Catalyst 3750 Switch
Software Configuration Guide

Cisco IOS Release 12.1(11)AX
May 2003

Corporate Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000
800 553-NETS (6387)
Fax: 408 526-4100

Customer Order Number: DOC-7815164=
Text Part Number: 78-15164-01
Contents

Changing the Command History Buffer Size 2-5
Recalling Commands 2-6
Disabling the Command History Feature 2-6

Using Editing Features 2-6
Enabling and Disabling Editing Features 2-7
Editing Commands through Keystrokes 2-7
Editing Command Lines that Wrap 2-8

Searching and Filtering Output of show and more Commands 2-9

Accessing the CLI 2-10
Accessing the CLI through a Console Connection or through Telnet 2-10
Accessing the CLI from a Browser 2-10

CHAPTER 3

Getting Started with CMS 3-1

Features 3-2
Front Panel View 3-4
Cluster Tree 3-5
Front-Panel Images 3-5
Redundant Power System LED 3-7
Port Modes and LEDs 3-7
VLAN Membership Modes 3-8

Topology View 3-9
Topology Icons and Labels 3-12
Device and Link Information 3-12
Colors in the Topology View 3-13
Topology Display Options 3-14

Menus and Toolbar 3-14
Menu Bar 3-14
Toolbar 3-18
Front Panel View Popup Menus 3-19
Device Popup Menu 3-19
Port Popup Menu 3-20
Topology View Popup Menus 3-20
Link Popup Menu 3-20
Device Popup Menus 3-21

Interaction Modes 3-23
Guide Mode 3-23
Expert Mode 3-24
Wizards 3-24
CHAPTER 4

Assigning the Switch IP Address and Default Gateway 4-1

Understanding the Boot Process 4-1
Assigning Switch Information 4-2
Default Switch Information 4-3
Understanding DHCP-Based Autoconfiguration 4-3
 DHCP Client Request Process 4-4
 Configuring the DHCP Server 4-5
 Configuring the TFTP Server 4-5
 Configuring the DNS 4-6
 Configuring the Relay Device 4-6
 Obtaining Configuration Files 4-7
 Example Configuration 4-8
Manually Assigning IP Information 4-9
Checking and Saving the Running Configuration 4-10
Modifying the Startup Configuration 4-12
Default Boot Configuration 4-12
 Automatically Downloading a Configuration File 4-12
 Specifying the Filename to Read and Write the System Configuration 4-13
Booting Manually 4-13
CHAPTER 5
Managing Switch Stacks 5-1
Understanding Switch Stacks 5-1
Switch Stack Membership 5-3
Stack Master Election and Re-Election 5-5
Switch Stack Bridge ID and Router MAC Address 5-5
Stack Member Numbers 5-6
Stack Member Priority Values 5-7
Stack Protocol Versions and Software Image Compatibility 5-7
 Stack Protocol Version Compatibility 5-7
 Software Image Compatibility 5-8
Switch Stack Configuration Files 5-8
Switch Stack Management Connectivity 5-10
Switch Stack Configuration Scenarios 5-11
Assigning Stack Member Information 5-13
Default Switch Stack Configuration 5-13
Assigning a Stack Member Number 5-13
Setting the Stack Member Priority Value 5-14
Accessing the CLI of a Specific Stack Member 5-14
Displaying Information about the Switch Stack 5-14

CHAPTER 6
Clustering Switches 6-1
Understanding Switch Clusters 6-2
Cluster Command Switch Characteristics 6-3
Standby Cluster Command Switch Characteristics 6-3
Candidate Switch and Cluster Member Switch Characteristics 6-4
Planning a Switch Cluster 6-4
Automatic Discovery of Cluster Candidates and Members 6-5
 Discovery Through CDP Hops 6-5
 Discovery Through Non-CDP-Capable and Noncluster-Capable Devices 6-6
 Discovery Through Different VLANs 6-7
 Discovery Through Different Management VLANs 6-8
 Discovery Through Routed Ports 6-9
 Discovery of Newly Installed Switches 6-10
Contents

CHAPTER 6
HSRP and Standby Cluster Command Switches 6-11
Virtual IP Addresses 6-12
Other Considerations for Cluster Standby Groups 6-12
Automatic Recovery of Cluster Configuration 6-13
IP Addresses 6-14
Host Names 6-14
Passwords 6-15
SNMP Community Strings 6-15
Switch Clusters and Switch Stacks 6-15
TACACS+ and RADIUS 6-17
Access Modes in CMS 6-17
Availability of Switch-Specific Features in Switch Clusters 6-17

Creating a Switch Cluster 6-18
Enabling a Cluster Command Switch 6-18
Adding Cluster Member Switches 6-19
Creating a Cluster Standby Group 6-21

Verifying a Switch Cluster 6-22
Using the CLI to Manage Switch Clusters 6-24
Catalyst 1900 and Catalyst 2820 CLI Considerations 6-24
Using SNMP to Manage Switch Clusters 6-25

CHAPTER 7
Administering the Switch 7-1
Preventing Unauthorized Access to Your Switch 7-1
Protecting Access to Privileged EXEC Commands 7-2
Default Password and Privilege Level Configuration 7-2
Setting or Changing a Static Enable Password 7-3
Protecting Enable and Enable Secret Passwords with Encryption 7-4
Disabling Password Recovery 7-5
Setting a Telnet Password for a Terminal Line 7-6
Configuring Username and Password Pairs 7-7
Configuring Multiple Privilege Levels 7-7
Setting the Privilege Level for a Command 7-8
Changing the Default Privilege Level for Lines 7-9
Logging into and Exiting a Privilege Level 7-9
Controlling Switch Access with TACACS+ 7-10
Understanding TACACS+ 7-10
TACACS+ Operation 7-12
Configuring TACACS+ 7-12
Default TACACS+ Configuration 7-13
Identifying the TACACS+ Server Host and Setting the Authentication Key 7-13
Configuring TACACS+ Login Authentication 7-14
Configuring TACACS+ Authorization for Privileged EXEC Access and Network Services 7-16
Starting TACACS+ Accounting 7-17
Displaying the TACACS+ Configuration 7-17

Controlling Switch Access with RADIUS 7-18
Understanding RADIUS 7-18
RADIUS Operation 7-19
Configuring RADIUS 7-20
 Default RADIUS Configuration 7-20
 Identifying the RADIUS Server Host 7-21
 Configuring RADIUS Login Authentication 7-23
 Defining AAA Server Groups 7-25
 Configuring RADIUS Authorization for User Privileged Access and Network Services 7-27
 Starting RADIUS Accounting 7-28
 Configuring Settings for All RADIUS Servers 7-29
 Configuring the Switch to Use Vendor-Specific RADIUS Attributes 7-29
 Configuring the Switch for Vendor-Proprietary RADIUS Server Communication 7-30
Displaying the RADIUS Configuration 7-31

Configuring the Switch for Local Authentication and Authorization 7-32

Managing the System Time and Date 7-33
Understanding the System Clock 7-33
Understanding Network Time Protocol 7-33
Configuring NTP 7-35
 Default NTP Configuration 7-36
 Configuring NTP Authentication 7-36
 Configuring NTP Associations 7-37
 Configuring NTP Broadcast Service 7-38
 Configuring NTP Access Restrictions 7-39
 Configuring the Source IP Address for NTP Packets 7-41
Displaying the NTP Configuration 7-42

Configuring Time and Date Manually 7-42
 Setting the System Clock 7-43
 Displaying the Time and Date Configuration 7-43
 Configuring the Time Zone 7-44
 Configuring Summer Time (Daylight Saving Time) 7-45

Configuring a System Name and Prompt 7-47
 Default System Name and Prompt Configuration 7-47
 Configuring a System Name 7-47
Contents

CHAPTER 7
Configuring a System Prompt 7-48
Understanding DNS 7-48
 Default DNS Configuration 7-49
 Setting Up DNS 7-49
 Displaying the DNS Configuration 7-50
Creating a Banner 7-50
 Default Banner Configuration 7-50
 Configuring a Message-of-the-Day Login Banner 7-51
 Configuring a Login Banner 7-52
Managing the MAC Address Table 7-53
 Building the Address Table 7-53
 MAC Addresses and VLANs 7-54
 MAC Addresses and Switch Stacks 7-54
 Default MAC Address Table Configuration 7-54
 Changing the Address Aging Time 7-54
 Removing Dynamic Address Entries 7-55
 Configuring MAC Address Notification Traps 7-55
 Adding and Removing Static Address Entries 7-57
 Displaying Address Table Entries 7-58

CHAPTER 8
Configuring 802.1X Port-Based Authentication 8-1
 Understanding 802.1X Port-Based Authentication 8-1
 Device Roles 8-2
 Authentication Initiation and Message Exchange 8-3
 Ports in Authorized and Unauthorized States 8-4
 Supported Topologies 8-4
 802.1X and Switch Stacks 8-5
 Configuring 802.1X Authentication 8-6
 Default 802.1X Configuration 8-6
 802.1X Configuration Guidelines 8-7
 Enabling 802.1X Authentication 8-8
 Configuring the Switch-to-RADIUS-Server Communication 8-9
 Enabling Periodic Re-Authentication 8-10
 Manually Re-Authenticating a Client Connected to a Port 8-11
 Changing the Quiet Period 8-11
 Changing the Switch-to-Client Retransmission Time 8-12
 Setting the Switch-to-Client Frame-Retransmission Number 8-12
 Enabling Multiple Hosts 8-13
 Resetting the 802.1X Configuration to the Default Values 8-14
Chapter 9: Configuring Interface Characteristics

Understanding Interface Types
- Port-Based VLANs 9-2
- Switch Ports 9-2
 - Access Ports 9-2
 - Trunk Ports 9-3
- Routed Ports 9-3
- Switch Virtual Interfaces 9-4
- EtherChannel Port Groups 9-5
- Connecting Interfaces 9-5

Using Interface Configuration Mode
- Procedures for Configuring Interfaces 9-7
- Configuring a Range of Interfaces 9-8
- Configuring and Using Interface Range Macros 9-10

Configuring Layer 2 Interfaces
- Default Layer 2 Ethernet Interface Configuration 9-12
- Configuring Interface Speed and Duplex Mode 9-12
 - Configuration Guidelines 9-13
 - Setting the Interface Speed and Duplex Parameters 9-13
- Configuring IEEE 802.3X Flow Control 9-14
- Adding a Description for an Interface 9-15

Configuring Layer 3 Interfaces
- Configuring the System MTU 9-17
- Monitoring and Maintaining the Interfaces 9-19
 - Monitoring Interface Status 9-19
 - Clearing and Resetting Interfaces and Counters 9-19
 - Shutting Down and Restarting the Interface 9-20

Chapter 10: Configuring VLANs

Understanding VLANs
- Supported VLANs 10-2
- VLAN Port Membership Modes 10-3

Configuring Normal-Range VLANs
- Token Ring VLANs 10-5
- Normal-Range VLAN Configuration Guidelines 10-5
- VLAN Configuration Mode Options 10-6
- VLAN Configuration in config-vlan Mode 10-6
Contents

VLAN Configuration in VLAN Database Configuration Mode 10-6

Saving VLAN Configuration 10-7
Default Ethernet VLAN Configuration 10-7
Creating or Modifying an Ethernet VLAN 10-8
Deleting a VLAN 10-10
Assigning Static-Access Ports to a VLAN 10-11

Configuring Extended-Range VLANs 10-12
Default VLAN Configuration 10-12
Extended-Range VLAN Configuration Guidelines 10-12
Creating an Extended-Range VLAN 10-13
Creating an Extended-Range VLAN with an Internal VLAN ID 10-14

Displaying VLANs 10-15

Configuring VLAN Trunks 10-16
Trunking Overview 10-16
Encapsulation Types 10-18
802.1Q Configuration Considerations 10-18
Default Layer 2 Ethernet Interface VLAN Configuration 10-19
Configuring an Ethernet Interface as a Trunk Port 10-19
Interaction with Other Features 10-20
Configuring a Trunk Port 10-20
Defining the Allowed VLANs on a Trunk 10-21
Changing the Pruning-Eligible List 10-22
Configuring the Native VLAN for Untagged Traffic 10-23
Configuring Trunk Ports for Load Sharing 10-24
Load Sharing Using STP Port Priorities 10-24
Load Sharing Using STP Path Cost 10-26

Configuring VMPS 10-28
Understanding VMPS 10-28
Dynamic-Access Port VLAN Membership 10-29
Default VMPS Client Configuration 10-29
VMPS Configuration Guidelines 10-29
Configuring the VMPS Client 10-30
Entering the IP Address of the VMPS 10-30
Configuring Dynamic-Access Ports on VMPS Clients 10-31
Reconfirming VLAN Memberships 10-31
Changing the Reconfirmation Interval 10-32
Changing the Retry Count 10-32
Monitoring the VMPS 10-32
Troubleshooting Dynamic-Access Port VLAN Membership 10-33
CHAPTER 11
Configuring VTP 11-1
Understanding VTP 11-1
The VTP Domain 11-2
VTP Modes 11-3
VTP Advertisements 11-3
VTP Version 2 11-4
VTP Pruning 11-4
VTP and the Switch Stack 11-6
Configuring VTP 11-6
Default VTP Configuration 11-7
VTP Configuration Options 11-7
VTP Configuration in Global Configuration Mode 11-7
VTP Configuration in VLAN Database Configuration Mode 11-8
VTP Configuration Guidelines 11-8
Domain Names 11-8
Passwords 11-8
VTP Version 11-9
Configuration Requirements 11-9
Configuring a VTP Server 11-9
Configuring a VTP Client 11-11
Disabling VTP (VTP Transparent Mode) 11-12
Enabling VTP Version 2 11-13
Enabling VTP Pruning 11-14
Adding a VTP Client Switch to a VTP Domain 11-15
Monitoring VTP 11-16

CHAPTER 12
Configuring Voice VLAN 12-1
Understanding Voice VLAN 12-1
Cisco IP Phone Voice Traffic 12-2
Cisco IP Phone Data Traffic 12-2
Configuring Voice VLAN 12-3
Default Voice VLAN Configuration 12-3
Voice VLAN Configuration Guidelines 12-3
Configuring a Port Connected to a Cisco 7960 IP Phone 12-4
Configuring IP Phone Voice Traffic 12-4
Configuring the Priority of Incoming Data Frames 12-5
Displaying Voice VLAN 12-6
CHAPTER 13
Configuring STP 13-1

Understanding Spanning-Tree Features 13-1
STP Overview 13-2
Bridge Protocol Data Units 13-2
Election of the Root Switch 13-4
Bridge ID, Switch Priority, and Extended System ID 13-5
Spanning-Tree Timers 13-5
Creating the Spanning-Tree Topology 13-6
Spanning-Tree Interface States 13-6
 Blocking State 13-8
 Listening State 13-8
 Learning State 13-8
 Forwarding State 13-8
 Disabled State 13-9
Spanning-Tree Address Management 13-9
Supported Spanning-Tree Instances 13-9
STP and IEEE 802.1Q Trunks 13-9
VLAN-Bridge STP 13-10
Spanning Tree and Redundant Connectivity 13-10
Accelerated Aging to Retain Connectivity 13-11
Spanning Tree and Switch Stacks 13-11
Configuring Spanning-Tree Features 13-12
 Default STP Configuration 13-12
 STP Configuration Guidelines 13-13
Disabling STP 13-14
Configuring the Root Switch 13-14
Configuring a Secondary Root Switch 13-15
Configuring Port Priority 13-16
Configuring Path Cost 13-17
Configuring the Switch Priority of a VLAN 13-19
Configuring the Hello Time 13-19
Configuring the Forwarding-Delay Time for a VLAN 13-20
Configuring the Maximum-Aging Time for a VLAN 13-21
Displaying the Spanning-Tree Status 13-21

CHAPTER 14
Configuring Optional Spanning-Tree Features 14-1

Understanding Optional Spanning-Tree Features 14-1
 Understanding Port Fast 14-2
 Understanding BPDU Guard 14-3
Contents

Chapter 14 - Understanding STP Features

- Understanding BPDU Filtering 14-3
- Understanding UplinkFast 14-4
- Understanding Cross-Stack UplinkFast 14-5
 - How CSUF Works 14-6
 - Events that Cause Fast Convergence 14-7
- Understanding BackboneFast 14-8
- Understanding Root Guard 14-10
- Understanding Loop Guard 14-11

Configuring Optional Spanning-Tree Features 14-11

- Default Optional Spanning-Tree Configuration 14-12
- Enabling Port Fast 14-12
- Enabling BPDU Guard 14-13
- Enabling BPDU Filtering 14-14
- Enabling UplinkFast for Use with Redundant Links 14-15
- Enabling Cross-Stack UplinkFast 14-15
- Enabling BackboneFast 14-15
- Enabling Root Guard 14-16
- Enabling Loop Guard 14-17

Displaying the Spanning-Tree Status 14-17

CHAPTER 15 - Configuring IGMP Snooping and MVR

- Understanding IGMP Snooping 15-2
 - Joining a Multicast Group 15-2
 - Leaving a Multicast Group 15-4
 - Immediate-Leave Processing 15-4
 - IGMP Snooping and Switch Stacks 15-5
- Configuring IGMP Snooping 15-5
 - Default IGMP Snooping Configuration 15-5
 - Enabling or Disabling IGMP Snooping 15-6
 - Setting the Snooping Method 15-6
 - Configuring a Multicast Router Port 15-8
 - Configuring a Host Staticlies to Join a Group 15-9
 - Enabling IGMP Immediate-Leave Processing 15-10
- Displaying IGMP Snooping Information 15-11
- Understanding Multicast VLAN Registration 15-12
 - Using MVR in a Multicast Television Application 15-13
- Configuring MVR 15-14
 - Default MVR Configuration 15-14
 - MVR Configuration Guidelines and Limitations 15-15
Contents
Catalyst 3750 Switch Software Configuration Guide
78-15164-01

CHAPTER 15
Configuring MVR Global Parameters 15-15
Configuring MVR Interfaces 15-17
Displaying MVR Information 15-18
Configuring IGMP Filtering 15-19
 Default IGMP Filtering Configuration 15-19
 Configuring IGMP Profiles 15-19
 Applying IGMP Profiles 15-20
 Setting the Maximum Number of IGMP Groups 15-21
Displaying IGMP Filtering Configuration 15-22

CHAPTER 16
Configuring Port-Based Traffic Control 16-1
 Configuring Storm Control 16-1
 Understanding Storm Control 16-1
 Default Storm Control Configuration 16-3
 Enabling Storm Control 16-3
 Configuring Protected Ports 16-4
 Default Protected Port Configuration 16-4
 Protected Port Configuration Guidelines 16-5
 Configuring a Protected Port 16-5
 Configuring Port Blocking 16-5
 Default Port Blocking Configuration 16-5
 Blocking Flooded Traffic on an Interface 16-6
 Configuring Port Security 16-7
 Understanding Port Security 16-7
 Secure MAC Addresses 16-7
 Security Violations 16-8
 Default Port Security Configuration 16-8
 Configuration Guidelines 16-9
 Enabling and Configuring Port Security 16-9
 Enabling and Configuring Port Security Aging 16-11
 Port Security and Stack Changes 16-12
 Displaying Port-Based Traffic Control Settings 16-12

CHAPTER 17
Configuring CDP 17-1
 Understanding CDP 17-1
 CDP and Switch Stacks 17-2
 Configuring CDP 17-2
 Default CDP Configuration 17-2
CHAPTER 18 Configuring UDLD

Understanding UDLD
Configuring UDLD
Default UDLD Configuration
Enabling UDLD Globally
Enabling UDLD on an Interface
Resetting an Interface Disabled by UDLD
Displaying UDLD Status

CHAPTER 19 Configuring SPAN and RSPAN

Understanding SPAN and RSPAN
Local SPAN
Remote SPAN
SPAN and RSPAN Concepts and Terminology
SPAN Sessions
Monitored Traffic
Source Ports
Source VLANs
VLAN Filtering
Destination Port
RSPAN VLAN
SPAN and RSPAN Interaction with Other Features
SPAN and RSPAN and Stack Changes
Configuring SPAN and RSPAN
Default SPAN and RSPAN Configuration
Configuring Local SPAN
SPAN Configuration Guidelines
Creating a Local SPAN Session
Specifying VLANs to Filter
Configuring RSPAN
RSPAN Configuration Guidelines
Configuring a VLAN as an RSPAN VLAN
Creating an RSPAN Source Session
Creating an RSPAN Destination Session
CHAPTER 20
Configuring RMON
- Understanding RMON
- Configuring RMON
 - Default RMON Configuration
 - Configuring RMON Alarms and Events
 - Collecting Group History Statistics on an Interface
 - Collecting Group Ethernet Statistics on an Interface
- Displaying RMON Status

CHAPTER 21
Configuring System Message Logging
- Understanding System Message Logging
- Configuring System Message Logging
 - System Log Message Format
 - Default System Message Logging Configuration
 - Disabling Message Logging
 - Setting the Message Display Destination Device
 - Synchronizing Log Messages
 - Enabling and Disabling Timestamps on Log Messages
 - Enabling and Disabling Sequence Numbers in Log Messages
 - Defining the Message Severity Level
 - Limiting Syslog Messages Sent to the History Table and to SNMP
- Configuring UNIX Syslog Servers
 - Logging Messages to a UNIX Syslog Daemon
 - Configuring the UNIX System Logging Facility
- Displaying the Logging Configuration

CHAPTER 22
Configuring SNMP
- Understanding SNMP
- SNMP Versions
- SNMP Manager Functions
- SNMP Agent Functions
- SNMP Community Strings
- Using SNMP to Access MIB Variables
- SNMP Notifications
- Configuring SNMP
CHAPTER 23
Configuring Network Security with ACLs 23-1

Understanding ACLs 23-1
Supported ACLs 23-2
Router ACLs 23-2
VLAN Maps 23-3
Handling Fragmented and Unfragmented Traffic 23-4
ACLs and Switch Stacks 23-5

Configuring IP ACLs 23-5
Creating Standard and Extended IP ACLs 23-6
Access List Numbers 23-6
Creating a Numbered Standard ACL 23-8
Creating a Numbered Extended ACL 23-9
Creating Named Standard and Extended ACLs 23-13
Using Time Ranges with ACLs 23-14
Including Comments in ACLs 23-17
Applying an IP ACL to a Terminal Line 23-17

Configuring Router ACLs 23-18
Applying an IP ACL to a Layer 3 Interface 23-18
Hardware and Software Handling of Router ACLs 23-19

Router ACL Configuration Examples 23-20
Numbered ACLs 23-22
Extended ACLs 23-22
Named ACLs 23-23
Time Range Applied to an IP ACL 23-23
Commented IP ACL Entries 23-24
ACL Logging 23-24

Configuring VLAN Maps 23-25
VLAN Map Configuration Guidelines 23-26
Creating Named MAC Extended ACLs 23-27
Creating a VLAN Map 23-28
Examples of ACLs and VLAN Maps 23-29
Applying a VLAN Map to a VLAN 23-31
Using VLAN Maps in Your Network 23-31
Wiring Closet Configuration 23-31
Denying Access to a Server on Another VLAN 23-33
Using VLAN Maps with Router ACLs 23-34
Guidelines 23-34
Examples of Router ACLs and VLAN Maps Applied to VLANs 23-35
ACLs and Switched Packets 23-35
ACLs and Bridged Packets 23-36
ACLs and Routed Packets 23-37
ACLs and Multicast Packets 23-38
Displaying ACL Configuration 23-39

Chapter 24 24-1
Configuring QoS 24-1
Understanding QoS 24-1
Basic QoS Model 24-3
Classification 24-4
Classification Based on QoS ACLs 24-7
Classification Based on Class Maps and Policy Maps 24-7
Policing and Marking 24-8
Mapping Tables 24-10
Queueing and Scheduling Overview 24-11
Weighted Tail Drop 24-11
SRR Shaping and Sharing 24-12
Queueing and Scheduling on Ingress Queues 24-13
Queueing and Scheduling on Egress Queues 24-15
Packet Modification 24-17
Configuring QoS 24-18
Default QoS Configuration 24-18
Default Ingress Queue Configuration 24-19
Default Egress Queue Configuration 24-20
Default Mapping Table Configuration 24-20
QoS Configuration Guidelines 24-21
Enabling QoS Globally 24-22
Configuring Classification Using Port Trust States 24-22
Configuring the Trust State on Ports within the QoS Domain 24-23
Configuring the CoS Value for an Interface 24-25
Configuring the DSCP Trust State on a Port Bordering Another QoS Domain 24-26
Contents

CHAPTER 24
Configuring QoS Policies

- Configuring a QoS Policy 24-27
 - Classifying Traffic by Using ACLs 24-28
 - Classifying Traffic by Using Class Maps 24-31
 - Classifying, Policing, and Marking Traffic by Using Policy Maps 24-33
 - Classifying, Policing, and Marking Traffic by Using Aggregate Policers 24-36

- Configuring DSCP Maps 24-38
 - Configuring the CoS-to-DSCP Map 24-38
 - Configuring the IP-Precedence-to-DSCP Map 24-39
 - Configuring the Policed-DSCP Map 24-40
 - Configuring the DSCP-to-CoS Map 24-41
 - Configuring the DSCP-to-DSCP-Mutation Map 24-42

- Configuring Ingress Queue Characteristics 24-43
 - Mapping DSCP or CoS Values to an Ingress Queue and Setting WTD Thresholds 24-44
 - Allocating Buffer Space Between the Ingress Queues 24-45
 - Allocating Bandwidth Between the Ingress Queues 24-46
 - Configuring the Ingress Priority Queue 24-47

- Configuring Egress Queue Characteristics 24-48
 - Allocating Buffer Space to and Setting WTD Thresholds for an Egress Queue-Set 24-48
 - Mapping DSCP or CoS Values to an Egress Queue and to a Threshold ID 24-50
 - Configuring SRR Shaped Weights on Egress Queues 24-52
 - Configuring SRR Shared Weights on Egress Queues 24-53
 - Limiting the Bandwidth on an Egress Interface 24-54

Displaying QoS Information 24-55

CHAPTER 25
Configuring EtherChannels

- Configuring EtherChannels 25-1
 - Understanding EtherChannels 25-1
 - EtherChannel Overview 25-2
 - Port-Channel Interfaces 25-4
 - Port Aggregation Protocol 25-5
 - PAgP Modes 25-5
 - PAgP Interaction with Other Features 25-6
 - Load Balancing and Forwarding Methods 25-6
 - EtherChannel and Switch Stacks 25-8

- Configuring EtherChannels 25-9
 - Default EtherChannel Configuration 25-9
 - EtherChannel Configuration Guidelines 25-10
 - Configuring Layer 2 EtherChannels 25-11
 - Configuring Layer 3 EtherChannels 25-13
 - Creating Port-Channel Logical Interfaces 25-13
CHAPTER 26

Configuring IP Unicast Routing 26-1

Understanding IP Routing 26-2

Types of Routing 26-2

IP Routing and Switch Stacks 26-3

Steps for Configuring Routing 26-4

Configuring IP Addressing 26-5

Default Addressing Configuration 26-5

Assigning IP Addresses to Network Interfaces 26-6

Use of Subnet Zero 26-7

Classless Routing 26-7

Configuring Address Resolution Methods 26-9

Define a Static ARP Cache 26-9

Set ARP Encapsulation 26-11

Enable Proxy ARP 26-11

Routing Assistance When IP Routing is Disabled 26-12

Proxy ARP 26-12

Default Gateway 26-12

ICMP Router Discovery Protocol (IRDP) 26-13

Configuring Broadcast Packet Handling 26-14

Enabling Directed Broadcast-to-Physical Broadcast Translation 26-14

Forwarding UDP Broadcast Packets and Protocols 26-15

Establishing an IP Broadcast Address 26-16

Flooding IP Broadcasts 26-17

Monitoring and Maintaining IP Addressing 26-18

Enabling IP Unicast Routing 26-19

Configuring RIP 26-20

Default RIP Configuration 26-20

Configuring Basic RIP Parameters 26-21

Configuring RIP Authentication 26-23

Configuring Summary Addresses and Split Horizon 26-23

Configuring IGRP 26-25

Default IGRP Configuration 26-26

Understanding Load Balancing and Traffic Distribution Control 26-26

Configuring Basic IGRP Parameters 26-27
Contents

Configuring Split Horizon 26-29
Configuring OSPF 26-30
 Default OSPF Configuration 26-31
 Configuring Basic OSPF Parameters 26-32
 Configuring OSPF Interfaces 26-33
 Configuring OSPF Area Parameters 26-34
 Configuring Other OSPF Parameters 26-35
 Changing LSA Group Pacing 26-37
 Configuring a Loopback Interface 26-37
 Monitoring OSPF 26-38
Configuring EIGRP 26-39
 Default EIGRP Configuration 26-40
 Configuring Basic EIGRP Parameters 26-41
 Configuring EIGRP Interfaces 26-42
 Configuring EIGRP Route Authentication 26-43
 Monitoring and Maintaining EIGRP 26-44
Configuring Protocol-Independent Features 26-45
 Configuring Distributed Cisco Express Forwarding 26-45
 Configuring the Number of Equal-Cost Routing Paths 26-46
 Configuring Static Routes 26-47
 Specifying Default Routes and Networks 26-48
 Using Route Maps to Redistribute Routing Information 26-49
Filtering Routing Information 26-52
 Setting Passive Interfaces 26-52
 Controlling Advertising and Processing in Routing Updates 26-53
 Filtering Sources of Routing Information 26-53
 Managing Authentication Keys 26-54
 Monitoring and Maintaining the IP Network 26-55

CHAPTER 27

Configuring HSRP 27-1
 Understanding HSRP 27-1
 HSRP and Switch Stacks 27-2
Configuring HSRP 27-3
 Default HSRP Configuration 27-4
 Enabling HSRP 27-4
 Configuring HSRP Group Attributes 27-6
 Configuring HSRP Priority 27-6
 Configuring HSRP Authentication and Timers 27-8
 Configuring HSRP Groups and Clustering 27-9

Catalyst 3750 Switch Software Configuration Guide

xxii
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displaying HSRP Configurations</td>
<td>27-10</td>
</tr>
<tr>
<td>Chapter 28</td>
<td></td>
</tr>
<tr>
<td>Configuring IP Multicast Routing</td>
<td>28-1</td>
</tr>
<tr>
<td>Understanding Cisco's Implementation of IP Multicast Routing</td>
<td>28-2</td>
</tr>
<tr>
<td>Understanding IGMP</td>
<td>28-2</td>
</tr>
<tr>
<td>IGMP Version 1</td>
<td>28-3</td>
</tr>
<tr>
<td>IGMP Version 2</td>
<td>28-3</td>
</tr>
<tr>
<td>Understanding PIM</td>
<td>28-3</td>
</tr>
<tr>
<td>PIM Versions</td>
<td>28-4</td>
</tr>
<tr>
<td>PIM Modes</td>
<td>28-4</td>
</tr>
<tr>
<td>Auto-RP</td>
<td>28-5</td>
</tr>
<tr>
<td>Bootstrap Router</td>
<td>28-5</td>
</tr>
<tr>
<td>Multicast Forwarding and Reverse Path Check</td>
<td>28-6</td>
</tr>
<tr>
<td>Understanding DVMRP</td>
<td>28-7</td>
</tr>
<tr>
<td>Understanding CGMP</td>
<td>28-7</td>
</tr>
<tr>
<td>Multicast Routing and Switch Stacks</td>
<td>28-8</td>
</tr>
<tr>
<td>Configuring IP Multicast Routing</td>
<td>28-8</td>
</tr>
<tr>
<td>Default Multicast Routing Configuration</td>
<td>28-9</td>
</tr>
<tr>
<td>Multicast Routing Configuration Guidelines</td>
<td>28-9</td>
</tr>
<tr>
<td>PIM v1 and PIM v2 Interoperability</td>
<td>28-9</td>
</tr>
<tr>
<td>Auto-RP and BSR Configuration Guidelines</td>
<td>28-10</td>
</tr>
<tr>
<td>Configuring Basic Multicast Routing</td>
<td>28-10</td>
</tr>
<tr>
<td>Configuring a Rendezvous Point</td>
<td>28-12</td>
</tr>
<tr>
<td>Manually Assigning an RP to Multicast Groups</td>
<td>28-12</td>
</tr>
<tr>
<td>Configuring Auto-RP</td>
<td>28-14</td>
</tr>
<tr>
<td>Configuring PIM v2 BSR</td>
<td>28-18</td>
</tr>
<tr>
<td>Using Auto-RP and a BSR</td>
<td>28-22</td>
</tr>
<tr>
<td>Monitoring the RP Mapping Information</td>
<td>28-23</td>
</tr>
<tr>
<td>Troubleshooting PIM v1 and PIM v2 Interoperability Problems</td>
<td>28-23</td>
</tr>
<tr>
<td>Configuring Advanced PIM Features</td>
<td>28-23</td>
</tr>
<tr>
<td>Understanding PIM Shared Tree and Source Tree</td>
<td>28-23</td>
</tr>
<tr>
<td>Delaying the Use of PIM Shortest-Path Tree</td>
<td>28-25</td>
</tr>
<tr>
<td>Modifying the PIM Router-Query Message Interval</td>
<td>28-26</td>
</tr>
<tr>
<td>Configuring Optional IGMP Features</td>
<td>28-27</td>
</tr>
<tr>
<td>Default IGMP Configuration</td>
<td>28-27</td>
</tr>
<tr>
<td>Configuring the Switch as a Member of a Group</td>
<td>28-27</td>
</tr>
<tr>
<td>Controlling Access to IP Multicast Groups</td>
<td>28-28</td>
</tr>
<tr>
<td>Changing the IGMP Version</td>
<td>28-29</td>
</tr>
<tr>
<td>Modifying the IGMP Host-Query Message Interval</td>
<td>28-30</td>
</tr>
</tbody>
</table>
Contents

