table move update

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>clear mac address-table move update</code></td>
<td>Clears the MAC address-table move update global counters.</td>
</tr>
<tr>
<td><code>debug matm move update</code></td>
<td>Debugs the MAC address-table move update message processing.</td>
</tr>
<tr>
<td><code>show mac address-table move update</code></td>
<td>Displays the MAC address-table move update information on the switch.</td>
</tr>
</tbody>
</table>
mac address-table notification

Use the **mac address-table notification** global configuration command on the switch stack or on a standalone switch to enable the MAC address notification feature on the switch stack. Use the no form of this command to return to the default setting.

```
mac address-table notification [history-size value] [interval value]
no mac address-table notification [history-size | interval]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>history-size value</td>
<td>(Optional) Configure the maximum number of entries in the MAC notification history table. The range is 0 to 500 entries.</td>
</tr>
<tr>
<td>interval value</td>
<td>(Optional) Set the notification trap interval. The switch stack sends the notification traps when this amount of time has elapsed. The range is 0 to 2147483647 seconds.</td>
</tr>
</tbody>
</table>

Defaults

By default, the MAC address notification feature is disabled.

The default trap interval value is 1 second.

The default number of entries in the history table is 1.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(19)EA1</td>
<td>The mac-address-table notification command (with the hyphen) was replaced by the mac address-table notification command (without the hyphen).</td>
</tr>
</tbody>
</table>

Usage Guidelines

The MAC address notification feature sends Simple Network Management Protocol (SNMP) traps to the network management system (NMS) whenever a new MAC address is added or an old address is deleted from the forwarding tables. MAC notifications are generated only for dynamic and secure MAC addresses. Events are not generated for self addresses, multicast addresses, or other static addresses.

When you configure the **history-size** option, the existing MAC address history table is deleted, and a new table is created.

You enable the MAC address notification feature by using the **mac address-table notification** command. You must also enable MAC address notification traps on an interface by using the **snmp trap mac-notification** interface configuration command and configure the switch to send MAC address traps to the NMS by using the **snmp-server enable traps mac-notification** global configuration command.
Examples

This example shows how to enable the MAC address-table notification feature, set the interval time to 60 seconds, and set the history-size to 100 entries:

```
Switch(config)# mac address-table notification
Switch(config)# mac address-table notification interval 60
Switch(config)# mac address-table notification history-size 100
```

You can verify your settings by entering the `show mac address-table notification` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear mac address-table notification</td>
<td>Clears the MAC address notification global counters.</td>
</tr>
<tr>
<td>show mac address-table notification</td>
<td>Displays the MAC address notification settings on all</td>
</tr>
<tr>
<td></td>
<td>interfaces or on the specified interface.</td>
</tr>
<tr>
<td>snmp-server enable traps</td>
<td>Sends the SNMP MAC notification traps when the</td>
</tr>
<tr>
<td></td>
<td>mac-notification keyword is appended.</td>
</tr>
<tr>
<td>snmp trap mac-notification</td>
<td>Enables the SNMP MAC notification trap on a specific</td>
</tr>
<tr>
<td></td>
<td>interface.</td>
</tr>
</tbody>
</table>

mac address-table static

Use the **mac address-table static** global configuration command on the switch stack or on a standalone switch to add static addresses to the MAC address table. Use the **no** form of this command to remove static entries from the table.

```
mac address-table static mac-addr vlan vlan-id interface interface-id

no mac address-table static mac-addr vlan vlan-id [interface interface-id]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mac-addr</td>
<td>Destination MAC address (unicast or multicast) to add to the address table. Packets with this destination address received in the specified VLAN are forwarded to the specified interface.</td>
</tr>
<tr>
<td>vlan vlan-id</td>
<td>Specify the VLAN for which the packet with the specified MAC address is received. The range is 1 to 4094.</td>
</tr>
<tr>
<td>interface interface-id</td>
<td>Interface to which the received packet is forwarded. Valid interfaces include physical ports and port channels.</td>
</tr>
</tbody>
</table>

Defaults

No static addresses are configured.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(19)EA1</td>
<td>The mac-address-table static command (with the hyphen) was replaced by the mac address-table static command (without the hyphen).</td>
</tr>
</tbody>
</table>

Examples

This example shows how to add the static address c2f3.220a.12f4 to the MAC address table. When a packet is received in VLAN 4 with this MAC address as its destination, the packet is forwarded to the specified interface:

```
Switch(config)# mac address-table static c2f3.220a.12f4 vlan 4 interface gigabitethernet6/0/1
```

You can verify your setting by entering the **show mac address-table** privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show mac address-table static</td>
<td>Displays static MAC address table entries only.</td>
</tr>
</tbody>
</table>
mac address-table static drop

Use the `mac address-table static drop` global configuration command on the switch stack or on a standalone switch to enable unicast MAC address filtering and to configure the switch to drop traffic with a specific source or destination MAC address. Use the `no` form of this command to return to the default setting.

```
mac address-table static mac-addr vlan vlan-id drop
no mac address-table static mac-addr vlan vlan-id
```

Syntax Description

- `mac-addr` Unicast source or destination MAC address. Packets with this MAC address are dropped.
- `vlan vlan-id` Specify the VLAN for which the packet with the specified MAC address is received. Valid VLAN IDs are 1 to 4094.

Defaults

Unicast MAC address filtering is disabled. The switch does not drop traffic for specific source or destination MAC addresses.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2.1(19)EA1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Follow these guidelines when using this feature:

- Multicast MAC addresses, broadcast MAC addresses, and router MAC addresses are not supported. Packets that are forwarded to the CPU are also not supported.
- If you add a unicast MAC address as a static address and configure unicast MAC address filtering, the switch either adds the MAC address as a static address or drops packets with that MAC address, depending on which command was entered last. The second command that you entered overrides the first command.

For example, if you enter the `mac address-table static mac-addr vlan vlan-id interface interface-id` global configuration command followed by the `mac address-table static mac-addr vlan vlan-id drop` command, the switch drops packets with the specified MAC address as a source or destination.

If you enter the `mac address-table static mac-addr vlan vlan-id drop` global configuration command followed by the `mac address-table static mac-addr vlan vlan-id interface interface-id` command, the switch adds the MAC address as a static address.
Examples

This example shows how to enable unicast MAC address filtering and to configure the switch to drop packets that have a source or destination address of c2f3.220a.12f4. When a packet is received in VLAN 4 with this MAC address as its source or destination, the packet is dropped:

```
Switch(config)# mac address-table static c2f3.220a.12f4 vlan 4 drop
```

This example shows how to disable unicast MAC address filtering:

```
Switch(config)# no mac address-table static c2f3.220a.12f4 vlan 4
```

You can verify your setting by entering the `show mac address-table static` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show mac address-table static</code></td>
<td>Displays only static MAC address table entries.</td>
</tr>
</tbody>
</table>
macro apply

Use the **macro apply** interface configuration command on the switch stack or on a standalone switch to apply a macro to an interface or to apply and trace a macro configuration on an interface.

```
macro {apply | trace} macro-name [parameter {value}] [parameter {value}]
```  

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>apply</td>
<td>Apply a macro to the specified interface.</td>
</tr>
<tr>
<td>trace</td>
<td>Use the trace keyword to apply a macro to an interface and to debug the macro.</td>
</tr>
<tr>
<td>macro-name</td>
<td>Specify the name of the macro.</td>
</tr>
<tr>
<td>parameter value</td>
<td>(Optional) Specify unique parameter values that are specific to the interface. You can enter up to three keyword-value pairs. Parameter keyword matching is case sensitive. All matching occurrences of the keyword are replaced with the corresponding value.</td>
</tr>
</tbody>
</table>

Defaults

This command has no default setting.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(19)EA1</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(18)SE</td>
<td>The parameter value keywords were added.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You can use the **macro trace macro-name** interface configuration command to apply and show the macros running on an interface or to debug the macro to find any syntax or configuration errors.

If a command fails because of a syntax error or a configuration error when you apply a macro, the macro continues to apply the remaining commands to the interface.

When creating a macro that requires the assignment of unique values, use the **parameter value** keywords to designate values specific to the interface.

Keyword matching is case sensitive. All matching occurrences of the keyword are replaced with the corresponding value. Any full match of a keyword, even if it is part of a larger string, is considered a match and is replaced by the corresponding value.

Some macros might contain keywords that require a parameter value. You can use the **macro apply macro-name ?** command to display a list of any required values in the macro. If you apply a macro without entering the keyword values, the commands are invalid and are not applied.

There are Cisco-default Smartports macros embedded in the switch software. You can display these macros and the commands they contain by using the **show parser macro** user EXEC command.
Follow these guidelines when you apply a Cisco-default Smartports macro on an interface:

- Display all macros on the switch by using the `show parser macro` user EXEC command. Display the contents of a specific macro by using the `show parser macro name macro-name` user EXEC command.

- Keywords that begin with `$` mean that a unique parameter value is required. Append the Cisco-default macro with the required values by using the `parameter value` keywords.

 The Cisco-default macros use the `$` character to help identify required keywords. There is no restriction on using the `$` character to define keywords when you create a macro.

When you apply a macro to an interface, the macro name is automatically added to the interface. You can display the applied commands and macro names by using the `show running-configuration interface interface-id` user EXEC command.

A macro applied to an interface range behaves the same way as a macro applied to a single interface. When you use an interface range, the macro is applied sequentially to each interface within the range. If a macro command fails on one interface, it is still applied to the remaining interfaces.

You can delete a macro-applied configuration on an interface by entering the `default interface interface-id` interface configuration command.

Examples

After you have created a macro by using the `macro name` global configuration command, you can apply it to an interface. This example shows how to apply a user-created macro called `duplex` to an interface:

```
Switch(config-if)# macro apply duplex
```

To debug a macro, use the `macro trace` interface configuration command to find any syntax or configuration errors in the macro as it is applied to an interface. This example shows how troubleshoot the user-created macro called `duplex` on an interface:

```
Switch(config-if)# macro trace duplex
Applying command...'duplex auto'
%Error Unknown error.
Applying command...'speed nonegotiate'
```

This example shows how to display the Cisco-default `cisco-desktop` macro and how to apply the macro and set the access VLAN ID to 25 on an interface:

```
Switch# show parser macro cisco-desktop
---------------------------------------------
Macro name : cisco-desktop
Macro type : default

# Basic interface - Enable data VLAN only
# Recommended value for access vlan (AVID) should not be 1
switchport access vlan $AVID
switchport mode access

# Enable port security limiting port to a single
# MAC address -- that of desktop
switchport port-security
switchport port-security maximum 1

# Ensure port-security age is greater than one minute
# and use inactivity timer
switchport port-security violation restrict
switchport port-security aging time 2
switchport port-security aging type inactivity
```
Configure port as an edge network port
spanning-tree portfast
spanning-tree bpduguard enable

Switch#
Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/4
Switch(config-if)# macro apply cisco-desktop $AVID 25

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>macro description</td>
<td>Adds a description about the macros that are applied to an interface.</td>
</tr>
<tr>
<td></td>
<td>macro global</td>
<td>Applies a macro on a switch or applies and traces a macro on a switch.</td>
</tr>
<tr>
<td></td>
<td>macro global description</td>
<td>Adds a description about the macros that are applied to the switch.</td>
</tr>
<tr>
<td></td>
<td>macro name</td>
<td>Creates a macro.</td>
</tr>
<tr>
<td></td>
<td>show parser macro</td>
<td>Displays the macro definition for all macros or for the specified macro.</td>
</tr>
</tbody>
</table>
macro description

Use the **macro description** interface configuration command on the switch stack or on a standalone switch to enter a description about which macros are applied to an interface. Use the **no** form of this command to remove the description.

```
macro description text
no macro description text
```

Syntax Description

- **description text** Enter a description about the macros that are applied to the specified interface.

Defaults

This command has no default setting.

Command Modes

Interface configuration

Command History

- **Release** 12.1(19)EA1 This command was introduced.

Usage Guidelines

Use the **description** keyword to associate comment text, or the macro name, with an interface. When multiple macros are applied on a single interface, the description text will be from the last applied macro.

This example shows how to add a description to an interface:

```
Switch(config-if)# macro description duplex settings
```

You can verify your settings by entering the **show parser macro description** privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>macro apply</td>
<td>Applies a macro on an interface or applies and traces a macro on an interface.</td>
</tr>
<tr>
<td>macro global</td>
<td>Applies a macro on a switch or applies and traces a macro on a switch</td>
</tr>
<tr>
<td>macro global description</td>
<td>Adds a description about the macros that are applied to the switch.</td>
</tr>
<tr>
<td>macro name</td>
<td>Creates a macro.</td>
</tr>
<tr>
<td>show parser macro</td>
<td>Displays the macro definition for all macros or for the specified macro.</td>
</tr>
</tbody>
</table>
macro global

Use the `macro global` global configuration command on the switch stack or on a standalone switch to apply a macro to a switch or to apply and trace a macro configuration on a switch.

```
macro global {apply | trace} macro-name [parameter {value}] [parameter {value}]
```

Syntax Description

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>apply</td>
<td>Apply a macro to the switch.</td>
</tr>
<tr>
<td>trace</td>
<td>Apply a macro to a switch and to debug the macro.</td>
</tr>
<tr>
<td>macro-name</td>
<td>Specify the name of the macro.</td>
</tr>
<tr>
<td>parameter</td>
<td>(Optional) Specify unique parameter values that are specific to the switch.</td>
</tr>
<tr>
<td>value</td>
<td>You can enter up to three keyword-value pairs. Parameter keyword matching is case sensitive. All matching occurrences of the keyword are replaced with the corresponding value.</td>
</tr>
</tbody>
</table>

Defaults

This command has no default setting.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(20)SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You can use the `macro trace macro-name` global configuration command to apply and to show the macros running on a switch or to debug the macro to find any syntax or configuration errors.

If a command fails because of a syntax error or a configuration error when you apply a macro, the macro continues to apply the remaining commands to the switch.

When creating a macro that requires the assignment of unique values, use the `parameter value` keywords to designate values specific to the switch.

Keyword matching is case sensitive. All matching occurrences of the keyword are replaced with the corresponding value. Any full match of a keyword, even if it is part of a larger string, is considered a match and is replaced by the corresponding value.

Some macros might contain keywords that require a parameter value. You can use the `macro global apply macro-name`? command to display a list of any required values in the macro. If you apply a macro without entering the keyword values, the commands are invalid and are not applied.

There are Cisco-default Smartports macros embedded in the switch software. You can display these macros and the commands they contain by using the `show parser macro` user EXEC command.
Follow these guidelines when you apply a Cisco-default Smartports macro on a switch:

- Display all macros on the switch by using the `show parser macro` user EXEC command. Display the contents of a specific macro by using the `show parser macro name macro-name` user EXEC command.

- Keywords that begin with `$` mean that a unique parameter value is required. Append the Cisco-default macro with the required values by using the `parameter value` keywords.

 The Cisco-default macros use the `$` character to help identify required keywords. There is no restriction on using the `$` character to define keywords when you create a macro.

When you apply a macro to a switch, the macro name is automatically added to the switch. You can display the applied commands and macro names by using the `show running-configuration` user EXEC command.

You can delete a global macro-applied configuration on a switch only by entering the `no` version of each command contained in the macro.

Examples

After you have created a new macro by using the `macro name` global configuration command, you can apply it to a switch. This example shows how see the `snmp` macro and how to apply the macro and set the hostname to test-server and set the IP precedence value to 7:

```
Switch# show parser macro name snmp
Macro name : snmp
Macro type : customizable

#enable port security, linkup, and linkdown traps
snmp-server enable traps port-security
snmp-server enable traps linkup
snmp-server enable traps linkdown
#set snmp-server host
snmp-server host ADDRESS
#set SNMP trap notifications precedence
snmp-server ip precedence VALUE
``` 

```
Switch(config)# macro global apply snmp ADDRESS test-server VALUE 7
```

To debug a macro, use the `macro global trace` global configuration command to find any syntax or configuration errors in the macro when it is applied to a switch. In this example, the `ADDRESS` parameter value was not entered, causing the `snmp-server host` command to fail while the remainder of the macro is applied to the switch:

```
Switch(config)# macro global trace snmp VALUE 7
Applying command...‘snmp-server enable traps port-security’
Applying command...‘snmp-server enable traps linkup’
Applying command...‘snmp-server enable traps linkdown’
Applying command...‘snmp-server host’
%Error Unknown error.
Applying command...‘snmp-server ip precedence 7’
```
<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>macro apply</td>
<td>Applies a macro on an interface or applies and traces a macro on an interface.</td>
</tr>
<tr>
<td></td>
<td>macro description</td>
<td>Adds a description about the macros that are applied to an interface.</td>
</tr>
<tr>
<td></td>
<td>macro global description</td>
<td>Adds a description about the macros that are applied to the switch.</td>
</tr>
<tr>
<td></td>
<td>macro name</td>
<td>Creates a macro.</td>
</tr>
<tr>
<td></td>
<td>show parser macro</td>
<td>Displays the macro definition for all macros or for the specified macro.</td>
</tr>
</tbody>
</table>
macro global description

Use the macro global description global configuration command on the switch stack or on a standalone switch to enter a description about the macros that are applied to the switch. Use the no form of this command to remove the description.

```
macro global description text
no macro global description text
```

Syntax Description

- `description text` Enter a description about the macros that are applied to the switch.

Defaults

This command has no default setting.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(20)SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the description keyword to associate comment text, or the macro name, with a switch. When multiple macros are applied on a switch, the description text will be from the last applied macro.

This example shows how to add a description to a switch:

```
Switch(config)# macro global description udld aggressive mode enabled
```

You can verify your settings by entering the `show parser macro description` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>macro apply</td>
<td>Applies a macro on an interface or applies and traces a macro on an interface.</td>
</tr>
<tr>
<td>macro description</td>
<td>Adds a description about the macros that are applied to an interface.</td>
</tr>
<tr>
<td>macro global</td>
<td>Applies a macro on a switch or applies and traces a macro on a switch.</td>
</tr>
<tr>
<td>macro name</td>
<td>Creates a macro.</td>
</tr>
<tr>
<td>show parser macro</td>
<td>Displays the macro definition for all macros or for the specified macro.</td>
</tr>
</tbody>
</table>
macro name

Use the macro name global configuration command on the switch stack or on a standalone switch to create a configuration macro. Use the no form of this command to delete the macro definition.

```
macro name macro-name

no macro name macro-name
```

Syntax Description
- **macro-name**: Name of the macro.

Defaults
This command has no default setting.

Command Modes
Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(19)EA1</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(20)SE</td>
<td>The help string # macro keywords was added.</td>
</tr>
</tbody>
</table>

Usage Guidelines

A macro can contain up to 3000 characters. Enter one macro command per line. Use the @ character to end the macro. Use the # character at the beginning of a line to enter comment text within the macro.

You can define mandatory keywords within a macro by using a help string to specify the keywords. Enter `# macro keywords word` to define the keywords that are available for use with the macro. You can enter up to three help string keywords separated by a space. If you enter more than three macro keywords, only the first three are shown.

Macro names are case sensitive. For example, the commands `macro name Sample-Macro` and `macro name sample-macro` will result in two separate macros.

When creating a macro, do not use the exit or end commands or change the command mode by using `interface interface-id`. This could cause commands that follow exit, end, or interface interface-id to execute in a different command mode.

The no form of this command only deletes the macro definition. It does not affect the configuration of those interfaces on which the macro is already applied. You can delete a macro-applied configuration on an interface by entering the default interface interface-id interface configuration command. Alternatively, you can create an anti-macro for an existing macro that contains the no form of all the corresponding commands in the original macro. Then apply the anti-macro to the interface.

You can modify a macro by creating a new macro with the same name as the existing macro. The newly created macro overwrites the existing macro but does not affect the configuration of those interfaces on which the original macro was applied.
Examples

This example shows how to create a macro that defines the duplex mode and speed:

```
Switch(config)# macro name duplex
Enter macro commands one per line. End with the character `@'.
duplex full
speed auto
@
```

This example shows how to create a macro with **# macro keywords**:

```
Switch(config)# macro name test
switchport access vlan $VLANID
switchport port-security maximum $MAX
#macro keywords $VLANID $MAX
@
```

This example shows how to display the mandatory keyword values before you apply the macro to an interface:

```
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# macro apply test ?
  WORD  keyword to replace with a value e.g  $VLANID,$MAX
  <cr>

Switch(config-if)# macro apply test $VLANID ?
  WORD  Value of first keyword to replace
  <cr>

Switch(config-if)# macro apply test $VLANID 2
  WORD  keyword to replace with a value e.g  $VLANID,$MAX
  <cr>

Switch(config-if)# macro apply test $VLANID 2 $MAX ?
  WORD  Value of second keyword to replace
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>macro apply</td>
<td>Applies a macro on an interface or applies and traces a macro on an interface.</td>
</tr>
<tr>
<td>macro description</td>
<td>Adds a description about the macros that are applied to an interface.</td>
</tr>
<tr>
<td>macro global</td>
<td>Applies a macro on a switch or applies and traces a macro on a switch</td>
</tr>
<tr>
<td>macro global description</td>
<td>Adds a description about the macros that are applied to the switch.</td>
</tr>
<tr>
<td>show parser macro</td>
<td>Displays the macro definition for all macros or for the specified macro.</td>
</tr>
</tbody>
</table>
match (access-map configuration)

Use the **match** access-map configuration command on the switch stack or on a standalone switch to set the VLAN map to match packets against one or more access lists. Use the **no** form of this command to remove the match parameters.

```
match { ip address { name | number } [ name | number ]... } | { mac address { name } [ name ]... }

no match { ip address { name | number } [ name | number ]... } | { mac address { name } [ name ]... }
```

Syntax Description

- **ip address** Set the access map to match packets against an IP address access list.
- **mac address** Set the access map to match packets against a MAC address access list.
- **name** Name of the access list to match packets against.
- **number** Number of the access list to match packets against. This option is not valid for MAC access lists.

Defaults

The default action is to have no match parameters applied to a VLAN map.

Command Modes

Access-map configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You enter access-map configuration mode by using the **vlan access-map** global configuration command. You must enter one access list name or number; others are optional. You can match packets against one or more access lists. Matching any of the lists counts as a match of the entry.

In access-map configuration mode, use the **match** command to define the match conditions for a VLAN map applied to a VLAN. Use the **action** command to set the action that occurs when the packet matches the conditions.

Packets are matched only against access lists of the same protocol type; IP packets are matched against IP access lists, and all other packets are matched against MAC access lists.

Both IP and MAC addresses can be specified for the same map entry.
This example shows how to define and apply a VLAN access map `vmap4` to VLANs 5 and 6 that will cause the interface to drop an IP packet if the packet matches the conditions defined in access list `al2`.

```
Switch(config)# vlan access-map vmap4
Switch(config-access-map)# match ip address al2
Switch(config-access-map)# action drop
Switch(config-access-map)# exit
Switch(config)# vlan filter vmap4 vlan-list 5-6
```

You can verify your settings by entering the `show vlan access-map` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>access-list</td>
<td>Configures a standard numbered ACL. For syntax information, select Cisco IOS IP Command Reference, Volume 1 of 3:Addressing and Services, Release 12.2 > IP Services Commands.</td>
</tr>
<tr>
<td>action</td>
<td>Specifies the action to be taken if the packet matches an entry in an access control list (ACL).</td>
</tr>
<tr>
<td>ip access list</td>
<td>Creates a named access list. For syntax information, select Cisco IOS IP Command Reference, Volume 1 of 3:Addressing and Services, Release 12.2 > IP Services Commands.</td>
</tr>
<tr>
<td>mac access-list extended</td>
<td>Creates a named MAC address access list.</td>
</tr>
<tr>
<td>show vlan access-map</td>
<td>Displays the VLAN access maps created on the switch.</td>
</tr>
<tr>
<td>vlan access-map</td>
<td>Creates a VLAN access map.</td>
</tr>
</tbody>
</table>
match (class-map configuration)

Use the `match` class-map configuration command on the switch stack or on a standalone switch to define the match criteria to classify traffic. Use the `no` form of this command to remove the match criteria.

```
match { access-group acl-index-or-name | input-interface interface-id-list | ip dscp dscp-list | ip precedence ip-precedence-list }
```

```
no match { access-group acl-index-or-name | input-interface interface-id-list | ip dscp dscp-list | ip precedence ip-precedence-list }
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>access-group acl-index-or-name</td>
<td>Number or name of an IP standard or extended access control list (ACL) or MAC ACL. For an IP standard ACL, the ACL index range is 1 to 99 and 1300 to 1999. For an IP extended ACL, the ACL index range is 100 to 199 and 2000 to 2699.</td>
</tr>
<tr>
<td>input-interface interface-id-list</td>
<td>Specify the physical ports to which the interface-level class map in a hierarchical policy map applies. This command can only be used in the child-level policy map and must be the only match condition in the child-level policy map. You can specify up to six entries in the list by specifying a port (counts as one entry), a list of ports separated by a space (each port counts as an entry), or a range of ports separated by a hyphen (counts as two entries).</td>
</tr>
<tr>
<td>ip dscp dscp-list</td>
<td>List of up to eight IP Differentiated Services Code Point (DSCP) values to match against incoming packets. Separate each value with a space. The range is 0 to 63. You also can enter a mnemonic name for a commonly-used value.</td>
</tr>
<tr>
<td>ip precedence ip-precedence-list</td>
<td>List of up to eight IP-precedence values to match against incoming packets. Separate each value with a space. The range is 0 to 7. You also can enter a mnemonic name for a commonly-used value.</td>
</tr>
</tbody>
</table>

Defaults

No match criteria are defined.

Command Modes

Class-map configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(25)SE</td>
<td>The <code>input-interface interface-id-list</code> keyword was added.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `match` command is used to specify which fields in the incoming packets are examined to classify the packets. Only the IP access group or the MAC access group matching to the Ether Type/LEN are supported.

To define packet classification on a physical-port basis, only one `match` command per class map is supported. In this situation, the `match-all` and `match-any` keywords are equivalent.
For the `match ip dscp dscp-list` or the `match ip precedence ip-precedence-list` command, you can enter a mnemonic name for a commonly used value. For example, you can enter the `match ip dscp af11` command, which is the same as entering the `match ip dscp 10` command. You can enter the `match ip precedence critical` command, which is the same as entering the `match ip precedence 5` command. For a list of supported mnemonics, enter the `match ip dscp ?` or the `match ip precedence ?` command to see the command-line help strings.

Use the `input-interface interface-id-list` keyword when you are configuring an interface-level class map in a hierarchical policy map. For the `interface-id-list`, you can specify up to six entries.

Examples

This example shows how to create a class map called `class2`, which matches all the incoming traffic with DSCP values of 10, 11, and 12:

```
Switch(config)# class-map class2
Switch(config-cmap)# match ip dscp 10 11 12
Switch(config-cmap)# exit
```

This example shows how to create a class map called `class3`, which matches all the incoming traffic with IP-precedence values of 5, 6, and 7:

```
Switch(config)# class-map class3
Switch(config-cmap)# match ip precedence 5 6 7
Switch(config-cmap)# exit
```

This example shows how to delete the IP-precedence match criteria and to classify traffic using `acl1`:

```
Switch(config)# class-map class2
Switch(config-cmap)# match ip precedence 5 6 7
Switch(config-cmap)# no match ip precedence
Switch(config-cmap)# match access-group acl1
Switch(config-cmap)# exit
```

This example shows how to specify a list of physical ports to which an interface-level class map in a hierarchical policy map applies:

```
Switch(config)# class-map match-all class4
Switch(config-cmap)# match input-interface gigabitethernet2/0/1 gigabitethernet2/0/2
Switch(config-cmap)# exit
```

This example shows how to specify a range of physical ports to which an interface-level class map in a hierarchical policy map applies:

```
Switch(config)# class-map match-all class4
Switch(config-cmap)# match input-interface gigabitethernet2/0/1 - gigabitethernet2/0/5
Switch(config-cmap)# exit
```

You can verify your settings by entering the `show class-map` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>class-map</code></td>
<td>Creates a class map to be used for matching packets to the class whose name you specify.</td>
</tr>
<tr>
<td><code>show class-map</code></td>
<td>Displays quality of service (QoS) class maps.</td>
</tr>
</tbody>
</table>
mdix auto

Use the `mdix auto` interface configuration command on the switch stack or on a standalone switch to enable the automatic medium-dependent interface crossover (auto-MDIX) feature on the interface. When auto-MDIX is enabled, the interface automatically detects the required cable connection type (straight-through or crossover) and configures the connection appropriately. Use the `no` form of this command to disable auto-MDIX.

```
mdix auto

no mdix auto
```

Syntax Description

This command has no arguments or keywords.

Defaults

Auto-MDIX is enabled.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(14)EA1</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(18)SE</td>
<td>The default setting changed from disabled to enabled.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When you enable auto-MDIX on an interface, you must also set the interface speed and duplex to `auto` so that the feature operates correctly.

When auto-MDIX (and autonegotiation of speed and duplex) is enabled on one or both of connected interfaces, link up occurs, even if the cable type (straight-through or crossover) is incorrect.

Auto-MDIX is supported on all 10/100 and 10/100/1000 Mbps interfaces and on 10/100/1000BASE-TX small form-factor pluggable (SFP) module interfaces. It is not supported on 1000BASE-SX or -LX SFP module interfaces.

Examples

This example shows how to enable auto-MDIX on a port:

```
Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# speed auto
Switch(config-if)# duplex auto
Switch(config-if)# mdix auto
Switch(config-if)# end
```

You can verify the operational state of auto-MDIX on the interface by entering the `show controllers ethernet-controller interface-id phy` privileged EXEC command.
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show controllers ethernet-controller</code></td>
<td>Displays general information about internal registers of an interface, including the operational state of auto-MDIX.</td>
</tr>
<tr>
<td><code>interface-id phy</code></td>
<td></td>
</tr>
</tbody>
</table>
mls qos

Use the mls qos global configuration command on the switch stack or on a standalone switch to enable quality of service (QoS) for the entire switch. When the mls qos command is entered, QoS is enabled with the default parameters on all ports in the system. Use the no form of this command to reset all the QoS-related statistics and to disable the QoS features for the entire switch.

 mls qos
 no mls qos

Syntax Description
This command has no arguments or keywords.

Defaults
QoS is disabled. There is no concept of trusted or untrusted ports because the packets are not modified (the CoS, DSCP, and IP precedence values in the packet are not changed). Traffic is switched in pass-through mode (packets are switched without any rewrites and classified as best effort without any policing).

When QoS is enabled with the mls qos global configuration command and all other QoS settings are set to their defaults, traffic is classified as best effort (the DSCP and CoS value is set to 0) without any policing. No policy maps are configured. The default port trust state on all ports is untrusted. The default ingress and egress queue settings are in effect.

Command Modes
Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
QoS must be globally enabled to use QoS classification, policing, mark down or drop, queueing, and traffic shaping features. You can create a policy-map and attach it to a port before entering the mls qos command. However, until you enter the mls qos command, QoS processing is disabled.

Policy-maps and class-maps used to configure QoS are not deleted from the configuration by the no mls qos command, but entries corresponding to policy maps are removed from the switch hardware to save system resources. To re-enable QoS with the previous configurations, use the mls qos command.

Toggling the QoS status of the switch with this command modifies (reallocates) the sizes of the queues. During the queue size modification, the queue is temporarily shut down during the hardware reconfiguration, and the switch drops newly arrived packets for this queue.

Examples
This example shows how to enable QoS on the switch:

 Switch(config)# mls qos

You can verify your settings by entering the show mls qos privileged EXEC command.
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show mls qos</code></td>
<td>Displays QoS information.</td>
</tr>
</tbody>
</table>
mls qos aggregate-policer

Use the `mls qos aggregate-policer` global configuration command on the switch stack or on a standalone switch to define policer parameters, which can be shared by multiple classes within the same policy map. A policer defines a maximum permissible rate of transmission, a maximum burst size for transmissions, and an action to take if either maximum is exceeded. Use the `no` form of this command to delete an aggregate policer.

```
mls qos aggregate-policer aggregate-policer-name rate-bps burst-byte exceed-action {drop | policed-dscp-transmit}
no mls qos aggregate-policer aggregate-policer-name
```

Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aggregate-policer-name</td>
<td>Name of the aggregate policer referenced by the <code>police aggregate</code> policy-map class configuration command.</td>
</tr>
<tr>
<td>rate-bps</td>
<td>Specify the average traffic rate in bits per second (bps). The range is 8000 to 1000000000.</td>
</tr>
<tr>
<td>burst-byte</td>
<td>Specify the normal burst size in bytes. The range is 8000 to 1000000.</td>
</tr>
<tr>
<td>exceed-action drop</td>
<td>When the specified rate is exceeded, specify that the switch drop the packet.</td>
</tr>
<tr>
<td>exceed-action policed-dscp-transmit</td>
<td>When the specified rate is exceeded, specify that the switch change the Differentiated Services Code Point (DSCP) of the packet to that specified in the policed-DSCP map and then send the packet.</td>
</tr>
</tbody>
</table>

Defaults

No aggregate policers are defined.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Define an aggregate policer if the policer is shared with multiple classes.

Policers for a port cannot be shared with other policers for another port; traffic from two different ports cannot be aggregated for policing purposes.

The port ASIC device, which controls more than one physical port, supports 256 policers (255 policers plus 1 `no` policer). The maximum number of policers supported per port is 64. Policers are allocated on demand by the software and are constrained by the hardware and ASIC boundaries. You cannot reserve policers per port (there is no guarantee that a port will be assigned to any policer).

You apply an aggregate policer to multiple classes in the same policy map; you cannot use an aggregate policer across different policy maps.
You cannot delete an aggregate policer if it is being used in a policy map. You must first use the `no police aggregate aggregate-policer-name` policy-map class configuration command to delete the aggregate policer from all policy maps before using the `no mls qos aggregate-policer aggregate-policer-name` command.

Policing uses a token-bucket algorithm. You configure the bucket depth (the maximum burst that is tolerated before the bucket overflows) by using the `burst-byte` option of the `police` policy-map class configuration command or the `mls qos aggregate-policer` global configuration command. You configure how fast (the average rate) that the tokens are removed from the bucket by using the `rate-bps` option of the `police` policy-map class configuration command or the `mls qos aggregate-policer` global configuration command. For more information, see the software configuration guide for this release.

Examples

This example shows how to define the aggregate policer parameters and how to apply the policer to multiple classes in a policy map:

```
Switch(config)# mls qos aggregate-policer agg_policer1 1000000 1000000 exceed-action drop
Switch(config)# policy-map policy2
Switch(config-pmap)# class class1
Switch(config-pmap-c)# police aggregate agg_policer1
Switch(config-pmap-c)# exit
Switch(config-pmap)# class class2
Switch(config-pmap-c)# set dscp 10
Switch(config-pmap-c)# police aggregate agg_policer1
Switch(config-pmap-c)# exit
Switch(config-pmap)# class class3
Switch(config-pmap-c)# trust dscp
Switch(config-pmap-c)# police aggregate agg_policer2
Switch(config-pmap-c)# exit
```

You can verify your settings by entering the `show mls qos aggregate-policer` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>police aggregate</td>
<td>Creates a policer that is shared by different classes.</td>
</tr>
<tr>
<td>show mls qos aggregate-policer</td>
<td>Displays the quality of service (QoS) aggregate policer configuration.</td>
</tr>
</tbody>
</table>
mls qos cos

Use the `mls qos cos` interface configuration command on the switch stack or on a standalone switch to define the default class of service (CoS) value of a port or to assign the default CoS to all incoming packets on the port. Use the `no` form of this command to return to the default setting.

```
mls qos cos {default-cos | override}
no mls qos cos {default-cos | override}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>default-cos</code></td>
<td>Assign a default CoS value to a port. If packets are untagged, the default CoS value becomes the packet CoS value. The CoS range is 0 to 7.</td>
</tr>
<tr>
<td><code>override</code></td>
<td>Override the CoS of the incoming packets, and apply the default CoS value on the port to all incoming packets.</td>
</tr>
</tbody>
</table>

Defaults

The default CoS value for a port is 0.

CoS override is disabled.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You can use the default value to assign a CoS and Differentiated Services Code Point (DSCP) value to all incoming packets that are untagged (if the incoming packet does not have a CoS value). You also can assign a default CoS and DSCP value to all incoming packets by using the `override` keyword.

Use the `override` keyword when all incoming packets on certain ports deserve higher or lower priority than packets entering from other ports. Even if a port is previously set to trust DSCP, CoS, or IP precedence, this command overrides the previously configured trust state, and all the incoming CoS values are assigned the default CoS value configured with the `mls qos cos` command. If an incoming packet is tagged, the CoS value of the packet is modified with the default CoS of the port at the ingress port.
Examples

This example shows how to configure the default port CoS to 4 on a port:

```
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# mls qos trust cos
Switch(config-if)# mls qos cos 4
```

This example shows how to assign all the packets entering a port to the default port CoS value of 4 on a port:

```
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# mls qos cos 4
Switch(config-if)# mls qos cos override
```

You can verify your settings by entering the `show mls qos interface` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show mls qos interface</code></td>
<td>Displays quality of service (QoS) information.</td>
</tr>
</tbody>
</table>
mls qos dscp-mutation

Use the **mls qos dscp-mutation** interface configuration command on the switch stack or on a standalone switch to apply a Differentiated Services Code Point (DSCP)-to-DSCP-mutation map to a DSCP-trusted port. Use the **no** form of this command to return the map to the default settings (no DSCP mutation).

```
mls qos dscp-mutation dscp-mutation-name
no mls qos dscp-mutation dscp-mutation-name
```

Syntax Description

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dscp-mutation-name</td>
<td>Name of the DSCP-to-DSCP-mutation map. This map was previously defined with the mls qos map dscp-mutation global configuration command.</td>
</tr>
</tbody>
</table>

Defaults

The default DSCP-to-DSCP-mutation map is a null map, which maps incoming DSCPs to the same DSCP values.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If two quality of service (QoS) domains have different DSCP definitions, use the DSCP-to-DSCP-mutation map to translate one set of DSCP values to match the definition of another domain. You apply the DSCP-to-DSCP-mutation map to the receiving port (ingress mutation) at the boundary of a quality of service (QoS) administrative domain.

With ingress mutation, the new DSCP value overwrites the one in the packet, and QoS handles the packet with this new value. The switch sends the packet out the port with the new DSCP value.

You can configure multiple DSCP-to-DSCP-mutation maps on ingress ports. You apply the map only to DSCP-trusted ports. If you apply the DSCP mutation map to an untrusted port, to class of service (CoS) or IP-precedence trusted port, the command has no immediate effect until the port becomes DSCP-trusted.

Examples

This example shows how to define the DSCP-to-DSCP-mutation map named *dscpmutation1* and to apply the map to a port:

```
Switch(config)# mls qos map dscp-mutation dscpmutation1 10 11 12 13 to 30
Switch(config)# interface gigabitethernet3/0/1
Switch(config-if)# mls qos trust dscp
Switch(config-if)# mls qos dscp-mutation dscpmutation1
```
This example shows how to remove the DSCP-to-DSCP-mutation map name `dscpmutation1` from the port and to reset the map to the default:

```bash
Switch(config-if)# no mls qos dscp-mutation dscpmutation1
```

You can verify your settings by entering the `show mls qos maps` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mls qos map dscp-mutation</code></td>
<td>Defines the DSCP-to-DSCP-mutation map.</td>
</tr>
<tr>
<td><code>mls qos trust</code></td>
<td>Configures the port trust state.</td>
</tr>
<tr>
<td><code>show mls qos maps</code></td>
<td>Displays QoS mapping information.</td>
</tr>
</tbody>
</table>
mls qos map

Use the `mls qos map` global configuration command on the switch stack or on a standalone switch to define the class of service (CoS)-to-Differentiated Services Code Point (DSCP) map, DSCP-to-CoS map, the DSCP-to-DSCP-mutation map, the IP-precedence-to-DSCP map, and the policed-DSCP map. Use the `no` form of this command to return to the default map.

```
mls qos map {cos-dscp dscp1...dscp8 | dscp-cos dscp-list to cos | dscp-mutation dscp-mutation-name in-dscp to out-dscp | ip-prec-dscp dscp1...dscp8 | policed-dscp dscp-list to mark-down-dscp}
```

```
no mls qos map {cos-dscp | dscp-cos | dscp-mutation dscp-mutation-name | ip-prec-dscp | policed-dscp}
```

| Syntax Description | cos-dscp dscp1...dscp8 | Define the CoS-to-DSCP map.
For `dscp1...dscp8`, enter eight DSCP values that correspond to CoS values 0 to 7. Separate each DSCP value with a space. The range is 0 to 63.

| | dscp-cos dscp-list to cos | Define the DSCP-to-CoS map.
For `dscp-list`, enter up to eight DSCP values, with each value separated by a space. The range is 0 to 63. Then enter the `to` keyword.
For `cos`, enter a single CoS value to which the DSCP values correspond. The range is 0 to 7.

| | dscp-mutation dscp-mutation-name in-dscp to out-dscp | Define the DSCP-to-DSCP-mutation map.
For `dscp-mutation-name`, enter the mutation map name.
For `in-dscp`, enter up to eight DSCP values, with each value separated by a space. Then enter the `to` keyword.
For `out-dscp`, enter a single DSCP value.
The range is 0 to 63.

| | ip-prec-dscp dscp1...dscp8 | Define the IP-precedence-to-DSCP map.
For `dscp1...dscp8`, enter eight DSCP values that correspond to the IP precedence values 0 to 7. Separate each DSCP value with a space. The range is 0 to 63.

| | policed-dscp dscp-list to mark-down-dscp | Define the policed-DSCP map.
For `dscp-list`, enter up to eight DSCP values, with each value separated by a space. Then enter the `to` keyword.
For `mark-down-dscp`, enter the corresponding policed (marked down) DSCP value.
The range is 0 to 63.
Table 2-6 shows the default CoS-to-DSCP map:

<table>
<thead>
<tr>
<th>CoS Value</th>
<th>DSCP Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>32</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>48</td>
</tr>
<tr>
<td>7</td>
<td>56</td>
</tr>
</tbody>
</table>

Table 2-7 shows the default DSCP-to-CoS map:

<table>
<thead>
<tr>
<th>DSCP Value</th>
<th>CoS Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–7</td>
<td>0</td>
</tr>
<tr>
<td>8–15</td>
<td>1</td>
</tr>
<tr>
<td>16–23</td>
<td>2</td>
</tr>
<tr>
<td>24–31</td>
<td>3</td>
</tr>
<tr>
<td>32–39</td>
<td>4</td>
</tr>
<tr>
<td>40–47</td>
<td>5</td>
</tr>
<tr>
<td>48–55</td>
<td>6</td>
</tr>
<tr>
<td>56–63</td>
<td>7</td>
</tr>
</tbody>
</table>

Table 2-8 shows the default IP-precedence-to-DSCP map:

<table>
<thead>
<tr>
<th>IP Precedence Value</th>
<th>DSCP Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>32</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>48</td>
</tr>
<tr>
<td>7</td>
<td>56</td>
</tr>
</tbody>
</table>
The default DSCP-to-DSCP-mutation map is a null map, which maps an incoming DSCP value to the same DSCP value.

The default policed-DSCP map is a null map, which maps an incoming DSCP value to the same DSCP value.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

All the maps are globally defined. All the maps, except the DSCP-to-DSCP-mutation map, are applied to all ports. The DSCP-to-DSCP-mutation map is applied to a specific port.

Examples

This example shows how to define the IP-precedence-to-DSCP map and to map IP-precedence values 0 to 7 to DSCP values of 0, 10, 20, 30, 40, 50, 55, and 60:

```
Switch# configure terminal
Switch(config)# mls qos map ip-prec-dscp 0 10 20 30 40 50 55 60
```

This example shows how to define the policed-DSCP map. DSCP values 1, 2, 3, 4, 5, and 6 are marked down to DSCP value 0. Marked DSCP values that not explicitly configured are not modified:

```
Switch# configure terminal
Switch(config)# mls qos map policed-dscp 1 2 3 4 5 6 to 0
```

This example shows how to define the DSCP-to-CoS map. DSCP values 20, 21, 22, 23, and 24 are mapped to CoS 1. DSCP values 10, 11, 12, 13, 14, 15, 16, and 17 are mapped to CoS 0:

```
Switch# configure terminal
Switch(config)# mls qos map dscp-cos 20 21 22 23 24 to 1
Switch(config)# mls qos map dscp-cos 10 11 12 13 14 15 16 17 to 0
```

This example shows how to define the CoS-to-DSCP map. CoS values 0 to 7 are mapped to DSCP values 0, 5, 10, 15, 20, 25, 30, and 35:

```
Switch# configure terminal
Switch(config)# mls qos map cos-dscp 0 5 10 15 20 25 30 35
```

This example shows how to define the DSCP-to-DSCP-mutation map. All the entries that are not explicitly configured are not modified (remain as specified in the null map):

```
Switch# configure terminal
Switch(config)# mls qos map dscp-mutation mutation1 1 2 3 4 5 6 7 to 10
Switch(config)# mls qos map dscp-mutation mutation1 8 9 10 11 12 13 to 10
Switch(config)# mls qos map dscp-mutation mutation1 20 21 22 to 20
Switch(config)# mls qos map dscp-mutation mutation1 0 31 32 33 34 to 30
```

You can verify your settings by entering the `show mls qos maps` privileged EXEC command.
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mls qos dscp-mutation</td>
<td>Applies a DSCP-to-DSCP-mutation map to a DSCP-trusted port.</td>
</tr>
<tr>
<td>show mls qos maps</td>
<td>Displays quality of service (QoS) mapping information.</td>
</tr>
</tbody>
</table>
mls qos queue-set output buffers

Use the `mls qos queue-set output buffers` global configuration command on the switch stack or on a standalone switch to allocate buffers to a queue-set (four egress queues per port). Use the `no` form of this command to return to the default setting.

```
mls qos queue-set output qset-id buffers allocation1 ... allocation4

no mls qos queue-set output qset-id buffers
```

Syntax Description

- `qset-id`: ID of the queue-set. Each port belongs to a queue-set, which defines all the characteristics of the four egress queues per port. The range is 1 to 2.
- `allocation1 ... allocation4`: Buffer space allocation (percentage) for each queue (four values for queues 1 to 4). For `allocation1`, `allocation3`, and `allocation4`, the range is 0 to 99. For `allocation2`, the range is 1 to 100 (including the CPU buffer). Separate each value with a space.

Defaults

All allocation values are equally mapped among the four queues (25, 25, 25, 25). Each queue has 1/4 of the buffer space.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(18)SE</td>
<td>The range for <code>allocation2</code> changed from 0 to 100 to 20 to 100.</td>
</tr>
<tr>
<td>12.2(20)SE</td>
<td>The range for <code>allocation1</code>, <code>allocation3</code>, and <code>allocation4</code> changed from 0 to 100 to 0 to 99. The range for <code>allocation2</code> changed from 20 to 100 to 1 to 100.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Specify four allocation values, and separate each with a space.

Allocate buffers according to the importance of the traffic; for example, give a large percentage of the buffer to the queue with the highest-priority traffic.

To configure different classes of traffic with different characteristics, use this command with the `mls qos queue-set output qset-id threshold` global configuration command.

Note

The egress queue default settings are suitable for most situations. You should change them only when you have a thorough understanding of the egress queues and if these settings do not meet your QoS solution.
Examples

This example shows how to map a port to queue-set 2. It allocates 40 percent of the buffer space to egress queue 1 and 20 percent to egress queues 2, 3, and 4:

```
Switch(config)# mls qos queue-set output 2 buffers 40 20 20 20
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# queue-set 2
```

You can verify your settings by entering the `show mls qos interface [interface-id] buffers` or the `show mls qos queue-set` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mls qos queue-set output threshold</code></td>
<td>Configures the weighted tail-drop (WTD) thresholds, guarantees the availability of buffers, and configures the maximum memory allocation to a queue-set.</td>
</tr>
<tr>
<td><code>queue-set</code></td>
<td>Maps a port to a queue-set.</td>
</tr>
<tr>
<td><code>show mls qos interface buffers</code></td>
<td>Displays quality of service (QoS) information.</td>
</tr>
<tr>
<td><code>show mls qos queue-set</code></td>
<td>Displays egress queue settings for the queue-set.</td>
</tr>
</tbody>
</table>
mls qos queue-set output threshold

Use the `mls qos queue-set output threshold` global configuration command on the switch stack or on a standalone switch to configure the weighted tail-drop (WTD) thresholds, to guarantee the availability of buffers, and to configure the maximum memory allocation to a queue-set (four egress queues per port). Use the `no` form of this command to return to the default setting.

```
mls qos queue-set output qset-id threshold queue-id drop-threshold1 drop-threshold2
reserved-threshold maximum-threshold
```

```
no mls qos queue-set output qset-id threshold [queue-id]
```

Syntax Description

qset-id	ID of the queue-set. Each port belongs to a queue-set, which defines all the characteristics of the four egress queues per port. The range is 1 to 2.
queue-id	Specific queue in the queue-set on which the command is performed. The range is 1 to 4.
drop-threshold1	Two WTD thresholds expressed as a percentage of the queue’s allocated memory. The range is 1 to 400 percent.
drop-threshold2	
reserved-threshold	Amount of memory to be guaranteed (reserved) for the queue and expressed as a percentage of the allocated memory. The range is 1 to 100 percent.
maximum-threshold	Enable a queue in the full condition to get more buffers than are reserved for it. This is the maximum memory the queue can have before the packets are dropped. The range is 1 to 400 percent.

Defaults

When quality of service (QoS) is enabled, WTD is enabled. Table 2-9 shows the default WTD threshold settings.

Table 2-9 Default Egress Queue WTD Threshold Settings

<table>
<thead>
<tr>
<th>Feature</th>
<th>Queue 1</th>
<th>Queue 2</th>
<th>Queue 3</th>
<th>Queue 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>WTD Drop Threshold 1</td>
<td>100 percent</td>
<td>200 percent</td>
<td>100 percent</td>
<td>100 percent</td>
</tr>
<tr>
<td>WTD Drop Threshold 2</td>
<td>100 percent</td>
<td>200 percent</td>
<td>100 percent</td>
<td>100 percent</td>
</tr>
<tr>
<td>Reserved Threshold</td>
<td>50 percent</td>
<td>100 percent</td>
<td>50 percent</td>
<td>50 percent</td>
</tr>
<tr>
<td>Maximum Threshold</td>
<td>400 percent</td>
<td>400 percent</td>
<td>400 percent</td>
<td>400 percent</td>
</tr>
</tbody>
</table>

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
Usage Guidelines

Use the `mls qos queue-set output qset-id buffers` global configuration command to allocate a fixed number of buffers to the four queues in a queue-set.

The drop-threshold percentages can exceed 100 percent and can be up to the maximum (if the maximum threshold exceeds 100 percent).

Note

The egress queue default settings are suitable for most situations. You should change them only when you have a thorough understanding of the egress queues and if these settings do not meet your QoS solution.

The switch uses a buffer allocation scheme to reserve a minimum amount of buffers for each egress queue, to prevent any queue or port from consuming all the buffers and depriving other queues, and to decide whether to grant buffer space to a requesting queue. The switch decides whether the target queue has not consumed more buffers than its reserved amount (under-limit), whether it has consumed all of its maximum buffers (over-limit), and whether the common pool is empty (no free buffers) or not empty (free buffers). If the queue is not over-limit, the switch can allocate buffer space from the reserved pool or from the common pool (if it is not empty). If there are no free buffers in the common pool or if the queue is over-limit, the switch drops the frame.

Examples

This example shows how to map a port to queue-set 2. It configures the drop thresholds for queue 2 to 40 and 60 percent of the allocated memory, guarantees (reserves) 100 percent of the allocated memory, and configures 200 percent as the maximum memory this queue can have before packets are dropped:

```
Switch(config)# mls qos queue-set output 2 threshold 2 40 60 100 200
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# queue-set 2
```

You can verify your settings by entering the `show mls qos interface [interface-id] buffers` or the `show mls qos queue-set` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mls qos queue-set output buffers</code></td>
<td>Allocates buffers to a queue-set.</td>
</tr>
<tr>
<td><code>queue-set</code></td>
<td>Maps a port to a queue-set.</td>
</tr>
<tr>
<td><code>show mls qos interface buffers</code></td>
<td>Displays QoS information.</td>
</tr>
<tr>
<td><code>show mls qos queue-set</code></td>
<td>Displays egress queue settings for the queue-set.</td>
</tr>
</tbody>
</table>
mls qos rewrite ip dscp

Use the `mls qos rewrite ip dscp` global configuration command on the switch stack or on a standalone switch to configure the switch to change (rewrite) the Differentiated Services Code Point (DSCP) field of an incoming IP packet. Use the `no` form of this command to configure the switch to not modify (rewrite) the DSCP field of the packet and to enable DSCP transparency.

```
mls qos rewrite ip dscp
```

```
no mls qos rewrite ip dscp
```

Syntax Description

This command has no arguments or keywords.

Defaults

DSCP transparency is disabled. The switch changes the DSCP field of the incoming IP packet.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

DSCP transparency affects only the DSCP field of a packet at the egress. If DSCP transparency is enabled by using the `no mls qos rewrite ip dscp` command, the switch does not modify the DSCP field in the incoming packet, and the DSCP field in the outgoing packet is the same as that in the incoming packet.

Note

Enabling DSCP transparency does not affect the port trust settings on IEEE 802.1Q tunneling ports.

By default, DSCP transparency is disabled. The switch modifies the DSCP field in an incoming packet, and the DSCP field in the outgoing packet is based on the quality of service (QoS) configuration, including the port trust setting, policing and marking, and the DSCP-to-DSCP mutation map.

Regardless of the DSCP transparency configuration, the switch modifies the internal DSCP value of the packet that the switch uses to generate a class of service (CoS) value representing the priority of the traffic. The switch also uses the internal DSCP value to select an egress queue and threshold.

For example, if QoS is enabled and an incoming packet has a DSCP value of 32, the switch might modify the internal DSCP value based on the policy-map configuration and change the internal DSCP value to 16. If DSCP transparency is enabled, the outgoing DSCP value is 32 (same as the incoming value). If DSCP transparency is disabled, the outgoing DSCP value is 16 because it is based on the internal DSCP value.
Examples

This example shows how to enable DSCP transparency and configure the switch to not change the DSCP value of the incoming IP packet:

```
Switch(config)# mls qos
Switch(config)# no mls qos rewrite ip dscp
```

This example shows how to disable DSCP transparency and configure the switch to change the DSCP value of the incoming IP packet:

```
Switch(config)# mls qos
Switch(config)# mls qos rewrite ip dscp
```

You can verify your settings by entering the `show running config | include rewrite` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mls qos</td>
<td>Enables QoS globally.</td>
</tr>
<tr>
<td>show mls qos</td>
<td>Displays QoS information.</td>
</tr>
</tbody>
</table>
mls qos srr-queue input bandwidth

Use the **mls qos srr-queue input bandwidth** global configuration command on the switch stack or on a standalone switch to assign shaped round robin (SRR) weights to an ingress queue. The ratio of the weights is the ratio of the frequency in which the SRR scheduler dequeues packets from each queue. Use the **no** form of this command to return to the default setting.

```
mls qos srr-queue input bandwidth weight1 weight2
no mls qos srr-queue input bandwidth
```

Syntax Description

| weight1 weight2 | Ratio of weight1 and weight2 determines the ratio of the frequency in which the SRR scheduler dequeues packets from ingress queues 1 and 2. The range is 1 to 100. Separate each value with a space. |

Defaults

Weight1 and weight2 are 4 (1/2 of the bandwidth is equally shared between the two queues).

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

SRR services the priority queue for its configured weight as specified by the **bandwidth** keyword in the **mls qos srr-queue input priority-queue queue-id bandwidth weight** global configuration command. Then SRR shares the remaining bandwidth with both ingress queues and services them as specified by the weights configured with the **mls qos srr-queue input bandwidth weight1 weight2** global configuration command.

You specify which ingress queue is the priority queue by using the **mls qos srr-queue input priority-queue** global configuration command.

Examples

This example shows how to assign the ingress bandwidth for the queues in the stack. Priority queueing is disabled, and the shared bandwidth ratio allocated to queue 1 is 25/(25+75) and to queue 2 is 75/(25+75):

```
Switch(config)# mls qos srr-queue input priority-queue 2 bandwidth 0
Switch(config)# mls qos srr-queue input bandwidth 25 75
```

In this example, queue 2 has three times the bandwidth of queue 1; queue 2 is serviced three times as often as queue 1.
This example shows how to assign the ingress bandwidths for the queues in the stack. Queue 1 is the priority queue with 10 percent of the bandwidth allocated to it. The bandwidth ratio allocated to queues 1 and 2 is 4/(4+4). SRR services queue 1 (the priority queue) first for its configured 10 percent bandwidth. Then SRR equally shares the remaining 90 percent of the bandwidth between queues 1 and 2 by allocating 45 percent to each queue:

```
Switch(config)# mls qos srr-queue input priority-queue 1 bandwidth 10
Switch(config)# mls qos srr-queue input bandwidth 4 4
```

You can verify your settings by entering the `show mls qos interface [interface-id] queueing` or the `show mls qos input-queue` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mls qos srr-queue input buffers</code></td>
<td>Allocates the buffers between the ingress queues.</td>
</tr>
<tr>
<td><code>mls qos srr-queue input cos-map</code></td>
<td>Maps class of service (CoS) values to an ingress queue or maps CoS values to a queue and to a threshold ID.</td>
</tr>
<tr>
<td><code>mls qos srr-queue input dscp-map</code></td>
<td>Maps Differentiated Services Code Point (DSCP) values to an ingress queue or maps DSCP values to a queue and to a threshold ID.</td>
</tr>
<tr>
<td><code>mls qos srr-queue input priority-queue</code></td>
<td>Configures the ingress priority queue and guarantees bandwidth.</td>
</tr>
<tr>
<td><code>mls qos srr-queue input threshold</code></td>
<td>Assigns weighted tail-drop (WTD) threshold percentages to an ingress queue.</td>
</tr>
<tr>
<td><code>show mls qos input-queue</code></td>
<td>Displays ingress queue settings.</td>
</tr>
<tr>
<td><code>show mls qos interface queueing</code></td>
<td>Displays quality of service (QoS) information.</td>
</tr>
</tbody>
</table>
mls qos srr-queue input buffers

Use the `mls qos srr-queue input buffers` global configuration command on the switch stack or on a standalone switch to allocate the buffers between the ingress queues. Use the `no` form of this command to return to the default setting.

```
mls qos srr-queue input buffers percentage1 percentage2
no mls qos srr-queue input buffers
```

Syntax Description

| `percentage1` | Percentage of buffers allocated to ingress queues 1 and 2. The range is 0 to 100. Separate each value with a space. |

Defaults

Ninety percent of the buffers is allocated to queue 1, and 10 percent of the buffers is allocated to queue 2.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You should allocate the buffers so that the queues can handle any incoming bursty traffic.

Examples

This example shows how to allocate 60 percent of the buffer space to ingress queue 1 and 40 percent of the buffer space to ingress queue 2:

```
Switch(config)# mls qos srr-queue input buffers 60 40
```

You can verify your settings by entering the `show mls qos interface [interface-id] buffers` or the `show mls qos input-queue` privileged EXEC command.

Related Commands

<p>| Command | Description |
| | |
| <code>mls qos srr-queue input bandwidth</code> | Assigns shaped round robin (SRR) weights to an ingress queue. |
| <code>mls qos srr-queue input cos-map</code> | Maps class of service (CoS) values to an ingress queue or maps CoS values to a queue and to a threshold ID. |
| <code>mls qos srr-queue input dscp-map</code> | Maps Differentiated Services Code Point (DSCP) values to an ingress queue or maps DSCP values to a queue and to a threshold ID. |
| <code>mls qos srr-queue input priority-queue</code> | Configures the ingress priority queue and guarantees bandwidth. |</p>
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mls qos srr-queue input threshold</td>
<td>Assigns weighted tail-drop (WTD) threshold percentages to an ingress queue.</td>
</tr>
<tr>
<td>show mls qos input-queue</td>
<td>Displays ingress queue settings.</td>
</tr>
<tr>
<td>show mls qos interface buffers</td>
<td>Displays quality of service (QoS) information.</td>
</tr>
</tbody>
</table>
Use the `mls qos srr-queue input cos-map` global configuration command on the switch stack or on a standalone switch to map class of service (CoS) values to an ingress queue or to map CoS values to a queue and to a threshold ID. Use the `no` form of this command to return to the default setting.

```
mpls qos srr-queue input cos-map queue queue-id \{ cos1...cos8 \ threshold threshold-id cos1...cos8 \}

no mls qos srr-queue input cos-map
```

Syntax Description

- `queue queue-id` Specify a queue number.
 - For `queue-id`, the range is 1 to 2.
- `cos1...cos8` Map CoS values to an ingress queue.
 - For `cos1...cos8`, enter up to eight values, and separate each value with a space. The range is 0 to 7.
- `threshold threshold-id cos1...cos8` Map CoS values to a queue threshold ID.
 - For `threshold-id`, the range is 1 to 3.
 - For `cos1...cos8`, enter up to eight values, and separate each value with a space. The range is 0 to 7.

Defaults

Table 2-10 shows the default CoS input queue threshold map:

<table>
<thead>
<tr>
<th>CoS Value</th>
<th>Queue ID - Threshold ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–4</td>
<td>1–1</td>
</tr>
<tr>
<td>5</td>
<td>2–1</td>
</tr>
<tr>
<td>6, 7</td>
<td>1–1</td>
</tr>
</tbody>
</table>

Command Modes

- Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
Usage Guidelines

The CoS assigned at the ingress port selects an ingress or egress queue and threshold. The drop-threshold percentage for threshold 3 is predefined. It is set to the queue-full state. You can assign two weighted tail-drop (WTD) threshold percentages to an ingress queue by using the `mls qos srr-queue input threshold` global configuration command.

You can map each CoS value to a different queue and threshold combination, allowing the frame to follow different behavior.

Examples

This example shows how to map CoS values 0 to 3 to ingress queue 1 and to threshold ID 1 with a drop threshold of 50 percent. It maps CoS values 4 and 5 to ingress queue 1 and to threshold ID 2 with a drop threshold of 70 percent:

```
Switch(config)# mls qos srr-queue input cos-map queue 1 threshold 1 0 1 2 3
Switch(config)# mls qos srr-queue input cos-map queue 1 threshold 2 4 5
Switch(config)# mls qos srr-queue input threshold 1 50 70
```

You can verify your settings by entering the `show mls qos maps` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mls qos srr-queue input bandwidth</code></td>
<td>Assigns shaped round robin (SRR) weights to an ingress queue.</td>
</tr>
<tr>
<td><code>mls qos srr-queue input buffers</code></td>
<td>Allocates the buffers between the ingress queues.</td>
</tr>
<tr>
<td><code>mls qos srr-queue input dscp-map</code></td>
<td>Maps Differentiated Services Code Point (DSCP) values to an ingress queue or maps DSCP values to a queue and to a threshold ID.</td>
</tr>
<tr>
<td><code>mls qos srr-queue input priority-queue</code></td>
<td>Configures the ingress priority queue and guarantees bandwidth.</td>
</tr>
<tr>
<td><code>mls qos srr-queue input threshold</code></td>
<td>Assigns WTD threshold percentages to an ingress queue.</td>
</tr>
<tr>
<td><code>show mls qos maps</code></td>
<td>Displays QoS mapping information.</td>
</tr>
</tbody>
</table>
mls qos srr-queue input dscp-map

Use the `mls qos srr-queue input dscp-map` global configuration command on the switch stack or on a standalone switch to map Differentiated Services Code Point (DSCP) values to an ingress queue or to map DSCP values to a queue and to a threshold ID. Use the `no` form of this command to return to the default setting.

```
mls qos srr-queue input dscp-map queue queue-id {dscp1...dscp8 | threshold threshold-id dscp1...dscp8}

no mls qos srr-queue input dscp-map
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>queue queue-id</code></td>
<td>Specify a queue number.</td>
</tr>
<tr>
<td></td>
<td>For <code>queue-id</code>, the range is 1 to 2.</td>
</tr>
<tr>
<td><code>dscp1...dscp8</code></td>
<td>Map DSCP values to an ingress queue.</td>
</tr>
<tr>
<td></td>
<td>For <code>dscp1...dscp8</code>, enter up to eight values, and separate each value with a space. The range is 0 to 63.</td>
</tr>
<tr>
<td><code>threshold threshold-id dscp1...dscp8</code></td>
<td>Map DSCP values to a queue threshold ID.</td>
</tr>
<tr>
<td></td>
<td>For <code>threshold-id</code>, the range is 1 to 3.</td>
</tr>
<tr>
<td></td>
<td>For <code>dscp1...dscp8</code>, enter up to eight values, and separate each value with a space. The range is 0 to 63.</td>
</tr>
</tbody>
</table>

Defaults

Table 2-11 shows the default DSCP input queue threshold map:

<table>
<thead>
<tr>
<th>DSCP Value</th>
<th>Queue ID–Threshold ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–39</td>
<td>1–1</td>
</tr>
<tr>
<td>40–47</td>
<td>2–1</td>
</tr>
<tr>
<td>48–63</td>
<td>1–1</td>
</tr>
</tbody>
</table>

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
Usage Guidelines

The DSCP assigned at the ingress port selects an ingress or egress queue and threshold.
The drop-threshold percentage for threshold 3 is predefined. It is set to the queue-full state. You can assign two weighted tail-drop (WTD) threshold percentages to an ingress queue by using the `mls qos srr-queue input threshold` global configuration command.

You can map each DSCP value to a different queue and threshold combination, allowing the frame to follow different behavior.

You can map up to eight DSCP values per command.

Examples

This example shows how to map DSCP values 0 to 6 to ingress queue 1 and to threshold 1 with a drop threshold of 50 percent. It maps DSCP values 20 to 26 to ingress queue 1 and to threshold 2 with a drop threshold of 70 percent:

```
Switch(config)# mls qos srr-queue input dscp-map queue 1 threshold 1 0 1 2 3 4 5 6
Switch(config)# mls qos srr-queue input dscp-map queue 1 threshold 2 20 21 22 23 24 25 26
Switch(config)# mls qos srr-queue input threshold 1 50 70
```

You can verify your settings by entering the `show mls qos maps` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mls qos srr-queue input bandwidth</td>
<td>Assigns shaped round robin (SRR) weights to an ingress queue.</td>
</tr>
<tr>
<td>mls qos srr-queue input buffers</td>
<td>Allocates the buffers between the ingress queues.</td>
</tr>
<tr>
<td>mls qos srr-queue input cos-map</td>
<td>Maps class of service (CoS) values to an ingress queue or maps CoS values to a queue and to threshold ID.</td>
</tr>
<tr>
<td>mls qos srr-queue input priority-queue</td>
<td>Configures the ingress priority queue and guarantees bandwidth.</td>
</tr>
<tr>
<td>mls qos srr-queue input threshold</td>
<td>Assigns WTD threshold percentages to an ingress queue.</td>
</tr>
<tr>
<td>show mls qos maps</td>
<td>Displays QoS mapping information.</td>
</tr>
</tbody>
</table>
mls qos srr-queue input priority-queue

Use the `mls qos srr-queue input priority-queue` global configuration command on the switch stack or on a standalone switch to configure the ingress priority queue and to guarantee bandwidth on the stack ring if the ring is congested. Use the `no` form of this command to return to the default setting.

```
mls qos srr-queue input priority-queue queue-id bandwidth weight

no mls qos srr-queue input priority-queue queue-id
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>queue-id</code></td>
<td>Ingress queue ID. The range is 1 to 2.</td>
</tr>
<tr>
<td><code>bandwidth weight</code></td>
<td>Bandwidth percentage of the stack ring. The range is 0 to 40.</td>
</tr>
</tbody>
</table>

Defaults

The priority queue is queue 2, and 10 percent of the bandwidth is allocated to it.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You should use the priority queue only for traffic that needs to be expedited (for example, voice traffic, which needs minimum delay and jitter).

The priority queue is guaranteed part of the bandwidth on the stack ring, which reduces the delay and jitter under heavy network traffic on an oversubscribed stack (when there is more traffic than the backplane can carry, and the queues are full and dropping frames).

The amount of bandwidth that can be guaranteed is restricted because a large value affects the entire stack and can degrade the stack performance.

Shaped round robin (SRR) services the priority queue for its configured weight as specified by the `bandwidth` keyword in the `mls qos srr-queue input priority-queue queue-id bandwidth weight` global configuration command. Then SRR shares the remaining bandwidth with both ingress queues and services them as specified by the weights configured with the `mls qos srr-queue input bandwidth weight1 weight2` global configuration command.

To disable priority queuing, set the bandwidth weight to 0, for example, `mls qos srr-queue input priority-queue queue-id bandwidth 0`.
Examples

This example shows how to assign the ingress bandwidths for the queues in the stack. Queue 1 is the priority queue with 10 percent of the bandwidth allocated to it. The bandwidth ratio allocated to queues 1 and 2 is $4/(4+4)$. SRR services queue 1 (the priority queue) first for its configured 10 percent bandwidth. Then SRR equally shares the remaining 90 percent of the bandwidth between queues 1 and 2 by allocating 45 percent to each queue:

```
Switch(config)# mls qos srr-queue input priority-queue 1 bandwidth 10
Switch(config)# mls qos srr-queue input bandwidth 4 4
```

You can verify your settings by entering the `show mls qos interface [interface-id] queueing` or the `show mls qos input-queue` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mls qos srr-queue input bandwidth</code></td>
<td>Assigns shaped round robin (SRR) weights to an ingress queue.</td>
</tr>
<tr>
<td><code>mls qos srr-queue input buffers</code></td>
<td>Allocates the buffers between the ingress queues.</td>
</tr>
<tr>
<td><code>mls qos srr-queue input cos-map</code></td>
<td>Maps class of service (CoS) values to an ingress queue or maps CoS values to a queue and to a threshold ID.</td>
</tr>
<tr>
<td><code>mls qos srr-queue input dscp-map</code></td>
<td>Maps Differentiated Services Code Point (DSCP) values to an ingress queue or maps DSCP values to a queue and to a threshold ID.</td>
</tr>
<tr>
<td><code>mls qos srr-queue input threshold</code></td>
<td>Assigns weighted tail-drop (WTD) threshold percentages to an ingress queue.</td>
</tr>
<tr>
<td><code>show mls qos input-queue</code></td>
<td>Displays ingress queue settings.</td>
</tr>
<tr>
<td><code>show mls qos interface queueing</code></td>
<td>Displays quality of service (QoS) information.</td>
</tr>
</tbody>
</table>
mls qos srr-queue input threshold

Use the **mls qos srr-queue input threshold** global configuration command on the switch stack or on a standalone switch to assign weighted tail-drop (WTD) threshold percentages to an ingress queue. Use the **no** form of this command to return to the default setting.

mls qos srr-queue input threshold queue-id threshold-percentage1 threshold-percentage2

no mls qos srr-queue input threshold queue-id

Syntax Description

<table>
<thead>
<tr>
<th>queue-id</th>
<th>ID of the ingress queue. The range is 1 to 2.</th>
</tr>
</thead>
<tbody>
<tr>
<td>threshold-percentage1</td>
<td>Two WTD threshold percentage values. Each threshold value is a percentage of the total number of queue descriptors allocated for the queue. Separate each value with a space. The range is 1 to 100.</td>
</tr>
<tr>
<td>threshold-percentage2</td>
<td></td>
</tr>
</tbody>
</table>

Defaults

When quality of service (QoS) is enabled, WTD is enabled. The two WTD thresholds are set to 100 percent.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

QoS uses the CoS-to-threshold map or the DSCP-to-threshold map to decide which class of service (CoS) or Differentiated Services Code Points (DSCPs) values are mapped to threshold 1 and to threshold 2. If threshold 1 is exceeded, packets with CoS or DSCPs assigned to this threshold are dropped until the threshold is no longer exceeded. However, packets assigned to threshold 2 continue to be queued and sent as long as the second threshold is not exceeded.

Each queue has two configurable (explicit) drop threshold and one preset (implicit) drop threshold (full).

You configure the CoS-to-threshold map by using the **mls qos srr-queue input cos-map** global configuration command. You configure the DSCP-to-threshold map by using the **mls qos srr-queue input dscp-map** global configuration command.

Examples

This example shows how to configure the tail-drop thresholds for the two queues. The queue 1 thresholds are 50 percent and 100 percent, and the queue 2 thresholds are 70 percent and 100 percent:

```
Switch(config)# mls qos srr-queue input threshold 1 50 100
Switch(config)# mls qos srr-queue input threshold 2 70 100
```

You can verify your settings by entering the **show mls qos interface** [interface-id] **buffers** or the **show mls qos input-queue** privileged EXEC command.
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mls qos srr-queue input bandwidth</code></td>
<td>Assigns shaped round robin (SRR) weights to an ingress queue.</td>
</tr>
<tr>
<td><code>mls qos srr-queue input buffers</code></td>
<td>Allocates the buffers between the ingress queues.</td>
</tr>
<tr>
<td><code>mls qos srr-queue input cos-map</code></td>
<td>Maps class of service (CoS) values to an ingress queue or maps CoS values to a queue and to a threshold ID.</td>
</tr>
<tr>
<td><code>mls qos srr-queue input dscp-map</code></td>
<td>Maps Differentiated Services Code Point (DSCP) values to an ingress queue or maps DSCP values to a queue and to a threshold ID.</td>
</tr>
<tr>
<td><code>mls qos srr-queue input priority-queue</code></td>
<td>Configures the ingress priority queue and guarantees bandwidth.</td>
</tr>
<tr>
<td><code>show mls qos input-queue</code></td>
<td>Displays ingress queue settings.</td>
</tr>
<tr>
<td><code>show mls qos interface buffers</code></td>
<td>Displays quality of service (QoS) information.</td>
</tr>
</tbody>
</table>
mls qos srr-queue output cos-map

Use the `mls qos srr-queue output cos-map` global configuration command on the switch stack or on a standalone switch to map class of service (CoS) values to an egress queue or to map CoS values to a queue and to a threshold ID. Use the `no` form of this command to return to the default setting.

```
mls qos srr-queue output cos-map queue queue-id {cos1...cos8 | threshold threshold-id cos1...cos8}
```

```
no mls qos srr-queue output cos-map
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>queue queue-id</code></td>
<td>Specify a queue number. For <code>queue-id</code>, the range is 1 to 4.</td>
</tr>
<tr>
<td><code>cos1...cos8</code></td>
<td>Map CoS values to an egress queue. For <code>cos1...cos8</code>, enter up to eight values, and separate each value with a space. The range is 0 to 7.</td>
</tr>
<tr>
<td><code>threshold threshold-id cos1...cos8</code></td>
<td>Map CoS values to a queue threshold ID. For <code>threshold-id</code>, the range is 1 to 3. For <code>cos1...cos8</code>, enter up to eight values, and separate each value with a space. The range is 0 to 7.</td>
</tr>
</tbody>
</table>

Defaults

Table 2-12 shows the default CoS output queue threshold map:

<table>
<thead>
<tr>
<th>CoS Value</th>
<th>Queue ID–Threshold ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 1</td>
<td>2–1</td>
</tr>
<tr>
<td>2, 3</td>
<td>3–1</td>
</tr>
<tr>
<td>4</td>
<td>4–1</td>
</tr>
<tr>
<td>5</td>
<td>1–1</td>
</tr>
<tr>
<td>6, 7</td>
<td>4–1</td>
</tr>
</tbody>
</table>

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
Usage Guidelines

The drop-threshold percentage for threshold 3 is predefined. It is set to the queue-full state.

Note

The egress queue default settings are suitable for most situations. You should change them only when you have a thorough understanding of the egress queues and if these settings do not meet your quality of service (QoS) solution.

You can assign two weighted tail-drop (WTD) threshold percentages to an egress queue by using the `mls qos queue-set output qset-id threshold` global configuration command.

You can map each CoS value to a different queue and threshold combination, allowing the frame to follow different behavior.

Examples

This example shows how to map a port to queue-set 1. It maps CoS values 0 to 3 to egress queue 1 and to threshold ID 1. It configures the drop thresholds for queue 1 to 50 and 70 percent of the allocated memory, guarantees (reserves) 100 percent of the allocated memory, and configures 200 percent as the maximum memory that this queue can have before packets are dropped.

```
Switch(config)# mls qos srr-queue output cos-map queue 1 threshold 1 0 1 2 3
Switch(config)# mls qos queue-set output 1 threshold 1 50 70 100 200
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# queue-set 1
```

You can verify your settings by entering the `show mls qos maps`, the `show mls qos interface [interface-id] buffers`, or the `show mls qos queue-set` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mls qos srr-queue output dscp-map</code></td>
<td>Maps Differentiated Services Code Point (DSCP) values to an egress queue or maps DSCP values to a queue and to a threshold ID.</td>
</tr>
<tr>
<td><code>mls qos queue-set output threshold</code></td>
<td>Configures the WTD thresholds, guarantees the availability of buffers, and configures the maximum memory allocation to a queue-set.</td>
</tr>
<tr>
<td><code>queue-set</code></td>
<td>Maps a port to a queue-set.</td>
</tr>
<tr>
<td><code>show mls qos interface buffers</code></td>
<td>Displays QoS information.</td>
</tr>
<tr>
<td><code>show mls qos maps</code></td>
<td>Displays QoS mapping information.</td>
</tr>
<tr>
<td><code>show mls qos queue-set</code></td>
<td>Displays egress queue settings for the queue-set.</td>
</tr>
</tbody>
</table>
mls qos srr-queue output dscp-map

Use the mls qos srr-queue output dscp-map global configuration command on the switch stack or on a standalone switch to map Differentiated Services Code Point (DSCP) values to an egress or to map DSCP values to a queue and to a threshold ID. Use the no form of this command to return to the default setting.

mls qos srr-queue output dscp-map queue queue-id \(dscp1...dscp8 \) \(| \) threshold threshold-id \(dscp1...dscp8 \)

no mls qos srr-queue output dscp-map

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
<th>Defaults</th>
</tr>
</thead>
<tbody>
<tr>
<td>queue queue-id</td>
<td>Specify a queue number.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For queue-id, the range is 1 to 4.</td>
<td></td>
</tr>
<tr>
<td>dscp1...dscp8</td>
<td>Map DSCP values to an egress queue.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For dscp1...dscp8, enter up to eight values, and separate each value with a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>space. The range is 0 to 63.</td>
<td></td>
</tr>
<tr>
<td>threshold threshold-id</td>
<td>Map DSCP values to a queue threshold ID.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For threshold-id, the range is 1 to 3.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For dscp1...dscp8, enter up to eight values, and separate each value with a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>space. The range is 0 to 63.</td>
<td></td>
</tr>
</tbody>
</table>

Defaults

Table 2-13 shows the default DSCP output queue threshold map:

<table>
<thead>
<tr>
<th>DSCP Value</th>
<th>Queue ID–Threshold ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–15</td>
<td>2–1</td>
</tr>
<tr>
<td>16–31</td>
<td>3–1</td>
</tr>
<tr>
<td>32–39</td>
<td>4–1</td>
</tr>
<tr>
<td>40–47</td>
<td>1–1</td>
</tr>
<tr>
<td>48–63</td>
<td>4–1</td>
</tr>
</tbody>
</table>

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
mls qos srr-queue output dscp-map

Usage Guidelines

The drop-threshold percentage for threshold 3 is predefined. It is set to the queue-full state.

Note

The egress queue default settings are suitable for most situations. You should change them only when you have a thorough understanding of the egress queues and if these settings do not meet your QoS solution.

You can assign two weighted tail-drop (WTD) threshold percentages to an egress queue by using the `mls qos queue-set output qset-id threshold` global configuration command.

You can map each DSCP value to a different queue and threshold combination, allowing the frame to follow different behavior.

You can map up to eight DSCP values per command.

Examples

This example shows how to map a port to queue-set 1. It maps DSCP values 0 to 3 to egress queue 1 and to threshold ID 1. It configures the drop thresholds for queue 1 to 50 and 70 percent of the allocated memory, guarantees (reserves) 100 percent of the allocated memory, and configures 200 percent as the maximum memory that this queue can have before packets are dropped.

```
Switch(config)# mls qos srr-queue output dscp-map queue 1 threshold 1 0 1 2 3
Switch(config)# mls qos queue-set output 1 threshold 1 50 70 100 200
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# queue-set 1
```

You can verify your settings by entering the `show mls qos maps`, the `show mls qos interface [interface-id] buffers`, or the `show mls qos queue-set` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mls qos srr-queue output cos-map</code></td>
<td>Maps class of service (CoS) values to an egress queue or maps CoS values to a queue and to a threshold ID.</td>
</tr>
<tr>
<td><code>mls qos queue-set output threshold</code></td>
<td>Configures the WTD thresholds, guarantees the availability of buffers, and configures the maximum memory allocation to a queue-set.</td>
</tr>
<tr>
<td><code>queue-set</code></td>
<td>Maps a port to a queue-set.</td>
</tr>
<tr>
<td><code>show mls qos interface buffers</code></td>
<td>Displays quality of service (QoS) information.</td>
</tr>
<tr>
<td><code>show mls qos maps</code></td>
<td>Displays QoS mapping information.</td>
</tr>
<tr>
<td><code>show mls qos queue-set</code></td>
<td>Displays egress queue settings for the queue-set.</td>
</tr>
</tbody>
</table>
mls qos trust

Use the `mls qos trust` interface configuration command on the switch stack or on a standalone switch to configure the port trust state. Ingress traffic can be trusted, and classification is performed by examining the packet Differentiated Services Code Point (DSCP), class of service (CoS), or IP-precedence field. Use the `no` form of this command to return a port to its untrusted state.

```
mls qos trust [cos | device cisco-phone | dscp | ip-precedence]
no mls qos trust [cos | device | dscp | ip-precedence]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cos</td>
<td>(Optional) Classify an ingress packet by using the packet CoS value. For an untagged packet, use the port default CoS value.</td>
</tr>
<tr>
<td>device cisco-phone</td>
<td>(Optional) Classify an ingress packet by trusting the CoS or DSCP value sent from the Cisco IP Phone (trusted boundary), depending on the trust setting.</td>
</tr>
<tr>
<td>dscp</td>
<td>(Optional) Classify an ingress packet by using the packet DSCP value (most significant 6 bits of 8-bit service-type field). For a non-IP packet, the packet CoS is used if the packet is tagged. For an untagged packet, the default port CoS value is used.</td>
</tr>
<tr>
<td>ip-precedence</td>
<td>(Optional) Classify an ingress packet by using the packet IP-precedence value (most significant 3 bits of 8-bit service-type field). For a non-IP packet, the packet CoS is used if the packet is tagged. For an untagged packet, the port default CoS value is used.</td>
</tr>
</tbody>
</table>

| Defaults | The port is not trusted. If no keyword is specified when the command is entered, the default is `dscp`. |

| Command Modes | Interface configuration |

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 12.1(11)AX</td>
<td>This command was introduced.</td>
<td></td>
</tr>
<tr>
<td>Release 12.1(14)EA1</td>
<td>The <code>device cisco-phone</code> keywords were added.</td>
<td></td>
</tr>
<tr>
<td>Release 12.2(20)SE</td>
<td>The usage guidelines were revised to describe how the switch sets the trust state when a Cisco IP Phone is connected to a switch or routed port.</td>
<td></td>
</tr>
</tbody>
</table>

| Usage Guidelines | Packets entering a quality of service (QoS) domain are classified at the edge of the domain. When the packets are classified at the edge, the switch port within the QoS domain can be configured to one of the trusted states because there is no need to classify the packets at every switch within the domain. Use this command to specify whether the port is trusted and which fields of the packet to use to classify traffic. |
|-------------------| When a port is configured with trust DSCP or trust IP precedence and the incoming packet is a non-IP packet, the CoS-to-DSCP map is used to derive the corresponding DSCP value from the CoS value. The CoS can be the packet CoS for trunk ports or the port default CoS for nontrunk ports. |
If the DSCP is trusted, the DSCP field of the IP packet is not modified. However, it is still possible that the CoS value of the packet is modified (according to DSCP-to-CoS map).

If the CoS is trusted, the CoS field of the packet is not modified, but the DSCP can be modified (according to CoS-to-DSCP map) if the packet is an IP packet.

The trusted boundary feature prevents security problems if users disconnect their PCs from networked Cisco IP Phones and connect them to the switch port to take advantage of trusted CoS or DSCP settings. You must globally enable the Cisco Discovery Protocol (CDP) on the switch and on the port connected to the IP phone. If the telephone is not detected, trusted boundary disables the trusted setting on the switch or routed port and prevents misuse of a high-priority queue.

If you configure the trust setting for DSCP or IP precedence, the DSCP or IP precedence values in the incoming packets are trusted. If you configure the `mls qos cos override` interface configuration command on the switch port connected to the IP phone, the switch overrides the CoS of the incoming voice and data packets and assigns the default CoS value to them.

For an inter-QoS domain boundary, you can configure the port to the DSCP-trusted state and apply the DSCP-to-DSCP-mutation map if the DSCP values are different between the QoS domains.

Classification using a port trust state (for example, `mls qos trust [cos | dscp | ip-precedence]` and a policy map (for example, `service-policy input policy-map-name`) are mutually exclusive. The last one configured overwrites the previous configuration.

Examples

This example shows how to configure a port to trust the IP precedence field in the incoming packet:

```
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# mls qos trust ip-precedence
```

This example shows how to specify that the Cisco IP Phone connected on a port is a trusted device:

```
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# mls qos trust device cisco-phone
```

You can verify your settings by entering the `show mls qos interface` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mls qos cos</td>
<td>Defines the default CoS value of a port or assigns the default CoS to all incoming packets on the port.</td>
</tr>
<tr>
<td>mls qos dscp-mutation</td>
<td>Applies a DSCP-to DSCP-mutation map to a DSCP-trusted port.</td>
</tr>
<tr>
<td>mls qos map</td>
<td>Defines the CoS-to-DSCP map, DSCP-to-CoS map, the DSCP-to-DSCP-mutation map, the IP-precedence-to-DSCP map, and the policed-DSCP map.</td>
</tr>
<tr>
<td>show mls qos interface</td>
<td>Displays QoS information.</td>
</tr>
</tbody>
</table>
mls qos vlan-based

Use the `mls qos vlan-based` interface configuration command on the switch stack or on a standalone switch to enable VLAN-based quality of service (QoS) on the physical port. Use the `no` form of this command to disable this feature.

```
mls qos vlan-based
no mls qos vlan-based
```

Syntax Description
There are no arguments or keywords.

Defaults
VLAN-based QoS is disabled.

Command Modes
Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Before attaching a hierarchical policy map to a switch virtual interface (SVI), use the `mls qos vlan-based` interface configuration command on a physical port if the port is to be specified in the secondary interface level of the hierarchical policy map.

When you configure hierarchical policing, the hierarchical policy map is attached to the SVI and affects all traffic belonging to the VLAN. The individual policer in the interface-level traffic classification only affects the physical ports specified for that classification.

For detailed instructions about configuring hierarchical policy maps, see the “Classifying, Policing, and Marking Traffic by Using Hierarchical Policy Maps” section in the software configuration guide for this release.

Examples

This example shows how to enable VLAN-based policing on a physical port:

```
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# mls qos vlan-based
```

You can verify your settings by entering the `show mls qos interface` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show mls qos interface</code></td>
<td>Displays QoS information.</td>
</tr>
</tbody>
</table>
monitor session

Use the **monitor session** global configuration command on the switch stack or on a standalone switch to start a new Switched Port Analyzer (SPAN) session or Remote SPAN (RSPAN) source or destination session, to enable ingress traffic on the destination port for a network security device (such as a Cisco IDS Sensor Appliance), to add or delete interfaces or VLANs to or from an existing SPAN or RSPAN session, and to limit (filter) SPAN source traffic to specific VLANs. Use the **no** form of this command to remove the SPAN or RSPAN session or to remove source or destination interfaces or filters from the SPAN or RSPAN session. For destination interfaces, the encapsulation options are ignored with the **no** form of the command.

Syntax:

```
monitor session session_number destination {interface interface-id [ [-] [encapsulation replicate] [ingress { dot1q vlan vlan-id | isl | untagged vlan vlan-id | vlan vlan-id}] | {remote vlan vlan-id}}

monitor session session_number filter vlan vlan-id [-]

monitor session session_number source {interface interface-id [ [-] [both | rx | tx]} | {vlan vlan-id [ [-] [both | rx | tx]} | {remote vlan vlan-id}}

no monitor session {session_number | all | local | remote}

no monitor session session_number destination {interface interface-id [ [-] [encapsulation replicate] [ingress { dot1q vlan vlan-id | isl | untagged vlan vlan-id | vlan vlan-id}] | {remote vlan vlan-id}}

no monitor session session_number filter vlan vlan-id [-]

no monitor session session_number source {interface interface-id [ [-] [both | rx | tx]} | {vlan vlan-id [ [-] [both | rx | tx]} | {remote vlan vlan-id}}
```

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>session_number</td>
<td>Specify the session number identified with the SPAN or RSPAN session. The range is 1 to 66.</td>
</tr>
<tr>
<td>destination</td>
<td>Specify the SPAN or RSPAN destination. A destination must be a physical port.</td>
</tr>
<tr>
<td>interface interface-id</td>
<td>Specify the destination or source interface for a SPAN or RSPAN session. Valid interfaces are physical ports (including type, stack member, module, and port number). For source interface, port channel is also a valid interface type, and the valid range is 1 to 48.</td>
</tr>
<tr>
<td>encapsulation replicate</td>
<td>(Optional) Specify that the destination interface replicates the source interface encapsulation method. If not selected, the default is to send packets in native form (untagged). These keywords are valid only for local SPAN. For RSPAN, the RSPAN VLAN ID overwrites the original VLAN ID; therefore, packets are always sent untagged.</td>
</tr>
<tr>
<td>ingress</td>
<td>(Optional) Enable ingress traffic forwarding.</td>
</tr>
<tr>
<td>dot1q vlan vlan-id</td>
<td>Accept incoming packets with IEEE 802.1Q encapsulation with the specified VLAN as the default VLAN.</td>
</tr>
<tr>
<td>isl</td>
<td>Specify ingress forwarding using ISL encapsulation.</td>
</tr>
</tbody>
</table>
monitor session

untagged vlan vlan-id Accept incoming packets with untagged encapsulation with the specified VLAN as the default VLAN.

vlan vlan-id When used with only the ingress keyword, set default VLAN for ingress traffic.

remote vlan vlan-id Specify the remote VLAN for an RSPAN source or destination session. The range is 2 to 1001 and 1006 to 4094.

The RSPAN VLAN cannot be VLAN 1 (the default VLAN) or VLAN IDs 1002 to 1005 (reserved for Token Ring and FDDI VLANs).

, (Optional) Specify a series of interfaces or VLANs, or separate a range of interfaces or VLANs from a previous range. Enter a space before and after the comma.

- (Optional) Specify a range of interfaces or VLANs. Enter a space before and after the hyphen.

filter vlan vlan-id Specify a list of VLANs as filters on trunk source ports to limit SPAN source traffic to specific VLANs. The vlan-id range is 1 to 4094.

source Specify the SPAN or RSPAN source. A source can be a physical port, a port channel, or a VLAN.

both, rx, tx (Optional) Specify the traffic direction to monitor. If you do not specify a traffic direction, the source interface sends both transmitted and received traffic.

source vlan vlan-id Specify the SPAN source interface as a VLAN ID. The range is 1 to 4094.

all, local, remote Specify all, local, or remote with the **no monitor session** command to clear all SPAN and RSPAN, all local SPAN, or all RSPAN sessions.

Defaults

No monitor sessions are configured.

On a source interface, the default is to monitor both received and transmitted traffic.

On a trunk interface used as a source port, all VLANs are monitored.

If encapsulation replicate is not specified on a local SPAN destination port, packets are sent in native form with no encapsulation tag.

Ingress forwarding is disabled on destination ports.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(14)EA1</td>
<td>The ingress {dot1q vlan vlan-id</td>
</tr>
</tbody>
</table>
Usage Guidelines
Traffic that enters or leaves source ports or source VLANs can be monitored by using SPAN or RSPAN. Traffic routed to source ports or source VLANs cannot be monitored.

You can set a combined maximum of two local SPAN sessions and RSPAN source sessions. You can have a total of 66 SPAN and RSPAN sessions on a switch or switch stack.

You can have a maximum of 64 destination ports on a switch stack.

If a 10-Gigabit Ethernet port is configured as a SPAN or RSPAN destination port, the line rate of the link decreases.

Each session can include multiple ingress or egress source ports or VLANs, but you cannot combine source ports and source VLANs in a single session. Each session can include multiple destination ports.

When you use VLAN-based SPAN (VSPAN) to analyze network traffic in a VLAN or set of VLANs, all active ports in the source VLANs become source ports for the SPAN or RSPAN session. Trunk ports are included as source ports for VSPAN, and only packets with the monitored VLAN ID are sent to the destination port.

You can monitor traffic on a single port or VLAN or on a series or range of ports or VLANs. You select a series or range of interfaces or VLANs by using the \[, \] or \[-\] options.

If you specify a series of VLANs or interfaces, you must enter a space before and after the comma. If you specify a range of VLANs or interfaces, you must enter a space before and after the hyphen (-).

EtherChannel ports cannot be configured as SPAN or RSPAN destination ports. A physical port that is a member of an EtherChannel group can be used as a destination port, but it cannot participate in the EtherChannel group while it is as a SPAN destination.

A private-VLAN port cannot be configured as a SPAN destination port.

You can monitor individual ports while they participate in an EtherChannel, or you can monitor the entire EtherChannel bundle by specifying the **port-channel** number as the RSPAN source interface.

A port used as a destination port cannot be a SPAN or RSPAN source, nor can a port be a destination port for more than one session at a time.

You can enable IEEE 802.1x authentication on a port that is a SPAN or RSPAN destination port; however, IEEE 802.1x authentication is disabled until the port is removed as a SPAN destination. (If IEEE 802.1x authentication is not available on the port, the switch returns an error message.) You can enable IEEE 802.1x authentication on a SPAN or RSPAN source port.

VLAN filtering refers to analyzing network traffic on a selected set of VLANs on trunk source ports. By default, all VLANs are monitored on trunk source ports. You can use the **monitor session session_number filter vlan vlan-id** command to limit SPAN traffic on trunk source ports to only the specified VLANs.

VLAN monitoring and VLAN filtering are mutually exclusive. If a VLAN is a source, VLAN filtering cannot be enabled. If VLAN filtering is configured, a VLAN cannot become a source.

If ingress traffic forwarding is enabled for a network security device, the destination port forwards traffic at Layer 2.

Destination ports can be configured to act in these ways:

- When you enter **monitor session session_number destination interface interface-id** with no other keywords, egress encapsulation is untagged, and ingress forwarding is not enabled.
- When you enter **monitor session session_number destination interface interface-id ingress** egress encapsulation is untagged; ingress encapsulation depends on the keywords that follow—**dot1q, isl**, or **untagged**.
When you enter `monitor session session_number destination interface interface-id encapsulation replicate` with no other keywords, egress encapsulation replicates the source interface encapsulation; ingress forwarding is not enabled. (This applies to local SPAN only; RSPAN does not support encapsulation replication.)

When you enter `monitor session session_number destination interface interface-id encapsulation replicate ingress`, egress encapsulation replicates the source interface encapsulation; ingress encapsulation depends on the keywords that follow—dot1q, isl, or untagged. (This applies to local SPAN only; RSPAN does not support encapsulation replication.)

Examples

This example shows how to create a local SPAN session 1 to monitor both sent and received traffic on source port 1 on stack member 1 to destination port 2 on stack member 2:

```
Switch(config)# monitor session 1 source interface gigabitethernet1/0/1 both
Switch(config)# monitor session 1 destination interface gigabitethernet1/0/2
```

This example shows how to delete a destination port from an existing local SPAN session:

```
Switch(config)# no monitor session 2 destination gigabitethernet1/0/2
```

This example shows how to limit SPAN traffic in an existing session only to specific VLANs:

```
Switch(config)# monitor session 1 filter vlan 100 - 304
```

This example shows how to configure RSPAN source session 1 to monitor multiple source interfaces and to configure the destination RSPAN VLAN 900.

```
Switch(config)# monitor session 1 source interface gigabitethernet1/0/1
Switch(config)# monitor session 1 source interface port-channel 2 tx
Switch(config)# monitor session 1 destination remote vlan 900
Switch(config)# end
```

This example shows how to configure an RSPAN destination session 10 in the switch receiving the monitored traffic.

```
Switch(config)# monitor session 10 source remote vlan 900
Switch(config)# monitor session 10 destination interface gigabitethernet1/0/2
```

This example shows how to configure the destination port for ingress traffic on VLAN 5 by using a security device that supports IEEE 802.1Q encapsulation. Egress traffic replicates the source; ingress traffic uses IEEE 802.1Q encapsulation.

```
Switch(config)# monitor session 2 destination interface gigabitethernet1/0/2 encapsulation replicate ingress dot1q vlan 5
```

This example shows how to configure the destination port for ingress traffic on VLAN 5 by using a security device that does not support encapsulation. Egress traffic replicates the source encapsulation; ingress traffic is untagged.

```
Switch(config)# monitor session 2 destination interface gigabitethernet1/0/2 encapsulation replicate ingress untagged vlan 5
```

You can verify your settings by entering the `show monitor` privileged EXEC command. You can display SPAN and RSPAN configuration on the switch by entering the `show running-config` privileged EXEC command. SPAN information appears near the end of the output.
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>remote-span</td>
<td>Configures an RSPAN VLAN in vlan configuration mode.</td>
</tr>
<tr>
<td>show monitor</td>
<td>Displays SPAN and RSPAN session information.</td>
</tr>
<tr>
<td>show running-config</td>
<td>Displays the current operating configuration. For syntax information, select Cisco IOS Configuration Fundamentals Command Reference, Release 12.2 > File Management Commands > Configuration File Management Commands.</td>
</tr>
</tbody>
</table>
mvr (global configuration)

Use the mvr global configuration command without keywords on the switch stack or on a standalone switch to enable the multicast VLAN registration (MVR) feature on the switch. Use the command with keywords to set the MVR mode for a switch, configure the MVR IP multicast address, set the maximum time to wait for a query reply before removing a port from group membership, and to specify the MVR multicast VLAN. Use the no form of this command to return to the default settings.

```
mvr [group ip-address [count] | mode [compatible | dynamic] | querytime value | vlan vlan-id]
no mvr [group ip-address | mode [compatible | dynamic] | querytime value | vlan vlan-id]
```

Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>group ip-address</td>
<td>Statically configure an MVR group IP multicast address on the switch.</td>
</tr>
<tr>
<td></td>
<td>Use the no form of this command to remove a statically configured IP multicast address or contiguous addresses or, when no IP address is entered, to remove all statically configured MVR IP multicast addresses.</td>
</tr>
<tr>
<td>count</td>
<td>(Optional) Configure multiple contiguous MVR group addresses. The range is 1 to 256; the default is 1.</td>
</tr>
<tr>
<td>mode</td>
<td>(Optional) Specify the MVR mode of operation.</td>
</tr>
<tr>
<td></td>
<td>The default is compatible mode.</td>
</tr>
<tr>
<td>compatible</td>
<td>Set MVR mode to provide compatibility with Catalyst 2900 XL and Catalyst 3500 XL switches. This mode does not allow dynamic membership joins on source ports.</td>
</tr>
<tr>
<td>dynamic</td>
<td>Set MVR mode to allow dynamic MVR membership on source ports.</td>
</tr>
<tr>
<td>querytime value</td>
<td>(Optional) Set the maximum time to wait for IGMP report memberships on a receiver port. This time applies only to receiver-port leave processing. When an IGMP query is sent from a receiver port, the switch waits for the default or configured MVR querytime for an IGMP group membership report before removing the port from multicast group membership.</td>
</tr>
<tr>
<td></td>
<td>The value is the response time in units of tenths of a second. The range is 1 to 100; the default is 5 tenths or one-half second.</td>
</tr>
<tr>
<td></td>
<td>Use the no form of the command to return to the default setting.</td>
</tr>
<tr>
<td>vlan vlan-id</td>
<td>(Optional) Specify the VLAN on which MVR multicast data is expected to be received. This is also the VLAN to which all the source ports belong. The range is 1 to 4094; the default is VLAN 1.</td>
</tr>
</tbody>
</table>

Defaults

MVR is disabled by default.
The default MVR mode is compatible mode.
No IP multicast addresses are configured on the switch by default.
The default group ip address count is 0.
The default query response time is 5 tenths of or one-half second.
The default multicast VLAN for MVR is VLAN 1.
mvr (global configuration)

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

A maximum of 256 MVR multicast groups can be configured on a switch.

Use the `mvr group` command to statically set up all the IP multicast addresses that will take part in MVR. Any multicast data sent to a configured multicast address is sent to all the source ports on the switch and to all receiver ports that have registered to receive data on that IP multicast address.

MVR supports aliased IP multicast addresses on the switch. However, if the switch is interoperating with Catalyst 3550 or Catalyst 3500 XL switches, you should not configure IP addresses that alias between themselves or with the reserved IP multicast addresses (in the range 224.0.0.xxx).

The `mvr querytime` command applies only to receiver ports.

If the switch MVR is interoperating with Catalyst 2900 XL or Catalyst 3500 XL switches, set the multicast mode to compatible.

When operating in compatible mode, MVR does not support IGMP dynamic joins on MVR source ports.

MVR can coexist with IGMP snooping on a switch.

Multicast routing and MVR cannot coexist on a switch. If you enable multicast routing and a multicast routing protocol while MVR is enabled, MVR is disabled and a warning message appears. If you try to enable MVR while multicast routing and a multicast routing protocol are enabled, the operation to enable MVR is cancelled with an Error message.

Examples

This example shows how to enable MVR:

```
Switch(config)# mvr
```

Use the `show mvr` privileged EXEC command to display the current setting for maximum multicast groups.

This example shows how to configure 228.1.23.4 as an IP multicast address:

```
Switch(config)# mvr group 228.1.23.4
```

This example shows how to configure ten contiguous IP multicast groups with multicast addresses from 228.1.23.1 to 228.1.23.10:

```
Switch(config)# mvr group 228.1.23.1 10
```

Use the `show mvr members` privileged EXEC command to display the IP multicast group addresses configured on the switch.

This example shows how to set the maximum query response time as one second (10 tenths):

```
Switch(config)# mvr querytime 10
```

This example shows how to set VLAN 2 as the multicast VLAN:

```
Switch(config)# mvr vlan 2
```

You can verify your settings by entering the `show mvr` privileged EXEC command.
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mvr (interface configuration)</td>
<td>Configures MVR ports.</td>
</tr>
<tr>
<td>show mvr</td>
<td>Displays MVR global parameters or port parameters.</td>
</tr>
<tr>
<td>show mvr interface</td>
<td>Displays the configured MVR interfaces with their type, status, and Immediate Leave configuration. Also displays all MVR groups of which the interface is a member.</td>
</tr>
<tr>
<td>show mvr members</td>
<td>Displays all ports that are members of an MVR multicast group; if the group has no members, its status is shown as Inactive.</td>
</tr>
</tbody>
</table>
mvr (interface configuration)

Use the mvr interface configuration command on the switch stack or on a standalone switch to configure a Layer 2 port as a multicast VLAN registration (MVR) receiver or source port, to set the Immediate Leave feature, and to statically assign a port to an IP multicast VLAN and IP address. Use the no form of this command to return to the default settings.

```
mvr [immediate | type {receiver | source}] | vlan vlan-id group [ip-address]]
no mvr [immediate | type {source | receiver}] | vlan vlan-id group [ip-address]]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>immediate</td>
<td>(Optional) Enable the Immediate Leave feature of MVR on a port. Use the no mvr immediate command to disable the feature.</td>
</tr>
<tr>
<td>type</td>
<td>(Optional) Configure the port as an MVR receiver port or a source port. The default port type is neither an MVR source nor a receiver port. The no mvr type command resets the port as neither a source or a receiver port.</td>
</tr>
<tr>
<td>receiver</td>
<td>Configure the port as a subscriber port that can only receive multicast data. Receiver ports cannot belong to the multicast VLAN.</td>
</tr>
<tr>
<td>source</td>
<td>Configure the port as an uplink port that can send and receive multicast data for the configured multicast groups. All source ports on a switch belong to a single multicast VLAN.</td>
</tr>
<tr>
<td>vlan vlan-id group</td>
<td>(Optional) Add the port as a static member of the multicast group with the specified VLAN ID. The no mvr vlan vlan-id group command removes a port on a VLAN from membership in an IP multicast address group.</td>
</tr>
<tr>
<td>ip-address</td>
<td>(Optional) Statically configure the specified MVR IP multicast group address for the specified multicast VLAN ID. This is the IP address of the multicast group that the port is joining.</td>
</tr>
</tbody>
</table>

Defaults

A port is configured as neither a receiver nor a source.

The Immediate Leave feature is disabled on all ports.

No receiver port is a member of any configured multicast group.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
Usage Guidelines

Configure a port as a source port if that port should be able to both send and receive multicast data bound for the configured multicast groups. Multicast data is received on all ports configured as source ports.

Receiver ports cannot be trunk ports. Receiver ports on a switch can be in different VLANs, but should not belong to the multicast VLAN.

A port that is not taking part in MVR should not be configured as an MVR receiver port or a source port. A non-MVR port is a normal switch port, able to send and receive multicast data with normal switch behavior.

When Immediate Leave is enabled, a receiver port leaves a multicast group more quickly. Without Immediate Leave, when the switch receives an IGMP leave message from a group on a receiver port, it sends out an IGMP MAC-based query on that port and waits for IGMP group membership reports. If no reports are received in a configured time period, the receiver port is removed from multicast group membership. With Immediate Leave, an IGMP MAC-based query is not sent from the receiver port on which the IGMP leave was received. As soon as the leave message is received, the receiver port is removed from multicast group membership, which speeds up leave latency.

The Immediate Leave feature should be enabled only on receiver ports to which a single receiver device is connected.

The `mvr vlan group` command statically configures ports to receive multicast traffic sent to the IP multicast address. A port statically configured as a member of group remains a member of the group until statically removed. In compatible mode, this command applies only to receiver ports; in dynamic mode, it can also apply to source ports. Receiver ports can also dynamically join multicast groups by using IGMP join messages.

When operating in compatible mode, MVR does not support IGMP dynamic joins on MVR source ports. An MVR port cannot be a private-VLAN port.

Examples

This example shows how to configure a port as an MVR receiver port:

```
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# mvr type receiver
```

Use the `show mvr interface` privileged EXEC command to display configured receiver ports and source ports.

This example shows how to enable Immediate Leave on a port:

```
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# mvr immediate
```

This example shows how to add a port on VLAN 1 as a static member of IP multicast group 228.1.23.4:

```
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# mvr vlan1 group 228.1.23.4
```

You can verify your settings by entering the `show mvr members` privileged EXEC command.
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mvr (global configuration)</code></td>
<td>Enables and configures multicast VLAN registration on the switch.</td>
</tr>
<tr>
<td><code>show mvr</code></td>
<td>Displays MVR global parameters or port parameters.</td>
</tr>
<tr>
<td><code>show mvr interface</code></td>
<td>Displays the configured MVR interfaces or displays the multicast groups to which a receiver port belongs. Also displays all MVR groups of which the interface is a member.</td>
</tr>
<tr>
<td><code>show mvr members</code></td>
<td>Displays all receiver ports that are members of an MVR multicast group.</td>
</tr>
</tbody>
</table>
pagp learn-method

Use the `pagp learn-method` interface configuration command on the switch stack or on a standalone switch to learn the source address of incoming packets received from an EtherChannel port. Use the `no` form of this command to return to the default setting.

```
pagp learn-method {aggregation-port | physical-port}
no pagp learn-method
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aggregation-port</td>
<td>Specify address learning on the logical port-channel. The switch sends packets to the source using any of the ports in the EtherChannel. This setting is the default. With aggregate-port learning, it is not important on which physical port the packet arrives.</td>
</tr>
<tr>
<td>physical-port</td>
<td>Specify address learning on the physical port within the EtherChannel. The switch sends packets to the source using the same port in the EtherChannel from which it learned the source address. The other end of the channel uses the same port in the channel for a particular destination MAC or IP address.</td>
</tr>
</tbody>
</table>

Defaults

The default is aggregation-port (logical port channel).

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The learn method must be configured the same at both ends of the link.

Note

The Catalyst 3750 switch supports address learning only on aggregate ports even though the `physical-port` keyword is provided in the command-line interface (CLI). The `pagp learn-method` and the `pagp port-priority` interface configuration commands have no effect on the switch hardware, but they are required for PAgP interoperability with devices that only support address learning by physical ports, such as the Catalyst 1900 switch.

When the link partner to the Catalyst 3750 switch is a physical learner, we recommend that you configure the switch as a physical-port learner by using the `pagp learn-method physical-port` interface configuration command and to set the load-distribution method based on the source MAC address by using the `port-channel load-balance src-mac` global configuration command. Use the `pagp learn-method` interface configuration command only in this situation.
pagp learn-method

Examples

This example shows how to set the learning method to learn the address on the physical port within the EtherChannel:

Switch(config-if)# pagp learn-method physical-port

This example shows how to set the learning method to learn the address on the port-channel within the EtherChannel:

Switch(config-if)# pagp learn-method aggregation-port

You can verify your settings by entering the show running-config privileged EXEC command or the show pagp channel-group-number internal privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pagp port-priority</td>
<td>Selects a port over which all traffic through the EtherChannel is sent.</td>
</tr>
<tr>
<td>show pagp</td>
<td>Displays PAgP channel-group information.</td>
</tr>
<tr>
<td>show running-config</td>
<td>Displays the current operating configuration. For syntax information, select</td>
</tr>
<tr>
<td></td>
<td>Cisco IOS Configuration Fundamentals Command Reference, Release 12.2</td>
</tr>
<tr>
<td></td>
<td>> File Management Commands > Configuration File Management Commands.</td>
</tr>
</tbody>
</table>
pagp port-priority

Use the `pagp port-priority` interface configuration command on the switch stack or on a standalone switch to select a port over which all Port Aggregation Protocol (PAgP) traffic through the EtherChannel is sent. If all unused ports in the EtherChannel are in hot-standby mode, they can be placed into operation if the currently selected port and link fails. Use the `no` form of this command to return to the default setting.

```
pagp port-priority priority
no pagp port-priority
```

Syntax Description

- `priority` A priority number ranging from 0 to 255.

Defaults

The default is 128.

Command Modes

Interface configuration

Command History

```
Release       Modification
12.1(11)AX     This command was introduced.
```

Usage Guidelines

The physical port with the highest priority that is operational and has membership in the same EtherChannel is the one selected for PAgP transmission.

Note

The Catalyst 3750 switch supports address learning only on aggregate ports even though the `physical-port` keyword is provided in the command-line interface (CLI). The `pagp learn-method` and the `pagp port-priority` interface configuration commands have no effect on the switch hardware, but they are required for PAgP interoperability with devices that only support address learning by physical ports, such as the Catalyst 1900 switch.

When the link partner to the Catalyst 3750 switch is a physical learner, we recommend that you configure the switch as a physical-port learner by using the `pagp learn-method physical-port` interface configuration command and to set the load-distribution method based on the source MAC address by using the `port-channel load-balance src-mac` global configuration command. Use the `pagp learn-method` interface configuration command only in this situation.

Examples

This example shows how to set the port priority to 200:

```
Switch(config-if)# pagp port-priority 200
```

You can verify your setting by entering the `show running-config` privileged EXEC command or the `show pagp channel-group-number internal` privileged EXEC command.
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pagp learn-method</code></td>
<td>Provides the ability to learn the source address of incoming packets.</td>
</tr>
<tr>
<td><code>show pagp</code></td>
<td>Displays PAgP channel-group information.</td>
</tr>
<tr>
<td><code>show running-config</code></td>
<td>Displays the current operating configuration. For syntax information, select Cisco IOS Configuration Fundamentals Command Reference, Release 12.2 > File Management Commands > Configuration File Management Commands.</td>
</tr>
</tbody>
</table>
permit (ARP access-list configuration)

Use the `permit` Address Resolution Protocol (ARP) access-list configuration command to permit an ARP packet based on matches against the Dynamic Host Configuration Protocol (DHCP) bindings. Use the `no` form of this command to remove the specified access control entry (ACE) from the access control list.

```
```

```
```

This command is available only if your switch is running the IP services image, formerly known as the enhanced multilayer image (EMI).

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>request</td>
<td>(Optional) Requests a match for the ARP request. When <code>request</code> is not specified, matching is performed against all ARP packets.</td>
</tr>
<tr>
<td>ip</td>
<td>Specify the sender IP address.</td>
</tr>
<tr>
<td>any</td>
<td>Accept any IP or MAC address.</td>
</tr>
<tr>
<td>host sender-ip</td>
<td>Accept the specified sender IP address.</td>
</tr>
<tr>
<td>sender-ip</td>
<td>Accept the specified range of sender IP addresses.</td>
</tr>
<tr>
<td>sender-ip-mask</td>
<td></td>
</tr>
<tr>
<td>mac</td>
<td>Specify the sender MAC address.</td>
</tr>
<tr>
<td>host sender-mac</td>
<td>Accept the specified sender MAC address.</td>
</tr>
<tr>
<td>sender-mac</td>
<td>Accept the specified range of sender MAC addresses.</td>
</tr>
<tr>
<td>sender-mac-mask</td>
<td></td>
</tr>
<tr>
<td>response ip</td>
<td>Define the IP address values for the ARP responses.</td>
</tr>
<tr>
<td>host target-ip</td>
<td>(Optional) Accept the specified target IP address.</td>
</tr>
<tr>
<td>target-ip</td>
<td>(Optional) Accept the specified range of target IP addresses.</td>
</tr>
<tr>
<td>target-ip-mask</td>
<td></td>
</tr>
<tr>
<td>mac</td>
<td>Specify the MAC address values for the ARP responses.</td>
</tr>
<tr>
<td>host target-mac</td>
<td>(Optional) Accept the specified target MAC address.</td>
</tr>
<tr>
<td>target-mac</td>
<td>(Optional) Accept the specified range of target MAC addresses.</td>
</tr>
<tr>
<td>target-mac-mask</td>
<td></td>
</tr>
<tr>
<td>log</td>
<td>(Optional) Log a packet when it matches the ACE. Matches are logged if you also configure the <code>matchlog</code> keyword in the <code>ip arp inspection vlan logging</code> global configuration command.</td>
</tr>
</tbody>
</table>

Defaults

There are no default settings.
permit (ARP access-list configuration)

Command Modes
ARP access-list configuration

Command History
Release Modification
12.2(20)SE This command was introduced.

Usage Guidelines
You can add permit clauses to forward ARP packets based on some matching criteria.

Examples
This example shows how to define an ARP access list and to permit both ARP requests and ARP responses from a host with an IP address of 1.1.1.1 and a MAC address of 0000.0000.abcd:

Switch(config)# arp access-list static-hosts
Switch(config-arp-nacl)# permit ip host 1.1.1.1 mac host 0000.0000.abcd
Switch(config-arp-nacl)# end

You can verify your settings by entering the `show arp access-list` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>arp access-list</code></td>
<td>Defines an ARP access control list (ACL).</td>
</tr>
<tr>
<td><code>deny (ARP access-list configuration)</code></td>
<td>Denies an ARP packet based on matches against the DHCP bindings.</td>
</tr>
<tr>
<td><code>ip arp inspection filter vlan</code></td>
<td>Permits ARP requests and responses from a host configured with a static IP address.</td>
</tr>
<tr>
<td><code>show arp access-list</code></td>
<td>Displays detailed information about ARP access lists.</td>
</tr>
</tbody>
</table>
permit (IPv6 access-list configuration)

Use the **permit** IPv6 access list configuration command on the switch stack or on a standalone switch to set permit conditions for an IPv6 access list. Use the **no** form of this command to remove the permit conditions.

```plaintext
permit {protocol} {source-ipv6-prefix|prefix-length | any | host source-ipv6-address} [operator [port-number]] {destination-ipv6-prefix|prefix-length | any | host destination-ipv6-address} [operator [port-number]] [dscp value] [fragments] [log] [log-input] [sequence value] [time-range name]

no permit {protocol} {source-ipv6-prefix|prefix-length | any | host source-ipv6-address} [operator [port-number]] {destination-ipv6-prefix|prefix-length | any | host destination-ipv6-address} [operator [port-number]] [dscp value] [fragments] [log] [log-input] [sequence value] [time-range name]
```

Note

Although visible in the command-line help strings, the **flow-label**, **reflect**, and **routing** keywords are not supported.

Internet Control Message Protocol

```plaintext
permit icmp {source-ipv6-prefix|prefix-length | any | host source-ipv6-address} [operator [port-number]] {destination-ipv6-prefix|prefix-length | any | host destination-ipv6-address} [operator [port-number]] [dscp value] [log] [log-input] [sequence value] [time-range name]
```

Transmission Control Protocol

```plaintext
permit tcp {source-ipv6-prefix|prefix-length | any | host source-ipv6-address} [operator [port-number]] {destination-ipv6-prefix|prefix-length | any | host destination-ipv6-address} [operator [port-number]] [ack] [dscp value] [established] [fin] [log] [log-input] [neq {port | protocol}] [psh] [range {port | protocol}] [rst] [sequence value] [syn] [time-range name] [urg]
```

User Datagram Protocol

```plaintext
permit udp {source-ipv6-prefix|prefix-length | any | host source-ipv6-address} [operator [port-number]] {destination-ipv6-prefix|prefix-length | any | host destination-ipv6-address} [operator [port-number]] [dscp value] [log] [log-input] [neq {port | protocol}] [range {port | protocol}] [sequence value] [time-range name]
```

Note

Although visible in the command-line help strings, the **flow-label**, **reflect**, and **routing** keywords are not supported.

This command is available only if your switch is running the advanced IP services image and has a switch database management (SDM) dual IPv4 and IPv6 template configured.
Syntax Description

permit (IPv6 access-list configuration)

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>protocol</td>
<td>Name or number of an Internet protocol. It can be one of the keywords ahp, esp, icmp, ipv6, pcp, sctp, tcp, or udp, or an integer in the range from 0 to 255 representing an IPv6 protocol number.</td>
</tr>
<tr>
<td>source-ipv6-prefix/prefix-length</td>
<td>The source IPv6 network or class of networks for which to set permit conditions. This argument must be in the form documented in RFC 2373 where the address is specified in hexadecimal using 16-bit values between colons. Note: Although the CLI help shows a prefix-length range of /0 to /128, the switch supports IPv6 address-matching only for prefixes in the range of /0 to /64 and extended universal identifier (EUI)-based /128 prefixes for aggregatable global unicast and link-local host addresses.</td>
</tr>
<tr>
<td>any</td>
<td>An abbreviation for the IPv6 prefix ::/0.</td>
</tr>
<tr>
<td>host source-ipv6-address</td>
<td>The source IPv6 host address for which to set permit conditions. This source-ipv6-address argument must be in the form documented in RFC 2373 where the address is specified in hexadecimal using 16-bit values between colons.</td>
</tr>
<tr>
<td>operator [port-number]</td>
<td>(Optional) Specify an operator that compares the source or destination ports of the specified protocol. Operators are lt (less than), gt (greater than), eq (equal), neq (not equal), and range (inclusive range). If the operator is positioned after the source-ipv6-prefix/prefix-length argument, it must match the source port. If the operator is positioned after the destination-ipv6-prefix/prefix-length argument, it must match the destination port. The range operator requires two port numbers. All other operators require one port number. The optional port-number argument is a decimal number or the name of a TCP or a UDP port. A port number is a number from 0 to 65535. TCP port names can be used only when filtering TCP. UDP port names can be used only when filtering UDP.</td>
</tr>
<tr>
<td>destination-ipv6-prefix/prefix-length</td>
<td>The destination IPv6 network or class of networks for which to set permit conditions. This argument must be in the form documented in RFC 2373 where the address is specified in hexadecimal using 16-bit values between colons. Note: Although the CLI help shows a prefix-length range of /0 to /128, the switch supports IPv6 address-matching only for prefixes in the range of /0 to /64 and EUI-based /128 prefixes for aggregatable global unicast and link-local host addresses.</td>
</tr>
<tr>
<td>host destination-ipv6-address</td>
<td>The destination IPv6 host address for which to set permit conditions. This destination-ipv6-address argument must be in the form documented in RFC 2373 where the address is specified in hexadecimal using 16-bit values between colons.</td>
</tr>
<tr>
<td>dscp value</td>
<td>(Optional) Match a differentiated services codepoint value against the traffic class value in the Traffic Class field of each IPv6 packet header. The acceptable range is from 0 to 63.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>permit</td>
<td>(Optional) Match noninitial fragmented packets where the fragment extension header contains a nonzero fragment offset. The <code>fragments</code> keyword is an option only if the protocol is <code>ipv6</code> and the <code>operator [port-number]</code> arguments are not specified.</td>
</tr>
<tr>
<td>log</td>
<td>(Optional) Send an informational logging message to the console about the packet that matches the entry. (The level of messages logged to the console is controlled by the <code>logging console</code> command.) The message includes the access list name and sequence number; whether the packet was permitted; the protocol, whether it was TCP, UDP, ICMP, or a number; and, if appropriate, the source and destination addresses and source and destination port numbers. The message is generated for the first packet that matches, and then at 5-minute intervals, including the number of packets permitted in the prior 5-minute interval.</td>
</tr>
<tr>
<td>log-input</td>
<td>(Optional) Provide the same function as the <code>log</code> keyword, except that the logging message also includes the receiving interface.</td>
</tr>
<tr>
<td>timeout value</td>
<td>(Optional) Interval of idle time (in seconds) after which a reflexive IPv6 access list times out. The acceptable range is from 1 to 4294967295. The default is 180 seconds.</td>
</tr>
<tr>
<td>sequence value</td>
<td>(Optional) Specify the sequence number for the access list statement. The acceptable range is from 1 to 4294967295.</td>
</tr>
<tr>
<td>time-range name</td>
<td>(Optional) Specify the time range that applies to the permit statement. The name of the time range and its restrictions are specified by the <code>time-range</code> and <code>absolute</code> or <code>periodic</code> commands, respectively.</td>
</tr>
<tr>
<td>icmp-type</td>
<td>(Optional) Specify an ICMP message type for filtering ICMP packets. ICMP packets can be filtered by the ICMP message type. The type is a number from 0 to 255.</td>
</tr>
<tr>
<td>icmp-code</td>
<td>(Optional) Specify an ICMP message code for filtering ICMP packets. ICMP packets that are filtered by the ICMP message type can also be filtered by the ICMP message code. The code is a number from 0 to 255.</td>
</tr>
<tr>
<td>icmp-message</td>
<td>(Optional) Specify an ICMP message name for filtering ICMP packets. ICMP packets can be filtered by an ICMP message name or ICMP message type and code. The possible names are listed in the “Usage Guidelines” section.</td>
</tr>
<tr>
<td>ack</td>
<td>(Optional) Only for the TCP protocol: acknowledgment (ACK) bit set.</td>
</tr>
<tr>
<td>established</td>
<td>(Optional) Only for the TCP protocol: Means the connection has been established. A match occurs if the TCP datagram has the ACK or RST bits set. The nonmatching case is that of the initial TCP datagram to form a connection.</td>
</tr>
<tr>
<td>fin</td>
<td>(Optional) Only for the TCP protocol: Fin bit set; no more data from sender.</td>
</tr>
<tr>
<td>**neq {port</td>
<td>protocol}**</td>
</tr>
<tr>
<td>psh</td>
<td>(Optional) Only for the TCP protocol: Push function bit set.</td>
</tr>
<tr>
<td>**range {port</td>
<td>protocol}**</td>
</tr>
<tr>
<td>rst</td>
<td>(Optional) Only for the TCP protocol: Reset bit set.</td>
</tr>
<tr>
<td>syn</td>
<td>(Optional) Only for the TCP protocol: Synchronize bit set.</td>
</tr>
<tr>
<td>urg</td>
<td>(Optional) Only for the TCP protocol: Urgent pointer bit set.</td>
</tr>
</tbody>
</table>
permit (IPv6 access-list configuration)

Defaults

No IPv6 access list is defined.

Command Modes

IPv6 access-list configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SED</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `permit` (IPv6 access-list configuration mode) command is similar to the `permit` (IPv4 access-list configuration mode) command, except that it is IPv6-specific.

Use the `permit` (IPv6) command after the `ipv6 access-list` command to enter IPv6 access-list configuration mode and to define the conditions under which a packet passes the access list.

Specifying IPv6 for the `protocol` argument matches against the IPv6 header of the packet.

By default, the first statement in an access list is number 10, and the subsequent statements are incremented by 10.

You can add `permit`, `deny`, or `remark` statements to an existing access list without re-entering the entire list. To add a new statement anywhere other than at the end of the list, create a new statement with an appropriate entry number that falls between two existing entry numbers to show where it belongs.

See the `ipv6 access-list` command for more information on defining IPv6 ACLs.

Note

Every IPv6 ACL has implicit `permit icmp any any nd-na`, `permit icmp any any nd-ns`, and `deny ipv6 any any` statements as its last match conditions. The two `permit` conditions allow ICMPv6 neighbor discovery. To disallow ICMPv6 neighbor discovery and to deny `icmp any any nd-na` or `icmp any any nd-ns`, there must be an explicit `deny` entry in the ACL. For the implicit `deny ipv6 any any` statement to take effect, an IPv6 ACL must contain at least one entry.

The IPv6 neighbor discovery process uses the IPv6 network layer service. Therefore, by default, IPv6 ACLs implicitly allow IPv6 neighbor discovery packets to be sent and received on an interface. In IPv4, the Address Resolution Protocol (ARP), which is equivalent to the IPv6 neighbor discovery process, uses a separate data link layer protocol. Therefore, by default, IPv4 ACLs implicitly allow ARP packets to be sent and received on an interface.

Both the `source-ipv6-prefix/prefix-length` and `destination-ipv6-prefix/prefix-length` arguments are used for traffic filtering (the source prefix filters traffic based upon the traffic source; the destination prefix filters traffic based upon the traffic destination).

The switch supports only prefixes from /0 to /64 and EUI-based /128 prefixes for aggregatable global unicast and link-local host addresses.

The fragments keyword is an option only if the `operator [port-number]` arguments are not specified.
This is a list of ICMP message names:

- beyond-scope
- echo-reply
- header
- mld-query
- mld-report
- nd-nos
- no-admin
- packet-too-big
- parameter-problem
- reassembly-timeout
- renum-result
- router-advertisement
- router-solicitation
- unreachable
- destination-unreachable
- echo-request
- hop-limit
- mld-reduction
- nd-na
- next-header
- no-route
- parameter-option
- port-unreachable
- renum-command
- renum-seq-number
- router-renumbering
- time-exceeded

Examples

This example configures two IPv6 access lists named OUTBOUND and INBOUND and applies both access lists to outbound and inbound traffic on a Layer 3 interface. The first and second permit entries in the OUTBOUND list permit all TCP and UDP packets from network 2001:0DB8:0300:0201::/64 to leave the interface. The deny entry in the OUTBOUND list prevents all packets from the network FE80:0:0:0201::/64 (packets that have the link-local prefix FE80:0:0:0201 as the first 64 bits of their source IPv6 address) from leaving the interface. The third permit entry in the OUTBOUND list permits all ICMP packets to exit the interface.

The permit entry in the INBOUND list permits all ICMP packets to enter the interface.

```
Switch(config)#ipv6 access-list OUTBOUND
Switch(config-ipv6-acl)# permit tcp 2001:0DB8:0300:0201::/64 any
Switch(config-ipv6-acl)# permit udp 2001:0DB8:0300:0201::/64 any
Switch(config-ipv6-acl)# permit icmp any any
Switch(config-ipv6-acl)# exit
Switch(config)#ipv6 access-list INBOUND
Switch(config-ipv6-acl)# permit icmp any any
Switch(config-ipv6-acl)# exit
Switch(config)# interface gigabitethernet1/0/3
Switch(config-if)# no switchport
Switch(config-if)# ipv6 address 2001::/64 eui-64
Switch(config-if)# ipv6 traffic-filter OUTBOUND out
Switch(config-if)# ipv6 traffic-filter INBOUND in
```

Note

Given that a **permit any any** statement is not included as the last entry in the OUTBOUND or INBOUND access list, only TCP, UDP, and ICMP packets are permitted out of and into the interface (the implicit deny-all condition at the end of the access list denies all other packet types on the interface).
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ipv6 access-list</code></td>
<td>Defines an IPv6 access list and enters IPv6 access list configuration mode.</td>
</tr>
<tr>
<td><code>ipv6 traffic-filter</code></td>
<td>Filters incoming or outgoing IPv6 traffic on an interface.</td>
</tr>
<tr>
<td><code>deny (IPv6 access-list configuration)</code></td>
<td>Sets deny conditions for an IPv6 access list.</td>
</tr>
<tr>
<td><code>show ipv6 access-list</code></td>
<td>Displays the contents of all current IPv6 access lists.</td>
</tr>
</tbody>
</table>
permit (MAC access-list configuration)

Use the `permit` MAC access-list configuration command on the switch stack or on a standalone switch to allow non-IP traffic to be forwarded if the conditions are matched. Use the `no` form of this command to remove a permit condition from the extended MAC access list.

```
{ permit | deny } { any | host src-MAC-addr | src-MAC-addr mask } { any | host dst-MAC-addr | dst-MAC-addr mask } { type mask | cos cos | aarp | amber | dec-spanning | decnet-iv | diagnostic | dsm | etype-6000 | etype-8042 | lat | lavc-sca | lsap | lsap mask | mop-console | mop-dump | msdos | mumps | netbios | vines-echo | vines-ip | xns-idp }
```

```
no { permit | deny } { any | host src-MAC-addr | src-MAC-addr mask } { any | host dst-MAC-addr | dst-MAC-addr mask } { type mask | cos cos | aarp | amber | dec-spanning | decnet-iv | diagnostic | dsm | etype-6000 | etype-8042 | lat | lavc-sca | lsap | lsap mask | mop-console | mop-dump | msdos | mumps | netbios | vines-echo | vines-ip | xns-idp }
```

Note

Though visible in the command-line help strings, `appletalk` is not supported as a matching condition.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>any</code></td>
</tr>
<tr>
<td>`host src-MAC-addr</td>
</tr>
<tr>
<td>`host dst-MAC-addr</td>
</tr>
</tbody>
</table>
| `type mask` | (Optional) Use the Ethertype number of a packet with Ethernet II or SNAP encapsulation to identify the protocol of the packet.
 - `type` is 0 to 65535, specified in hexadecimal.
 - `mask` is a mask of don’t care bits applied to the Ethertype before testing for a match. |
| `aarp` | (Optional) Select Ethertype AppleTalk Address Resolution Protocol that maps a data-link address to a network address. |
| `amber` | (Optional) Select EtherType DEC-Amber. |
| `cos cos` | (Optional) Select an arbitrary class of service (CoS) number from 0 to 7 to set priority. Filtering on CoS can be performed only in hardware. A warning message appears if the `cos` option is configured. |
| `dec-spanning` | (Optional) Select EtherType Digital Equipment Corporation (DEC) spanning tree. |
| `decnet-iv` | (Optional) Select EtherType DECnet Phase IV protocol. |
| `diagnostic` | (Optional) Select EtherType DEC-Diagnostic. |
| `dsm` | (Optional) Select EtherType DEC-DSM. |
| `etype-6000` | (Optional) Select EtherType 0x6000. |
| `etype-8042` | (Optional) Select EtherType 0x8042. |
| `lat` | (Optional) Select EtherType DEC-LAT. |
| `lavc-sca` | (Optional) Select EtherType DEC-LAVC-SCA. |
To filter IPX traffic, you use the type mask or lsap lsap mask keywords, depending on the type of IPX encapsulation being used. Filter criteria for IPX encapsulation types as specified in Novell terminology and Cisco IOS terminology are listed in Table 2-14.

Table 2-14 IPX Filtering Criteria

<table>
<thead>
<tr>
<th>IPX Encapsulation Type</th>
<th>Cisco IOS Name</th>
<th>Novell Name</th>
<th>Filter Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>arpa</td>
<td>Ethernet II</td>
<td>Ethertype 0x8137</td>
</tr>
<tr>
<td></td>
<td>snap</td>
<td>Ethernet-snap</td>
<td>Ethertype 0x8137</td>
</tr>
<tr>
<td></td>
<td>sap</td>
<td>Ethernet 802.2</td>
<td>LSAP 0xE0E0</td>
</tr>
<tr>
<td></td>
<td>novell-ether</td>
<td>Ethernet 802.3</td>
<td>LSAP 0xFFFF</td>
</tr>
</tbody>
</table>

Defaults

This command has no defaults. However, the default action for a MAC-named ACL is to deny.

Command Modes

MAC access-list configuration

Command History

Release Modification
12.1(11)AX This command was introduced.

Usage Guidelines

You enter MAC access-list configuration mode by using the mac access-list extended global configuration command.

If you use the host keyword, you cannot enter an address mask; if you do not use the any or host keywords, you must enter an address mask.
After an access control entry (ACE) is added to an access control list, an implied **deny-any-any** condition exists at the end of the list. That is, if there are no matches, the packets are denied. However, before the first ACE is added, the list permits all packets.

For more information about MAC-named extended access lists, see the software configuration guide for this release.

Examples

This example shows how to define the MAC-named extended access list to allow NETBIOS traffic from any source to MAC address 00c0.00a0.03fa. Traffic matching this list is allowed.

```
Switch(config-ext-macl)# permit any host 00c0.00a0.03fa netbios
```

This example shows how to remove the permit condition from the MAC-named extended access list:

```
Switch(config-ext-macl)# no permit any 00c0.00a0.03fa 0000.0000.0000 netbios
```

This example permits all packets with Ethertype 0x4321:

```
Switch(config-ext-macl)# permit any any 0x4321 0
```

You can verify your settings by entering the `show access-lists` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>deny (MAC access-list configuration)</td>
<td>Denies non-IP traffic to be forwarded if conditions are matched.</td>
</tr>
<tr>
<td>mac access-list extended</td>
<td>Creates an access list based on MAC addresses for non-IP traffic.</td>
</tr>
<tr>
<td>show access-lists</td>
<td>Displays access control lists configured on a switch.</td>
</tr>
</tbody>
</table>
police

Use the `police` policy-map class configuration command on the switch stack or on a standalone switch to define a policer for classified traffic. A policer defines a maximum permissible rate of transmission, a maximum burst size for transmissions, and an action to take if either maximum is exceeded. Use the `no` form of this command to remove an existing policer.