Changing the IGMP Query Timeout for IGMPv2 28-31
Changing the Maximum Query Response Time for IGMPv2 28-31
Configuring the Switch as a Statically Connected Member 28-32

Configuring Optional Multicast Routing Features 28-32
Enabling CGMP Server Support 28-33
Configuring sdr Listener Support 28-34
Enabling sdr Listener Support 28-34
Limiting How Long an sdr Cache Entry Exists 28-35
Configuring an IP Multicast Boundary 28-35

Configuring Basic DVMRP Interoperability Features 28-37
Configuring DVMRP Interoperability 28-37
Configuring a DVMRP Tunnel 28-39
Advertising Network 0.0.0.0 to DVMRP Neighbors 28-41
Responding to mrinfo Requests 28-42

Configuring Advanced DVMRP Interoperability Features 28-42
Enabling DVMRP Unicast Routing 28-43
Rejecting a DVMRP Nonpruning Neighbor 28-44
Controlling Route Exchanges 28-46
Limiting the Number of DVMRP Routes Advertised 28-46
Changing the DVMRP Route Threshold 28-46
Configuring a DVMRP Summary Address 28-47
Disabling DVMRP Autosummarization 28-49
Adding a Metric Offset to the DVMRP Route 28-49

Monitoring and Maintaining IP Multicast Routing 28-50
Clearing Caches, Tables, and Databases 28-51
Displaying System and Network Statistics 28-51
Monitoring IP Multicast Routing 28-52

Chapter 29

Configuring MSDP 29-1
Understanding MSDP 29-1
MSDP Operation 29-2
MSDP Benefits 29-3
Configuring MSDP 29-4
Default MSDP Configuration 29-4
Configuring a Default MSDP Peer 29-4
Caching Source-Active State 29-6
Requesting Source Information from an MSDP Peer 29-8
Controlling Source Information that Your Switch Originates 29-8
Redistributing Sources 29-9
Contents

Using the SDM Templates 31-13
SFP Module Security and Identification 31-15
Diagnosing Connectivity Problems 31-16
Understanding Ping 31-16
Executing Ping 31-16
Understanding IP Traceroute 31-17
Executing IP Traceroute 31-18
Using Debug Commands 31-19
Enabling Debugging on a Specific Feature 31-19
Enabling All-System Diagnostics 31-20
Redirecting Debug and Error Message Output 31-20
Using the show platform forward Command 31-21
Using the crashinfo File 31-23

APPENDIX A

Supported MIBs A-1
MIB List A-1
Using FTP to Access the MIB Files A-3

APPENDIX B

Working with the IOS File System, Configuration Files, and Software Images B-1
Working with the Flash File System B-1
Displaying Available File Systems B-2
Setting the Default File System B-3
Displaying Information about Files on a File System B-3
Changing Directories and Displaying the Working Directory B-4
Creating and Removing Directories B-4
Copying Files B-5
Deleting Files B-5
Creating, Displaying, and Extracting tar Files B-6
Creating a tar File B-6
Displaying the Contents of a tar File B-7
Extracting a tar File B-8
Displaying the Contents of a File B-8
Working with Configuration Files B-9
Guidelines for Creating and Using Configuration Files B-10
Configuration File Types and Location B-10
Creating a Configuration File By Using a Text Editor B-11
Copying Configuration Files By Using TFTP B-11
Preparing to Download or Upload a Configuration File By Using TFTP B-11
Unsupported Global Configuration Commands C-2
Unsupported Interface Configuration Commands C-3

HP C-4
Unsupported Global Configuration Commands C-4
Unsupported Interface Configuration Commands C-4

Interface Commands C-4
Unsupported Privileged EXEC Commands C-4
Unsupported Interface Configuration Commands C-4

IP Multicast Routing C-5
Unsupported Privileged EXEC Commands C-5
Unsupported Global Configuration Commands C-5
Unsupported Interface Configuration Commands C-5

IP Unicast Routing C-6
Unsupported Privileged EXEC or User EXEC Commands C-6
Unsupported Global Configuration Commands C-6
Unsupported Interface Configuration Commands C-7
Unsupported BGP Router Configuration Commands C-7
Unsupported VPN Configuration Commands C-7
Unsupported Route Map Commands C-7

MSDP C-8
Unsupported Privileged EXEC Commands C-8
Unsupported Global Configuration Commands C-8

RADIUS C-8
Unsupported Global Configuration Commands C-8

SNMP C-8
Unsupported Global Configuration Commands C-8

Spanning Tree C-9
Unsupported Global Configuration Commands C-9
Unsupported Interface Configuration Commands C-9

VLAN C-9
Unsupported vlan-config Commands C-9
Unsupported User EXEC Commands C-9

VTP C-9
Unsupported Privileged EXEC Commands C-9
Preface

Audience

This guide is for the networking professional managing the Catalyst 3750 switch, hereafter referred to as the switch. Before using this guide, you should have experience working with the Cisco IOS software and be familiar with the concepts and terminology of Ethernet and local area networking.

Purpose

The Catalyst 3750 switch is supported by either the standard multilayer software image (SMI) or the enhanced multilayer software image (EMI). The SMI provides Layer 2+ features including access control lists (ACLs), quality of service (QoS), static routing, and the Routing Information Protocol (RIP). The EMI provides a richer set of enterprise-class features. It includes Layer 2+ features and full Layer 3 routing (IP unicast routing, IP multicast routing, and fallback bridging). To distinguish it from the Layer 2+ static routing and RIP, the EMI includes protocols such as the Enhanced Interior Gateway Routing Protocol (EIGRP) and Open Shortest Path First (OSPF) Protocol.

This guide provides procedures for using the commands that have been created or changed for use with the Catalyst 3750 switch. It does not provide detailed information about these commands. For detailed information about these commands, refer to the Catalyst 3750 Switch Command Reference for this release. For information about the standard IOS Release 12.1 commands, refer to the IOS documentation set available from the Cisco.com home page at Service and Support > Technical Documents. On the Cisco Product Documentation home page, select Release 12.1 from the Cisco IOS Software drop-down list.

This guide also includes an overview of the Cluster Management Suite (CMS), a web-based switch management interface that helps you create and manage clusters of switches. This guide does not provide field-level descriptions of the CMS windows nor does it provide the procedures for configuring switches and switch clusters from CMS. For all CMS window descriptions and procedures, refer to the CMS online help, which is integrated with the software image.

This guide does not describe system messages you might encounter or how to install your switch. For more information, refer to the Catalyst 3750 Switch System Message Guide for this release and to the Catalyst 3750 Switch Hardware Installation Guide.
Conventions

This publication uses these conventions to convey instructions and information:

Command descriptions use these conventions:

- Commands and keywords are in **boldface** text.
- Arguments for which you supply values are in *italic*.
- Square brackets ([]) mean optional elements.
- Braces ({ }) group required choices, and vertical bars (|) separate the alternative elements.
- Braces and vertical bars within square brackets ({{ | }}) mean a required choice within an optional element.

Interactive examples use these conventions:

- Terminal sessions and system displays are in `screen` font.
- Information you enter is in **boldface screen** font.
- Nonprinting characters, such as passwords or tabs, are in angle brackets (< >).

Notes, cautions, and timesavers use these conventions and symbols:

<table>
<thead>
<tr>
<th>Note</th>
<th>Means reader take note. Notes contain helpful suggestions or references to materials not contained in this manual.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caution</td>
<td>Means reader be careful. In this situation, you might do something that could result in equipment damage or loss of data.</td>
</tr>
<tr>
<td>Timesaver</td>
<td>Means the following will help you solve a problem. The tips information might not be troubleshooting or even an action, but could be useful information.</td>
</tr>
</tbody>
</table>
Related Publications

These documents provide complete information about the switch and are available from this Cisco.com site:

You can order printed copies of documents with a DOC-xxxxxx= number from the Cisco.com sites and from the telephone numbers listed in the “Ordering Documentation” section on page xxxii.

- Release Notes for the Catalyst 3750 Switch (not orderable but available on Cisco.com)
- Catalyst 3750 Switch Software Configuration Guide (order number DOC-7815164=)
- Catalyst 3750 Switch Command Reference (order number DOC-7815165=)
- Catalyst 3750 Switch System Message Guide (order number DOC-7815166=)
- Cluster Management Suite (CMS) online help (available only from the switch CMS software)
- Catalyst 3750 Switch Hardware Installation Guide (order number DOC-7815136=)
- Cisco Small Form-Factor Pluggable Modules Installation Notes (not orderable but available on Cisco.com)

Obtaining Documentation

Cisco provides several ways to obtain documentation, technical assistance, and other technical resources. These sections explain how to obtain technical information from Cisco Systems.

Cisco.com

You can access the most current Cisco documentation on the World Wide Web at this URL:

http://www.cisco.com/univercd/home/home.htm

You can access the Cisco website at this URL:

http://www.cisco.com

International Cisco websites can be accessed from this URL:

Documentation CD-ROM

Cisco documentation and additional literature are available in a Cisco Documentation CD-ROM package, which may have shipped with your product. The Documentation CD-ROM is updated regularly and may be more current than printed documentation. The CD-ROM package is available as a single unit or through an annual or quarterly subscription.

Registered Cisco.com users can order a single Documentation CD-ROM (product number DOC-CONDOCCD=) through the Cisco Ordering tool:

All users can order monthly or quarterly subscriptions through the online Subscription Store:

http://www.cisco.com/go/subscription
Ordering Documentation

You can find instructions for ordering documentation at this URL:

You can order Cisco documentation in these ways:

- Registered Cisco.com users (Cisco direct customers) can order Cisco product documentation from
 the Networking Products MarketPlace:
- Nonregistered Cisco.com users can order documentation through a local account representative by
 calling Cisco Systems Corporate Headquarters (California, U.S.A.) at 408 526-7208 or, elsewhere
 in North America, by calling 800 553-NETS (6387).

Documentation Feedback

You can submit comments electronically on Cisco.com. On the Cisco Documentation home page, click
Feedback at the top of the page.

You can e-mail your comments to bug-doc@cisco.com.

You can submit comments by using the response card (if present) behind the front cover of your
document or by writing to the following address:

Cisco Systems
Attn: Customer Document Ordering
170 West Tasman Drive
San Jose, CA 95134-9883

We appreciate your comments.

Obtaining Technical Assistance

Cisco provides Cisco.com, which includes the Cisco Technical Assistance Center (TAC) website, as a
starting point for all technical assistance. Customers and partners can obtain online documentation,
troubleshooting tips, and sample configurations from the Cisco TAC website. Cisco.com registered users
have complete access to the technical support resources on the Cisco TAC website, including TAC tools
and utilities.

Cisco.com

Cisco.com offers a suite of interactive, networked services that let you access Cisco information,
networking solutions, services, programs, and resources at any time, from anywhere in the world.
Cisco.com provides a broad range of features and services to help you with these tasks:

- Streamline business processes and improve productivity
- Resolve technical issues with online support
Technical Assistance Center

The Cisco TAC is available to all customers who need technical assistance with a Cisco product, technology, or solution. Two types of support are available: the Cisco TAC website and the Cisco TAC Escalation Center. The type of support that you choose depends on the priority of the problem and the conditions stated in service contracts, when applicable.

We categorize Cisco TAC inquiries according to urgency:

- Priority level 4 (P4)—You need information or assistance concerning Cisco product capabilities, product installation, or basic product configuration. There is little or no impact to your business operations.
- Priority level 3 (P3)—Operational performance of the network is impaired, but most business operations remain functional. You and Cisco are willing to commit resources during normal business hours to restore service to satisfactory levels.
- Priority level 2 (P2)—Operation of an existing network is severely degraded, or significant aspects of your business operations are negatively impacted by inadequate performance of Cisco products. You and Cisco will commit full-time resources during normal business hours to resolve the situation.
- Priority level 1 (P1)—An existing network is “down,” or there is a critical impact to your business operations. You and Cisco will commit all necessary resources around the clock to resolve the situation.

Cisco TAC Website

The Cisco TAC website provides online documents and tools to help troubleshoot and resolve technical issues with Cisco products and technologies. To access the Cisco TAC website, go to this URL:

http://www.cisco.com/tac

All customers, partners, and resellers who have a valid Cisco service contract have complete access to the technical support resources on the Cisco TAC website. Some services on the Cisco TAC website require a Cisco.com login ID and password. If you have a valid service contract but do not have a login ID or password, go to this URL to register:

If you are a Cisco.com registered user, and you cannot resolve your technical issues by using the Cisco TAC website, you can open a case online at this URL:

http://www.cisco.com/tac/caseopen

If you have Internet access, we recommend that you open P3 and P4 cases online so that you can fully describe the situation and attach any necessary files.
Cisco TAC Escalation Center

The Cisco TAC Escalation Center addresses priority level 1 or priority level 2 issues. These classifications are assigned when severe network degradation significantly impacts business operations. When you contact the TAC Escalation Center with a P1 or P2 problem, a Cisco TAC engineer automatically opens a case.

To obtain a directory of toll-free Cisco TAC telephone numbers for your country, go to this URL:

Before calling, please check with your network operations center to determine the Cisco support services to which your company is entitled: for example, SMARTnet, SMARTnet Onsite, or Network Supported Accounts (NSA). When you call the center, please have available your service agreement number and your product serial number.

Obtaining Additional Publications and Information

Information about Cisco products, technologies, and network solutions is available from various online and printed sources.

- The Cisco Product Catalog describes the networking products offered by Cisco Systems, as well as ordering and customer support services. Access the Cisco Product Catalog at this URL:

- Cisco Press publishes a wide range of networking publications. Cisco suggests these titles for new and experienced users: Internetworking Terms and Acronyms Dictionary, Internetworking Technology Handbook, Internetworking Troubleshooting Guide, and the Internetworking Design Guide. For current Cisco Press titles and other information, go to Cisco Press online at this URL:
 http://www.ciscopress.com

- Packet magazine is the Cisco quarterly publication that provides the latest networking trends, technology breakthroughs, and Cisco products and solutions to help industry professionals get the most from their networking investment. Included are networking deployment and troubleshooting tips, configuration examples, customer case studies, tutorials and training, certification information, and links to numerous in-depth online resources. You can access Packet magazine at this URL:
 http://www.cisco.com/go/packet

- iQ Magazine is the Cisco bimonthly publication that delivers the latest information about Internet business strategies for executives. You can access iQ Magazine at this URL:
 http://www.cisco.com/go/iqmagazine

- Internet Protocol Journal is a quarterly journal published by Cisco Systems for engineering professionals involved in designing, developing, and operating public and private internets and intranets. You can access the Internet Protocol Journal at this URL:

- Training—Cisco offers world-class networking training. Current offerings in network training are listed at this URL:
Overview

This chapter provides these topics about the Catalyst 3750 switch software:

- Features, page 1-1
- Default Settings After Initial Switch Configuration, page 1-8
- Network Configuration Examples, page 1-10
- Where to Go Next, page 1-17

Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

Features

The Catalyst 3750 switches are shipped with either of these software images installed:

- Standard multilayer software image (SMI), which provides Layer 2+ features (enterprise-class intelligent services). These features include access control lists (ACLs), quality of service (QoS), static routing, and the Hot Standby Router Protocol (HSRP) and Routing Information Protocol (RIP). Switches with the SMI installed can be upgraded to the EMI.
- Enhanced multilayer software image (EMI), which provides a richer set of enterprise-class intelligent services. It includes all SMI features plus full Layer 3 routing (IP unicast routing, IP multicast routing, and fallback bridging). To distinguish it from the Layer 2+ static routing and RIP, the EMI includes protocols such as the Enhanced Interior Gateway Routing Protocol (EIGRP) and Open Shortest Path First (OSPF) Protocol.

Note: Unless otherwise noted, all features described in this chapter and in this guide are supported on both SMI and EMI.

The Catalyst 3750 switches have these features:

- Ease-of-Use and Ease-of-Deployment Features, page 1-2
- Performance Features, page 1-3
- Management Options, page 1-3
- Manageability Features, page 1-3
- Availability Features, page 1-4
- VLAN Features, page 1-5
- Security Features, page 1-5
Chapter 1 Overview

Features

- Quality of Service (QoS) and Class of Service (CoS) Features, page 1-6
- Layer 3 Features, page 1-7
- Monitoring Features, page 1-7

Ease-of-Use and Ease-of-Deployment Features

- Cluster Management Suite (CMS) graphical user interface (GUI) for
 - Simplifying and minimizing switch, switch stack, and switch cluster management through a supported web browser from anywhere in your intranet.
 - Accomplishing multiple configuration tasks from a single CMS window without needing to remember command-line interface (CLI) commands to accomplish specific tasks.
 - Interactive guide mode that guides you in configuring complex features such as VLANs, access control lists (ACLs), and quality of service (QoS).
 - Automated configuration wizards that prompt you to provide only the minimum required information to configure complex features such as QoS priorities for video traffic, priority levels for data applications, and security.
 - Applying actions to multiple ports and multiple switches at the same time, such as VLAN and QoS settings, inventory and statistic reports, link- and switch-level monitoring and troubleshooting, and multiple switch software upgrades.
 - Viewing a topology of interconnected devices to identify existing switch clusters and eligible switches that can join a cluster and to identify link information between switches.
 - Monitoring real-time status of a switch or multiple switches from the LEDs on the front-panel images. The system, redundant power system (RPS), and port LED colors on the images are similar to those used on the physical LEDs.

- Cisco StackWise technology for
 - Connecting up to nine switches through their StackWise ports and operating as a single switch or switch-router in the network.
 - Creating a bidirectional 32-Gbps switching fabric across the switch stack, where all stack members have full access to the system bandwidth.
 - Using a single IP address and configuration file to manage the entire switch stack.
 - Automatic IOS version-check of new stack members with the option to automatically load images from the stack master or from a Trivial File Transfer Protocol (TFTP) server.
 - Adding, removing, and replacing switches in the stack without disrupting the operation of the stack.

- Switch clustering technology for
 - Unified configuration, monitoring, authentication, and software upgrade of multiple, cluster-capable switches, regardless of their geographic proximity and interconnection media, including Ethernet, Fast Ethernet, Fast EtherChannel, small-form pluggable (SFP) modules, Gigabit Ethernet, and Gigabit EtherChannel connections. Refer to the release notes for a list of cluster-capable switches.
 - Automatic discovery of candidate switches and creation of clusters of up to 16 switches that can be managed through a single IP address.
 - Extended discovery of cluster candidates that are not directly connected to the command switch.
Performance Features

- Autosensing of port speed and autonegotiation of duplex mode on all switch ports for optimizing bandwidth
- IEEE 802.3X flow control on all ports (the switch does not send pause frames)
- Up to 32 Gbps of forwarding rates in a switch stack
- EtherChannel for enhanced fault tolerance and for providing up to 8 Gbps (Gigabit EtherChannel) or 800 Mbps (Fast EtherChannel) full duplex of bandwidth between switches, routers, and servers
- Port Aggregation Protocol (PAgP) for automatic creation of EtherChannel links
- Forwarding of Layer 2 and Layer 3 packets at Gigabit line rate across the switches in the stack
- Per-port storm control for preventing broadcast, multicast, and unicast storms
- Port blocking on forwarding unknown Layer 2 unknown unicast, multicast, and bridged broadcast traffic
- Cisco Group Management Protocol (CGMP) server support and Internet Group Management Protocol (IGMP) snooping for IGMP versions 1 and 2:
 - (For CGMP devices) CGMP for limiting multicast traffic to specified end stations and reducing overall network traffic
 - (For IGMP devices) IGMP snooping for efficiently forwarding multimedia and multicast traffic
- Multicast VLAN registration (MVR) to continuously send multicast streams in a multicast VLAN while isolating the streams from subscriber VLANs for bandwidth and security reasons
- IGMP filtering for controlling the set of multicast groups to which hosts on a switch port can belong
- Switch Database Management (SDM) templates for allocating system resources to maximize support for user-selected features

Management Options

- CMS—CMS is a graphical user interface that can be launched from anywhere in your network through a web browser such as Netscape Communicator or Microsoft Internet Explorer. CMS is already installed on the switch. For more information about CMS, see Chapter 3, “Getting Started with CMS.”
- CLI—The switch IOS command-line interface software is enhanced to support desktop- and multilayer-switching features. You can access the CLI either by connecting your management station directly to the switch console port or by using Telnet from a remote management station. You can manage the switch stack by connecting to the console port of any stack member. For more information about the CLI, see Chapter 2, “Using the Command-Line Interface.”
- SNMP—you can use Simple Network Management Protocol (SNMP) management applications such as CiscoWorks2000 LAN Management Suite (LMS) and HP OpenView. You can manage from an SNMP-compatible management station that is running platforms such as HP OpenView or SunNet Manager. The switch supports a comprehensive set of MIB extensions and four remote monitoring (RMON) groups. For more information about using SNMP, see Chapter 22, “Configuring SNMP.”

Manageability Features

- Dynamic Host Configuration Protocol (DHCP) for automating configuration of switch information (such as IP address, default gateway, host name, and Domain Name System [DNS] and Trivial File Transfer Protocol [TFTP] server names)
• Directed unicast requests to a DNS server for identifying a switch through its IP address and its corresponding host name and to a TFTP server for administering software upgrades from a TFTP server
• Address Resolution Protocol (ARP) for identifying a switch through its IP address and its corresponding Media Access Control (MAC) address
• Cisco Discovery Protocol (CDP) versions 1 and 2 for network topology discovery and mapping between the switch and other Cisco devices on the network
• Network Time Protocol (NTP) for providing a consistent timestamp to all switches from an external source
• Cisco IOS File System (IFS) for providing a single interface to all file systems that the switch uses
• In-band management access through CMS over a Netscape Communicator or Microsoft Internet Explorer browser session
• In-band management access through up to 16 simultaneous Telnet connections for multiple command-line interface (CLI)-based sessions over the network
• In-band management access through Simple Network Management Protocol (SNMP) versions 1 and 2c get and set requests
• Out-of-band management access through the switch console port to a directly attached terminal or to a remote terminal through a serial connection or a modem

Note
For additional descriptions of the management interfaces, see the “Network Configuration Examples” section on page 1-10.

Availability Features

• Hot Standby Router Protocol (HSRP) for command switch and Layer 3 router redundancy
• Automatic stack master re-election for replacing stack masters that become unavailable (failover support)
 The newly elected stack master begins accepting Layer 2 traffic in less than 1 second and Layer 3 traffic between 3 to 5 seconds.
• Cross-stack EtherChannel for providing redundant links across the switch stack
• UniDirectional Link Detection (UDLD) and aggressive UDLD for detecting and disabling unidirectional links on fiber-optic interfaces caused by incorrect fiber-optic wiring or port faults
• IEEE 802.1D Spanning Tree Protocol (STP) for redundant backbone connections and loop-free networks. STP has these features:
 - Up to 128 spanning-tree instances supported
 - Per-VLAN Spanning Tree (PVST) for balancing load across VLANs
 - UplinkFast, cross-stack UplinkFast, and BackboneFast for fast convergence after a spanning-tree topology change and for achieving load balancing between redundant uplinks, including Gigabit uplinks and cross-stack Gigabit uplinks
- Optional spanning-tree features available in PVST mode:
 - Port Fast for eliminating the forwarding delay by enabling a port to immediately transition from the blocking state to the forwarding state
 - BPDU guard for shutting down Port Fast-enabled ports that receive BPDUs
 - Root guard for preventing switches outside the network core from becoming the spanning-tree root
- Equal-cost routing for link-level and switch-level redundancy
- Redundant power system (RPS) support through the Cisco RPS 300 and Cisco RPS 675 for enhancing power reliability

VLAN Features

- Support for up to 1005 VLANs for assigning users to VLANs associated with appropriate network resources, traffic patterns, and bandwidth
- Support for VLAN IDs in the full 1 to 4094 range allowed by the IEEE 802.1Q standard
- VLAN Query Protocol (VQP) for dynamic VLAN membership
- Inter-Switch Link (ISL) and IEEE 802.1Q trunking encapsulation on all ports for network moves, adds, and changes; management and control of broadcast and multicast traffic; and network security by establishing VLAN groups for high-security users and network resources
- Dynamic Trunking Protocol (DTP) for negotiating trunking on a link between two devices and for negotiating the type of trunking encapsulation (802.1Q or ISL) to be used
- VLAN Trunking Protocol (VTP) and VTP pruning for reducing network traffic by restricting flooded traffic to links destined for stations receiving the traffic
- Voice VLAN for creating subnets for voice traffic from Cisco IP Phones

Security Features

- Password-protected access (read-only and read-write access) to management interfaces (CMS and CLI) for protection against unauthorized configuration changes
- Multilevel security for a choice of security level, notification, and resulting actions
- Static MAC addressing for ensuring security
- Protected port option for restricting the forwarding of traffic to designated ports on the same switch
- Port security option for limiting and identifying MAC addresses of the stations allowed to access the port
- Port security aging to set the aging time for secure addresses on a port
- Bridge protocol data unit (BPDU) guard for shutting down a Port Fast-configured port when an invalid configuration occurs
- Standard and extended IP access control lists (ACLs) for defining security policies in both directions on routed interfaces (router ACLs)
- VLAN ACLs (VLAN maps) for providing intra-VLAN security by filtering traffic based on information in the MAC, IP, and TCP/User Datagram Protocol (UDP) headers
- Source and destination MAC-based ACLs for filtering non-IP traffic
- IEEE 802.1X port-based authentication to prevent unauthorized devices (clients) from gaining access to the network
• Terminal Access Controller Access Control System Plus (TACACS+), a proprietary feature for managing network security through a TACACS server
• Remote Authentication Dial-In User Service (RADIUS) for verifying the identity of, granting access to, and tracking the actions of remote users through authentication, authorization, and accounting (AAA) services.

Quality of Service (QoS) and Class of Service (CoS) Features

• Cross-stack QoS for configuring QoS features to all switches in a switch stack rather than on an individual-switch basis
• Classification
 - IP type-of-service/Differentiated Services Code Point (IP TOS/DSCP) and 802.1P CoS marking priorities on a per-port basis for protecting the performance of mission-critical applications
 - IP TOS/DSCP and 802.1P CoS marking based on flow-based packet classification (classification based on information in the MAC, IP, and TCP/UDP headers) for high-performance quality of service at the network edge, allowing for differentiated service levels for different types of network traffic and for prioritizing mission-critical traffic in the network
 - Trusted port states (CoS, DSCP, and IP precedence) within a QoS domain and with a port bordering another QoS domain
• Policing
 - Traffic-policing policies on the switch port for managing how much of the port bandwidth should be allocated to a specific traffic flow
 - Aggregate policing for policing traffic flows in aggregate to restrict specific applications or traffic flows to metered, predefined rates
• Out-of-Profile
 - Out-of-profile markdown for packets that exceed bandwidth utilization limits
• Ingress queueing and scheduling
 - Two configurable ingress queues for user traffic (one queue can be the priority queue)
 - Weighted tail drop (WTD) as the congestion-avoidance mechanism for managing the queue lengths and providing drop precedences for different traffic classifications
 - Shaped round robin (SRR) as the scheduling service for determining the rate at which packets are dequeued to the stack ring (sharing is the only supported mode on ingress queues)
• Egress queues and scheduling
 - Four egress queues per port
 - Weighted tail drop (WTD) as the congestion-avoidance mechanism for managing the queue lengths and providing drop precedences for different traffic classifications
 - Shaped round robin (SRR) as the scheduling service for determining the rate at which packets are dequeued to the egress interface (shaping or sharing is supported on egress queues). Shaped egress queues are guaranteed but limited to using a share of port bandwidth. Shared egress queues are also guaranteed a configured share of bandwidth, but can use more than the guarantee if other queues become empty and do not use their share of the bandwidth.
Layer 3 Features

- Hot Standby Router Protocol (HSRP) for Layer 3 router redundancy
- IP routing protocols for load balancing and for constructing scalable, routed backbones:
 - Routing Information Protocol (RIP) versions 1 and 2
 - Open Shortest Path First (OSPF) (requires the EMI)
 - Interior Gateway Routing Protocol (IGRP) and Enhanced IGRP (EIGRP) (requires the EMI)
- IP routing between VLANs (inter-VLAN routing) for full Layer 3 routing between two or more VLANs, allowing each VLAN to maintain its own autonomous data-link domain
- Fallback bridging for forwarding non-IP traffic between two or more VLANs (requires the EMI)
- Static IP routing for manually building a routing table of network path information
- Equal-cost routing for load balancing and redundancy
- Internet Control Message Protocol (ICMP) and ICMP Router Discovery Protocol (IRDP) for using router advertisement and router solicitation messages to discover the addresses of routers on directly attached subnets
- Protocol-Independent Multicast (PIM) for multicast routing within the network, allowing for devices in the network to receive the multicast feed requested and for switches not participating in the multicast to be pruned. Includes support for PIM sparse mode (PIM-SM), PIM dense mode (PIM-DM), and PIM sparse-dense mode. (requires the EMI)
- Multicast Source Discovery Protocol (MSDP) for connecting multiple PIM-SM domains (requires the EMI)
- Distance Vector Multicast Routing Protocol (DVMRP) tunnelling for interconnecting two multicast-enabled networks across non-multicast networks (requires the EMI)
- DHCP relay for forwarding UDP broadcasts, including IP address requests, from DHCP clients

Monitoring Features

- Switch LEDs that provide port-, switch-, and stack-level status
- Switched Port Analyzer (SPAN) and Remote SPAN (RSPAN) for traffic monitoring on any port or VLAN
- Four groups (history, statistics, alarms, and events) of embedded remote monitoring (RMON) agents for network monitoring and traffic analysis
- Syslog facility for logging system messages about authentication or authorization errors, resource issues, and time-out events
- MAC address notification traps and Remote Authentication Dial-In User Service (RADIUS) accounting for tracking users on a network by storing the MAC addresses that the switch has learned or removed
Default Settings After Initial Switch Configuration

The switch is designed for plug-and-play operation, requiring only that you assign basic IP information to the switch and connect it to the other devices in your network. If you have specific network needs, you can change the interface-specific and system- and stack-wide settings.

If you do not configure the switch at all, the switch operates with the default settings listed in Table 1-1. This table lists the key software features, their defaults, and where to find more information about the features.

For information about setting up the initial switch configuration and assigning basic IP information to the switch, refer to the hardware installation guide.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
<th>More information in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch IP address, subnet mask, and default gateway</td>
<td>0.0.0.0</td>
<td>Chapter 4, “Assigning the Switch IP Address and Default Gateway”</td>
</tr>
<tr>
<td>Domain name</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Dynamic Host Configuration Protocol (DHCP)</td>
<td>DHCP client enabled</td>
<td></td>
</tr>
<tr>
<td>Switch stack</td>
<td>Enabled (not configurable)</td>
<td>Chapter 5, “Managing Switch Stacks”</td>
</tr>
<tr>
<td>Switch cluster</td>
<td>Disabled</td>
<td>Chapter 6, “Clustering Switches”</td>
</tr>
<tr>
<td>Passwords</td>
<td>None defined</td>
<td>Chapter 7, “Administering the Switch”</td>
</tr>
<tr>
<td>Terminal Access Controller Access Control System Plus (TACACS+)</td>
<td>Disabled</td>
<td></td>
</tr>
<tr>
<td>Remote Authentication Dial-In User Service (RADIUS)</td>
<td>Disabled</td>
<td></td>
</tr>
<tr>
<td>System name and prompt</td>
<td>Switch</td>
<td></td>
</tr>
<tr>
<td>Network Time Protocol (NTP)</td>
<td>Enabled</td>
<td></td>
</tr>
<tr>
<td>Domain Name System (DNS)</td>
<td>Enabled</td>
<td></td>
</tr>
<tr>
<td>802.1X</td>
<td>Disabled</td>
<td>Chapter 8, “Configuring 802.1X Port-Based Authentication”</td>
</tr>
<tr>
<td>Port parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating mode</td>
<td>Layer 2 (switchport)</td>
<td>Chapter 9, “Configuring Interface Characteristics”</td>
</tr>
<tr>
<td>Interface speed and duplex mode</td>
<td>Autonegotiate</td>
<td></td>
</tr>
<tr>
<td>Flow control</td>
<td>Off</td>
<td></td>
</tr>
<tr>
<td>VLANs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Default VLAN</td>
<td>VLAN 1</td>
<td>Chapter 10, “Configuring VLANs”</td>
</tr>
<tr>
<td>VLAN trunking</td>
<td>Dynamic auto (Dynamic Trunking Protocol)</td>
<td></td>
</tr>
<tr>
<td>Trunk encapsulation</td>
<td>Negotiate</td>
<td></td>
</tr>
<tr>
<td>VLAN Trunking Protocol (VTP) mode</td>
<td>Server</td>
<td>Chapter 11, “Configuring VTP”</td>
</tr>
<tr>
<td>VTP version</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Voice VLAN</td>
<td>Disabled</td>
<td>Chapter 12, “Configuring Voice VLAN”</td>
</tr>
</tbody>
</table>
Table 1-1 Default Settings After Initial Switch Configuration (continued)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
<th>More information in...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanning Tree Protocol (STP)</td>
<td>Enabled on VLAN 1</td>
<td>Chapter 13, “Configuring STP”</td>
</tr>
<tr>
<td>IGMP snooping</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internet Group Management Protocol (IGMP) snooping</td>
<td>Enabled</td>
<td>Chapter 15, “Configuring IGMP Snooping and MVR”</td>
</tr>
<tr>
<td>IGMP filters</td>
<td>None applied</td>
<td></td>
</tr>
<tr>
<td>Multicast VLAN Registration (MVR)</td>
<td>Disabled</td>
<td></td>
</tr>
<tr>
<td>Broadcast, multicast, and unicast storm control</td>
<td>Disabled</td>
<td>Chapter 16, “Configuring Port-Based Traffic Control”</td>
</tr>
<tr>
<td>Protected ports</td>
<td>None defined</td>
<td></td>
</tr>
<tr>
<td>Unicast and multicast traffic flooding</td>
<td>Not blocked</td>
<td></td>
</tr>
<tr>
<td>Secure ports</td>
<td>None configured</td>
<td></td>
</tr>
<tr>
<td>Cisco Discovery Protocol (CDP)</td>
<td>Enabled</td>
<td>Chapter 17, “Configuring CDP”</td>
</tr>
<tr>
<td>UniDirectional Link Detection (UDLD)</td>
<td>Disabled</td>
<td>Chapter 18, “Configuring UDLD”</td>
</tr>
<tr>
<td>Switched Port Analyzer (SPAN) and Remote SPAN (RSPAN)</td>
<td>Disabled</td>
<td>Chapter 19, “Configuring SPAN and RSPAN”</td>
</tr>
<tr>
<td>Remote monitoring (RMON)</td>
<td>Disabled</td>
<td>Chapter 20, “Configuring RMON”</td>
</tr>
<tr>
<td>Syslog messages</td>
<td>Enabled; displayed on the console</td>
<td>Chapter 21, “Configuring System Message Logging”</td>
</tr>
<tr>
<td>Simple Network Management Protocol (SNMP)</td>
<td>Enabled; version 1</td>
<td>Chapter 22, “Configuring SNMP”</td>
</tr>
<tr>
<td>Access control lists (ACLs)</td>
<td>None configured</td>
<td>Chapter 23, “Configuring Network Security with ACLs”</td>
</tr>
<tr>
<td>Quality of Service (QoS)</td>
<td>Disabled</td>
<td>Chapter 24, “Configuring QoS”</td>
</tr>
<tr>
<td>EtherChannels</td>
<td>None configured</td>
<td>Chapter 25, “Configuring EtherChannels”</td>
</tr>
<tr>
<td>IP unicast routing</td>
<td>Disabled</td>
<td>Chapter 26, “Configuring IP Unicast Routing”</td>
</tr>
<tr>
<td>Hot Standby Router Protocol (HSRP) groups</td>
<td>None configured</td>
<td>Chapter 27, “Configuring HSRP”</td>
</tr>
<tr>
<td>IP multicasting</td>
<td>Disabled on all interfaces</td>
<td>Chapter 28, “Configuring IP Multicast Routing”</td>
</tr>
<tr>
<td>Multicast Source Discovery Protocol (MSDP)</td>
<td>Disabled</td>
<td>Chapter 29, “Configuring MSDP”</td>
</tr>
<tr>
<td>Fallback bridging</td>
<td>Not configured</td>
<td>Chapter 30, “Configuring Fallback Bridging”</td>
</tr>
</tbody>
</table>
Network Configuration Examples

This section provides network configuration concepts and includes examples of using the switch to create dedicated network segments and interconnecting the segments through Fast Ethernet and Gigabit Ethernet connections.

- “Design Concepts for Using the Switch” section on page 1-10
- “Small to Medium-Sized Network Using Catalyst 3750 Switches” section on page 1-15
- “Large Network Using Catalyst 3750 Switches” section on page 1-16

Design Concepts for Using the Switch

As your network users compete for network bandwidth, it takes longer to send and receive data. When you configure your network, consider the bandwidth required by your network users and the relative priority of the network applications they use.

Table 1-2 describes what can cause network performance to degrade and how you can configure your network to increase the bandwidth available to your network users.

<table>
<thead>
<tr>
<th>Network Demands</th>
<th>Suggested Design Methods</th>
</tr>
</thead>
</table>
| Too many users on a single network segment and a growing number of users accessing the Internet | - Create smaller network segments so that fewer users share the bandwidth, and use VLANs and IP subnets to place the network resources in the same logical network as the users who access those resources most.
- Use full-duplex operation between the switch and its connected workstations. |
| - Increased power of new PCs, workstations, and servers
- High bandwidth demand from networked applications (such as e-mail with large attached files) and from bandwidth-intensive applications (such as multimedia) | - Connect global resources—such as servers and routers to which the network users require equal access—directly to the high-speed switch ports so that they have their own high-speed segment.
- Use the EtherChannel feature between the switch and its connected servers and routers. |
Bandwidth alone is not the only consideration when designing your network. As your network traffic profiles evolve, consider providing network services that can support applications for voice and data integration, multimedia integration, application prioritization, and security. Table 1-3 describes some network demands and how you can meet those demands.

Table 1-3 Providing Network Services

<table>
<thead>
<tr>
<th>Network Demands</th>
<th>Suggested Design Methods</th>
</tr>
</thead>
</table>
| Efficient bandwidth usage for multimedia applications and guaranteed bandwidth for critical applications | • Use IGMP snooping to efficiently forward multimedia and multicast traffic.
• Use other QoS mechanisms such as packet classification, marking, scheduling, and congestion avoidance to classify traffic with the appropriate priority level, thereby providing maximum flexibility and support for mission-critical, unicast, and multicast and multimedia applications.
• Use optional IP multicast routing to design networks better suited for multicast traffic.
• Use MVR to continuously send multicast streams in a multicast VLAN but to isolate the streams from subscriber VLANs for bandwidth and security reasons. |
| High demand on network redundancy and availability to provide *always on* mission-critical applications | • Use switch stacks, where all stack members are eligible stack masters in case of stack-master failure. All stack members have synchronized copies of the saved and running configuration files of the switch stack.
• Cross-stack EtherChannel for providing redundant links across the switch stack.
• Use HSRP for cluster command switch and router redundancy.
• Use VLAN trunks, cross-stack UplinkFast, and BackboneFast for traffic-load balancing on the uplink ports so that the uplink port with a lower relative port cost is selected to carry the VLAN traffic. |
| An evolving demand for IP telephony | • Use QoS to prioritize applications such as IP telephony during congestion and to help control both delay and jitter within the network.
• Use switches that support at least two queues per port to prioritize voice and data traffic as either high- or low-priority, based on 802.1P/Q. The Catalyst 3750 switch supports at least four queues per port.
• Use voice VLAN IDs (VVIDs) to provide separate VLANs for voice traffic. |
| A growing demand for using existing infrastructure to transport data and voice from a home or office to the Internet or an intranet at higher speeds | Use the Catalyst Long-Reach Ethernet (LRE) switches to provide up to 15 Mb of IP connectivity over existing infrastructure, such as existing telephone lines.
Note LRE is the technology used in the Catalyst 2900 LRE XL and Catalyst 2950 LRE switches. Refer to the documentation sets specific to these switches for LRE information. |
You can use the switches and switch stacks to create the following:

- **Cost-effective wiring closet (Figure 1-1)**—A cost-effective way to connect many users to the wiring closet is to have a switch stack of up to nine Catalyst 3750 switches. To preserve switch connectivity if one switch in the stack fails, connect the switches as recommended in the hardware installation guide, and enable either cross-stack Etherchannel or cross-stack UplinkFast.

 You can have redundant uplink connections, using small form-factor pluggable (SFP) modules in the switch stack to a Gigabit backbone switch, such as a Catalyst 4500 or Catalyst 3750G Gigabit switch. You can also create backup paths by using Fast Ethernet, Gigabit, or EtherChannel links. If one of the redundant connections fails, the other can serve as a backup path. If the Gigabit switch is cluster-capable, you can configure it and the switch stack as a switch cluster to manage them through a single IP address. The Gigabit switch can be connected to a Gigabit server through a 1000BASE-T connection.

 ![Figure 1-1 Cost-Effective Wiring Closet](image)

- **High-performance wiring closet (Figure 1-2)**—For high-speed access to network resources, you can use Catalyst 3750 switches and switch stacks in the access layer to provide Gigabit Ethernet to the desktop. To prevent congestion, use QoS DSCP marking priorities on these switches. For high-speed IP forwarding at the distribution layer, connect the switches in the access layer to a Gigabit multilayer switch in the backbone, such as a Catalyst 4500 Gigabit switch or Catalyst 6500 Gigabit switch.

 Each switch in this configuration provides users with a dedicated 1-Gbps connection to network resources. Using SFP modules also provides flexibility in media and distance options through fiber-optic connections.
Server aggregation (Figure 1-3) and Linux server cluster (Figure 1-4)—You can use the switches and switch stacks to interconnect groups of servers, centralizing physical security and administration of your network. For high-speed IP forwarding at the distribution layer, connect the switches in the access layer to multilayer switches with routing capability. The Gigabit interconnections minimize latency in the data flow.

QoS and policing on the switches provide preferential treatment for certain data streams, if required. They segment traffic streams into different paths for processing. Security features on the switch ensure rapid handling of packets.

Dual homing of servers to dual switch stacks with redundant Gigabit EtherChannel and cross-stack EtherChannel provide fault tolerance from the server racks to the core.

Using dual SFP uplinks from the Catalyst 3750 switches provide redundant uplinks to the network core. Using SFP modules provides flexibility in media and distance options through fiber-optic connections.

The various lengths of stack cable available, ranging from 0.5 meter to 3 meters provide extended connections to the switch stacks the stack across multiple server racks, for multiple stack aggregation.
Figure 1-3 Server Aggregation

Campus core

Catalyst 6500 switches

Catalyst 4500 multilayer switches

Catalyst 3750 StackWise switch stacks

Server racks

Campus core across uplinks

Catalyst 3750 StackWise switch stack

Redundant SFP uplinks

Figure 1-4 Linux Server Cluster

Etherchannel across uplinks

Linux cluster parallel processing server farm 32Gbps ring

Catalyst 3750 StackWise switch stack
Small to Medium-Sized Network Using Catalyst 3750 Switches

Figure 1-5 shows a configuration for a network of up to 500 employees. This network uses a Layer 3 Catalyst 3750 switch stack with high-speed uplinks to two routers. For network reliability and load balancing, this network has HSRP enabled on the routers and on the switch stack. This ensures connectivity to the Internet, WAN, and mission-critical network resources in case one of the routers or switches fails. The switch stack is using routed uplinks for faster failover. It is also configured with equal-cost routing for load sharing and redundancy. (A Layer 2 switch stack can use cross-stack EtherChannel for load sharing.)

The switch stack is connected to workstations, Cisco IP Phones, and local servers. This network uses VLANs to logically segment the network into well-defined broadcast groups and for security management. Data and multimedia traffic are configured on the same VLAN. Voice traffic from the Cisco IP Phones are configured on separate VVIDs. If data, multimedia, and voice traffic are assigned to the same VLAN, only one VLAN can be configured per wiring closet. For any switch port connected to Cisco IP Phones, 802.1P/Q QoS gives voice traffic forwarding-priority over data traffic. Cisco IP Phones not connected to Catalyst inline-power switches must be connected to AC power sources to receive power.

When an end station in one VLAN needs to communicate with an end station in another VLAN, a router or multilayer switch routes the traffic to the appropriate destination VLAN. In this network, the switch stack is providing inter-VLAN routing. VLAN access control lists (VLAN maps) on the switch stack provide intra-VLAN security and prevent unauthorized users from accessing critical pieces of the network.

In addition to inter-VLAN routing, the switch stack provides QoS mechanisms such as DSCP priorities to prioritize the different types of network traffic and to deliver high-priority traffic in a predictable manner. If congestion occurs, QoS drops low-priority traffic to allow delivery of high-priority traffic.

With the switch stack providing inter-VLAN routing and other network services, the routers focus on firewall services, Network Address Translation (NAT) services, voice-over-IP (VoIP) gateway services, and WAN and Internet access.

Figure 1-5 Catalyst 3750 Switch Stack in a Collapsed Backbone Configuration
Large Network Using Catalyst 3750 Switches

Switches in the wiring closet have traditionally been Layer 2-only devices, but as network traffic profiles evolve, switches in the wiring closet are increasingly employing multilayer services such as multicast management and traffic classification. Figure 1-6 shows a configuration for a network exclusively using multilayer switch stacks in the wiring closets and two backbone switches, such as the Catalyst 6000 switches, to aggregate up to ten wiring closets.

In the wiring closet, each switch stack has IGMP snooping enabled to efficiently forward multimedia and multicast traffic. QoS ACLs that either drop or mark nonconforming traffic based on bandwidth limits are also configured on each switch stack. VLAN maps provide intra-VLAN security and prevent unauthorized users from accessing critical pieces of the network. QoS features can limit bandwidth on a per-port or per-user basis. The switch ports are configured as either trusted or untrusted. You can configure a trusted port to trust the CoS value, the DSCP value, or the IP precedence. If you configure the port as untrusted, you can use an ACL to mark the frame in accordance with the network policy.

Each switch stack provides inter-VLAN routing. They provide proxy ARP services to determine IP and MAC address mapping, thereby removing this task from the routers and decreasing this type of traffic on the WAN links. These switch stacks also have redundant uplink connections to the backbone switches, with each uplink port configured as a trusted routed uplink to provide faster convergence in case of an uplink failure.

The routers and backbone switches have HSRP enabled for load balancing and redundant connectivity to guarantee mission-critical traffic.
Where to Go Next

Before configuring the switch, review these sections for startup information:

- Chapter 2, “Using the Command-Line Interface”
- Chapter 3, “Getting Started with CMS”
- Chapter 4, “Assigning the Switch IP Address and Default Gateway”
Using the Command-Line Interface

This chapter describes the Cisco IOS command-line interface (CLI) and how to use it to configure your Catalyst 3750 switch. It contains these sections:

- Understanding Command Modes, page 2-1
- Understanding the Help System, page 2-3
- Understanding Abbreviated Commands, page 2-4
- Understanding no and default Forms of Commands, page 2-4
- Understanding CLI Error Messages, page 2-5
- Using Command History, page 2-5
- Using Editing Features, page 2-6
- Searching and Filtering Output of show and more Commands, page 2-9
- Accessing the CLI, page 2-10

Understanding Command Modes

The Cisco IOS user interface is divided into many different modes. The commands available to you depend on which mode you are currently in. Enter a question mark (?) at the system prompt to obtain a list of commands available for each command mode.

When you start a session on the switch, you begin in user mode, often called user EXEC mode. Only a limited subset of the commands are available in user EXEC mode. For example, most of the user EXEC commands are one-time commands, such as `show` commands, which show the current configuration status, and `clear` commands, which clear counters or interfaces. The user EXEC commands are not saved when the switch reboots.

To have access to all commands, you must enter privileged EXEC mode. Normally, you must enter a password to enter privileged EXEC mode. From this mode, you can enter any privileged EXEC command or enter global configuration mode.

Using the configuration modes (global, interface, and line), you can make changes to the running configuration. If you save the configuration, these commands are stored and used when the switch reboots. To access the various configuration modes, you must start at global configuration mode. From global configuration mode, you can enter interface configuration mode and line configuration mode.
Table 2-1 describes the main command modes, how to access each one, the prompt you see in that mode, and how to exit the mode. The examples in the table use the host name *Switch*.

Table 2-1 Command Mode Summary

<table>
<thead>
<tr>
<th>Mode</th>
<th>Access Method</th>
<th>Prompt</th>
<th>Exit Method</th>
<th>About This Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>User EXEC</td>
<td>Begin a session with your switch.</td>
<td><code>Switch></code></td>
<td>Enter <code>logout</code> or <code>quit</code>.</td>
<td>Use this mode to</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Change terminal settings.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Perform basic tests.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Display system information.</td>
</tr>
<tr>
<td>Privileged EXEC</td>
<td>While in user EXEC mode, enter the <code>enable</code> command.</td>
<td><code>Switch#</code></td>
<td>Enter <code>disable</code> to exit.</td>
<td>Use this mode to verify commands that you have entered. Use a password to</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>protect access to this mode.</td>
</tr>
<tr>
<td>Global configuration</td>
<td>While in privileged EXEC mode, enter the <code>configure</code> command.</td>
<td><code>Switch(config)#</code></td>
<td>To exit to privileged EXEC mode, enter <code>exit</code> or <code>end</code>, or press Ctrl-Z.</td>
<td>Use this mode to configure parameters that apply to the entire switch.</td>
</tr>
<tr>
<td>Config-vlan</td>
<td>While in global configuration mode, enter the <code>vlan vlan-id</code> command.</td>
<td><code>Switch(config-vlan)#</code></td>
<td>To exit to global configuration mode, enter the <code>exit</code> command. To return to privileged EXEC mode, press Ctrl-Z or enter <code>end</code>.</td>
<td>Use this mode to configure VLAN parameters. When VTP mode is transparent, you can create extended-range VLANs (VLAN IDs greater than 1005) and save configurations in the switch startup configuration file.</td>
</tr>
<tr>
<td>VLAN configuration</td>
<td>While in privileged EXEC mode, enter the <code>vlan database</code> command.</td>
<td><code>Switch(vlan)#</code></td>
<td>To exit to privileged EXEC mode, enter <code>exit</code>.</td>
<td>Use this mode to configure VLAN parameters for VLANs 1 to 1005 in the VLAN database.</td>
</tr>
</tbody>
</table>
Understanding the Help System

You can enter a question mark (?) at the system prompt to display a list of commands available for each command mode. You can also obtain a list of associated keywords and arguments for any command, as shown in Table 2-2.

Table 2-2 Help Summary

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>help</td>
<td>Obtain a brief description of the help system in any command mode.</td>
</tr>
<tr>
<td>abbreviated-command-entry?</td>
<td>Obtain a list of commands that begin with a particular character string.</td>
</tr>
<tr>
<td></td>
<td>For example:</td>
</tr>
<tr>
<td></td>
<td>Switch# di?</td>
</tr>
<tr>
<td></td>
<td>dir disable disconnect</td>
</tr>
<tr>
<td>abbreviated-command-entry<Tab></td>
<td>Complete a partial command name.</td>
</tr>
<tr>
<td></td>
<td>For example:</td>
</tr>
<tr>
<td></td>
<td>Switch# sh conf<tab></td>
</tr>
<tr>
<td></td>
<td>Switch# show configuration</td>
</tr>
<tr>
<td>?</td>
<td>List all commands available for a particular command mode.</td>
</tr>
<tr>
<td></td>
<td>For example:</td>
</tr>
<tr>
<td></td>
<td>Switch> ?</td>
</tr>
</tbody>
</table>
Understanding Abbreviated Commands

You need to enter only enough characters for the switch to recognize the command as unique.

This example shows how to enter the `show configuration` privileged EXEC command in an abbreviated form:

```
Switch# show conf
```

Understanding no and default Forms of Commands

Almost every configuration command also has a `no` form. In general, use the `no` form to disable a feature or function or reverse the action of a command. For example, the `no shutdown` interface configuration command reverses the shutdown of an interface. Use the command without the keyword `no` to re-enable a disabled feature or to enable a feature that is disabled by default.

Configuration commands can also have a `default` form. The `default` form of a command returns the command setting to its default. Most commands are disabled by default, so the `default` form is the same as the `no` form. However, some commands are enabled by default and have variables set to certain default values. In these cases, the `default` command enables the command and sets variables to their default values.

Table 2-2 Help Summary (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>command ?</code></td>
<td>List the associated keywords for a command. For example: <code>Switch> show ?</code></td>
</tr>
<tr>
<td><code>command keyword ?</code></td>
<td>List the associated arguments for a keyword. For example: <code>Switch(config)# cdp holdtime ?</code> <code><10-255> Length of time (in sec) that receiver must keep this packet</code></td>
</tr>
</tbody>
</table>
Understanding CLI Error Messages

Table 2-3 lists some error messages that you might encounter while using the CLI to configure your switch.

Table 2-3 Common CLI Error Messages

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Meaning</th>
<th>How to Get Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Ambiguous command: "show con"</td>
<td>You did not enter enough characters for your switch to recognize the command.</td>
<td>Re-enter the command followed by a question mark (?) with a space between the command and the question mark. The possible keywords that you can enter with the command are displayed.</td>
</tr>
<tr>
<td>% Incomplete command.</td>
<td>You did not enter all the keywords or values required by this command.</td>
<td>Re-enter the command followed by a question mark (?) with a space between the command and the question mark. The possible keywords that you can enter with the command are displayed.</td>
</tr>
<tr>
<td>% Invalid input detected at <code>^</code> marker.</td>
<td>You entered the command incorrectly. The caret (^) marks the point of the error.</td>
<td>Enter a question mark (?) to display all the commands that are available in this command mode. The possible keywords that you can enter with the command are displayed.</td>
</tr>
</tbody>
</table>

Using Command History

The software provides a history or record of commands that you have entered. The command history feature is particularly useful for recalling long or complex commands or entries, including access lists. You can customize this feature to suit your needs as described in these sections:

- Changing the Command History Buffer Size, page 2-5 (optional)
- Recalling Commands, page 2-6 (optional)
- Disabling the Command History Feature, page 2-6 (optional)

Changing the Command History Buffer Size

By default, the switch records ten command lines in its history buffer. You can alter this number for a current terminal session or for all sessions on a particular line. These procedures are optional.

Beginning in privileged EXEC mode, enter this command to change the number of command lines that the switch records during the current terminal session:

```
Switch# terminal history [size number-of-lines]
```

The range is from 0 to 256.
Beginning in line configuration mode, enter this command to configure the number of command lines the switch records for all sessions on a particular line:

```
Switch(config-line)# history [size number-of-lines]
```

The range is from 0 to 256.

Recalling Commands

To recall commands from the history buffer, perform one of the actions listed in Table 2-4. These actions are optional.

<table>
<thead>
<tr>
<th>Action</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Press Ctrl-P or the up arrow key.</td>
<td>Recall commands in the history buffer, beginning with the most recent command. Repeat the key sequence to recall successively older commands.</td>
</tr>
<tr>
<td>Press Ctrl-N or the down arrow key.</td>
<td>Return to more recent commands in the history buffer after recalling commands with Ctrl-P or the up arrow key. Repeat the key sequence to recall successively more recent commands.</td>
</tr>
<tr>
<td><code>show history</code></td>
<td>While in privileged EXEC mode, list the last several commands that you just entered. The number of commands that are displayed is determined by the setting of the <code>terminal history</code> global configuration command and <code>history</code> line configuration command.</td>
</tr>
</tbody>
</table>

1. The arrow keys function only on ANSI-compatible terminals such as VT100s.

Disabling the Command History Feature

The command history feature is automatically enabled. You can disable it for the current terminal session or for the command line. These procedures are optional.

To disable the feature during the current terminal session, enter the `terminal no history` privileged EXEC command.

To disable command history for the line, enter the `no history` line configuration command.

Using Editing Features

This section describes the editing features that can help you manipulate the command line. It contains these sections:

- Enabling and Disabling Editing Features, page 2-7 (optional)
- Editing Commands through Keystrokes, page 2-7 (optional)
- Editing Command Lines that Wrap, page 2-8 (optional)
Enabling and Disabling Editing Features

Although enhanced editing mode is automatically enabled, you can disable it, re-enable it, or configure a specific line to have enhanced editing. These procedures are optional.

To globally disable enhanced editing mode, enter this command in line configuration mode:

```
Switch (config-line)# no editing
```

To re-enable the enhanced editing mode for the current terminal session, enter this command in privileged EXEC mode:

```
Switch# terminal editing
```

To reconfigure a specific line to have enhanced editing mode, enter this command in line configuration mode:

```
Switch(config-line)# editing
```

Editing Commands through Keystrokes

Table 2-5 shows the keystrokes that you need to edit command lines. These keystrokes are optional.

<table>
<thead>
<tr>
<th>Capability</th>
<th>Keystroke</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Move around the command line to make changes</td>
<td>Press Ctrl-B, or press the</td>
<td>Move the cursor back one character.</td>
</tr>
<tr>
<td>or corrections.</td>
<td>left arrow key.</td>
<td></td>
</tr>
<tr>
<td>Move the cursor forward one character.</td>
<td>Press Ctrl-F, or press the right</td>
<td>Move the cursor forward one character.</td>
</tr>
<tr>
<td></td>
<td>arrow key.</td>
<td></td>
</tr>
<tr>
<td>Move the cursor to the beginning of the</td>
<td>Press Ctrl-A.</td>
<td>Move the cursor to the beginning</td>
</tr>
<tr>
<td>command line.</td>
<td>Press Ctrl-E.</td>
<td>of the command line.</td>
</tr>
<tr>
<td>Move the cursor to the end of the command</td>
<td>Press Esc B.</td>
<td>Move the cursor back one word.</td>
</tr>
<tr>
<td>line.</td>
<td>Press Esc F.</td>
<td>Move the cursor forward one word.</td>
</tr>
<tr>
<td>Transpose the character to the left of the</td>
<td>Press Ctrl-T.</td>
<td>Recall the most recent entry in the buffer.</td>
</tr>
<tr>
<td>cursor with the character located at the cursor.</td>
<td>Press Ctrl-Y.</td>
<td></td>
</tr>
<tr>
<td>Recall commands from the buffer and paste</td>
<td>Press Esc Y.</td>
<td>Recall the next buffer entry.</td>
</tr>
<tr>
<td>them in the command line. The switch provides</td>
<td>The buffer contains only the last</td>
<td></td>
</tr>
<tr>
<td>a buffer with the last ten items that you</td>
<td>10 items that you have deleted or</td>
<td></td>
</tr>
<tr>
<td>deleted.</td>
<td>cut. If you press Esc Y more than</td>
<td></td>
</tr>
<tr>
<td>Delete entries if you make a mistake or</td>
<td>Press the Delete or Backspace key.</td>
<td>Erase the character to the left of</td>
</tr>
<tr>
<td>change your mind.</td>
<td></td>
<td>the cursor.</td>
</tr>
</tbody>
</table>
Using Editing Features

Chapter 2 Using the Command-Line Interface

Table 2-5 Editing Commands through Keystrokes (continued)

<table>
<thead>
<tr>
<th>Capability</th>
<th>Keystroke1</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Press Ctrl-D.</td>
<td>Delete the character at the cursor.</td>
<td></td>
</tr>
<tr>
<td>Press Ctrl-K.</td>
<td>Delete all characters from the cursor to the end of the command line.</td>
<td></td>
</tr>
<tr>
<td>Press Ctrl-U or Ctrl-X.</td>
<td>Delete all characters from the cursor to the beginning of the command line.</td>
<td></td>
</tr>
<tr>
<td>Press Ctrl-W.</td>
<td>Delete the word to the left of the cursor.</td>
<td></td>
</tr>
<tr>
<td>Press Esc D.</td>
<td>Delete from the cursor to the end of the word.</td>
<td></td>
</tr>
<tr>
<td>Press Esc L.</td>
<td>Change the word at the cursor to lowercase.</td>
<td></td>
</tr>
<tr>
<td>Press Esc U.</td>
<td>Capitalize letters from the cursor to the end of the word.</td>
<td></td>
</tr>
<tr>
<td>Press Ctrl-V or Esc Q.</td>
<td>Designate a particular keystroke as an executable command, perhaps as a shortcut.</td>
<td></td>
</tr>
<tr>
<td>Press the Return key.</td>
<td>Scroll down one line.</td>
<td></td>
</tr>
<tr>
<td>Press the Space bar.</td>
<td>Scroll down one screen.</td>
<td></td>
</tr>
<tr>
<td>Press Ctrl-L or Ctrl-R.</td>
<td>Redisplay the current command line if the switch suddenly sends a message to your screen.</td>
<td></td>
</tr>
</tbody>
</table>

1. The arrow keys function only on ANSI-compatible terminals such as VT100s.

Note The More prompt is used for any output that has more lines than can be displayed on the terminal screen, including show command output. You can use the Return and Space bar keystrokes whenever you see the More prompt.

Editing Command Lines that Wrap

You can use a wraparound feature for commands that extend beyond a single line on the screen. When the cursor reaches the right margin, the command line shifts ten spaces to the left. You cannot see the first ten characters of the line, but you can scroll back and check the syntax at the beginning of the command. The keystroke actions are optional.

To scroll back to the beginning of the command entry, press Ctrl-B or the left arrow key repeatedly. You can also press Ctrl-A to immediately move to the beginning of the line.

Note The arrow keys function only on ANSI-compatible terminals such as VT100s.
In this example, the access-list global configuration command entry extends beyond one line. When the cursor first reaches the end of the line, the line is shifted ten spaces to the left and redisplayed. The dollar sign ($) shows that the line has been scrolled to the left. Each time the cursor reaches the end of the line, the line is again shifted ten spaces to the left.

```
Switch(config)# access-list 101 permit tcp 131.108.2.5 255.255.255.0 131.108.1
Switch(config)# $ 101 permit tcp 131.108.2.5 255.255.255.0 131.108.1.20 255.25
Switch(config)# $t tcp 131.108.2.5 255.255.255.0 131.108.1.20 255.255.255.0 eq
Switch(config)# $108.2.5 255.255.255.0 131.108.1.20 255.255.255.0 eq 45
```

After you complete the entry, press Ctrl-A to check the complete syntax before pressing the Return key to execute the command. The dollar sign ($) appears at the end of the line to show that the line has been scrolled to the right:

```
Switch(config)# access-list 101 permit tcp 131.108.2.5 255.255.255.0 131.108.1$
```

The software assumes you have a terminal screen that is 80 columns wide. If you have a width other than that, use the terminal width privileged EXEC command to set the width of your terminal.

Use line wrapping with the command history feature to recall and modify previous complex command entries. For information about recalling previous command entries, see the “Editing Commands through Keystrokes” section on page 2-7.

Searching and Filtering Output of show and more Commands

You can search and filter the output for show and more commands. This is useful when you need to sort through large amounts of output or if you want to exclude output that you do not need to see. Using these commands is optional.

To use this functionality, enter a show or more command followed by the pipe character (|), one of the keywords begin, include, or exclude, and an expression that you want to search for or filter out:

```
command | {begin | include | exclude} regular-expression
```

Expressions are case sensitive. For example, if you enter | exclude output, the lines that contain output are not displayed, but the lines that contain Output are displayed.

This example shows how to include in the output display only lines where the expression protocol appears:

```
Switch# show interfaces | include protocol
Vlan1 is up, line protocol is up
Vlan10 is up, line protocol is down
GigabitEthernet1/0/1 is up, line protocol is down
GigabitEthernet1/0/2 is up, line protocol is up
```
Accessing the CLI

You can access the CLI through a console connection, through Telnet, or by using the browser.

You manage the switch stack and the stack member interfaces through the stack master. You cannot manage stack members on an individual switch basis. You can connect to the stack master through the console port of one or more stack members. Be careful with using multiple CLI sessions to the stack master. Commands you enter in one session are not displayed in the other sessions. Therefore, it is possible to lose track of the session from which you entered commands.

We recommend using one CLI session when managing the switch stack.

If you want to configure a specific stack member port, you must include the stack member number in the CLI command interface notation. For more information about interface notations, see the “Using Interface Configuration Mode” section on page 9-6.

To debug a specific stack member, you can access it from the stack master by using the session stack-member-number privileged EXEC command. The stack member number is appended to the system prompt. For example, Switch-2# is the prompt in privileged EXEC mode for stack member 2, and where the system prompt for the stack master is Switch. Only the show and debug commands are available in a CLI session to a specific stack member.

Accessing the CLI through a Console Connection or through Telnet

Before you can access the CLI, you must connect a terminal or PC to the switch console port and power on the switch as described in the hardware installation guide that shipped with your switch. Then, to understand the boot process and the options available for assigning IP information, see Chapter 4, “Assigning the Switch IP Address and Default Gateway.”

If your switch is already configured, you can access the CLI through a local console connection or through a remote Telnet session, but your switch must first be configured for this type of access. For more information, see the “Setting a Telnet Password for a Terminal Line” section on page 7-6.

You can use one of these methods to establish a connection with the switch:

- Connect the switch console port to a management station or dial-up modem. For information about connecting to the console port, refer to the switch hardware installation guide.
- Use any Telnet TCP/IP package from a remote management station. The switch must have network connectivity with the Telnet client, and the switch must have an enable secret password configured.

For information about configuring the switch for Telnet access, see the “Setting a Telnet Password for a Terminal Line” section on page 7-6. The switch supports up to 16 simultaneous Telnet sessions. Changes made by one Telnet user are reflected in all other Telnet sessions.

Accessing the CLI from a Browser

Before performing this procedure, make sure that you have met the software requirements (including browser and Java plug-in configurations) and have assigned IP information as described in the switch hardware installation guide. You also must assign a Telnet password to the switch (the stack or, if clustering, the command switch) as described in “Setting a Telnet Password for a Terminal Line” section on page 7-6.
To access the CLI from a web browser, follow these steps:

Step 1
Start one of the supported browsers.

Step 2
In the URL field, enter the IP address of the switch (the stack or, if clustering, the command switch).

Step 3
When the Cisco Systems Access page appears, click **Telnet** to start a Telnet session.

Step 4
Enter the switch password.

The user EXEC prompt appears on the management station.