```
police rate-bps burst-byte [exceed-action {drop | policed-dscp-transmit}]
no police rate-bps burst-byte [exceed-action {drop | policed-dscp-transmit}]
```

Syntax Description

- `rate-bps` Specify the average traffic rate in bits per second (bps). The range is 1000000 to 1000000000.
- `burst-byte` Specify the normal burst size in bytes. The range is 8000 to 1000000.
- `exceed-action drop` (Optional) When the specified rate is exceeded, specify that the switch drop the packet.
- `exceed-action policed-dscp-transmit` (Optional) When the specified rate is exceeded, specify that the switch changes the Differentiated Services Code Point (DSCP) of the packet to that specified in the policed-DSCP map and then sends the packet.

Defaults

No policers are defined.

Command Modes

Policy-map class configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When configuring hierarchical policy maps, you can only use the `police` policy-map command in a secondary interface-level policy map.

The port ASIC device, which controls more than one physical port, supports 256 policers (255 policers plus 1 no policer). The maximum number of policers supported per port is 64. Policers are allocated on demand by the software and are constrained by the hardware and ASIC boundaries. You cannot reserve policers per port. There is no guarantee that a port will be assigned to any policer.

To return to policy-map configuration mode, use the `exit` command. To return to privileged EXEC mode, use the `end` command.
Policing uses a token-bucket algorithm. You configure the bucket depth (the maximum burst that is tolerated before the bucket overflows) by using the *burst-byte* option of the `police` policy-map class configuration command or the `mls qos aggregate-policer` global configuration command. You configure how quickly (the average rate) the tokens are removed from the bucket by using the *rate-bps* option of the `police` policy-map class configuration command or the `mls qos aggregate-policer` global configuration command. For more information, see the software configuration guide for this release.

Policy maps that have the `police aggregate` command fail when applied to a 10-Gigabit Ethernet interface.

Examples

This example shows how to configure a policer that drops packets if traffic exceeds 1 Mbps average rate with a burst size of 20 KB. The DSCPs of incoming packets are trusted, and there is no packet modification.

```bash
Switch(config)# policy-map policy1
Switch(config-pmap)# class class1
Switch(config-pmap-c)# trust dscp
Switch(config-pmap-c)# police 1000000 20000 exceed-action drop
Switch(config-pmap-c)# exit
```

This example shows how to configure a policer, which marks down the DSCP values with the values defined in policed-DSCP map and sends the packet:

```bash
Switch(config)# policy-map policy2
Switch(config-pmap)# class class2
Switch(config-pmap-c)# police 1000000 20000 exceed-action policed-dscp-transmit
Switch(config-pmap-c)# exit
```

You can verify your settings by entering the `show policy-map` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>class</td>
<td>Defines a traffic classification match criteria (through the <code>police</code>, <code>set</code>, and <code>trust</code> policy-map class configuration commands) for the specified class-map name.</td>
</tr>
<tr>
<td>mls qos map policed-dscp</td>
<td>Applies a policed-DSCP map to a DSCP-trusted port.</td>
</tr>
<tr>
<td>policy-map</td>
<td>Creates or modifies a policy map that can be attached to multiple ports to specify a service policy.</td>
</tr>
<tr>
<td>set</td>
<td>Classifies IP traffic by setting a DSCP or IP-precedence value in the packet.</td>
</tr>
<tr>
<td>show policy-map</td>
<td>Displays quality of service (QoS) policy maps.</td>
</tr>
<tr>
<td>trust</td>
<td>Defines a trust state for traffic classified through the <code>class</code> policy-map configuration or the <code>class-map</code> global configuration command.</td>
</tr>
</tbody>
</table>
police aggregate

Use the `police aggregate` policy-map class configuration command on the switch stack or on a standalone switch to apply an aggregate policer to multiple classes in the same policy map. A policer defines a maximum permissible rate of transmission, a maximum burst size for transmissions, and an action to take if either maximum is exceeded. Use the `no` form of this command to remove the specified policer.

```
police aggregate aggregate-policer-name

no police aggregate aggregate-policer-name
```

Syntax Description

| aggregate-policer-name | Name of the aggregate policer. |

Defaults
No aggregate policers are defined.

Command Modes
Policy-map class configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The port ASIC device, which controls more than one physical port, supports 256 policers (255 policers plus 1 `no` policer). The maximum number of policers supported per port is 64. Policers are allocated on demand by the software and are constrained by the hardware and ASIC boundaries. You cannot reserve policers per port. There is no guarantee that a port will be assigned to any policer.

You set aggregate policer parameters by using the `mls qos aggregate-policer` global configuration command. You apply an aggregate policer to multiple classes in the same policy map; you cannot use an aggregate policer across different policy maps.

To return to policy-map configuration mode, use the `exit` command. To return to privileged EXEC mode, use the `end` command.

Policy maps that use the `police aggregate` command fail when applied to a 10-Gigabit Ethernet interface.

You cannot configure aggregate policers in hierarchical policy maps.
Examples

This example shows how to define the aggregate policer parameters and to apply the policer to multiple classes in a policy map:

```
Switch(config)# mls qos aggregate-policer agg_policer1 10000 1000000 exceed-action drop
Switch(config)# policy-map policy2
Switch(config-pmap)# class class1
Switch(config-pmap-c)# police aggregate agg_policer1
Switch(config-pmap-c)# exit
Switch(config-pmap)# class class2
Switch(config-pmap-c)# set dscp 10
Switch(config-pmap-c)# police aggregate agg_policer1
Switch(config-pmap-c)# exit
Switch(config-pmap)# class class3
Switch(config-pmap-c)# trust dscp
Switch(config-pmap-c)# police aggregate agg_policer2
Switch(config-pmap-c)# exit
```

You can verify your settings by entering the `show mls qos aggregate-policer` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mls qos aggregate-policer</td>
<td>Defines policer parameters, which can be shared by multiple classes within a policy map.</td>
</tr>
<tr>
<td>show mls qos aggregate-policer</td>
<td>Displays the quality of service (QoS) aggregate policer configuration.</td>
</tr>
</tbody>
</table>
policy-map

Use the `policy-map` global configuration command on the switch stack or on a standalone switch to create or modify a policy map that can be attached to multiple physical ports or switch virtual interfaces (SVIs) and to enter policy-map configuration mode. Use the `no` form of this command to delete an existing policy map and to return to global configuration mode.

```
policy-map policy-map-name
no policy-map policy-map-name
```

Syntax Description

<table>
<thead>
<tr>
<th><code>policy-map-name</code></th>
<th>Name of the policy map.</th>
</tr>
</thead>
</table>

Defaults

No policy maps are defined.

The default behavior is to set the Differentiated Services Code Point (DSCP) to 0 if the packet is an IP packet and to set the class of service (CoS) to 0 if the packet is tagged. No policing is performed.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(25)SE</td>
<td>Support for policy maps on SVIs was added.</td>
</tr>
</tbody>
</table>

Usage Guidelines

After entering the `policy-map` command, you enter policy-map configuration mode, and these configuration commands are available:

- **class**: defines the classification match criteria for the specified class map. For more information, see the “class” section on page 2-42.
- **description**: describes the policy map (up to 200 characters).
- **exit**: exits policy-map configuration mode and returns you to global configuration mode.
- **no**: removes a previously defined policy map.
- **rename**: renames the current policy map.

To return to global configuration mode, use the `exit` command. To return to privileged EXEC mode, use the `end` command.

Before configuring policies for classes whose match criteria are defined in a class map, use the `policy-map` command to specify the name of the policy map to be created, added to, or modified. Entering the `policy-map` command also enables the policy-map configuration mode in which you can configure or modify the class policies for that policy map.

You can configure class policies in a policy map only if the classes have match criteria defined for them. To configure the match criteria for a class, use the `class-map` global configuration and `match` class-map configuration commands. You define packet classification on a physical-port basis.
Only one policy map per ingress port or SVI is supported. You can apply the same policy map to multiple physical ports or SVIs.

In software releases earlier than Cisco IOS Release 12.2(25)SE, you can apply a policy map and configure policing only on physical ports. You can configure the trust state, set a new DSCP or IP precedence value in the packet, or define an individual or aggregate policer. For more information, see the “Policing on Physical Ports” section in the “Configuring QoS” chapter of the software configuration guide for this release.

In Cisco IOS Release 12.2(25)SE or later, you can apply a nonhierarchical policy maps to physical ports or to SVIs. A nonhierarchical policy map is the same as a port-based policy maps in software releases earlier than Cisco IOS Release 12.2(25)SE. However, a hierarchical policy map can only be applied to SVIs.

A hierarchical policy map has two levels. The first level, the VLAN level, specifies the actions to be taken against a traffic flow on an SVI. The second level, the interface level, specifies the actions to be taken against the traffic on the physical ports that belong to the SVI and are specified in the interface-level policy map.

In a primary VLAN-level policy map, you can only configure the trust state or set a new DSCP or IP precedence value in the packet. In a secondary interface-level policy map, you can only configure individual policers on physical ports that belong to the SVI.

After the hierarchical policy map is attached to an SVI, an interface-level policy map cannot be modified or removed from the hierarchical policy map. A new interface-level policy map also cannot be added to the hierarchical policy map. If you want these changes to occur, the hierarchical policy map must first be removed from the SVI.

For more information about hierarchical policy maps, see the “Policing on SVIs” section in the “Configuring QoS” chapter of the software configuration guide for this release.

Examples

This example shows how to create a policy map called policy1. When attached to the ingress port, it matches all the incoming traffic defined in class1, sets the IP DSCP to 10, and polices the traffic at an average rate of 1 Mbps and bursts at 20 KB. Traffic exceeding the profile is marked down to a DSCP value gotten from the policed-DSCP map and then sent.

```
Switch(config)# policy-map policy1
Switch(config-pmap)# class class1
Switch(config-pmap-c)# set dscp 10
Switch(config-pmap-c)# police 1000000 20000 exceed-action policed-dscp-transmit
Switch(config-pmap-c)# exit
```

This example shows how to configure multiple classes in a policy map called policymap2:

```
Switch(config)# policy-map policymap2
Switch(config-pmap)# class class1
Switch(config-pmap-c)# set dscp 10
Switch(config-pmap-c)# police 1000000 20000 exceed-action policed-dscp-transmit
Switch(config-pmap-c)# exit
Switch(config-pmap)# class class2
Switch(config-pmap-c)# trust dscp
Switch(config-pmap-c)# police 1000000 20000 exceed-action drop
Switch(config-pmap-c)# exit
Switch(config-pmap)# class class3
Switch(config-pmap-c)# set dscp 0 (no policer)
Switch(config-pmap-c)# exit
```
This example shows how to create a hierarchical policy map and attach it to an SVI:

```plaintext
Switch(config)# class-map cm-non-int
Switch(config-cmap)# match access-group 101
Switch(config-cmap)# exit
Switch(config)# class-map cm-non-int-2
Switch(config-cmap)# match access-group 102
Switch(config-cmap)# exit
Switch(config)# class-map cm-test-int
Switch(config-cmap)# match input-interface gigabitethernet2/0/2 - gigabitethernet2/0/3
Switch(config-cmap)# exit
Switch(config)# policy-map pm-test-int
Switch(config-pmap)# class cm-test-int
Switch(config-pmap-c)# police 18000000 8000 exceed-action drop
Switch(config-pmap-c)# exit
Switch(config-pmap)# exit
Switch(config)# policy-map pm-test-pm-2
Switch(config-pmap)# class cm-non-int
Switch(config-pmap-c)# set dscp 7
Switch(config-pmap-c)# service-policy pm-test-int
Switch(config-pmap)# class cm-non-int-2
Switch(config-pmap-c)# set dscp 15
Switch(config-pmap-c)# service-policy pm-test-int
Switch(config-pmap-c)# end
Switch(config-cmap)# interface vlan 10
Switch(config-if)# service-policy input pm-test-pm-2
```

This example shows how to delete `policymap2`:

```plaintext
Switch(config)# no policy-map policymap2
```

You can verify your settings by entering the `show policy-map` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>class</td>
<td>Defines a traffic classification match criteria (through the <code>police</code>, <code>set</code>, and <code>trust</code> policy-map class configuration command) for the specified class-map name.</td>
</tr>
<tr>
<td>class-map</td>
<td>Creates a class map to be used for matching packets to the class whose name you specify.</td>
</tr>
<tr>
<td>service-policy</td>
<td>Applies a policy map to a port.</td>
</tr>
<tr>
<td>show mls qos vlan</td>
<td>Displays the quality of service (QoS) policy maps attached to an SVI.</td>
</tr>
<tr>
<td>show policy-map</td>
<td>Displays QoS policy maps.</td>
</tr>
</tbody>
</table>
port-channel load-balance

Use the `port-channel load-balance` global configuration command on the switch stack or on a standalone switch to set the load-distribution method among the ports in the EtherChannel. Use the `no` form of this command to return to the default setting.

```
port-channel load-balance { dst-ip | dst-mac | src-dst-ip | src-dst-mac | src-ip | src-mac }
```

```
no port-channel load-balance
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dst-ip</td>
<td>Load distribution is based on the destination host IP address.</td>
</tr>
<tr>
<td>dst-mac</td>
<td>Load distribution is based on the destination host MAC address. Packets to the same destination are sent on the same port, but packets to different destinations are sent on different ports in the channel.</td>
</tr>
<tr>
<td>src-dst-ip</td>
<td>Load distribution is based on the source and destination host IP address.</td>
</tr>
<tr>
<td>src-dst-mac</td>
<td>Load distribution is based on the source and destination host MAC address.</td>
</tr>
<tr>
<td>src-ip</td>
<td>Load distribution is based on the source host IP address.</td>
</tr>
<tr>
<td>src-mac</td>
<td>Load distribution is based on the source MAC address. Packets from different hosts use different ports in the channel, but packets from the same host use the same port.</td>
</tr>
</tbody>
</table>

Defaults

The default is `src-mac`.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

For information about when to use these forwarding methods, see the “Configuring EtherChannels” chapter in the software configuration guide for this release.

Examples

This example shows how to set the load-distribution method to `dst-mac`:

```
Switch(config)# port-channel load-balance dst-mac
```

You can verify your setting by entering the `show running-config` privileged EXEC command or the `show etherchannel load-balance` privileged EXEC command.
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface port-channel</td>
<td>Accesses or creates the port channel.</td>
</tr>
<tr>
<td>show etherchannel</td>
<td>Displays EtherChannel information for a channel.</td>
</tr>
<tr>
<td>show running-config</td>
<td>Displays the current operating configuration. For syntax information, select Cisco IOS Configuration Fundamentals Command Reference, Release 12.2 > File Management Commands > Configuration File Management Commands.</td>
</tr>
</tbody>
</table>
power inline

Use the `power inline` interface configuration command on the switch stack or on a standalone switch to configure the power management mode on the Power over Ethernet (PoE) ports. Use the `no` form of this command to return to the default settings.

```
power inline { auto [ max max-wattage ] | never | static [ max max-wattage ] }
```

```
no power inline { auto | never | static }
```

Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>auto</td>
<td>Enable powered-device detection. If enough power is available, automatically allocate power to the PoE port after device detection.</td>
</tr>
<tr>
<td>max max-wattage</td>
<td>(Optional) Limit the power allowed on the port. The range is 4000 to 15400 milliwatts. If no value is specified, the maximum is allowed.</td>
</tr>
<tr>
<td>never</td>
<td>Disable device detection, and disable power to the port.</td>
</tr>
<tr>
<td>static</td>
<td>Enable powered-device detection. Pre-allocate (reserve) power for a port before the switch discovers the powered device.</td>
</tr>
</tbody>
</table>

Defaults

The default is `auto` (enabled).

The maximum wattage is 15400 milliwatts.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(19)EA1</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(25)SE</td>
<td>The <code>static</code> and <code>max max-wattage</code> options were added.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command is supported only on PoE-capable ports. If you enter this command on a port that does not support PoE, this error message appears:

```
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# power inline auto

^%
Invalid input detected at '^' marker.
```

In a switch stack, this command is supported on all ports in the stack that support PoE.

Use the `max max-wattage` option to disallow higher-power powered devices. With this configuration, when the powered device sends Cisco Discovery Protocol (CDP) messages requesting more power than the maximum wattage, the switch removes power from the port. If the powered-device IEEE class maximum is greater than the maximum wattage, the switch does not power the device. The power is reclaimed into the global power budget.
The switch never powers any Class 0 or Class 3 device if the `power inline max max-wattage` command is configured for less than 15.4 W.

If the switch denies power to a powered device (the powered device requests more power through CDP messages or if the IEEE class maximum is greater than the maximum wattage), the PoE port is in a power-deny state. The switch generates a system message, and the Oper column in the `show power inline` user EXEC command output shows `power-deny`.

Use the `power inline static max max-wattage` command to give a port high priority. The switch allocates PoE to a port configured in static mode before allocating power to a port configured in auto mode. The switch reserves power for the static port when it is configured rather than upon device discovery. The switch reserves the power on a static port even when there is no connected device and whether or not the port is in a shutdown or in a no shutdown state. The switch allocates the configured maximum wattage to the port, and the amount is never adjusted through the IEEE class or by CDP messages from the powered device. Because power is pre-allocated, any powered device that uses less than or equal to the maximum wattage is guaranteed power when it is connected to a static port. However, if the powered device IEEE class is greater than the maximum wattage, the switch does not supply power to it. If the switch learns through CDP messages that the powered device needs more than the maximum wattage, the powered device is shut down.

If the switch cannot pre-allocate power when a port is in static mode (for example, because the entire power budget is already allocated to other auto or static ports), this message appears: `Command rejected: power inline static: pwr not available. The port configuration remains unchanged.`

When you configure a port by using the `power inline auto` or the `power inline static` interface configuration command, the port autonegotiates by using the configured speed and duplex settings. This is necessary to determine the power requirements of the connected device (whether or not it is a powered device). After the power requirements have been determined, the switch hardcodes the interface by using the configured speed and duplex settings without resetting the interface.

When you configure a port by using the `power inline never` command, the port reverts to the configured speed and duplex settings.

If a port has a Cisco powered device connected to it, you should not use the `power inline never` command to configure the port. A false link-up can occur on the port, placing it into an error-disabled state.

In releases earlier than Cisco IOS Release 12.2(20)SE1, power was sometimes still applied to a PoE port even after a powered device was removed. This could cause damage to a nonpowered device when it was later connected to that port. Make sure that your switch is running Cisco IOS Release 12.2(20)SE1 or later.

This example shows how to enable detection of a powered device and to automatically power a PoE port:

```
Switch(config)# interface fastethernet1/0/2
Switch(config-if)# power inline auto
```

This example shows how to configure a PoE port to allow a Class 1 or a Class 2 powered device:

```
Switch(config)# interface fastethernet1/0/2
Switch(config-if)# power inline auto max 7000
```
This example shows how to disable powered-device detection and to not power a PoE port:

```
Switch(config)# interface fastethernet1/0/2
Switch(config-if)# power inline never
```

You can verify your settings by entering the `show power inline` user EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging event</td>
<td>Enables the logging of PoE events.</td>
</tr>
<tr>
<td>power-inline-status</td>
<td></td>
</tr>
<tr>
<td>show controllers power inline</td>
<td>Displays the values in the registers of the specified PoE controller.</td>
</tr>
<tr>
<td>show power inline</td>
<td>Displays the PoE status for the specified PoE port or for all PoE ports.</td>
</tr>
</tbody>
</table>
power inline consumption

Use the `power inline consumption` global or interface configuration command on the switch stack or on a standalone switch to override the amount of power specified by the IEEE classification for the device by specifying the wattage used by each powered device. Use the `no` form of this command to return to the default power setting.

```
power inline consumption default wattage

no power inline consumption default
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>wattage</code></td>
<td>Specify the power that the switch budgets for the port. The range is 4000 to 15400 milliwatts.</td>
</tr>
</tbody>
</table>

Defaults

The default power on each Power over Ethernet (PoE) port is 15400 milliwatts.

Command Modes

- Global configuration
- Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SEC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When Cisco powered devices are connected to PoE ports, the switch uses Cisco Discovery Protocol (CDP) to determine the actual power consumption of the devices, and the switch adjusts the power budget accordingly. This does not apply to IEEE third-party powered devices. For these devices, when the switch grants a power request, the switch adjusts the power budget according to the powered-device IEEE classification. If the powered device is a Class 0 (class status unknown) or a Class 3, the switch budgets 15400 milliwatts for the device, regardless of the actual amount of power needed. If the powered device reports a higher class than its actual consumption or does not support power classification (defaults to Class 0), the switch can power fewer devices because it uses the IEEE class information to track the global power budget.

By using the `power inline consumption wattage` configuration command, you can override the default power requirement specified by the IEEE classification. The difference between what is mandated by the IEEE classification and what is actually needed by the device is reclaimed into the global power budget for use by additional devices. You can then extend the switch power budget and use it more effectively.

For example, if the switch budgets 15400 milliwatts on each PoE port, you can connect only 24 Class 0 powered devices. If your Class 0 device power requirement is actually 5000 milliwatts, you can set the consumption wattage to 5000 milliwatts and connect up to 48 devices. The total PoE output power available on a 24-port or 48-port switch is 370,000 milliwatts.
You should carefully plan your switch power budget and make certain not to oversubscribe the power supply.

When you enter the `power inline consumption default wattage` or the `no power inline consumption default` command, this caution message appears:

%CAUTION: Interface interface-id: Misconfiguring the 'power inline consumption/allocation' command may cause damage to the switch and void your warranty. Take precaution not to oversubscribe the power supply. Refer to documentation.

When you manually configure the power budget, you must also consider the power loss over the cable between the switch and the powered device.

For more information about the IEEE power classifications, see the “Configuring Interface Characteristics” chapter in the software configuration guide for this release.

This command is supported only on PoE-capable ports. If you enter this command on a switch or port that does not support PoE, an error message appears.

In a switch stack, this command is supported on all switches or ports in the stack that support PoE.

By using the global configuration command, this example shows how to configure the switch to budget 5000 milliwatts to each PoE port:

```
Switch(config)# power inline consumption default 5000
%CAUTION: Interface Gi1/0/1: Misconfiguring the 'power inline consumption/allocation' command may cause damage to the switch and void your warranty. Take precaution not to oversubscribe the power supply. Refer to documentation.
```

By using the interface configuration command, this example shows how to configure the switch to budget 12000 milliwatts to the powered device connected to a specific PoE port:

```
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# power inline consumption default 12000
%CAUTION: Interface Gi1/0/2: Misconfiguring the 'power inline consumption/allocation' command may cause damage to the switch and void your warranty. Take precaution not to oversubscribe the power supply. Refer to documentation.
```

You can verify your settings by entering the `show power inline consumption default` privileged EXEC command.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>power inline</td>
<td>Configures the power management mode on PoE ports.</td>
</tr>
<tr>
<td>show power inline</td>
<td>Displays the PoE status for the specified PoE port or for all PoE ports.</td>
</tr>
</tbody>
</table>
priority-queue

Use the `priority-queue` interface configuration command to enable the egress expedite queue on a port. Use the `no` form of this command to return to the default setting.

```plaintext
priority-queue out
no priority-queue out
```

Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>out</td>
<td>Enable the egress expedite queue.</td>
</tr>
</tbody>
</table>

Defaults

The egress expedite queue is disabled.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(19)EA1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When you configure the `priority-queue out` command, the shaped round robin (SRR) weight ratios are affected because there is one fewer queue participating in SRR. This means that `weight1` in the `srr-queue bandwidth shape` or the `srr-queue bandwidth shape` interface configuration command is ignored (not used in the ratio calculation). The expedite queue is a priority queue, and it is serviced until empty before the other queues are serviced.

Follow these guidelines when the expedite queue is enabled or the egress queues are serviced based on their SRR weights:

- If the egress expedite queue is enabled, it overrides the SRR shaped and shared weights for queue 1.
- If the egress expedite queue is disabled and the SRR shaped and shared weights are configured, the shaped mode overrides the shared mode for queue 1, and SRR services this queue in shaped mode.
- If the egress expedite queue is disabled and the SRR shaped weights are not configured, SRR services the queue in shared mode.

Examples

This example shows how to enable the egress expedite queue when the SRR weights are configured. The egress expedite queue overrides the configured SRR weights.

```plaintext
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# srr-queue bandwidth shape 25 0 0 0
Switch(config-if)# srr-queue bandwidth share 30 20 25 25
Switch(config-if)# priority-queue out
```
This example shows how to disable the egress expedite queue after the SRR shaped and shared weights are configured. The shaped mode overrides the shared mode.

```
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# srr-queue bandwidth shape 25 0 0 0
Switch(config-if)# srr-queue bandwidth share 30 20 25 25
Switch(config-if)# no priority-queue out
```

You can verify your settings by entering the `show mls qos interface interface-id queueing` or the `show running-config` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show mls qos interface queueing</code></td>
<td>Displays the queueing strategy (SRR, priority queueing), the weights corresponding to the queues, and the CoS-to-egress-queue map.</td>
</tr>
<tr>
<td><code>srr-queue bandwidth shape</code></td>
<td>Assigns the shaped weights and enables bandwidth shaping on the four egress queues mapped to a port.</td>
</tr>
<tr>
<td><code>srr-queue bandwidth share</code></td>
<td>Assigns the shared weights and enables bandwidth sharing on the four egress queues mapped to a port.</td>
</tr>
</tbody>
</table>
private-vlan

Use the `private-vlan` VLAN configuration command on the switch stack or on a standalone switch to configure private VLANs and to configure the association between private-VLAN primary and secondary VLANs. Use the `no` form of this command to return the VLAN to normal VLAN configuration.

```
private-vlan {association [add | remove] secondary-vlan-list \ community | isolated | primary}
no private-vlan {association | community | isolated | primary}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>association</td>
<td>Create an association between the primary VLAN and a secondary VLAN.</td>
</tr>
<tr>
<td>secondary-vlan-list</td>
<td>Specify one or more secondary VLANs to be associated with a primary VLAN in a private VLAN.</td>
</tr>
<tr>
<td>add</td>
<td>Associate a secondary VLAN to a primary VLAN.</td>
</tr>
<tr>
<td>remove</td>
<td>Clear the association between a secondary VLAN and a primary VLAN.</td>
</tr>
<tr>
<td>community</td>
<td>Designate the VLAN as a community VLAN.</td>
</tr>
<tr>
<td>isolated</td>
<td>Designate the VLAN as an isolated VLAN.</td>
</tr>
<tr>
<td>primary</td>
<td>Designate the VLAN as a community VLAN.</td>
</tr>
</tbody>
</table>

Defaults

The default is to have no private VLANs configured.

Command Modes

VLAN configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(20)SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Before configuring private VLANs, you must disable VTP (VTP mode transparent). After you configure a private VLAN, you should not change the VTP mode to client or server.

VTP does not propagate private-VLAN configuration. You must manually configure private VLANs on all switches in the Layer 2 network to merge their Layer 2 databases and to prevent flooding of private-VLAN traffic.

You cannot include VLAN 1 or VLANs 1002 to 1005 in the private-VLAN configuration. Extended VLANs (VLAN IDs 1006 to 4094) can be configured in private VLANs.
You can **associate** a secondary (isolated or community) VLAN with only one primary VLAN. A primary VLAN can have one isolated VLAN and multiple community VLANs associated with it.

- A secondary VLAN cannot be configured as a primary VLAN.
- The `secondary_vlan_list` parameter cannot contain spaces. It can contain multiple comma-separated items. Each item can be a single private-VLAN ID or a hyphenated range of private-VLAN IDs. The list can contain one isolated VLAN and multiple community VLANs.
- If you delete either the primary or secondary VLANs, the ports associated with the VLAN become inactive.

A **community** VLAN carries traffic among community ports and from community ports to the promiscuous ports on the corresponding primary VLAN.

An **isolated** VLAN is used by isolated ports to communicate with promiscuous ports. It does not carry traffic to other community ports or isolated ports with the same primary vlan domain.

A **primary** VLAN is the VLAN that carries traffic from a gateway to customer end stations on private ports.

Configure Layer 3 VLAN interfaces (SVIs) only for primary VLANs. You cannot configure Layer 3 VLAN interfaces for secondary VLANs. SVIs for secondary VLANs are inactive while the VLAN is configured as a secondary VLAN.

The `private-vlan` commands do not take effect until you exit from VLAN configuration mode.

Do not configure private-VLAN ports as EtherChannels. While a port is part of the private-VLAN configuration, any EtherChannel configuration for it is inactive.

Do not configure a private VLAN as a Remote Switched Port Analyzer (RSPAN) VLAN.

Do not configure a private VLAN as a voice VLAN.

Do not configure fallback bridging on switches with private VLANs.

Although a private VLAN contains more than one VLAN, only one STP instance runs for the entire private VLAN. When a secondary VLAN is associated with the primary VLAN, the STP parameters of the primary VLAN are propagated to the secondary VLAN.

For information about configuring host ports and promiscuous ports, see the `switchport mode private-vlan` command.

For more information about private-VLAN interaction with other features, see the software configuration guide for this release.
This example shows how to configure VLAN 20 as a primary VLAN, VLAN 501 as an isolated VLAN, and VLANs 502 and 503 as community VLANs, and to associate them in a private VLAN:

Switch# configure terminal
Switch(config)# vlan 20
Switch(config-vlan)# private-vlan primary
Switch(config-vlan)# exit
Switch(config)# vlan 501
Switch(config-vlan)# private-vlan isolated
Switch(config-vlan)# exit
Switch(config)# vlan 502
Switch(config-vlan)# private-vlan community
Switch(config-vlan)# exit
Switch(config)# vlan 503
Switch(config-vlan)# private-vlan community
Switch(config-vlan)# exit
Switch(config)# vlan 20
Switch(config-vlan)# private-vlan association 501-503
Switch(config-vlan)# end

You can verify your setting by entering the show vlan private-vlan or show interfaces status privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show interfaces status</td>
<td>Displays the status of interfaces, including the VLANs to which they belong.</td>
</tr>
<tr>
<td>show vlan private-vlan</td>
<td>Displays the private VLANs and VLAN associations configured on the switch stack.</td>
</tr>
<tr>
<td>switchport mode private-vlan</td>
<td>Configures a private-VLAN port as a host port or promiscuous port.</td>
</tr>
</tbody>
</table>
private-vlan mapping

Use the **private-vlan mapping** interface configuration command on a switch virtual interface (SVI) on the switch stack or on a standalone switch to create a mapping between a private-VLAN primary and secondary VLANs so that both VLANs share the same primary VLAN SVI. Use the **no** form of this command to remove private-VLAN mappings from the SVI.

```
private-vlan mapping {[add | remove] secondary-vlan-list}
no private-vlan mapping
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>secondary-vlan-list</td>
<td>Specify one or more secondary VLANs to be mapped to the primary VLAN SVI.</td>
</tr>
<tr>
<td>add</td>
<td>(Optional) Map the secondary VLAN to the primary VLAN SVI.</td>
</tr>
<tr>
<td>remove</td>
<td>(Optional) Remove the mapping between the secondary VLAN and the primary VLAN SVI.</td>
</tr>
</tbody>
</table>

Defaults

The default is to have no private VLAN SVI mapping configured.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(20)SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The switch must be in VTP transparent mode when you configure private VLANs.

The SVI of the primary VLAN is created at Layer 3.

Configure Layer 3 VLAN interfaces (SVIs) only for primary VLANs. You cannot configure Layer 3 VLAN interfaces for secondary VLANs. SVIs for secondary VLANs are inactive while the VLAN is configured as a secondary VLAN.

The **secondary_vlan_list** parameter cannot contain spaces. It can contain multiple comma-separated items. Each item can be a single private-VLAN ID or a hyphenated range of private-VLAN IDs. The list can contain one isolated VLAN and multiple community VLANs.

Traffic that is received on the secondary VLAN is routed by the SVI of the primary VLAN.

A secondary VLAN can be mapped to only one primary SVI. IF you configure the primary VLAN as a secondary VLAN, all SVIs specified in this command are brought down.

If you configure a mapping between two VLANs that do not have a valid Layer 2 private-VLAN association, the mapping configuration does not take effect.
Examples

This example shows how to map the interface of VLAN 20 to the SVI of VLAN 18:

```bash
Switch# configure terminal
Switch# interface vlan 18
Switch(config-if)# private-vlan mapping 20
Switch(config-vlan)# end
```

This example shows how to permit routing of secondary VLAN traffic from secondary VLANs 303 to 305 and 307 through VLAN 20 SVI:

```bash
Switch# configure terminal
Switch# interface vlan 20
Switch(config-if)# private-vlan mapping 303-305, 307
Switch(config-vlan)# end
```

You can verify your setting by entering the `show interfaces private-vlan mapping` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show interfaces private-vlan mapping</code></td>
<td>Display private-VLAN mapping information for the VLAN SVIs.</td>
</tr>
</tbody>
</table>
queue-set

Use the **queue-set** interface configuration command on the switch stack or on a standalone switch to map a port to a queue-set. Use the **no** form of this command to return to the default setting.

```
queue-set qset-id

no queue-set qset-id
```

Syntax Description

| qset-id | ID of the queue-set. Each port belongs to a queue-set, which defines all the characteristics of the four egress queues per port. The range is 1 to 2. |

Defaults

The queue-set ID is 1.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This example shows how to map a port to queue-set 2:

```
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# queue-set 2
```

You can verify your settings by entering the **show mls qos interface [interface-id] buffers** privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mls qos queue-set output buffers</td>
<td>Allocates buffers to a queue-set.</td>
</tr>
<tr>
<td>mls qos queue-set output threshold</td>
<td>Configures the weighted tail-drop (WTD) thresholds, guarantees the availability of buffers, and configures the maximum memory allocation to a queue-set.</td>
</tr>
<tr>
<td>show mls qos interface buffers</td>
<td>Displays quality of service (QoS) information.</td>
</tr>
</tbody>
</table>
radius-server dead-criteria

Use the `radius-server dead-criteria` global configuration command on the switch stack or on a standalone switch to configure the conditions that determine when a RADIUS server is considered unavailable or dead. Use the `no` form of this command to return to the default settings.

```
radius-server dead-criteria [time seconds [tries number] | tries number]
no radius-server dead-criteria [time seconds [tries number] | tries number]
```

Syntax Description

- **time seconds** (Optional) Set the time in seconds during which the switch does not need to get a valid response from the RADIUS server. The range is from 1 to 120 seconds.
- **tries number** (Optional) Set the number of times that the switch does not get a valid response from the RADIUS server before the server is considered unavailable. The range is from 1 to 100.

Defaults

The switch dynamically determines the `seconds` value that is from 10 to 60 seconds.

The switch dynamically determines the `tries` value that is from 10 to 100.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SEE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

We recommend that you configure the `seconds` and `number` parameters as follows:

- Use the `radius-server timeout seconds` global configuration command to specify the time in seconds during which the switch waits for a RADIUS server to respond before the IEEE 802.1x authentication times out. The default time is 5 seconds.
- Use the `radius-server retransmit retries` global configuration command to specify the number of times the switch tries to reach the radius servers before considering the servers to be unavailable. The default number of retransmission attempts is 3.
- The `seconds` parameter is less than or equal to the number of retransmission attempts times the the time in seconds before the IEEE 802.1x authentication times out.
- The `tries` parameter should be the same as the number of retransmission attempts.

Examples

This example shows how to configure 60 as the `time` and 10 as the number of `tries`, the conditions that determine when a RADIUS server is considered unavailable.

```
Switch(config)# radius-server dead-criteria time 60 tries 10
```

You can verify your settings by entering the `show running-config` privileged EXEC command.
<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dot1x critical (global configuration)</td>
<td>Configures the parameters for the inaccessible authentication bypass feature.</td>
<td></td>
</tr>
<tr>
<td>dot1x critical (interface configuration)</td>
<td>Enables the inaccessible authentication bypass feature on an interface and configures the access VLAN to which the switch assigns the critical port when the port is in the critical-authentication state.</td>
<td></td>
</tr>
<tr>
<td>radius-server retransmit retries</td>
<td>Specifies the number of times that the switch tries to reach the RADIUS servers before considering the servers to be unavailable. For syntax information, select Cisco IOS Security Command Reference, Release 12.2 > Server Security Protocols > RADIUS Commands.</td>
<td></td>
</tr>
<tr>
<td>radius-server timeout seconds</td>
<td>Specifies the time in seconds during which the switch waits for a RADIUS server to respond before the IEEE 802.1x authentication times out. For syntax information, select Cisco IOS Security Command Reference, Release 12.2 > Server Security Protocols > RADIUS Commands.</td>
<td></td>
</tr>
<tr>
<td>show running-config</td>
<td>Displays the running configuration on the switch. For syntax information, select Cisco IOS Configuration Fundamentals Command Reference, Release 12.2 > File Management Commands > Configuration File Management Commands.</td>
<td></td>
</tr>
</tbody>
</table>
radius-server host

Use the `radius-server host` global configuration command on the switch stack or on a standalone switch to configure the RADIUS server parameters, including the RADIUS accounting and authentication. Use the `no` form of this command to return to the default settings.

```
radius-server host ip-address [acct-port udp-port] [auth-port udp-port] [key string] [test username name [idle-time time] [ignore-acct-port] [ignore-auth-port]]
```

```
no radius-server host ip-address
```

Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip-address</code></td>
<td>Specify the IP address of the RADIUS server.</td>
</tr>
<tr>
<td><code>acct-port udp-port</code></td>
<td>(Optional) Specify the UDP port for the RADIUS accounting server. The range is from 0 to 65536.</td>
</tr>
<tr>
<td><code>auth-port udp-port</code></td>
<td>(Optional) Specify the UDP port for the RADIUS authentication server. The range is from 0 to 65536.</td>
</tr>
<tr>
<td><code>key string</code></td>
<td>(Optional) Specify the authentication and encryption key for all RADIUS communication between the switch and the RADIUS daemon.</td>
</tr>
<tr>
<td><code>test username name</code></td>
<td>(Optional) Enable automatic server testing of the RADIUS server status and specify the username to be used.</td>
</tr>
<tr>
<td><code>idle-time time</code></td>
<td>(Optional) Set the interval of time in minutes after which the switch sends test packets to the server. The range is from 1 to 35791 minutes.</td>
</tr>
<tr>
<td><code>ignore-acct-port</code></td>
<td>(Optional) Disables testing on the RADIUS-server accounting port.</td>
</tr>
<tr>
<td><code>ignore-auth-port</code></td>
<td>(Optional) Disables testing on the RADIUS-server authentication port.</td>
</tr>
</tbody>
</table>

Defaults

The UDP port for the RADIUS accounting server is 1646.

The UDP port for the RADIUS authentication server is 1645.

Automatic server testing is disabled.

The idle time is 60 minutes (1 hour).

When the automatic testing is enabled, testing occurs on the accounting and authentication UDP ports.

The authentication and encryption key (`string`) is not configured.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SEE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

We recommend that you configure the UDP port for the RADIUS accounting server and the UDP port for the RADIUS authentication server to nondefault values.
You can configure the authentication and encryption key by using the `radius-server host ip-address key string` or the `radius-server key {0 string | 7 string | string}` global configuration command.

Use the `test username name` keywords to enable automatic server testing of the RADIUS server status and specify the username to be used.

Examples

This example shows how to configure 1500 as the UDP port for the accounting server and 1510 as the UDP port for the authentication server:

```
Switch(config)# radius-server host 1.1.1.1 acct-port 1500 auth-port 1510
```

This example shows how to configure the UDP port for the accounting server and the authentication server, enable automated testing of the RADIUS server status, specify the username to be used, and configure a key string:

```
Switch(config)# radius-server host 1.1.1.2 acct-port 800 auth-port 900 test username aaafail idle-time 75 key abc123
```

You can verify your settings by entering the `show running-config` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dot1x critical (global configuration)</code></td>
<td>Configures the parameters for the inaccessible authentication bypass feature.</td>
</tr>
<tr>
<td><code>dot1x critical (interface configuration)</code></td>
<td>Enables the inaccessible authentication bypass feature on an interface and configures the access VLAN to which the switch assigns the critical port when the port is in the critical-authentication state.</td>
</tr>
<tr>
<td>`radius-server key {0 string</td>
<td>7 string</td>
</tr>
</tbody>
</table>
rcommand

Use the `rcommand` user EXEC command on the switch stack or on the cluster command switch to start a Telnet session and to execute commands on a cluster member switch from the cluster command switch or the switch stack. To end the session, enter the `exit` command.

```bash
rcommand { n | commander | mac-address hw-addr }
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>n</code></td>
<td>Provide the number that identifies a cluster member. The range is 0 to 15.</td>
</tr>
<tr>
<td><code>commander</code></td>
<td>Provide access to the cluster command switch from a cluster member switch.</td>
</tr>
<tr>
<td><code>mac-address hw-addr</code></td>
<td>MAC address of the cluster member switch.</td>
</tr>
</tbody>
</table>

Command Modes

User EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command is available only on the cluster command switch stack or cluster command switch.

If the switch is the cluster command switch but the cluster member switch `n` does not exist, an error message appears. To get the switch number, enter the `show cluster members` privileged EXEC command on the cluster command switch.

You can use this command to access a cluster member switch from the cluster command-switch prompt or to access a cluster command switch from the member-switch prompt.

For Catalyst 2900 XL, 3500 XL, 2950, 2970, 3550, 3560, and 3750 switches, the Telnet session accesses the member-switch command-line interface (CLI) at the same privilege level as on the cluster command switch. For example, if you execute this command at user level on the cluster command switch, the cluster member switch is accessed at user level. If you use this command on the cluster command switch at privileged level, the command accesses the remote device at privileged level. If you use an intermediate enable-level lower than `privileged`, access to the cluster member switch is at user level.

For Catalyst 1900 and 2820 switches running standard edition software, the Telnet session accesses the menu console (the menu-driven interface) if the cluster command switch is at privilege level 15. If the cluster command switch is at privilege level 1, you are prompted for the password before being able to access the menu console. Cluster command switch privilege levels map to the cluster member switches running standard edition software as follows:

- If the cluster command switch privilege level is from 1 to 14, the cluster member switch is accessed at privilege level 1.
- If the cluster command switch privilege level is 15, the cluster member switch is accessed at privilege level 15.

The Catalyst 1900 and 2820 CLI is available only on switches running Enterprise Edition Software.
This command will not work if the vty lines of the cluster command switch have access-class configurations.

You are not prompted for a password because the cluster member switches inherited the password of the cluster command switch when they joined the cluster.

Examples

This example shows how to start a session with member 3. All subsequent commands are directed to member 3 until you enter the `exit` command or close the session.

```bash
Switch# rcommand 3
Switch-3# show version
Cisco Internet Operating System Software ...
...
Switch-3# exit
Switch#
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show cluster members</code></td>
<td>Displays information about the cluster members.</td>
</tr>
</tbody>
</table>
reload

Use the `reload` privileged EXEC command to reload the stack member and to put a configuration change into effect.

```
reload [LINE | at | cancel | in | slot stack-member-number | standby-cpu]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINE</td>
<td>Specify the reason for the reload.</td>
</tr>
<tr>
<td>at</td>
<td>Specify the time in hh:mm for the reload to occur.</td>
</tr>
<tr>
<td>cancel</td>
<td>Cancel the pending reload.</td>
</tr>
<tr>
<td>in</td>
<td>Specify a time interval in mmm or hhh:mm for reloads to occur.</td>
</tr>
<tr>
<td>slot</td>
<td>Save the changes on the specified stack member and restart it.</td>
</tr>
<tr>
<td>stack-member-number</td>
<td></td>
</tr>
<tr>
<td>standby-cpu</td>
<td>Reload the standby route processor (RP).</td>
</tr>
</tbody>
</table>

Defaults

Immediately reloads the stack member and puts a configuration change into effect.

Command Modes

Privilege EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If there is more than one switch in the switch stack, and you enter the `reload slot stack-member-number` command, you are not prompted to save the configuration.

Examples

This example shows how to reload the switch stack:

```
Switch(config)# reload
System configuration has been modified. Save? [yes/no]: y
Proceed to reload the whole Stack? [confirm] y
```

This example shows how to reload a specific stack member:

```
Switch(config)# reload slot 6
Proceed with reload? [confirm] y
```

This example shows how to reload a single-switch switch stack (there is only one member switch):

```
Switch(config)# reload slot 3
System configuration has been modified. Save? [yes/no]: y
Proceed to reload the whole Stack? [confirm] y
```
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rcommand</code></td>
<td>Accesses a specific stack member.</td>
</tr>
<tr>
<td><code>switch priority</code></td>
<td>Changes the stack member priority value.</td>
</tr>
<tr>
<td><code>switch renumber</code></td>
<td>Changes the stack member number.</td>
</tr>
<tr>
<td><code>show switch</code></td>
<td>Displays information about the switch stack and its stack members.</td>
</tr>
</tbody>
</table>
remote command

Use the `remote command` privileged EXEC command to monitor all or specified stack members.

```
remote command {all | stack-member-number} LINE
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>all</code></td>
<td>Apply to all stack members.</td>
</tr>
<tr>
<td><code>stack-member-number</code></td>
<td>Specify the stack member. The range is 1 to 9.</td>
</tr>
<tr>
<td><code>LINE</code></td>
<td>Specify the command to execute.</td>
</tr>
</tbody>
</table>

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The commands (such as `debug`, `show`, or `clear`) you use in the `LINE` command-to-execute string apply to a specific stack member or to the switch stack.

Examples

This example shows how to execute the `undebug` command on the switch stack:

```
Switch(config)# remote command all undebug all
Switch :1 :
---------
All possible debugging has been turned off
Switch :5 :
---------
All possible debugging has been turned off
Switch :9 :
---------
All possible debugging has been turned off
```

This example shows how to execute the `debug udld event` command on stack member 5:

```
Switch(config)# remote command 5 undebug all
Switch :5 :
---------
UDLD events debugging is on
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>reload</code></td>
<td>Accesses a specific stack member.</td>
</tr>
<tr>
<td><code>switch priority</code></td>
<td>Changes the stack member priority value.</td>
</tr>
<tr>
<td><code>switch renumber</code></td>
<td>Changes the stack member number.</td>
</tr>
<tr>
<td><code>show switch</code></td>
<td>Displays information about the switch stack and its stack members.</td>
</tr>
</tbody>
</table>
remote-span

Use the `remote-span` VLAN configuration command on the switch stack or on a standalone switch to configure a VLAN as a Remote Switched Port Analyzer (RSPAN) VLAN. Use the `no` form of this command to remove the RSPAN designation from the VLAN.

```
remote-span

no remote-span
```

Syntax Description
This command has no arguments or keywords.

Defaults
No RSPAN VLANs are defined.

Command Modes
VLAN configuration (config-VLAN)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
You can configure RSPAN VLANs only in config-VLAN mode (entered by using the `vlan` global configuration command), not the VLAN configuration mode entered by using the `vlan database` privileged EXEC command.

If VLAN Trunking Protocol (VTP) is enabled, the RSPAN feature is propagated by VTP for VLAN-IDs that are lower than 1005. If the RSPAN VLAN ID is in the extended range, you must manually configure intermediate switches (those in the RSPAN VLAN between the source switch and the destination switch).

Before you configure the RSPAN `remote-span` command, use the `vlan` (global configuration) command to create the VLAN.

The RSPAN VLAN has these characteristics:

- No MAC address learning occurs on it.
- RSPAN VLAN traffic flows only on trunk ports.
- Spanning Tree Protocol (STP) can run in the RSPAN VLAN, but it does not run on RSPAN destination ports.

When an existing VLAN is configured as an RSPAN VLAN, the VLAN is first deleted and then recreated as an RSPAN VLAN. Any access ports are made inactive until the RSPAN feature is disabled.
remote-span

Examples

This example shows how to configure a VLAN as an RSPAN VLAN.

Switch(config)# vlan 901
Switch(config-vlan)# remote-span

This example shows how to remove the RSPAN feature from a VLAN.

Switch(config)# vlan 901
Switch(config-vlan)# no remote-span

You can verify your settings by entering the show vlan remote-span user EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor session</td>
<td>Enables Switched Port Analyzer (SPAN) and RSPAN monitoring on a port and configures a port as a source or destination port.</td>
</tr>
<tr>
<td>vlan (global configuration)</td>
<td>Changes to config-vlan mode where you can configure VLANs 1 to 4094.</td>
</tr>
</tbody>
</table>
renew ip dhcp snooping database

Use the `renew ip dhcp snooping database` privileged EXEC command on the switch stack or on a standalone switch to renew the DHCP snooping binding database.

```
renew ip dhcp snooping database [{flash[number]:/filename | ftp://user:password@host/filename | nvram:/filename | rcp://user@host/filename | tftp://host/filename}] [validation none]
```

This command is available only if your switch is running the IP services image, formerly known as the enhanced multilayer image (EMI).

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>flash[number]:/filename</code></td>
<td>(Optional) Specify that the database agent or the binding file is in the flash memory. Use the <code>number</code> parameter to specify the stack member number of the stack master. The range for <code>number</code> is 1 to 9.</td>
</tr>
<tr>
<td><code>ftp://user:password@host/filename</code></td>
<td>(Optional) Specify that the database agent or the binding file is on an FTP server.</td>
</tr>
<tr>
<td><code>nvram:/filename</code></td>
<td>(Optional) Specify that the database agent or the binding file is in the NVRAM.</td>
</tr>
<tr>
<td><code>rcp://user@host/filename</code></td>
<td>(Optional) Specify that the database agent or the binding file is on a Remote Control Protocol (RCP) server.</td>
</tr>
<tr>
<td><code>tftp://host/filename</code></td>
<td>(Optional) Specify that the database agent or the binding file is on a TFTP server.</td>
</tr>
<tr>
<td><code>validation none</code></td>
<td>(Optional) Specify that the switch does not verify the cyclic redundancy check (CRC) for the entries in the binding file specified by the URL.</td>
</tr>
</tbody>
</table>

Defaults

No default is defined.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(20)SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If you do not specify a URL, the switch tries to read the file from the configured URL.

Examples

This example shows how to renew the DHCP snooping binding database without checking CRC values in the file:

```
Switch# renew ip dhcp snooping database validation none
```

You can verify your settings by entering the `show ip dhcp snooping database` privileged EXEC command.
renew ip dhcp snooping database

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ip dhcp snooping</td>
<td>Enables DHCP snooping on a VLAN.</td>
</tr>
<tr>
<td></td>
<td>ip dhcp snooping binding</td>
<td>Configures the DHCP snooping binding database.</td>
</tr>
<tr>
<td></td>
<td>show ip dhcp snooping database</td>
<td>Displays the status of the DHCP snooping database agent.</td>
</tr>
</tbody>
</table>
rmon collection stats

Use the rmon collection stats interface configuration command on the switch stack or on a standalone switch to collect Ethernet group statistics, which include usage statistics about broadcast and multicast packets, and error statistics about cyclic redundancy check (CRC) alignment errors and collisions. Use the no form of this command to return to the default setting.

```
rmon collection stats index [owner name]
no rmon collection stats index [owner name]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>index</td>
<td>Remote Network Monitoring (RMON) collection control index. The range is 1 to 65535.</td>
</tr>
<tr>
<td>owner name</td>
<td>(Optional) Owner of the RMON collection.</td>
</tr>
</tbody>
</table>

Defaults

The RMON statistics collection is disabled.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The RMON statistics collection command is based on hardware counters.

Examples

This example shows how to collect RMON statistics for the owner root:

```
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# rmon collection stats 2 owner root
```

You can verify your setting by entering the show rmon statistics privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
</table>
sdm prefer

Use the `sdm prefer` global configuration command on the switch stack or on a standalone switch to configure the template used in Switch Database Management (SDM) resource allocation. You can use a template to allocate system resources to best support the features being used in your application. Use a template to provide maximum system usage for unicast routing or for VLAN configuration, to change an aggregator template (Catalyst 3750-12S only) to a desktop template, or to select the dual IPv4 and IPv6 template to support IPv6 forwarding (supported only when the switch stack is running the advanced IP services image). Use the `no` form of this command to return to the default template.

```
sdm prefer { access | default | dual-ipv4-and-ipv6 { default | routing | vlan } | routing | vlan } [desktop]
```

Syntax Description

- **access**: Provide maximum system usage for access control lists (ACLs). Use this template if you have a large number of ACLs.
- **default**: Sets the switch to use the default template. On Catalyst 3750-12S switches, use with the `desktop` keyword to set the switch to the default desktop template. (Use the `no sdm prefer` command to set a desktop switch to the default desktop template or to set an aggregator switch to the default aggregator template.)
- **dual-ipv4-and-ipv6 { default | routing | vlan }**: Select a template that supports both IPv4 and IPv6 routing.
 - **default**: Provide balance to IPv4 and IPv6 Layer 2 and Layer 3 functionality.
 - **routing**: Provide maximum system usage for IPv4 and IPv6 routing, including IPv4 policy-based routing.
 - **vlan**: Provide maximum system usage for IPv4 and IPv6 VLANs.

 Note: Though visible on all switches, this option is supported only if the switch stack or switch is running the advanced IP services image.
- **routing**: Provide maximum system usage for unicast routing. You would typically use this template for a router or aggregator in the middle of a network.
- **vlan**: Provide maximum system usage for VLANs. This template maximizes system resources for use as a Layer 2 switch with no routing.
- **desktop**: Use only on a Catalyst 3750-12S switch (where aggregator templates are the default) to select the desktop `default`, `routing`, or `vlan` template.

Defaults

The default template provides a balance to all features.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(14)EA1</td>
<td>The aggregator templates were added.</td>
</tr>
</tbody>
</table>
You must reload the switch for the configuration to take effect. If you enter the show sdm prefer command before you enter the reload privileged EXEC command, the show sdm prefer command shows the template currently in use and the template that will become active after a reload.

Desktop switches support only desktop templates; an aggregator switch (Catalyst 3750-12S) supports both desktop and aggregator templates. On an aggregator switch, if you do not enter the desktop keyword, the aggregator templates are selected.

All stack members use the same SDM desktop or aggregator template, stored on the stack master. When a new switch member is added to a stack, as with the switch configuration file and VLAN database file, the SDM configuration that is stored on the stack master overrides the template configured on an individual switch.

To route IPv6 packets in a stack of switches, all switches in the stack should be running the advanced IP services image. The IPv6 packets are routed in hardware across the stack, as long as the packet does not have exceptions (IPv6Options) and the switches have not run out of hardware resources.

If a stack member cannot support the template that is running on the master switch, the switch goes into SDM mismatch mode, the master switch does not attempt to change the SDM template, and the switch cannot be a functioning member of the stack.

- If the master switch is a Catalyst 3750-12S, and you change the template from an aggregator template to a desktop template and reload the switch, the entire stack operates with the selected desktop template. This could cause configuration losses if the number of ternary content addressable memory (TCAM) entries exceeds the desktop template sizes.
- If you change the template on a Catalyst 3750-12S master from a desktop template to an aggregator template and reload the switch, any desktop switches that were part of the stack go into SDM mismatch mode.
- If you add a Catalyst 3750-12S switch that is running the aggregator template to a stack that has a desktop switch as the stack master, the stack operates with the desktop template selected on the stack master. This could cause configuration losses on the Catalyst 3750-12S stack member if the number of TCAM entries on it exceeds desktop template sizes.

For more information about stacking, see the “Managing Switch Stacks” chapter in the software configuration guide.

The access template maximizes system resources for access control lists (ACLs) as required to accommodate a large number of ACLs.

The default templates balance the use of system resources.

Use the sdm prefer vlan [desktop] global configuration command only on switches intended for Layer 2 switching with no routing. When you use the VLAN template, no system resources are reserved for routing entries, and any routing is done through software. This overloads the CPU and severely degrades routing performance.

Do not use the routing template if you do not have routing enabled on your switch. Entering the sdm prefer routing [desktop] global configuration command prevents other features from using the memory allocated to unicast routing in the routing template.

Usage Guidelines

- If you enter the show sdm prefer command before you enter the reload privileged EXEC command, the show sdm prefer command shows the template currently in use and the template that will become active after a reload.
- Desktop switches support only desktop templates; an aggregator switch (Catalyst 3750-12S) supports both desktop and aggregator templates. On an aggregator switch, if you do not enter the desktop keyword, the aggregator templates are selected.
- All stack members use the same SDM desktop or aggregator template, stored on the stack master. When a new switch member is added to a stack, as with the switch configuration file and VLAN database file, the SDM configuration that is stored on the stack master overrides the template configured on an individual switch.
- To route IPv6 packets in a stack of switches, all switches in the stack should be running the advanced IP services image. The IPv6 packets are routed in hardware across the stack, as long as the packet does not have exceptions (IPv6Options) and the switches have not run out of hardware resources.
- If a stack member cannot support the template that is running on the master switch, the switch goes into SDM mismatch mode, the master switch does not attempt to change the SDM template, and the switch cannot be a functioning member of the stack.
- If the master switch is a Catalyst 3750-12S, and you change the template from an aggregator template to a desktop template and reload the switch, the entire stack operates with the selected desktop template. This could cause configuration losses if the number of ternary content addressable memory (TCAM) entries exceeds the desktop template sizes.
- If you change the template on a Catalyst 3750-12S master from a desktop template to an aggregator template and reload the switch, any desktop switches that were part of the stack go into SDM mismatch mode.
- If you add a Catalyst 3750-12S switch that is running the aggregator template to a stack that has a desktop switch as the stack master, the stack operates with the desktop template selected on the stack master. This could cause configuration losses on the Catalyst 3750-12S stack member if the number of TCAM entries on it exceeds desktop template sizes.

For more information about stacking, see the “Managing Switch Stacks” chapter in the software configuration guide.

The access template maximizes system resources for access control lists (ACLs) as required to accommodate a large number of ACLs.

The default templates balance the use of system resources.

Use the sdm prefer vlan [desktop] global configuration command only on switches intended for Layer 2 switching with no routing. When you use the VLAN template, no system resources are reserved for routing entries, and any routing is done through software. This overloads the CPU and severely degrades routing performance.

Do not use the routing template if you do not have routing enabled on your switch. Entering the sdm prefer routing [desktop] global configuration command prevents other features from using the memory allocated to unicast routing in the routing template.
Do not use the ipv4-and-ipv6 templates if you do not plan to enable IPv6 routing on the switch. Entering the `sdm prefer ipv4-and-ipv6 {default | routing | vlan} [desktop]` global configuration command divides resources between IPv4 and IPv6, limiting those allocated to IPv4 forwarding.

Table 2-15 lists the approximate number of each resource supported in each of the IPv4-only templates for a desktop or aggregator switch. The values in the template are based on eight routed interfaces and approximately one thousand VLANs and represent the approximate hardware boundaries set when a template is selected. If a section of a hardware resource is full, all processing overflow is sent to the CPU, seriously impacting switch performance.

Table 2-15 Approximate Number of Feature Resources Allowed by IPv4 Templates

<table>
<thead>
<tr>
<th>Resource</th>
<th>Desktop Templates</th>
<th>Aggregator Templates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Access</td>
<td>Default</td>
</tr>
<tr>
<td>Unicast MAC addresses</td>
<td>4 K</td>
<td>6 K</td>
</tr>
<tr>
<td>Internet Group Management Protocol (IGMP) groups and multicast routes</td>
<td>1 K</td>
<td>1 K</td>
</tr>
<tr>
<td>Unicast routes</td>
<td>6 K</td>
<td>8 K</td>
</tr>
<tr>
<td>- Directly connected hosts</td>
<td>4 K</td>
<td>6 K</td>
</tr>
<tr>
<td>- Indirect routes</td>
<td>2 K</td>
<td>2 K</td>
</tr>
<tr>
<td>Policy-based routing access control entries (ACEs)</td>
<td>512</td>
<td>0</td>
</tr>
<tr>
<td>Quality of service QoS classification ACEs</td>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td>Security ACEs</td>
<td>2 K</td>
<td>1 K</td>
</tr>
<tr>
<td>Layer 2 VLANs</td>
<td>1 K</td>
<td>1 K</td>
</tr>
</tbody>
</table>

Table 2-16 Approximate Feature Resources Allowed by Dual IPv4-IPv6 Templates

<table>
<thead>
<tr>
<th>Resource</th>
<th>Default IPv4-and-IPv6 Templates</th>
<th>Aggregator IPv4-and-IPv6 Templates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Default</td>
<td>Routing</td>
</tr>
<tr>
<td>Unicast MAC addresses</td>
<td>2 K</td>
<td>1536</td>
</tr>
<tr>
<td>IPv4 IGMP groups and multicast routes</td>
<td>1 K</td>
<td>1K</td>
</tr>
<tr>
<td>Total IPv4 unicast routes:</td>
<td>3 K</td>
<td>2816</td>
</tr>
<tr>
<td>- Directly connected IPv4 hosts</td>
<td>2 K</td>
<td>1536</td>
</tr>
<tr>
<td>- Indirect IPv4 routes</td>
<td>1 K</td>
<td>1280</td>
</tr>
<tr>
<td>IPv6 multicast groups</td>
<td>1 K</td>
<td>1152</td>
</tr>
<tr>
<td>Total IPv6 unicast routes:</td>
<td>3 K</td>
<td>2816</td>
</tr>
<tr>
<td>- Directly connected IPv6 addresses</td>
<td>2 K</td>
<td>1536</td>
</tr>
<tr>
<td>- Indirect IPv6 unicast routes</td>
<td>1 K</td>
<td>1280</td>
</tr>
<tr>
<td>IPv4 policy-based routing ACEs</td>
<td>0</td>
<td>256</td>
</tr>
<tr>
<td>IPv4 or MAC QoS ACEs (total)</td>
<td>512</td>
<td>512</td>
</tr>
</tbody>
</table>
Examples

This example shows how to configure the access template on a desktop switch:

```bash
Switch(config)# sdm prefer access
Switch(config)# exit
Switch# reload
```

This example shows how to configure the routing template on a desktop switch:

```bash
Switch(config)# sdm prefer routing
Switch(config)# exit
Switch# reload
```

This example shows how to configure the desktop routing template on an aggregator switch:

```bash
Switch(config)# sdm prefer routing desktop
Switch(config)# exit
Switch# reload
```

This example shows how to configure the dual IPv4-and-IPv6 default template on a desktop switch:

```bash
Switch(config)# sdm prefer dual-ipv4-and-ipv6 default
Switch(config)# exit
Switch# reload
```

This example shows how to change a switch template to the default template. On an aggregator switch, this is the default aggregator template; on a desktop switch, this is the default desktop template.

```bash
Switch(config)# no sdm prefer
Switch(config)# exit
Switch# reload
```

This example shows how to configure the desktop default template on an aggregator switch:

```bash
Switch(config)# sdm prefer default desktop
Switch(config)# exit
Switch# reload
```

You can verify your settings by entering the `show sdm prefer` privileged EXEC command.

Table 2-16: Approximate Feature Resources Allowed by Dual IPv4-IPv6 Templates (continued)

<table>
<thead>
<tr>
<th>Resource</th>
<th>Desktop IPv4-and-IPv6 Templates</th>
<th>Aggregator IPv4-and-IPv6 Templates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Default</td>
<td>Routing</td>
</tr>
<tr>
<td>IPv4 or MAC security ACEs (total)</td>
<td>1 K</td>
<td>512</td>
</tr>
<tr>
<td>IPv6 policy-based routing ACEs</td>
<td>0</td>
<td>255</td>
</tr>
<tr>
<td>IPv6 QoS ACEs</td>
<td>510</td>
<td>510</td>
</tr>
<tr>
<td>IPv6 security ACEs</td>
<td>510</td>
<td>510</td>
</tr>
</tbody>
</table>

1. IPv6 policy-based routing is not supported in this release.
<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>show sdm prefer</td>
<td>Displays the current SDM template in use or displays the templates that can be used, with approximate resource allocation per feature.</td>
</tr>
</tbody>
</table>
service password-recovery

Use the service password-recovery global configuration command on the switch stack or on a standalone switch to enable the password-recovery mechanism (the default). This mechanism allows an end user with physical access to the switch to hold down the Mode button and interrupt the boot process while the switch is powering up and to assign a new password. Use the no form of this command to disable part of the password-recovery functionality. When the password-recovery mechanism is disabled, interrupting the boot process is allowed only if the user agrees to set the system back to the default configuration.

service password-recovery

no service password-recovery

Syntax Description

This command has no arguments or keywords.

Defaults

The password-recovery mechanism is enabled.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

As a system administrator, you can use the no service password-recovery command to disable some of the functionality of the password recovery feature by allowing an end user to reset a password only by agreeing to return to the default configuration.

To use the password-recovery procedure, a user with physical access to the switch holds down the Mode button while the unit powers up and for a second or two after the LED above port 1X turns off. When the button is released, the system continues with initialization. If the password-recovery mechanism is disabled, this message appears:

The password-recovery mechanism has been triggered, but is currently disabled. Access to the boot loader prompt through the password-recovery mechanism is disallowed at this point. However, if you agree to let the system be reset back to the default system configuration, access to the boot loader prompt can still be allowed.

Would you like to reset the system back to the default configuration (y/n)?

If the user chooses not to reset the system to the default configuration, the normal boot process continues, as if the Mode button had not been pressed. If you choose to reset the system to the default configuration, the configuration file in flash memory is deleted, and the VLAN database file, flash:vlan.dat (if present), is deleted.
If you use the **no service password-recovery** command to control end user access to passwords, we recommend that you save a copy of the config file in a location away from the switch in case the end user uses the password recovery procedure and sets the system back to default values. Do not keep a backup copy of the config file on the switch.

If the switch is operating in VTP transparent mode, we recommend that you also save a copy of the vlan.dat file in a location away from the switch.

When you enter the **service password-recovery** or **no service password-recovery** command on the stack master, it is propagated throughout the stack and applied to all switches in the stack.

You can verify if password recovery is enabled or disabled by entering the **show version** privileged EXEC command.

Examples

This example shows how to disable password recovery on a switch or switch stack so that a user can only reset a password by agreeing to return to the default configuration.

```
Switch(config)# no service-password recovery
Switch(config)# exit
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show version</td>
<td>Displays version information for the hardware and firmware.</td>
</tr>
</tbody>
</table>
service-policy

Use the **service-policy** interface configuration command on the switch stack or on a standalone switch to apply a policy map defined by the **policy-map** command to the input of a physical port or a switch virtual interface (SVI). Use the **no** form of this command to remove the policy map and port association.

```
service-policy input policy-map-name

no service-policy input policy-map-name
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>input policy-map-name</th>
<th>Apply the specified policy map to the input of a physical port or an SVI.</th>
</tr>
</thead>
</table>

Note

Though visible in the command-line help strings, the **history** keyword is not supported, and you should ignore the statistics that it gathers. The **output** keyword is also not supported.

Defaults

No policy maps are attached to the port.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(25)SE</td>
<td>A policy map can now be applied to a physical port or an SVI.</td>
</tr>
<tr>
<td>12.2(25)SED</td>
<td>Hierarchical policy-maps can now be applied to an SVI.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Only one policy map per ingress port is supported. In software releases earlier than Cisco IOS Release 12.2(25)SE, policy maps can be configured only on physical ports.

In Cisco IOS Release 12.2(25)SE or later, policy maps can be configured on physical ports or on SVIs. When VLAN-based quality of service (QoS) is disabled by using the **no mls qos vlan-based** interface configuration command on a physical port, you can configure a port-based policy map on the port. If VLAN-based QoS is enabled by using the **mls qos vlan-based** interface configuration command on a physical port, the switch removes the previously configured port-based policy map. After a hierarchical policy map is configured and applied on an SVI, the interface-level policy map takes effect on the interface.

In software releases earlier than Cisco IOS Release 12.2(25)SE, you can apply a policy map only to the incoming traffic on a physical port. In Cisco IOS Release 12.2(25)SE or later, you can apply a policy map to incoming traffic on a physical port or on an SVI. In Cisco IOS Release 12.2(25)SED or later, you can configure different interface-level policy maps for each class defined in the VLAN-level policy map. For more information about hierarchical policy maps, see the “Configuring QoS” chapter in the software configuration guide for this release.
Classification using a port trust state (for example, `mls qos trust [cos | dscp | ip-precedence]`) and a policy map (for example, `service-policy input policy-map-name`) are mutually exclusive. The last one configured overwrites the previous configuration.

Policy maps that use the `police aggregate` command fail when applied to a 10-Gigabit Ethernet interface.

Examples

This example shows how to apply `plcmap1` to an physical ingress port:

```
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# service-policy input plcmap1
```

This example shows how to remove `plcmap2` from a physical port:

```
Switch(config)# interface gigabitethernet2/0/2
Switch(config-if)# no service-policy input plcmap2
```

This example shows how to apply `plcmap1` to an ingress SVI when VLAN-based QoS is enabled:

```
Switch(config)# interface vlan 10
Switch(config-if)# service-policy input plcmap1
```

This example shows how to create a hierarchical policy map and attach it to an SVI:

```
Switch>enable
Switch#config t
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)#access-list 101 permit ip any any
Switch(config)#class-map cm-1
Switch(config-cmap)#match access 101
Switch(config-cmap)#exit
Switch(config)#exit
Switch#
Switch#config t
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)#class-map cm-interface-1
Switch(config-cmap)#match input g3/0/1 - g3/0/2
Switch(config-cmap)#exit
Switch(config)#policy-map port-plcmap
Switch(config-pmap)#class-map cm-interface-1
Switch(config-pmap-c)#police 900000 9000 exc policed-dscp-transmit
Switch(config-pmap-c)#exit
Switch(config-pmap)#exit
Switch(config)#policy-map vlan-plcmap
Switch(config-pmap-c)#class-map cm-1
Switch(config-pmap-c)#set dscp 7
Switch(config-pmap-c)#service-policy port-plcmap1
Switch(config-pmap-c)#exit
Switch(config-pmap-c)#class-map cm-2
Switch(config-pmap-c)#match ip dscp 2
Switch(config-pmap-c)#service-policy port-plcmap1
Switch(config-pmap-c)#exit
Switch(config-pmap-c)#class-map cm-3
Switch(config-pmap-c)#match ip dscp 3
Switch(config-pmap-c)#service-policy port-plcmap1
Switch(config-pmap-c)#exit
Switch(config-pmap-c)#class-map cm-4
Switch(config-pmap-c)#trust dscp
Switch(config-pmap-c)#exit
Switch(config)#int vlan 10
Switch(config-if)#
Switch(config-if)#ser input vlan-plcmap
Switch(config-if)#exit
```
Switch(config)#exit
Switch#

You can verify your settings by entering the **show running-config** privileged EXEC command.

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>policy-map</td>
<td>Creates or modifies a policy map that can be attached to multiple ports to specify a service policy.</td>
</tr>
<tr>
<td></td>
<td>show policy-map</td>
<td>Displays QoS policy maps.</td>
</tr>
<tr>
<td></td>
<td>show running-config</td>
<td>Displays the running configuration on the switch. For syntax information, select Cisco IOS Configuration Fundamentals Command Reference, Release 12.2 > File Management Commands > Configuration File Management Commands.</td>
</tr>
</tbody>
</table>
session

Use the `session` privileged EXEC command on the stack master to access a specific stack member.

```
session stack-member-number
```

Syntax Description

```
stack-member-number Specify the stack member number. The range is 1 to 9.
```

Defaults

No default is defined.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When you access the stack member, its stack member number is appended to the system prompt.

Examples

This example shows how to access stack member 6:

```
Switch# session 6
Switch-6#
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>reload</code></td>
<td>Reloads the stack member and puts a configuration change into effect.</td>
</tr>
<tr>
<td><code>switch priority</code></td>
<td>Changes the stack member priority value.</td>
</tr>
<tr>
<td><code>switch renumber</code></td>
<td>Changes the stack member number.</td>
</tr>
<tr>
<td><code>show switch</code></td>
<td>Displays information about the switch stack and its stack members.</td>
</tr>
</tbody>
</table>
set

Use the set policy-map class configuration command on the switch stack or on a standalone switch to classify IP traffic by setting a Differentiated Services Code Point (DSCP) or an IP-precedence value in the packet. Use the no form of this command to remove traffic classification.

```
set {dscp new-dscp | [ip] precedence new-precedence}

no set {dscp new-dscp | [ip] precedence new-precedence}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dscp new-dscp</td>
<td>New DSCP value assigned to the classified traffic. The range is 0 to 63. You also can enter a mnemonic name for a commonly used value.</td>
</tr>
<tr>
<td>[ip] precedence new-precedence</td>
<td>New IP-precedence value assigned to the classified traffic. The range is 0 to 7. You also can enter a mnemonic name for a commonly used value.</td>
</tr>
</tbody>
</table>

Defaults

No traffic classification is defined.

Command Modes

Policy-map class configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(25)SE</td>
<td>The ip dscp new-dscp keyword was changed to dscp new-dscp.</td>
</tr>
<tr>
<td></td>
<td>The set dscp new-dscp command replaces the set ip dscp new-dscp command.</td>
</tr>
<tr>
<td>12.2(25)SEC</td>
<td>The ip keyword is optional.</td>
</tr>
</tbody>
</table>

Usage Guidelines

In Cisco IOS Release 12.2(25)SE or later, if you have used the set ip dscp command, the switch changes this command to set dscp in the switch configuration. If you enter the set ip dscp command, this setting appears as set dscp in the switch configuration.

In Cisco IOS Release 12.2(25)SEC or later, you can use the set ip precedence or the set precedence command. This setting appears as set ip precedence in the switch configuration.

The set command is mutually exclusive with the trust policy-map class configuration command within the same policy map.

For the set dscp new-dscp or the set ip precedence new-precedence command, you can enter a mnemonic name for a commonly used value. For example, you can enter the set dscp af11 command, which is the same as entering the set dscp 10 command. You can enter the set ip precedence critical command, which is the same as entering the set ip precedence 5 command. For a list of supported mnemonics, enter the set dscp ? or the set ip precedence ? command to see the command-line help strings.
To return to policy-map configuration mode, use the `exit` command. To return to privileged EXEC mode, use the `end` command.

Examples

This example shows how to assign DSCP 10 to all FTP traffic without any policers:

```plaintext
Switch(config)# policy-map policy_ftp
Switch(config-pmap)# class ftp_class
Switch(config-pmap-c)# set dscp 10
Switch(config-pmap)# exit
```

You can verify your settings by entering the `show policy-map` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>class</td>
<td>Defines a traffic classification match criteria (through the <code>police</code>, <code>set</code>, and <code>trust</code> policy-map class configuration commands) for the specified class-map name.</td>
</tr>
<tr>
<td>police</td>
<td>Defines a policer for classified traffic.</td>
</tr>
<tr>
<td>policy-map</td>
<td>Creates or modifies a policy map that can be attached to multiple ports to specify a service policy.</td>
</tr>
<tr>
<td>show policy-map</td>
<td>Displays QoS policy maps.</td>
</tr>
<tr>
<td>trust</td>
<td>Defines a trust state for traffic classified through the class policy-map configuration command or the <code>class-map</code> global configuration command.</td>
</tr>
</tbody>
</table>
setup

Use the `setup` privileged EXEC command to configure the switch with its initial configuration.

```
setup
```

Syntax Description
This command has no arguments or keywords.

Command Modes
Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
When you use the `setup` command, make sure that you have this information:
- IP address and network mask
- Password strategy for your environment
- Whether the switch will be used as the cluster command switch and the cluster name

When you enter the `setup` command, an interactive dialog, called the System Configuration Dialog, appears. It guides you through the configuration process and prompts you for information. The values shown in brackets next to each prompt are the default values last set by using either the `setup` command facility or the `configure` privileged EXEC command.

Help text is provided for each prompt. To access help text, press the question mark (`) key at a prompt.

To return to the privileged EXEC prompt without making changes and without running through the entire System Configuration Dialog, press **Ctrl-C**.

When you complete your changes, the setup program shows you the configuration command script that was created during the setup session. You can save the configuration in NVRAM or return to the setup program or the command-line prompt without saving it.

Examples

This is an example of output from the `setup` command:

```
Switch# setup
--- System Configuration Dialog ---

Continue with configuration dialog? [yes/no]: yes

At any point you may enter a question mark '?' for help.
Use ctrl-c to abort configuration dialog at any prompt.
Default settings are in square brackets '['].

Basic management setup configures only enough connectivity for management of the system, extended setup will ask you to configure each interface on the system.
```
Would you like to enter basic management setup? [yes/no]: yes
Configuring global parameters:

Enter host name [Switch]: host-name

The enable secret is a password used to protect access to privileged EXEC and configuration modes. This password, after entered, becomes encrypted in the configuration.
Enter enable secret: enable-secret-password

The enable password is used when you do not specify an enable secret password, with some older software versions, and some boot images.
Enter enable password: enable-password

The virtual terminal password is used to protect access to the router over a network interface.
Enter virtual terminal password: terminal-password

Configure SNMP Network Management? [no]: yes
Community string [public]:

Current interface summary
Any interface listed with OK? value “NO” does not have a valid configuration

<table>
<thead>
<tr>
<th>Interface</th>
<th>IP-Address</th>
<th>OK? Method Status</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vlan1</td>
<td>172.20.135.202</td>
<td>YES NVRAM up</td>
<td>up</td>
</tr>
<tr>
<td>GigabitEthernet6/0/1</td>
<td>unassigned</td>
<td>YES unset up</td>
<td>up</td>
</tr>
<tr>
<td>GigabitEthernet6/0/2</td>
<td>unassigned</td>
<td>YES unset up</td>
<td>down</td>
</tr>
<tr>
<td>Port-channel1</td>
<td>unassigned</td>
<td>YES unset up</td>
<td>down</td>
</tr>
</tbody>
</table>

Enter interface name used to connect to the management network from the above interface summary: vlan1

Configuring interface vlan1:
Configure IP on this interface? [yes]: yes
IP address for this interface: ip_address
Subnet mask for this interface [255.0.0.0]: subnet_mask

Would you like to enable as a cluster command switch? [yes/no]: yes

Enter cluster name: cluster-name

The following configuration command script was created:

hostname host-name
enable secret 5 1LiBw$0Xc1wyT.PXPkuhPwgyhV10
enable password enable-password
line vty 0 15
password terminal-password
snmp-server community public
!
no ip routing
!
interface GigabitEthernet6/0/1
no ip address
!
interface GigabitEthernet6/0/2
no ip address
!

cluster enable cluster-name
!
end
Use this configuration? [yes/no]: yes
!
[0] Go to the IOS command prompt without saving this config.
[1] Return back to the setup without saving this config.
[2] Save this configuration to nvram and exit.

Enter your selection [2]:

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>show running-config</td>
<td>Displays the running configuration on the switch. For syntax information, select Cisco IOS Configuration Fundamentals Command Reference, Release 12.2 > File Management Commands > Configuration File Management Commands.</td>
</tr>
<tr>
<td></td>
<td>show version</td>
<td>Displays version information for the hardware and firmware.</td>
</tr>
</tbody>
</table>
setup express

Use the setup express global configuration command to enable Express Setup mode on the switch stack or on a standalone switch. Use the no form of this command to disable Express Setup mode.

setup express

no setup express

Syntax Description

This command has no arguments or keywords.

Defaults

Express Setup is enabled.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(14)EA1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When Express Setup is enabled on a new (unconfigured) switch, pressing the Mode button for 2 seconds activates Express Setup. You can access the switch through an Ethernet port by using the IP address 10.0.0.1 and then can configure the switch with the web-based Express Setup program or the command-line interface (CLI)-based setup program.

When you press the Mode button for 2 seconds on a configured switch, the LEDs above the Mode button start blinking. If you press the Mode button for a total of 10 seconds, the switch configuration is deleted, and the switch reboots. The switch can then be configured like a new switch, either through the web-based Express Setup program or the CLI-based setup program.

Note

As soon as you make any change to the switch configuration (including entering no at the beginning of the CLI-based setup program), configuration by Express Setup is no longer available. You can only run Express Setup again by pressing the Mode button for 10 seconds. This deletes the switch configuration and reboots the switch.

If Express Setup is active on the switch, entering the write memory or copy running-configuration startup-configuration privileged EXEC commands deactivates Express Setup. The IP address 10.0.0.1 is no longer valid on the switch, and your connection using this IP address ends.

The primary purpose of the no setup express command is to prevent someone from deleting the switch configuration by pressing the Mode button for 10 seconds.
Examples

This example shows how to enable Express Setup mode:

Switch(config)# setup express

You can verify that Express Setup mode is enabled by pressing the Mode button:

- On an unconfigured switch, the LEDs above the Mode button turn solid green after 3 seconds.
- On a configured switch, the mode LEDs begin blinking after 2 seconds and turn solid green after 10 seconds.

Caution

If you hold the Mode button down for a total of 10 seconds, the configuration is deleted, and the switch reboots.

This example shows how to disable Express Setup mode:

Switch(config)# no setup express

You can verify that Express Setup mode is disabled by pressing the Mode button. The mode LEDs do not turn solid green or begin blinking green if Express Setup mode is not enabled on the switch.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show setup express</td>
<td>Displays if Express Setup mode is active.</td>
</tr>
</tbody>
</table>
show access-lists

Use the show access-lists privileged EXEC command to display access control lists (ACLs) configured on the switch.

```
show access-lists [name | number | hardware counters | ipc] [ | begin | exclude | include] expression
```

Syntax Description

- **name** (Optional) Name of the ACL.
- **number** (Optional) ACL number. The range is 1 to 2699.
- **hardware counters** (Optional) Display global hardware ACL statistics for switched and routed packets.
- **ipc** (Optional) Display Interprocess Communication (IPC) protocol access-list configuration download information.
- **| begin** (Optional) Display begins with the line that matches the expression.
- **| exclude** (Optional) Display excludes lines that match the expression.
- **| include** (Optional) Display includes lines that match the specified expression.
- **expression** Expression in the output to use as a reference point.

Note

Though visible in the command-line help strings, the rate-limit keywords are not supported.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(14)EA1</td>
<td>The ipc keyword was added.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The switch supports only IP standard and extended access lists. Therefore, the allowed numbers are only 1 to 199 and 1300 to 2699.

This command also displays the MAC ACLs that are configured.

Expressions are case sensitive. For example, if you enter | exclude output, the lines that contain output are not displayed, but the lines that contain Output are displayed.

Examples

This is an example of output from the show access-lists command:

```
Switch# show access-lists
Standard IP access list 1
  10 permit 1.1.1.1
  20 permit 2.2.2.2
  30 permit any
  40 permit 0.255.255.255, wildcard bits 12.0.0.0
```
Standard IP access list videowizard_1-1-1-1
 10 permit 1.1.1.1
Standard IP access list videowizard_10-10-10-10
 10 permit 10.10.10.10
Extended IP access list 121
 10 permit ahp host 10.10.10.10 host 20.20.10.10 precedence routine
Extended IP access list CMP-NAT-ACL
 Dynamic Cluster-HSRP deny ip any any
 10 deny ip any host 19.19.11.11
 20 deny ip any host 10.11.12.13
 Dynamic Cluster-NAT permit ip any any
 10 permit ip host 10.99.100.128 any
 20 permit ip host 10.46.22.128 any
 30 permit ip host 10.45.101.64 any
 40 permit ip host 10.45.20.64 any
 50 permit ip host 10.213.43.128 any
 60 permit ip host 10.91.28.64 any
 70 permit ip host 10.99.75.128 any
 80 permit ip host 10.38.49.0 any

This is an example of output from the show access-lists hardware counters command:

Switch# show access-lists hardware counters
L2 ACL INPUT Statistics
 Drop: All frame count: 855
 Drop: All bytes count: 94143
 Drop And Log: All frame count: 0
 Drop And Log: All bytes count: 0
 Bridge Only: All frame count: 0
 Bridge Only: All bytes count: 0
 Bridge Only And Log: All frame count: 0
 Bridge Only And Log: All bytes count: 0
 Forwarding To CPU: All frame count: 0
 Forwarding To CPU: All bytes count: 0
 Forwarded: All frame count: 2121
 Forwarded: All bytes count: 180762
 Forwarded And Log: All frame count: 0
 Forwarded And Log: All bytes count: 0

L3 ACL INPUT Statistics
 Drop: All frame count: 0
 Drop: All bytes count: 0
 Drop And Log: All frame count: 0
 Drop And Log: All bytes count: 0
 Bridge Only: All frame count: 0
 Bridge Only: All bytes count: 0
 Bridge Only And Log: All frame count: 0
 Bridge Only And Log: All bytes count: 0
 Forwarding To CPU: All frame count: 0
 Forwarding To CPU: All bytes count: 0
 Forwarded: All frame count: 13586
 Forwarded: All bytes count: 1236182
 Forwarded And Log: All frame count: 0
 Forwarded And Log: All bytes count: 0

L2 ACL OUTPUT Statistics
 Drop: All frame count: 0
 Drop: All bytes count: 0
 Drop And Log: All frame count: 0
 Drop And Log: All bytes count: 0
 Bridge Only: All frame count: 0
 Bridge Only: All bytes count: 0
 Bridge Only And Log: All frame count: 0
 Bridge Only And Log: All bytes count: 0
show access-lists

Forwarding To CPU: All frame count: 0
Forwarding To CPU: All bytes count: 0
Forwarded: All frame count: 232983
Forwarded: All bytes count: 16825661
Forwarded And Log: All frame count: 0
Forwarded And Log: All bytes count: 0

L3 ACL OUTPUT Statistics

Drop: All frame count: 0
Drop: All bytes count: 0
Drop And Log: All frame count: 0
Drop And Log: All bytes count: 0
Bridge Only: All frame count: 0
Bridge Only: All bytes count: 0
Bridge Only And Log: All frame count: 0
Bridge Only And Log: All bytes count: 0
Forwarding To CPU: All frame count: 0
Forwarding To CPU: All bytes count: 0
Forwarded: All frame count: 514434
Forwarded: All bytes count: 39048748
Forwarded And Log: All frame count: 0
Forwarded And Log: All bytes count: 0

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>access-list</td>
<td>Configures a standard or extended numbered access list on the switch. For syntax information, select Cisco IOS IP Command Reference, Volume 1 of 3:Addressing and Services, Release 12.2 > IP Services Commands.</td>
</tr>
<tr>
<td>ip access list</td>
<td>Configures a named IP access list on the switch. For syntax information, select Cisco IOS IP Command Reference, Volume 1 of 3:Addressing and Services, Release 12.2 > IP Services Commands.</td>
</tr>
<tr>
<td>mac access-list extended</td>
<td>Configures a named or numbered MAC access list on the switch.</td>
</tr>
</tbody>
</table>
show archive status

Use the show archive status privileged EXEC command to display the status of a new image being downloaded to a switch with the HTTP or the TFTP protocol.

show archive status [| {begin | exclude | include} expression]

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Optional) Display begins with the line that matches the expression.</td>
</tr>
<tr>
<td></td>
<td>(Optional) Display excludes lines that match the expression.</td>
</tr>
<tr>
<td></td>
<td>(Optional) Display includes lines that match the specified expression.</td>
</tr>
</tbody>
</table>

expression Expression in the output to use as a reference point.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(20)SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If you use the archive download-sw privileged EXEC command to download an image to a TFTP server, the output of the archive download-sw command shows the status of the download.

If you do not have a TFTP server, you can use Network Assistant or the embedded device manager to download the image by using HTTP. The show archive status command shows the progress of the download.

Expressions are case sensitive. For example, if you enter | exclude output, the lines that contain output are not displayed, but the lines that contain Output are displayed.

Examples

These are examples of output from the show archive status command:

Switch# show archive status
IDLE: No upgrade in progress

Switch# show archive status
LOADING: Upgrade in progress

Switch# show archive status
EXTRACT: Extracting the image

Switch# show archive status
VERIFY: Verifying software

Switch# show archive status
RELOAD: Upgrade completed. Reload pending
<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>archive download-sw</td>
<td>Downloads a new image from a TFTP server to the switch.</td>
</tr>
</tbody>
</table>
show arp access-list

Use the `show arp access-list` user EXEC command to display detailed information about Address Resolution Protocol (ARP) access control (lists).

```
show arp access-list [acl-name] [ | {begin | exclude | include} expression]
```

This command is available only if your switch is running the IP services image, formerly known as the enhanced multilayer image (EMI).

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>acl-name</td>
<td>(Optional) Name of the ACL.</td>
</tr>
<tr>
<td></td>
<td>begin</td>
</tr>
<tr>
<td></td>
<td>exclude</td>
</tr>
<tr>
<td></td>
<td>include</td>
</tr>
<tr>
<td>expression</td>
<td>Expression in the output to use as a reference point.</td>
</tr>
</tbody>
</table>

Command Modes

User EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2.2(20)SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` are not displayed, but the lines that contain `Output` are displayed.

Examples

This is an example of output from the `show arp access-list` command:

```
Switch> show arp access-list
ARP access list rose
   permit ip 10.101.1.1 0.0.0.255 mac any
   permit ip 20.3.1.0 0.0.0.255 mac any
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>arp access-list</td>
<td>Defines an ARP ACL.</td>
</tr>
<tr>
<td>deny (ARP access-list</td>
<td>Denies an ARP packet based on matches against the Dynamic Host Configuration Protocol (DHCP) bindings.</td>
</tr>
<tr>
<td>configuration)</td>
<td></td>
</tr>
<tr>
<td>ip arp inspection filter vlan</td>
<td>Permits ARP requests and responses from a host configured with a static IP address.</td>
</tr>
<tr>
<td>permit (ARP access-list</td>
<td>Permits an ARP packet based on matches against the DHCP bindings.</td>
</tr>
<tr>
<td>configuration)</td>
<td></td>
</tr>
</tbody>
</table>
show auto qos

Use the `show auto qos` user EXEC command to display the quality of service (QoS) commands entered on the interfaces on which automatic QoS (auto-QoS) is enabled.

```
show auto qos [interface [interface-id]]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface [interface-id]</td>
<td>(Optional) Display auto-QoS information for the specified port or for all ports. Valid interfaces include physical ports.</td>
</tr>
</tbody>
</table>

Command Modes

User EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(14)EA1</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(20)SE</td>
<td>The information in the command output changed, and the user guidelines were updated.</td>
</tr>
</tbody>
</table>

Usage Guidelines

In releases earlier than Cisco IOS Release 12.2(20)SE, the `show auto qos [interface [interface-id]]` command output shows the initial generated auto-QoS configuration.

In Cisco IOS Release 12.2(20)SE or later, the `show auto qos` command output shows only the auto-QoS command entered on each interface. The `show auto qos interface interface-id` command output shows the auto-QoS command entered on a specific interface.

Use the `show running-config` privileged EXEC command to display the auto-QoS configuration and the user modifications.

To display information about the QoS configuration that might be affected by auto-QoS, use one of these commands:

- `show mls qos`
- `show mls qos maps cos-dscp`
- `show mls qos interface [interface-id] [buffers | queueing]`
- `show mls qos maps [cos-dscp | cos-input-q | cos-output-q | dscp-cos | dscp-input-q | dscp-output-q]`
- `show mls qos input-queue`
- `show running-config`
Examples

This is an example of output from the `show auto qos` command after the `auto qos voip cisco-phone` and the `auto qos voip cisco-softphone` interface configuration commands are entered:

```
Switch> show auto qos
GigabitEthernet2/0/4
auto qos voip cisco-softphone

GigabitEthernet2/0/5
auto qos voip cisco-phone

GigabitEthernet2/0/6
auto qos voip cisco-phone
```

This is an example of output from the `show auto qos interface interface-id` command when the `auto qos voip cisco-phone` interface configuration command is entered:

```
Switch> show auto qos interface gigabitethernet 2/0/5
GigabitEthernet2/0/5
auto qos voip cisco-phone
```

This is an example of output from the `show running-config` privileged EXEC command when the `auto qos voip cisco-phone` and the `auto qos voip cisco-softphone` interface configuration commands are entered:

```
Switch# show running-config
Building configuration...
...
mls qos map policed-dscp  24 26 46 to 0
mls qos map cos-dscp 0 8 16 26 32 46 48 56
mls qos srr-queue input bandwidth 90 10
mls qos srr-queue input threshold 1 8 16
mls qos srr-queue input threshold 2 34 66
mls qos srr-queue input buffers 67 33
mls qos srr-queue input cos-map queue 1 threshold 2 1
mls qos srr-queue input cos-map queue 1 threshold 3 0
mls qos srr-queue input cos-map queue 2 threshold 1 2
mls qos srr-queue input cos-map queue 2 threshold 2 4 6 7
mls qos srr-queue input cos-map queue 2 threshold 3 3 5
mls qos srr-queue input dscp-map queue 1 threshold 2 9 10 11 12 13 14 15
mls qos srr-queue input dscp-map queue 1 threshold 3 0 1 2 3 4 5 6 7
mls qos srr-queue input dscp-map queue 1 threshold 3 32
mls qos srr-queue input dscp-map queue 2 threshold 1 16 17 18 19 20 21 22 23
mls qos srr-queue input dscp-map queue 2 threshold 2 33 34 35 36 37 38 39 48
mls qos srr-queue input dscp-map queue 2 threshold 2 49 50 51 52 53 54 55 56
mls qos srr-queue input dscp-map queue 2 threshold 2 57 58 59 60 61 62 63
mls qos srr-queue input dscp-map queue 2 threshold 2 24 25 26 27 28 29 30 31
mls qos srr-queue input dscp-map queue 2 threshold 2 40 41 42 43 44 45 46 47
mls qos srr-queue output cos-map queue 1 threshold 3 5
mls qos srr-queue output cos-map queue 2 threshold 3 3 6 7
mls qos srr-queue output cos-map queue 3 threshold 3 2 4
mls qos srr-queue output cos-map queue 4 threshold 2 1
mls qos srr-queue output cos-map queue 4 threshold 3 0
mls qos srr-queue output dscp-map queue 1 threshold 3 40 41 42 43 44 45 46 47
mls qos srr-queue output dscp-map queue 2 threshold 3 24 25 26 27 28 29 30 31
mls qos srr-queue output dscp-map queue 2 threshold 3 48 49 50 51 52 53 54 55
mls qos srr-queue output dscp-map queue 2 threshold 3 56 57 58 59 60 61 62 63
mls qos srr-queue output dscp-map queue 3 threshold 3 16 17 18 19 20 21 22 23
mls qos srr-queue output dscp-map queue 3 threshold 3 32 33 34 35 36 37 38 39
mls qos srr-queue output dscp-map queue 4 threshold 1 8
mls qos srr-queue output dscp-map queue 4 threshold 2 9 10 11 12 13 14 15
mls qos srr-queue output dscp-map queue 4 threshold 3 0 1 2 3 4 5 6 7
mls queue-set output 1 threshold 1 100 100 100 100
mls queue-set output 1 threshold 2 75 75 75 250
```
show auto qos

mls qos queue-set output 1 threshold 3 75 150 100 300
mls qos queue-set output 1 threshold 4 50 100 75 400
mls qos queue-set output 2 threshold 1 100 100 100 100
mls qos queue-set output 2 threshold 2 35 35 35 35
mls qos queue-set output 2 threshold 3 55 82 100 182
mls qos queue-set output 2 threshold 4 90 250 100 400
mls qos queue-set output 1 buffers 15 20 20 45
mls qos queue-set output 2 buffers 24 20 26 30
mls qos
...
!
class-map match-all AutoQoS-VoIP-RTP-Trust
 match ip dscp ef
class-map match-all AutoQoS-VoIP-Control-Trust
 match ip dscp cs3 af31
!
policy-map AutoQoS-Police-SoftPhone
 class AutoQoS-VoIP-RTP-Trust
 set dscp ef
 police 320000 8000 exceed-action policed-dscp-transmit
 class AutoQoS-VoIP-Control-Trust
 set dscp cs3
 police 32000 8000 exceed-action policed-dscp-transmit
!
...
!
interface GigabitEthernet2/0/4
 switchport mode access
 switchport port-security maximum 400
 service-policy input AutoQoS-Police-SoftPhone
 speed 100
duplex half
srr-queue bandwidth share 10 10 60 20
srr-queue bandwidth shape 10 0 0 0
auto qos voip cisco-softphone
!
interface GigabitEthernet2/0/5
 switchport mode access
 switchport port-security maximum 1999
 speed 100
duplex full
srr-queue bandwidth share 10 10 60 20
srr-queue bandwidth shape 10 0 0 0
mls qos trust device cisco-phone
mls qos trust cos
auto qos voip cisco-phone
!
interface GigabitEthernet2/0/6
 switchport trunk encapsulation dot1q
 switchport trunk native vlan 2
 switchport mode access
 speed 10
srr-queue bandwidth share 10 10 60 20
srr-queue bandwidth shape 10 0 0 0
mls qos trust device cisco-phone
mls qos trust cos
auto qos voip cisco-phone
!
<output truncated>
This is an example of output from the `show auto qos interface interface-id` command when the `auto qos voip cisco-phone` interface configuration command is entered:

Switch> `show auto qos interface fastethernet1/0/2`
FastEthernet1/0/2
auto qos voip cisco-phone

These are examples of output from the `show auto qos` command when auto-QoS is disabled on the switch:

Switch> `show auto qos`
AutoQoS not enabled on any interface

These are examples of output from the `show auto qos interface interface-id` command when auto-QoS is disabled on an interface:

Switch> `show auto qos interface gigabitethernet3/0/1`
AutoQoS is disabled

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>auto qos voip</code></td>
<td>Automatically configures QoS for VoIP within a QoS domain.</td>
</tr>
<tr>
<td></td>
<td><code>debug auto qos</code></td>
<td>Enables debugging of the auto-QoS feature.</td>
</tr>
</tbody>
</table>
Show Boot

Use the **show boot** privileged EXEC command to display the settings of the boot environment variables.

```
show boot [ | {begin | exclude | include} expression]
```

Syntax Description

- **begin** *(Optional)* Display begins with the line that matches the *expression*.
- **exclude** *(Optional)* Display excludes lines that match the *expression*.
- **include** *(Optional)* Display includes lines that match the specified *expression*.
- **expression** Expression in the output to use as a reference point.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` are not displayed, but the lines that contain `Output` are displayed.

Examples

This is an example of output from the **show boot** command for all stack members. Table 2-17 describes each field in the display.

```
Switch# show boot
BOOT path-list :flash:/c3750-ipservices-mz
Config file :flash:/config.text
Private Config file :flash:/private-config.text
Enable Break :no
Manual Boot :yes
HELPER path-list :
Auto upgrade :yes
-------------------
Switch 1
-------------------
BOOT path-list :flash:/c3750-ipservices-mz
Config file :flash:/config.text
Private Config file :flash:/private-config.text
Enable Break :no
Manual Boot :yes
HELPER path-list :
Auto upgrade :no
<output truncated>
```
Table 2-17 show boot Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOOT path-list</td>
<td>Displays a semicolon separated list of executable files to try to load and execute when automatically booting. If the BOOT environment variable is not set, the system attempts to load and execute the first executable image it can find by using a recursive, depth-first search through the flash file system. In a depth-first search of a directory, each encountered subdirectory is completely searched before continuing the search in the original directory. If the BOOT variable is set but the specified images cannot be loaded, the system attempts to boot the first bootable file that it can find in the flash file system.</td>
</tr>
<tr>
<td>Config file</td>
<td>Displays the filename that Cisco IOS uses to read and write a nonvolatile copy of the system configuration.</td>
</tr>
<tr>
<td>Private Config file</td>
<td>Displays the filename that Cisco IOS uses to read and write a nonvolatile copy of the system configuration.</td>
</tr>
<tr>
<td>Enable Break</td>
<td>Displays whether a break during booting is enabled or disabled. If it is set to yes, on, or 1, you can interrupt the automatic boot process by pressing the Break key on the console after the flash file system is initialized.</td>
</tr>
<tr>
<td>Manual Boot</td>
<td>Displays whether the switch automatically or manually boots. If it is set to no or 0, the boot loader attempts to automatically boot the system. If it is set to anything else, you must manually boot the switch from the boot loader mode.</td>
</tr>
<tr>
<td>Helper path-list</td>
<td>Displays a semicolon separated list of loadable files to dynamically load during the boot loader initialization. Helper files extend or patch the functionality of the boot loader.</td>
</tr>
<tr>
<td>Auto upgrade</td>
<td>Displays whether the switch stack is set to automatically copy its software version to an incompatible switch so that it can join the stack. A switch in version-mismatch (VM) mode is a switch that has a different stack protocol version than the version on the switch stack. Switches in VM mode cannot join the switch stack. If the switch stack has an image that can be copied to a switch in VM mode, and if the <code>boot auto-copy-sw</code> feature is enabled, the switch stack automatically copies the image from another stack member to the switch in VM mode. The switch then exits VM mode, reboots, and joins the switch stack.</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>boot auto-copy-sw</td>
<td>Enables the automatic upgrade (auto-upgrade) process to automatically upgrade a switch in version-mismatch (VM) mode.</td>
</tr>
<tr>
<td>boot config-file</td>
<td>Specifies the filename that Cisco IOS uses to read and write a nonvolatile copy of the system configuration.</td>
</tr>
<tr>
<td>boot enable-break</td>
<td>Enables interrupting the automatic boot process.</td>
</tr>
<tr>
<td>boot manual</td>
<td>Enables manually booting the switch during the next boot cycle.</td>
</tr>
<tr>
<td>boot private-config-file</td>
<td>Specifies the filename that Cisco IOS uses to read and write a nonvolatile copy of the private configuration.</td>
</tr>
<tr>
<td>boot system</td>
<td>Specifies the Cisco IOS image to load during the next boot cycle.</td>
</tr>
</tbody>
</table>
show cable-diagnostics tdr

Use the `show cable-diagnostics tdr` privileged EXEC command to display the Time Domain Reflector (TDR) results.

```
show cable-diagnostics tdr interface interface-id [ | begin | exclude | include] expression
```

Syntax Description

- `interface-id` Specify the interface on which TDR was run.
- `| begin` (Optional) Display begins with the line that matches the `expression`.
- `| exclude` (Optional) Display excludes lines that match the `expression`.
- `| include` (Optional) Display includes lines that match the specified `expression`.
- `expression` Expression in the output to use as a reference point.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(19)EA1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

TDR is supported only on 10/100/100 copper Ethernet ports. It is not supported on 10/100 ports, 10-Gigabit module ports, or on SFP module ports. For more information about TDR, see the software configuration guide for this release.

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.

Examples

This is an example of output from the `show cable-diagnostics tdr interface interface-id` command on a switch other than a Catalyst 3750G-24PS or 3750G-48PS switch:

```
Switch# show cable-diagnostics tdr interface gigabitethernet1/0/2
TDR test last run on: March 01 20:15:40
Interface Speed Local pair Pair length Remote pair Pair status
--------- ----- ---------- ------------------ ----------- --------------------
G1/0/2  auto Pair A     0    +/- 2 meters N/A         Open
          Pair B     0    +/- 2 meters N/A         Open
          Pair C     0    +/- 2 meters N/A         Open
          Pair D     0    +/- 2 meters N/A         Open
```

This is an example of output from the `show cable-diagnostics tdr interface interface-id` command on a Catalyst 3750G-24PS or 3750G-48PS switch:

```
Switch# show cable-diagnostics tdr interface gigabitethernet1/0/2
TDR test last run on: March 01 20:15:40
Interface Speed Local pair Pair length Remote pair Pair status
--------- ----- ---------- ------------------ ----------- --------------------
G1/0/2  auto Pair A     0    +/- 4 meters N/A         Open
          Pair B     0    +/- 4 meters N/A         Open
```
Table 2-18 lists the descriptions of the fields in the `show cable-diagnostics tdr` command output.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Interface on which TDR was run.</td>
</tr>
<tr>
<td>Speed</td>
<td>Speed of connection.</td>
</tr>
<tr>
<td>Local pair</td>
<td>Name of the pair of wires that TDR is testing on the local interface.</td>
</tr>
</tbody>
</table>
| Pair length | Location on the cable where the problem is, with respect to your switch. TDR can only find the location in one of these cases:
 • The cable is properly connected, the link is up, and the interface speed is 1000 Mbps.
 • The cable is open.
 • The cable has a short. |
| Remote pair | Name of the pair of wires to which the local pair is connected. TDR can learn about the remote pair only when the cable is properly connected and the link is up. |
| Pair status | The status of the pair of wires on which TDR is running:
 • Normal—The pair of wires is properly connected.
 • Not completed—The test is running and is not completed.
 • Not supported—The interface does not support TDR.
 • Open—The pair of wires is open.
 • Shorted—The pair of wires is shorted. |

This is an example of output from the `show interface interface-id` command when TDR is running:

```
Switch# show interface gigabitethernet1/0/2
gigabitethernet1/0/2 is up, line protocol is up (connected: TDR in Progress)
```

This is an example of output from the `show cable-diagnostics tdr interface interface-id` command when TDR is not running:

```
Switch# show cable-diagnostics tdr interface gigabitethernet1/0/2
% TDR test was never issued on Gi1/0/2
```

If an interface does not support TDR, this message appears:

```
% TDR test is not supported on switch 1
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>test cable-diagnostics tdr</code></td>
<td>Enables and runs TDR on an interface.</td>
</tr>
</tbody>
</table>
show class-map

Use the \texttt{show class-map} user EXEC command to display quality of service (QoS) class maps, which define the match criteria to classify traffic.

\texttt{show class-map [class-map-name] [| begin | exclude | include | expression]}

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{class-map-name}</td>
<td>(Optional) Display the contents of the specified class map.</td>
</tr>
<tr>
<td>\texttt{begin}</td>
<td>(Optional) Display begins with the line that matches the \textit{expression}.</td>
</tr>
<tr>
<td>\texttt{exclude}</td>
<td>(Optional) Display excludes lines that match the \textit{expression}.</td>
</tr>
<tr>
<td>\texttt{include}</td>
<td>(Optional) Display includes lines that match the specified \textit{expression}.</td>
</tr>
<tr>
<td>\texttt{expression}</td>
<td>Expression in the output to use as a reference point.</td>
</tr>
</tbody>
</table>

| Command Modes | User EXEC |

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

| Usage Guidelines | Expressions are case sensitive. For example, if you enter \texttt{! exclude output}, the lines that contain \textit{output} are not displayed, but the lines that contain \textit{Output} are displayed. |

<table>
<thead>
<tr>
<th>Examples</th>
<th>This is an example of output from the \texttt{show class-map} command:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch> \texttt{show class-map}</td>
<td>Class Map match-all videowizard_10-10-10-10 (id 2) Match access-group name videowizard_10-10-10-10</td>
</tr>
<tr>
<td></td>
<td>Class Map match-any class-default (id 0) Match any</td>
</tr>
<tr>
<td></td>
<td>Class Map match-all dscp5 (id 3) Match ip dscp 5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\texttt{class-map}</td>
<td>Creates a class map to be used for matching packets to the class whose name you specify.</td>
</tr>
<tr>
<td></td>
<td>\texttt{match (class-map configuration)}</td>
<td>Defines the match criteria to classify traffic.</td>
</tr>
</tbody>
</table>
show cluster

Use the `show cluster` user EXEC command to display the cluster status and a summary of the cluster to which the switch belongs. This command can be entered on the cluster command switch and cluster member switches.

```
show cluster [ | begin | exclude | include] expression]
```

Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>begin</code></td>
<td>(Optional) Display begins with the line that matches the <code>expression</code>.</td>
</tr>
<tr>
<td><code>exclude</code></td>
<td>(Optional) Display excludes lines that match the <code>expression</code>.</td>
</tr>
<tr>
<td><code>include</code></td>
<td>(Optional) Display includes lines that match the specified <code>expression</code>.</td>
</tr>
<tr>
<td><code>expression</code></td>
<td>Expression in the output to use as a reference point.</td>
</tr>
</tbody>
</table>

Command Modes

User EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If you enter this command on a switch that is not a cluster member, the error message `Not a management cluster member` appears.

On a cluster member switch, this command displays the identity of the cluster command switch, the switch member number, and the state of its connectivity with the cluster command switch.

On a cluster command switch stack or cluster command switch, this command displays the cluster name and the total number of members. It also shows the cluster status and time since the status changed. If redundancy is enabled, it displays the primary and secondary command-switch information.

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` are not displayed, but the lines that contain `Output` are displayed.

Examples

This is an example of output when the `show cluster` command is entered on the active cluster command switch:

```
Switch> show cluster
Command switch for cluster "Ajang"
  Total number of members: 7
  Status: 1 members are unreachable
  Time since last status change: 0 days, 0 hours, 2 minutes
  Redundancy: Enabled
  Standby command switch: Member 1
  Standby Group: Ajang_standby
  Standby Group Number: 110
  Heartbeat interval: 8
  Heartbeat hold-time: 80
  Extended discovery hop count: 3
```
This is an example of output when the `show cluster` command is entered on a cluster member switch:

Switch1> `show cluster`
Member switch for cluster "hapuna"
 Member number: 3
 Management IP address: 192.192.192.192
 Command switch mac address: 0000.0c07.ac14
 Heartbeat interval: 8
 Heartbeat hold-time: 80

This is an example of output when the `show cluster` command is entered on a cluster member switch that is configured as the standby cluster command switch:

Switch> `show cluster`
Member switch for cluster "hapuna"
 Member number: 3 (Standby command switch)
 Management IP address: 192.192.192.192
 Command switch mac address: 0000.0c07.ac14
 Heartbeat interval: 8
 Heartbeat hold-time: 80

This is an example of output when the `show cluster` command is entered on the cluster command switch that has lost connectivity with member 1:

Switch> `show cluster`
Command switch for cluster "Ajang"
 Total number of members: 7
 Status: 1 members are unreachable
 Time since last status change: 0 days, 0 hours, 5 minutes
 Redundancy: Disabled
 Heartbeat interval: 8
 Heartbeat hold-time: 80
 Extended discovery hop count: 3

This is an example of output when the `show cluster` command is entered on a cluster member switch that has lost connectivity with the cluster command switch:

Switch> `show cluster`
Member switch for cluster "hapuna"
 Member number: <UNKNOWN>
 Management IP address: 192.192.192.192
 Command switch mac address: 0000.0c07.ac14
 Heartbeat interval: 8
 Heartbeat hold-time: 80

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cluster enable</td>
<td>Enables a command-capable switch as the cluster command switch, assigns a cluster name, and optionally assigns a member number to it.</td>
</tr>
<tr>
<td>show cluster candidates</td>
<td>Displays a list of candidate switches.</td>
</tr>
<tr>
<td>show cluster members</td>
<td>Displays information about the cluster members.</td>
</tr>
</tbody>
</table>
show cluster candidates

Use the show cluster candidates privileged EXEC command on a switch stack or on a cluster command switch to display a list of candidate switches.

show cluster candidates [detail | mac-address H.H.H.] [| begin | exclude | include] expression

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>detail</td>
<td>(Optional) Display detailed information for all candidates.</td>
</tr>
<tr>
<td>mac-address H.H.H.</td>
<td>(Optional) MAC address of the cluster candidate.</td>
</tr>
<tr>
<td></td>
<td>(Optional) Display begins with the line that matches the expression.</td>
</tr>
<tr>
<td></td>
<td>(Optional) Display excludes lines that match the expression.</td>
</tr>
<tr>
<td>include</td>
<td>(Optional) Display includes lines that match the specified expression.</td>
</tr>
<tr>
<td>expression</td>
<td>Expression in the output to use as a reference point.</td>
</tr>
</tbody>
</table>

Command Modes

User EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command is available only on the cluster command switch stack or cluster command switch.

If the switch is not a cluster command switch, the command displays an empty line at the prompt.

The SN in the display means switch member number. If E appears in the SN column, it means that the switch is discovered through extended discovery. If E does not appear in the SN column, it means that the switch member number is the upstream neighbor of the candidate switch. The hop count is the number of devices the candidate is from the cluster command switch.

Expressions are case sensitive. For example, if you enter | exclude output, the lines that contain output are not displayed, but the lines that contain Output are displayed.

Examples

This is an example of output from the show cluster candidates command:

Switch> show cluster candidates

<table>
<thead>
<tr>
<th>MAC Address</th>
<th>Name</th>
<th>Device Type</th>
<th>PortIf</th>
<th>FEC</th>
<th>Hops</th>
<th>SN</th>
<th>PortIf</th>
<th>FEC</th>
</tr>
</thead>
</table>
| 00d0.7961.c4c0 | StLouis-2 | WS-C3750-12T | G16/0/1 | 2 | 1 | Fa0/11
| 00d0.bbf5.e900 | idf-dist-128 | WS-C3524-XL | Fa0/7 | 1 | 0 | Fa0/24
| 00e0.1e7e.be80 | 1900_Switch | 1900 | 3 | 0 | 1 | Fa0/11
| 00e0.1e9f.7a00 | Surfers-24 | WS-C2924-XL | Fa0/5 | 1 | 0 | Fa0/3
| 00e0.1e9f.8c00 | Surfers-12-2 | WS-C2912-XL | Fa0/4 | 1 | 0 | Fa0/7
| 00e0.1e9f.8c40 | Surfers-12-1 | WS-C2912-XL | Fa0/1 | 1 | 0 | Fa0/9

This is an example of output from the show cluster candidates command that uses the MAC address of a cluster member switch directly connected to the cluster command switch:

Switch> show cluster candidates mac-address 00d0.7961.c4c0

Device 'Tahiti-12' with mac address number 00d0.7961.c4c0
show cluster candidates

Device type: cisco WS-C3750-12T
Upstream MAC address: 00d0.796d.2f00 (Cluster Member 0)
Local port: Gi6/0/1 FEC number:
Upstream port: Gi6/0/11 FEC Number:
Hops from cluster edge: 1
Hops from command device: 1

This is an example of output from the `show cluster candidates` command that uses the MAC address of a cluster member switch three hops from the cluster edge:

Switch> show cluster candidates mac-address 0010.7bb6.1cc0
Device 'Ventura' with mac address number 0010.7bb6.1cc0
Device type: cisco WS-C2912MF-XL
Upstream MAC address: 0010.7bb6.1cd4
Local port: Fa2/1 FEC number:
Upstream port: Fa0/24 FEC Number:
Hops from cluster edge: 3
Hops from command device: -

This is an example of output from the `show cluster candidates detail` command:

Switch> show cluster candidates detail
Device 'Tahiti-12' with mac address number 00d0.7961.c4c0
Device type: cisco WS-C3512-XL
Upstream MAC address: 00d0.796d.2f00 (Cluster Member 1)
Local port: Fa0/3 FEC number:
Upstream port: Fa0/13 FEC Number:
Hops from cluster edge: 1
Hops from command device: 2

Device '1900_Switch' with mac address number 00e0.1e7e.be80
Device type: cisco 1900
Upstream MAC address: 00d0.796d.2f00 (Cluster Member 2)
Local port: 3 FEC number: 0
Upstream port: Fa0/11 FEC Number:
Hops from cluster edge: 1
Hops from command device: 2

Device 'Surfers-24' with mac address number 00e0.1e9f.7a00
Device type: cisco WS-C2924-XL
Upstream MAC address: 00d0.796d.2f00 (Cluster Member 3)
Local port: Fa0/5 FEC number:
Upstream port: Fa0/3 FEC Number:
Hops from cluster edge: 1
Hops from command device: 2

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show cluster</td>
<td>Displays the cluster status and a summary of the cluster to which the switch belongs.</td>
</tr>
<tr>
<td>show cluster members</td>
<td>Displays information about the cluster members.</td>
</tr>
</tbody>
</table>
show cluster members

Use the `show cluster members` privileged EXEC command on a switch stack or on a cluster command switch to display information about the cluster members.

```
show cluster members [n | detail] [ | {begin | exclude | include} expression]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
</tr>
<tr>
<td>detail</td>
</tr>
<tr>
<td>begin</td>
</tr>
<tr>
<td>exclude</td>
</tr>
<tr>
<td>include</td>
</tr>
<tr>
<td>expression</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Modes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Privileged EXEC</td>
</tr>
</tbody>
</table>

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command is available only on the cluster command switch stack or cluster command switch.

If the cluster has no members, this command displays an empty line at the prompt.

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` are not displayed, but the lines that contain `Output` are displayed.

Examples

This is an example of output from the `show cluster members` command. The SN in the display means `switch number`.

```
Switch# show cluster members
|---Upstream---|
SN MAC Address    Name         PortIf FEC Hops | SN PortIf FEC State |
---|---|---|---|---|---|
0  0002.4b29.2e00 StLouis1                 0  |                       |
1  0030.946c.d740 tal-switch-1 Fa0/13      1  | 0  G10/1 Up            |
2  0002.b922.7180 rms-2820 10 0 2 1 Fa0/18 Up |
3  0002.4b29.4400 SanJuan2     Gi0/1       2  | 1  Fa0/11 Up           |
4  0002.4b28.c480 GenieTest    Gi0/2       2  | 1  Fa0/9  Up           |
```

This is an example of output from the `show cluster members` for cluster member 3:

```
Switch# show cluster members 3
Device 'SanJuan2' with member number 3
Device type:                  cisco WS-C3750
MAC address:                  0002.4b29.4400
Upstream MAC address:         0030.946c.d740 (Cluster member 1)
Local port:                   Gi6/0/1   FEC number:                          |
Upstream port:                GI6/0/11  FEC Number:                          |
Hops from command device:     2
```
This is an example of output from the **show cluster members detail** command:

Switch# `show cluster members detail`
Device 'StLouis1' with member number 0 (Command Switch)
 Device type: cisco WS-C3750
 MAC address: 0002.4b29.2e00
 Upstream MAC address:
 Local port: FEC number:
 Upstream port: FEC Number:
 Hops from command device: 0
Device 'tal-switch-14' with member number 1
 Device type: cisco WS-C3548-XL
 MAC address: 0030.946c.d740
 Upstream MAC address: 0002.4b29.2e00 (Cluster member 0)
 Local port: Fa0/13 FEC number:
 Upstream port: G10/1 FEC Number:
 Hops from command device: 1
Device 'nms-2820' with member number 2
 Device type: cisco 2820
 MAC address: 0002.b922.7180
 Upstream MAC address: 0030.946c.d740 (Cluster member 1)
 Local port: 10 FEC number: 0
 Upstream port: Fa0/18 FEC Number:
 Hops from command device: 2
Device 'SanJuan2' with member number 3
 Device type: cisco WS-C3750
 MAC address: 0002.4b29.4400
 Upstream MAC address: 0030.946c.d740 (Cluster member 1)
 Local port: Gi6/0/1 FEC number:
 Upstream port: Fa6/0/11 FEC Number:
 Hops from command device: 2
Device 'GenieTest' with member number 4
 Device type: cisco SeaHorse
 MAC address: 0002.4b28.c480
 Upstream MAC address: 0030.946c.d740 (Cluster member 1)
 Local port: G10/2 FEC number:
 Upstream port: Fa0/9 FEC Number:
 Hops from command device: 2
Device 'Palpatine' with member number 5
 Device type: cisco WS-C2924M-XL
 MAC address: 00b0.6404.f8c0
 Upstream MAC address: 0002.4b29.2e00 (Cluster member 0)
 Local port: G12/1 FEC number:
 Upstream port: G10/7 FEC Number:
 Hops from command device: 1

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show cluster</td>
<td>Displays the cluster status and a summary of the cluster to which the switch belongs.</td>
</tr>
<tr>
<td>show cluster candidates</td>
<td>Displays a list of candidate switches.</td>
</tr>
</tbody>
</table>
show controllers cpu-interface

Use the `show controllers cpu-interface` privileged EXEC command to display the state of the CPU network interface ASIC and the send and receive statistics for packets reaching the CPU.

```
show controllers cpu-interface [ | begin | exclude | include | expression]
```

Syntax Description

- `begin` (Optional) Display begins with the line that matches the `expression`.
- `exclude` (Optional) Display excludes lines that match the `expression`.
- `include` (Optional) Display includes lines that match the specified `expression`.
- `expression` Expression in the output to use as a reference point.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This display provides information that might be useful for Cisco technical support representatives troubleshooting the switch.

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` are not displayed, but the lines that contain `Output` are displayed.

Examples

This is a partial output example from the `show controllers cpu-interface` command:

```
Switch# show controllers cpu-interface
cpu-queue-frames retrieved dropped invalid hol-block
----------------- ---------- ---------- ---------- ----------
rpc                4523063    0          0          0
stp                1545035    0          0          0
ipc                1903047    0          0          0
routing protocol   96145      0          0          0
L2 protocol        79596      0          0          0
remote console     0          0          0          0
sw forwarding      5756       0          0          0
host               225646     0          0          0
broadcast          46472      0          0          0
cbt-to-spt         0          0          0          0
igmp snooping      68411      0          0          0
icmp               0          0          0          0
logging            0          0          0          0
rpf-fail           0          0          0          0
queue14            0          0          0          0
cpu heartbeat      1710501    0          0          0

Supervisor ASIC receive-queue parameters
----------------------------------------
queue 0 maxreceivevsize SEE pakhead 1419A20 paktail 13EAED4
queue 1 maxreceivevsize SEE pakhead 15828E0 paktail 157FBFC
```
show controllers cpu-interface

queue 2 maxreceive 5E pakhead 1470D40 paktail 1470FE4
queue 3 maxreceive 5E pakhead 19CDDD0 paktail 19D02C8

<output truncated>

Supervisor ASIC Mic Registers

MicDirectPollInfo 80000800
MicIndicationsReceived 00000000
MicInterruptsReceived 00000000
MicPcsInfo 001001F
MicPlbMasterConfiguration 00000000
MicRxFifosAvailable 00000000
MicRxFifosReady 0000BFF0
MicTimeOutPeriod: FrameTOPeriod: 00000EA6 DirectTOPeriod: 00004000

<output truncated>

MicTransmitFifoInfo:
Fifo0: StartPtrs: 038C2800 ReadPtr: 038C2C38
WritePtrs: 038C2C38 Fifo_Flag: 8A800800
Weights: 001E001E
Fifo1: StartPtr: 03A9BC00 ReadPtr: 03A9BC60
WritePtrs: 03A9BC60 Fifo_Flag: 89800400
writeHeaderPtr: 03A9BC60
Fifo2: StartPtr: 038C8800 ReadPtr: 038C88E0
WritePtrs: 038C88E0 Fifo_Flag: 88800200
writeHeaderPtr: 03A9BC60
Fifo3: StartPtr: 03C30400 ReadPtr: 03C30638
WritePtrs: 03C30638 Fifo_Flag: 89800400
writeHeaderPtr: 03C30638
Fifo4: StartPtr: 03AD5000 ReadPtr: 03AD50A0
WritePtrs: 03AD50A0 Fifo_Flag: 89800400
writeHeaderPtr: 03AD50A0
Fifo5: StartPtr: 03A7A600 ReadPtr: 03A7A600
WritePtrs: 03A7A600 Fifo_Flag: 88800200
writeHeaderPtr: 03A7A600
Fifo6: StartPtr: 03BF8400 ReadPtr: 03BF87F0
WritePtrs: 03BF87F0 Fifo_Flag: 89800400

<output truncated>

Related Commands
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show controllers</td>
<td>Displays per-interface send and receive statistics read from the hardware or</td>
</tr>
<tr>
<td>ethernet-controller</td>
<td>the interface internal registers.</td>
</tr>
<tr>
<td>show interfaces</td>
<td>Displays the administrative and operational status of all interfaces or a</td>
</tr>
<tr>
<td></td>
<td>specified interface.</td>
</tr>
</tbody>
</table>
show controllers ethernet-controller

Use the `show controllers ethernet-controller` privileged EXEC command without keywords to display per-interface send and receive statistics read from the hardware. Use with the `phy` keyword to display the interface internal registers or the `port-asic` keyword to display information about the port ASIC.

```
show controllers ethernet-controller [interface-id] [phy [detail]] [port-asic {configuration | statistics}] [ | begin | exclude | include] expression
```

Syntax Description

- **interface-id**: The physical interface (including type, stack member, module, and port number).
- **phy**: (Optional) Display the status of the internal registers on the switch physical layer device (PHY) for the device or the interface. This display includes the operational state of the automatic medium-dependent interface crossover (auto-MDIX) feature on an interface.
- **detail**: (Optional) Display details about the PHY internal registers.
- **port-asic**: (Optional) Display information about the port ASIC internal registers.
- **configuration**: Display port ASIC internal register configuration.
- **statistics**: Display port ASIC statistics, including the Rx/Sup Queue and miscellaneous statistics.
- **begin**: (Optional) Display begins with the line that matches the `expression`.
- **exclude**: (Optional) Display excludes lines that match the `expression`.
- **include**: (Optional) Display includes lines that match the specified `expression`.
- **expression**: Expression in the output to use as a reference point.

Command Modes

Privileged EXEC (only supported with the `interface-id` keywords in user EXEC mode)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(20)SE</td>
<td>The display was enhanced to show the XENPAK module serial EEPROM contents.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This display without keywords provides traffic statistics, basically the RMON statistics for all interfaces or for the specified interface.

When you enter the `phy` or `port-asic` keywords, the displayed information is useful primarily for Cisco technical support representatives troubleshooting the switch.

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` are not displayed, but the lines that contain `Output` are displayed.
This is an example of output from the `show controllers ethernet-controller` command for an interface. Table 2-19 describes the Transmit fields, and Table 2-20 describes the Receive fields.