Note
Copies of the HTML pages that you display are saved in your browser memory cache until you exit the browser session. A password is not required to redisplay these pages, including the Cisco Systems Access page. You can access the CLI by clicking **Web Console - HTML access to the command line interface** from a cached copy of the Cisco Systems Access page. To prevent unauthorized access to the CLI or to the Cluster Management Suite (CMS), exit your browser to end the browser session.
Getting Started with CMS

This chapter describes the Cluster Management Suite (CMS) on Catalyst 3750 switches. It contains these topics:

- Features, page 3-2
- Front Panel View, page 3-4
- Topology View, page 3-9
- Menus and Toolbar, page 3-14
- Interaction Modes, page 3-23
- Wizards, page 3-24
- Online Help, page 3-25
- CMS Window Components, page 3-26
- Accessing CMS, page 3-28
- Verifying Your Changes, page 3-30
- Saving Your Configuration, page 3-30
- Restoring Your Configuration, page 3-31
- CMS Preferences, page 3-31
- Using Different Versions of CMS, page 3-31
- Where to Go Next, page 3-32

It does not contain:

- Procedures for using the configuration windows in CMS. The online help gives this information.
- System requirements and procedures for browser and Java plug-in configuration. The hardware installation guide gives this information.

Refer to the appropriate switch documentation for descriptions of CMS on other Catalyst switches.
Features

CMS has menus, a toolbar, and network views (Figure 3-1) for managing switch clusters and individual switches from Web browsers such as Netscape Communicator or Microsoft Internet Explorer.

These network views can be displayed at the same time:

- The Front Panel view, which displays the front-panel image of a specific switch or the front-panel images of all switches in a cluster. From this view, you can select multiple ports or multiple switches and configure them with the same settings.

 When CMS is launched from the command switch, the Front Panel view displays the front-panel images of all switches in the cluster. When CMS is launched from a noncommand switch, the Front Panel view displays only the front panel of the specific switch.

 Note CMS from a standalone switch or from a noncommand switch is referred to as the *device manager*. The device manager is for configuring an individual switch. When you select the device manager, you launch a separate CMS session. The device manager interface can vary from one Catalyst switch to another.

- The Topology view, which displays a network map. It uses icons to represent switch clusters, cluster members (including stacks, each of which functions as a single member), cluster candidates, neighboring devices that are not eligible to join a cluster, and link types. You can select multiple switches and configure them to run with the same settings. You can also display link information in the form of link reports and link graphs.

 This view is available only when CMS is launched from the command switch.

The menu bar, toolbar, and popup menus give you access to configuration and management options:

- The menubar provides a complete list of options for managing a single switch and switch clusters.
- The toolbar provides buttons for commonly used switch and cluster configuration options, the legend, and online help.
- The port popup menu, in the Front Panel view, provides options specific for configuring and monitoring switch ports.
- The device popup menu, in either the Front Panel or the Topology views, provides switch and cluster configuration and monitoring options.
- The candidate, member, and link popup menus provide options for configuring and monitoring devices and links in the Topology view.

CMS includes these features to simplify configuration tasks:

- Interactive modes—guide mode and expert mode—to give you more control over the presentation of complex configuration options
- Wizards, which require minimal information from you to configure some complex features
- Comprehensive online help, which provides high-level concepts and procedures for performing tasks from configuration windows
- Two levels of access to the configuration options: read-write access for users who are allowed to change switch settings; read-only access for users who are only allowed to view switch settings
- A consistent set of GUI components (tabs, buttons, drop-down lists, tables, and so on) for a uniform approach to viewing and setting configuration parameters

Figure 3-1 CMS Features

- Menu bar
- Toolbar
- Move the cursor over the icon to display the tool tip. For example, the button displays the legend of icons and color codes.
- Click Guide or Expert interaction mode to change how some configuration options will be presented to you.

Front Panel view of the cluster.

Topology view of the cluster.
Front Panel View

When you launch CMS from a command switch, the Front Panel view displays the front-panel images of all the switches in the cluster (Figure 3-2).

Figure 3-2 Front Panel View from a Command Switch

When you launch CMS from a standalone or noncommand member switch, the Front Panel view displays only the front panel of the specific switch (Figure 3-3).

Figure 3-3 Front Panel View from a Standalone Switch

LEDs display the current port mode and the status of the switch and connected RPS. Left-click the Mode button to change the meaning of the port LEDs. Press Ctrl, and then left-click ports to select multiple ports. The color of the port LED reflects port or link status. Right-click a port to display the port popup menu, and select an option to view or change port-related settings.
Cluster Tree

The cluster tree (Figure 3-2) appears in the left frame of the Front Panel view and shows the name of the cluster and a list of members. If a stack is a member, you see its name and the stack units in a nested list. A stack unit refers to the devices within a stack. The color of a member (or stack unit) shows its status (Table 3-1).

If the box beside an icon is unchecked, the front-panel image that corresponds with the icon is not displayed. By checking and unchecking the boxes, you control the contents of the view.

The sequence of the icons (Figure 3-4) mirrors the sequence of the front-panel images. You can change the sequence by dragging and dropping icons or by selecting View > Arrange Front Panel.

If you want to configure switch or cluster settings on one or more switches, select the appropriate front-panel images. To select a front-panel image, click either the cluster-tree icon or the corresponding front-panel image. The front-panel image is then highlighted with a yellow outline. To select multiple front-panel images, press the Ctrl key, and left-click the cluster-tree icons or the front-panel images. To deselect an icon or image, press the Ctrl key, and left-click the icon or image.

If the cluster has many switches, you might need to scroll down the window to display the rest of the front-panel images. Instead of scrolling, you can click an icon in the cluster tree, and CMS then scrolls and displays the corresponding front-panel image.

Figure 3-4 Cluster Tree Icons

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 2 Switch</td>
<td>Layer 3 Switch</td>
</tr>
<tr>
<td>LRE Switch</td>
<td></td>
</tr>
</tbody>
</table>

Table 3-1 Cluster Tree Icon Colors

<table>
<thead>
<tr>
<th>Color</th>
<th>Device Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Switch is operating normally.</td>
</tr>
<tr>
<td>Yellow</td>
<td>The internal fan of the switch is not operating, or the switch is receiving power from an RPS.</td>
</tr>
<tr>
<td>Red</td>
<td>Switch is not powered on, has lost power, or the command switch is unable to communicate with the member switch.</td>
</tr>
</tbody>
</table>

Front-Panel Images

You can manage the switch from a remote station by using the front-panel images. The front-panel images are updated based on the network polling interval that you set from CMS > Preferences.

This section includes descriptions of the LED images. Similar descriptions of the switch LEDs are provided in the switch hardware installation guide.

Note

The Preferences window is available if your switch access level is read-only. For more information about the read-only access mode, see the “Access Modes in CMS” section on page 3-29.
Figure 3-5 shows the port icons as they appear in the front-panel images. To select a port, click the port on the front-panel image. The port is then highlighted with a yellow outline. To select multiple ports, you can:

- Press the left mouse button, drag the pointer over the group of ports that you want to select, and then release the mouse button.
- Press the Ctrl key, and click the ports that you want to select.
- Right-click a port, and select Select All Ports from the port popup menu.

Table 3-2 describes the colors representing the wavelengths on the Coarse Wave Division Multiplexer (CWDM) Gigabit interface converter (GBIC) modules. For port status LED information, see the “Port Modes and LEDs” section on page 3-7.

Table 3-2 Port Icon Colors for the CWDM GBIC Module Ports

<table>
<thead>
<tr>
<th>Wavelength</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1470 nanometers (nm)</td>
<td>Gray</td>
</tr>
<tr>
<td>1490 nm</td>
<td>Violet</td>
</tr>
<tr>
<td>1510 nm</td>
<td>Blue</td>
</tr>
<tr>
<td>1530 nm</td>
<td>Green</td>
</tr>
<tr>
<td>1550 nm</td>
<td>Yellow</td>
</tr>
<tr>
<td>1570 nm</td>
<td>Orange</td>
</tr>
<tr>
<td>1590 nm</td>
<td>Red</td>
</tr>
<tr>
<td>1610 nm</td>
<td>Brown</td>
</tr>
</tbody>
</table>
Redundant Power System LED

The redundant power system (RPS) LED shows the RPS status (Table 3-3). Certain switches in the switch cluster use a specific RPS model:

- Cisco RPS 300 (model PWR300-AC-RPS-N1)—Catalyst 2900 LRE XL, Catalyst 2950, Catalyst 3524-PWR XL, and Catalyst 3550 switches
- Cisco RPS 600 (model PWR600-AC-RPS)—Catalyst 2900 XL and Catalyst 3500 XL switches, except the Catalyst 2900 LRE XL and Catalyst 3524-PWR XL switches
- Cisco RPS 675 (model PWR675-AC-RPS-N1)—Catalyst 2950, Catalyst 2970, and Catalyst 3550 switches, and Catalyst 3750 switches.

Refer to the appropriate switch hardware documentation for RPS descriptions specific for the switch.

<table>
<thead>
<tr>
<th>Color</th>
<th>RPS Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black (off)</td>
<td>RPS is off or is not installed.</td>
</tr>
<tr>
<td>Green</td>
<td>RPS is connected and operational.</td>
</tr>
<tr>
<td>Blinking green</td>
<td>RPS is providing power to another switch in the stack.</td>
</tr>
<tr>
<td>Amber</td>
<td>RPS is connected but not functioning.</td>
</tr>
<tr>
<td></td>
<td>The RPS could be in standby mode. To put the RPS in Active mode, press</td>
</tr>
<tr>
<td></td>
<td>the Standby/Active button on the RPS, and the LED should turn green.</td>
</tr>
<tr>
<td></td>
<td>If it does not, one of these conditions could exist:</td>
</tr>
<tr>
<td></td>
<td>• One of the RPS power supplies could be down. Contact Cisco Systems.</td>
</tr>
<tr>
<td></td>
<td>• The RPS fan could have failed. Contact Cisco Systems.</td>
</tr>
<tr>
<td>Blinking amber</td>
<td>Internal power supply of the switch is down, and redundancy is lost. The</td>
</tr>
<tr>
<td></td>
<td>switch is operating on the RPS.</td>
</tr>
</tbody>
</table>

Port Modes and LEDs

The port modes (Table 3-4) determine the type of information displayed through the port LEDs. When you change port modes, the meanings of the port LED colors (Table 3-5) also change.

<table>
<thead>
<tr>
<th>Mode LED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT</td>
<td>Shows the link status of the ports. Default mode.</td>
</tr>
<tr>
<td>STACK</td>
<td>Shows the number of the switch in the stack.</td>
</tr>
<tr>
<td>DUPLX</td>
<td>Shows the duplex setting on the ports. The default setting on the 10/100</td>
</tr>
<tr>
<td></td>
<td>and 10/100/1000 ports is auto.</td>
</tr>
<tr>
<td>SPEED</td>
<td>Shows the speed setting on the ports. The default setting on the 10/100</td>
</tr>
<tr>
<td></td>
<td>and 10/100/1000 ports is auto.</td>
</tr>
</tbody>
</table>

Note

The bandwidth utilization mode (UTIL LED) does not appear on the front-panel images. Select Reports > Bandwidth Graphs to display the total bandwidth in use by the switch. Refer to the switch hardware installation guide for information about using the UTIL LED.

To select or change a mode, click the Mode button until the desired mode LED is green.
You can check the status of ports by using the switch graphic. Click the Mode button on the graphic to display the STAT, SPD, FDUP, and LINE PWR settings in sequence. The port LEDs change color to reflect the setting.

If the switches are stacked and if you press the Mode button on any one of the switches in the stack, all the switches in the stack also change to display the same selected mode. For example, if you press the mode button on the stack master to display SPEED, all the other switches in the stack will also display SPEED.

When the stack LED is selected, these LEDs are green when the StackWise ports are up and are amber when the ports are down:

- SFP ports LEDs 1 and 2 on the Catalyst 3750-24TS switch show the status for StackWise ports 1 and 2, respectively.
- SFP ports LEDs 3 and 4 on the Catalyst 3750-48TS switch show the status for StackWise ports 1 and 2, respectively.
- SFP ports LEDs 27 and 28 on the Catalyst 3750G-24TS switch show the status for StackWise ports 1 and 2, respectively.
- The 10/100/1000 port LEDs 23 and 24 on the Catalyst 3750G-24T switch show the status for StackWise ports 1 and 2, respectively.

Table 3-5 Port LEDs

<table>
<thead>
<tr>
<th>Port Mode</th>
<th>Port LED Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT</td>
<td>Cyan (off)</td>
<td>No link.</td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>Link present.</td>
</tr>
<tr>
<td></td>
<td>Amber</td>
<td>Link fault. Error frames can affect connectivity, and errors such as excessive collisions, CRC errors, and alignment and jabber errors are monitored for a link-fault indication. Port is not forwarding. Port was disabled by management, by an address violation, or by Spanning Tree Protocol (STP). Note After a port is reconfigured, the port LED can remain amber for up to 30 seconds as STP checks the switch for possible loops.</td>
</tr>
<tr>
<td></td>
<td>Brown</td>
<td>No link and port is administratively shut down.</td>
</tr>
<tr>
<td>STACK</td>
<td>Blinking green</td>
<td>Port that corresponds to the current stack member. Ports that correspond to other stack members are solid green.</td>
</tr>
<tr>
<td>DUPLX</td>
<td>Cyan (off)</td>
<td>Port is operating in half-duplex mode.</td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>Port is operating in full-duplex mode.</td>
</tr>
<tr>
<td>SPEED</td>
<td>Cyan (off)</td>
<td>Port is operating at 10 Mbps (10/100 ports) or no link (10/100/1000 ports and GBIC module ports).</td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>Port is operating at 100 Mbps (10/100 ports) or 1000 Mbps (GBIC module ports).</td>
</tr>
<tr>
<td></td>
<td>Blinking green</td>
<td>Port is operating at 1000 Mbps (10/100/1000 ports).</td>
</tr>
</tbody>
</table>

VLAN Membership Modes

Ports in the Front Panel view are outlined by colors (Table 3-6) when you click **Highlight VLAN Port Membership Modes** on the Configure VLANs tab on the VLAN window (VLAN > VLAN > Configure VLANs). The colors show the VLAN membership mode of each port.
The VLAN membership mode determines the kind of traffic the port carries and the number of VLANs it can belong to. For more information about these modes, see the “VLAN Port Membership Modes” section on page 10-3.

Note
This feature is not supported on the Catalyst 1900 and Catalyst 2820 switches.

| Table 3-6 VLAN Membership Modes |
|-------------------------------|-----------------|
| Mode | Color |
| Static access | Light green |
| Dynamic access | Pink |
| ISL trunk | Orange |
| 802.1Q trunk | Peach |
| Negotiate trunk | White |

Topology View

The Topology view shows how the devices within a cluster are connected and how the cluster is connected to other clusters and devices. From this view, you can add and remove cluster members.

This view shows the network topology at different levels of detail:

- When you right-click a cluster icon and select **Expand Cluster**, the Topology view displays the cluster in detail. You see the command switch, member switches (including stacks, each of which functions as a single member), and candidate switches that can join the cluster. You cannot see the details of any neighboring switch clusters (Figure 3-6).

- When you right-click a command-switch icon and select **Collapse Cluster**, the cluster collapses into a single icon. You see how the cluster is connected to other clusters, candidate switches, and devices that are not eligible to join the cluster (such as routers, access points, IP phones, and so on) (Figure 3-7).

- When you right-click a collapsed stack icon and select **Expand Stack**, the stack expands to show the links of stack members to cluster members and to each other (Figure 3-8).

Note
The Topology view displays only the cluster and network neighborhood of the specific command or member switch that you access. To display a different cluster, you need to access the command switch or member switch of that cluster.
You can arrange the device icons in this view. To move a device icon, click and drag the icon. To select multiple device icons, you can either:

- Press the left mouse button, drag the pointer over the group of device icons that you want to select, and then release the mouse button.
- Press the Ctrl key and click the device icons that you want to select.

After selecting the icons, drag them to any area in the view.

Figure 3-6 Expanded Cluster View
Chapter 3 Getting Started with CMS

Figure 3-7 Collapsed Cluster View

- Neighboring cluster connected to cluster1.
- Devices connected to cluster1 that are not eligible to join the cluster.

Figure 3-8 Expanded Stack View
Topology Icons and Labels

The Topology view and the cluster tree use the same set of device icons to represent clusters, Layer 3 switches, Layer 2 switches, and stacks. They also use the same labels to identify the command switch (CMD) the standby command switch (STBY), and the stack master (MASTER).

The Topology view uses additional icons to represent these types of neighboring devices:

- Customer premises equipment (CPE) devices that are connected to Long-Reach Ethernet (LRE) switches
- Devices that are not eligible to join the cluster, such as Cisco IP phones, Cisco access points, and Cisco Discovery Protocol (CDP)-capable hubs and routers
- The System Switch Processor (SSP) card in the Cisco Integrated Communications System (ICS) 7750 appears as a Layer 2 switch. SSP cards are not eligible to join switch clusters.
- Devices that are unknown, such as some Cisco devices and third-party devices

Tip
Neighboring devices are only displayed if they are connected to cluster members. To display neighboring devices in the Topology view, either add a switch to which they are connected to the cluster or enable that switch as a command switch.

Note
Candidate switches are distinguished by the color of their device label. Device labels and their colors are described in the “Colors in the Topology View” section on page 3-13.

To select a device, click the icon. The icon is then highlighted. To select multiple devices, you can either:

- Press the left mouse button, drag the pointer over the group of icons that you want to select, and release the mouse button.
- Press the Ctrl key and click the icons that you want to select.

The Topology view also uses a set of link icons to show the link type and status between two devices. To select a link, click it. To select multiple links, press the Ctrl key, and click the links.

Device and Link Information

The Topology view displays this device and link information:

- Cluster and switch names
- Switch MAC and IP addresses
- Link type between the devices
- Link speed and IDs of the interfaces on both ends of the link

In some cases, there are limitations on what is displayed:

- IP addresses are displayed only for the command switch and member switches.
- For a neighboring cluster, only the IP address of the command switch is displayed.
· The displayed link speeds are the actual link speeds except on the LRE links, which display the administratively assigned speed settings.

To choose the information you want to see, use the Topology Options window, which is displayed by selecting View > Topology Options.

Colors in the Topology View

The colors of the Topology view icons show the status of the devices and links (Table 3-7, Table 3-8, and Table 3-9).

| Table 3-7 Device Icon Colors |
|---|---|
| **Icon Color** | **Color Meaning** |
| Green | The device is operating. |
| Yellow¹ | The internal fan of the switch is not operating, or the switch is receiving power from an RPS. |
| Red¹ | The device is not operating. |

1. Available only on the cluster members.

| Table 3-8 Single Link Icon Colors |
|---|---|
| **Link Color** | **Color Meaning** |
| Green | Active link |
| Red | Down or blocked link |

| Table 3-9 Multiple Link Icon Colors |
|---|---|
| **Link Color** | **Color Meaning** |
| Both green | All links are active. |
| One green; one red | At least one link is active, and at least one other link is down or blocked. |
| Both red | All links are down or blocked. |

The color of a device label shows the cluster membership of the device (Table 3-10).

| Table 3-10 Device Label Colors |
|---|---|
| **Label Color** | **Color Meaning** |
| Green | A cluster member, either a member switch or the command switch |
| Cyan | A candidate switch that is eligible to join the cluster |
| Yellow | An unknown device or a device that is not eligible to join the cluster |
Topology Display Options

You can set the type of information displayed in the Topology view by changing the settings in the Topology Options window. To display this window, select View > Topology Options. From this window, you can select:

- Device icons (including IP Phones, CPEs, Neighbors, Access Points, and Candidates) that you want displayed in or filtered from the Topology View window
- Interface IDs and Actual Speed values that you want displayed in the Link window
- Host Names, IP addresses, and MAC address labels that you want displayed in the Node window

Menus and Toolbar

The configuration and monitoring options for configuring switches and switch clusters are available from menus and a toolbar.

Menu Bar

The menu bar provides the complete list of options for managing a cluster. These options can vary:

- A Catalyst 3750 switch can run the standard multilayer software image (SMI) or the enhanced multilayer image (EMI). Table 3-11 identifies the options available if the switch is running the EMI.
- Access modes affect the availability of features on CMS. Table 3-11 identifies which options are affected by your access mode: read-only (access level 1–14) and read-write (access level 15). For more information about access modes, see the “Access Modes in CMS” section on page 3-29.
- The option for enabling a command switch is only available from a CMS session launched from a command-capable switch.
- Cluster management tasks, such as upgrading the software of groups of switches, are available only from a CMS session that is launched from a command switch.
- If you launch CMS from a specific switch, the menu bar displays the features supported only by that switch.
- If you launch CMS from a command switch, the menu bar displays the features supported on all the switches in the cluster. (The “Cluster Command Switch Characteristics” section on page 6-3 lists the characteristics that command switches must have. The “Standby Cluster Command Switch Characteristics” section on page 6-3 lists the characteristics that standby command switches must have.)

Table 3-11 lists the menu-bar options available from a Catalyst 3750 command switch when the cluster contains only Catalyst 3750 member switches.

<table>
<thead>
<tr>
<th>Menu-Bar Options</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMS</td>
<td></td>
</tr>
<tr>
<td>Page Setup</td>
<td>Set default document printer properties to be used when printing from CMS.</td>
</tr>
<tr>
<td>Print Preview</td>
<td>View the way the CMS window or help file will appear when printed.</td>
</tr>
<tr>
<td>Print</td>
<td>Print a CMS window or help file.</td>
</tr>
</tbody>
</table>
Table 3-11 Menu Bar (continued)

<table>
<thead>
<tr>
<th>Menu-Bar Options</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guide Mode/Expert Mode<sup>1</sup></td>
<td>Select which interaction mode to use when you select a configuration option.</td>
</tr>
<tr>
<td>Preferences<sup>2</sup></td>
<td>Set CMS display properties, such as polling intervals, the default views to open at startup, and the color of administratively shutdown ports.</td>
</tr>
<tr>
<td>Administration</td>
<td></td>
</tr>
<tr>
<td>IP Addresses<sup>2</sup></td>
<td>Configure IP information for a switch.</td>
</tr>
<tr>
<td>SNMP<sup>2</sup></td>
<td>Enable and disable Simple Network Management Protocol (SNMP), enter community strings, and configure end stations as trap managers.</td>
</tr>
<tr>
<td>System Time<sup>2</sup></td>
<td>Configure the system time or configure the Network Time Protocol (NTP).</td>
</tr>
<tr>
<td>HTTP Port<sup>2</sup></td>
<td>Configure the Hypertext Transfer Protocol (HTTP) port number.</td>
</tr>
<tr>
<td>Users and Passwords</td>
<td>Configure usernames and passwords for privilege levels 0 to 15.</td>
</tr>
<tr>
<td>Console Baud Rate<sup>2</sup></td>
<td>Change the baud rate for the switch console port.</td>
</tr>
<tr>
<td>MAC Addresses<sup>2</sup></td>
<td>Enter dynamic, secure, and static addresses in a switch address table. You can also define the forwarding behavior of static addresses.</td>
</tr>
<tr>
<td>ARP<sup>2</sup></td>
<td>Display the device Address Resolution Protocol (ARP) table, and configure the ARP cache timeout setting.</td>
</tr>
<tr>
<td>Save Configuration<sup>1</sup></td>
<td>Save the configuration for the cluster or switch to Flash memory.</td>
</tr>
<tr>
<td>Restore Configuration</td>
<td>Restore the configuration file to one or more switches in the cluster.</td>
</tr>
<tr>
<td>Software Upgrade<sup>1</sup></td>
<td>Upgrade the software for the cluster or a switch.</td>
</tr>
<tr>
<td>System Reload<sup>1</sup></td>
<td>Reboot the switch with the latest installed software.</td>
</tr>
<tr>
<td>Event Notification</td>
<td>Create notification IDs that generate e-mail notifications when system events occur.</td>
</tr>
<tr>
<td>Cluster</td>
<td></td>
</tr>
<tr>
<td>Create Cluster<sup>1 3</sup></td>
<td>Designate a command switch, and name a cluster.</td>
</tr>
<tr>
<td>Delete Cluster<sup>1 4</sup></td>
<td>Delete a cluster.</td>
</tr>
<tr>
<td>Add to Cluster<sup>1 4</sup></td>
<td>Add a candidate to a cluster.</td>
</tr>
<tr>
<td>Remove from Cluster<sup>1 4</sup></td>
<td>Remove a member from the cluster.</td>
</tr>
<tr>
<td>Standby Command Switches<sup>2 4</sup></td>
<td>Create a Hot Standby Router Protocol (HSRP) standby group to provide command-switch redundancy.</td>
</tr>
<tr>
<td>Hop Count<sup>2 4</sup></td>
<td>Enter the number of hops away that a command switch looks for members and for candidate switches.</td>
</tr>
<tr>
<td>Device</td>
<td></td>
</tr>
<tr>
<td>Device Manager<sup>4</sup></td>
<td>Launch Device Manager for a specific switch.</td>
</tr>
<tr>
<td>Host Name<sup>1</sup></td>
<td>Change the host name of a switch.</td>
</tr>
<tr>
<td>STP<sup>2</sup></td>
<td>Display and configure STP parameters for a switch.</td>
</tr>
<tr>
<td>IGMP Snooping<sup>2</sup></td>
<td>Enable and disable Internet Group Management Protocol (IGMP) snooping and IGMP Immediate-Leave processing on the switch. Join or leave multicast groups, and configure multicast routers.</td>
</tr>
<tr>
<td>802.1X<sup>1</sup></td>
<td>Configure 802.1X authentication of devices as they are attached to LAN ports in a point-to-point infrastructure.</td>
</tr>
</tbody>
</table>
Table 3-11 Menu Bar (continued)

<table>
<thead>
<tr>
<th>Menu-Bar Options</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACL(^2) (guide mode available(^1))</td>
<td>Create and maintain access control lists (ACLs), and attach ACLs to specific ports.</td>
</tr>
<tr>
<td>Security Wizard(^1)</td>
<td>Filter certain traffic, such as HTTP traffic, to certain networks or devices. Restrict access to servers, networks, or application data from certain networks or devices.</td>
</tr>
<tr>
<td>Inter-VLAN Routing Wizard(^1)</td>
<td>Enable a Catalyst 3550 or 3750 switch to become a router of IP traffic between different VLANs</td>
</tr>
</tbody>
</table>
| QoS\(^2\) (guide mode available on some options\(^1\)) | Display submenu options to enable and disable quality of service (QoS) and to configure or modify these parameters:
 - Enable/disable\(^2\)
 - Trust settings\(^2\)
 - Queues\(^2\)
 - Maps\(^2\)
 - Classes\(^2\) (guide mode available\(^1\))
 - Aggregate policers\(^2\) (guide mode available\(^1\))
 - Policies\(^2\) (guide mode available\(^1\))
 - Statistics\(^2\)
 - Rate Limit\(^2\) |
| IP Routing\(^2, 5\) (guide mode available\(^1\)) | Display submenu options to:
 - Enable or disable IP routing
 - Configure IP routing protocols\(^2\) and static routing\(^2\) (guide mode available\(^1\)) |
| IP Multicast Wizard\(^1, 5\) | Provide minimum information to configure IP multicast routing on a device so that it can forward multicast packets as a part of a multicast tree. |
| IP Multicast Routing\(^2, 5\) | Enable and configure multicast routing. |
| Router Redundancy\(^2\) (guide mode available\(^1\)) | Add a switch to or remove a switch from an HSRP group. |
| Fallback Bridging\(^2\) | Create a fallback bridging group, modify a group, delete a group, or view its details. |
| AVVID Wizards\(^1\) | - Voice Wizard\(^1\)—Configure a port to send or receive voice traffic.
 - Video Wizard\(^1\)—Optimize multiple video servers for sending video traffic.
 - Data Wizard\(^1\)—Provide a higher priority to specific applications. |

Port

<table>
<thead>
<tr>
<th>Port Settings(^2)</th>
<th>Display and configure port parameters on a switch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Search</td>
<td>Search for a port through its description.</td>
</tr>
<tr>
<td>Port Security(^1)</td>
<td>Enable port security on a port.</td>
</tr>
<tr>
<td>EtherChannels(^2)</td>
<td>Group ports into logical units for high-speed links between switches.</td>
</tr>
<tr>
<td>SPAN(^2)</td>
<td>Enable Switch Port Analyzer (SPAN) port monitoring.</td>
</tr>
<tr>
<td>Protected Port(^2)</td>
<td>Configure a port to prevent it from receiving bridged traffic from another port on the same switch.</td>
</tr>
</tbody>
</table>
Table 3-11 Menu Bar (continued)

<table>
<thead>
<tr>
<th>Menu-Bar Options</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flooding Control<sup>2</sup></td>
<td>Block the normal flooding of unicast and multicast packets, and enable the switch to block packet storms.</td>
</tr>
<tr>
<td>VLAN</td>
<td></td>
</tr>
<tr>
<td>VLAN<sup>2</sup> (guide mode available<sup>1</sup>)</td>
<td>Display VLAN membership, assign ports to VLANs, and configure Inter-Switch Link (ISL) and 802.1Q trunks. Display and configure the VLAN Trunking Protocol (VTP) for interswitch VLAN membership.</td>
</tr>
<tr>
<td>Management VLAN<sup>2</sup></td>
<td>Change the management VLAN on the switch.</td>
</tr>
<tr>
<td>VMPS<sup>2</sup></td>
<td>Configure the VLAN Membership Policy Server (VMPS).</td>
</tr>
<tr>
<td>VLAN Maps<sup>2</sup></td>
<td>Configure VLAN maps.</td>
</tr>
<tr>
<td>Voice VLAN<sup>2</sup></td>
<td>Configure a port to use a voice VLAN for voice traffic, separating it from the VLANs for data traffic.</td>
</tr>
<tr>
<td>Reports</td>
<td></td>
</tr>
<tr>
<td>Inventory</td>
<td>Display the device type, software version, IP address, and other information about a switch.</td>
</tr>
<tr>
<td>Port Statistics</td>
<td>Display port statistics.</td>
</tr>
<tr>
<td>Bandwidth Graphs</td>
<td>Display graphs that plot the total bandwidth in use by the switch.</td>
</tr>
<tr>
<td>Link Graphs</td>
<td>Display a graph showing the bandwidth being used for the selected link.</td>
</tr>
<tr>
<td>Link Reports</td>
<td>Display the link report for two connected devices. If one device is an unknown device or a candidate, only the cluster-member side of the link displays.</td>
</tr>
<tr>
<td>QoS Reports</td>
<td>Display QoS reports of incoming or outgoing traffic for specific device interfaces.</td>
</tr>
<tr>
<td>QoS Graphs</td>
<td>Display QoS graphs of incoming or outgoing traffic for specific device interfaces.</td>
</tr>
<tr>
<td>ACL Reports</td>
<td>Display a report about ACL statistics.</td>
</tr>
<tr>
<td>Router Reports</td>
<td>Display reports with an excerpt from the routing table on the switch and the attributes of the HSRP group in which the switch participates.</td>
</tr>
<tr>
<td>Multicast</td>
<td>Display reports about multicast or IGMP statistics.</td>
</tr>
<tr>
<td>Fallback Bridging</td>
<td>Display a report of all fallback bridging groups and their attributes.</td>
</tr>
<tr>
<td>System Messages</td>
<td>Display the most recent system messages (IOS messages and switch-specific messages) sent by the switch software.</td>
</tr>
<tr>
<td>Tools</td>
<td></td>
</tr>
<tr>
<td>Ping and Trace</td>
<td>Ping a device or trace a Layer 3 route from a source address to a destination address.</td>
</tr>
<tr>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Refresh</td>
<td>Update the views with the latest status.</td>
</tr>
<tr>
<td>Front Panel</td>
<td>Display the Front Panel view.</td>
</tr>
<tr>
<td>Arrange Front Panel<sup>1 4</sup></td>
<td>Rearrange the order in which switches appear in the Front Panel view.</td>
</tr>
<tr>
<td>Topology<sup>4</sup></td>
<td>Display the Topology view.</td>
</tr>
<tr>
<td>Topology Options<sup>4</sup></td>
<td>Select the information to be displayed in the Topology view.</td>
</tr>
<tr>
<td>Automatic Topology Layout<sup>4</sup></td>
<td>Request CMS to rearrange the topology layout.</td>
</tr>
<tr>
<td>Save Topology Layout<sup>1 4</sup></td>
<td>Save the presentation of the cluster icons that you arranged in the Topology view to Flash memory.</td>
</tr>
</tbody>
</table>
Chapter 3 Getting Started with CMS

Table 3-11 Menu Bar (continued)

<table>
<thead>
<tr>
<th>Menu-Bar Options</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Window</td>
<td>List the open windows in your CMS session.</td>
</tr>
</tbody>
</table>

Help

<table>
<thead>
<tr>
<th>Help Option</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>Obtain an overview of the CMS interface.</td>
</tr>
<tr>
<td>What’s New</td>
<td>Obtain a description of the new CMS features.</td>
</tr>
<tr>
<td>Help For Active Window</td>
<td>Display the help for the active open window. This is the same as clicking Help from the active window.</td>
</tr>
<tr>
<td>Contents</td>
<td>List all of the available online help topics.</td>
</tr>
<tr>
<td>Legend</td>
<td>Display the legend, which describes the icons, labels, and links.</td>
</tr>
<tr>
<td>About</td>
<td>Display the CMS version number.</td>
</tr>
</tbody>
</table>

1. Not available in read-only mode. For more information about the read-only and read-write access modes, see the “Access Modes in CMS” section on page 3-29.
2. Some options from this menu option are not available in read-only mode.
3. Available only from a device manager session on a command-capable switch that is not a cluster member.
4. Available only from a cluster management session.
5. You can configure IGRP, EIGRP, OSPF, and multicast routing only from a switch running the EMI.

Table 3-12 Toolbar Buttons

<table>
<thead>
<tr>
<th>Toolbar Option</th>
<th>Keyboard Shortcut</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Print</td>
<td>Ctrl-P</td>
<td>Print a CMS window or help file.</td>
</tr>
<tr>
<td>Preferences</td>
<td>Ctrl-R</td>
<td>Set CMS display properties, such as polling intervals, the views to open at CMS startup, and the color of administratively shutdown ports.</td>
</tr>
<tr>
<td>Save Configuration</td>
<td>Ctrl-S</td>
<td>Save the configuration for the cluster or switch to Flash memory.</td>
</tr>
<tr>
<td>Software Upgrade</td>
<td>Ctrl-U</td>
<td>Upgrade the software for the cluster or a switch.</td>
</tr>
<tr>
<td>Port Settings</td>
<td>–</td>
<td>Display and configure port parameters on a switch.</td>
</tr>
<tr>
<td>VLAN</td>
<td>–</td>
<td>Display VLAN membership, assign ports to VLANs, and configure ISL and 802.1Q trunks.</td>
</tr>
<tr>
<td>Inventory</td>
<td>–</td>
<td>Display the device type, the software version, the IP address, and other information about a switch.</td>
</tr>
<tr>
<td>Refresh</td>
<td>–</td>
<td>Update the views with the latest status.</td>
</tr>
<tr>
<td>Front Panel</td>
<td>–</td>
<td>Display the Front Panel view.</td>
</tr>
<tr>
<td>Topology</td>
<td>–</td>
<td>Display the Topology view.</td>
</tr>
<tr>
<td>Topology Options</td>
<td>–</td>
<td>Select the information to be displayed in the Topology view.</td>
</tr>
</tbody>
</table>

The toolbar icons display commonly used switch and cluster configuration options and information windows such as legends and online help. Hover the cursor over an icon to display its use.

Table 3-12 describes the toolbar options, from left to right on the toolbar.
Chapter 3 Getting Started with CMS

Menus and Toolbar

Table 3-12 Toolbar Buttons (continued)

<table>
<thead>
<tr>
<th>Toolbar Option</th>
<th>Keyboard Shortcut</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Save Topology Layout</td>
<td>–</td>
<td>Save the presentation of the cluster icons that you arranged in the Topology view to Flash memory.</td>
</tr>
<tr>
<td>Legend</td>
<td>–</td>
<td>Display the legend that describes the icons, labels, and links.</td>
</tr>
<tr>
<td>Help For Active Window</td>
<td>F1 key</td>
<td>Display the help for the active open window. This is the same as clicking Help from the active window.</td>
</tr>
</tbody>
</table>

1. Not available in read-only mode. For more information about the read-only and read-write access modes, see the “Access Modes in CMS” section on page 3-29.
2. Some options are not available in read-only mode.
3. Available only from a cluster management session.

Front Panel View Popup Menus

These popup menus are available in the Front Panel view.

Device Popup Menu

You can display all switch and cluster configuration windows from the menu bar, or you can display commonly used configuration windows from the device popup menu (Table 3-13). To display the device popup menu, right-click the front-panel image of a switch.

Table 3-13 Device Popup Menu

<table>
<thead>
<tr>
<th>Popup Menu Option</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Manager¹</td>
<td>Launch Device Manager for the switch.</td>
</tr>
<tr>
<td>Host Name²</td>
<td>Change the name of the switch.</td>
</tr>
<tr>
<td>Delete Cluster³ ⁴</td>
<td>Delete a cluster.</td>
</tr>
<tr>
<td>Remove from Cluster³ ⁴</td>
<td>Remove a member from the cluster.</td>
</tr>
<tr>
<td>Bandwidth Graphs</td>
<td>Display graphs that plot the total bandwidth in use.</td>
</tr>
<tr>
<td>Properties</td>
<td>Display information about the device and port on either end of the link and the state of the link.</td>
</tr>
</tbody>
</table>

1. Available from a cluster member switch but not from the command switch.
2. Not available in read-only mode. For more information about the read-only mode, see the “Access Modes in CMS” section on page 3-29.
3. Available only from the command switch.
4. Available only from a cluster-management session.
Port Popup Menu

You can display all port configuration windows from the Port menu on the menu bar, or you can display commonly used port configuration windows from the port popup menu (Table 3-14). To display the port popup menu, right-click a port image.

Table 3-14 Port Popup Menu

<table>
<thead>
<tr>
<th>Popup Menu Option</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Settings¹</td>
<td>Display and configure port settings.</td>
</tr>
<tr>
<td>VLAN¹</td>
<td>Define the VLAN mode for a port or ports and add ports to VLANs.</td>
</tr>
<tr>
<td>Port Security¹²</td>
<td>Enable port security on a port.</td>
</tr>
<tr>
<td>Link Graphs³</td>
<td>Display a graph showing the bandwidth used by the selected link.</td>
</tr>
<tr>
<td>Select All Ports</td>
<td>Select all ports on the switch for global configuration.</td>
</tr>
</tbody>
</table>

¹. Some options from this menu option are not available in read-only mode.
². Available on switches that support the Port Security feature.
³. Available only when there is an active link on the port (that is, the port LED is green when in port status mode).

Topology View Popup Menus

These popup menus are available in the Topology view.

Link Popup Menu

You can display reports and graphs for a specific link displayed in the Topology view (Table 3-15). To display the link popup menu, right-click the link icon.

Table 3-15 Link Popup Menu

<table>
<thead>
<tr>
<th>Popup Menu Option</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link Report</td>
<td>Display the link report for two connected devices. If one device is an unknown device or a candidate, only the cluster member side of the link is displayed.</td>
</tr>
<tr>
<td>Link Graph</td>
<td>Display a graph showing the bandwidth used by the selected link. You can change the graph polling interval by selecting CMS > Preferences.</td>
</tr>
<tr>
<td>Properties</td>
<td>Display information about the device and port on either end of the link and the state of the link.</td>
</tr>
</tbody>
</table>

The Link Report and Link Graph options are not available if these devices are at both ends of the link:
- Candidate switches
- Catalyst 1900 and Catalyst 2820 switches
- Devices that are not eligible to join the cluster
If multiple links connect two devices or if a link connects to a collapsed icon, the Logical Link Content window appears when you right-click the link icon (Figure 3-9). Right-click a link icon in this window to display the link popup menu for the link.

Figure 3-9 Logical Link Content Window

Device Popup Menus

Specific devices in the Topology view display a specific popup menu:

- Cluster (Table 3-16)
- Command switch (Table 3-17)
- Member or standby command switch (Table 3-18)
- Stack (Table 3-19)
- Candidate switch with an IP address (Table 3-20)
- Candidate switch without an IP address (Table 3-21)
- Neighboring devices (Table 3-22)

Note

The device manager option in these popup menus is available in read-only mode on Catalyst 2900 XL and Catalyst 3500 XL switches running Release 12.0(5)WC2 and later. It is also available on Catalyst 2950 switches running Release 12.1(6)EA2 and later and on Catalyst 3550 switch running Release 12.1(8)EA1 or later. It is not available on the Catalyst 1900 and Catalyst 2820 switches.

To display a device popup menu, right-click an icon.

Table 3-16 Device Popup Menu of a Cluster Icon

<table>
<thead>
<tr>
<th>Popup Menu Option</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expand cluster</td>
<td>View a cluster-specific topology view.</td>
</tr>
<tr>
<td>Properties</td>
<td>Display information about the device.</td>
</tr>
</tbody>
</table>

Table 3-17 Device Popup Menu of a Command-Switch Icon

<table>
<thead>
<tr>
<th>Popup Menu Option</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collapse cluster</td>
<td>View the neighborhood outside a specific cluster.</td>
</tr>
<tr>
<td>Host Name¹</td>
<td>Change the host name of a switch.</td>
</tr>
</tbody>
</table>
Chapter 3 Getting Started with CMS

Menus and Toolbar

Table 3-17 Device Popup Menu of a Command-Switch Icon (continued)

<table>
<thead>
<tr>
<th>Popup Menu Option</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth Graphs</td>
<td>Display graphs that plot the total bandwidth in use by the switch.</td>
</tr>
<tr>
<td>Properties</td>
<td>Display information about the device.</td>
</tr>
</tbody>
</table>

1. Not available in read-only mode. For more information about the read-only and read-write access modes, see the “Access Modes in CMS” section on page 3-29.

Table 3-18 Device Popup Menu of a Member or Standby Command-Switch Icon

<table>
<thead>
<tr>
<th>Popup Menu Option</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remove from Cluster</td>
<td>Remove a member from the cluster.</td>
</tr>
<tr>
<td>Host Name</td>
<td>Change the host name of a switch.</td>
</tr>
<tr>
<td>Device Manager</td>
<td>Launch Device Manager for a switch.</td>
</tr>
<tr>
<td>Bandwidth Graphs</td>
<td>Display graphs that plot the total bandwidth in use by the switch.</td>
</tr>
<tr>
<td>Properties</td>
<td>Display information about the device.</td>
</tr>
</tbody>
</table>

1. Available only from a cluster-management session.
2. Available from a cluster member switch but not from the command switch.

Table 3-19 Device Popup Menu of a Stack

<table>
<thead>
<tr>
<th>Popup Menu Option</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expand Stack</td>
<td>View all the members of a stack.</td>
</tr>
<tr>
<td>Host Name</td>
<td>Change the host name of the stack.</td>
</tr>
<tr>
<td>Bandwidth Graphs</td>
<td>Display graphs that plot the total bandwidth in use by the stack.</td>
</tr>
<tr>
<td>Properties</td>
<td>Display information about the stack.</td>
</tr>
</tbody>
</table>

1. Available only from a cluster-management session.

Table 3-20 Device Popup Menu of a Candidate-Switch Icon (When the Candidate Switch Has an IP Address)

<table>
<thead>
<tr>
<th>Popup Menu Option</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add to Cluster</td>
<td>Add a candidate to a cluster.</td>
</tr>
<tr>
<td>Device Manager</td>
<td>Launch Device Manager for a switch.</td>
</tr>
<tr>
<td>Properties</td>
<td>Display information about the device.</td>
</tr>
</tbody>
</table>

1. Not available in read-only mode. For more information about the read-only and read-write access modes, see the “Access Modes in CMS” section on page 3-29.
2. Available from a cluster member switch but not from the command switch.
Interaction Modes

You can change the interaction mode of CMS to either guide or expert mode. Guide mode steps you through each feature option and gives information about it. Expert mode displays a configuration window in which you configure all the feature options together.

Guide Mode

Guide mode is not available if your switch access level is read-only. For more information about the read-only access mode, see the “Access Modes in CMS” section on page 3-29.

Guide mode is for users who want a step-by-step approach for completing a specific configuration task. It is not available for all features. A menu-bar option that has a person icon means that guide mode is available for that option.

When you click Guide Mode and then select a menu-bar option that supports guide mode, CMS displays a specific option of the feature with information about it. To configure the feature, you provide the information that CMS requests in each step until you click Finish in the last step. Clicking Cancel at any time closes and ends the configuration task without applying any changes.

If Expert Mode is selected and you want to use guide mode, you must click Guide Mode before selecting an option from the menu bar, tool bar, or popup menu. If you change the interaction mode after selecting a configuration option, the mode change does not take effect until you select another configuration option.
Expert Mode

Expert mode is for users who prefer to display all the options of a feature in a single CMS window. Click the Help button to get information about the options that are available.

Wizards

Note

Wizards are not available if your switch access level is read-only. For more information about the read-only access mode, see the “Access Modes in CMS” section on page 3-29.

Wizards simplify some configuration tasks on the switch. Similar to the guide mode, wizards take a step-by-step approach to completing a specific configuration task. Unlike guide mode, a wizard does not prompt you to provide information for all of the feature options. Instead, it prompts you for minimal information and then uses the default settings of the remaining options to set up default configurations.

Wizards are not available for all features. A menu-bar option that says Wizard means that it launches the wizard for that feature.

Tool Tips

CMS displays a popup message when you move your mouse over these devices:

- A yellow device icon in the cluster tree or in Topology view
 A popup displays a fault message, such as that the RPS is faulty or that the switch is unavailable because you are in read-only mode.

- A red device icon in the cluster tree or in Topology view
 A popup displays a message that the switch is down.

If you move your mouse over a table column heading, a popup displays the full heading.
Online Help

CMS has an online help system with many features to help you perform configuration and monitoring tasks from the CMS windows (Figure 3-10). These features include:

- Background information and concepts, available from the menu bar by selecting Help > Contents
- Task steps for configuration windows, available by clicking Help in the window
- An index of online help topics
- A glossary of terms used in the online help

You can send us feedback about the online help. Click Feedback to display an online form. After completing the form, click Submit to send your comments to Cisco. We appreciate and value your comments.

Figure 3-10 Online Help Features
CMS Window Components

CMS windows present configuration information. Figure 3-11 shows the components of a typical CMS window.

Figure 3-11 CMS Window Components

Host Name List

To display or change the configuration of a cluster member, you need to select the specific switch from the Host Name drop-down list. The list appears in the configuration window of each feature and lists only the cluster members that support that feature. For example, the Host Name list on the VLAN window would not include Catalyst 1900 and Catalyst 2820 switches even if they were part of the cluster. Similarly, the Host Name list on the LRE Profiles window would list only the LRE switches in the cluster.
Tabs, Lists, and Tables

Some CMS windows have *tabs* that present different sets of information. Tabs are arranged like folder headings across the top of the window. Click the tab to display its information.

Listed information can often be changed by selecting an item from a list. To change the information, select one or more items, and click **Modify**. Changing multiple items is limited to those items that apply to at least one of the selections.

Some CMS windows present information in a table format. You can edit the information in these tables.

Note

To display an incomplete column heading, you can resize the width of the column or hover your cursor over the heading to display a popup description.

Table Filtering

When you click **Filter** in a CMS window that contains a table, the Filter Editor window appears. The column names in the table become the field names in this window. You can enter selection criteria in these fields to display only the table rows that interest you. For procedures on using the Filter Editor window, refer to the online help.

Buttons

These are the most common buttons that you use to change the information in a CMS window:

- **OK**—Save any changes and close the window. If you made no changes, the window closes. If CMS detects errors in your entry, the window remains open. For more information about error detection, see the “Error Checking” section on page 3-30.
- **Apply**—Save any changes made in the window and leave the window open. If you made no changes, the Apply button is disabled.
- **Refresh**—Update the CMS window with the latest status of the device. Unsaved changes are lost.
- **Cancel**—Do not save any changes made in the window and close the window.
- **Help**—Display procedures on performing tasks from the window.
- **Modify**—Display the secondary window for changing information on the selected item or items. You usually select an item from a list or table and click **Modify**.
Accessing CMS

This section assumes the following:

- You know the IP address and password of the command switch or a specific switch. This information is either:
 - Assigned to the switch by following the setup program, as described in the release notes.
 - Changed on the switch by following the information in the “Assigning Switch Information” section on page 4-2 and “Preventing Unauthorized Access to Your Switch” section on page 7-1. Considerations for assigning IP addresses and passwords to a command switch and cluster members are described in the “IP Addresses” section on page 6-14 and the “Passwords” section on page 6-15.
- You know your access privilege level to the switch.
- You have referred to the release notes for system requirements and have followed the procedures for installing the required Java plug-ins and configuring your browser.

Caution

Copies of the CMS pages that you display are saved in your browser memory cache until you exit the browser session. A password is not required to redisplay these pages, including the Cisco Systems Access page. You can access the CLI by clicking Monitor the router - HTML access to the command line interface from a cached copy of the Cisco Systems Access page. To prevent unauthorized access to CMS and the CLI, exit your browser to end the browser session.

Note

If you have configured the Terminal Access Controller Access Control System Plus (TACACS+) or Remote Authentication Dial-In User Service (RADIUS) feature on the switch, you can still access the switch through CMS. For information about how inconsistent authentication configurations in switch clusters can affect access through CMS, see the “TACACS+ and RADIUS” section on page 6-17.

To access CMS, follow these steps:

Step 1 Enter the switch IP address and your privilege level in the browser Location field (Netscape Communicator) or Address field (Microsoft Internet Explorer). For example:

http://10.1.126.45:184/level/14/

where 10.1.126.45 is the switch IP address, 184 is the HTTP port, and level/14 is the privilege level. You do not need to enter the HTTP port if the switch is using HTTP port 80 (the default) or enter the privilege level if you have read-write access to the switch (privilege level is 15). For information about the HTTP port, see the “HTTP Access to CMS” section on page 3-29. For information about privilege levels, see the “Access Modes in CMS” section on page 3-29.

Step 2 When prompted for a user name and password, enter only the switch enable password. CMS prompts you a second time for a user name and password. Enter only the enable password again.

If you configure a local user name and password, make sure you enable it by using the ip http authentication global configuration command. Enter your user name and password when prompted.
Step 3 Click **Web Console**.

If you access CMS from a standalone or member switch, the device manager appears. If you access CMS from a command switch, you can display the Front Panel and Topology views.

Access Modes in CMS

CMS has two levels of access to the configuration options, read-write access and read-only access, and privilege levels from 0 to 15. This is how access levels and privilege levels are related:

- Privilege level 15 gives you read-write access to CMS.
- Privilege levels 1 to 14 give you read-only access to CMS. Any options in the CMS windows, menu bar, toolbar, and popup menus that change the switch or cluster configuration are not shown.
- Privilege level 0 denies access to CMS.

If you do not include a privilege level when you access CMS, the switch verifies that you have privilege-level 15. If you do not, you are denied access to CMS. If you do have privilege-level 15, you are granted read-write access. Therefore, you do not need to include the privilege level if it is 15. Entering zero denies access to CMS. For more information about privilege levels, see the “Preventing Unauthorized Access to Your Switch” section on page 7-1.

Note

If your cluster has these member switches running earlier software releases and if you have read-only access to them, some configuration windows for the switches display incomplete information:
- Catalyst 2900 XL or Catalyst 3500 XL member switches running Release 12.0(5)WC2 or earlier;
- Catalyst 2950 member switches running Release 12.0(5)WC2 or earlier;
- Catalyst 3550 member switches running Release 12.1(6)EA1 or earlier. For more information about this limitation, refer to the release notes.

Catalyst 1900 and Catalyst 2820 switches do not support read-only mode, nor do Catalyst 2900 XL switches with 4-MB CPU DRAM. In read-only mode, these switches appear as unavailable devices and cannot be configured from CMS.

HTTP Access to CMS

CMS uses Hypertext Transfer Protocol (HTTP), an in-band form of communication with the switch through an Ethernet port. HTTP allows switch management from a standard web browser. The default HTTP port is 80.

If you change the HTTP port, you must include the new port number when you enter the IP address in the browser Location or Address field (for example, http://10.1.126.45:184, where 184 is the new HTTP port number).

Do not disable or misconfigure the port through which your management station is communicating with the switch. You might want to write down the port number to which you are connected. Changes to the switch IP information should be done with care.

For information about connecting to a switch port, refer to the switch hardware installation guide.
Verifying Your Changes

CMS provides notification cues to help you track and confirm the changes you make.

Change Notification

A green border around a field or table cell means that you made an unsaved change to the field or table cell. Previous information in that field or table cell is displayed in the window status bar. When you save the changes or if you cancel the change, the green border disappears.

Error Checking

A red border around a field means that you entered invalid data in the field. An error message is displayed in the window status bar. When you enter valid data in the field, a green border replaces the red border until you either save or cancel the change.

If there is an error in communicating with the switch or if you make an error while performing an action, a message notifies you about the error.

Saving Your Configuration

Note

The Save Configuration option is not available if your switch access level is read-only. For more information about the read-only access mode, see the “Access Modes in CMS” section on page 3-29.

Tip

As you make cluster configuration changes (except for changes to the Topology view and in the Preferences window), make sure that you periodically save the configuration from the command switch. The configuration is saved on the command and member switches.

The front-panel images and CMS windows always display the running configuration of the switch. When you make a configuration change to a switch or switch cluster, the change becomes part of the running configuration. The change does not automatically become part of the configuration file, which is the startup configuration used each time the switch restarts. If you do not save your changes, they are lost when the switch restarts.

Note

Catalyst 1900 and Catalyst 2820 switches automatically save configuration changes to Flash memory as they occur.

For CMS procedures for saving your switch configuration, refer to the online help.
Restoring Your Configuration

After you save a switch configuration, you might restore the configuration to one or more switches for these reasons:

- You made an incorrect change to the current running configuration and want to reload a saved configuration.
- You need to reload a switch after a switch failure or power failure.
- You want to copy the configuration of a switch to other switches.

For CMS procedures for restoring a switch configuration, refer to the online help.

CMS Preferences

When you exit from CMS, your CMS preferences are saved to your PC in a file called .cms_properties. You can copy this file to other PCs. The file is stored in a default configuration directory, such as C:\Documents and Settings\username. If you cannot locate the CMS preferences file, select Start > Search > For Files or Folders..., and search for .cms_properties.

Using Different Versions of CMS

When managing switch clusters through CMS, remember:

- Clusters can have a mix of switch models using different IOS releases.
- CMS in earlier IOS releases and on different switch platforms might look and function differently from CMS in this IOS release.

When you select Device > Device Manager for a cluster member, a new browser session is launched, and the CMS version for that switch is displayed.

Here are examples of how CMS can differ between IOS releases and switch platforms:

- On Catalyst switches running Release 12.0(5)WC2 or earlier or Release 12.1(6)EA1 or earlier, the CMS versions in those software releases might appear similar but are not the same as this release. For example, the Topology view in this release is not the same as the Topology view or Cluster View in those earlier software releases.
- CMS on the Catalyst 1900 and Catalyst 2820 switches is referred to as Switch Manager. Cluster management options are not available on these switches. This is the earliest version of CMS.

Refer to the documentation specific to the switch and its IOS release for descriptions of the CMS version you are using.
Where to Go Next

Before configuring the switch, refer to these places for start-up information:

- Switch release notes on Cisco.com:
 - CMS software requirements
 - Procedures for running the setup program
 - Procedures for browser configuration
 - Procedures for accessing CMS
- Chapter 4, “Assigning the Switch IP Address and Default Gateway”
- Chapter 7, “Administering the Switch”

The rest of this guide provides information about and CLI procedures for the software features supported in this release. For CMS procedures and window descriptions, refer to the online help.
Assigning the Switch IP Address and Default Gateway

This chapter describes how to create the initial switch configuration (for example, assigning the switch IP address and default gateway information) for the Catalyst 3750 switch by using a variety of automatic and manual methods. It also describes how to modify the switch startup configuration.

Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

Note

For complete syntax and usage information for the commands used in this chapter, refer to the command reference for this release.

This chapter consists of these sections:

- Understanding the Boot Process, page 4-1
- Assigning Switch Information, page 4-2
- Checking and Saving the Running Configuration, page 4-10
- Modifying the Startup Configuration, page 4-12
- Scheduling a Reload of the Software Image, page 4-17

Understanding the Boot Process

To start your switch, you need to follow the procedures in the hardware installation guide about installing and powering on the switch, and setting up the initial configuration (IP address, subnet mask, default gateway, secret and Telnet passwords, and so forth) of the switch.

The normal boot process involves the operation of the boot loader software, which performs these activities:

- Performs low-level CPU initialization. It initializes the CPU registers, which control where physical memory is mapped, its quantity, its speed, and so forth.
- Performs power-on self-test (POST) for the CPU subsystem. It tests the CPU DRAM and the portion of the Flash device that makes up the Flash file system.
- Initializes the Flash file system on the system board.
- Loads a default operating system software image into memory and boots the switch.
The boot loader provides access to the Flash file system before the operating system is loaded. Normally, the boot loader is used only to load, uncompress, and launch the operating system. After the boot loader gives the operating system control of the CPU, the boot loader is not active until the next system reset or power-on.

The boot loader also provides trap-door access into the system if the operating system has problems serious enough that it cannot be used. The trap-door mechanism provides enough access to the system so that if it is necessary, you can format the Flash file system, reinstall the operating system software image by using the XMODEM Protocol, recover from a lost or forgotten password, and finally restart the operating system. For more information, see the “Recovering from Corrupted Software By Using the XMODEM Protocol” section on page 31-2 and the “Recovering from a Lost or Forgotten Password” section on page 31-4.

You can disable password recovery. For more information, see the “Disabling Password Recovery” section on page 7-5.

Before you can assign switch information, make sure you have connected a PC or terminal to the console port, and configured the PC or terminal-emulation software baud rate and character format to match these of the switch console port:

- Baud rate default is 9600.
- Data bits default is 8.
- Stop bits default is 1.
- Parity settings default is none.

Assigning Switch Information

You can assign IP information through the switch setup program, through a Dynamic Host Configuration Protocol (DHCP) server, or manually.

Use the switch setup program if you are a new user and want to be prompted for specific IP information. With this program, you can also configure a host name and an enable secret password. It gives you the option of assigning a Telnet password (to provide security during remote management) and configuring your switch as a command or member switch of a cluster or as a standalone switch. For more information about the setup program, refer to the release notes on Cisco.com.

The switch stack is managed through a single IP address. The IP address is a system-level setting and is not specific to the stack master or to any other stack member. You can still manage the stack through the same IP address even if you remove the stack master or any other stack member from the stack, provided there is IP connectivity.

Stack members retain their IP address when you remove them from a switch stack. To avoid a conflict by having two devices with the same IP address in your network, change the IP address of the switch that you removed from the switch stack.
Assigning the Switch IP Address and Default Gateway

Assigning Switch Information

Use a DHCP server for centralized control and automatic assignment of IP information once the server is configured.

Note

If you are using DHCP, do not respond to any of the questions in the setup program until the switch receives the dynamically-assigned IP address and reads the configuration file.

Use the manual method of configuration if you are an experienced user familiar with the switch configuration steps; otherwise, use the setup program described earlier.

This section contains this configuration information:

- Default Switch Information, page 4-3
- Understanding DHCP-Based Autoconfiguration, page 4-3
- Manually Assigning IP Information, page 4-9

Default Switch Information

Table 4-1 shows the default switch information.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address and subnet mask</td>
<td>No IP address or subnet mask are defined.</td>
</tr>
<tr>
<td>Default gateway</td>
<td>No default gateway is defined.</td>
</tr>
<tr>
<td>Enable secret password</td>
<td>No password is defined.</td>
</tr>
<tr>
<td>Host name</td>
<td>The factory-assigned default host name is Switch.</td>
</tr>
<tr>
<td>Telnet password</td>
<td>No password is defined.</td>
</tr>
<tr>
<td>Cluster command switch functionality</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Cluster name</td>
<td>No cluster name is defined.</td>
</tr>
</tbody>
</table>

Understanding DHCP-Based Autoconfiguration

The DHCP provides configuration information to Internet hosts and internetworking devices. This protocol consists of two components: one for delivering configuration parameters from a DHCP server to a device and a mechanism for allocating network addresses to devices. DHCP is built on a client-server model, in which designated DHCP servers allocate network addresses and deliver configuration parameters to dynamically configured devices.

During DHCP-based autoconfiguration, your switch (DHCP client) is automatically configured at startup with IP address information and a configuration file.

With DHCP-based autoconfiguration, no DHCP client-side configuration is needed on your switch. However, you need to configure the DHCP server for various lease options associated with IP addresses. If you are using DHCP to relay the configuration file location on the network, you might also need to configure a Trivial File Transfer Protocol (TFTP) server and a Domain Name System (DNS) server.
Assigning switch information

Note

We recommend a redundant connection between a switch stack and the DHCP, DNS, and TFTP servers. This is to help ensure that these servers remain accessible in case one of the connected stack members is removed from the switch stack.

The DHCP server can be on the same LAN or on a different LAN than the switch. If the DHCP server is running on a different LAN, you should configure a DHCP relay. A relay device forwards broadcast traffic between two directly connected LANs. A router does not forward broadcast packets, but it forwards packets based on the destination IP address in the received packet.

DHCP-based autoconfiguration replaces the BOOTP client functionality on your switch.

DHCP Client Request Process

When you boot your switch, the DHCP client is invoked and automatically requests configuration information from a DHCP server when the configuration file is not present on the switch.

Figure 4-1 shows the sequence of messages that are exchanged between the DHCP client and the DHCP server.

Figure 4-1 DHCP Client and Server Message Exchange

The client, Switch A, broadcasts a DHCPDISCOVER message to locate a DHCP server. The DHCP server offers configuration parameters (such as an IP address, subnet mask, gateway IP address, DNS IP address, a lease for the IP address, and so forth) to the client in a DHCPOFFER unicast message.

In a DHCPREQUEST broadcast message, the client returns a formal request for the offered configuration information to the DHCP server. The formal request is broadcast so that all other DHCP servers that received the DHCPDISCOVER broadcast message from the client can reclaim the IP addresses that they offered to the client.

The DHCP server confirms that the IP address has been allocated to the client by returning a DHCP ACK unicast message to the client. With this message, the client and server are bound, and the client uses configuration information received from the server. The amount of information the switch receives depends on how you configure the DHCP server. For more information, see the “Configuring the DHCP Server” section on page 4-5.

If the configuration parameters sent to the client in the DHCPOFFER unicast message are invalid (a configuration error exists), the client returns a DHCPDECLINE broadcast message to the DHCP server.

The DHCP server sends the client a DHCPNAK denial broadcast message, which means that the offered configuration parameters have not been assigned, that an error has occurred during the negotiation of the parameters, or that the client has been slow in responding to the DHCPOFFER message (the DHCP server assigned the parameters to another client).

A DHCP client might receive offers from multiple DHCP or BOOTP servers and can accept any of the offers; however, the client usually accepts the first offer it receives. The offer from the DHCP server is not a guarantee that the IP address is allocated to the client; however, the server usually reserves the
Assigning the Switch IP Address and Default Gateway

Assigning Switch Information

You should configure the DHCP server with reserved leases that are bound to each switch by the switch hardware address.

If you want the switch to receive IP address information, you must configure the DHCP server with these lease options:

- IP address of the client (required)
- Subnet mask of the client (required)
- DNS server IP address (optional)
- Router IP address (default gateway address to be used by the switch) (required)

If you want the switch to receive the configuration file from a TFTP server, you must configure the DHCP server with these lease options:

- TFTP server name (required)
- Boot filename (the name of the configuration file that the client needs) (recommended)
- Host name (optional)

Depending on the settings of the DHCP server, the switch can receive IP address information, the configuration file, or both.

If you do not configure the DHCP server with the lease options described earlier, it replies to client requests with only those parameters that are configured. If the IP address and subnet mask are not in the reply, the switch is not configured. If the router IP address or TFTP server name are not found, the switch might send broadcast, instead of unicast, TFTP requests. Unavailability of other lease options does not affect autoconfiguration.

The DHCP server can be on the same LAN or on a different LAN than the switch. If the DHCP server is running on a different LAN, you should configure a DHCP relay. For more information, see the “Configuring the Relay Device” section on page 4-6. If your DHCP server is a Cisco device, refer to the “IP Addressing and Services” section in the Cisco IOS IP and IP Routing Configuration Guide for Release 12.1.

Configuring the TFTP Server

Based on the DHCP server configuration, the switch attempts to download one or more configuration files from the TFTP server. If you configured the DHCP server to respond to the switch with all the options required for IP connectivity to the TFTP server, and if you configured the DHCP server with a TFTP server name, address, and configuration filename, the switch attempts to download the specified configuration file from the specified TFTP server.

If you did not specify the configuration filename, the TFTP server, or if the configuration file could not be downloaded, the switch attempts to download a configuration file by using various combinations of filenames and TFTP server addresses. The files include the specified configuration filename (if any) and these files: network-config, cisconet.cfg, hostname.config, or hostname.cfg, where hostname is the switch’s current hostname. The TFTP server addresses used include the specified TFTP server address (if any) and the broadcast address (255.255.255.255).
For the switch to successfully download a configuration file, the TFTP server must contain one or more configuration files in its base directory. The files can include these files:

- The configuration file named in the DHCP reply (the actual switch configuration file).
- The network-config or the cisconet.cfg file (known as the default configuration files).
- The router-config or the ciscortr.cfg file (These files contain commands common to all switches. Normally, if the DHCP and TFTP servers are properly configured, these files are not accessed.)

If you specify the TFTP server name in the DHCP server-lease database, you must also configure the TFTP server name-to-IP-address mapping in the DNS-server database.

If the TFTP server to be used is on a different LAN from the switch, or if it is to be accessed by the switch through the broadcast address (which occurs if the DHCP server response does not contain all the required information described earlier), a relay must be configured to forward the TFTP packets to the TFTP server. For more information, see the “Configuring the Relay Device” section on page 4-6. The preferred solution is to configure the DHCP server with all the required information.

Configuring the DNS

The DHCP server uses the DNS server to resolve the TFTP server name to an IP address. You must configure the TFTP server name-to-IP address map on the DNS server. The TFTP server contains the configuration files for the switch.

You can configure the IP addresses of the DNS servers in the lease database of the DHCP server from where the DHCP replies will retrieve them. You can enter up to two DNS server IP addresses in the lease database.

The DNS server can be on the same or on a different LAN as the switch. If it is on a different LAN, the switch must be able to access it through a router.

Configuring the Relay Device

You must configure a relay device when a switch sends broadcast packets that need to be responded to by a host on a different LAN. Examples of broadcast packets that the switch might send are DHCP, DNS, and in some cases, TFTP packets. You must configure this relay device to forward received broadcast packets on an interface to the destination host.

If the relay device is a Cisco router, enable IP routing (`ip routing` global configuration command), and configure helper addresses by using the `ip helper-address` interface configuration command.