```
Switch# show controllers ethernet-controller gigabitethernet6/0/1
Transmit GigabitEthernet6/0/1       Receive
  0 Bytes                             0 Bytes
  0 Unicast frames                    0 Unicast frames
  0 Multicast frames                  0 Multicast frames
  0 Broadcast frames                  0 Broadcast frames
  0 Too old frames                    0 Unicast bytes
  0 Deferred frames                   0 Multicast bytes
  0 MTU exceeded frames               0 Broadcast bytes
  0 1 collision frames                0 Alignment errors
  0 2 collision frames                0 FCS errors
  0 3 collision frames                0 Oversize frames
  0 4 collision frames                0 Undersize frames
  0 5 collision frames                0 Collision fragments
  0 6 collision frames
  0 7 collision frames                0 Minimum size frames
  0 8 collision frames                0 65 to 127 byte frames
  0 9 collision frames                0 128 to 255 byte frames
  0 10 collision frames               0 256 to 511 byte frames
  0 11 collision frames               0 512 to 1023 byte frames
  0 12 collision frames               0 1024 to 1518 byte frames
  0 13 collision frames               0 Overrun frames
  0 14 collision frames               0 Pause frames
  0 15 collision frames               0 Symbol error frames
  0 Excessive collisions              0 Invalid frames, too large
  0 VLAN discard frames               0 Valid frames, too large
  0 Excess defer frames               0 Invalid frames, too small
  0 64 byte frames                    0 Valid frames, too small
  0 127 byte frames                   0 Too old frames
  0 255 byte frames                   0 Valid oversize frames
  0 511 byte frames                   0 System FCS error frames
  0 1023 byte frames                  0 RxPortFifoFull drop frame
  0 Too large frames                  0 Good (1 coll) frames
```

Table 2-19 Transmit Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bytes</td>
<td>The total number of bytes sent on an interface.</td>
</tr>
<tr>
<td>Unicast Frames</td>
<td>The total number of frames sent to unicast addresses.</td>
</tr>
<tr>
<td>Multicast frames</td>
<td>The total number of frames sent to multicast addresses.</td>
</tr>
<tr>
<td>Broadcast frames</td>
<td>The total number of frames sent to broadcast addresses.</td>
</tr>
<tr>
<td>Too old frames</td>
<td>The number of frames dropped on the egress port because the packet aged out.</td>
</tr>
<tr>
<td>Deferred frames</td>
<td>The number of frames that are not sent after the time exceeds 2*maximum-packet time.</td>
</tr>
<tr>
<td>MTU exceeded frames</td>
<td>The number of frames that are larger than the maximum allowed frame size.</td>
</tr>
<tr>
<td>1 collision frames</td>
<td>The number of frames that are successfully sent on an interface after one collision occurs.</td>
</tr>
<tr>
<td>2 collision frames</td>
<td>The number of frames that are successfully sent on an interface after two collisions occur.</td>
</tr>
<tr>
<td>3 collision frames</td>
<td>The number of frames that are successfully sent on an interface after three collisions occur.</td>
</tr>
<tr>
<td>4 collision frames</td>
<td>The number of frames that are successfully sent on an interface after four collisions occur.</td>
</tr>
</tbody>
</table>
show controllers ethernet-controller

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 collision frames</td>
<td>The number of frames that are successfully sent on an interface after five collisions occur.</td>
</tr>
<tr>
<td>6 collision frames</td>
<td>The number of frames that are successfully sent on an interface after six collisions occur.</td>
</tr>
<tr>
<td>7 collision frames</td>
<td>The number of frames that are successfully sent on an interface after seven collisions occur.</td>
</tr>
<tr>
<td>8 collision frames</td>
<td>The number of frames that are successfully sent on an interface after eight collisions occur.</td>
</tr>
<tr>
<td>9 collision frames</td>
<td>The number of frames that are successfully sent on an interface after nine collisions occur.</td>
</tr>
<tr>
<td>10 collision frames</td>
<td>The number of frames that are successfully sent on an interface after ten collisions occur.</td>
</tr>
<tr>
<td>11 collision frames</td>
<td>The number of frames that are successfully sent on an interface after eleven collisions occur.</td>
</tr>
<tr>
<td>12 collision frames</td>
<td>The number of frames that are successfully sent on an interface after twelve collisions occur.</td>
</tr>
<tr>
<td>13 collision frames</td>
<td>The number of frames that are successfully sent on an interface after thirteen collisions occur.</td>
</tr>
<tr>
<td>14 collision frames</td>
<td>The number of frames that are successfully sent on an interface after fourteen collisions occur.</td>
</tr>
<tr>
<td>15 collision frames</td>
<td>The number of frames that are successfully sent on an interface after fifteen collisions occur.</td>
</tr>
<tr>
<td>Excessive collisions</td>
<td>The number of frames that could not be sent on an interface after sixteen collisions occur.</td>
</tr>
<tr>
<td>Late collisions</td>
<td>After a frame is sent, the number of frames dropped because late collisions were detected while the frame was sent.</td>
</tr>
<tr>
<td>VLAN discard frames</td>
<td>The number of frames dropped on an interface because the CFI(^1) bit is set.</td>
</tr>
<tr>
<td>Excess defer frames</td>
<td>The number of frames that are not sent after the time exceeds the maximum-packet time.</td>
</tr>
<tr>
<td>64 byte frames</td>
<td>The total number of frames sent on an interface that are 64 bytes.</td>
</tr>
<tr>
<td>127 byte frames</td>
<td>The total number of frames sent on an interface that are from 65 to 127 bytes.</td>
</tr>
<tr>
<td>255 byte frames</td>
<td>The total number of frames sent on an interface that are from 128 to 255 bytes.</td>
</tr>
<tr>
<td>511 byte frames</td>
<td>The total number of frames sent on an interface that are from 256 to 511 bytes.</td>
</tr>
<tr>
<td>1023 byte frames</td>
<td>The total number of frames sent on an interface that are from 512 to 1023 bytes.</td>
</tr>
<tr>
<td>1518 byte frames</td>
<td>The total number of frames sent on an interface that are from 1024 to 1518 bytes.</td>
</tr>
<tr>
<td>Too large frames</td>
<td>The number of frames sent on an interface that are larger than the maximum allowed frame size.</td>
</tr>
<tr>
<td>Good (1 coll) frames</td>
<td>The number of frames that are successfully sent on an interface after one collision occurs. This value does not include the number of frames that are not successfully sent after one collision occurs.</td>
</tr>
</tbody>
</table>

1. CFI = Canonical Format Indicator

Table 2-20 Receive Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bytes</td>
<td>The total amount of memory (in bytes) used by frames received on an interface, including the FCS(^1) value and the incorrectly formed frames. This value excludes the frame header bits.</td>
</tr>
<tr>
<td>Unicast frames</td>
<td>The total number of frames successfully received on the interface that are directed to unicast addresses.</td>
</tr>
<tr>
<td>Multicast frames</td>
<td>The total number of frames successfully received on the interface that are directed to multicast addresses.</td>
</tr>
<tr>
<td>Broadcast frames</td>
<td>The total number of frames successfully received on an interface that are directed to broadcast addresses.</td>
</tr>
</tbody>
</table>
Table 2-20 Receive Field Descriptions (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unicast bytes</td>
<td>The total amount of memory (in bytes) used by unicast frames received on an interface, including the FCS value and the incorrectly formed frames. This value excludes the frame header bits.</td>
</tr>
<tr>
<td>Multicast bytes</td>
<td>The total amount of memory (in bytes) used by multicast frames received on an interface, including the FCS value and the incorrectly formed frames. This value excludes the frame header bits.</td>
</tr>
<tr>
<td>Broadcast bytes</td>
<td>The total amount of memory (in bytes) used by broadcast frames received on an interface, including the FCS value and the incorrectly formed frames. This value excludes the frame header bits.</td>
</tr>
<tr>
<td>Alignment errors</td>
<td>The total number of frames received on an interface that have alignment errors.</td>
</tr>
<tr>
<td>FCS errors</td>
<td>The total number of frames received on an interface that have a valid length (in bytes) but do not have the correct FCS values.</td>
</tr>
<tr>
<td>Oversize frames</td>
<td>The number of frames received on an interface that are larger than the maximum allowed frame size.</td>
</tr>
<tr>
<td>Undersize frames</td>
<td>The number of frames received on an interface that are smaller than 64 bytes.</td>
</tr>
<tr>
<td>Collision fragments</td>
<td>The number of collision fragments received on an interface.</td>
</tr>
<tr>
<td>Minimum size frames</td>
<td>The total number of frames that are the minimum frame size.</td>
</tr>
<tr>
<td>65 to 127 byte frames</td>
<td>The total number of frames that are from 65 to 127 bytes.</td>
</tr>
<tr>
<td>128 to 255 byte frames</td>
<td>The total number of frames that are from 128 to 255 bytes.</td>
</tr>
<tr>
<td>256 to 511 byte frames</td>
<td>The total number of frames that are from 256 to 511 bytes.</td>
</tr>
<tr>
<td>512 to 1023 byte frames</td>
<td>The total number of frames that are from 512 to 1023 bytes.</td>
</tr>
<tr>
<td>1024 to 1518 byte frames</td>
<td>The total number of frames that are from 1024 to 1518 bytes.</td>
</tr>
<tr>
<td>Overrun frames</td>
<td>The total number of overrun frames received on an interface.</td>
</tr>
<tr>
<td>Pause frames</td>
<td>The number of pause frames received on an interface.</td>
</tr>
<tr>
<td>Symbol error frames</td>
<td>The number of frames received on an interface that have symbol errors.</td>
</tr>
<tr>
<td>Invalid frames, too large</td>
<td>The number of frames received that were larger than maximum allowed MTU(^2) size (including the FCS bits and excluding the frame header) and that have either an FCS error or an alignment error.</td>
</tr>
<tr>
<td>Valid frames, too large</td>
<td>The number of frames received on an interface that are larger than the maximum allowed frame size.</td>
</tr>
<tr>
<td>Invalid frames, too small</td>
<td>The number of frames received that are smaller than 64 bytes (including the FCS bits and excluding the frame header) and that have either an FCS error or an alignment error.</td>
</tr>
<tr>
<td>Valid frames, too small</td>
<td>The number of frames received on an interface that are smaller than 64 bytes (or 68 bytes for VLAN-tagged frames) and that have valid FCS values. The frame size includes the FCS bits but excludes the frame header bits.</td>
</tr>
<tr>
<td>Too old frames</td>
<td>The number of frames dropped on the ingress port because the packet aged out.</td>
</tr>
<tr>
<td>Valid oversize frames</td>
<td>The number of frames received on an interface that are larger than the maximum allowed frame size and have valid FCS values. The frame size includes the FCS value but does not include the VLAN tag.</td>
</tr>
</tbody>
</table>
This is an example of output from the `show controllers ethernet-controller phy` command for a specific interface:

```
Switch# show controllers ethernet-controller gigabitethernet1/0/2 phy
Control Register : 0001 0001 0100 0000
Control STATUS   : 0111 1001 0100 1001
Phy ID 1         : 0000 0001 0100 0001
Phy ID 2         : 0000 1100 0010 0100
Auto-Negotiation Advertisement : 0000 0011 1110 0001
Auto-Negotiation Link Partner     : 0000 0000 0000 0000
Auto-Negotiation Expansion Reg    : 0000 0000 0000 0100
Next Page Transmit Register       : 0010 0000 0000 0001
Link Partner Next page Registe    : 0000 0000 0000 0000
1000BASE-T Control Register       : 0000 1111 0000 0000
1000BASE-T Status Register        : 0100 0000 0000 0000
Extended Status Register          : 0011 0000 0000 0000
PHY Specific Control Register      : 0000 0000 0000 0000
PHY Specific Status Register       : 1000 0001 0100 0000
Interrupt Enable                  : 0000 0000 0000 0000
Interrupt Status                  : 0000 0000 0100 0000
Extended PHY Specific Control     : 0000 1100 1010 1000
Receive Error Counter             : 0000 0000 0000 0000
Reserved Register 1               : 0000 0000 0000 0000
Global Status                     : 0000 0000 0000 0000
LED Control                       : 0010 0001 0000 0000
Manual LED Override               : 0000 1000 0010 1010
Extended PHY Specific Control     : 0000 0000 0000 0000
Disable Receiver 1                : 0000 0000 0000 1011
Disable Receiver 2                : 1000 0000 0000 0100
Extended PHY Specific Status      : 1000 0100 1000 0000
Auto-MDIX                         : On [AdminState=1 Flags=0x00052248]
```

This is an example of output from the `show controllers ethernet-controller tengigabitethernet1/0/1 phy` command for the 10-Gigabit Ethernet interface. It shows the XENPAK module serial EEPROM contents.

For information about the EEPROM map and the field descriptions for the display, see the XENPAK multisource agreement (MSA) at these sites:

http://www.xenpak.org/MSA/XENPAK_MSA_R2.1.pdf
http://www.xenpak.org/MSA/XENPAK_MSA_R3.0.pdf

Table 2-20 Receive Field Descriptions (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>System FCS error frames</td>
<td>The total number of frames received on an interface that have a valid length (in bytes) but that do not have the correct FCS values.</td>
</tr>
<tr>
<td>RxPortFifoFull drop frames</td>
<td>The total number of frames received on an interface that are dropped because the ingress queue is full.</td>
</tr>
</tbody>
</table>

1. FCS = frame check sequence
2. MTU = maximum transmission unit
To determine which version of the XENPAK documentation to read, check the XENPAK MSA Version supported field in the display. Version 2.1 is 15 hexadecimal, and Version 3.0 is 1e hexadecimal.

Switch# show controllers ethernet-controller tengigabitethernet1/0/1 phy

TenGigabitEthernet1/0/1 (gpn:472, port-number:1)

```
XENPAK Serial EEPROM Contents:
Non-Volatile Register (NVR) Fields
  XENPAK MSA Version supported :0x15
  NVR Size in bytes :0x100
  Number of bytes used :0xB0
  Basic Field Address :0xB
  Customer Field Address :0x77
  Vendor Field Address :0xA7
  Extended Vendor Field Address :0x100
  Reserved :0x0
  Transceiver type :0x1 =XENPAK
  Optical connector type :0x1 =SC
  Bit encoding :0x1 =NRZ
  Normal BitRate in multiple of 1M b/s :0x2848
  Protocol Type :0x1 =10GgE

  Standards Compliance Codes :
  10GbE Code Byte 0 :0x2 =10GBASE-LR
  10GbE Code Byte 1 :0x0
  SONET/SDH Code Byte 0 :0x0
  SONET/SDH Code Byte 1 :0x0
  SONET/SDH Code Byte 2 :0x0
  SONET/SDH Code Byte 3 :0x0
  10GFC Code Byte 0 :0x0
  10GFC Code Byte 1 :0x0
  10GFC Code Byte 2 :0x0
  10GFC Code Byte 3 :0x0
  Transmission range in 10m :0x3E8
  Fibre Type :
  Fibre Type Byte 0 :0x40 =NDSF only
  Fibre Type Byte 1 :0x0 =Unspecified

  Centre Optical Wavelength in 0.01nm steps - Channel 0 :0x1 0xFF 0xB8
  Centre Optical Wavelength in 0.01nm steps - Channel 1 :0x0 0x0 0x0
  Centre Optical Wavelength in 0.01nm steps - Channel 2 :0x0 0x0 0x0
  Centre Optical Wavelength in 0.01nm steps - Channel 3 :0x0 0x0 0x0
  Package Identifier OUI :0x41F420
  Transceiver Vendor OUI :0x3400871
  Transceiver vendor name :CISCO-OPNEXT,INC
  Part number provided by transceiver vendor 800-24558-01
  Revision level of part number provided by vendor :01
  Vendor serial number :ONJ0735003U
  Vendor manufacturing date code :2003082700

  Reserved1 :00 00 00 00 00 00 00 00
  Basic Field Checksum :0x6C

Customer Writable Area :
  0x00:00 00 00 00 00 00 00 00
  0x10:00 00 00 00 00 00 00 00
  0x20:00 00 00 00 00 00 00 00
```
Vendor Specific:
0x00:41 00 20 F4 88 84 28 94 C0 00 30 14 06 39 00 D9
0x10:03 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x20:00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x30:00 00 00 00 11 SE 19 E9 BF 1B AD 98 03 9B DF 87
0x40:CC F6 45 FF 99 00 00 00 00 00 00 00 00 00 00 C0 48
0x50:46 D2 00 00 00 00 00 00 00 00

This is an example of output from the `show controllers ethernet-controller port-asic configuration` command:

Switch# show controllers ethernet-controller port-asic configuration
==
Switch 1, PortASIC 0 Registers
--
DeviceType : 000101BC
Reset : 00000000
PmadMicConfig : 00000001
PmadMicDiag : 00000003
SupervisorReceiveFifoSramInfo : 000007D0 000007D0 40000000 00000000
SupervisorTransmitFifoSramInfo : 000001D0 000001D0 40000000 00000000
GlobalStatus : 00000800
IndicationStatus : 00000000
IndicationStatusMask : FFFFFFFF
InterruptStatus : 00000000
InterruptStatusMask : 01FFE800
SupervisorDiag : 00000000
SupervisorFrameSizeLimit : 000007C8
SupervisorBroadcast : 00A0F01
GeneralIO : 000003F9 00000000 00000004
StackPcsInfo : FFFFF100 860329BD 5555FFFF FFFFFFFF
 : FF0FFFF0 86020000 5555FFFF 00000000
StackRacInfo : 73001630 00000003 7F001644 00000003
 : 24140003 FD632B00 18E418E0 FFFFFFFF
StackControlStatus : 18E418E0
stackControlStatusMask : FFFFFFFF
TransmitBufferFreeListInfo : 00000854 00000800 00000FF8 00000000
 : 0000088A 0000085D 00000FF8 00000000
TransmitRingFifoInfo : 00000016 0000016 40000000 00000000
 : 0000000C 000000DC 40000000 00000000
TransmitBufferInfo : 00012000 000000FF 00000000 00000030
TransmitBufferCommonCount : 000000F7A
TransmitBufferCommonCountPeak : 0000001E
TransmitBufferCommonCommonEmpty : 000000FF
NetworkActivity : 00000000 00000000 00000000 02400000
DroppedStatistics : 00000000
FrameLengthDeltaSelect : 00000001
SneakPortFifoInfo : 00000000
MacInfo : 0EC0801C 00000001 0EC0801B 00000001
 : 0DC0001D 00000001 0DC0001E 00000001
<output truncated>
This is an example of output from the `show controllers ethernet-controller port-asic statistics` command:

```
Switch# show controllers ethernet-controller port-asic statistics
===========================================================================
Switch 1, PortASIC 0 Statistics
---------------------------------------------------------------------------
0 RxQ-0, wt-0 enqueue frames            0 RxQ-0, wt-0 drop frames
4118966 RxQ-0, wt-1 enqueue frames            0 RxQ-0, wt-1 drop frames
  0 RxQ-0, wt-2 enqueue frames            0 RxQ-0, wt-2 drop frames

  0 RxQ-1, wt-0 enqueue frames            0 RxQ-1, wt-0 drop frames
  296 RxQ-1, wt-1 enqueue frames            0 RxQ-1, wt-1 drop frames
 2836036 RxQ-1, wt-2 enqueue frames            0 RxQ-1, wt-2 drop frames

  0 RxQ-2, wt-0 enqueue frames            0 RxQ-2, wt-0 drop frames
 158377 RxQ-2, wt-1 enqueue frames            0 RxQ-2, wt-1 drop frames
 0 RxQ-2, wt-2 enqueue frames            0 RxQ-2, wt-2 drop frames

0 RxQ-3, wt-0 enqueue frames            0 RxQ-3, wt-0 drop frames
0 RxQ-3, wt-1 enqueue frames            0 RxQ-3, wt-1 drop frames
0 RxQ-3, wt-2 enqueue frames            0 RxQ-3, wt-2 drop frames

15 TxBufferFull Drop Count               0 Rx Fcs Error Frames
0 TxBufferFrameDesc BadCrc16            0 Rx Invalid Oversize Frames
0 TxBuffer Bandwidth Drop Cou           0 Rx Invalid Too Large Frames
0 TxQueue Bandwidth Drop Coun           0 Rx Invalid Too Large Frames
0 TxQueue Missed Drop Statist           0 Rx Invalid Too Small Frames
74 RxBuffer Drop DestIndex Cou           0 Rx Too Old Frames
0 SneakQueue Drop Count                 0 Tx Too Old Frames
0 Learning Queue Overflow Fra           0 System Fcs Error Frames
0 Learning Cam Skip Count

15 Sup Queue 0 Drop Frames               0 Sup Queue 8 Drop Frames
0 Sup Queue 1 Drop Frames                0 Sup Queue 9 Drop Frames
0 Sup Queue 2 Drop Frames                0 Sup Queue 10 Drop Frames
0 Sup Queue 3 Drop Frames                0 Sup Queue 11 Drop Frames
0 Sup Queue 4 Drop Frames                0 Sup Queue 12 Drop Frames
0 Sup Queue 5 Drop Frames                0 Sup Queue 13 Drop Frames
0 Sup Queue 6 Drop Frames                0 Sup Queue 14 Drop Frames
0 Sup Queue 7 Drop Frames                0 Sup Queue 15 Drop Frames
===========================================================================
Switch 1, PortASIC 1 Statistics
---------------------------------------------------------------------------
0 RxQ-0, wt-0 enqueue frames            0 RxQ-0, wt-0 drop frames
52 RxQ-0, wt-1 enqueue frames            0 RxQ-0, wt-1 drop frames
  0 RxQ-0, wt-2 enqueue frames            0 RxQ-0, wt-2 drop frames
```

<output truncated>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show controllers</code></td>
<td>Displays the state of the CPU network ASIC and send and receive statistics for packets reaching the CPU.</td>
</tr>
<tr>
<td><code>cpu-interface</code></td>
<td></td>
</tr>
<tr>
<td><code>show controllers tcam</code></td>
<td>Displays the state of registers for all ternary content addressable memory (TCAM) in the system and for TCAM interface ASICs that are CAM controllers.</td>
</tr>
<tr>
<td><code>show idprom</code></td>
<td>Displays the IDPROM information for the specified interface.</td>
</tr>
</tbody>
</table>
show controllers power inline

Use the **show controllers power inline** user EXEC command to display the values in the registers of the specified Power over Ethernet (PoE) controller.

```
show controllers power inline [instance] [module switch-number] [ | {begin | exclude | include} expression]
```

Syntax Description

- **instance** (Optional) Power controller instance, where each instance corresponds to four ports. See the “Usage Guidelines” section for more information. If no instance is specified, information for all instances appear.
- **module switch-number** (Optional) Limit the display to ports on the specified stack member. The switch number is 1 to 9.
- **| begin** (Optional) Display begins with the line that matches the expression.
- **| exclude** (Optional) Display excludes lines that match the expression.
- **| include** (Optional) Display includes lines that match the specified expression.
- **expression** Expression in the output to use as a reference point.

Command Modes

User EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(19)EA1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

For the Catalyst 3750-48PS switches, the *instance* range is 0 to 11.

For the Catalyst 3750-24PS switches, the *instance* range is 0 to 5.

For the Catalyst 3750G-48PS switches, the *instance* range is 0 to 2. For instances other than 0 to 2, the switches provides no output.

For the Catalyst 3750G-24PS switches, the *instance* range is 0 to 1. For instances other than 0 to 1, the switches provides no output.

Though visible on all switches, this command is valid only for PoE switches. It provides no information for switches that do not support PoE.

The output provides information that might be useful for Cisco technical support representatives troubleshooting the switch.

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain *output* do not appear, but the lines that contain *Output* appear.
Examples

This is an example of output from the `show controllers power inline` command on a switch other than a Catalyst 3750G-48PS or 3750G-24PS switch:

```
Switch> show controllers power inline
Module 1, Controller Instance 0, Address 0x40
  Interrupt         Reg 0x0  = 0x0
  Intr Mask         Reg 0x1  = 0xF6
  Power Event       Reg 0x2  = 0x0
  Detect Event      Reg 0x4  = 0x0
  Fault Event       Reg 0x6  = 0x0
  T-Start Event     Reg 0x8  = 0x0
  Supply Event      Reg 0xA  = 0x0
  Port 1 Status     Reg 0xC  = 0x24
  Port 2 Status     Reg 0xD  = 0x24
  Port 3 Status     Reg 0xE  = 0x3
  Port 4 Status     Reg 0xF  = 0x3
  Power Status      Reg 0x10 = 0xFF
  Pin Status        Reg 0x11 = 0x0
  Operating Mode    Reg 0x12 = 0xAA
  Disconnect Enable Reg 0x13 = 0xA0
  Detect/Class Enable Reg 0x14 = 0xFFF
  Reserved          Reg 0x15 = 0x0
  Timing Config     Reg 0x16 = 0x2
  Misc Config       Reg 0x17 = 0xA0
  ID Revision       Reg 0x1A = 0x64

Module 1, Controller Instance 1, Address 0x42
<output truncated>
```

This is an example of output from the `show controllers power inline` command on a Catalyst 3750G-24PS switch:

```
Switch> show controllers power inline
Alchemy instance 0, address 0
  Pending event flag    :N N N N N N N N N N N N
  Current State         :00 05 10 51 61 11
  Current Event         :00 01 00 10 40 00
  Timers                :00 C5 57 12 20 04 B2 05 06 07 07
  Error State           :00 00 00 00 10 00
  Error Code            :00 00 00 00 00 00 00 00 00 00 00 00
  Power Status          :N Y N N Y N N N N N N N
  Auto Config           :N Y Y Y Y Y Y Y Y Y Y
  Disconnect            :N N N N N N N N N N N N
  Detection Status      :00 00 00 30 00 00
  Current Class         :00 00 00 30 00 00
  Tweetie debug         :00 00 00 00
  POE Commands pending at sub:
    Command 0 on each port :00 00 00 00 00 00
    Command 1 on each port :00 00 00 00 00 00
    Command 2 on each port :00 00 00 00 00 00
    Command 3 on each port :00 00 00 00 00 00
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>logging event power-inline-status</code></td>
<td>Enables the logging of PoE events.</td>
</tr>
<tr>
<td><code>power inline</code></td>
<td>Configures the power management mode for the specified PoE port or for all PoE ports.</td>
</tr>
<tr>
<td><code>show power inline</code></td>
<td>Displays the PoE status for the specified PoE port or for all PoE ports.</td>
</tr>
</tbody>
</table>
show controllers tcam

Use the `show controllers tcam` privileged EXEC command to display the state of the registers for all ternary content addressable memory (TCAM) in the system and for all TCAM interface ASICs that are CAM controllers.

```
show controllers tcam [asic [number]] [detail] [ | begin | exclude | include] expression
```

Syntax Description

- `asic` (Optional) Display port ASIC TCAM information.
- `number` (Optional) Display information for the specified port ASIC number. The range is from 0 to 15.
- `detail` (Optional) Display detailed TCAM register information.
- `begin` (Optional) Display begins with the line that matches the `expression`.
- `exclude` (Optional) Display excludes lines that match the `expression`.
- `include` (Optional) Display includes lines that match the specified `expression`.
- `expression` Expression in the output to use as a reference point.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(14)EA1</td>
<td>The <code>asic [number]</code> keywords were added.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This display provides information that might be useful for Cisco technical support representatives troubleshooting the switch.

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.

Examples

This is an example of output from the `show controllers tcam` command:

```
Switch# show controllers tcam
TCAM-0 Registers
REV: 00B30103
SIZE: 00080040
ID: 00000000
CCR: 00000000_F0000020
RPID0: 00000000_00000000
RPID1: 00000000_00000000
RPID2: 00000000_00000000
RPID3: 00000000_00000000
```
show controllers tcam

HRR0: 00000000_E000CAFC
HRR1: 00000000_00000000
HRR2: 00000000_00000000
HRR3: 00000000_00000000
HRR4: 00000000_00000000
HRR5: 00000000_00000000
HRR6: 00000000_00000000
HRR7: 00000000_00000000
<output truncated>

GMR31: FF_FFFFFFFF_FFFFFFFF
GMR32: FF_FFFFFFFF_FFFFFFFF
GMR33: FF_FFFFFFFF_FFFFFFFF

TCAM related PortASIC 1 registers

LookupType: 89A1C67D_24E35F00
LastCamIndex: 0000FFE0
LocalNoMatch: 000069E0
ForwardingRamBaseAddress: 00022A00 0002FE00 00040600 0002FE00 0000D400
00000000 003FBA00 00090000 00090000 00040600
00000000 00012800 00012900

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show controllers cpu-interface</td>
<td>Displays the state of the CPU network ASIC and send and receive statistics for packets reaching the CPU.</td>
</tr>
<tr>
<td>show controllers ethernet-controller</td>
<td>Displays per-interface send and receive statistics read from the hardware or the interface internal registers.</td>
</tr>
</tbody>
</table>
show controllers utilization

Use the **show controllers utilization** user EXEC command to display bandwidth utilization on the switch or specific ports.

```
show controllers [interface-id] utilization [ | begin | exclude | include] expression
```

Syntax Description

- **interface-id** (Optional) ID of the switch interface.
- **| begin** (Optional) Display begins with the line that matches the specified **expression**.
- **| exclude** (Optional) Display excludes lines that match the specified **expression**.
- **| include** (Optional) Display includes lines that match the specified **expression**.
- **expression** Expression in the output to use as a reference point.

Command Modes

User EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain output do not appear, but the lines that contain Output appear.

Examples

This is an example of output from the **show controllers utilization** command.

```
Switch> show controllers utilization
Port Receive Utilization Transmit Utilization
Fa1/0/1 0 0
Fa1/0/2 0 0
Fa1/0/3 0 0
Fa1/0/4 0 0
Fa1/0/5 0 0
Fa1/0/6 0 0
Fa1/0/7 0 0
<output truncated>
<output truncated>
Switch Receive Bandwidth Percentage Utilization : 0
Switch Transmit Bandwidth Percentage Utilization : 0
Switch Fabric Percentage Utilization : 0
```

This is an example of output from the **show controllers utilization** command on a specific port:

```
Switch> show controllers gigabitethernet1/0/1 utilization
Receive Bandwidth Percentage Utilization : 0
Transmit Bandwidth Percentage Utilization : 0
```
Table 2-21
show controllers utilization Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receive Bandwidth Percentage Utilization</td>
<td>Displays the received bandwidth usage of the switch, which is the sum of the received traffic on all the ports divided by the switch receive capacity.</td>
</tr>
<tr>
<td>Transmit Bandwidth Percentage Utilization</td>
<td>Displays the transmitted bandwidth usage of the switch, which is the sum of the transmitted traffic on all the ports divided by the switch transmit capacity.</td>
</tr>
<tr>
<td>Fabric Percentage Utilization</td>
<td>Displays the average of the transmitted and received bandwidth usage of the switch.</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show controllers ethernet-controller</code></td>
<td>Displays the interface internal registers.</td>
</tr>
</tbody>
</table>
show diagnostic

To view the test results of the online diagnostics and list the supported test suites, use the `show diagnostic` command.

```
show diagnostic content switch [num] [ | {begin | exclude | include} expression]
show diagnostic post [ | {begin | exclude | include} expression]
show diagnostic result switch [num | detail | test {test-id | test-id-range | detail}] [ | {begin | exclude | include} expression]
show diagnostic schedule switch [num] [ | {begin | exclude | include} expression]
show diagnostic status [ | {begin | exclude | include} expression]
show diagnostic switch [num | detail | begin | exclude | include} expression]
```

Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>content</code></td>
<td>Displays test information including test ID, test attributes, and supported coverage test levels for each test and for all modules.</td>
</tr>
<tr>
<td><code>switch num</code></td>
<td>(Optional) Specifies the module number.</td>
</tr>
<tr>
<td><code>begin</code></td>
<td>(Optional) Display begins with the line that matches the expression.</td>
</tr>
<tr>
<td><code>exclude</code></td>
<td>(Optional) Display excludes lines that match the expression.</td>
</tr>
<tr>
<td><code>include</code></td>
<td>(Optional) Display includes lines that match the specified expression.</td>
</tr>
<tr>
<td><code>expression</code></td>
<td>Expression in the output to use as a reference point.</td>
</tr>
<tr>
<td><code>post</code></td>
<td>Displays the POST results; same as <code>show post</code> command.</td>
</tr>
<tr>
<td><code>result</code></td>
<td>Displays the test results.</td>
</tr>
<tr>
<td><code>detail</code></td>
<td>(Optional) Displays the all test statistics.</td>
</tr>
<tr>
<td><code>test</code></td>
<td>Specify a test to run.</td>
</tr>
<tr>
<td><code>test-id</code></td>
<td>Identification number for the test to be run; see the “Usage Guidelines” section for additional information.</td>
</tr>
<tr>
<td><code>test-id-range</code></td>
<td>Range of identification numbers for tests to be run; see the “Usage Guidelines” section for additional information.</td>
</tr>
<tr>
<td><code>schedule</code></td>
<td>Displays the current scheduled diagnostic tasks.</td>
</tr>
<tr>
<td><code>status</code></td>
<td>Displays the test status.</td>
</tr>
</tbody>
</table>

Defaults

This command has no default settings.

Command Modes

EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SEE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
Usage Guidelines

If you do not enter a module `num`, information for all modules is displayed.

In the command output, the possible testing results are as follows:

- Passed (.)
- Failed (F)
- Unknown (U)

Examples

This example shows how to display the online diagnostics that are configured on a switch:

```
Switch# show diagnostic content switch 3
```

Switch 3:
Diagnostics test suite attributes:
- B/* - Basic ondemand test / NA
- P/V/* - Per port test / Per device test / NA
- D/N/* - Disruptive test / Non-disruptive test / NA
- S/* - Only applicable to standby unit / NA
- X/* - Not a health monitoring test / NA
- F/* - Fixed monitoring interval test / NA
- E/* - Always enabled monitoring test / NA
- A/I - Monitoring is active / Monitoring is inactive
- R/* - Switch will reload after test list completion / NA
- P/* - will partition stack / NA

<table>
<thead>
<tr>
<th>ID</th>
<th>Test Name</th>
<th>attributes</th>
<th>Test Interval</th>
<th>Thre-</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>TestPortAsicStackPortLoopback</td>
<td>BN*A</td>
<td>00 00:01:00.00</td>
<td>n/a</td>
</tr>
<tr>
<td>2)</td>
<td>TestPortAsicLoopback</td>
<td>BDX**IR*</td>
<td>not configured</td>
<td>n/a</td>
</tr>
<tr>
<td>3)</td>
<td>TestPortAsicCam</td>
<td>BDX**IR*</td>
<td>not configured</td>
<td>n/a</td>
</tr>
<tr>
<td>4)</td>
<td>TestPortAsicRingLoopback</td>
<td>BDX**IR*</td>
<td>not configured</td>
<td>n/a</td>
</tr>
<tr>
<td>5)</td>
<td>TestMicRingLoopback</td>
<td>BDX**IR*</td>
<td>not configured</td>
<td>n/a</td>
</tr>
<tr>
<td>6)</td>
<td>TestPortAsicMem</td>
<td>BDX**IR*</td>
<td>not configured</td>
<td>n/a</td>
</tr>
</tbody>
</table>

This example shows how to display the online diagnostic results for a switch:

```
Switch# show diagnostic result switch 1
```

Switch 1: SerialNo :
Overall diagnostic result: PASS
Test results: (.= Pass, F = Fail, U = Untested)
- 1) TestPortAsicStackPortLoopback ---> .
- 2) TestPortAsicLoopback --------> .
- 3) TestPortAsicCam ------------> .
- 4) TestPortAsicRingLoopback -------> .
- 5) TestMicRingLoopback ----------> .
- 6) TestPortAsicMem --------------> .

This example shows how to display the online diagnostic test status:

```
Switch# show diagnostic status
```

<BD> - Bootup Diagnostics, <HM> - Health Monitoring Diagnostics,
<OD> - OnDemand Diagnostics, <SCH> - Scheduled Diagnostics
```

<table>
<thead>
<tr>
<th>Card</th>
<th>Description</th>
<th>Current Running Test</th>
<th>Run by</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N/A</td>
<td>N/A</td>
<td>------</td>
</tr>
<tr>
<td>2</td>
<td>TestPortAsicStackPortLoopback</td>
<td>&lt;OD&gt;</td>
<td>TestPortAsicLoopback</td>
</tr>
<tr>
<td></td>
<td>TestPortAsicCam</td>
<td>&lt;OD&gt;</td>
<td>TestPortAsicRingLoopback</td>
</tr>
<tr>
<td></td>
<td>TestMicRingLoopback</td>
<td>&lt;OD&gt;</td>
<td>TestMicRingLoopback</td>
</tr>
</tbody>
</table>
This example shows how to display the online diagnostic test schedule for a switch:

Switch# `show diagnostic schedule switch 1`
Current Time = 14:39:49 PST Tue Jul 5 2005
Diagnostic for Switch 1:
Schedule #1:
To be run daily 12:00
Test ID(s) to be executed: 1.

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>diagnostic monitor</code></td>
<td>Configures the health-monitoring diagnostic test.</td>
</tr>
<tr>
<td><code>diagnostic schedule</code></td>
<td>Sets the scheduling of test-based online diagnostic testing.</td>
</tr>
<tr>
<td><code>diagnostic start</code></td>
<td>Starts the online diagnostic test.</td>
</tr>
</tbody>
</table>
show dot1q-tunnel

Use the `show dot1q-tunnel` user EXEC command to display information about IEEE 802.1Q tunnel ports.

```
show dot1q-tunnel [interface interface-id] [| begin | exclude | include | expression]
```

**Syntax Description**

- `interface interface-id` (Optional) Specify the interface for which to display IEEE 802.1Q tunneling information. Valid interfaces include physical ports and port channels.
- `| begin` (Optional) Display begins with the line that matches the `expression`.
- `| exclude` (Optional) Display excludes lines that match the `expression`.
- `| include` (Optional) Display includes lines that match the specified `expression`.
- `expression` Expression in the output to use as a reference point.

**Command Modes**

User EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)EA1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.

**Examples**

These are examples of output from the `show dot1q-tunnel` command:

Switch> `show dot1q-tunnel`
dot1q-tunnel mode LAN Port(s)
-----------------------------
Gi1/0/1
Gi1/0/2
Gi1/0/3
Gi1/0/6
Po2

Switch> `show dot1q-tunnel interface gigabitethernet1/0/1`
dot1q-tunnel mode LAN Port(s)
-----------------------------
Gi1/0/1

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show vlan dot1q tag native</code></td>
<td>Displays IEEE 802.1Q native VLAN tagging status.</td>
</tr>
<tr>
<td><code>switchport mode dot1q-tunnel</code></td>
<td>Configures an interface as an IEEE 802.1Q tunnel port.</td>
</tr>
</tbody>
</table>
show dot1x

Use the show dot1x user EXEC command to display IEEE 802.1x statistics, administrative status, and operational status for the switch or for the specified port.

```
show dot1x [[all [summary] | interface interface-id] [details | statistics]] [| begin | exclude | include] expression
```

**Syntax Description**

- `all [ summary ]` (Optional) Display the IEEE 802.1x status for all ports.
- `interface interface-id` (Optional) Display the IEEE 802.1x status for the specified port (including type, stack member, module, and port number).
- `details` (Optional) Display the IEEE 802.1x interface details.
- `statistics` (Optional) Display IEEE 802.1x statistics for the specified port.
- `| begin` (Optional) Display begins with the line that matches the expression.
- `| exclude` (Optional) Display excludes lines that match the expression.
- `| include` (Optional) Display includes lines that match the specified expression.
- `expression` Expression in the output to use as a reference point.

**Command Modes**

User EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(14)EA1</td>
<td>The all keyword was added.</td>
</tr>
<tr>
<td>12.2(25)SED</td>
<td>The display was expanded to include auth-fail-vlan in the authorization state machine state and port status fields.</td>
</tr>
<tr>
<td>12.2(25)SEE</td>
<td>The command syntax was changed, and the command output was modified.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If you do not specify a port, global parameters and a summary appear. If you specify a port, details for that port appear.

If the port control is configured as unidirectional or bidirectional control and this setting conflicts with the switch configuration, the show dot1x [ all | interface interface-id ] privileged EXEC command output has this information:

```
ControlDirection = In (Inactive)
```

Expressions are case sensitive. For example, if you enter | exclude output, the lines that contain output are not displayed, but the lines that contain Output appear.

**Examples**

This is an example of output from the show dot1x user EXEC command:

```
Switch> show dot1x
SysauthcontrolEnabled
Dot1x Protocol Version 2
```
Critical Recovery Delay 100
Critical EAPOL Disabled

This is an example of output from the `show dot1x all` user EXEC command:

```
Switch> show dot1x all
Sysauthcontrol Enabled
Dot1x Protocol Version 2
Critical Recovery Delay 100
Critical EAPOL Disabled

Dot1x Info for GigabitEthernet1/0/1

PAE = AUTHENTICATOR
PortControl = AUTO
ControlDirection = Both
HostMode = SINGLE_HOST
ReAuthentication = Disabled
QuietPeriod = 60
ServerTimeout = 30
SuppTimeout = 30
ReAuthPeriod = 3600 (Locally configured)
ReAuthMax = 2
MaxReq = 2
TxPeriod = 30
RateLimitPeriod = 0
```

<output truncated>

This is an example of output from the `show dot1x all summary` user EXEC command:

```
Interface	PAE	Client	Status
Gi2/0/1 | AUTH| none | UNAUTHORIZED
Gi2/0/2 | AUTH| 00a0.c9b8.0072 | AUTHORIZED
Gi2/0/3 | AUTH| none | UNAUTHORIZED
```

This is an example of output from the `show dot1x interface interface-id` user EXEC command:

```
Switch> show dot1x interface gigabitethernet1/0/2
Dot1x Info for GigabitEthernet1/0/2

PAE = AUTHENTICATOR
PortControl = AUTO
ControlDirection = In
HostMode = SINGLE_HOST
ReAuthentication = Disabled
QuietPeriod = 60
ServerTimeout = 30
SuppTimeout = 30
ReAuthPeriod = 3600 (Locally configured)
ReAuthMax = 2
MaxReq = 2
TxPeriod = 30
RateLimitPeriod = 0
```

This is an example of output from the `show dot1x interface interface-id details` user EXEC command:

```
Switch# show dot1x interface gigabitethernet1/0/2 details
Dot1x Info for GigabitEthernet1/0/2 details

PAE = AUTHENTICATOR
PortControl = AUTO
ControlDirection = Both
HostMode = SINGLE_HOST
```

**show dot1x**

ReAuthentication = Disabled
QuietPeriod = 60
ServerTimeout = 30
SuppTimeout = 30
ReAuthPeriod = 3600 (Locally configured)
ReAuthMax = 2
MaxReq = 2
TxPeriod = 30
RateLimitPeriod = 0

Dot1x Authenticator Client List Empty

This is an example of output from the **show dot1x interface interface-id details** command when a port is assigned to a guest VLAN and the host mode changes to multiple-hosts mode:

```
Switch# show dot1x interface gigabitethernet1/0/1 details
Dot1x Info for GigabitEthernet1/0/1

PAE = AUTHENTICATOR
PortControl = AUTO
ControlDirection = Both
HostMode = SINGLE_HOST
ReAuthentication = Enabled
QuietPeriod = 60
ServerTimeout = 30
SuppTimeout = 30
ReAuthPeriod = 3600 (Locally configured)
ReAuthMax = 2
MaxReq = 2
TxPeriod = 30
RateLimitPeriod = 0
Guest-Vlan = 182

Dot1x Authenticator Client List Empty

Port Status = AUTHORIZED
Authorized By = Guest-Vlan
Operational HostMode = MULTI_HOST
Vlan Policy = 182
```

This is an example of output from the **show dot1x interface interface-id statistics** command. **Table 2-22** describes the fields in the display.

```
Switch# show dot1x interface gigabitethernet1/0/2 statistics
Dot1x Authenticator Port Statistics for GigabitEthernet1/0/2
--
RxStart = 0 RxLogoff = 0 RxResp = 1 RxRespID = 1
RxInvalid = 0 RxLenErr = 0 RxTotal = 2
TxReq = 2 TxReqID = 132 TxTotal = 134
RxVersion = 2 LastRxSrcMAC = 00a0.c9b8.0072

Table 2-22 show dot1x statistics Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RxStart</td>
<td>Number of valid EAPOL-start frames that have been received.</td>
</tr>
<tr>
<td>RxLogoff</td>
<td>Number of valid EAPOL-logoff frames that have been received.</td>
</tr>
<tr>
<td>RxResp</td>
<td>Number of valid EAP-response frames (other than response/identity frames) that have been received.</td>
</tr>
</tbody>
</table>
```
### Table 2-22  show dot1x statistics Field Descriptions (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RxRespID</td>
<td>Number of EAP-response/identity frames that have been received.</td>
</tr>
<tr>
<td>RxInvalid</td>
<td>Number of EAPOL frames that have been received and have an unrecognized frame type.</td>
</tr>
<tr>
<td>RxLenError</td>
<td>Number of EAPOL frames that have been received in which the packet body length field is invalid.</td>
</tr>
<tr>
<td>RxTotal</td>
<td>Number of valid EAPOL frames of any type that have been received.</td>
</tr>
<tr>
<td>TxReq</td>
<td>Number of EAP-request frames (other than request/identity frames) that have been sent.</td>
</tr>
<tr>
<td>TxReqId</td>
<td>Number of Extensible Authentication Protocol (EAP)-request/identity frames that have been sent.</td>
</tr>
<tr>
<td>TxTotal</td>
<td>Number of Extensible Authentication Protocol over LAN (EAPOL) frames of any type that have been sent.</td>
</tr>
<tr>
<td>RxVersion</td>
<td>Number of received packets in the IEEE 802.1x Version 1 format.</td>
</tr>
<tr>
<td>LastRxSrcMac</td>
<td>Source MAC address carried in the most recently received EAPOL frame.</td>
</tr>
</tbody>
</table>

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dot1x default</td>
<td>Resets the IEEE 802.1x parameters to their default values.</td>
</tr>
</tbody>
</table>
**show dtp**

Use the `show dtp` privileged EXEC command to display Dynamic Trunking Protocol (DTP) information for the switch or for a specified interface.

```
show dtp [interface interface-id] [| {begin | exclude | include} expression]
```

**Syntax Description**

- **interface** (Optional) Display port security settings for the specified interface. Valid interfaces include physical ports (including type, stack member, module, and port number).
- **interface-id**
- **| begin** (Optional) Display begins with the line that matches the `expression`.
- **| exclude** (Optional) Display excludes lines that match the `expression`.
- **| include** (Optional) Display includes lines that match the specified `expression`.
- **expression** Expression in the output to use as a reference point.

**Command Modes**

User EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` are not displayed, but the lines that contain `Output` are displayed.

**Examples**

This is an example of output from the `show dtp` command:

```
Switch# show dtp
Global DTP information
 Sending DTP Hello packets every 30 seconds
 Dynamic Trunk timeout is 300 seconds
 21 interfaces using DTP
```

This is an example of output from the `show dtp interface` command:

```
Switch# show dtp interface gigabitethernet1/0/1
DTP information for GigabitEthernet1/0/1:
 TOS/TAS/TNS: ACCESS/AUTO/ACCESS
 TOP/TAP/TNP: NATIVE/NEGOTIATE/NATIVE
 Neighbor address 1: 000943A7D081
 Neighbor address 2: 000000000000
 Hello timer expiration (sec/state): 1/RUNNING
 Access timer expiration (sec/state): never/STOPPED
 Negotiation timer expiration (sec/state): never/STOPPED
 Multidrop timer expiration (sec/state): never/STOPPED
 FSM state: S2:ACCESS
 # times multi & trunk 0
 Enabled: yes
 In STP: no
Statistics
```
show dtp

----------
3160 packets received (3160 good)
0 packets dropped
  0 nonegotiate, 0 bad version, 0 domain mismatches, 0 bad TLVs, 0 other
6320 packets output (6320 good)
  3160 native, 3160 software encap isl, 0 isl hardware native
0 output errors
0 trunk timeouts
1 link ups, last link up on Mon Mar 01 1993, 01:02:29
0 link downs

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show interfaces trunk</td>
<td>Displays interface trunking information.</td>
</tr>
</tbody>
</table>
show eap

Use the `show eap` privileged EXEC command to display Extensible Authentication Protocol (EAP) registration and session information for the switch or for the specified port.

```
show eap { \{registrations \[method \[name\] | transport \[name\]\] \} | \{sessions \[credentials \[name\] \[interface \interface-id\] | interface \interface-id \ method \name | \transport \name\] \} \} \[credentials \[name\] \[interface \interface-id \ method \name | \transport \name\] \] \[begin | exclude \include \] \expression
```

Syntax Description

- **registrations**: Display EAP registration information.
- **method name**: (Optional) Display EAP method registration information.
- **transport name**: (Optional) Display EAP transport registration information.
- **sessions**: Display EAP session information.
- **credentials name**: (Optional) Display EAP method registration information.
- **interface interface-id**: (Optional) Display the EAP information for the specified port (including type, stack member, module, and port number).
- **begin**: (Optional) Display begins with the line that matches the `expression`.
- **exclude**: (Optional) Display excludes lines that match the `expression`.
- **include**: (Optional) Display includes lines that match the specified `expression`.
- **expression**: Expression in the output to use as a reference point.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SEE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When you use the `show eap registrations` privileged EXEC command these keywords, the command output shows this information:

- None—All the lower levels used by EAP and the registered EAP methods.
- **method name** keyword—The specified method registrations.
- **transport name** keyword—The specific lower-level registrations.

When you use the `show eap sessions` privileged EXEC command with these keywords, the command output shows this information:

- None—All active EAP sessions.
- **credentials name** keyword—The specified credentials profile.
- **interface interface-id** keyword—The parameters for the specified interface.
- **method name** keyword—the specified EAP method.
- **transport name** keyword—The specified lower layer.
Expressions are case sensitive. For example, if you enter `exclude output`, the lines that contain `output` are not displayed, but the lines that contain `Output` appear.

**Examples**

This is an example of output from the `show eap registrations` privileged EXEC command:

```
Switch> show eap registrations
Registered EAP Methods:
 Method Type Name
 4 Peer MD5

Registered EAP Lower Layers:
 Handle Type Name
 2 Authenticator Dot1x-Authenticator
 1 Authenticator MAB
```

This is an example of output from the `show eap registrations transport all` privileged user EXEC command:

```
Switch> show eap registrations transport all
Registered EAP Lower Layers:
 Handle Type Name
 2 Authenticator Dot1x-Authenticator
 1 Authenticator MAB
```

This is an example of output from the `show eap sessions` privileged EXEC command:

```
Switch> show eap sessions
Role: Authenticator Decision: Fail
Lower layer: Dot1x-AuthenticatorInterface: Gi1/0/1
Current method: None Method state: Uninitialised
Retransmission count: 0 (max: 2) Timer: Authenticator
ReqId Retransmit (timeout: 30s, remaining: 2s)
EAP handle: 0x5200000A Credentials profile: None
Lower layer context ID: 0x93000004 Eap profile name: None
Method context ID: 0x00000000 Peer Identity: None
Start timeout (s): 1 Retransmit timeout (s): 30 (30)
Current ID: 2 Available local methods: None
Role: Authenticator Decision: Fail
Lower layer: Dot1x-AuthenticatorInterface: Gi1/0/2
Current method: None Method state: Uninitialised
Retransmission count: 0 (max: 2) Timer: Authenticator
ReqId Retransmit (timeout: 30s, remaining: 2s)
EAP handle: 0xA800000B Credentials profile: None
Lower layer context ID: 0x0D000005 Eap profile name: None
Method context ID: 0x00000000 Peer Identity: None
Start timeout (s): 1 Retransmit timeout (s): 30 (30)
Current ID: 2 Available local methods: None
<Output truncated>
```

This is an example of output from the `show eap sessions interface interface-id` privileged EXEC command:

```
Switch> show eap sessions gigabitethernet1/0/1
Role: Authenticator Decision: Fail
Lower layer: Dot1x-AuthenticatorInterface: Gi1/0/1
Current method: None Method state: Uninitialised
Retransmission count: 1 (max: 2) Timer: Authenticator
ReqId Retransmit (timeout: 30s, remaining: 13s)
EAP handle: 0x5200000A Credentials profile: None
Lower layer context ID: 0x93000004 Eap profile name: None
```
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear eap</td>
<td>Clears EAP session information for the switch or for the specified port.</td>
</tr>
</tbody>
</table>
show env

Use the show env user EXEC command to display fan, temperature, redundant power system (RPS) availability, and power information for the switch being accessed (standalone switch or stack master or stack member). Use with the stack keyword to display all information for the stack or for a specified switch in the stack.

```
show env {all | fan | power | rps | stack [switch-number] | temperature [status]} [| {begin | exclude | include} expression]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Display both fan and temperature environmental status.</td>
</tr>
<tr>
<td>fan</td>
<td>Display the switch fan status.</td>
</tr>
<tr>
<td>power</td>
<td>Display the switch power status.</td>
</tr>
<tr>
<td>rps</td>
<td>Display whether an RPS 300 Redundant Power System is connected to the switch.</td>
</tr>
<tr>
<td>stack</td>
<td>Display all environmental status for each switch in the stack or for the specified switch. The range is 1 to 9, depending on the switch member numbers in the stack.</td>
</tr>
<tr>
<td>temperature</td>
<td>Display the switch temperature status.</td>
</tr>
<tr>
<td>status</td>
<td>(Optional) Display the switch internal temperature (not the external temperature) and the threshold values. This keyword is available only on the Catalyst 3750G-48TS, 3750G-48PS, 3750G-24TS-1U, and 3750G-24PS switches.</td>
</tr>
<tr>
<td>begin</td>
<td>(Optional) Display begins with the line that matches the expression.</td>
</tr>
<tr>
<td>exclude</td>
<td>(Optional) Display excludes lines that match the expression.</td>
</tr>
<tr>
<td>include</td>
<td>(Optional) Display includes lines that match the specified expression.</td>
</tr>
<tr>
<td>expression</td>
<td>Expression in the output to use as a reference point.</td>
</tr>
</tbody>
</table>

### Command Modes

User EXEC

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(20)SE3</td>
<td>The temperature status keyword was added.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

Use the show access-lists privileged EXEC command to access information from a specific switch other than the master.

Use the show env stack [switch-number] command to display information about any switch in the stack from any member switch.

Though visible on all switches, the show env temperature status command is valid only for the Catalyst 3750G-48TS, 3750G-48PS, 3750G-24TS-1U, and 3750G-24PS switches. If you enter this command on these switches, the command output shows the switch temperature states and the threshold levels. If you enter the command on a switch other than these four switches, the output field shows Not Applicable.
On a Catalyst 3750G-48PS or 3750G-24PS switch, you can also use the `show env temperature` command to display the switch temperature status. The command output shows the green and yellow states as `OK` and the red state as `FAULTY`. If you enter the `show env all` command on this switch, the command output is the same as the `show env temperature status` command output.

For more information about the threshold levels, see the software configuration guide for this release. Expressions are case sensitive. For example, if you enter `exclude output`, the lines that contain `output` are not displayed, but the lines that contain `Output` are displayed.

### Examples

This is an example of output from the `show env all` command entered from the master switch or a standalone switch:

```text
Switch> show env all
FAN is OK
TEMPERATURE is OK
POWER is OK
RPS is AVAILABLE
```

This is an example of output from the `show env fan` command:

```text
Switch> show env fan
FAN is OK
```

This is an example of output from the `show env stack` command:

```text
Switch> show env stack
SWITCH: 1
FAN is OK
TEMPERATURE is OK
POWER is OK
RPS is NOT PRESENT
SWITCH: 2
FAN is OK
TEMPERATURE is OK
POWER is OK
RPS is NOT PRESENT
SWITCH: 3
FAN is OK
TEMPERATURE is OK
POWER is OK
RPS is NOT PRESENT
SWITCH: 4
FAN is OK
TEMPERATURE is OK
POWER is OK
RPS is NOT PRESENT
SWITCH: 5
FAN is OK
TEMPERATURE is OK
POWER is OK
RPS is NOT PRESENT
SWITCH: 6
FAN is OK
TEMPERATURE is OK
POWER is OK
RPS is NOT PRESENT
```
This example shows how to display information about stack member 3 from the master switch:

Switch> `show env stack 3`
SWITCH: 3
FAN is OK
TEMPERATURE is OK
POWER is OK
RPS is NOT PRESENT

This example shows how to display the temperature value, state, and the threshold values. Table 2-23 describes the temperature states in the command output.

Switch> `show env temperature status`
Temperature Value: 28 Degree Celsius
Temperature State: GREEN
Yellow Threshold: 70 Degree Celsius
Red Threshold: 75 Degree Celsius

**Table 2-23 States in the show env temperature status Command Output**

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>The switch temperature is in the normal operating range.</td>
</tr>
<tr>
<td>Yellow</td>
<td>The temperature is in the warning range. You should check the external temperature around the switch.</td>
</tr>
<tr>
<td>Red</td>
<td>The temperature is in the critical range. The switch might not run properly if the temperature is in this range.</td>
</tr>
</tbody>
</table>
show errdisable detect

Use the `show errdisable detect` user EXEC command to display error-disabled detection status.

```
show errdisable detect [| {begin | exclude | include} expression]
```

**Syntax Description**

- `| begin` (Optional) Display begins with the line that matches the `expression`.
- `| exclude` (Optional) Display excludes lines that match the `expression`.
- `| include` (Optional) Display includes lines that match the specified `expression`.
- `expression` Expression in the output to use as a reference point.

**Command Modes**

User EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

A displayed `gbic-invalid` error reason refers to an invalid small form-factor pluggable (SFP) module.

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` are not displayed, but the lines that contain `Output` are displayed.

**Examples**

This is an example of output from the `show errdisable detect` command:

```
Switch# show errdisable detect
ErrDisable Reason Detection status
--
udld Enabled
bpduguard Enabled
security-violation Enabled
channel-misconfig Enabled
pssecure-violation Enabled
vmps Enabled
loopback Enabled
pagp-flap Enabled
dtp-flap Enabled
l2ptguard Enabled
link-flap Enabled
gbic-invalid Enabled
dhcp-rate-limit Enabled
unicast-flood Enabled
storm-control Enabled
ilpower Enabled
ilpower Enabled
arp-inspection Enabled
```

**Note**

Though visible in the output, the ilpower, storm-control, and unicast-flood fields are not valid.
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>errdisable detect cause</code></td>
<td>Enables error-disabled detection for a specific cause or all causes.</td>
</tr>
<tr>
<td><code>show errdisable flap-values</code></td>
<td>Displays error condition recognition information.</td>
</tr>
<tr>
<td><code>show errdisable recovery</code></td>
<td>Displays error-disabled recovery timer information.</td>
</tr>
<tr>
<td><code>show interfaces status</code></td>
<td>Displays interface status or a list of interfaces in error-disabled state.</td>
</tr>
</tbody>
</table>
show errdisable flap-values

Use the `show errdisable flap-values` user EXEC command to display conditions that cause an error to be recognized for a cause.

```
show errdisable flap-values [| begin | exclude | include] expression
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>begin</td>
<td>(Optional) Display begins with the line that matches the <code>expression</code>.</td>
</tr>
<tr>
<td>exclude</td>
<td>(Optional) Display excludes lines that match the <code>expression</code>.</td>
</tr>
<tr>
<td>include</td>
<td>(Optional) Display includes lines that match the specified <code>expression</code>.</td>
</tr>
<tr>
<td>expression</td>
<td>Expression in the output to use as a reference point.</td>
</tr>
</tbody>
</table>

**Command Modes**

User EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `Flaps` column in the display shows how many changes to the state within the specified time interval will cause an error to be detected and a port to be disabled. For example, the display shows that an error will be assumed and the port shut down if three Dynamic Trunking Protocol (DTP)-state (port mode access/trunk) or Port Aggregation Protocol (PAgP) flap changes occur during a 30-second interval, or if 5 link-state (link up/down) changes occur during a 10-second interval.

<table>
<thead>
<tr>
<th>ErrDisable Reason</th>
<th>Flaps</th>
<th>Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pagp-flap</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>dtp-flap</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>link-flap</td>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` are not displayed, but the lines that contain `Output` are displayed.

**Examples**

This is an example of output from the `show errdisable flap-values` command:

```
Switch> show errdisable flap-values
ErrDisable Reason Flaps Time (sec)
----------------- ------ ----------
papg-flap 3 30
dtp-flap 3 30
link-flap 5 10
```
### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>errdisable detect cause</strong></td>
<td>Enables error-disabled detection for a specific cause or all causes.</td>
</tr>
<tr>
<td><strong>show errdisable detect</strong></td>
<td>Displays error-disabled detection status.</td>
</tr>
<tr>
<td><strong>show errdisable recovery</strong></td>
<td>Displays error-disabled recovery timer information.</td>
</tr>
<tr>
<td><strong>show interfaces status</strong></td>
<td>Displays interface status or a list of interfaces in error-disabled state.</td>
</tr>
</tbody>
</table>
show errdisable recovery

Use the `show errdisable recovery` user EXEC command to display the error-disabled recovery timer information.

```
show errdisable recovery [| begin | exclude | include] expression
```

**Syntax Description**
- `begin` (Optional) Display begins with the line that matches the `expression`.
- `exclude` (Optional) Display excludes lines that match the `expression`.
- `include` (Optional) Display includes lines that match the specified `expression`.
- `expression` Expression in the output to use as a reference point.

**Command Modes**
User EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
A `gbic-invalid error-disable` reason refers to an invalid small form-factor pluggable (SFP) module interface.

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` are not displayed, but the lines that contain `Output` are displayed.

**Examples**
This is an example of output from the `show errdisable recovery` command:

```
Switch> show errdisable recovery
ErrDisable Reason Timer Status
------------------- --------------
udld Disabled
bpduguard Disabled
security-violation Disabled
channel-misconfig Disabled
vmps Disabled
pagp-flap Disabled
dtp-flap Disabled
link-flap Enabled
l2ptguard Disabled
psecure-violation Disabled
gbic-invalid Disabled
dhcp-rate-limit Disabled
unicast-flood Disabled
storm-control Disabled
arp-inspection Disabled
loopback Disabled
```
show errdisable recovery

Timer interval: 300 seconds

Interfaces that will be enabled at the next timeout:

<table>
<thead>
<tr>
<th>Interface</th>
<th>Errdisable reason</th>
<th>Time left (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi1/0/2</td>
<td>link-flap</td>
<td>279</td>
</tr>
</tbody>
</table>

Note

Though visible in the output, the unicast-flood field is not valid.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>errdisable recovery</td>
<td>Configures the recover mechanism variables.</td>
</tr>
<tr>
<td>show errdisable detect</td>
<td>Displays error-disabled detection status.</td>
</tr>
<tr>
<td>show errdisable flap-values</td>
<td>Displays error condition recognition information.</td>
</tr>
<tr>
<td>show interfaces status</td>
<td>Displays interface status or a list of interfaces in error-disabled state.</td>
</tr>
</tbody>
</table>
show etherchannel

Use the `show etherchannel` user EXEC command to display EtherChannel information for a channel.

```
show etherchannel [channel-group-number {detail | port | port-channel | protocol | summary}] [detail | load-balance | port | port-channel | protocol | summary] [| {begin | exclude | include} expression]
```

**Syntax Description**

- `channel-group-number` (Optional) Number of the channel group. The range is 1 to 48.
- `detail` Display detailed EtherChannel information.
- `load-balance` Display the load-balance or frame-distribution scheme among ports in the port channel.
- `port` Display EtherChannel port information.
- `port-channel` Display port-channel information.
- `protocol` Display the protocol that is being used in the EtherChannel.
- `summary` Display a one-line summary per channel-group.
- `| begin` (Optional) Display begins with the line that matches the `expression`.
- `| exclude` (Optional) Display excludes lines that match the `expression`.
- `| include` (Optional) Display includes lines that match the specified `expression`.
- `expression` Expression in the output to use as a reference point.

**Command Modes**

User EXEC

**Command History**

- **Release** 12.1(11)AX
  **Modification** This command was introduced.
- **Release** 12.1(14)EA1
  **Modification** The `protocol` keyword was added.
- **Release** 12.2(25)SE
  **Modification** The `channel-group-number` range was changed from 1 to 12 to 1 to 48.

**Usage Guidelines**

If you do not specify a `channel-group`, all channel groups are displayed.

In the output, the Passive port list field is displayed only for Layer 3 port channels. This field means that the physical port, which is still not up, is configured to be in the channel group (and indirectly is in the only port channel in the channel group).

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` are not displayed, but the lines that contain `Output` are displayed.
Examples

This is an example of output from the `show etherchannel detail` command:

```
Switch> show etherchannel 1 detail
Group state = L2
Ports: 2 Maxports = 16
Port-channels: 1 Max Port-channels = 16
Protocol: LACP

Ports in the group:

Port: Gi1/0/1

Port state = Up Mstr In-Bndl
Channel group = 1 Mode = Active Gcchange = -
Port-channel = Po1 GC = - Pseudo port-channel = Po1
Port index = 0 Load = 0x00 Protocol = LACP

Flags: S - Device is sending Slow LACPDU F - Device is sending fast LACPDU
 A - Device is in active mode. P - Device is in passive mode.

Local information:

<table>
<thead>
<tr>
<th>Port</th>
<th>Flags</th>
<th>State</th>
<th>Priority</th>
<th>Key</th>
<th>Key</th>
<th>Number</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi1/0/1</td>
<td>SA</td>
<td>bndl</td>
<td>32768</td>
<td>0x1</td>
<td>0x1</td>
<td>0x101</td>
<td>0x3D</td>
</tr>
<tr>
<td>Gi1/0/2</td>
<td>SA</td>
<td>bndl</td>
<td>32768</td>
<td>0x0</td>
<td>0x0</td>
<td>0x0</td>
<td>0x3D</td>
</tr>
</tbody>
</table>

Age of the port in the current state: 01d:20h:06m:04s

Port-channels in the group:

Port-channel: Po1 (Primary Aggregator)

Age of the Port-channel = 01d:20h:20m:26s
Logical slot/port = 10/1 Number of ports = 2
HotStandBy port = null
Port state = Port-channel Ag-Inuse
Protocol = LACP

Ports in the Port-channel:

<table>
<thead>
<tr>
<th>Index</th>
<th>Load</th>
<th>Port</th>
<th>EC state</th>
<th>No of bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Gi1/0/1</td>
<td>Active</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>Gi1/0/2</td>
<td>Active</td>
<td>0</td>
</tr>
</tbody>
</table>

Time since last port bundled: 01d:20h:20m:20s Gi1/0/2
```
This is an example of output from the `show etherchannel 1 summary` command:

```
Switch> show etherchannel 1 summary
Flags: D - down P - in port-channel
 I - stand-alone s - suspended
 H - Hot-standby (LACP only)
 R - Layer3 S - Layer2
 u - unsuitable for bundling
 U - in use f - failed to allocate aggregator
 d - default port

Number of channel-groups in use: 1
Number of aggregators: 1

Group Port-channel Protocol Ports
+------------------------+---------+-----------------------------+
 1 Po1(SU) LACP Gi1/0/1(P) Gi1/0/2(P)
```

This is an example of output from the `show etherchannel 1 port-channel` command:

```
Switch> show etherchannel 1 port-channel
Port-channels in the group:

Port-channel: Po1 (Primary Aggregator)

Age of the Port-channel = 01d:20h:24m:50s
Logical slot/port = 10/1 Number of ports = 2
HotStandBy port = null
Port state = Port-channel Ag-Inuse
Protocol = LACP

Ports in the Port-channel:
Index Load Port EC state No of bits
+-------------------------------+----------+-----------+--------+
 0 00 Gi1/0/1 Active 0
 0 00 Gi1/0/2 Active 0

Time since last port bundled: 01d:20h:24m:44s Gi1/0/2
```

This is an example of output from `show etherchannel protocol` command:

```
Switch# show etherchannel protocol
Channel-group listing:

Group: 1

Protocol: LACP

Group: 2

Protocol: PAgP
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel-group</td>
<td>Assigns an Ethernet port to an EtherChannel group.</td>
</tr>
<tr>
<td>channel-protocol</td>
<td>Restricts the protocol used on a port to manage channeling.</td>
</tr>
<tr>
<td>interface port-channel</td>
<td>Accesses or creates the port channel.</td>
</tr>
</tbody>
</table>
show flowcontrol

Use the `show flowcontrol` user EXEC command to display the flow control status and statistics.

```
show flowcontrol [interface interface-id | module number] [| begin | exclude | include] expression
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface interface-id</td>
<td>(Optional) Display the flow control status and statistics for a specific interface.</td>
</tr>
<tr>
<td>module number</td>
<td>(Optional) Display the flow control status and statistics for all interfaces on the specified stack member. The range is 1 to 9. This option is not available if you have entered a specific interface ID.</td>
</tr>
<tr>
<td>begin</td>
<td>(Optional) Display begins with the line that matches the <code>expression</code>.</td>
</tr>
<tr>
<td>exclude</td>
<td>(Optional) Display excludes lines that match the <code>expression</code>.</td>
</tr>
<tr>
<td>include</td>
<td>(Optional) Display includes lines that match the specified <code>expression</code>.</td>
</tr>
<tr>
<td>expression</td>
<td>Expression in the output to use as a reference point.</td>
</tr>
</tbody>
</table>

**Command Modes**

User EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(14)EA1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use this command to display the flow control status and statistics on the switch or for a specific interface.

Use the `show flowcontrol` command to display information about all the switch interfaces. For a standalone switch, the output from the `show flowcontrol` command is the same as the output from the `show flowcontrol module number` command.

Use the `show flowcontrol interface interface-id` command to display information about a specific interface.

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.

**Examples**

This is an example of output from the `show flowcontrol` command.

```
Switch# show flowcontrol
Port Send FlowControl Receive FlowControl RxPause TxPause
admin oper admin oper oper
--------- -------- -------- -------- ------- -------
Gi2/0/1 Unsupp. Unsupp. off off 0 0
Gi2/0/2 desired off off off 0 0
Gi2/0/3 desired off off off 0 0
<output truncated>
```
This is an example of output from the `show flowcontrol interface interface-id` command:

```
Switch> show flowcontrol gigabitethernet2/0/2
Port Send FlowControl Receive FlowControl RxPause TxPause
 admin oper admin oper ------- -------
Gi2/0/2 desired off off off 0 0
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>flowcontrol</td>
<td>Sets the receive flow-control state for an interface.</td>
</tr>
</tbody>
</table>
**show idprom**

Use the `show idprom` user EXEC command to display the IDPROM information for the specified interface.

```
show idprom {interface interface-id} [detail] [| {begin | exclude | include} expression]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface interface-id</td>
<td>Display the IDPROM information for the specified 10-Gigabit Ethernet interface.</td>
</tr>
<tr>
<td>detail</td>
<td>(Optional) Display detailed hexadecimal IDPROM information.</td>
</tr>
<tr>
<td>begin</td>
<td>(Optional) Display begins with the line that matches the expression.</td>
</tr>
<tr>
<td>exclude</td>
<td>(Optional) Display excludes lines that match the expression.</td>
</tr>
<tr>
<td>include</td>
<td>(Optional) Display includes lines that match the specified expression.</td>
</tr>
<tr>
<td>expression</td>
<td>Expression in the output to use as a reference point.</td>
</tr>
</tbody>
</table>

**Command Modes**

User EXEC

**Command History**

```
Release Modification
12.2(20)SE1 This command was introduced.
```

**Usage Guidelines**

This command applies only to 10-Gigabit Ethernet interfaces.

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.

**Examples**

This is an example of output from the `show idprom interface tengigabitethernet1/0/1` command for the 10-Gigabit Ethernet interface. It shows the XENPAK module serial EEPROM contents.

For information about the EEPROM map and the field descriptions for the display, see the XENPAK multisource agreement (MSA) at these sites:

- [http://www.xenpak.org/MSA/XENPAK_MSA_R2.1.pdf](http://www.xenpak.org/MSA/XENPAK_MSA_R2.1.pdf)
To determine which version of the XENPAK documentation to read, check the XENPAK MSA Version supported field in the display. Version 2.1 is 15 hexadecimal, and Version 3.0 is 1E hexadecimal (not shown in the example).

Switch# show idprom interface tengigabitethernet1/0/1
TenGigabitEthernet1/0/1 (gpn:472, port-number:1)
------------------------------------------------------------------------
XENPAK Serial EEPROM Contents:
Non-Volatile Register (NVR) Fields
XENPAK MSA Version supported : 0x15
NVR Size in bytes : 0x100
Number of bytes used : 0x0D0
Basic Field Address : 0xB
Customer Field Address : 0x77
Vendor Field Address : 0xA7
Extended Vendor Field Address : 0x100
Reserved : 0x0
Transceiver type : 0x1 =XENPAK
Optical connector type : 0x1 =SC
Bit encoding : 0x1 =NRZ
Normal BitRate in multiple of 1M b/s : 0x2848
Protocol Type : 0x1 =10GgE

Standards Compliance Codes :
 10GbE Code Byte 0 : 0x2 =10GBASE-LR
 10GbE Code Byte 1 : 0x0
SONET/SDH Code Byte 0 : 0x0
SONET/SDH Code Byte 1 : 0x0
SONET/SDH Code Byte 2 : 0x0
SONET/SDH Code Byte 3 : 0x0
10GFC Code Byte 0 : 0x0
10GFC Code Byte 1 : 0x0
10GFC Code Byte 2 : 0x0
10GFC Code Byte 3 : 0x0
Transmission range in 10m : 0x3E8
Fibre Type :
  Fibre Type Byte 0 : 0x40 =NDSF only
  Fibre Type Byte 1 : 0x0 =Unspecified

Centre Optical Wavelength in 0.01nm steps - Channel 0 : 0x1 0xFF 0xB8
Centre Optical Wavelength in 0.01nm steps - Channel 1 : 0x0 0x0 0x0
Centre Optical Wavelength in 0.01nm steps - Channel 2 : 0x0 0x0 0x0
Centre Optical Wavelength in 0.01nm steps - Channel 3 : 0x0 0x0 0x0
Package Identifier OUI : 0x41F420
Transceiver Vendor OUI : 0x3400871
Transceiver vendor name : CISCO-OPNEXT, INC
Part number provided by transceiver vendor : 800-24558-01
Revision level of part number provided by vendor : 01
Vendor serial number : ONJ0735003U
Vendor manufacturing date code : 2003082700

Reserved1 : 00 00 00 00 00 00 00
Basic Field Checksum : 0x6C

Customer Writable Area :
 0x00: 00 00 00 00 00 00 00
 0x10: 00 00 00 00 00 00 00
 0x20: 00 00 00 00 00 00 00
show idprom

Vendor Specific :
0x00:41 00 20 F4 88 84 28 94 C0 00 30 14 06 39 00 D9
0x10:03 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x20:00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x30:00 00 00 00 11 5E 19 E9 BF 1B AD 98 03 9B DF 87
0x40:CC F6 45 FF 99 00 00 00 00 00 00 00 00 00 C0 48
0x50:46 D2 00 00 00 00 00 00

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>show controllers</td>
<td>Displays per-interface send and receive statistics read from the hardware, interface internal registers, or port ASIC information.</td>
</tr>
<tr>
<td></td>
<td>ethernet-controller</td>
<td></td>
</tr>
</tbody>
</table>


show interfaces

Use the `show interfaces` privileged EXEC command to display the administrative and operational status of all interfaces or a specified interface.

```
show interfaces [interface-id | vlan vlan-id] [accounting | capabilities [module number] |
 counters | description | etherchannel | flowcontrol | private-vlan mapping | pruning | stats |
 status [err-disabled] | switchport [backup | module number] | transceiver [properties |
 detail] [module number] | trunk] [| {begin | exclude | include} expression]
```

**Syntax Description**

<table>
<thead>
<tr>
<th><code>interface-id</code></th>
<th>(Optional) Valid interfaces include physical ports (including type, stack member, module, and port number) and port channels. The port-channel range is 1 to 48.</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>vlan vlan-id</code></td>
<td>(Optional) VLAN identification. The range is 1 to 4094.</td>
</tr>
</tbody>
</table>
| `accounting`   | (Optional) Display accounting information on the interface, including active protocols and input and output packets and octets. 
  **Note** The display shows only packets processed in software; hardware-switched packets do not appear. |
| `capabilities` | (Optional) Display the capabilities of all interfaces or the specified interface, including the features and options that you can configure on the interface. Though visible in the command line help, this option is not available for VLAN IDs. |
| `module number` | (Optional) Display `capabilities`, `switchport` configuration, or `transceiver` characteristics (depending on preceding keyword) of all interfaces on the specified stack member. The range is 1 to 9. This option is not available if you entered a specific interface ID. |
| `counters`     | (Optional) See the `show interfaces counters` command. |
| `description`  | (Optional) Display the administrative status and description set for an interface. |
| `etherchannel` | (Optional) Display interface EtherChannel information. |
| `flowcontrol`  | (Optional) Display interface flowcontrol information |
| `private-vlan mapping` | (Optional) Display private-VLAN mapping information for the VLAN switch virtual interfaces (SVIs). This keyword is available only if your switch is running the IP services image, formerly known as the enhanced multilayer image (EMI). |
| `pruning`      | (Optional) Display interface trunk VTP pruning information. |
| `stats`        | (Optional) Display the input and output packets by switching path for the interface. |
| `status`       | (Optional) Display the status of the interface. A status of `unsupported` in the Type field means that a non-Cisco small form-factor pluggable (SFP) module is inserted in the module slot. |
| `err-disabled` | (Optional) Display interfaces in error-disabled state. |
| `switchport`   | (Optional) Display the administrative and operational status of a switching (nonrouting) port, including port blocking and port protection settings. |
| `backup`       | (Optional) Display Flex Link backup interface configuration and status for the specified interface or all interfaces on the stack. |
**show interfaces**

(Optional) Display the physical properties of a CWDM\(^1\) or DWDM\(^2\) small form-factor (SFP) module interface. The keywords have these meanings:

- **detail**—(Optional) Display calibration properties, including high and low numbers and any alarm information.
- **properties**—(Optional) Display speed, duplex, and inline power settings on an interface.

**transceiver**

Display interface trunk information. If you do not specify an interface, only information for active trunking ports appears.

<table>
<thead>
<tr>
<th>begin</th>
<th>(Optional) Display begins with the line that matches the expression.</th>
</tr>
</thead>
<tbody>
<tr>
<td>exclude</td>
<td>(Optional) Display excludes lines that match the expression.</td>
</tr>
<tr>
<td>include</td>
<td>(Optional) Display includes lines that match the specified expression.</td>
</tr>
<tr>
<td>expression</td>
<td>Expression in the output to use as a reference point.</td>
</tr>
</tbody>
</table>

1. coarse wavelength-division multiplexer
2. dense wavelength-division multiplexer

**Note**

Though visible in the command-line help strings, the **crb**, **fair-queue**, **irb**, **mac-accounting**, **precedence**, **random-detect**, **rate-limit**, and **shape** keywords are not supported.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(14)EA1</td>
<td>Support for the <strong>capabilities</strong> keyword was added.</td>
</tr>
<tr>
<td>12.2(20)SE</td>
<td>The <strong>private-vlan mapping</strong>, <strong>backup</strong>, <strong>transceiver calibration</strong>, <strong>detail</strong>, and <strong>properties</strong> keywords were added.</td>
</tr>
<tr>
<td>12.2(25)SEA</td>
<td>The <strong>calibration</strong> keyword was removed.</td>
</tr>
<tr>
<td>12.2(25)SEE</td>
<td>Added the <strong>backup</strong>, <strong>counters</strong>, <strong>detail</strong>, and <strong>trunk</strong> keywords.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The **show interfaces capabilities** command with different keywords has these results:

- Use the **show interface capabilities module number** command to display the capabilities of all interfaces on that switch in the stack. If there is no switch with that module number in the stack, there is no output.
- Use the **show interfaces interface-id capabilities** to display the capabilities of the specified interface.
- Use the **show interfaces capabilities** (with no module number or interface ID) to display the capabilities of all interfaces in the stack.
- Use the **show interface switchport module number** command to display the switch port characteristics of all interfaces on that switch in the stack. If there is no switch with that module number in the stack, there is no output.
Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` are not displayed, but the lines that contain `Output` are displayed.

**Examples**

This is an example of output from the `show interfaces` command for an interface on stack member 3:

```
Switch# show interfaces gigabitethernet3/0/2
GigabitEthernet3/0/2 is down, line protocol is down
 Hardware is Gigabit Ethernet, address is 0009.43a7.d085 (bia 0009.43a7.d085)
 MTU 1500 bytes, BW 10000 Kbit, DLY 1000 usec,
 reliability 255/255, txload 1/255, rxload 1/255
 Encapsulation ARPA, loopback not set
 Keepalive set (10 sec)
 Auto-duplex, Auto-speed
 input flow-control is off, output flow-control is off
 ARP type: ARPA, ARP Timeout 04:00:00 Last input never, output never, output hang never
 Last clearing of "show interface" counters never
 Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0
 Queueing strategy: fifo
 Output queue :0/40 (size/max)
 5 minute input rate 0 bits/sec, 0 packets/sec
 5 minute output rate 0 bits/sec, 0 packets/sec
 2 packets input, 1040 bytes, 0 no buffer
 Received 0 broadcasts, 0 runts, 0 giants, 0 throttles
 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
 0 watchdogs, 0 multicast, 0 pause input
 0 input packets with dribble condition detected
 4 packets output, 1040 bytes, 0 underruns
 0 output errors, 0 collisions, 0 interface resets
 0 babbles, 0 late collision, 0 deferred
 0 lost carrier, 0 no carrier, 0 PAUSE output
 0 output buffer failures, 0 output buffers swapped out
```

This is an example of output from the `show interfaces accounting` command.

```
Switch# show interfaces accounting
Vlan1 Protocol Pkts In Chars In Pkts Out Chars Out
 IP 1094395 131900022 559555 84077157
 Spanning Tree 283896 17033760 42 2520
 ARP 63730 3825680 231 13860
 Interface Vlan2 is disabled
Vlan7 Protocol Pkts In Chars In Pkts Out Chars Out
 No traffic sent or received on this interface.
Vlan31 Protocol Pkts In Chars In Pkts Out Chars Out
 No traffic sent or received on this interface.
GigabitEthernet1/0/1 Protocol Pkts In Chars In Pkts Out Chars Out
 No traffic sent or received on this interface.
GigabitEthernet1/0/2 Protocol Pkts In Chars In Pkts Out Chars Out
 No traffic sent or received on this interface.
<output truncated>
```
This is an example of output from the `show interfaces capabilities` command for an interface.

```
Switch# show interfaces gigabitethernet1/0/2 capabilities
GigabitEthernet1/0/2
 Model: WS-C3750G-24TS
 Type: 10/100/1000BaseTX
 Speed: 10,100,1000,auto
 Duplex: full,auto
 Trunk encaps. type: 802.1Q,ISL
 Trunk mode: on,off,desirable,negotiate
 Channel: yes
 Broadcast suppression: percentage(0-100)
 Flowcontrol: rx-(off,on,desired),tx-(none)
 Fast Start: yes
 QoS scheduling: rx-(not configurable on per port basis),tx-(4q2t)
 CoS rewrite: yes
 ToS rewrite: yes
 UDLD: yes
 Inline power: no
 SPAN: source/destination
 PortSecure: yes
 Dot1x: yes
```

This is an example of output from the `show interfaces interface description` command when the interface has been described as `Connects to Marketing` by using the `description` interface configuration command.

```
Switch# show interfaces gigabitethernet1/0/2 description
Interface Status Protocol Description
Gi1/0/2 up down Connects to Marketing
```

This is an example of output from the `show interfaces etherchannel` command when port channels are configured on the switch:

```
Switch# show interfaces etherchannel

Port-channel1:
 Age of the Port-channel = 03d:20h:17m:29s
 Logical slot/port = 10/1 Number of ports = 0
 GC = 0x00000000 HotStandBy port = null
 Port state = Port-channel Ag-Not-Inuse

Port-channel2:
 Age of the Port-channel = 03d:20h:17m:29s
 Logical slot/port = 10/2 Number of ports = 0
 GC = 0x00000000 HotStandBy port = null
 Port state = Port-channel Ag-Not-Inuse

Port-channel3:
 Age of the Port-channel = 03d:20h:17m:29s
 Logical slot/port = 10/3 Number of ports = 0
 GC = 0x00000000 HotStandBy port = null
 Port state = Port-channel Ag-Not-Inuse
```
This is an example of output from the `show interfaces private-vlan mapping` command when the private-VLAN primary VLAN is VLAN 10 and the secondary VLANs are VLANs 501 and 502:

```
Switch# show interfaces private-vlan mapping
Interface Secondary VLAN Type
-------------- ------------------ -------------
vlan10 501 isolated
vlan10 502 community
```

This is an example of output from the `show interfaces` `interface-id pruning` command when pruning is enabled in the VTP domain:

```
Switch# show interfaces gigabitethernet1/0/2 pruning
Port Vlans pruned for lack of request by neighbor
Gi1/0/2 3,4
Port Vlans traffic requested of neighbor
Gi1/0/2 1-3
```

This is an example of output from the `show interfaces stats` command for a specified VLAN interface.

```
Switch# show interfaces vlan 1 stats
Switching path Pkts In Chars In Pkts Out Chars Out
Processor 1165354 136205310 570800 91731594
Route cache 0 0 0 0
Total 1165354 136205310 570800 91731594
```

This is an example of partial output from the `show interfaces status` command. It displays the status of all interfaces.

```
Switch# show interfaces status
Port Name Status Vlan Duplex Speed Type
Fa1/0/1 connected routed a-half a-100 10/100BaseTX
Fa1/0/2 notconnect 121,40 auto auto 10/100BaseTX
Fa1/0/3 notconnect 1 auto auto 10/100BaseTX
Fa1/0/4 notconnect 18 auto auto Not Present
Fa1/0/5 connected 121 a-full a-1000 10/100BaseTX
Fa1/0/6 connected 122,11 a-full a-1000 10/100BaseTX
<output truncated>
G1/0/1 notconnect 1 auto auto 10/100/1000BaseTX
G1/0/2 notconnect 1 auto auto unsupported
```

These are examples of output from the `show interfaces status` command for a specific interface when private VLANs are configured. Port 22 is configured as a private-VLAN host port. It is associated with primary VLAN 20 and secondary VLAN 25.

```
Switch# show interfaces fastethernet1/0/22 status
Port Name Status Vlan Duplex Speed Type
Fa1/0/22 connected 20,25 a-full a-100 10/100BaseTX
```

In this example, port 20 is configured as a private-VLAN promiscuous port. The display shows only the primary VLAN 20.

```
Switch# show interfaces fastethernet1/0/20 status
Port Name Status Vlan Duplex Speed Type
Fa1/0/20 connected 20 a-full a-100 10/100BaseTX
```
This is an example of output from the `show interfaces status err-disabled` command. It displays the status of interfaces in the error-disabled state.

```
Switch# show interfaces status err-disabled
Port Name Status Reason
Gi2/0/26 err-disabled gbic-invalid
```

This is an example of output from the `show interfaces switchport` command for a port. Table 2-24 describes the fields in the display.

```
Switch# show interfaces gigabitethernet1/0/1 switchport
Name: Gi1/0/1
Switchport: Enabled
Administrative Mode: dynamic auto
Operational Mode: static access
Administrative Trunking Encapsulation: negotiate
Operational Trunking Encapsulation: native
Negotiation of Trunking: On
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 1 (default)
Voice VLAN: none
Administrative private-vlan host-association:10 (VLAN0010) 502 (VLAN0502)
Administrative private-vlan mapping: none
Administrative private-vlan trunk native VLAN: none
Administrative private-vlan trunk encapsulation: dot1q
Administrative private-vlan trunk normal VLANs: none
Administrative private-vlan trunk private VLANs: none
Operational private-vlan: none
Trunking VLANs Enabled: ALL
Pruning VLANs Enabled: 2-1001
Capture Mode Disabled
Capture VLANs Allowed: ALL

Protected: false
Unknown unicast blocked: disabled
Unknown multicast blocked: disabled

Voice VLAN: none (Inactive)
Appliance trust: none
```

**Table 2-24  show interfaces switchport Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Displays the port name.</td>
</tr>
<tr>
<td>Switchport</td>
<td>Displays the administrative and operational status of the port. In this display, the port is in switchport mode.</td>
</tr>
<tr>
<td>Administrative Mode</td>
<td>Displays the administrative and operational modes.</td>
</tr>
<tr>
<td>Operational Mode</td>
<td></td>
</tr>
<tr>
<td>Administrative Trunking Encapsulation</td>
<td>Displays the administrative and operational encapsulation method and whether trunking negotiation is enabled.</td>
</tr>
<tr>
<td>Operational Trunking Encapsulation</td>
<td></td>
</tr>
<tr>
<td>Negotiation of Trunking</td>
<td></td>
</tr>
</tbody>
</table>
This is an example of output from the `show interfaces switchport` command for a port configured as a private VLAN promiscuous port. The primary VLAN 20 is mapped to secondary VLANs 25, 30 and 35:

```
Switch# show interface gigabitethernet1/0/2 switchport
Name: Gi1/0/2
Switchport: Enabled
Administrative Mode: private-vlan promiscuous
Operational Mode: private-vlan promiscuous
Administrative Trunking Encapsulation: negotiate
Operational Trunking Encapsulation: native
Negotiation of Trunking: Off
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 1 (default)
Administrative Native VLAN tagging: enabled
Voice VLAN: none
Administrative private-vlan host-association: none
Administrative private-vlan mapping: 20 (VLAN0020) 25 (VLAN0025) 30 (VLAN0030) 35 (VLAN0035)
Administrative private-vlan trunk native VLAN: none
Administrative private-vlan trunk Native VLAN tagging: enabled
Administrative private-vlan trunk encapsulation: dot1q
Administrative private-vlan trunk normal VLANs: none
Administrative private-vlan trunk private VLANs: none
Operational private-vlan:
 20 (VLAN0020) 25 (VLAN0025)
 30 (VLAN0030)
 35 (VLAN0035)
<output truncated>
```
This is an example of output from the `show interfaces switchport backup` command:

```
Switch# show interfaces switchport backup
Switch Backup Interface Pairs:
Active Interface Backup Interface State
--
Fa1/0/1 Fa1/0/2 Active Up/Backup Standby
Fa3/0/3 Fa4/0/5 Active Down/Backup Up
Po1 Po2 Active Standby/Backup Up
```

This is an example of output from the `show interfaces interface-id pruning` command:

```
Switch# show interfaces gigabitethernet1/0/2 pruning
Port Vlans pruned for lack of request by neighbor
```

This is an example of output from the `show interfaces interface-id trunk` command. It displays trunking information for the port.

```
Switch# show interfaces gigabitethernet1/0/1 trunk
Port Mode Encapsulation Status Native vlan
Gi1/0/1 auto negotiate trunking 1
```

This is an example of output from the `show interfaces interface-id transceiver properties` command:

```
Switch# show interfaces gigabitethernet1/0/1 transceiver properties
Name : Gi1/0/1
Administrative Speed: auto
Operational Speed: auto
Administrative Duplex: auto
Administrative Power Inline: enable
Operational Duplex: auto
Administrative Auto-MDIx: off
Operational Auto-MDIx: off
```

This is an example of output from the `show interfaces interface-id transceiver detail` command:

```
Switch# show interfaces gigabitethernet2/0/3 transceiver detail
ITU Channel not available (Wavelength not available),
Transceiver is externally calibrated.
mA:milliamperes, dBm:decibels (milliwatts), N/A:not applicable.
++:high alarm, +:high warning, -:low warning, -- :low alarm.
A2D readouts (if they differ), are reported in parentheses.
The threshold values are uncalibrated.

<table>
<thead>
<tr>
<th>Temperature (Celsius)</th>
<th>High Alarm (Celsius)</th>
<th>High Warn (Celsius)</th>
<th>Low Warn (Celsius)</th>
<th>Low Alarm (Celsius)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi2/0/3 41.5</td>
<td>110.0</td>
<td>103.0</td>
<td>-8.0</td>
<td>-12.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voltage (Volts)</th>
<th>High Alarm (Volts)</th>
<th>High Warn (Volts)</th>
<th>Low Warn (Volts)</th>
<th>Low Alarm (Volts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi2/0/3 3.20</td>
<td>4.00</td>
<td>3.70</td>
<td>3.00</td>
<td>2.95</td>
</tr>
</tbody>
</table>
```
### show interfaces

<table>
<thead>
<tr>
<th>Port</th>
<th>Current (milliamperes)</th>
<th>High Alarm Threshold (mA)</th>
<th>High Warn Threshold (mA)</th>
<th>Low Warn Threshold (mA)</th>
<th>Low Alarm Threshold (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi2/0/3</td>
<td>31.0</td>
<td>84.0</td>
<td>70.0</td>
<td>4.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Port</th>
<th>Optical Transmit Power (dBm)</th>
<th>High Alarm Threshold (dBm)</th>
<th>High Warn Threshold (dBm)</th>
<th>Low Warn Threshold (dBm)</th>
<th>Low Alarm Threshold (dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi2/0/3</td>
<td>-0.0 (-0.0)</td>
<td>-0.0</td>
<td>-0.0</td>
<td>-0.0</td>
<td>-0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Port</th>
<th>Optical Receive Power (dBm)</th>
<th>High Alarm Threshold (dBm)</th>
<th>High Warn Threshold (dBm)</th>
<th>Low Warn Threshold (dBm)</th>
<th>Low Alarm Threshold (dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi2/0/3</td>
<td>N/A (-0.0)</td>
<td>-0.0</td>
<td>-0.0</td>
<td>-0.0</td>
<td>-0.0</td>
</tr>
</tbody>
</table>

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>switchport access</td>
<td>Configures a port as a static-access or a dynamic-access port.</td>
</tr>
<tr>
<td>switchport block</td>
<td>Blocks unknown unicast or multicast traffic on an interface.</td>
</tr>
<tr>
<td>switchport backup interface</td>
<td>Configures Flex Links, a pair of Layer 2 interfaces that provide mutual backup.</td>
</tr>
<tr>
<td>switchport mode</td>
<td>Configures the VLAN membership mode of a port.</td>
</tr>
<tr>
<td>switchport mode private-vlan</td>
<td>Configures a port as a private-VLAN host or a promiscuous port.</td>
</tr>
<tr>
<td>switchport private-vlan</td>
<td>Defines private-VLAN association for a host port or private-VLAN mapping for a promiscuous port.</td>
</tr>
<tr>
<td>switchport protected</td>
<td>Isolates unicast, multicast, and broadcast traffic at Layer 2 from other protected ports on the same switch.</td>
</tr>
<tr>
<td>switchport trunk pruning</td>
<td>Configures the VLAN pruning-eligible list for ports in trunking mode.</td>
</tr>
</tbody>
</table>
show interfaces counters

Use the **show interfaces counters** privileged EXEC command to display various counters for the switch or for a specific interface.

```
show interfaces [interface-id | vlan vlan-id] counters [errors | etherchannel | module switch-number | protocol status | trunk] [| begin | exclude | include] expression
```

**Syntax Description**

- **interface-id** (Optional) ID of the physical interface, including type, stack member, module, and port number.
- **errors** (Optional) Display error counters.
- **etherchannel** (Optional) Display EtherChannel counters, including octets, broadcast packets, multicast packets, and unicast packets received and sent.
- **module switch-number** (Optional) Display counters for the specified stack member. The range is from 1 to 9, depending upon the switch numbers in the stack.
  
  **Note** In this command, the **module** keyword refers to the stack member number (1 to 9). The module number that is part of the interface ID is always zero.
- **protocol status** (Optional) Display status of protocols enabled on interfaces.
- **trunk** (Optional) Display trunk counters.
- **| begin** (Optional) Display begins with the line that matches the **expression**.
- **| exclude** (Optional) Display excludes lines that match the **expression**.
- **| include** (Optional) Display includes lines that match the specified **expression**.
- **expression** Expression in the output to use as a reference point.

**Note**

Though visible in the command-line help string, the **vlan vlan-id** keyword is not supported.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(25)SE</td>
<td>The <strong>etherchannel</strong> and <strong>protocol status</strong> keywords were added. The <strong>broadcast</strong>, <strong>multicast</strong>, and <strong>unicast</strong> keywords were removed.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If you do not enter any keywords, all counters for all interfaces are included.

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` are not displayed, but the lines that contain `Output` are displayed.
Examples

This is an example of partial output from the `show interfaces counters` command. It displays all counters for the switch.

```
Switch# show interfaces counters
Port InOctets InUcastPkts InMcastPkts InBcastPkts
Gi1/0/1 0 0 0 0
Gi1/0/2 0 0 0 0
<output truncated>
```

This is an example of partial output from the `show interfaces counters module` command for stack member 2. It displays all counters for the specified switch in the stack.

```
Switch# show interfaces counters module 2
Port InOctets InUcastPkts InMcastPkts InBcastPkts
Fa2/0/1 520 2 0 0
Fa2/0/2 520 2 0 0
Fa2/0/3 520 2 0 0
Fa2/0/4 520 2 0 0
Fa2/0/5 520 2 0 0
Fa2/0/6 520 2 0 0
Fa2/0/7 520 2 0 0
Fa2/0/8 520 2 0 0
<output truncated>
```

This is an example of partial output from the `show interfaces counters protocol status` command for all interfaces.

```
Switch# show interfaces counters protocol status
Protocols allocated:
 Vlan1: Other, IP
 Vlan20: Other, IP, ARP
 Vlan30: Other, IP, ARP
 Vlan40: Other, IP, ARP
 Vlan50: Other, IP, ARP
 Vlan60: Other, IP, ARP
 Vlan70: Other, IP, ARP
 Vlan80: Other, IP, ARP
 Vlan90: Other, IP, ARP
 Vlan900: Other, IP, ARP
 Vlan3000: Other, IP
 Vlan3500: Other, IP
 FastEthernet1/0/1: Other, IP, ARP, CDP
 FastEthernet1/0/2: Other, IP
 FastEthernet1/0/3: Other, IP
 FastEthernet1/0/4: Other, IP
 FastEthernet1/0/5: Other, IP
 FastEthernet1/0/6: Other, IP
 FastEthernet1/0/7: Other, IP
 FastEthernet1/0/8: Other, IP
 FastEthernet1/0/9: Other, IP
 FastEthernet1/0/10: Other, IP, CDP
<output truncated>
```
This is an example of output from the `show interfaces counters trunk` command. It displays trunk counters for all interfaces.

```
Switch# show interfaces counters trunk
Port TrunkFramesTx TrunkFramesRx WrongEncap
Gi1/0/1 0 0 0
Gi1/0/2 0 0 0
Gi1/0/3 80678 4155 0
Gi1/0/4 82320 126 0
Gi1/0/5 0 0 0
<output truncated>
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>show interfaces</strong></td>
<td>Displays additional interface characteristics.</td>
</tr>
</tbody>
</table>
show inventory

Use the show inventory user EXEC command to display product identification (PID) information for the hardware.

```
show inventory [entity-name | raw] [| begin | exclude | include] expression
```

**Syntax Description**

- **entity-name**: (Optional) Display the specified entity. For example, enter the interface (such as gigabitethernet1/0/1) into which a small form-factor pluggable (SFP) module is installed.
- **raw**: (Optional) Display every entity in the device.
- **| begin**: (Optional) Display begins with the line that matches the expression.
- **| exclude**: (Optional) Display excludes lines that match the expression.
- **| include**: (Optional) Display includes lines that match the specified expression.
- **expression**: Expression in the output to use as a reference point.

**Command Modes**

User EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SEC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The command is case sensitive. With no arguments, the show inventory command produces a compact dump of all identifiable entities that have a product identifier. The compact dump displays the entity location (slot identity), entity description, and the unique device identifier (UDI) (PID, VID, and SN) of that entity.

**Note**

If there is no PID, no output appears when you enter the show inventory command.

Expressions are case sensitive. For example, if you enter | exclude output, the lines that contain output are not displayed, but the lines that contain Output are displayed.

**Examples**

This is example output from the show inventory command:

```
Switch> show inventory
NAME: "5", DESCR: "WS-C3750G-12S"
PID: WS-C3750G-12S-S , VID: E0 , SN: CAT0749R204
```
show ip arp inspection

Use the **show ip arp inspection** privileged EXEC command to display the configuration and the operating state of dynamic Address Resolution Protocol (ARP) inspection or the status of this feature for all VLANs or for the specified interface or VLAN.

```
show ip arp inspection [interfaces [interface-id] | log | statistics [vlan vlan-range] | vlan vlan-range] [| {begin | exclude | include} expression]
```

This command is available only if your switch is running the IP services image, formerly known as the enhanced multilayer image (EMI).

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interfaces [interface-id]</td>
<td>(Optional) Display the trust state and the rate limit of ARP packets for the specified interface or all interfaces. Valid interfaces include physical ports and port channels.</td>
</tr>
<tr>
<td>log</td>
<td>(Optional) Display the configuration and contents of the dynamic ARP inspection log buffer.</td>
</tr>
<tr>
<td>statistics [vlan vlan-range]</td>
<td>(Optional) Display statistics for forwarded, dropped, MAC validation failure, IP validation failure, access control list (ACL) permitted and denied, and DHCP permitted and denied packets for the specified VLAN. If no VLANs are specified or if a range is specified, display information only for VLANs with dynamic ARP inspection enabled (active). You can specify a single VLAN identified by VLAN ID number, a range of VLANs separated by a hyphen, or a series of VLANs separated by a comma. The range is 1 to 4094.</td>
</tr>
<tr>
<td>vlan vlan-range</td>
<td>(Optional) Display the configuration and the operating state of dynamic ARP inspection for the specified VLAN. If no VLANs are specified or if a range is specified, display information only for VLANs with dynamic ARP inspection enabled (active). You can specify a single VLAN identified by VLAN ID number, a range of VLANs separated by a hyphen, or a series of VLANs separated by a comma. The range is 1 to 4094.</td>
</tr>
<tr>
<td>{begin</td>
<td>exclude</td>
</tr>
<tr>
<td>expression</td>
<td>Expression in the output to use as a reference point.</td>
</tr>
</tbody>
</table>

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(20)SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
Usage Guidelines

Expressions are case sensitive. For example, if you enter | exclude output, the lines that contain output are not displayed, but the lines that contain Output are displayed.

Examples

This is an example of output from the `show ip arp inspection interfaces` command:

```
Switch# show ip arp inspection interfaces
Interface Trust State Rate (pps) Burst Interval
--------------- ----------- ---------- --------------
Gi1/0/1 Untrusted 15 1
Gi1/0/2 Untrusted 15 1
Gi1/0/3 Untrusted 15 1
```

This is an example of output from the `show ip arp inspection interfaces interface-id` command:

```
Switch# show ip arp inspection interfaces gigabitethernet1/0/1
Interface Trust State Rate (pps) Burst Interval
--------------- ----------- ---------- --------------
Gi1/0/1 Untrusted 15 1
```

This is an example of output from the `show ip arp inspection log` command. It shows the contents of the log buffer before the buffers are cleared:

```
Switch# show ip arp inspection log
Total Log Buffer Size : 32
Syslog rate : 10 entries per 300 seconds.
Interface Vlan Sender MAC Sender IP Num Pkts Reason Time
---------- ---- -------------- --------------- --------- ----------- ----
Gi1/0/1 5 0003.0000.d673 192.2.10.4 5 DHCP Deny 19:39:01 UTC
 Mon Mar 1 1993
Gi1/0/1 5 0001.0000.d774 128.1.9.25 6 DHCP Deny 19:39:02 UTC
 Mon Mar 1 1993
Gi1/0/1 5 0001.c940.1111 10.10.10.1 7 DHCP Deny 19:39:03 UTC
 Mon Mar 1 1993
Gi1/0/1 5 0001.c940.1112 10.10.10.2 8 DHCP Deny 19:39:04 UTC
 Mon Mar 1 1993
Gi1/0/1 5 0001.c940.1115 173.1.1.1 10 DHCP Deny 19:39:06 UTC
 Mon Mar 1 1993
Gi1/0/1 5 0001.c940.11115 173.1.1.2 11 DHCP Deny 19:39:07 UTC
 Mon Mar 1 1993
Gi1/0/1 5 0001.c940.1116 173.1.1.3 12 DHCP Deny 19:39:08 UTC
 Mon Mar 1 1993
```

If the log buffer overflows, it means that a log event does not fit into the log buffer, and the display for the `show ip arp inspection log` privileged EXEC command is affected. A -- in the display appears in place of all data except the packet count and the time. No other statistics are provided for the entry. If you see this entry in the display, increase the number of entries in the log buffer, or increase the logging rate in the `ip arp inspection log-buffer` global configuration command.

This is an example of output from the `show ip arp inspection statistics` command. It shows the statistics for packets that have been processed by dynamic ARP inspection for all active VLANs.

```
Switch# show ip arp inspection statistics
Vlan Forwarded Dropped DHCP Drops ACL Drops
----- -------- -------- --------- --------
 5 3 4618 4605 4
2000 0 0 0 0
```
### show ip arp inspection

For the `show ip arp inspection statistics` command, the switch increments the number of forwarded packets for each ARP request and response packet on a trusted dynamic ARP inspection port. The switch increments the number of ACL or DHCP permitted packets for each packet that is denied by source MAC, destination MAC, or IP validation checks, and the switch increments the appropriate failure count.

This is an example of output from the `show ip arp inspection statistics vlan 5` command. It shows statistics for packets that have been processed by dynamic ARP for VLAN 5.

```
Switch# show ip arp inspection statistics vlan 5
Vlan Forwarded Dropped DHCP Drops ACL Drops
---- --------- ------- ---------- ---------
 5 3 4618 4605 4
```

This is an example of output from the `show ip arp inspection vlan 5` command. It shows the configuration and the operating state of dynamic ARP inspection for VLAN 5.

```
Switch# show ip arp inspection vlan 5
Source Mac Validation : Enabled
Destination Mac Validation: Enabled
IP Address Validation : Enabled
```

```
Switch# show ip arp inspection vlan 5
Vlan Configuration Operation ACL Match Static ACL
---- ------------- --------- --------- ----------
 5 Enabled Active second No
```

```
Switch# show ip arp inspection vlan 5
ACL Logging DHCP Logging
---- ----------- ------------
 5 Acl-Match All
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>arp access-list</td>
<td>Defines an ARP ACL.</td>
</tr>
<tr>
<td>clear ip arp inspection log</td>
<td>Clears the dynamic ARP inspection log buffer.</td>
</tr>
<tr>
<td>clear ip arp inspection statistics</td>
<td>Clears the dynamic ARP inspection statistics.</td>
</tr>
<tr>
<td>ip arp inspection log-buffer</td>
<td>Configures the dynamic ARP inspection logging buffer.</td>
</tr>
<tr>
<td>ip arp inspection vlan logging</td>
<td>Controls the type of packets that are logged per VLAN.</td>
</tr>
<tr>
<td>show arp access-list</td>
<td>Displays detailed information about ARP access lists.</td>
</tr>
</tbody>
</table>
show ip dhcp snooping

Use the `show ip dhcp snooping` user EXEC command to display the DHCP snooping configuration.

```
show ip dhcp snooping [| begin | exclude | include] expression
```

**Syntax Description**

- `| begin` (Optional) Display begins with the line that matches the `expression`.
- `| exclude` (Optional) Display excludes lines that match the `expression`.
- `| include` (Optional) Display includes lines that match the specified `expression`.
- `expression` Expression in the output to use as a reference point.

**Command Modes**

User EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(19)EA1</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(25)SEE</td>
<td>The command output was updated to show the global suboption configuration.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.

This command displays only the results of global configuration. Therefore, in this example, the circuit ID suboption appears in its default format of `vlan-mod-port`, even if a string is configured for the circuit ID.

**Examples**

This is an example of output from the `show ip dhcp snooping` command:

```
Switch> show ip dhcp snooping
Switch DHCP snooping is enabled
DHCP snooping is configured on following VLANs:
 40-42
 Insertion of option 82 is enabled
 circuit-id format: vlan-mod-port
 remote-id format: string
 Option 82 on untrusted port is allowed
 Verification of hwaddr field is enabled

Interface Trusted Rate limit (pps)
------------------------------- -------- ----------------
GigabitEthernet1/0/1 yes unlimited
GigabitEthernet1/0/2 yes unlimited
GigabitEthernet2/0/3 no 2000
GigabitEthernet2/0/4 yes unlimited
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ip dhcp snooping binding</code></td>
<td>Displays the DHCP snooping binding information.</td>
</tr>
</tbody>
</table>
show ip dhcp snooping binding

Use the `show ip dhcp snooping binding` user EXEC command to display the DHCP snooping binding database and configuration information for all interfaces on a switch.

```
show ip dhcp snooping binding [ip-address] [mac-address] [interface interface-id] [vlan vlan-id]
[| begin | exclude | include | expression]
```

**Syntax Description**

- `ip-address` (Optional) Specify the binding entry IP address.
- `mac-address` (Optional) Specify the binding entry MAC address.
- `interface interface-id` (Optional) Specify the binding input interface.
- `vlan vlan-id` (Optional) Specify the binding entry VLAN.
- `| begin` Display begins with the line that matches the expression.
- `| exclude` Display excludes lines that match the expression.
- `| include` Display includes lines that match the specified expression.
- `expression` Expression in the output to use as a reference point.

**Command Modes**

User EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(19)EA1</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(18)SE</td>
<td>The <code>dynamic</code> and <code>static</code> keywords were removed.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `show ip dhcp snooping binding` command output shows only the dynamically configured bindings. Use the `show ip source binding` privileged EXEC command to display the dynamically and statically configured bindings in the DHCP snooping binding database.

If DHCP snooping is enabled and an interface changes to the down state, the switch does not delete the statically configured bindings.

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.

**Examples**

This example shows how to display the DHCP snooping binding entries for a switch:

```
Switch> show ip dhcp snooping binding
MacAddress IpAddress Lease(sec) Type VLAN Interface
--------------- --------------- ---------- ------------- ---- -------------------
01:02:03:04:05:06 10.1.2.150 9837 dhcp-snooping 20 GigabitEthernet2/0/1
00:D0:B7:1B:35:DE 10.1.2.151 237 dhcp-snooping 20 GigabitEthernet2/0/2
Total number of bindings: 2
```
This example shows how to display the DHCP snooping binding entries for a specific IP address:

Switch> **show ip dhcp snooping binding 10.1.2.150**

<table>
<thead>
<tr>
<th>MacAddress</th>
<th>IpAddress</th>
<th>Lease(sec)</th>
<th>Type</th>
<th>VLAN</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>01:02:03:04:05:06</td>
<td>10.1.2.150</td>
<td>9810</td>
<td>dhcp-snooping</td>
<td>20</td>
<td>GigabitEthernet2/0/1</td>
</tr>
</tbody>
</table>

Total number of bindings: 1

This example shows how to display the DHCP snooping binding entries for a specific MAC address:

Switch> **show ip dhcp snooping binding 0102.0304.0506**

<table>
<thead>
<tr>
<th>MacAddress</th>
<th>IpAddress</th>
<th>Lease(sec)</th>
<th>Type</th>
<th>VLAN</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>01:02:03:04:05:06</td>
<td>10.1.2.150</td>
<td>9788</td>
<td>dhcp-snooping</td>
<td>20</td>
<td>GigabitEthernet2/0/2</td>
</tr>
</tbody>
</table>

Total number of bindings: 1

This example shows how to display the DHCP snooping binding entries on a port:

Switch> **show ip dhcp snooping binding interface gigabitethernet2/0/2**

<table>
<thead>
<tr>
<th>MacAddress</th>
<th>IpAddress</th>
<th>Lease(sec)</th>
<th>Type</th>
<th>VLAN</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:30:94:C2:EF:35</td>
<td>10.1.2.151</td>
<td>290</td>
<td>dhcp-snooping</td>
<td>20</td>
<td>GigabitEthernet2/0/2</td>
</tr>
</tbody>
</table>

Total number of bindings: 1

This example shows how to display the DHCP snooping binding entries on VLAN 20:

Switch> **show ip dhcp snooping binding vlan 20**

<table>
<thead>
<tr>
<th>MacAddress</th>
<th>IpAddress</th>
<th>Lease(sec)</th>
<th>Type</th>
<th>VLAN</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>01:02:03:04:05:06</td>
<td>10.1.2.150</td>
<td>9747</td>
<td>dhcp-snooping</td>
<td>20</td>
<td>GigabitEthernet2/0/1</td>
</tr>
<tr>
<td>00:00:00:00:00:02</td>
<td>10.1.2.151</td>
<td>65</td>
<td>dhcp-snooping</td>
<td>20</td>
<td>GigabitEthernet2/0/2</td>
</tr>
</tbody>
</table>

Total number of bindings: 2

Table 2-25 describes the fields in the **show ip dhcp snooping binding** command output:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MacAddress</td>
<td>Client hardware MAC address</td>
</tr>
<tr>
<td>IpAddress</td>
<td>Client IP address assigned from the DHCP server</td>
</tr>
<tr>
<td>Lease(sec)</td>
<td>Remaining lease time for the IP address</td>
</tr>
<tr>
<td>Type</td>
<td>Binding type</td>
</tr>
<tr>
<td>VLAN</td>
<td>VLAN number of the client interface</td>
</tr>
<tr>
<td>Interface</td>
<td>Interface that connects to the DHCP client host</td>
</tr>
<tr>
<td>Total number of bindings</td>
<td>Total number of bindings configured on the switch</td>
</tr>
</tbody>
</table>

**Note** The command output might not show the total number of bindings. For example, if 200 bindings are configured on the switch and you stop the display before all the bindings appear, the total number does not change.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip dhcp snooping binding</td>
<td>Configures the DHCP snooping binding database</td>
</tr>
<tr>
<td>show ip dhcp snooping</td>
<td>Displays the DHCP snooping configuration.</td>
</tr>
</tbody>
</table>
show ip dhcp snooping database

Use the show ip dhcp snooping database user EXEC command to display the status of the DHCP snooping binding database agent.

```
show ip dhcp snooping database [detail] [| begin | exclude | include] expression
```

This command is available only if your switch is running the IP services image, formerly known as the enhanced multilayer image (EMI).

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>detail</td>
<td>(Optional) Display detailed status and statistics information.</td>
</tr>
<tr>
<td>begin</td>
<td>(Optional) Display begins with the line that matches the expression.</td>
</tr>
<tr>
<td>exclude</td>
<td>(Optional) Display excludes lines that match the expression.</td>
</tr>
<tr>
<td>include</td>
<td>(Optional) Display includes lines that match the specified expression.</td>
</tr>
</tbody>
</table>

**Command Modes**

User EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(20)SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

This is an example of output from the show ip dhcp snooping database command:

```
Switch> show ip dhcp snooping database
Agent URL :
Write delay Timer : 300 seconds
Abort Timer : 300 seconds

Agent Running : No
Delay Timer Expiry : Not Running
Abort Timer Expiry : Not Running

Last Succeeded Time : None
Last Failed Time : None
Last Failed Reason : No failure recorded.

Total Attempts : 0 Startup Failures : 0
Successful Transfers : 0 Failed Transfers : 0
Successful Reads : 0 Failed Reads : 0
Successful Writes : 0 Failed Writes : 0
Media Failures : 0
```
This is an example of output from the `show ip dhcp snooping database detail` command:

```
Switch# show ip dhcp snooping database detail
Agent URL : tftp://10.1.1.1/directory/file
Write delay Timer : 300 seconds
Abort Timer : 300 seconds

Agent Running : No
Delay Timer Expiry : 7 (00:00:07)
Abort Timer Expiry : Not Running

Last Succeeded Time : None
Last Failed Time : 17:14:25 UTC Sat Jul 7 2001
Last Failed Reason : Unable to access URL.

Total Attempts : 21 Startup Failures : 0
Successful Transfers : 0 Failed Transfers : 21
Successful Reads : 0 Failed Reads : 0
Successful Writes : 0 Failed Writes : 21
Media Failures : 0

First successful access: Read

Last ignored bindings counters:
 Binding Collisions : 0 Expired leases : 0
 Invalid interfaces : 0 Unsupported vlans : 0
 Parse failures : 0
Last Ignored Time : None

Total ignored bindings counters:
 Binding Collisions : 0 Expired leases : 0
 Invalid interfaces : 0 Unsupported vlans : 0
 Parse failures : 0
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip dhcp snooping</code></td>
<td>Enables DHCP snooping on a VLAN.</td>
</tr>
<tr>
<td><code>ip dhcp snooping database</code></td>
<td>Configures the DHCP snooping binding database agent or the binding file.</td>
</tr>
<tr>
<td><code>show ip dhcp snooping</code></td>
<td>Displays DHCP snooping information.</td>
</tr>
</tbody>
</table>
show ip igmp profile

Use the `show ip igmp profile` privileged EXEC command to display all configured Internet Group Management Protocol (IGMP) profiles or a specified IGMP profile.

```
show ip igmp profile [profile number] [| begin | exclude | include] expression
```

**Syntax Description**

- `profile number` (Optional) The IGMP profile number to be displayed. The range is 1 to 4294967295. If no profile number is entered, all IGMP profiles are displayed.
- `begin` (Optional) Display begins with the line that matches the `expression`.
- `exclude` (Optional) Display excludes lines that match the `expression`.
- `include` (Optional) Display includes lines that match the specified `expression`.
- `expression` Expression in the output to use as a reference point.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` are not displayed, but the lines that contain `Output` are displayed.

**Examples**

These are examples of output from the `show ip igmp profile` privileged EXEC command, with and without specifying a profile number. If no profile number is entered, the display includes all profiles configured on the switch.

```
Switch# show ip igmp profile 40
IGMP Profile 40
 permit
 range 233.1.1.1 233.255.255.255

Switch# show ip igmp profile
IGMP Profile 3
 range 230.9.9.0 230.9.9.0
IGMP Profile 4
 permit
 range 229.9.9.0 229.255.255.255
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip igmp profile</td>
<td>Configures the specified IGMP profile number.</td>
</tr>
</tbody>
</table>
show ip igmp snooping

Use the `show ip igmp snooping` user EXEC command to display the Internet Group Management Protocol (IGMP) snooping configuration of the switch or the VLAN.

```
show ip igmp snooping [groups | mrouter | querier] [vlan vlan-id] [| begin | exclude | include] expression
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>groups</td>
<td>(Optional) See the <code>show ip igmp snooping groups</code> command.</td>
</tr>
<tr>
<td>mrouter</td>
<td>(Optional) See the <code>show ip igmp snooping mrouter</code> command.</td>
</tr>
<tr>
<td>querier</td>
<td>(Optional) See the <code>show ip igmp snooping querier</code> command.</td>
</tr>
<tr>
<td>vlan vlan-id</td>
<td>(Optional) Specify a VLAN; the range is 1 to 1001 and 1006 to 4094 (available only in privileged EXEC mode).</td>
</tr>
<tr>
<td>begin</td>
<td>(Optional) Display begins with the line that matches the <code>expression</code>.</td>
</tr>
<tr>
<td>exclude</td>
<td>(Optional) Display excludes lines that match the <code>expression</code>.</td>
</tr>
<tr>
<td>include</td>
<td>(Optional) Display includes lines that match the specified <code>expression</code>.</td>
</tr>
<tr>
<td>expression</td>
<td>Expression in the output to use as a reference point.</td>
</tr>
</tbody>
</table>

**Command Modes**

User EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(19)EA1</td>
<td>The <code>querier</code> keyword was added.</td>
</tr>
<tr>
<td>12.2(18)SE</td>
<td>The <code>groups</code> keyword was added. The <code>show ip igmp snooping groups</code> command replaced the <code>show ip igmp snooping multicast</code> command.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use this command to display snooping configuration for the switch or for a specific VLAN.

VLAN IDs 1002 to 1005 are reserved for Token Ring and FDDI VLANs and cannot be used in IGMP snooping.

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.
**Examples**

This is an example of output from the `show ip igmp snooping vlan 1` command. It shows snooping characteristics for a specific VLAN.

```
Switch# show ip igmp snooping vlan 1
Global IGMP Snooping configuration:

IGMP snooping :Enabled
IGMPv3 snooping (minimal) :Enabled
Report suppression :Enabled
TCN solicit query :Disabled
TCN flood query count :2
Last member query interval : 100

Vlan 1:

IGMP snooping :Enabled
Immediate leave :Disabled
Multicast router learning mode :pim-dvmrp
Source only learning age timer :10
CGMP interoperability mode :IGMP_ONLY
Last member query interval : 100
```

This is an example of output from the `show ip igmp snooping` command. It displays snooping characteristics for all VLANs on the switch.

```
Switch> show ip igmp snooping
Global IGMP Snooping configuration:

IGMP snooping : Enabled
IGMPv3 snooping (minimal) : Enabled
Report suppression : Enabled
TCN solicit query : Disabled
TCN flood query count : 2
Last member query interval : 100

Vlan 1:

IGMP snooping :Enabled
Immediate leave :Disabled
Multicast router learning mode :pim-dvmrp
Source only learning age timer :10
CGMP interoperability mode :IGMP_ONLY
Last member query interval : 100

Vlan 2:

IGMP snooping :Enabled
Immediate leave :Disabled
Multicast router learning mode :pim-dvmrp
Source only learning age timer :10
CGMP interoperability mode :IGMP_ONLY
Last member query interval : 333
```

<output truncated>
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip igmp snooping</td>
<td>Enables IGMP snooping on the switch or on a VLAN.</td>
</tr>
<tr>
<td>ip igmp snooping last-member-query-interval</td>
<td>Enables the IGMP snooping configurable-leave timer.</td>
</tr>
<tr>
<td>ip igmp snooping querier</td>
<td>Enables the IGMP querier function in Layer 2 networks.</td>
</tr>
<tr>
<td>ip igmp snooping report-suppression</td>
<td>Enables IGMP report suppression.</td>
</tr>
<tr>
<td>ip igmp snooping tcn</td>
<td>Configures the IGMP topology change notification behavior.</td>
</tr>
<tr>
<td>ip igmp snooping tcn flood</td>
<td>Specifies multicast flooding as the IGMP spanning-tree topology change notification behavior.</td>
</tr>
<tr>
<td>ip igmp snooping vlan immediate-leave</td>
<td>Enables IGMP snooping immediate-leave processing on a VLAN.</td>
</tr>
<tr>
<td>ip igmp snooping vlan mrouter</td>
<td>Adds a multicast router port or configures the multicast learning method.</td>
</tr>
<tr>
<td>ip igmp snooping vlan static</td>
<td>Statically adds a Layer 2 port as a member of a multicast group.</td>
</tr>
<tr>
<td>show ip igmp snooping groups</td>
<td>Displays the IGMP snooping multicast table for the switch.</td>
</tr>
<tr>
<td>show ip igmp snooping mrouter</td>
<td>Displays IGMP snooping multicast router ports for the switch or for the specified multicast VLAN.</td>
</tr>
<tr>
<td>show ip igmp snooping querier</td>
<td>Displays the configuration and operation information for the IGMP querier configured on a switch.</td>
</tr>
</tbody>
</table>
show ip igmp snooping groups

Use the show ip igmp snooping groups privileged EXEC command to display the Internet Group Management Protocol (IGMP) snooping multicast table for the switch or the multicast information. Use with the vlan keyword to display the multicast table for a specified multicast VLAN or specific multicast information.

```
show ip igmp snooping groups [count | dynamic [count] | user [count]] [| begin | exclude | include] expression

show ip igmp snooping groups vlan vlan-id [ip_address | count | dynamic [count] | user [count]] [| begin | exclude | include] expression
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>(Optional) Display the total number of entries for the specified command options instead of the actual entries.</td>
</tr>
<tr>
<td>dynamic</td>
<td>(Optional) Display entries learned by IGMP snooping.</td>
</tr>
<tr>
<td>user</td>
<td>Optional) Display only the user-configured multicast entries.</td>
</tr>
<tr>
<td>ip_address</td>
<td>(Optional) Display characteristics of the multicast group with the specified group IP address.</td>
</tr>
<tr>
<td>vlan vlan-id</td>
<td>(Optional) Specify a VLAN; the range is 1 to 1001 and 1006 to 4094.</td>
</tr>
<tr>
<td>begin</td>
<td>(Optional) Display begins with the line that matches the expression.</td>
</tr>
<tr>
<td>exclude</td>
<td>(Optional) Display excludes lines that match the expression.</td>
</tr>
<tr>
<td>include</td>
<td>(Optional) Display includes lines that match the specified expression.</td>
</tr>
<tr>
<td>expression</td>
<td>Expression in the output to use as a reference point.</td>
</tr>
</tbody>
</table>

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(18)SE</td>
<td>This command was introduced. It replaced the show ip igmp snooping multicast command.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use this command to display multicast information or the multicast table.

VLAN IDs 1002 to 1005 are reserved for Token Ring and FDDI VLANs and cannot be used in IGMP snooping.

Expressions are case sensitive. For example, if you enter | exclude output, the lines that contain output do not appear, but the lines that contain Output appear.
Examples

This is an example of output from the `show ip igmp snooping groups` command without any keywords. It displays the multicast table for the switch.

```
Switch# show ip igmp snooping groups
Vlan Group Type Version Port List

1 224.1.4.4 igmp Fa1/0/11
1 224.1.4.5 igmp Fa1/0/11
2 224.0.1.40 igmp v2 Fa1/0/15
```

This is an example of output from the `show ip igmp snooping groups count` command. It displays the total number of multicast groups on the switch.

```
Switch# show ip igmp snooping groups count
Total number of multicast groups: 2
```

This is an example of output from the `show ip igmp snooping groups dynamic` command. It shows only the entries learned by IGMP snooping.

```
Switch# show ip igmp snooping groups vlan 1 dynamic
Vlan Group Type Version Port List

104 224.1.4.2 igmp v2 Gi2/0/1, Fa1/0/15
104 224.1.4.3 igmp v2 Gi2/0/1, Fa1/0/15
```

This is an example of output from the `show ip igmp snooping groups vlan vlan-id ip-address` command. It shows the entries for the group with the specified IP address.

```
Switch# show ip igmp snooping groups vlan 104 224.1.4.2
Vlan Group Type Version Port List

104 224.1.4.2 igmp v2 Gi2/0/1, Fa1/0/15
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip igmp snooping</td>
<td>Enables IGMP snooping on the switch or on a VLAN.</td>
</tr>
<tr>
<td>ip igmp snooping vlan mrouter</td>
<td>Configures a multicast router port.</td>
</tr>
<tr>
<td>ip igmp snooping vlan static</td>
<td>Sastically adds a Layer 2 port as a member of a multicast group.</td>
</tr>
<tr>
<td>show ip igmp snooping</td>
<td>Displays the IGMP snooping configuration of the switch or the VLAN.</td>
</tr>
<tr>
<td>show ip igmp snooping mrouter</td>
<td>Displays IGMP snooping multicast router ports for the switch or for the specified multicast VLAN.</td>
</tr>
</tbody>
</table>
show ip igmp snooping mrouter

Use the show ip igmp snooping mrouter privileged EXEC command to display the Internet Group Management Protocol (IGMP) snooping dynamically learned and manually configured multicast router ports for the switch or for the specified multicast VLAN.

show ip igmp snooping mrouter [vlan vlan-id] [ | begin | exclude | include] expression

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan vlan-id</td>
<td>(Optional) Specify a VLAN; the range is 1 to 1001 and 1006 to 4094.</td>
</tr>
<tr>
<td></td>
<td>(Optional) Display begins with the line that matches the expression.</td>
</tr>
<tr>
<td></td>
<td>(Optional) Display excludes lines that match the expression.</td>
</tr>
<tr>
<td></td>
<td>(Optional) Display includes lines that match the specified expression.</td>
</tr>
<tr>
<td>expression</td>
<td>Expression in the output to use as a reference point.</td>
</tr>
</tbody>
</table>

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use this command to display multicast router ports on the switch or for a specific VLAN.

VLAN IDs 1002 to 1005 are reserved for Token Ring and FDDI VLANs and cannot be used in IGMP snooping.

When multicast VLAN registration (MVR) is enabled, the show ip igmp snooping mrouter command displays MVR multicast router information and IGMP snooping information.

Expressions are case sensitive. For example, if you enter | exclude output, the lines that contain output do not appear, but the lines that contain Output appear.

Examples

This is an example of output from the show ip igmp snooping mrouter command. It shows how to display multicast router ports on the switch.

Switch# show ip igmp snooping mrouter
Vlan ports
--- ----
1 Gi2/0/1(dynamic)
### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip igmp snooping</td>
<td>Enables IGMP snooping on the switch or on a VLAN.</td>
</tr>
<tr>
<td>ip igmp snooping vlan mrouter</td>
<td>Adds a multicast router port.</td>
</tr>
<tr>
<td>ip igmp snooping vlan static</td>
<td>Statically adds a Layer 2 port as a member of a multicast group.</td>
</tr>
<tr>
<td>show ip igmp snooping</td>
<td>Displays the IGMP snooping configuration of the switch or the VLAN</td>
</tr>
<tr>
<td>show ip igmp snooping groups</td>
<td>Displays IGMP snooping multicast information for the switch or for the specified parameter.</td>
</tr>
</tbody>
</table>
show ip igmp snooping querier

Use the `show ip igmp snooping querier detail` user EXEC command to display the configuration and operation information for the IGMP querier configured on a switch.

```
show ip igmp snooping querier [detail | vlan vlan-id [detail]] [| begin | exclude | include] expression
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>detail</code></td>
<td>Optional) Display detailed IGMP querier information.</td>
</tr>
<tr>
<td><code>vlan vlan-id [detail]</code></td>
<td>Optional) Display IGMP querier information for the specified VLAN. The range is 1 to 1001 and 1006 to 4094. Use the <code>detail</code> keyword to display detailed information.</td>
</tr>
<tr>
<td><code>begin</code></td>
<td>(Optional) Display begins with the line that matches the <code>expression</code>.</td>
</tr>
<tr>
<td><code>exclude</code></td>
<td>(Optional) Display excludes lines that match the <code>expression</code>.</td>
</tr>
<tr>
<td><code>include</code></td>
<td>(Optional) Display includes lines that match the specified <code>expression</code>.</td>
</tr>
<tr>
<td><code>expression</code></td>
<td>Expression in the output to use as a reference point.</td>
</tr>
</tbody>
</table>

### Command Modes

User EXEC

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SEA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

Use the `show ip igmp snooping querier` command to display the IGMP version and the IP address of a detected device, also called a querier, that sends IGMP query messages. A subnet can have multiple multicast routers but has only one IGMP querier. In a subnet running IGMPv2, one of the multicast routers is elected as the querier. The querier can be a Layer 3 switch.

The `show ip igmp snooping querier` command output also shows the VLAN and the interface on which the querier was detected. If the querier is the switch, the output shows the `Port` field as `Router`. If the querier is a router, the output shows the port number on which the querier is learned in the `Port` field.

The `show ip igmp snooping querier detail` user EXEC command is similar to the `show ip igmp snooping querier` command. However, the `show ip igmp snooping querier` command displays only the device IP address most recently detected by the switch querier.

The `show ip igmp snooping querier detail` command displays the device IP address most recently detected by the switch querier and this additional information:

- The elected IGMP querier in the VLAN
- The configuration and operational information pertaining to the switch querier (if any) that is configured in the VLAN

Expressions are case sensitive. For example, if you enter `exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.
Examples

This is an example of output from the `show ip igmp snooping querier` command:

```
Switch> show ip igmp snooping querier
Vlan IP Address IGMP Version Port

1 172.20.50.11 v3 Gi1/0/1
2 172.20.40.20 v2 Router
```

This is an example of output from the `show ip igmp snooping querier detail` command:

```
Switch> show ip igmp snooping querier detail
Vlan IP Address IGMP Version Port

1 1.1.1.1 v2 Fa8/0/1

Global IGMP switch querier status
--
admin state : Enabled
admin version : 2
source IP address : 0.0.0.0
query-interval (sec) : 60
max-response-time (sec) : 10
querier-timeout (sec) : 120
tcn query count : 2
tcn query interval (sec) : 10

Vlan 1: IGMP switch querier status
--
elected querier is 1.1.1.1 on port Fa8/0/1
--
admin state : Enabled
admin version : 2
source IP address : 10.1.1.65
query-interval (sec) : 60
max-response-time (sec) : 10
querier-timeout (sec) : 120
tcn query count : 2
tcn query interval (sec) : 10
operational state : Non-Querier
operational version : 2
tcn query pending count : 0
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip igmp snooping</code></td>
<td>Enables IGMP snooping on the switch or on a VLAN.</td>
</tr>
<tr>
<td><code>ip igmp snooping querier</code></td>
<td>Enables the IGMP querier function in Layer 2 networks.</td>
</tr>
<tr>
<td><code>show ip igmp snooping</code></td>
<td>Displays IGMP snooping multicast router ports for the switch or for the specified multicast VLAN.</td>
</tr>
</tbody>
</table>
show ip source binding

Use the show ip source binding user EXEC command to display the IP source bindings on the switch.

```
show ip source binding [ip-address] [mac-address] [dhcp-snooping | static] [interface interface-id] [vlan vlan-id] | [begin | exclude | include] expression
```

This command is available only if your switch is running the IP services image, formerly known as the enhanced multilayer image (EMI).

### Syntax Description

- **ip-address** (Optional) Display IP source bindings for a specific IP address.
- **mac-address** (Optional) Display IP source bindings for a specific MAC address.
- **dhcp-snooping** (Optional) Display IP source bindings that were learned by DHCP snooping.
- **static** (Optional) Display static IP source bindings.
- **interface interface-id** (Optional) Display IP source bindings on a specific interface.
- **vlan vlan-id** (Optional) Display IP source bindings on a specific VLAN.
- **begin** (Optional) Display begins with the line that matches the expression.
- **exclude** (Optional) Display excludes lines that match the expression.
- **include** (Optional) Display includes lines that match the specified expression.
- **expression** Expression in the output to use as a reference point.

### Command Modes

User EXEC

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(20)SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

The `show ip source binding` command output shows the dynamically and statically configured bindings in the DHCP snooping binding database. Use the `show ip dhcp snooping binding` privileged EXEC command to display only the dynamically configured bindings.

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.

### Examples

This is an example of output from the `show ip source binding` command:

```
Switch> show ip source binding
MacAddress IpAddress Lease(sec) Type VLAN Interface
------------- --------------- ---------- ------------- ---- -------------------
00:00:00:0A:00:0B 11.0.0.1 infinite static 10 GigabitEthernet1/0/1
00:00:00:0A:00:0A 11.0.0.2 10000 dhcp-snooping 10 GigabitEthernet1/0/1
```
## show ip source binding

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip dhcp snooping binding</td>
<td>Configures the DHCP snooping binding database.</td>
</tr>
<tr>
<td>ip source binding</td>
<td>Configures static IP source bindings on the switch.</td>
</tr>
</tbody>
</table>
show ip verify source

Use the show ip verify source user EXEC command to display the IP source guard configuration on the switch or on a specific interface.

```
show ip verify source [interface interface-id] [\ | { begin | exclude | include } expression]
```

### Syntax Description

- **interface interface-id** (Optional) Display IP source guard configuration on a specific interface.
- **begin** (Optional) Display begins with the line that matches the expression.
- **exclude** (Optional) Display excludes lines that match the expression.
- **include** (Optional) Display includes lines that match the specified expression.
- **expression** Expression in the output to use as a reference point.

### Command Modes

User EXEC

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(20)SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

Expressions are case sensitive. For example, if you enter | exclude output, the lines that contain output do not appear, but the lines that contain Output appear.

### Examples

This is an example of output from the show ip verify source command:

```
Switch> show ip verify source

<table>
<thead>
<tr>
<th>Interface</th>
<th>Filter-type</th>
<th>Filter-mode</th>
<th>IP-address</th>
<th>Mac-address</th>
<th>Vlan</th>
</tr>
</thead>
<tbody>
<tr>
<td>gi1/0/1</td>
<td>ip</td>
<td>active</td>
<td>10.0.0.1</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>gi1/0/1</td>
<td>ip</td>
<td>active</td>
<td>deny-all</td>
<td></td>
<td>11-20</td>
</tr>
<tr>
<td>gi1/0/2</td>
<td>ip</td>
<td>inactive-trust-port</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gi1/0/3</td>
<td>ip</td>
<td>inactive-no-snooping-vlan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gi1/0/4</td>
<td>ip-mac</td>
<td>active</td>
<td>10.0.0.2</td>
<td>aaaa.bbbb.cccc</td>
<td>10</td>
</tr>
<tr>
<td>gi1/0/4</td>
<td>ip-mac</td>
<td>active</td>
<td>11.0.0.1</td>
<td>aaaa.bbbb.cccd</td>
<td>11</td>
</tr>
<tr>
<td>gi1/0/4</td>
<td>ip-mac</td>
<td>active</td>
<td>deny-all</td>
<td>deny-all</td>
<td>12-20</td>
</tr>
<tr>
<td>gi1/0/5</td>
<td>ip-mac</td>
<td>active</td>
<td>10.0.0.3</td>
<td>permit-all</td>
<td>10</td>
</tr>
<tr>
<td>gi1/0/5</td>
<td>ip-mac</td>
<td>active</td>
<td>deny-all</td>
<td>permit-all</td>
<td>11-20</td>
</tr>
</tbody>
</table>
```

In the previous example, this is the IP source guard configuration:

- On the Gigabit Ethernet 1/0/1 interface, DHCP snooping is enabled on VLANs 10 to 20. For VLAN 10, IP source guard with IP address filtering is configured on the interface, and a binding exists on the interface. For VLANs 11 to 20, the second entry shows that a default port access control lists (ACLs) is applied on the interface for the VLANs on which IP source guard is not configured.
- The Gigabit Ethernet 1/0/2 interface is configured as trusted for DHCP snooping.
- On the Gigabit Ethernet 1/0/3 interface, DHCP snooping is not enabled on the VLANs to which the interface belongs.
• On the Gigabit Ethernet 1/0/4 interface, IP source guard with source IP and MAC address filtering is enabled, and static IP source bindings are configured on VLANs 10 and 11. For VLANs 12 to 20, the default port ACL is applied on the interface for the VLANs on which IP source guard is not configured.

• On the Gigabit Ethernet 1/0/5 interface, IP source guard with source IP and MAC address filtering is enabled and configured with a static IP binding, but port security is disabled. The switch cannot filter source MAC addresses.

This is an example of output on an interface on which IP source guard is disabled:

Switch> show ip verify source gigabitethernet1/0/6
IP source guard is not configured on the interface gi1/0/6.

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ip verify source</td>
<td>Enables IP source guard on an interface.</td>
</tr>
</tbody>
</table>
show ipc

Use the **show ipc** user EXEC command to display Interprocess Communications Protocol (IPC) configuration, status, and statistics on a switch stack or a standalone switch.

```
show ipc {mcast {appclass | groups | status} | nodes | ports [open] | queue | rpc | session {all | rx | tx} [verbose] | status [cumulative] | zones } | {begin | exclude | include} expression
```

**Syntax Description**

- **mcast {appclass | groups | status}**
  - Display the IPC multicast routing information. The keywords have these meanings:
  - **appclass**—Display the IPC multicast application classes.
  - **groups**—Display the IPC multicast groups.
  - **status**—Display the IPC multicast routing status.

- **nodes**
  - Display participating nodes.

- **ports [open]**
  - Display local IPC ports. The keyword has this meaning:
  - **open**—(Optional) Display only the open ports.

- **queue**
  - Display the contents of the IPC transmission queue.

- **rpc**
  - Display the IPC remote-procedure statistics.

- **session {all | rx | tx}**
  - Display the IPC session statistics (available only in privileged EXEC mode). The keywords have these meanings:
  - **all**—Display all the session statistics.
  - **rx**—Display the sessions statistics for traffic that the switch receives
  - **tx**—Display the sessions statistics for traffic that the switch forwards.

- **verbose**
  - (Optional) Display detailed statistics (available only in privileged EXEC mode).

- **status [cumulative]**
  - Display the status of the local IPC server. The keyword has this meaning:
  - **cumulative**—(Optional) Display the status of the local IPC server since the switch was started or restarted.

- **zones**
  - Display the participating IPC zones. The switch supports a single IPC zone.

- **| begin**
  - (Optional) Display begins with the line that matches the expression.

- **| exclude**
  - (Optional) Display excludes lines that match the expression.

- **| include**
  - (Optional) Display includes lines that match the specified expression.

- **expression**
  - Expression in the output to use as a reference point.

**Command Modes**

User EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(18)SE</td>
<td>The **mcast {appclass</td>
</tr>
</tbody>
</table>
**Usage Guidelines**

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.

**Examples**

This example shows how to display the IPC routing status:

```
Switch> show ipc mcast status
IPC Mcast Status Tx Rx
Total Frames 0 0
Total control Frames 0 0
Total Frames dropped 0 0
Total control Frames dropped 0 0
Total Reliable messages 0 0
Total Reliable messages acknowledged 0 0
Total Out of Band Messages 0 0
Total Out of Band messages acknowledged 0 0
Total No Mcast groups 0 0
Total Retries 0 Total Timeouts 0
Total OOB Retries 0 Total OOB Timeouts 0
Total flushes 0 Total No ports 0
```

This example shows how to display the participating nodes:

```
Switch> show ipc nodes
There is 1 node in this IPC realm.
 ID Type Name Last Sent Last Heard
 Local IPC Master 0 0
```

This example shows how to display the local IPC ports:

```
Switch> show ipc ports
There are 8 ports defined.
Port ID Type Name (current/peak/total)
There are 8 ports defined.
 10000.1 unicast IPC Master:Zone
 10000.2 unicast IPC Master:Echo
 10000.3 unicast IPC Master:Control
 10000.4 unicast IPC Master:Init
 10000.5 unicast FIB Master:DFS.process_level.msgs
 10000.6 unicast FIB Master:DFS.interrupt.msgs
 10000.7 unicast MDFS RP:Statistics
 port_index = 0 seat_id = 0x10000 last sent = 0 last heard = 0
 0/2/159
 10000.8 unicast Slot 1 :MDFS.control.RIL
 port_index = 0 seat_id = 0x10000 last sent = 0 last heard = 0
 0/0/0

RPC packets:current/peak/total
 0/1/4
```

This example shows how to display the contents of the IPC retransmission queue:

```
Switch> show ipc queue
There are 0 IPC messages waiting for acknowledgement in the transmit queue.
There are 0 IPC messages waiting for a response.
```
show ipc

There are 0 IPC messages waiting for additional fragments.
There are 0 IPC messages currently on the IPC inboundQ.
Messages currently in use : 3
Message cache size : 1000
Maximum message cache usage : 1000

0 times message cache crossed 5000 [max]

Emergency messages currently in use : 0

There are 2 messages currently reserved for reply msg.

Inbound message queue depth 0
Zone inbound message queue depth 0

This example shows how to display all the IPC session statistics:

Switch# show ipc session all

Tx Sessions:
Port ID Type Name
10000.7 Unicast MDFS RP:Statistics
    port_index = 0 type = Unreliable last sent = 0 last heard = 0
    Msgs requested = 180 Msgs returned = 180

10000.8 Unicast Slot 1 :MDFS.control.RIL
    port_index = 0 type = Reliable last sent = 0 last heard = 0
    Msgs requested = 0 Msgs returned = 0

Rx Sessions:
Port ID Type Name
10000.7 Unicast MDFS RP:Statistics
    port_index = 0 seat_id = 0x10000 last sent = 0 last heard = 0
    No of msgs requested = 180 Msgs returned = 180

10000.8 Unicast Slot 1 :MDFS.control.RIL
    port_index = 0 seat_id = 0x10000 last sent = 0 last heard = 0
    No of msgs requested = 0 Msgs returned = 0

This example shows how to display the status of the local IPC server:

Switch> show ipc status cumulative

IPC System Status

Time last IPC stat cleared : never

This processor is the IPC master server.
Do not drop output of IPC frames for test purposes.

1000 IPC Message Headers Cached.

Rx Side Tx Side

<table>
<thead>
<tr>
<th>Total Frames</th>
<th>12916</th>
<th>608</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total from Local Ports</td>
<td>13080</td>
<td>574</td>
</tr>
<tr>
<td>Total Protocol Control Frames</td>
<td>116</td>
<td>17</td>
</tr>
<tr>
<td>Total Frames Dropped</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Service Usage

Total via Unreliable Connection-Less Service	12783	171
Total via Unreliable Sequenced Connection-Less Svc	0	0
Total via Reliable Connection-Oriented Service	17	116

<output truncated>
<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>clear ipc</td>
<td>Clears the IPC multicast routing statistics.</td>
</tr>
</tbody>
</table>
show ipv6 access-list

Use the show ipv6 access-list user EXEC command to display the contents of all current IPv6 access lists.