For example, in Figure 4-2, configure the router interfaces as follows:

On interface 10.0.0.2:

```
router(config-if)# ip helper-address 20.0.0.2
router(config-if)# ip helper-address 20.0.0.3
router(config-if)# ip helper-address 20.0.0.4
```

On interface 20.0.0.1

```
router(config-if)# ip helper-address 10.0.0.1
```

Note

If the switch is acting as the relay device, configure the interface as a routed port. For more information, see the “Routed Ports” section on page 9-3 and the “Configuring Layer 3 Interfaces” section on page 9-16.
Obtaining Configuration Files

Depending on the availability of the IP address and the configuration filename in the DHCP reserved lease, the switch obtains its configuration information in these ways:

- The IP address and the configuration filename is reserved for the switch and provided in the DHCP reply (one-file read method).

The switch receives its IP address, subnet mask, TFTP server address, and the configuration filename from the DHCP server. The switch sends a unicast message to the TFTP server to retrieve the named configuration file from the base directory of the server, and upon receipt, completes its boot-up process.

- The IP address and the configuration filename is reserved for the switch, but the TFTP server address is not provided in the DHCP reply (one-file read method).

The switch receives its IP address, subnet mask, and the configuration filename from the DHCP server. The switch sends a broadcast message to a TFTP server to retrieve the named configuration file from the base directory of the server, and upon receipt, completes its boot-up process.

- Only the IP address is reserved for the switch and provided in the DHCP reply. The configuration filename is not provided (two-file read method).

The switch receives its IP address, subnet mask, and the TFTP server address from the DHCP server. The switch sends a unicast message to the TFTP server to retrieve the network-confg or cisconet.cfg default configuration file. (If the network-confg file cannot be read, the switch reads the cisconet.cfg file.)

The default configuration file contains the host names-to-IP-address mapping for the switch. The switch fills its host table with the information in the file and obtains its host name. If the host name is not found in the file, the switch uses the host name in the DHCP reply. If the host name is not specified in the DHCP reply, the switch uses the default Switch as its host name.

After obtaining its host name from the default configuration file or the DHCP reply, the switch reads the configuration file that has the same name as its host name (hostname-confg or hostname.cfg, depending on whether network-confg or cisconet.cfg was read earlier) from the TFTP server. If the cisconet.cfg file is read, the filename of the host is truncated to eight characters.

If the switch cannot read the network-confg, cisconet.cfg, or the hostname file, it reads the router-confg file. If the switch cannot read the router-confg file, it reads the ciscorr.cfg file.
The switch broadcasts TFTP server requests if the TFTP server is not obtained from the DHCP replies, if all attempts to read the configuration file through unicast transmissions fail, or if the TFTP server name cannot be resolved to an IP address.

Example Configuration

Figure 4-3 shows a sample network for retrieving IP information by using DHCP-based autoconfiguration.

Figure 4-3 DHCP-Based Autoconfiguration Network Example

Table 4-2 shows the configuration of the reserved leases on the DHCP server.

Table 4-2 DHCP Server Configuration

<table>
<thead>
<tr>
<th></th>
<th>Switch-1</th>
<th>Switch-2</th>
<th>Switch-3</th>
<th>Switch-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binding key</td>
<td>00e0.9f1e.2001</td>
<td>00e0.9f1e.2002</td>
<td>00e0.9f1e.2003</td>
<td>00e0.9f1e.2004</td>
</tr>
<tr>
<td>(hardware address)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP address</td>
<td>10.0.0.21</td>
<td>10.0.0.22</td>
<td>10.0.0.23</td>
<td>10.0.0.24</td>
</tr>
<tr>
<td>Subnet mask</td>
<td>255.255.255.0</td>
<td>255.255.255.0</td>
<td>255.255.255.0</td>
<td>255.255.255.0</td>
</tr>
<tr>
<td>Router address</td>
<td>10.0.0.10</td>
<td>10.0.0.10</td>
<td>10.0.0.10</td>
<td>10.0.0.10</td>
</tr>
<tr>
<td>DNS server address</td>
<td>10.0.0.2</td>
<td>10.0.0.2</td>
<td>10.0.0.2</td>
<td>10.0.0.2</td>
</tr>
<tr>
<td>TFTP server name</td>
<td>maritsu or 10.0.0.3</td>
<td>maritsu or 10.0.0.3</td>
<td>maritsu or 10.0.0.3</td>
<td>maritsu or 10.0.0.3</td>
</tr>
<tr>
<td>Boot filename</td>
<td>switch1-config</td>
<td>switch2-config</td>
<td>switch3-config</td>
<td>switch4-config</td>
</tr>
<tr>
<td>(configuration file) (optional)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Host name (optional)</td>
<td>switch1</td>
<td>switch2</td>
<td>switch3</td>
<td>switch4</td>
</tr>
</tbody>
</table>
DNS Server Configuration

The DNS server maps the TFTP server name maritsu to IP address 10.0.0.3.

TFTP Server Configuration (on UNIX)

The TFTP server base directory is set to /tftpserver/work/. This directory contains the network-confg file used in the two-file read method. This file contains the host name to be assigned to the switch based on its IP address. The base directory also contains a configuration file for each switch (switch1-confg, switch2-confg, and so forth) as shown in this display:

```
prompt> cd /tftpserver/work/
prompt> ls
network-confg
switch1-confg
switch2-confg
switch3-confg
switch4-confg
```

```
prompt> cat network-confg
ip host switch1 10.0.0.21
ip host switch2 10.0.0.22
ip host switch3 10.0.0.23
ip host switch4 10.0.0.24
```

DHCP Client Configuration

No configuration file is present on Switch 1 through Switch 4.

Configuration Explanation

In Figure 4-3, Switch 1 reads its configuration file as follows:

- It obtains its IP address 10.0.0.21 from the DHCP server.
- If no configuration filename is given in the DHCP server reply, Switch 1 reads the network-confg file from the base directory of the TFTP server.
- It adds the contents of the network-confg file to its host table.
- It reads its host table by indexing its IP address 10.0.0.21 to its host name (switch1).
- It reads the configuration file that corresponds to its host name; for example, it reads switch1-confg from the TFTP server.

Switches 2 through 4 retrieve their configuration files and IP addresses in the same way.

Manually Assigning IP Information

Beginning in privileged EXEC mode, follow these steps to manually assign IP information to multiple switched virtual interfaces (SVIs) or ports:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>interface vlan vlan-id</td>
<td>Enter interface configuration mode, and enter the VLAN to which the IP information is assigned. The range is 1 to 4094; do not enter leading zeros.</td>
</tr>
<tr>
<td>3</td>
<td>ip address ip-address subnet-mask</td>
<td>Enter the IP address and subnet mask.</td>
</tr>
<tr>
<td>4</td>
<td>exit</td>
<td>Return to global configuration mode.</td>
</tr>
</tbody>
</table>
Chapter 4 Assigning the Switch IP Address and Default Gateway

Checking and Saving the Running Configuration

You can check the configuration settings you entered or changes you made by entering this privileged EXEC command:

```
Switch# show running-config
```

```
Building configuration...

Current configuration: 1363 bytes

! version 12.1
no service pad
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname Stack1
!
enable secret 5 $1$ej9.$DMUvAUnZ0AvmgqBEz1xEC!
!
interface GigabitEthernet6/0/1
no switchport
ip address 172.20.137.50 255.255.255.0
!
interface GigabitEthernet6/0/2
!
interface GigabitEthernet6/0/3
mvr type source
!
interface GigabitEthernet6/0/4
!
interface GigabitEthernet6/0/5
!
```

Command Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td><code>ip default-gateway ip-address</code></td>
<td>Enter the IP address of the next-hop router interface that is directly connected to the switch where a default gateway is being configured. The default gateway receives IP packets with unresolved destination IP addresses from the switch. Once the default gateway is configured, the switch has connectivity to the remote networks with which a host needs to communicate. Note When your switch is configured to route with IP, it does not need to have a default gateway set.</td>
</tr>
<tr>
<td>6</td>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>7</td>
<td><code>show running-config</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>8</td>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove the switch IP address, use the `no ip address` interface configuration command. If you are removing the address through a Telnet session, your connection to the switch will be lost. To remove the default gateway address, use the `no ip default-gateway` global configuration command.

For information on setting the switch system name, protecting access to privileged EXEC commands, and setting time and calendar services, see Chapter 7, “Administering the Switch.”

Checking and Saving the Running Configuration

You can check the configuration settings you entered or changes you made by entering this privileged EXEC command:

```
Switch# show running-config
```

```
Building configuration...

Current configuration: 1363 bytes

! version 12.1
no service pad
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname Stack1
!
enable secret 5 $1$ej9.$DMUvAUnZ0AvmgqBEz1xEC!
!
interface GigabitEthernet6/0/1
no switchport
ip address 172.20.137.50 255.255.255.0
!
interface GigabitEthernet6/0/2
!
interface GigabitEthernet6/0/3
mvr type source
!
interface GigabitEthernet6/0/4
!
interface GigabitEthernet6/0/5
!
```
interface GigabitEthernet6/0/6
!
interface GigabitEthernet6/0/7
!
interface GigabitEthernet6/0/8
!
interface GigabitEthernet6/0/9
 no ip address
!
interface GigabitEthernet6/0/10
!
interface GigabitEthernet6/0/11
!
interface GigabitEthernet6/0/12
 ...
interface VLAN1
 ip address 172.20.137.50 255.255.255.0
 no ip directed-broadcast
!
 ip default-gateway 172.20.137.1 !
!
 snmp-server community private RW
 snmp-server community public RO
 snmp-server community private@es0 RW
 snmp-server community public@es0 RO
 snmp-server chassis-id 0x12
!
end

To store the configuration or changes you have made to your startup configuration in Flash memory, enter this privileged EXEC command:

Switch# copy running-config startup-config
Destination filename [startup-config]?
Building configuration...

This command saves the configuration settings that you made. If you fail to do this, your configuration will be lost the next time you reload the system. To display information stored in the NVRAM section of Flash memory, use the show startup-config or more startup-config privileged EXEC command.

For more information about alternative locations to copy the configuration file, see Appendix B, “Working with the IOS File System, Configuration Files, and Software Images.”
Modifying the Startup Configuration

This section describes how to modify the switch startup configuration. It contains this configuration information:

- Default Boot Configuration, page 4-12
- Automatically Downloading a Configuration File, page 4-12
- Booting Manually, page 4-13
- Booting a Specific Software Image, page 4-14
- Controlling Environment Variables, page 4-15

See also “Switch Stack Configuration Files” section on page 5-8 and Appendix B, “Working with the IOS File System, Configuration Files, and Software Images,” for information about switch stack configuration files.

Default Boot Configuration

Table 4-3 shows the default boot configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating system software image</td>
<td>The switch attempts to automatically boot the system using information in the BOOT environment variable. If the variable is not set, the switch attempts to load and execute the first executable image it can by performing a recursive, depth-first search throughout the Flash file system. The IOS image is stored in a directory that has the same name as the image file (excluding the .bin extension). In a depth-first search of a directory, each encountered subdirectory is completely searched before continuing the search in the original directory.</td>
</tr>
<tr>
<td>Configuration file</td>
<td>Configured switches use the config.text file stored on the system board in Flash memory. A new switch has no configuration file.</td>
</tr>
</tbody>
</table>
Specifying the Filename to Read and Write the System Configuration

By default, the IOS software uses the file `config.text` to read and write a nonvolatile copy of the system configuration. However, you can specify a different filename, which will be loaded during the next boot cycle.

Note
This command only works properly from a standalone switch.

Beginning in privileged EXEC mode, follow these steps to specify a different configuration filename:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>boot config-file flash:file-url</td>
<td>Specify the configuration file to load during the next boot cycle. For <code>file-url</code>, specify the path (directory) and the configuration filename. Filenames and directory names are case sensitive.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>show boot</td>
<td>Verify your entries. The <code>boot config-file</code> global configuration command changes the setting of the CONFIG_FILE environment variable.</td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default setting, use the `no boot config-file` global configuration command.

Booting Manually

By default, the switch automatically boots; however, you can configure it to manually boot.

Note
This command only works properly from a standalone switch.

Beginning in privileged EXEC mode, follow these steps to configure the switch to manually boot during the next boot cycle:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>boot manual</td>
<td>Enable the switch to manually boot during the next boot cycle.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Modifying the Startup Configuration

To disable manual booting, use the `no boot manual` global configuration command.

Booting a Specific Software Image

By default, the switch attempts to automatically boot the system using information in the BOOT environment variable. If this variable is not set, the switch attempts to load and execute the first executable image it can by performing a recursive, depth-first search throughout the Flash file system. In a depth-first search of a directory, each encountered subdirectory is completely searched before continuing the search in the original directory. However, you can specify a specific image to boot.

Note

This command only works properly from a standalone switch.

Beginning in privileged EXEC mode, follow these steps to configure the switch to boot a specific image during the next boot cycle:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>boot system filesystem:file-url</code></td>
<td>Configure the switch to boot a specific image in Flash memory during the next boot cycle.</td>
</tr>
<tr>
<td></td>
<td>• For <code>filesystem</code>, use <code>flash</code> for the system board Flash device.</td>
</tr>
<tr>
<td></td>
<td>• For <code>file-url</code>, specify the path (directory) and the name of the bootable image. Filenames and directory names are case sensitive.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Chapter 4 Assigning the Switch IP Address and Default Gateway

Modifying the Startup Configuration

To return to the default setting, use the no boot system global configuration command.

Controlling Environment Variables

With a normally operating switch, you enter the boot loader mode only through a switch console connection configured for 9600 bps. Unplug the switch power cord and press the switch Mode button while reconnecting the power cord. You can release the Mode button a second or two after the LED above port 1 turns off. Then the boot loader switch: prompt is displayed.

The switch boot loader software provides support for nonvolatile environment variables, which can be used to control how the boot loader, or any other software running on the system, behaves. Boot loader environment variables are similar to environment variables that can be set on UNIX or DOS systems.

Environment variables that have values are stored in Flash memory outside of the Flash file system.

Each line in these files contains an environment variable name and an equal sign followed by the value of the variable. A variable has no value if it is not listed in this file; it has a value if it is listed in the file even if the value is a null string. A variable that is set to a null string (for example, “”) is a variable with a value. Many environment variables are predefined and have default values.

Environment variables store two kinds of data:

- Data that controls code, which does not read the IOS configuration file. For example, the name of a boot loader helper file, which extends or patches the functionality of the boot loader can be stored as an environment variable.
- Data that controls code, which is responsible for reading the IOS configuration file. For example, the name of the IOS configuration file can be stored as an environment variable.

You can change the settings of the environment variables by accessing the boot loader or by using IOS commands. Under normal circumstances, it is not necessary to alter the setting of the environment variables.

For complete syntax and usage information for the boot loader commands and environment variables, refer to the command reference for this release.
Table 4-4 describes the function of the most common environment variables.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Boot Loader Command</th>
<th>IOS Global Configuration Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOOT</td>
<td>set BOOT filesystem:file-url ...</td>
<td>boot system filesystem:file-url</td>
</tr>
<tr>
<td></td>
<td>A semicolon-separated list of executable files to try to load and execute when automatically booting. If the BOOT environment variable is not set, the system attempts to load and execute the first executable image it can find by using a recursive, depth-first search through the Flash file system. If the BOOT variable is set but the specified images cannot be loaded, the system attempts to boot the first bootable file that it can find in the Flash file system.</td>
<td></td>
</tr>
<tr>
<td>MANUAL_BOOT</td>
<td>set MANUAL_BOOT yes</td>
<td>boot manual</td>
</tr>
<tr>
<td></td>
<td>Determines whether the switch automatically or manually boots.</td>
<td>Enables manually booting the switch during the next boot cycle and changes the setting of the MANUAL_BOOT environment variable. The next time you reboot the system, the switch is in boot loader mode. To boot the system, use the boot loader boot flash:filesystem:file-url command, and specify the name of the bootable image.</td>
</tr>
<tr>
<td>CONFIG_BUFSIZE</td>
<td>set CONFIG_BUFSIZE size</td>
<td>boot buffersize size</td>
</tr>
<tr>
<td></td>
<td>Changes the buffer size that IOS uses to hold a copy of the configuration file in memory. The configuration file cannot be larger than the buffer size allocation. The range is from 4096 to 524288 bytes.</td>
<td>Specifies the size of the file system-simulated NVRAM in Flash memory. The buffer holds a copy of the configuration file in memory. This command changes the setting of the CONFIG_BUFSIZE environment variable. You must reload the switch by using the reload privileged EXEC command for this command to take effect.</td>
</tr>
<tr>
<td>CONFIG_FILE</td>
<td>set CONFIG_FILE flash:file-url</td>
<td>boot config-file flash:file-url</td>
</tr>
<tr>
<td></td>
<td>Changes the filename that IOS uses to read and write a nonvolatile copy of the system configuration.</td>
<td>Specifies the filename that IOS uses to read and write a nonvolatile copy of the system configuration. This command changes the CONFIG_FILE environment variable.</td>
</tr>
<tr>
<td>SWITCH_NUMBER</td>
<td>set SWITCH_NUMBER stack-member-number</td>
<td>switch current-stack-member-number renumber new-stack-member-number</td>
</tr>
<tr>
<td></td>
<td>Changes the member number of a stack member.</td>
<td>Changes the member number of a stack member.</td>
</tr>
<tr>
<td>SWITCH_PRIORITY</td>
<td>set SWITCH_PRIORITY stack-member-number</td>
<td>switch stack-member-number priority priority-number</td>
</tr>
<tr>
<td></td>
<td>Changes the priority value of a stack member.</td>
<td>Changes the priority value of a stack member.</td>
</tr>
</tbody>
</table>
Scheduling a Reload of the Software Image

You can schedule a reload of the software image to occur on the switch at a later time (for example, late at night or during the weekend when the switch is used less), or you can synchronize a reload network-wide (for example, to perform a software upgrade on all switches in the network).

Note

A scheduled reload must take place within approximately 24 days.

Configuring a Scheduled Reload

To configure your switch to reload the software image at a later time, use one of these commands in privileged EXEC mode:

- **reload in [hh]:mm [text]**

 This command schedules a reload of the software to take affect in the specified minutes or hours and minutes. The reload must take place within approximately 24 days. You can specify the reason for the reload in a string up to 255 characters in length.

 To reload a specific switch in a switch stack, use the `reload slot stack-member-number` privileged EXEC command.

- **reload at hh:mm [month day | day month] [text]**

 This command schedules a reload of the software to take place at the specified time (using a 24-hour clock). If you specify the month and day, the reload is scheduled to take place at the specified time and date. If you do not specify the month and day, the reload takes place at the specified time on the current day (if the specified time is later than the current time) or on the next day (if the specified time is earlier than the current time). Specifying 00:00 schedules the reload for midnight.

 Note

 Use the `at` keyword only if the switch system clock has been set (through Network Time Protocol (NTP), the hardware calendar, or manually). The time is relative to the configured time zone on the switch. To schedule reloads across several switches to occur simultaneously, the time on each switch must be synchronized with NTP.

The `reload` command halts the system. If the system is not set to manually boot, it reboots itself. Use the `reload` command after you save the switch configuration information to the startup configuration (copy running-config startup-config).

If your switch is configured for manual booting, do not reload it from a virtual terminal. This restriction prevents the switch from entering the boot loader mode and thereby taking it from the remote user’s control.

If you modify your configuration file, the switch prompts you to save the configuration before reloading. During the save operation, the system requests whether you want to proceed with the save if the CONFIG_FILE environment variable points to a startup configuration file that no longer exists. If you proceed in this situation, the system enters setup mode upon reload.

This example shows how to reload the software on the switch on the current day at 7:30 p.m:

Switch# reload at 19:30
Reload scheduled for 19:30:00 UTC Wed Jun 5 1996 (in 2 hours and 25 minutes)
Proceed with reload? [confirm]
This example shows how to reload the software on the switch at a future time:

Switch# reload at 02:00 jun 20
Reload scheduled for 02:00:00 UTC Thu Jun 20 1996 (in 344 hours and 53 minutes)
Proceed with reload? [confirm]

To cancel a previously scheduled reload, use the **reload cancel** privileged EXEC command.

Displaying Scheduled Reload Information

To display information about a previously scheduled reload or to determine if a reload has been scheduled on the switch, use the **show reload** privileged EXEC command.

It displays reload information including the time the reload is scheduled to occur and the reason for the reload (if it was specified when the reload was scheduled).
Managing Switch Stacks

This chapter provides the concepts and procedures to manage Catalyst 3750 switch stacks.

Note

For complete syntax and usage information for the commands used in this chapter, refer to the command reference for this release.

This chapter consists of these sections:

- Understanding Switch Stacks, page 5-1
- Assigning Stack Member Information, page 5-13
- Accessing the CLI of a Specific Stack Member, page 5-14
- Displaying Information about the Switch Stack, page 5-14

Refer to the hardware installation guide for other switch stack-related information, such as cabling the switches through their StackWise ports and using the LEDs to display switch stack status.

Understanding Switch Stacks

A switch stack is a set of up to nine Catalyst 3750 switches connected through their StackWise ports. One of the switches controls the operation of the stack and is called the stack master. The stack master and the other switches in the stack are stack members. The stack members use the Cisco StackWise technology to behave and work together as a unified system. Layer 2 and Layer 3 protocols present the entire switch stack as a single entity to the network.

The stack master is the single point of stack-wide management. From the stack master, you configure:

- System-level (global) features that apply to all stack members
- Interface-level features for each stack member

A switch stack is identified in the network by its bridge ID and, if the switch stack is operating as a Layer 3 device, its router MAC address. The bridge ID and router MAC address are determined by the MAC address of the stack master. Every stack member is uniquely identified by its own stack member number.

All stack members are eligible stack masters. If the stack master becomes unavailable, the remaining stack members participate in electing a new stack master from among themselves. A set of factors determine which switch is elected the stack master. One of the factors is the stack member priority value. The switch with the highest priority value becomes the stack master.
The system-level features supported on the stack master are supported on the entire switch stack. If the switch stack must have switches running both standard multilayer software image (SMI) and enhanced multilayer software image (EMI) software, we recommend that a switch running the EMI software be the stack master. EMI features become unavailable if the stack master is running the SMI software.

The stack master contains the saved and running configuration files for the switch stack. The configuration files include the system-level settings for the switch stack and the interface-level settings for each stack member. Each stack member has a current copy of these files for back-up purposes.

You manage the switch stack through a single IP address. The IP address is a system-level setting and is not specific to the stack master or to any other stack member. You can manage the stack through the same IP address even if you remove the stack master or any other stack member from the stack.

You can use these methods to manage switch stacks:

- Using the CMS software through a Netscape or Internet Explorer browser session
- Using the command-line interface (CLI) over a serial connection to the console port of any stack member
- Using a network management application through Simple Network Management Protocol (SNMP)
- Using the CiscoWorks network management software

To manage switch stacks, you should understand:

- These concepts on how switch stacks are formed:
 - Switch Stack Membership, page 5-3
 - Stack Master Election and Re-Election, page 5-5
- These concepts on how switch stacks and stack members are configured:
 - Switch Stack Bridge ID and Router MAC Address, page 5-5
 - Stack Member Numbers, page 5-6
 - Stack Member Priority Values, page 5-7
 - Stack Protocol Versions and Software Image Compatibility, page 5-7
 - Switch Stack Configuration Files, page 5-8
 - Switch Stack Management Connectivity, page 5-10
 - Switch Stack Configuration Scenarios, page 5-11

Note

A switch stack is different from a switch cluster. A switch cluster is a set of switches connected through their LAN ports, such as the 10/100/1000 ports. For more information about how switch stacks differ from switch clusters, see the “Switch Clusters and Switch Stacks” section on page 6-15.
Switch Stack Membership

A switch stack has up to nine stack members connected through their StackWise ports. A switch stack always has one stack master.

A standalone switch is a switch stack with one stack member that also operates as the stack master. You can connect one standalone switch to another (Figure 5-1) to create a switch stack containing two stack members, with one of them being the stack master. You can connect standalone switches to an existing switch stack (Figure 5-2) to increase the stack membership.

If you replace a stack member with an identical model, the new switch functions with exactly the same configuration as the replaced switch, assuming that the new switch is using the same member number as the replaced switch. The specific procedure for replacing a failed switch is described in the “Troubleshooting” chapter in the hardware installation guide.

The operation of the switch stack continues uninterrupted during membership changes unless you remove the stack master or you add powered-on standalone switches or switch stacks.

- Make sure the switches that you add to or remove from the switch stack are powered off.
- After adding or removing stack members, make sure that the switch stack is operating at full bandwidth (32 Gbps). Press the Mode button on a stack member until the Stack mode LED is on. The last two port LEDs on all switches in the stack should be green. Depending on the switch model, the last two ports are either 10/100/1000 ports or small-form pluggable (SFP) module ports. If, on any of the switches, one or both of the last two port LEDs are not green, the stack is not operating at full bandwidth.

- Adding powered-on switches (merging) causes the stack masters of the merging switch stacks to elect a stack master from among themselves. The re-elected stack master retains its role and configuration and so do its stack members. All remaining switches, including the former stack masters, reload and join the switch stack as stack members. They change their stack member numbers to the lowest available numbers and use the stack configuration of the re-elected stack master.

- Removing powered-on stack members causes the switch stack to divide (partition) into two or more switch stacks, each with the same configuration. This can cause an IP address configuration conflict in your network. If you want the switch stacks to remain separate, change the IP address of the newly created switch stacks. If you did not intend to partition the switch stack:
 a. Power off the newly created switch stacks.
 b. Reconnect them to the original switch stack through their StackWise ports.
 c. Power on the switches.

For additional information about cabling and powering switch stacks, refer to the “Switch Installation” chapter in the hardware installation guide.
Figure 5-1 Creating a Switch Stack from Two Standalone Switches

Stack member 1
Stack member 1

Stack member 1
Stack member 2
and stack master

Figure 5-2 Adding a Standalone Switch to a Switch Stack

Stack member 1
Stack member 2
and stack master
Stack member 3

Stack member 1
Stack member 2
and stack master
Stack member 3
Stack member 4
Stack Master Election and Re-Election

The stack master is elected or re-elected based on one of these factors and in the order as listed:

1. The switch currently the stack master.
2. The switch with the highest stack member priority value.

Note We recommend assigning the highest priority value to the switch that you prefer to be the stack master. This ensures that the switch is re-elected as stack master if a re-election occurs.

3. The switch not using the default interface-level configuration.
4. The switch with the EMI software, not the SMI software.
5. The switch with the longest system up-time.
6. The switch with the lowest MAC address.

A stack master retains its role unless one of these events occurs:

- The switch stack is reset.
- The stack master is removed from the switch stack.
- The stack master is reset or powered off.
- The stack master has failed.
- The switch stack membership is increased by adding powered-on standalone switches or switch stacks.

In the events marked by an asterisk (*), the current stack master might be re-elected based on the listed factors.

When you power on or reset an entire switch stack, some stack members might not participate in the stack master election. Stack members that are powered on within the same 10-second timeframe participate in the stack master election and have a chance to become the stack master. Stack members that are powered on after the 10-second timeframe do not participate in this initial election and only become stack members. All stack members participate in re-elections. For all powering considerations that affect stack master elections, refer to the “Switch Installation” chapter in the hardware installation guide.

The new stack master becomes available after a few seconds. In the meantime, the switch stack uses the forwarding tables in memory to minimize network disruption. The physical interfaces on the other available stack members are not affected while a new stack master is elected and is resetting.

If a new stack master is elected and the previous stack master becomes available, the previous stack master does not resume its role as stack master.

As described in the hardware installation guide, you can use the Master LED on the switch to see if the switch is the stack master.

Switch Stack Bridge ID and Router MAC Address

The bridge ID and router MAC address identify the switch stack in the network. When the switch stack initializes, the MAC address of the stack master determines the bridge ID and router MAC address.

If the stack master changes, the MAC address of the new stack master determines the new bridge ID and router MAC address.
Stack Member Numbers

The stack member number (1 to 9) identifies each member in the switch stack. The member number also determines the interface-level configuration that a stack member uses. You can display the stack member number by using the show switch user EXEC command.

A new, out-of-the-box switch (one that has not joined a switch stack or has not been manually assigned a stack member number) ships with a default stack member number of 1. When it joins a switch stack, its default stack member number changes to the lowest available member number in the stack.

Stack members in the same switch stack cannot have the same stack member number. Every stack member, including a standalone switch, retains its member number until you manually change the number or unless the number is already being used by another member in the stack.

- If you manually change the stack member number by using the switch current-stack-member-number renumber new-stack-member-number global configuration command, the new number goes into effect after that stack member resets (or after you use the reload slot stack-member-number privileged EXEC command) and only if that number is not already assigned to any other members in the stack. Another way to change the stack member number is by changing the SWITCH_NUMBER environment variable, as explained in the “Controlling Environment Variables” section on page 4-15.

 If the number is being used by another member in the stack, the switch selects the lowest available number in the stack.

 Note If you manually change the number of a stack member and no interface-level configuration is associated with that member number, that stack member loses its current interface-level configuration and resets to its default configuration. For more information about stack member numbers and configurations, see the “Switch Stack Configuration Files” section on page 5-8.

- If you move a stack member to a different switch stack, the stack member retains its number only if the number is not being used by another member in the stack. If it is being used by another member in the stack, the switch selects the lowest available number in the stack.

- If you merge switch stacks, the switches that join the switch stack of a new stack master select the the lowest available numbers in the stack. For more information about merging switch stacks, see the “Switch Stack Membership” section on page 5-3).

As described in the hardware installation guide, you can use the switch port LEDs in Stack mode to visually determine the stack member number of each stack member.
Stack Member Priority Values

A higher priority value for a stack member increases its likelihood to be elected stack master and to retain its stack member number. The priority value can be 1 to 15. The default priority value is 1. You can display the stack member priority value by using the `show switch` user EXEC command.

Note: We recommend assigning the highest priority value to the switch that you prefer to be the stack master. This ensures that the switch is re-elected as stack master if a re-election occurs.

You can change the priority value for a stack member by using the `switch stack-member-number priority priority-number` global configuration command. Another way to change the member priority value is by changing the SWITCH_PRIORITY environment variable, as explained in the “Controlling Environment Variables” section on page 4-15.

The new priority value takes effect immediately but does not affect the current stack master. The new priority value affects the current stack master when the current stack master or the switch stack resets.

Stack Protocol Versions and Software Image Compatibility

All stack members must run the same IOS software version to ensure compatibility between stack members.

These sections describe how compatibility between stack members is determined:

- “Stack Protocol Version Compatibility” section on page 5-7
- “Software Image Compatibility” section on page 5-8

Stack Protocol Version Compatibility

Each software image includes a stack protocol version. The stack protocol version has a major version number and a minor version number. Both version numbers determine the level of compatibility among the stack members. You can display the stack protocol version by using the `show platform stack-manager all` privileged EXEC command.

Switches with the same IOS software version have the same stack protocol version. Such switches are fully compatible, and all features function properly across the switch stack. Switches with the same IOS software version as the stack master join the switch stack immediately.

If an incompatibility exists, the incompatible stack members generate a system error message that describes the cause of the incompatibility on the specific stack members. The stack master displays the error message to all stack members.

- “Major Incompatibility Between Switches” section on page 5-7
- “Minor Incompatibility Between Switches” section on page 5-8

Major Incompatibility Between Switches

Switches with different IOS software versions likely have different stack protocol versions. Switches with different major stack protocol version numbers are incompatible and cannot exist in the same switch stack.
Minor Incompatibility Between Switches

Switches with the same major version number but a different minor version number as the stack master are considered partially compatible. When connected to a switch stack, partially compatible switches enter into version mismatch (VM) mode and cannot join the stack. The stack master downloads the software version it is using to any switch in VM mode.

- If there is a stack member that is not in VM mode and is running software that can also run on the switch in VM mode, the stack master uses that software to upgrade (or downgrade) the software on the switch in VM mode. The switch in VM mode automatically reloads and joins the stack as a fully functioning member.

\[\text{Note}\]
The stack master does not automatically install EMI software on an SMI-running switch or SMI software on an EMI-running switch.

- If none of the stack members are running software that can be installed on the switch in VM mode, the stack master scans the switch stack to see if there are any other recommended actions. Recommended actions appear in the system messages log. If there are no other actions to try, the stack master displays the recommended action to upgrade the software running on the switch stack. The port LEDs on switches in VM mode remain off and pressing the Mode button does not change the LED mode.

Software Image Compatibility

We recommend the following:

- The IOS software version on all stack members, including the stack master, should be the same. This helps ensure full compatibility in the stack protocol version among the stack members. For example, all stack members should have either the EMI or SMI Release 12.1(11)AX installed.

- If your switch stack must have switches running SMI and EMI software, the switch running the EMI software should be the stack master. EMI features become unavailable to all stack members if the stack master is running the SMI software.

- At least two stack members should have the EMI software installed to ensure redundant support of the EMI features. The EMI has precedence over the SMI during stack master election, assuming that the priority value of the stack members are the same. If the EMI stack master fails, the other stack member running the EMI software becomes the stack master.

- When a switch running the EMI joins a switch stack running the SMI of the same version, the EMI switch does not automatically become the stack master. If you want the EMI switch to become the stack master, reset the current SMI stack master by using the `reload slot stack-member-number` privileged EXEC command. The EMI switch is elected the stack master, assuming its priority value is higher or the same as the other stack members.

Switch Stack Configuration Files

The configuration files record

- System-level (global) configuration settings—such as IP, STP, VLAN, and SNMP settings—that apply to all stack members

- Stack member interface-specific configuration settings, which are specific for each stack member
The stack master has the saved and running configuration files for the switch stack. All stack members periodically receive synchronized copies of the configuration files from the stack master. If the stack master becomes unavailable, any stack member assuming the role of stack master has the latest configuration files.

When a new, out-of-box switch joins a switch stack, it uses the system-level settings of that switch stack. If a switch is moved to a different switch stack, that switch loses its saved configuration file and uses the system-level configuration of the new switch stack.

The interface-specific configuration of each stack member is associated with the stack member number. As mentioned in the “Stack Member Numbers” section on page 5-6, stack members retain their numbers unless they are manually changed or they are already used by another member in the same switch stack.

- If an interface-specific configuration does not exist for that member number, the stack member uses its default interface-specific configuration.
- If an interface-specific configuration exists for that member number, the stack member uses the interface-specific configuration associated with that member number.

If a stack member fails and you replace it with an identical model, the replacement switch automatically uses the same interface-specific configuration as the failed switch. Hence, you do not need to reconfigure the interface settings. The replacement switch must have the same stack member number as the failed switch.

You back up and restore the stack configuration in the same way as you would for a standalone switch configuration. For more information about file systems and configuration files, see Appendix B, “Working with the IOS File System, Configuration Files, and Software Images.”

Additional Considerations for System-wide Configuration on Switch Stacks

These sections provide additional considerations for configuring system-wide features on switch stacks:

- “Switch Clusters and Switch Stacks” section on page 6-15
- “MAC Addresses and Switch Stacks” section on page 7-54
- “802.1X and Switch Stacks” section on page 8-5
- “VTP and the Switch Stack” section on page 11-6
- “Spanning Tree and Switch Stacks” section on page 13-11
- “IGMP Snooping and Switch Stacks” section on page 15-5
- “Port Security and Stack Changes” section on page 16-12
- “CDP and Switch Stacks” section on page 17-2
- “SPAN and RSPAN and Stack Changes” section on page 19-9
- “ACLs and Switch Stacks” section on page 23-5
- “EtherChannel and Switch Stacks” section on page 25-8
- “IP Routing and Switch Stacks” section on page 26-3
- “HSRP and Switch Stacks” section on page 27-2
- “Multicast Routing and Switch Stacks” section on page 28-8
- “Fallback Bridging and Switch Stacks” section on page 30-3
Switch Stack Management Connectivity

You manage the switch stack and the stack member interfaces through the stack master. You can use Cluster Management Suite (CMS), the CLI, and SNMP and CiscoWorks network management applications. You cannot manage stack members on an individual switch basis.

The switch stack is managed through a single IP address. The IP address is a system-level setting and is not specific to the stack master or to any other stack member. You can still manage the stack through the same IP address even if you remove the stack master or any other stack member from the stack, provided there is IP connectivity.

Note

Stack members retain their IP addresses when you remove them from a switch stack. To avoid a conflict by having two devices with the same IP address in your network, change the IP address of the switch that you removed from the switch stack.

For related information about switch stack configurations, see the “Switch Stack Configuration Files” section on page 5-8.

You can connect to the stack master through the console port of one or more stack members.

Be careful when using multiple CLI sessions to the stack master. Commands that you enter in one session are not displayed in the other sessions. Therefore, it is possible that you might not be able to identify the session from which you entered a command.

Note

We recommend using only one CLI session when managing the switch stack.

If you want to configure a specific stack member port, you must include the stack member number in the CLI command interface notation. For more information about interface notations, see the “Using Interface Configuration Mode” section on page 9-6.

To debug a specific stack member, you can access it from the stack master by using the `session stack-member-number` privileged EXEC command. The stack member number is appended to the system prompt. For example, `Switch-2#` is the prompt in privileged EXEC mode for stack member 2, and the system prompt for the stack master is `Switch`. Only the `show` and `debug` commands are available in a CLI session to a specific stack member.
Switch Stack Configuration Scenarios

Table 5-1 provides scenarios of how switch stack features are determined. Most of the scenarios assume at least two switches are connected through their StackWise ports.

Table 5-1 Switch Stack Configuration Scenarios

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stack master election specifically determined by existing stack masters</td>
<td>Only one of the two stack masters becomes the new stack master. None of the other stack members become the stack master.</td>
</tr>
<tr>
<td>Stack master election specifically determined by the stack member priority value</td>
<td>The stack member with the higher priority value is elected stack master.</td>
</tr>
<tr>
<td>Connect two powered-on switch stacks through the StackWise ports.</td>
<td></td>
</tr>
<tr>
<td>1. Connect two switches through their StackWise ports.</td>
<td></td>
</tr>
<tr>
<td>2. Use the <code>switch stack-member-number priority-number</code> global configuration command to set one stack member with a higher member priority value.</td>
<td></td>
</tr>
<tr>
<td>3. Restart both stack members at the same time.</td>
<td></td>
</tr>
<tr>
<td>Assuming that both stack members have the same priority value:</td>
<td>The stack member with the saved configuration file is elected stack master.</td>
</tr>
<tr>
<td>1. Make sure that one stack member has a default configuration and that the other stack member has a saved (nondefault) configuration file.</td>
<td></td>
</tr>
<tr>
<td>2. Restart both stack members at the same time.</td>
<td></td>
</tr>
<tr>
<td>Assuming that all stack members have the same priority value:</td>
<td>The stack member with the EMI software is elected stack master.</td>
</tr>
<tr>
<td>1. Make sure that one stack member has the EMI software installed and that the other stack member has the SMI software installed.</td>
<td></td>
</tr>
<tr>
<td>2. Restart both stack members at the same time.</td>
<td></td>
</tr>
<tr>
<td>Assuming that both stack members have the same priority value, configuration file, and software image, restart both stack members at the same time.</td>
<td>The stack member with the lower MAC address is elected stack master.</td>
</tr>
</tbody>
</table>
Understanding Switch Stacks

1. **Stack member number conflict**
 - Assuming that one stack member has a higher priority value than the other stack member:
 1. Ensure that both stack members have the same stack member number. If necessary, use the `switch current-stack-member-number renumber new-stack-member-number` global configuration command.
 2. Restart both stack members at the same time.
 - The stack member with the higher priority value retains its stack member number. The other stack member has a new stack member number.

2. **Add a stack member**
 - 1. Power off the new switch.
 - 2. Through their StackWise ports, connect the new switch to a powered-on switch stack.
 - The stack master is retained. The new switch is added to the switch stack.

3. **Stack master failure**
 - Remove (or power off) the stack master.
 - Based on the factors described in the “Stack Master Election and Re-Election” section on page 5-5, one of the remaining stack members becomes the new stack master. All other stack members in the stack remain as stack members and do not reboot.

4. **Add more than nine stack members**
 - 1. Through their StackWise ports, connect ten switches.
 - 2. Power on all switches.
 - Two switches become stack masters. One stack master has nine stack members. The other stack master remains as a standalone switch.
 - Use the Mode button and port LEDs on the switches to identify which switches are stack masters and which switches belong to which stack master. For information about using the Mode button and the LEDs, refer to the hardware installation guide.

Table 5-1 Switch Stack Configuration Scenarios (continued)

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stack member number conflict</td>
<td>The stack member with the higher priority value retains its stack member number. The other stack member has a new stack member number.</td>
</tr>
<tr>
<td>Add a stack member</td>
<td>The stack master is retained. The new switch is added to the switch stack.</td>
</tr>
<tr>
<td>Stack master failure</td>
<td>Based on the factors described in the “Stack Master Election and Re-Election” section on page 5-5, one of the remaining stack members becomes the new stack master. All other stack members in the stack remain as stack members and do not reboot.</td>
</tr>
<tr>
<td>Add more than nine stack members</td>
<td>Two switches become stack masters. One stack master has nine stack members. The other stack master remains as a standalone switch. Use the Mode button and port LEDs on the switches to identify which switches are stack masters and which switches belong to which stack master. For information about using the Mode button and the LEDs, refer to the hardware installation guide.</td>
</tr>
</tbody>
</table>
Assigning Stack Member Information

For complete syntax and usage information for the commands used in this section, refer to the switch command reference.

This section contains this configuration information:

- Default Switch Stack Configuration, page 5-13
- Assigning a Stack Member Number, page 5-13 (optional)
- Setting the Stack Member Priority Value, page 5-14 (optional)
- Accessing the CLI of a Specific Stack Member, page 5-14 (optional)

Default Switch Stack Configuration

Table 5-2 shows the default switch stack configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stack member number</td>
<td>1</td>
</tr>
<tr>
<td>Stack member priority value</td>
<td>1</td>
</tr>
</tbody>
</table>

Assigning a Stack Member Number

This task is available only from the stack master.

Beginning in global configuration mode, follow these steps to assign a member number to a stack member:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>switch current-stack-member-number renumber new-stack-member-number</td>
<td>Specify the current stack member number and the new stack member number for the stack member. The stack member number range is 1 to 9. You can display the current stack member number by using the show switch user EXEC command.</td>
</tr>
<tr>
<td>3</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>4</td>
<td>reload slot stack-member-number</td>
<td>Reset the stack member, and apply this configuration change.</td>
</tr>
<tr>
<td>5</td>
<td>show switch</td>
<td>Verify the stack member number.</td>
</tr>
</tbody>
</table>
Setting the Stack Member Priority Value

Note
This task is available only from the stack master.

Beginning in global configuration mode, follow these steps to assign a priority value to a stack member:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch stack-member-number priority priority-number Specify the stack member number and the priority for the stack member. The stack member number range is 1 to 9. The priority value range is 1 to 15. You can display the current priority value by using the show switch user EXEC command. The new priority value takes effect immediately but does not affect the current stack master. The new priority value affects the current stack master when the current stack master or the switch stack resets.</td>
</tr>
<tr>
<td>Step 3</td>
<td>end Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>show switch stack-member-number Verify the stack member priority value.</td>
</tr>
</tbody>
</table>

Accessing the CLI of a Specific Stack Member

Note
This task is available only from the stack master. This task is only for debugging purposes.

You can access all or specific stack members by using the `remote command {all | stack-member-number}` privileged EXEC command. The stack member number range is 1 to 9.

You can access specific stack members by using the `session stack-member-number` privileged EXEC command. The stack member number range is 1 to 9. The stack member number is appended to the system prompt. For example, `Switch-2#` is the prompt in privileged EXEC mode for stack member 2, and the system prompt for the stack master is `Switch`. Enter `exit` to return to the CLI session on the stack master. Only the `show` and `debug` commands are available in a CLI session to a specific stack member.

Displaying Information about the Switch Stack

You can use these commands to display the configuration changes that you save after you reset a specific stack member or the switch stack.

- `show platform stack-manager all` privileged EXEC command to display all switch stack information
- `show switch stack-member-number` user EXEC command to display information about a specific member
- These user EXEC commands to display switch stack information:
 - `show switch detail`
 - `show switch neighbors`
 - `show switch stack-ports`
Clustering Switches

This chapter provides the concepts and procedures to create and manage Catalyst 3750 switch clusters. Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

Note
This chapter focuses on Catalyst 3750 switch clusters. It also includes guidelines and limitations for clusters mixed with other cluster-capable Catalyst switches, but it does not provide complete descriptions of the cluster features for these other switches. For complete cluster information for a specific Catalyst platform, refer to the software configuration guide for that switch.

This chapter consists of these sections:

- Understanding Switch Clusters, page 6-2
- Planning a Switch Cluster, page 6-4
- Creating a Switch Cluster, page 6-18

Note
Configuring switch clusters is more easily done from the Cluster Management Suite (CMS) web-based interface than through the command-line interface (CLI). Therefore, information in this chapter focuses on using CMS to create a cluster. See Chapter 3, “Getting Started with CMS,” for additional information about switch clusters and the clustering options. For complete procedures about using CMS to configure switch clusters, refer to the online help. For the CLI cluster commands, refer to the switch command reference.

- Verifying a Switch Cluster, page 6-22
- Using the CLI to Manage Switch Clusters, page 6-24
- Using SNMP to Manage Switch Clusters, page 6-25
Understanding Switch Clusters

A switch cluster is a set of up to 16 connected, cluster-capable Catalyst switches that are managed as a single entity. The switches in the cluster use the switch clustering technology so that you can configure and troubleshoot a group of different Catalyst desktop switch platforms through a single IP address.

In a switch cluster, 1 switch must be the cluster command switch and up to 15 other switches can be cluster member switches. The total number of switches in a cluster cannot exceed 16 switches. The cluster command switch is the single point of access used to configure, manage, and monitor the cluster member switches. Cluster members can belong to only one cluster at a time.

The benefits of clustering switches include:

- Management of Catalyst switches regardless of their interconnection media and their physical locations. The switches can be in the same location, or they can be distributed across a Layer 2 or Layer 3 (if your cluster is using a Catalyst 3550 or Catalyst 3750 switch as a Layer 3 router between the Layer 2 switches in the cluster) network.

 Cluster members are connected to the cluster command switch according to the connectivity guidelines described in the “Automatic Discovery of Cluster Candidates and Members” section on page 6-5. This section includes management VLAN considerations for the Catalyst 1900, Catalyst 2820, Catalyst 2900 XL, Catalyst 2950, and Catalyst 3500 XL switches. For complete information about these switches in a switch-cluster environment, refer to the software configuration guide for that specific switch.

- Command-switch redundancy if a cluster command switch fails. One or more switches can be designated as standby cluster command switches to avoid loss of contact with cluster members. A cluster standby group is a group of standby cluster command switches.

- Management of a variety of Catalyst switches through a single IP address. This conserves on IP addresses, especially if you have a limited number of them. All communication with the switch cluster is through the cluster command switch IP address.

Note

A switch cluster is different from a switch stack. A switch stack is a set of Catalyst 3750 switches connected through their stack ports. For more information about how switch stacks differ from switch clusters, see the “Switch Clusters and Switch Stacks” section on page 6-15.

Refer to the release notes for the list of Catalyst switches eligible for switch clustering, including which ones can be cluster command switches and which ones can only be cluster member switches, and the required software versions.

These sections describe:

- Cluster Command Switch Characteristics, page 6-3
- Standby Cluster Command Switch Characteristics, page 6-3
- Candidate Switch and Cluster Member Switch Characteristics, page 6-4
Cluster Command Switch Characteristics

A cluster command switch must meet these requirements:

- It is running Release 12.1(11)AX or later.
- It has an IP address.
- It has Cisco Discovery Protocol (CDP) version 2 enabled (the default).
- It is not a command or cluster member switch of another cluster.
- It is connected to the standby cluster command switches through the management VLAN and to the cluster member switches through a common VLAN.

Note

We strongly recommend that the highest-end, command-capable switch in the cluster be the command switch. For example, if your switch cluster has a Catalyst 3750 switch or a Catalyst 3750 switch stack, it should be the cluster command switch.

Standby Cluster Command Switch Characteristics

A standby cluster command switch must meet these requirements:

- It is running Release 12.1(11)AX or later.
- It has an IP address.
- It has CDP version 2 enabled.
- It is connected to the command switch and to other standby command switches through its management VLAN.
- It is connected to all other cluster member switches (except the cluster command and standby command switches) through a common VLAN.
- It is redundantly connected to the cluster so that connectivity to cluster member switches is maintained.
- It is not a command or member switch of another cluster.

Note

Standby cluster command switches must be the same type of switches as the cluster command switch. For example, if the cluster command switch is a Catalyst 3750 switch, the standby cluster command switches must also be Catalyst 3750 switches. Refer to the switch configuration guide of other cluster-capable switches for IOS release requirements on standby cluster command switches.
Candidate Switch and Cluster Member Switch Characteristics

Candidate switches are cluster-capable switches and switch stacks that have not yet been added to a cluster. Cluster member switches are switches and switch stacks that have actually been added to a switch cluster. Although not required, a candidate or cluster member switch can have its own IP address and password (for related considerations, see the “IP Addresses” section on page 6-14 and “Passwords” section on page 6-15).

To join a cluster, a candidate switch must meet these requirements:

- It is running cluster-capable software.
- It has CDP version 2 enabled.
- It is not a command or cluster member switch of another cluster.
- If a cluster standby group exists, it is connected to every standby cluster command switch through at least one common VLAN. The VLAN to each standby cluster command switch can be different.
- It is connected to the cluster command switch through at least one common VLAN.

Note

Catalyst 1900, Catalyst 2820, Catalyst 2900 XL, Catalyst 2950, and Catalyst 3500 XL candidate and cluster member switches must be connected through their management VLAN to the cluster command switch and standby cluster command switches. For complete information about these switches in a switch-cluster environment, refer to the software configuration guide for that specific switch.

This requirement does not apply if you have a Catalyst 3550 or Catalyst 3750 cluster command switch. Candidate and cluster member switches can connect through any VLAN in common with the cluster command switch.

Planning a Switch Cluster

Anticipating conflicts and compatibility issues is a high priority when you manage several switches through a cluster. This section describes these guidelines, requirements, and caveats that you should understand before you create the cluster:

- Automatic Discovery of Cluster Candidates and Members, page 6-5
- HSRP and Standby Cluster Command Switches, page 6-11
- IP Addresses, page 6-14
- Host Names, page 6-14
- Passwords, page 6-15
- SNMP Community Strings, page 6-15
- Switch Clusters and Switch Stacks, page 6-15
- TACACS+ and RADIUS, page 6-17
- Access Modes in CMS, page 6-17
- Availability of Switch-Specific Features in Switch Clusters, page 6-17

Refer to the release notes for the list of Catalyst switches eligible for switch clustering, including which ones can be cluster command switches and which ones can only be cluster member switches, and for the required software versions and browser and Java plug-in configurations.
Automatic Discovery of Cluster Candidates and Members

The cluster command switch uses Cisco Discovery Protocol (CDP) to discover cluster member switches, candidate switches, neighboring switch clusters, and edge devices across multiple VLANs and in star or cascaded topologies.

Note

Do not disable CDP on the cluster command switch, on cluster members, or on any cluster-capable switches that you might want a cluster command switch to discover. For more information about CDP, see Chapter 17, “Configuring CDP.”

Following these connectivity guidelines ensures automatic discovery of the switch cluster, cluster candidates, connected switch clusters, and neighboring edge devices:

- Discovery Through CDP Hops, page 6-5
- Discovery Through Non-CDP-Capable and Noncluster-Capable Devices, page 6-6
- Discovery Through Different VLANs, page 6-7
- Discovery Through Different Management VLANs, page 6-8
- Discovery Through Routed Ports, page 6-9
- Discovery of Newly Installed Switches, page 6-10

Discovery Through CDP Hops

By using CDP, a cluster command switch can discover switches up to seven CDP hops away (the default is three hops) from the edge of the cluster. The edge of the cluster is where the last cluster member switches are connected to the cluster and to candidate switches. For example, cluster member switches 9 and 10 in Figure 6-1 are at the edge of the cluster.

You can set the number of hops the cluster command switch searches for candidate and cluster member switches by selecting **Cluster > Hop Count**. When new candidate switches are added to the network, the cluster command switch discovers them and adds them to the list of candidate switches.

Note

A switch stack in a cluster equates to a single cluster member switch. There is a restriction specific to adding cluster members through CMS. For more information, see the “Switch Clusters and Switch Stacks” section on page 6-15.

In Figure 6-1, the cluster command switch has ports assigned to VLANs 16 and 62. The CDP hop count is three. The cluster command switch discovers switches 11, 12, 13, and 14 because they are within three hops from the edge of the cluster. It does not discover switch 15 because it is four hops from the edge of the cluster.
Discovery Through Non-CDP-Capable and Noncluster-Capable Devices

If a cluster command switch is connected to a non-CDP-capable third-party hub (such as a non-Cisco hub), it can discover cluster-enabled devices connected to that third-party hub. However, if the cluster command switch is connected to a noncluster-capable Cisco device, it cannot discover a cluster-enabled device connected beyond the noncluster-capable Cisco device.

Figure 6-2 shows that the cluster command switch discovers the switch that is connected to a third-party hub. However, the cluster command switch does not discover the switch that is connected to a Catalyst 5000 switch.

Figure 6-2 Discovery Through Non-CDP-Capable and Noncluster-Capable Devices
Discovery Through Different VLANs

If the cluster command switch is a Catalyst 3550 or Catalyst 3750 switch, the cluster can have cluster member switches in different VLANs. As cluster member switches, they must be connected through at least one VLAN in common with the cluster command switch. The cluster command switch in Figure 6-3 has ports assigned to VLANs 9, 16, and 62 and therefore discovers the switches in those VLANs. It does not discover the switch in VLAN 50. It also does not discover the switch in VLAN 16 in the first column because the cluster command switch has no VLAN connectivity to it.

Catalyst 2900 XL, Catalyst 2950, and Catalyst 3500 XL cluster member switches must be connected to the cluster command switch through their management VLAN. For information about discovery through management VLANs, see the “Discovery Through Different Management VLANs” section on page 6-8. For more information about VLANs, see Chapter 10, “Configuring VLANs.”

For additional considerations about VLANs in switch stacks, see the “Switch Clusters and Switch Stacks” section on page 6-15.
Discovery Through Different Management VLANs

We recommend using Catalyst 3550 or Catalyst 3750 cluster command switches. These cluster command switches can discover and manage cluster member switches in different VLANs and different management VLANs. As cluster member switches, they must be connected through at least one VLAN in common with the cluster command switch. They do not need to be connected to the cluster command switch through their management VLAN. The default management VLAN is VLAN 1.

The cluster command switch and standby command switch in Figure 6-4 have ports assigned to VLANs 9, 16, and 62. The management VLAN on the cluster command switch is VLAN 9. Each cluster command switch discovers the switches in the different management VLANs except these:

- Switches 7 and 10 (switches in management VLAN 4) because they are not connected through a common VLAN (meaning VLANs 62 and 9) with the cluster command switch
- Switch 9 because automatic discovery does not extend beyond a noncandidate device, which is switch 7

Figure 6-4 Discovery Through Different Management VLANs with a Layer 3 Cluster Command Switch
Discovery Through Routed Ports

If the cluster command switch has a routed port (RP) configured, it discovers only candidate and cluster member switches in the same VLAN as the routed port. For more information about routed ports, see the “Routed Ports” section on page 9-3.

The cluster command switch in Figure 6-5 can discover the switches in VLANs 9 and 62 but not the switch in VLAN 4. If the routed port path between the cluster command switch and cluster member switch 7 is lost, connectivity with cluster member switch 7 is maintained because of the redundant path through VLAN 9.

Figure 6-5 Discovery Through Routed Ports
Discovery of Newly Installed Switches

To join a cluster, the new, out-of-the-box switch must be connected to the cluster through one of its access ports. An access port (AP) carries the traffic of and belongs to only one VLAN. By default, the new switch and its access ports are assigned to VLAN 1.

When the new switch joins a cluster, its default VLAN changes to the VLAN of the immediately upstream neighbor. The new switch also configures its access port to belong to the VLAN of the immediately upstream neighbor.

The cluster command switch in Figure 6-6 belongs to VLANs 9 and 16. When new cluster-capable switches join the cluster:

- One cluster-capable switch and its access port are assigned to VLAN 9.
- The other cluster-capable switch and its access port are assigned to management VLAN 16.

Figure 6-6 Discovery of Newly Installed Switches

![Diagram showing the discovery of newly installed switches.]
HSRP and Standby Cluster Command Switches

The switch supports Hot Standby Router Protocol (HSRP) so that you can configure a group of standby cluster command switches. Because a cluster command switch manages the forwarding of all communication and configuration information to all the cluster member switches, we strongly recommend the following:

- For a cluster command switch stack, a standby cluster command switch is necessary if the entire switch stack fails. However, if only the stack master in the command switch stack fails, the switch stack elects a new stack master and resumes its role as the cluster command switch stack.
- For a cluster command switch that is a standalone switch, configure a standby cluster command switch to take over if the primary cluster command switch fails.

A cluster standby group is a group of command-capable switches that meet the requirements described in the “Standby Cluster Command Switch Characteristics” section on page 6-3. Only one cluster standby group can be assigned per cluster.

Note

We strongly recommend that the highest-end, command-capable switch in the cluster be the command switch. If your switch cluster has a Catalyst 3750 switch or a Catalyst 3750 switch stack, it should be the cluster command switch.

Note

The cluster standby group is an HSRP group. Disabling HSRP disables the cluster standby group.

The switches in the cluster standby group are ranked according to HSRP priorities. The switch with the highest priority in the group is the active cluster command switch (AC). The switch with the next highest priority is the standby cluster command switch (SC). The other switches in the cluster standby group are the passive cluster command switches (PC). If the active cluster command switch and the standby cluster command switch become disabled at the same time, the passive cluster command switch with the highest priority becomes the active cluster command switch. For the limitations to automatic discovery, see the “Automatic Recovery of Cluster Configuration” section on page 6-13. For information about changing HSRP priority values, see the “Configuring HSRP Priority” section on page 27-6. The HSRP standby priority interface configuration commands are the same for changing the priority of cluster standby group members and router-redundancy group members.

Note

The HSRP standby hold time interval should be greater than or equal to three times the hello time interval. The default HSRP standby hold time interval is 10 seconds. The default HSRP standby hello time interval is 3 seconds. For more information about the standby hold time and standby hello time intervals, see the “Configuring HSRP Authentication and Timers” section on page 27-8.

These connectivity guidelines ensure automatic discovery of the switch cluster, cluster candidates, connected switch clusters, and neighboring edge devices. These topics also provide more detail about standby cluster command switches:

- Virtual IP Addresses, page 6-12
- Other Considerations for Cluster Standby Groups, page 6-12
- Automatic Recovery of Cluster Configuration, page 6-13
Virtual IP Addresses

You need to assign a unique virtual IP address and group number and name to the cluster standby group. This information must be configured on a specific VLAN or routed port on the active cluster command switch. The active cluster command switch receives traffic destined for the virtual IP address. To manage the cluster, you must access the active cluster command switch through the virtual IP address, not through the command-switch IP address. This is in case the IP address of the active cluster command switch is different from the virtual IP address of the cluster standby group.

If the active cluster command switch fails, the standby cluster command switch assumes ownership of the virtual IP address and becomes the active cluster command switch. The passive switches in the cluster standby group compare their assigned priorities to determine the new standby cluster command switch. The passive standby switch with the highest priority then becomes the standby cluster command switch. When the previously active cluster command switch becomes active again, it resumes its role as the active cluster command switch, and the current active cluster command switch becomes the standby cluster command switch again. For more information about IP address in switch clusters, see the “IP Addresses” section on page 6-14.

Other Considerations for Cluster Standby Groups

Note

For additional considerations about cluster standby groups in switch stacks, see the “Switch Clusters and Switch Stacks” section on page 6-15.

These requirements also apply:

• Standby cluster command switches must be the same type of switches as the cluster command switch. For example, if the cluster command switch is a Catalyst 3750 switch, the standby cluster command switches must also be Catalyst 3750 switches. Refer to the switch configuration guide of other cluster-capable switches for IOS release requirements on standby cluster command switches.

 We strongly recommend that the highest-end, command-capable switch in the cluster be the command switch. If your switch cluster has a Catalyst 3750 switch or a Catalyst 3750 switch stack, it should be the cluster command switch.

• Only one cluster standby group can be assigned to a cluster. You can have more than one router-redundancy standby group.

 An HSRP group can be both a cluster standby group and a router-redundancy group. However, if a router-redundancy group becomes a cluster standby group, router redundancy becomes disabled on that group. You can reenable it by using the CLI. For more information about HSRP and router redundancy, see Chapter 27, “Configuring HSRP.”

• All standby-group members must be members of the cluster.

Note

There is no limit to the number of switches that you can assign as standby cluster command switches. However, the total number of switches in the cluster—which would include the active cluster command switch, standby-group members, and cluster member switches—cannot be more than 16.

• Each standby-group member (Figure 6-7) must be connected to the cluster command switch through the same VLAN. Each standby-group member must also be redundantly connected to each other through at least one VLAN in common with the switch cluster.
Catalyst 1900, Catalyst 2820, Catalyst 2900 XL, Catalyst 2950, and Catalyst 3500 XL cluster member switches must be connected to the cluster standby group through their management VLANs. For more information about VLANs in switch clusters, see these sections:
- “Discovery Through Different VLANs” section on page 6-7
- “Discovery Through Different Management VLANs” section on page 6-8

Figure 6-7 VLAN Connectivity between Standby-Group Members and Cluster Members

Automatic Recovery of Cluster Configuration

The active cluster command switch continually forwards cluster-configuration information (but not device-configuration information) to the standby cluster command switch. This ensures that the standby cluster command switch can take over the cluster immediately after the active cluster command switch fails.

Automatic discovery has these limitations:

- This limitation applies only to clusters that have Catalyst 2950, Catalyst 3550, and Catalyst 3750 command and standby cluster command switches: If the active cluster command switch and standby cluster command switch become disabled at the same time, the passive cluster command switch with the highest priority becomes the active cluster command switch. However, because it was a passive standby cluster command switch, the previous cluster command switch did not forward cluster-configuration information to it. The active cluster command switch only forwards cluster-configuration information to the standby cluster command switch. You must therefore rebuild the cluster.

- This limitation applies to all clusters: If the active cluster command switch fails and there are more than two switches in the cluster standby group, the new cluster command switch does not discover any Catalyst 1900, Catalyst 2820, and Catalyst 2916M XL cluster member switches. You must re-add these cluster member switches to the cluster.

- This limitation applies to all clusters: If the active cluster command switch fails and becomes active again, it does not discover any Catalyst 1900, Catalyst 2820, and Catalyst 2916M XL cluster member switches. You must again add these cluster member switches to the cluster.
When the previously active cluster command switch resumes its active role, it receives a copy of the latest cluster configuration from the active cluster command switch, including members that were added while it was down. The active cluster command switch sends a copy of the cluster configuration to the cluster standby group.

IP Addresses

You must assign IP information to a cluster command switch. You can assign more than one IP address to the cluster command switch, and you can access the cluster through any of the command-switch IP addresses. If you configure a cluster standby group, you must use the standby-group virtual IP address to manage the cluster from the active cluster command switch. Using the virtual IP address ensures that you retain connectivity to the cluster if the active cluster command switch fails and that a standby cluster command switch becomes the active cluster command switch.

If the active cluster command switch fails and the standby cluster command switch takes over, you must either use the standby-group virtual IP address or any of the IP addresses available on the new active cluster command switch to access the cluster.

You can assign an IP address to a cluster-capable switch, but it is not necessary. A cluster member switch is managed and communicates with other cluster member switches through the command-switch IP address. If the cluster member switch leaves the cluster and it does not have its own IP address, you must assign IP information to it to manage it as a standalone switch.

Note

Changing the cluster command switch IP address ends your CMS session on the switch. Restart your CMS session by entering the new IP address in the browser **Location** field (Netscape Communicator) or **Address** field (Internet Explorer), as described in the release notes.

For more information about IP addresses, see Chapter 4, “Assigning the Switch IP Address and Default Gateway.”

Host Names

You do not need to assign a host name to either a cluster command switch or an eligible cluster member. However, a host name assigned to the cluster command switch can help to identify the switch cluster. The default host name for the switch is **Switch**.

If a switch joins a cluster and it does not have a host name, the cluster command switch appends a unique member number to its own host name and assigns it sequentially as each switch joins the cluster. The number means the order in which the switch was added to the cluster. For example, a cluster command switch named **eng-cluster** could name the fifth cluster member **eng-cluster-5**.

If a switch has a host name, it retains that name when it joins a cluster. It retains that host name even after it leaves the cluster.

If a switch received its host name from the cluster command switch, was removed from a cluster, was then added to a new cluster, and kept the same member number (such as 5), the old host name (such as **eng-cluster-5**) is overwritten with the host name of the cluster command switch in the new cluster (such as **mkg-cluster-5**). If the switch member number changes in the new cluster (such as 3), the switch retains the previous name (**eng-cluster-5**).
Passwords

You do not need to assign passwords to an individual switch if it will be a cluster member. When a switch joins a cluster, it inherits the command-switch password and retains it when it leaves the cluster. If no command-switch password is configured, the cluster member switch inherits a null password. Cluster member switches only inherit the command-switch password.

If you change the member-switch password to be different from the command-switch password and save the change, the switch is not manageable by the cluster command switch until you change the member-switch password to match the command-switch password. Rebooting the member switch does not revert the password back to the command-switch password. We recommend that you do not change the member-switch password after it joins a cluster.

For more information about passwords, see the “Preventing Unauthorized Access to Your Switch” section on page 7-1.

For password considerations specific to the Catalyst 1900 and Catalyst 2820 switches, refer to the installation and configuration guides for those switches.

SNMP Community Strings

A cluster member switch inherits the command-switch first read-only (RO) and read-write (RW) community strings with @esN appended to the community strings:

- command-switch-readonly-community-string@esN, where N is the member-switch number.
- command-switch-readwrite-community-string@esN, where N is the member-switch number.

If the cluster command switch has multiple read-only or read-write community strings, only the first read-only and read-write strings are propagated to the cluster member switch.

The switches support an unlimited number of community strings and string lengths. For more information about SNMP and community strings, see Chapter 22, “Configuring SNMP.”

For SNMP considerations specific to the Catalyst 1900 and Catalyst 2820 switches, refer to the installation and configuration guides specific to those switches.

Switch Clusters and Switch Stacks

A switch cluster can have one or more Catalyst 3750 switch stacks. Each switch stack can act as the cluster command switch or as a single cluster member. Table 6-1 describes the basic differences between switch stacks and switch clusters. For more information about switch stacks, see Chapter 5, “Managing Switch Stacks.”