```
show ipv6 access-list [access-list-name]
```

**Note**

This command is available only if the switch stack is running the advanced IP services image and you have configured a dual IPv4 and IPv6 Switch Database Management (SDM) template on the switch.

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>access-list-name</td>
</tr>
</tbody>
</table>

**Command Modes**

User EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SED</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The show ipv6 access-list command provides output similar to the show ip access-list command, except that it is IPv6-specific.

To configure the dual IPv4 and IPv6 template, enter the sdm prefer dual-ipv4-and-ipv6 {default | vlan} global configuration command and reload the switch.

**Examples**

The following output from the show ipv6 access-list command shows IPv6 access lists named inbound and outbound:

```
Router# show ipv6 access-list
IPv6 access list inbound
 permit tcp any any eq bgp (8 matches) sequence 10
 permit tcp any any eq telnet (15 matches) sequence 20
 permit udp any any sequence 30
```

Table 2-26 describes the significant fields shown in the display.

**Table 2-26  show ipv6 access-list Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 access list inbound</td>
<td>Name of the IPv6 access list, for example, inbound.</td>
</tr>
<tr>
<td>permit</td>
<td>Permits any packet that matches the specified protocol type.</td>
</tr>
<tr>
<td>tcp</td>
<td>Transmission Control Protocol. The higher-level (Layer 4) protocol type that the packet must match.</td>
</tr>
<tr>
<td>any</td>
<td>Equal to ::/0.</td>
</tr>
</tbody>
</table>
### Table 2-26  show ipv6 access-list Field Descriptions (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>eq</td>
<td>An equal operand that compares the source or destination ports of TCP or UDP packets.</td>
</tr>
<tr>
<td>bgp (matches)</td>
<td>Border Gateway Protocol. The protocol type that the packet is equal to and the number of matches.</td>
</tr>
<tr>
<td>sequence 10</td>
<td>Sequence in which an incoming packet is compared to lines in an access list. Access list lines are ordered from first priority (lowest number, for example, 10) to last priority (highest number, for example, 80).</td>
</tr>
</tbody>
</table>

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear ipv6 access-list</td>
<td>Resets the IPv6 access list match counters.</td>
</tr>
<tr>
<td>ipv6 access-list</td>
<td>Defines an IPv6 access list and puts the switch into IPv6 access-list configuration mode.</td>
</tr>
<tr>
<td>sdm prefer</td>
<td>Configures an SDM template to optimize system resources based on how the switch is being used.</td>
</tr>
</tbody>
</table>
show ipv6 mld snooping

Use the `show ipv6 mld snooping` user EXEC command to display IP version 6 (IPv6) Multicast Listener Discovery (MLD) snooping configuration of the switch or the VLAN.

```
show ipv6 mld snooping [vlan vlan-id] [| begin | exclude | include] expression
```

**Note**
This command is available only if the switch stack is running the advanced IP services image and you have configured a dual IPv4 and IPv6 Switch Database Management (SDM) template on the switch.

**Syntax Description**
- `vlan vlan-id` (Optional) Specify a VLAN; the range is 1 to 1001 and 1006 to 4094.
- `| begin` (Optional) Display begins with the line that matches the `expression`.
- `| exclude` (Optional) Display excludes lines that match the `expression`.
- `| include` (Optional) Display includes lines that match the specified `expression`.
- `expression` Expression in the output to use as a reference point.

**Command Modes**
User EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SED</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
Use this command to display MLD snooping configuration for the switch or for a specific VLAN. VLAN numbers 1002 through 1005 are reserved for Token Ring and FDDI VLANs and cannot be used in MLD snooping.

To configure the dual IPv4 and IPv6 template, enter the `sdm prefer dual-ipv4-and-ipv6 {default | vlan)` global configuration command and reload the switch.

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.

**Examples**
This is an example of output from the `show ipv6 mld snooping vlan` command. It shows snooping characteristics for a specific VLAN.

```
Switch> show ipv6 mld snooping vlan 100
Global MLD Snooping configuration:

MLD snooping : Enabled
MLDv2 snooping (minimal) : Enabled
Listener message suppression: Enabled
TCN solicit query : Disabled
TCN flood query count : 2
Robustness variable : 3
Last listener query count : 2
Last listener query interval: 1000
```
Vlan 100:
--------
MLD snooping : Disabled
MLDv1 immediate leave : Disabled
Explicit host tracking : Enabled
Multicast router learning mode : pim-dvmrp
Robustness variable : 3
Last listener query count : 2
Last listener query interval : 1000

This is an example of output from the `show ipv6 mld snooping` command. It displays snooping characteristics for all VLANs on the switch.

Switch> `show ipv6 mld snooping`
Global MLD Snooping configuration:
-------------------------------------------
MLD snooping                  : Enabled
MLDv2 snooping (minimal)      : Enabled
Listener message suppression  : Enabled
TCN solicit query            : Disabled
TCN flood query count        : 2
Robustness variable          : 3
Last listener query count     : 2
Last listener query interval  : 1000

Vlan 1:
--------
MLD snooping : Disabled
MLDv1 immediate leave : Disabled
Explicit host tracking : Enabled
Multicast router learning mode : pim-dvmrp
Robustness variable : 1
Last listener query count : 2
Last listener query interval : 1000

Vlan 951:
--------
MLD snooping : Disabled
MLDv1 immediate leave : Disabled
Explicit host tracking : Enabled
Multicast router learning mode : pim-dvmrp
Robustness variable : 3
Last listener query count : 2
Last listener query interval : 1000

<output truncated>

Vlan 951:
--------
MLD snooping : Disabled
MLDv1 immediate leave : Disabled
Explicit host tracking : Enabled
Multicast router learning mode : pim-dvmrp
Robustness variable : 3
Last listener query count : 2
Last listener query interval : 1000

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6 mld snooping</td>
<td>Enables and configures MLD snooping on the switch or on a VLAN.</td>
</tr>
<tr>
<td>sdm prefer</td>
<td>Configures an SDM template to optimize system resources based on how the switch is being used.</td>
</tr>
</tbody>
</table>
show ipv6 mld snooping address

Use the `show ipv6 mld snooping address` user EXEC command to display all or specified IP version 6 (IPv6) multicast address information maintained by Multicast Listener Discovery (MLD) snooping.

```
show ipv6 mld snooping address [[vlan vlan-id] [ipv6 address]] [vlan vlan-id] [count | dynamic | user] [| begin | exclude | include] expression
```

**Note**

This command is available only if the switch stack is running the advanced IP services image and you have configured a dual IPv4 and IPv6 Switch Database Management (SDM) template on the switch.

**Syntax Description**

- `vlan vlan-id` (Optional) Specify a VLAN about which to show MLD snooping multicast address information. The VLAN ID range is 1 to 1001 and 1006 to 4094.
- `ipv6-multicast-address` (Optional) Display information about the specified IPv6 multicast address. This keyword is only available when a VLAN ID is entered.
- `count` (Optional) Display the number of multicast groups on the switch or in the specified VLAN.
- `dynamic` (Optional) Display MLD snooping learned group information.
- `user` (Optional) Display MLD snooping user-configured group information.
- `| begin` (Optional) Display begins with the line that matches the `expression`.
- `| exclude` (Optional) Display excludes lines that match the `expression`.
- `| include` (Optional) Display includes lines that match the specified `expression`.
- `expression` Expression in the output to use as a reference point.

**Command Modes**

User EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SED</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use this command to display IPv6 multicast address information.

You can enter an IPv6 multicast address only after you enter a VLAN ID.

VLAN numbers 1002 through 1005 are reserved for Token Ring and FDDI VLANs and cannot be used in MLD snooping.

Use the `dynamic` keyword to display information only about groups that are learned. Use the `user` keyword to display information only about groups that have been configured.

To configure the dual IPv4 and IPv6 template, enter the `sdm prefer dual-ipv4-and-ipv6 {default | vlan}` global configuration command and reload the switch.

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.
This is an example of output from the `show snooping address` user EXEC command:

```
Switch> show ipv6 mld snooping address
Vlan Group Type Version Port List

 2 FF12::3 user Fa1/0/2, Gi2/0/2, Gi3/0/1,Gi3/0/3
```

This is an example of output from the `show snooping address count` user EXEC command:

```
Switch> show ipv6 mld snooping address count
Total number of multicast groups: 2
```

This is an example of output from the `show snooping address user` user EXEC command:

```
Switch> show ipv6 mld snooping address user
Vlan Group Type Version Port List

 2 FF12::3 user v2 Fa1/0/2, Gi2/0/2, Gi3/0/1,Gi3/0/3
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6 mld snooping vlan</td>
<td>Configures IPv6 MLD snooping on a VLAN.</td>
</tr>
<tr>
<td>sdm prefer</td>
<td>Configures an SDM template to optimize system resources based on how the switch is being used.</td>
</tr>
</tbody>
</table>
show ipv6 mld snooping mrouter

Use the `show ipv6 mld snooping mrouter` user EXEC command to display dynamically learned and manually configured IP version 6 (IPv6) Multicast Listener Discovery (MLD) router ports for the switch or a VLAN.

```
show ipv6 mld snooping mrouter [vlan vlan-id] [| begin | exclude | include | expression]
```

**Note**

This command is available only if the switch stack is running the advanced IP services image and you have configured a dual IPv4 and IPv6 Switch Database Management (SDM) template on the switch.

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>vlan</code></td>
<td>(Optional) Specify a VLAN; the range is 1 to 1001 and 1006 to 4094.</td>
</tr>
<tr>
<td>`</td>
<td>begin`</td>
</tr>
<tr>
<td>`</td>
<td>exclude`</td>
</tr>
<tr>
<td>`</td>
<td>include`</td>
</tr>
<tr>
<td>`</td>
<td>expression`</td>
</tr>
</tbody>
</table>

**Command Modes**

User EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SED</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use this command to display MLD snooping router ports for the switch or for a specific VLAN. VLAN numbers 1002 through 1005 are reserved for Token Ring and FDDI VLANs and cannot be used in MLD snooping.

To configure the dual IPv4 and IPv6 template, enter the `sdm prefer dual-ipv4-and-ipv6 {default | vlan)` global configuration command and reload the switch.

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.

**Examples**

This is an example of output from the `show ipv6 mld snooping mrouter` command. It displays snooping characteristics for all VLANs on the switch that are participating in MLD snooping.

```
Switch> show ipv6 mld snooping mrouter
Vlan ports
---- -----...
 2 Gi1/0/11(dynamic)
 72 Gi1/0/11(dynamic)
 200 Gi1/0/11(dynamic)
```
This is an example of output from the `show ipv6 mld snooping mrouter vlan` command. It shows multicast router ports for a specific VLAN.

```plaintext
Switch> show ipv6 mld snooping mrouter vlan 100
Vlan ports
 ---- -----
 2 Gi1/0/11(dynamic)
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6 mld snooping</td>
<td>Enables and configures MLD snooping on the switch or on a VLAN.</td>
</tr>
<tr>
<td>ipv6 mld snooping vlan mrouter interface interface-id</td>
<td>Configures multicast router ports for a VLAN.</td>
</tr>
<tr>
<td>ipv6-mcast-address interface interface-id</td>
<td></td>
</tr>
<tr>
<td>sdm prefer</td>
<td>Configures an SDM template to optimize system resources based on how the switch is being used.</td>
</tr>
</tbody>
</table>
**show ipv6 mld snooping querier**

Use the `show ipv6 mld snooping querier` user EXEC command to display IP version 6 (IPv6) Multicast Listener Discovery (MLD) snooping querier-related information most recently received by the switch or the VLAN.

```
show ipv6 mld snooping querier [vlan vlan-id] [detail] [| begin | exclude | include] expression
```

**Syntax Description**

- **vlan vlan-id** (Optional) Specify a VLAN; the range is 1 to 1001 and 1006 to 4094.
- **detail** (Optional) Display MLD snooping detailed querier information for the switch or for the VLAN.
- **| begin** (Optional) Display begins with the line that matches the `expression`.
- **| exclude** (Optional) Display excludes lines that match the `expression`.
- **| include** (Optional) Display includes lines that match the specified `expression`.
- **expression** Expression in the output to use as a reference point.

**Command Modes**

User EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SED</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `show ipv6 mld snooping querier` command to display the MLD version and IPv6 address of a detected device that sends MLD query messages, which is also called a querier. A subnet can have multiple multicast routers but has only one MLD querier. The querier can be a Layer 3 switch.

The `show ipv6 mld snooping querier` command output also shows the VLAN and interface on which the querier was detected. If the querier is the switch, the output shows the *Port* field as *Router*. If the querier is a router, the output shows the port number on which the querier is learned in the *Port* field.

The output of the `show ipv6 mld snooping querier vlan` command displays the information received in response to a query message from an external or internal querier. It does not display user-configured VLAN values, such as the snooping robustness variable on the particular VLAN. This querier information is used only on the MASQ message that is sent by the switch. It does not override the user-configured robustness variable that is used for aging out a member that does not respond to query messages.

VLAN numbers 1002 through 1005 are reserved for Token Ring and FDDI VLANs and cannot be used in MLD snooping.

To configure the dual IPv4 and IPv6 template, enter the `sdm prefer dual-ipv4-and-ipv6 (default | vlan)` global configuration command and reload the switch.
Expressions are case sensitive. For example, if you enter | exclude output, the lines that contain output do not appear, but the lines that contain Output appear.

**Examples**

This is an example of output from the `show ipv6 mld snooping querier` command:

```
Switch> show ipv6 mld snooping querier
Vlan IP Address MLD Version Port

2 FE80::201:C9FF:FE40:6000 v1 Gi3/0/1
```

This is an example of output from the `show ipv6 mld snooping querier detail` command:

```
Switch> show ipv6 mld snooping querier detail
Vlan IP Address MLD Version Port

2 FE80::201:C9FF:FE40:6000 v1 Gi3/0/1
```

This is an example of output from the `show ipv6 mld snooping querier vlan` command:

```
Switch> show ipv6 mld snooping querier vlan 2
IP address : FE80::201:C9FF:FE40:6000
MLD version : v1
Port : Gi3/0/1
Max response time : 1000s
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ipv6 mld snooping</code></td>
<td>Enables and configures IPv6 MLD snooping on the switch or on a VLAN.</td>
</tr>
<tr>
<td><code>ipv6 mld snooping last-listener-query-count</code></td>
<td>Configures the maximum number of queries that the switch sends before aging out an MLD client.</td>
</tr>
<tr>
<td><code>ipv6 mld snooping last-listener-query-interval</code></td>
<td>Configures the maximum response time after sending out a query that the switch waits before deleting a port from the multicast group.</td>
</tr>
<tr>
<td><code>ipv6 mld snooping robustness-variable</code></td>
<td>Configures the maximum number of queries that the switch sends before aging out a multicast address when there is no response.</td>
</tr>
<tr>
<td><code>sdm prefer</code></td>
<td>Configures an SDM template to optimize system resources based on how the switch is being used.</td>
</tr>
</tbody>
</table>
# show l2protocol-tunnel

Use the `show l2protocol-tunnel` user EXEC command to display information about Layer 2 protocol tunnel ports. Displays information for interfaces with protocol tunneling enabled.

```
show l2protocol-tunnel [interface interface-id] [summary] [| begin | exclude | include] expression
```

## Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>interface interface-id</strong></td>
<td>(Optional) Specify the interface for which protocol tunneling information appears. Valid interfaces are physical ports and port channels; the port channel range is 1 to 48.</td>
</tr>
<tr>
<td><strong>summary</strong></td>
<td>(Optional) Display only Layer 2 protocol summary information.</td>
</tr>
<tr>
<td>**</td>
<td>begin</td>
</tr>
<tr>
<td>**</td>
<td>exclude</td>
</tr>
<tr>
<td>**</td>
<td>include</td>
</tr>
<tr>
<td><strong>expression</strong></td>
<td>Expression in the output to use as a reference point.</td>
</tr>
</tbody>
</table>

## Command Modes

User EXEC

## Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

## Usage Guidelines

After enabling Layer 2 protocol tunneling on an access or IEEE 802.1Q tunnel port by using the `l2protocol-tunnel interface configuration` command, you can configure some or all of these parameters:

- Protocol type to be tunneled
- Shutdown threshold
- Drop threshold

If you enter the `show l2protocol-tunnel [interface interface-id]` command, only information about the active ports on which all the parameters are configured appears.

If you enter the `show l2protocol-tunnel summary` command, only information about the active ports on which some or all of the parameters are configured appears.

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.
Examples

This is an example of output from the `show l2protocol-tunnel` command:

```
Switch> show l2protocol-tunnel
COS for Encapsulated Packets: 5
Drop Threshold for Encapsulated Packets: 0

<table>
<thead>
<tr>
<th>Port</th>
<th>Protocol</th>
<th>Shutdown</th>
<th>Drop Threshold</th>
<th>Encapsulation Counter</th>
<th>Decapsulation Counter</th>
<th>Drop Counter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fa3/0/3</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>pagp</td>
<td>---</td>
<td>0</td>
<td>242500</td>
<td>242640</td>
<td></td>
</tr>
<tr>
<td></td>
<td>lacp</td>
<td>---</td>
<td>24268</td>
<td>242660</td>
<td>897960</td>
<td></td>
</tr>
<tr>
<td>Fa3/0/4</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>pagp</td>
<td>1000</td>
<td>24249</td>
<td>242700</td>
<td>485320</td>
<td></td>
</tr>
<tr>
<td></td>
<td>lacp</td>
<td>---</td>
<td>24256</td>
<td>242660</td>
<td>485220</td>
<td></td>
</tr>
<tr>
<td></td>
<td>udld</td>
<td>300</td>
<td>44899</td>
<td>448980</td>
<td>448980</td>
<td></td>
</tr>
<tr>
<td>Gi6/0/3</td>
<td>cdp</td>
<td>---</td>
<td>134482</td>
<td>1344820</td>
<td>485220</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pagp</td>
<td>1000</td>
<td>242500</td>
<td>485320</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>lacp</td>
<td>500</td>
<td>485220</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>udld</td>
<td>300</td>
<td>448980</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gi6/0/4</td>
<td>cdp</td>
<td>---</td>
<td>134482</td>
<td>1344820</td>
<td>448980</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pagp</td>
<td>1000</td>
<td>448980</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>lacp</td>
<td>500</td>
<td>448980</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>udld</td>
<td>300</td>
<td>448980</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

This is an example of output from the `show l2protocol-tunnel summary` command:

```
Switch> show l2protocol-tunnel summary
COS for Encapsulated Packets: 5
Drop Threshold for Encapsulated Packets: 0

<table>
<thead>
<tr>
<th>Port</th>
<th>Protocol (cdp/stp/vtp)</th>
<th>Shutdown (cdp/stp/vtp)</th>
<th>Drop Threshold</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fa3/0/2</td>
<td>pagp/lacp/udld</td>
<td>---</td>
<td>---/----/----</td>
<td>up</td>
</tr>
<tr>
<td>Fa9/0/3</td>
<td>pagp/lacp/udld</td>
<td>1000/500/----</td>
<td>----/----/----</td>
<td>up</td>
</tr>
<tr>
<td>Fa9/0/4</td>
<td>pagp/lacp/udld</td>
<td>1000/----/----</td>
<td>----/----/----</td>
<td>up</td>
</tr>
<tr>
<td>Fa9/0/5</td>
<td>cdp/stp/vtp</td>
<td>1000/----/----</td>
<td>----/----/----</td>
<td>down</td>
</tr>
<tr>
<td>Gi4/0/1</td>
<td>pagp/----/----</td>
<td>1000/----/----</td>
<td>----/----/----</td>
<td>down</td>
</tr>
<tr>
<td>Gi4/0/2</td>
<td>pagp/----/----</td>
<td>1000/----/----</td>
<td>----/----/----</td>
<td>down</td>
</tr>
</tbody>
</table>
```
### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear l2protocol-tunnel counters</td>
<td>Clears counters for protocol tunneling ports.</td>
</tr>
<tr>
<td>l2protocol-tunnel</td>
<td>Enables Layer 2 protocol tunneling for CDP, STP, or VTP packets on an interface.</td>
</tr>
<tr>
<td>l2protocol-tunnel cos</td>
<td>Configures a class of service (CoS) value for tunneled Layer 2 protocol packets.</td>
</tr>
</tbody>
</table>
**show lacp**

Use the **show lacp** user EXEC command to display Link Aggregation Control Protocol (LACP) channel-group information.

```
show lacp [channel-group-number] {counters | internal | neighbor | sys-id} [| {begin | exclude | include} expression]
```

**Syntax Description**

- **channel-group-number** (Optional) Number of the channel group. The range is 1 to 48.
- **counters** Display traffic information.
- **internal** Display internal information.
- **neighbor** Display neighbor information.
- **sys-id** Display the system identifier that is being used by LACP. The system identifier is made up of the LACP system priority and the switch MAC address.
- **| begin** (Optional) Display begins with the line that matches the `expression`.
- **| exclude** (Optional) Display excludes lines that match the `expression`.
- **| include** (Optional) Display includes lines that match the specified `expression`.
- **expression** Expression in the output to use as a reference point.

**Command Modes**

User EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(14)EA1</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(25)SE</td>
<td>The <code>channel-group-number</code> range was changed from 1 to 12 to 1 to 48.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You can enter any **show lacp** command to display the active channel-group information. To display specific channel information, enter the **show lacp** command with a channel-group number. If you do not specify a channel group, information for all channel groups appears.

You can enter the `channel-group-number` option to specify a channel group for all keywords except `sys-id`.

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.
Examples

This is an example of output from the `show lacp counters` user EXEC command. Table 2-27 describes the fields in the display.

```
Switch> show lacp counters
Channel group: 1
Gi2/0/1 19 10 0 0 0 0 0
Gi2/0/2 14 6 0 0 0 0 0
```

Table 2-27  show lacp counters Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LACPDU Sent andRecv</td>
<td>The number of LACP packets sent and received by a port.</td>
</tr>
<tr>
<td>Marker Sent andRecv</td>
<td>The number of LACP marker packets sent and received by a port.</td>
</tr>
<tr>
<td>Marker Response Sent andRecv</td>
<td>The number of LACP marker response packets sent and received by a port.</td>
</tr>
<tr>
<td>LACPDU Pkts andErr</td>
<td>The number of unknown and illegal packets received by LACP for a port.</td>
</tr>
</tbody>
</table>

This is an example of output from the `show lacp internal` command:

```
Switch> show lacp 1 internal
Flags: S - Device is requesting Slow LACPDU S
 F - Device is requesting Fast LACPDU S
 A - Device is in Active mode P - Device is in Passive mode

Channel group: 1

<table>
<thead>
<tr>
<th>Port</th>
<th>Flags</th>
<th>State</th>
<th>Priority</th>
<th>Admin</th>
<th>Oper</th>
<th>Port</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi2/0/1</td>
<td>SA</td>
<td>bndl</td>
<td>32768</td>
<td>0x3</td>
<td>0x3</td>
<td>0x4</td>
<td>0x3D</td>
</tr>
<tr>
<td>Gi2/0/2</td>
<td>SA</td>
<td>bndl</td>
<td>32768</td>
<td>0x3</td>
<td>0x3</td>
<td>0x5</td>
<td>0x3D</td>
</tr>
</tbody>
</table>
```
Table 2-28 describes the fields in the display:

Table 2-28  show lacp internal Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>State of the specific port. These are the allowed values:</td>
</tr>
<tr>
<td></td>
<td>• ——Port is in an unknown state.</td>
</tr>
<tr>
<td></td>
<td>• <strong>bndl</strong>—Port is attached to an aggregator and bundled with other ports.</td>
</tr>
<tr>
<td></td>
<td>• <strong>susp</strong>—Port is in a suspended state; it is not attached to any aggregator.</td>
</tr>
<tr>
<td></td>
<td>• <strong>hot-sby</strong>—Port is in a hot-standby state.</td>
</tr>
<tr>
<td></td>
<td>• <strong>indiv</strong>—Port is incapable of bundling with any other port.</td>
</tr>
<tr>
<td></td>
<td>• <strong>indep</strong>—Port is in an independent state (not bundled but able to switch data traffic. In this case, LACP is not running on the partner port).</td>
</tr>
<tr>
<td></td>
<td>• <strong>down</strong>—Port is down.</td>
</tr>
<tr>
<td>LACP Port Priority</td>
<td>Port priority setting. LACP uses the port priority to put ports in standby mode when there is a hardware limitation that prevents all compatible ports from aggregating.</td>
</tr>
<tr>
<td>Admin Key</td>
<td>Administrative key assigned to this port. LACP automatically generates an administrative key value as a hexadecimal number. The administrative key defines the ability of a port to aggregate with other ports. A port’s ability to aggregate with other ports is determined by the port physical characteristics (for example, data rate and duplex capability) and configuration restrictions that you establish.</td>
</tr>
<tr>
<td>Oper Key</td>
<td>Runtime operational key that is being used by this port. LACP automatically generates this value as a hexadecimal number.</td>
</tr>
<tr>
<td>Port Number</td>
<td>Port number.</td>
</tr>
<tr>
<td>Port State</td>
<td>State variables for the port, encoded as individual bits within a single octet with these meanings:</td>
</tr>
<tr>
<td></td>
<td>• bit0: LACP_Activity</td>
</tr>
<tr>
<td></td>
<td>• bit1: LACP_Timeout</td>
</tr>
<tr>
<td></td>
<td>• bit2: Aggregation</td>
</tr>
<tr>
<td></td>
<td>• bit3: Synchronization</td>
</tr>
<tr>
<td></td>
<td>• bit4: Collecting</td>
</tr>
<tr>
<td></td>
<td>• bit5: Distributing</td>
</tr>
<tr>
<td></td>
<td>• bit6: Defaulted</td>
</tr>
<tr>
<td></td>
<td>• bit7: Expired</td>
</tr>
</tbody>
</table>

**Note**  In the list above, bit7 is the MSB and bit0 is the LSB.
This is an example of output from the `show lacp neighbor` command:

```
Switch> show lacp neighbor
Flags: S - Device is sending Slow LACPDUs F - Device is sending Fast LACPDUs
 A - Device is in Active mode P - Device is in Passive mode

Channel group 3 neighbors

Partner`s information:

<table>
<thead>
<tr>
<th>Partner</th>
<th>Port</th>
<th>System ID</th>
<th>Port Number</th>
<th>Age</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gi2/0/1</td>
<td>32768,0007.eb49.5e80</td>
<td>0xC</td>
<td>19s</td>
<td>SP</td>
</tr>
<tr>
<td>LACP Partner</td>
<td>Partner</td>
<td>Partner</td>
<td>Partner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port Priority</td>
<td>Oper Key</td>
<td>Port State</td>
<td>32768</td>
<td>0x3</td>
<td>0x3C</td>
</tr>
</tbody>
</table>

Partner`s information:

<table>
<thead>
<tr>
<th>Partner</th>
<th>Port</th>
<th>System ID</th>
<th>Port Number</th>
<th>Age</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gi2/0/2</td>
<td>32768,0007.eb49.5e80</td>
<td>0xD</td>
<td>15s</td>
<td>SP</td>
</tr>
<tr>
<td>LACP Partner</td>
<td>Partner</td>
<td>Partner</td>
<td>Partner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port Priority</td>
<td>Oper Key</td>
<td>Port State</td>
<td>32768</td>
<td>0x3</td>
<td>0x3C</td>
</tr>
</tbody>
</table>

This is an example of output from the `show lacp sys-id` command:

```
Switch> show lacp sys-id
32765,0002.4b29.3a00
```

The system identification is made up of the system priority and the system MAC address. The first two bytes are the system priority, and the last six bytes are the globally administered individual MAC address associated to the system.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear lacp</td>
<td>Clears the LACP channel-group information.</td>
</tr>
<tr>
<td>lacp port-priority</td>
<td>Configures the LACP port priority.</td>
</tr>
<tr>
<td>lacp system-priority</td>
<td>Configures the LACP system priority.</td>
</tr>
</tbody>
</table>
show link state group

Use the `show link state group` global configuration command to display the link-state group information.

```
show link state group [number] [detail] [ | begin | exclude | include | expression]
```

Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>number</td>
<td>(Optional) Number of the link-state group.</td>
</tr>
<tr>
<td>detail</td>
<td>(Optional) Specify that detailed information appears.</td>
</tr>
<tr>
<td>begin</td>
<td>(Optional) Display begins with the line that matches the <code>expression</code>.</td>
</tr>
<tr>
<td>exclude</td>
<td>(Optional) Display excludes lines that match the <code>expression</code>.</td>
</tr>
<tr>
<td>include</td>
<td>(Optional) Display includes lines that match the specified <code>expression</code>.</td>
</tr>
<tr>
<td><code>expression</code></td>
<td>Expression in the output to use as a reference point.</td>
</tr>
</tbody>
</table>

Defaults

There is no default.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SEE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `show link state group` command to display the link-state group information. Enter this command without keywords to display information about all link-state groups. Enter the group number to display information specific to the group. Enter the `detail` keyword to display detailed information about the group.

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` are not displayed, but the lines that contain `Output` are displayed.

Examples

This is an example of output from the `show link state group 1` command:

```
Switch> show link state group 1
Link State Group: 1      Status: Enabled, Down
```

This is an example of output from the `show link state group detail` command:

```
Switch> show link state group detail
(Up):Interface up   (Dwn):Interface Down   (Dis):Interface disabled
```

```
Link State Group: 1 Status: Enabled, Down
Upstream Interfaces : Gi1/0/15(Dwn) Gi1/0/16(Dwn)
Downstream Interfaces : Gi1/0/11(Dis) Gi1/0/12(Dis) Gi1/0/13(Dis) Gi1/0/14(Dis)
```
show link state group

Link State Group: 2 Status: Enabled, Down
Upstream Interfaces : Gi1/0/15(Dwn) Gi1/0/16(Dwn) Gi1/0/17(Dwn)
Downstream Interfaces : Gi1/0/11(Dis) Gi1/0/12(Dis) Gi1/0/13(Dis) Gi1/0/14(Dis)

(Up):Interface up (Dwn):Interface Down (Dis):Interface disabled

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>link state group</td>
<td>Configures an interface as a member of a link-state group.</td>
</tr>
<tr>
<td>link state track</td>
<td>Enables a link-state group.</td>
</tr>
<tr>
<td>show running-config</td>
<td>Displays the current operating configuration. For syntax information, select Cisco IOS Configuration Fundamentals Command Reference for Release 12.2 > Cisco IOS File Management Commands > Configuration File Commands.</td>
</tr>
</tbody>
</table>
show mac access-group

Use the **show mac access-group** user EXEC command to display the MAC access control lists (ACLs) configured for an interface or a switch.

```
show mac access-group [interface interface-id] [ | begin | exclude | include ] expression
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface interface-id</td>
<td>(Optional) Display the MAC ACLs configured on a specific interface. Valid interfaces are physical ports and port channels; the port-channel range is 1 to 48 (available only in privileged EXEC mode).</td>
</tr>
<tr>
<td></td>
<td>(Optional) Display begins with the line that matches the expression.</td>
</tr>
<tr>
<td></td>
<td>(Optional) Display excludes lines that match the expression.</td>
</tr>
<tr>
<td></td>
<td>(Optional) Display includes lines that match the specified expression.</td>
</tr>
<tr>
<td>expression</td>
<td>Expression in the output to use as a reference point.</td>
</tr>
</tbody>
</table>

Command Modes

User EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2.1(14)EA1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Expressions are case sensitive. For example, if you enter | exclude output, the lines that contain output do not appear, but the lines that contain Output appear.

Examples

This is an example of output from the **show mac-access group** user EXEC command. In this display, port 2 has the MAC access list *macl_e1* applied; no MAC ACLs are applied to other interfaces.

```
Switch> show mac access-group
Interface GigabitEthernet1/0/1:
    Inbound access-list is not set
Interface GigabitEthernet1/0/2:
    Inbound access-list is macl_e1
Interface GigabitEthernet1/0/3:
    Inbound access-list is not set
Interface GigabitEthernet1/0/4:
    Inbound access-list is not set
<output truncated>
```

This is an example of output from the **show mac-access-group interface gigabitethernet1/0/1** command:

```
Switch# show mac access-group interface gigabitethernet1/0/1
Interface GigabitEthernet1/0/1:
    Inbound access-list is macl_e1
```
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mac access-group</code></td>
<td>Applies a MAC access group to an interface.</td>
</tr>
</tbody>
</table>
show mac address-table

Use the `show mac address-table` user EXEC command to display a specific MAC address table static and dynamic entry or the MAC address table static and dynamic entries on a specific interface or VLAN.

```
show mac address-table [ begin | exclude | include ] expression
```

Syntax Description

- `begin` (Optional) Display begins with the line that matches the `expression`.
- `exclude` (Optional) Display excludes lines that match the `expression`.
- `include` (Optional) Display includes lines that match the specified `expression`.
- `expression` Expression in the output to use as a reference point.

Command Modes

User EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(19)EA1</td>
<td>The <code>show mac-address-table</code> command (with the hyphen) was replaced by the <code>show mac address-table</code> command (without the hyphen).</td>
</tr>
</tbody>
</table>

Usage Guidelines

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.

Examples

This is an example of output from the `show mac address-table` command:

```
Switch> show mac address-table
Mac Address Table
------------------------------------------
Vlan  Mac Address       Type       Ports
----  -----------       ----       ----- 
All   0000.0000.0001   STATIC     CPU
All   0000.0000.0002   STATIC     CPU
All   0000.0000.0003   STATIC     CPU
All   0000.0000.0009   STATIC     CPU
All   0000.0000.0012   STATIC     CPU
All   0180.c200.000b   STATIC     CPU
All   0180.c200.000c   STATIC     CPU
All   0180.c200.000d   STATIC     CPU
All   0180.c200.000e   STATIC     CPU
All   0180.c200.000f   STATIC     CPU
All   0180.c200.0010   STATIC     CPU
1     0030.9441.6327   DYNAMIC   G16/0/4
Total Mac Addresses for this criterion: 12
```
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>clear mac address-table dynamic</code></td>
<td>Deletes from the MAC address table a specific dynamic address, all dynamic addresses on a particular interface, or all dynamic addresses on a particular VLAN.</td>
</tr>
<tr>
<td><code>show mac address-table aging-time</code></td>
<td>Displays the aging time in all VLANs or the specified VLAN.</td>
</tr>
<tr>
<td><code>show mac address-table count</code></td>
<td>Displays the number of addresses present in all VLANs or the specified VLAN.</td>
</tr>
<tr>
<td><code>show mac address-table dynamic</code></td>
<td>Displays dynamic MAC address table entries only.</td>
</tr>
<tr>
<td><code>show mac address-table interface</code></td>
<td>Displays the MAC address table information for the specified interface.</td>
</tr>
<tr>
<td><code>show mac address-table notification</code></td>
<td>Displays the MAC address notification settings for all interfaces or the specified interface.</td>
</tr>
<tr>
<td><code>show mac address-table static</code></td>
<td>Displays static MAC address table entries only.</td>
</tr>
<tr>
<td><code>show mac address-table vlan</code></td>
<td>Displays the MAC address table information for the specified VLAN.</td>
</tr>
</tbody>
</table>
show mac address-table address

Use the `show mac address-table address` user EXEC command to display MAC address table information for the specified MAC address.

```
show mac address-table address mac-address [interface interface-id] [vlan vlan-id] [ | begin | exclude | include] expression
```

Syntax Description

- `mac-address`: Specify the 48-bit MAC address; the valid format is H.H.H.
- `interface interface-id`: (Optional) Display information for a specific interface. Valid interfaces include physical ports and port channels.
- `vlan vlan-id`: (Optional) Display entries for the specific VLAN only. The range is 1 to 4094.
- `begin`: (Optional) Display begins with the line that matches the `expression`.
- `exclude`: (Optional) Display excludes lines that match the `expression`.
- `include`: (Optional) Display includes lines that match the specified `expression`.
- `expression`: Expression in the output to use as a reference point.

Command Modes

User EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(19)EA1</td>
<td>The <code>show mac-address-table address</code> command (with the hyphen) was replaced by the <code>show mac address-table address</code> command (without the hyphen).</td>
</tr>
</tbody>
</table>

Usage Guidelines

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.

Examples

This is an example of output from the `show mac address-table address` command:

```
Switch# show mac address-table address 0002.4b28.c482
Mac Address Table
---------------------------
Vlan  Mac Address  Type  Ports
-----  ----------  ----  -----  
All    0002.4b28.c482  STATIC  CPU
Total Mac Addresses for this criterion: 1
```
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show mac address-table aging-time</td>
<td>Displays the aging time in all VLANs or the specified VLAN.</td>
</tr>
<tr>
<td>show mac address-table count</td>
<td>Displays the number of addresses present in all VLANs or the specified VLAN.</td>
</tr>
<tr>
<td>show mac address-table dynamic</td>
<td>Displays dynamic MAC address table entries only.</td>
</tr>
<tr>
<td>show mac address-table interface</td>
<td>Displays the MAC address table information for the specified interface.</td>
</tr>
<tr>
<td>show mac address-table notification</td>
<td>Displays the MAC address notification settings for all interfaces or the specified interface.</td>
</tr>
<tr>
<td>show mac address-table static</td>
<td>Displays static MAC address table entries only.</td>
</tr>
<tr>
<td>show mac address-table vlan</td>
<td>Displays the MAC address table information for the specified VLAN.</td>
</tr>
</tbody>
</table>
show mac address-table aging-time

Use the show mac address-table aging-time user EXEC command to display the aging time of a specific address table instance, all address table instances on a specified VLAN or, if a specific VLAN is not specified, on all VLANs.

```
show mac address-table aging-time [vlan vlan-id] [ | {begin | exclude | include} expression]
```

Syntax Description

- `vlan vlan-id` (Optional) Display aging time information for a specific VLAN. The range is 1 to 4094.
- `| begin` (Optional) Display begins with the line that matches the `expression`.
- `| exclude` (Optional) Display excludes lines that match the `expression`.
- `| include` (Optional) Display includes lines that match the specified `expression`.
- `expression` Expression in the output to use as a reference point.

Command Modes

User EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>T2.1(19)EA1</td>
<td>The <code>show mac-address-table aging-time</code> command (with the hyphen) was replaced by the <code>show mac address-table aging-time</code> command (without the hyphen).</td>
</tr>
</tbody>
</table>

Usage Guidelines

If no VLAN number is specified, the aging time for all VLANs appears.

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.

Examples

This is an example of output from the `show mac address-table aging-time` command:

```
Switch> show mac address-table aging-time
Vlan    Aging Time
----    ----------
     1     300
```

This is an example of output from the `show mac address-table aging-time vlan 10` command:

```
Switch> show mac address-table aging-time vlan 10
Vlan    Aging Time
----    ----------
     10     300
```
show mac address-table aging-time

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mac address-table aging-time</td>
<td>Sets the length of time that a dynamic entry remains in the MAC address table after the entry is used or updated.</td>
</tr>
<tr>
<td>show mac address-table address</td>
<td>Displays MAC address table information for the specified MAC address.</td>
</tr>
<tr>
<td>show mac address-table count</td>
<td>Displays the number of addresses present in all VLANs or the specified VLAN.</td>
</tr>
<tr>
<td>show mac address-table dynamic</td>
<td>Displays dynamic MAC address table entries only.</td>
</tr>
<tr>
<td>show mac address-table interface</td>
<td>Displays the MAC address table information for the specified interface.</td>
</tr>
<tr>
<td>show mac address-table notification</td>
<td>Displays the MAC address notification settings for all interfaces or the specified interface.</td>
</tr>
<tr>
<td>show mac address-table static</td>
<td>Displays static MAC address table entries only.</td>
</tr>
<tr>
<td>show mac address-table vlan</td>
<td>Displays the MAC address table information for the specified VLAN.</td>
</tr>
</tbody>
</table>
show mac address-table count

Use the `show mac address-table count` user EXEC command to display the number of addresses present in all VLANs or the specified VLAN.

```
show mac address-table count [vlan vlan-id] [ | begin | exclude | include ] expression
```

Syntax Description

- `vlan vlan-id` (Optional) Display the number of addresses for a specific VLAN. The range is 1 to 4094.
- `| begin` (Optional) Display begins with the line that matches the `expression`.
- `| exclude` (Optional) Display excludes lines that match the `expression`.
- `| include` (Optional) Display includes lines that match the specified `expression`.
- `expression` Expression in the output to use as a reference point.

Command Modes

User EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(19)EA1</td>
<td>The <code>show mac-address-table count</code> command (with the hyphen) was replaced by the <code>show mac address-table count</code> command (without the hyphen).</td>
</tr>
</tbody>
</table>

Usage Guidelines

If no VLAN number is specified, the address count for all VLANs appears.

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.

Examples

This is an example of output from the `show mac address-table count` command:

```
Switch# show mac address-table count
Mac Entries for Vlan   : 1
-------------------------------
Dynamic Address Count    : 2
Static    Address Count    : 0
Total Mac Addresses      : 2
```
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show mac address-table address</code></td>
<td>Displays MAC address table information for the specified MAC address.</td>
</tr>
<tr>
<td><code>show mac address-table aging-time</code></td>
<td>Displays the aging time in all VLANs or the specified VLAN.</td>
</tr>
<tr>
<td><code>show mac address-table dynamic</code></td>
<td>Displays dynamic MAC address table entries only.</td>
</tr>
<tr>
<td><code>show mac address-table interface</code></td>
<td>Displays the MAC address table information for the specified interface.</td>
</tr>
<tr>
<td><code>show mac address-table notification</code></td>
<td>Displays the MAC address notification settings for all interfaces or the specified interface.</td>
</tr>
<tr>
<td><code>show mac address-table static</code></td>
<td>Displays static MAC address table entries only.</td>
</tr>
<tr>
<td><code>show mac address-table vlan</code></td>
<td>Displays the MAC address table information for the specified VLAN.</td>
</tr>
</tbody>
</table>
show mac address-table dynamic

Use the show mac address-table dynamic user EXEC command to display only dynamic MAC address table entries.

```
show mac address-table dynamic [address mac-address] [interface interface-id] [vlan vlan-id] [ | begin | exclude | include] expression
```

Syntax Description

- **address mac-address** (Optional) Specify a 48-bit MAC address; the valid format is H.H.H (available in privileged EXEC mode only).
- **interface interface-id** (Optional) Specify an interface to match; valid interfaces include physical ports and port channels.
- **vlan vlan-id** (Optional) Display entries for a specific VLAN; the range is 1 to 4094.
- **| begin** (Optional) Display begins with the line that matches the expression.
- **| exclude** (Optional) Display excludes lines that match the expression.
- **| include** (Optional) Display includes lines that match the specified expression.
- **expression** Expression in the output to use as a reference point.

Command Modes

User EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(19)EA1</td>
<td>The show mac-address-table dynamic command (with the hyphen) was replaced by the show mac address-table dynamic command (without the hyphen).</td>
</tr>
</tbody>
</table>

Usage Guidelines

Expressions are case sensitive. For example, if you enter | exclude output, the lines that contain output do not appear, but the lines that contain Output appear.

Examples

This is an example of output from the show mac address-table dynamic command:

```
Switch> show mac address-table dynamic
Mac Address Table
------------------------------------------
Vlan   Mac Address   Type    Ports
----   -----------   ----    -----    
1      0030.b635.7862  DYNAMIC Gi6/0/2
1      00b0.6496.2741  DYNAMIC Gi6/0/2
Total Mac Addresses for this criterion: 2
```
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>clear mac address-table dynamic</code></td>
<td>Deletes from the MAC address table a specific dynamic address, all dynamic addresses on a particular interface, or all dynamic addresses on a particular VLAN.</td>
</tr>
<tr>
<td><code>show mac address-table address</code></td>
<td>Displays MAC address table information for the specified MAC address.</td>
</tr>
<tr>
<td><code>show mac address-table aging-time</code></td>
<td>Displays the aging time in all VLANs or the specified VLAN.</td>
</tr>
<tr>
<td><code>show mac address-table count</code></td>
<td>Displays the number of addresses present in all VLANs or the specified VLAN.</td>
</tr>
<tr>
<td><code>show mac address-table interface</code></td>
<td>Displays the MAC address table information for the specified interface.</td>
</tr>
<tr>
<td><code>show mac address-table static</code></td>
<td>Displays static MAC address table entries only.</td>
</tr>
<tr>
<td><code>show mac address-table vlan</code></td>
<td>Displays the MAC address table information for the specified VLAN.</td>
</tr>
</tbody>
</table>
show mac address-table interface

Use the `show mac address-table interface` user command to display the MAC address table information for the specified interface in the specified VLAN.

```
show mac address-table interface interface-id [vlan vlan-id] [ | begin | exclude | include ]
expression]
```

Syntax Description

- **interface-id**: Specify an interface type; valid interfaces include physical ports and port channels.
- **vlan vlan-id**: (Optional) Display entries for a specific VLAN; the range is 1 to 4094.
- **begin**: (Optional) Display begins with the line that matches the `expression`.
- **exclude**: (Optional) Display excludes lines that match the `expression`.
- **include**: (Optional) Display includes lines that match the specified `expression`.
- **expression**: Expression in the output to use as a reference point.

Command Modes

User EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(19)EA1</td>
<td>The <code>show mac-address-table interface</code> command (with the hyphen) was replaced by the <code>show mac address-table interface</code> command (without the hyphen).</td>
</tr>
</tbody>
</table>

Usage Guidelines

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.

Examples

This is an example of output from the `show mac address-table interface` command:

```
Switch> show mac address-table interface gigabitethernet6/0/2
Mac Address Table
------------------------------------------
Vlan  Mac Address     Type    Ports
-----  -----------     ----    -----  
 1  0030.b635.7862  DYNAMIC Gi6/0/2
 1  00b0.6496.2741  DYNAMIC Gi6/0/2
Total Mac Addresses for this criterion: 2
```
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show mac address-table address</code></td>
<td>Displays MAC address table information for the specified MAC address.</td>
</tr>
<tr>
<td><code>show mac address-table aging-time</code></td>
<td>Displays the aging time in all VLANs or the specified VLAN.</td>
</tr>
<tr>
<td><code>show mac address-table count</code></td>
<td>Displays the number of addresses present in all VLANs or the specified VLAN.</td>
</tr>
<tr>
<td><code>show mac address-table dynamic</code></td>
<td>Displays dynamic MAC address table entries only.</td>
</tr>
<tr>
<td><code>show mac address-table notification</code></td>
<td>Displays the MAC address notification settings for all interfaces or the specified interface.</td>
</tr>
<tr>
<td><code>show mac address-table static</code></td>
<td>Displays static MAC address table entries only.</td>
</tr>
<tr>
<td><code>show mac address-table vlan</code></td>
<td>Displays the MAC address table information for the specified VLAN.</td>
</tr>
</tbody>
</table>
show mac address-table move update

Use the `show mac address-table move update` user EXEC command to display the MAC address-table move update information on the switch.

```
show mac address-table move update [ | { begin | exclude | include } expression]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>begin</code></td>
<td>(Optional) Display begins with the line that matches the expression.</td>
</tr>
<tr>
<td><code>exclude</code></td>
<td>(Optional) Display excludes lines that match the expression.</td>
</tr>
<tr>
<td><code>include</code></td>
<td>(Optional) Display includes lines that match the specified expression.</td>
</tr>
<tr>
<td><code>expression</code></td>
<td>Expression in the output to use as a reference point.</td>
</tr>
</tbody>
</table>

Command Modes

User EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SED</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.

Examples

This is an example of output from the `show mac address-table move update` command:

```
Switch> show mac address-table move update
Switch-ID : 010b.4630.1780
Dst mac-address : 0180.c200.0010
Vlans/Macs supported : 1023/8320
Default/Current settings: Rcv Off/On, Xmt Off/On
Max packets per min : Rcv 40, Xmt 60
Rcv packet count : 10
Rcv conforming packet count : 5
Rcv invalid packet count : 0
Rcv packet count this min : 0
Rcv threshold exceed count : 0
Rcv last sequence# this min : 0
Rcv last interface : Po2
Rcv last src-mac-address : 0003.fd6a.8701
Rcv last switch-ID : 0303.fd63.7600
Xmt packet count : 0
Xmt packet count this min : 0
Xmt threshold exceed count : 0
Xmt pak buf unavail cnt : 0
Xmt last interface : None
switch#
```
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear mac address-table move update</td>
<td>Clears the MAC address-table move update counters.</td>
</tr>
<tr>
<td>mac address-table move update {receive</td>
<td>transmit}</td>
</tr>
</tbody>
</table>
show mac address-table notification

Use the show mac address-table notification user EXEC command to display the MAC address notification settings for all interfaces or the specified interface.

```
show mac address-table notification [interface [interface-id]] [ \{begin | exclude | include\} expression]
```

Syntax Description

- **interface**: (Optional) Display information for all interfaces. Valid interfaces include physical ports and port channels.
- **interface-id**: (Optional) Display information for the specified interface. Valid interfaces include physical ports and port channels.
- **begin**: (Optional) Display begins with the line that matches the expression.
- **exclude**: (Optional) Display excludes lines that match the expression.
- **include**: (Optional) Display includes lines that match the specified expression.
- **expression**: Expression in the output to use as a reference point.

Command Modes

User EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(19)EA1</td>
<td>The show mac-address-table notification command (with the hyphen) was replaced by the show mac address-table notification command (without the hyphen).</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the show mac address-table notification command without any keywords to display whether the feature is enabled or disabled, the MAC notification interval, the maximum number of entries allowed in the history table, and the history table contents.

Use the interface keyword to display the flags for all interfaces. If the interface-id is included, only the flags for that interface appear.

Expressions are case sensitive. For example, if you enter \ exclude output, the lines that contain output do not appear, but the lines that contain Output appear.

Examples

This is an example of output from the show mac address-table notification command:

```
Switch> show mac address-table notification
MAC Notification Feature is Enabled on the switch
Interval between Notification Traps : 60 secs
Number of MAC Addresses Added : 4
Number of MAC Addresses Removed : 4
Number of Notifications sent to NMS : 3
Maximum Number of entries configured in History Table : 100
Current History Table Length : 3
MAC Notification Traps are Enabled
```
show mac address-table notification

History Table contents

History Index 0, Entry Timestamp 1032254, Despatch Timestamp 1032254
MAC Changed Message:
Operation: Added Vlan: 2 MAC Addr: 0000.0000.0001 Module: 0 Port: 1

History Index 1, Entry Timestamp 1038254, Despatch Timestamp 1038254
MAC Changed Message:
Operation: Added Vlan: 2 MAC Addr: 0000.0000.0000 Module: 0 Port: 1
Operation: Added Vlan: 2 MAC Addr: 0000.0000.0002 Module: 0 Port: 1
Operation: Added Vlan: 2 MAC Addr: 0000.0000.0003 Module: 0 Port: 1

History Index 2, Entry Timestamp 1074254, Despatch Timestamp 1074254
MAC Changed Message:
Operation: Deleted Vlan: 2 MAC Addr: 0000.0000.0000 Module: 0 Port: 1
Operation: Deleted Vlan: 2 MAC Addr: 0000.0000.0001 Module: 0 Port: 1
Operation: Deleted Vlan: 2 MAC Addr: 0000.0000.0002 Module: 0 Port: 1
Operation: Deleted Vlan: 2 MAC Addr: 0000.0000.0003 Module: 0 Port: 1

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear mac address-table notification</td>
<td>Clears the MAC address notification global counters.</td>
</tr>
<tr>
<td>show mac address-table address</td>
<td>Displays MAC address table information for the specified MAC address.</td>
</tr>
<tr>
<td>show mac address-table aging-time</td>
<td>Displays the aging time in all VLANs or the specified VLAN.</td>
</tr>
<tr>
<td>show mac address-table count</td>
<td>Displays the number of addresses present in all VLANs or the specified VLAN.</td>
</tr>
<tr>
<td>show mac address-table dynamic</td>
<td>Displays dynamic MAC address table entries only.</td>
</tr>
<tr>
<td>show mac address-table interface</td>
<td>Displays the MAC address table information for the specified interface.</td>
</tr>
<tr>
<td>show mac address-table static</td>
<td>Displays static MAC address table entries only.</td>
</tr>
<tr>
<td>show mac address-table vlan</td>
<td>Displays the MAC address table information for the specified VLAN.</td>
</tr>
</tbody>
</table>
show mac address-table static

Use the `show mac address-table static` user EXEC command to display only static MAC address table entries.

```
show mac address-table static [address mac-address] [interface interface-id] [vlan vlan-id]
[ | begin | exclude | include | expression]
```

Syntax Description

- **address mac-address** (Optional) Specify a 48-bit MAC address; the valid format is H.H.H (available in privileged EXEC mode only).
- **interface interface-id** (Optional) Specify an interface to match; valid interfaces include physical ports and port channels.
- **vlan vlan-id** (Optional) Display addresses for a specific VLAN. The range is 1 to 4094.
- **| begin** (Optional) Display begins with the line that matches the expression.
- **| exclude** (Optional) Display excludes lines that match the expression.
- **| include** (Optional) Display includes lines that match the specified expression.
- **expression** Expression in the output to use as a reference point.

Command Modes

User EXEC

Command History

- **Release** **Modification**
 - 12.1(11)AX This command was introduced.
 - 12.1(19)EA1 The `show mac-address-table static` command (with the hyphen) was replaced by the `show mac address-table static` command (without the hyphen).

Usage Guidelines

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.

Examples

This is an example of output from the `show mac address-table static` command:

```
Switch> show mac address-table static

Mac Address Table
-------------------
Vlan	Mac Address	Type	Ports
All  | 0100.0ccc.cccc | STATIC | CPU
All  | 0180.c200.0000 | STATIC | CPU
All  | 0100.0ccc.cccd | STATIC | CPU
All  | 0180.c200.0001 | STATIC | CPU
All  | 0180.c200.0004 | STATIC | CPU
All  | 0180.c200.0005 | STATIC | CPU
4    | 0001.0002.0004 | STATIC | Drop
6    | 0001.0002.0007 | STATIC | Drop
```
Total Mac Addresses for this criterion: 8

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>mac address-table static</code></td>
<td>Adds static addresses to the MAC address table.</td>
</tr>
<tr>
<td></td>
<td><code>mac address-table static drop</code></td>
<td>Enables unicast MAC address filtering and configures the switch to drop traffic with a specific source or destination MAC address.</td>
</tr>
<tr>
<td></td>
<td><code>show mac address-table address</code></td>
<td>Displays MAC address table information for the specified MAC address.</td>
</tr>
<tr>
<td></td>
<td><code>show mac address-table aging-time</code></td>
<td>Displays the aging time in all VLANs or the specified VLAN.</td>
</tr>
<tr>
<td></td>
<td><code>show mac address-table count</code></td>
<td>Displays the number of addresses present in all VLANs or the specified VLAN.</td>
</tr>
<tr>
<td></td>
<td><code>show mac address-table dynamic</code></td>
<td>Displays dynamic MAC address table entries only.</td>
</tr>
<tr>
<td></td>
<td><code>show mac address-table interface</code></td>
<td>Displays the MAC address table information for the specified interface.</td>
</tr>
<tr>
<td></td>
<td><code>show mac address-table notification</code></td>
<td>Displays the MAC address notification settings for all interfaces or the specified interface.</td>
</tr>
<tr>
<td></td>
<td><code>show mac address-table vlan</code></td>
<td>Displays the MAC address table information for the specified VLAN.</td>
</tr>
</tbody>
</table>
show mac address-table vlan

Use the `show mac address-table vlan` user EXEC command to display the MAC address table information for the specified VLAN.

```
show mac address-table vlan vlan-id [ | begin | exclude | include] expression
```

Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>vlan-id</code></td>
<td>(Optional) Display addresses for a specific VLAN. The range is 1 to 4094.</td>
</tr>
<tr>
<td>`</td>
<td>begin`</td>
</tr>
<tr>
<td>`</td>
<td>exclude`</td>
</tr>
<tr>
<td>`</td>
<td>include`</td>
</tr>
<tr>
<td><code>expression</code></td>
<td>Expression in the output to use as a reference point.</td>
</tr>
</tbody>
</table>

Command Modes

User EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(19)EA1</td>
<td>The <code>show mac-address-table vlan</code> command (with the hyphen) was replaced by the <code>show mac address-table vlan</code> command (without the hyphen).</td>
</tr>
</tbody>
</table>

Usage Guidelines

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.

Examples

This is an example of output from the `show mac address-table vlan 1` command:

```
Switch> show mac address-table vlan 1
Mac Address Table
--------------------------
Vlan  Mac Address  Type  Ports
----  ----------  ----  ----
 1  0100.00cc.cccc  STATIC  CPU
 1  0180.c200.0000  STATIC  CPU
 1  0100.00cc.cccc  STATIC  CPU
 1  0180.c200.0001  STATIC  CPU
 1  0180.c200.0002  STATIC  CPU
 1  0180.c200.0003  STATIC  CPU
 1  0180.c200.0005  STATIC  CPU
 1  0180.c200.0006  STATIC  CPU
 1  0180.c200.0007  STATIC  CPU
Total Mac Addresses for this criterion: 9
```
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show mac address-table address</code></td>
<td>Displays MAC address table information for the specified MAC address.</td>
</tr>
<tr>
<td><code>show mac address-table aging-time</code></td>
<td>Displays the aging time in all VLANs or the specified VLAN.</td>
</tr>
<tr>
<td><code>show mac address-table count</code></td>
<td>Displays the number of addresses present in all VLANs or the specified VLAN.</td>
</tr>
<tr>
<td><code>show mac address-table dynamic</code></td>
<td>Displays dynamic MAC address table entries only.</td>
</tr>
<tr>
<td><code>show mac address-table interface</code></td>
<td>Displays the MAC address table information for the specified interface.</td>
</tr>
<tr>
<td><code>show mac address-table notification</code></td>
<td>Displays the MAC address notification settings for all interfaces or the specified interface.</td>
</tr>
<tr>
<td><code>show mac address-table static</code></td>
<td>Displays static MAC address table entries only.</td>
</tr>
</tbody>
</table>
show mls qos

Use the `show mls qos` user EXEC command to display global quality of service (QoS) configuration information.

```
show mls qos [ | begin | exclude | include] expression
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
</table>
| `begin` | (Optional) Display begins with the line that matches the `expression`.
| `exclude` | (Optional) Display excludes lines that match the `expression`.
| `include` | (Optional) Display includes lines that match the specified `expression`.
| `expression` | Expression in the output to use as a reference point. |

Command Modes

User EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.

Examples

This is an example of output from the `show mls qos` command when QoS is enabled and Differentiated Services Code Point (DSCP) transparency is disabled:

```
Switch> show mls qos
QoS is enabled
QoS ip packet dscp rewrite is disabled
```

This is an example of output from the `show mls qos` command when QoS is enabled and DSCP transparency is enabled:

```
Switch> show mls qos
QoS is enabled
QoS ip packet dscp rewrite is enabled
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mls qos</code></td>
<td>Enables QoS for the entire switch.</td>
</tr>
</tbody>
</table>
show mls qos aggregate-policer

Use the **show mls qos aggregate-policer** user EXEC command to display the quality of service (QoS) aggregate policer configuration. A policer defines a maximum permissible rate of transmission, a maximum burst size for transmissions, and an action to take if either maximum is exceeded.

Syntax Description

- **aggregate-policer-name** (Optional) Display the policer configuration for the specified name.
- **begin** (Optional) Display begins with the line that matches the **expression**.
- **exclude** (Optional) Display excludes lines that match the **expression**.
- **include** (Optional) Display includes lines that match the specified **expression**.
- **expression** Expression in the output to use as a reference point.

Command Modes

User EXEC

Command History

Release Modification
12.1(11)AX This command was introduced.

Usage Guidelines

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.

Examples

This is an example of output from the **show mls qos aggregate-policer** command:

```
Switch> show mls qos aggregate-policer policer1
aggregate-policer policer1 1000000 2000000 exceed-action drop
Not used by any policy map
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mls qos aggregate-policer</td>
<td>Defines policer parameters that can be shared by multiple classes within a policy map.</td>
</tr>
</tbody>
</table>
show mls qos input-queue

Use the `show mls qos input-queue` user EXEC command to display quality of service (QoS) settings for the ingress queues.

```
show mls qos input-queue [ | begin | exclude | include ] expression
```

Syntax Description

- **| begin** (Optional) Display begins with the line that matches the `expression`.
- **| exclude** (Optional) Display excludes lines that match the `expression`.
- **| include** (Optional) Display includes lines that match the specified `expression`.
- **expression** Expression in the output to use as a reference point.

Command Modes

User EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.

Examples

This is an example of output from the `show mls qos input-queue` command:

```
Switch> show mls qos input-queue
Queue : 1 2
-------------------------------
buffers : 90 10
bandwidth : 4 4
priority : 0 10
threshold1: 100 100
threshold2: 100 100
```
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mls qos srr-queue input bandwidth</code></td>
<td>Assigns shaped round robin (SRR) weights to an ingress queue.</td>
</tr>
<tr>
<td><code>mls qos srr-queue input buffers</code></td>
<td>Allocates the buffers between the ingress queues.</td>
</tr>
<tr>
<td><code>mls qos srr-queue input cos-map</code></td>
<td>Maps assigned class of service (CoS) values to an ingress queue and assigns CoS values to a queue and to a threshold ID.</td>
</tr>
<tr>
<td><code>mls qos srr-queue input dscp-map</code></td>
<td>Maps assigned Differentiated Services Code Point (DSCP) values to an ingress queue and assigns DSCP values to a queue and to a threshold ID.</td>
</tr>
<tr>
<td><code>mls qos srr-queue input priority-queue</code></td>
<td>Configures the ingress priority queue and guarantees bandwidth.</td>
</tr>
<tr>
<td><code>mls qos srr-queue input threshold</code></td>
<td>Assigns weighted tail-drop (WTD) threshold percentages to an ingress queue.</td>
</tr>
</tbody>
</table>
show mls qos interface

Use the `show mls qos interface` user EXEC command to display quality of service (QoS) information at the port level.

```
show mls qos interface [interface-id] [buffers | queueing | statistics] [ | {begin | exclude | include} expression]
```

Syntax Description

- `interface-id` (Optional) Display QoS information for the specified port. Valid interfaces include physical ports.
- `buffers` (Optional) Display the buffer allocation among the queues.
- `queueing` (Optional) Display the queueing strategy (shared or shaped) and the weights corresponding to the queues.
- `statistics` (Optional) Display statistics for sent and received Differentiated Services Code Points (DSCPs) and class of service (CoS) values, the number of packets enqueued or dropped per egress queue, and the number of in-profile and out-of-profile packets for each policer.
- `| begin` (Optional) Display begins with the line that matches the `expression`.
- `| exclude` (Optional) Display excludes lines that match the `expression`.
- `| include` (Optional) Display includes lines that match the specified `expression`.
- `expression` Expression in the output to use as a reference point.

Note

Though visible in the command-line help string, the `policers` keyword is not supported.

Command Modes

User EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.

Examples

This is an example of output from the `show mls qos interface interface-id` command when VLAN-based QoS is enabled:

```
Switch> show mls qos interface gigabitethernet1/0/1
GigabitEthernet1/0/1
trust state:not trusted
trust mode:not trusted
trust enabled flag:ena
COS override:dis
default COS:0
```
DSCP Mutation Map: Default DSCP Mutation Map
Trust device: none
qos mode: vlan-based

This is an example of output from the show mls qos interface interface-id command when VLAN-based QoS is disabled:

Switch> show mls qos interface gigabitethernet1/0/2
GigabitEthernet1/0/2
trust state: not trusted
trust mode: not trusted
trust enabled flag: ena
COS override: dis
default COS: 0
DSCP Mutation Map: Default DSCP Mutation Map
Trust device: none
qos mode: port-based

This is an example of output from the show mls qos interface interface-id buffers command:

Switch> show mls qos interface gigabitethernet1/0/2 buffers
GigabitEthernet1/0/2
The port is mapped to qset : 1
The allocations between the queues are : 25 25 25 25

This is an example of output from the show mls qos interface interface-id queueing command. The egress expedite queue overrides the configured shaped round robin (SRR) weights.

Switch> show mls qos interface gigabitethernet1/0/2 queueing
GigabitEthernet1/0/2
Egress Priority Queue: enabled
Shaped queue weights (absolute) : 25 0 0 0
Shared queue weights : 25 25 25 25
The port bandwidth limit : 100 (Operational Bandwidth:100.0)
The port is mapped to qset : 1

This is an example of output from the show mls qos interface interface-id statistics command. Table 2-29 describes the fields in this display.

Switch> show mls qos interface gigabitethernet1/0/2 statistics
GigabitEthernet1/0/2

dscp: incoming

0 - 4 : 4213 0 0 0 0 0
5 - 9 : 0 0 0 0 0
10 - 14 : 0 0 0 0 0
15 - 19 : 0 0 0 0 0
20 - 24 : 0 0 0 0 0
25 - 29 : 0 0 0 0 0
30 - 34 : 0 0 0 0 0
35 - 39 : 0 0 0 0 0
40 - 44 : 0 0 0 0 0
45 - 49 : 0 0 0 6 0
50 - 54 : 0 0 0 0 0
55 - 59 : 0 0 0 0 0
60 - 64 : 0 0 0 0 0
show mls qos interface

```
dscp: outgoing
-------------------------------
  0 -  4 : 363949  0  0  0  0  0
  5 -  9 : 0  0  0  0  0
 10 - 14 : 0  0  0  0  0
 15 - 19 : 0  0  0  0  0
 20 - 24 : 0  0  0  0  0
 25 - 29 : 0  0  0  0  0
 30 - 34 : 0  0  0  0  0
 35 - 39 : 0  0  0  0  0
 40 - 44 : 0  0  0  0  0
 45 - 49 : 0  0  0  0  0
 50 - 54 : 0  0  0  0  0
 55 - 59 : 0  0  0  0  0
 60 - 64 : 0  0  0  0  0

cos: incoming
-------------------------------
  0 -  4 : 132067  0  0  0  0  0
  5 -  9 : 0  0  0

cos: outgoing
-------------------------------
  0 -  4 : 739155  0  0  0  0  0
  5 -  9 : 90  0  0

Policer: Inprofile: 0 OutofProfile: 0
```

Table 2-29 show mls qos interface statistics Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSCP</td>
<td>Number of packets received for each DSCP value.</td>
</tr>
<tr>
<td></td>
<td>Number of packets sent for each DSCP value.</td>
</tr>
<tr>
<td>CoS</td>
<td>Number of packets received for each CoS value.</td>
</tr>
<tr>
<td></td>
<td>Number of packets sent for each CoS value.</td>
</tr>
<tr>
<td>Policer</td>
<td>Number of in profile packets for each policer.</td>
</tr>
<tr>
<td></td>
<td>Number of out-of-profile packets for each policer.</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mls qos queue-set output buffers</td>
<td>Allocates buffers to a queue-set.</td>
</tr>
<tr>
<td>mls qos queue-set output threshold</td>
<td>Configures the weighted tail-drop (WTD) thresholds, guarantees the availability of buffers, and configures the maximum memory allocation to a queue-set.</td>
</tr>
<tr>
<td>mls qos srr-queue input bandwidth</td>
<td>Assigns SRR weights to an ingress queue.</td>
</tr>
<tr>
<td>mls qos srr-queue input buffers</td>
<td>Allocates the buffers between the ingress queues.</td>
</tr>
<tr>
<td>mls qos srr-queue input cos-map</td>
<td>Maps CoS values to an ingress queue or maps CoS values to a queue and to a threshold ID.</td>
</tr>
<tr>
<td>mls qos srr-queue input dscp-map</td>
<td>Maps DSCP values to an ingress queue or maps DSCP values to a queue and to a threshold ID.</td>
</tr>
<tr>
<td>mls qos srr-queue input priority-queue</td>
<td>Configures the ingress priority queue and guarantees bandwidth.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>mls qos srr-queue input threshold</td>
<td>Assigns WTD threshold percentages to an ingress queue.</td>
</tr>
<tr>
<td>mls qos srr-queue output cos-map</td>
<td>Maps CoS values to an egress queue or maps CoS values to a queue and to a threshold ID.</td>
</tr>
<tr>
<td>mls qos srr-queue output dscp-map</td>
<td>Maps DSCP values to an egress queue or maps DSCP values to a queue and to a threshold ID.</td>
</tr>
<tr>
<td>policy-map</td>
<td>Creates or modifies a policy map.</td>
</tr>
<tr>
<td>priority-queue</td>
<td>Enables the egress expedite queue on a port.</td>
</tr>
<tr>
<td>queue-set</td>
<td>Maps a port to a queue-set.</td>
</tr>
<tr>
<td>srr-queue bandwidth limit</td>
<td>Limits the maximum output on a port.</td>
</tr>
<tr>
<td>srr-queue bandwidth shape</td>
<td>Assigns the shaped weights and enables bandwidth shaping on the four egress queues mapped to a port.</td>
</tr>
<tr>
<td>srr-queue bandwidth share</td>
<td>Assigns the shared weights and enables bandwidth sharing on the four egress queues mapped to a port.</td>
</tr>
</tbody>
</table>
show mls qos maps

Use the show mls qos maps user EXEC command to display quality of service (QoS) mapping information. During classification, QoS uses the mapping tables to represent the priority of the traffic and to derive a corresponding class of service (CoS) or Differentiated Services Code Point (DSCP) value from the received CoS, DSCP, or IP precedence value.

use the show mls qos maps user EXEC command to display quality of service (QoS) mapping information. During classification, QoS uses the mapping tables to represent the priority of the traffic and to derive a corresponding class of service (CoS) or Differentiated Services Code Point (DSCP) value from the received CoS, DSCP, or IP precedence value.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cos-dscp</td>
<td>(Optional) Display class of service (CoS)-to-DSCP map.</td>
</tr>
<tr>
<td>cos-input-q</td>
<td>(Optional) Display the CoS input queue threshold map.</td>
</tr>
<tr>
<td>cos-output-q</td>
<td>(Optional) Display the CoS output queue threshold map.</td>
</tr>
<tr>
<td>dscp-cos</td>
<td>(Optional) Display DSCP-to-CoS map.</td>
</tr>
<tr>
<td>dscp-input-q</td>
<td>(Optional) Display the DSCP input queue threshold map.</td>
</tr>
<tr>
<td>dscp-mutation</td>
<td>(Optional) Display the specified DSCP-to-DSCP-mutation map.</td>
</tr>
<tr>
<td>dscp-mutation-name</td>
<td>(Optional) Display the specified DSCP-to-DSCP-mutation map.</td>
</tr>
<tr>
<td>dscp-output-q</td>
<td>(Optional) Display the DSCP output queue threshold map.</td>
</tr>
<tr>
<td>ip-prec-dscp</td>
<td>(Optional) Display the IP-precedence-to-DSCP map.</td>
</tr>
<tr>
<td>policed-dscp</td>
<td>(Optional) Display the policed-DSCP map.</td>
</tr>
<tr>
<td>begin</td>
<td>(Optional) Display begins with the line that matches the expression.</td>
</tr>
<tr>
<td>exclude</td>
<td>(Optional) Display excludes lines that match the expression.</td>
</tr>
<tr>
<td>include</td>
<td>(Optional) Display includes lines that match the specified expression.</td>
</tr>
<tr>
<td>expression</td>
<td>Expression in the output to use as a reference point.</td>
</tr>
</tbody>
</table>

Command Modes

User EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Expressions are case sensitive. For example, if you enter | exclude output, the lines that contain output do not appear, but the lines that contain Output appear.

The policed-DSCP, DSCP-to-CoS, and the DSCP-to-DSCP-mutation maps appear as a matrix. The d1 column specifies the most-significant digit in the DSCP. The d2 row specifies the least-significant digit in the DSCP. The intersection of the d1 and d2 values provides the policed-DSCP, the CoS, or the mutated-DSCP value. For example, in the DSCP-to-CoS map, a DSCP value of 43 corresponds to a CoS value of 5.
The DSCP input queue threshold and the DSCP output queue threshold maps appear as a matrix. The d1 column specifies the most-significant digit of the DSCP number. The d2 row specifies the least-significant digit in the DSCP number. The intersection of the d1 and the d2 values provides the queue ID and threshold ID. For example, in the DSCP input queue threshold map, a DSCP value of 43 corresponds to queue 2 and threshold 1 (02-01).

The CoS input queue threshold and the CoS output queue threshold maps show the CoS value in the top row and the corresponding queue ID and threshold ID in the second row. For example, in the CoS input queue threshold map, a CoS value of 5 corresponds to queue 2 and threshold 1 (2-1).

Examples

This is an example of output from the `show mls qos maps` command:

```
Switch> show mls qos maps
Policed-dscp map:
  d1 : d2    0     1     2     3     4     5     6     7     8     9
  -----------------------------
  0 :  00 01 02 03 04 05 06 07 08 09
  1 :  10 11 12 13 14 15 16 17 18 19
  2 :  20 21 22 23 24 25 26 27 28 29
  3 :  30 31 32 33 34 35 36 37 38 39
  4 :  40 41 42 43 44 45 46 47 48 49
  5 :  50 51 52 53 54 55 56 57 58 59
  6 :  60 61 62 63

Dscp-cos map:
  d1 : d2    0     1     2     3     4     5     6     7     8     9
  -----------------------------
  0 :  00 00 00 00 00 00 00 00 01 01
  1 :  01 01 01 01 01 01 02 02 02 02
  2 :  02 02 02 02 03 03 03 03 03 03
  3 :  03 03 04 04 04 04 04 04 04 04
  4 :  05 05 05 05 05 05 05 05 06 06
  5 :  06 06 06 06 06 06 07 07 07 07
  6 :  07 07 07 07

Cos-dscp map:
  cos:    0  1  2  3  4  5  6  7
  -----------------------------
  dscp:   0  8 16 24 32 40 48 56

IpPrecedence-dscp map:
  ipprec:  0  1  2  3  4  5  6  7
  -----------------------------
  dscp:   0  8 16 24 32 40 48 56

Dscp-outputq-threshold map:
  d1 : d2    0     1     2     3     4     5     6     7     8     9
  -----------------------------
  0 :  02-01 02-01 02-01 02-01 02-01 02-01 02-01 02-01 02-01 02-01
  1 :  02-01 02-01 02-01 02-01 02-01 02-01 03-01 03-01 03-01 03-01
  2 :  03-01 03-01 03-01 03-01 03-01 03-01 03-01 03-01 03-01 03-01
  3 :  03-01 03-01 04-01 04-01 04-01 04-01 04-01 04-01 04-01 04-01
  4 :  04-01 04-01 04-01 04-01 04-01 04-01 04-01 04-01 04-01 04-01
  5 :  04-01 04-01 04-01 04-01 04-01 04-01 04-01 04-01 04-01 04-01
  6 :  04-01 04-01 04-01 04-01 04-01 04-01 04-01 04-01 04-01 04-01
```
show mls qos maps

Dscp-inputq-threshold map:
 d1 : d2 0 1 2 3 4 5 6 7 8 9
 0 : 01-01 01-01 01-01 01-01 01-01 01-01 01-01 01-01 01-01 01-01
 1 : 01-01 01-01 01-01 01-01 01-01 01-01 01-01 01-01 01-01 01-01
 2 : 01-01 01-01 01-01 01-01 01-01 01-01 01-01 01-01 01-01 01-01
 3 : 01-01 01-01 01-01 01-01 01-01 01-01 01-01 01-01 01-01 01-01
 4 : 02-01 02-01 02-01 02-01 02-01 02-01 02-01 02-01 02-01 01-01
 5 : 01-01 01-01 01-01 01-01 01-01 01-01 01-01 01-01 01-01 01-01
 6 : 01-01 01-01 01-01 01-01

Cos-outputq-threshold map:
 cos: 0 1 2 3 4 5 6 7
 queue-threshold: 2-1 2-1 3-1 4-1 1-1 4-1 4-1

Cos-inputq-threshold map:
 cos: 0 1 2 3 4 5 6 7
 queue-threshold: 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1

Dscp-dscp mutation map:
 Default DSCP Mutation Map:
 d1 : d2 0 1 2 3 4 5 6 7 8 9
 0 : 00 01 02 03 04 05 06 07 08 09
 1 : 10 11 12 13 14 15 16 17 18 19
 2 : 20 21 22 23 24 25 26 27 28 29
 3 : 30 31 32 33 34 35 36 37 38 39
 4 : 40 41 42 43 44 45 46 47 48 49
 5 : 50 51 52 53 54 55 56 57 58 59
 6 : 60 61 62 63

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mls qos map</td>
<td>Defines the CoS-to-DSCP map, DSCP-to-CoS map, DSCP-to-DSCP-mutation map, and policed-DSCP map.</td>
</tr>
<tr>
<td>mls qos srr-queue input cos-map</td>
<td>Maps CoS values to an ingress queue or maps CoS values to a queue and to a threshold ID.</td>
</tr>
<tr>
<td>mls qos srr-queue input dscp-map</td>
<td>Maps DSCP values to an ingress queue or maps DSCP values to a queue and to a threshold ID.</td>
</tr>
<tr>
<td>mls qos srr-queue output cos-map</td>
<td>Maps CoS values to an egress queue or maps CoS values to a queue and to a threshold ID.</td>
</tr>
<tr>
<td>mls qos srr-queue output dscp-map</td>
<td>Maps DSCP values to an egress queue or maps DSCP values to a queue and to a threshold ID.</td>
</tr>
</tbody>
</table>
show mls qos queue-set

Use the `show mls qos queue-set` user EXEC command to display quality of service (QoS) settings for the egress queues.

```
show mls qos queue-set [qset-id] [ | begin | exclude | include] expression]
```

Syntax Description

- `qset-id` (Optional) ID of the queue-set. Each port belongs to a queue-set, which defines all the characteristics of the four egress queues per port. The range is 1 to 2.
- `begin` (Optional) Display begins with the line that matches the `expression`.
- `exclude` (Optional) Display excludes lines that match the `expression`.
- `include` (Optional) Display includes lines that match the specified `expression`.
- `expression` Expression in the output to use as a reference point.

Command Modes

User EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.

Examples

This is an example of output from the `show mls qos queue-set` command:

```
Switch> show mls qos queue-set
Queue: 1
Queue :  1  2  3  4
--------------------------------------------------------------------------------------
buffers :   25  25  25  25
threshold1:  100  200  100  100
threshold2:  100  200  100  100
reserved   :  50  50  50  50
maximum    :  400  400  400  400
Queue: 2
Queue :  1  2  3  4
--------------------------------------------------------------------------------------
buffers :   25  25  25  25
threshold1:  100  200  100  100
threshold2:  100  200  100  100
reserved   :  50  50  50  50
maximum    :  400  400  400  400
```
<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mls qos queue-set output buffers</td>
<td>Allocates buffers to the queue-set.</td>
</tr>
<tr>
<td></td>
<td>mls qos queue-set output threshold</td>
<td>Configures the weighted tail-drop (WTD) thresholds, guarantees the availability of buffers, and configures the maximum memory allocation of the queue-set.</td>
</tr>
</tbody>
</table>
show mls qos vlan

Use the **show mls qos vlan** user EXEC command to display the policy maps attached to a switch virtual interface (SVI).

```
show mls qos vlan vlan-id [ | begin | exclude | include ] expression
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan-id</td>
<td>Specify the VLAN ID of the SVI to display the policy maps. The range is 1 to 4094.</td>
</tr>
<tr>
<td>begin</td>
<td>(Optional) Display begins with the line that matches the <code>expression</code>.</td>
</tr>
<tr>
<td>exclude</td>
<td>(Optional) Display excludes lines that match the <code>expression</code>.</td>
</tr>
<tr>
<td>include</td>
<td>(Optional) Display includes lines that match the specified <code>expression</code>.</td>
</tr>
<tr>
<td>expression</td>
<td>Expression in the output to use as a reference point.</td>
</tr>
</tbody>
</table>

Command Modes

User EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The output from the **show mls qos vlan** command is meaningful only when VLAN-based quality of service (QoS) is enabled and when hierarchical policy maps are configured.

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.

Examples

This is an example of output from the **show mls qos vlan** command:

```
Switch> show mls qos vlan 10
Vlan10
Attached policy-map for Ingress:pm-test-pm-2
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>policy-map</td>
<td>Creates or modifies a policy map that can be attached to multiple ports and enters policy-map configuration mode.</td>
</tr>
</tbody>
</table>
show monitor

Use the `show monitor` user EXEC command to display information about all Switched Port Analyzer (SPAN) and Remote SPAN (RSPAN) sessions on the switch. Use the command with keywords to show a specific session, all sessions, all local sessions, or all remote sessions.

```
show monitor [session {session_number | all | local | range list | remote} [detail]] | exclude | include} expression]
```

Syntax Description

- `session` (Optional) Display information about specified SPAN sessions.
- `session_number` Specify the number of the SPAN or RSPAN session. The range is 1 to 66.
- `all` Display all SPAN sessions.
- `local` Display only local SPAN sessions.
- `range list` Display a range of SPAN sessions, where `list` is the range of valid sessions, either a single session or a range of sessions described by two numbers, the lower one first, separated by a hyphen. Do not enter any spaces between comma-separated parameters or in hyphen-specified ranges.

 Note This keyword is available only in privileged EXEC mode.
- `remote` Display only remote SPAN sessions.
- `detail` (Optional) Display detailed information about the specified sessions.
- `| begin` Display begins with the line that matches the `expression`.
- `| exclude` Display excludes lines that match the `expression`.
- `| include` Display includes lines that match the specified `expression`.
- `expression` Expression in the output to use as a reference point.

Command Modes

User EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(14)EA1</td>
<td>The <code>range list</code> and <code>detail</code> keywords were added.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.

The output is the same for the `show monitor` command and the `show monitor session all` command.
This is an example of output for the `show monitor` user EXEC command:

```
Switch# show monitor
Session 1
--------
Type : Local Session
Source Ports :
    RX Only : Fa4/0/1
    Both : Fa4/0/2-3,Fa4/0/5-6
Destination Ports : Fa4/0/20
Encapsulation : Replicate
Ingress : Disabled

Session 2
--------
Type : Remote Source Session
Source VLANs :
    TX Only : 10
    Both : 1-9
Dest RSPAN VLAN : 105
```

This is an example of output for the `show monitor` user EXEC command for local SPAN source session 1:

```
Switch# show monitor session 1
Session 1
--------
Type : Local Session
Source Ports :
    Both : Fa4/0/2
Destination Ports : Fa4/0/3
Encapsulation : Native
Ingress : Enabled, default VLAN = 5
Ingress encap : DOT1Q
```

This is an example of output for the `show monitor session all` user EXEC command when ingress traffic forwarding is enabled:

```
Switch# show monitor session all
Session 1
--------
Type : Local Session
Source Ports :
    Both : Fa4/0/2
Destination Ports : Fa4/0/3
Encapsulation : Native
Ingress : Enabled, default VLAN = 5
Ingress encap : DOT1Q

Session 2
--------
Type : Local Session
Source Ports :
    Both : Fa4/0/8
Destination Ports : Fa4/0/12
Encapsulation : Replicate
Ingress : Enabled, default VLAN = 4
Ingress encap : Untagged
```
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor session</td>
<td>Starts or modifies a SPAN or RSPAN session.</td>
</tr>
</tbody>
</table>
show mvr

Use the `show mvr` privileged EXEC command without keywords to display the current Multicast VLAN Registration (MVR) global parameter values, including whether or not MVR is enabled, the MVR multicast VLAN, the maximum query response time, the number of multicast groups, and the MVR mode (dynamic or compatible).

```
show mvr [ | { begin | exclude | include } expression ]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>`</td>
<td>begin`</td>
</tr>
<tr>
<td>`</td>
<td>exclude`</td>
</tr>
<tr>
<td>`</td>
<td>include`</td>
</tr>
<tr>
<td><code>expression</code></td>
<td>Expression in the output to use as a reference point.</td>
</tr>
</tbody>
</table>

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.

Examples

This is an example of output from the `show mvr` command:

```
Switch# show mvr
MVR Running: TRUE
MVR multicast VLAN: 1
MVR Max Multicast Groups: 256
MVR Current multicast groups: 0
MVR Global query response time: 5 (tenths of sec)
MVR Mode: compatible
```

In the preceding display, the maximum number of multicast groups is fixed at 256. The MVR mode is either compatible (for interoperability with Catalyst 2900 XL and Catalyst 3500 XL switches) or dynamic (where operation is consistent with IGMP snooping operation and dynamic MVR membership on source ports is supported).
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mvr (global configuration)</td>
<td>Enables and configures multicast VLAN registration on the switch.</td>
</tr>
<tr>
<td>mvr (interface configuration)</td>
<td>Configures MVR ports.</td>
</tr>
<tr>
<td>show mvr interface</td>
<td>Displays the configured MVR interfaces, status of the specified interface, or all multicast groups to which the interface belongs when the interface and members keywords are appended to the command.</td>
</tr>
<tr>
<td>show mvr members</td>
<td>Displays all ports that are members of an MVR multicast group or, if there are no members, means the group is inactive.</td>
</tr>
</tbody>
</table>
show mvr interface

Use the show mvr interface privileged EXEC command without keywords to display the Multicast VLAN Registration (MVR) receiver and source ports. Use the command with keywords to display MVR parameters for a specific receiver port.

show mvr interface [interface-id [members [vlan vlan-id]]] [| begin | exclude | include] expression

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface-id</td>
<td>(Optional) Display MVR type, status, and Immediate Leave setting for the interface. Valid interfaces include physical ports (including type, stack member, module, and port number.</td>
</tr>
<tr>
<td>members</td>
<td>(Optional) Display all MVR groups to which the specified interface belongs.</td>
</tr>
<tr>
<td>vlan vlan-id</td>
<td>(Optional) Display all MVR group members on this VLAN. The range is 1 to 4094.</td>
</tr>
<tr>
<td>begin</td>
<td>(Optional) Display begins with the line that matches the expression.</td>
</tr>
<tr>
<td>exclude</td>
<td>(Optional) Display excludes lines that match the expression.</td>
</tr>
<tr>
<td>include</td>
<td>(Optional) Display includes lines that match the specified expression.</td>
</tr>
<tr>
<td>expression</td>
<td>Expression in the output to use as a reference point.</td>
</tr>
</tbody>
</table>

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If the entered port identification is a non-MVR port or a source port, the command returns an error message. For receiver ports, it displays the port type, per port status, and Immediate-Leave setting.

If you enter the members keyword, all MVR group members on the interface appear. If you enter a VLAN ID, all MVR group members in the VLAN appear.

Expressions are case sensitive. For example, if you enter | exclude output, the lines that contain output do not appear, but the lines that contain Output appear.

Examples

This is an example of output from the show mvr interface command:

```
Switch# show mvr interface
Port       Type       Status         Immediate Leave
Gi1/0/1    SOURCE     ACTIVE/UP     DISABLED
Gi1/0/2    RECEIVER   ACTIVE/DOWN   DISABLED
```
In the preceding display, Status is defined as follows:

- **Active** means the port is part of a VLAN.
- **Up/Down** means that the port is forwarding/nonforwarding.
- **Inactive** means that the port is not yet part of any VLAN.

This is an example of output from the `show mvr interface` command for a specified port:

```shell
Switch# show mvr interface gigabitethernet1/0/2
Type: RECEIVER Status: ACTIVE Immediate Leave: DISABLED
```

This is an example of output from the `show mvr interface interface-id members` command:

```shell
Switch# show mvr interface gigabitethernet1/0/2 members
239.255.0.0     DYNAMIC ACTIVE
239.255.0.1     DYNAMIC ACTIVE
239.255.0.2     DYNAMIC ACTIVE
239.255.0.3     DYNAMIC ACTIVE
239.255.0.4     DYNAMIC ACTIVE
239.255.0.5     DYNAMIC ACTIVE
239.255.0.6     DYNAMIC ACTIVE
239.255.0.7     DYNAMIC ACTIVE
239.255.0.8     DYNAMIC ACTIVE
239.255.0.9     DYNAMIC ACTIVE
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mvr (global configuration)</td>
<td>Enables and configures multicast VLAN registration on the switch.</td>
</tr>
<tr>
<td>mvr (interface configuration)</td>
<td>Configures MVR ports.</td>
</tr>
<tr>
<td>show mvr</td>
<td>Displays the global MVR configuration on the switch.</td>
</tr>
<tr>
<td>show mvr members</td>
<td>Displays all receiver ports that are members of an MVR multicast group.</td>
</tr>
</tbody>
</table>
show mvr members

Use the `show mvr members` privileged EXEC command to display all receiver and source ports that are currently members of an IP multicast group.

```
show mvr members [ip-address] [ | {begin | exclude | include} expression]
```

Syntax Description

- `ip-address` (Optional) The IP multicast address. If the address is entered, all receiver and source ports that are members of the multicast group appear. If no address is entered, all members of all Multicast VLAN Registration (MVR) groups are listed. If a group has no members, the group is listed as Inactive.
- `| begin` (Optional) Display begins with the line that matches the `expression`.
- `| exclude` (Optional) Display excludes lines that match the `expression`.
- `| include` (Optional) Display includes lines that match the specified `expression`.
- `expression` Expression in the output to use as a reference point.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `show mvr members` command applies to receiver and source ports. For MVR-compatible mode, all source ports are members of all multicast groups.

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.

Examples

This is an example of output from the `show mvr members` command:

```
Switch# show mvr members
MVR Group IP   Status     Members
-----------     -----      -------
239.255.0.1    ACTIVE     Gi1/0/1(d), Gi1/0/5(s)
239.255.0.2    INACTIVE   None
239.255.0.3    INACTIVE   None
239.255.0.4    INACTIVE   None
239.255.0.5    INACTIVE   None
239.255.0.6    INACTIVE   None
239.255.0.7    INACTIVE   None
239.255.0.8    INACTIVE   None
239.255.0.9    INACTIVE   None
239.255.0.10   INACTIVE   None
<output truncated>
```
This is an example of output from the `show mvr members ip-address` command. It displays the members of the IP multicast group with that address:

```
Switch# show mvr members 239.255.0.2
239.255.003.--22 ACTIVE Gi1/0/1(d), Gi1/0/2(d), Gi1/0/3(d), Gi1/0/4(d), Gi1/0/5(s)
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mvr (global configuration)</code></td>
<td>Enables and configures multicast VLAN registration on the switch.</td>
</tr>
<tr>
<td><code>mvr (interface configuration)</code></td>
<td>Configures MVR ports.</td>
</tr>
<tr>
<td><code>show mvr</code></td>
<td>Displays the global MVR configuration on the switch.</td>
</tr>
<tr>
<td><code>show mvr interface</code></td>
<td>Displays the configured MVR interfaces, status of the specified interface, or all multicast groups to which the interface belongs when the <code>members</code> keyword is appended to the command.</td>
</tr>
</tbody>
</table>
show pagp

Use the show pagp user EXEC command to display Port Aggregation Protocol (PAgP) channel-group information.

 show pagp [channel-group-number] [counters | internal | neighbor] [| begin | exclude | include] expression]

Syntax Description

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel-group-number</td>
<td>(Optional) Number of the channel group. The range is 1 to 48.</td>
</tr>
<tr>
<td>counters</td>
<td>Display traffic information.</td>
</tr>
<tr>
<td>internal</td>
<td>Display internal information.</td>
</tr>
<tr>
<td>neighbor</td>
<td>Display neighbor information.</td>
</tr>
<tr>
<td></td>
<td>begin</td>
</tr>
<tr>
<td></td>
<td>exclude</td>
</tr>
<tr>
<td></td>
<td>include</td>
</tr>
<tr>
<td>expression</td>
<td>Expression in the output to use as a reference point.</td>
</tr>
</tbody>
</table>

Command Modes

User EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(25)SE</td>
<td>The channel-group-number range was changed from 1 to 12 to 1 to 48.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You can enter any show pagp command to display the active channel-group information. To display the nonactive information, enter the show pagp command with a channel-group number.

Expressions are case sensitive. For example, if you enter | exclude output, the lines that contain output do not appear, but the lines that contain Output appear.

Examples

This is an example of output from the show pagp 1 counters command:

```
Switch> show pagp 1 counters

Channel group: 1
Gi1/0/1  45  42  0  0
Gi1/0/2  45  41  0  0
```
This is an example of output from the **show pagp 1 internal** command:

```
Switch> show pagp 1 internal
Flags:  S - Device is sending Slow hello.  C - Device is in Consistent state.
       A - Device is in Auto mode.
Timers: H - Hello timer is running.       Q - Quit timer is running.
       S - Switching timer is running.   I - Interface timer is running.

Channel group 1
Port        Flags State   Timers Interval Count Priority Method  Ifindex
Gi1/0/1     SC    U6/S7   H       30s      1        128        Any      16
Gi1/0/2     SC    U6/S7   H       30s      1        128        Any      16
```

This is an example of output from the **show pagp 1 neighbor** command:

```
Switch> show pagp 1 neighbor
Flags:  S - Device is sending Slow hello.  C - Device is in Consistent state.
       A - Device is in Auto mode.        P - Device learns on physical port.

Channel group 1 neighbors
Port        Name                 Partner          Device ID        Port         Age  Flags   Cap.
Gi1/0/1     switch-p2            0002.4b29.4600   Gi01//1        9s SC      10001
Gi1/0/2     switch-p2            0002.4b29.4600   Gi1/0/2       24s SC      10001
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear pagp</td>
<td>Clears PAgP channel-group information.</td>
</tr>
</tbody>
</table>
show parser macro

Use the *show parser macro* user EXEC command to display the parameters for all configured macros or for one macro on the switch.

```
show parser macro [{brief | description [interface interface-id] | name macro-name}] [ | {begin | exclude | include} expression]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>brief</td>
<td>(Optional) Display the name of each macro.</td>
</tr>
<tr>
<td>description [interface interface-id]</td>
<td>(Optional) Display all macro descriptions or the description of a specific interface.</td>
</tr>
<tr>
<td>name macro-name</td>
<td>(Optional) Display information about a single macro identified by the macro name.</td>
</tr>
<tr>
<td>begin</td>
<td>(Optional) Display begins with the line that matches the expression.</td>
</tr>
<tr>
<td>exclude</td>
<td>(Optional) Display excludes lines that match the expression.</td>
</tr>
<tr>
<td>include</td>
<td>(Optional) Display includes lines that match the specified expression.</td>
</tr>
<tr>
<td>expression</td>
<td>Expression in the output to use as a reference point.</td>
</tr>
</tbody>
</table>

Command Modes

User EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(19)EA1</td>
<td>The command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain output do not appear, but the lines that contain Output appear.

Examples

This is a partial output example from the *show parser macro* command. The output for the Cisco-default macros varies depending on the switch platform and the software image running on the switch:

```
Switch# show parser macro
Total number of macros = 6
====================================================================
Macro name : cisco-global
Macro type : default global
# Enable dynamic port error recovery for link state failures
errdisable recovery cause link-flap
errdisable recovery interval 60
```

<output truncated>

Macro name: cisco-desktop
Macro type: default interface
macro keywords $AVID
Basic interface - Enable data VLAN only
Recommended value for access vlan (AVID) should not be 1
switchport access vlan $AVID
switchport mode access

<output truncated>

Macro name: cisco-phone
Macro type: default interface
Cisco IP phone + desktop template
macro keywords $AVID $VVID
VoIP enabled interface - Enable data VLAN
and voice VLAN ($VVID)
Recommended value for access vlan (AVID) should not be 1
switchport access vlan $AVID
switchport mode access

<output truncated>

Macro name: cisco-switch
Macro type: default interface
macro keywords $NVID
Access Uplink to Distribution
Do not apply to EtherChannel/Port Group
Define unique Native VLAN on trunk ports
Recommended value for native vlan (NVID) should not be 1
switchport trunk native vlan $NVID

<output truncated>

Macro name: cisco-router
Macro type: default interface
macro keywords $NVID
Access Uplink to Distribution
Define unique Native VLAN on trunk ports
Recommended value for native vlan (NVID) should not be 1
switchport trunk native vlan $NVID

<output truncated>

Macro name: snmp
Macro type: customizable

#enable port security, linkup, and linkdown traps
snmp-server enable traps port-security
snmp-server enable traps linkup
snmp-server enable traps linkdown
#set snmp-server host
snmp-server host ADDRESS
#set SNMP trap notifications precedence
snmp-server ip precedence VALUE

This is an example of output from the `show parser macro name` command:

```
Switch# show parser macro name standard-switch10
Macro name: standard-switch10
Macro type: customizable
macro description standard-switch10
# Trust QoS settings on VOIP packets
auto qos voip trust
# Allow port channels to be automatically formed
channel-protocol pagg
```

This is an example of output from the `show parser macro brief` command:

```
Switch# show parser macro brief
default global : cisco-global
default interface: cisco-desktop
default interface: cisco-phone
default interface: cisco-switch
default interface: cisco-router
customizable : snmp
```

This is an example of output from the `show parser description` command:

```
Switch# show parser macro description
Global Macro(s): cisco-global
Interface    Macro Description(s)
--------------------------------------------------------------
Gi1/0/1        standard-switch10
Gi1/0/2       this is test macro
--------------------------------------------------------------
```

This is an example of output from the `show parser description interface` command:

```
Switch# show parser macro description interface gigabitethernet1/0/2
Interface        Macro Description
--------------------------------------------------------------
Gi1/0/2       this is test macro
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>macro apply</code></td>
<td>Applies a macro on an interface or applies and traces a macro on an interface.</td>
</tr>
<tr>
<td><code>macro description</code></td>
<td>Adds a description about the macros that are applied to an interface.</td>
</tr>
<tr>
<td><code>macro global</code></td>
<td>Applies a macro on a switch or applies and traces a macro on a switch.</td>
</tr>
<tr>
<td><code>macro global description</code></td>
<td>Adds a description about the macros that are applied to the switch.</td>
</tr>
<tr>
<td><code>macro name</code></td>
<td>Creates a macro.</td>
</tr>
<tr>
<td><code>show running-config</code></td>
<td>Displays the current operating configuration, including defined macros. For syntax information, select Cisco IOS Configuration Fundamentals Command Reference, Release 12.2 > File Management Commands > Configuration File Management Commands.</td>
</tr>
</tbody>
</table>
show policy-map

Use the `show policy-map` user EXEC command to display quality of service (QoS) policy maps, which define classification criteria for incoming traffic. Policy maps can include policers that specify the bandwidth limitations and the action to take if the limits are exceeded.

```
show policy-map [policy-map-name [class class-map-name]] [ | {begin | exclude | include} expression]
```

Syntax Description

- `policy-map-name` (Optional) Display the specified policy-map name.
- `class class-map-name` (Optional) Display QoS policy actions for a individual class.
- `| begin` (Optional) Display begins with the line that matches the `expression`.
- `| exclude` (Optional) Display excludes lines that match the `expression`.
- `| include` (Optional) Display includes lines that match the specified `expression`.
- `expression` Expression in the output to use as a reference point.

Note

Though visible in the command-line help string, the `control-plane` and `interface` keywords are not supported, and the statistics shown in the display should be ignored.

Command Modes

User EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.

Examples

This is an example of output from the `show policy-map` command:

```
Switch> show policy-map
Policy Map videowizard_policy2
  class videowizard_10-10-10-10
    set dscp 34
    police 100000000 2000000 exceed-action drop

Policy Map mypolicy
  class dscp5
    set dscp 6
```
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>policy-map</td>
<td>Creates or modifies a policy map that can be attached to multiple ports to specify a service policy.</td>
</tr>
</tbody>
</table>
show port-security

Use the `show port-security` privileged EXEC command to display port-security settings for an interface or for the switch.

```
show port-security [interface interface-id] [address | vlan] [ | begin | exclude | include] expression
```

Syntax Description

- **interface interface-id** (Optional) Display port security settings for the specified interface. Valid interfaces include physical ports (including type, stack member, module, and port number).
- **address** (Optional) Display all secure MAC addresses on all ports or a specified port.
- **vlan** (Optional) Display port security settings for all VLANs on the specified interface. This keyword is visible only on interfaces that have the switchport mode set to `trunk`.
- `| begin` (Optional) Display begins with the line that matches the `expression`.
- `| exclude` (Optional) Display excludes lines that match the `expression`.
- `| include` (Optional) Display includes lines that match the specified `expression`.
- **expression** Expression in the output to use as a reference point.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(14)EA1</td>
<td>The <code>vlan</code> keyword was added (visible only on trunk ports).</td>
</tr>
</tbody>
</table>

Usage Guidelines

If you enter the command without keywords, the output includes the administrative and operational status of all secure ports on the switch.

If you enter an `interface-id`, the command displays port security settings for the interface.

If you enter the `address` keyword, the command displays the secure MAC addresses for all interfaces and the aging information for each secure address.

If you enter an `interface-id` and the `address` keyword, the command displays all the MAC addresses for the interface with aging information for each secure address. You can also use this command to display all the MAC addresses for an interface even if you have not enabled port security on it.

If you enter the `vlan` keyword, the command displays the configured maximum and the current number of secure MAC addresses for all VLANs on the interface. This option is visible only on interfaces that have the switchport mode set to `trunk`.

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.
Examples

This is an example of the output from the `show port-security` command:

```
Switch# show port-security
Secure Port MaxSecureAddr CurrentAddr SecurityViolation Security Action  
(Count)   (Count)        (Count)        
---------  ----------        ----------        
Gi1/0/1    1              0             0            Shutdown
---------  ----------        ----------        
```

Total Addresses in System (excluding one mac per port) : 1
Max Addresses limit in System (excluding one mac per port) : 6272

This is an example of output from the `show port-security interface interface-id` command:

```
Switch# show port-security interface gigabitethernet1/0/1
Port Security : Enabled
Port status : SecureUp
Violation mode : Shutdown
Maximum MAC Addresses : 1
Total MAC Addresses : 0
Configured MAC Addresses : 0
Aging time : 0 mins
Aging type : Absolute
SecureStatic address aging : Disabled
Security Violation count : 0
```

This is an example of output from the `show port-security address` command:

```
Switch# show port-security address
Secure Mac Address Table

--------------
Vlan Mac Address       Type                Ports   Remaining Age  
---- -----------       ----                -----   --------------
--- -----------       ----                -----   --------------
1  0006.0700.0800    SecureConfigured    Gi1/0/2     1
--------------
```

Total Addresses in System (excluding one mac per port) : 1
Max Addresses limit in System (excluding one mac per port) : 6272

This is an example of output from the `show port-security interface gigabitethernet1/0/2 address` command:

```
Switch# show port-security interface gigabitethernet1/0/2 address
Secure Mac Address Table

--------------
Vlan Mac Address       Type                Ports   Remaining Age  
---- -----------       ----                -----   --------------
--- -----------       ----                -----   --------------
1  0006.0700.0800    SecureConfigured    Gi1/0/2     1
--------------
```

Total Addresses: 1

This is an example of output from the `show port-security interface interface-id vlan` command:

```
Switch# show port-security interface gigabitethernet1/0/2 vlan
Default maximum:not set, using 5120
VLAN Maximum Current
  5  current  1
  10  current  54
  11  current  101
  12  current  101
  13  current  201
  14  current  501
```
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>clear port-security</code></td>
<td>Deletes from the MAC address table a specific type of secure address or all the secure addresses on the switch or an interface.</td>
</tr>
<tr>
<td><code>switchport port-security</code></td>
<td>Enables port security on a port, restricts the use of the port to a user-defined group of stations, and configures secure MAC addresses.</td>
</tr>
</tbody>
</table>
show power inline

Use the `show power inline` user EXEC command to display the Power over Ethernet (PoE) status for the specified PoE port or for all PoE ports.

```
show power inline [interface-id | consumption default | module switch-number] [ | begin | exclude | include | expression]
```

Syntax Description

- `interface-id` (Optional) Display PoE-related power management information for the specified interface.
- `consumption default` (Optional) Display the power allocated to devices connected to PoE ports.
- `module switch-number` (Optional) Limit the display to ports on the specified stack member. The switch number is 1 to 9.
- `begin` (Optional) Display begins with the line that matches the `expression`.
- `exclude` (Optional) Display excludes lines that match the `expression`.
- `include` (Optional) Display includes lines that match the specified `expression`.
- `expression` Expression in the output to use as a reference point.

Command Modes

User EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(19)EA1</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(25)SEC</td>
<td>The <code>consumption default</code> keywords were added.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Expressions are case sensitive. For example, if you enter `exclude output`, the lines that contain output do not appear, but the lines that contain Output appear.

Examples

This is an example of output from the `show power inline` command. In the display, port 2 is configured as static; power has been pre-allocated to this port, but no powered device is connected. Port 6 is a static port in the power-denial state because its maximum wattage is configured for 10 W. The connected powered device has a reported class maximum wattage for a Class 0 or Class 3 device.

```
Switch> show power inline
Module  Available  Used  Remaining
       (Watts)   (Watts) (Watts)
------ -------- -------- --------
 1 370.0  114.9  255.1
 2 370.0   34.3   335.0

Interface  Admin  Oper  Power  Device  Class Max
          (Watts)
------- ----- ------- ------ ------- ------
Fa1/0/1   auto  on  6.3    IP Phone 7910 n/a 15.4
Fa1/0/2   static  off  15.4 n/a n/a 15.4
Fa1/0/3   auto  on  6.3    IP Phone 7910 n/a 15.4
```
This is an example of output from the `show power inline` command on a port:

Switch> show power inline fastethernet2/0/1

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin</th>
<th>Oper</th>
<th>Power</th>
<th>Device</th>
<th>Class</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fa2/0/1</td>
<td>auto</td>
<td>on</td>
<td>6.3</td>
<td>IP Phone 7910</td>
<td>n/a</td>
<td>15.4</td>
</tr>
</tbody>
</table>

This is an example of output from the `show power inline consumption default` command on all PoE switch ports:

Switch> show power inline consumption default

Default PD consumption : 15400 mW

This is an example of output from the `show power inline module switch-number` command on stack member 1:

Switch> show power inline module 1

<table>
<thead>
<tr>
<th>Module</th>
<th>Available</th>
<th>Used</th>
<th>Remaining</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>370.0</td>
<td>166.2</td>
<td>203.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin</th>
<th>Oper</th>
<th>Power</th>
<th>Device</th>
<th>Class</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fa1/0/1</td>
<td>auto</td>
<td>on</td>
<td>6.3</td>
<td>IP Phone 7910</td>
<td>n/a</td>
<td>15.4</td>
</tr>
<tr>
<td>Fa1/0/2</td>
<td>auto</td>
<td>on</td>
<td>6.3</td>
<td>IP Phone 7910</td>
<td>n/a</td>
<td>15.4</td>
</tr>
<tr>
<td>Fa1/0/3</td>
<td>auto</td>
<td>on</td>
<td>6.3</td>
<td>IP Phone 7910</td>
<td>n/a</td>
<td>15.4</td>
</tr>
<tr>
<td>Fa1/0/4</td>
<td>auto</td>
<td>on</td>
<td>6.3</td>
<td>IP Phone 7910</td>
<td>n/a</td>
<td>15.4</td>
</tr>
<tr>
<td>Fa1/0/5</td>
<td>auto</td>
<td>on</td>
<td>6.3</td>
<td>IP Phone 7910</td>
<td>n/a</td>
<td>15.4</td>
</tr>
<tr>
<td>Fa1/0/6</td>
<td>auto</td>
<td>on</td>
<td>6.3</td>
<td>IP Phone 7910</td>
<td>n/a</td>
<td>15.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admin</td>
<td>Administration mode: auto, off, static</td>
</tr>
<tr>
<td>Oper</td>
<td>Operating mode:</td>
</tr>
<tr>
<td></td>
<td>- on—the powered device is detected, and power is applied.</td>
</tr>
<tr>
<td></td>
<td>- off—no PoE is applied.</td>
</tr>
<tr>
<td></td>
<td>- faulty—device detection or a powered device is in a faulty state.</td>
</tr>
<tr>
<td></td>
<td>- power-deny—a powered device is detected, but no PoE is available, or the maximum wattage exceeds the detected powered-device maximum.</td>
</tr>
<tr>
<td>Power</td>
<td>The supplied PoE in watts</td>
</tr>
<tr>
<td>Device</td>
<td>The device type detected: n/a, unknown, Cisco powered-device, IEEE powered-device, <name from CDP></td>
</tr>
<tr>
<td>Class</td>
<td>The IEEE classification: n/a, Class <0–4></td>
</tr>
<tr>
<td>Available</td>
<td>The total amount of PoE in the system</td>
</tr>
</tbody>
</table>
Table 2-30
show power inline interface Field Descriptions (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Used</td>
<td>The amount of PoE allocated to ports</td>
</tr>
<tr>
<td>Remaining</td>
<td>The amount of PoE not allocated to ports in the system. (\text{Available} - \text{Used} = \text{Remaining})</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging event</td>
<td>Enables the logging of PoE events.</td>
</tr>
<tr>
<td>power-inline-status</td>
<td></td>
</tr>
<tr>
<td>power inline</td>
<td>Configures the power management mode for the specified PoE port or for all PoE ports.</td>
</tr>
<tr>
<td>show controllers</td>
<td>Displays the values in the registers of the specified PoE controller.</td>
</tr>
<tr>
<td>power inline</td>
<td></td>
</tr>
</tbody>
</table>
show sdm prefer

Use the **show sdm prefer** privileged EXEC command to display information about the Switch Database Management (SDM) templates that can be used to maximize used for allocating system resources for a particular feature, or use the command without a keyword to display the template in use.

```
show sdm prefer [access | default | dual-ipv4-and-ipv6 {default | routing | vlan} | routing | vlan [desktop]] [ | (begin | exclude | include) expression]
```

Syntax Description

- **access** *(Optional)* Display the template that maximizes system resources for ACLs.
- **default** *(Optional)* Display the template that balances system resources among features.
- **dual-ipv4-and-ipv6** *(Optional)* Display the dual templates that support both IPv4 and IPv6.
 - **default**—Display the default dual template configuration.
 - **routing**—Display the routing dual template configuration.
 - **vlan**—Display the VLAN dual template configuration.
 - **Note** Though visible on all switches, this option is supported only when the stack is running the advanced IP services image.
- **routing** *(Optional)* Display the template that maximizes system resources for routing.
- **vlan** *(Optional)* Display the template that maximizes system resources for Layer 2 VLANs.
- **desktop** *(Optional)* For Catalyst 3750-12S aggregator switches only, display the desktop templates. For this switch, when you do not enter the **desktop** keyword, the aggregator templates appear.
- **begin** *(Optional)* Display begins with the line that matches the **expression**.
- **exclude** *(Optional)* Display excludes lines that match the **expression**.
- **include** *(Optional)* Display includes lines that match the specified **expression**.
- **expression** Expression in the output to use as a reference point.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(14)EA1</td>
<td>The desktop keyword was added.</td>
</tr>
<tr>
<td>12.2(25)SE</td>
<td>The dual-ipv4-and-ipv6 {default</td>
</tr>
<tr>
<td>12.2(25)SED</td>
<td>The access keyword was added.</td>
</tr>
<tr>
<td>12.2(25)SEE</td>
<td>The routing keyword was added for the dual IPv4 and IPv6 template.</td>
</tr>
</tbody>
</table>
Usage Guidelines

When you change the SDM template by using the `sdm prefer` global configuration command, you must reload the switch for the configuration to take effect. If you enter the `show sdm prefer` command before you enter the `reload` privileged EXEC command, the `show sdm prefer` command shows the template currently in use and the template that will become active after a reload.

The numbers displayed for each template represent an approximate maximum number for each feature resource. The actual number might vary, depending on the actual number of other features configured.

Expressions are case sensitive. For example, if you enter `exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.

Examples

This is an example of output from the `show sdm prefer` command, displaying the template in use:

```
Switch# show sdm prefer
"default" template:
The selected template optimizes the resources in
the switch to support this level of features for
8 routed interfaces and 1024 VLANs.

number of unicast mac addresses:             12K
number of igmp groups + multicast routes:    1K
number of unicast routes:                    0
number of qos aces:                          512
number of security aces:                     1K
```

Switch# show sdm prefer
The current template is "desktop default" template.
The selected template optimizes the resources in
the switch to support this level of features for
8 routed interfaces and 1024 VLANs.

```
number of unicast mac addresses:             6K
number of igmp groups + multicast routes:    1K
number of unicast routes:                    8K
  number of directly connected hosts:        6K
  number of indirect routes:                 2K
number of policy based routing aces:         512
number of qos aces:                          512
number of security aces:                     1K
```

This is an example of output from the `show sdm prefer routing` command entered on an aggregator switch:

```
Switch# show sdm prefer routing
"aggregate routing" template:
The selected template optimizes the resources in
the switch to support this level of features for
8 routed interfaces and 1024 VLANs.

number of unicast mac addresses:             6K
number of igmp groups + multicast routes:    1K
number of unicast routes:                    20K
  number of directly connected hosts:        6K
  number of indirect routes:                 14K
number of policy based routing aces:         512
number of qos aces:                          512
number of security aces:                     1K
```
This is an example of output from the **show sdm prefer routing** command entered on a desktop switch:

```text
Switch# show sdm prefer routing
"desktop routing" template:
The selected template optimizes the resources in
the switch to support this level of features for
8 routed interfaces and 1024 VLANs.

  number of unicast mac addresses: 3K
  number of igmp groups + multicast routes: 1K
  number of unicast routes: 11K
    number of directly connected hosts: 3K
    number of indirect routes: 8K
  number of policy based routing aces: 512
  number of qos aces: 512
  number of security aces: 1K
```

This is an example of output from the **show sdm prefer dual-ipv4-and-ipv6 default** command entered on a desktop switch:

```text
Switch# show sdm prefer dual-ipv4-and-ipv6 default
"desktop IPv4 and IPv6 default" template:
The selected template optimizes the resources in
the switch to support this level of features for
8 routed interfaces and 1024 VLANs.

  number of unicast mac addresses: 2K
  number of IPv4 IGMP groups + multicast routes: 1K
  number of IPv4 unicast routes: 3K
    number of directly-connected IPv4 hosts: 2K
    number of indirect IPv4 routes: 1K
  number of IPv6 multicast groups: 1K
  number of directly-connected IPv6 addresses: 2K
  number of indirect IPv6 unicast routes: 1K
  number of IPv4 policy based routing aces: 0
  number of IPv4/MAC qos aces: 512
  number of IPv4/MAC security aces: 1K
  number of IPv6 policy based routing aces: 0
  number of IPv6 qos aces: 510
  number of IPv6 security aces: 510
```

This is an example of output from the **show sdm prefer** command when you have configured a new template but have not reloaded the switch:

```text
Switch# show sdm prefer
The current template is "desktop routing" template.
The selected template optimizes the resources in
the switch to support this level of features for
8 routed interfaces and 1024 VLANs.

  number of unicast mac addresses: 3K
  number of igmp groups + multicast routes: 1K
  number of unicast routes: 11K
    number of directly connected hosts: 3K
    number of indirect routes: 8K
  number of qos aces: 512
  number of security aces: 1K
```

On next reload, template will be "desktop vlan" template.
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>sdm prefer</code></td>
<td>Sets the SDM template to maximize resources for routing or VLANs or to the default template, to select a dual IPv4 and IPv6 template, or to select the desktop or aggregator templates.</td>
</tr>
</tbody>
</table>
show setup express

Use the **show setup express** privileged EXEC command to display if Express Setup mode is active on the switch.

```
show setup express [ | {begin | exclude | include} expression]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>begin</td>
<td>(Optional) Display begins with the line that matches the expression.</td>
</tr>
<tr>
<td>exclude</td>
<td>(Optional) Display excludes lines that match the expression.</td>
</tr>
<tr>
<td>include</td>
<td>(Optional) Display includes lines that match the specified expression.</td>
</tr>
<tr>
<td>expression</td>
<td>Expression in the output to use as a reference point.</td>
</tr>
</tbody>
</table>

Defaults

No default is defined.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(14)EA1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

This is an example of output from the **show setup express** command:

```
Switch# show setup express
express setup mode is active
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>setup express</td>
<td>Enables Express Setup mode.</td>
</tr>
</tbody>
</table>
show spanning-tree

Use the show spanning-tree user EXEC command to display spanning-tree state information.

```
show spanning-tree [bridge-group | active [detail] | backbonefast | blockedports | bridge | detail [active] | inconsistentports | interface interface-id | mst | pathcost method | root | summary [totals] | uplinkfast | vlan vlan-id] [ | {begin | exclude | include} expression]
show spanning-tree bridge-group [active [detail] | blockedports | bridge | detail [active] | inconsistentports | interface interface-id | root | summary] [ | {begin | exclude | include} expression]
show spanning-tree vlan vlan-id [active [detail] | blockedports | bridge | detail [active] | inconsistentports | interface interface-id | root | summary] [ | {begin | exclude | include} expression]
show spanning-tree {vlan vlan-id | bridge-group} bridge [address | detail | forward-time | hello-time | id | max-age | priority [system-id] | protocol] [ | {begin | exclude | include} expression]
show spanning-tree {vlan vlan-id | bridge-group} root [address | cost | detail | forward-time | hello-time | id | max-age | port | priority [system-id] | {begin | exclude | include} expression]
show spanning-tree interface interface-id [active [detail] | cost | detail [active] | inconsistency | portfast | priority | rootcost | state] [ | {begin | exclude | include} expression]
show spanning-tree mst [configuration [digest]] | [instance-id [detail | interface interface-id] [detail]] [ | {begin | exclude | include} expression]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bridge-group</td>
<td>(Optional) Specify the bridge group number. The range is 1 to 255.</td>
</tr>
<tr>
<td>active [detail]</td>
<td>(Optional) Display spanning-tree information only on active interfaces (available only in privileged EXEC mode).</td>
</tr>
<tr>
<td>backbonefast</td>
<td>(Optional) Display spanning-tree BackboneFast status.</td>
</tr>
<tr>
<td>blockedports</td>
<td>(Optional) Display blocked port information (available only in privileged EXEC mode).</td>
</tr>
<tr>
<td>bridge [address</td>
<td>detail</td>
</tr>
<tr>
<td>detail [active]</td>
<td>(Optional) Display a detailed summary of interface information (active keyword available only in privileged EXEC mode).</td>
</tr>
<tr>
<td>inconsistentports</td>
<td>(Optional) Display inconsistent port information (available only in privileged EXEC mode).</td>
</tr>
<tr>
<td>interface interface-id</td>
<td>(Optional) Display spanning-tree information for the specified interface (all options except portfast and state available only in privileged EXEC mode). Enter each interface separated by a space. Ranges are not supported. Valid interfaces include physical ports, VLANs, and port channels. The VLAN range is 1 to 4094. The port-channel range is 1 to 48.</td>
</tr>
</tbody>
</table>
show spanning-tree

(Optional) Display the multiple spanning-tree (MST) region configuration and status (available only in privileged EXEC mode).

The keywords have these meanings:

- **digest**—(Optional) Display the MD5 digest included in the current MST configuration identifier (MSTCI). Two separate digests, one for standard and one for prestandard switches, appear (available only in privileged EXEC mode).

The terminology was updated for the implementation of the IEEE standard, and the txholdcount field was added.

The new master role appears for boundary ports.

The word pre-standard or Pre-STD appears when an IEEE standard bridge sends prestandard BPDUs on a port.

The word pre-standard (config) or Pre-STD-Cf appears when a port has been configured to transmit prestandard BPDUs and no prestandard BPDU has been received on that port.

The word pre-standard (rcvd) or Pre-STD-Rx appears when a prestandard BPDU has been received on a port that has not been configured to transmit prestandard BPDUs.

A dispute flag appears when a designated port receives inferior designated information until the port returns to the forwarding state or ceases to be designated.

- **instance-id**—You can specify a single instance ID, a range of IDs separated by a hyphen, or a series of IDs separated by a comma. The range is 1 to 4094. The display shows the number of currently configured instances.

- **interface interface-id**—(Optional) Valid interfaces include physical ports, VLANs, and port channels. The VLAN range is 1 to 4094. The port-channel range is 1 to 48.

- **detail**—(Optional) Display detailed information for the instance or interface.

 - **pathcost method**—(Optional) Display the default path cost method (available only in privileged EXEC mode).

 - **root [address | cost | detail | forward-time | hello-time | id | max-age | port | priority [system-id]]**—(Optional) Display root switch status and configuration (all keywords available only in privileged EXEC mode).

 - **summary [totals]**—(Optional) Display a summary of port states or the total lines of the spanning-tree state section. The words IEEE Standard identify the MST version running on a switch.

 - **uplinkfast**—(Optional) Display spanning-tree UplinkFast status.

 - **vlan vlan-id [active | detail | backbonefast | blockedports | bridge [address | detail | forward-time | hello-time | id | max-age | priority [system-id] | protocol]**—(Optional) Display spanning-tree information for the specified VLAN (some keywords available only in privileged EXEC mode). You can specify a single VLAN identified by VLAN ID number, a range of VLANs separated by a hyphen, or a series of VLANs separated by a comma. The range is 1 to 4094.
show spanning-tree

Command Modes

User EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(14)EA1</td>
<td>The <code>mst</code> keyword and options were added.</td>
</tr>
<tr>
<td>12.2(25)SEC</td>
<td>The <code>digest</code> keyword was added, and new digest and transmit hold count fields appear.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If the `vlan-id` variable is omitted, the command applies to the spanning-tree instance for all VLANs. Expressions are case sensitive. For example, if you enter `l exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.

Examples

This is an example of output from the `show spanning-tree active` command:

```
Switch# show spanning-tree active
VLAN0001
  Spanning tree enabled protocol ieee
  Root ID  Priority  32768
  Address  0001.42e2.cdd0
  Cost     3038
  Port     24 (GigabitEthernet2/0/1)
  Hello Time 2 sec  Max Age 20 sec  Forward Delay 15 sec

  Bridge ID  Priority  49153 (priority 49152 sys-id-ext 1)
  Address   0003.fd63.9580
  Hello Time 2 sec  Max Age 20 sec  Forward Delay 15 sec
  Aging Time 300
  Uplinkfast enabled

  Interface Role Sts Cost   Prio.Nbr Type
  ----------------- ----- --- ---------- ----------------- --------------------------
  Gl2/0/1 Root FWD 3019  128.24  P2p
```

*<output truncated>
This is an example of output from the `show spanning-tree detail` command:

```
Switch# show spanning-tree detail
VLAN0001 is executing the ieee compatible Spanning Tree protocol
  Bridge Identifier has priority 49152, sysid 1, address 0003.fd63.9580
  Configured hello time 2, max age 20, forward delay 15
  Current root has priority 32768, address 0001.42e2.cdd0
  Root port is 24 (GigabitEthernet2/0/1), cost of root path is 3038
  Topology change flag not set, detected flag not set
  Number of topology changes 0 last change occurred 1d16h ago
  Times: hold 2, topology change 35, notification 2
    hello 2, max age 20, forward delay 15
  timers: hello 0, topology change 0, notification 0, aging 300
  Uplinkfast enabled

  Port 1 (GigabitEthernet2/0/1) of VLAN0001 is forwarding
  Port path cost 3019, Port priority 128, Port Identifier 128.24.
  Designated root has priority 32768, address 0001.42e2.cdd0
  Designated bridge has priority 32768, address 00d0.bbf5.c680
  Designated port id is 128.25, designated path cost 19
  Timers: message age 2, forward delay 0, hold 0
  Number of transitions to forwarding state: 1
  Link type is point-to-point by default
  BPDU: sent 0, received 72364
<output truncated>
```

This is an example of output from the `show spanning-tree interface interface-id` command:

```
Switch# show spanning-tree interface gigabitethernet2/0/1
Vlan     Role Sts Cost      Prio.Nbr Type
---------- ---- --- --------- -------- --------------------------------
VLAN0001 Root FWD 3019      128.24   P2p

Switch# show spanning-tree summary
Switch is in pvst mode
Root bridge for: none
EtherChannel misconfiguration guard is enabled
Extended system ID is enabled
Portfast is disabled by default
PortFast BPDU Guard is disabled by default
Portfast BPDU Filter is disabled by default
Loopguard is disabled by default
UplinkFast is enabled
BackboneFast is enabled
Pathcost method used is short

Name            Blocking Listening Learning Forwarding STP Active
----------------- -------- --------- -------- ---------- ----------
VLAN0001        1        0         0        11         12
VLAN0002        3        0         0        1          4
VLAN0004        3        0         0        1          4
VLAN0006        3        0         0        1          4
VLAN0031        3        0         0        1          4
VLAN0032        3        0         0        1          4
<output truncated>

37 vlans        109       0         0        47         156
Station update rate set to 150 packets/sec.

UplinkFast statistics
---------------------
Number of transitions via uplinkFast (all VLANS) : 0
Number of proxy multicast addresses transmitted (all VLANS) : 0
```
show spanning-tree

BackboneFast statistics

Number of transition via backboneFast (all VLANS) : 0
Number of inferior BPDUs received (all VLANS) : 0
Number of RLQ request PDUs received (all VLANS) : 0
Number of RLQ response PDUs received (all VLANS) : 0
Number of RLQ request PDUs sent (all VLANS) : 0
Number of RLQ response PDUs sent (all VLANS) : 0

This is an example of output from the show spanning-tree mst configuration command:
Switch# show spanning-tree mst configuration
Name [region1]
Revision 1
Instance Vlans Mapped
-------- ------------------
0 1-9,21-4094
1 10-20

This is an example of output from the show spanning-tree mst interface interface-id command:
Switch# show spanning-tree mst interface gigabitethernet2/0/1
GigabitEthernet2/0/1 of MST00 is root forwarding
Edge port: no (default) port guard : none (default)
Link type: point-to-point (auto) bpdu filter: disable (default)
Boundary : boundary (STP) bpdu guard : disable (default)
Bpdus sent 5, received 74
Instance role state cost pri vls mapped
0 root FWD 200000 128 1,12,14-4094

This is an example of output from the show spanning-tree mst 0 command:
Switch# show spanning-tree mst 0
####### MST00 vls mapped: 1-9,21-4094
Bridge address 0002.4b29.7a00 priority 32768 (32768 sysid 0)
Root address 0001.4297.e000 priority 32768 (32768 sysid 0)
port Gi1/0/1 path cost 200038
IST master *this switch
Operational hello time 2, forward delay 15, max age 20, max hops 20
Configured hello time 2, forward delay 15, max age 20, max hops 20

Interface role state cost pri vls mapped
------------------ --------- -------- --------------------------
GigabitEthernet2/0/1 root FWD 200000 128 P2P bound(STP)
GigabitEthernet2/0/2 desg FWD 200000 128 P2P bound(STP)
Port-channel1 desg FWD 200000 128 P2P bound(STP)
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>clear spanning-tree counters</code></td>
<td>Clears the spanning-tree counters.</td>
</tr>
<tr>
<td><code>clear spanning-tree detected-protocols</code></td>
<td>Restarts the protocol migration process.</td>
</tr>
<tr>
<td><code>spanning-tree backbonefast</code></td>
<td>Enables the BackboneFast feature.</td>
</tr>
<tr>
<td><code>spanning-tree bpdufilter</code></td>
<td>Prevents an interface from sending or receiving bridge protocol data units (BPDUs).</td>
</tr>
<tr>
<td><code>spanning-tree bpduguard</code></td>
<td>Puts an interface in the error-disabled state when it receives a BPDU.</td>
</tr>
<tr>
<td><code>spanning-tree cost</code></td>
<td>Sets the path cost for spanning-tree calculations.</td>
</tr>
<tr>
<td><code>spanning-tree extend system-id</code></td>
<td>Enables the extended system ID feature.</td>
</tr>
<tr>
<td><code>spanning-tree guard</code></td>
<td>Enables the root guard or the loop guard feature for all the VLANs associated with the selected interface.</td>
</tr>
<tr>
<td><code>spanning-tree link-type</code></td>
<td>Overrides the default link-type setting for rapid spanning-tree transitions to the forwarding state.</td>
</tr>
<tr>
<td><code>spanning-tree loopguard default</code></td>
<td>Prevents alternate or root ports from becoming the designated port because of a failure that leads to a unidirectional link.</td>
</tr>
<tr>
<td><code>spanning-tree mst configuration</code></td>
<td>Enters multiple spanning-tree (MST) configuration mode through which the MST region configuration occurs.</td>
</tr>
<tr>
<td><code>spanning-tree mst cost</code></td>
<td>Sets the path cost for MST calculations.</td>
</tr>
<tr>
<td><code>spanning-tree mst forward-time</code></td>
<td>Sets the forward-delay time for all MST instances.</td>
</tr>
<tr>
<td><code>spanning-tree mst hello-time</code></td>
<td>Sets the interval between hello BPDUs sent by root switch configuration messages.</td>
</tr>
<tr>
<td><code>spanning-tree mst max-age</code></td>
<td>Sets the interval between messages that the spanning tree receives from the root switch.</td>
</tr>
<tr>
<td><code>spanning-tree mst max-hops</code></td>
<td>Sets the number of hops in an MST region before the BPDU is discarded and the information held for an interface is aged.</td>
</tr>
<tr>
<td><code>spanning-tree mst port-priority</code></td>
<td>Configures an interface priority.</td>
</tr>
<tr>
<td><code>spanning-tree mst priority</code></td>
<td>Configures the switch priority for the specified spanning-tree instance.</td>
</tr>
<tr>
<td><code>spanning-tree mst root</code></td>
<td>Configures the MST root switch priority and timers based on the network diameter.</td>
</tr>
<tr>
<td><code>spanning-tree port-priority</code></td>
<td>Configures an interface priority.</td>
</tr>
<tr>
<td><code>spanning-tree portfast (global configuration)</code></td>
<td>Globally enables the BPDU filtering or the BPDU guard feature on Port Fast-enabled interfaces or enables the Port Fast feature on all nontrunking interfaces.</td>
</tr>
<tr>
<td><code>spanning-tree portfast (interface configuration)</code></td>
<td>Enables the Port Fast feature on an interface and all its associated VLANs.</td>
</tr>
<tr>
<td><code>spanning-tree uplinkfast</code></td>
<td>Accelerates the choice of a new root port when a link or switch fails or when the spanning tree reconfigures itself.</td>
</tr>
<tr>
<td><code>spanning-tree vlan</code></td>
<td>Configures spanning tree on a per-VLAN basis.</td>
</tr>
</tbody>
</table>
show storm-control

Use the `show storm-control` user EXEC command to display broadcast, multicast, or unicast storm control settings on the switch or on the specified interface or to display storm-control history.

```
show storm-control [interface-id] [broadcast | multicast | unicast] [ | begin | exclude | include] expression
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface-id</td>
<td>(Optional) Interface ID for the physical port (including type, stack member, module, and port number).</td>
</tr>
<tr>
<td>broadcast</td>
<td>(Optional) Display broadcast storm threshold setting.</td>
</tr>
<tr>
<td>multicast</td>
<td>(Optional) Display multicast storm threshold setting.</td>
</tr>
<tr>
<td>unicast</td>
<td>(Optional) Display unicast storm threshold setting.</td>
</tr>
<tr>
<td>begin</td>
<td>(Optional) Display begins with the line that matches the <code>expression</code>.</td>
</tr>
<tr>
<td>exclude</td>
<td>(Optional) Display excludes lines that match the <code>expression</code>.</td>
</tr>
<tr>
<td>include</td>
<td>(Optional) Display includes lines that match the specified <code>expression</code>.</td>
</tr>
<tr>
<td>expression</td>
<td>Expression in the output to use as a reference point.</td>
</tr>
</tbody>
</table>

Command Modes

User EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When you enter an `interface-id`, the storm control thresholds appear for the specified interface.

If you do not enter an `interface-id`, settings appear for one traffic type for all ports on the switch.

If you do not enter a traffic type, settings appear for broadcast storm control.

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.

Examples

This is an example of a partial output from the `show storm-control` command when no keywords are entered. Because no traffic-type keyword was entered, the broadcast storm control settings appear.

```
Switch> show storm-control
Interface   Filter State Upper   Lower   Current
----------   -----------  ------  -------  -------
G1/1/0/1     Forwarding  20 pps  10 pps   5 pps
G1/1/0/2     Forwarding  50.00% 40.00%  0.00%
<output truncated>
```
This is an example of output from the `show storm-control` command for a specified interface. Because no traffic-type keyword was entered, the broadcast storm control settings appear.

```
Switch> show storm-control gigabitethernet 1/0/1
Interface      Filter State  Upper   Lower   Current
-------------- ------------- ------- ------- --------
Gi1/0/1        Forwarding  20 pps  10 pps   5 pps
```

Table 2-31 describes the fields in the `show storm-control` display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Displays the ID of the interface.</td>
</tr>
<tr>
<td>Filter State</td>
<td>Displays the status of the filter:</td>
</tr>
<tr>
<td></td>
<td>• Blocking—Storm control is enabled, and a storm has occurred.</td>
</tr>
<tr>
<td></td>
<td>• Forwarding—Storm control is enabled, and no storms have occurred.</td>
</tr>
<tr>
<td></td>
<td>• Inactive—Storm control is disabled.</td>
</tr>
<tr>
<td>Upper</td>
<td>Displays the rising suppression level as a percentage of total available bandwidth in packets per second or in bits per second.</td>
</tr>
<tr>
<td>Lower</td>
<td>Displays the falling suppression level as a percentage of total available bandwidth in packets per second or in bits per second.</td>
</tr>
<tr>
<td>Current</td>
<td>Displays the bandwidth usage of broadcast traffic or the specified traffic type (broadcast, multicast, or unicast) as a percentage of total available bandwidth. This field is only valid when storm control is enabled.</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>storm-control</td>
<td>Sets the broadcast, multicast, or unicast storm control levels for the switch.</td>
</tr>
</tbody>
</table>
show switch

Use the `show switch` user EXEC command to display information related to the stack member or the switch stack.

```
show switch [stack-member-number | detail | neighbors | stack-ports | stack-ring activity [detail]]
[ | {begin | exclude | include} expression]
```

Syntax Description

- `stack-member-number` *(Optional)*: Display information for the specified stack member. The range is 1 to 9.
- `detail` *(Optional)*: Display detailed information about the stack ring.
- `neighbors` *(Optional)*: Display the neighbors for the entire switch stack.
- `stack-ports` *(Optional)*: Display port information for the entire switch stack.
- `stack-ring activity [detail]` *(Optional)*: Display the number of frames per stack member that are sent to the stack ring. Use the `detail` keyword to display the ASIC, the receive queues, and the number of frames per stack member that are sent to the stack ring.
- `| begin` *(Optional)*: Display begins with the line that matches the `expression`.
- `| exclude` *(Optional)*: Display excludes lines that match the `expression`.
- `| include` *(Optional)*: Display includes lines that match the specified `expression`.
- `expression`: Expression in the output to use as a reference point.

Command Modes

User EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(14)EA1</td>
<td>The display was expanded to include Switch Database Management (SDM) mismatch.</td>
</tr>
<tr>
<td>12.2(20)SE</td>
<td>The display was expanded to include provisioning information. The <code>stack-ring activity [detail]</code> keywords were added.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.

These are the states displayed from this command:

- **Waiting** — The state when a switch is booting up and waiting for communication from other switches in the stack. The switch has not yet determined whether it is a stack master or not.
 - Stack members not participating in a stack master election remain in the waiting state until the stack master is elected and ready.

- **Initializing** — The state when a switch has determined whether it is the stack master or not. If the switch is not the stack master, it is receiving its system- and interface-level configuration from the stack master and loading it.
• Ready—The state when the stack member has completed loading the system- and interface-level configuration and is ready to forward traffic.

• Master Re-Init—The state immediately after a stack master re-election and a different stack member is elected stack master. The new stack master is re-initializing its configuration. This state applies only to the new stack master.

• Ver Mismatch—The state of a switch in version mismatch (VM) mode. VM mode is when a switch joining the switch stack has a different stack protocol minor version number than the stack master.

• SDM Mismatch—The state of a switch in Switch Database Management (SDM) mismatch mode. SDM mismatch is when a stack member does not support the SDM template running on the stack master.

• Provisioned—The state of a preconfigured switch before it becomes an active member of a switch stack, or the state of a stack member after it has left the switch stack. The MAC address and the priority number in the display are always 0 for the provisioned switch.

A typical state transition for a stack member (including a stack master) booting up is Waiting -> Initializing -> Ready.

A typical state transition for a stack member becoming a stack master after a stack master election is Ready -> Master Re-Init -> Ready.

A typical state transition for a stack member in version mismatch (VM) mode is Waiting -> Ver Mismatch.

You can use the `show switch` command to identify whether the provisioned switch exists in the switch stack. The `show running-config` and the `show startup-config` privileged EXEC commands do not provide this information.

Examples

This example shows how to display summary information about a switch stack:

```
Switch> show switch
Switch#  Role      Mac Address     Priority     State
--------------------------------------------------------
 6       Member    0003.e31a.1e00     1         Ready
*8 Master    0003.e31a.1200     1         Ready
 2       Member    0000.000.0000     0  Provisioned
```

This example shows detailed information about a switch stack:

```
Switch> show switch detail
Switch#  Role      Mac Address     Priority  Current
---------------------------------------------
 2       Member    0000.000.0000     0  Provisioned
 6       Member    0003.e31a.1e00     1         Ready
*8 Master    0003.e31a.1200     1         Ready

Stack Port Status         Neighbors
Switch#  Port A  Port B  Port A  Port B
---------------------------------------------
 6       Down    Ok    None    8
 8       Ok      Down    6      None
```
This example shows how to display summary information about stack member 6:

```
Switch> show switch 6
```

<table>
<thead>
<tr>
<th>Current</th>
<th>Switch#</th>
<th>Role</th>
<th>Mac Address</th>
<th>Priority</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>--------</td>
<td>---------</td>
<td>--------</td>
<td>-----------------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>6</td>
<td>Member</td>
<td>0003.e31a.1e00</td>
<td>1</td>
<td>Ready</td>
<td></td>
</tr>
</tbody>
</table>

This example shows how to display neighbor information for a switch stack:

```
Switch> show switch neighbors
```

```
Switch #    Port A       Port B
--------    ------       ------
6        None           8
8         6            None
```

This example shows how to display stack-port information for a switch stack:

```
Switch> show switch stack-ports
```

```
Switch #    Port A       Port B
--------    ------       ------
6          Down          Ok
8           Ok          Down
```

This example shows how to display detailed stack-ring activity information for a switch stack:

```
Switch> show switch stack-ring activity detail
```

```
Switch   Asic  Rx Queue-1  Rx Queue-2  Rx Queue-3  Rx Queue-4       Total
-------------------------------------------------------------------------
1           0     2021864     1228937      281510           0     3532311
1           1          52           0       72678           0       72730
---------------------------
Switch 1 Total:     3605041
-------------------------------------------------------------------------
2           0     2020901       90833      101680           0     2213414
2           1          52           0           0           0          52
---------------------------
Switch 2 Total:     2213466
---------------------------------------------------------------
Total frames sent to stack ring : 5818507

Note: these counts do not include frames sent to the ring by certain output features, such as output SPAN and output ACLs.

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>reload</td>
<td>Reloads the stack member and puts a configuration change into effect.</td>
</tr>
<tr>
<td>remote command</td>
<td>Monitors all or specified stack members.</td>
</tr>
<tr>
<td>session</td>
<td>Accesses a specific stack member.</td>
</tr>
<tr>
<td>switch priority</td>
<td>Changes the stack member priority value.</td>
</tr>
<tr>
<td>switch provision</td>
<td>Provisions a new switch before it joins the switch stack.</td>
</tr>
<tr>
<td>switch renumber</td>
<td>Changes the stack member number.</td>
</tr>
</tbody>
</table>
show system mtu

Use the show system mtu privileged EXEC command to display the global maximum transmission unit (MTU) or maximum packet size set for the switch.

show system mtu [ | {begin | exclude | include} expression]

**Syntax Description**
- \| begin: (Optional) Display begins with the line that matches the expression.
- \| exclude: (Optional) Display excludes lines that match the expression.
- \| include: (Optional) Display includes lines that match the specified expression.
- expression: Expression in the output to use as a reference point.

**Command Modes**
Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
If you have used the system mtu or system mtu jumbo global configuration command to change the MTU setting, the new setting does not take effect until you reset the switch.

The system MTU refers to ports operating at 10/100 Mbps; the system jumbo MTU refers to Gigabit ports; the system routing MTU refers to routed ports.

Expressions are case sensitive. For example, if you enter | exclude output, the lines that contain output do not appear, but the lines that contain Output appear.

**Examples**
This is an example of output from the show system mtu command:

```
Switch# show system mtu
System MTU size is 1500 bytes
System Jumbo MTU size is 1550 bytes
Routing MTU size is 1500 bytes.
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>system mtu</td>
<td>Sets the MTU size for the Fast Ethernet, Gigabit Ethernet, or routed ports.</td>
</tr>
</tbody>
</table>
**show udld**

Use the `show udld` user EXEC command to display UniDirectional Link Detection (UDLD) administrative and operational status for all ports or the specified port.

```
show udld [interface-id] [| begin | exclude | include] expression
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface-id</td>
<td>(Optional) ID of the interface and port number. Valid interfaces include physical ports and VLANs. The VLAN range is 1 to 4094.</td>
</tr>
<tr>
<td>#begin</td>
<td>(Optional) Display begins with the line that matches the <code>expression</code>.</td>
</tr>
<tr>
<td>#exclude</td>
<td>(Optional) Display excludes lines that match the <code>expression</code>.</td>
</tr>
<tr>
<td>#include</td>
<td>(Optional) Display includes lines that match the specified <code>expression</code>.</td>
</tr>
<tr>
<td>expression</td>
<td>Expression in the output to use as a reference point.</td>
</tr>
</tbody>
</table>

**Command Modes**

User EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If you do not enter an `interface-id`, administrative and operational UDLD status for all interfaces appear. Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.

**Examples**

This is an example of output from the `show udld interface-id` command. For this display, UDLD is enabled on both ends of the link, and UDLD detects that the link is bidirectional. Table 2-32 describes the fields in this display.

```
Switch> show udld gigabitethernet2/0/1
Interface gi2/0/1

Port enable administrative configuration setting: Follows device default
Port enable operational state: Enabled
Current bidirectional state: Bidirectional
Current operational state: Advertisement - Single Neighbor detected
Message interval: 60
Time out interval: 5
Entry 1
Expiration time: 146
Device ID: 1
Current neighbor state: Bidirectional
Device name: Switch-A
Port ID: Gi2/0/1
Neighbor echo 1 device: Switch-B
Neighbor echo 1 port: Gi2/0/2
Message interval: 5
CDP Device name: Switch-A
```
### Table 2-32 show udld Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>The interface on the local device configured for UDLD.</td>
</tr>
<tr>
<td>Port enable administrative</td>
<td>How UDLD is configured on the port. If UDLD is enabled or configuration setting disabled, the port enable configuration setting is the same as the operational enable state. Otherwise, the enable operational setting depends on the global enable setting.</td>
</tr>
<tr>
<td>configuration setting</td>
<td></td>
</tr>
<tr>
<td>Port enable operational state</td>
<td>Operational state that shows whether UDLD is actually running on this port.</td>
</tr>
<tr>
<td>Current bidirectional state</td>
<td>The bidirectional state of the link. An unknown state appears if the link is down or if it is connected to an UDLD-incapable device. A bidirectional state appears if the link is a normal two-way connection to a UDLD-capable device. All other values mean miswiring.</td>
</tr>
<tr>
<td>Current operational state</td>
<td>The current phase of the UDLD state machine. For a normal bidirectional link, the state machine is most often in the Advertisement phase.</td>
</tr>
<tr>
<td>Message interval</td>
<td>How often advertisement messages are sent from the local device. Measured in seconds.</td>
</tr>
<tr>
<td>Time out interval</td>
<td>The time period, in seconds, that UDLD waits for echoes from a neighbor device during the detection window.</td>
</tr>
<tr>
<td>Entry 1</td>
<td>Information from the first cache entry, which contains a copy of echo information received from the neighbor.</td>
</tr>
<tr>
<td>Expiration time</td>
<td>The amount of time in seconds remaining before this cache entry is aged out.</td>
</tr>
<tr>
<td>Device ID</td>
<td>The neighbor device identification.</td>
</tr>
<tr>
<td>Current neighbor state</td>
<td>The neighbor’s current state. If both the local and neighbor devices are running UDLD normally, the neighbor state and local state should be bidirectional. If the link is down or the neighbor is not UDLD-capable, no cache entries appear.</td>
</tr>
<tr>
<td>Device name</td>
<td>The device name or the system serial number of the neighbor. The system serial number appears if the device name is not set or is set to the default (Switch).</td>
</tr>
<tr>
<td>Port ID</td>
<td>The neighbor port ID enabled for UDLD.</td>
</tr>
<tr>
<td>Neighbor echo 1 device</td>
<td>The device name of the neighbors’ neighbor from which the echo originated.</td>
</tr>
<tr>
<td>Neighbor echo 1 port</td>
<td>The port number ID of the neighbor from which the echo originated.</td>
</tr>
<tr>
<td>Message interval</td>
<td>The rate, in seconds, at which the neighbor is sending advertisement messages.</td>
</tr>
<tr>
<td>CDP device name</td>
<td>The CDP device name or the system serial number. The system serial number appears if the device name is not set or is set to the default (Switch).</td>
</tr>
</tbody>
</table>
**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>udld</code></td>
<td>Enables aggressive or normal mode in UDLD or sets the configurable message timer time.</td>
</tr>
<tr>
<td><code>udld port</code></td>
<td>Enables UDLD on an individual interface or prevents a fiber-optic interface from being enabled by the <code>udld</code> global configuration command.</td>
</tr>
<tr>
<td><code>udld reset</code></td>
<td>Resets all interfaces shutdown by UDLD and permits traffic to begin passing through them again.</td>
</tr>
</tbody>
</table>
show version

Use the `show version` user EXEC command to display version information for the hardware and firmware.

```
show version [begin | exclude | include] expression
```

**Syntax Description**

- `begin` (Optional) Display begins with the line that matches the `expression`.
- `exclude` (Optional) Display excludes lines that match the `expression`.
- `include` (Optional) Display includes lines that match the specified `expression`.
- `expression` Expression in the output to use as a reference point.

**Command Modes**

User EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.

**Examples**

This is an example of output from the `show version` command:

```
Switch> show version
Cisco Internetwork Operating System Software
IOS (tm) C3750 Software (C3750-IPSERVICES-M), Version 12.2(25)SEB, RELEASE SOFTWARE (fc1)
Copyright (c) 1986-2005 by cisco Systems, Inc.
Compiled Tues 15-Feb-05 21:09 by antonino
Image text-base: 0x00003000, data-base: 0x008E36A4

ROM: Bootstrap program is C3750 boot loader
BOOTLDR: C3750 Boot Loader (C3750-HBOOT-M) Version 12.2(25)SEB,

Switch uptime is 2 days, 11 hours, 16 minutes
System returned to ROM by power-on
System image file is "flash:i5.709"

cisco WS-C3750-48TS (PowerPC405) processor with 120822K/10240K bytes of memory.
Last reset from power-on
Bridging software.
Target IOS Version 12.2(25)SEB
1 Virtual Ethernet/IEEE 802.3 interface(s)
48 FastEthernet/IEEE 802.3 interface(s)
32 Gigabit Ethernet/IEEE 802.3 interface(s)
```

**Note**

Though visible in the `show version` output, the `configuration register` information is not supported on the switch.
show version

The password-recovery mechanism is enabled.

512K bytes of flash-simulated non-volatile configuration memory.
Base ethernet MAC Address : 00:09:43:A7:F2:00
Motherboard assembly number : 73-7056-05
Motherboard serial number : CSJ0638004U
Motherboard revision number : 05
Model number            : 73-7056-05

<table>
<thead>
<tr>
<th>Switch</th>
<th>Ports</th>
<th>Model</th>
<th>SW Version</th>
<th>SW Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28</td>
<td>WS-C3750G-24TS</td>
<td>12.2(25)SEB</td>
<td>C3750-IPSERVICES-M</td>
</tr>
<tr>
<td>*</td>
<td>8</td>
<td>WS-C3750-48TS</td>
<td>12.2(25)SEB</td>
<td>C3750-IPSERVICES-M</td>
</tr>
</tbody>
</table>

Switch 01
---------

Switch Uptime : 2 days, 11 hours, 17 minutes
Base ethernet MAC Address : 00:0B:46:2E:35:80
Motherboard assembly number : 73-7058-04
Power supply part number : 341-0045-01
Motherboard serial number : CSJ0640010L
Model number            : WS-C3750-24TS-SMI
System serial number    : CSJ0642U00A

Configuration register is 0xF

<output truncated>
show vlan

Use the show vlan user EXEC command to display the parameters for all configured VLANs or one VLAN (if the VLAN ID or name is specified) on the switch.

```
show vlan [brief | dot1q tag native | id vlan-id | internal usage | mtu | name vlan-name | private-vlan [type] | remote-span | summary] [| | begin | exclude | include] expression
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>brief</strong></td>
<td>(Optional) Display one line for each VLAN with the VLAN name, status, and its ports.</td>
</tr>
<tr>
<td><strong>dot1q tag native</strong></td>
<td>(Optional) Display the IEEE 802.1Q native VLAN tagging status.</td>
</tr>
<tr>
<td><strong>id vlan-id</strong></td>
<td>(Optional) Display information about a single VLAN identified by VLAN ID number. For vlan-id, the range is 1 to 4094.</td>
</tr>
<tr>
<td><strong>internal usage</strong></td>
<td>(Optional) Display a list of VLANs being used internally by the switch. These VLANs are always from the extended range (VLAN IDs 1006 to 4094), and you cannot create VLANs with these IDs by using the vlan global configuration command until you remove them from internal use.</td>
</tr>
<tr>
<td><strong>mtu</strong></td>
<td>(Optional) Display a list of VLANs and the minimum and maximum transmission unit (MTU) sizes configured on ports in the VLAN.</td>
</tr>
<tr>
<td><strong>name vlan-name</strong></td>
<td>(Optional) Display information about a single VLAN identified by VLAN name. The VLAN name is an ASCII string from 1 to 32 characters.</td>
</tr>
<tr>
<td><strong>private-vlan</strong></td>
<td>(Optional) Display information about configured private VLANs, including primary and secondary VLAN IDs, type (community, isolated, or primary) and ports belonging to the private VLAN. This keyword is only supported if your switch is running the IP services image, formerly known as the enhanced multilayer image (EMI).</td>
</tr>
<tr>
<td><strong>type</strong></td>
<td>(Optional) Display only private VLAN ID and type.</td>
</tr>
<tr>
<td><strong>remote-span</strong></td>
<td>(Optional) Display information about Remote SPAN (RSPAN) VLANs.</td>
</tr>
<tr>
<td><strong>summary</strong></td>
<td>(Optional) Display VLAN summary information.</td>
</tr>
<tr>
<td>**</td>
<td>begin**</td>
</tr>
<tr>
<td>**</td>
<td>exclude**</td>
</tr>
<tr>
<td>**</td>
<td>include**</td>
</tr>
<tr>
<td><strong>expression</strong></td>
<td>Expression in the output to use as a reference point.</td>
</tr>
</tbody>
</table>

### Note

Though visible in the command-line help string, the ifindex keyword is not supported.

### Command Modes

User EXEC
show vlan

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(20)SE</td>
<td>The <code>mtu</code> and <code>private-vlan</code> keywords were added.</td>
</tr>
<tr>
<td>12.2(25)SE</td>
<td>The <code>dot1q tag native</code> keywords were added.</td>
</tr>
</tbody>
</table>

Usage Guidelines

In the `show vlan mtu` command output, the MTU_Mismatch column shows whether all the ports in the VLAN have the same MTU. When `yes` appears in this column, it means that the VLAN has ports with different MTUs, and packets that are switched from a port with a larger MTU to a port with a smaller MTU might be dropped. If the VLAN does not have an SVI, the hyphen (`-`) symbol appears in the SVI_MTU column. If the MTU-Mismatch column displays `yes`, the names of the port with the MinMTU and the port with the MaxMTU appear.

If you try to associate a private VLAN secondary VLAN with a primary VLAN before you define the secondary VLAN, the secondary VLAN is not included in the `show vlan private-vlan` command output.

In the `show vlan private-vlan type` command output, a type displayed as `normal` means a VLAN that has a private VLAN association but is not part of the private VLAN. For example, if you define and associate two VLANs as primary and secondary VLANs and then delete the secondary VLAN configuration without removing the association from the primary VLAN, the VLAN that was the secondary VLAN is shown as `normal` in the display. In the `show vlan private-vlan` output, the primary and secondary VLAN pair is shown as `non-operational`.

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.

Examples

This is an example of output from the `show vlan` command. Table 2-33 describes the fields in the display.

```
Switch> show vlan
VLAN Name Status Ports
---- --- ----------- -------------------------------
1 default active Fa1/0/1, Fa1/0/2, Fa1/0/3
 Fa1/0/4, Fa1/0/5, Fa1/0/6
 Fa1/0/7, Fa1/0/8, Fa1/0/9
 Fa1/0/10, Fa1/0/11, Fa1/0/12
 Fa1/0/13, Fa1/0/14, Fa1/0/15
 Fa1/0/16, Fa1/0/17, Fa1/0/18
 Fa1/0/19, Fa1/0/20, Fa1/0/21
 Fa1/0/24, Gi1/0/1, Gi1/0/2
<output truncated>
2 VLAN0002 active
3 VLAN0003 active
<output truncated>
1000 VLAN1000 active
1002 fddi-default active
1003 token-ring-default active
1004 fddinet-default active
1005 trnet-default active
 VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2
 ---- ----- ---------- ----- ------ ------ -------- ---- -------- ------ ------
 1 enet 100001 1500 - - - - - 1002 1003
 2 enet 100002 1500 - - - - - 0 0
 3 enet 100003 1500 - - - - - 0 0
```
Remote SPAN VLANs

<table>
<thead>
<tr>
<th>Primary</th>
<th>Secondary</th>
<th>Type</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>25</td>
<td>isolated</td>
<td>Fa1/0/13, Fa1/0/20, Fa1/0/22, Gi1/0/1, Fa2/0/13, Fa2/0/22, Fa3/0/13, Fa3/0/14, Fa3/0/20, Gi3/0/1</td>
</tr>
<tr>
<td>20</td>
<td>30</td>
<td>community</td>
<td>Fa1/0/13, Fa1/0/20, Fa1/0/21, Gi1/0/1, Fa2/0/13, Fa2/0/20, Fa3/0/14, Fa3/0/20, Fa3/0/21, Gi3/0/1</td>
</tr>
<tr>
<td>20</td>
<td>35</td>
<td>community</td>
<td>Fa1/0/13, Fa1/0/20, Fa1/0/23, Fa1/0/33, Gi1/0/1, Fa2/0/13, Fa3/0/14, Fa3/0/20, Fa3/0/23, Fa3/0/33, Gi3/0/1</td>
</tr>
</tbody>
</table>

This is an example of output from the **show vlan dot1q tag native** command:

```
Switch> show vlan dot1q tag native
dot1q native vlan tagging is disabled
```
This is an example of output from the `show vlan private-vlan` command:

```
Switch> show vlan private-vlan
Primary Secondary Type Ports
------- --------- ----------------- --
10 501 isolated Gi3/0/3
10 502 community Fa2/0/11
10 503 non-operational3 -
20 25 isolated Fa1/0/13, Fa1/0/20, Fa1/0/22, Gi1/0/1, Fa2/0/13, Fa2/0/22, Fa3/0/13, Fa3/0/14, Fa3/0/20, Gi1/0/1, Fa2/0/13, Fa2/0/20, Fa3/0/14, Fa3/0/20, Fa3/0/21, Gi3/0/1
20 30 community Fa1/0/13, Fa1/0/20, Fa1/0/21, Gi1/0/1, Fa2/0/13, Fa2/0/20, Fa3/0/14, Fa3/0/20, Fa3/0/21, Gi3/0/1
20 35 community Fa1/0/13, Fa1/0/20, Fa1/0/23, Fa1/0/33, Gi1/0/1, Fa2/0/13, Fa3/0/14, Fa3/0/20, Fa3/0/23, Fa3/0/33, Gi3/0/1
20 55 non-operational
2000 2500 isolated Fa1/0/5, Fa1/0/10, Fa2/0/5, Fa2/0/10, Fa2/0/15
```

This is an example of output from the `show vlan private-vlan type` command:

```
Switch> show vlan private-vlan type
Vlan Type
---- -----------------
10 primary
501 isolated
502 community
503 normal
```

This is an example of output from the `show vlan summary` command:

```
Switch> show vlan summary
Number of existing VLANs : 45
Number of existing VTP VLANs : 45
Number of existing extended VLANs : 0
```

This is an example of output from the `show vlan id` command.

```
Switch# show vlan id 2
VLAN Name Status Ports
---- -------------------------------- --------- -------------------------------
2 VLAN0200 active Fa1/0/7, Fa1/0/8

VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2
---- ----- ---------- ----- ------ ------ -------- ---- -------- ------ -----
2 enet 100002 1500 - - - - - 0 0

Remote SPAN VLAN

Disabled
```

This is an example of output from the `show vlan internal usage` command. It shows that VLANs 1025 and 1026 are being used as internal VLANs for Fast Ethernet routed ports 23 and 24 on stack member 1. If you want to use one of these VLAN IDs, you must first shut down the routed port, which releases the internal VLAN, and then create the extended-range VLAN. When you start up the routed port, another internal VLAN number is assigned to it.

```
Switch> show vlan internal usage
VLAN Usage
---- --------------
1025 FastEthernet1/0/23
1026 FastEthernet1/0/24
```
<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><strong>private-vlan</strong></td>
<td>Configures a VLAN as a community, isolated, or primary VLAN or associates a primary VLAN with secondary VLANs.</td>
</tr>
<tr>
<td></td>
<td><strong>switchport mode</strong></td>
<td>Configures the VLAN membership mode of a port.</td>
</tr>
<tr>
<td></td>
<td><strong>vlan (global configuration)</strong></td>
<td>Enables VLAN configuration mode where you can configure VLANs 1 to 4094.</td>
</tr>
<tr>
<td></td>
<td><strong>vlan (VLAN configuration)</strong></td>
<td>Configures VLAN characteristics in the VLAN database. Only available for normal-range VLANs (VLAN IDs 1 to 1005). Do not enter leading zeros.</td>
</tr>
</tbody>
</table>
**show vlan access-map**

Use the `show vlan access-map` privileged EXEC command to display information about a particular VLAN access map or for all VLAN access maps.

`show vlan access-map [mapname] | {begin | exclude | include} expression`

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>mapname</strong></td>
<td>(Optional) Name of a specific VLAN access map.</td>
</tr>
<tr>
<td>**</td>
<td>begin**</td>
</tr>
<tr>
<td>**</td>
<td>exclude**</td>
</tr>
<tr>
<td>**</td>
<td>include**</td>
</tr>
<tr>
<td><strong>expression</strong></td>
<td>Expression in the output to use as a reference point.</td>
</tr>
</tbody>
</table>

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.

**Examples**

This is an example of output from the `show vlan access-map` command:

```
Switch# show vlan access-map
Vlan access-map "SecWiz" 10
 Match clauses:
 ip address: SecWiz_Fa10_3_in_ip

Action:
 forward
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show vlan filter</code></td>
<td>Displays information about all VLAN filters or about a particular VLAN or VLAN access map.</td>
</tr>
<tr>
<td><code>vlan access-map</code></td>
<td>Creates a VLAN map entry for VLAN packet filtering.</td>
</tr>
<tr>
<td><code>vlan filter</code></td>
<td>Applies a VLAN map to one or more VLANs.</td>
</tr>
</tbody>
</table>
show vlan filter

Use the show vlan filter privileged EXEC command to display information about all VLAN filters or about a particular VLAN or VLAN access map.

```
show vlan filter [access-map name | vlan vlan-id] [| begin | exclude | include] expression
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>access-map name</td>
<td>(Optional) Display filtering information for the specified VLAN access map.</td>
</tr>
<tr>
<td>vlan vlan-id</td>
<td>(Optional) Display filtering information for the specified VLAN. The range is 1 to 4094.</td>
</tr>
<tr>
<td>begin</td>
<td>(Optional) Display begins with the line that matches the expression.</td>
</tr>
<tr>
<td>exclude</td>
<td>(Optional) Display excludes lines that match the expression.</td>
</tr>
<tr>
<td>include</td>
<td>(Optional) Display includes lines that match the specified expression.</td>
</tr>
<tr>
<td>expression</td>
<td>Expression in the output to use as a reference point.</td>
</tr>
</tbody>
</table>

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.

**Examples**

This is an example of output from the show vlan filter command:

```
Switch# show vlan filter
VLAN Map map_1 is filtering VLANs:
 20-22
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show vlan access-map</td>
<td>Displays information about a particular VLAN access map or for all VLAN access maps.</td>
</tr>
<tr>
<td>vlan access-map</td>
<td>Creates a VLAN map entry for VLAN packet filtering.</td>
</tr>
<tr>
<td>vlan filter</td>
<td>Applies a VLAN map to one or more VLANs.</td>
</tr>
</tbody>
</table>
show vmps

Use the `show vmps` user EXEC command without keywords to display the VLAN Query Protocol (VQP) version, reconfirmation interval, retry count, VLAN Membership Policy Server (VMPS) IP addresses, and the current and primary servers, or use the `statistics` keyword to display client-side statistics.

```
show vmps [statistics] [| begin | exclude | include] expression
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>statistics</td>
<td>(Optional) Display VQP client-side statistics and counters.</td>
</tr>
<tr>
<td></td>
<td>begin</td>
</tr>
<tr>
<td></td>
<td>exclude</td>
</tr>
<tr>
<td></td>
<td>include</td>
</tr>
<tr>
<td>expression</td>
<td>Expression in the output to use as a reference point.</td>
</tr>
</tbody>
</table>

**Command Modes**

User EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.

**Examples**

This is an example of output from the `show vmps` command:

```
Switch> show vmps
VQP Client Status:

VMPS VQP Version: 1
Reconfirm Interval: 60 min
Server Retry Count: 3
VMPS domain server:

Reconfirmation status

VMPS Action: other
```
This is an example of output from the `show vmps statistics` command. Table 2-34 describes each field in the display.

```
Switch> show vmps statistics
VMPS Client Statistics

VQP Queries: 0
VQP Responses: 0
VMPS Changes: 0
VQP Shutdowns: 0
VQP Denied: 0
VQP Wrong Domain: 0
VQP Wrong Version: 0
VQP Insufficient Resource: 0
```

**Table 2-34 show vmps statistics Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VQP Queries</td>
<td>Number of queries sent by the client to the VMPS.</td>
</tr>
<tr>
<td>VQP Responses</td>
<td>Number of responses sent to the client from the VMPS.</td>
</tr>
<tr>
<td>VMPS Changes</td>
<td>Number of times that the VMPS changed from one server to another.</td>
</tr>
<tr>
<td>VQP Shutdowns</td>
<td>Number of times the VMPS sent a response to shut down the port. The client disables the port and removes all dynamic addresses on this port from the address table. You must administratively re-enable the port to restore connectivity.</td>
</tr>
<tr>
<td>VQP Denied</td>
<td>Number of times the VMPS denied the client request for security reasons. When the VMPS response denies an address, no frame is forwarded to or from the workstation with that address (broadcast or multicast frames are delivered to the workstation if the port has been assigned to a VLAN). The client keeps the denied address in the address table as a blocked address to prevent more queries from being sent to the VMPS for each new packet received from this workstation. The client ages the address if no new packets are received from this workstation on this port within the aging time period.</td>
</tr>
<tr>
<td>VQP Wrong Domain</td>
<td>Number of times the management domain in the request does not match the one for the VMPS. Any previous VLAN assignments of the port are not changed. This response means that the server and the client have not been configured with the same VTP management domain.</td>
</tr>
<tr>
<td>VQP Wrong Version</td>
<td>Number of times the version field in the query packet contains a value that is higher than the version supported by the VMPS. The VLAN assignment of the port is not changed. The switches send only VMPS Version 1 requests.</td>
</tr>
<tr>
<td>VQP Insufficient Resource</td>
<td>Number of times the VMPS is unable to answer the request because of a resource availability problem. If the retry limit has not yet been reached, the client repeats the request with the same server or with the next alternate server, depending on whether the per-server retry count has been reached.</td>
</tr>
</tbody>
</table>
### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear vmps statistics</td>
<td>Clears the statistics maintained by the VQP client.</td>
</tr>
<tr>
<td>vmps reconfirm (privileged EXEC)</td>
<td>Sends VQP queries to reconfirm all dynamic VLAN assignments with the VMPS.</td>
</tr>
<tr>
<td>vmps retry</td>
<td>Configures the per-server retry count for the VQP client.</td>
</tr>
<tr>
<td>vmps server</td>
<td>Configures the primary VMPS and up to three secondary servers.</td>
</tr>
</tbody>
</table>
show vtp

Use the `show vtp` user EXEC command to display general information about the VLAN Trunking Protocol (VTP) management domain, status, and counters.

```
show vtp {counters | password | status} [| begin | exclude | include] expression
```

**Syntax Description**

- **counters**: Display the VTP statistics for the switch.
- **password**: Display the configured VTP password.
- **status**: Display general information about the VTP management domain status.
- **| begin**: (Optional) Display begins with the line that matches the `expression`.
- **| exclude**: (Optional) Display excludes lines that match the `expression`.
- **| include**: (Optional) Display includes lines that match the specified `expression`.
- **expression**: Expression in the output to use as a reference point.

**Command Modes**

User EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(14)EA1</td>
<td>The <code>password</code> keyword was added.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.

**Examples**

This is an example of output from the `show vtp counters` command. Table 2-35 describes each field in the display.

```
Switch> show vtp counters

VTP statistics:
Summary advertisements received : 0
Subset advertisements received : 0
Request advertisements received : 0
Summary advertisements transmitted : 0
Subset advertisements transmitted : 0
Request advertisements transmitted : 0
Number of config revision errors : 0
Number of config digest errors : 0
Number of V1 summary errors : 0
```

show vtp

VTP pruning statistics:

<table>
<thead>
<tr>
<th>Trunk</th>
<th>Join Transmitted</th>
<th>Join Received</th>
<th>Summary advts received from non-pruning-capable device</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fa1/0/47</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fa1/0/48</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gi2/0/1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gi3/0/2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 2-35 show vtp counters Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary advertisements received</td>
<td>Number of summary advertisements received by this switch on its trunk ports. Summary advertisements contain the management domain name, the configuration revision number, the update timestamp and identity, the authentication checksum, and the number of subset advertisements to follow.</td>
</tr>
<tr>
<td>Subset advertisements received</td>
<td>Number of subset advertisements received by this switch on its trunk ports. Subset advertisements contain all the information for one or more VLANs.</td>
</tr>
<tr>
<td>Request advertisements received</td>
<td>Number of advertisement requests received by this switch on its trunk ports. Advertisement requests normally request information on all VLANs. They can also request information on a subset of VLANs.</td>
</tr>
<tr>
<td>Summary advertisements transmitted</td>
<td>Number of summary advertisements sent by this switch on its trunk ports. Summary advertisements contain the management domain name, the configuration revision number, the update timestamp and identity, the authentication checksum, and the number of subset advertisements to follow.</td>
</tr>
<tr>
<td>Subset advertisements transmitted</td>
<td>Number of subset advertisements sent by this switch on its trunk ports. Subset advertisements contain all the information for one or more VLANs.</td>
</tr>
<tr>
<td>Request advertisements transmitted</td>
<td>Number of advertisement requests sent by this switch on its trunk ports. Advertisement requests normally request information on all VLANs. They can also request information on a subset of VLANs.</td>
</tr>
<tr>
<td>Number of configuration revision errors</td>
<td>Number of revision errors. Whenever you define a new VLAN, delete an existing one, suspend or resume an existing VLAN, or modify the parameters on an existing VLAN, the configuration revision number of the switch increments. Revision errors increment whenever the switch receives an advertisement whose revision number matches the revision number of the switch, but the MD5 digest values do not match. This error means that the VTP password in the two switches is different or that the switches have different configurations. These errors mean that the switch is filtering incoming advertisements, which causes the VTP database to become unsynchronized across the network.</td>
</tr>
</tbody>
</table>
This is an example of output from the `show vtp status` command. Table 2-36 describes each field in the display.

```
Switch> show vtp status
VTP Version : 2
Configuration Revision : 0
Maximum VLANs supported locally : 1005
Number of existing VLANs : 45
VTP Operating Mode : Transparent
VTP Domain Name : shared_testbed1
VTP Pruning Mode : Disabled
VTP V2 Mode : Disabled
VTP Traps Generation : Enabled
MD5 digest : 0x3A 0x29 0x86 0x39 0xB4 0x5D 0x58 0xD7
```
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTP Version</td>
<td>Displays the VTP version operating on the switch. By default, the switch implements Version 1 but can be set to Version 2.</td>
</tr>
<tr>
<td>Configuration Revision</td>
<td>Current configuration revision number on this switch.</td>
</tr>
<tr>
<td>Maximum VLANs Supported</td>
<td>Maximum number of VLANs supported locally.</td>
</tr>
<tr>
<td>Number of Existing VLANs</td>
<td>Number of existing VLANs.</td>
</tr>
<tr>
<td>VTP Operating Mode</td>
<td>Displays the VTP operating mode, which can be server, client, or transparent.</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong>: The switch automatically changes from VTP server mode to VTP client mode if it detects a failure while writing the configuration to NVRAM and cannot return to server mode until the NVRAM is functioning.</td>
</tr>
<tr>
<td></td>
<td>Server: a switch in VTP server mode is enabled for VTP and sends advertisements. You can configure VLANs on it. The switch guarantees that it can recover all the VLAN information in the current VTP database from NVRAM after reboot. By default, every switch is a VTP server.</td>
</tr>
<tr>
<td></td>
<td>Client: a switch in VTP client mode is enabled for VTP, can send advertisements, but does not have enough nonvolatile storage to store VLAN configurations. You cannot configure VLANs on it. When a VTP client starts up, it does not send VTP advertisements until it receives advertisements to initialize its VLAN database.</td>
</tr>
<tr>
<td></td>
<td>Transparent: a switch in VTP transparent mode is disabled for VTP, does not send or learn from advertisements sent by other devices, and cannot affect VLAN configurations on other devices in the network. The switch receives VTP advertisements and forwards them on all trunk ports except the one on which the advertisement was received.</td>
</tr>
<tr>
<td>VTP Domain Name</td>
<td>Name that identifies the administrative domain for the switch.</td>
</tr>
<tr>
<td>VTP Pruning Mode</td>
<td>Displays whether pruning is enabled or disabled. Enabling pruning on a VTP server enables pruning for the entire management domain. Pruning restricts flooded traffic to those trunk links that the traffic must use to access the appropriate network devices.</td>
</tr>
<tr>
<td>VTP V2 Mode</td>
<td>Displays if VTP Version 2 mode is enabled. All VTP Version 2 switches operate in Version 1 mode by default. Each VTP switch automatically detects the capabilities of all the other VTP devices. A network of VTP devices should be configured to Version 2 only if all VTP switches in the network can operate in Version 2 mode.</td>
</tr>
<tr>
<td>VTP Traps Generation</td>
<td>Displays whether VTP traps are sent to a network management station.</td>
</tr>
<tr>
<td>MD5 Digest</td>
<td>A 16-byte checksum of the VTP configuration.</td>
</tr>
<tr>
<td>Configuration Last Modified</td>
<td>Displays the date and time of the last configuration modification. Displays the IP address of the switch that caused the configuration change to the database.</td>
</tr>
</tbody>
</table>
### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>clear vtp counters</code></td>
<td>Clears the VTP and pruning counters.</td>
</tr>
<tr>
<td><code>vtp (global configuration)</code></td>
<td>Configures the VTP filename, interface name, domain name, and mode.</td>
</tr>
<tr>
<td><code>vtp (VLAN configuration)</code></td>
<td>Configures the VTP domain name, password, pruning, and mode.</td>
</tr>
</tbody>
</table>
show vtp
shutdown

Use the shutdown interface configuration command on the switch stack or on a standalone switch to disable an interface. Use the no form of this command to restart a disabled interface.

    shutdown
    no shutdown

Syntax Description
This command has no arguments or keywords.

Defaults
The port is enabled (not shut down).

Command Modes
Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
The shutdown command causes a port to stop forwarding. You can enable the port with the no shutdown command.

The no shutdown command has no effect if the port is a static-access port assigned to a VLAN that has been deleted, suspended, or shut down. The port must first be a member of an active VLAN before it can be re-enabled.

The shutdown command disables all functions on the specified interface.

This command also marks the interface as unavailable. To see if an interface is disabled, use the show interfaces privileged EXEC command. An interface that has been shut down is shown as administratively down in the display.

Examples
These examples show how to disable and re-enable a port:

    Switch(config)# interface gigabitethernet1/0/2
    Switch(config-if)# shutdown
    Switch(config)# interface gigabitethernet1/0/2
    Switch(config-if)# no shutdown

You can verify your settings by entering the show interfaces privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show interfaces</td>
<td>Displays the statistical information specific to all interfaces or to a specific interface.</td>
</tr>
</tbody>
</table>
shutdown vlan

Use the `shutdown vlan` global configuration command on the switch stack or on a standalone switch to shut down (suspend) local traffic on the specified VLAN. Use the `no` form of this command to restart local traffic on the VLAN.

```
shutdown vlan vlan-id

no shutdown vlan vlan-id
```

### Syntax Description

- **vlan-id**: ID of the VLAN to be locally shut down. The range is 2 to 1001. VLANs defined as default VLANs under the VLAN Trunking Protocol (VTP), as well as extended-range VLANs (greater than 1005) cannot be shut down. The default VLANs are 1 and 1002 to 1005.

### Defaults

No default is defined.

### Command Modes

Global configuration

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

The `shutdown vlan` command does not change the VLAN information in the VTP database. The command shuts down local traffic, but the switch still advertises VTP information.

### Examples

This example shows how to shut down traffic on VLAN 2:

```
Switch(config)# shutdown vlan 2
```

You can verify your setting by entering the `show vlan` privileged EXEC command.

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>shutdown (config-vlan mode)</td>
<td>Shuts down local traffic on the VLAN when in config-VLAN mode (accessed by the <code>vlan vlan-id</code> global configuration command).</td>
</tr>
<tr>
<td>vlan database</td>
<td>Enters VLAN configuration mode.</td>
</tr>
</tbody>
</table>
snmp-server enable traps

Use the `snmp-server enable traps` global configuration command on the switch stack or on a standalone switch to enable the switch to send Simple Network Management Protocol (SNMP) notifications for various traps or inform requests to the network management system (NMS). Use the `no` form of this command to return to the default setting.

```

```

### Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>bgp</strong></td>
<td>(Optional) Enable Border Gateway Protocol (BGP) state-change traps.</td>
</tr>
</tbody>
</table>
| **bridge [newroot] [topologychange]** | (Optional) Generate STP bridge MIB traps. The keywords have these meanings:  
  - `newroot`—(Optional) Enable SNMP STP Bridge MIB new root traps.  
  - `topologychange`—(Optional) Enable SNMP STP Bridge MIB topology change traps. |
| **cluster** | (Optional) Enable cluster traps. |
| **config** | (Optional) Enable SNMP configuration traps. |
| **copy-config** | (Optional) Enable SNMP copy-configuration traps. |
| **entity** | (Optional) Enable SNMP entity traps. |
| **envmon [fan | shutdown | status | supply | temperature]** | (Optional) Enable SNMP environmental traps. The keywords have these meanings:  
  - `fan`—(Optional) Enable fan traps.  
  - `shutdown`—(Optional) Enable environmental monitor shutdown traps.  
  - `status`—(Optional) Enable SNMP environmental status-change traps.  
  - `supply`—(Optional) Enable environmental monitor power-supply traps.  
  - `temperature`—(Optional) Enable environmental monitor temperature traps. |
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>snmp-server enable traps</td>
<td>(Optional) Enable SNMP traps. The keywords have these meanings:</td>
</tr>
<tr>
<td></td>
<td>- <strong>authentication</strong>—(Optional) Enable authentication trap.</td>
</tr>
<tr>
<td></td>
<td>- <strong>coldstart</strong>—(Optional) Enable cold start trap.</td>
</tr>
<tr>
<td></td>
<td>- <strong>linkdown</strong>—(Optional) Enable linkdown trap.</td>
</tr>
<tr>
<td></td>
<td>- <strong>linkup</strong>—(Optional) Enable linkup trap.</td>
</tr>
<tr>
<td></td>
<td>- <strong>warmstart</strong>—(Optional) Enable warmstart trap.</td>
</tr>
<tr>
<td>flash [insertion removal]</td>
<td>(Optional) Enable SNMP FLASH notifications. The keywords have these meanings:</td>
</tr>
<tr>
<td></td>
<td>- <strong>insertion</strong>—(Optional) Generate a trap when a switch (flash) is inserted into a stack, either physically or because of a power cycle or reload.</td>
</tr>
<tr>
<td></td>
<td>- <strong>removal</strong>—(Optional) Generate a trap when a switch (flash) is removed from a stack, either physically or because of a power cycle or reload.</td>
</tr>
<tr>
<td>fru-ctrl</td>
<td>(Optional) Generate entity field-replaceable unit (FRU) control traps. In the Catalyst 3750 switch stack, this trap refers to the insertion or removal of a switch in the stack.</td>
</tr>
<tr>
<td>hsrp</td>
<td>(Optional) Enable Hot Standby Router Protocol (HSRP) traps.</td>
</tr>
<tr>
<td>ipmulticast</td>
<td>(Optional) Enable IP multicast routing traps.</td>
</tr>
<tr>
<td>mac-notification</td>
<td>(Optional) Enable MAC address notification traps.</td>
</tr>
<tr>
<td>msdp</td>
<td>(Optional) Enable Multicast Source Discovery Protocol (MSDP) traps.</td>
</tr>
<tr>
<td>ospf [cisco-specific errors lsa rate-limit retransmit state-change]</td>
<td>(Optional) Enable Open Shortest Path First (OSPF) traps. The keywords have these meanings:</td>
</tr>
<tr>
<td></td>
<td>- <strong>cisco-specific</strong>—(Optional) Enable Cisco-specific traps.</td>
</tr>
<tr>
<td></td>
<td>- <strong>errors</strong>—(Optional) Enable error traps.</td>
</tr>
<tr>
<td></td>
<td>- <strong>lsa</strong>—(Optional) Enable link-state advertisement (LSA) traps.</td>
</tr>
<tr>
<td></td>
<td>- <strong>rate-limit</strong>—(Optional) Enable rate-limit traps.</td>
</tr>
<tr>
<td></td>
<td>- <strong>retransmit</strong>—(Optional) Enable packet-retransmit traps.</td>
</tr>
<tr>
<td></td>
<td>- <strong>state-change</strong>—(Optional) Enable state-change traps.</td>
</tr>
<tr>
<td>pim [invalid-pim-message neighbor-change rp-mapping-change]</td>
<td>(Optional) Enable Protocol-Independent Multicast (PIM) traps. The keywords have these meanings:</td>
</tr>
<tr>
<td></td>
<td>- <strong>invalid-pim-message</strong>—(Optional) Enable invalid PIM message traps.</td>
</tr>
<tr>
<td></td>
<td>- <strong>neighbor-change</strong>—(Optional) Enable PIM neighbor-change traps.</td>
</tr>
<tr>
<td></td>
<td>- <strong>rp-mapping-change</strong>—(Optional) Enable rendezvous point (RP)-mapping change traps.</td>
</tr>
<tr>
<td>port-security [trap-rate value]</td>
<td>(Optional) Enable port security traps. Use the <strong>trap-rate</strong> keyword to set the maximum number of port-security traps sent per second. The range is from 0 to 1000; the default is 0 (no limit imposed; a trap is sent at every occurrence).</td>
</tr>
<tr>
<td>rtr</td>
<td>(Optional) Enable SNMP Response Time Reporter traps.</td>
</tr>
<tr>
<td>storm-control trap-rate value</td>
<td>(Optional) Enable storm-control traps. Use the <strong>trap-rate</strong> keyword to set the maximum number of storm-control traps sent per second. The range is 0 to 1000; the default is 0 (no limit is imposed; a trap is sent at every occurrence).</td>
</tr>
</tbody>
</table>


```
 snmp-server enable traps
```

**snmp-server enable traps**

(Optional) Enable SNMP STPX MIB traps. The keywords have these meanings:

- **inconsistency**—(Optional) Enable SNMP STPX MIB Inconsistency Update traps.
- **root-inconsistency**—(Optional) Enable SNMP STPX MIB Root Inconsistency Update traps.
- **loop-inconsistency**—(Optional) Enable SNMP STPX MIB Loop Inconsistency Update traps.

---

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>stpx</td>
<td>(Optional) Enable SNMP STPX MIB traps. The keywords have these meanings:</td>
</tr>
<tr>
<td>syslog</td>
<td>(Optional) Enable SNMP syslog traps.</td>
</tr>
<tr>
<td>tty</td>
<td>(Optional) Send TCP connection traps. This is enabled by default.</td>
</tr>
<tr>
<td>vlan-membership</td>
<td>(Optional) Enable SNMP VLAN membership traps.</td>
</tr>
<tr>
<td>vlancreate</td>
<td>(Optional) Enable SNMP VLAN-created traps.</td>
</tr>
<tr>
<td>vlandelete</td>
<td>(Optional) Enable SNMP VLAN-deleted traps.</td>
</tr>
<tr>
<td>vtp</td>
<td>(Optional) Enable VLAN Trunking Protocol (VTP) traps.</td>
</tr>
</tbody>
</table>

---

**Note**

Though visible in the command-line help strings, the `cpu [threshold]` keyword is not supported. The `snmp-server enable informs` global configuration command is not supported. To enable the sending of SNMP inform notifications, use the `snmp-server enable traps` global configuration command combined with the `snmp-server host host-addr informs` global configuration command.

---

**Defaults**

The sending of SNMP traps is disabled.

**Command Modes**

Global configuration

---

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(14)EA1</td>
<td>The <code>bgp, copy-config, envmon, flash, port-security, stpx, syslog, vlancreate, and vlandelete</code> keywords were added.</td>
</tr>
<tr>
<td>12.2(18)SE</td>
<td>The `ipmulticast, msdp, ospf [cisco-specific</td>
</tr>
<tr>
<td>12.2(25)SE</td>
<td>The <code>storm-control trap-rate value</code> keywords were added.</td>
</tr>
</tbody>
</table>

---

**Usage Guidelines**

Specify the host (NMS) that receives the traps by using the `snmp-server host host-addr` global configuration command. If no trap types are specified, all trap types are sent.

When supported, use the `snmp-server enable traps` command to enable sending of traps or informs.

---

**Note**

Informs are not supported in SNMPv1.
To enable more than one type of trap, you must enter a separate `snmp-server enable traps` command for each trap type.

**Examples**

This example shows how to send VTP traps to the NMS:

```plaintext
Switch(config)# snmp-server enable traps vtp
```

You can verify your setting by entering the `show vtp status` or the `show running-config` privileged EXEC command.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>snmp-server host</code></td>
<td>Specifies the host that receives SNMP traps.</td>
</tr>
</tbody>
</table>
snmp-server host

Use the `snmp-server host` global configuration command on the switch stack or on a standalone switch to specify the recipient (host) of a Simple Network Management Protocol (SNMP) notification operation. Use the `no` form of this command to remove the specified host.

```
snmp-server host host-addr [informs | traps] [version {1 | 2c | 3 {auth | noauth | priv}}] [vrf vrf-instance] {community-string [notification-type]}

no snmp-server host host-addr [informs | traps] [version {1 | 2c | 3 {auth | noauth | priv}}] [vrf vrf-instance] community-string
```

**Syntax Description**

<table>
<thead>
<tr>
<th>host-addr</th>
<th>Name or Internet address of the host (the targeted recipient).</th>
</tr>
</thead>
<tbody>
<tr>
<td>udp-port</td>
<td>(Optional) Configure the User Datagram Protocol (UDP) port number of the host to receive the traps. The range is 0 to 65535.</td>
</tr>
<tr>
<td>informs</td>
<td>(Optional) Send SNMP traps or informs to this host.</td>
</tr>
<tr>
<td>traps</td>
<td>(Optional) Version of the SNMP used to send the traps.</td>
</tr>
<tr>
<td>version 1</td>
<td>1—SNMPv1. This option is not available with informs.</td>
</tr>
<tr>
<td>2c</td>
<td>2c—SNMPv2C.</td>
</tr>
<tr>
<td>3</td>
<td>3—SNMPv3. These optional keywords can follow the Version 3 keyword:</td>
</tr>
<tr>
<td>auth</td>
<td>(Optional). Enables Message Digest 5 (MD5) and Secure Hash Algorithm (SHA) packet authentication.</td>
</tr>
<tr>
<td>noauth</td>
<td>(Default). The noAuthNoPriv security level. This is the default if the [auth</td>
</tr>
<tr>
<td>priv</td>
<td>(Optional). Enables Data Encryption Standard (DES) packet encryption (also called <code>privacy</code>).</td>
</tr>
<tr>
<td>vrf vrf-instance</td>
<td>(Optional) Virtual private network (VPN) routing instance and name for this host.</td>
</tr>
</tbody>
</table>

**Note**

The `priv` keyword is available only when the cryptographic (encrypted) software image is installed.
**community-string**  
Password-like community string sent with the notification operation. Though you can set this string by using the `snmp-server host` command, we recommend that you define this string by using the `snmp-server community` global configuration command before using the `snmp-server host` command.

**notification-type**  
(Optional) Type of notification to be sent to the host. If no type is specified, all notifications are sent. The notification type can be one or more of the these keywords:

- **bgp**—Send Border Gateway Protocol (BGP) state change traps. This keyword is available only when the IP services image is installed on the stack master.
- **bridge**—Send SNMP Spanning Tree Protocol (STP) bridge MIB traps.
- **cluster**—Send cluster member status traps.
- **config**—Send SNMP configuration traps.
- **copy-config**—Send SNMP copy configuration traps.
- **entity**—Send SNMP entity traps.
- **envmon**—Send environmental monitor traps.
- **flash**—Send SNMP FLASH notifications.
- **fru-ctrl**—Send entity FRU control traps. In the switch stack, this trap refers to the insertion or removal of a switch in the stack.
- **hsrp**—Send SNMP Hot Standby Router Protocol (HSRP) traps.
- **ipmulticast**—Send SNMP IP multicast routing traps.
- **mac-notification**—Send SNMP MAC notification traps.
- **msdp**—Send SNMP Multicast Source Discovery Protocol (MSDP) traps.
- **ospf**—Send Open Shortest Path First (OSPF) traps.
- **pim**—Send SNMP Protocol-Independent Multicast (PIM) traps.
- **port-security**—Send SNMP port-security traps.
- **rtr**—Send SNMP Response Time Reporter traps.
- **snmp**—Send SNMP-type traps.
- **storm-control**—Send SNMP storm-control traps.
- **stp**—Send SNMP STP extended MIB traps.
- **syslog**—Send SNMP syslog traps.
- **tty**—Send TCP connection traps.
- **udp-port**—Configure the User Datagram Protocol (UDP) port number of the host to receive the traps. The range is from 0 to 65535.
- **vlan-membership**—Send SNMP VLAN membership traps.
- **vlancreate**—Send SNMP VLAN-created traps.
- **vlandelete**—Send SNMP VLAN-deleted traps.
- **vtp**—Send SNMP VLAN Trunking Protocol (VTP) traps.
snmp-server host

Note

Though visible in the command-line help strings, the **cpu** keyword is not supported.

**Defaults**

This command is disabled by default. No notifications are sent.

If you enter this command with no keywords, the default is to send all trap types to the host. No informs are sent to this host.

If no **version** keyword is present, the default is Version 1.

If Version 3 is selected and no authentication keyword is entered, the default is the **noauth** (noAuthNoPriv) security level.

**Command Modes**

Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(14)EA1</td>
<td>The <strong>bgp, copy-config, flash, port-security, stpx, syslog, vlancreate, and vlandelete</strong> keywords were added.</td>
</tr>
<tr>
<td>12.2(18)SE</td>
<td>The <strong>ipmulticast, msdp, ospf, and pim</strong> keywords were added. The command syntax was changed.</td>
</tr>
<tr>
<td>12.2(25)SE</td>
<td>The <strong>storm-control</strong> and <strong>vrf vrf-instance</strong> keywords were added.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

SNMP notifications can be sent as traps or inform requests. Traps are unreliable because the receiver does not send acknowledgments when it receives traps. The sender cannot determine if the traps were received. However, an SNMP entity that receives an inform request acknowledges the message with an SNMP response PDU. If the sender never receives the response, the inform request can be sent again. Thus, informs are more likely to reach their intended destinations.

However, informs consume more resources in the agent and in the network. Unlike a trap, which is discarded as soon as it is sent, an inform request must be held in memory until a response is received or the request times out. Traps are also sent only once, but an inform might be retried several times. The retries increase traffic and contribute to a higher overhead on the network.

If you do not enter an **snmp-server host** command, no notifications are sent. To configure the switch to send SNMP notifications, you must enter at least one **snmp-server host** command. If you enter the command with no keywords, all trap types are enabled for the host. To enable multiple hosts, you must enter a separate **snmp-server host** command for each host. You can specify multiple notification types in the command for each host.

If a local user is not associated with a remote host, the switch does not send informs for the **auth** (authNoPriv) and the **priv** (authPriv) authentication levels.

When multiple **snmp-server host** commands are given for the same host and kind of notification (trap or inform), each succeeding command overwrites the previous command. Only the last **snmp-server host** command is in effect. For example, if you enter an **snmp-server host inform** command for a host and then enter another **snmp-server host inform** command for the same host, the second command replaces the first.
The `snmp-server host` command is used with the `snmp-server enable traps` global configuration command. Use the `snmp-server enable traps` command to specify which SNMP notifications are sent globally. For a host to receive most notifications, at least one `snmp-server enable traps` command and the `snmp-server host` command for that host must be enabled. Some notification types cannot be controlled with the `snmp-server enable traps` command. For example, some notification types are always enabled. Other notification types are enabled by a different command.

The `no snmp-server host` command with no keywords disables traps, but not informs, to the host. To disable informs, use the `no snmp-server host informs` command.

### Examples

This example shows how to configure a unique SNMP community string named `comaccess` for traps and prevent SNMP polling access with this string through access-list 10:

```
Switch(config)# snmp-server community comaccess ro 10
Switch(config)# snmp-server host 172.20.2.160 comaccess
Switch(config)# access-list 10 deny any
```

This example shows how to send the SNMP traps to the host specified by the name `myhost.cisco.com`. The community string is defined as `comaccess`:

```
Switch(config)# snmp-server enable traps
Switch(config)# snmp-server host myhost.cisco.com comaccess snmp
```

This example shows how to enable the switch to send all traps to the host `myhost.cisco.com` by using the community string `public`:

```
Switch(config)# snmp-server enable traps
Switch(config)# snmp-server host myhost.cisco.com public
```

You can verify your settings by entering the `show running-config` privileged EXEC command.

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>snmp-server enable traps</code></td>
<td>Enables SNMP notification for various trap types or inform requests.</td>
</tr>
</tbody>
</table>
**snmp trap mac-notification**

Use the `snmp trap mac-notification` interface configuration command on the switch stack or on a standalone switch to enable the Simple Network Management Protocol (SNMP) MAC address notification trap on a specific Layer 2 interface. Use the `no` form of this command to return to the default setting.

```
snmp trap mac-notification { added | removed }
no snmp trap mac-notification { added | removed }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>added</code></td>
<td>Enable the MAC notification trap whenever a MAC address is added on this interface.</td>
</tr>
<tr>
<td><code>removed</code></td>
<td>Enable the MAC notification trap whenever a MAC address is removed from this interface.</td>
</tr>
</tbody>
</table>

**Defaults**

By default, the traps for both address addition and address removal are disabled.

**Command Modes**

Interface configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Even though you enable the notification trap for a specific interface by using the `snmp trap mac-notification` command, the trap is generated only when you enable the `snmp-server enable traps mac-notification` and the `mac address-table notification` global configuration commands.

**Examples**

This example shows how to enable the MAC notification trap when a MAC address is added to a port:

```
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# snmp trap mac-notification added
```

You can verify your settings by entering the `show mac address-table notification interface` privileged EXEC command.
<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>clear mac address-table notification</td>
<td>Clears the MAC address notification global counters.</td>
</tr>
<tr>
<td></td>
<td>mac address-table notification</td>
<td>Enables the MAC address notification feature.</td>
</tr>
<tr>
<td></td>
<td>show mac address-table notification</td>
<td>Displays the MAC address notification settings for all interfaces or on the specified interface when the interface keyword is appended.</td>
</tr>
<tr>
<td></td>
<td>snmp-server enable traps</td>
<td>Sends the SNMP MAC notification traps when the mac-notification keyword is appended.</td>
</tr>
</tbody>
</table>
spanning-tree backbonefast

Use the spanning-tree backbonefast global configuration command on the switch stack or on a standalone switch to enable the BackboneFast feature. Use the no form of the command to return to the default setting.

```
spanning-tree backbonefast
no spanning-tree backbonefast
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

BackboneFast is disabled.

**Command Modes**

Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You can configure the BackboneFast feature for rapid PVST+ or for multiple spanning-tree (MST) mode, but the feature remains disabled (inactive) until you change the spanning-tree mode to PVST+.

BackboneFast starts when a root port or blocked port on a switch receives inferior BPDUs from its designated switch. An inferior BPDU identifies a switch that declares itself as both the root bridge and the designated switch. When a switch receives an inferior BPDU, it means that a link to which the switch is not directly connected (an indirect link) has failed (that is, the designated switch has lost its connection to the root switch). If there are alternate paths to the root switch, BackboneFast causes the maximum aging time on the interfaces on which it received the inferior BPDU to expire and allows a blocked port to move immediately to the listening state. BackboneFast then transitions the interface to the forwarding state. For more information, see the software configuration guide for this release.

Enable BackboneFast on all supported switches to allow the detection of indirect link failures and to start the spanning-tree reconfiguration sooner.

**Examples**

This example shows how to enable BackboneFast on the switch:

```
Switch(config)# spanning-tree backbonefast
```

You can verify your setting by entering the `show spanning-tree summary` privileged EXEC command.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show spanning-tree summary</code></td>
<td>Displays a summary of the spanning-tree interface states.</td>
</tr>
</tbody>
</table>
spanning-tree bpdufilter

Use the `spanning-tree bpdufilter` interface configuration command on the switch stack or on a standalone switch to prevent an interface from sending or receiving bridge protocol data units (BPDUs). Use the `no` form of this command to return to the default setting.

```
spanning-tree bpdufilter {disable | enable}
no spanning-tree bpdufilter
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>disable</th>
<th>Disable BPDU filtering on the specified interface.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>enable</td>
<td>Enable BPDU filtering on the specified interface.</td>
</tr>
</tbody>
</table>

**Defaults**

BPDU filtering is disabled.

**Command Modes**

Interface configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You can enable the BPDU filtering feature when the switch is operating in the per-VLAN spanning-tree plus (PVST+), rapid-PVST+, or the multiple spanning-tree (MST) mode.

⚠️ **Caution**

Enabling BPDU filtering on an interface is the same as disabling spanning tree on it and can result in spanning-tree loops.

You can globally enable BPDU filtering on all Port Fast-enabled interfaces by using the `spanning-tree portfast bpdufilter default` global configuration command.

You can use the `spanning-tree bpdufilter` interface configuration command to override the setting of the `spanning-tree portfast bpdufilter default` global configuration command.

**Examples**

This example shows how to enable the BPDU filtering feature on a port:

```
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# spanning-tree bpdufilter enable
```

You can verify your setting by entering the `show running-config` privileged EXEC command.
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>spanning-tree bpdufilter</code></td>
<td></td>
</tr>
<tr>
<td><strong>Related Commands</strong></td>
<td></td>
</tr>
<tr>
<td><code>show running-config</code></td>
<td>Displays the current operating configuration. For syntax information, select <em>Cisco IOS Configuration Fundamentals Command Reference, Release 12.2 &gt; File Management Commands &gt; Configuration File Management Commands</em>.</td>
</tr>
<tr>
<td><code>spanning-tree portfast (global configuration)</code></td>
<td>Globally enables the BPDU filtering or the BPDU guard feature on Port Fast-enabled interface or enables the Port Fast feature on all nontrunking interfaces.</td>
</tr>
<tr>
<td><code>spanning-tree portfast (interface configuration)</code></td>
<td>Enables the Port Fast feature on an interface and all its associated VLANs.</td>
</tr>
</tbody>
</table>
spanning-tree bpduguard

Use the `spanning-tree bpduguard` interface configuration command on the switch stack or on a standalone switch to put an interface in the error-disabled state when it receives a bridge protocol data unit (BPDU). Use the `no` form of this command to return to the default setting.

```
spanning-tree bpduguard {disable | enable}
```

```
no spanning-tree bpduguard
```

**Syntax Description**

- **disable**: Disable BPDU guard on the specified interface.
- **enable**: Enable BPDU guard on the specified interface.

**Defaults**

BPDU guard is disabled.

**Command Modes**

Interface configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The BPDU guard feature provides a secure response to invalid configurations because you must manually put the interface back in service. Use the BPDU guard feature in a service-provider network to prevent an interface from being included in the spanning-tree topology.

You can enable the BPDU guard feature when the switch is operating in the per-VLAN spanning-tree plus (PVST+), rapid-PVST+, or the multiple spanning-tree (MST) mode.

You can globally enable BPDU guard on all Port Fast-enabled interfaces by using the `spanning-tree portfast bpduguard default` global configuration command.

You can use the `spanning-tree bpduguard` interface configuration command to override the setting of the `spanning-tree portfast bpduguard default` global configuration command.

**Examples**

This example shows how to enable the BPDU guard feature on a port:

```
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# spanning-tree bpduguard enable
```

You can verify your setting by entering the `show running-config` privileged EXEC command.
<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><strong>show running-config</strong></td>
<td>Displays the current operating configuration. For syntax information, select <em>Cisco IOS Configuration Fundamentals Command Reference, Release 12.2 &gt; File Management Commands &gt; Configuration File Management Commands</em>.</td>
</tr>
<tr>
<td></td>
<td><strong>spanning-tree portfast (global configuration)</strong></td>
<td>Globally enables the BPDU filtering or the BPDU guard feature on Port Fast-enabled interfaces or enables the Port Fast feature on all nontrunking interfaces.</td>
</tr>
<tr>
<td></td>
<td><strong>spanning-tree portfast (interface configuration)</strong></td>
<td>Enables the Port Fast feature on an interface and all its associated VLANs.</td>
</tr>
</tbody>
</table>
spanning-tree cost

Use the `spanning-tree cost` interface configuration command on the switch stack or on a standalone switch to set the path cost for spanning-tree calculations. If a loop occurs, spanning tree considers the path cost when selecting an interface to place in the forwarding state. Use the `no` form of this command to return to the default setting.

```plaintext
spanning-tree [vlan vlan-id] cost cost

no spanning-tree [vlan vlan-id] cost
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>vlan vlan-id</code></td>
<td>(Optional) VLAN range associated with a spanning-tree instance. You can specify a single VLAN identified by VLAN ID number, a range of VLANs separated by a hyphen, or a series of VLANs separated by a comma. The range is 1 to 4094.</td>
</tr>
<tr>
<td><code>cost</code></td>
<td>Path cost. The range is 1 to 200000000, with higher values meaning higher costs.</td>
</tr>
</tbody>
</table>

**Defaults**

The default path cost is computed from the interface bandwidth setting. These are the IEEE default path cost values:

- 1000 Mbps—4
- 100 Mbps—19
- 10 Mbps—100

**Command Modes**

Interface configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(14)EA1</td>
<td>The value for the <code>vlan-id</code> variable was changed.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

When you configure the cost, higher values represent higher costs.

If you configure an interface with both the `spanning-tree vlan vlan-id cost cost` command and the `spanning-tree cost` `cost` command, the `spanning-tree vlan vlan-id cost cost` command takes effect.

**Examples**

This example shows how to set the path cost to 250 on a port:

```
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# spanning-tree cost 250
```

This example shows how to set a path cost to 300 for VLANs 10, 12 to 15, and 20:

```
Switch(config-if)# spanning-tree vlan 10,12-15,20 cost 300
```

You can verify your settings by entering the `show spanning-tree interface interface-id` privileged EXEC command.
### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show spanning-tree interface interface-id</code></td>
<td>Displays spanning-tree information for the specified interface.</td>
</tr>
<tr>
<td><code>spanning-tree port-priority</code></td>
<td>Configures an interface priority.</td>
</tr>
<tr>
<td><code>spanning-tree vlan priority</code></td>
<td>Sets the switch priority for the specified spanning-tree instance.</td>
</tr>
</tbody>
</table>
spanning-tree etherchannel guard misconfig

Use the `spanning-tree etherchannel guard misconfig` global configuration command to display an error message when the switch detects an EtherChannel misconfiguration. Use the `no` form of this command to disable the feature.

```
spanning-tree etherchannel guard misconfig
no spanning-tree etherchannel guard misconfig
```

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
EtherChannel guard is enabled on the switch.

**Command Modes**
Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2.1(14)EA1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
When the switch detects an EtherChannel misconfiguration, this error message appears:

```
PM-4-ERR_DISABLE: Channel-misconfig error detected on [chars], putting [chars] in err-disable state.
```

To show switch ports that are in the misconfigured EtherChannel, use the `show interfaces status err-disabled` privileged EXEC command. To verify the EtherChannel configuration on a remote device, use the `show etherchannel summary` privileged EXEC command on the remote device.

When a port is in the error-disabled state because of an EtherChannel misconfiguration, you can bring it out of this state by entering the `errdisable recovery cause channel-misconfig` global configuration command, or you can manually re-enable it by entering the `shutdown` and `no shut down` interface configuration commands.

**Examples**
This example shows how to enable the EtherChannel guard misconfiguration feature:

```
Switch(config)# spanning-tree etherchannel guard misconfig
```

You can verify your settings by entering the `show spanning-tree summary` privileged EXEC command.
### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>errdisable recovery cause channel-misconfig</code></td>
<td>Enables the timer to recover from the EtherChannel misconfiguration error-disabled state.</td>
</tr>
<tr>
<td><code>show etherchannel summary</code></td>
<td>Displays EtherChannel information for a channel as a one-line summary per channel-group.</td>
</tr>
<tr>
<td><code>show interfaces status err-disabled</code></td>
<td>Displays the interfaces in the error-disabled state.</td>
</tr>
</tbody>
</table>
spanning-tree extend system-id

Use the `spanning-tree extend system-id` global configuration command on the switch stack or on a standalone switch to enable the extended system ID feature.

```
spanning-tree extend system-id
```

**Note**

Though visible in the command-line help strings, the `no` version of this command is not supported. You cannot disable the extended system ID feature.

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

The extended system ID is enabled.

**Command Modes**

Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The switch supports the IEEE 802.1t spanning-tree extensions. Some of the bits previously used for the switch priority are now used for the extended system ID (VLAN identifier for the per-VLAN spanning-tree plus [PVST+] and rapid PVST+ or as an instance identifier for the multiple spanning tree [MST]).

The spanning tree uses the extended system ID, the switch priority, and the allocated spanning-tree MAC address to make the bridge ID unique for each VLAN or multiple spanning-tree instance. Because the Catalyst 3750 switch stack appears as a single switch to the rest of the network, all switches in the stack use the same bridge ID for a given spanning tree. If the stack master fails, the stack members recalculate their bridge IDs of all running spanning trees based on the new MAC address of the stack master.

Support for the extended system ID affects how you manually configure the root switch, the secondary root switch, and the switch priority of a VLAN. For more information, see the “spanning-tree mst root” and the “spanning-tree vlan” sections.

If your network consists of switches that do not support the extended system ID and switches that do support it, it is unlikely that the switch with the extended system ID support will become the root switch. The extended system ID increases the switch priority value every time the VLAN number is greater than the priority of the connected switches.
### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show spanning-tree summary</code></td>
<td>Displays a summary of spanning-tree interface states.</td>
</tr>
<tr>
<td><code>spanning-tree mst root</code></td>
<td>Configures the MST root switch priority and timers based on the network diameter.</td>
</tr>
<tr>
<td><code>spanning-tree vlan priority</code></td>
<td>Sets the switch priority for the specified spanning-tree instance.</td>
</tr>
</tbody>
</table>
spanning-tree guard

Use the `spanning-tree guard` interface configuration command on the switch stack or on a standalone switch to enable root guard or loop guard on all the VLANs associated with the selected interface. Root guard restricts which interface is allowed to be the spanning-tree root port or the path-to-the root for the switch. Loop guard prevents alternate or root ports from becoming designated ports when a failure creates a unidirectional link. Use the `no` form of this command to return to the default setting.

```
spanning-tree guard {loop | none | root}
```

```
no spanning-tree guard
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>loop</td>
<td>Enable loop guard.</td>
</tr>
<tr>
<td>none</td>
<td>Disable root guard or loop guard.</td>
</tr>
<tr>
<td>root</td>
<td>Enable root guard.</td>
</tr>
</tbody>
</table>

**Defaults**

Root guard is disabled.

Loop guard is configured according to the `spanning-tree loopguard default` global configuration command (globally disabled).

**Command Modes**

Interface configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You can enable root guard or loop guard when the switch is operating in the per-VLAN spanning-tree plus (PVST+), rapid-PVST+, or the multiple spanning-tree (MST) mode.

When root guard is enabled, if spanning-tree calculations cause an interface to be selected as the root port, the interface transitions to the root-inconsistent (blocked) state to prevent the customer’s switch from becoming the root switch or being in the path to the root. The root port provides the best path from the switch to the root switch.

When the `no spanning-tree guard` or the `no spanning-tree guard none` command is entered, root guard is disabled for all VLANs on the selected interface. If this interface is in the root-inconsistent (blocked) state, it automatically transitions to the listening state.

Do not enable root guard on interfaces that will be used by the UplinkFast feature. With UplinkFast, the backup interfaces (in the blocked state) replace the root port in the case of a failure. However, if root guard is also enabled, all the backup interfaces used by the UplinkFast feature are placed in the root-inconsistent state (blocked) and prevented from reaching the forwarding state. The UplinkFast feature is not available when the switch is operating in the rapid-PVST+ or MST mode.
Loop guard is most effective when it is configured on the entire switched network. When the switch is operating in PVST+ or rapid-PVST+ mode, loop guard prevents alternate and root ports from becoming designated ports, and spanning tree does not send bridge protocol data units (BPDUs) on root or alternate ports. When the switch is operating in MST mode, BPDUs are not sent on nonboundary interfaces if the interface is blocked by loop guard in all MST instances. On a boundary interface, loop guard blocks the interface in all MST instances.

To disable root guard or loop guard, use the `spanning-tree guard none` interface configuration command. You cannot enable both root guard and loop guard at the same time.

You can override the setting of the `spanning-tree loopguard default` global configuration command by using the `spanning-tree guard loop` interface configuration command.

**Examples**

This example shows how to enable root guard on all the VLANs associated with the specified port:

```plaintext
Switch(config)# interface gigabitethernet2/0/2
Switch(config-if)# spanning-tree guard root
```

This example shows how to enable loop guard on all the VLANs associated with the specified port:

```plaintext
Switch(config)# interface gigabitethernet2/0/2
Switch(config-if)# spanning-tree guard loop
```

You can verify your settings by entering the `show running-config` privileged EXEC command.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show running-config</code></td>
<td>Displays the current operating configuration. For syntax information, select Cisco IOS Configuration Fundamentals Command Reference, Release 12.2 &gt; File Management Commands &gt; Configuration File Management Commands.</td>
</tr>
<tr>
<td><code>spanning-tree cost</code></td>
<td>Sets the path cost for spanning-tree calculations.</td>
</tr>
<tr>
<td><code>spanning-tree loopguard default</code></td>
<td>Prevents alternate or root ports from becoming designated ports because of a failure that leads to a unidirectional link.</td>
</tr>
<tr>
<td><code>spanning-tree mst cost</code></td>
<td>Configures the path cost for MST calculations.</td>
</tr>
<tr>
<td><code>spanning-tree mst port-priority</code></td>
<td>Configures an interface priority.</td>
</tr>
<tr>
<td><code>spanning-tree mst root</code></td>
<td>Configures the MST root switch priority and timers based on the network diameter.</td>
</tr>
<tr>
<td><code>spanning-tree port-priority</code></td>
<td>Configures an interface priority.</td>
</tr>
<tr>
<td><code>spanning-tree vlan priority</code></td>
<td>Sets the switch priority for the specified spanning-tree instance.</td>
</tr>
</tbody>
</table>
spanning-tree link-type

Use the `spanning-tree link-type` interface configuration command on the switch stack or on a standalone switch to override the default link-type setting, which is determined by the duplex mode of the interface, and to enable rapid spanning-tree transitions to the forwarding state. Use the `no` form of this command to return to the default setting.

```
spanning-tree link-type { point-to-point | shared }

no spanning-tree link-type
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>point-to-point</td>
<td>Specify that the link type of an interface is point-to-point.</td>
</tr>
<tr>
<td>shared</td>
<td>Specify that the link type of an interface is shared.</td>
</tr>
</tbody>
</table>

**Defaults**

The switch derives the link type of an interface from the duplex mode. A full-duplex interface is considered a point-to-point link, and a half-duplex interface is considered a shared link.

**Command Modes**

Interface configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(14)EA1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You can override the default setting of the link type by using the `spanning-tree link-type` command. For example, a half-duplex link can be physically connected point-to-point to a single interface on a remote switch running the Multiple Spanning Tree Protocol (MSTP) or the rapid per-VLAN spanning-tree plus (rapid-PVST+) protocol and be enabled for rapid transitions.

**Examples**

This example shows how to specify the link type as shared (regardless of the duplex setting) and to prevent rapid transitions to the forwarding state:

```
Switch(config-if)# spanning-tree link-type shared
```

You can verify your setting by entering the `show spanning-tree mst interface interface-id` or the `show spanning-tree interface interface-id` privileged EXEC command.
<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear spanning-tree detected-protocols</td>
<td>Restarts the protocol migration process (force the renegotiation with neighboring switches) on all interfaces or on the specified interface.</td>
<td></td>
</tr>
<tr>
<td>show spanning-tree interface interface-id</td>
<td>Displays spanning-tree state information for the specified interface.</td>
<td></td>
</tr>
<tr>
<td>show spanning-tree mst interface interface-id</td>
<td>Displays MST information for the specified interface.</td>
<td></td>
</tr>
</tbody>
</table>
spanning-tree loopguard default

Use the `spanning-tree loopguard default` global configuration command on the switch stack or on a standalone switch to prevent alternate or root ports from becoming designated ports because of a failure that leads to a unidirectional link. Use the `no` form of this command to return to the default setting.

```
spanning-tree loopguard default
no spanning-tree loopguard default
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

Loop guard is disabled.

**Command Modes**

Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You can enable the loop guard feature when the switch is operating in the per-VLAN spanning-tree plus (PVST+), rapid-PVST+, or the multiple spanning-tree (MST) mode.

Loop guard is most effective when it is configured on the entire switched network. When the switch is operating in PVST+ or rapid-PVST+ mode, loop guard prevents alternate and root ports from becoming designated ports, and spanning tree does not send bridge protocol data units (BPDUs) on root or alternate ports. When the switch is operating in MST mode, BPDUs are not sent on nonboundary interfaces if the interface is blocked by loop guard in all MST instances. On a boundary interface, loop guard blocks the interface in all MST instances.

Loop guard operates only on interfaces that the spanning tree identifies as point-to-point.

You can override the setting of the `spanning-tree loopguard default` global configuration command by using the `spanning-tree guard loop` interface configuration command.

**Examples**

This example shows how to globally enable loop guard:

```
Switch(config)# spanning-tree loopguard default
```

You can verify your settings by entering the `show running-config` privileged EXEC command.
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show running-config</code></td>
<td>Displays the current operating configuration. For syntax information, select <a href="#">Cisco IOS Configuration Fundamentals Command Reference, Release 12.2 &gt; File Management Commands &gt; Configuration File Management Commands</a>.</td>
</tr>
<tr>
<td><code>spanning-tree guard loop</code></td>
<td>Enables the loop guard feature on all the VLANs associated with the specified interface.</td>
</tr>
</tbody>
</table>
spanning-tree mode

Use the `spanning-tree mode` global configuration command on the switch stack or on a standalone switch to enable per-VLAN spanning-tree plus (PVST+), rapid PVST+, or multiple spanning tree (MST) on your switch. Use the `no` form of this command to return to the default setting.

```
spanning-tree mode {mst | pvst | rapid-pvst}

no spanning-tree mode
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>mst</th>
<th>pvst</th>
<th>rapid-pvst</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable MST and Rapid Spanning Tree Protocol (RSTP) (based on IEEE 802.1s and IEEE 802.1w).</td>
<td>Enable PVST+ (based on IEEE 802.1D).</td>
<td>Enable rapid PVST+ (based on IEEE 802.1w).</td>
<td></td>
</tr>
</tbody>
</table>

**Defaults**
The default mode is PVST+.

**Command Modes**
Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(14)EA1</td>
<td>The <code>mst</code> and <code>rapid-pvst</code> keywords were added.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
The switch supports PVST+, rapid PVST+, and MSTP, but only one version can be active at any time: All VLANs run PVST+, all VLANs run rapid PVST+, or all VLANs run MSTP. All stack members run the same version of spanning-tree.

When you enable the MST mode, RSTP is automatically enabled.

**Caution**
Changing spanning-tree modes can disrupt traffic because all spanning-tree instances are stopped for the previous mode and restarted in the new mode.

**Examples**
This example shows to enable MST and RSTP on the switch:

```
Switch(config)# spanning-tree mode mst
```

This example shows to enable rapid PVST+ on the switch:

```
Switch(config)# spanning-tree mode rapid-pvst
```

You can verify your setting by entering the `show running-config` privileged EXEC command.
<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>show running-config</td>
<td>Displays the current operating configuration. For syntax information, select Cisco IOS Configuration Fundamentals Command Reference, Release 12.2 &gt; File Management Commands &gt; Configuration File Management Commands.</td>
</tr>
</tbody>
</table>
spanning-tree mst configuration

Use the `spanning-tree mst configuration` global configuration command on the switch stack or on a standalone switch to enter multiple spanning-tree (MST) configuration mode through which you configure the MST region. Use the `no` form of this command to return to the default settings.

```
spanning-tree mst configuration
no spanning-tree mst configuration
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

The default mapping is that all VLANs are mapped to the common and internal spanning-tree (CIST) instance (instance 0).

The default name is an empty string.

The revision number is 0.

**Command Modes**

Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(14)EA1</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(25)SEC</td>
<td>The <code>instance-id</code> range changed to 1 to 4094.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `spanning-tree mst configuration` command enables the MST configuration mode. These configuration commands are available:

- **abort**: exits the MST region configuration mode without applying configuration changes.
- **exit**: exits the MST region configuration mode and applies all configuration changes.
- **instance instance-id vlan vlan-range**: maps VLANs to an MST instance. The range for the `instance-id` is 1 to 4094. The range for `vlan-range` is 1 to 4094. You can specify a single VLAN identified by VLAN ID number, a range of VLANs separated by a hyphen, or a series of VLANs separated by a comma.
- **name name**: sets the configuration name. The `name` string has a maximum length of 32 characters and is case sensitive.
- **no**: negates the `instance`, `name`, and `revision` commands or sets them to their defaults.
- **private-vlan**: Though visible in the command-line help strings, this command is not supported.
- **revision version**: sets the configuration revision number. The range is 0 to 65535.
- **show [current | pending]**: displays the current or pending MST region configuration.

In MST mode, the switch stack supports up to 65 MST instances. The number of VLANs that can be mapped to a particular MST instance is unlimited.
When you map VLANs to an MST instance, the mapping is incremental, and VLANs specified in the command are added to or removed from the VLANs that were previously mapped. To specify a range, use a hyphen; for example, `instance 1 vlan 1-63` maps VLANs 1 to 63 to MST instance 1. To specify a series, use a comma; for example, `instance 1 vlan 10, 20, 30` maps VLANs 10, 20, and 30 to MST instance 1.

All VLANs that are not explicitly mapped to an MST instance are mapped to the common and internal spanning tree (CIST) instance (instance 0) and cannot be unmapped from the CIST by using the `no` form of the command.

For two or more switches to be in the same MST region, they must have the same VLAN mapping, the same configuration revision number, and the same name.

### Examples

This example shows how to enter MST configuration mode, map VLANs 10 to 20 to MST instance 1, name the region `region1`, set the configuration revision to 1, display the pending configuration, apply the changes, and return to global configuration mode:

```
Switch# spanning-tree mst configuration
Switch(config-mst)# instance 1 vlan 10-20
Switch(config-mst)# name region1
Switch(config-mst)# revision 1
Switch(config-mst)# show pending
Pending MST configuration
Name [region1]
Revision 1
Instance Vlans Mapped
-------- ---------------------
0 1-9,21-4094
1 10-20

```

Switch(config-mst)# exit
Switch(config)#

This example shows how to add VLANs 1 to 100 to the ones already mapped (if any) to instance 2, to move VLANs 40 to 60 that were previously mapped to instance 2 to the CIST instance, to add VLAN 10 to instance 10, and to remove all the VLANs mapped to instance 2 and map them to the CIST instance:

```
Switch(config-mst)# instance 2 vlan 1-100
Switch(config-mst)# no instance 2 vlan 40-60
Switch(config-mst)# instance 10 vlan 10
Switch(config-mst)# no instance 2
```

You can verify your settings by entering the `show pending` MST configuration command.

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show spanning-tree mst configuration</code></td>
<td>Displays the MST region configuration.</td>
</tr>
</tbody>
</table>


spanning-tree mst cost

Use the spanning-tree mst cost interface configuration command on the switch stack or on a standalone switch to set the path cost for multiple spanning-tree (MST) calculations. If a loop occurs, spanning tree considers the path cost when selecting an interface to put in the forwarding state. Use the no form of this command to return to the default setting.

`spanning-tree mst instance-id cost cost`

`no spanning-tree mst instance-id cost`

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>instance-id</td>
<td>Range of spanning-tree instances. You can specify a single instance, a range of instances separated by a hyphen, or a series of instances separated by a comma. The range is 0 to 4094.</td>
</tr>
<tr>
<td>cost</td>
<td>Path cost is 1 to 200000000, with higher values meaning higher costs.</td>
</tr>
</tbody>
</table>

**Defaults**

The default path cost is computed from the interface bandwidth setting. These are the IEEE default path cost values:

- 1000 Mbps—20000
- 100 Mbps—200000
- 10 Mbps—2000000

**Command Modes**

Interface configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(14)EA1</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(25)SEC</td>
<td>The instance-id range changed to 1 to 4094.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

When you configure the cost, higher values represent higher costs.

**Examples**

This example shows how to set a path cost of 250 on a port associated with instances 2 and 4:

```
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# spanning-tree mst 2,4 cost 250
```

You can verify your settings by entering the `show spanning-tree mst interface interface-id` privileged EXEC command.
<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>show spanning-tree mst interface interface-id</code></td>
<td>Displays MST information for the specified interface.</td>
</tr>
<tr>
<td></td>
<td><code>spanning-tree mst port-priority</code></td>
<td>Configures an interface priority.</td>
</tr>
<tr>
<td></td>
<td><code>spanning-tree mst priority</code></td>
<td>Configures the switch priority for the specified spanning-tree instance.</td>
</tr>
</tbody>
</table>
spanning-tree mst forward-time

Use the `spanning-tree mst forward-time` global configuration command on the switch stack or on a standalone switch to set the forward-delay time for all multiple spanning-tree (MST) instances. The forwarding time specifies how long each of the listening and learning states last before the interface begins forwarding. Use the `no` form of this command to return to the default setting.

```
spanning-tree mst forward-time seconds

no spanning-tree mst forward-time
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>seconds</code></td>
<td>Length of the listening and learning states. The range is 4 to 30 seconds.</td>
</tr>
</tbody>
</table>

### Defaults

The default is 15 seconds.

### Command Modes

Global configuration

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(14)EA1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

Changing the `spanning-tree mst forward-time` command affects all spanning-tree instances.

### Examples

This example shows how to set the spanning-tree forwarding time to 18 seconds for all MST instances:

```
Switch(config)# spanning-tree mst forward-time 18
```

You can verify your setting by entering the `show spanning-tree mst` privileged EXEC command.

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show spanning-tree mst</code></td>
<td>Displays MST information.</td>
</tr>
<tr>
<td><code>spanning-tree mst hello-time</code></td>
<td>Sets the interval between hello bridge protocol data units (BPDUs) sent by root switch configuration messages.</td>
</tr>
<tr>
<td><code>spanning-tree mst max-age</code></td>
<td>Sets the interval between messages that the spanning tree receives from the root switch.</td>
</tr>
<tr>
<td><code>spanning-tree mst max-hops</code></td>
<td>Sets the number of hops in a region before the BPU is discarded.</td>
</tr>
</tbody>
</table>
spanning-tree mst hello-time

Use the spanning-tree mst hello-time global configuration command on the switch stack or on a standalone switch to set the interval between hello bridge protocol data units (BPDUs) sent by root switch configuration messages. Use the no form of this command to return to the default setting.

spanning-tree mst hello-time seconds

no spanning-tree mst hello-time

**Syntax Description**

| seconds | Interval between hello BPDUs sent by root switch configuration messages. The range is 1 to 10 seconds. |

**Defaults**

The default is 2 seconds.

**Command Modes**

Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(14)EA1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

After you set the spanning-tree mst max-age seconds global configuration command, if a switch does not receive BPDUs from the root switch within the specified interval, the switch recomputes the spanning-tree topology. The max-age setting must be greater than the hello-time setting.

Changing the spanning-tree mst hello-time command affects all spanning-tree instances.

**Examples**

This example shows how to set the spanning-tree hello time to 3 seconds for all multiple spanning-tree (MST) instances:

Switch(config)# spanning-tree mst hello-time 3

You can verify your setting by entering the show spanning-tree mst privileged EXEC command.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show spanning-tree mst</td>
<td>Displays MST information.</td>
</tr>
<tr>
<td>spanning-tree mst forward-time</td>
<td>Sets the forward-delay time for all MST instances.</td>
</tr>
<tr>
<td>spanning-tree mst max-age</td>
<td>Sets the interval between messages that the spanning tree receives from the root switch.</td>
</tr>
<tr>
<td>spanning-tree mst max-hops</td>
<td>Sets the number of hops in a region before the BPDU is discarded.</td>
</tr>
</tbody>
</table>
spanning-tree mst max-age

Use the `spanning-tree mst max-age` global configuration command on the switch stack or on a standalone switch to set the interval between messages that the spanning tree receives from the root switch. If a switch does not receive a bridge protocol data unit (BPDU) message from the root switch within this interval, it recomputes the spanning-tree topology. Use the `no` form of this command to return to the default setting.

```
spanning-tree mst max-age seconds
no spanning-tree mst max-age
```

**Syntax Description**

<table>
<thead>
<tr>
<th>seconds</th>
<th>Interval between messages the spanning tree receives from the root switch. The range is 6 to 40 seconds.</th>
</tr>
</thead>
</table>

**Defaults**

The default is 20 seconds.

**Command Modes**

Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(14)EA1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

After you set the `spanning-tree mst max-age seconds` global configuration command, if a switch does not receive BPDUs from the root switch within the specified interval, the switch recomputes the spanning-tree topology. The `max-age` setting must be greater than the `hello-time` setting.

Changing the `spanning-tree mst max-age` command affects all spanning-tree instances.

**Examples**

This example shows how to set the spanning-tree max-age to 30 seconds for all multiple spanning-tree (MST) instances:

```
Switch(config)# spanning-tree mst max-age 30
```

You can verify your setting by entering the `show spanning-tree mst` privileged EXEC command.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show spanning-tree mst</td>
<td>Displays MST information.</td>
</tr>
<tr>
<td>spanning-tree mst forward-time</td>
<td>Sets the forward-delay time for all MST instances.</td>
</tr>
<tr>
<td>spanning-tree mst hello-time</td>
<td>Sets the interval between hello BPDUs sent by root switch configuration messages.</td>
</tr>
<tr>
<td>spanning-tree mst max-hops</td>
<td>Sets the number of hops in a region before the BPDU is discarded.</td>
</tr>
</tbody>
</table>
**spanning-tree mst max-hops**

Use the `spanning-tree mst max-hops` global configuration command on the switch stack or on a standalone switch to set the number of hops in a region before the bridge protocol data unit (BPDU) is discarded and the information held for an interface is aged. Use the no form of this command to return to the default setting.

```
spanning-tree mst max-hops hop-count

no spanning-tree mst max-hops
```

**Syntax Description**

- `hop-count` Number of hops in a region before the BPDU is discarded. The range is 1 to 255 hops.

**Defaults**

The default is 20 hops.

**Command Modes**

Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(14)EA1</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(25)SEC</td>
<td>The <code>hop-count</code> range changed to 1 to 255.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The root switch of the instance always sends a BPDU (or M-record) with a cost of 0 and the hop count set to the maximum value. When a switch receives this BPDU, it decrements the received remaining hop count by one and propagates the decremented count as the remaining hop count in the generated M-records. A switch discards the BPDU and ages the information held for the interface when the count reaches 0.

Changing the `spanning-tree mst max-hops` command affects all spanning-tree instances.

**Examples**

This example shows how to set the spanning-tree max-hops to 10 for all multiple spanning-tree (MST) instances:

```
Switch(config)# spanning-tree mst max-hops 10
```

You can verify your setting by entering the `show spanning-tree mst` privileged EXEC command.
### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show spanning-tree mst</code></td>
<td>Displays MST information.</td>
</tr>
<tr>
<td><code>spanning-tree mst forward-time</code></td>
<td>Sets the forward-delay time for all MST instances.</td>
</tr>
<tr>
<td><code>spanning-tree mst hello-time</code></td>
<td>Sets the interval between hello BPDUs sent by root switch configuration messages.</td>
</tr>
<tr>
<td><code>spanning-tree mst max-age</code></td>
<td>Sets the interval between messages that the spanning tree receives from the root switch.</td>
</tr>
</tbody>
</table>
spanning-tree mst port-priority

Use the `spanning-tree mst port-priority` interface configuration command on the switch stack or on a standalone switch to configure an interface priority. If a loop occurs, the Multiple Spanning Tree Protocol (MSTP) can find the interface to put in the forwarding state. Use the `no` form of this command to return to the default setting.

```
spanning-tree mst instance-id port-priority priority
no spanning-tree mst instance-id port-priority
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>instance-id</td>
<td>Range of spanning-tree instances. You can specify a single instance, a range of instances separated by a hyphen, or a series of instances separated by a comma. The range is 0 to 4094.</td>
</tr>
<tr>
<td>priority</td>
<td>The range is 0 to 240 in increments of 16. Valid priority values are 0, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, and 240. All other values are rejected. The lower the number, the higher the priority.</td>
</tr>
</tbody>
</table>

**Defaults**

The default is 128.

**Command Modes**

Interface configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(14)EA1</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(25)SEC</td>
<td>The <code>instance-id</code> range changed to 1 to 4094.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You can assign higher priority values (lower numerical values) to interfaces that you want selected first and lower priority values (higher numerical values) that you want selected last. If all interfaces have the same priority value, the multiple spanning tree (MST) puts the interface with the lowest interface number in the forwarding state and blocks other interfaces.

If your switch is a member of a switch stack, you must use the `spanning-tree mst [instance-id] cost cost` interface configuration command instead of the `spanning-tree mst [instance vlan-id] port-priority priority` interface configuration command to select an interface to put in the forwarding state. Assign lower cost values to interfaces that you want selected first and higher cost values to interfaces that you want selected last.
This example shows how to increase the likelihood that the interface associated with spanning-tree instances 20 and 22 is placed into the forwarding state if a loop occurs:

```
Switch(config)# interface gigabitethernet2/0/2
Switch(config-if)# spanning-tree mst 20,22 port-priority 0
```

You can verify your settings by entering the `show spanning-tree mst interface interface-id` privileged EXEC command.

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show spanning-tree mst interface interface-id</code></td>
<td>Displays MST information for the specified interface.</td>
</tr>
<tr>
<td><code>spanning-tree mst cost</code></td>
<td>Sets the path cost for MST calculations.</td>
</tr>
<tr>
<td><code>spanning-tree mst priority</code></td>
<td>Sets the switch priority for the specified spanning-tree instance.</td>
</tr>
</tbody>
</table>
spanning-tree mst pre-standard

Use the `spanning-tree mst pre-standard` interface configuration command to configure a port to send only prestandard bridge protocol data units (BPDUs).

```
spanning-tree mst pre-standard
no spanning-tree mst pre-standard
```

**Syntax Description**
This command has no arguments or keywords.

**Command Default**
The default state is automatic detection of prestandard neighbors.

**Command Modes**
Interface configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SEC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
The port can accept both prestandard and standard BPDUs. If the neighbor types are mismatched, only the common and internal spanning tree (CIST) runs on this interface.

**Note**
If a switch port is connected to a switch running prestandard Cisco IOS software, you must use the `spanning-tree mst pre-standard` interface configuration command on the port. If you do not configure the port to send only prestandard BPDUs, the Multiple STP (MSTP) performance might diminish.

When the port is configured to automatically detect prestandard neighbors, the `prestandard` flag always appears in the `show spanning-tree mst` commands.

**Examples**
This example shows how to configure a port to send only prestandard BPDUs:

```
Switch(config-if)# spanning-tree mst pre-standard
```

You can verify your settings by entering the `show spanning-tree mst` privileged EXEC command.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show spanning-tree mst instance-id</code></td>
<td>Displays multiple spanning-tree (MST) information, including the <code>prestandard</code> flag, for the specified interface.</td>
</tr>
</tbody>
</table>
spanning-tree mst priority

Use the `spanning-tree mst priority` global configuration command on the switch stack or on a standalone switch to set the switch priority for the specified spanning-tree instance. Use the `no` form of this command to return to the default setting.

```
spanning-tree mst instance-id priority priority
no spanning-tree mst instance-id priority
```

### Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>instance-id</td>
<td>Range of spanning-tree instances. You can specify a single instance, a range of instances separated by a hyphen, or a series of instances separated by a comma. The range is 0 to 4094.</td>
</tr>
<tr>
<td>priority</td>
<td>Set the switch priority for the specified spanning-tree instance. This setting affects the likelihood that the switch is selected as the root switch. A lower value increases the probability that the switch is selected as the root switch. The range is 0 to 61440 in increments of 4096. Valid priority values are 0, 4096, 8192, 12288, 16384, 20480, 24576, 28672, 32768, 36864, 40960, 45056, 49152, 53248, 57344, and 61440. All other values are rejected.</td>
</tr>
</tbody>
</table>

### Defaults

The default is 32768.

### Command Modes

Global configuration

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(14)EA1</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(25)SEC</td>
<td>The <code>instance-id</code> range changed to 1 to 4094.</td>
</tr>
</tbody>
</table>

### Examples

This example shows how to set the spanning-tree priority to 8192 for multiple spanning-tree instances (MST) 20 to 21:

```
Switch(config)# spanning-tree mst 20-21 priority 8192
```

You can verify your settings by entering the `show spanning-tree mst instance-id` privileged EXEC command.

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show spanning-tree mst instance-id</code></td>
<td>Displays MST information for the specified interface.</td>
</tr>
<tr>
<td><code>spanning-tree mst cost</code></td>
<td>Sets the path cost for MST calculations.</td>
</tr>
<tr>
<td><code>spanning-tree mst port-priority</code></td>
<td>Configures an interface priority.</td>
</tr>
</tbody>
</table>
spanning-tree mst root

Use the `spanning-tree mst root` global configuration command on the switch stack or on a standalone switch to configure the multiple spanning-tree (MST) root switch priority and timers based on the network diameter. Use the `no` form of this command to return to the default settings.

```
spanning-tree mst instance-id root {primary | secondary} [diameter net-diameter]
[hello-time seconds]
```

```
no spanning-tree mst instance-id root
```

**Syntax Description**

- `instance-id` Range of spanning-tree instances. You can specify a single instance, a range of instances separated by a hyphen, or a series of instances separated by a comma. The range is 0 to 4094.
- `root primary` Force this switch to be the root switch.
- `root secondary` Set this switch to be the root switch should the primary root switch fail.
- `diameter net-diameter` (Optional) Set the maximum number of switches between any two end stations. The range is 2 to 7. This keyword is available only for MST instance 0.
- `hello-time seconds` (Optional) Set the interval between hello bridge protocol data units (BPDUs) sent by the root switch configuration messages. The range is 1 to 10 seconds. This keyword is available only for MST instance 0.

**Defaults**

The primary root switch priority is 24576.
The secondary root switch priority is 28672.
The hello time is 2 seconds.

**Command Modes**

Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(14)EA1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `spanning-tree mst instance-id root` command only on backbone switches.

When you enter the `spanning-tree mst instance-id root` command, the software tries to set a high enough priority to make this switch the root of the spanning-tree instance. Because of the extended system ID support, the switch sets the switch priority for the instance to 24576 if this value will cause this switch to become the root for the specified instance. If any root switch for the specified instance has a switch priority lower than 24576, the switch sets its own priority to 4096 less than the lowest switch priority. (4096 is the value of the least-significant bit of a 4-bit switch priority value.)
When you enter the `spanning-tree mst instance-id root secondary` command, because of support for the extended system ID, the software changes the switch priority from the default value (32768) to 28672. If the root switch fails, this switch becomes the next root switch (if the other switches in the network use the default switch priority of 32768 and are therefore unlikely to become the root switch).

**Examples**

This example shows how to configure the switch as the root switch for instance 10 with a network diameter of 4:

```
Switch(config)# spanning-tree mst 10 root primary diameter 4
```

This example shows how to configure the switch as the secondary root switch for instance 10 with a network diameter of 4:

```
Switch(config)# spanning-tree mst 10 root secondary diameter 4
```

You can verify your settings by entering the `show spanning-tree mst instance-id` privileged EXEC command.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show spanning-tree mst instance-id</code></td>
<td>Displays MST information for the specified instance.</td>
</tr>
<tr>
<td><code>spanning-tree mst forward-time</code></td>
<td>Sets the forward-delay time for all MST instances.</td>
</tr>
<tr>
<td><code>spanning-tree mst hello-time</code></td>
<td>Sets the interval between hello BPDUs sent by root switch configuration messages.</td>
</tr>
<tr>
<td><code>spanning-tree mst max-age</code></td>
<td>Sets the interval between messages that the spanning tree receives from the root switch.</td>
</tr>
<tr>
<td><code>spanning-tree mst max-hops</code></td>
<td>Sets the number of hops in a region before the BPDU is discarded.</td>
</tr>
</tbody>
</table>
spanning-tree port-priority

Use the `spanning-tree port-priority` interface configuration command on the switch stack or on a standalone switch to configure an interface priority. If a loop occurs, spanning tree can find the interface to put in the forwarding state. Use the `no` form of this command to return to the default setting.

```
spanning-tree [vlan vlan-id] port-priority priority
```

```
no spanning-tree [vlan vlan-id] port-priority
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>vlan vlan-id</code></td>
<td>(Optional) VLAN range associated with a spanning-tree instance. You can specify a single VLAN identified by VLAN ID number, a range of VLANs separated by a hyphen, or a series of VLANs separated by a comma. The range is 1 to 4094.</td>
</tr>
<tr>
<td><code>priority</code></td>
<td>Number from 0 to 240, in increments of 16. Valid values are 0, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, and 240. All other values are rejected. The lower the number, the higher the priority.</td>
</tr>
</tbody>
</table>

**Defaults**
The default is 128.

**Command Modes**
Interface configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(14)EA1</td>
<td>The value for the <code>vlan-id</code> variable was changed. The priority range values changed.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If the variable `vlan-id` is omitted, the command applies to the spanning-tree instance associated with VLAN 1.

You can set the priority on a VLAN that has no interfaces assigned to it. The setting takes effect when you assign the interface to the VLAN.

If you configure an interface with both the `spanning-tree vlan vlan-id port-priority priority` command and the `spanning-tree port-priority priority` command, the `spanning-tree vlan vlan-id port-priority priority` command takes effect.

If your switch is a member of a switch stack, you must use the `spanning-tree [vlan vlan-id] cost cost` interface configuration command instead of the `spanning-tree [vlan vlan-id] port-priority priority` interface configuration command to select an interface to put in the forwarding state. Assign lower cost values to interfaces that you want selected first and higher cost values that you want selected last.
**spanning-tree port-priority**

This example shows how to increase the likelihood that a port will be put in the forwarding state if a loop occurs:

```
Switch(config)# interface gigabitethernet2/0/2
Switch(config-if)# spanning-tree vlan 20 port-priority 0
```

This example shows how to set the port-priority value on VLANs 20 to 25:

```
Switch(config-if)# spanning-tree vlan 20-25 port-priority 0
```

You can verify your settings by entering the `show spanning-tree interface interface-id` privileged EXEC command.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show spanning-tree interface interface-id</code></td>
<td>Displays spanning-tree information for the specified interface.</td>
</tr>
<tr>
<td><code>spanning-tree cost</code></td>
<td>Sets the path cost for spanning-tree calculations.</td>
</tr>
<tr>
<td><code>spanning-tree vlan priority</code></td>
<td>Sets the switch priority for the specified spanning-tree instance.</td>
</tr>
</tbody>
</table>
spanning-tree portfast (global configuration)

Use the `spanning-tree portfast` global configuration command on the switch stack or on a standalone switch to globally enable bridge protocol data unit (BPDU) filtering on Port Fast-enabled interfaces, the BPDU guard feature on Port Fast-enabled interfaces, or the Port Fast feature on all nontrunking interfaces. The BPDU filtering feature prevents the switch interface from sending or receiving BPDUs. The BPDU guard feature puts Port Fast-enabled interfaces that receive BPDUs in an error-disabled state. Use the `no` form of this command to return to the default settings.

```plaintext
spanning-tree portfast { bpdufilter default | bpduguard default | default }
no spanning-tree portfast { bpdufilter default | bpduguard default | default }
```

**Syntax Description**

- `bpdufilter default` Globally enable BPDU filtering on Port Fast-enabled interfaces and prevent the switch interface connected to end stations from sending or receiving BPDUs.
- `bpduguard default` Globally enable the BPDU guard feature on Port Fast-enabled interfaces and place the interfaces that receive BPDUs in an error-disabled state.
- `default` Globally enable the Port Fast feature on all nontrunking interfaces. When the Port Fast feature is enabled, the interface changes directly from a blocking state to a forwarding state without making the intermediate spanning-tree state changes.

**Defaults**

The BPDU filtering, the BPDU guard, and the Port Fast features are disabled on all interfaces unless they are individually configured.

**Command Modes**

Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You can enable these features when the switch is operating in the per-VLAN spanning-tree plus (PVST+) rapid-PVST+, or the multiple spanning-tree (MST) mode.

Use the `spanning-tree portfast bpdufilter default` global configuration command to globally enable BPDU filtering on interfaces that are Port Fast-enabled (the interfaces are in a Port Fast-operational state). The interfaces still send a few BPDUs at link-up before the switch begins to filter outbound BPDUs. You should globally enable BPDU filtering on a switch so that hosts connected to switch interfaces do not receive BPDUs. If a BPDU is received on a Port Fast-enabled interface, the interface loses its Port Fast-operational status and BPDU filtering is disabled.

You can override the `spanning-tree portfast bpdufilter default` global configuration command by using the `spanning-tree bpdufilter` interface configuration command.
Enabling BPDU filtering on an interface is the same as disabling spanning tree on it and can result in spanning-tree loops.

Caution

Use the `spanning-tree portfast bpduguard default` global configuration command to globally enable BPDU guard on interfaces that are in a Port Fast-operational state. In a valid configuration, Port Fast-enabled interfaces do not receive BPDUs. Receiving a BPU on a Port Fast-enabled interface signals an invalid configuration, such as the connection of an unauthorized device, and the BPDU guard feature puts the interface in the error-disabled state. The BPDU guard feature provides a secure response to invalid configurations because you must manually put the interface back in service. Use the BPDU guard feature in a service-provider network to prevent an access port from participating in the spanning tree.

You can override the `spanning-tree portfast bpduguard default` global configuration command by using the `spanning-tree bdpuguard` interface configuration command.

Use the `spanning-tree portfast default` global configuration command to globally enable the Port Fast feature on all nontrunking interfaces. Configure Port Fast only on interfaces that connect to end stations; otherwise, an accidental topology loop could cause a data packet loop and disrupt switch and network operation. A Port Fast-enabled interface moves directly to the spanning-tree forwarding state when linkup occurs without waiting for the standard forward-delay time.

You can override the `spanning-tree portfast default` global configuration command by using the `spanning-tree portfast` interface configuration command. You can use the `no spanning-tree portfast default` global configuration command to disable Port Fast on all interfaces unless they are individually configured with the `spanning-tree portfast` interface configuration command.

Examples

This example shows how to globally enable the BPDU filtering feature:

```
Switch(config)# spanning-tree portfast bpdudfilter default
```

This example shows how to globally enable the BPDU guard feature:

```
Switch(config)# spanning-tree portfast bdpuguard default
```

This example shows how to globally enable the Port Fast feature on all nontrunking interfaces:

```
Switch(config)# spanning-tree portfast default
```

You can verify your settings by entering the `show running-config` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show running-config</code></td>
<td>Displays the current operating configuration. For syntax information, select Cisco IOS Configuration Fundamentals Command Reference, Release 12.2 &gt; File Management Commands &gt; Configuration File Management Commands.</td>
</tr>
<tr>
<td><code>spanning-tree bpdudfilter</code></td>
<td>Prevents an interface from sending or receiving BPDUs.</td>
</tr>
<tr>
<td><code>spanning-tree bdpuguard</code></td>
<td>Puts an interface in the error-disabled state when it receives a BPDU.</td>
</tr>
<tr>
<td><code>spanning-tree portfast (interface configuration)</code></td>
<td>Enables the Port Fast feature on an interface in all its associated VLANs.</td>
</tr>
</tbody>
</table>
spanning-tree portfast (interface configuration)

Use the `spanning-tree portfast` interface configuration command on the switch stack or on a standalone switch to enable the Port Fast feature on an interface in all its associated VLANs. When the Port Fast feature is enabled, the interface changes directly from a blocking state to a forwarding state without making the intermediate spanning-tree state changes. Use the `no` form of this command to return to the default setting.

```
spanning-tree portfast [disable | trunk]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>disable</code></td>
<td>(Optional) Disable the Port Fast feature on the specified interface.</td>
</tr>
<tr>
<td><code>trunk</code></td>
<td>(Optional) Enable the Port Fast feature on a trunking interface.</td>
</tr>
</tbody>
</table>

Defaults

The Port Fast feature is disabled on all interfaces; however, it is automatically enabled on dynamic-access ports.

Command Modes

Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use this feature only on interfaces that connect to end stations; otherwise, an accidental topology loop could cause a data packet loop and disrupt switch and network operation.

To enable Port Fast on trunk ports, you must use the `spanning-tree portfast trunk` interface configuration command. The `spanning-tree portfast` command is not supported on trunk ports.

You can enable this feature when the switch is operating in the per-VLAN spanning-tree plus (PVST+), rapid-PVST+, or the multiple spanning-tree (MST) mode.

This feature affects all VLANs on the interface.

An interface with the Port Fast feature enabled is moved directly to the spanning-tree forwarding state without the standard forward-time delay.

You can use the `spanning-tree portfast default` global configuration command to globally enable the Port Fast feature on all nontrunking interfaces. However, the `spanning-tree portfast` interface configuration command can override the global setting.

If you configure the `spanning-tree portfast default` global configuration command, you can disable Port Fast on an interface that is not a trunk interface by using the `spanning-tree portfast disable` interface configuration command.
spanning-tree portfast (interface configuration)

Examples

This example shows how to enable the Port Fast feature on a port:

```
Switch(config)# interface gigabitethernet2/0/2
Switch(config-if)# spanning-tree portfast
```

You can verify your settings by entering the `show running-config` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show running-config</td>
<td>Displays the current operating configuration. For syntax information, select <em>Cisco IOS Configuration Fundamentals Command Reference, Release 12.2 &gt; File Management Commands &gt; Configuration File Management Commands</em>.</td>
</tr>
<tr>
<td>spanning-tree bpdufilter</td>
<td>Prevents an interface from sending or receiving bridge protocol data units (BPDUs).</td>
</tr>
<tr>
<td>spanning-tree bpduguard</td>
<td>Puts an interface in the error-disabled state when it receives a BPDU.</td>
</tr>
<tr>
<td>spanning-tree portfast (global configuration)</td>
<td>Globally enables the BPDU filtering or the BPDU guard feature on Port Fast-enabled interfaces or enables the Port Fast feature on all nontrunking interfaces.</td>
</tr>
</tbody>
</table>
spanning-tree transmit hold-count

Use the `spanning-tree transmit hold-count` global configuration command to configure the number of bridge protocol data units (BPDUs) sent every second. Use the `no` form of this command to return to the default setting.

```
spanning-tree transmit hold-count [value]
no spanning-tree transmit hold-count [value]
```

**Syntax Description**
- **value** (Optional) Number of BPDUs sent every second. The range is 1 to 20.

**Defaults**
The default is 6.

**Command Modes**
Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SEC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
Increasing the transmit hold-count value can have a significant impact on CPU utilization when the switch is in rapid-per-VLAN spanning-tree plus (rapid-PVST+) mode. Decreasing this value might slow down convergence. We recommend using the default setting.

**Examples**
This example shows how to set the transmit hold count to 8:
```
Switch(config)# spanning-tree transmit hold-count 8
```
You can verify your setting by entering the `show spanning-tree mst` privileged EXEC command.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show spanning-tree mst</code></td>
<td>Displays the multiple spanning-tree (MST) region configuration and status, including the transmit hold count.</td>
</tr>
</tbody>
</table>
spanning-tree uplinkfast

Use the `spanning-tree uplinkfast` global configuration command on the switch stack or on a standalone switch to accelerate the choice of a new root port when a link or switch fails or when the spanning tree reconfigures itself. Use the `no` form of this command to return to the default setting.

```
spanning-tree uplinkfast [max-update-rate pkts-per-second]
no spanning-tree uplinkfast [max-update-rate]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>max-update-rate pkts-per-second</code></td>
<td>(Optional) The number of packets per second at which update packets are sent. The range is 0 to 32000.</td>
</tr>
</tbody>
</table>

### Defaults

- UplinkFast is disabled.
- The update rate is 150 packets per second.

### Command Modes

- Global configuration

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(14)EA1</td>
<td>The <code>max-update-rate</code> keyword was added.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

Use this command only on access switches.

You can configure the UplinkFast feature for rapid PVST+ or for multiple spanning-tree (MST) mode, but the feature remains disabled (inactive) until you change the spanning-tree mode to PVST+.

When you enable UplinkFast, it is enabled for the entire switch and cannot be enabled for individual VLANs.

When you enable or disable UplinkFast, cross-stack UplinkFast (CSUF) also is automatically enabled or disabled on all nonstack port interfaces. CSUF accelerates the choice of a new root port when a link or switch fails or when spanning tree reconfigures itself.

When UplinkFast is enabled, the switch priority of all VLANs is set to 49152. If you change the path cost to a value less than 3000 and you enable UplinkFast or UplinkFast is already enabled, the path cost of all interfaces and VLAN trunks is increased by 3000 (if you change the path cost to 3000 or above, the path cost is not altered). The changes to the switch priority and the path cost reduces the chance that a switch will become the root switch.

When UplinkFast is disabled, the switch priorities of all VLANs and path costs of all interfaces are set to default values if you did not modify them from their defaults.

When spanning tree detects that the root port has failed, UplinkFast immediately changes to an alternate root port, changing the new root port directly to forwarding state. During this time, a topology change notification is sent.
Do not enable the root guard on interfaces that will be used by the UplinkFast feature. With UplinkFast, the backup interfaces (in the blocked state) replace the root port in the case of a failure. However, if root guard is also enabled, all the backup interfaces used by the UplinkFast feature are placed in the root-inconsistent state (blocked) and prevented from reaching the forwarding state.

If you set the max-update-rate to 0, station-learning frames are not generated, so the spanning-tree topology converges more slowly after a loss of connectivity.

### Examples

This example shows how to enable UplinkFast:

```
Switch(config)# spanning-tree uplinkfast
```

You can verify your setting by entering the `show spanning-tree summary` privileged EXEC command.

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>show spanning-tree summary</code></td>
<td>Displays a summary of the spanning-tree interface states.</td>
</tr>
<tr>
<td></td>
<td><code>spanning-tree vlan root primary</code></td>
<td>Forces this switch to be the root switch.</td>
</tr>
</tbody>
</table>
spanning-tree vlan

Use the `spanning-tree vlan` global configuration command on the switch stack or on a standalone switch to configure spanning tree on a per-VLAN basis. Use the `no` form of this command to return to the default setting.

```
spanning-tree vlan vlan-id [forward-time seconds | hello-time seconds | max-age seconds |
 priority priority | root {primary | secondary} | [diameter net-diameter |
 [hello-time seconds]]]
```

```
no spanning-tree vlan vlan-id [forward-time | hello-time | max-age | priority | root]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>vlan-id</strong></td>
</tr>
<tr>
<td><strong>forward-time seconds</strong></td>
</tr>
<tr>
<td><strong>hello-time seconds</strong></td>
</tr>
<tr>
<td><strong>max-age seconds</strong></td>
</tr>
<tr>
<td><strong>priority priority</strong></td>
</tr>
<tr>
<td><strong>root primary</strong></td>
</tr>
<tr>
<td><strong>root secondary</strong></td>
</tr>
<tr>
<td><strong>diameter net-diameter</strong></td>
</tr>
</tbody>
</table>

**Defaults**

Spanning tree is enabled on all VLANs.
The forward-delay time is 15 seconds.
The hello time is 2 seconds.
The max-age is 20 seconds.
The primary root switch priority is 24576.
The secondary root switch priority is 28672.

**Command Modes**

Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(14)EA1</td>
<td>The value for the vlan-id variable was changed.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Disabling the STP causes the VLAN to stop participating in the spanning-tree topology. Interfaces that are administratively down remain down. Received BPDUs are forwarded like other multicast frames. The VLAN does not detect and prevent loops when STP is disabled.

You can disable the STP on a VLAN that is not currently active and verify the change by using the `show running-config` or the `show spanning-tree vlan vlan-id` privileged EXEC command. The setting takes effect when the VLAN is activated.

When disabling or re-enabling the STP, you can specify a range of VLANs that you want to disable or enable.

When a VLAN is disabled and then enabled, all assigned VLANs continue to be its members. However, all spanning-tree bridge parameters are returned to their previous settings (the last setting before the VLAN was disabled).

You can enable spanning-tree options on a VLAN that has no interfaces assigned to it. The setting takes effect when you assign interfaces to it.

When setting the `max-age seconds`, if a switch does not receive BPDUs from the root switch within the specified interval, it recomputes the spanning-tree topology. The `max-age` setting must be greater than the `hello-time` setting.

The `spanning-tree vlan vlan-id root` command should be used only on backbone switches.

When you enter the `spanning-tree vlan vlan-id root` command, the software checks the switch priority of the current root switch for each VLAN. Because of the extended system ID support, the switch sets the switch priority for the specified VLAN to 24576 if this value will cause this switch to become the root for the specified VLAN. If any root switch for the specified VLAN has a switch priority lower than 24576, the switch sets its own priority for the specified VLAN to 4096 less than the lowest switch priority. (4096 is the value of the least-significant bit of a 4-bit switch priority value.)

When you enter the `spanning-tree vlan vlan-id root secondary` command, because of support for the extended system ID, the software changes the switch priority from the default value (32768) to 28672. If the root switch should fail, this switch becomes the next root switch (if the other switches in the network use the default switch priority of 32768, and therefore, are unlikely to become the root switch).

**Examples**

This example shows how to disable the STP on VLAN 5:

```
Switch(config)# no spanning-tree vlan 5
```

You can verify your setting by entering the `show spanning-tree` privileged EXEC command. In this instance, VLAN 5 does not appear in the list.
This example shows how to set the spanning-tree forwarding time to 18 seconds for VLANs 20 and 25:

```
Switch(config)# spanning-tree vlan 20,25 forward-time 18
```

This example shows how to set the spanning-tree hello-delay time to 3 seconds for VLANs 20 to 24:

```
Switch(config)# spanning-tree vlan 20-24 hello-time 3
```

This example shows how to set spanning-tree max-age to 30 seconds for VLAN 20:

```
Switch(config)# spanning-tree vlan 20 max-age 30
```

This example shows how to reset the `max-age` parameter to the default value for spanning-tree instance 100 and 105 to 108:

```
Switch(config)# no spanning-tree vlan 100, 105-108 max-age
```

This example shows how to set the spanning-tree priority to 8192 for VLAN 20:

```
Switch(config)# spanning-tree vlan 20 priority 8192
```

This example shows how to configure the switch as the root switch for VLAN 10 with a network diameter of 4:

```
Switch(config)# spanning-tree vlan 10 root primary diameter 4
```

This example shows how to configure the switch as the secondary root switch for VLAN 10 with a network diameter of 4:

```
Switch(config)# spanning-tree vlan 10 root secondary diameter 4
```

You can verify your settings by entering the `show spanning-tree vlan vlan-id` privileged EXEC command.

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show spanning-tree vlan</code></td>
<td>Displays spanning-tree information.</td>
</tr>
<tr>
<td><code>spanning-tree cost</code></td>
<td>Sets the path cost for spanning-tree calculations.</td>
</tr>
<tr>
<td><code>spanning-tree guard</code></td>
<td>Enables the root guard or the loop guard feature for all the VLANs associated with the selected interface.</td>
</tr>
<tr>
<td><code>spanning-tree port-priority</code></td>
<td>Sets an interface priority.</td>
</tr>
<tr>
<td><code>spanning-tree portfast (global configuration)</code></td>
<td>Globally enables the BPDU filtering or the BPDU guard feature on Port Fast-enabled interfaces or enables the Port Fast feature on all nontrunking interfaces.</td>
</tr>
<tr>
<td><code>spanning-tree portfast (interface configuration)</code></td>
<td>Enables the Port Fast feature on an interface in all its associated VLANs.</td>
</tr>
<tr>
<td><code>spanning-tree uplinkfast</code></td>
<td>Enables the UplinkFast feature, which accelerates the choice of a new root port.</td>
</tr>
</tbody>
</table>
speed

Use the `speed` interface configuration command on the switch stack or on a standalone switch to specify the speed of a 10/100 Mbps or 10/100/1000 Mbps port. Use the `no` or `default` form of this command to return the port to its default value.

```
speed { 10 | 100 | 1000 | auto [10 | 100 | 1000] | nonegotiate }
```

```
no speed
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Port runs at 10 Mbps.</td>
</tr>
<tr>
<td>100</td>
<td>Port runs at 100 Mbps.</td>
</tr>
<tr>
<td>1000</td>
<td>Port runs at 1000 Mbps. This option is valid and visible only on 10/100/1000 Mbps-ports.</td>
</tr>
<tr>
<td>auto</td>
<td>Port automatically detects the speed it should run at based on the port at the other end of the link. If you use the 10, 100, or 1000 keywords with the <code>auto</code> keyword, the port only autonegotiates at the specified speeds.</td>
</tr>
<tr>
<td>nonegotiate</td>
<td>Autonegotiation is disabled, and the port runs at 1000 Mbps. (</td>
</tr>
</tbody>
</table>

### Defaults

The default is `auto`.

### Command Modes

Interface configuration

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(20)SE1</td>
<td>Support for the 10, 100, and 1000 keywords with the <code>auto</code> keyword was added.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

You cannot configure speed on the 10-Gigabit Ethernet ports.

Except for the 1000BASE-T SFP modules, if an SFP module port is connected to a device that does not support autonegotiation, you can configure the speed to not negotiate (`nonegotiate`).

If the speed is set to `auto`, the switch negotiates with the device at the other end of the link for the speed setting and then forces the speed setting to the negotiated value. The duplex setting remains as configured on each end of the link, which could result in a duplex setting mismatch.

If both ends of the line support autonegotiation, we highly recommend the default autonegotiation settings. If one interface supports autonegotiation and the other end does not, do use the `auto` setting on the supported side, but set the duplex and speed on the other side.

### Caution

Changing the interface speed and duplex mode configuration might shut down and re-enable the interface during the reconfiguration.
For guidelines on setting the switch speed and duplex parameters, see the “Configuring Interface Characteristics” chapter in the software configuration guide for this release.

**Examples**

This example shows how to set speed on a port to 100 Mbps:

```
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# speed 100
```

This example shows how to set a port to autonegotiate at only 10 Mbps:

```
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# speed auto 10
```

This example shows how to set a port to autonegotiate at only 10 or 100 Mbps:

```
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# speed auto 10 100
```

You can verify your settings by entering the `show interfaces` privileged EXEC command.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>duplex</code></td>
<td>Specifies the duplex mode of operation.</td>
</tr>
<tr>
<td><code>show interfaces</code></td>
<td>Displays the statistical information specific to all interfaces or to a specific interface.</td>
</tr>
</tbody>
</table>
srr-queue bandwidth limit

Use the `srr-queue bandwidth limit` interface configuration command on the switch stack or on a standalone switch to limit the maximum output on a port. Use the `no` form of this command to return to the default setting.

```
srr-queue bandwidth limit weight1
no srr-queue bandwidth limit
```

**Syntax Description**

- `weight1` Percentage of the port speed to which the port should be limited. The range is 10 to 90.

**Defaults**

The port is not rate limited and is set to 100 percent.

**Command Modes**

Interface configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If you configure this command to 80 percent, the port is idle 20 percent of the time. The line rate drops to 80 percent of the connected speed. These values are not exact because the hardware adjusts the line rate in increments of six.

This command is not available on a 10-Gigabit Ethernet interface.

**Note**

The egress queue default settings are suitable for most situations. You should change them only when you have a thorough understanding of the egress queues and if these settings do not meet your quality of service (QoS) solution.

**Examples**

This example shows how to limit a port to 800 Mbps:

```
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# srr-queue bandwidth limit 80
```

You can verify your settings by entering the `show mls qos interface [interface-id] queueing` privileged EXEC command.
<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Related Commands</strong></td>
<td><strong>Command</strong></td>
<td><strong>Description</strong></td>
</tr>
<tr>
<td></td>
<td>mls qos queue-set output buffers</td>
<td>Allocates buffers to the queue-set.</td>
</tr>
<tr>
<td></td>
<td>mls qos srr-queue output cos-map</td>
<td>Maps class of service (CoS) values to egress queue or maps CoS values to a queue and to a threshold ID.</td>
</tr>
<tr>
<td></td>
<td>mls qos srr-queue output dscp-map</td>
<td>Maps Differentiated Services Code Point (DSCP) values to an egress queue or maps DSCP values to a queue and to a threshold ID.</td>
</tr>
<tr>
<td></td>
<td>mls qos queue-set output threshold</td>
<td>Configures the weighted tail-drop (WTD) thresholds, guarantees the availability of buffers, and configures the maximum memory allocation for the queue-set.</td>
</tr>
<tr>
<td></td>
<td>queue-set</td>
<td>Maps a port to a queue-set.</td>
</tr>
<tr>
<td></td>
<td>show mls qos interface queueing</td>
<td>Displays QoS information.</td>
</tr>
<tr>
<td></td>
<td>srr-queue bandwidth shape</td>
<td>Assigns the shaped weights and enables bandwidth shaping on the four egress queues mapped to a port.</td>
</tr>
<tr>
<td></td>
<td>srr-queue bandwidth share</td>
<td>Assigns the shared weights and enables bandwidth sharing on the four egress queues mapped to a port.</td>
</tr>
</tbody>
</table>
srr-queue bandwidth shape

Use the `srr-queue bandwidth shape` interface configuration command on the switch stack or on a standalone switch to assign the shaped weights and to enable bandwidth shaping on the four egress queues mapped to a port. Use the `no` form of this command to return to the default setting.

```
srr-queue bandwidth shape weight1 weight2 weight3 weight4
no srr-queue bandwidth shape
```

**Syntax Description**

- `weight1 weight2 weight3 weight4`: Specify the weights to specify the percentage of the port that is shaped. The inverse ratio (1/weight) specifies the shaping bandwidth for this queue. Separate each value with a space. The range is 0 to 65535.

**Defaults**

Weight1 is set to 25. Weight2, weight3, and weight4 are set to 0, and these queues are in shared mode.

**Command Modes**

Interface configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

In shaped mode, the queues are guaranteed a percentage of the bandwidth, and they are rate-limited to that amount. Shaped traffic does not use more than the allocated bandwidth even if the link is idle. Use shaping to smooth bursty traffic or to provide a smoother output over time.

The shaped mode overrides the shared mode.

If you configure a shaped queue weight to 0 by using the `srr-queue bandwidth shape` interface configuration command, this queue participates in shared mode. The weight specified with the `srr-queue bandwidth shape` command is ignored, and the weights specified with the `srr-queue bandwidth share` interface configuration command for a queue come into effect.

When configuring queues for the same port for both shaping and sharing, make sure that you configure the lowest numbered queue for shaping.

This command is not available on a 10-Gigabit Ethernet interface.

**Note**

The egress queue default settings are suitable for most situations. You should change them only when you have a thorough understanding of the egress queues and if these settings do not meet your QoS solution.
**Examples**

This example shows how to configure the queues for the same port for both shaping and sharing. Because the weight ratios for queues 2, 3, and 4 are set to 0, these queues operate in shared mode. The bandwidth weight for queue 1 is 1/8, which is 12.5 percent. Queue 1 is guaranteed this bandwidth and limited to it; it does not extend its slot to the other queues even if the other queues have no traffic and are idle. Queues 2, 3, and 4 are in shared mode, and the setting for queue 1 is ignored. The bandwidth ratio allocated for the queues in shared mode is 4/(4+4+4), which is 33 percent:

```
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# srr-queue bandwidth shape 8 0 0 0
Switch(config-if)# srr-queue bandwidth share 4 4 4 4
```

You can verify your settings by entering the `show mls qos interface [interface-id] queueing` privileged EXEC command.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mls qos queue-set output buffers</code></td>
<td>Allocates buffers to a queue-set.</td>
</tr>
<tr>
<td><code>mls qos srr-queue output cos-map</code></td>
<td>Maps class of service (CoS) values to an egress queue or maps CoS values to a queue and to a threshold ID.</td>
</tr>
<tr>
<td><code>mls qos srr-queue output dscp-map</code></td>
<td>Maps Differentiated Services Code Point (DSCP) values to an egress queue or maps DSCP values to a queue and to a threshold ID.</td>
</tr>
<tr>
<td><code>mls qos queue-set output threshold</code></td>
<td>Configures the weighted tail-drop (WTD) thresholds, guarantees the availability of buffers, and configures the maximum memory allocation to a queue-set.</td>
</tr>
<tr>
<td><code>priority-queue</code></td>
<td>Enables the egress expedite queue on a port.</td>
</tr>
<tr>
<td><code>queue-set</code></td>
<td>Maps a port to a queue-set.</td>
</tr>
<tr>
<td><code>show mls qos interface queueing</code></td>
<td>Displays quality of service (QoS) information.</td>
</tr>
<tr>
<td><code>srr-queue bandwidth share</code></td>
<td>Assigns the shared weights and enables bandwidth sharing on the four egress queues mapped to a port.</td>
</tr>
</tbody>
</table>
srr-queue bandwidth share

Use the `srr-queue bandwidth share` interface configuration command on the switch stack or on a standalone switch to assign the shared weights and to enable bandwidth sharing on the four egress queues mapped to a port. The ratio of the weights is the ratio of frequency in which the shaped round robin (SRR) scheduler dequeues packets from each queue. Use the `no` form of this command to return to the default setting.

```
srr-queue bandwidth share weight1 weight2 weight3 weight4

no srr-queue bandwidth share
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>weight1 weight2 weight3 weight4</code></td>
</tr>
</tbody>
</table>

The ratios of `weight1`, `weight2`, `weight3`, and `weight4` specify the ratio of the frequency in which the SRR scheduler dequeues packets. Separate each value with a space. The range is 1 to 255.

**Defaults**

Weight1, weight2, weight3, and weight4 are 25 (1/4 of the bandwidth is allocated to each queue).

**Command Modes**

Interface configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The absolute value of each weight is meaningless, and only the ratio of parameters is used.

In shared mode, the queues share the bandwidth among them according to the configured weights. The bandwidth is guaranteed at this level but not limited to it. For example, if a queue empties and does not require a share of the link, the remaining queues can expand into the unused bandwidth and share it among themselves.

If you configure a shaped queue weight to 0 by using the `srr-queue bandwidth shape` interface configuration command, this queue participates in SRR shared mode. The weight specified with the `srr-queue bandwidth shape` command is ignored, and the weights specified with the `srr-queue bandwidth share` interface configuration command for a queue take effect.

When configuring queues for the same port for both shaping and sharing, make sure that you configure the lowest numbered queue for shaping.

**Note**

The egress queue default settings are suitable for most situations. You should change them only when you have a thorough understanding of the egress queues and if these settings do not meet your QoS solution.
This example shows how to configure the weight ratio of the SRR scheduler running on an egress port. Four queues are used. The bandwidth ratio allocated for each queue in shared mode is $1/(1+2+3+4)$, $2/(1+2+3+4)$, $3/(1+2+3+4)$, and $4/(1+2+3+4)$, which is 10 percent, 20 percent, 30 percent, and 40 percent for queues 1, 2, 3, and 4. This means that queue 4 has four times the bandwidth of queue 1, twice the bandwidth of queue 2, and one-and-a-third times the bandwidth of queue 3.

```
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# srr-queue bandwidth share 1 2 3 4
```

You can verify your settings by entering the `show mls qos interface [interface-id] queueing` privileged EXEC command.

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mls qos queue-set output buffers</code></td>
<td>Allocates buffers to a queue-set.</td>
</tr>
<tr>
<td><code>mls qos srr-queue output cos-map</code></td>
<td>Maps class of service (CoS) values to an egress queue or maps CoS values to a queue and to a threshold ID.</td>
</tr>
<tr>
<td><code>mls qos srr-queue output dscp-map</code></td>
<td>Maps Differentiated Services Code Point (DSCP) values to an egress queue or maps DSCP values to a queue and to a threshold ID.</td>
</tr>
<tr>
<td><code>mls qos queue-set output threshold</code></td>
<td>Configures the weighted tail-drop (WTD) thresholds, guarantees the availability of buffers, and configures the maximum memory allocation to a queue-set.</td>
</tr>
<tr>
<td><code>priority-queue</code></td>
<td>Enables the egress expedite queue on a port.</td>
</tr>
<tr>
<td><code>queue-set</code></td>
<td>Maps a port to a queue-set.</td>
</tr>
<tr>
<td><code>show mls qos interface queueing</code></td>
<td>Displays quality of service (QoS) information.</td>
</tr>
<tr>
<td><code>srr-queue bandwidth shape</code></td>
<td>Assigns the shaped weights and enables bandwidth shaping on the four egress queues mapped to a port.</td>
</tr>
</tbody>
</table>
stack-mac persistent timer

Use the `stack-mac persistent timer` global configuration command on the switch stack or on a standalone switch to enable the persistent MAC address feature. When this feature is enabled, if the stack master changes, the stack MAC address does not change for approximately four minutes. If the switch that was previously the stack master rejoins the stack during this period, the stack continues to use its MAC address as the stack MAC address, even if the switch is now a stack member. Use the `no` form of this command to return to the default setting.

```
stack-mac persistent timer

no stack-mac persistent timer
```

Syntax Description

This command has no arguments or keywords.

Defaults

Persistent MAC address is disabled. The MAC address of the stack is always that of the stack master.

Command Modes

Global configuration

Command History

This command was introduced in release 12.2(25)SE.

Usage Guidelines

The MAC address of the switch stack is determined by the MAC address of the stack master. In the default state (persistent MAC address disabled), if a new switch becomes stack master, the stack MAC address changes to the MAC address of the new stack master.

When persistent MAC address is enabled, the stack MAC address does not change for approximately four minutes. During that time, if the previous stack master rejoins the stack as a stack member, the stack retains its MAC address for as long as the switch that has that MAC address is in the stack. If the previous stack master does not rejoin the stack, the switch stack takes the MAC address of the new stack master as the stack MAC address.

If the whole stack reloads, when it comes back up, the MAC address of the stack master is the stack MAC address.

Examples

This example shows how to enable persistent MAC address:

```
Switch(config)# stack-mac persistent timer
```

You can verify your settings by entering the `show running-config` privileged EXEC command. If enabled, `stack-mac persistent timer` is shown in the output.
### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show running-config</code></td>
<td>Displays the current operating configuration. For syntax information, select Cisco IOS Configuration Fundamentals Command Reference, Release 12.2 &gt; File Management Commands &gt; Configuration File Management Commands.</td>
</tr>
</tbody>
</table>
## storm-control

Use the `storm-control` interface configuration command on the switch stack or on a standalone switch to enable broadcast, multicast, or unicast storm control and to set threshold levels on an interface. Use the `no` form of this command to return to the default setting.

```
storm-control | {broadcast | multicast | unicast} level {level [level-low] | bps bps [bps-low] | pps pps [pps-low]} | {action {shutdown | trap}}

no storm-control | {broadcast | multicast | unicast} level | {action {shutdown | trap}}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>broadcast</td>
<td>Enable broadcast storm control on the interface.</td>
</tr>
<tr>
<td>multicast</td>
<td>Enable multicast storm control on the interface.</td>
</tr>
<tr>
<td>unicast</td>
<td>Enable unicast storm control on the interface.</td>
</tr>
<tr>
<td>level level [level-low]</td>
<td>Specify the rising and falling suppression levels as a percentage of total bandwidth of the port.</td>
</tr>
<tr>
<td></td>
<td>• <code>level</code>—Rising suppression level, up to two decimal places. The range is 0.00 to 100.00. Block the flooding of storm packets when the value specified for <code>level</code> is reached.</td>
</tr>
<tr>
<td></td>
<td>• <code>level-low</code>—(Optional) Falling suppression level, up to two decimal places. The range is 0.00 to 100.00. This value must be less than or equal to the rising suppression value. If you do not configure a falling suppression level, it is set to the rising suppression level.</td>
</tr>
<tr>
<td>level bps bps [bps-low]</td>
<td>Specify the rising and falling suppression levels as a rate in bits per second at which traffic is received on the port.</td>
</tr>
<tr>
<td></td>
<td>• <code>bps</code>—Rising suppression level, up to 1 decimal place. The range is 0.0 to 10000000000.0. Block the flooding of storm packets when the value specified for <code>bps</code> is reached.</td>
</tr>
<tr>
<td></td>
<td>• <code>bps-low</code>—(Optional) Falling suppression level, up to 1 decimal place. The range is 0.0 to 10000000000.0. This value must be equal to or less than the rising suppression value.</td>
</tr>
</tbody>
</table>

You can use metric suffixes such as k, m, and g for large number thresholds.
storm-control

**level pps pps**

Specify the rising and falling suppression levels as a rate in packets per second at which traffic is received on the port.

- **pps**—Rising suppression level, up to 1 decimal place. The range is 0.0 to 10000000000.0. Block the flooding of storm packets when the value specified for **pps** is reached.

- **pps-low**—(Optional) Falling suppression level, up to 1 decimal place. The range is 0.0 to 10000000000.0. This value must be equal to or less than the rising suppression value.

You can use metric suffixes such as k, m, and g for large number thresholds.

**action**

Action taken when a storm occurs on a port. The default action is to filter traffic and to not send an Simple Network Management Protocol (SNMP) trap.

The keywords have these meanings:

- **shutdown**—Disables the port during a storm.
- **trap**—Sends an SNMP trap when a storm occurs.

**Defaults**

Broadcast, multicast, and unicast storm control are disabled. The default action is to filter traffic and to not send an SNMP trap.

**Command Modes**

Interface configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(25)SE</td>
<td>The <strong>level</strong> <strong>level</strong> options were replaced with the <strong>level</strong> <strong>level-low</strong></td>
</tr>
<tr>
<td></td>
<td>options.</td>
</tr>
<tr>
<td></td>
<td><strong>pps pps pps-low</strong></td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Storm control is supported only on physical interfaces. It is not supported on EtherChannel port channels, even though it is available in the command-line interface (CLI).

The storm-control suppression level can be entered as a percentage of total bandwidth of the port, as a rate in packets per second at which traffic is received, or as a rate in bits per second at which traffic is received.

When specified as a percentage of total bandwidth, a suppression value of 100 percent means that no limit is placed on the specified traffic type. A value of **level 0 0** means that all broadcast, multicast, or unicast traffic on that port is blocked. Storm control is enabled only when the rising suppression level is less than 100 percent. If no other storm-control configuration is specified, the default action is to filter the traffic causing the storm and to send no SNMP traps.

**Note**

When the storm control threshold for multicast traffic is reached, all multicast traffic except control traffic, such as bridge protocol data unit (BDPU) and Cisco Discovery Protocol (CDP) frames, are blocked. However, the switch does not differentiate between routing updates, such as Open Shortest Path First (OSPF) and regular multicast data traffic, so both types of traffic are blocked.
The **trap** and **shutdown** options are independent of each other.

If you configure the action to be taken as shutdown (the port is error-disabled during a storm) when a packet storm is detected, you must use the **no shutdown** interface configuration command to bring the interface out of this state. If you do not specify the **shutdown** action, specify the action as **trap** (the switch generates a trap when a storm is detected).

When a storm occurs and the action is to filter traffic, if the falling suppression level is not specified, the switch blocks all traffic until the traffic rate drops below the rising suppression level. If the falling suppression level is specified, the switch blocks traffic until the traffic rate drops below this level.

When a broadcast storm occurs and the action is to filter traffic, the switch blocks only broadcast traffic.

For more information, see the software configuration guide for this release.

### Examples

This example shows how to enable broadcast storm control with a 75.5-percent rising suppression level:

```
Switch(config-if)# storm-control broadcast level 75.5
```

This example shows how to enable unicast storm control on a port with a 87-percent rising suppression level and a 65-percent falling suppression level:

```
Switch(config-if)# storm-control unicast level 87 65
```

This example shows how to enable multicast storm control on a port with a 2000-packets-per-second rising suppression level and a 1000-packets-per-second falling suppression level:

```
Switch(config-if)# storm-control multicast level pps 2k 1k
```

This example shows how to enable the **shutdown** action on a port:

```
Switch(config-if)# storm-control action shutdown
```

You can verify your settings by entering the **show storm-control** privileged EXEC command.

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>show storm-control</strong></td>
<td>Displays broadcast, multicast, or unicast storm control settings on all interfaces or on a specified interface.</td>
</tr>
</tbody>
</table>
switch priority

Use the `switch priority` global configuration command on the stack master to change the stack member priority value.

```
switch stack-member-number priority new-priority-value
```

**Syntax Description**
- `stack-member-number` Specify the current stack member number. The range is 1 to 9.
- `priority new-priority-value` Specify the new stack member priority value. The range is 1 to 15.

**Defaults**
The default priority value is 1.

**Command Modes**
Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
The new priority value is a factor during a stack-master re-election. Therefore, changing the priority value does not change the stack master immediately.

**Examples**
This example shows how to change the priority value of stack member 6 to 9:

```
Switch(config)# switch 6 priority 9
Changing the Switch Priority of Switch Number 6 to 9
Do you want to continue?[confirm]
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>reload</code></td>
<td>Reloads the stack member and puts a configuration change into effect.</td>
</tr>
<tr>
<td><code>session</code></td>
<td>Accesses a specific stack member.</td>
</tr>
<tr>
<td><code>switch renumber</code></td>
<td>Changes the stack member number.</td>
</tr>
<tr>
<td><code>show switch</code></td>
<td>Displays information about the switch stack and its stack members.</td>
</tr>
</tbody>
</table>
switch provision

Use the `switch provision` global configuration command on the stack master to provision (to supply a configuration to) a new switch before it joins the switch stack. Use the no form of this command to delete all configuration information associated with the removed switch (a stack member that has left the stack).

```
switch stack-member-number provision type

no switch stack-member-number provision
```

**Syntax Description**

- `stack-member-number` Specify the stack member number. The range is 1 to 9.
- `provision type` Specify the switch type of the new switch before it joins the stack.
  
  For `type`, enter the model number of a supported switch that is listed in the command-line help strings.

**Defaults**

The switch is not provisioned.

**Command Modes**

Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(20)SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

To avoid receiving an error message, you must remove the specified switch from the switch stack before using the no form of this command to delete a provisioned configuration.

To change the switch type, you must also remove the specified switch from the switch stack. You can change the stack member number of a provisioned switch that is physically present in the switch stack if you do not also change the switch type.

If the switch type of the provisioned switch does not match the switch type in the provisioned configuration on the stack, the switch stack applies the default configuration to the provisioned switch and adds it to the stack. The switch stack displays a message when it applies the default configuration.

Provisioned information appears in the running configuration of the switch stack. When you enter the `copy running-config startup-config` privileged EXEC command, the provisioned configuration is saved in the startup configuration file of the switch stack.

**Caution**

When you use this command, memory is allocated for the provisioned configuration. When a new switch type is configured, the previously allocated memory is not fully released. Therefore, do not use this command more than approximately 200 times, or the switch will run out of memory and unexpected behavior will result.
This example shows how to provision a Catalyst 3750G-12S switch with a stack member number of 2 for the switch stack. The `show running-config` command output shows the interfaces associated with the provisioned switch:

```
Switch(config)# switch 2 provision WS-C3750G-12S
Switch(config)# end
Switch# show running-config | include switch 2
!
interface GigabitEthernet2/0/1
!
interface GigabitEthernet2/0/2
!
interface GigabitEthernet2/0/3
<output truncated>
```

You also can enter the `show switch` user EXEC command to display the provisioning status of the switch stack.

This example shows how to delete all configuration information about a stack member 5 when the switch is removed from the stack:

```
Switch(config)# no switch 5 provision
```

You can verify that the provisioned switch is added to or removed from the running configuration by entering the `show running-config` privileged EXEC command.

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>show running-config</code></td>
<td>Displays the current operating configuration. For syntax information, select Cisco IOS Configuration Fundamentals Command Reference, Release 12.2 &gt; File Management Commands &gt; Configuration File Management Commands.</td>
</tr>
<tr>
<td></td>
<td><code>show switch</code></td>
<td>Displays information about the switch stack and its stack members.</td>
</tr>
</tbody>
</table>
switch renumber

Use the `switch renumber` global configuration command on the stack master to change the stack member number.

```
switch current-stack-member-number renumber new-stack-member-number
```

### Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>current-stack-member-number</code></td>
<td>Specify the current stack member number. The range is 1 to 9.</td>
</tr>
<tr>
<td><code>renumber</code></td>
<td></td>
</tr>
<tr>
<td><code>new-stack-member-number</code></td>
<td>Specify the new stack member number for the stack member. The range is 1 to 9.</td>
</tr>
</tbody>
</table>

### Defaults

The default stack member number is 1.

### Command Modes

Global configuration

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

If another stack member is already using the member number that you just specified, the stack master assigns the lowest available number when you reload the stack member.

**Note**

If you change the number of a stack member, and no configuration is associated with the new stack member number, that stack member loses its current configuration and resets to its default configuration. For more information about stack member numbers and configurations, see the software configuration guide.

Do not use the `switch current-stack-member-number renumber new-stack-member-number` command on a provisioned switch. If you do, the command is rejected.

Use the `reload slot current stack member number` privileged EXEC to reload the stack member and to apply this configuration change.

### Examples

This example shows how to change the member number of stack member 6 to 7:

```
Switch(config)# switch 6 renumber 7
WARNING:Changing the switch number may result in a configuration change for that switch. The interface configuration associated with the old switch number will remain as a provisioned configuration.
Do you want to continue?[confirm]
```
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>reload</strong></td>
<td>Reloads the stack member and puts a configuration change into effect.</td>
</tr>
<tr>
<td><strong>session</strong></td>
<td>Accesses a specific stack member.</td>
</tr>
<tr>
<td><strong>switch priority</strong></td>
<td>Changes the stack member priority value.</td>
</tr>
<tr>
<td><strong>show switch</strong></td>
<td>Displays information about the switch stack and its stack members.</td>
</tr>
</tbody>
</table>
switchport

Use the `switchport` interface configuration command with no keywords on the switch stack or on a standalone switch to put an interface that is in Layer 3 mode into Layer 2 mode for Layer 2 configuration. Use the `no` form of this command to put an interface in Layer 3 mode.

```
switchport

no switchport
```

Use the `no switchport` command (without parameters) to set the interface to the routed-interface status and to erase all Layer 2 configurations. You must use this command before assigning an IP address to a routed port.

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

By default, all interfaces are in Layer 2 mode.

**Command Modes**

Interface configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(20)SE</td>
<td>Previous configuration information on an interface is removed when the interface changes between Layer 2 mode and Layer 3 mode or between Layer 3 mode and Layer 2 mode.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Entering the `no switchport` command shuts the port down and then re-enables it, which might generate messages on the device to which the port is connected.

In Release 12.2(20)SE and later, when you put an interface that is in Layer 2 mode into Layer 3 mode (or the reverse), the previous configuration information related to the affected interface might be lost, and the interface is returned to its default configuration.

**Note**

If an interface is configured as a Layer 3 interface, you must first enter this `switchport` command with no keywords to configure the interface as a Layer 2 port. Then you can enter additional switchport commands with keywords, as shown on the pages that follow.
This example shows how to cause an interface to cease operating as a Layer 2 port and become a Cisco-routed port:

```cisco
Switch(config-if)# no switchport
```

This example shows how to cause the port interface to cease operating as a Cisco-routed port and convert to a Layer 2 switched interface:

```cisco
Switch(config-if)# switchport
```

The `switchport` command without keywords is not used on platforms that do not support Cisco-routed ports. All physical ports on such platforms are assumed to be Layer 2-switched interfaces.

You can verify the switchport status of an interface by entering the `show running-config` privileged EXEC command.

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show interfaces switchport</code></td>
<td>Displays the administrative and operational status of a switching (nonrouting) port, including port blocking and port protection settings.</td>
</tr>
<tr>
<td><code>show running-config</code></td>
<td>Displays the current operating configuration. For syntax information, select Cisco IOS Configuration Fundamentals Command Reference, Release 12.2 &gt; File Management Commands &gt; Configuration File Management Commands.</td>
</tr>
</tbody>
</table>
switchport access

Use the `switchport access` interface configuration command on the switch stack or on a standalone switch to configure a port as a static-access or dynamic-access port. If the switchport mode is set to `access`, the port operates as a member of the specified VLAN. If set to `dynamic`, the port starts discovery of VLAN assignment based on the incoming packets it receives. Use the `no` form of this command to reset the access mode to the default VLAN for the switch.

```
switchport access vlan {vlan-id | dynamic}
no switchport access vlan
```

**Syntax Description**

- `vlan vlan-id`: Configure the interface as a static access port with the VLAN ID of the access mode VLAN; the range is 1 to 4094.
- `vlan dynamic`: Specify that the access mode VLAN is dependent on the VLAN Membership Policy Server (VMPS) protocol. The port is assigned to a VLAN based on the source MAC address of a host (or hosts) connected to the port. The switch sends every new MAC address received to the VMPS server to get the VLAN name to which the dynamic-access port should be assigned. If the port already has a VLAN assigned and the source has already been approved by the VMPS, the switch forwards the packet to the VLAN.

**Defaults**

The default access VLAN and trunk interface native VLAN is a default VLAN corresponding to the platform or interface hardware.

A dynamic-access port is initially a member of no VLAN and receives its assignment based on the packet it receives.

**Command Modes**

Interface configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `no switchport access` command resets the access mode VLAN to the appropriate default VLAN for the device.

The port must be in access mode before the `switchport access vlan` command can take effect.

An access port can be assigned to only one VLAN.

The VMPS server (such as a Catalyst 6000 series switch) must be configured before a port is configured as dynamic.
These restrictions apply to dynamic-access ports:

- The software implements the VLAN Query Protocol (VQP) client, which can query a VMPS such as a Catalyst 6000 series switch. The Catalyst 3750 switches are not VMPS servers. The VMPS server must be configured before a port is configured as dynamic.
- Use dynamic-access ports only to connect end stations. Connecting them to switches or routers (that use bridging protocols) can cause a loss of connectivity.
- Configure the network so that STP does not put the dynamic-access port into an STP blocking state. The Port Fast feature is automatically enabled on dynamic-access ports.
- Dynamic-access ports can only be in one VLAN and do not use VLAN tagging.
- Dynamic-access ports cannot be configured as:
  - Members of an EtherChannel port group (dynamic-access ports cannot be grouped with any other port, including other dynamic ports).
  - Source or destination ports in a static address entry.
  - Monitor ports.

**Examples**

This example shows how to change a switched port interface that is operating in access mode to operate in VLAN 2 instead of the default VLAN:

```
Switch(config-if)# switchport access vlan 2
```

You can verify your setting by entering the `show interfaces interface-id switchport` privileged EXEC command and examining information in the Administrative Mode and Operational Mode rows.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show interfaces switchport</code></td>
<td>Displays the administrative and operational status of a switching (nonrouting) port, including port blocking and port protection settings.</td>
</tr>
<tr>
<td><code>switchport mode</code></td>
<td>Configures the VLAN membership mode of a port.</td>
</tr>
</tbody>
</table>
switchport backup interface

Use the `switchport backup interface` interface configuration command on a Layer 2 interface on the switch stack or on a standalone switch to configure Flex Links, a pair of interfaces that provide backup to each other. Use the `no` form of this command to remove the Flex Links configuration.

```
switchport backup interface {interface-id} mmu primary vlan vlan-id

switchport backup interface {interface-id} preemption [forced | bandwidth | off] | [delay delay-time]

no switchport backup interface {interface-id} mmu primary vlan vlan-id

no switchport backup interface {interface-id} preemption [forced | bandwidth | off] | [delay]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>interface-id</code></td>
<td>Specifies the Layer 2 interface to act as a backup link to the interface being configured. The interface can be a physical interface or port channel. The port-channel range is 1 to 48.</td>
</tr>
<tr>
<td><code>mmu</code></td>
<td>Specifies configuring the mac move update (MMU) for a backup interface pair.</td>
</tr>
<tr>
<td><code>primary vlan vlan-id</code></td>
<td>The VLAN ID of the private-VLAN primary VLAN; valid range is 1 to 4094.</td>
</tr>
<tr>
<td><code>preemption</code></td>
<td>Specifies configuring a preemption scheme for a backup interface pair.</td>
</tr>
<tr>
<td><code>forced</code></td>
<td>(Optional) Specifies the interface always preempts the backup.</td>
</tr>
<tr>
<td><code>bandwidth</code></td>
<td>(Optional) Specifies the interface with the higher available bandwidth always preempts the backup.</td>
</tr>
<tr>
<td><code>off</code></td>
<td>(Optional) Specifies no preemption occurs from backup to active.</td>
</tr>
<tr>
<td><code>delay delay-time</code></td>
<td>(Optional) Specifies a preemption delay; valid values are 1 to 300 seconds.</td>
</tr>
</tbody>
</table>

### Defaults

- The default is to have no Flex Links defined.
- Preemption mode is off. No preemption occurs.
- Preemption delay is set to 35 seconds.

### Command Modes

- Interface configuration

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(20)SE</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(25)SEE</td>
<td>Added <code>preemption, forced, bandwidth, off</code>, and <code>delay</code> keywords.</td>
</tr>
</tbody>
</table>
**Usage Guidelines**

With Flex Links configured, one link acts as the primary interface and forwards traffic, while the other interface is in standby mode, ready to begin forwarding traffic if the primary link shuts down. The interface being configured is referred to as the active link; the specified interface is identified as the backup link. The feature provides an alternative to the Spanning Tree Protocol (STP), allowing users to turn off STP and still retain basic link redundancy.

- This command is available only for Layer 2 interfaces.
- You can configure only one Flex Link backup link for any active link, and it must be a different interface from the active interface.
- An interface can belong to only one Flex Link pair. An interface can be a backup link for only one active link. An active link cannot belong to another Flex Link pair.
- A backup link does not have to be the same type (Fast Ethernet or Gigabit Ethernet, for instance) as the active link. However, you should configure both Flex Links with similar characteristics so that there are no loops or changes in behavior if the standby link begins to forward traffic.
- Neither of the links can be a port that belongs to an EtherChannel. However, you can configure two port channels (EtherChannel logical interfaces) as Flex Links, and you can configure a port channel and a physical interface as Flex Links, with either the port channel or the physical interface as the active link.
- If STP is configured on the switch, Flex Links do not participate in STP in all valid VLANs. If STP is not running, be sure that there are no loops in the configured topology.

**Examples**

This example shows how to configure two interfaces as Flex Links:

```
Switch# configure terminal
Switch(conf)# interface fastethernet1/0/1
Switch(conf-if)# switchport backup interface fastethernet1/0/2
Switch(conf-if)# end
```

This example shows how to configure the Fast Ethernet interface to always preempt the backup:

```
Switch# configure terminal
Switch(conf)# interface fastethernet1/0/1
Switch(conf-if)# switchport backup interface fastethernet1/0/2 preemption forced
Switch(conf-if)# end
```

This example shows how to configure the Fast Ethernet interface preemption delay time:

```
Switch# configure terminal
Switch(conf)# interface fastethernet1/0/1
Switch(conf-if)# switchport backup interface fastethernet1/0/2 preemption delay 150
Switch(conf-if)# end
```

This example shows how to configure the Fast Ethernet interface as the MMU primary VLAN:

```
Switch# configure terminal
Switch(conf)# interface fastethernet1/0/1
Switch(conf-if)# switchport backup interface fastethernet1/0/2 mmu primary vlan 1021
Switch(conf-if)# end
```

You can verify your setting by entering the `show interfaces switchport backup` privileged EXEC command.
### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show interfaces [interface-id]</code></td>
<td>Displays the configured Flex Links and their status on the switch or for the specified interface.</td>
</tr>
<tr>
<td><code>switchport backup</code></td>
<td></td>
</tr>
</tbody>
</table>
## switchport block

Use the `switchport block` interface configuration command on the switch stack or on a standalone switch to prevent unknown multicast or unicast packets from being forwarded. Use the `no` form of this command to allow forwarding unknown multicast or unicast packets.

```
switchport block {multicast | unicast}

no switchport block {multicast | unicast}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>Specify that unknown multicast traffic should be blocked.</td>
</tr>
<tr>
<td>unicast</td>
<td>Specify that unknown unicast traffic should be blocked.</td>
</tr>
</tbody>
</table>

### Defaults

Unknown multicast and unicast traffic is not blocked.

### Command Modes

Interface configuration

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

By default, all traffic with unknown MAC addresses is sent to all ports. You can block unknown multicast or unicast traffic on protected or nonprotected ports. If unknown multicast or unicast traffic is not blocked on a protected port, there could be security issues.

Blocking unknown multicast or unicast traffic is not automatically enabled on protected ports; you must explicitly configure it.

For more information about blocking packets, see the software configuration guide for this release.

### Examples

This example shows how to block unknown multicast traffic on an interface:

```
Switch(config-if)# switchport block multicast
```

You can verify your setting by entering the `show interfaces interface-id switchport` privileged EXEC command.

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show interfaces switchport</code></td>
<td>Displays the administrative and operational status of a switching (nonrouting) port, including port blocking and port protection settings.</td>
</tr>
</tbody>
</table>
**switchport host**

Use the `switchport host` interface configuration command on the switch stack or on a standalone switch to optimize a Layer 2 port for a host connection. The `no` form of this command has no affect on the system.

```
switchport host
```

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
The default is for the port to not be optimized for a host connection.

**Command Modes**
Interface configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
To optimize the port for a host connection, the `switchport host` command sets switch port mode to access, enables spanning tree Port Fast, and disables channel grouping. Only an end station can accept this configuration.

Because spanning tree Port Fast is enabled, you should enter the `switchport host` command only on ports that are connected to a single host. Connecting other switches, hubs, concentrators, or bridges to a fast-start port can cause temporary spanning-tree loops.

Enable the `switchport host` command to decrease the time that it takes to start up packet forwarding.

**Examples**
This example shows how to optimize the port configuration for a host connection:

```
Switch(config-if)# switchport host
switchport mode will be set to access
spanning-tree portfast will be enabled
channel group will be disabled
Switch(config-if)#
```

You can verify your setting by entering the `show interfaces interface-id switchport` privileged EXEC command.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show interfaces switchport</code></td>
<td>Displays the administrative and operational status of a switching (nonrouting) port, including switchport mode.</td>
</tr>
</tbody>
</table>
switchport mode

Use the `switchport mode` interface configuration command on the switch stack or on a standalone switch to configure the VLAN membership mode of a port. Use the `no` form of this command to reset the mode to the appropriate default for the device.

```
switchport mode {access | dot1q-tunnel | dynamic {auto | desirable} | private-vlan | trunk}
no switchport mode {access | dot1q-tunnel | dynamic | trunk}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>access</td>
<td>Set the port to access mode (either static-access or dynamic-access depending on the setting of the <code>switchport access vlan</code> interface configuration command). The port is set to access unconditionally and operates as a nontrunking, single VLAN interface that sends and receives nonencapsulated (non-tagged) frames. An access port can be assigned to only one VLAN.</td>
</tr>
<tr>
<td>dot1q-tunnel</td>
<td>Set the port as an IEEE 802.1Q tunnel port.</td>
</tr>
<tr>
<td>dynamic auto</td>
<td>Set the interface trunking mode dynamic parameter to auto to specify that the interface convert the link to a trunk link. This is the default switchport mode.</td>
</tr>
<tr>
<td>dynamic desirable</td>
<td>Set the interface trunking mode dynamic parameter to desirable to specify that the interface actively attempt to convert the link to a trunk link.</td>
</tr>
<tr>
<td>private-vlan</td>
<td>See the <code>switchport mode private-vlan</code> command.</td>
</tr>
<tr>
<td>trunk</td>
<td>Set the port to trunk unconditionally. The port is a trunking VLAN Layer 2 interface. The port sends and receives encapsulated (tagged) frames that identify the VLAN of origination. A trunk is a point-to-point link between two switches or between a switch and a router.</td>
</tr>
</tbody>
</table>

### Defaults

The default mode is `dynamic auto`. 

### Command Modes

Interface configuration

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(20)SE</td>
<td>The <code>private-vlan</code> keyword was added.</td>
</tr>
<tr>
<td>12.2(25)SE</td>
<td>The <code>dot1q-tunnel</code> keyword was added.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

A configuration that uses the `access`, `dot1q-tunnel`, or `trunk` keywords takes effect only when you configure the port in the appropriate mode by using the `switchport mode` command. The static-access and trunk configuration are saved, but only one configuration is active at a time.

When you enter `access` mode, the interface changes to permanent nontrunking mode and negotiates to convert the link into a nontrunk link even if the neighboring interface does not agree to the change.

When you enter `trunk` mode, the interface changes to permanent trunking mode and negotiates to convert the link into a trunk link even if the interface connecting to it does not agree to the change.
When you enter **dynamic auto** mode, the interface converts the link to a trunk link if the neighboring interface is set to **trunk** or **desirable** mode.

When you enter **dynamic desirable** mode, the interface becomes a trunk interface if the neighboring interface is set to **trunk**, **desirable**, or **auto** mode.

To autonegotiate trunking, the interfaces must be in the same VLAN Trunking Protocol (VTP) domain. Trunk negotiation is managed by the Dynamic Trunking Protocol (DTP), which is a point-to-point protocol. However, some internetworking devices might forward DTP frames improperly, which could cause misconfigurations. To avoid this, you should configure interfaces connected to devices that do not support DTP to not forward DTP frames, which turns off DTP.

- If you do not intend to trunk across those links, use the **switchport mode access** interface configuration command to disable trunking.
- To enable trunking to a device that does not support DTP, use the **switchport mode trunk** and **switchport nonegotiate** interface configuration commands to cause the interface to become a trunk but to not generate DTP frames.

When you enter **dot1q-tunnel**, the port is set unconditionally as an IEEE 802.1Q tunnel port.

Access ports, trunk ports, and tunnel ports are mutually exclusive.

Any IEEE 802.1Q encapsulated IP packets received on a tunnel port can be filtered by MAC access control lists (ACLs), but not by IP ACLs. This is because the switch does not recognize the protocol inside the IEEE 802.1Q header. This restriction applies to router ACLs, port ACLs, and VLAN maps.

Configuring a port as an IEEE 802.1Q tunnel port has these limitations:
- IP routing and fallback bridging are not supported on tunnel ports.
- Tunnel ports do not support IP ACLs.
- If an IP ACL is applied to a trunk port in a VLAN that includes tunnel ports, or if a VLAN map is applied to a VLAN that includes tunnel ports, packets received from the tunnel port are treated as non-IP packets and are filtered with MAC access lists.
- Layer 3 quality of service (QoS) ACLs and other QoS features related to Layer 3 information are not supported on tunnel ports.

For more information about configuring IEEE 802.1Q tunnel ports, see the software configuration guide for this release.

The IEEE 802.1x feature interacts with switchport modes in these ways:
- If you try to enable IEEE 802.1x on a trunk port, an error message appears, and IEEE 802.1x is not enabled. If you try to change the mode of an IEEE 802.1x-enabled port to trunk, the port mode is not changed.
- If you try to enable IEEE 802.1x on a port set to **dynamic auto** or **dynamic desirable**, an error message appears, and IEEE 802.1x is not enabled. If you try to change the mode of an IEEE 802.1x-enabled port to **dynamic auto** or **dynamic desirable**, the port mode is not changed.
- If you try to enable IEEE 802.1x on a dynamic-access (VLAN Query Protocol [VQP]) port, an error message appears, and IEEE 802.1x is not enabled. If you try to change an IEEE 802.1x-enabled port to dynamic VLAN assignment, an error message appears, and the VLAN configuration is not changed.

**Examples**

This example shows how to configure a port for access mode:

```
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# switchport mode access
```
This example shows how set the port to dynamic desirable mode:

```
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# switchport mode dynamic desirable
```

This example shows how to configure a port for trunk mode:

```
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# switchport mode trunk
```

This example shows how to configure a port as an IEEE 802.1Q tunnel port:

```
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# switchport mode dot1q-tunnel
```

You can verify your settings by entering the `show interfaces interface-id switchport` privileged EXEC command and examining information in the Administrative Mode and Operational Mode rows.

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>show interfaces</code></td>
<td>Displays the administrative and operational status of a switching (nonrouting) port, including port blocking and port protection settings.</td>
</tr>
<tr>
<td></td>
<td><code>switchport access</code></td>
<td>Configures a port as a static-access or dynamic-access port.</td>
</tr>
<tr>
<td></td>
<td><code>switchport trunk</code></td>
<td>Configures the trunk characteristics when an interface is in trunking mode.</td>
</tr>
</tbody>
</table>
switchport mode private-vlan

Use the `switchport mode private-vlan` interface configuration command on the switch stack or on a standalone switch to configure a port as a promiscuous or host private VLAN port. Use the `no` form of this command to reset the mode to the appropriate default for the device.

```
switchport mode private-vlan [host | promiscuous]
no switchport mode private-vlan
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>host</td>
<td>Configure the interface as a private-VLAN host port. Host ports belong to private-VLAN secondary VLANs and are either community ports or isolated ports, depending on the VLAN that they belong to.</td>
</tr>
<tr>
<td>promiscuous</td>
<td>Configure the interface as a private-VLAN promiscuous port. Promiscuous ports are members of private-VLAN primary VLANs.</td>
</tr>
</tbody>
</table>

**Defaults**

The default private-VLAN mode is neither host nor promiscuous.

The default switchport mode is `dynamic auto`.

**Command Modes**

Interface configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(20)SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

A private-VLAN host or promiscuous port cannot be a Switched Port Analyzer (SPAN) destination port. If you configure a SPAN destination port as a private-VLAN host or promiscuous port, the port becomes inactive.

Do not configure private VLAN on ports with these other features:

- Dynamic-access port VLAN membership
- Dynamic Trunking Protocol (DTP)
- Port Aggregation Protocol (PAgP)
- Link Aggregation Control Protocol (LACP)
- Multicast VLAN Registration (MVR)
- Voice VLAN

A private-VLAN port cannot be a SPAN destination port.

While a port is part of the private-VLAN configuration, any EtherChannel configuration for it is inactive.

A private-VLAN port cannot be a secure port and should not be configured as a protected port.

For more information about private-VLAN interaction with other features, see the software configuration guide for this release.
We strongly recommend that you enable spanning tree Port Fast and bridge-protocol-data-unit (BPDU) guard on isolated and community host ports to prevent STP loops due to misconfigurations and to speed up STP convergence.

If you configure a port as a private-VLAN host port and you do not configure a valid private-VLAN association by using the `switchport private-vlan host-association` interface configuration command, the interface becomes inactive.

If you configure a port as a private-VLAN promiscuous port and you do not configure a valid private VLAN mapping by using the `switchport private-vlan mapping` interface configuration command, the interface becomes inactive.

**Examples**

This example shows how to configure an interface as a private-VLAN host port and associate it to primary VLAN 20. The interface is a member of secondary isolated VLAN 501 and primary VLAN 20.

```
Switch# configure terminal
Switch(config)# interface fastethernet 1/0/1
Switch(config-if)# switchport mode private-vlan host
Switch(config-if)# switchport private-vlan host-association 20 501
Switch(config-if)# end
```

When you configure a port as a private VLAN host port, you should also enable BPDU guard and Port Fast by using the `spanning-tree portfast bpduguard default` global configuration command and the `spanning-tree portfast` interface configuration command.

```
Switch# configure terminal
Switch(config)# interface fastethernet 1/0/1
Switch(config-if)# switchport mode private-vlan host
Switch(config-if)# switchport private-vlan host-association 20 501
Switch(config-if)# end
```

This example shows how to configure an interface as a private VLAN promiscuous port and map it to a private VLAN. The interface is a member of primary VLAN 20 and secondary VLANs 501 to 503 are mapped to it.

```
Switch# configure terminal
Switch(config)# interface fastethernet 1/0/2
Switch(config-if)# switchport mode private-vlan promiscuous
Switch(config-if)# switchport private-vlan mapping 20 501-503
Switch(config-if)# end
```

You can verify private VLAN switchport mode by using the `show interfaces interface-id switchport` privileged EXEC command.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>private-vlan</code></td>
<td>Configures a VLAN as a community, isolated, or primary VLAN or associates a primary VLAN with secondary VLANs.</td>
</tr>
<tr>
<td><code>show interfaces switchport</code></td>
<td>Displays the administrative and operational status of a switching (nonrouting) port, including private VLAN configuration.</td>
</tr>
<tr>
<td><code>switchport private-vlan</code></td>
<td>Configures private VLAN associations and mappings between primary and secondary VLANs on an interface.</td>
</tr>
</tbody>
</table>
switchport nonegotiate

Use the **switchport nonegotiate** interface configuration command on the switch stack or on a standalone switch to specify that Dynamic Trunking Protocol (DTP) negotiation packets are not sent on the Layer 2 interface. The switch does not engage in DTP negotiation on this interface. Use the **no** form of this command to return to the default setting.

```
switchport nonegotiate
no switchport nonegotiate
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

The default is to use DTP negotiation to learn the trunking status.

**Command Modes**

Interface configuration

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The **no** form of the **switchport nonegotiate** command removes **negotiate** status.

This command is valid only when the interface switchport mode is access or trunk (configured by using the **switchport mode access** or the **switchport mode trunk** interface configuration command). This command returns an error if you attempt to execute it in **dynamic** (**auto** or **desirable**) mode.

Internetworking devices that do not support DTP might forward DTP frames improperly and cause misconfigurations. To avoid this, you should turn off DTP by using the **switchport no negotiate** command to configure the interfaces connected to devices that do not support DTP to not forward DTP frames.

When you enter the **switchport nonegotiate** command, DTP negotiation packets are not sent on the interface. The device does or does not trunk according to the **mode** parameter: **access** or **trunk**.

- If you do not intend to trunk across those links, use the **switchport mode access** interface configuration command to disable trunking.
- To enable trunking on a device that does not support DTP, use the **switchport mode trunk** and **switchport nonegotiate** interface configuration commands to cause the interface to become a trunk but to not generate DTP frames.
**Examples**

This example shows how to cause a port to refrain from negotiating trunking mode and to act as a trunk or access port (depending on the mode set):

```
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# switchport nonegotiate
```

You can verify your setting by entering the `show interfaces interface-id switchport` privileged EXEC command.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show interfaces switchport</code></td>
<td>Displays the administrative and operational status of a switching (nonrouting) port, including port blocking and port protection settings.</td>
</tr>
<tr>
<td><code>switchport mode</code></td>
<td>Configures the VLAN membership mode of a port.</td>
</tr>
</tbody>
</table>
**switchport port-security**

Use the `switchport port-security` interface configuration command without keywords on the switch stack or on a standalone switch to enable port security on the interface. Use the keywords to configure secure MAC addresses, sticky MAC address learning, a maximum number of secure MAC addresses, or the violation mode. Use the **no** form of this command to disable port security or to set the parameters to their default states.

```plaintext
switchport port-security [mac-address mac-address [vlan [vlan-id | {access | voice}]] |
mac-address sticky [mac-address | vlan [vlan-id | {access | voice}]]] [maximum value [vlan
{vlan-list | {access | voice}]]]
```

```plaintext
no switchport port-security [mac-address mac-address [vlan [vlan-id | {access | voice}]] |
mac-address sticky [mac-address | vlan [vlan-id | {access | voice}]]] [maximum value [vlan
{vlan-list | {access | voice}]]]
```

```plaintext
switchport port-security [aging] [violation {protect | restrict | shutdown}]
```

```plaintext
no switchport port-security [aging] [violation {protect | restrict | shutdown}]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>aging</strong></td>
<td>(Optional) See the <code>switchport port-security aging</code> command.</td>
</tr>
<tr>
<td><strong>mac-address</strong></td>
<td>(Optional) Specify a secure MAC address for the interface by entering a 48-bit MAC address. You can add additional secure MAC addresses up to the maximum value configured.</td>
</tr>
<tr>
<td><strong>mac-address</strong></td>
<td></td>
</tr>
<tr>
<td><strong>vlan</strong></td>
<td>(Optional) On a trunk port only, specify the VLAN ID and the MAC address. If no VLAN ID is specified, the native VLAN is used.</td>
</tr>
<tr>
<td><strong>vlan access</strong></td>
<td>(Optional) On an access port only, specify the VLAN as an access VLAN.</td>
</tr>
<tr>
<td><strong>vlan voice</strong></td>
<td>(Optional) On an access port only, specify the VLAN as a voice VLAN.</td>
</tr>
<tr>
<td><strong>mac-address</strong></td>
<td>(Optional) Enable the interface for sticky learning by entering only the <code>mac-address sticky</code> keywords. When sticky learning is enabled, the interface adds all secure MAC addresses that are dynamically learned to the running configuration and converts these addresses to sticky secure MAC addresses.</td>
</tr>
<tr>
<td><strong>maximum</strong></td>
<td>(Optional) Set the maximum number of secure MAC addresses for the interface. The maximum number of secure MAC addresses that you can configure on a switch stack is set by the maximum number of available MAC addresses allowed in the system. This number is determined by the active Switch Database Management (SDM) template. See the <code>sdm prefer</code> command. This number represents the total of available MAC addresses, including those used for other Layer 2 functions and any other secure MAC addresses configured on interfaces. The default setting is 1.</td>
</tr>
</tbody>
</table>

Note: The `voice` keyword is available only if voice VLAN is configured on a port and if that port is not the access VLAN.
### switchport port-security

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Defaults</strong></td>
<td>The default is to disable port security.</td>
</tr>
<tr>
<td></td>
<td>When port security is enabled and no keywords are entered, the default maximum number of secure</td>
</tr>
<tr>
<td></td>
<td>MAC addresses is 1.</td>
</tr>
<tr>
<td></td>
<td>The default violation mode is <strong>shutdown</strong>.</td>
</tr>
<tr>
<td></td>
<td>Sticky learning is disabled.</td>
</tr>
<tr>
<td><strong>Command Modes</strong></td>
<td>Interface configuration</td>
</tr>
</tbody>
</table>

#### vlan [vlan-list]
(Optional) For trunk ports, you can set the maximum number of secure MAC addresses on a VLAN. If the `vlan` keyword is not entered, the default value is used.
- `vlan`—set a per-VLAN maximum value.
- `vlan vlan-list`—set a per-VLAN maximum value on a range of VLANs separated by a hyphen or a series of VLANs separated by commas. For nonspecified VLANs, the per-VLAN maximum value is used.

#### violation
(Optional) Set the security violation mode or the action to be taken if port security is violated. The default is **shutdown**.

#### protect
Set the security violation protect mode. In this mode, when the number of port secure MAC addresses reaches the maximum limit allowed on the port, packets with unknown source addresses are dropped until you remove a sufficient number of secure MAC addresses to drop below the maximum value or increase the number of maximum allowable addresses. You are not notified that a security violation has occurred.

**Note** We do not recommend configuring the protect mode on a trunk port. The protect mode disables learning when any VLAN reaches its maximum limit, even if the port has not reached its maximum limit.

#### restrict
Set the security violation restrict mode. In this mode, when the number of secure MAC addresses reaches the limit allowed on the port, packets with unknown source addresses are dropped until you remove a sufficient number of secure MAC addresses or increase the number of maximum allowable addresses. An SNMP trap is sent, a syslog message is logged, and the violation counter increments.

#### shutdown
Set the security violation shutdown mode. In this mode, the interface is error-disabled when a violation occurs and the port LED turns off. An SNMP trap is sent, a syslog message is logged, and the violation counter increments. When a secure port is in the error-disabled state, you can bring it out of this state by entering the `errdisable recovery cause psecure-violation` global configuration command, or you can manually re-enable it by entering the `shutdown` and `no shut down` interface configuration commands.
A secure port has the following limitations:

- A secure port can be an access port or a trunk port; it cannot be a dynamic access port.
- A secure port cannot be a routed port.
- A secure port cannot be a protected port.
- A secure port cannot be a destination port for Switched Port Analyzer (SPAN).
- A secure port cannot be a private-VLAN port.
- A secure port cannot belong to a Fast EtherChannel or Gigabit EtherChannel port group.
- You cannot configure static secure or sticky secure MAC addresses in the voice VLAN.
- When you enable port security on an interface that is also configured with a voice VLAN, set the maximum allowed secure addresses on the port to two. When the port is connected to a Cisco IP phone, the IP phone requires one MAC address. The Cisco IP phone address is learned on the voice VLAN, but is not learned on the access VLAN. If you connect a single PC to the Cisco IP phone, no additional MAC addresses are required. If you connect more than one PC to the Cisco IP phone, you must configure enough secure addresses to allow one for each PC and one for the Cisco IP phone.
- Voice VLAN is supported only on access ports and not on trunk ports.
- When you enter a maximum secure address value for an interface, if the new value is greater than the previous value, the new value overrides the previously configured value. If the new value is less than the previous value and the number of configured secure addresses on the interface exceeds the new value, the command is rejected.
- The switch does not support port security aging of sticky secure MAC addresses.

A security violation occurs when the maximum number of secure MAC addresses are in the address table and a station whose MAC address is not in the address table attempts to access the interface or when a station whose MAC address is configured as a secure MAC address on another secure port attempts to access the interface.

If you enable port security on a voice VLAN port and connect a single PC to the Cisco IP phone, you should set the maximum allowed secure addresses on the port to two. If you enable port security on a voice VLAN port and connect more than one PC to the Cisco IP phone, you must configure enough secure addresses to allow one for each PC and one for the Cisco IP phone.

When a secure port is in the error-disabled state, you can bring it out of this state by entering the `errdisable recovery cause psecure-violation` global configuration command, or you can manually re-enable it by entering the `shutdown` and `no shut down` interface configuration commands.

Setting a maximum number of addresses to one and configuring the MAC address of an attached device ensures that the device has the full bandwidth of the port.
When you enter a maximum secure address value for an interface, this occurs:

- If the new value is greater than the previous value, the new value overrides the previously configured value.
- If the new value is less than the previous value and the number of configured secure addresses on the interface exceeds the new value, the command is rejected.

Sticky secure MAC addresses have these characteristics:

- When you enable sticky learning on an interface by using the `switchport port-security mac-address sticky` interface configuration command, the interface converts all the dynamic secure MAC addresses, including those that were dynamically learned before sticky learning was enabled, to sticky secure MAC addresses and adds all sticky secure MAC addresses to the running configuration.
- If you disable sticky learning by using the `no switchport port-security mac-address sticky` interface configuration command or the running configuration is removed, the sticky secure MAC addresses remain part of the running configuration but are removed from the address table. The addresses that were removed can be dynamically reconfigured and added to the address table as dynamic addresses.
- When you configure sticky secure MAC addresses by using the `switchport port-security mac-address sticky mac-address` interface configuration command, these addresses are added to the address table and the running configuration. If port security is disabled, the sticky secure MAC addresses remain in the running configuration.
- If you save the sticky secure MAC addresses in the configuration file, when the switch restarts or the interface shuts down, the interface does not need to relearn these addresses. If you do not save the sticky secure addresses, they are lost. If sticky learning is disabled, the sticky secure MAC addresses are converted to dynamic secure addresses and are removed from the running configuration.
- If you disable sticky learning and enter the `switchport port-security mac-address sticky mac-address` interface configuration command, an error message appears, and the sticky secure MAC address is not added to the running configuration.

**Examples**

This example shows how to enable port security on a port and to set the maximum number of secure addresses to 5. The violation mode is the default, and no secure MAC addresses are configured.

```
Switch(config)# interface gigabitethernet 2/0/2
Switch(config-if)# switchport mode access
Switch(config-if)# switchport port-security
Switch(config-if)# switchport port-security maximum 5
```

This example shows how to configure a secure MAC address and a VLAN ID on a port:

```
Switch(config)# interface gigabitethernet 2/0/2
Switch(config-if)# switchport mode trunk
Switch(config-if)# switchport port-security
Switch(config-if)# switchport port-security mac-address 1000.2000.3000 vlan 3
```

This example shows how to enable sticky learning and to enter two sticky secure MAC addresses on a port:

```
Switch(config)# interface gigabitethernet 2/0/2
Switch(config-if)# switchport mode access
Switch(config-if)# switchport port-security
Switch(config-if)# switchport port-security mac-address sticky 1000.2000.3000 1000.2000.3001
```
Switch(config)# interface gigabitethernet 2/0/2
Switch(config-if)# switchport port-security mac-address sticky
Switch(config-if)# switchport port-security mac-address sticky 0000.0000.4141
Switch(config-if)# switchport port-security mac-address sticky 0000.0000.000f

You can verify your settings by using the `show port-security` privileged EXEC command.

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>clear port-security</code></td>
<td>Deletes from the MAC address table a specific type of secure address or all the secure addresses on the switch or an interface.</td>
</tr>
<tr>
<td><code>show port-security address</code></td>
<td>Displays all the secure addresses configured on the switch.</td>
</tr>
<tr>
<td><code>show port-security interface interface-id</code></td>
<td>Displays port security configuration for the switch or for the specified interface.</td>
</tr>
</tbody>
</table>
switchport port-security aging

Use the `switchport port-security aging` interface configuration command on the switch stack or on a standalone switch to set the aging time and type for secure address entries or to change the aging behavior for secure addresses on a particular port. Use the `no` form of this command to disable port security aging or to set the parameters to their default states.

```
switchport port-security aging {static | time time | type {absolute | inactivity}}
no switchport port-security aging {static | time | type}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>static</td>
<td>Enable aging for statically configured secure addresses on this port.</td>
</tr>
<tr>
<td>time time</td>
<td>Specify the aging time for this port. The range is 0 to 1440 minutes. If the time is 0, aging is disabled for this port.</td>
</tr>
<tr>
<td>type</td>
<td>Set the aging type.</td>
</tr>
<tr>
<td>absolute</td>
<td>Set absolute aging type. All the secure addresses on this port age out exactly after the time (minutes) specified and are removed from the secure address list.</td>
</tr>
<tr>
<td>inactivity</td>
<td>Set the inactivity aging type. The secure addresses on this port age out only if there is no data traffic from the secure source address for the specified time period.</td>
</tr>
</tbody>
</table>

### Defaults

The port security aging feature is disabled. The default time is 0 minutes.  
The default aging type is absolute.  
The default static aging behavior is disabled.

### Command Modes

Interface configuration

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

To enable secure address aging for a particular port, set the aging time to a value other than 0 for that port.

To allow limited time access to particular secure addresses, set the aging type as `absolute`. When the aging time lapses, the secure addresses are deleted.

To allow continuous access to a limited number of secure addresses, set the aging type as `inactivity`. This removes the secure address when it become inactive, and other addresses can become secure.

To allow unlimited access to a secure address, configure it as a secure address, and disable aging for the statically configured secure address by using the `no switchport port-security aging static` interface configuration command.
Examples

This example sets the aging time as 2 hours for absolute aging for all the secure addresses on the port:

```
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# switchport port-security aging time 120
```

This example sets the aging time as 2 minutes for inactivity aging type with aging enabled for configured secure addresses on the port:

```
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# switchport port-security aging time 2
Switch(config-if)# switchport port-security aging type inactivity
Switch(config-if)# switchport port-security aging static
```

This example shows how to disable aging for configured secure addresses:

```
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# no switchport port-security aging static
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show port-security</code></td>
<td>Displays the port security settings defined for the port.</td>
</tr>
<tr>
<td><code>switchport port-security</code></td>
<td>Enables port security on a port, restricts the use of the port to a user-defined group of stations, and configures secure MAC addresses.</td>
</tr>
</tbody>
</table>
**switchport priority extend**

Use the `switchport priority extend` interface configuration command on the switch stack or on a standalone switch to set a port priority for the incoming untagged frames or the priority of frames received by the IP phone connected to the specified port. Use the `no` form of this command to return to the default setting.

```
switchport priority extend { cos value | trust }
no switchport priority extend
```

### Syntax Description

- **cos value**
  - Set the IP phone port to override the IEEE 802.1p priority received from the PC or the attached device with the specified class of service (CoS) value. The range is 0 to 7. Seven is the highest priority. The default is 0.

- **trust**
  - Set the IP phone port to trust the IEEE 802.1p priority received from the PC or the attached device.

### Defaults

The default port priority is set to a CoS value of 0 for untagged frames received on the port.

### Command Modes

Interface configuration

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

When voice VLAN is enabled, you can configure the switch to send the Cisco Discovery Protocol (CDP) packets to instruct the IP phone how to send data packets from the device attached to the access port on the Cisco IP Phone. You must enable CDP on the switch port connected to the Cisco IP Phone to send the configuration to the Cisco IP Phone. (CDP is enabled by default globally and on all switch interfaces.)

You should configure voice VLAN on switch access ports. You can configure a voice VLAN only on Layer 2 ports.

Before you enable voice VLAN, we recommend that you enable quality of service (QoS) on the switch by entering the `mls qos` global configuration command and configure the port trust state to trust by entering the `mls qos trust cos` interface configuration command.

### Examples

This example shows how to configure the IP phone connected to the specified port to trust the received IEEE 802.1p priority:

```
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# switchport priority extend trust
```

You can verify your settings by entering the `show interfaces interface-id switchport` privileged EXEC command.
## Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show interfaces</code></td>
<td>Displays the administrative and operational status of a switching (nonrouting) port.</td>
</tr>
<tr>
<td><code>switchport voice vlan</code></td>
<td>Configures the voice VLAN on the port.</td>
</tr>
</tbody>
</table>
**switchport private-vlan**

Use the `switchport private-vlan` interface configuration command on the switch stack or on a standalone switch to define a private-VLAN association for an isolated or community port or a mapping for a promiscuous port. Use the no form of this command to remove the private-VLAN association or mapping from the port.

```
switchport private-vlan {association {host primary-vlan-id secondary-vlan-id | mapping
 primary-vlan-id {add | remove} secondary-vlan-list | host-association primary-vlan-id
 secondary-vlan-id | mapping primary-vlan-id {add | remove} secondary-vlan-list}

no switchport private-vlan {association {host | mapping} | host-association | mapping}
```

This command is available only if the stack master is running the IP services image, formerly known as the enhanced multilayer image (EMI). We strongly recommend that the stack members also run the EMI when private VLANs are configured.

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>association</td>
<td>Define a private-VLAN association for a port.</td>
</tr>
<tr>
<td>host</td>
<td>Define a private-VLAN association for a community or isolated host port.</td>
</tr>
<tr>
<td>primary-vlan-id</td>
<td>The VLAN ID of the private-VLAN primary VLAN. The range is from 2 to 1001 and 1006 to 4094.</td>
</tr>
<tr>
<td>secondary-vlan-id</td>
<td>The VLAN ID of the private-VLAN secondary (isolated or community) VLAN. The range is from 2 to 1001 and 1006 to 4094.</td>
</tr>
<tr>
<td>mapping</td>
<td>Define private-VLAN mapping for a promiscuous port.</td>
</tr>
<tr>
<td>add</td>
<td>Associate secondary VLANs to the primary VLAN.</td>
</tr>
<tr>
<td>remove</td>
<td>Clear the association between secondary VLANs and the primary VLAN.</td>
</tr>
<tr>
<td>secondary-vlan-list</td>
<td>One or more secondary (isolated or community) VLANs to be mapped to the primary VLAN.</td>
</tr>
<tr>
<td>host-association</td>
<td>Define a private-VLAN association for a community or isolated host port.</td>
</tr>
</tbody>
</table>

### Defaults

The default is to have no private-VLAN association or mapping configured.

### Command Modes

Interface configuration

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(20)SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

Private-VLAN association or mapping has no effect on the port unless the port has been configured as a private-VLAN host or promiscuous port by using the `switchport mode private-vlan {host | promiscuous}` interface configuration command.

If the port is in private-VLAN host or promiscuous mode but the VLANs do not exist, the command is allowed, but the port is made inactive.
The secondary_vlan_list parameter cannot contain spaces. It can contain multiple comma-separated items. Each item can be a single private-VLAN ID or a hyphenated range of private-VLAN IDs. The list can contain one isolated VLAN and multiple community VLANs.

You can map a promiscuous port to only one primary VLAN. If you enter the switchport private-vlan mapping command on a promiscuous port that is already mapped to a primary and secondary VLAN, the primary VLAN mapping is overwritten.

You can add or remove secondary VLANs from promiscuous port private-VLAN mappings by using the add and remove keywords.

Entering the switchport private-vlan association host command has the same effect as entering the switchport private-vlan host-association interface configuration command.

Entering the switchport private-vlan association mapping command has the same effect as entering the switchport private-vlan mapping interface configuration command.

**Examples**

This example shows how to configure an interface as a private VLAN host port and associate it with primary VLAN 20 and secondary VLAN 501:

```
Switch# configure terminal
Switch(config)# interface fastethernet 1/0/1
Switch(config-if)# switchport mode private-vlan host
Switch(config-if)# switchport private-vlan host-association 20 501
Switch(config-if)# end
```

This example shows how to configure an interface as a private-VLAN promiscuous port and map it to a primary VLAN and secondary VLANs:

```
Switch# configure terminal
Switch(config)# interface fastethernet 1/0/2
Switch(config-if)# switchport mode private-vlan promiscuous
Switch(config-if)# switchport private-vlan mapping 20 501-502
Switch(config-if)# end
```

You can verify private-VLAN mapping by using the show interfaces private-vlan mapping privileged EXEC command. You can verify private VLANs and interfaces configured on the switch stack by using the show vlan private-vlan privileged EXEC command.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show interfaces private-vlan mapping</td>
<td>Displays private VLAN mapping information for VLAN SVIs.</td>
</tr>
<tr>
<td>show vlan private-vlan</td>
<td>Displays all private VLAN relationships or types configured on the switch stack.</td>
</tr>
</tbody>
</table>
switchport protected

Use the `switchport protected` interface configuration command on the switch stack or on a standalone switch to isolate unicast, multicast, and broadcast traffic at Layer 2 from other protected ports on the same switch. Use the `no` form of this command to disable protection on the port.

```
switchport protected
no switchport protected
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

No protected port is defined. All ports are nonprotected.

**Command Modes**

Interface configuration

**Command History**

```
Release Modification
T2.1(11)AX This command was introduced.
```

**Usage Guidelines**

The switchport protection feature is local to the switch; communication between protected ports on the same switch is possible only through a Layer 3 device. To prevent communication between protected ports on different switches, you must configure the protected ports for unique VLANs on each switch and configure a trunk link between the switches. A protected port is different from a secure port.

A protected port does not forward any traffic (unicast, multicast, or broadcast) to any other port that is also a protected port. Data traffic cannot be forwarded between protected ports at Layer 2; only control traffic, such as PIM packets, is forwarded because these packets are processed by the CPU and forwarded in software. All data traffic passing between protected ports must be forwarded through a Layer 3 device.

Because a switch stack represents a single logical switch, Layer 2 traffic is not forwarded between any protected ports in the switch stack, whether they are on the same or different switches in the stack.

Port monitoring does not work if both the monitor and monitored ports are protected ports.

**Examples**

This example shows how to enable a protected port on an interface:

```
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# switchport protected
```

You can verify your settings by entering the `show interfaces interface-id switchport` privileged EXEC command.
### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show interfaces</td>
<td>Displays the administrative and operational status of a switching (nonrouting) port, including port blocking and port protection settings.</td>
</tr>
<tr>
<td>switchport</td>
<td>Prevents unknown multicast or unicast traffic on the interface.</td>
</tr>
</tbody>
</table>
Use the `switchport trunk` interface configuration command on the switch stack or on a standalone switch to set the trunk characteristics when the interface is in trunking mode. Use the `no` form of this command to reset a trunking characteristic to the default.

```
switchport trunk { allowed vlan vlan-list | encapsulation { dot1q | isl | negotiate } | native vlan vlan-id | pruning vlan vlan-list }
no switchport trunk { allowed vlan | encapsulation | native vlan | { pruning vlan } }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>allowed vlan vlan-list</td>
<td>Set the list of allowed VLANs that can receive and send traffic on this interface in tagged format when in trunking mode. See the following <code>vlan-list</code> format. The <code>none</code> keyword is not valid. The default is <code>all</code>.</td>
</tr>
<tr>
<td>encapsulation dot1q</td>
<td>Set the encapsulation format on the trunk port to IEEE 802.1Q. With this format, the switch supports simultaneous tagged and untagged traffic on a port.</td>
</tr>
<tr>
<td>encapsulation isl</td>
<td>Set the encapsulation format on the trunk port to Inter-Switch Link (ISL). The switch encapsulates all received and sent packets with an ISL header and filters native frames received from an ISL trunk port.</td>
</tr>
<tr>
<td>encapsulation negotiate</td>
<td>Specify that if Dynamic Inter-Switch Link (DISL) and Dynamic Trunking Protocol (DTP) negotiation do not resolve the encapsulation format, ISL is the selected format.</td>
</tr>
<tr>
<td>native vlan vlan-id</td>
<td>Set the native VLAN for sending and receiving untagged traffic when the interface is in IEEE 802.1Q trunking mode. The range is 1 to 4094.</td>
</tr>
<tr>
<td>pruning vlan vlan-list</td>
<td>Set the list of VLANs that are eligible for VTP pruning when in trunking mode. The <code>all</code> keyword is not valid.</td>
</tr>
</tbody>
</table>

The `vlan-list` format is `all | none | [add | remove | except] vlan-atom [ ,vlan-atom...]` where:

- **all** specifies all VLANs from 1 to 4094. This keyword is not allowed on commands that do not permit all VLANs in the list to be set at the same time.
- **none** means an empty list. This keyword is not allowed on commands that require certain VLANs to be set or at least one VLAN to be set.
- **add** adds the defined list of VLANs to those currently set instead of replacing the list. Valid IDs are from 1 to 1005; extended-range VLANs (VLAN IDs greater than 1005) are valid in some cases.
  
  **Note** You can add extended-range VLANs to the allowed VLAN list, but not to the pruning-eligible VLAN list.

  Separate nonconsecutive VLAN IDs with a comma; use a hyphen to designate a range of IDs.

- **remove** removes the defined list of VLANs from those currently set instead of replacing the list. Valid IDs are from 1 to 1005; extended-range VLAN IDs are valid in some cases.
  
  **Note** You can remove extended-range VLANs from the allowed VLAN list, but you cannot remove them from the pruning-eligible list.
Separate nonconsecutive VLAN IDs with a comma; use a hyphen to designate a range of IDs.

- **except** lists the VLANs that should be calculated by inverting the defined list of VLANs. (VLANs are added except the ones specified.) Valid IDs are from 1 to 1005. Separate nonconsecutive VLAN IDs with a comma; use a hyphen to designate a range of IDs.

- **vlan-atom** is either a single VLAN number from 1 to 4094 or a continuous range of VLANs described by two VLAN numbers, the lesser one first, separated by a hyphen.

### Defaults

The default encapsulation is negotiate.

VLAN 1 is the default native VLAN ID on the port.

The default for all VLAN lists is to include all VLANs.

### Command Modes

Interface configuration

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(14)EA1</td>
<td>The <strong>allowed vlan</strong> <strong>vlan-list</strong> add, remove, and except keywords were modified to accept the VLAN1 and VLANs 1002 to 1005 values.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

**Encapsulation:**

- The **switchport trunk encapsulation** command is supported only for platforms and interface hardware that can support both ISL and IEEE 802.1Q formats.

- You cannot configure one end of the trunk as an IEEE 802.1Q trunk and the other end as an ISL or nontrunk port. However, you can configure one port as an ISL trunk and a different port on the same switch as an IEEE 802.1Q trunk.

- If you enter the **negotiate** keywords and DTP negotiation does not resolve the encapsulation format, ISL is the selected format. The **no** form of the command resets the trunk encapsulation format to the default.

- The **no** form of the **encapsulation** command resets the encapsulation format to the default.

**Native VLANs:**

- All untagged traffic received on an IEEE 802.1Q trunk port is forwarded with the native VLAN configured for the port.

- If a packet has a VLAN ID that is the same as the sending-port native VLAN ID, the packet is sent without a tag; otherwise, the switch sends the packet with a tag.

- The **no** form of the **native vlan** command resets the native mode VLAN to the appropriate default VLAN for the device.
Allowed VLAN:

- To reduce the risk of spanning-tree loops or storms, you can disable VLAN 1 on any individual VLAN trunk port by removing VLAN 1 from the allowed list. When you remove VLAN 1 from a trunk port, the interface continues to send and receive management traffic, for example, Cisco Discovery Protocol (CDP), Port Aggregation Protocol (PAgP), Link Aggregation Control Protocol (LACP), Dynamic Trunking Protocol (DTP), and VLAN Trunking Protocol (VTP) in VLAN 1.
- The `no` form of the `allowed vlan` command resets the list to the default list, which allows all VLANs.

Trunk pruning:

- The pruning-eligible list applies only to trunk ports.
- Each trunk port has its own eligibility list.
- If you do not want a VLAN to be pruned, remove it from the pruning-eligible list. VLANs that are pruning-eligible receive flooded traffic.
- VLAN 1, VLANs 1002 to 1005, and extended-range VLANs (VLANs 1006 to 4094) cannot be pruned.

Examples

This example shows how to cause a port configured as a switched interface to encapsulate in IEEE 802.1Q trunking format regardless of its default trunking format in trunking mode:

```
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# switchport trunk encapsulation dot1q
```

This example shows how to configure VLAN 3 as the default for the port to send all untagged traffic:

```
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# switchport trunk native vlan 3
```

This example shows how to add VLANs 1, 2, 5, and 6 to the allowed list:

```
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# switchport trunk allowed vlan add 1,2,5,6
```

This example shows how to remove VLANs 3 and 10 to 15 from the pruning-eligible list:

```
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# switchport trunk pruning vlan remove 3,10-15
```

You can verify your settings by entering the `show interfaces interface-id switchport` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show interfaces switchport</code></td>
<td>Displays the administrative and operational status of a switching (nonrouting) port, including port blocking and port protection settings.</td>
</tr>
<tr>
<td><code>switchport mode</code></td>
<td>Configures the VLAN membership mode of a port.</td>
</tr>
</tbody>
</table>
**switchport voice vlan**

Use the `switchport voice vlan` interface configuration command on the switch stack or on a standalone switch to configure voice VLAN on the port. Use the `no` form of this command to return to the default setting.

```
switchport voice vlan {vlan-id | dot1p | none | untagged}
no switchport voice vlan
```

**Syntax Description**

- `vlan-id` Specify the VLAN to be used for voice traffic. The range is 1 to 4094. By default, the IP phone forwards the voice traffic with an IEEE 802.1Q priority of 5.
- `dot1p` Configure the telephone to use IEEE 802.1p priority tagging and uses VLAN 0 (the native VLAN). By default, the Cisco IP phone forwards the voice traffic with an IEEE 802.1p priority of 5.
- `none` Do not instruct the IP telephone about the voice VLAN. The telephone uses the configuration from the telephone key pad.
- `untagged` Configure the telephone to send untagged voice traffic. This is the default for the telephone.

**Defaults**

The switch default is not to automatically configure the telephone (`none`).

The telephone default is not to tag frames.

**Command Modes**

Interface configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You should configure voice VLAN on Layer 2 access ports.

You must enable Cisco Discovery Protocol (CDP) on the switchport connected to the Cisco IP phone for the switch to send configuration information to the phone. CDP is enabled by default globally and on the interface.

Before you enable voice VLAN, we recommend you enable quality of service (QoS) on the switch by entering the `mls qos` global configuration command and configure the port trust state to trust by entering the `mls qos trust cos` interface configuration command.

When you enter a VLAN ID, the IP phone forwards voice traffic in IEEE 802.1Q frames, tagged with the specified VLAN ID. The switch puts IEEE 802.1Q voice traffic in the voice VLAN.

When you select `dot1q`, `none`, or `untagged`, the switch puts the indicated voice traffic in the access VLAN.

In all configurations, the voice traffic carries a Layer 2 IP precedence value. The default is 5 for voice traffic.
When you enable port security on an interface that is also configured with a voice VLAN, set the maximum allowed secure addresses on the port to two. When the port is connected to a Cisco IP phone, the IP phone requires one MAC address. The Cisco IP phone address is learned on the voice VLAN, but is not learned on the access VLAN. If you connect a single PC to the Cisco IP phone, no additional MAC addresses are required. If you connect more than one PC to the Cisco IP phone, you must configure enough secure addresses to allow one for each PC and one for the Cisco IP phone.

If any type of port security is enabled on the access VLAN, dynamic port security is automatically enabled on the voice VLAN.

You cannot configure static secure MAC addresses in the voice VLAN.

A voice-VLAN port cannot be a private-VLAN port.

The Port Fast feature is automatically enabled when voice VLAN is configured. When you disable voice VLAN, the Port Fast feature is not automatically disabled.

**Examples**

This example shows how to configure VLAN 2 as the voice VLAN for the port:

```
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# switchport voice vlan 2
```

You can verify your settings by entering the `show interfaces interface-id switchport` privileged EXEC command.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show interfaces interface-id switchport</code></td>
<td>Displays the administrative and operational status of a switching (nonrouting) port.</td>
</tr>
<tr>
<td><code>switchport priority extend</code></td>
<td>Decides how the device connected to the specified port handles priority traffic received on its incoming port.</td>
</tr>
</tbody>
</table>
system env temperature threshold yellow

Use the `system env temperature threshold yellow` global configuration command on the switch stack or on a standalone switch to configure the difference between the yellow and red temperature thresholds which determines the value of yellow threshold. Use the no form of this command to return to the default value.

```
 system env temperature threshold yellow [value]
 no system env temperature threshold yellow [value]
```

**Syntax Description**

| value | Specify the difference between the yellow and red threshold values (in Celsius). The range is 10 to 25. The default value is 10. |

**Defaults**

These are the default values:

<table>
<thead>
<tr>
<th>Switch</th>
<th>Difference between Yellow and Red</th>
<th>Red</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalyst 3750G-48TS</td>
<td>10°C</td>
<td>66°C</td>
</tr>
<tr>
<td>Catalyst 3750G-48PS</td>
<td>10°C</td>
<td>68°C</td>
</tr>
<tr>
<td>Catalyst 3750G-24TS-1U</td>
<td>10°C</td>
<td>65°C</td>
</tr>
<tr>
<td>Catalyst 3750G-24PS</td>
<td>10°C</td>
<td>61°C</td>
</tr>
</tbody>
</table>

1. You cannot configure the red temperature threshold.

**Command Modes**

Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Though visible on all switches, this command is only valid on these switches:

- Catalyst 3750G-48TS
- Catalyst 3750G-48PS
- Catalyst 3750G-24TS-1U
- Catalyst 3750G-24PS
You cannot configure the green and red thresholds but can configure the yellow threshold. Use the `system env temperature threshold yellow value` global configuration command to specify the difference between the yellow and red thresholds and to configure the yellow threshold. For example, if the red threshold is 66 degrees C and you want to configure the yellow threshold as 51 degrees C, set the difference between the thresholds as 15 by using the `system env temperature threshold yellow 15` command.

**Note**
The internal temperature sensor in the switch measures the internal system temperature and might vary ±5 degrees C.

**Examples**
This example sets 15 as the difference between the yellow and red thresholds:

```
Switch(config)# system env temperature threshold yellow 15
Switch(config)#
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show env temperature status</code></td>
<td>Displays the temperature status and threshold levels.</td>
</tr>
</tbody>
</table>
**system mtu**

Use the `system mtu` global configuration command on the switch stack or on a standalone switch to set the maximum packet size or maximum transmission unit (MTU) size for Gigabit Ethernet ports, for routed ports, Fast Ethernet (10/100) ports. Use the `no` form of this command to restore the global MTU value to its default value.

```
system mtu {bytes | jumbo bytes | routing bytes}
```

```
no system mtu
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>bytes</code></td>
<td>Set the system MTU for ports that are set to 10 or 100 Mbps. The range is 1500 to 1998 bytes. This is the maximum MTU received at 10/100-Mbps Ethernet switch ports.</td>
</tr>
<tr>
<td><code>jumbo bytes</code></td>
<td>Set the system jumbo MTU for Gigabit Ethernet ports operating at 1000 Mbps or greater. The range is 1500 to 9000 bytes. This is the maximum MTU received at the physical port for Gigabit Ethernet ports.</td>
</tr>
<tr>
<td><code>routing bytes</code></td>
<td>Set the maximum MTU for routed packets. You can also set the maximum MTU to be advertised by the routing protocols that support the configured MTU size. The range is 1500 bytes to the system MTU value. The system routing MTU is the maximum MTU for routed packets and is also the maximum MTU that the switch advertises in routing updates for protocols such as OSPF.</td>
</tr>
</tbody>
</table>

**Defaults**

The default MTU size for all ports is 1500 bytes. However, if you configure a different value for the system MTU, that configured value becomes the default MTU size for routed ports when it is applied following a switch reset.

**Command Modes**

Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(25)SEC</td>
<td>The <code>bytes</code> range is now 1500 to 1998.</td>
</tr>
<tr>
<td>12.2(25)SED</td>
<td>The <code>routing bytes</code> keywords were added.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

When you use this command to change the system MTU or jumbo MTU size, you must reset the switch before the new configuration takes effect. The `system mtu routing` command does not require a switch reset to take effect.

Gigabit Ethernet ports operating at 1000 Mbps are not affected by the `system mtu` command, and 10/100-Mbps ports are not affected by the `system mtu jumbo` command.

You can use the `system mtu routing` command to configure the MTU size on routed ports.
You cannot configure a routing MTU size that exceeds the system MTU size. If you change the system
MTU size to a value smaller than the currently configured routing MTU size, the configuration change
is accepted, but not applied until the next switch reset. When the configuration change takes effect, the
routing MTU size defaults to the new system MTU size.

If you enter a value that is outside the range for the specific type of switch, the value is not accepted.

The switch does not support setting the MTU on a per-interface basis.

The size of frames that can be received by the switch CPU is limited to 1998 bytes, regardless of the
value entered with the system mtu command. Although forwarded or routed frames are usually not
received by the CPU, some packets (for example, control traffic, SNMP, Telnet, and routing protocols)
are sent to the CPU.

Because the switch does not fragment packets, it drops:

- switched packets larger than the packet size supported on the egress interface
- routed packets larger than the routing MTU value

For example, if the system mtu value is 1998 bytes and the system mtu jumbo value is 5000 bytes,
packets up to 5000 bytes can be received on interfaces operating at 1000 Mbps. However, although a
packet larger than 1998 bytes can be received on an interface operating at 1000 Mbps, if its destination
interface is operating at 10 or 100 Mbps, the packet is dropped.

This example shows how to set the maximum jumbo packet size for Gigabit Ethernet ports operating at
1000 Mbps or greater to 1800 bytes:

```
Switch(config)# system mtu jumbo 1800
Switch(config)# exit
Switch# reload
```

You can verify your setting by entering the show system mtu privileged EXEC command.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show system mtu</td>
<td>Displays the packet size set for Fast Ethernet, Gigabit Ethernet, and routed ports.</td>
</tr>
</tbody>
</table>
### test cable-diagnostics tdr

Use the `test cable-diagnostics tdr` privileged EXEC command on the switch stack or on a standalone switch to run the Time Domain Reflector (TDR) feature on an interface.

```
 test cable-diagnostics tdr interface interface-id
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>interface-id</code></td>
<td>Specify the interface on which to run TDR.</td>
</tr>
</tbody>
</table>

| Defaults | There is no default. |

| Command Modes | Privileged EXEC |

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T2.1(19)EA1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usage Guidelines</th>
<th>TDR is supported only on 10/100/100 copper Ethernet ports. It is not supported on 10/100 ports, 10-Gigabit module ports, or on SFP module ports. For more information about TDR, see the software configuration guide for this release.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>After you run TDR by using the <code>test cable-diagnostics tdr interface interface-id</code> command, use the <code>show cable-diagnostics tdr interface interface-id</code> privileged EXEC command to display the results.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examples</th>
<th>This example shows how to run TDR on an interface:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Switch# <code>test cable-diagnostics tdr interface gigabitethernet1/0/2</code></td>
</tr>
<tr>
<td></td>
<td>TDR test started on interface Gi1/0/2</td>
</tr>
<tr>
<td></td>
<td>A TDR test can take a few seconds to run on an interface</td>
</tr>
<tr>
<td></td>
<td>Use 'show cable-diagnostics tdr' to read the TDR results.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examples</th>
<th>If you enter the <code>test cable-diagnostics tdr interface interface-id</code> command on an interface that has a link status of up and a speed of 10 or 100 Mbps, these messages appear:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Switch# <code>test cable-diagnostics tdr interface gigabitethernet1/0/3</code></td>
</tr>
<tr>
<td></td>
<td>TDR test on Gi1/0/3 will affect link state and traffic</td>
</tr>
<tr>
<td></td>
<td>TDR test started on interface Gi1/0/3</td>
</tr>
<tr>
<td></td>
<td>A TDR test can take a few seconds to run on an interface</td>
</tr>
<tr>
<td></td>
<td>Use 'show cable-diagnostics tdr' to read the TDR results.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>show cable-diagnostics tdr</code></td>
<td>Displays the TDR results.</td>
</tr>
</tbody>
</table>
traceroute mac

Use the **traceroute mac** privileged EXEC command on the switch stack or on a standalone switch to display the Layer 2 path taken by the packets from the specified source MAC address to the specified destination MAC address.

```
traceroute mac [interface interface-id] [source-mac-address] [interface interface-id] [destination-mac-address] [vlan vlan-id] [detail]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface</td>
<td>(Optional) Specify an interface on the source or destination switch.</td>
</tr>
<tr>
<td>source-mac-address</td>
<td>Specify the MAC address of the source switch in hexadecimal format.</td>
</tr>
<tr>
<td>destination-mac-address</td>
<td>Specify the MAC address of the destination switch in hexadecimal format.</td>
</tr>
<tr>
<td>vlan vlan-id</td>
<td>(Optional) Specify the VLAN on which to trace the Layer 2 path that the packets take from the source switch to the destination switch. Valid VLAN IDs are 1 to 4094.</td>
</tr>
<tr>
<td>detail</td>
<td>(Optional) Specify that detailed information appears.</td>
</tr>
</tbody>
</table>

**Defaults**

There is no default.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(14)EA1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

For Layer 2 traceroute to function properly, Cisco Discovery Protocol (CDP) must be enabled on all the switches in the network. Do not disable CDP.

When the switch detects a device in the Layer 2 path that does not support Layer 2 traceroute, the switch continues to send Layer 2 trace queries and lets them time out.

The maximum number of hops identified in the path is ten.

Layer 2 traceroute supports only unicast traffic. If you specify a multicast source or destination MAC address, the physical path is not identified, and an error message appears.

The **traceroute mac** command output shows the Layer 2 path when the specified source and destination addresses belong to the same VLAN. If you specify source and destination addresses that belong to different VLANs, the Layer 2 path is not identified, and an error message appears.

If the source or destination MAC address belongs to multiple VLANs, you must specify the VLAN to which both the source and destination MAC addresses belong. If the VLAN is not specified, the path is not identified, and an error message appears.
The Layer 2 traceroute feature is not supported when multiple devices are attached to one port through hubs (for example, multiple CDP neighbors are detected on a port). When more than one CDP neighbor is detected on a port, the Layer 2 path is not identified, and an error message appears.

This feature is not supported in Token Ring VLANs.

**Examples**

This example shows how to display the Layer 2 path by specifying the source and destination MAC addresses:

```
Switch# traceroute mac 0000.0201.0601 0000.0201.0201
Source 0000.0201.0601 found on con6[WS-C3750-12T] (2.2.6.6)
con6 (2.2.6.6) :Gi0/0/1 => Gi0/0/3
con5 (2.2.5.5) : Gi0/0/3 => Gi0/0/1
con1 (2.2.1.1) : Gi0/0/1 => Gi0/0/2
con2 (2.2.2.2) : Gi0/0/2 => Gi0/0/1
Destination 0000.0201.0201 found on con2[WS-C3550-24] (2.2.2.2)
Layer 2 trace completed
```

This example shows how to display the Layer 2 path by using the `detail` keyword:

```
Switch# traceroute mac 0000.0201.0601 0000.0201.0201 detail
Source 0000.0201.0601 found on con6[WS-C3750-12T] (2.2.6.6)
con6 / WS-C3750-12T / 2.2.6.6 :
 Gi0/0/2 [auto, auto] => Gi0/0/3 [auto, auto]
con5 / WS-C2950G-24-EI / 2.2.5.5 :
 Fa0/3 [auto, auto] => Gi0/1 [auto, auto]
con1 / WS-C3550-12G / 2.2.1.1 :
 Gi0/1 [auto, auto] => Gi0/2 [auto, auto]
con2 / WS-C3550-24 / 2.2.2.2 :
 Gi0/2 [auto, auto] => Fa0/1 [auto, auto]
Destination 0000.0201.0201 found on con2[WS-C3550-24] (2.2.2.2)
Layer 2 trace completed.
```

This example shows how to display the Layer 2 path by specifying the interfaces on the source and destination switches:

```
Switch# traceroute mac interface fastethernet0/1 0000.0201.0601 interface fastethernet0/3 0000.0201.0201
Source 0000.0201.0601 found on con6[WS-C3750-12T] (2.2.6.6)
con6 (2.2.6.6) :Gi0/0/1 => Gi0/0/3
con5 (2.2.5.5) : Gi0/0/3 => Gi0/0/1
con1 (2.2.1.1) : Gi0/0/1 => Gi0/0/2
con2 (2.2.2.2) : Gi0/0/2 => Gi0/0/1
Destination 0000.0201.0201 found on con2[WS-C3550-24] (2.2.2.2)
Layer 2 trace completed
```

This example shows the Layer 2 path when the switch is not connected to the source switch:

```
Switch# traceroute mac 0000.0201.0501 0000.0201.0201 detail
Source not directly connected, tracing source Source 0000.0201.0501 found on con5[WS-C3750-12T] (2.2.5.5)
con5 / WS-C3750-12T / 2.2.5.5 :
 Gi0/0/1 [auto, auto] => Gi0/0/3 [auto, auto]
con1 / WS-C3550-12G / 2.2.1.1 :
 Gi0/1 [auto, auto] => Gi0/2 [auto, auto]
con2 / WS-C3550-24 / 2.2.2.2 :
 Gi0/2 [auto, auto] => Fa0/1 [auto, auto]
Destination 0000.0201.0201 found on con2[WS-C3550-24] (2.2.2.2)
Layer 2 trace completed.
```
This example shows the Layer 2 path when the switch cannot find the destination port for the source MAC address:

Switch# traceroute mac 0000.0011.1111 0000.0201.0201
Error: Source Mac address not found.
Layer2 trace aborted.

This example shows the Layer 2 path when the source and destination devices are in different VLANs:

Switch# traceroute mac 0000.0201.0601 0000.0301.0201
Error: Source and destination macs are on different vlans.
Layer2 trace aborted.

This example shows the Layer 2 path when the destination MAC address is a multicast address:

Switch# traceroute mac 0000.0201.0601 0100.0201.0201
Invalid destination mac address

This example shows the Layer 2 path when source and destination switches belong to multiple VLANs:

Switch# traceroute mac 0000.0201.0601 0000.0201.0201
Error: Mac found on multiple vlans.
Layer2 trace aborted.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>traceroute mac ip</td>
<td>Displays the Layer 2 path taken by the packets from the specified source IP address or hostname to the specified destination IP address or hostname.</td>
</tr>
</tbody>
</table>
**traceroute mac ip**

Use the `traceroute mac ip` privileged EXEC command on the switch stack or on a standalone switch to display the Layer 2 path taken by the packets from the specified source IP address or hostname to the specified destination IP address or hostname.

```
traceroute mac ip {source-ip-address | source-hostname} {destination-ip-address | destination-hostname} [detail]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>source-ip-address</td>
<td>Specify the IP address of the source switch as a 32-bit quantity in dotted-decimal format.</td>
</tr>
<tr>
<td>destination-ip-address</td>
<td>Specify the IP address of the destination switch as a 32-bit quantity in dotted-decimal format.</td>
</tr>
<tr>
<td>source-hostname</td>
<td>Specify the IP hostname of the source switch.</td>
</tr>
<tr>
<td>destination-hostname</td>
<td>Specify the IP hostname of the destination switch.</td>
</tr>
<tr>
<td>detail</td>
<td>(Optional) Specify that detailed information appears.</td>
</tr>
</tbody>
</table>

**Defaults**

There is no default.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(14)EA1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

For Layer 2 traceroute to function properly, Cisco Discovery Protocol (CDP) must be enabled on all the switches in the network. Do not disable CDP.

When the switch detects an device in the Layer 2 path that does not support Layer 2 traceroute, the switch continues to send Layer 2 trace queries and lets them time out.

The maximum number of hops identified in the path is ten.

The `traceroute mac ip` command output shows the Layer 2 path when the specified source and destination IP addresses are in the same subnet. When you specify the IP addresses, the switch uses Address Resolution Protocol (ARP) to associate the IP addresses with the corresponding MAC addresses and the VLAN IDs.

- If an ARP entry exists for the specified IP address, the switch uses the associated MAC address and identifies the physical path.
- If an ARP entry does not exist, the switch sends an ARP query and tries to resolve the IP address. The IP addresses must be in the same subnet. If the IP address is not resolved, the path is not identified, and an error message appears.
The Layer 2 traceroute feature is not supported when multiple devices are attached to one port through hubs (for example, multiple CDP neighbors are detected on a port). When more than one CDP neighbor is detected on a port, the Layer 2 path is not identified, and an error message appears.

This feature is not supported in Token Ring VLANs.

### Examples

This example shows how to display the Layer 2 path by specifying the source and destination IP addresses and by using the `detail` keyword:

```plaintext
Switch# traceroute mac ip 2.2.66.66 2.2.22.22 detail
Translating IP to mac
2.2.66.66 => 0000.0201.0601
2.2.22.22 => 0000.0201.0201
Source 0000.0201.0601 found on con6[WS-C2950G-24-EI] (2.2.6.6)
con6 / WS-C3750-12T / 2.2.6.6 :
 G10/0/1 [auto, auto] => G10/0/3 [auto, auto]
con5 / WS-C2950G-24-EI / 2.2.5.5 :
 Fa0/3 [auto, auto] => G10/1 [auto, auto]
con1 / WS-C3550-12G / 2.2.1.1 :
 G10/1 [auto, auto] => G10/2 [auto, auto]
con2 / WS-C3550-24 / 2.2.2.2 :
 G10/2 [auto, auto] => Fa0/1 [auto, auto]
Destination 0000.0201.0201 found on con2[WS-C3550-24] (2.2.2.2)
Layer 2 trace completed.
```

This example shows how to display the Layer 2 path by specifying the source and destination hostnames:

```plaintext
Switch# traceroute mac ip con6 con2
Translating IP to mac
2.2.66.66 => 0000.0201.0601
2.2.22.22 => 0000.0201.0201
Source 0000.0201.0601 found on con6
con6 (2.2.6.6) : Gi0/0/1 => Gi0/0/3
con5 (2.2.5.5) : G10/0/3 => G10/1
con1 (2.2.1.1) : G10/0/1 => G10/2
con2 (2.2.2.2) : G10/0/2 => Fa0/1
Destination 0000.0201.0201 found on con2
Layer 2 trace completed.
```

This example shows the Layer 2 path when ARP cannot associate the source IP address with the corresponding MAC address:

```plaintext
Switch# traceroute mac ip 2.2.66.66 2.2.77.77
Arp failed for destination 2.2.77.77.
Layer2 trace aborted.
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>traceroute mac</td>
<td>Displays the Layer 2 path taken by the packets from the specified source MAC address to the specified destination MAC address.</td>
</tr>
</tbody>
</table>
trust

Use the trust policy-map class configuration command on the switch stack or on a standalone switch to define a trust state for traffic classified through the class policy-map configuration or the class-map global configuration command. Use the no form of this command to return to the default setting.

```
trust [cos | dscp | ip-precedence]

no trust [cos | dscp | ip-precedence]
```

**Syntax Description**

- `cos` (Optional) Classify an ingress packet by using the packet class of service (CoS) value. For an untagged packet, the port default CoS value is used.
- `dscp` (Optional) Classify an ingress packet by using the packet Differentiated Services Code Point (DSCP) values (most significant 6 bits of 8-bit service-type field). For a non-IP packet, the packet CoS value is used if the packet is tagged. If the packet is untagged, the default port CoS value is used to map CoS to DSCP.
- `ip-precedence` (Optional) Classify an ingress packet by using the packet IP-precedence value (most significant 3 bits of 8-bit service-type field). For a non-IP packet, the packet CoS value is used if the packet is tagged. If the packet is untagged, the port default CoS value is used to map CoS to DSCP.

**Defaults**

The action is not trusted. If no keyword is specified when the command is entered, the default is `dscp`.

**Command Modes**

Policy-map class configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use this command to distinguish the quality of service (QoS) trust behavior for certain traffic from other traffic. For example, incoming traffic with certain DSCP values can be trusted. You can configure a class map to match and trust the DSCP values in the incoming traffic.

Trust values set with this command supersede trust values set with the `mls qos trust` interface configuration command.

The `trust` command is mutually exclusive with `set` policy-map class configuration command within the same policy map.

If you specify `trust cos`, QoS uses the received or default port CoS value and the CoS-to-DSCP map to generate a DSCP value for the packet.

If you specify `trust dscp`, QoS uses the DSCP value from the ingress packet. For non-IP packets that are tagged, QoS uses the received CoS value; for non-IP packets that are untagged, QoS uses the default port CoS value. In either case, the DSCP value for the packet is derived from the CoS-to-DSCP map.
If you specify **trust ip-precedence**, QoS uses the IP precedence value from the ingress packet and the IP-precedence-to-DSCP map. For non-IP packets that are tagged, QoS uses the received CoS value; for non-IP packets that are untagged, QoS uses the default port CoS value. In either case, the DSCP for the packet is derived from the CoS-to-DSCP map.

To return to policy-map configuration mode, use the **exit** command. To return to privileged EXEC mode, use the **end** command.

### Examples

This example shows how to define a port trust state to trust incoming DSCP values for traffic classified with `class1`:

```
Switch(config)# policy-map policy1
Switch(config-pmap)# class class1
Switch(config-pmap-c)# trust dscp
Switch(config-pmap-c)# police 1000000 20000 exceed-action policed-dscp-transmit
Switch(config-pmap-c)# exit
```

You can verify your settings by entering the **show policy-map** privileged EXEC command.

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>class</strong></td>
<td>Defines a traffic classification match criteria (through the <strong>police</strong>, <strong>set</strong>, and <strong>trust</strong> policy-map class configuration commands) for the specified class-map name.</td>
</tr>
<tr>
<td><strong>police</strong></td>
<td>Defines a policer for classified traffic.</td>
</tr>
<tr>
<td><strong>policy-map</strong></td>
<td>Creates or modifies a policy map that can be attached to multiple ports to specify a service policy.</td>
</tr>
<tr>
<td><strong>set</strong></td>
<td>Classifies IP traffic by setting a DSCP or IP-precedence value in the packet.</td>
</tr>
<tr>
<td><strong>show policy-map</strong></td>
<td>Displays QoS policy maps.</td>
</tr>
</tbody>
</table>
udld

Use the udld global configuration command on the switch stack or on a standalone switch to enable aggressive or normal mode in the UniDirectional Link Detection (UDLD) and to set the configurable message timer time. Use the no form of the command to disable aggressive or normal mode UDLD on all fiber-optic ports.

    udld {aggressive | enable | message time message-timer-interval}
    no udld {aggressive | enable | message}

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aggressive</td>
<td>Enable UDLD in aggressive mode on all fiber-optic interfaces.</td>
</tr>
<tr>
<td>enable</td>
<td>Enable UDLD in normal mode on all fiber-optic interfaces.</td>
</tr>
<tr>
<td>message time</td>
<td>Configure the period of time between UDLD probe messages on ports that are</td>
</tr>
<tr>
<td></td>
<td>in the advertisement phase and are determined to be bidirectional. The</td>
</tr>
<tr>
<td></td>
<td>range is 1 to 90 seconds.</td>
</tr>
</tbody>
</table>

Defaults

UDLD is disabled on all interfaces.

The message timer is set at 60 seconds.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(25)SEC</td>
<td>The range for the message-timer-interval was changed from 7 to 90 seconds</td>
</tr>
<tr>
<td></td>
<td>to 1 to 90 seconds.</td>
</tr>
</tbody>
</table>

Usage Guidelines

UDLD supports two modes of operation: normal (the default) and aggressive. In normal mode, UDLD detects unidirectional links due to misconnected interfaces on fiber-optic connections. In aggressive mode, UDLD also detects unidirectional links due to one-way traffic on fiber-optic and twisted-pair links and due to misconnected interfaces on fiber-optic links. For information about normal and aggressive modes, see the “Understanding UDLD” section in the software configuration guide for this release.

If you change the message time between probe packets, you are making a trade-off between the detection speed and the CPU load. By decreasing the time, you can make the detection-response faster but increase the load on the CPU.

This command affects fiber-optic interfaces only. Use the udld interface configuration command to enable UDLD on other interface types.
You can use these commands to reset an interface shut down by UDLD:

- The `udld reset` privileged EXEC command to reset all interfaces shut down by UDLD
- The `shutdown` and `no shutdown` interface configuration commands
- The `no udld enable` global configuration command followed by the `udld {aggressive | enable}` global configuration command to re-enable UDLD globally
- The `no udld port` interface configuration command followed by the `udld port` or `udld port aggressive` interface configuration command to re-enable UDLD on the specified interface
- The `errdisable recovery cause udld` and `errdisable recovery interval interval` global configuration commands to automatically recover from the UDLD error-disabled state

**Examples**

This example shows how to enable UDLD on all fiber-optic interfaces:

```
Switch(config)# udld enable
```

You can verify your setting by entering the `show udld` privileged EXEC command.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show udld</code></td>
<td>Displays UDLD administrative and operational status for all ports or the specified port.</td>
</tr>
<tr>
<td><code>udld port</code></td>
<td>Enables UDLD on an individual interface or prevents a fiber-optic interface from being enabled by the <code>udld</code> global configuration command.</td>
</tr>
<tr>
<td><code>udld reset</code></td>
<td>Resets all interfaces shut down by UDLD and permits traffic to again pass through.</td>
</tr>
</tbody>
</table>
# udld port

Use the `udld port` interface configuration command on the switch stack or on a standalone switch to enable the UniDirectional Link Detection (UDLD) on an individual interface or prevent a fiber-optic interface from being enabled by the `udld` global configuration command. Use the `no` form of this command to return to the `udld` global configuration command setting or to disable UDLD if entered for a nonfiber-optic port.

```
udld port [aggressive]
no udld port [aggressive]
```

## Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aggressive</td>
<td>Enable UDLD in aggressive mode on the specified interface.</td>
</tr>
</tbody>
</table>

## Defaults

On fiber-optic interfaces, UDLD is not enabled, not in aggressive mode, and not disabled. For this reason, fiber-optic interfaces enable UDLD according to the state of the `udld enable` or `udld aggressive` global configuration command.

On nonfiber-optic interfaces, UDLD is disabled.

## Command Modes

Interface configuration

## Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(20)SE</td>
<td>The <code>disable</code> keyword was removed.</td>
</tr>
</tbody>
</table>

## Usage Guidelines

A UDLD-capable port cannot detect a unidirectional link if it is connected to a UDLD-incapable port of another switch.

UDLD supports two modes of operation: normal (the default) and aggressive. In normal mode, UDLD detects unidirectional links due to misconnected interfaces on fiber-optic connections. In aggressive mode, UDLD also detects unidirectional links due to one-way traffic on fiber-optic and twisted-pair links and due to misconnected interfaces on fiber-optic links. For information about normal and aggressive modes, see the “Configuring UDLD” chapter in the software configuration guide for this release.

To enable UDLD in normal mode, use the `udld port` interface configuration command. To enable UDLD in aggressive mode, use the `udld port aggressive` interface configuration command.

Use the `no udld port` command on fiber-optic ports to return control of UDLD to the `udld enable` global configuration command or to disable UDLD on nonfiber-optic ports.

Use the `udld port aggressive` command on fiber-optic ports to override the setting of the `udld enable` or `udld aggressive` global configuration command. Use the `no` form on fiber-optic ports to remove this setting and to return control of UDLD enabling to the `udld` global configuration command or to disable UDLD on nonfiber-optic ports.
You can use these commands to reset an interface shut down by UDLD:

- The `udld reset` privileged EXEC command to reset all interfaces shut down by UDLD
- The `shutdown` and `no shutdown` interface configuration commands
- The `no udld enable` global configuration command followed by the `udld {aggressive | enable}` global configuration command to re-enable UDLD globally
- The `no udld port` interface configuration command followed by the `udld port or udld port aggressive` interface configuration command to re-enable UDLD on the specified interface
- The `errdisable recovery cause udld` and `errdisable recovery interval interval` global configuration commands to automatically recover from the UDLD error-disabled state

**Examples**

This example shows how to enable UDLD on an port:

```
Switch(config)# interface gigabitethernet6/0/1
Switch(config-if)# udld port
```

This example shows how to disable UDLD on a fiber-optic interface despite the setting of the `udld` global configuration command:

```
Switch(config)# interface gigabitethernet6/0/1
Switch(config-if)# no udld port
```

You can verify your settings by entering the `show running-config` or the `show udld interface` privileged EXEC command.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show udld</code></td>
<td>Displays UDLD administrative and operational status for all ports or the specified port.</td>
</tr>
<tr>
<td><code>udld</code></td>
<td>Enables aggressive or normal mode in UDLD or sets the configurable message timer time.</td>
</tr>
<tr>
<td><code>udld reset</code></td>
<td>Resets all interfaces shut down by UDLD and permits traffic to again pass through.</td>
</tr>
</tbody>
</table>
udld reset

Use the udld reset privileged EXEC command to reset all interfaces disabled by the UniDirectional Link Detection (UDLD) and permit traffic to begin passing through them again (though other features, such as spanning tree, Port Aggregation Protocol (PAgP), and Dynamic Trunking Protocol (DTP) still have their normal effects, if enabled).

```
udld reset
```

### Syntax Description

This command has no arguments or keywords.

### Command Modes

Privileged EXEC

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

If the interface configuration is still enabled for UDLD, these ports begin to run UDLD again and are disabled for the same reason if the problem has not been corrected.

### Examples

This example shows how to reset all interfaces disabled by UDLD:

```
Switch# udld reset
1 ports shutdown by UDLD were reset.
```

You can verify your setting by entering the `show udld` privileged EXEC command.

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show udld</code></td>
<td>Displays UDLD administrative and operational status for all ports or the specified port.</td>
</tr>
<tr>
<td><code>udld</code></td>
<td>Enables aggressive or normal mode in UDLD or sets the configurable message timer time.</td>
</tr>
<tr>
<td><code>udld port</code></td>
<td>Enables UDLD on an individual interface or prevents a fiber-optic interface from being enabled by the udld global configuration command.</td>
</tr>
</tbody>
</table>
vlan (global configuration)

Use the `vlan` global configuration command on the switch stack or on a standalone switch to add a VLAN and to enter the config-vlan mode. Use the `no` form of this command to delete the VLAN. Configuration information for normal-range VLANs (VLAN IDs 1 to 1005) is always saved in the VLAN database. When VLAN Trunking Protocol (VTP) mode is transparent, you can create extended-range VLANs (VLAN IDs greater than 1005), and the VTP mode, domain name, and the VLAN configuration are saved in the switch running configuration file. You can save configurations in the switch startup configuration file by entering the `copy running-config startup-config` privileged EXEC command.

```
vlan vlan-id

no vlan vlan-id
```

**Syntax Description**

- `vlan-id`: ID of the VLAN to be added and configured. For `vlan-id`, the range is 1 to 4094. You can enter a single VLAN ID, a series of VLAN IDs separated by commas, or a range of VLAN IDs separated by hyphens.

**Defaults**

This command has no default settings.

**Command Modes**

Global configuration

**Command History**

- **Release**: 12.1(11)AX
- **Modification**: This command was introduced.

**Usage Guidelines**

You must use the `vlan vlan-id` global configuration command to add extended-range VLANs (VLAN IDs 1006 to 4094). Before configuring VLANs in the extended range, you must use the `vtp transparent` global configuration or VLAN configuration command to put the switch in VTP transparent mode. Extended-range VLANs are not learned by VTP and are not added to the VLAN database, but when VTP mode is transparent, VTP mode and domain name and all VLAN configurations are saved in the running configuration, and you can save them in the switch startup configuration file.

When you save the VLAN and VTP configurations in the startup configuration file and reboot the switch, the configuration is selected in these ways:

- If both the VLAN database and the configuration file show the VTP mode as transparent and the VTP domain names match, the VLAN database is ignored. The VTP and VLAN configurations in the startup configuration file are used. The VLAN database revision number remains unchanged in the VLAN database.

- If the VTP mode is server, or if the startup VTP mode or domain names do not match the VLAN database, the VTP mode and the VLAN configuration for the first 1005 VLANs use the VLAN database information.

If you try to create an extended-range VLAN when the switch is not in VTP transparent mode, the VLAN is rejected, and you receive an error message.
If you enter an invalid VLAN ID, you receive an error message and do not enter config-vlan mode.

Entering the `vlan` command with a VLAN ID enables config-vlan mode. When you enter the VLAN ID of an existing VLAN, you do not create a new VLAN, but you can modify VLAN parameters for that VLAN. The specified VLANs are added or modified when you exit the config-vlan mode. Only the `shutdown` command (for VLANs 1 to 1005) takes effect immediately.

These configuration commands are available in config-vlan mode. The `no` form of each command returns the characteristic to its default state.

Although all commands are visible, the only VLAN configuration commands that are supported on extended-range VLANs are `mtu mtu-size`, `private-vlan`, and `remote-span`. For extended-range VLANs, all other characteristics must remain at the default state.

- **are are-number**: defines the maximum number of all-routes explorer (ARE) hops for this VLAN. This keyword applies only to TrCRF VLANs. The range is 0 to 13. The default is 7. If no value is entered, 0 is assumed to be the maximum.

- **backupcrf**: specifies the backup CRF mode. This keyword applies only to TrCRF VLANs.
  - `enable` backup CRF mode for this VLAN.
  - `disable` backup CRF mode for this VLAN (the default).

- **bridge {bridge-number|type}**: specifies the logical distributed source-routing bridge, the bridge that interconnects all logical rings having this VLAN as a parent VLAN in FDDI-NET, Token Ring-NET, and TrBRF VLANs. The range is 0 to 15. The default bridge number is 0 (no source-routing bridge) for FDDI-NET, TrBRF, and Token Ring-NET VLANs. The `type` keyword applies only to TrCRF VLANs and is one of these:
  - `srb` (source-route bridging)
  - `srt` (source-route transparent) bridging VLAN

- **exit**: applies changes, increments the VLAN database revision number (VLANs 1 to 1005 only), and exits config-vlan mode.

- **media**: defines the VLAN media type. See Table 2-38 for valid commands and syntax for different media types.

  **Note** The switch supports only Ethernet ports. You configure only FDDI and Token Ring media-specific characteristics for VLAN Trunking Protocol (VTP) global advertisements to other switches. These VLANs are locally suspended.

  - `ethernet` is Ethernet media type (the default).
  - `fddi` is FDDI media type.
  - `fd-net` is FDDI network entity title (NET) media type.
  - `tokenring` is Token Ring media type if the VTP v2 mode is disabled, or TrCRF if the VTP Version 2 (v) mode is enabled.
  - `tr-net` is Token Ring network entity title (NET) media type if the VTP v2 mode is disabled or TrBRF media type if the VTP v2 mode is enabled.

- **mtu mtu-size**: specifies the maximum transmission unit (MTU) (packet size in bytes). The range is 1500 to 18190. The default is 1500 bytes.
- **name vlan-name**: names the VLAN with an ASCII string from 1 to 32 characters that must be unique within the administrative domain. The default is VLANxxxx where xxxx represents four numeric digits (including leading zeros) equal to the VLAN ID number.

- **no**: negates a command or returns it to the default setting.

- **parent parent-vlan-id**: specifies the parent VLAN of an existing FDDI, Token Ring, or TrCRF VLAN. This parameter identifies the TrBRF to which a TrCRF belongs and is required when defining a TrCRF. The range is 0 to 1005. The default parent VLAN ID is 0 (no parent VLAN) for FDDI and Token Ring VLANs. For both Token Ring and TrCRF VLANs, the parent VLAN ID must already exist in the database and be associated with a Token Ring-NET or TrBRF VLAN.

- **private-vlan**: configure the VLAN as a private VLAN community, isolated, or primary VLAN or configure the association between private-VLAN primary and secondary VLANs. For more information, see the `private-vlan` command.

- **remote-span**: configure the VLAN as a Remote SPAN (RSPAN) VLAN. When the RSPAN feature is added to an existing VLAN, the VLAN is first deleted and is then recreated with the RSPAN feature. Any access ports are deactivated until the RSPAN feature is removed. If VTP is enabled, the new RSPAN VLAN is propagated by VTP for VLAN-IDs that are lower than 1024. Learning is disabled on the VLAN. See the `remote-span` command for more information.

- **ring ring-number**: defines the logical ring for an FDDI, Token Ring, or TrCRF VLAN. The range is 1 to 4095. The default for Token Ring VLANs is 0. For FDDI VLANs, there is no default.

- **said said-value**: specifies the security association identifier (SAID) as documented in IEEE 802.10. The range is 1 to 4294967294, and the number must be unique within the administrative domain. The default value is 100000 plus the VLAN ID number.

- **shutdown**: shuts down VLAN switching on the VLAN. This command takes effect immediately. Other commands take effect when you exit config-vlan mode.

- **state**: specifies the VLAN state:
  - **active** means the VLAN is operational (the default).
  - **suspend** means the VLAN is suspended. Suspended VLANs do not pass packets.

- **ste ste-number**: defines the maximum number of spanning-tree explorer (STE) hops. This keyword applies only to TrCRF VLANs. The range is 0 to 13. The default is 7.

- **stp type**: defines the spanning-tree type for FDDI-NET, Token Ring-NET, or TrBRF VLANs. For FDDI-NET VLANs, the default STP type is `ieee`. For Token Ring-NET VLANs, the default STP type is `ibm`. For FDDI and Token Ring VLANs, the default is no type specified.
  - **ieee** for IEEE Ethernet STP running source-route transparent (SRT) bridging.
  - **ibm** for IBM STP running source-route bridging (SRB).
  - **auto** for STP running a combination of source-route transparent bridging (IEEE) and source-route bridging (IBM).

- **tb-vlan1 tb-vlan1-id** and **tb-vlan2 tb-vlan2-id**: specifies the first and second VLAN to which this VLAN is translationally bridged. Translational VLANs translate FDDI or Token Ring to Ethernet, for example. The range is 0 to 1005. If no value is specified, 0 (no translational bridging) is assumed.
### Table 2-38 Valid Commands and Syntax for Different Media Types

<table>
<thead>
<tr>
<th>Media Type</th>
<th>Valid Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet</td>
<td>name vlan-name, media ethernet, state {suspend</td>
</tr>
<tr>
<td>FDDI</td>
<td>name vlan-name, media fddi, state {suspend</td>
</tr>
<tr>
<td>FDDI-NET</td>
<td>name vlan-name, media fd-net, state {suspend</td>
</tr>
</tbody>
</table>

*If VTP v2 mode is disabled, do not set the stp type to auto.*

<table>
<thead>
<tr>
<th>Token Ring</th>
<th>VTP v1 mode is enabled.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>name vlan-name, media tokenring, state {suspend</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Token Ring concentrator relay function (TrCRF)</th>
<th>VTP v2 mode is enabled.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>name vlan-name, media tokenring, state {suspend</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Token Ring-NET</th>
<th>VTP v1 mode is enabled.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>name vlan-name, media tr-net, state {suspend</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Token Ring bridge relay function (TrBRF)</th>
<th>VTP v2 mode is enabled.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>name vlan-name, media tr-net, state {suspend</td>
</tr>
</tbody>
</table>

*Table 2-39 describes the rules for configuring VLANs.*

### Table 2-39 VLAN Configuration Rules

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTP v2 mode is enabled, and you are configuring a TrCRF VLAN media type.</td>
<td>Specify a parent VLAN ID of a TrBRF that already exists in the database. Specify a ring number. Do not leave this field blank. Specify unique ring numbers when TrCRF VLANs have the same parent VLAN ID. Only one backup concentrator relay function (CRF) can be enabled.</td>
</tr>
</tbody>
</table>

| VTP v2 mode is enabled, and you are configuring VLANs other than TrCRF media type. | Do not specify a backup CRF. |
Examples

This example shows how to add an Ethernet VLAN with default media characteristics. The default includes a *vlan-name* of *VLANxxx*, where *xxx* represents four numeric digits (including leading zeros) equal to the VLAN ID number. The default *media* option is *ethernet*; the *state* option is *active*. The default *said-value* variable is 100000 plus the VLAN ID; the *mtu-size* variable is 1500; the *stp-type* option is *ieee*. When you enter the `exit` config-vlan configuration command, the VLAN is added if it did not already exist; otherwise, this command does nothing.

This example shows how to create a new VLAN with all default characteristics and enter config-vlan mode:

```
Switch(config)# vlan 200
Switch(config-vlan)# exit
Switch(config)#
```

This example shows how to create a new extended-range VLAN with all the default characteristics, to enter config-vlan mode, and to save the new VLAN in the switch startup configuration file:

```
Switch(config)# vtp mode transparent
Switch(config)# vlan 2000
Switch(config-vlan)# end
Switch# copy running-config startup config
```

You can verify your setting by entering the `show vlan` privileged EXEC command.
<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><strong>show vlan</strong></td>
<td>Displays the parameters for all configured VLANs or one VLAN (if the VLAN ID or name is specified) in the administrative domain.</td>
</tr>
<tr>
<td></td>
<td><strong>vlan</strong></td>
<td>Configures normal-range VLANs in the VLAN database.</td>
</tr>
</tbody>
</table>
vlan (VLAN configuration)

Use the `vlan` VLAN configuration command on the switch stack or on a standalone switch to configure VLAN characteristics for a normal-range VLAN (VLAN IDs 1 to 1005) in the VLAN database. You access VLAN configuration mode by entering the `vlan database` privileged EXEC command. Use the no form of this command without additional parameters to delete a VLAN. Use the no form with parameters to change its configured characteristics.

```
 vlan vlan-id [are are-number] [backupcrf {enable | disable}] [bridge bridge-number | type {srb | srt}] [media {ethernet | fddi | fdi-net | tokenring | tr-net}] [mtu mtu-size] [name vlan-name] [parent parent-vlan-id] [ring ring-number] [said said-value] [state {suspend | active}] [ste ste-number] [stp type {ieee | ibm | auto}] [tb-vlan1 tb-vlan1-id] [tb-vlan2 tb-vlan2-id]

 no vlan vlan-id [are are-number] [backupcrf {enable | disable}] [bridge bridge-number | type {srb | srt}] [media {ethernet | fddi | fdi-net | tokenring | tr-net}] [mtu mtu-size] [name vlan-name] [parent parent-vlan-id] [ring ring-number] [said said-value] [state {suspend | active}] [ste ste-number] [stp type {ieee | ibm | auto}] [tb-vlan1 tb-vlan1-id] [tb-vlan2 tb-vlan2-id]
```

Extended-range VLANs (with VLAN IDs from 1006 to 4094) cannot be added or modified by using these commands. To add extended-range VLANs, use the `vlan (global configuration)` command to enter config-vlan mode.

**Note**
The switch supports only Ethernet ports. You configure only FDDI and Token Ring media-specific characteristics for VLAN Trunking Protocol (VTP) global advertisements to other switches. These VLANs are locally suspended.

### Syntax Description

- **vlan-id**
  ID of the configured VLAN. The range is 1 to 1005 and must be unique within the administrative domain. Do not enter leading zeros.

- **are are-number**
  (Optional) Specify the maximum number of all-routes explorer (ARE) hops for this VLAN. This keyword applies only to TrCRF VLANs. The range is 0 to 13. If no value is entered, 0 is assumed to be the maximum.

- **backupcrf {enable | disable}**
  (Optional) Specify the backup CRF mode. This keyword applies only to TrCRF VLANs.
  - **enable** backup CRF mode for this VLAN.
  - **disable** backup CRF mode for this VLAN.

- **bridge bridge-number|type {srb | srt}**
  (Optional) Specify the logical distributed source-routing bridge, the bridge that interconnects all logical rings having this VLAN as a parent VLAN in FDDI-NET, Token Ring-NET, and TrBRF VLANs.
  The range is 0 to 15.
  The type keyword applies only to TrCRF VLANs and is one of these:
  - **srb** (source-route bridging)
  - **srt** (source-route transparent) bridging VLAN
media {ethernet | fddi | fd-net | tokenring | tr-net} (Optional) Specify the VLAN media type. Table 2-40 lists the valid syntax for each media type.

- ethernet is Ethernet media type (the default).
- fddi is FDDI media type.
- fd-net is FDDI network entity title (NET) media type.
- tokenring is Token Ring media type if the VTP v2 mode is disabled, or TrCRF if the VTP v2 mode is enabled.
- tr-net is Token Ring network entity title (NET) media type if the VTP v2 mode is disabled or TrBRF media type if the VTP v2 mode is enabled.

mtu mtu-size (Optional) Specify the maximum transmission unit (MTU) (packet size in bytes). The range is 1500 to 18190.

name vlan-name (Optional) Specify the VLAN name, an ASCII string from 1 to 32 characters that must be unique within the administrative domain.

parent parent-vlan-id (Optional) Specify the parent VLAN of an existing FDDI, Token Ring, or TrCRF VLAN. This parameter identifies the TrBRF to which a TrCRF belongs and is required when defining a TrCRF. The range is 0 to 1005.

ring ring-number (Optional) Specify the logical ring for an FDDI, Token Ring, or TrCRF VLAN. The range is 1 to 4095.

said said-value (Optional) Enter the security association identifier (SAID) as documented in IEEE 802.10. The range is 1 to 4294967294, and the number must be unique within the administrative domain.

state {suspend | active} (Optional) Specify the VLAN state:

- If active, the VLAN is operational.
- If suspend, the VLAN is suspended. Suspended VLANs do not pass packets.

ste ste-number (Optional) Specify the maximum number of spanning-tree explorer (STE) hops. This keyword applies only to TrCRF VLANs. The range is 0 to 13.

stp type {ieee | ibm | auto} (Optional) Specify the spanning-tree type for FDDI-NET, Token Ring-NET, or TrBRF VLAN.

- ieee for IEEE Ethernet STP running source-route transparent (SRT) bridging.
- ibm for IBM STP running source-route bridging (SRB).
- auto for STP running a combination of source-route transparent bridging (IEEE) and source-route bridging (IBM).

tb-vlan1 tb-vlan1-id and tb-vlan2 tb-vlan2-id (Optional) Specify the first and second VLAN to which this VLAN is translationally bridged. Translational VLANs translate FDDI or Token Ring to Ethernet, for example. The range is 0 to 1005. Zero is assumed if no value is specified.
Table 2-40 shows the valid syntax options for different media types.

### Table 2-40  Valid Syntax for Different Media Types

<table>
<thead>
<tr>
<th>Media Type</th>
<th>Valid Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet</td>
<td>`vlan vlan-id [name vlan-name] media ethernet [state {suspend</td>
</tr>
<tr>
<td></td>
<td><code>[said said-value] [mtu mtu-size] [tb-vlan1 tb-vlan1-id] [tb-vlan2 tb-vlan2-id]</code></td>
</tr>
<tr>
<td>FDDI</td>
<td>`vlan vlan-id [name vlan-name] media fddi [state {suspend</td>
</tr>
<tr>
<td></td>
<td><code>[said said-value] [mtu mtu-size] [ring ring-number] [parent parent-vlan-id]</code></td>
</tr>
<tr>
<td></td>
<td><code>[tb-vlan1 tb-vlan1-id] [tb-vlan2 tb-vlan2-id]</code></td>
</tr>
<tr>
<td>FDDI-NET</td>
<td>`vlan vlan-id [name vlan-name] media fd-net [state {suspend</td>
</tr>
<tr>
<td></td>
<td><code>[said said-value] [mtu mtu-size] [bridge bridge-number]</code></td>
</tr>
<tr>
<td></td>
<td>`[stp type {ieee</td>
</tr>
<tr>
<td></td>
<td>If VTP v2 mode is disabled, do not set the <code>stp type</code> to <code>auto</code>.</td>
</tr>
<tr>
<td>Token Ring</td>
<td>`vlan vlan-id [name vlan-name] media tokenring [state {suspend</td>
</tr>
<tr>
<td></td>
<td><code>[said said-value] [mtu mtu-size] [ring ring-number] [parent parent-vlan-id]</code></td>
</tr>
<tr>
<td></td>
<td><code>[tb-vlan1 tb-vlan1-id] [tb-vlan2 tb-vlan2-id]</code></td>
</tr>
<tr>
<td>Token Ring concentrator relay function (TrCRF)</td>
<td>`vlan vlan-id [name vlan-name] media tokenring [state {suspend</td>
</tr>
<tr>
<td></td>
<td><code>[said said-value] [mtu mtu-size] [ring ring-number] [parent parent-vlan-id]</code></td>
</tr>
<tr>
<td></td>
<td>`[bridge type {srb</td>
</tr>
<tr>
<td></td>
<td>`[backupcrf {enable</td>
</tr>
<tr>
<td>Token Ring-NET</td>
<td>`vlan vlan-id [name vlan-name] media tr-net [state {suspend</td>
</tr>
<tr>
<td></td>
<td><code>[said said-value] [mtu mtu-size] [bridge bridge-number]</code></td>
</tr>
<tr>
<td></td>
<td>`[stp type {ieee</td>
</tr>
<tr>
<td>Token Ring bridge relay function (TrBRF)</td>
<td>`vlan vlan-id [name vlan-name] media tr-net [state {suspend</td>
</tr>
<tr>
<td></td>
<td><code>[said said-value] [mtu mtu-size] [bridge bridge-number]</code></td>
</tr>
<tr>
<td></td>
<td>`[stp type {ieee</td>
</tr>
</tbody>
</table>

Table 2-41 describes the rules for configuring VLANs.

### Table 2-41  VLAN Configuration Rules

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTP v2 mode is enabled, and you are configuring a TrCRF VLAN media type.</td>
<td>Specify a parent VLAN ID of a TrBRF that already exists in the database.</td>
</tr>
<tr>
<td></td>
<td>Specify a ring number. Do not leave this field blank.</td>
</tr>
<tr>
<td></td>
<td>Specify unique ring numbers when TrCRF VLANs have the same parent VLAN ID. Only one backup concentrator relay function (CRF) can be enabled.</td>
</tr>
<tr>
<td>VTP v2 mode is enabled, and you are configuring VLANs other than TrCRF media type.</td>
<td>Do not specify a backup CRF.</td>
</tr>
</tbody>
</table>
### Table 2-41 VLAN Configuration Rules (continued)

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTP v2 mode is enabled, and you are configuring a TrBRF VLAN media type.</td>
<td>Specify a bridge number. Do not leave this field blank.</td>
</tr>
<tr>
<td>VTP v1 mode is enabled.</td>
<td>No VLAN can have an STP type set to auto. This rule applies to Ethernet, FDDI, FDDI-NET, Token Ring, and Token Ring-NET VLANs.</td>
</tr>
<tr>
<td>Add a VLAN that requires translational bridging (values are not set to zero).</td>
<td>The translational bridging VLAN IDs that are used must already exist in the database. The translational bridging VLAN IDs that a configuration points to must also contain a pointer to the original VLAN in one of the translational bridging parameters (for example, Ethernet points to FDDI, and FDDI points to Ethernet). The translational bridging VLAN IDs that a configuration points to must be different media types than the original VLAN (for example, Ethernet can point to Token Ring). If both translational bridging VLAN IDs are configured, these VLANs must be different media types (for example, Ethernet can point to FDDI and Token Ring).</td>
</tr>
</tbody>
</table>

### Defaults

The ARE value is 7.
Backup CRF is disabled.
The bridge number is 0 (no source-routing bridge) for FDDI-NET, TrBRF, and Token Ring-NET VLANs.
The **media** type is **ethernet**.
The default **mtu size** is 1500 bytes.
The **vlan-name** variable is VLANxxxx, where xxxx represents four numeric digits (including leading zeros) equal to the VLAN ID number.
The parent VLAN ID is 0 (no parent VLAN) for FDDI and Token Ring VLANs. For TrCRF VLANs, you must specify a parent VLAN ID. For both Token Ring and TrCRF VLANs, the parent VLAN ID must already exist in the database and be associated with a Token Ring-NET or TrBRF VLAN.
The **ring number** for Token Ring VLANs is 0. For FDDI VLANs, there is no default.
The **said value** is 100000 plus the VLAN ID.
The state is **active**.
The STE value is 7.
The **STP type** is **ieee** for FDDI-NET and **ibm** for Token Ring-NET VLANs. For FDDI and Token Ring VLANs, the default is no type specified.
The **tb-vlan1-id** and **tb-vlan2-id** variables are zero (no translational bridging).

### Command Modes

VLAN configuration
You can only use this command mode for configuring normal-range VLANs, that is, VLAN IDs 1 to 1005.

Note

To configure extended-range VLANs (VLAN IDs 1006 to 4094), use the `vlan` global configuration command.

VLAN configuration is always saved in the VLAN database. If VTP mode is transparent, it is also saved in the switch running configuration file, along with the VTP mode and domain name. You can then save it in the switch startup configuration file by using the `copy running-config startup-config` privileged EXEC command.

When you save VLAN and VTP configuration in the startup configuration file and reboot the switch, the configuration is selected in these ways:

- If both the VLAN database and the configuration file show the VTP mode as transparent and the VTP domain names match, the VLAN database is ignored. The VTP and VLAN configurations in the startup configuration file are used. The VLAN database revision number remains unchanged in the VLAN database.
- If the VTP mode is server, or if the startup VTP mode or domain names do not match the VLAN database, the VTP mode and the VLAN configuration for the first 1005 VLANs use VLAN database information.

The following are the results of using the `no vlan` commands:

- When the `no vlan vlan-id` form is used, the VLAN is deleted. Deleting VLANs automatically resets to zero any other parent VLANs and translational bridging parameters that see the deleted VLAN.
- When the `no vlan vlan-id bridge` form is used, the VLAN source-routing bridge number returns to the default (0). The `vlan vlan-id bridge` command is used only for FDDI-NET and Token Ring-NET VLANs and is ignored in other VLAN types.
- When the `no vlan vlan-id media` form is used, the media type returns to the default (ethernet). Changing the VLAN media type (including the `no` form) resets the VLAN MTU to the default MTU for the type (unless the `mtu` keyword is also present in the command). It also resets the VLAN parent and translational bridging VLAN to the default (unless the `parent`, `tb-vlan1`, or `tb-vlan2` are also present in the command).
- When the `no vlan vlan-id mtu` form is used, the VLAN MTU returns to the default for the applicable VLAN media type. You can also modify the MTU by using the `media` keyword.
- When the `no vlan vlan-id name vlan-name` form is used, the VLAN name returns to the default name (`VLANxxxx`, where `xxxx` represent four numeric digits [including leading zeros] equal to the VLAN ID number).
- When the `no vlan vlan-id parent` form is used, the parent VLAN returns to the default (0). The parent VLAN resets to the default if the parent VLAN is deleted or if the `media` keyword changes the VLAN type or the VLAN type of the parent VLAN.
- When the `no vlan vlan-id ring` form is used, the VLAN logical ring number returns to the default (0).
- When the `no vlan vlan-id said` form is used, the VLAN SAID returns to the default (100,000 plus the VLAN ID).
- When the `no vlan vlan-id state` form is used, the VLAN state returns to the default (active).
- When the `no vlan vlan-id stp type` form is used, the VLAN spanning-tree type returns to the default (ieee).
- When the `no vlan vlan-id tb-vlan1` or `no-id tb-vlan2` form is used, the VLAN translational bridge VLAN (or VLANs, if applicable) returns to the default (0). Translational bridge VLANs must be a different VLAN type than the affected VLAN, and if two are specified, the two must be different VLAN types from each other. A translational bridge VLAN resets to the default if the translational bridge VLAN is deleted, if the media keyword changes the VLAN type, or if the media keyword changes the VLAN type of the corresponding translation bridge VLAN.

### Examples

This example shows how to add an Ethernet VLAN with default media characteristics. The default includes a `vlan-name` of VLANXXX, where XXXX represents four numeric digits (including leading zeros) equal to the VLAN ID number. The default media option is ethernet; the state option is active. The default `said-value` variable is 100000 plus the VLAN ID; the `mtu-size` variable is 1500; the `stp-type` option is ieee. When you enter the `exit` or `apply` vlan configuration command, the VLAN is added if it did not already exist; otherwise, this command does nothing.

```
Switch(vlan)# vlan 2
VLAN 2 added:
 Name: VLAN0002
Switch(vlan)# exit
APPLY completed.
Exiting....
```

This example shows how to modify an existing VLAN by changing its name and MTU size:

```
Switch(vlan)# no vlan name engineering mtu 1200
```

You can verify your settings by entering the `show vlan` privileged EXEC command.

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show vlan</code></td>
<td>Displays the parameters for all configured VLANs or one VLAN (if the VLAN ID or name is specified) in the administrative domain.</td>
</tr>
<tr>
<td><code>vlan (global configuration)</code></td>
<td>Enters config-vlan mode for configuring normal-range and extended-range VLANs.</td>
</tr>
</tbody>
</table>
vlan access-map

Use the `vlan access-map` global configuration command on the switch stack or on a standalone switch to create or modify a VLAN map entry for VLAN packet filtering. This entry changes the mode to the VLAN access-map configuration. Use the `no` form of this command to delete a VLAN map entry. Use the `vlan filter` interface configuration command to apply a VLAN map to one or more VLANs.

```
 vlan access-map name [number]
 no vlan access-map name [number]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>Name of the VLAN map.</td>
</tr>
<tr>
<td>number</td>
<td>(Optional) The sequence number of the map entry that you want to create or modify (0 to 65535). If you are creating a VLAN map and the sequence number is not specified, it is automatically assigned in increments of 10, starting from 10. This number is the sequence to insert to, or delete from, a VLAN access-map entry.</td>
</tr>
</tbody>
</table>

**Defaults**

There are no VLAN map entries and no VLAN maps applied to a VLAN.

**Command Modes**

Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

In global configuration mode, use this command to create or modify a VLAN map. This entry changes the mode to VLAN access-map configuration, where you can use the `match` access-map configuration command to specify the access lists for IP or non-IP traffic to match and use the `action` command to set whether a match causes the packet to be forwarded or dropped.

In VLAN access-map configuration mode, these commands are available:

- **action**: sets the action to be taken (forward or drop).
- **default**: sets a command to its defaults
- **exit**: exits from VLAN access-map configuration mode
- **match**: sets the values to match (IP address or MAC address).
- **no**: negates a command or set its defaults

When you do not specify an entry number (sequence number), it is added to the end of the map.

There can be only one VLAN map per VLAN and it is applied as packets are received by a VLAN.

You can use the `no vlan access-map name [number]` command with a sequence number to delete a single entry.
In global configuration mode, use the **vlan filter** interface configuration command to apply the map to one or more VLANs.

For more information about VLAN map entries, see the software configuration guide for this release.

### Examples

This example shows how to create a VLAN map named *vac1* and apply matching conditions and actions to it. If no other entries already exist in the map, this will be entry 10.

```
Switch(config)# vlan access-map vac1
Switch(config-access-map)# match ip address acl1
Switch(config-access-map)# action forward
```

This example shows how to delete VLAN map *vac1*:

```
Switch(config)# no vlan access-map vac1
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>action</strong></td>
<td>Sets the action for the VLAN access map entry.</td>
</tr>
<tr>
<td><strong>match (access-map configuration)</strong></td>
<td>Sets the VLAN map to match packets against one or more access lists.</td>
</tr>
<tr>
<td><strong>show vlan access-map</strong></td>
<td>Displays information about a particular VLAN access map or all VLAN access maps.</td>
</tr>
<tr>
<td><strong>vlan filter</strong></td>
<td>Applies the VLAN access map to one or more VLANs.</td>
</tr>
</tbody>
</table>
vlan database

Use the `vlan database` privileged EXEC command on the switch stack or on a standalone switch to enter VLAN configuration mode. From this mode, you can add, delete, and modify VLAN configurations for normal-range VLANs and globally propagate these changes by using the VLAN Trunking Protocol (VTP). Configuration information is saved in the VLAN database.

**Note**
VLAN configuration mode is only valid for VLAN IDs 1 to 1005.

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
No default is defined.

**Command Modes**
Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
You can use the VLAN database configuration commands to configure VLANs 1 to 1005. To configure extended-range VLANs (VLAN IDs 1006 to 4094), use the `vlan (global configuration)` command to enter config-vlan mode. You can also configure VLAN IDs 1 to 1005 by using the `vlan` global configuration command.

To return to the privileged EXEC mode from the VLAN configuration mode, enter the `exit` command.

**Note**
This command mode is different from other modes because it is session-oriented. When you add, delete, or modify VLAN parameters, the changes are not applied until you exit the session by entering the `apply` or `exit` command. When the changes are applied, the VTP configuration version is incremented. You can also not apply the changes to the VTP database by entering `abort`.

When you are in VLAN configuration mode, you can access the VLAN database and make changes by using these commands:

- `vlan`: accesses subcommands to add, delete, or modify values associated with a single VLAN. For more information, see the `vlan (VLAN configuration)` command.
- `vtp`: accesses subcommands to perform VTP administrative functions. For more information, see the `vtp (VLAN configuration)` command.
When you have modified VLAN or VTP parameters, you can use these editing buffer manipulation commands:

- **abort**: exits the mode without applying the changes. The VLAN configuration that was running before you entered VLAN configuration mode continues to be used.

- **apply**: applies current changes to the VLAN database, increments the database configuration revision number, propagates it throughout the administrative domain, and remains in VLAN configuration mode.

  **Note** You cannot use this command when the switch is in VTP client mode.

- **exit**: applies all configuration changes to the VLAN database, increments the database configuration number, propagates it throughout the administrative domain, and returns to privileged EXEC mode.

- **no**: negates a command or set its defaults; valid values are **vlan** and **vtp**.

- **reset**: abandons proposed changes to the VLAN database, resets the proposed database to the implemented VLAN database on the switch, and remains in VLAN configuration mode.

- **show**: displays VLAN database information.

- **show changes [vlan-id]**: displays the differences between the VLAN database on the switch and the proposed VLAN database for all normal-range VLAN IDs (1 to 1005) or the specified VLAN ID (1 to 1005).

- **show current [vlan-id]**: displays the VLAN database on the switch or on a selected VLAN (1 to 1005).

- **show proposed [vlan-id]**: displays the proposed VLAN database or a selected VLAN (1 to 1005) from the proposed database. The proposed VLAN database is not the running configuration until you use the **exit** or **apply** VLAN configuration command.

You can verify that VLAN database changes have been made or aborted by using the **show vlan** privileged EXEC command. This output is different from the **show VLAN database** configuration command output.

**Examples**

This example shows how to enter the VLAN configuration mode from the privileged EXEC mode and to display VLAN database information:

```
Switch# vlan database
Switch(vlan)# show
VLAN ISL Id: 1
 Name: default
 Media Type: Ethernet
 VLAN 802.10 Id: 100001
 State: Operational
 MTU: 1500
 Translational Bridged VLAN: 1002
 Translational Bridged VLAN: 1003

VLAN ISL Id: 2
 Name: VLAN0002
 Media Type: Ethernet
 VLAN 802.10 Id: 100002
 State: Operational
 MTU: 1500
```
VLAN ISL Id: 1002
Name: fddi-default
Media Type: FDDI
VLAN 802.10 Id: 101002
State: Operational
MTU: 1500
Bridge Type: SRB
Ring Number: 0
Translational Bridged VLAN: 1
Translational Bridged VLAN: 1003

This is an example of output from the show changes command:

Switch(vlan)# show changes

DELETED:
VLAN ISL Id: 4
Name: VLAN0004
Media Type: Ethernet
VLAN 802.10 Id: 100004
State: Operational
MTU: 1500

MODIFIED:
VLAN ISL Id: 7
Current State: Operational
Modified State: Suspended

This example shows how to display the differences between VLAN 7 in the current database and the proposed database.

Switch(vlan)# show changes 7

MODIFIED:
VLAN ISL Id: 7
Current State: Operational
Modified State: Suspended

This is an example of output from the show current 20 command. It displays only VLAN 20 of the current database.

Switch(vlan)# show current 20
VLAN ISL Id: 20
Name: VLAN0020
Media Type: Ethernet
VLAN 802.10 Id: 100020
State: Operational
MTU: 1500

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show vlan</td>
<td>Displays the parameters for all configured VLANs in the administrative domain.</td>
<td></td>
</tr>
<tr>
<td>shutdown vlan</td>
<td>Shuts down (suspends) local traffic on the specified VLAN.</td>
<td></td>
</tr>
<tr>
<td>vlan (global configuration)</td>
<td>Enters config-vlan mode for configuring normal-range and extended-range VLANs.</td>
<td></td>
</tr>
</tbody>
</table>
vlan dot1q tag native

Use the `vlan dot1q tag native` global configuration command on the switch stack or on a standalone switch to enable tagging of native VLAN frames on all IEEE 802.1Q trunk ports. Use the `no` form of this command to return to the default setting.

```
 vlan dot1q tag native

 no vlan dot1q tag native
```

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
The IEEE 802.1Q native VLAN tagging is disabled.

**Command Modes**
Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)EA1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
When enabled, native VLAN packets going out all IEEE 802.1Q trunk ports are tagged.

When disabled, native VLAN packets going out all IEEE 802.1Q trunk ports are not tagged.

You can use this command with the IEEE 802.1Q tunneling feature. This feature operates on an edge switch of a service-provider network and expands VLAN space by using a VLAN-in-VLAN hierarchy and tagging the tagged packets. You must use IEEE 802.1Q trunk ports for sending packets to the service-provider network. However, packets going through the core of the service-provider network might also be carried on IEEE 802.1Q trunks. If the native VLANs of an IEEE 802.1Q trunks match the native VLAN of a tunneling port on the same switch, traffic on the native VLAN is not tagged on the sending trunk port. This command ensures that native VLAN packets on all IEEE 802.1Q trunk ports are tagged.

For more information about IEEE 802.1Q tunneling, see the software configuration guide for this release.

**Examples**
This example shows how to enable IEEE 802.1Q tagging on native VLAN frames:

```
Switch# configure terminal
Switch (config)# vlan dot1q tag native
Switch (config)# end
```

You can verify your settings by entering the `show vlan dot1q tag native` privileged EXEC command.
### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show vlan dot1q tag native</code></td>
<td>Displays IEEE 802.1Q native VLAN tagging status.</td>
</tr>
</tbody>
</table>
**vlan filter**

Use the `vlan filter` global configuration command on the switch stack or on a standalone switch to apply a VLAN map to one or more VLANs. Use the `no` form of this command to remove the map.

```
vlan filter mapname vlan-list {list | all}
no vlan filter mapname vlan-list {list | all}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mapname</code></td>
<td>Name of the VLAN map entry.</td>
</tr>
<tr>
<td><code>list</code></td>
<td>The list of one or more VLANs in the form tt, uu-vv, xx, yy-zz, where spaces around commas and dashes are optional. The range is 1 to 4094.</td>
</tr>
<tr>
<td><code>all</code></td>
<td>Remove the filter from all VLANs.</td>
</tr>
</tbody>
</table>

**Defaults**

There are no VLAN filters.

**Command Modes**

Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

To avoid accidentally dropping too many packets and disabling connectivity in the middle of the configuration process, we recommend that you completely define the VLAN access map before applying it to a VLAN.

For more information about VLAN map entries, see the software configuration guide for this release.

**Examples**

This example applies VLAN map entry `map1` to VLANs 20 and 30:

```
Switch(config)# vlan filter map1 vlan-list 20, 30
```

This example shows how to delete VLAN map entry `map1` from VLAN 20:

```
Switch(config)# no vlan filter map1 vlan-list 20
```

You can verify your settings by entering the `show vlan filter` privileged EXEC command.
<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><strong>show vlan access-map</strong></td>
<td>Displays information about a particular VLAN access map or all VLAN access maps.</td>
</tr>
<tr>
<td></td>
<td><strong>show vlan filter</strong></td>
<td>Displays information about all VLAN filters or about a particular VLAN or VLAN access map.</td>
</tr>
<tr>
<td></td>
<td><strong>vlan access-map</strong></td>
<td>Creates a VLAN map entry for VLAN packet filtering.</td>
</tr>
</tbody>
</table>
vmps reconfirm (privileged EXEC)

Use the `vmps reconfirm` privileged EXEC command on the switch stack or on a standalone switch to immediately send VLAN Query Protocol (VQP) queries to reconfirm all dynamic VLAN assignments with the VLAN Membership Policy Server (VMPS).

```
vmps reconfirm
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

No default is defined.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to immediately send VQP queries to the VMPS:

```
Switch# vmps reconfirm
```

You can verify your setting by entering the `show vmps` privileged EXEC command and examining the VMPS Action row of the Reconfirmation Status section. The `show vmps` command shows the result of the last time the assignments were reconfirmed either because the reconfirmation timer expired or because the `vmps reconfirm` command was entered.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show vmps</code></td>
<td>Displays VQP and VMPS information.</td>
</tr>
<tr>
<td><code>vmps reconfirm (global configuration)</code></td>
<td>Changes the reconfirmation interval for the VQP client.</td>
</tr>
</tbody>
</table>
vmps reconfirm (global configuration)

Use the vmps reconfirm global configuration command on the switch stack or on a standalone switch to change the reconfirmation interval for the VLAN Query Protocol (VQP) client. Use the no form of this command to return to the default setting.

```
vmps reconfirm interval

no vmps reconfirm
```

### Syntax Description

- **interval**: Reconfirmation interval for VQP client queries to the VLAN Membership Policy Server (VMPS) to reconfirm dynamic VLAN assignments. The range is 1 to 120 minutes.

### Defaults

The default reconfirmation interval is 60 minutes.

### Command Modes

Global configuration

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Examples

This example shows how to set the VQP client to reconfirm dynamic VLAN entries every 20 minutes:

```
Switch(config)# vmps reconfirm 20
```

You can verify your setting by entering the show vmps privileged EXEC command and examining information in the Reconfirm Interval row.

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show vmps</td>
<td>Displays VQP and VMPS information.</td>
</tr>
<tr>
<td>vmps reconfirm (privileged EXEC)</td>
<td>Sends VQP queries to reconfirm all dynamic VLAN assignments with the VMPS.</td>
</tr>
</tbody>
</table>
vmps retry

Use the **vmps retry** global configuration command on the switch stack or on a standalone switch to configure the per-server retry count for the VLAN Query Protocol (VQP) client. Use the **no** form of this command to return to the default setting.

```
 vmps retry count

 no vmps retry
```

**Syntax Description**

- **count**: Number of attempts to contact the VLAN Membership Policy Server (VMPS) by the client before querying the next server in the list. The range is 1 to 10.

**Defaults**

The default retry count is 3.

**Command Modes**

Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to set the retry count to 7:

```
Switch(config)# vmps retry 7
```

You can verify your setting by entering the **show vmps** privileged EXEC command and examining information in the Server Retry Count row.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show vmps</td>
<td>Displays VQP and VMPS information.</td>
</tr>
</tbody>
</table>
vmps server

Use the `vmps server` global configuration command on the switch stack or on a standalone switch to configure the primary VLAN Membership Policy Server (VMPS) and up to three secondary servers. Use the `no` form of this command to remove a VMPS server.

```
vmps server ipaddress [primary]
no vmps server [ipaddress]
```

**Syntax Description**

- **ipaddress**: IP address or hostname of the primary or secondary VMPS servers. If you specify a hostname, the Domain Name System (DNS) server must be configured.
- **primary** (Optional) Decides whether primary or secondary VMPS servers are being configured.

**Defaults**

No primary or secondary VMPS servers are defined.

**Command Modes**

Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The first server entered is automatically selected as the primary server whether or not `primary` is entered. The first server address can be overridden by using `primary` in a subsequent command.

If a member switch in a cluster configuration does not have an IP address, the cluster does not use the VMPS server configured for that member switch. Instead, the cluster uses the VMPS server on the command switch, and the command switch proxies the VMPS requests. The VMPS server treats the cluster as a single switch and uses the IP address of the command switch to respond to requests.

When using the `no` form without specifying the `ipaddress`, all configured servers are deleted. If you delete all servers when dynamic-access ports are present, the switch cannot forward packets from new sources on these ports because it cannot query the VMPS.

**Examples**

This example shows how to configure the server with IP address 191.10.49.20 as the primary VMPS server. The servers with IP addresses 191.10.49.21 and 191.10.49.22 are configured as secondary servers:

```
Switch(config)# vmps server 191.10.49.20 primary
Switch(config)# vmps server 191.10.49.21
Switch(config)# vmps server 191.10.49.22
```
This example shows how to delete the server with IP address 191.10.49.21:

```
Switch(config)# no vmps server 191.10.49.21
```

You can verify your setting by entering the `show vmps` privileged EXEC command and examining information in the VMPS Domain Server row.

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>show vmps</code></td>
<td>Displays VQP and VMPS information.</td>
</tr>
</tbody>
</table>
vtp (global configuration)

Use the `vtp` global configuration command on the switch stack or on a standalone switch to set or modify the VLAN Trunking Protocol (VTP) configuration characteristics. Use the `no` form of this command to remove the settings or to return to the default settings.

```
vtp { domain domain-name | file filename | interface name [only] | mode { client | server | transparent } | password password | pruning | version number }
```

```
no vtp { file | interface | mode | password | pruning | version }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>domain domain-name</td>
<td>Specify the VTP domain name, an ASCII string from 1 to 32 characters that identifies the VTP administrative domain for the switch. The domain name is case sensitive.</td>
</tr>
<tr>
<td>file filename</td>
<td>Specify the Cisco IOS file system file where the VTP VLAN configuration is stored.</td>
</tr>
<tr>
<td>interface name</td>
<td>Specify the name of the interface providing the VTP ID updated for this device.</td>
</tr>
<tr>
<td>only</td>
<td>(Optional) Use only the IP address of this interface as the VTP IP updater.</td>
</tr>
<tr>
<td>mode</td>
<td>Specify the VTP device mode as client, server, or transparent.</td>
</tr>
<tr>
<td>client</td>
<td>Place the switch in VTP client mode. A switch in VTP client mode is enabled for VTP, and can send advertisements, but does not have enough nonvolatile storage to store VLAN configurations. You cannot configure VLANs on the switch. When a VTP client starts up, it does not send VTP advertisements until it receives advertisements to initialize its VLAN database.</td>
</tr>
<tr>
<td>server</td>
<td>Place the switch in VTP server mode. A switch in VTP server mode is enabled for VTP and sends advertisements. You can configure VLANs on the switch. The switch can recover all the VLAN information in the current VTP database from nonvolatile storage after reboot.</td>
</tr>
<tr>
<td>transparent</td>
<td>Place the switch in VTP transparent mode. A switch in VTP transparent mode is disabled for VTP, does not send advertisements or learn from advertisements sent by other devices, and cannot affect VLAN configurations on other devices in the network. The switch receives VTP advertisements and forwards them on all trunk ports except the one on which the advertisement was received. When VTP mode is transparent, the mode and domain name are saved in the switch running configuration file, and you can save them in the switch startup configuration file by entering the <code>copy running-config startup config</code> privileged EXEC command.</td>
</tr>
<tr>
<td>password password</td>
<td>Set the administrative domain password for the generation of the 16-byte secret value used in MD5 digest calculation to be sent in VTP advertisements and to validate received VTP advertisements. The password can be an ASCII string from 1 to 32 characters. The password is case sensitive.</td>
</tr>
<tr>
<td>pruning</td>
<td>Enable VTP pruning on the switch.</td>
</tr>
<tr>
<td>version number</td>
<td>Set VTP version to Version 1 or Version 2.</td>
</tr>
</tbody>
</table>
Defaults

The default filename is `flash: vlan.dat`.
The default mode is server mode.
No domain name or password is defined.
No password is configured.
Pruning is disabled.
The default version is Version 1.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When you save VTP mode, domain name, and VLAN configurations in the switch startup configuration file and reboot the switch, the VTP and VLAN configurations are selected by these conditions:

- If both the VLAN database and the configuration file show the VTP mode as transparent and the VTP domain names match, the VLAN database is ignored. The VTP and VLAN configurations in the startup configuration file are used. The VLAN database revision number remains unchanged in the VLAN database.
- If the startup VTP mode is server mode, or the startup VTP mode or domain names do not match the VLAN database, VTP mode and VLAN configuration for the first 1005 VLANs are selected by VLAN database information, and VLANs greater than 1005 are configured from the switch configuration file.

The `vtp file filename` cannot be used to load a new database; it renames only the file in which the existing database is stored.

Follow these guidelines when configuring a VTP domain name:

- The switch is in the no-management-domain state until you configure a domain name. While in the no-management-domain state, the switch does not send any VTP advertisements even if changes occur to the local VLAN configuration. The switch leaves the no-management-domain state after it receives the first VTP summary packet on any port that is trunking or after you configure a domain name by using the `vtp domain` command. If the switch receives its domain from a summary packet, it resets its configuration revision number to 0. After the switch leaves the no-management-domain state, it can no be configured to re-enter it until you clear the NVRAM and reload the software.
- Domain names are case-sensitive.
- After you configure a domain name, it cannot be removed. You can only reassign it to a different domain.
Follow these guidelines when setting VTP mode:

- The `no vtp mode` command returns the switch to VTP server mode.
- The `vtp mode server` command is the same as `no vtp mode` except that it does not return an error if the switch is not in client or transparent mode.
- If the receiving switch is in client mode, the client switch changes its configuration to duplicate the configuration of the server. If you have switches in client mode, be sure to make all VTP or VLAN configuration changes on a switch in server mode. If the receiving switch is in server mode or transparent mode, the switch configuration is not changed.
- Switches in transparent mode do not participate in VTP. If you make VTP or VLAN configuration changes on a switch in transparent mode, the changes are not propagated to other switches in the network.
- If you change the VTP or VLAN configuration on a switch that is in server mode, that change is propagated to all the switches in the same VTP domain.
- The `vtp mode transparent` command disables VTP from the domain but does not remove the domain from the switch.
- The VTP mode must be transparent for you to add extended-range VLANs or for VTP and VLAN information to be saved in the running configuration file.
- If extended-range VLANs are configured on the switch and you attempt to set the VTP mode to server or client, you receive an error message, and the configuration is not allowed.
- VTP can be set to either server or client mode only when dynamic VLAN creation is disabled.

Follow these guidelines when setting a VTP password:

- Passwords are case sensitive. Passwords should match on all switches in the same domain.
- When you use the `no vtp password` form of the command, the switch returns to the no-password state.

Follow these guidelines when setting VTP pruning:

- VTP pruning removes information about each pruning-eligible VLAN from VTP updates if there are no stations belonging to that VLAN.
- If you enable pruning on the VTP server, it is enabled for the entire management domain for VLAN IDs 1 to 1005.
- Only VLANs in the pruning-eligible list can be pruned.
- Pruning is supported with VTP Version 1 and Version 2.

Follow these guidelines when setting the VTP version:

- Toggling the Version 2 (v2) mode state modifies parameters of certain default VLANs.
- Each VTP switch automatically detects the capabilities of all the other VTP devices. To use Version 2, all VTP switches in the network must support Version 2; otherwise, you must configure them to operate in VTP Version 1 mode.
- If all switches in a domain are VTP Version 2-capable, you need only to configure Version 2 on one switch; the version number is then propagated to the other Version-2 capable switches in the VTP domain.
- If you are using VTP in a Token Ring environment, VTP Version 2 must be enabled.
- If you are configuring a Token Ring bridge relay function (TrBRF) or Token Ring concentrator relay function (TrCRF) VLAN media type, you must use Version 2.
- If you are configuring a Token Ring or Token Ring-NET VLAN media type, you must use Version 1.

You cannot save password, pruning, and version configurations in the switch configuration file.

**Examples**

This example shows how to rename the filename for VTP configuration storage to `vtpfilename`:

```
Switch(config)# vtp file vtpfilename
```

This example shows how to clear the device storage filename:

```
Switch(config)# no vtp file vtpconfig
Clearing device storage filename.
```

This example shows how to specify the name of the interface providing the VTP updater ID for this device:

```
Switch(config)# vtp interface gigabitethernet
```

This example shows how to set the administrative domain for the switch:

```
Switch(config)# vtp domain OurDomainName
```

This example shows how to place the switch in VTP transparent mode:

```
Switch(config)# vtp mode transparent
```

This example shows how to configure the VTP domain password:

```
Switch(config)# vtp password ThisIsOurDomain'sPassword
```

This example shows how to enable pruning in the VLAN database:

```
Switch(config)# vtp pruning
Pruning switched ON
```

This example shows how to enable Version 2 mode in the VLAN database:

```
Switch(config)# vtp version 2
```

You can verify your settings by entering the `show vtp status` privileged EXEC command.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>show vtp status</strong></td>
<td>Displays the VTP statistics for the switch and general information about the VTP management domain status.</td>
</tr>
<tr>
<td><strong>vtp (VLAN configuration)</strong></td>
<td>Configures VTP domain-name, password, pruning, version, and mode.</td>
</tr>
</tbody>
</table>
vtp (VLAN configuration)

Use the `vtp` VLAN configuration command on the switch stack or on a standalone switch to configure VLAN Trunking Protocol (VTP) characteristics. You access VLAN configuration mode by entering the `vlan database` privileged EXEC command. Use the `no` form of this command to return to the default settings, disable the characteristic, or remove the password.

```bash
vtp { domain domain-name | password password | pruning | v2-mode | { server | client | transparent} }

no vtp {client | password | pruning | transparent | v2-mode}
```

**Syntax Description**

- **domain domain-name**: Set the VTP domain name by entering an ASCII string from 1 to 32 characters that identifies the VTP administrative domain for the switch. The domain name is case sensitive.

- **password password**: Set the administrative domain password for the generation of the 16-byte secret value used in MD5 digest calculation to be sent in VTP advertisements and to validate received VTP advertisements. The password can be an ASCII string from 1 to 32 characters. The password is case sensitive.

- **pruning**: Enable pruning in the VTP administrative domain. VTP pruning causes information about each pruning-eligible VLAN to be removed from VTP updates if there are no stations belonging to that VLAN.

- **v2-mode**: Enable VLAN Trunking Protocol (VTP) Version 2 in the administrative domains.

- **client**: Place the switch in VTP client mode. A switch in VTP client mode is enabled for VTP, can send advertisements, but does not have enough nonvolatile storage to store VLAN configurations. You cannot configure VLANs on it. When a VTP client starts up, it does not send VTP advertisements until it receives advertisements to initialize its VLAN database.

- **server**: Place the switch in VTP server mode. A switch in VTP server mode is enabled for VTP and sends advertisements. You can configure VLANs on it. The switch can recover all the VLAN information in the current VTP database from nonvolatile storage after reboot.

- **transparent**: Place the switch in VTP transparent mode. A switch in VTP transparent mode is disabled for VTP, does not send advertisements or learn from advertisements sent by other devices, and cannot affect VLAN configurations on other devices in the network. The switch receives VTP advertisements and forwards them on all trunk ports except the one on which the advertisement was received.

**Defaults**

The default mode is server mode.

No domain name is defined.

No password is configured.

Pruning is disabled.

VTP Version 2 (v2 mode) is disabled.
vtp (VLAN configuration)

**Command Modes**

VLAN configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If the VTP mode is transparent, the mode and domain name are saved in the switch running configuration file, and you can save the configuration in the switch startup configuration file by using the `copy running-config startup-config` privileged EXEC command.

Follow these guidelines when setting the VTP mode:

- The `no vtp client` and `no vtp transparent` forms of the command return the switch to VTP server mode.
- The `vtp server` command is the same as `no vtp client` or `no vtp transparent` except that it does not return an error if the switch is not in client or transparent mode.
- If the receiving switch is in client mode, the client switch changes its configuration to duplicate the configuration of the server. If you have switches in client mode, make sure to make all VTP or VLAN configuration changes on a switch in server mode. If the receiving switch is in server mode or transparent mode, the switch configuration is not changed.
- Switches in transparent mode do not participate in VTP. If you make VTP or VLAN configuration changes on a switch in transparent mode, the changes are not propagated to other switches in the network.
- If you make a change to the VTP or VLAN configuration on a switch in server mode, that change is propagated to all the switches in the same VTP domain.
- The `vtp transparent` command disables VTP from the domain but does not remove the domain from the switch.
- The VTP mode must be transparent for you to add extended-range VLANs or for the VTP and the VLAN configurations to be saved in the running configuration file.
- If extended-range VLANs are configured on the switch and you attempt to set the VTP mode to server or client, you receive an error message and the configuration is not allowed.
- VTP can be set to either server or client mode only when dynamic VLAN creation is disabled.

**Note**

VTP configuration in VLAN configuration mode is saved in the VLAN database when applied.
Follow these guidelines when configuring a VTP domain name:

- The switch is in the no-management-domain state until you configure a domain name. While in the no-management-domain state, the switch does not send any VTP advertisements even if changes occur to the local VLAN configuration. The switch leaves the no-management-domain state after receiving the first VTP summary packet on any port that is currently trunking or after configuring a domain name with the `vtp domain` command. If the switch receives its domain from a summary packet, it resets its configuration revision number to zero. After the switch leaves the no-management-domain state, it can never be configured to reenter it until you clear the NVRAM and reload the software.
- Domain names are case sensitive.
- After you configure a domain name, it cannot be removed. You can reassign it only to a different domain.

Follow these guidelines when configuring a VTP password:

- Passwords are case sensitive. Passwords should match on all switches in the same domain.
- When the `no vtp password` form of the command is used, the switch returns to the no-password state.

Follow these guidelines when enabling VTP pruning:

- If you enable pruning on the VTP server, it is enabled for the entire management domain.
- Only VLANs included in the pruning-eligible list can be pruned.
- Pruning is supported with VTP Version 1 and Version 2.

Follow these guidelines when enabling VTP Version 2 (`v2-mode`):

- Toggling the version (`v2-mode`) state modifies certain parameters of certain default VLANs.
- Each VTP switch automatically detects the capabilities of all the other VTP devices. To use VTP Version 2, all VTP switches in the network must support Version 2; otherwise, you must configure them to operate in VTP Version 1 (`no vtp v2-mode`).
- If all switches in a domain are VTP Version 2-capable, you need only to enable VTP Version 2 on one switch; the version number is then propagated to the other Version-2 capable switches in the VTP domain.
- If you are using VTP in a Token Ring environment or configuring a Token Ring bridge relay function (TrBRF) or Token Ring concentrator relay function (TrCRF) VLAN media type, VTP Version 2 (`v2-mode`) must be enabled.
- If you are configuring a Token Ring or Token Ring-NET VLAN media type, you must use VTP Version 1.
Examples

This example shows how to place the switch in VTP transparent mode:

```
Switch(vlan)# vtp transparent
Setting device to VTP TRANSPARENT mode.
```

This example shows how to set the administrative domain for the switch:

```
Switch(vlan)# vtp domain OurDomainName
Changing VTP domain name from cisco to OurDomainName
```

This example shows how to configure the VTP domain password:

```
Switch(vlan)# vtp password private
Setting device VLAN database password to private.
```

This example shows how to enable pruning in the proposed new VLAN database:

```
Switch(vlan)# vtp pruning
Pruning switched ON
```

This example shows how to enable v2 mode in the proposed new VLAN database:

```
Switch(vlan)# vtp v2-mode
V2 mode enabled.
```

You can verify your settings by entering the `show vtp status` privileged EXEC command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show vtp status</code></td>
<td>Displays the VTP statistics for the switch and general information about the VTP management domain status.</td>
</tr>
<tr>
<td><code>switchport trunk pruning</code></td>
<td>Configures the VLAN pruning-eligible list for ports in trunking mode.</td>
</tr>
<tr>
<td><code>vtp (global configuration)</code></td>
<td>Configures the VTP filename, interface, domain name, and mode.</td>
</tr>
</tbody>
</table>
vtp (VLAN configuration)
Catalyst 3750 Switch Boot Loader Commands

This appendix describes the boot loader commands on the Catalyst 3750 switch. Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

During normal boot loader operation, you are not presented with the boot loader command-line prompt. You gain access to the boot loader command line if the switch is set to manually boot, if an error occurs during power-on self test (POST) DRAM testing, or if an error occurs while loading the operating system (a corrupted Cisco IOS image). You can also access the boot loader if you have lost or forgotten the switch password.

Note

The default switch configuration allows an end user with physical access to the switch to recover from a lost password by interrupting the boot process while the switch is powering up and then entering a new password. The password recovery disable feature allows the system administrator to protect access to the switch password by disabling part of this functionality and allowing the user to interrupt the boot process only by agreeing to set the system back to the default configuration. With password recovery disabled, the user can still interrupt the boot process and change the password, but the configuration file (config.text) and the VLAN database file (vlan.dat) are deleted. For more information, see the software configuration guide for this release.

You can access the boot loader through a switch console connection at 9600 bps. Unplug the switch power cord, and press the switch Mode button while reconnecting the power cord. You can release the Mode button a second or two after the LED above port 1X goes off. You should then see the boot loader Switch: prompt. The boot loader performs low-level CPU initialization, performs POST, and loads a default operating system image into memory.
**boot**

Use the **boot** boot loader command to load and boot an executable image and to enter the command-line interface.

```
boot [-post | -n | -p | flag] filesystem:/file-url ...
```

**Syntax Description**

- **-post** (Optional) Run the loaded image with an extended or comprehensive power-on self-test (POST). Using this keyword causes POST to take longer to complete.
- **-n** (Optional) Pause for the Cisco IOS debugger immediately after launching.
- **-p** (Optional) Pause for the JTAG debugger right after loading the image.
- **filesystem:** Alias for a flash file system. Use **flash:** for the system board flash device.
- **/file-url** (Optional) Path (directory) and name of a bootable image. Separate image names with a semicolon.

**Defaults**

The switch attempts to automatically boot the system by using information in the BOOT environment variable. If this variable is not set, the switch attempts to load and execute the first executable image it can by performing a recursive, depth-first search throughout the flash file system. In a depth-first search of a directory, each encountered subdirectory is completely searched before continuing the search in the original directory.

**Command Modes**

Boot loader

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

When you enter the **boot** command without any arguments, the switch attempts to automatically boot the system by using the information in the BOOT environment variable, if any. If you supply an image name for the **file-url** variable, the **boot** command attempts to boot the specified image.

When you set boot loader **boot** command options, they are executed immediately and apply only to the current boot loader session. These settings are not saved for the next boot operation.

Filenames and directory names are case sensitive.

**Examples**

This example shows how to boot the switch using the **new-image.bin** image:

```
switch: boot flash:/new-images/new-image.bin
```

After entering this command, you are prompted to start the setup program.
### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>set</code></td>
<td>Sets the BOOT environment variable to boot a specific image when the BOOT keyword is appended to the command.</td>
</tr>
</tbody>
</table>
cat

Use the `cat` boot loader command to display the contents of one or more files.

`cat filesystem:/file-url ...`

**Syntax Description**

- `filesystem`: Alias for a flash file system. Use `flash:` for the system board flash device.
- `file-url`: Path (directory) and name of the files to display. Separate each filename with a space.

**Command Modes**

Boot loader

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Filenames and directory names are case sensitive.

If you specify a list of files, the contents of each file appears sequentially.

**Examples**

This example shows how to display the contents of two files:

```
switch: cat flash:/new-images/info flash:env_vars
version_suffix: ipservices-122-25.SEB
version_directory: c3750-ipservices-mz.122-25.SEB.bin
image_name: c3750-ipservices-mz.122-25.SEB.bin
ios_image_file_size: 6398464
total_image_file_size: 8133632
image_feature: IP|LAYER_3|PLUS|MIN_DRAM_MEG=128
image_family: C3750
info_end:
BAUD=57600
MANUAL_BOOT=no
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>more</td>
<td>Displays the contents of one or more files.</td>
</tr>
<tr>
<td>type</td>
<td>Displays the contents of one or more files.</td>
</tr>
</tbody>
</table>
**copy**

Use the **copy** boot loader command to copy a file from a source to a destination.

```
copy [-b block-size] filesystem:/source-file-url filesystem:/destination-file-url
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-b block-size</code></td>
</tr>
<tr>
<td><code>filesystem:</code></td>
</tr>
<tr>
<td><code>/source-file-url</code></td>
</tr>
<tr>
<td><code>/destination-file-url</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Defaults</th>
</tr>
</thead>
<tbody>
<tr>
<td>The default block size is 4 KB.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Modes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boot loader</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Release</strong></td>
</tr>
<tr>
<td>T2.1(11)AX</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usage Guidelines</th>
</tr>
</thead>
</table>
| Filenames and directory names are case sensitive.  
Directory names are limited to 45 characters between the slashes (/); the name cannot contain control characters, spaces, deletes, slashes, quotes, semicolons, or colons.  
Filenames are limited to 45 characters; the name cannot contain control characters, spaces, deletes, slashes, quotes, semicolons, or colons.  
If you are copying a file to a new directory, the directory must already exist. |

<table>
<thead>
<tr>
<th>Examples</th>
</tr>
</thead>
</table>
| This example show how to copy a file at the root:  
```
switch: copy flash:test1.text flash:test4.text
```
| File "flash:test1.text" successfully copied to "flash:test4.text"  
You can verify that the file was copied by entering the ```dir filesystem:``` boot loader command. |

<table>
<thead>
<tr>
<th>Related Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Command</strong></td>
</tr>
<tr>
<td><code>delete</code></td>
</tr>
</tbody>
</table>
delete

Use the `delete` boot loader command to delete one or more files from the specified file system.

```
delete filesystem:file-url ...
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>filesystem:</code></td>
<td>Alias for a flash file system. Use <code>flash:</code> for the system board flash device.</td>
</tr>
<tr>
<td><code>file-url</code></td>
<td>Path (directory) and filename to delete. Separate each filename with a space.</td>
</tr>
</tbody>
</table>

**Command Modes**

Boot loader

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Filenames and directory names are case sensitive.

The switch prompts you for confirmation before deleting each file.

**Examples**

This example shows how to delete two files:

```
switch: delete flash:test2.text flash:test5.text
Are you sure you want to delete "flash:test2.text" (y/n)? y
File "flash:test2.text" deleted
Are you sure you want to delete "flash:test5.text" (y/n)? y
File "flash:test2.text" deleted
```

You can verify that the files were deleted by entering the `dir flash:` boot loader command.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>copy</code></td>
<td>Copies a file from a source to a destination.</td>
</tr>
</tbody>
</table>
dir

Use the `dir` boot loader command to display a list of files and directories on the specified file system.

```
dir filesystem:file-url ...
```

### Syntax Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>filesystem:</code></td>
<td>Alias for a flash file system. Use <code>flash:</code> for the system board flash device.</td>
</tr>
<tr>
<td><code>file-url</code></td>
<td>(Optional) Path (directory) and directory name whose contents you want to display. Separate each directory name with a space.</td>
</tr>
</tbody>
</table>

### Command Modes

Boot loader

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

Directory names are case sensitive.

### Examples

This example shows how to display the files in flash memory:

```
switch: dir flash:
Directory of flash:/

 3 -rwx 1839 Mar 01 2002 00:48:15 config.text
 11 -rwx 1140 Mar 01 2002 04:18:48 vlan.dat
 21 -rwx 26 Mar 01 2002 00:01:39 env_vars
 9 drwx 768 Mar 01 2002 23:11:42 html
16 -rwx 1037 Mar 01 2002 00:01:11 config.text
14 -rwx 1099 Mar 01 2002 01:14:05 homepage.htm
22 -rwx 96 Mar 01 2002 00:01:39 system_env_vars

15998976 bytes total (6397440 bytes free)
```

**Table A-1** describes the fields in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Index number of the file.</td>
</tr>
<tr>
<td>-rwx</td>
<td>File permission, which can be any or all of the following:</td>
</tr>
<tr>
<td></td>
<td>- d—directory</td>
</tr>
<tr>
<td></td>
<td>- r—readable</td>
</tr>
<tr>
<td></td>
<td>- w—writable</td>
</tr>
<tr>
<td></td>
<td>- x—executable</td>
</tr>
</tbody>
</table>
## dir Field Descriptions (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1644045</td>
<td>Size of the file.</td>
</tr>
<tr>
<td>&lt;date&gt;</td>
<td>Last modification date.</td>
</tr>
<tr>
<td>env_vars</td>
<td>Filename.</td>
</tr>
</tbody>
</table>

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mkdir</td>
<td>Creates one or more directories.</td>
</tr>
<tr>
<td>rmdir</td>
<td>Removes one or more directories.</td>
</tr>
</tbody>
</table>
flash_init

Use the flash_init boot loader command to initialize the flash file system.

Syntax Description
This command has no arguments or keywords.

Defaults
The flash file system is automatically initialized during normal system operation.

Command Modes
Boot loader

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
During the normal boot process, the flash file system is automatically initialized.
Use this command to manually initialize the flash file system. For example, you use this command during the recovery procedure for a lost or forgotten password.
format

Use the `format` boot loader command to format the specified file system and destroy all data in that file system.

`format filesystem:`

**Syntax Description**

| `filesystem:` | Alias for a flash file system. Use `flash:` for the system board flash device. |

**Command Modes**

Boot loader

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

⚠️ **Caution**

Use this command with care; it destroys all data on the file system and renders your system unusable.
fsck

Use the `fsck` boot loader command to check the file system for consistency.

```bash
fsck [-test | -f] filesystem:
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-test</code></td>
<td>(Optional) Initialize the file system code and perform extra POST on flash memory. An extensive, nondestructive memory test is performed on every byte that makes up the file system.</td>
</tr>
<tr>
<td><code>-f</code></td>
<td>(Optional) Initialize the file system code and perform a fast file consistency check. Cyclic redundancy checks (CRCs) in the flashfs sectors are not checked.</td>
</tr>
</tbody>
</table>

| Option  | Alias for a flash file system. Use `flash:` for the system board flash device. |

**Defaults**

No file system check is performed.

**Command Modes**

Boot loader

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

To stop an in-progress file system consistency check, disconnect the switch power and then reconnect the power.

**Examples**

This example shows how to perform an extensive file system check on flash memory:

```bash
switch: fsck -test flash:
```
help

Use the help boot loader command to display the available commands.

help

Syntax Description

This command has no arguments or keywords.

Command Modes

Boot loader

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You can also use the question mark (?) to display a list of available boot loader commands.
load_helper

Use the **load_helper** boot loader command to load and initialize one or more helper images, which extend or patch the functionality of the boot loader.

```
load_helper filesystem:file-url ...
```

### Syntax Description

| **filesystem:** | Alias for a flash file system. Use **flash:** for the system board flash device. |
| **file-url**    | Path (directory) and a list of loadable helper files to dynamically load during loader initialization. Separate each image name with a semicolon. |

### Defaults
No helper files are loaded.

### Command Modes
Boot loader

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines
The **load_helper** command searches for loadable files only if the HELPER environment variable is set. Filenames and directory names are case sensitive.
Use the `memory` boot loader command to display memory heap utilization information.

```
switch: memory
Text: 0x00700000 - 0x0071cf24 (0x0001cf24 bytes)
Rotext: 0x00000000 - 0x00000000 (0x00000000 bytes)
Data: 0x0071cf24 - 0x00723a0c (0x00006ae8 bytes)
Bss: 0x0072529c - 0x00746f94 (0x00021cf8 bytes)
Stack: 0x00746f94 - 0x00756f94 (0x00010000 bytes)
Heap: 0x00756f98 - 0x00800000 (0x000a9068 bytes)
```

Bottom heap utilization is 22 percent.
Top heap utilization is 0 percent.
Total heap utilization is 22 percent.
Total bytes: 0xa9068 (692328)
Bytes used: 0x26888 (157832)
Bytes available: 0x827e0 (534496)

Alternate heap utilization is 0 percent.
Total alternate heap bytes: 0x6fd000 (7327744)
Alternate heap bytes used: 0x0 (0)
Alternate heap bytes available: 0x6fd000 (7327744)

`Table A-2` describes the fields in the display.

```
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text</td>
<td>Beginning and ending address of the text storage area.</td>
</tr>
<tr>
<td>Rotext</td>
<td>Beginning and ending address of the read-only text storage area. This part of the data segment is grouped with the Text entry.</td>
</tr>
<tr>
<td>Data</td>
<td>Beginning and ending address of the data segment storage area.</td>
</tr>
<tr>
<td>Bss</td>
<td>Beginning and ending address of the block started by symbol (Bss) storage area. It is initialized to zero.</td>
</tr>
</tbody>
</table>
```
### Table A-2  memory Field Descriptions (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stack</td>
<td>Beginning and ending address of the area in memory allocated to the software to store automatic variables, return addresses, and so forth.</td>
</tr>
<tr>
<td>Heap</td>
<td>Beginning and ending address of the area in memory that memory is dynamically allocated to and freed from.</td>
</tr>
</tbody>
</table>
mkdir

Use the `mkdir` boot loader command to create one or more new directories on the specified file system.

```
mkdir filesystem:directory-url ...
```

### Syntax Description
- `filesystem:`  
  Alias for a flash file system. Use `flash:` for the system board flash device.
- `directory-url`  
  Name of the directories to create. Separate each directory name with a space.

### Command Modes
- Boot loader

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines
Directory names are case sensitive.

Directory names are limited to 45 characters between the slashes (`/`); the name cannot contain control characters, spaces, deletes, slashes, quotes, semicolons, or colons.

### Examples
This example shows how to make a directory called ` Saved_Configs`:

```
switch: mkdir flash:Saved_Configs
Directory "flash:Saved_Configs" created
```

This example shows how to make two directories:

```
switch: mkdir flash:Saved_Configs flash:Test
Directory "flash:Saved_Configs" created
Directory "flash:Test" created
```

You can verify that the directory was created by entering the `dir filesystem:` boot loader command.

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dir</code></td>
<td>Displays a list of files and directories on the specified file system.</td>
</tr>
<tr>
<td><code>rmdir</code></td>
<td>Removes one or more directories from the specified file system.</td>
</tr>
</tbody>
</table>
more

Use the more boot loader command to display the contents of one or more files.

    more filesystem:/file-url ...

**Syntax Description**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>filesystem:</td>
<td>Alias for a flash file system. Use flash: for the system board flash device.</td>
</tr>
<tr>
<td>/file-url</td>
<td>Path (directory) and name of the files to display. Separate each filename with a space.</td>
</tr>
</tbody>
</table>

**Command Modes**

Boot loader

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Filenames and directory names are case sensitive.

If you specify a list of files, the contents of each file appears sequentially.

**Examples**

This example shows how to display the contents of two files:

```
switch: more flash:/new-images/info flash:env_vars
version_suffix: ipservices-122-25.SEB
version_directory: c3750-ipservices-mz.122-25.SEB
image_name: c3750-ipservices-mz.122-25.SEB.bin
ios_image_file_size: 6398464
total_image_file_size: 8133632
image_feature: IP|LAYER_3|PLUS|MIN_DRAM_MEG=128
image_family: C3750
info_end:
BAUD=57600
MANUAL_BOOT=no
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cat</td>
<td>Displays the contents of one or more files.</td>
</tr>
<tr>
<td>type</td>
<td>Displays the contents of one or more files.</td>
</tr>
</tbody>
</table>
rename

Use the rename boot loader command to rename a file.

    rename filesystem:/source-file-url filesystem:/destination-file-url

Syntax Description

- `filesystem:`  Alias for a flash file system. Use `flash:` for the system board flash device.
- `/source-file-url`  Original path (directory) and filename.
- `/destination-file-url`  New path (directory) and filename.

Command Modes

- Boot loader

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Filenames and directory names are case sensitive.
Directory names are limited to 45 characters between the slashes (`/`); the name cannot contain control characters, spaces, deletes, slashes, quotes, semicolons, or colons.
Filenames are limited to 45 characters; the name cannot contain control characters, spaces, deletes, slashes, quotes, semicolons, or colons.

Examples

This example shows a file named `config.text` being renamed to `config1.text`:

    switch: rename flash:config.text flash:config1.text

You can verify that the file was renamed by entering the `dir filesystem:` boot loader command.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>copy</td>
<td>Copies a file from a source to a destination.</td>
</tr>
</tbody>
</table>
reset

Use the `reset` boot loader command to perform a hard reset on the system. A hard reset is similar to power-cycling the switch, clearing the processor, registers, and memory.

```
reset
```

Syntax Description
This command has no arguments or keywords.

Command Modes
Boot loader

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples
This example shows how to reset the system:

```
switch: reset
Are you sure you want to reset the system (y/n)? y
System resetting...
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>boot</code></td>
<td>Loads and boots an executable image and enters the command-line interface.</td>
</tr>
</tbody>
</table>
rmdir

Use the rmdir boot loader command to remove one or more empty directories from the specified file system.

    rmdir filesystem:directory-url ...

**Syntax Description**

- **filesystem:** Alias for a flash file system. Use flash: for the system board flash device.
- **directory-url:** Path (directory) and name of the empty directories to remove. Separate each directory name with a space.

**Command Modes**

Boot loader

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Directory names are case sensitive and limited to 45 characters between the slashes (/); the name cannot contain control characters, spaces, deletes, slashes, quotes, semicolons, or colons.

Before removing a directory, you must first delete all the files in the directory.

The switch prompts you for confirmation before deleting each directory.

**Examples**

This example shows how to remove a directory:

    switch: rmdir flash:Test

You can verify that the directory was deleted by entering the dir filesystem: boot loader command.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dir</td>
<td>Displays a list of files and directories on the specified file system.</td>
</tr>
<tr>
<td>mkdir</td>
<td>Creates one or more new directories on the specified file system.</td>
</tr>
</tbody>
</table>
**set**

Use the `set` boot loader command to set or display environment variables, which can be used to control the boot loader or any other software running on the switch.

```
set variable value
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>variable value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MANUAL_BOOT</td>
<td></td>
<td>Decides whether the switch automatically or manually boots. Valid values are 1, yes, 0, and no. If it is set to no or 0, the boot loader attempts to automatically boot the system. If it is set to anything else, you must manually boot the switch from the boot loader mode.</td>
</tr>
<tr>
<td>BOOT filesystem:/file-url</td>
<td></td>
<td>A semicolon-separated list of executable files to try to load and execute when automatically booting. If the BOOT environment variable is not set, the system attempts to load and execute the first executable image it can find by using a recursive, depth-first search through the flash:/ file system. If the BOOT variable is set but the specified images cannot be loaded, the system attempts to boot the first bootable file that it can find in the flash file system.</td>
</tr>
<tr>
<td>ENABLE_BREAK</td>
<td></td>
<td>Decides whether the automatic boot process can be interrupted by using the Break key on the console. Valid values are 1, yes, on, 0, no, and off. If it is set to 1, yes, or on, you can interrupt the automatic boot process by pressing the Break key on the console after the flash file system has initialized.</td>
</tr>
<tr>
<td>HELPER filesystem:/file-url</td>
<td></td>
<td>A semicolon-separated list of loadable files to dynamically load during the boot loader initialization. Helper files extend or patch the functionality of the boot loader.</td>
</tr>
<tr>
<td>PS1 prompt</td>
<td></td>
<td>A string that is used as the command-line prompt in boot loader mode.</td>
</tr>
<tr>
<td>CONFIG_FILE flash:/file-url</td>
<td></td>
<td>The filename that Cisco IOS uses to read and write a nonvolatile copy of the system configuration.</td>
</tr>
<tr>
<td>BAUD rate</td>
<td></td>
<td>The rate in bits per second (bps) used for the console. The Cisco IOS software inherits the baud rate setting from the boot loader and continues to use this value unless the configuration file specifies another setting. The range is from 0 to 4294967295 bps. Valid values are 50, 75, 110, 150, 300, 600, 1200, 1800, 2000, 2400, 3600, 4800, 7200, 9600, 14400, 19200, 28800, 38400, 56000, 57600, 115200, and 128000. The most commonly used values are 300, 1200, 2400, 9600, 19200, 57600, and 115200.</td>
</tr>
<tr>
<td>BOOTHLP filesystem:/file-url</td>
<td></td>
<td>The name of the Cisco IOS helper image that is first loaded into memory so that it can then load a second Cisco IOS image into memory and launch it. This variable is used only for internal development and testing.</td>
</tr>
<tr>
<td>HELPER_CONFIG_FILE filesystem:/file-url</td>
<td></td>
<td>The name of the configuration file to be used by the Cisco IOS helper image. If this is not set, the file specified by the CONFIG_FILE environment variable is used by all versions of Cisco IOS that are loaded, including the helper image. This variable is used only for internal development and testing.</td>
</tr>
</tbody>
</table>
**Defaults**

The environment variables have these default values:

- **MANUAL_BOOT**: No (0)
- **BOOT**: Null string
- **ENABLE_BREAK**: No (Off or 0) (the automatic boot process cannot be interrupted by pressing the Break key on the console).
- **HELPER**: No default value (helper files are not automatically loaded).
- **PS1**: switch:
  - **CONFIG_FILE**: config.text
  - **BAUD**: 9600 bps
  - **BOOTHLPR**: No default value (no helper images are specified).
  - **HELPER_CONFIG_FILE**: No default value (no helper configuration file is specified).
  - **SWITCH_NUMBER**: 1
  - **SWITCH_PRIORITY**: 1

**Note**

Environment variables that have values are stored in the flash file system in various files. The format of these files is that each line contains an environment variable name and an equal sign followed by the value of the variable. A variable has no value if it is not listed in this file; it has a value if it is listed in the file even if the value is a null string. A variable that is set to a null string (for example, “ ”) is a variable with a value. Many environment variables are predefined and have default values.

**Command Modes**

- Boot loader

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Environment variables are case sensitive and must be entered as documented.

Environment variables that have values are stored in flash memory outside of the flash file system. Under normal circumstances, it is not necessary to alter the setting of the environment variables.

The **MANUAL_BOOT** environment variable can also be set by using the `boot manual` global configuration command.

The **BOOT** environment variable can also be set by using the `boot system filesystem:/file-url` global configuration command.

The **ENABLE_BREAK** environment variable can also be set by using the `boot enable-break` global configuration command.

The **HELPER** environment variable can also be set by using the `boot helper filesystem:/file-url` global configuration command.

The **CONFIG_FILE** environment variable can also be set by using the `boot config-file flash:/file-url` global configuration command.


The BOOTHLPR environment variable can also be set by using the `boot boothlpr filesystem:/file-url` global configuration command.

The HELPER_CONFIG_FILE environment variable can also be set by using the `boot helper-config-file filesystem:/file-url` global configuration command.

The HELPER_CONFIG_FILE environment variable can also be set by using the `boot helper-config-file filesystem:/file-url` global configuration command.

The SWITCH_NUMBER environment variable can also be set by using the `switch current-stack-member-number renumber new-stack-member-number` global configuration command.

The SWITCH_PRIORITY environment variable can also be set by using the `switch stack-member-number priority priority-number` global configuration command.

The boot loader prompt string (PS1) can be up to 120 printable characters except the equal sign (=).

### Examples

This example shows how to change the boot loader prompt:

```
switch: set PS1 loader:
loader:
```

You can verify your setting by using the `set` boot loader command.

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>unset</code></td>
<td>Resets one or more environment variables to its previous setting.</td>
</tr>
</tbody>
</table>
**type**

Use the **type** boot loader command to display the contents of one or more files.

```
type filesystem:file-url ...
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>filesystem:</code></td>
<td>Alias for a flash file system. Use <code>flash:</code> for the system board flash device.</td>
</tr>
<tr>
<td><code>file-url</code></td>
<td>Path (directory) and name of the files to display. Separate each filename with a space.</td>
</tr>
</tbody>
</table>

**Command Modes**

Boot loader

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Filenames and directory names are case sensitive.

If you specify a list of files, the contents of each file appears sequentially.

**Examples**

This example shows how to display the contents of two files:

```
switch: type flash:/new-images/info flash:env_vars
version_suffix: ipservices-122-25.SEB
version_directory: c3750-ipservices-mz.122-25.SEB.bin
image_name: c3750-ipservices-mz.122-25.SEB.bin
ios_image_file_size: 6398464
total_image_file_size: 8133632
image_feature: IP|LAYER_3|PLUS|MIN_DRAM_MB=128
image_family: C3750
info_end:
BAUD=57600
MANUAL_BOOT=no
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cat</code></td>
<td>Displays the contents of one or more files.</td>
</tr>
<tr>
<td><code>more</code></td>
<td>Displays the contents of one or more files.</td>
</tr>
</tbody>
</table>
unset

Use the `unset` boot loader command to reset one or more environment variables.

```
unset variable ...
```

### Syntax Description

| variable | Use one of these keywords for `variable`:
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MANUAL_BOOT</td>
<td>Decides whether the switch automatically or manually boots.</td>
</tr>
<tr>
<td>BOOT</td>
<td>Resets the list of executable files to try to load and execute when automatically booting. If the BOOT environment variable is not set, the system attempts to load and execute the first executable image it can find by using a recursive, depth-first search through the flash file system. If the BOOT variable is set but the specified images cannot be loaded, the system attempts to boot the first bootable file that it can find in the flash file system.</td>
</tr>
<tr>
<td>ENABLE_BREAK</td>
<td>Decides whether the automatic boot process can be interrupted by using the Break key on the console after the flash file system has been initialized.</td>
</tr>
<tr>
<td>HELPER</td>
<td>A semicolon-separated list of loadable files to dynamically load during the boot loader initialization. Helper files extend or patch the functionality of the boot loader.</td>
</tr>
<tr>
<td>PS1</td>
<td>A string that is used as the command-line prompt in boot loader mode.</td>
</tr>
<tr>
<td>CONFIG_FILE</td>
<td>Resets the filename that Cisco IOS uses to read and write a nonvolatile copy of the system configuration.</td>
</tr>
<tr>
<td>BAUD</td>
<td>Resets the rate in bits per second (bps) used for the console. The Cisco IOS software inherits the baud rate setting from the boot loader and continues to use this value unless the configuration file specifies another setting.</td>
</tr>
<tr>
<td>BOOTHLP</td>
<td>Resets the name of the Cisco IOS helper image that is first loaded into memory so that it can then load a second Cisco IOS image into memory and launch it. This variable is used only for internal development and testing.</td>
</tr>
<tr>
<td>HELPER_CONFIG_FILE</td>
<td>Resets the name of the configuration file to be used by the Cisco IOS helper image. If this is not set, the file specified by the CONFIG_FILE environment variable is used by all versions of Cisco IOS that are loaded, including the helper image. This variable is used only for internal development and testing.</td>
</tr>
</tbody>
</table>

### Command Modes

- Boot loader

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
**Usage Guidelines**

Under normal circumstances, it is not necessary to alter the setting of the environment variables.

The MANUAL_BOOT environment variable can also be reset by using the `no boot manual` global configuration command.

The BOOT environment variable can also be reset by using the `no boot system` global configuration command.

The ENABLE_BREAK environment variable can also be reset by using the `no boot enable-break` global configuration command.

The HELPER environment variable can also be reset by using the `no boot helper` global configuration command.

The CONFIG_FILE environment variable can also be reset by using the `no boot config-file` global configuration command.

The BOOTHLPRA environment variable can also be reset by using the `no boot boothlpr` global configuration command.

The HELPER_CONFIG_FILE environment variable can also be reset by using the `no boot helper-config-file` global configuration command.

**Examples**

This example shows how to reset the prompt string to its previous setting:

```
switch: unset PS1
switch:
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>set</code></td>
<td>Sets or displays environment variables.</td>
</tr>
</tbody>
</table>
version

Use the `version` boot loader command to display the boot loader version.

`version`

**Syntax Description**  
This command has no arguments or keywords.

**Command Modes**  
Boot loader

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to display the boot loader version:

```sh
switch: version
C3750 Boot Loader (C3750-HBOOT-M) Version 12.1(11)AX

Compiled Wed 21-Feb-02 14:58 by devgoyal

switch:
```
Catalyst 3750 Switch Debug Commands

This appendix describes the `debug` privileged EXEC commands that have been created or changed for use with the Catalyst 3750 switch. These commands are helpful in diagnosing and resolving internetworking problems and should be enabled only under the guidance of Cisco technical support staff.

⚠️ **Caution**

Because debugging output is assigned high priority in the CPU process, it can render the system unusable. For this reason, use the `debug` commands only to troubleshoot specific problems or during troubleshooting sessions with Cisco technical support staff. It is best to use the `debug` commands during periods of lower network traffic and fewer users. Debugging during these periods decreases the likelihood that increased `debug` command processing overhead will affect system use.
debug auto qos

Use the debug auto qos privileged EXEC command to enable debugging of the automatic quality of service (auto-QoS) feature. Use the no form of this command to disable debugging.

```plaintext
d debug auto qos
no debug auto qos
```

Syntax Description

This command has no keywords or arguments.

Defaults

Auto-QoS debugging is disabled.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(14)EA1</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(18)SE</td>
<td>The debug auto qos command replaced the debug autoqos command.</td>
</tr>
</tbody>
</table>

Usage Guidelines

To display the QoS configuration that is automatically generated when auto-QoS is enabled, enable debugging before you enable auto-QoS. You enable debugging by entering the debug auto qos privileged EXEC command.

The unddebug auto qos command is the same as the no debug auto qos command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the session switch-number privileged EXEC command. Then enter the debug command at the command-line prompt of the stack member. You also can use the remote command stack-member-number LINE privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

Examples

This example shows how to display the QoS configuration that is automatically generated when auto-QoS is enabled:

```plaintext
Switch# debug auto qos
AutoQoS debugging is on
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# auto qos voip cisco-phone

21:29:41: mls qos map cos-dscp 0 8 16 26 32 46 48 56
21:29:41: mls qos
21:29:42: no mls qos srr-queue input cos-map
21:29:42: no mls qos srr-queue output cos-map
21:29:42: mls qos srr-queue input cos-map queue 1 threshold 3 0
21:29:42: mls qos srr-queue input cos-map queue 1 threshold 2 1
```
debug auto qos

21:29:42: mls qos srr-queue input cos-map queue 2 threshold 1 2
21:29:42: mls qos srr-queue input cos-map queue 2 threshold 2 4 6 7
21:29:43: mls qos srr-queue input cos-map queue 2 threshold 3 5
21:29:43: mls qos srr-queue output cos-map queue 1 threshold 3 5
21:29:43: mls qos srr-queue output cos-map queue 2 threshold 3 6 7
21:29:44: mls qos srr-queue output cos-map queue 3 threshold 2 4
21:29:44: mls qos srr-queue output cos-map queue 4 threshold 2 1
21:29:44: mls qos srr-queue output cos-map queue 4 threshold 3 0
21:29:44: no mls qos srr-queue input dscp-map
21:29:44: no mls qos srr-queue output dscp-map
21:29:44: mls qos srr-queue input dscp-map queue 1 threshold 2 9 10 11 12 13 14 15
21:29:45: mls qos srr-queue input dscp-map queue 1 threshold 3 0 1 2 3 4 5 6 7
21:29:45: mls qos srr-queue input dscp-map queue 1 threshold 3 32
21:29:45: mls qos srr-queue input dscp-map queue 2 threshold 1 16 17 18 19 20 21 22 23
21:29:45: mls qos srr-queue input dscp-map queue 2 threshold 1 33 34 35 36 37 38 39 48
21:29:45: mls qos srr-queue input dscp-map queue 2 threshold 1 57 58 59 60 61 62 63
21:29:45: mls qos srr-queue input dscp-map queue 2 threshold 1 24 25 26 27 28 29 30 31
21:29:46: mls qos srr-queue output dscp-map queue 1 threshold 3 40 41 42 43 44 45 46 47
21:29:47: mls qos srr-queue output dscp-map queue 1 threshold 3 40 41 42 43 44 45 46 47
21:29:47: mls qos srr-queue output dscp-map queue 2 threshold 3 48 49 50 51 52 53 54 55
21:29:47: mls qos srr-queue output dscp-map queue 2 threshold 3 56 57 58 59 60 61 62 63
21:29:47: mls qos srr-queue output dscp-map queue 3 threshold 3 16 17 18 19 20 21 22 23
21:29:47: mls qos srr-queue output dscp-map queue 3 threshold 3 32 33 34 35 36 37 38 39
21:29:47: mls qos srr-queue output dscp-map queue 4 threshold 1 8
21:29:47: mls qos srr-queue output dscp-map queue 4 threshold 3 0 1 2 3 4 5 6 7
21:29:49: no mls qos srr-queue input priority-queue 1
21:29:49: no mls qos srr-queue input priority-queue 2
21:29:50: mls qos srr-queue input bandwidth 90 10
21:29:50: no mls qos srr-queue input buffers
21:29:50: mls qos queue-set output 1 buffers 10 10 26 54
21:29:50: interface GigabitEthernet2/0/1
21:29:50: mls qos trust device cisco-phone
21:29:50: mls qos trust cos
21:29:50: no queue-set 1
21:29:50: srr-queue bandwidth shape 10 0 0 0
21:29:50: srr-queue bandwidth share 10 10 60 20

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>auto qos voip</td>
<td>Configures auto-QoS for voice over IP (VoIP) within a QoS domain.</td>
</tr>
<tr>
<td>show auto qos</td>
<td>Displays the initial configuration that is generated by the automatic auto-QoS feature.</td>
</tr>
<tr>
<td>show debugging</td>
<td>Displays information about the types of debugging that are enabled. For syntax information, select Cisco IOS Release 12.2 Configuration Guides and Command References &gt; Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2 &gt; System Management &gt; Troubleshooting and Fault Management.</td>
</tr>
</tbody>
</table>
debug backup

Use the `debug backup` privileged EXEC command to enable debugging of the Flex Links backup interface. Use the `no` form of this command to disable debugging.

```
display backup { all | errors | events }
```

```
no display backup { all | errors | events }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>all</code></td>
<td>Display all backup interface debug messages.</td>
</tr>
<tr>
<td><code>errors</code></td>
<td>Display backup interface error or exception debug messages.</td>
</tr>
<tr>
<td><code>events</code></td>
<td>Display backup interface event debug messages.</td>
</tr>
</tbody>
</table>

**Command Default**

Backup interface debugging is disabled.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(20)SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `undebug backup` command is the same as the `no display backup` command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the `session switch-number` privileged EXEC command. Then enter the `display` command at the command-line prompt of the stack member. You also can use the `remote command stack-member-number LINE` privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show display</code></td>
<td>Displays information about the types of debugging that are enabled. For syntax information, select Cisco IOS Release 12.2 Configuration Guides and Command References &gt; Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2 &gt; System Management &gt; Troubleshooting and Fault Management.</td>
</tr>
</tbody>
</table>
debug cluster

Use the debug cluster privileged EXEC command to enable debugging of cluster-specific events. Use the no form of this command to disable debugging.

```
default cluster {discovery | events | extended | hsrp | http | ip [packet] | members | nat | neighbors
| platform | snmp | vqpxy}

no default cluster {discovery | events | extended | hsrp | http | ip [packet] | members | nat | neighbors | platform | snmp | vqpxy}
```

**Syntax Description**

- **discovery**: Display cluster discovery debug messages.
- **events**: Display cluster event debug messages.
- **extended**: Display extended discovery debug messages.
- **hsrp**: Display the Hot Standby Router Protocol (HSRP) debug messages.
- **http**: Display Hypertext Transfer Protocol (HTTP) debug messages.
- **ip [packet]**: Display IP or transport packet debug messages.
- **members**: Display cluster member debug messages.
- **nat**: Display Network Address Translation (NAT) debug messages.
- **neighbors**: Display cluster neighbor debug messages.
- **platform**: Display platform-specific cluster debug messages.
- **snmp**: Display Simple Network Management Protocol (SNMP) debug messages.
- **vqpxy**: Display VLAN Query Protocol (VQP) proxy debug messages.

**Defaults**

Debugging is disabled.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This command is available only on the cluster command switch stack or cluster command switch. The undebug cluster command is the same as the no debug cluster command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the session switch-number privileged EXEC command. Then enter the debug command at the command-line prompt of the stack member. You also can use the remote command stack-member-number LINE privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.
### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show cluster</td>
<td>Displays the cluster status and a summary of the cluster to which the switch belongs.</td>
</tr>
<tr>
<td>show cluster candidates</td>
<td>Displays a list of candidate switches when entered on the command switch.</td>
</tr>
<tr>
<td>show cluster members</td>
<td>Displays information about cluster members when executed on the command switch.</td>
</tr>
</tbody>
</table>
debug dot1x

Use the `debug dot1x` privileged EXEC command to enable debugging of the IEEE 802.1x authentication feature. Use the `no` form of this command to disable debugging.

```
debug dot1x {all | errors | events | feature | packets | registry | state-machine}
no debug dot1x {all | errors | events | feature | packets | registry | state-machine}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Display all IEEE 802.1x authentication debug messages.</td>
</tr>
<tr>
<td>errors</td>
<td>Display IEEE 802.1x error debug messages.</td>
</tr>
<tr>
<td>events</td>
<td>Display IEEE 802.1x event debug messages.</td>
</tr>
<tr>
<td>feature</td>
<td>Display IEEE 802.1x feature debug messages.</td>
</tr>
<tr>
<td>packets</td>
<td>Display IEEE 802.1x packet debug messages.</td>
</tr>
<tr>
<td>registry</td>
<td>Display IEEE 802.1x registry invocation debug messages.</td>
</tr>
<tr>
<td>state-machine</td>
<td>Display state-machine related-events debug messages.</td>
</tr>
</tbody>
</table>

**Note**

Though visible in the command-line help strings, the `redundancy` keyword is not supported.

**Command Default**

Debugging is disabled.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(14)EA1</td>
<td>The <code>authsm</code>, <code>backend</code>, <code>besm</code>, <code>core</code>, and <code>reauthsm</code> keywords were removed. The <code>errors</code>, <code>events</code>, <code>packets registry</code>, and <code>state-machine</code> keywords were added.</td>
</tr>
<tr>
<td>12.2(25)SEE</td>
<td>The <code>feature</code> keyword was added.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `undebug dot1x` command is the same as the `no debug dot1x` command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the `session switch-number` privileged EXEC command. Then enter the `debug` command at the command-line prompt of the stack member. You also can use the `remote command stack-member-number LINE` privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.
### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>debug dot1x</code></td>
<td>Displays information about the types of debugging that are enabled. For syntax information, see the Cisco IOS Release 12.2 Configuration Guides and Command References &gt; Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2 &gt; System Management &gt; Troubleshooting and Fault Management.</td>
</tr>
<tr>
<td><code>show dot1x</code></td>
<td>Displays IEEE 802.1x statistics, administrative status, and operational status for the switch or for the specified port.</td>
</tr>
</tbody>
</table>
debug dtp

Use the **debug dtp** privileged EXEC command to enable debugging of the Dynamic Trunking Protocol (DTP) activity. Use the **no** form of this command to disable debugging.

```
debug dtp {aggregation | all | decision | events | oserrs | packets | queue | states | timers}
no debug dtp {aggregation | all | decision | events | oserrs | packets | queue | states | timers}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aggregation</td>
<td>Display DTP user-message aggregation debug messages.</td>
</tr>
<tr>
<td>all</td>
<td>Display all DTP debug messages.</td>
</tr>
<tr>
<td>decision</td>
<td>Display the DTP decision-table debug messages.</td>
</tr>
<tr>
<td>events</td>
<td>Display the DTP event debug messages.</td>
</tr>
<tr>
<td>oserrs</td>
<td>Display DTP operating system-related error debug messages.</td>
</tr>
<tr>
<td>packets</td>
<td>Display DTP packet-processing debug messages.</td>
</tr>
<tr>
<td>queue</td>
<td>Display DTP packet-queueing debug messages.</td>
</tr>
<tr>
<td>states</td>
<td>Display DTP state-transition debug messages.</td>
</tr>
<tr>
<td>timers</td>
<td>Display DTP timer-event debug messages.</td>
</tr>
</tbody>
</table>

### Defaults

Debugging is disabled.

### Command Modes

Privileged EXEC

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

The **unddebug dtp** command is the same as the **no debug dtp** command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the **session switch-number** privileged EXEC command. Then enter the **debug** command at the command-line prompt of the stack member. You also can use the **remote command** **stack-member-number LINE** privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show debugging</td>
<td>Displays information about the types of debugging that are enabled. For syntax information, select Cisco IOS Release 12.2 Configuration Guides and Command References &gt; Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2 &gt; System Management &gt; Troubleshooting and Fault Management.</td>
</tr>
<tr>
<td>show dtp</td>
<td>Displays DTP information for the switch or for a specified interface.</td>
</tr>
</tbody>
</table>
debug eap

Use the **debug eap** privileged EXEC command to enable debugging of the Extensible Authentication Protocol (EAP) activity. Use the **no** form of this command to disable debugging.

```
debug dot1x {all | authenticator | errors | events | md5 | packets | peer | sm}
no debug dot1x {all | authenticator | errors | events | md5 | packets | peer | sm}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Command Default</th>
<th>Command Modes</th>
<th>Command History</th>
<th>Usage Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Display all EAP debug messages.</td>
<td>Privileged EXEC</td>
<td>12.2(25)SEE</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>authenticator</td>
<td>Display authenticator debug messages.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>errors</td>
<td>Display EAP error debug messages.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>events</td>
<td>Display EAP event debug messages.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>md5</td>
<td>Display EAP-MD5 debug messages.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>packets</td>
<td>Display EAP packet debug messages.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>peer</td>
<td>Display EAP peer debug messages.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sm</td>
<td>Display EAP state-machine related-events debug messages.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The **undebug dot1x** command is the same as the **no debug dot1x** command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the **session switch-number** privileged EXEC command. Then enter the **debug** command at the command-line prompt of the stack master. You also can use the **remote command stack-member-number LINE** privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.
## Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>show eap</strong></td>
<td>Displays EAP registration and session information for the switch or for the specified port.</td>
</tr>
</tbody>
</table>
debug etherchannel

Use the `debug etherchannel` privileged EXEC command to enable debugging of the EtherChannel/PAgP shim. This shim is the software module that is the interface between the Port Aggregation Protocol (PAgP) software module and the port manager software module. Use the `no` form of this command to disable debugging.

```
debug etherchannel [all | detail | error | event | idb]
no debug etherchannel [all | detail | error | event | idb]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>(Optional) Display all EtherChannel debug messages.</td>
</tr>
<tr>
<td>detail</td>
<td>(Optional) Display detailed EtherChannel debug messages.</td>
</tr>
<tr>
<td>error</td>
<td>(Optional) Display EtherChannel error debug messages.</td>
</tr>
<tr>
<td>event</td>
<td>(Optional) Debug major EtherChannel event messages.</td>
</tr>
<tr>
<td>idb</td>
<td>(Optional) Display PAgP interface descriptor block debug messages.</td>
</tr>
</tbody>
</table>

### Note

Though visible in the command-line help strings, the `linecard` keyword is not supported.

### Defaults

Debugging is disabled.

### Command Modes

Privileged EXEC

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

If you do not specify a keyword, all debug messages appear.

The `undebug etherchannel` command is the same as the `no debug etherchannel` command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the `session switch-number` privileged EXEC command. Then enter the `debug` command at the command-line prompt of the stack member. You also can use the `remote command stack-member-number LINE` privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.
<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>show debugging</td>
<td>Displays information about the types of debugging that are enabled. For</td>
</tr>
<tr>
<td></td>
<td></td>
<td>syntax information, select <a href="#">Cisco IOS Release 12.2 Configuration Guides</a></td>
</tr>
<tr>
<td></td>
<td></td>
<td>and Command References &gt; Cisco IOS Configuration Fundamentals</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Configuration Guide, Release 12.2 &gt; System Management &gt;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Troubleshooting and Fault Management.</td>
</tr>
<tr>
<td></td>
<td>show etherchannel</td>
<td>Displays EtherChannel information for the channel.</td>
</tr>
</tbody>
</table>
**debug ilpower**

Use the `debug ilpower` privileged EXEC command to enable debugging of the power controller and Power over Ethernet (PoE) system. Use the `no` form of this command to disable debugging.

```
default ilpower {cdp | controller | event | ha | port | powerman | registries}
no default ilpower {cdp | controller | event | ha | port | powerman | registries}
```

**Syntax Description**

- `cdp`: Display PoE Cisco Discovery Protocol (CDP) debug messages.
- `controller`: Display PoE controller debug messages.
- `event`: Display PoE event debug messages.
- `ha`: Display PoE high-availability messages.
- `port`: Display PoE port manager debug messages.
- `powerman`: Display PoE power management debug messages.
- `registries`: Display PoE registries debug messages.

**Defaults**

Debugging is disabled.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(19)EA1</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(25)SE</td>
<td>The <code>cdp</code>, <code>ha</code>, and <code>powerman</code> keywords were added.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This command is supported only on PoE-capable switches.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the `session switch-number` privileged EXEC command. Then enter the `debug` command at the command-line prompt of the stack member. You also can use the `remote command stack-member-number LINE` privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show controllers power inline</code></td>
<td>Displays the values in the registers of the specified PoE controller.</td>
</tr>
<tr>
<td><code>show power inline</code></td>
<td>Displays the power status for the specified PoE port or for all PoE ports.</td>
</tr>
</tbody>
</table>
debug ip dhcp snooping

Use the `debug ip dhcp snooping` privileged EXEC command to enable debugging of DHCP snooping. Use the `no` form of this command to disable debugging.

```
d debug ip dhcp snooping {mac-address | agent | event | packet}
```

```
no debug ip dhcp snooping {mac-address | agent | event | packet}
```

This command is available only if your switch is running the IP services image, formerly known as the enhanced multilayer image (EMI).

**Syntax Description**

- **mac-address**: Display debug messages for a DHCP packet with the specified MAC address.
- **agent**: Display debug messages for DHCP snooping agents.
- **event**: Display debug messages for DHCP snooping events.
- **packet**: Display debug messages for DHCP snooping.

**Defaults**

Debugging is disabled.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(20)SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `undebug ip dhcp snooping` command is the same as the `no debug ip dhcp snooping` command. When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the `session switch-number` privileged EXEC command. Then enter the `debug` command at the command-line prompt of the stack member. You also can use the `remote command stack-member-number LINE` privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show debugging</code></td>
<td>Displays information about the types of debugging that are enabled. For syntax information, select Cisco IOS Release 12.2 Configuration Guides and Command References &gt; Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2 &gt; System Management &gt; Troubleshooting and Fault Management.</td>
</tr>
</tbody>
</table>
debug ip verify source packet

Use the `debug ip verify source packet` privileged EXEC command to enable debugging of IP source guard. Use the `no` form of this command to disable debugging.

```
debug ip verify source packet
no debug ip verify source packet
```

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
Debugging is disabled.

**Command Modes**
Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(20)SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
The `undebug ip verify source packet` command is the same as the `no debug ip verify source packet` command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the `session switch-number` privileged EXEC command. Then enter the `debug` command at the command-line prompt of the stack member. You also can use the `remote command stack-member-number LINE` privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show debugging</code></td>
<td>Displays information about the types of debugging that are enabled. For syntax information, select <em>Cisco IOS Release 12.2 Configuration Guides and Command References &gt; Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2 &gt; System Management &gt; Troubleshooting and Fault Management.</em></td>
</tr>
</tbody>
</table>
debug interface

Use the `debug interface` privileged EXEC command to enable debugging of interface-related activities. Use the `no` form of this command to disable debugging.

```
debug interface { interface-id | null interface-number | port-channel port-channel-number | vlan vlan-id }
no debug interface { interface-id | null interface-number | port-channel port-channel-number | vlan vlan-id }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>interface-id</code></td>
<td>Display debug messages for the specified physical port, identified by type</td>
</tr>
<tr>
<td><code>null interface-number</code></td>
<td>Display debug messages for null interfaces. The <code>interface-number</code> is always</td>
</tr>
<tr>
<td><code>port-channel</code></td>
<td>Display debug messages for the specified EtherChannel port-channel interface. The <code>port-channel-number</code> range is 1 to 48.</td>
</tr>
<tr>
<td><code>port-channel-number</code></td>
<td>Display debug messages for the specified EtherChannel port-channel interface. The <code>port-channel-number</code> range is 1 to 48.</td>
</tr>
<tr>
<td><code>vlan vlan-id</code></td>
<td>Display debug messages for the specified VLAN. The <code>vlan-id</code> range is 1 to 4094.</td>
</tr>
</tbody>
</table>

**Defaults**

Debugging is disabled.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>T12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If you do not specify a keyword, all debug messages appear.

The `undebug interface` command is the same as the `no debug interface` command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the `session switch-number` privileged EXEC command. Then enter the `debug` command at the command-line prompt of the stack member. You also can use the `remote command stack-member-number LINE` privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.
## Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show etherchannel</code></td>
<td>Displays EtherChannel information for the channel.</td>
</tr>
</tbody>
</table>
**debug ip igmp filter**

Use the `debug ip igmp filter` privileged EXEC command to enable debugging of Internet Group Management Protocol (IGMP) filter events. Use the `no` form of this command to disable debugging.

```
debug ip igmp filter
no debug ip igmp filter
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

Debugging is disabled.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `undebug ip igmp filter` command is the same as the `no debug ip igmp filter` command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the `session switch-number` privileged EXEC command. Then enter the `debug` command at the command-line prompt of the stack member. You also can use the `remote command stack-member-number LINE` privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
</table>
debug ip igmp max-groups

Use the `debug ip igmp max-groups` privileged EXEC command to enable debugging of Internet Group Management Protocol (IGMP) maximum groups events. Use the `no` form of this command to disable debugging.

```
depag ip igmp max-groups
no debug ip igmp max-groups
```

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
Debugging is disabled.

**Command Modes**
Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
The `undebug ip igmp max-groups` command is the same as the `no debug ip igmp max-groups` command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the `session switch-number` privileged EXEC command. Then enter the `debug` command at the command-line prompt of the stack member. You also can use the `remote command stack-member-number LINE` privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
</table>
debug ip igmp snooping

Use the debug ip igmp snooping privileged EXEC command to enable debugging of Internet Group Management Protocol (IGMP) snooping activity. Use the no form of this command to disable debugging.

    debug ip igmp snooping [group | management | querier | router | timer]

    no debug ip igmp snooping [group | management | querier | router | timer]

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>group</td>
<td>(Optional) Display IGMP snooping group activity debug messages.</td>
</tr>
<tr>
<td>management</td>
<td>(Optional) Display IGMP snooping management activity debug messages.</td>
</tr>
<tr>
<td>querier</td>
<td>(Optional) Display IGMP snooping querier debug messages.</td>
</tr>
<tr>
<td>router</td>
<td>(Optional) Display IGMP snooping router activity debug messages.</td>
</tr>
<tr>
<td>timer</td>
<td>(Optional) Display IGMP snooping timer event debug messages.</td>
</tr>
</tbody>
</table>

**Defaults**

Debugging is disabled.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(25)SEA</td>
<td>The querier keyword was added.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The undebug ip igmp snooping command is the same as the no debug ip igmp snooping command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the session switch-number privileged EXEC command. Then enter the debug command at the command-line prompt of the stack member. You also can use the remote command stack-member-number LINE privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>debug platform ip igmp snooping</td>
<td>Displays information about platform-dependent IGMP snooping activity.</td>
</tr>
<tr>
<td>show debugging</td>
<td>Displays information about the types of debugging that are enabled. For syntax information, select Cisco IOS Release 12.2 Configuration Guides and Command References &gt; Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2 &gt; System Management &gt; Troubleshooting and Fault Management.</td>
</tr>
</tbody>
</table>
debug lacp

Use the debug lacp privileged EXEC command to enable debugging of Link Aggregation Control Protocol (LACP) activity. Use the no form of this command to disable debugging.

```
debug lacp [all | event | fsm | misc | packet]

no debug lacp [all | event | fsm | misc | packet]
```

**Syntax Description**

- **all**: (Optional) Display all LACP debug messages.
- **event**: (Optional) Display LACP event debug messages.
- **fsm**: (Optional) Display LACP finite state-machine debug messages.
- **misc**: (Optional) Display miscellaneous LACP debug messages.
- **packet**: (Optional) Display LACP packet debug messages.

**Defaults**

Debugging is disabled.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(14)EA1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `undebug lacp` command is the same as the `no debug lacp` command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the `session switch-number` privileged EXEC command. Then enter the `debug` command at the command-line prompt of the stack member. You also can use the `remote command stack-member-number LINE` privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show debugging</code></td>
<td>Displays information about the types of debugging that are enabled. For syntax information, select Cisco IOS Release 12.2 Configuration Guides and Command References &gt; Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2 &gt; System Management &gt; Troubleshooting and Fault Management.</td>
</tr>
<tr>
<td><code>show lacp</code></td>
<td>Displays LACP channel-group information.</td>
</tr>
</tbody>
</table>
debug mac-notification

Use the `debug mac-notification` privileged EXEC command to enable debugging of MAC notification events. Use the `no` form of this command to disable debugging.

```
default
```

Syntax Description

This command has no arguments or keywords.

Defaults

Debugging is disabled.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `undebug mac-notification` command is the same as the `no debug mac-notification` command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the `session switch-number` privileged EXEC command. Then enter the `debug` command at the command-line prompt of the stack member. You also can use the `remote command` `stack-member-number LINE` privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show debugging</code></td>
<td>Displays information about the types of debugging that are enabled. For syntax information, select Cisco IOS Release 12.2 Configuration Guides and Command References &gt; Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2 &gt; System Management &gt; Troubleshooting and Fault Management.</td>
</tr>
<tr>
<td><code>show mac address-table notification</code></td>
<td>Displays the MAC address notification information for all interfaces or the specified interface.</td>
</tr>
</tbody>
</table>
debug matm

Use the debug matm privileged EXEC command to enable debugging of platform-independent MAC address management. Use the no form of this command to disable debugging.

```
debug matm
no debug matm
```

Syntax Description: This command has no arguments or keywords.

Defaults: Debugging is disabled.

Command Modes: Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines: The undebug matm command is the same as the no debug matm command. When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the session switch-number privileged EXEC command. Then enter the debug command at the command-line prompt of the stack member. You also can use the remote command stack-member-number LINE privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>debug platform matm</td>
<td>Displays information about platform-dependent MAC address management.</td>
</tr>
<tr>
<td>show debugging</td>
<td>Displays information about the types of debugging that are enabled. For syntax information, select Cisco IOS Release 12.2 Configuration Guides and Command References &gt; Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2 &gt; System Management &gt; Troubleshooting and Fault Management.</td>
</tr>
</tbody>
</table>
debug matm move update

Use the debug matm move update privileged EXEC command to enable debugging of MAC address-table move update message processing.

debug matm move update

no debug matm move update

Syntax Description
This command has no arguments or keywords.

Defaults
Debugging is disabled.

Command Modes
Privileged EXEC

Command History
Release | Modification
12.2(25)SED | This command was introduced.

Usage Guidelines
The unddebug matm move update command is the same as the no debug matm move update command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the session switch-number privileged EXEC command. Then enter the debug command at the command-line prompt of the stack member. You can also use the remote command stack-member-number LINE privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mac address-table move update</td>
<td>Configures MAC address-table move update feature on the switch.</td>
</tr>
<tr>
<td>show debugging</td>
<td>Displays information about the types of debugging that are enabled. For syntax information, select Cisco IOS Release 12.2 Configuration Guides and Command References &gt; Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2 &gt; System Management &gt; Troubleshooting and Fault Management.</td>
</tr>
<tr>
<td>show mac address-table move update</td>
<td>Displays the MAC address-table move update information on the switch.</td>
</tr>
</tbody>
</table>
debug monitor

Use the **debug monitor** privileged EXEC command to enable debugging of the Switched Port Analyzer (SPAN) feature. Use the **no** form of this command to disable debugging.

```
debug monitor { all | errors | idb-update | info | list | notifications | platform | requests | snmp }
no debug monitor { all | errors | idb-update | info | list | notifications | platform | requests | snmp }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Display all SPAN debug messages.</td>
</tr>
<tr>
<td>errors</td>
<td>Display detailed SPAN error debug messages.</td>
</tr>
<tr>
<td>idb-update</td>
<td>Display SPAN interface description block (IDB) update-trace debug messages.</td>
</tr>
<tr>
<td>info</td>
<td>Display SPAN informational-tracing debug messages.</td>
</tr>
<tr>
<td>list</td>
<td>Display SPAN port and VLAN-list tracing debug messages.</td>
</tr>
<tr>
<td>notifications</td>
<td>Display SPAN notification debug messages.</td>
</tr>
<tr>
<td>platform</td>
<td>Display SPAN platform-tracing debug messages.</td>
</tr>
<tr>
<td>requests</td>
<td>Display SPAN request debug messages.</td>
</tr>
<tr>
<td>snmp</td>
<td>Display SPAN and Simple Network Management Protocol (SNMP) tracing debug messages.</td>
</tr>
</tbody>
</table>

### Defaults

Debugging is disabled.

### Command Modes

Privileged EXEC

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

The **undebug monitor** command is the same as the **no debug monitor** command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the **session switch-number** privileged EXEC command. Then enter the **debug** command at the command-line prompt of the stack member. You also can use the **remote command** stack-member-number **LINE** privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.
### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show debugging</td>
<td>Displays information about the types of debugging that are enabled. For syntax information, select <a href="#">Cisco IOS Release 12.2 Configuration Guides and Command References &gt; Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2 &gt; System Management &gt; Troubleshooting and Fault Management.</a></td>
</tr>
<tr>
<td>show monitor</td>
<td>Displays information about all SPAN and remote SPAN (RSPAN) sessions on the switch.</td>
</tr>
</tbody>
</table>
debug mvrdbg

Use the `debug mvrdbg` privileged EXEC command to enable debugging of Multicast VLAN Registration (MVR). Use the `no` form of this command to disable debugging.

```
debug mvrdbg {all | events | igmpsn | management | ports}
no debug mvrdbg {all | events | igmpsn | management | ports}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>all</code></td>
<td>Display all MVR activity debug messages.</td>
</tr>
<tr>
<td><code>events</code></td>
<td>Display MVR event-handling debug messages.</td>
</tr>
<tr>
<td><code>igmpsn</code></td>
<td>Display MVR Internet Group Management Protocol (IGMP) snooping-activity debug messages.</td>
</tr>
<tr>
<td><code>management</code></td>
<td>Display MVR management-activity debug messages.</td>
</tr>
<tr>
<td><code>ports</code></td>
<td>Display MVR port debug messages.</td>
</tr>
</tbody>
</table>

### Defaults

Debugging is disabled.

### Command Modes

Privileged EXEC

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

The `undebug mvrdbg` command is the same as the `no debug mvrdbg` command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the `session switch-number` privileged EXEC command. Then enter the `debug` command at the command-line prompt of the stack member. You also can use the `remote command stack-member-number LINE` privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show debugging</code></td>
<td>Displays information about the types of debugging that are enabled. For syntax information, select Cisco IOS Release 12.2 Configuration Guides and Command References &gt; Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2 &gt; System Management &gt; Troubleshooting and Fault Management.</td>
</tr>
<tr>
<td><code>show mvr</code></td>
<td>Displays the current MVR configuration.</td>
</tr>
</tbody>
</table>
debug nvram

Use the `debug nvram` privileged EXEC command to enable debugging of NVRAM activity. Use the `no` form of this command to disable debugging.

```plaintext
debug nvram
no debug nvram
```

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
Debugging is disabled.

**Command Modes**
Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
The `undebug nvram` command is the same as the `no debug nvram` command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the `session switch-number` privileged EXEC command. Then enter the `debug` command at the command-line prompt of the stack master. You also can use the `remote command stack-member-number LINE` privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show debugging</td>
<td>Displays information about the types of debugging that are enabled. For syntax information, select Cisco IOS Release 12.2 Configuration Guides and Command References &gt; Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2 &gt; System Management &gt; Troubleshooting and Fault Management.</td>
</tr>
</tbody>
</table>
**debug pagp**

Use the **debug pagp** privileged EXEC command to enable debugging of Port Aggregation Protocol (PAgP) activity. Use the **no** form of this command to disable debugging.

```
ddebug pagp [all | event | fsm | misc | packet]
```

```
no debug pagp [all | event | fsm | misc | packet]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>(Optional) Display all PAgP debug messages.</td>
</tr>
<tr>
<td>event</td>
<td>(Optional) Display PAgP event debug messages.</td>
</tr>
<tr>
<td>fsm</td>
<td>(Optional) Display PAgP finite state-machine debug messages.</td>
</tr>
<tr>
<td>misc</td>
<td>(Optional) Display miscellaneous PAgP debug messages.</td>
</tr>
<tr>
<td>packet</td>
<td>(Optional) Display PAgP packet debug messages.</td>
</tr>
</tbody>
</table>

**Defaults**

Debugging is disabled.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The **undebug pagp** command is the same as the **no debug pagp** command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the **session switch-number** privileged EXEC command. Then enter the **debug** command at the command-line prompt of the stack member. You also can use the **remote command stack-member-number LINE** privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>show pagp</strong></td>
<td>Displays PAgP channel-group information.</td>
</tr>
</tbody>
</table>
**debug platform acl**

Use the `debug platform acl` privileged EXEC command to enable debugging of the access control list (ACL) manager. Use the `no` form of this command to disable debugging.

```
debug platform acl {all | exit | label | main | racl | stack | vacl | vlmap | warn}
no debug platform acl {all | exit | label | main | racl | stack | vacl | vlmap | warn}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>all</code></td>
<td>Display all ACL manager debug messages.</td>
</tr>
<tr>
<td><code>exit</code></td>
<td>Display ACL exit-related debug messages.</td>
</tr>
<tr>
<td><code>label</code></td>
<td>Display ACL label-related debug messages.</td>
</tr>
<tr>
<td><code>main</code></td>
<td>Display the main or important ACL debug messages.</td>
</tr>
<tr>
<td><code>racl</code></td>
<td>Display router ACL related debug messages.</td>
</tr>
<tr>
<td><code>stack</code></td>
<td>Display ACL stack-related debug messages.</td>
</tr>
<tr>
<td><code>vacl</code></td>
<td>Display VLAN ACL-related debug messages.</td>
</tr>
<tr>
<td><code>vlmap</code></td>
<td>Display ACL VLAN-map-related debug messages.</td>
</tr>
<tr>
<td><code>warn</code></td>
<td>Display ACL warning-related debug messages.</td>
</tr>
</tbody>
</table>

### Defaults

Debugging is disabled.

### Command Modes

Privileged EXEC

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

The `undebug platform acl` command is the same as the `no debug platform acl` command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the `session switch-number` privileged EXEC command. Then enter the `debug` command at the command-line prompt of the stack member. You also can use the `remote command stack-member-number LINE` privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show debugging</code></td>
<td>Displays information about the types of debugging that are enabled. For</td>
</tr>
<tr>
<td></td>
<td>syntax information, select [Cisco IOS Release 12.2 Configuration Guides</td>
</tr>
<tr>
<td></td>
<td>and Command References](<a href="https://www.cisco.com/c/en/us/support/docs/cisco-ios/">https://www.cisco.com/c/en/us/support/docs/cisco-ios/</a></td>
</tr>
<tr>
<td></td>
<td>software-systems/drw-122/c122cg2.html) &gt; Cisco IOS Configuration Fundamentals</td>
</tr>
<tr>
<td></td>
<td>Configuration Guide, Release 12.2 &gt; System Management &gt;</td>
</tr>
<tr>
<td></td>
<td>Troubleshooting and Fault Management.</td>
</tr>
</tbody>
</table>
debug platform backup interface

Use the debug platform backup interface privileged EXEC command to enable debugging of the Flex Links platform backup interface. Use the no form of this command to disable debugging.

debug platform backup interface
no debug platform backup interface

Syntax Description
This command has no arguments or keywords.

Command Default
Platform backup interface debugging is disabled.

Command Modes
Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(20)SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
The undebug platform backup interface command is the same as the no platform debug backup interface command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the session switch-number privileged EXEC command. Then enter the debug command at the command-line prompt of the stack member. You also can use the remote command stack-member-number LINE privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show debugging</td>
<td>Displays information about the types of debugging that are enabled. For syntax information, select Cisco IOS Release 12.2 Configuration Guides and Command References &gt; Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2 &gt; System Management &gt; Troubleshooting and Fault Management.</td>
</tr>
</tbody>
</table>
debug platform cli-redirection main

Use the debug platform cli-redirection main privileged EXEC command to enable debugging of the main (important) command-line interface (CLI) redirection events. Use the no form of this command to disable debugging.

```
 debug platform cli-redirection main

 no debug platform cli-redirection main
```

Syntax Description
This command has no arguments or keywords.

Defaults
Debugging is disabled.

Command Modes
Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
The undebug platform cli-redirection main command is the same as the no debug platform cli-redirection main command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the session switch-number privileged EXEC command. Then enter the debug command at the command-line prompt of the stack member. You also can use the remote command stack-member-number LINE privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show debugging</td>
<td>Displays information about the types of debugging that are enabled. For syntax information, select Cisco IOS Release 12.2 Configuration Guides and Command References &gt; Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2 &gt; System Management &gt; Troubleshooting and Fault Management.</td>
</tr>
</tbody>
</table>
debug platform configuration

Use the debug platform configuration privileged EXEC command to enable debugging of configuration file activity across the stack. Use the no form of this command to disable debugging.

debug platform configuration {all | reception | transmission}

no debug platform configuration {all | reception | transmission}

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Display debug messages for all configuration file transmission and reception events throughout the stack.</td>
</tr>
<tr>
<td>reception</td>
<td>Display debug messages for configuration file reception from other stack members.</td>
</tr>
<tr>
<td>transmission</td>
<td>Display debug messages for configuration file transmission to other stack members.</td>
</tr>
</tbody>
</table>

**Defaults**

Debugging is disabled.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The undebug platform configuration command is the same as the no debug platform configuration command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the session switch-number privileged EXEC command. Then enter the debug command at the command-line prompt of the stack member. You also can use the remote command stack-member-number LINE privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show debugging</td>
<td>Displays information about the types of debugging that are enabled. For syntax information, select Cisco IOS Release 12.2 Configuration Guides and Command References &gt; Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2 &gt; System Management &gt; Troubleshooting and Fault Management.</td>
</tr>
</tbody>
</table>
debug platform cpu-queues

Use the `debug platform cpu-queues` privileged EXEC command to enable debugging of platform central processing unit (CPU) receive queues. Use the `no` form of this command to disable debugging.

```
debug platform cpu-queues {broadcast-q | cbt-to-spt-q | cpuhub-q | host-q | icmp-q |
 igmp-snooping-q | layer2-protocol-q | logging-q | remote-console-q | routing-protocol-q |
 rpffail-q | software-fwd-q | stp-q}

no debug platform cpu-queues {broadcast-q | cbt-to-spt-q | cpuhub-q | host-q | icmp-q |
 igmp-snooping-q | layer2-protocol-q | logging-q | remote-console-q | routing-protocol-q |
 rpffail-q | software-fwd-q | stp-q}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>broadcast-q</code></td>
<td>Display debug messages about packets received by the broadcast queue.</td>
</tr>
<tr>
<td><code>cbt-to-spt-q</code></td>
<td>Display debug messages about packets received by the core-based tree to shortest-path tree (cbt-to-spt) queue.</td>
</tr>
<tr>
<td><code>cpuhub-q</code></td>
<td>Display debug messages about packets received by the CPU heartbeat queue.</td>
</tr>
<tr>
<td><code>host-q</code></td>
<td>Display debug messages about packets received by the host queue.</td>
</tr>
<tr>
<td><code>icmp-q</code></td>
<td>Display debug messages about packets received by the Internet Control Message Protocol (ICMP) queue.</td>
</tr>
<tr>
<td><code>igmp-snooping-q</code></td>
<td>Display debug messages about packets received by the Internet Group Management Protocol (IGMP)-snooping queue.</td>
</tr>
<tr>
<td><code>layer2-protocol-q</code></td>
<td>Display debug messages about packets received by the Layer 2 protocol queue.</td>
</tr>
<tr>
<td><code>logging-q</code></td>
<td>Display debug messages about packets received by the logging queue.</td>
</tr>
<tr>
<td><code>remote-console-q</code></td>
<td>Display debug messages about packets received by the remote console queue.</td>
</tr>
<tr>
<td><code>routing-protocol-q</code></td>
<td>Display debug messages about packets received by the routing protocol queue.</td>
</tr>
<tr>
<td><code>rpffail-q</code></td>
<td>Display debug messages about packets received by the reverse path forwarding (RFP) failure queue.</td>
</tr>
<tr>
<td><code>software-fwd-q</code></td>
<td>Debug packets received by the software forwarding queue.</td>
</tr>
<tr>
<td><code>stp-q</code></td>
<td>Debug packets received by the Spanning Tree Protocol (STP) queue.</td>
</tr>
</tbody>
</table>

### Defaults

Debugging is disabled.

### Command Modes

Privileged EXEC

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
debug platform cpu-queues

Usage Guidelines

The **undebug platform cpu-queues** command is the same as the **no debug platform cpu-queues** command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the **session switch-number** privileged EXEC command. Then enter the **debug** command at the command-line prompt of the stack member. You also can use the **remote command stack-member-number LINE** privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show debugging</td>
<td>Displays information about the types of debugging that are enabled. For syntax information, select Cisco IOS Release 12.2 Configuration Guides and Command References &gt; Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2 &gt; System Management &gt; Troubleshooting and Fault Management.</td>
</tr>
</tbody>
</table>
debug platform device-manager

Use the `debug platform device-manager` privileged EXEC command to enable debugging of the platform-dependent device manager. Use the `no` form of this command to disable debugging.

```
debug platform device-manager {all | device-info | poll | port-download | trace}
no debug platform device-manager {all | device-info | poll | port-download | trace}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Display all platform device manager debug messages.</td>
</tr>
<tr>
<td>device-info</td>
<td>Display platform device manager device structure debug messages.</td>
</tr>
<tr>
<td>poll</td>
<td>Display platform device manager 1-second poll debug messages.</td>
</tr>
<tr>
<td>port-download</td>
<td>Display platform device manager remote procedure call (RPC) usage debug messages.</td>
</tr>
<tr>
<td>trace</td>
<td>Trace platform device manager function entry and exit debug messages.</td>
</tr>
</tbody>
</table>

### Defaults

Debugging is disabled.

### Command Modes

Privileged EXEC

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

The `undebug platform device-manager` command is the same as the `no debug platform device-manager` command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the `session switch-number` privileged EXEC command. Then enter the `debug` command at the command-line prompt of the stack member. You also can use the `remote command stack-member-number LINE` privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show debugging</td>
<td>Displays information about the types of debugging that are enabled. For syntax information, select Cisco IOS Release 12.2 Configuration Guides and Command References &gt; Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2 &gt; System Management &gt; Troubleshooting and Fault Management.</td>
</tr>
</tbody>
</table>
debug platform dot1x

Use the `debug platform dot1x` privileged EXEC command to enable debugging of stack-related IEEE 802.1x events. Use the `no` form of this command to disable debugging.

```
deprecated platform dot1x {initialization | interface-configuration | rpc}
```

```
no debug platform dot1x {initialization | interface-configuration | rpc}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>initialization</code></td>
<td>Display IEEE 802.1x-authentication initialization sequence debug messages.</td>
</tr>
<tr>
<td><code>interface-configuration</code></td>
<td>Display IEEE 802.1x interface configuration-related debug messages.</td>
</tr>
<tr>
<td><code>rpc</code></td>
<td>Display IEEE 802.1x remote procedure call (RPC) request debug messages.</td>
</tr>
</tbody>
</table>

**Defaults**

Debugging is disabled.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `undebug platform dot1x` command is the same as the `no debug platform dot1x` command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the `session switch-number` privileged EXEC command. Then enter the `debug` command at the command-line prompt of the stack member. You also can use the `remote command stack-member-number LINE` privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show debugging</code></td>
<td>Displays information about the types of debugging that are enabled. For syntax information, select Cisco IOS Release 12.2 Configuration Guides and Command References &gt; Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2 &gt; System Management &gt; Troubleshooting and Fault Management.</td>
</tr>
</tbody>
</table>
debug platform etherchannel

Use the `debug platform etherchannel` privileged EXEC command to enable debugging of platform-dependent EtherChannel events. Use the `no` form of this command to disable debugging.

```
default {init | link-up | rpc | warnings}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>init</td>
<td>Display EtherChannel module initialization debug messages.</td>
</tr>
<tr>
<td>link-up</td>
<td>Display EtherChannel link-up and link-down related debug messages.</td>
</tr>
<tr>
<td>rpc</td>
<td>Display EtherChannel remote procedure call (RPC) debug messages.</td>
</tr>
<tr>
<td>warnings</td>
<td>Display EtherChannel warning debug messages.</td>
</tr>
</tbody>
</table>

**Defaults**

Debugging is disabled.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `undebug platform etherchannel` command is the same as the `no debug platform etherchannel` command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the `session switch-number` privileged EXEC command. Then enter the `debug` command at the command-line prompt of the stack member. You also can use the `remote command stack-member-number LINE` privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show debugging</code></td>
<td>Displays information about the types of debugging that are enabled. For syntax information, select Cisco IOS Release 12.2 Configuration Guides and Command References &gt; Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2 &gt; System Management &gt; Troubleshooting and Fault Management.</td>
</tr>
</tbody>
</table>
debug platform fallback-bridging

Use the `debug platform fallback-bridging` privileged EXEC command to enable debugging of the platform-dependent fallback bridging manager. Use the `no` form of this command to disable debugging.

```
depth platform fallback-bridging [error | retry | rpc {events | messages}]
no debug platform fallback-bridging [error | retry | rpc {events | messages}]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>error</code></td>
<td>(Optional) Display fallback bridging manager error condition messages.</td>
</tr>
<tr>
<td><code>retry</code></td>
<td>(Optional) Display fallback bridging manager retry messages.</td>
</tr>
<tr>
<td>`rpc {events</td>
<td>messages}`</td>
</tr>
<tr>
<td></td>
<td>• <code>events</code>—Display remote procedure call (RPC) events.</td>
</tr>
<tr>
<td></td>
<td>• <code>messages</code>—Display RPC messages.</td>
</tr>
</tbody>
</table>

**Defaults**

Debugging is disabled.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If you do not specify a keyword, all fallback bridging manager debug messages appear.

The `undebug platform fallback-bridging` command is the same as the `no debug platform fallback-bridging` command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the `session switch-number` privileged EXEC command. Then enter the `debug` command at the command-line prompt of the stack master. You also can use the `remote command stack-member-number LINE` privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show debugging</code></td>
<td>Displays information about the types of debugging that are enabled. For syntax information, select Cisco IOS Release 12.2 Configuration Guides and Command References &gt; Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2 &gt; System Management &gt; Troubleshooting and Fault Management.</td>
</tr>
</tbody>
</table>
debug platform forw-tcam

Use the `debug platform forw-tcam` privileged EXEC command to enable debugging of the forwarding ternary content addressable memory (TCAM) manager. Use the `no` form of this command to disable debugging.

```
debug platform forw-tcam [adjustment | allocate | audit | error | move | read | write]
no debug platform forw-tcam [adjustment | allocate | audit | error | move | read | write]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>adjustment</td>
<td>(Optional) Display TCAM manager adjustment debug messages.</td>
</tr>
<tr>
<td>allocate</td>
<td>(Optional) Display TCAM manager allocation debug messages.</td>
</tr>
<tr>
<td>audit</td>
<td>(Optional) Display TCAM manager audit messages.</td>
</tr>
<tr>
<td>error</td>
<td>(Optional) Display TCAM manager error messages.</td>
</tr>
<tr>
<td>move</td>
<td>(Optional) Display TCAM manager move messages.</td>
</tr>
<tr>
<td>read</td>
<td>(Optional) Display TCAM manager read messages.</td>
</tr>
<tr>
<td>write</td>
<td>(Optional) Display TCAM manager write messages.</td>
</tr>
</tbody>
</table>

### Defaults

Debugging is disabled.

### Command Modes

Privileged EXEC

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

If you do not specify a keyword, all forwarding TCAM manager debug messages appear.

The `undebug platform forw-tcam` command is the same as the `no debug platform forw-tcam` command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the `session switch-number` privileged EXEC command. Then enter the `debug` command at the command-line prompt of the stack member. You also can use the `remote command` `stack-member-number LINE` privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show debugging</td>
<td>Displays information about the types of debugging that are enabled. For syntax information, select Cisco IOS Release 12.2 Configuration Guides and Command References &gt; Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2 &gt; System Management &gt; Troubleshooting and Fault Management.</td>
</tr>
</tbody>
</table>
debug platform frontend-controller

Use the debug platform frontend-controller privileged EXEC command to enable debugging of front-end controller activity. Use the no form of this command to disable debugging.

```
debug platform frontend-controller { all | image | led | manager | poe | register | thermal }
```

```
no debug platform frontend-controller { all | image | led | manager | poe | register | thermal }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Display all the debug messages for front-end controller.</td>
</tr>
<tr>
<td>image</td>
<td>Display Image Manager debug messages.</td>
</tr>
<tr>
<td>led</td>
<td>Display LED debug messages.</td>
</tr>
<tr>
<td>manager</td>
<td>Display front-end-controller manager debug messages.</td>
</tr>
<tr>
<td>poe</td>
<td>Display Power over Ethernet (PoE) debug messages.</td>
</tr>
<tr>
<td>register</td>
<td>Display Register Access debug messages.</td>
</tr>
<tr>
<td>thermal</td>
<td>Display thermal debug messages.</td>
</tr>
</tbody>
</table>

**Defaults**

Debugging is disabled.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(20)SE3</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This command is only supported on Catalyst 3750G-48TS, 3750G-48PS, 3750G-24TS-1U, and 3750G-24PS switches.

The undebug platform frontend-controller command is the same as the no debug platform frontend-controller command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, start a session from the stack master by using the session switch-number privileged EXEC command. Then enter the debug command at the command-line prompt of the stack member. You can also use the remote command stack-member-number LINE privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.
### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show platform frontend-controller</code></td>
<td>Displays counter and status information for the front-end controller manager and subordinate applications, and displays the hardware and software information for the front-end controller.</td>
</tr>
<tr>
<td><code>show debugging</code></td>
<td>Displays information about the types of debugging that are enabled. For syntax information, select <a href="#">Cisco IOS Release 12.2 Configuration Guides and Command References</a> &gt; <a href="#">Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2</a> &gt; <a href="#">System Management</a> &gt; <a href="#">Troubleshooting and Fault Management</a>.</td>
</tr>
</tbody>
</table>
debug platform ip arp inspection

Use the `debug platform ip arp inspection` privileged EXEC command to debug dynamic Address Resolution Protocol (ARP) inspection events. Use the `no` form of this command to disable debugging.

```
dump platform ip arp inspection { all | error | event | packet | rpc }
```

```
no dump platform ip arp inspection { all | error | event | packet | rpc }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Display all dynamic ARP inspection debug messages.</td>
</tr>
<tr>
<td>error</td>
<td>Display dynamic ARP inspection error debug messages.</td>
</tr>
<tr>
<td>event</td>
<td>Display dynamic ARP inspection event debug messages.</td>
</tr>
<tr>
<td>packet</td>
<td>Display dynamic ARP inspection packet-related debug messages.</td>
</tr>
<tr>
<td>rpc</td>
<td>Display dynamic ARP inspection remote procedure call (RPC) request debug messages.</td>
</tr>
</tbody>
</table>

**Defaults**

Debugging is disabled.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(20)SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `undebug platform ip arp inspection` command is the same as the `no dump platform ip arp inspection` command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the `session switch-number` privileged EXEC command. Then enter the `debug` command at the command-line prompt of the stack member. You also can use the `remote command stack-member-number LINE` privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show inventory</code></td>
<td>Displays the dynamic ARP inspection configuration and operating state.</td>
</tr>
<tr>
<td><code>show debugging</code></td>
<td>Displays information about the types of debugging that are enabled. For syntax information, select Cisco IOS Release 12.2 Configuration Guides and Command References &gt; Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2 &gt; System Management &gt; Troubleshooting and Fault Management.</td>
</tr>
</tbody>
</table>
**debug platform ip dhcp**

Use the `debug platform ip dhcp` privileged EXEC command to debug DHCP events. Use the `no` form of this command to disable debugging.

```
debug platform ip dhcp [all | error | event | packet | rpc]
no debug platform ip dhcp [all | error | event | packet | rpc]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>(Optional) Display all DHCP debug messages.</td>
</tr>
<tr>
<td>error</td>
<td>(Optional) Display DHCP error debug messages.</td>
</tr>
<tr>
<td>event</td>
<td>(Optional) Display DHCP event debug messages.</td>
</tr>
<tr>
<td>packet</td>
<td>(Optional) Display DHCP packet-related debug messages.</td>
</tr>
<tr>
<td>rpc</td>
<td>(Optional) Display DHCP remote procedure call (RPC) request debug messages.</td>
</tr>
</tbody>
</table>

### Defaults

Debugging is disabled.

### Command Modes

Privileged EXEC

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(19)EA1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

The `undebug platform ip dhcp` command is the same as the `no debug platform ip dhcp` command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the `session switch-number` privileged EXEC command. Then enter the `debug` command at the command-line prompt of the stack member. You also can use the `remote command stack-member-number LINE` privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ip dhcp snooping binding</code></td>
<td>Displays the DHCP snooping binding information.</td>
</tr>
<tr>
<td><code>show ip dhcp snooping</code></td>
<td>Displays the DHCP snooping configuration.</td>
</tr>
<tr>
<td><code>show debugging</code></td>
<td>Displays information about the types of debugging that are enabled.</td>
</tr>
</tbody>
</table>
debug platform ip igmp snooping

Use the `debug platform ip igmp snooping` privileged EXEC command to enable debugging of platform-dependent Internet Group Management Protocol (IGMP) snooping. Use the `no` form of this command to disable debugging.

```
debug platform ip igmp snooping { all | di | error | event | group | mgmt | pak | retry | rpc | warn }

debug platform ip igmp snooping pak { ip-address | error | ipopt | leave | query | report | rx | svi | tx }

debug platform ip igmp snooping rpc [cfg | l3mm | misc | vlan]

no debug platform ip igmp snooping { all | di | error | event | group | mgmt | pak | retry | rpc | warn }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Display all IGMP snooping debug messages.</td>
</tr>
<tr>
<td>di</td>
<td>Display IGMP snooping destination index (di) coordination remote procedure call (RPC) debug messages.</td>
</tr>
<tr>
<td>error</td>
<td>Display IGMP snooping error messages.</td>
</tr>
<tr>
<td>event</td>
<td>Display IGMP snooping event debug messages.</td>
</tr>
<tr>
<td>group</td>
<td>Display IGMP snooping group debug messages.</td>
</tr>
<tr>
<td>mgmt</td>
<td>Display IGMP snooping management debug messages.</td>
</tr>
<tr>
<td>pak</td>
<td>Display IGMP snooping packet event debug messages. The keywords have these meanings:</td>
</tr>
<tr>
<td></td>
<td>- <code>ip-address</code>—IP address of the IGMP group.</td>
</tr>
<tr>
<td></td>
<td>- <code>error</code>—Display IGMP snooping packet error debug messages.</td>
</tr>
<tr>
<td></td>
<td>- <code>ipopt</code>—Display IGMP snooping IP bridging options debug messages.</td>
</tr>
<tr>
<td></td>
<td>- <code>leave</code>—Display IGMP snooping leave debug messages.</td>
</tr>
<tr>
<td></td>
<td>- <code>query</code>—Display IGMP snooping query debug messages.</td>
</tr>
<tr>
<td></td>
<td>- <code>report</code>—Display IGMP snooping report debug messages.</td>
</tr>
<tr>
<td></td>
<td>- <code>rx</code>—Display IGMP snooping received packet debug messages.</td>
</tr>
<tr>
<td></td>
<td>- <code>svi</code>—Display IGMP snooping switched virtual interface (SVI) packet debug messages.</td>
</tr>
<tr>
<td></td>
<td>- <code>tx</code>—Display IGMP snooping sent packet debug messages.</td>
</tr>
<tr>
<td>retry</td>
<td>Display IGMP snooping retry debug messages.</td>
</tr>
</tbody>
</table>
**debug platform ip igmp snooping**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rpc [cfg</td>
<td>13mm</td>
</tr>
<tr>
<td></td>
<td>- cfg—(Optional) Display IGMP snooping RPC debug messages.</td>
</tr>
<tr>
<td></td>
<td>- 13mm—(Optional) IGMP snooping Layer 3 multicast router group RPC debug messages.</td>
</tr>
<tr>
<td></td>
<td>- misc—(Optional) IGMP snooping miscellaneous RPC debug messages.</td>
</tr>
<tr>
<td></td>
<td>- vlan—(Optional) IGMP snooping VLAN assert RPC debug messages.</td>
</tr>
<tr>
<td>warn</td>
<td>Display IGMP snooping warning messages.</td>
</tr>
</tbody>
</table>

**Defaults**

Debugging is disabled.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `undebug platform ip igmp snooping` command is the same as the `no debug platform ip igmp snooping` command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the `session switch-number` privileged EXEC command. Then enter the `debug` command at the command-line prompt of the stack member. You also can use the `remote command` `stack-member-number LINE` privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>debug ip igmp snooping</code></td>
<td>Displays information about platform-independent IGMP snooping activity.</td>
</tr>
<tr>
<td><code>show debugging</code></td>
<td>Displays information about the types of debugging that are enabled. For syntax information, select Cisco IOS Release 12.2 Configuration Guides and Command References &gt; Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2 &gt; System Management &gt; Troubleshooting and Fault Management.</td>
</tr>
</tbody>
</table>
debug platform ip multicast

Use the debug platform ip multicast privileged EXEC command to enable debugging of IP multicast routing. Use the no form of this command to disable debugging.

debug platform ip multicast {all | mdb | mdfs-rp-retry | midb | mroute-rp | resources | retry | rpf-throttle | snoop-events | software-forward | swidb-events | vlan-locks}

no debug platform ip multicast {all | mdb | mdfs-rp-retry | midb | mroute-rp | resources | retry | rpf-throttle | snoop-events | software-forward | swidb-events | vlan-locks}

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Display all platform IP-multicast event debug messages.</td>
</tr>
<tr>
<td>mdb</td>
<td>Display IP-multicast debug messages for multicast distributed fast switching (MDFS) multicast descriptor block (mdb) events.</td>
</tr>
<tr>
<td>mdfs-rp-retry</td>
<td>Display IP-multicast MDFS rendezvous point (RP) retry event debug messages.</td>
</tr>
<tr>
<td>midb</td>
<td>Display IP-multicast MDFS multicast interface descriptor block (MIDB) debug messages.</td>
</tr>
<tr>
<td>mroute-rp</td>
<td>Display IP-multicast RP event debug messages.</td>
</tr>
<tr>
<td>resources</td>
<td>Display IP-multicast hardware resource debug messages.</td>
</tr>
<tr>
<td>retry</td>
<td>Display IP-multicast retry processing event debug messages.</td>
</tr>
<tr>
<td>rpf-throttle</td>
<td>Display IP-multicast reverse path forwarding (RPF) throttle event debug messages.</td>
</tr>
<tr>
<td>snoop-events</td>
<td>Display IP-multicast IGMP snooping event debug messages.</td>
</tr>
<tr>
<td>software-forward</td>
<td>Display IP-multicast software forwarding event debug messages.</td>
</tr>
<tr>
<td>swidb-events</td>
<td>Display IP-multicast MDFS software interface descriptor block (swidb) or global event debug messages.</td>
</tr>
<tr>
<td>vlan-locks</td>
<td>Display IP-multicast VLAN lock and unlock event debug messages.</td>
</tr>
</tbody>
</table>

### Defaults

Debugging is disabled.

### Command Modes

Privileged EXEC

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
**Usage Guidelines**

The `undebug platform ip multicast` command is the same as the `no debug platform ip multicast` command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the `session switch-number` privileged EXEC command. Then enter the `debug` command at the command-line prompt of the stack member. You also can use the `remote command stack-member-number LINE` privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
</table>
debug platform ip unicast

Use the **debug platform ip unicast** privileged EXEC command to enable debugging of platform-dependent IP unicast routing. Use the **no** form of this command to disable debugging.

```
debug platform ip unicast {adjacency | all | arp | dhcp | errors | events | interface | mpath | registries | retry | route | rpc | standby | statistics}
```

```
o debug platform ip unicast {adjacency | all | arp | dhcp | errors | events | interface | mpath | registries | retry | route | rpc | standby | statistics}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>adjacency</td>
<td>Display IP unicast routing adjacency programming event debug messages.</td>
</tr>
<tr>
<td>all</td>
<td>Display all platform IP unicast routing debug messages.</td>
</tr>
<tr>
<td>arp</td>
<td>Display IP unicast routing Address Resolution Protocol (ARP) and ARP throttling debug messages.</td>
</tr>
<tr>
<td>dhcp</td>
<td>Display IP unicast routing DHCP dynamic address-related event debug messages.</td>
</tr>
<tr>
<td>errors</td>
<td>Display all IP unicast routing error debug messages, including resource allocation failures.</td>
</tr>
<tr>
<td>events</td>
<td>Display all IP unicast routing event debug messages, including registry and miscellaneous events.</td>
</tr>
<tr>
<td>interface</td>
<td>Display IP unicast routing interface event debug messages.</td>
</tr>
<tr>
<td>mpath</td>
<td>Display IP unicast routing multi-path adjacency programming event debug messages (present when performing equal or unequal cost routing).</td>
</tr>
<tr>
<td>registries</td>
<td>Display IP unicast routing forwarding information database (FIB), adjacency add, update, and delete registry event debug messages.</td>
</tr>
<tr>
<td>retry</td>
<td>Display IP unicast routing reprogram FIBs with ternary content addressable memory (TCAM) allocation failure debug messages.</td>
</tr>
<tr>
<td>route</td>
<td>Display IP unicast routing FIB TCAM programming event debug messages.</td>
</tr>
<tr>
<td>rpc</td>
<td>Display IP unicast routing Layer 3 unicast remote procedure call (RPC) interaction debug messages.</td>
</tr>
<tr>
<td>standby</td>
<td>Display IP unicast routing standby event debug messages, helpful in troubleshooting Hot Standby Routing Protocol (HSRP) issues.</td>
</tr>
<tr>
<td>statistics</td>
<td>Display IP unicast routing statistics gathering-related event debug messages.</td>
</tr>
</tbody>
</table>

### Defaults

Debugging is disabled.

### Command Modes

Privileged EXEC

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
**Usage Guidelines**

The `undebug platform ip unicast` command is the same as the `no debug platform ip unicast` command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the `session switch-number` privileged EXEC command. Then enter the `debug` command at the command-line prompt of the stack member. You also can use the `remote command stack-member-number LINE` privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show debugging</td>
<td>Displays information about the types of debugging that are enabled. For syntax information, select Cisco IOS Release 12.2 Configuration Guides and Command References &gt; Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2 &gt; System Management &gt; Troubleshooting and Fault Management.</td>
</tr>
</tbody>
</table>
debug platform ipc

Use the `debug platform ipc` privileged EXEC command to enable debugging of the platform-dependent Interprocess Communication (IPC) Protocol. Use the `no` form of this command to disable debugging.

```
debug platform ipc { all | init | receive | send | trace }
no debug platform { all | init | receive | send | trace }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Display all platform IPC debug messages.</td>
</tr>
<tr>
<td>init</td>
<td>Display debug messages related to IPC initialization.</td>
</tr>
<tr>
<td>receive</td>
<td>Display IPC traces each time an IPC packet is received by the switch.</td>
</tr>
<tr>
<td>send</td>
<td>Display IPC traces each time an IPC packet is sent by the switch.</td>
</tr>
<tr>
<td>trace</td>
<td>Display IPC trace debug messages, tracing the code path as the IPC functions are executed.</td>
</tr>
</tbody>
</table>

**Defaults**

Debugging is disabled.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `undebug platform ipc` command is the same as the `no debug platform ipc`.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the `session switch-number` privileged EXEC command. Then enter the `debug` command at the command-line prompt of the stack member. You also can use the `remote command stack-member-number LINE` privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show debugging</td>
<td>Displays information about the types of debugging that are enabled. For syntax information, select Cisco IOS Release 12.2 Configuration Guides and Command References &gt; Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2 &gt; System Management &gt; Troubleshooting and Fault Management.</td>
</tr>
</tbody>
</table>
**debug platform led**

Use the `debug platform led` privileged EXEC command to enable debugging of light-emitting diode (LED) actions. Use the `no` form of this command to disable debugging.

```
deploy platform led {generic | signal | stack}
no deploy platform led {generic | signal | stack}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>generic</td>
<td>Display LED generic action debug messages.</td>
</tr>
<tr>
<td>signal</td>
<td>Display LED signal bit map debug messages.</td>
</tr>
<tr>
<td>stack</td>
<td>Display LED stack action debug messages.</td>
</tr>
</tbody>
</table>

**Defaults**

Debugging is disabled.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `undebug platform led` command is the same as the `no debug platform led` command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the `session switch-number` privileged EXEC command. Then enter the `debug` command at the command-line prompt of the stack member. You also can use the `remote command` `stack-member-number LINE` privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show debugging</td>
<td>Displays information about the types of debugging that are enabled. For syntax information, select Cisco IOS Release 12.2 Configuration Guides and Command References &gt; Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2 &gt; System Management &gt; Troubleshooting and Fault Management.</td>
</tr>
</tbody>
</table>
debug platform matm

Use the `debug platform matm` privileged EXEC command to enable debugging of platform-dependent MAC address management. Use the `no` form of this command to disable debugging.

```
debug platform matm { aging | all | ec-aging | errors | learning | rpc | secure-address | warnings }

no debug platform matm { aging | all | ec-aging | errors | learning | rpc | secure-address | warnings }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aging</td>
<td>Display MAC address aging debug messages.</td>
</tr>
<tr>
<td>all</td>
<td>Display all platform MAC address management event debug messages.</td>
</tr>
<tr>
<td>ec-aging</td>
<td>Display EtherChannel address aging-related debug messages.</td>
</tr>
<tr>
<td>errors</td>
<td>Display MAC address management error messages.</td>
</tr>
<tr>
<td>learning</td>
<td>Display MAC address management address-learning debug messages.</td>
</tr>
<tr>
<td>rpc</td>
<td>Display MAC address management remote procedure call (RPC) related debug</td>
</tr>
<tr>
<td></td>
<td>messages.</td>
</tr>
<tr>
<td>secure-address</td>
<td>Display MAC address management secure address learning debug messages.</td>
</tr>
<tr>
<td>warning</td>
<td>Display MAC address management warning messages.</td>
</tr>
</tbody>
</table>

**Defaults**

Debugging is disabled.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `undebug platform matm` command is the same as the `no debug platform matm` command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the `session switch-number` privileged EXEC command. Then enter the `debug` command at the command-line prompt of the stack member. You also can use the `remote command stack-member-number LINE` privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.
## Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>debug matm</strong></td>
<td>Displays information about platform-independent MAC address management.</td>
</tr>
<tr>
<td><strong>show debugging</strong></td>
<td>Displays information about the types of debugging that are enabled. For syntax information, select Cisco IOS Release 12.2 Configuration Guides and Command References &gt; Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2 &gt; System Management &gt; Troubleshooting and Fault Management.</td>
</tr>
</tbody>
</table>
debug platform messaging application

Use the debug platform messaging application privileged EXEC command to enable debugging of application messaging activity. Use the no form of this command to disable debugging.

```
debug platform messaging application { all | badpak | cleanup | events | memerr | messages | stackchg | usererr }

no debug platform messaging application { all | badpak | cleanup | events | memerr | messages | stackchg | usererr }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Display all application-messaging debug messages.</td>
</tr>
<tr>
<td>badpak</td>
<td>Display bad-packet debug messages.</td>
</tr>
<tr>
<td>cleanup</td>
<td>Display clean-up debug messages.</td>
</tr>
<tr>
<td>events</td>
<td>Display event debug messages.</td>
</tr>
<tr>
<td>memerr</td>
<td>Display memory-error debug messages.</td>
</tr>
<tr>
<td>messages</td>
<td>Display application-messaging debug messages.</td>
</tr>
<tr>
<td>stackchg</td>
<td>Display stack-change debug messages.</td>
</tr>
<tr>
<td>usererr</td>
<td>Display user-error debug messages.</td>
</tr>
</tbody>
</table>

### Defaults

Debugging is disabled.

### Command Modes

Privileged EXEC

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

The undebug platform messaging application command is the same as the no debug platform messaging application command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the session switch-number privileged EXEC command. Then enter the debug command at the command-line prompt of the stack member. You also can use the remote command stack-member-number LINE privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.
## Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show debugging</code></td>
<td>Displays information about the types of debugging that are enabled. For syntax information, see the Cisco IOS Release 12.2 Configuration Guides and Command References &gt; Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2 &gt; System Management &gt; Troubleshooting and Fault Management.</td>
</tr>
</tbody>
</table>
debug platform phy

Use the `debug platform phy` privileged EXEC command to enable debugging of PHY driver information. Use the `no` form of this command to disable debugging.

```
debug platform phy [automdix | cablediag | dual-purpose | flcd {configure | ipc | iter | trace} | flowcontrol | forced | init-seq | link-status | read | sfp | show-controller | speed | write | xenpak]

no debug platform phy [automdix | cablediag | dual-purpose | flcd {configure | ipc | iter | trace} | flowcontrol | forced | init-seq | link-status | read | sfp | show-controller | speed | write | xenpak]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>automdix</td>
<td>Display PHY automatic medium-dependent interface crossover (auto-MDIX) debug messages.</td>
</tr>
<tr>
<td>cablediag</td>
<td>Display PHY cable-diagnostic debug messages.</td>
</tr>
<tr>
<td>dual-purpose</td>
<td>Display PHY dual-purpose event debug messages.</td>
</tr>
<tr>
<td>flcd {configure</td>
<td>Display PHY FLCD debug messages. The keywords have these meanings:</td>
</tr>
<tr>
<td>iter</td>
<td>trace}</td>
</tr>
<tr>
<td></td>
<td>• configure—Display PHY configure debug messages.</td>
</tr>
<tr>
<td></td>
<td>• ipc—Display Interprocess Communication Protocol (IPC) debug messages.</td>
</tr>
<tr>
<td></td>
<td>• iter—Display iter debug messages.</td>
</tr>
<tr>
<td></td>
<td>• trace—Display trace debug messages.</td>
</tr>
<tr>
<td>flowcontrol</td>
<td>Display PHY flowcontrol debug messages.</td>
</tr>
<tr>
<td>forced</td>
<td>Display PHY forced-mode debug messages.</td>
</tr>
<tr>
<td>init-seq</td>
<td>Display PHY initialization-sequence debug messages.</td>
</tr>
<tr>
<td>link-status</td>
<td>Display PHY link-status debug messages.</td>
</tr>
<tr>
<td>read</td>
<td>Display PHY-read debug messages.</td>
</tr>
<tr>
<td>sfp</td>
<td>Display PHY small form-factor pluggable (SFP) modules debug messages.</td>
</tr>
<tr>
<td>show-controller</td>
<td>Display PHY show-controller debug messages.</td>
</tr>
<tr>
<td>speed</td>
<td>Display PHY speed-change debug messages.</td>
</tr>
<tr>
<td>write</td>
<td>Display PHY-write debug messages.</td>
</tr>
<tr>
<td>xenpak</td>
<td>Display PHY XENPAK debug messages.</td>
</tr>
</tbody>
</table>

### Defaults

Debugging is disabled.

### Command Modes

Privileged EXEC

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(14)EA1</td>
<td>The <code>automdix</code> keyword was added.</td>
</tr>
</tbody>
</table>
### Usage Guidelines

The `undebug platform phy` command is the same as the `no debug platform phy` command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the `session switch-number` privileged EXEC command. Then enter the `debug` command at the command-line prompt of the stack member. You also can use the `remote command stack-member-number LINE` privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
</table>
debug platform pm

Use the `debug platform pm` privileged EXEC command to enable debugging of the platform-dependent port manager software module. Use the `no` form of this command to disable debugging.

```
d debug platform pm { all | counters | errdisable | etherchnl | exceptions | hpm-events | idb-events | if-numbers | ios-events | link-status | platform | pm-events | pm-span | pm-vectors [detail] | rpc [general | oper-info | state | vectors | vp-events] | soutput-vectors | stack-manager | sync | vlans}

no debug platform pm { all | counters | errdisable | etherchnl | exceptions | hpm-events | idb-events | if-numbers | ios-events | link-status | platform | pm-events | pm-span | pm-vectors [detail] | rpc [general | oper-info | state | vectors | vp-events] | soutput-vectors | stack-manager | sync | vlans}
```

### Syntax Description

- **all**
  - Display all port-manager debug messages.

- **counters**
  - Display counters for remote procedure call (RPC) debug messages.

- **errdisable**
  - Display error-disabled related-events debug messages.

- **etherchnl**
  - Display EtherChannel related-events debug messages.

- **exceptions**
  - Display system exception debug messages.

- **hpm-events**
  - Display platform port-manager event debug messages.

- **idb-events**
  - Display interface descriptor block (IDB) related-events debug messages.

- **if-numbers**
  - Display interface-number translation-event debug messages.

- **ios-events**
  - Display Cisco IOS event debug messages.

- **link-status**
  - Display interface link-detection event debug messages.

- **platform**
  - Display port-manager function-event debug messages.

- **pm-events**
  - Display port manager event debug messages.

- **pm-span**
  - Display port manager Switched Port Analyzer (SPAN) event debug messages.

- **pm-vectors [detail]**
  - Display port-manager vector-related-event debug messages. The keyword has this meaning:
    - **detail**—Display vector-function details.

- **rpc [general | oper-info | state | vectors | vp-events]**
  - Display RPC related-event debug messages. The keywords have these meanings:
    - **general**—(Optional) Display RPC general events.
    - **oper-info**—(Optional) Display operational- and informational-related RPC messages.
    - **state**—(Optional) Display administrative- and operational-related RPC messages.
    - **vectors**—(Optional) Display vector-related RPC messages.
    - **vp-events**—(Optional) Display virtual ports related-events RP messages.

- **soutput-vectors**
  - Display IDB output vector event debug messages.

- **stack-manager**
  - Display stack-manager related-events debug messages.
**debug platform pm**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sync</td>
<td>Display operational synchronization and VLAN line-state event debug messages.</td>
</tr>
<tr>
<td>vlans</td>
<td>Display VLAN creation and deletion event debug messages.</td>
</tr>
</tbody>
</table>

**Defaults**

Debugging is disabled.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `undebug platform pm` command is the same as the `no debug platform pm` command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the `session switch-number` privileged EXEC command. Then enter the `debug` command at the command-line prompt of the stack member. You also can use the `remote command stack-member-number LINE` privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show debugging</code></td>
<td>Displays information about the types of debugging that are enabled. For syntax information, see the Cisco IOS Release 12.2 Configuration Guides and Command References &gt; Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2 &gt; System Management &gt; Troubleshooting and Fault Management.</td>
</tr>
</tbody>
</table>
debug platform port-asic

Use the **debug platform port-asic** privileged EXEC command to enable debugging of the port application-specific integrated circuit (ASIC) driver. Use the **no** form of this command to disable debugging.

```
debug platform port-asic {interrupt | periodic | read | stack | write}
```

```
no debug platform port-asic {interrupt | periodic | read | stack | write}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interrupt</td>
<td>Display port-ASIC interrupt-related function debug messages.</td>
</tr>
<tr>
<td>periodic</td>
<td>Display port-ASIC periodic-function-call debug messages.</td>
</tr>
<tr>
<td>read</td>
<td>Display port-ASIC read debug messages.</td>
</tr>
<tr>
<td>stack</td>
<td>Display stacking-related function debug messages.</td>
</tr>
<tr>
<td>write</td>
<td>Display port-ASIC write debug messages.</td>
</tr>
</tbody>
</table>

### Defaults

Debugging is disabled.

### Command Modes

Privileged EXEC

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

The **undebug platform port-asic** command is the same as the **no debug platform port-asic** command. When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the **session switch-number** privileged EXEC command. Then enter the **debug** command at the command-line prompt of the stack member. You also can use the **remote command stack-member-number LINE** privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
</table>
debug platform port-security

Use the debug platform port-security privileged EXEC command to enable debugging of platform-dependent port-security information. Use the no form of this command to disable debugging.

```
debug platform port-security { add | aging | all | delete | errors | rpc | warnings }
no debug platform port-security { add | aging | all | delete | errors | rpc | warnings }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>add</code></td>
<td>Display secure address addition debug messages.</td>
</tr>
<tr>
<td><code>aging</code></td>
<td>Display secure address aging debug messages.</td>
</tr>
<tr>
<td><code>all</code></td>
<td>Display all port-security debug messages.</td>
</tr>
<tr>
<td><code>delete</code></td>
<td>Display secure address deletion debug messages.</td>
</tr>
<tr>
<td><code>errors</code></td>
<td>Display port-security error debug messages.</td>
</tr>
<tr>
<td><code>rpc</code></td>
<td>Display remote procedure call (RPC) debug messages.</td>
</tr>
<tr>
<td><code>warnings</code></td>
<td>Display warning debug messages.</td>
</tr>
</tbody>
</table>

**Defaults**

Debugging is disabled.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `undebug platform port-security` command is the same as the no debug platform port-security command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the `session switch-number` privileged EXEC command. Then enter the `debug` command at the command-line prompt of the stack member. You also can use the `remote command` `stack-member-number LINE` privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show debugging</code></td>
<td>Displays information about the types of debugging that are enabled. For syntax information, see the Cisco IOS Release 12.2 Configuration Guides and Command References &gt; Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2 &gt; System Management &gt; Troubleshooting and Fault Management.</td>
</tr>
</tbody>
</table>
debug platform qos-acl-tcam

Use the debug platform qos-acl-tcam privileged EXEC command to enable debugging of the quality of service (QoS) and access control list (ACL) ternary content addressable memory (TCAM) manager software. Use the no form of this command to disable debugging.

```
debug platform qos-acl-tcam { all | ctcam | errors | labels | mask | rpc | tcam }

no debug platform qos-acl-tcam { all | ctcam | errors | labels | mask | rpc | tcam }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Display all QoS and ACL TCAM (QATM) manager debug messages.</td>
</tr>
<tr>
<td>ctcam</td>
<td>Display Cisco TCAM (CTCAM) related-events debug messages.</td>
</tr>
<tr>
<td>errors</td>
<td>Display QATM error-related-events debug messages.</td>
</tr>
<tr>
<td>labels</td>
<td>Display QATM label-related-events debug messages.</td>
</tr>
<tr>
<td>mask</td>
<td>Display QATM mask-related-events debug messages.</td>
</tr>
<tr>
<td>rpc</td>
<td>Display QATM remote procedure call (RPC) related-events debug messages.</td>
</tr>
<tr>
<td>tcam</td>
<td>Display QATM TCAM-related events debug messages.</td>
</tr>
</tbody>
</table>

### Defaults

Debugging is disabled.

### Command Modes

Privileged EXEC

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

The undebug platform qos-acl-tcam command is the same as the no debug platform qos-acl-tcam command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the session switch-number privileged EXEC command. Then enter the debug command at the command-line prompt of the stack member. You also can use the remote command stack-member-number LINE privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show debugging</td>
<td>Displays information about the types of debugging that are enabled. For syntax information, see the Cisco IOS Release 12.2 Configuration Guides and Command References &gt; Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2 &gt; System Management &gt; Troubleshooting and Fault Management.</td>
</tr>
</tbody>
</table>
debug platform remote-commands

Use the debug platform remote-commands privileged EXEC command to enable debugging of remote commands. Use the no form of this command to disable debugging.

```
debug platform remote-commands
no debug platform remote-commands
```

Syntax Description
This command has no arguments or keywords.

Defaults
Debugging is disabled.

Command Modes
Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
The undebug platform remote-commands command is the same as the no debug platform remote-commands command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the session switch-number privileged EXEC command. Then enter the debug command at the command-line prompt of the stack member. You also can use the remote command stack-member-number LINE privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show debugging</td>
<td>Displays information about the types of debugging that are enabled. For syntax information, see the Cisco IOS Release 12.2 Configuration Guides and Command References &gt; Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2 &gt; System Management &gt; Troubleshooting and Fault Management.</td>
</tr>
</tbody>
</table>
debug platform resource-manager

Use the `debug platform resource-manager` privileged EXEC command to enable debugging of the resource manager software. Use the `no` form of this command to disable debugging.

```
debug platform resource-manager {all | dm | erd | errors | madmed | sd | stats | vld}
no debug platform resource-manager {all | dm | erd | errors | madmed | sd | stats | vld}
```

**Syntax Description**

- **all**: Display all resource manager debug messages.
- **dm**: Display destination-map debug messages.
- **erd**: Display equal-cost-route descriptor-table debug messages.
- **errors**: Display error debug messages.
- **madmed**: Display the MAC address descriptor table and multi-expansion descriptor table debug messages.
- **sd**: Display the station descriptor table debug messages.
- **stats**: Display statistics debug messages.
- **vld**: Display the VLAN-list descriptor debug messages.

**Defaults**

Debugging is disabled.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `undebug platform resource-manager` command is the same as the `no debug platform resource-manager` command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the `session switch-number` privileged EXEC command. Then enter the `debug` command at the command-line prompt of the stack member. You also can use the `remote command stack-member-number LINE` privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show debugging</td>
<td>Displays information about the types of debugging that are enabled. For syntax information, see the <em>Cisco IOS Release 12.2 Configuration Guides and Command References &gt; Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2 &gt; System Management &gt; Troubleshooting and Fault Management</em>.</td>
</tr>
</tbody>
</table>
debug platform snmp

Use the debug platform snmp privileged EXEC command to enable debugging of the platform-dependent Simple Network Management Protocol (SNMP) software. Use the no form of this command to disable debugging.

```
debug platform snmp
no debug platform snmp
```

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
Debugging is disabled.

**Command Modes**
Privileged EXEC

**Command History**
```
Release Modification
12.1(11)AX This command was introduced.
```

**Usage Guidelines**
The `undebug platform snmp` command is the same as the `no debug platform snmp` command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the `session switch-number` privileged EXEC command. Then enter the `debug` command at the command-line prompt of the stack member. You also can use the `remote command stack-member-number LINE` privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show debugging</td>
<td>Displays information about the types of debugging that are enabled. For syntax information, see the Cisco IOS Release 12.2 Configuration Guides and Command References &gt; Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2 &gt; System Management &gt; Troubleshooting and Fault Management.</td>
</tr>
</tbody>
</table>
debug platform span

Use the **debug platform span** privileged EXEC command to enable debugging of the platform-dependent Switched Port Analyzer (SPAN) software. Use the **no** form of this command to disable debugging.

```
 debug platform span

 no debug platform span
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

Debugging is disabled.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The **undebug platform span** command is the same as the **no debug platform span** command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the **session switch-number** privileged EXEC command. Then enter the **debug** command at the command-line prompt of the stack member. You also can use the **remote command stack-member-number LINE** privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>show debugging</strong></td>
<td>Displays information about the types of debugging that are enabled. For syntax information, see the Cisco IOS Release 12.2 Configuration Guides and Command References &gt; Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2 &gt; System Management &gt; Troubleshooting and Fault Management.</td>
</tr>
</tbody>
</table>
debug platform stack-manager

Use the debug platform stack-manager privileged EXEC command to enable debugging of the stack manager software. Use the no form of this command to disable debugging.

```
debug platform stack-manager { all | rpc | sdp | sim | ssm | trace }
no debug platform stack-manager { all | rpc | sdp | sim | ssm | trace }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Display all stack manager debug messages.</td>
</tr>
<tr>
<td>rpc</td>
<td>Display stack manager remote procedure call (RPC) usage debug messages.</td>
</tr>
<tr>
<td>sdp</td>
<td>Display the Stack Discovery Protocol (SDP) debug messages.</td>
</tr>
<tr>
<td>sim</td>
<td>Display the stack information module debug messages.</td>
</tr>
<tr>
<td>ssm</td>
<td>Display the stack state-machine debug messages.</td>
</tr>
<tr>
<td>trace</td>
<td>Trace the stack manager entry and exit debug messages.</td>
</tr>
</tbody>
</table>

**Defaults**

Debugging is disabled.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The **undebug platform stack-manager** command is the same as the **no debug platform stack-manager** command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the **session switch-number** privileged EXEC command. Then enter the **debug** command at the command-line prompt of the stack member. You also can use the **remote command** stack-member-number LINE privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show debugging</td>
<td>Displays information about the types of debugging that are enabled. For syntax information, see the Cisco IOS Release 12.2 Configuration Guides and Command References &gt; Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2 &gt; System Management &gt; Troubleshooting and Fault Management.</td>
</tr>
</tbody>
</table>
debug platform supervisor-asic

Use the debug platform supervisor-asic privileged EXEC command to enable debugging of the supervisor application-specific integrated circuit (ASIC). Use the no form of this command to disable debugging.

```
debug platform supervisor-asic { all | errors | receive | send }
```

```
no debug platform supervisor-asic { all | errors | receive | send }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Display all supervisor-ASIC event debug messages.</td>
</tr>
<tr>
<td>errors</td>
<td>Display the supervisor-ASIC error debug messages.</td>
</tr>
<tr>
<td>receive</td>
<td>Display the supervisor-ASIC receive debug messages.</td>
</tr>
<tr>
<td>send</td>
<td>Display the supervisor-ASIC send debug messages.</td>
</tr>
</tbody>
</table>

### Defaults

Debugging is disabled.

### Command Modes

Privileged EXEC

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

The undebug platform supervisor-asic command is the same as the no debug platform supervisor-asic command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the session switch-number privileged EXEC command. Then enter the debug command at the command-line prompt of the stack member. You also can use the remote command stack-member-number LINE privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show debugging</td>
<td>Displays information about the types of debugging that are enabled. For syntax information, see the Cisco IOS Release 12.2 Configuration Guides and Command References &gt; Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2 &gt; System Management &gt; Troubleshooting and Fault Management.</td>
</tr>
</tbody>
</table>
debug platform sw-bridge

Use the `debug platform sw-bridge` privileged EXEC command to enable debugging of the software bridging function. Use the `no` form of this command to disable debugging.

```
debug platform sw-bridge {broadcast | control | multicast | packet | unicast}
```

```
no debug platform sw-bridge {broadcast | control | multicast | packet | unicast}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>broadcast</td>
<td>Display broadcast-data debug messages.</td>
</tr>
<tr>
<td>control</td>
<td>Display protocol-packet debug messages.</td>
</tr>
<tr>
<td>multicast</td>
<td>Display multicast-data debug messages.</td>
</tr>
<tr>
<td>packet</td>
<td>Display sent and received data debug messages.</td>
</tr>
<tr>
<td>unicast</td>
<td>Display unicast-data debug messages.</td>
</tr>
</tbody>
</table>

**Defaults**

Debugging is disabled.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `undebug platform sw-bridge` command is the same as the `no debug platform sw-bridge` command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the `session switch-number` privileged EXEC command. Then enter the `debug` command at the command-line prompt of the stack member. You also can use the `remote command stack-member-number LINE` privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show debugging</code></td>
<td>Displays information about the types of debugging that are enabled. For syntax information, see the Cisco IOS Release 12.2 Configuration Guides and Command References &gt; Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2 &gt; System Management &gt; Troubleshooting and Fault Management.</td>
</tr>
</tbody>
</table>
debug platform tcam

Use the `debug platform tcam` privileged EXEC command to enable debugging of ternary content addressable memory (TCAM) access and lookups. Use the `no` form of this command to disable debugging.

```
debug platform tcam {log | read | search | write}
debug platform tcam log l2 {acl {input | output} | local | qos}
debug platform tcam log l3 {acl {input | output} | ipv6 {acl {input | output} | local | qos | secondary} | local | qos | secondary}
debug platform tcam read {reg | ssram | tcam}
debug platform tcam search
debug platform tcam write {forw-ram | reg | tcam}
```

```
no debug platform tcam {log | read | search | write}
no debug platform tcam log l2 {acl {input | output} | local | qos}
no debug platform tcam log l3 {acl {input | output} | ipv6 {acl {input | output} | local | qos | secondary} | local | qos | secondary}
no debug platform tcam read {reg | ssram | tcam}
no debug platform tcam search
no debug platform tcam write {forw-ram | reg | tcam}
```
### Syntax Description

**log l2 { acl { input | output } | local | qos }**

Display Layer 2 field-based CAM look-up type debug messages. The keywords have these meanings:

- **acl { input | output }**—Display input or output ACL look-up debug messages.
- **local**—Display local forwarding look-up debug messages.
- **qos**—Display classification and quality of service (QoS) look-up debug messages.

**l3 { acl { input | output } | ipv6 { acl { input | output } | local | qos | secondary } | local | qos | secondary }**

Display Layer 3 field-based CAM look-up type debug messages. The keywords have these meanings:

- **acl { input | output }**—Display input or output ACL look-up debug messages.
- **ipv6 { acl { input | output } | local | qos | secondary }**—Display IPv6-based look-up debug messages. Options include displaying input or output ACL look-up, local forwarding look-up, classification and QoS look-up, or secondary forwarding look-up debug messages.
- **local**—Display local forwarding look-up debug messages.
- **qos**—Display classification and quality of service (QoS) look-up debug messages.
- **secondary**—Display secondary forwarding look-up debug messages.

**read { reg | ssram | tcam }**

Display TCAM-read debug messages. The keywords have these meanings:

- **reg**—Display TCAM-register read debug messages.
- **ssram**—Display synchronous static RAM (SSRAM)-read debug messages.
- **tcam**—Display TCAM-read debug messages.

**search**

Display supervisor-initiated TCAM-search results debug messages.

**write { forw-ram | reg | tcam }**

Display TCAM-write debug messages. The keywords have these meanings:

- **forw-ram**—Display forwarding-RAM write debug messages.
- **reg**—Display TCAM-register write debug messages.
- **tcam**—Display TCAM-write debug messages.

### Defaults

Debugging is disabled.

### Command Modes

Privileged EXEC

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
Usage Guidelines

The `undebug platform tcam` command is the same as the `no debug platform tcam` command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the `session switch-number` privileged EXEC command. Then enter the `debug` command at the command-line prompt of the stack member. You also can use the `remote command stack-member-number LINE` privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Syntax Information</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show debugging</code></td>
<td>Displays information about the types of debugging that are enabled.</td>
<td>For syntax information, see the Cisco IOS Release 12.2 Configuration Guides and Command References &gt; Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2 &gt; System Management &gt; Troubleshooting and Fault Management.</td>
</tr>
</tbody>
</table>
debug platform udld

Use the `debug platform udld` privileged EXEC command to enable debugging of the platform-dependent UniDirectional Link Detection (UDLD) software. Use the `no` form of this command to disable debugging.

```
debug platform udld [all | error | rpc {events | messages}]

no debug platform udld [all | error | rpc {events | messages}]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>all</code></td>
<td>(Optional) Display all UDLD debug messages.</td>
</tr>
<tr>
<td><code>error</code></td>
<td>(Optional) Display error condition debug messages.</td>
</tr>
<tr>
<td>`rpc {events</td>
<td>messages}`</td>
</tr>
<tr>
<td></td>
<td>• <code>events</code>—Display UDLD RPC events.</td>
</tr>
<tr>
<td></td>
<td>• <code>messages</code>—Display UDLD RPC messages.</td>
</tr>
</tbody>
</table>

**Defaults**

Debugging is disabled.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `undebug platform udld` command is the same as the `no debug platform udld` command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the `session switch-number` privileged EXEC command. Then enter the `debug` command at the command-line prompt of the stack member. You also can use the `remote command stack-member-number LINE` privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
</table>
debug platform vlan

Use the **debug platform vlan** privileged EXEC command to enable debugging of the VLAN manager software. Use the **no** form of this command to disable debugging.

```
debug platform vlan {errors | mvid | rpc}
no debug platform vlan {errors | mvid | rpc}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>errors</td>
<td>Display VLAN error debug messages.</td>
</tr>
<tr>
<td>mvid</td>
<td>Display mapped VLAN ID allocations and free debug messages.</td>
</tr>
<tr>
<td>rpc</td>
<td>Display remote procedure call (RPC) debug messages.</td>
</tr>
</tbody>
</table>

### Defaults

Debugging is disabled.

### Command Modes

Privileged EXEC

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

The **undebug platform vlan** command is the same as the **no debug platform vlan** command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the **session switch-number** privileged EXEC command. Then enter the **debug** command at the command-line prompt of the stack member. You also can use the **remote command stack-member-number LINE** privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show debugging</td>
<td>Displays information about the types of debugging that are enabled. For syntax information, see the Cisco IOS Release 12.2 Configuration Guides and Command References &gt; Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2 &gt; System Management &gt; Troubleshooting and Fault Management.</td>
</tr>
</tbody>
</table>
debug pm

Use the `debug pm` privileged EXEC command to enable debugging of port manager (PM) activity. The port manager is a state machine that controls all the logical and physical interfaces. All features, such as VLANs, UniDirectional Link Detection (UDLD), and so forth, work with the port manager to provide switch functions. Use the `no` form of this command to disable debugging.

```
debug pm { all | assert | card | etherchnl | hatable | messages | port | redundancy | registry | sm |
 | span | split | vlan | vp }

no debug pm { all | assert | card | etherchnl | hatable | messages | port | redundancy | registry |
 | sm | span | split | vlan | vp }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Display all PM debug messages.</td>
</tr>
<tr>
<td>assert</td>
<td>Display assert debug messages.</td>
</tr>
<tr>
<td>card</td>
<td>Display line-card related-events debug messages.</td>
</tr>
<tr>
<td>etherchnl</td>
<td>Display EtherChannel related-events debug messages.</td>
</tr>
<tr>
<td>hatable</td>
<td>Display Host Access Table events debug messages.</td>
</tr>
<tr>
<td>messages</td>
<td>Display PM debug messages.</td>
</tr>
<tr>
<td>port</td>
<td>Display port related-events debug messages.</td>
</tr>
<tr>
<td>redundancy</td>
<td>Display redundancy debug messages.</td>
</tr>
<tr>
<td>registry</td>
<td>Display PM registry invocation debug messages.</td>
</tr>
<tr>
<td>sm</td>
<td>Display state-machine related-events debug messages.</td>
</tr>
<tr>
<td>span</td>
<td>Display spanning-tree related-events debug messages.</td>
</tr>
<tr>
<td>split</td>
<td>Display split-processor debug messages.</td>
</tr>
<tr>
<td>vlan</td>
<td>Display VLAN related-events debug messages.</td>
</tr>
<tr>
<td>vp</td>
<td>Display virtual port related-events debug messages.</td>
</tr>
</tbody>
</table>

**Note**

Though visible in the command-line help strings, the `scp` and `pvlan` keywords are not supported.

**Defaults**

Debugging is disabled.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(14)EA1</td>
<td>The <code>hatable</code> keyword was added.</td>
</tr>
</tbody>
</table>
The **undebug pm** command is the same as the **no debug pm** command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the `session switch-number` privileged EXEC command. Then enter the `debug` command at the command-line prompt of the stack member. You also can use the **remote command** `stack-member-number LINE` privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show debugging</code></td>
<td>Displays information about the types of debugging that are enabled. For syntax information, select <a href="http://www.cisco.com">Cisco IOS Release 12.2 Configuration Guides and Command References &gt; Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2 &gt; System Management &gt; Troubleshooting and Fault Management</a>.</td>
</tr>
</tbody>
</table>
debug port-security

Use the debug port-security privileged EXEC command to enable debugging of the allocation and states of the port security subsystem. Use the no form of this command to disable debugging.

```
debug port-security
no debug port-security
```

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
Debugging is disabled.

**Command Modes**
Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
The undebug port-security command is the same as the no debug port-security command. When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the session switch-number privileged EXEC command. Then enter the debug command at the command-line prompt of the stack member. You also can use the remote command stack-member-number LINE privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show debugging</td>
<td>Displays information about the types of debugging that are enabled. For syntax information, select Cisco IOS Release 12.2 Configuration Guides and Command References &gt; Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2 &gt; System Management &gt; Troubleshooting and Fault Management.</td>
</tr>
<tr>
<td>show port-security</td>
<td>Displays port-security settings for an interface or for the switch.</td>
</tr>
</tbody>
</table>
debug qos-manager

Use the `debug qos-manager` privileged EXEC command to enable debugging of the quality of service (QoS) manager software. Use the `no` form of this command to disable debugging.

```
debug qos-manager { all | event | verbose }
```  

```
no debug qos-manager { all | event | verbose }
```  

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Display all QoS-manager debug messages.</td>
</tr>
<tr>
<td>event</td>
<td>Display QoS-manager related-event debug messages.</td>
</tr>
<tr>
<td>verbose</td>
<td>Display QoS-manager detailed debug messages.</td>
</tr>
</tbody>
</table>

### Defaults

Debugging is disabled.

### Command Modes

Privileged EXEC

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

The `undebug qos-manager` command is the same as the `no debug qos-manager` command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the `session switch-number` privileged EXEC command. Then enter the `debug` command at the command-line prompt of the stack member. You also can use the `remote command stack-member-number LINE` privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show debugging</td>
<td>Displays information about the types of debugging that are enabled. For syntax information, see the Cisco IOS Release 12.2 Configuration Guides and Command References &gt; Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2 &gt; System Management &gt; Troubleshooting and Fault Management.</td>
</tr>
</tbody>
</table>
debug spanning-tree

Use the **debug spanning-tree** privileged EXEC command to enable debugging of spanning-tree activities. Use the **no** form of this command to disable debugging.

```
debug spanning-tree { all | backbonefast | bpdu | bpdu-opt | config | csuf/csrt | etherchannel | events | exceptions | general | mstp | pvst+ | root | snmp | switch | synchronization | uplinkfast }
```

```
no debug spanning-tree { all | backbonefast | bpdu | bpdu-opt | config | csuf/csrt | etherchannel | events | exceptions | general | mstp | pvst+ | root | snmp | switch | synchronization | uplinkfast }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>all</strong></td>
<td>Display all spanning-tree debug messages.</td>
</tr>
<tr>
<td><strong>backbonefast</strong></td>
<td>Display BackboneFast-event debug messages.</td>
</tr>
<tr>
<td><strong>bpdu</strong></td>
<td>Display spanning-tree bridge protocol data unit (BPDU) debug messages.</td>
</tr>
<tr>
<td><strong>bpdu-opt</strong></td>
<td>Display optimized BPDU handling debug messages.</td>
</tr>
<tr>
<td><strong>config</strong></td>
<td>Display spanning-tree configuration change debug messages.</td>
</tr>
<tr>
<td><strong>csuf/csrt</strong></td>
<td>Display cross-stack UplinkFast and cross-stack rapid transition activity debug messages.</td>
</tr>
<tr>
<td><strong>etherchannel</strong></td>
<td>Display EtherChannel-support debug messages.</td>
</tr>
<tr>
<td><strong>events</strong></td>
<td>Display spanning-tree topology event debug messages.</td>
</tr>
<tr>
<td><strong>exceptions</strong></td>
<td>Display spanning-tree exception debug messages.</td>
</tr>
<tr>
<td><strong>general</strong></td>
<td>Display general spanning-tree activity debug messages.</td>
</tr>
<tr>
<td><strong>mstp</strong></td>
<td>Debug Multiple Spanning Tree Protocol events.</td>
</tr>
<tr>
<td><strong>pvst+</strong></td>
<td>Display per-VLAN spanning-tree plus (PVST+) event debug messages.</td>
</tr>
<tr>
<td><strong>root</strong></td>
<td>Display spanning-tree root-event debug messages.</td>
</tr>
<tr>
<td><strong>snmp</strong></td>
<td>Display spanning-tree Simple Network Management Protocol (SNMP) handling debug messages.</td>
</tr>
<tr>
<td><strong>synchronization</strong></td>
<td>Display the spanning-tree synchronization event debug messages.</td>
</tr>
<tr>
<td><strong>switch</strong></td>
<td>Display switch shim command debug messages. This shim is the software module that is the interface between the generic Spanning Tree Protocol (STP) code and the platform-specific code of various switch platforms.</td>
</tr>
<tr>
<td><strong>uplinkfast</strong></td>
<td>Display UplinkFast-event debug messages.</td>
</tr>
</tbody>
</table>

### Defaults

Debugging is disabled.

### Command Modes

Privileged EXEC
debug spanning-tree

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(14)EA1</td>
<td>The <strong>mstp</strong> and <strong>csuf/csrt</strong> keywords were added.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The **undebug spanning-tree command** is the same as the **no debug spanning-tree command**.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the **session switch-number** privileged EXEC command. Then enter the **debug** command at the command-line prompt of the stack member. You also can use the **remote command** **stack-member-number LINE** privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>show debugging</strong></td>
<td>Displays information about the types of debugging that are enabled. For syntax information, select <strong>Cisco IOS Release 12.2 Configuration Guides</strong> and <strong>Command References</strong> &gt; <strong>Cisco IOS Configuration Fundamentals</strong> Configuration Guide, Release 12.2 &gt; <strong>System Management</strong> &gt; <strong>Troubleshooting and Fault Management</strong>.</td>
</tr>
<tr>
<td><strong>show spanning-tree</strong></td>
<td>Displays spanning-tree state information.</td>
</tr>
</tbody>
</table>
debug spanning-tree backbonefast

Use the `debug spanning-tree backbonefast` privileged EXEC command to enable debugging of spanning-tree BackboneFast events. Use the `no` form of this command to disable debugging.

```
debug spanning-tree backbonefast [detail | exceptions]
no debug spanning-tree backbonefast [detail | exceptions]
```

**Syntax Description**
- `details` (Optional) Display detailed BackboneFast debug messages.
- `exceptions` (Optional) Display spanning-tree BackboneFast-exception debug messages.

**Defaults**
Debugging is disabled.

**Command Modes**
Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
The `undebug spanning-tree backbonefast` command is the same as the `no debug spanning-tree backbonefast` command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the `session switch-number` privileged EXEC command. Then enter the `debug` command at the command-line prompt of the stack member. You also can use the `remote command stack-member-number LINE` privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show debugging</code></td>
<td>Displays information about the types of debugging that are enabled. For syntax information, select <a href="#">Cisco IOS Release 12.2 Configuration Guides and Command References &gt; Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2 &gt; System Management &gt; Troubleshooting and Fault Management</a>.</td>
</tr>
<tr>
<td><code>show spanning-tree</code></td>
<td>Displays spanning-tree state information.</td>
</tr>
</tbody>
</table>
debug spanning-tree bpdu

Use the `debug spanning-tree bpdu` privileged EXEC command to enable debugging of sent and received spanning-tree bridge protocol data units (BPDUs). Use the `no` form of this command to disable debugging.

```
debug spanning-tree bpdu [receive | transmit]
no debug spanning-tree bpdu [receive | transmit]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>receive</td>
<td>(Optional) Display the nonoptimized path for received BPDU debug messages.</td>
</tr>
<tr>
<td>transmit</td>
<td>(Optional) Display the nonoptimized path for sent BPDU debug messages.</td>
</tr>
</tbody>
</table>

### Defaults

Debugging is disabled.

### Command Modes

Privileged EXEC

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

The `undebug spanning-tree bpdu` command is the same as the `no debug spanning-tree bpdu` command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the `session switch-number` privileged EXEC command. Then enter the `debug` command at the command-line prompt of the stack member. You also can use the `remote command stack-member-number LINE` privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show debugging</td>
<td>Displays information about the types of debugging that are enabled. For syntax information, select Cisco IOS Release 12.2 Configuration Guides and Command References &gt; Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2 &gt; System Management &gt; Troubleshooting and Fault Management.</td>
</tr>
<tr>
<td>show spanning-tree</td>
<td>Displays spanning-tree state information.</td>
</tr>
</tbody>
</table>
debug spanning-tree bpdu-opt

Use the `debug spanning-tree bpdu-opt` privileged EXEC command to enable debugging of optimized spanning-tree bridge protocol data units (BPDUs) handling. Use the `no` form of this command to disable debugging.

```
 debug spanning-tree bpdu-opt [detail | packet]
 no debug spanning-tree bpdu-opt [detail | packet]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>detail</th>
<th>(Optional) Display detailed optimized BPDU-handling debug messages.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>packet</td>
<td>(Optional) Display packet-level optimized BPDU-handling debug messages.</td>
</tr>
</tbody>
</table>

**Defaults**

Debugging is disabled.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `undebug spanning-tree bpdu-opt` command is the same as the `no debug spanning-tree bpdu-opt` command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the `session switch-number` privileged EXEC command. Then enter the `debug` command at the command-line prompt of the stack member. You also can use the `remote command stack-member-number LINE` privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show spanning-tree</code></td>
<td>Displays spanning-tree state information.</td>
</tr>
</tbody>
</table>

debug spanning-tree mstp

Use the `debug spanning-tree mstp` privileged EXEC command to enable debugging of the Multiple Spanning Tree Protocol (MSTP) software. Use the `no` form of this command to disable debugging.

```
depth spanning-tree mstp { all | boundary | bpdu-rx | bpdu-tx | errors | flush | init | migration |
 pm | proposals | region | roles | sanity_check | sync | tc | timers }
```

```
no debug spanning-tree mstp { all | boundary | bpdu-rx | bpdu-tx | errors | flush | init | migration |
 pm | proposals | region | roles | sanity_check | sync | tc | timers }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Enable all the debugging messages.</td>
</tr>
<tr>
<td>boundary</td>
<td>Debug flag changes at these boundaries:</td>
</tr>
<tr>
<td></td>
<td>• An multiple spanning-tree (MST) region and a single spanning-tree region running Rapid Spanning Tree Protocol (RSTP)</td>
</tr>
<tr>
<td></td>
<td>• An MST region and a single spanning-tree region running 802.1D</td>
</tr>
<tr>
<td></td>
<td>• An MST region and another MST region with a different configuration</td>
</tr>
<tr>
<td>bpdu-rx</td>
<td>Debug the received MST bridge protocol data units (BPDUs).</td>
</tr>
<tr>
<td>bpdu-tx</td>
<td>Debug the sent MST BPDUs.</td>
</tr>
<tr>
<td>errors</td>
<td>Debug MSTP errors.</td>
</tr>
<tr>
<td>flush</td>
<td>Debug the port flushing mechanism.</td>
</tr>
<tr>
<td>init</td>
<td>Debug the initialization of the MSTP data structures.</td>
</tr>
<tr>
<td>migration</td>
<td>Debug the protocol migration state machine.</td>
</tr>
<tr>
<td>pm</td>
<td>Debug MSTP port manager events.</td>
</tr>
<tr>
<td>proposals</td>
<td>Debug handshake messages between the designated switch and the root switch.</td>
</tr>
<tr>
<td>region</td>
<td>Debug the region synchronization between the switch processor (SP) and the route processor (RP).</td>
</tr>
<tr>
<td>roles</td>
<td>Debug MSTP roles.</td>
</tr>
<tr>
<td>sanity_check</td>
<td>Debug the received BPDU sanity check messages.</td>
</tr>
<tr>
<td>sync</td>
<td>Debug the port synchronization events.</td>
</tr>
<tr>
<td>tc</td>
<td>Debug topology change notification events.</td>
</tr>
<tr>
<td>timers</td>
<td>Debug the MSTP timers for start, stop, and expire events.</td>
</tr>
</tbody>
</table>

**Defaults**

Debugging is disabled.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(14)EA1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
Usage Guidelines

The `undebug spanning-tree mstp` command is the same as the `no debug spanning-tree mstp` command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the `session switch-number` privileged EXEC command. Then enter the `debug` command at the command-line prompt of the stack member. You also can use the `remote command stack-member-number LINE` privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show debugging</code></td>
<td>Displays information about the types of debugging that are enabled. For syntax information, select Cisco IOS Release 12.2 Configuration Guides and Command References &gt; Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2 &gt; System Management &gt; Troubleshooting and Fault Management.</td>
</tr>
<tr>
<td><code>show spanning-tree</code></td>
<td>Displays spanning-tree state information.</td>
</tr>
</tbody>
</table>
debug spanning-tree switch

Use the `debug spanning-tree switch` privileged EXEC command to enable debugging of the software interface between the Spanning Tree Protocol (STP) software module and the port manager software module. Use the `no` form of this command to disable debugging.

```
d debug spanning-tree switch { all | errors | flush | general | helper | pm | rx { decode | errors | interrupt | process } | state | tx { decode | uplinkfast } }

no debug spanning-tree switch { all | errors | flush | general | helper | pm | rx { decode | errors | interrupt | process } | state | tx { decode | uplinkfast } }
```

## Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Display all spanning-tree switch debug messages.</td>
</tr>
<tr>
<td>errors</td>
<td>Display debug messages for the interface between the spanning-tree software module and the port manager software module.</td>
</tr>
<tr>
<td>flush</td>
<td>Display debug messages for the shim flush operation.</td>
</tr>
<tr>
<td>general</td>
<td>Display general event debug messages.</td>
</tr>
<tr>
<td>helper</td>
<td>Display spanning-tree helper-task debug messages. Helper tasks handle bulk spanning-tree updates.</td>
</tr>
<tr>
<td>pm</td>
<td>Display port-manager event debug messages.</td>
</tr>
<tr>
<td>rx</td>
<td>Display received bridge protocol data unit (BPDU) handling debug messages. The keywords have these meanings:</td>
</tr>
<tr>
<td></td>
<td>- <code>decode</code>—Display decoded received packets.</td>
</tr>
<tr>
<td></td>
<td>- <code>errors</code>—Display receive error debug messages.</td>
</tr>
<tr>
<td></td>
<td>- <code>interrupt</code>—Display interrupt service request (ISR) debug messages.</td>
</tr>
<tr>
<td></td>
<td>- <code>process</code>—Display process receive BPDU debug messages.</td>
</tr>
<tr>
<td>state</td>
<td>Display spanning-tree port state change debug messages;</td>
</tr>
<tr>
<td>tx [decode]</td>
<td>Display sent BPDU handling debug messages. The keyword has this meaning:</td>
</tr>
<tr>
<td></td>
<td>- <code>decode</code>—(Optional) Display decoded sent packets.</td>
</tr>
<tr>
<td>uplinkfast</td>
<td>Display uplinkfast packet transmission debug messages.</td>
</tr>
</tbody>
</table>

## Defaults

Debugging is disabled.

## Command Modes

Privileged EXEC

## Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.1(14)EA1</td>
<td>The <code>flush</code> and <code>uplinkfast</code> keywords were added.</td>
</tr>
</tbody>
</table>
Usage Guidelines

The `undebug spanning-tree switch` command is the same as the `no debug spanning-tree switch` command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the `session switch-number` privileged EXEC command. Then enter the `debug` command at the command-line prompt of the stack member. You also can use the `remote command stack-member-number LINE` privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show debugging</code></td>
<td>Displays information about the types of debugging that are enabled. For syntax information, select Cisco IOS Release 12.2 Configuration Guides and Command References &gt; Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2 &gt; System Management &gt; Troubleshooting and Fault Management.</td>
</tr>
<tr>
<td><code>show spanning-tree</code></td>
<td>Displays spanning-tree state information.</td>
</tr>
</tbody>
</table>
debug spanning-tree uplinkfast

Use the **debug spanning-tree uplinkfast** privileged EXEC command to enable debugging of spanning-tree UplinkFast events. Use the **no** form of this command to disable debugging.

```plaintext
ddebug spanning-tree uplinkfast [exceptions]
no debug spanning-tree uplinkfast [exceptions]
```

**Syntax Description**
- **exceptions** (Optional) Display spanning-tree UplinkFast-exception debug messages.

**Defaults**
Debugging is disabled.

**Command Modes**
Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
The **undebug spanning-tree uplinkfast** command is the same as the **no debug spanning-tree uplinkfast** command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the **session switch-number** privileged EXEC command. Then enter the **debug** command at the command-line prompt of the stack member. You also can use the **remote command stack-member-number LINE** privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show debugging</td>
<td>Displays information about the types of debugging that are enabled. For syntax information, select Cisco IOS Release 12.2 Configuration Guides and Command References &gt; Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2 &gt; System Management &gt; Troubleshooting and Fault Management.</td>
</tr>
<tr>
<td>show spanning-tree</td>
<td>Displays spanning-tree state information.</td>
</tr>
</tbody>
</table>
debug sw-vlan

Use the `debug sw-vlan` privileged EXEC command to enable debugging of VLAN manager activities. Use the `no` form of this command to disable debugging.

```
debug sw-vlan {badpmcookies | cfg-vlan {bootup | cli} | events | ifs | management | mapping | notification | packets | redundancy | registries | vtp}
```

```
no debug sw-vlan {badpmcookies | cfg-vlan {bootup | cli} | events | ifs | management | mapping | notification | packets | redundancy | registries | vtp}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>badpmcookies</th>
<th>Display debug messages for VLAN manager incidents of bad port manager cookies.</th>
</tr>
</thead>
<tbody>
<tr>
<td>cfg-vlan {bootup</td>
<td>cli}</td>
<td>Display config-vlan debug messages. The keywords have these meanings:</td>
</tr>
<tr>
<td></td>
<td>bootup—Display messages when the switch is booting up.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cli—Display messages when the command-line interface (CLI) is in config-vlan mode.</td>
<td></td>
</tr>
<tr>
<td>events</td>
<td>Display debug messages for VLAN manager events.</td>
<td></td>
</tr>
<tr>
<td>ifs</td>
<td>See the <code>debug sw-vlan ifs</code> command.</td>
<td></td>
</tr>
<tr>
<td>management</td>
<td>Display debug messages for VLAN manager management of internal VLANs.</td>
<td></td>
</tr>
<tr>
<td>mapping</td>
<td>Display debug messages for VLAN mapping.</td>
<td></td>
</tr>
<tr>
<td>notification</td>
<td>See the <code>debug sw-vlan notification</code> command.</td>
<td></td>
</tr>
<tr>
<td>packets</td>
<td>Display debug messages for packet handling and encapsulation processes.</td>
<td></td>
</tr>
<tr>
<td>redundancy</td>
<td>Display debug messages for VTP VLAN redundancy.</td>
<td></td>
</tr>
<tr>
<td>registries</td>
<td>Display debug messages for VLAN manager registries.</td>
<td></td>
</tr>
<tr>
<td>vtp</td>
<td>See the <code>debug sw-vlan vtp</code> command.</td>
<td></td>
</tr>
</tbody>
</table>

**Defaults**

Debugging is disabled.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `undebug sw-vlan` command is the same as the `no debug sw-vlan` command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the `session switch-number` privileged EXEC command. Then enter the `debug` command at the command-line prompt of the stack member. You also can use the `remote command stack-member-number LINE` privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.
### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>show vlan</strong></td>
<td>Displays the parameters for all configured VLANs or one VLAN (if the VLAN name or ID is specified) in the administrative domain.</td>
</tr>
<tr>
<td><strong>show vtp</strong></td>
<td>Displays general information about VTP management domain, status, and counters.</td>
</tr>
</tbody>
</table>
debug sw-vlan ifs

Use the `debug sw-vlan ifs` privileged EXEC command to enable debugging of the VLAN manager IOS file system (IFS) error tests. Use the `no` form of this command to disable debugging.

```
depbug sw-vlan ifs {open {read | write} | read {1 | 2 | 3 | 4} | write}

no debug sw-vlan ifs {open {read | write} | read {1 | 2 | 3 | 4} | write}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>open {read</td>
<td>write}</td>
</tr>
<tr>
<td></td>
<td>keywords have these meanings:</td>
</tr>
<tr>
<td></td>
<td>• read—Display VLAN manager IFS file-read operation debug messages.</td>
</tr>
<tr>
<td></td>
<td>• write—Display VLAN manager IFS file-write operation debug messages.</td>
</tr>
<tr>
<td>read {1</td>
<td>2</td>
</tr>
<tr>
<td>write</td>
<td>Display file-write operation debug messages.</td>
</tr>
</tbody>
</table>

**Defaults**

Debugging is disabled.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `unddebug sw-vlan ifs` command is the same as the `no debug sw-vlan ifs` command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the `session switch-number` privileged EXEC command. Then enter the `debug` command at the command-line prompt of the stack member. You also can use the `remote command stack-member-number LINE` privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

When selecting the file read operation, Operation 1 reads the file header, which contains the header verification word and the file version number. Operation 2 reads the main body of the file, which contains most of the domain and VLAN information. Operation 3 reads type length version (TLV) descriptor structures. Operation 4 reads TLV data.
### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>show debugging</strong></td>
<td>Displays information about the types of debugging that are enabled. For syntax information, select <a href="#">Cisco IOS Release 12.2 Configuration Guides and Command References</a> &gt; Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2 &gt; System Management &gt; Troubleshooting and Fault Management.</td>
</tr>
<tr>
<td><strong>show vlan</strong></td>
<td>Displays the parameters for all configured VLANs or one VLAN (if the VLAN name or ID is specified) in the administrative domain.</td>
</tr>
</tbody>
</table>
debug sw-vlan notification

Use the `debug sw-vlan notification` privileged EXEC command to enable debugging of the activation and deactivation of Inter-Link Switch (ISL) VLAN IDs. Use the `no` form of this command to disable debugging.

```
debug sw-vlan notification { accfwdchange | allowedvlancfgchange | fwdchange | linkchange | modechange | pruningcfgchange | statechange }

no debug sw-vlan notification { accfwdchange | allowedvlancfgchange | fwdchange | linkchange | modechange | pruningcfgchange | statechange }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>accfwdchange</td>
<td>Display debug messages for VLAN manager notification of aggregated access interface spanning-tree forward changes.</td>
</tr>
<tr>
<td>allowedvlancfgchange</td>
<td>Display debug messages for VLAN manager notification of changes to the allowed VLAN configuration.</td>
</tr>
<tr>
<td>fwdchange</td>
<td>Display debug messages for VLAN manager notification of spanning-tree forwarding changes.</td>
</tr>
<tr>
<td>linkchange</td>
<td>Display debug messages for VLAN manager notification of interface link-state changes.</td>
</tr>
<tr>
<td>modechange</td>
<td>Display debug messages for VLAN manager notification of interface mode changes.</td>
</tr>
<tr>
<td>pruningcfgchange</td>
<td>Display debug messages for VLAN manager notification of changes to the pruning configuration.</td>
</tr>
<tr>
<td>statechange</td>
<td>Display debug messages for VLAN manager notification of interface state changes.</td>
</tr>
</tbody>
</table>

**Defaults**

Debugging is disabled.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `undebug sw-vlan notification` command is the same as the `no debug sw-vlan notification` command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the `session switch-number` privileged EXEC command. Then enter the `debug` command at the command-line prompt of the stack member. You also can use the `remote command stack-member-number LINE` privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.
## debug sw-vlan notification

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show vlan</code></td>
<td>Displays the parameters for all configured VLANs or one VLAN (if the VLAN name or ID is specified) in the administrative domain.</td>
</tr>
</tbody>
</table>
debug sw-vlan vtp

Use the debug sw-vlan vtp privileged EXEC command to enable debugging of the VLAN Trunking Protocol (VTP) code. Use the no form of this command to disable debugging.

```plaintext
ddebug sw-vlan vtp {events | packets | pruning [packets | xmit] | redundancy | xmit}

no debug sw-vlan vtp {events | packets | pruning | redundancy | xmit}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>events</td>
<td>Display debug messages for general-purpose logic flow and detailed VTP messages generated by the VTP_LOG_RUNTIME macro in the VTP code.</td>
</tr>
<tr>
<td>packets</td>
<td>Display debug messages for the contents of all incoming VTP packets that have been passed into the VTP code from the IOS VTP platform-dependent layer, except for pruning packets.</td>
</tr>
<tr>
<td>pruning</td>
<td>Display debug messages generated by the pruning segment of the VTP code. The keywords have these meanings:</td>
</tr>
<tr>
<td>xmit</td>
<td>Display debug messages for the contents of all outgoing VTP packets that the VTP code requests the IOS VTP platform-dependent layer to send, except for pruning packets.</td>
</tr>
<tr>
<td>redundancy</td>
<td>Display debug messages for VTP redundancy.</td>
</tr>
</tbody>
</table>

**Defaults**

Debugging is disabled.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The undebug sw-vlan vtp command is the same as the no debug sw-vlan vtp command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the session switch-number privileged EXEC command. Then enter the debug command at the command-line prompt of the stack member. You also can use the remote command stack-member-number LINE privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.
If no further parameters are entered after the `pruning` keyword, VTP pruning debugging messages appear. They are generated by the `VTP_PRUNING_LOG_NOTICE`, `VTP_PRUNING_LOG_INFO`, `VTP_PRUNING_LOG_DEBUG`, `VTP_PRUNING_LOG_ALERT`, and `VTP_PRUNING_LOG_WARNING` macros in the VTP pruning code.

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show vtp</code></td>
<td>Displays general information about VTP management domain, status, and counters.</td>
</tr>
</tbody>
</table>
debug udld

Use the `debug udld` privileged EXEC command to enable debugging of the UniDirectional Link Detection (UDLD) feature. Use the `no` form of this command to disable UDLD debugging.

```
debug udld {events | packets | registries}
no debug udld {events | packets | registries}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>events</code></td>
<td>Display debug messages for UDLD process events as they occur.</td>
</tr>
<tr>
<td><code>packets</code></td>
<td>Display debug messages for the UDLD process as it receives packets from the packet queue and tries to send them at the request of the UDLD protocol code.</td>
</tr>
<tr>
<td><code>registries</code></td>
<td>Display debug messages for the UDLD process as it processes registry calls from the UDLD process-dependent module and other feature modules.</td>
</tr>
</tbody>
</table>

### Defaults

Debugging is disabled.

### Command Modes

Privileged EXEC

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

The `undebug udld` command is the same as the `no debug udld` command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the `session switch-number` privileged EXEC command. Then enter the `debug` command at the command-line prompt of the stack member. You also can use the `remote command stack-member-number LINE` privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

For `debug udld events`, these debugging messages appear:

- General UDLD program logic flow
- State machine state changes
- Program actions for the set and clear ErrDisable state
- Neighbor cache additions and deletions
- Processing of configuration commands
- Processing of link-up and link-down indications
For **debug udld packets**, these debugging messages appear:

- General packet processing program flow on receipt of an incoming packet
- Indications of the contents of the various pieces of packets received (such as type length versions [TLVs]) as they are examined by the packet reception code
- Packet transmission attempts and the outcome

For **debug udld registries**, these categories of debugging messages appear:

- Sub-block creation
- Fiber-port status changes
- State change indications from the port manager software
- MAC address registry calls

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>show debugging</strong></td>
<td>Displays information about the types of debugging that are enabled. For syntax information, select <a href="https://www.cisco.com/c/en/us/td/docs/ios/12_2/configuration/guide/">Cisco IOS Release 12.2 Configuration Guides and Command References</a>.</td>
<td></td>
</tr>
<tr>
<td><strong>show udld</strong></td>
<td>Displays UDLD administrative and operational status for all ports or the specified port.</td>
<td></td>
</tr>
</tbody>
</table>
debug vqpc

Use the `debug vqpc` privileged EXEC command to enable debugging of the VLAN Query Protocol (VQP) client. Use the `no` form of this command to disable debugging.

```
debug vqpc [all | cli | events | learn | packet]
no debug vqpc [all | cli | events | learn | packet]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>all</code></td>
<td>(Optional) Display all VQP client debug messages.</td>
</tr>
<tr>
<td><code>cli</code></td>
<td>(Optional) Display the VQP client command-line interface (CLI) debug messages.</td>
</tr>
<tr>
<td><code>events</code></td>
<td>(Optional) Display VQP client event debug messages.</td>
</tr>
<tr>
<td><code>learn</code></td>
<td>(Optional) Display VQP client address learning debug messages.</td>
</tr>
<tr>
<td><code>packet</code></td>
<td>(Optional) Display VQP client packet information debug messages.</td>
</tr>
</tbody>
</table>

### Defaults

Debugging is disabled.

### Command Modes

Privileged EXEC

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

The `undebug vqpc` command is the same as the `no debug vqpc` command.

When you enable debugging, it is enabled only on the stack master. To enable debugging on a stack member, you can start a session from the stack master by using the `session switch-number` privileged EXEC command. Then enter the `debug` command at the command-line prompt of the stack member. You also can use the `remote command stack-member-number LINE` privileged EXEC command on the stack master switch to enable debugging on a member switch without first starting a session.

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show debugging</code></td>
<td>Displays information about the types of debugging that are enabled. For syntax information, select Cisco IOS Release 12.2 Configuration Guides and Command References &gt; Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2 &gt; System Management &gt; Troubleshooting and Fault Management.</td>
</tr>
</tbody>
</table>
debug vqpc
Catalyst 3750 Switch Show Platform Commands

This appendix describes the show platform privileged EXEC commands that have been created or changed for use with the Catalyst 3750 switch. These commands display information helpful in diagnosing and resolving internetworking problems and should be used only under the guidance of Cisco technical support staff.
show platform acl

Use the `show platform acl` privileged EXEC command to display platform-dependent access control list (ACL) manager information.

```
show platform acl { interface interface-id | label label-number [detail] | statistics asic-number | usage asic-number [summary] | vlan vlan-id } [| begin | exclude | include | expression]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>interface interface-id</code></td>
<td>Display per-interface ACL manager information for the specified interface. The interface can be a physical interface or a VLAN.</td>
</tr>
</tbody>
</table>
| `label label-number [detail]` | Display per-label ACL manager information. The `label-number` range is 0 to 255. The keyword has this meaning:  
  - `detail`—(Optional) Display detailed ACL manager label information. |
| `statistics asic-number` | Display per-ASIC ACL manager information. The `asic-number` is the port ASIC number, either 0 or 1. |
| `usage asic-number [summary]` | Display per-ASIC ACL usage information. The keyword has this meaning:  
  - `summary`—(Optional) Display usage information in a brief format. |
| `vlan vlan-id` | Display per-VLAN ACL manager information. The `vlan-id` range is from 1 to 4094. |
| `begin` | (Optional) Display begins with the line that matches the `expression`. |
| `exclude` | (Optional) Display excludes lines that match the `expression`. |
| `include` | (Optional) Display includes lines that match the specified `expression`. |
| `expression` | Expression in the output to use as a reference point. |

### Command Modes

Privileged EXEC

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

You should use this command only when you are working directly with a technical support representative while troubleshooting a problem. Do not use this command unless a technical support representative asks you to do so.

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.
show platform backup interface

Use the `show platform backup interface` privileged EXEC command to display platform-dependent backup information used in a Flex Links configuration.

```
show platform backup interface [interface-id | dummyQ] [| begin | exclude | include] expression
```

**Syntax Description**

- `interface-id`  (Optional) Display backup information for all interfaces or the specified interface. The interface can be a physical interface or a port channel.
- `dummyQ`  (Optional) Display dummy queue information.
- `| begin`  (Optional) Display begins with the line that matches the `expression`.
- `| exclude`  (Optional) Display excludes lines that match the `expression`.
- `| include`  (Optional) Display includes lines that match the specified `expression`.
- `expression`  Expression in the output to use as a reference point.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(20)SE</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You should use this command only when you are working directly with a technical support representative while troubleshooting a problem. Do not use this command unless a technical support representative asks you to do so.

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.
show platform configuration

Use the `show platform configuration` privileged EXEC command to display platform-dependent configuration-manager related information.

```
show platform configuration {config-output | default | running | startup} [| begin | exclude | include] expression
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>config-output</td>
<td>Display the output of the last auto-configuration application.</td>
</tr>
<tr>
<td>default</td>
<td>Display whether or not the system is running the default configuration.</td>
</tr>
<tr>
<td>running</td>
<td>Display a snapshot of the backed-up running configuration on the local switch.</td>
</tr>
<tr>
<td>startup</td>
<td>Display a snapshot of the backed-up startup configuration on the local switch.</td>
</tr>
<tr>
<td>begin</td>
<td>(Optional) Display begins with the line that matches the <code>expression</code>.</td>
</tr>
<tr>
<td>exclude</td>
<td>(Optional) Display excludes lines that match the <code>expression</code>.</td>
</tr>
<tr>
<td>include</td>
<td>(Optional) Display includes lines that match the specified <code>expression</code>.</td>
</tr>
<tr>
<td>expression</td>
<td>Expression in the output to use as a reference point.</td>
</tr>
</tbody>
</table>

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You should use this command only when you are working directly with a technical support representative while troubleshooting a problem. Do not use this command unless a technical support representative asks you to do so.

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.
show platform etherchannel

Use the `show platform etherchannel` privileged EXEC command to display platform-dependent EtherChannel information.

```
show platform etherchannel {flags | time-stamps} [| begin | exclude | include] expression
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>flags</td>
<td>Display EtherChannel port flags.</td>
</tr>
<tr>
<td>time-stamps</td>
<td>Display EtherChannel time stamps.</td>
</tr>
<tr>
<td>begin</td>
<td>(Optional) Display begins with the line that matches the expression.</td>
</tr>
<tr>
<td>exclude</td>
<td>(Optional) Display excludes lines that match the expression.</td>
</tr>
<tr>
<td>include</td>
<td>(Optional) Display includes lines that match the specified expression.</td>
</tr>
<tr>
<td>expression</td>
<td>Expression in the output to use as a reference point.</td>
</tr>
</tbody>
</table>

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You should use this command only when you are working directly with a technical support representative while troubleshooting a problem. Do not use this command unless a technical support representative asks you to do so.

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.
show platform forward

Use the `show platform forward` privileged EXEC command for an interface to specify how the hardware would forward a frame that matches the specified parameters.

```
show platform forward [interface-id [vlan vlan-id] src-mac dst-mac [l3protocol-id] [ipv6 | sap | snap] [cos cos] [ip src-ip dst-ip [frag field] [dscp dscp] [l4protocol-id | icmp icmp-type icmp-code | igmp igmp-version igmp-type | sctp src-port dst-port | tcp src-port dst-port flags | udp src-port dst-port]] [| {begin | exclude | include} expression]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface-id</td>
<td>The input physical interface, the port on which the packet comes in to the switch (including type, stack member, module, and port number).</td>
</tr>
<tr>
<td>vlan vlan-id</td>
<td>(Optional) Input VLAN ID. The range is 1 to 4094. If not specified, and the input interface is not a routed port, the default is 1.</td>
</tr>
<tr>
<td>src-mac</td>
<td>48-bit source MAC address.</td>
</tr>
<tr>
<td>dst-mac</td>
<td>48-bit destination MAC address.</td>
</tr>
<tr>
<td>l3protocol-id</td>
<td>(Optional) The Layer 3 protocol used in the packet. The number is a value 0 to 65535.</td>
</tr>
<tr>
<td>ipv6</td>
<td>(Optional) IPv6 frame. This keyword is available only if the switch stack is running the advanced IP services image.</td>
</tr>
<tr>
<td>sap</td>
<td>(Optional) Service access point (SAP) encapsulation type.</td>
</tr>
<tr>
<td>snap</td>
<td>(Optional) Subnetwork Access Protocol (SNAP) encapsulation type.</td>
</tr>
<tr>
<td>cos cos</td>
<td>(Optional) Class of service (CoS) value of the frame. The range is 0 to 7.</td>
</tr>
<tr>
<td>ip src-ip dst-ip</td>
<td>(Optional, but required for IP packets) Source and destination IP addresses in dotted decimal notation.</td>
</tr>
<tr>
<td>frag field</td>
<td>(Optional) The IP fragment field for a fragmented IP packet. The range is 0 to 65535.</td>
</tr>
<tr>
<td>dscp dscp</td>
<td>(Optional) Differentiated Services Code Point (DSCP) field in the IP header. The range is 0 to 63.</td>
</tr>
<tr>
<td>l4protocol-id</td>
<td>The numeric value of the Layer 4 protocol field in the IP header. The range is 0 to 255. For example, 47 is generic routing encapsulation (GRE), and 89 is Open Shortest Path First (OSPF). If the protocol is TCP, User Datagram Protocol (UDP), Internet Control Message Protocol (ICMP), or Internet Group Management Protocol (IGMP), you should use the appropriate keyword instead of a numeric value.</td>
</tr>
<tr>
<td>icmp icmp-type</td>
<td>ICMP parameters. The <code>icmp-type</code> and <code>icmp-code</code> ranges are 0 to 255.</td>
</tr>
<tr>
<td>icmp-code</td>
<td></td>
</tr>
<tr>
<td>igmp igmp-version</td>
<td>IGMP parameters. The <code>igmp-version</code> range is 1 to 15; the <code>igmp-type</code> range is 0 to 15.</td>
</tr>
<tr>
<td>igmp-type</td>
<td></td>
</tr>
<tr>
<td>sctp src-port dst-port</td>
<td>Stream Control Transmission Protocol (SCTP) parameters. The ranges for the SCTP source and destination ports are 0 to 65535.</td>
</tr>
<tr>
<td>tcp src-port dst-port flags</td>
<td>TCP parameters: TCP source port, destination port, and the numeric value of the TCP flags byte in the header. The <code>src-port</code> and <code>dst-port</code> ranges are 0 to 65535. The flag range is 0 to 1024.</td>
</tr>
<tr>
<td>udp src-port dst-port</td>
<td>UDP parameters. The <code>src-port</code> and <code>dst-port</code> ranges are 0 to 65535.</td>
</tr>
<tr>
<td>begin</td>
<td>(Optional) Display begins with the line that matches the expression.</td>
</tr>
</tbody>
</table>
show platform forward

exclude	(Optional) Display excludes lines that match the expression.
include	(Optional) Display includes lines that match the specified expression.
expression	Expression in the output to use as a reference point.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>12.2(25)SEB</td>
<td>The ipv6 keyword was added.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You should use this command only when you are working directly with a technical support representative while troubleshooting a problem. Do not use this command unless a technical support representative asks you to do so.

Expressions are case sensitive. For example, if you enter | exclude output, the lines that contain output do not appear, but the lines that contain Output appear.

**Examples**

For examples of the show platform forward command output displays and what they mean, see the “Troubleshooting” chapter of the software configuration guide for this release.
show platform frontend-controller

Use the `show platform frontend-controller` privileged EXEC command to display counter and status information for the front-end controller manager and subordinate applications and to display the hardware and software information for the front-end controller.

```
show platform frontend-controller { buffer | generic | manager number | subordinate number | version number } [| begin | exclude | include | expression]
```

This command is supported only on Catalyst 3750G-48TS, 3750G-48PS, 3750G-24TS-1U, and 3750G-24PS switches.

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>buffer</td>
<td>Display the last 1024 bytes sent from the manager to the subordinate and the reverse.</td>
</tr>
<tr>
<td>generic</td>
<td>Display the generic counters that do not specifically apply to the manager or subordinate.</td>
</tr>
<tr>
<td>manager number</td>
<td>Display the counters for the manager and the subordinate specified by <code>number</code>. See the “Usage Guidelines” section for the <code>number</code> range.</td>
</tr>
<tr>
<td>subordinate number</td>
<td>Display the subordinate status and the counters for the subordinate specified by <code>number</code>. See the “Usage Guidelines” section for the <code>number</code> range.</td>
</tr>
<tr>
<td>version number</td>
<td>Display the hardware and software version information for the subordinate status specified by <code>number</code>. See the “Usage Guidelines” section for the <code>number</code> range.</td>
</tr>
<tr>
<td>I begin</td>
<td>(Optional) Display begins with the line that matches the <code>expression</code>.</td>
</tr>
<tr>
<td>I exclude</td>
<td>(Optional) Display excludes lines that match the <code>expression</code>.</td>
</tr>
<tr>
<td>I include</td>
<td>(Optional) Display includes lines that match the specified <code>expression</code>.</td>
</tr>
<tr>
<td>expression</td>
<td>Expression in the output to use as a reference point.</td>
</tr>
</tbody>
</table>

### Command Modes

Privileged EXEC

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(20)SE3</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

On the Catalyst 3750G-48TS and 3750G-48PS switches, the subordinate number range is 0 to 2.

On the Catalyst 3750G-24TS-1U and 3750G-24PS switches, the subordinate number range is 0 to 1.

You should use this command only when you are working directly with a technical support representative while troubleshooting a problem. Do not use this command unless a technical support representative asks you to do so.

Expressions are case sensitive. For example, if you enter `I exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.
show platform ip igmp snooping

Use the `show platform ip igmp snooping` privileged EXEC command to display platform-dependent Internet Group Management Protocol (IGMP) snooping information.

```
show platform ip igmp snooping {all | control [di] | counters | flood [vlan vlan-id] | group ip-address | hardware | retry [count | local [count] | remote [count]]} | {begin | exclude | include} expression
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Display all IGMP snooping platform IP multicast information.</td>
</tr>
</tbody>
</table>
| control [di] | Display IGMP snooping control entries. The keyword has this meaning: 
  - di—(Optional) Display IGMP snooping control destination index entries. |
| counters | Display IGMP snooping counters. |
| flood [vlan vlan-id] | Display IGMP snooping flood information. The keyword has this meaning: 
  - vlan vlan-id—(Optional) Display flood information for the specified VLAN. The range is 1 to 4094. |
| group ip-address | Display the IGMP snooping multicast group information, where `ip-address` is the IP address of the group. |
| hardware | Display IGMP snooping information loaded into hardware. |
| retry [count | local [count]] | Display IGMP snooping retry information. The keywords have these meanings: 
  - count—(Optional) Display only the retry count. 
  - local—(Optional) Display local retry entries. |
| remote [count] | Display remote entries. The keyword has this meaning: 
  - count—(Optional) Display only the remote count. |
| | begin | (Optional) Display begins with the line that matches the `expression`. |
| | exclude | (Optional) Display excludes lines that match the `expression`. |
| | include | (Optional) Display includes lines that match the specified `expression`. |
| | expression | Expression in the output to use as a reference point. |

### Command Modes

Privileged EXEC

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
show platform ip igmp snooping

**Usage Guidelines**

You should use this command only when you are working directly with a technical support representative while troubleshooting a problem. Do not use this command unless a technical support representative asks you to do so.

Expressions are case sensitive. For example, if you enter `exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.
show platform ip multicast

Use the `show platform ip multicast` privileged EXEC command to display platform-dependent IP multicast tables and other information.

```
show platform ip multicast \{ acl-full-info | counters | hardware [detail] | interfaces | locks | mdfs-routes | mroute-retry | retry | trace \} [\[begin | exclude | include \] expression]
```

**Syntax Description**

- `acl-full-info`: Display IP multicast routing access-control list (ACL) information, in particular the number of outgoing VLANs for which router ACLs at the output cannot be applied in hardware.
- `counters`: Display IP multicast counters and statistics.
- `groups`: Display IP multicast routes per group.
- `hardware [detail]`: Display IP multicast routes loaded into hardware. The keyword has this meaning:
  - `detail`—(Optional) Display port members in destination index and route index.
- `interfaces`: Display IP multicast interfaces.
- `locks`: Display IP multicast destination-index locks.
- `mdfs-routes`: Display multicast distributed fast switching (MDFS) IP multicast routes.
- `mroute-retry`: Display the IP multicast route retry queue.
- `retry`: Display the IP multicast routes in the retry queue.
- `trace`: Display the IP multicast trace buffer.
- `\[ begin`: (Optional) Display begins with the line that matches the `expression`.
- `\[ exclude`: (Optional) Display excludes lines that match the `expression`.
- `\[ include`: (Optional) Display includes lines that match the specified `expression`.
- `expression`: Expression in the output to use as a reference point.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You should use this command only when you are working directly with a technical support representative while troubleshooting a problem. Do not use this command unless a technical support representative asks you to do so.

Expressions are case sensitive. For example, if you enter `\[ exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.
show platform ip unicast

Use the `show platform ip unicast` privileged EXEC command to display platform-dependent IP unicast routing information.

```
show platform ip unicast [adjacency | cef-idb | counts | dhcp | failed {adjacency | arp [A.B.C.D] | route} | loadbalance | mpaths | proxy | route | standby | statistics | table | trace] [| begin | exclude | include] expression
```

**Syntax Description**

- **adjacency**
  Display the platform adjacency database.

- **cef-idb**
  Display platform information corresponding to Cisco Express Forwarding (CEF) interface descriptor block.

- **counts**
  Display the current counts for the Layer 3 unicast databases.

- **dhcp**
  Display the DHCP system dynamic addresses.

- **failed {adjacency | arp [A.B.C.D] | route}**
  Display the hardware resource failures. The keywords have these meanings:
  - **adjacency**—Display the adjacency entries that failed to be programmed in hardware.
  - **arp**—Display the Address Resolution Protocol (ARP) deletions because of failure and because of retries.
  - **A.B.C.D**—(Optional) Prefix of the ARP entries to display.
  - **route**—Display the route entries that failed to be programmed in hardware.

- **loadbalance**
  Display the platform loadbalance database.

- **mpaths**
  Display the Layer 3 unicast routing multipath adjacency database.

- **proxy**
  Display the platform proxy ARP database.

- **route**
  Display the platform route database.

- **standby**
  Display the platform standby information.

- **statistics**
  Display the Layer 3 unicast routing accumulated statistics.

- **table**
  Display the platform IP version 4 (IPv4) information.

- **trace**
  Display the platform event trace logs.

- **begin**
  (Optional) Display begins with the line that matches the `expression`.

- **exclude**
  (Optional) Display excludes lines that match the `expression`.

- **include**
  (Optional) Display includes lines that match the specified `expression`.

- **expression**
  Expression in the output to use as a reference point.

**Note**

Though visible in the command-line help strings, the **proxy** and **table** keywords are not supported.

**Command Modes**

Privileged EXEC
show platform ip unicast

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You should use this command only when you are working directly with a technical support representative while troubleshooting a problem. Do not use this command unless a technical support representative asks you to do so.

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.
show platform ip unicast vrf compaction

Use the `show platform ip unicast vrf compaction` privileged EXEC command to display the compaction request queues and compaction status.

```
show platform ip unicast vrf compaction [| begin | exclude | include] expression
```

Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>begin</code></td>
<td>(Optional) Display begins with the line that matches the <code>expression</code>.</td>
</tr>
<tr>
<td><code>exclude</code></td>
<td>(Optional) Display excludes lines that match the <code>expression</code>.</td>
</tr>
<tr>
<td><code>include</code></td>
<td>(Optional) Display includes lines that match the specified <code>expression</code>.</td>
</tr>
<tr>
<td><code>expression</code></td>
<td>Expression in the output to use as a reference point.</td>
</tr>
</tbody>
</table>

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SEC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You should use this command only when you are working directly with a technical support representative while troubleshooting a problem. Do not use this command unless a technical support representative asks you to do so.
### show platform ip unicast vrf tcam-label

Use the `show platform ip unicast vrf tcam-label` privileged EXEC command to display PBR and VRF-Lite labels and the number of labels in use by PBR.

```
show platform ip unicast vrf tcam-label [| begin | exclude | include] expression]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
</table>
| begin              | (Optional) Display begins with the line that matches the `expression`.
| exclude            | (Optional) Display excludes lines that match the `expression`.
| include            | (Optional) Display includes lines that match the specified `expression`.

| expression         | Expression in the output to use as a reference point. |

| Command Modes      | Privileged EXEC |

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12.2(25)SEC</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

| Usage Guidelines   | You should use this command only when you are working directly with a technical support representative while troubleshooting a problem. Do not use this command unless a technical support representative asks you to do so. |
show platform ipc trace

Use the **show platform ipc trace** privileged EXEC command to display platform-dependent Interprocess Communication (IPC) Protocol trace log information.

```
show platform ipc trace [| begin | exclude | include | expression]
```

**Syntax Description**

- **| begin** (Optional) Display begins with the line that matches the `expression`.
- **| exclude** (Optional) Display excludes lines that match the `expression`.
- **| include** (Optional) Display includes lines that match the specified `expression`.
- **expression** Expression in the output to use as a reference point.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You should use this command only when you are working directly with a technical support representative while troubleshooting a problem. Do not use this command unless a technical support representative asks you to do so.

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.
show platform ipv6 unicast

Use the show platform ipv6 unicast privileged EXEC command to display platform-dependent IPv6 unicast routing information. This command is available only if the stack is running the advanced IP services image.


Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>adjacency</td>
<td>Display IPv6 adjacency information for the switch or for the specified IPv6 network.</td>
</tr>
<tr>
<td>ipv6-prefix</td>
<td>(Optional) The IPv6 network to be displayed. This argument must be in the form documented in RFC 2373 where the address is specified in hexadecimal using 16-bit values between colons.</td>
</tr>
<tr>
<td>backwalk {adjacency</td>
<td>loadbalance}</td>
</tr>
<tr>
<td></td>
<td>• adjacency—Display adjacency backwalk information.</td>
</tr>
<tr>
<td></td>
<td>• loadbalance—Display backwalk load balance information.</td>
</tr>
<tr>
<td>compress ipv6-prefix/prefix length</td>
<td>Display IPv6 prefix compression information.</td>
</tr>
<tr>
<td></td>
<td>• ipv6-prefix—The IPv6 network.</td>
</tr>
<tr>
<td></td>
<td>• /prefix length—The length of the IPv6 network prefix. A decimal value from 0 to 128 that shows how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). A slash mark must precede the decimal value.</td>
</tr>
<tr>
<td>interface</td>
<td>Display IPv6 interface information.</td>
</tr>
<tr>
<td>loadbalance</td>
<td>Display IPv6 loadbalance information.</td>
</tr>
<tr>
<td>mpath</td>
<td>Display IPv6 multipath information.</td>
</tr>
<tr>
<td>retry {adjacency</td>
<td>route}</td>
</tr>
<tr>
<td></td>
<td>• adjacency—Display IPv6 adjacency retry information.</td>
</tr>
<tr>
<td></td>
<td>• route—Display IPv6 route retry information.</td>
</tr>
<tr>
<td>route</td>
<td>Display IPv6 route information.</td>
</tr>
<tr>
<td>tcam</td>
<td>(Optional) Display the IPv6 TCAM route table information.</td>
</tr>
<tr>
<td>detail</td>
<td>(Optional) Display detailed IPv6 route information.</td>
</tr>
<tr>
<td>statistics</td>
<td>Display IPv6 accumulated statistics.</td>
</tr>
<tr>
<td>table</td>
<td>Display IPv6 unicast table information.</td>
</tr>
<tr>
<td>trace</td>
<td>Display IPv6 unicast traces.</td>
</tr>
<tr>
<td>begin</td>
<td>(Optional) Display begins with the line that matches the expression.</td>
</tr>
<tr>
<td>exclude</td>
<td>(Optional) Display excludes lines that match the expression.</td>
</tr>
<tr>
<td>include</td>
<td>(Optional) Display includes lines that match the specified expression.</td>
</tr>
<tr>
<td>expression</td>
<td>Expression in the output to use as a reference point.</td>
</tr>
</tbody>
</table>
show platform ipv6 unicast

**Command Modes**
Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SEA</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
You should use this command only when you are working directly with a technical support representative while troubleshooting a problem. Do not use this command unless a technical support representative asks you to do so.

Expressions are case sensitive. For example, if you enter `exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.
show platform layer4op

Use the `show platform layer4op` privileged EXEC command to display platform-dependent Layer 4 operator information.

```
show platform layer4op [acl | pacl [port-asic] | qos [port-asic]] {and-or | map | or-and | vcu} [l begin | exclude | include] expression
```

**Syntax Description**

- **acl**
  - Display access control list (ACL) Layer 4 operators information.

- **pACL [port-asic]**
  - Display port ACL Layer 4 operators information. The keyword has this meaning:
    - `port-asic`—(Optional) Port ASIC number.

- **qos [port-asic]**
  - Display quality of service (QoS) Layer 4 operators information. The keyword has this meaning:
    - `port-asic`—(Optional) QoS port ASIC number.

- **and-or**
  - Display AND-OR registers information.

- **map**
  - Display select map information.

- **or-and**
  - Display OR-AND registers information.

- **vcu**
  - Display value compare unit (VCU) register information.

- **l begin**
  - (Optional) Display begins with the line that matches the `expression`.

- **l exclude**
  - (Optional) Display excludes lines that match the `expression`.

- **l include**
  - (Optional) Display includes lines that match the specified `expression`.

- **expression**
  - Expression in the output to use as a reference point.

**Command Modes**

- Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You should use this command only when you are working directly with a technical support representative while troubleshooting a problem. Do not use this command unless a technical support representative asks you to do so.

Expressions are case sensitive. For example, if you enter `l exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.
show platform mac-address-table

Use the show platform mac-address-table privileged EXEC command to display platform-dependent MAC address table information.

```
show platform mac-address-table [aging-array | hash-table | mac-address mac-address] [vlan vlan-id] [| begin | exclude | include] expression
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aging-array</td>
<td>(Optional) Display the MAC address table aging array.</td>
</tr>
<tr>
<td>hash-table</td>
<td>(Optional) Display the MAC address table hash table.</td>
</tr>
<tr>
<td>mac-address mac-address</td>
<td>(Optional) Display the MAC address table MAC address information, where mac-address is the 48-bit hardware address.</td>
</tr>
<tr>
<td>vlan vlan-id</td>
<td>(Optional) Display information for the specified VLAN. The range is 1 to 4094.</td>
</tr>
<tr>
<td></td>
<td>begin</td>
</tr>
<tr>
<td></td>
<td>exclude</td>
</tr>
<tr>
<td></td>
<td>include</td>
</tr>
<tr>
<td>expression</td>
<td>Expression in the output to use as a reference point.</td>
</tr>
</tbody>
</table>

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You should use this command only when you are working directly with a technical support representative while troubleshooting a problem. Do not use this command unless a technical support representative asks you to do so.

Expressions are case sensitive. For example, if you enter | exclude output, the lines that contain output do not appear, but the lines that contain Output appear.
### show platform messaging

Use the `show platform messaging` privileged EXEC command to display platform-dependent application and performance message information.

```
show platform messaging { application [incoming | outgoing | summary] | hiperf [class-number] } [| { begin | exclude | include } expression]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>**application [incoming</td>
<td>outgoing</td>
</tr>
<tr>
<td>incoming</td>
<td>(Optional) Display only information about incoming application messaging requests.</td>
</tr>
<tr>
<td>outgoing</td>
<td>(Optional) Display only information about incoming application messaging requests.</td>
</tr>
<tr>
<td>summary</td>
<td>(Optional) Display summary information about all application messaging requests.</td>
</tr>
<tr>
<td><strong>hiperf [class-number]</strong></td>
<td>Display outgoing high-performance message information. Specify the <code>class-number</code> option to display information about high-performance messages for this class number. The range is 0 to 36.</td>
</tr>
<tr>
<td>**</td>
<td>begin**</td>
</tr>
<tr>
<td>**</td>
<td>exclude**</td>
</tr>
<tr>
<td>**</td>
<td>include**</td>
</tr>
<tr>
<td><strong>expression</strong></td>
<td>Expression in the output to use as a reference point.</td>
</tr>
</tbody>
</table>

### Command Modes

Privileged EXEC

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

You should use this command only when you are working directly with a technical support representative while troubleshooting a problem. Do not use this command unless a technical support representative asks you to do so.

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.
show platform monitor

Use the `show platform monitor` privileged EXEC command to display platform-dependent Switched Port Analyzer (SPAN) information.

```
show platform monitor [session session-number] [| {begin | exclude | include} expression]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>session</td>
<td>(Optional) Display SPAN information for the specified SPAN session. The range is 1 to 66.</td>
</tr>
<tr>
<td>session-number</td>
<td>(Optional) Display SPAN information for the specified SPAN session. The range is 1 to 66.</td>
</tr>
<tr>
<td>begin</td>
<td>(Optional) Display begins with the line that matches the <code>expression</code>.</td>
</tr>
<tr>
<td>exclude</td>
<td>(Optional) Display excludes lines that match the <code>expression</code>.</td>
</tr>
<tr>
<td>include</td>
<td>(Optional) Display includes lines that match the specified <code>expression</code>.</td>
</tr>
<tr>
<td>expression</td>
<td>Expression in the output to use as a reference point.</td>
</tr>
</tbody>
</table>

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You should use this command only when you are working directly with a technical support representative while troubleshooting a problem. Do not use this command unless a technical support representative asks you to do so.

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.
show platform mvr table

Use the `show platform mvr table` privileged EXEC command to display the platform-dependent Multicast VLAN Registration (MVR) multi-expansion descriptor (MED) group mapping table.

```
show platform mvr table [| {begin | exclude | include} expression]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>begin</td>
<td>(Optional) Display begins with the line that matches the <code>expression</code>.</td>
</tr>
<tr>
<td>exclude</td>
<td>(Optional) Display excludes lines that match the <code>expression</code>.</td>
</tr>
<tr>
<td>include</td>
<td>(Optional) Display includes lines that match the specified <code>expression</code>.</td>
</tr>
<tr>
<td>expression</td>
<td>Expression in the output to use as a reference point.</td>
</tr>
</tbody>
</table>

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You should use this command only when you are working directly with a technical support representative while troubleshooting a problem. Do not use this command unless a technical support representative asks you to do so.

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.
show platform pm

Use the `show platform pm` privileged EXEC command to display platform-dependent port-manager information.

```
show platform pm {counters | group-masks | idbs {active-idbs | deleted-idbs} | if-numbers | link-status | platform-block | port-info interface-id | stack-view | vlan {info | line-state} [| begin | exclude | include] expression}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>counters</td>
<td>Display module counters information.</td>
</tr>
<tr>
<td>group-masks</td>
<td>Display EtherChannel group masks information.</td>
</tr>
<tr>
<td>idbs {active-idbs</td>
<td>deleted-idbs}</td>
</tr>
<tr>
<td></td>
<td>• active-idbs—Display active IDB information.</td>
</tr>
<tr>
<td></td>
<td>• deleted-idbs—Display deleted and leaked IDB information.</td>
</tr>
<tr>
<td>if-numbers</td>
<td>Display interface numbers information.</td>
</tr>
<tr>
<td>link-status</td>
<td>Display local port link status information.</td>
</tr>
<tr>
<td>platform-block</td>
<td>Display platform port block information.</td>
</tr>
<tr>
<td>port-info interface-id</td>
<td>Display port administrative and operation fields for the specified interface.</td>
</tr>
<tr>
<td>stack-view</td>
<td>Display status information for the stack.</td>
</tr>
<tr>
<td>vlan {info</td>
<td>line-state}</td>
</tr>
<tr>
<td></td>
<td>• info—Display information for active VLANs.</td>
</tr>
<tr>
<td></td>
<td>• line-state—Display line-state information.</td>
</tr>
<tr>
<td></td>
<td>begin</td>
</tr>
<tr>
<td></td>
<td>exclude</td>
</tr>
<tr>
<td></td>
<td>include</td>
</tr>
<tr>
<td>expression</td>
<td>Expression in the output to use as a reference point.</td>
</tr>
</tbody>
</table>

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You should use this command only when you are working directly with your technical support representative while troubleshooting a problem. Do not use this command unless your technical support representative asks you to do so.

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.
show platform port-asic

Use the **show platform port-asic** privileged EXEC command to display platform-dependent port ASIC register information.

```
show platform port-asic { cpu-queue-map-table [asic number | port number [asic number]] } |
dest-map index number |
etherchannel-info [asic number | port number [asic number]] |
exception [asic number | port number [asic number]] |
global-status [asic number | port number [asic number]] |
learning [asic number | port number [asic number]] |
mac-info [asic number | port number [asic number]] |
mvid [asic number] |
packet-info-ram [asic number | index number [asic number]] |
port-info [asic number | port number [asic number]] |
prog-parser [asic number | port number [asic number]] |
receive { buffer-queue | port-fifo | supervisor-sram } [asic number | port number [asic number]] |
span [vlan-id [asic number]] | [asic number] |
stack { control | dest-map | learning | messages | mvid | prog-parser | span | stats [asic number | port number [asic number]] } |
stats { drop | enqueue | miscellaneous | supervisor } [asic number | port number [asic number]] |
transmit { port-fifo | queue | supervisor-sram } [asic number | port number [asic number]] |
vct [asic number | port number [asic number]] |
version }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
</table>
| cpu-queue-map-table [asic number | port number [asic number]] | Display the CPU queue-map table entries. The keywords have these meanings:
  | • **asic number**—(Optional) Display information for the specified ASIC. The range is 0 to 1.
  | • **port number**—(Optional) Display information for the specified port and ASIC number. The range is 0 to 27.
| dest-map index number | Display destination-map information for the specified index. The range is 0 to 65535.
| etherchannel-info [asic number | port number [asic number]] | Display the contents of the EtherChannel information register. The keywords have these meanings:
  | • **asic number**—(Optional) Display information for the specified ASIC. The range is 0 to 1.
  | • **port number**—(Optional) Display information for the specified port and ASIC number. The range is 0 to 27, where 0 is the supervisor and 1 to 25 are the ports.
### show platform port-asic

**exception [asic number] | port number [asic number]**
Display the exception-index register information. The keywords have these meanings:
- **asic number**—(Optional) Display information for the specified ASIC. The range is 0 to 1.
- **port number**—(Optional) Display information for the specified port and ASIC number. The range is 0 to 27, where 0 is the supervisor and 1 to 25 are the ports.

**global-status [asic number] | port number [asic number]**
Display global and interrupt status. The keywords have these meanings:
- **asic number**—(Optional) Display information for the specified ASIC. The range is 0 to 1.
- **port number**—(Optional) Display information for the specified port and ASIC number. The range is 0 to 27, where 0 is the supervisor and 1 to 25 are the ports.

**learning [asic number] | port number [asic number]**
Display entries in the learning cache. The keywords have these meanings:
- **asic number**—(Optional) Display information for the specified ASIC. The range is 0 to 1.
- **port number**—(Optional) Display information for the specified port and ASIC number. The range is 0 to 27, where 0 is the supervisor and 1 to 25 are the ports.

**mac-info [asic number] | port number [asic number]**
Display the contents of the MAC information register. The keywords have these meanings:
- **asic number**—(Optional) Display information for the specified ASIC. The range is 0 to 1.
- **port number**—(Optional) Display information for the specified port and ASIC number. The range is 0 to 27, where 0 is the supervisor and 1 to 25 are the ports.

**mvid [asic number]**
Display the mapped VLAN ID table. The keyword has this meaning:
- **asic number**—(Optional) Display information for the specified ASIC. The range is 0 to 1.

**packet-info-ram [asic number] | index number [asic number]**
Display the packet information RAM. The keywords have these meanings:
- **asic number**—(Optional) Display information for the specified ASIC. The range is 0 to 1.
- **index number**—(Optional) Display information for the specified packet RAM index number and ASIC number. The range is 0 to 63.
**port-info [asic number | port number [asic number]]**
Display port information register values. The keywords have these meanings:
- **asic number**—(Optional) Display information for the specified ASIC. The range is 0 to 1.
- **port number**—(Optional) Display information for the specified port and ASIC number. The range is 0 to 27, where 0 is the supervisor and 1 to 25 are the ports.

**prog-parser [asic number | port number [asic number]]**
Display the programmable parser tables. The keywords have these meanings:
- **asic number**—(Optional) Display information for the specified ASIC. The range is 0 to 1.
- **port number**—(Optional) Display information for the specified port and ASIC number. The range is 0 to 27, where 0 is the supervisor and 1 to 25 are the ports.

**receive {buffer-queue | port-fifo | supervisor-sram} [asic number | port number [asic number]]**
Display receive information. The keywords have these meanings:
- **buffer-queue**—Display the buffer queue information.
- **port-fifo**—Display the port-FIFO information.
- **supervisor-sram**—Display the supervisor static RAM (SRAM) information.
- **asic number**—(Optional) Display information for the specified ASIC. The range is 0 to 1.
- **port number**—(Optional) Display information for the specified port and ASIC number. The range is 0 to 27, where 0 is the supervisor and 1 to 25 are the ports.

**span [vlan-id |asic number]**
Display the Switched Port Analyzer (SPAN)-related information. The keywords have these meanings:
- **vlan-id**—(Optional) Display information for the specified VLAN. The range is 0 to 1023.
- **asic number**—(Optional) Display information for the specified ASIC. The range is 0 to 1.
show platform port-asic

stack {control | dest-map | learning | messages | mvid | prog-parser | span | stats [asic number | port number [asic number]]]

Display stack-related information. The keywords have these meanings:

- **control**—Display stack control-status register information.
- **dest-map**—Display destination-map information.
- **learning**—Display entries in the learning-cache.
- **messages**—Display the stack-message register information.
- **mvid**—Display entries in the mapped VLAN-ID table.
- **prog-parser**—Display the programmable parser tables.
- **span**—Display SPAN-related information.
- **stats**—Display raw statistics for the port ASIC.
- **asic number**—(Optional) Display information for the specified ASIC. The range is 0 to 1.
- **port number**—(Optional) Display information for the specified port and ASIC number. The range is 0 to 27, where 0 is the supervisor and 1 to 25 are the ports.

stats [drop | enqueue | miscellaneous | supervisor] [asic number | port number [asic number]]

Display raw statistics for the port ASIC. The keywords have these meanings:

- **drop**—Display drop statistics.
- **enqueue**—Display enqueue statistics.
- **miscellaneous**—Display miscellaneous statistics.
- **supervisor**—Display supervisor statistics.
- **asic number**—(Optional) Display information for the specified ASIC. The range is 0 to 1.
- **port number**—(Optional) Display information for the specified port and ASIC number. The range is 0 to 27, where 0 is the supervisor and 1 to 25 are the ports.

transmit [port-fifo | queue | supervisor-sram] [asic number | port number [asic number]]

Display transmit information. The keywords have these meanings:

- **port-fifo**—Display the contents of the port-FIFO information register.
- **queue**—Display the contents of the queue information register.
- **supervisor-sram**—Display supervisor SRAM information.
- **asic number**—(Optional) Display information for the specified ASIC. The range is 0 to 1.
- **port number**—(Optional) Display information for the specified port and ASIC number. The range is 0 to 27, where 0 is the supervisor and 1 to 25 are the ports.
show platform port-asic

<table>
<thead>
<tr>
<th>vct [asic number</th>
<th>port number [asic number]]</th>
<th>Display the VLAN compression table entries for the specified ASIC or for the specified port and ASIC. The keywords have these meanings:</th>
</tr>
</thead>
<tbody>
<tr>
<td>asic number—(Optional) Display information for the specified ASIC. The range is 0 to 1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>port number—(Optional) Display information for the specified port and ASIC number. The range is 0 to 27, where 0 is the supervisor and 1 to 25 are the ports.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

version	Display version and device type information for port ASICs.
begin	(Optional) Display begins with the line that matches the expression.
exclude	(Optional) Display excludes lines that match the expression.
include	(Optional) Display includes lines that match the specified expression.
expression	Expression in the output to use as a reference point.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You should use this command only when you are working directly with your technical support representative while troubleshooting a problem. Do not use this command unless your technical support representative asks you to do so.

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.
show platform port-security

Use the `show platform port-security` privileged EXEC command to display platform-dependent port-security information.

```
show platform port-security [| {begin | exclude | include} expression]
```

**Syntax Description**

- `| begin` (Optional) Display begins with the line that matches the `expression`.
- `| exclude` (Optional) Display excludes lines that match the `expression`.
- `| include` (Optional) Display includes lines that match the specified `expression`.

**expression** Expression in the output to use as a reference point.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You should use this command only when you are working directly with your technical support representative while troubleshooting a problem. Do not use this command unless your technical support representative asks you to do so.

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.
show platform qos

Use the `show platform qos` privileged EXEC command to display platform-dependent quality of service (QoS) information.

```
show platform qos {label asic number | policer {parameters asic number | port alloc number asic number} | | {begin | exclude | include} expression]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>label asic number</strong></td>
<td>Display QoS label maps for the specified ASIC. (Optional) For <code>asic number</code>, the range is 0 to 1.</td>
</tr>
</tbody>
</table>
| **policer {parameters asic number | port alloc number asic number}** | Display policer information. The keywords have these meanings:  
  - **parameters asic number**—Display parameter information for the specified ASIC. The range is 0 to 1.  
  - **port alloc number asic number**—Display port allocation information for the specified port and ASIC. The port allocation range is 0 to 25. The ASIC range is 0 to 1. |
| | (Optional) Display begins with the line that matches the `expression`.                                                                     |
| | (Optional) Display excludes lines that match the `expression`.                                                                          |
| | (Optional) Display includes lines that match the specified `expression`.                                                               |
| **expression**        | Expression in the output to use as a reference point.                                                                                   |

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You should use this command only when you are working directly with your technical support representative while troubleshooting a problem. Do not use this command unless your technical support representative asks you to do so.

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.
show platform resource-manager

Use the show platform resource-manager privileged EXEC command to display platform-dependent resource-manager information.

```
show platform resource-manager { dm [index number] | erd [index number] |
 mad [index number] | med [index number] | mod | msm { hash-table [vlan vlan-id] |
 mac-address mac-address [vlan vlan-id] | sd [index number] |
 vld [index number]} | | begin | exclude | include | expression
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
</table>
| dm [index number] | Display the destination map. The keyword has this meaning:  
  - **index number**—(Optional) Display the specified index. The range is 0 to 65535. |
| erd [index number] | Display the equal-cost-route descriptor table for the specified index. The keyword has this meaning:  
  - **index number**—(Optional) Display the specified index. The range is 0 to 65535. |
| mad [index number] | Display the MAC-address descriptor table for the specified index. The keyword has this meaning:  
  - **index number**—(Optional) Display the specified index. The range is 0 to 65535. |
| med [index number] | Display the multi-expansion descriptor table for the specified index. The keyword has this meaning:  
  - **index number**—(Optional) Display the specified index. The range is 0 to 65535. |
| mod | Display the resource-manager module information. |
| msm { hash-table [vlan vlan-id] | Display the MAC-address descriptor table and the station descriptor table information. The keywords have these meanings:  
  - **hash-table [vlan vlan-id]**—Display the hash table for all VLANs or the specified VLAN. The range is 1 to 4094.  
  - **mac-address mac-address [vlan vlan-id]**—Display the MAC-address descriptor table for the specified MAC address represented by the 48-bit hardware address for all VLANs or the specified VLAN. The range is 1 to 4094. |
| mac-address mac-address [vlan vlan-id] | |
| sd [index number] | Display the station descriptor table for the specified index. The keyword has this meaning:  
  - **index number**—(Optional) Display the specified index. The range is 0 to 65535. |
| vld [index number] | Display the VLAN-list descriptor table for the specified index. The keyword has this meaning:  
  - **index number**—(Optional) Display the specified index. The range is 0 to 65535. |

<table>
<thead>
<tr>
<th>Additional Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>begin</td>
<td>(Optional) Display begins with the line that matches the expression.</td>
</tr>
<tr>
<td>exclude</td>
<td>(Optional) Display excludes lines that match the expression.</td>
</tr>
</tbody>
</table>
show platform resource-manager

| include | (Optional) Display includes lines that match the specified expression. |
| expression | Expression in the output to use as a reference point. |

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You should use this command only when you are working directly with your technical support representative while troubleshooting a problem. Do not use this command unless your technical support representative asks you to do so.

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.
show platform snmp counters

Use the `show platform snmp counters` privileged EXEC command to display platform-dependent Simple Network Management Protocol (SNMP) counter information.

```
show platform snmp counters [| begin | exclude | include] expression
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>begin</code></td>
<td>(Optional) Display begins with the line that matches the <code>expression</code>.</td>
</tr>
<tr>
<td><code>exclude</code></td>
<td>(Optional) Display excludes lines that match the <code>expression</code>.</td>
</tr>
<tr>
<td><code>include</code></td>
<td>(Optional) Display includes lines that match the specified <code>expression</code>.</td>
</tr>
<tr>
<td><code>expression</code></td>
<td>Expression in the output to use as a reference point.</td>
</tr>
</tbody>
</table>

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You should use this command only when you are working directly with your technical support representative while troubleshooting a problem. Do not use this command unless your technical support representative asks you to do so.

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.
show platform spanning-tree

Use the `show platform spanning-tree` privileged EXEC command to display platform-dependent spanning-tree information.

```
show platform spanning-tree synchronization [detail | vlan vlan-id] [| begin | exclude | include] expression
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>synchronization</td>
<td>Display spanning-tree state synchronization information. The keywords have</td>
</tr>
<tr>
<td>[detail</td>
<td>vlan vlan-id]</td>
</tr>
<tr>
<td></td>
<td>• detail—(Optional) Display detailed spanning-tree information.</td>
</tr>
<tr>
<td></td>
<td>• vlan vlan-id—(Optional) Display VLAN switch spanning-tree information</td>
</tr>
<tr>
<td></td>
<td>for the specified VLAN. The range is 1 to 4094.</td>
</tr>
<tr>
<td>begin</td>
<td>(Optional) Display begins with the line that matches the <code>expression</code>.</td>
</tr>
<tr>
<td>exclude</td>
<td>(Optional) Display excludes lines that match the <code>expression</code>.</td>
</tr>
<tr>
<td>include</td>
<td>(Optional) Display includes lines that match the specified <code>expression</code>.</td>
</tr>
<tr>
<td>expression</td>
<td>Expression in the output to use as a reference point.</td>
</tr>
</tbody>
</table>

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You should use this command only when you are working directly with your technical support representative while troubleshooting a problem. Do not use this command unless your technical support representative asks you to do so.

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.
show platform stp-instance

Use the show platform stp-instance privileged EXEC command to display platform-dependent spanning-tree instance information.

`show platform stp-instance vlan-id [ | begin | exclude | include ] expression`

**Syntax Description**

<table>
<thead>
<tr>
<th>** vlan-id</th>
<th>Display spanning-tree instance information for the specified VLAN. The range is 1 to 4094.</th>
</tr>
</thead>
<tbody>
<tr>
<td>**</td>
<td>(Optional) Display begins with the line that matches the expression.</td>
</tr>
<tr>
<td>**</td>
<td>(Optional) Display excludes lines that match the expression.</td>
</tr>
<tr>
<td>**</td>
<td>(Optional) Display includes lines that match the specified expression.</td>
</tr>
<tr>
<td>**</td>
<td>Expression in the output to use as a reference point.</td>
</tr>
</tbody>
</table>

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th><strong>Release</strong></th>
<th><strong>Modification</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(14)EA1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You should use this command only when you are working directly with your technical support representative while troubleshooting a problem. Do not use this command unless your technical support representative asks you to do so.

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.
show platform stack-manager

Use the `show platform stack-manager` privileged EXEC command to display platform-dependent switch-stack information.

```
show platform stack-manager { all | counters | trace [sdp [reverse]] | state [reverse] }
[| { begin | exclude | include } expression]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Display all information for the entire switch stack.</td>
</tr>
<tr>
<td>counters</td>
<td>Display the stack manager counters.</td>
</tr>
<tr>
<td>trace [ sdp [ reverse ] ]</td>
<td>Display trace information. The keywords have these meanings:</td>
</tr>
<tr>
<td></td>
<td>• <strong>sdp</strong>—(Optional) Display Stack Discovery Protocol (SDP) information.</td>
</tr>
<tr>
<td></td>
<td>• <strong>reverse</strong>—(Optional) Display trace information in reverse chronological order (from recent to older chronological sequence).</td>
</tr>
<tr>
<td>trace [ state [ reverse ] ]</td>
<td>Display trace information. The keywords have these meanings:</td>
</tr>
<tr>
<td></td>
<td>• <strong>state</strong>—(Optional) Display stack state machine information.</td>
</tr>
<tr>
<td></td>
<td>• <strong>reverse</strong>—(Optional) Display trace information in reverse chronological order (from recent to older chronological sequence).</td>
</tr>
<tr>
<td>begin</td>
<td>(Optional) Display begins with the line that matches the <code>expression</code>.</td>
</tr>
<tr>
<td>exclude</td>
<td>(Optional) Display excludes lines that match the <code>expression</code>.</td>
</tr>
<tr>
<td>include</td>
<td>(Optional) Display includes lines that match the specified <code>expression</code>.</td>
</tr>
<tr>
<td>expression</td>
<td>Expression in the output to use as a reference point.</td>
</tr>
</tbody>
</table>

### Command Modes

Privileged EXEC

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

You should use this command only when you are working directly with your technical support representative while troubleshooting a problem. Do not use this command unless your technical support representative asks you to do so.

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.
These are the states displayed in the summary information about the switch stack:

- **Waiting**—The stage when a switch is booting up and waiting for communication from other switches in the stack. The switch has not yet determined whether it is a stack master or not. Stack members not participating in a stack master election remain in the waiting state until the stack master is elected and ready.

- **Initializing**—The stage when a switch has determined whether it is the stack master or not. If the switch is not the stack master, it is receiving its system- and interface-level configuration from the stack master and loading it.

- **Ready**—The stage when the stack member has completed loading the system- and interface-level configuration and is ready to forward traffic.

- **Master Re-Init**—The stage immediately after a stack master re-election and a different stack member is elected stack master. The new stack master is re-initializing its configuration. This state applies only to the new stack master.

- **Ver Mismatch**—The stage of a switch in version mismatch (VM) mode. VM mode is when a switch joining the switch stack has a different stack protocol minor version number from the stack master.

A typical state transition for a stack member (including a stack master) booting up is **Waiting -> Initializing -> Ready**.

A typical state transition for a stack member becoming a stack master after a stack master election is **Ready -> Master Re-Init -> Ready**.

A typical state transition for a stack member in version mismatch (VM) mode is **Waiting -> Ver Mismatch**.
show platform tb

Use the show platform tb privileged EXEC command to display platform-dependent trusted-boundary information during a stack master change to a new stack master.

show platform tb [ | {begin | exclude | include} expression]

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>begin</td>
<td>(Optional) Display begins with the line that matches the expression.</td>
</tr>
<tr>
<td>exclude</td>
<td>(Optional) Display excludes lines that match the expression.</td>
</tr>
<tr>
<td>include</td>
<td>(Optional) Display includes lines that match the specified expression.</td>
</tr>
<tr>
<td>expression</td>
<td>Expression in the output to use as a reference point.</td>
</tr>
</tbody>
</table>

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(14)EA1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You should use this command only when you are working directly with your technical support representative while troubleshooting a problem. Do not use this command unless your technical support representative asks you to do so.

Expressions are case sensitive. For example, if you enter | exclude output, the lines that contain output do not appear, but the lines that contain Output appear.

Examples

This is an example of output from the show platform tb command:

Switch# show platform tb
Print TB sub-block information
(Fa1/0/2) device:(Cisco phone)
/* current interfaces with TB enabled, and the trust device type */
Current master switch:(Yes)
/* Is this switch the current master switch? */
New elected master : (No)
/* Is the master switch-over occurred and this is the new master switch? */
Master ready : (No)
/* Is the Master switch in ready state? */
HULC TB process on : (No)
/* Is the TB platform process currently running? */
CDP stable timer ON : (No)(360 secs)
/* Is the CDP stable timer running? After the CDP stable timer expired, CDP neighbors of all the TB enabled interfaces will be verified to make sure the replacement of IP phone and PC did not happen during the master switch-over. */
show platform tb

Print TB residue trust ports information
/* The interfaces with TB enabled right before master switch-over. */

Print port CDP neighbor information
/* Is the CDP message still received after switch-over? */

HULC TB is not detecting CDP events
/* Currently, this switch is not detecting any CDP event. */
show platform tcam

Use the `show platform tcam` privileged EXEC command to display platform-dependent ternary content addressable memory (TCAM) driver information.

```
show platform tcam {handle number | log-results | table {acl | all | equal-cost-route | ipv6 {acl | qos | secondary} | local | mac-address | multicast-expansion | qos | secondary | station | vlan-list} | usage} {asic number [detail [invalid]] | [index number [detail [invalid]]] | invalid | num number [detail [invalid]] | invalid | [invalid] | [num number [detail [invalid]]] | invalid} [] {begin | exclude | include} expression

show platform tcam table acl {asic number [detail [invalid]] | [index number [detail [invalid]]] | invalid | num number [detail [invalid]] | invalid | [invalid] | [num number [detail [invalid]]] | invalid} [] {begin | exclude | include} expression

show platform tcam table all {asic number [detail [invalid]] | [index number [detail [invalid]]] | invalid | num number [detail [invalid]] | invalid | [invalid] | [num number [detail [invalid]]] | invalid} [] {begin | exclude | include} expression

show platform tcam table equal-cost-route {asic number [detail [invalid]] | [index number [detail [invalid]]] | invalid | num number [detail [invalid]] | invalid | [invalid] | [num number [detail [invalid]]] | invalid} [] {begin | exclude | include} expression

show platform tcam table ipv6 {acl | qos | secondary} {asic number [detail [invalid]] | [index number [detail [invalid]]] | invalid | num number [detail [invalid]] | invalid | [invalid] | [num number [detail [invalid]]] | invalid} [] {begin | exclude | include} expression

show platform tcam table local {asic number [detail [invalid]] | [index number [detail [invalid]]] | invalid | num number [detail [invalid]] | invalid | [invalid] | [num number [detail [invalid]]] | invalid} [] {begin | exclude | include} expression

show platform tcam table mac-address {asic number [detail [invalid]] | [index number [detail [invalid]]] | invalid | num number [detail [invalid]] | invalid | [invalid] | [num number [detail [invalid]]] | invalid} [] {begin | exclude | include} expression

show platform tcam table multicast-expansion {asic number [detail [invalid]] | [index number [detail [invalid]]] | invalid | num number [detail [invalid]] | invalid | [invalid] | [num number [detail [invalid]]] | invalid} [] {begin | exclude | include} expression

show platform tcam table qos {asic number [detail [invalid]] | [index number [detail [invalid]]] | invalid | num number [detail [invalid]] | invalid | [invalid] | [num number [detail [invalid]]] | invalid} [] {begin | exclude | include} expression

show platform tcam table secondary {asic number [detail [invalid]] | [index number [detail [invalid]]] | invalid | num number [detail [invalid]] | invalid | [invalid] | [num number [detail [invalid]]] | invalid} [] {begin | exclude | include} expression

show platform tcam table station {asic number [detail [invalid]] | [index number [detail [invalid]]] | invalid | num number [detail [invalid]] | invalid | [invalid] | [num number [detail [invalid]]] | invalid} [] {begin | exclude | include} expression

show platform tcam table vlan-list {asic number [detail [invalid]] | [index number [detail [invalid]]] | invalid | num number [detail [invalid]] | invalid | [invalid] | [num number [detail [invalid]]] | invalid} [] {begin | exclude | include} expression
```
**Syntax Description**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>handle <code>number</code></td>
<td>Display the TCAM handle. The range is 0 to 4294967295.</td>
</tr>
<tr>
<td>log-results</td>
<td>Display the TCAM log results.</td>
</tr>
<tr>
<td>`table { acl</td>
<td>all</td>
</tr>
<tr>
<td></td>
<td>• acl—Display the access-control list (ACL) table.</td>
</tr>
<tr>
<td></td>
<td>• all—Display all the TCAM tables.</td>
</tr>
<tr>
<td></td>
<td>• equal-cost-route—Display the equal-cost-route table.</td>
</tr>
<tr>
<td></td>
<td>• ipv6—Display IPv6 information.</td>
</tr>
<tr>
<td></td>
<td>• acl—Display the IPv6 ACL-table information.</td>
</tr>
<tr>
<td></td>
<td>• qos—Display the IPv6 QoS-table information.</td>
</tr>
<tr>
<td></td>
<td>• secondary—Display the IPv6 secondary-table information.</td>
</tr>
<tr>
<td></td>
<td>• local—Display the local table.</td>
</tr>
<tr>
<td></td>
<td>• mac-address—Display the MAC-address table.</td>
</tr>
<tr>
<td></td>
<td>• multicast-expansion—Display the IPv6 multicast-expansion table.</td>
</tr>
<tr>
<td></td>
<td>• qos—Display the QoS table.</td>
</tr>
<tr>
<td></td>
<td>• secondary—Display the secondary table.</td>
</tr>
<tr>
<td></td>
<td>• station—Display the station table.</td>
</tr>
<tr>
<td></td>
<td>• vlan-list—Display the VLAN list table.</td>
</tr>
<tr>
<td>usage</td>
<td>Display the CAM and forwarding table usage.</td>
</tr>
<tr>
<td>`[[asic number [detail [invalid]]]</td>
<td>Display information. The keywords have these meanings:</td>
</tr>
<tr>
<td>[index number [detail [invalid]]] [invalid]</td>
<td>• asic number—Display information for the specified ASIC device ID. The range is 0 to 15.</td>
</tr>
<tr>
<td>num number [detail [invalid]]</td>
<td>• detail [invalid]—(Optional) Display valid or invalid details.</td>
</tr>
<tr>
<td>[invalid]</td>
<td>• index number—(Optional) Display information for the specified TCAM table index. The range is 0 to 32768.</td>
</tr>
<tr>
<td>[invalid]</td>
<td>• num number—(Optional) Display information for the specified TCAM table number. The range is 0 to 32768.</td>
</tr>
<tr>
<td>begin</td>
<td>(Optional) Display begins with the line that matches the expression.</td>
</tr>
<tr>
<td>exclude</td>
<td>(Optional) Display excludes lines that match the expression.</td>
</tr>
<tr>
<td>include</td>
<td>(Optional) Display includes lines that match the specified expression.</td>
</tr>
</tbody>
</table>

**Note**

Though visible in the command-line help strings, the **usage** keyword is not supported.

**Command Modes**

Privileged EXEC
Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

You should use this command only when you are working directly with your technical support representative while troubleshooting a problem. Do not use this command unless your technical support representative asks you to do so.

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.
show platform vlan

Use the `show platform vlan` privileged EXEC command to display platform-dependent VLAN information.

```
show platform vlan [misc | mvid | prune | refcount | rpc { receive | transmit }] [| { begin | exclude | include } expression]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>misc</td>
<td>Display miscellaneous VLAN module information.</td>
</tr>
<tr>
<td>mvid</td>
<td>Display the mapped VLAN ID (MVID) allocation information.</td>
</tr>
<tr>
<td>prune</td>
<td>Display the stack pruning database.</td>
</tr>
<tr>
<td>refcount</td>
<td>Display the VLAN lock module-wise reference counts.</td>
</tr>
<tr>
<td>rpc</td>
<td>Display remote procedure call (RPC) messages. The keywords have these meanings:</td>
</tr>
<tr>
<td></td>
<td>• receive—Display received information.</td>
</tr>
<tr>
<td></td>
<td>• transmit—Display sent information.</td>
</tr>
<tr>
<td>begin</td>
<td>(Optional) Display begins with the line that matches the expression.</td>
</tr>
<tr>
<td>exclude</td>
<td>(Optional) Display excludes lines that match the expression.</td>
</tr>
<tr>
<td>include</td>
<td>(Optional) Display includes lines that match the specified expression.</td>
</tr>
<tr>
<td>expression</td>
<td>Expression in the output to use as a reference point.</td>
</tr>
</tbody>
</table>

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1(11)AX</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You should use this command only when you are working directly with your technical support representative while troubleshooting a problem. Do not use this command unless your technical support representative asks you to do so.

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` do not appear, but the lines that contain `Output` appear.
INDEX

A

aaa accounting dot1x command 2-1
aaa authentication dot1x command 2-3
aaa authorization network command 2-5
AAA methods 2-3
abort command 2-747
access control entries
  See ACEs
access control lists
  See ACLs
access groups
  IP 2-146
  MAC, displaying 2-509
access list, IPv6 2-207
access map configuration mode 2-261
access mode 2-690
access ports 2-690
ACEs 2-89, 2-329
ACLs
  deny 2-87
  displaying 2-384
  for non-IP protocols 2-241
  IP 2-146
  matching 2-261
  on Layer 2 interfaces 2-146
  permit 2-327
action command 2-6
address aliasing 2-310
aggregate-port learner 2-315
allowed VLANs 2-710
apply command 2-747
archive copy-sw command 2-8
archive download-sw command 2-11
archive tar command 2-15
archive upload-sw command 2-18
arp access-list command 2-20
audience xix
authentication failed VLAN
  See dot1x auth-fail vlan
auth-fail max-attempts
  See dot1x auth-fail max-attempts
auth-fail vlan
  See dot1x auth-fail vlan
authorization state of controlled port 2-122
autonegotiation of duplex mode 2-131
auto qos voip command 2-22

B

BackboneFast, for STP 2-617
backup interfaces
  configuring 2-685
  displaying 2-451
boot (boot loader) command A-2
boot auto-copy-sw command 2-27
boot bootlpr command 2-28
boot config-file command 2-29
boot enable-break command 2-30
boot helper command 2-31
boot helper-config file command 2-32
booting
  Cisco IOS image 2-35
  displaying environment variables 2-394
  interrupting 2-30
  manually 2-33
boot loader
accessing A-1
booting
  Cisco IOS image A-2
  helper image 2-31
directories
  creating A-16
  displaying a list of A-7
  removing A-20
  displaying
    available commands A-12
    memory heap utilization A-14
version A-27
environment variables
  described A-21
  displaying settings A-21
  location of A-22
  setting A-21
  unsetting A-25
files
  copying A-5
  deleting A-6
  displaying a list of A-7
  displaying the contents of A-4, A-17, A-24
  renaming A-18
file system
  formatting A-10
  initializing flash A-9
  running a consistency check A-11
loading helper images A-13
prompt A-1
resetting the system A-19
boot manual command 2-33
boot private-config-file command 2-34
boot system command 2-35
BPDU filtering, for spanning tree 2-618, 2-653
BPDU guard, for spanning tree 2-620, 2-653
broadcast storm control 2-673

C
candidate switches
  See clusters
cat (boot loader) command A-4
cautions, description xx
CDP, enabling protocol tunneling for
  channel-group command 2-37
  channel-protocol command 2-41
Cisco Network Assistant
  See Network Assistant xx
Cisco SoftPhone
  auto-QoS configuration 2-22
  trusting packets sent from 2-301
class command 2-42
class-map command 2-44
class maps
  creating 2-44
  defining the match criteria 2-263
  displaying 2-398
class of service
  See CoS
clear dot1x command 2-46
clear eap command 2-47
clear ip arp inspection log command 2-48
clear ip arp inspection statistics command 2-49
clear ipv6 command 2-51
clear ip dhcp snooping database command 2-50
clear l2protocol-tunnel counters command 2-52
clear lacp command 2-53
clear mac address-table command 2-54, 2-56
clear pagp command 2-57
clear port-security command 2-58
clear spanning-tree counters command 2-60
clear spanning-tree detected-protocols command 2-61
clear vmps statistics command 2-62
clear vtp counters command 2-63
cluster commander-address command 2-64
cluster discovery hop-count command 2-66
cluster enable command  2-67
cluster holdtime command  2-69
cluster member command  2-70
cluster outside-interface command  2-72
cluster requirements  xx
cluster run command  2-73
clusters
  adding candidates  2-70
  binding to HSRP group  2-74
  building manually  2-70
  communicating with
devices outside the cluster  2-72
  members by using Telnet  2-356
debug messages, display  B-5
displaying
candidate switches  2-401
debug messages  B-5
member switches  2-403
status  2-399
hop-count limit for extended discovery  2-66
HSRP standby groups  2-74
redundancy  2-74
SNMP trap  2-607
cluster standby-group command  2-74
cluster timer command  2-76
command modes defined  1-2
commands changed in Cisco IOS Release 12.2(18)SE  1-6
command switch
  See clusters
configuration, initial
  See getting started guide and hardware installation guide
configuration files
  password recovery disable considerations  A-1
  specifying the name  2-29, 2-34
configuring multiple interfaces  2-142
cfg-vlan mode
  commands  2-733
description  1-4
entering  2-732
summary  1-2
conventions
  command  xx
  for examples  xx
  publication  xx
text  xx
copy (boot loader) command  A-5
CoS
  assigning default value to incoming packets  2-271
  assigning to Layer 2 protocol packets  2-228
  overriding the incoming value  2-271
CoS-to-DSCP map  2-275
CPU ASIC statistics, displaying  2-405
crashinfo files  2-137

d
debug auto qos command  B-2
debug backup command  B-4
debug cluster command  B-5
debug dot1x command  B-7
debug dtp command  B-9
debug eap command  B-10
debug etherchannel command  B-12
debug ilpower command  B-14
debug interface command  B-17
debug ip dhcp snooping command  B-15
debug ip igmp filter command  B-19
debug ip igmp max-groups command  B-20
debug ip igmp snooping command  B-21
debug ip verify source packet command  B-16
debug lacp command  B-22
debug mac-notification command  B-23
debug matm command  B-24
debug matm move update command  B-25
debug monitor command B-26
debug mvrdbg command B-28
debug nvram command B-29
debug pagp command B-30
default platform acl command B-31
default platform backup interface command B-32
default platform cli-redirection main command B-33
default platform configuration command B-34, B-42
default platform cpu-queues command B-35
default platform device-manager command B-37
default platform dot1x command B-38
default platform etherchannel command B-39
default platform fallback-bridging command B-40
default platform forw-tcam command B-41
default platform ip arp inspection command B-44
default platform ipc command B-52
default platform ip dhcp command B-45
default platform ip igmp snooping command B-46
default platform ip multicast command B-48
default platform ip unicast command B-50
default platform led command B-53
default platform matm command B-54
default platform messaging application command B-56
default platform phy command B-58
default platform pm command B-60
default platform port-asic command B-62
default platform port-security command B-63
default platform qos-acl-tcam command B-64
default platform remote-commands command B-65
default platform resource-manager command B-66
default platform snmp command B-67
default platform span command B-68
default platform stack-manager command B-69
default platform supervisor-asic command B-70
default platform sw-bridge command B-71
default platform tcam command B-72
default platform udld command B-75
default platform vlan command B-76
default pm command B-77
default port-security command B-79
default qos-manager command B-80
default spanning-tree backbonefast command B-83
default spanning-tree bpdu command B-84
default spanning-tree bpdu-opt command B-85
default spanning-tree command B-86
default spanning-tree mstp command B-81
default spanning-tree switch command B-88
default spanning-tree uplinkfast command B-90
default sw-vlan command B-91
default sw-vlan ifs command B-93
default sw-vlan notification command B-95
default sw-vlan vtp command B-97
default udld command B-99
default vqpc command B-101
define interface-range command 2-77
delete (boot loader) command A-6
delete command 2-79
deny (ARP access-list configuration) command 2-80
deny (IPv6) command 2-82
deny command 2-87
detect mechanism, causes 2-132
device manager requirements xx
DHCP snooping
accepting untrusted packets from edge switch 2-171
enabling
on a VLAN 2-177
option 82 2-169, 2-171
trust on an interface 2-175
error recovery timer 2-134
rate limiting 2-174
DHCP snooping binding database
binding file, configuring 2-167
bindings
adding 2-165
deleting 2-165
displaying 2-468
clearing database agent statistics 2-50
database agent, configuring 2-167
displaying
  binding entries 2-468
  database agent status 2-470
  renewing 2-363
dir (boot loader) command A-7
directories, deleting 2-79
documentation, related xx
document conventions xx
domain name, VTP 2-758, 2-762
dot1x auth-fail max-attempts 2-99
dot1x auth-fail vlan 2-101
dot1x command 2-97
dot1x control-direction command 2-103
dot1x critical global configuration command 2-105
dot1x critical interface configuration command 2-107
dot1x default command 2-109
dot1x guest-vlan command 2-110
dot1x host-mode command 2-113
dot1x initialize command 2-115
dot1x mac-auth-bypass command 2-116
dot1x max-reauth-req command 2-118
dot1x max-req command 2-119
dot1x multiple-hosts command 2-120
dot1x pae command 2-121
dot1x port-control command 2-122
dot1x re-authenticate command 2-124
dot1x re-authentication command 2-125
dot1x reauthentication command 2-126
dot1x timeout command 2-127
dropping packets, with ACL matches 2-6
drop threshold, Layer 2 protocol tunneling 2-225
dSCP-to-CoS map 2-275
dSCP-to-DSCP-mutation map 2-275
DTP 2-691
DTP flap
  error detection for 2-132
  error recovery timer 2-134
DTP negotiation 2-695
dual IPv4 and IPv6 templates 2-321
duplex command 2-130
dynamic-access ports
  configuring 2-683
  restrictions 2-684
dynamic ARP inspection
  ARP ACLs
    apply to a VLAN 2-151
    define 2-20
    deny packets 2-80
    display 2-389
    permit packets 2-319
    clear
      log buffer 2-48
      statistics 2-49
    display
      ARP ACLs 2-389
      configuration and operating state 2-464
      log buffer 2-464
      statistics 2-464
      trust state and rate limit 2-464
    enable per VLAN 2-161
    error detection for 2-132
    error recovery timer 2-134
    log buffer
      clear 2-48
      configure 2-155
      display 2-464
    rate-limit incoming ARP packets 2-153
    statistics
      clear 2-49
      display 2-464
    trusted interface state 2-157
    type of packet logged 2-162
    validation checks 2-159
dynamic auto VLAN membership mode 2-690
dynamic desirable VLAN membership mode 2-690
Dynamic Host Configuration Protocol (DHCP)
  See DHCP snooping
Dynamic Trunking Protocol
  See DTP

E

EAP-request/identity frame
  maximum number to send 2-119
  response time before retransmitting 2-127
  encapsulation methods 2-710
environment variables, displaying 2-394
errdisable detect cause command 2-132
errdisable recovery command 2-134
error conditions, displaying 2-439
error disable detection 2-132
error-disabled interfaces, displaying 2-451

EtherChannel
  assigning Ethernet interface to channel group 2-37
  creating port-channel logical interface 2-140
debug EtherChannel/PAgP, display B-12
debug platform-specific events, display B-39
displaying 2-443
  enabling Layer 2 protocol tunneling for
    LACP 2-226
    PAgP 2-226
    UDLD 2-226
interface information, displaying 2-451
LACP
  clearing channel-group information 2-53
debug messages, display B-22
  displaying 2-503
  modes 2-37
  port priority for hot-standby ports 2-229
restricting a protocol 2-41
system priority 2-231
load-distribution methods 2-337

PAgP
  aggregate-port learner 2-315
  clearing channel-group information 2-57
debug messages, display B-30
  displaying 2-554
  error detection for 2-132
  error recovery timer 2-134
  learn method 2-315
  modes 2-37
  physical-port learner 2-315
  priority of interface for transmitted traffic 2-317
Ethernet controller, internal register display 2-407
Ethernet statistics, collecting 2-365
examples, conventions for xx
exception crashinfo command 2-137
exit command 2-747
extended discovery of candidate switches 2-66
extended-range VLANs
  and allowed VLAN list 2-710
  and pruning-eligible list 2-710
  configuring 2-732
extended system ID for STP 2-626

F

fan information, displaying 2-434
file name, VTP 2-758
files, deleting 2-79
flash_init (boot loader) command A-9
Flex Links
  configuring 2-685
  displaying 2-451
flowcontrol command 2-138
format (boot loader) command A-10
forwarding packets, with ACL matches 2-6
forwarding results, display C-6
frame forwarding information, displaying  C-6
front-end controller
  counter and status information  C-8
fsck (boot loader) command  A-11

G

global configuration mode  1-2, 1-4

H

hardware ACL statistics  2-384
health monitoring diagnostic tests
  configuring  2-90
help (boot loader) command  A-12
hierarchical policy maps  2-335
hop-count limit for clusters  2-66
host connection, port configuration  2-689
host ports, private VLANs  2-693
Hot Standby Router Protocol
  See HSRP
HSRP
  binding HSRP group to cluster  2-74
  standby group  2-74

I

IEEE 802.1Q trunk ports and native VLANs  2-749
IEEE 802.1Q tunnel ports
  configuring  2-690
  displaying  2-424
  limitations  2-691
IEEE 802.1x
  and switchport modes  2-691
  violation error recovery  2-134
  See also port-based authentication
IEEE 802.1X Port Based Authentication
  enabling guest VLAN supplicant  2-100
  IGMP filters
    applying  2-180
    debug messages, display  B-19
  IGMP groups, setting maximum  2-181
  IGMP maximum groups, debugging  B-20
  IGMP profiles
    creating  2-183
    displaying  2-472
  IGMP snooping
    adding ports as a static member of a group  2-199
    displaying  2-473, 2-478, 2-480
    enabling  2-185
    enabling the configurable-leave timer  2-187
    enabling the Immediate-Leave feature  2-196
    flooding query count  2-193
    interface topology change notification behavior  2-195
    multicast table  1-6, 2-476
    querier  2-189
    query solicitation  2-193
    report suppression  2-191
    switch topology change notification behavior  2-193
  images
    See software images
  Immediate-Leave feature, MVR  2-312
  Immediate-Leave processing
    IPv6  2-221
  immediate-leave processing  2-196
  initial configuration
    See getting started guide and hardware installation guide
  interface configuration mode  1-2, 1-4
  interface port-channel command  2-140
  interface range command  2-142
  interface-range macros  2-77
  interfaces
    assigning Ethernet interface to channel group  2-37
    configuring  2-130
    configuring multiple  2-142
    creating port-channel logical  2-140
    debug messages, display  B-17
Index

Catalyst 3750 Switch Command Reference

disabling 2-605

displaying the MAC address table 2-521

restarting 2-605

interface speed, configuring 2-663

interface vlan command 2-144

internal registers, displaying 2-407, 2-417

Internet Group Management Protocol

   See IGMP

invalid GBIC

   error detection for 2-132
   error recovery timer 2-134

ip access-group command 2-146

ip address command 2-149

IP addresses, setting 2-149

IP address matching 2-261

ip arp inspection filter vlan command 2-151

ip arp inspection limit command 2-153

ip arp inspection log-buffer command 2-155

ip arp inspection trust command 2-157

ip arp inspection validate command 2-159

ip arp inspection vlan command 2-161

ip arp inspection vlan logging command 2-162

IP DHCP snooping

   See DHCP snooping

ip dhcp snooping binding command 2-165

ip dhcp snooping command 2-164

ip dhcp snooping database command 2-167

ip dhcp snooping information option allow-untrusted command 2-171

ip dhcp snooping information option command 2-169

ip dhcp snooping information option format remote-id command 2-173

ip dhcp snooping limit rate command 2-174

ip dhcp snooping trust command 2-175

ip dhcp snooping verify command 2-176

ip dhcp snooping vlan command 2-177

ip dhcp snooping vlan information option format-type circuit-id string command 2-178

ip igmp filter command 2-180

ip igmp max-groups command 2-181

ip igmp profile command 2-183

ip igmp snooping command 2-185

ip igmp snooping last-member-query-interval command 2-187

ip igmp snooping querier command 2-189

ip igmp snooping report-suppression command 2-191

ip igmp snooping tcn command 2-193

ip igmp snooping tcn flood command 2-195

ip igmp snooping vlan immediate-leave command 2-196

ip igmp snooping vlan mrouter command 2-197

ip igmp snooping vlan static command 2-199

IP multicast addresses 2-309

IP phones

   auto-QoS configuration 2-22
   trusting packets sent from 2-301

IP-precedence-to-DSCP map 2-275

ip snap forwarding command 2-201

ip source binding command 2-202

IP source guard

   disabling 2-206
   displaying
     binding entries 2-482
     configuration 2-484
     dynamic binding entries only 2-468
   enabling 2-206
   static IP source bindings 2-202

ip ssh command 2-204

IPv6 access list

   deny conditions 2-82

ipv6 access-list command 2-207

ipv6 mld snooping command 2-209

ipv6 mld snooping last-listener-query command 2-211

ipv6 mld snooping last-listener-query-interval command 2-213

ipv6 mld snooping listener-message-suppression command 2-215

ipv6 mld snooping robustness-variable command 2-217

ipv6 mld snooping tcn command 2-219

ipv6 mld snooping vlan command 2-221
IPv6 SDM template 2-366
ipv6 traffic-filter command 2-223
ip verify source command 2-206

J
jumbo frames
See MTU

L
l2protocol-tunnel command 2-225
l2protocol-tunnel cos command 2-228
LACP
See EtherChannel
lacp port-priority command 2-229
lacp system-priority command 2-231
Layer 2 mode, enabling 2-681
Layer 2 protocol ports, displaying 2-500
Layer 2 protocol-tunnel
error detection for 2-132
error recovery timer 2-134
Layer 2 protocol tunnel counters 2-52
Layer 2 protocol tunneling error recovery 2-226
Layer 2 traceroute
IP addresses 2-723
MAC addresses 2-720
Layer 3 mode, enabling 2-681
line configuration mode 1-3, 1-5
Link Aggregation Control Protocol
See EtherChannel
link flap
error detection for 2-132
error recovery timer 2-134
link state group command 2-233
link state track command 2-235
load_helper (boot loader) command A-13
load-distribution methods for EtherChannel 2-337
logging event power-inline-status command 2-236
logging file command 2-237
logical interface 2-140
loopback error
detection for 2-132
recovery timer 2-134
loop guard, for spanning tree 2-628, 2-632
MAC access-group command 2-239
MAC access-groups, displaying 2-509
MAC access list configuration mode 2-241
MAC access lists 2-87
MAC addresses
displaying
aging time 2-515
all 2-513
dynamic 2-519
MAC address-table move updates 2-523
notification settings 2-525
number of addresses in a VLAN 2-517
per interface 2-521
per VLAN 2-529
static 2-527
static and dynamic entries 2-511
dynamic
aging time 2-243
deleting 2-54
displaying 2-519
enabling MAC address notification 2-246
enabling MAC address-table move update 2-244
matching 2-261
persistent stack 2-671
static
adding and removing 2-248
displaying 2-527

dropping on an interface 2-249

tables 2-513

MAC address notification, debugging B-23

mac address-table aging-time 2-239, 2-261
mac address-table aging-time command 2-243
mac address-table move update command 2-244
mac address-table notification command 2-246
mac address-table static command 2-248
mac address-table static drop command 2-249
macro apply command 2-251
macro description command 2-254
macro global command 2-255
macro global description command 2-258
macro name command 2-259
macros

adding a description 2-254
adding a global description 2-258
applying 2-255
creating 2-259
displaying 2-556
interface range 2-77, 2-142
speifying parameter values 2-255
tracing 2-255

manual

audience xix

purpose of xix

maps

QoS

defining 2-275
displaying 2-539

VLAN

creating 2-744
defining 2-261
displaying 2-595

match (access-map configuration) command 2-261
match (class-map configuration) command 2-263

maximum transmission unit

See MTU

mdix auto command 2-265

MDL snooping

displaying 2-494

member switches

See clusters

memory (boot loader) command A-14

mkdir (boot loader) command A-16

MLD snooping

configuring 2-215, 2-217

configuring queries 2-211, 2-213

configuring topology change notification 2-219
displaying 2-492, 2-496, 2-498

enabling 2-209

MLD snooping on a VLAN

enabling 2-221

mls qos aggregate-policer command 2-269

mls qos command 2-267

mls qos cos command 2-271

mls qos dscp-mutation command 2-273

mls qos map command 2-275

mls qos queue-set output buffers command 2-279

mls qos queue-set output threshold command 2-281

mls qos rewrite ip dscp command 2-283

mls qos srr-queue input bandwidth command 2-285

mls qos srr-queue input buffers command 2-287

mls qos srr-queue input cos-map command 2-289

mls qos srr-queue input dscp-map command 2-291

mls qos srr-queue input priority-queue command 2-293

mls qos srr-queue input threshold command 2-295

mls qos srr-queue output cos-map command 2-297

mls qos srr-queue output dscp-map command 2-299

mls qos trust command 2-301

mls qos vlan-based command 2-303

mode, MVR 2-309

Mode button, and password recovery 2-371

modes, commands 1-2

monitor session command 2-304
more (boot loader) command A-17
MSTP
  displaying 2-573, 2-574
  interoperability 2-61
  link type 2-630
MST region
  aborting changes 2-636
  applying changes 2-636
  configuration name 2-636
  configuration revision number 2-636
  current or pending display 2-636
  displaying 2-573, 2-574
  MST configuration mode 2-636
  VLANs-to-instance mapping 2-636
path cost 2-638
protocol mode 2-634
restart protocol migration process 2-61
root port
  loop guard 2-628
  preventing from becoming designated 2-628
  restricting which can be root 2-628
  root guard 2-628
root switch
  affects of extended system ID 2-626
  hello-time 2-641, 2-649
  interval between BDPU messages 2-642
  interval between hello BPDU messages 2-641, 2-649
  max-age 2-642
  maximum hop count before discarding BPDU 2-643
  port priority for selection of 2-645
  primary or secondary 2-649
  switch priority 2-648
state changes
  blocking to forwarding state 2-655
  enabling BPDU filtering 2-618, 2-653
  enabling BPDU guard 2-620, 2-653
  enabling Port Fast 2-653, 2-655
  forward-delay time 2-640
  length of listening and learning states 2-640
  rapid transition to forwarding 2-630
  shutting down Port Fast-enabled ports 2-653
  state information display 2-572
MTU
  configuring size 2-717
  displaying global setting 2-584
Multicast Listener Discovery
  See MLD
  multicast group address, MVR 2-312
  multicast groups, MVR 2-310
Multicast Listener Discovery
  See MLD
  multicast router learning method 2-197
  multicast router ports
    IPv6 2-221
    multicast router ports, configuring 2-197
    multicast storm control 2-673
    multicast VLAN, MVR 2-309
    multicast VLAN registration
      See MVR
    multiple hosts on authorized port 2-113
Multiple Spanning Tree Protocol
  See MSTP
MVR
  and address aliasing 2-310
  configuring 2-309
  configuring interfaces 2-312
  debug messages, display B-28
  displaying 2-548
  displaying interface information 2-550
  members, displaying 2-552
  mvr (global configuration) command 2-309
  mvr (interface configuration) command 2-312
  mvr vlan group command 2-313
N

native VLANs 2-710
native VLAN tagging 2-749
Network Assistant requirements xx
nonegotiate
  DTP messaging 2-695
nonegotiate, speed 2-663
non-IP protocols
deny 2-87
forwarding 2-327
non-IP traffic access lists 2-241
non-IP traffic forwarding
deny 2-87
permit 2-327
normal-range VLANs 2-732, 2-738
note, description xx
no vlan command 2-732, 2-742

O

online diagnostics
configuring
  health monitoring diagnostic tests 2-90
displaying
  configured boot-up coverage level 2-421
current scheduled tasks 2-421
event logs 2-421
  supported test suites 2-421
test ID 2-421
test results 2-421
test statistics 2-421
enabling
  scheduling 2-93
  syslog messages 2-90
  global configuration mode
  clearing health monitoring diagnostic test schedule 2-90
clearing test-based testing schedule 2-93

setting health monitoring diagnostic testing 2-90
setting test-based testing 2-93
setting up health monitoring diagnostic test schedule 2-90
setting up test-based testing 2-93
removing
  scheduling 2-93
scheduled switchover
disabling 2-93
  enabling 2-93
setting
test interval 2-93
specifying
  health monitoring diagnostic tests 2-90
starting testing 2-95

P

PAgP
  See EtherChannel
pagp learn-method command 2-315
pagp port-priority command 2-317
password, VTP 2-758, 2-762
password-recovery mechanism, enabling and disabling 2-371
permit (ARP access-list configuration) command 2-319
permit (IPv6) command 2-321
permit (MAC access-list configuration) command 2-327
per-VLAN spanning-tree plus
  See STP
physical-port learner 2-315
PID, displaying 2-463
PIM-DVMRP, as multicast router learning method 2-197

PoE
  configuring the power budget 2-342
  configuring the power management mode 2-339
displaying controller register values 2-415
displaying power management information 2-564
logging of status 2-236
police aggregate command 2-332
police command 2-330
policed-DSCP map 2-275
policy-map command 2-334
policy maps
applying to an interface 2-373, 2-379
creating 2-334
displaying 2-559
hierarchical 2-335
policers
displaying 2-532
for a single class 2-330
for multiple classes 2-269, 2-332
policed-DSCP map 2-275
traffic classification
defining the class 2-42
defining trust states 2-725
setting DSCP or IP precedence values 2-377
Port Aggregation Protocol
See EtherChannel
port-based authentication
AAA method list 2-3
debug messages, display B-7
enabling IEEE 802.1x
globally 2-97
per interface 2-122
guest VLAN 2-110
host modes 2-113
IEEE 802.1x AAA accounting methods 2-1
initialize an interface 2-115
MAC authentication bypass 2-116
manual control of authorization state 2-122
multiple hosts on authorized port 2-113
PAE as authenticator 2-121
periodic re-authentication
enabling 2-126
time between attempts 2-127
quiet period between failed authentication exchanges 2-127
re-authenticating IEEE 802.1x-enabled ports 2-124
resetting configurable IEEE 802.1x parameters 2-109
switch-to-authentication server retransmission time 2-127
switch-to-client frame-retransmission number 2-118 to 2-119
switch-to-client retransmission time 2-127
port-channel load-balance command 2-337
Port Fast, for spanning tree 2-655
port ranges, defining 2-77
ports, debugging B-77
ports, protected 2-708
port security
aging 2-702
debug messages, display B-79
enabling 2-697
violation error recovery 2-134
port trust states for QoS 2-301
port types, MVR 2-312
power information, displaying 2-434
power inline command 2-339
power inline consumption command 2-342
Power over Ethernet
See PoE
priority-queue command 2-344
priority value, stack member 2-581, 2-676
private-vlan command 2-346
private-vlan mapping command 2-349
private VLANs
association 2-706
configuring 2-346
configuring ports 2-693
displaying 2-590
host ports 2-693
mapping
configuring 2-706
displaying 2-451
promiscuous ports 2-693
privileged EXEC mode 1-2, 1-3
Index

product identification information, displaying 2-463
promiscuous ports, private VLANs 2-693
protected ports, displaying 2-457
pruning
   VLANs 2-710
   VTP
      displaying interface information 2-451
      enabling 2-758, 2-762
pruning-eligible VLAN list 2-712
PVST+
   See STP

Q

QoS
   auto-QoS
      configuring 2-22
      debug messages, display 1-6, B-2
      displaying 2-390
   class maps
      creating 2-44
      defining the match criteria 2-263
      displaying 2-398
   defining the CoS value for an incoming packet 2-271
   displaying configuration information 2-390, 2-531
   DSCP transparency 2-283
   DSCP trusted ports
      applying DSCP-to-DSCP-mutation map to 2-273
      defining DSCP-to-DSCP-mutation map 2-275
   egress queues
      allocating buffers 2-279
      defining the CoS output queue threshold map 2-297
      defining the DSCP output queue threshold map 2-299
      displaying buffer allocations 2-535
      displaying CoS output queue threshold map 2-539
      displaying DSCP output queue threshold map 2-539
      displaying queueing strategy 2-535
      displaying queue-set settings 2-542
      enabling bandwidth shaping and scheduling 2-667
   enabling bandwidth sharing and scheduling 2-669
   limiting the maximum output on a port 2-665
   mapping a port to a queue-set 2-351
   mapping CoS values to a queue and threshold 2-297
   mapping DSCP values to a queue and threshold 2-299
   setting maximum and reserved memory allocations 2-281
   setting WTD thresholds 2-281
   enabling 2-267
   ingress queues
      allocating buffers 2-287
      assigning SRR scheduling weights 2-285
      defining the CoS input queue threshold map 2-289
      defining the DSCP input queue threshold map 2-291
      displaying buffer allocations 2-535
      displaying CoS input queue threshold map 2-539
      displaying DSCP input queue threshold map 2-539
      displaying queueing strategy 2-535
      displaying settings for 2-533
      enabling the priority queue 2-293
      mapping CoS values to a queue and threshold 2-289
      mapping DSCP values to a queue and threshold 2-291
      setting WTD thresholds 2-295
   maps
      defining 2-275, 2-289, 2-291, 2-297, 2-299
      displaying 2-539
   policy maps
      applying an aggregate policer 2-332
      applying to an interface 2-373, 2-379
      creating 2-334
      defining policers 2-269, 2-330
      displaying policers 2-532
      displaying policy maps 2-559
      hierarchical 2-335
      policed-DSCP map 2-275
      setting DSCP or IP precedence values 2-377
      traffic classifications 2-42
      trust states 2-725
      port trust states 2-301
queues, enabling the expedite 2-344
stats
  in-profile and out-of-profile packets 2-535
  packets enqueued or dropped 2-535
  sent and received CoS values 2-535
  sent and received DSCP values 2-535
  trusted boundary for IP phones 2-301
VLAN-based 2-303
quality of service
  See QoS
querytime, MVR 2-309
queue-set command 2-351

R
radius-server dead-criteria command 2-352
radius-server host command 2-354
rapid per-VLAN spanning-tree plus
  See STP
rapid PVST+
  See STP
rcommand command 2-356
re-authenticating IEEE 802.1x-enabled ports 2-124
re-authentication
  periodic 2-126
    time between attempts 2-127
receiver ports, MVR 2-312
receiving flow-control packets 2-138
recovery mechanism
  causes 2-134
    display 2-396, 2-437, 2-441
    timer interval 2-135
redundancy for cluster switches 2-74
reload command 2-358
remote command 2-360
remote-span command 2-361
Remote Switched Port Analyzer
  See RSPAN
rename (boot loader) command A-18
renew ip dhcp snooping database command 2-363
requirements
  cluster xxi
  device manager xx
  Network Assistant xx
reset (boot loader) command A-19
reset command 2-747
resource templates, displaying 2-567
restricted VLAN
  See dot1x auth-fail vlan
rmdir (boot loader) command A-20
rmon collection stats command 2-365
root guard, for spanning tree 2-628
routed ports
  IP addresses on 2-150
    number supported 2-150
RSPAN
  configuring 2-304
    displaying 2-545
  filter RSPAN traffic 2-304
  remote-span command 2-361
    sessions
      add interfaces to 2-304
      displaying 2-545
      start new 2-304

S
scheduled switchover
  disabling 2-93, 2-94
    enabling 2-93, 2-94
SDM mismatch mode 2-367, 2-582
sdm prefer command 2-366
SDM templates
  allowed resources 2-368
  and stacking 2-367
    displaying 2-567
dual IPv4 and IPv6 2-366
secure ports, limitations 2-699
Index

sending flow-control packets 2-138
service password-recovery command 2-371
service-policy command 2-373
session command 2-376
set (boot loader) command A-21
set command 2-377
setup command 2-379
setup express command 2-382
show access-lists command 2-384
show archive status command 2-387
show arp access-list command 2-389
show auto qos command 2-390
show boot command 2-394
show cable-diagnostics tdr command 2-396
show changes command 2-747
show class-map command 2-398
show cluster candidates command 2-401
show cluster command 2-399
show cluster members command 2-403
show controllers cpu-interface command 2-405
show controllers ethernet-controller command 2-407
show controllers power inline command 2-415
show controllers tcam command 2-417
show controller utilization command 2-419
show current command 2-747
show dot1q-tunnel command 2-424
show dot1x command 2-425
show dtp 2-429
show eap command 2-431
show env command 2-434
show errdisable detect command 2-437
show errdisable flap-values command 2-439
show errdisable recovery command 2-441
show etherchannel command 2-443
show flowcontrol command 2-446
show idprom command 2-448
show interfaces command 2-451
show interfaces counters command 2-460
show inventory command 2-463
show ip arp inspection command 2-464
show ip command 2-486
show ip dhcp snooping binding command 2-468
show ip dhcp snooping command 2-467
show ip dhcp snooping database command 2-470
show ip igmp profile command 2-472
show ip igmp snooping address command 2-494
show ip igmp snooping command 2-473, 2-492
show ip igmp snooping groups command 2-476
show ip igmp snooping mrouterr command 2-478, 2-496
show ip igmp snooping querier command 2-480, 2-498
show ip source binding command 2-482
show ipv6 access-list command 2-490
show ip verify source command 2-484
show l2protocol-tunnel command 2-500
show lacp command 2-503
show link state group command 2-507
show mac access-group command 2-509
show mac address-table address command 2-513
show mac address-table aging time command 2-515
show mac address-table command 2-511
show mac address-table count command 2-517
show mac address-table dynamic command 2-519
show mac address-table interface command 2-521
show mac address-table move update command 2-523
show mac address-table notification command 2-56, 2-525, 2-526
show mac address-table static command 2-527
show mac address-table vlan command 2-529
show mls qos aggregate-policer command 2-532
show mls qos command 2-531
show mls qos input-queue command 2-533
show mls qos interface command 2-535
show mls qos maps command 2-539
show mls qos queue-set command 2-542
show mls qos vlan command 2-544
show monitor command 2-545
show mvr command 2-548
show mvr interface command 2-550
show mvr members command 2-552
show pagp command 2-554
show parser macro command 2-556
show platform acl command C-2
show platform backup interface command C-3
show platform configuration command C-4
show platform etherchannel command C-5
show platform forward command C-6
show platform frontend-controller command C-8
show platform igmp snooping command C-9
show platform ipc trace command C-16
show platform ip multicast command C-11
show platform ip unicast command C-12
show platform ipv6 unicast command C-17
show platform layer4op command C-19
show platform mac-address-table command C-20
show platform messaging command C-21
show platform monitor command C-22
show platform mvr table command C-23
show platform pm command C-24
show platform port-asic command C-25
show platform port-security command C-30
show platform qos command C-31
show platform resource-manager command C-32
show platform snmp counters command C-34
show platform spanning-tree command C-35
show platform stack-manager command C-37
show platform stp-instance command C-36
show platform tb command C-39
show platform tcam command C-41
show platform vlan command C-44
show policy-map command 2-559
show port security command 2-561
show power inline command 2-564
show proposed command 2-747
show sdm prefer command 2-567
show setup express command 2-571
show spanning-tree command 2-572
show storm-control command 2-579
show switch command 2-581
show system mtu command 2-584
show trust command 2-725
show udld command 2-585
show version command 2-588
show vlan access-map command 2-595
show vlan command 2-590
show vlan command, fields 2-592
show vlan filter command 2-596
show vmps command 2-597
show vtp command 2-600
shutdown command 2-605
shutdown threshold, Layer 2 protocol tunneling 2-225
shutdown vlan command 2-606
Smartports macros
See macros
SNMP host, specifying 2-611
SNMP informs, enabling the sending of 2-607
snmp-server enable traps command 2-607
snmp-server host command 2-611
snmp trap mac-notification command 2-615
SNMP traps
enabling MAC address notification trap 2-615
enabling the MAC address notification feature 2-246
enabling the sending of 2-607
SoftPhone
See Cisco SoftPhone
software images
copying 2-8
deleting 2-79
downloading 2-11
upgrading 2-8, 2-11
uploading 2-18
software version, displaying 2-588
source ports, MVR 2-312
SPAN
configuring 2-304
debug messages, display B-26
displaying 2-545
filter SPAN traffic 2-304
sessions
   add interfaces to 2-304
displaying 2-545
start new 2-304
spanning 2-657
spanning-tree backbonefast command 2-617
spanning-tree bpdufilter command 2-618
spanning-tree bpduguard command 2-620
spanning-tree cost command 2-622
spanning-tree etherchannel command 2-624
spanning-tree extend system-id command 2-626
spanning-tree guard command 2-628
spanning-tree link-type command 2-630
spanning-tree loopguard default command 2-632
spanning-tree mode command 2-634
spanning-tree mst configuration command 2-636
spanning-tree mst cost command 2-638
spanning-tree mst forward-time command 2-640
spanning-tree mst hello-time command 2-641
spanning-tree mst max-age command 2-642
spanning-tree mst max-hops command 2-643
spanning-tree mst port-priority command 2-645
spanning-tree mst pre-standard command 2-647
spanning-tree mst priority command 2-648
spanning-tree mst root command 2-649
spanning-tree portfast (global configuration) command 2-653
spanning-tree portfast (interface configuration) command 2-655
spanning-tree port-priority command 2-651
Spanning Tree Protocol
   See STP
spanning-tree transmit hold-count command 2-657
spanning-tree uplinkfast command 2-658
spanning-tree vlan command 2-660
speed command 2-663
srr-queue bandwidth limit command 2-665
srr-queue bandwidth shape command 2-667
srr-queue bandwidth share command 2-669
SSH, configuring version 2-204
stack-mac persistent timer command 2-671
stack member
   access 2-376
   number 2-581, 2-679
   priority value 2-676
   provisioning 2-677
   reloading 2-358
stacks, switch
   MAC address 2-671
   provisioning a new member 2-677
   reloading 2-358
   stack member access 2-376
   stack member number 2-581, 2-679
   stack member priority value 2-581, 2-676
static-access ports, configuring 2-683
statistics, Ethernet group 2-365
sticky learning, enabling 2-697
storm-control command 2-673
STP
   BackboneFast 2-617
counters, clearing 2-60
debug messages, display
   BackboneFast events B-83
MSTP B-86
   optimized BPDUs handling B-85
   spanning-tree activity B-81
switch shim B-88
   transmitted and received BPDUs B-84
UplinkFast B-90
detection of indirect link failures 2-617
enabling protocol tunneling for 2-225
EtherChannel misconfiguration 2-624
extended system ID 2-626
path cost 2-622
protocol modes 2-634
root port
- accelerating choice of new 2-658
- loop guard 2-628
- preventing from becoming designated 2-628
- restricting which can be root 2-628
- root guard 2-628
- UplinkFast 2-658

root switch
- affects of extended system ID 2-626, 2-661
- hello-time 2-660
- interval between BDPU messages 2-660
- interval between hello BPDU messages 2-660
- max-age 2-660
- port priority for selection of primary or secondary 2-660
- switch priority 2-660

state changes
- blocking to forwarding state 2-655
- enabling BPDU filtering 2-618, 2-653
- enabling BPDU guard 2-620, 2-653
- enabling Port Fast 2-653, 2-655
- enabling timer to recover from error state 2-134
- forward-delay time 2-660
- length of listening and learning states 2-660
- shutting down Port Fast-enabled ports 2-653

state information display 2-572
- VLAN options 2-648, 2-660

SVIs, creating 2-144

Switched Port Analyzer
- SeeSPAN

switching characteristics
- modifying 2-681
- returning to interfaces 2-681
- switchport access command 2-683
- switchport backup interface command 2-685
- switchport block command 2-688
- switchport command 2-681
- switchport host command 2-689
- switchport mode command 2-690

switchport mode private-vlan command 2-693
- switchport nonegotiate command 2-695
- switchport port-security aging command 2-702
- switchport port-security command 2-697
- switchport priority extend command 2-704
- switchport private-vlan command 2-706
- switchport protected command 2-708
- switchports, displaying 2-451
- switchport trunk command 2-710
- switchport voice vlan command 2-713
- switch priority command 2-676
- switch provision command 2-677
- switch renumber command 2-679
- system env temperature threshold yellow command 2-715
- system message logging 2-236
- system message logging, save message to flash 2-237
- system mtu command 2-717
- system resource templates 2-366

T
- tar files, creating, listing, and extracting 2-15
- TDR, running 2-719
- Telnet, using to communicate to cluster switches 2-356
- temperature information, displaying 2-434
- templates, system resources 2-366
- test cable-diagnostics tdr command 2-719
- traceroute mac command 2-720
- traceroute mac ip command 2-723
- trunking, VLAN mode 2-690
- trunk mode 2-690
- trunk ports 2-690
- trunks, to non-DTP device 2-691
- trusted boundary for QoS 2-301
- trusted port states for QoS 2-301
- tunnel ports, Layer 2 protocol, displaying 2-500
- type (boot loader) command A-24
U

UDLD
- aggressive mode 2-727, 2-729
- debug messages, display B-99
- enable globally 2-727
- enable per interface 2-729
- error recovery timer 2-134
- message timer 2-727
- normal mode 2-727, 2-729
- reset a shutdown interface 2-731
- status 2-585

udld command 2-727
udld port command 2-729
udld reset command 2-731
unicast storm control 2-673

UniDirectional Link Detection
See UDLD

unknown multicast traffic, preventing 2-688
unknown unicast traffic, preventing 2-688
unsetting (boot loader) command A-25

upgrading
- software images 2-8, 2-11
- monitoring status of 2-387

upgrading information
See release notes

UplinkFast, for STP 2-658

user EXEC mode 1-2, 1-3

V

VLAN access maps
- actions 2-6
- displaying 2-595

VLAN-based QoS 2-303

VLAN configuration
- rules 2-735, 2-740
- saving 2-732, 2-742

VLAN configuration mode commands
- VLAN 2-738
- VTP 2-762
- description 1-5
- entering 2-746
- summary 1-3

vlan database command 2-746

vlan dot1q tag native command 2-749

vlan filter command 2-751

VLAN filters, displaying 2-596

VLAN ID range 2-732, 2-738

VLAN maps
- applying 2-751
- creating 2-744
- defining 2-261
- displaying 2-595

VLAN Query Protocol
See VQP

VLANs
- adding 2-732
- configuring 2-732, 2-738
- debug messages, display
  - ISL B-95
  - VLAN IOS file system error tests B-93
- VLAN manager activity B-91
- VTP B-97
- displaying configurations 2-590
- extended-range 2-732

MAC addresses
- displaying 2-529
- number of 2-517
media types 2-735, 2-740
normal-range 2-732, 2-738
private 2-693
  configuring 2-346
  displaying 2-590
See also private VLANs
restarting 2-606
saving the configuration 2-732
shutting down 2-606
SNMP traps for VTP 2-609, 2-612
suspending 2-606
variables 2-738
VLAN Trunking Protocol
See VTP
VM mode 2-582
VMPS
  configuring servers 2-756
  displaying 2-597
  error recovery timer 2-135
  reconfirming dynamic VLAN assignments 2-753
vmps reconfirm (global configuration) command 2-754
vmps reconfirm (privileged EXEC) command 2-753
vmps retry command 2-755
vmps server command 2-756
voice VLAN
  configuring 2-713
  setting port priority 2-704
VQP
  and dynamic-access ports 2-684
  clearing client statistics 2-62
  displaying information 2-597
  per-server retry count 2-755
  reconfirmation interval 2-754
  reconfirming dynamic VLAN assignments 2-753
VTP
  changing characteristics 2-758
  clearing pruning counters 2-63
  configuring
    domain name 2-758, 2-762
  file name 2-758
  mode 2-758, 2-762
  password 2-758, 2-762
  counters display fields 2-601
  displaying information 2-600
  enabling
    pruning 2-758, 2-762
    tunneling for 2-225
Version 2 2-758, 2-762
  mode 2-758, 2-762
  pruning 2-758, 2-762
  saving the configuration 2-732, 2-742
  statistics 2-600
  status 2-600
  status display fields 2-603
vtp (global configuration) command 2-758
vtp (VLAN configuration) command 2-762

X

XENPAK module serial EERPO information 2-411, 2-448