<table>
<thead>
<tr>
<th>Switch Stack</th>
<th>Switch Cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>Made up of Catalyst 3750 switches only</td>
<td>Made up of cluster-capable switches, such as Catalyst 3750, Catalyst 3550, and Catalyst 2950 switches</td>
</tr>
<tr>
<td>Stack members are connected through StackWise ports</td>
<td>Cluster members are connected through LAN ports</td>
</tr>
<tr>
<td>Requires one stack master and supports up to eight other stack members</td>
<td>Requires 1 cluster command switch and supports up to 15 other cluster member switches</td>
</tr>
<tr>
<td>Can be a cluster command switch or a cluster member switch</td>
<td>Cannot be a stack master or stack member</td>
</tr>
</tbody>
</table>
Recall that stack members work together to behave as a unified system (as a single switch stack) in the network and are presented to the network as such by Layer 2 and Layer 3 protocols. Therefore, the switch cluster recognizes switch stacks, not individual stack members, as eligible cluster members. Individual stack members cannot join a switch cluster or participate as separate cluster members. Because a switch cluster must have 1 cluster command switch and can have up to 15 cluster members, a cluster can potentially have up to 16 switch stacks, totalling 144 devices.

Cluster configuration of switch stacks is through the stack master.

<table>
<thead>
<tr>
<th>Switch Stack</th>
<th>Switch Cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stack master is the single point of complete management for all stack members in a particular switch stack</td>
<td>Cluster command switch is the single point of some management for all cluster members in a particular switch cluster</td>
</tr>
<tr>
<td>Back-up stack master is automatically determined in case the stack master fails</td>
<td>Standby cluster command switch must be pre-assigned in case the cluster command switch fails</td>
</tr>
<tr>
<td>Switch stack supports up to eight simultaneous stack master failures</td>
<td>Switch cluster supports only one cluster command switch failure at a time</td>
</tr>
<tr>
<td>Stack members (as a switch stack) behave and is presented as a single, unified system in the network</td>
<td>Cluster members are various, independent switches that are not managed as and do not behave as a unified system</td>
</tr>
<tr>
<td>Integrated management of stack members through a single configuration file</td>
<td>Cluster members have separate, individual configuration files</td>
</tr>
<tr>
<td>Stack- and interface-level configurations are stored on each stack member</td>
<td>Cluster configuration are stored on the cluster command switch and the standby cluster command switch</td>
</tr>
<tr>
<td>New stack members are automatically added to the switch stack</td>
<td>New cluster members must be manually added to the switch cluster</td>
</tr>
</tbody>
</table>

Table 6-1 Basic Comparison of Switch Stacks and Switch Clusters (continued)

Recall that stack members work together to behave as a unified system (as a single switch stack) in the network and are presented to the network as such by Layer 2 and Layer 3 protocols. Therefore, the switch cluster recognizes switch stacks, not individual stack members, as eligible cluster members. Individual stack members cannot join a switch cluster or participate as separate cluster members. Because a switch cluster must have 1 cluster command switch and can have up to 15 cluster members, a cluster can potentially have up to 16 switch stacks, totalling 144 devices.

Cluster configuration of switch stacks is through the stack master.

From the CLI, you can configure a switch cluster to contain up to 16 switch stacks. However, from CMS, the maximum number of actual devices in a switch cluster is 16, irrespective of the number of devices in switch stack cluster members. For example, if a switch stack contains three stack members, they are counted as three separate devices.

If you used the CLI to configure a switch cluster that contains more than 16 actual devices and then try to display the cluster from CMS, CMS requires you to remove cluster members until the CMS limit of 16 is reached.

These are considerations to keep in mind when you have switch stacks in switch clusters:

- If the cluster command switch is not a Catalyst 3750 switch or switch stack and a new stack master is elected in a cluster member switch stack, the switch stack loses its connectivity to the switch cluster if there are no redundant connections between the switch stack and the cluster command switch. You must add the switch stack to the switch cluster.

- If the cluster command switch is a switch stack and new stack masters are simultaneously elected in the cluster command switch stack and in cluster member switch stacks, connectivity between the switch stacks is lost if there are no redundant connections between the switch stack and the cluster command switch. You must add the switch stacks to the cluster, including the cluster command switch stack.
All stack members should have redundant connectivity to all VLANs in the switch cluster. Otherwise, if a new stack master is elected, stack members connected to any VLANs not configured on the new stack master lose their connectivity to the switch cluster. You must change the VLAN configuration of the stack master or the stack members and add the stack members back to the switch cluster.

If a cluster member switch stack reloads and a new stack master is elected, the switch stack loses connectivity with the cluster command switch. You must add the switch stack back to the switch cluster.

If a cluster command switch stack reloads, and the original stack master is not re-elected, you must rebuild the entire switch cluster.

For more information about switch stacks, see Chapter 5, “Managing Switch Stacks.”

TACACS+ and RADIUS

Inconsistent authentication configurations in switch clusters cause CMS to continually prompt for a user name and password. If Terminal Access Controller Access Control System Plus (TACACS+) is configured on a cluster member, it must be configured on all cluster members. Similarly, if Remote Authentication Dial-In User Service (RADIUS) is configured on a cluster member, it must be configured on all cluster members. Further, the same switch cluster cannot have some members configured with TACACS+ and other members configured with RADIUS.

For more information about TACACS+, see the “Controlling Switch Access with TACACS+” section on page 7-10. For more information about RADIUS, see the “Controlling Switch Access with RADIUS” section on page 7-18.

Access Modes in CMS

If your cluster has these cluster member switches running earlier software releases and if you have read-only access to these cluster member switches, some configuration windows for those switches display incomplete information:

- Catalyst 2900 XL or Catalyst 3500 XL cluster member switches running Release 12.0(5)WC2 or earlier
- Catalyst 2950 cluster member switches running Release 12.0(5)WC2 or earlier
- Catalyst 3550 cluster member switches running Release 12.1(6)EA1 or earlier

These switches do not support read-only mode on CMS:

- Catalyst 1900 and Catalyst 2820
- Catalyst 2900 XL switches with 4-MB CPU DRAM

In read-only mode, these switches appear as unavailable devices and cannot be configured from CMS. For more information about CMS access modes, see the “Access Modes in CMS” section on page 3-29.

Availability of Switch-Specific Features in Switch Clusters

The menu bar on the cluster command switch displays all options available from the switch cluster. Therefore, features specific to a cluster member switch are available from the command-switch menu bar. For example, **Device > LRE Profile** appears in the command-switch menu bar when at least one Catalyst 2900 LRE XL switch is in the cluster.
Creating a Switch Cluster

Using CMS to create a cluster is easier than using the CLI commands. This section provides this information:

- Enabling a Cluster Command Switch, page 6-18
- Adding Cluster Member Switches, page 6-19
- Creating a Cluster Standby Group, page 6-21

This section assumes you have already connected the switches, as described in the switch hardware installation guide, and followed the guidelines described in the “Planning a Switch Cluster” section on page 6-4.

Note
Refer to the release notes for the list of Catalyst switches eligible for switch clustering, including which ones can be cluster command switches and which ones can only be cluster member switches, and for the required software versions and browser and Java plug-in configurations.

Enabling a Cluster Command Switch

The switch you designate as the cluster command switch must meet the requirements described in the “Cluster Command Switch Characteristics” section on page 6-3, the “Planning a Switch Cluster” section on page 6-4, and the release notes.

Note
We strongly recommend that the highest-end, command-capable switch in the cluster be the command switch. If your switch cluster has a Catalyst 3750 switch or a Catalyst 3750 switch stack, it should be the cluster command switch.

You can enable a cluster command switch, name the cluster, and assign an IP address and a password to the cluster command switch when you run the setup program during initial switch setup. For information about using the setup program, refer to the release notes.

If you did not enable a cluster command switch during initial switch setup, launch Device Manager from a command-capable switch, and select Cluster > Create Cluster. Enter a cluster number (the default is 0), and use up to 31 characters to name the cluster (Figure 6-8). Instead of using CMS to enable a cluster command switch, you can use the `cluster enable` global configuration command.

![Figure 6-8 Create Cluster Window](image)
Adding Cluster Member Switches

Note

This task is available only on the stack master.

As explained in the “Automatic Discovery of Cluster Candidates and Members” section on page 6-5, the cluster command switch automatically discovers candidate switches. When you add new cluster-capable switches to the network, the cluster command switch discovers them and adds them to a list of candidate switches.

Note

A switch stack in a cluster equates to a single cluster member switch. There is a restriction specific to adding cluster members through CMS. From CMS, you can create a switch cluster with up to 15 cluster members. From the CLI, you can create a switch cluster with up to 144 devices. For more information, see the “Switch Clusters and Switch Stacks” section on page 6-15.

To display an updated cluster candidates list from the Add to Cluster window (Figure 6-9), either relaunch CMS and redisplay this window, or follow these steps:

1. Close the Add to Cluster window.
2. Select View > Refresh.
3. Select Cluster > Add to Cluster to redisplay the Add to Cluster window.

From CMS, there are two ways to add switches to a cluster:

- Select Cluster > Add to Cluster, select a candidate switch from the list, click Add, and click OK.
 To add more than one candidate switch, press Ctrl, and make your choices, or press Shift, and choose the first and last switch in a range.

- Display the Topology view, right-click a candidate-switch icon, and select Add to Cluster (Figure 6-10). In the Topology view, candidate switches are cyan, and cluster member switches are green. To add more than one candidate switch, press Ctrl, and left-click the candidates that you want to add.

Instead of using CMS to add members to the cluster, you can use the cluster member global configuration command from the cluster command switch. Use the password option in this command if the candidate switch has a password.

You can select 1 or more switches as long as the total number of switches in the cluster does not exceed 16 (this includes the cluster command switch). When a cluster has 16 members, the Add to Cluster option is not available for that cluster. In this case, you must remove a cluster member switch before adding a new one.

If a password has been configured on a candidate switch, you are prompted to enter it before it can be added to the cluster. If the candidate switch does not have a password, any entry is ignored.

If multiple candidates switches have the same password, you can select them as a group, and add them at the same time.

If a candidate switch in the group has a password different from the group, only that specific candidate switch is not added to the cluster.

When a candidate switch joins a cluster, it inherits the command-switch password. For more information about setting passwords, see the “Passwords” section on page 6-15.

For additional authentication considerations in switch clusters, see the “TACACS+ and RADIUS” section on page 6-17.
Figure 6-9 Add to Cluster Window

Select a switch, and click Add. Press Ctrl and left-click to select more than one switch.

Enter the password of the candidate switch. If no password exists for the switch, leave this field blank.

Figure 6-10 Using the Topology View to Add Cluster Member Switches

Thin line means a connection to a candidate switch. Right-click a candidate switch to display the pop-up menu, and select Add to Cluster to add the switch to the cluster.
Creating a Cluster Standby Group

This task is available only on the stack master.

The cluster standby group members must meet the requirements described in the “Standby Cluster Command Switch Characteristics” section on page 6-3 and “HSRP and Standby Cluster Command Switches” section on page 6-11. To create a cluster standby group, select Cluster > Standby Command Switches (Figure 6-11).

Instead of using CMS to add switches to a standby group and to bind the standby group to a cluster, you can use the standby ip, the standby name, and the standby priority interface configuration commands and the cluster standby group global configuration command.

Note
Standby cluster command switches must be the same type of switches as the cluster command switch. For example, if the cluster command switch is a Catalyst 3750 switch, the standby cluster command switches must also be Catalyst 3750 switches. Refer to the switch configuration guide of other cluster-capable switches for IOS release requirements on standby cluster command switches.

These abbreviations are appended to the switch host names in the Standby Command Group list to show their eligibility or status in the cluster standby group:

- AC—Active cluster command switch
- SC—Standby cluster command switch
- PC—Member of the cluster standby group but not the standby cluster command switch
- HC—Candidate switch that can be added to the cluster standby group
- CC—Cluster command switch when HSRP is disabled

You must enter a virtual IP address for the cluster standby group. This address must be in the same subnet as the IP addresses of the switch. The group number must be unique within the IP subnet. It can be from 0 to 255, and the default is 0. The group name can have up to 31 characters.

The Standby Command Configuration window uses the default values for the preempt and name commands that you have set by using the CLI. If you use this window to create the standby group, all switches in the group have the preempt command enabled. You must also provide a name for the group.

Note
The HSRP standby hold time interval should be greater than or equal to three times the hello time interval. The default HSRP standby hold time interval is 10 seconds. The default HSRP standby hello time interval is 3 seconds. For more information about the standby hold time and standby hello time intervals, see the “Configuring HSRP Authentication and Timers” section on page 27-8.
Verifying a Switch Cluster

When you finish adding cluster members, follow these steps to verify the cluster:

Step 1 Enter the cluster command switch IP address in the browser **Location** field (Netscape Communicator) or **Address** field (Microsoft Internet Explorer) to access all switches in the cluster.

Step 2 Enter the command-switch password.

Step 3 Select **View > Topology** to display the cluster topology and to view link information (Figure 3-6 on page 3-10). For complete information about the Topology view, including descriptions of the icons, links, and colors, see the “Topology View” section on page 3-9.

Step 4 Select **Reports > Inventory** to display an inventory of the switches in the cluster (Figure 6-12). The summary includes information such as switch model numbers, serial numbers, software versions, IP information, and location.

You can also display port and switch statistics from **Reports > Port Statistics** and **Port > Port Settings > Runtime Status**.

Instead of using CMS to verify the cluster, you can use the **show cluster members** user EXEC command from the cluster command switch or use the **show cluster** user EXEC command from the cluster command switch or from a cluster member switch.
Figure 6-12 Inventory Window

If you lose connectivity with a cluster member switch or if a cluster command switch fails, see the cluster-related recovery procedures in Chapter 31, “Troubleshooting.”

For more information about creating and managing clusters, refer to the online help. For information about the cluster commands, refer to the switch command reference.
You can configure cluster member switches from the CLI by first logging into the cluster command switch. Enter the `rcommand` user EXEC command and the cluster member switch number to start a Telnet session (through a console or Telnet connection) and to access the cluster member switch CLI. The command mode changes, and the IOS commands operate as usual. Enter the `exit` privileged EXEC command on the cluster member switch to return to the command-switch CLI.

This example shows how to log into member-switch 3 from the command-switch CLI:

```
switch# rcommand 3
```

If you do not know the member-switch number, enter the `show cluster members` privileged EXEC command on the cluster command switch. For more information about the `rcommand` command and all other cluster commands, refer to the switch command reference.

The Telnet session accesses the member-switch CLI at the same privilege level as on the cluster command switch. The IOS commands then operate as usual. For instructions on configuring the switch for a Telnet session, see the “Disabling Password Recovery” section on page 7-5.

Note
The CLI supports creating and maintaining switch clusters with up to 16 switch stacks. For more information about switch stack and switch cluster, see the “Switch Clusters and Switch Stacks” section on page 6-15.

Catalyst 1900 and Catalyst 2820 CLI Considerations

If your switch cluster has Catalyst 1900 and Catalyst 2820 switches running standard edition software, the Telnet session accesses the management console (a menu-driven interface) if the cluster command switch is at privilege level 15. If the cluster command switch is at privilege level 1 to 14, you are prompted for the password to access the menu console.

Command-switch privilege levels map to the Catalyst 1900 and Catalyst 2820 cluster member switches running standard and Enterprise Edition Software as follows:

- If the command-switch privilege level is 1 to 14, the cluster member switch is accessed at privilege level 1.
- If the command-switch privilege level is 15, the cluster member switch is accessed at privilege level 15.

Note
The Catalyst 1900 and Catalyst 2820 CLI is available only on switches running Enterprise Edition Software.

For more information about the Catalyst 1900 and Catalyst 2820 switches, refer to the installation and configuration guides for those switches.
Using SNMP to Manage Switch Clusters

When you first power on the switch, SNMP is enabled if you enter the IP information by using the setup program and accept its proposed configuration. If you did not use the setup program to enter the IP information and SNMP was not enabled, you can enable it as described in the “Configuring SNMP” section on page 22-5. On Catalyst 1900 and Catalyst 2820 switches, SNMP is enabled by default.

When you create a cluster, the cluster command switch manages the exchange of messages between cluster member switches and an SNMP application. The cluster software on the cluster command switch appends the cluster member switch number (@esN, where N is the switch number) to the first configured read-write and read-only community strings on the cluster command switch and propagates them to the cluster member switch. The cluster command switch uses this community string to control the forwarding of gets, sets, and get-next messages between the SNMP management station and the cluster member switches.

Note

When a cluster standby group is configured, the cluster command switch can change without your knowledge. Use the first read-write and read-only community strings to communicate with the cluster command switch if there is a cluster standby group configured for the cluster.

If the cluster member switch does not have an IP address, the cluster command switch redirects traps from the cluster member switch to the management station, as shown in Figure 6-13. If a cluster member switch has its own IP address and community strings, the cluster member switch can send traps directly to the management station, without going through the cluster command switch.

If a cluster member switch has its own IP address and community strings, they can be used in addition to the access provided by the cluster command switch. For more information about SNMP and community strings, see Chapter 22, “Configuring SNMP.”

Figure 6-13 SNMP Management for a Cluster

![SNMP Management for a Cluster Diagram]
Administering the Switch

This chapter describes how to perform one-time operations to administer the Catalyst 3750 switch. Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

This chapter consists of these sections:

- Preventing Unauthorized Access to Your Switch, page 7-1
- Protecting Access to Privileged EXEC Commands, page 7-2
- Controlling Switch Access with TACACS+, page 7-10
- Controlling Switch Access with RADIUS, page 7-18
- Configuring the Switch for Local Authentication and Authorization, page 7-32
- Managing the System Time and Date, page 7-33
- Configuring a System Name and Prompt, page 7-47
- Creating a Banner, page 7-50
- Managing the MAC Address Table, page 7-53

Preventing Unauthorized Access to Your Switch

You can prevent unauthorized users from reconfiguring your switch and viewing configuration information. Typically, you want network administrators to have access to your switch while you restrict access to users who dial from outside the network through an asynchronous port, connect from outside the network through a serial port, or connect through a terminal or workstation from within the local network.

To prevent unauthorized access into your switch, you should configure one or more of these security features:

- At a minimum, you should configure passwords and privileges at each switch port. These passwords are locally stored on the switch. When users attempt to access the switch through a port or line, they must enter the password specified for the port or line before they can access the switch. For more information, see the “Protecting Access to Privileged EXEC Commands” section on page 7-2.

- For an additional layer of security, you can also configure username and password pairs, which are locally stored on the switch. These pairs are assigned to lines or interfaces and authenticate each user before that user can access the switch. If you have defined privilege levels, you can also assign a specific privilege level (with associated rights and privileges) to each username and password pair. For more information, see the “Configuring Username and Password Pairs” section on page 7-7.
If you want to use username and password pairs, but you want to store them centrally on a server instead of locally, you can store them in a database on a security server. Multiple networking devices can then use the same database to obtain user authentication (and, if necessary, authorization) information. For more information, see the “Controlling Switch Access with TACACS+” section on page 7-10.

Protecting Access to Privileged EXEC Commands

A simple way of providing terminal access control in your network is to use passwords and assign privilege levels. Password protection restricts access to a network or network device. Privilege levels define what commands users can enter after they have logged into a network device.

Note

For complete syntax and usage information for the commands used in this section, refer to the Cisco IOS Security Command Reference for Release 12.1.

This section describes how to control access to the configuration file and privileged EXEC commands. It contains this configuration information:

- Default Password and Privilege Level Configuration, page 7-2
- Setting or Changing a Static Enable Password, page 7-3
- Protecting Enable and Enable Secret Passwords with Encryption, page 7-4
- Disabling Password Recovery, page 7-5
- Setting a Telnet Password for a Terminal Line, page 7-6
- Configuring Username and Password Pairs, page 7-7
- Configuring Multiple Privilege Levels, page 7-7

Default Password and Privilege Level Configuration

Table 7-1 shows the default password and privilege level configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable password and privilege level</td>
<td>No password is defined. The default is level 15 (privileged EXEC level). The password is not encrypted in the configuration file.</td>
</tr>
<tr>
<td>Enable secret password and privilege level</td>
<td>No password is defined. The default is level 15 (privileged EXEC level). The password is encrypted before it is written to the configuration file.</td>
</tr>
<tr>
<td>Line password</td>
<td>No password is defined.</td>
</tr>
</tbody>
</table>
Setting or Changing a Static Enable Password

The enable password controls access to the privileged EXEC mode. Beginning in privileged EXEC mode, follow these steps to set or change a static enable password:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 enable password password</td>
<td>Define a new password or change an existing password for access to privileged EXEC mode. By default, no password is defined. For password, specify a string from 1 to 25 alphanumeric characters. The string cannot start with a number, is case sensitive, and allows spaces but ignores leading spaces. It can contain the question mark (?) character if you precede the question mark with the key combination Ctrl-v when you create the password; for example, to create the password abc?123, do this: Enter abc. Enter Ctrl-v. Enter ?123. When the system prompts you to enter the enable password, you need not precede the question mark with the Ctrl-v; you can simply enter abc?123 at the password prompt.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file. The enable password is not encrypted and can be read in the switch configuration file.</td>
</tr>
</tbody>
</table>

To remove the password, use the **no enable password** global configuration command.

This example shows how to change the enable password to 1lu2c3k4y5. The password is not encrypted and provides access to level 15 (traditional privileged EXEC mode access):

`Switch(config)# enable password 1lu2c3k4y5`
Protecting Enable and Enable Secret Passwords with Encryption

To provide an additional layer of security, particularly for passwords that cross the network or that are stored on a Trivial File Transfer Protocol (TFTP) server, you can use either the enable password or enable secret global configuration commands. Both commands accomplish the same thing; that is, you can establish an encrypted password that users must enter to access privileged EXEC mode (the default) or any privilege level you specify.

We recommend that you use the enable secret command because it uses an improved encryption algorithm.

If you configure the enable secret command, it takes precedence over the enable password command; the two commands cannot be in effect simultaneously.

Beginning in privileged EXEC mode, follow these steps to configure encryption for enable and enable secret passwords:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
</tbody>
</table>
| **Step 2** | enable password [level level] {password | encryption-type encrypted-password}
 or
 enable secret [level level] {password | encryption-type encrypted-password}
 Define a new password or change an existing password for access to privileged EXEC mode.
 or
 Define a secret password, which is saved using a nonreversible encryption method.
 • (Optional) For level, the range is from 0 to 15. Level 1 is normal user EXEC mode privileges. The default level is 15 (privileged EXEC mode privileges).
 • For password, specify a string from 1 to 25 alphanumeric characters. The string cannot start with a number, is case sensitive, and allows spaces but ignores leading spaces. By default, no password is defined.
 • (Optional) For encryption-type, only type 5, a Cisco proprietary encryption algorithm, is available. If you specify an encryption type, you must provide an encrypted password—an encrypted password you copy from another switch configuration.
 Note If you specify an encryption type and then enter a clear text password, you can not re-enter privileged EXEC mode. You cannot recover a lost encrypted password by any method. |
| **Step 3** | service password-encryption
 (Optional) Encrypt the password when the password is defined or when the configuration is written.
 Encryption prevents the password from being readable in the configuration file. |
| **Step 4** | end
 Return to privileged EXEC mode. |
| **Step 5** | copy running-config startup-config
 (Optional) Save your entries in the configuration file. |
Chapter 7 Administering the Switch

Protecting Access to Privileged EXEC Commands

If both the enable and enable secret passwords are defined, users must enter the enable secret password. Use the level keyword to define a password for a specific privilege level. After you specify the level and set a password, give the password only to users who need to have access at this level. Use the privilege level global configuration command to specify commands accessible at various levels. For more information, see the “Configuring Multiple Privilege Levels” section on page 7-7.

If you enable password encryption, it applies to all passwords including username passwords, authentication key passwords, the privileged command password, and console and virtual terminal line passwords.

To remove a password and level, use the no enable password [level level] or no enable secret [level level] global configuration command. To disable password encryption, use the no service password-encryption global configuration command.

This example shows how to configure the encrypted password 1FaD0$Xyti5Rkls3LoyxzS8 for privilege level 2:

Switch(config)# enable secret level 2 5 1FaD0$Xyti5Rkls3LoyxzS8

Disabling Password Recovery

The default configuration for the switches allows an end user with physical access to the switch to recover from a lost password by interrupting the boot process while the switch is powering up and then by entering a new password. The password recovery disable feature allows the system administrator to protect access to the switch password by disabling part of this functionality and allowing the user to interrupt the boot process only by agreeing to set the system back to the default configuration. With password recovery disabled, you can still interrupt the boot process and change the password, but the configuration file (config.text) and the VLAN database file (vlan.dat) are deleted.

Note

If you disable password recovery, we recommend that you keep a backup copy of the configuration file on a secure server in case the end user interrupts the boot process and sets the system back to defaults. Do not keep a backup copy of the configuration file on the switch. If the switch is operating in VTP transparent mode, we recommend that you also keep a backup copy of the VLAN database file on a secure server. When the switch is returned to the default system configuration, you can download the saved files to the switch by using the XMODEM protocol. For more information, see the “Recovering from a Lost or Forgotten Password” section on page 31-4.

Beginning in privileged EXEC mode, follow these steps to disable password recovery:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 no service password-recovery</td>
<td>Disable password recovery. This setting is saved in an area of the Flash memory that is accessible by the boot loader and the IOS image, but it is not part of the file system and is not accessible by any user.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show version</td>
<td>Verify the configuration by checking the last few lines of the display.</td>
</tr>
</tbody>
</table>
To re-enable password recovery, use the `service password-recovery` global configuration command.

Note
Disabling password recovery will not work if you have set the switch to boot manually by using the `boot manual` global configuration command because this command allows the user to automatically see the boot loader prompt (`switch:`) after power cycling the switch.

Setting a Telnet Password for a Terminal Line

When you power-up your switch for the first time, an automatic setup program runs to assign IP information and to create a default configuration for continued use. The setup program also prompts you to configure your switch for Telnet access through a password. If you did not configure this password during the setup program, you can configure it now through the command-line interface (CLI).

Beginning in privileged EXEC mode, follow these steps to configure your switch for Telnet access:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Attach a PC or workstation with emulation software to the switch console port.</td>
</tr>
<tr>
<td></td>
<td>The default data characteristics of the console port are 9600, 8, 1, no parity. You might need to press the Return key several times to see the command-line prompt.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>enable password password</code> Enter privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>line vty 0 15</code> Configure the number of Telnet sessions (lines), and enter line configuration mode.</td>
</tr>
<tr>
<td></td>
<td>There are 16 possible sessions on a command-capable switch. The 0 and 15 mean that you are configuring all 16 possible Telnet sessions.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>password password</code> Enter a Telnet password for the line or lines.</td>
</tr>
<tr>
<td></td>
<td>For <code>password</code>, specify a string from 1 to 25 alphanumeric characters. The string cannot start with a number, is case sensitive, and allows spaces but ignores leading spaces. By default, no password is defined.</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>end</code> Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 7</td>
<td><code>show running-config</code> Verify your entries.</td>
</tr>
<tr>
<td></td>
<td>The password is listed under the command <code>line vty 0 15</code>.</td>
</tr>
<tr>
<td>Step 8</td>
<td><code>copy running-config startup-config</code> (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove the password, use the `no password` global configuration command.

This example shows how to set the Telnet password to `let45me67in89`:

```
Switch(config)# line vty 10
Switch(config-line)# password let45me67in89
```
Configuring Username and Password Pairs

You can configure username and password pairs, which are locally stored on the switch. These pairs are assigned to lines or interfaces and authenticate each user before that user can access the switch. If you have defined privilege levels, you can also assign a specific privilege level (with associated rights and privileges) to each username and password pair.

Beginning in privileged EXEC mode, follow these steps to establish a username-based authentication system that requests a login username and a password:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>username name [privilege level]</td>
</tr>
<tr>
<td></td>
<td>{password encryption-type password}</td>
</tr>
<tr>
<td></td>
<td>Enter the username, privilege level, and password for each user.</td>
</tr>
<tr>
<td></td>
<td>• For name, specify the user ID as one word. Spaces and quotation marks are not allowed.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For level, specify the privilege level the user has after gaining access. The range is 0 to 15. Level 15 gives privileged EXEC mode access. Level 1 gives user EXEC mode access.</td>
</tr>
<tr>
<td></td>
<td>• For encryption-type, enter 0 to specify that an unencrypted password will follow. Enter 7 to specify that a hidden password will follow.</td>
</tr>
<tr>
<td></td>
<td>• For password, specify the password the user must enter to gain access to the switch. The password must be from 1 to 25 characters, can contain embedded spaces, and must be the last option specified in the username command.</td>
</tr>
<tr>
<td>Step 3</td>
<td>line console 0</td>
</tr>
<tr>
<td>or</td>
<td>line vty 0 15</td>
</tr>
<tr>
<td></td>
<td>Enter line configuration mode, and configure the console port (line 0) or the VTY lines (line 0 to 15).</td>
</tr>
<tr>
<td>Step 4</td>
<td>login local</td>
</tr>
<tr>
<td></td>
<td>Enable local password checking at login time. Authentication is based on the username specified in Step 2.</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>show running-config</td>
</tr>
<tr>
<td></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable username authentication for a specific user, use the **no username name** global configuration command. To disable password checking and allow connections without a password, use the **no login** line configuration command.

Configuring Multiple Privilege Levels

By default, the IOS software has two modes of password security: user EXEC and privileged EXEC. You can configure up to 16 hierarchical levels of commands for each mode. By configuring multiple passwords, you can allow different sets of users to have access to specified commands.
For example, if you want many users to have access to the clear line command, you can assign it level 2 security and distribute the level 2 password fairly widely. But if you want more restricted access to the configure command, you can assign it level 3 security and distribute that password to a more restricted group of users.

This section includes this configuration information:
- Setting the Privilege Level for a Command, page 7-8
- Changing the Default Privilege Level for Lines, page 7-9
- Logging into and Exiting a Privilege Level, page 7-9

Setting the Privilege Level for a Command

Beginning in privileged EXEC mode, follow these steps to set the privilege level for a command mode:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| 2 | privilege mode level level command | Set the privilege level for a command.
 - For mode, enter configure for global configuration mode, exec for EXEC mode, interface for interface configuration mode, or line for line configuration mode.
 - For level, the range is from 0 to 15. Level 1 is for normal user EXEC mode privileges. Level 15 is the level of access permitted by the enable password.
 - For command, specify the command to which you want to restrict access. |
| 3 | enable password level level password | Specify the enable password for the privilege level.
 - For level, the range is from 0 to 15. Level 1 is for normal user EXEC mode privileges.
 - For password, specify a string from 1 to 25 alphanumeric characters. The string cannot start with a number, is case sensitive, and allows spaces but ignores leading spaces. By default, no password is defined. |
| 4 | end | Return to privileged EXEC mode. |
| 5 | show running-config | Verify your entries.
 The first command displays the password and access level configuration.
 The second command displays the privilege level configuration. |
| | or show privilege | |
| 6 | copy running-config startup-config | (Optional) Save your entries in the configuration file. |

When you set a command to a privilege level, all commands whose syntax is a subset of that command are also set to that level. For example, if you set the show ip traffic command to level 15, the show commands and show ip commands are automatically set to privilege level 15 unless you set them individually to different levels.

To return to the default privilege for a given command, use the no privilege mode level level command global configuration command.
This example shows how to set the `configure` command to privilege level 14 and define `SecretPswd14` as the password users must enter to use level 14 commands:

```
Switch(config)# privilege exec level 14 configure
Switch(config)# enable password level 14 SecretPswd14
```

Changing the Default Privilege Level for Lines

Beginning in privileged EXEC mode, follow these steps to change the default privilege level for a line:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><code>line vty line</code></td>
<td>Select the virtual terminal line on which to restrict access.</td>
</tr>
<tr>
<td><code>privilege level level</code></td>
<td>Change the default privilege level for the line.</td>
</tr>
<tr>
<td></td>
<td>For <code>level</code>, the range is from 0 to 15. Level 1 is for normal user EXEC mode privileges. Level 15 is the level of access permitted by the <code>enable</code> password.</td>
</tr>
<tr>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>show running-config</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td><code>show privilege</code></td>
<td>THE first command displays the password and access level configuration.</td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Users can override the privilege level you set using the `privilege level` line configuration command by logging in to the line and enabling a different privilege level. They can lower the privilege level by using the `disable` command. If users know the password to a higher privilege level, they can use that password to enable the higher privilege level. You might specify a high level or privilege level for your console line to restrict line usage.

To return to the default line privilege level, use the `no privilege level` line configuration command.

Logging into and Exiting a Privilege Level

Beginning in privileged EXEC mode, follow these steps to log in to a specified privilege level and to exit to a specified privilege level:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable level</code></td>
<td>Log in to a specified privilege level.</td>
</tr>
<tr>
<td></td>
<td>For <code>level</code>, the range is 0 to 15.</td>
</tr>
<tr>
<td><code>disable level</code></td>
<td>Exit to a specified privilege level.</td>
</tr>
<tr>
<td></td>
<td>For <code>level</code>, the range is 0 to 15.</td>
</tr>
</tbody>
</table>
Controlling Switch Access with TACACS+

This section describes how to enable and configure Terminal Access Controller Access Control System Plus (TACACS+), which provides detailed accounting information and flexible administrative control over authentication and authorization processes. TACACS+ is facilitated through authentication, authorization, accounting (AAA) and can be enabled only through AAA commands.

This section contains this configuration information:

- Understanding TACACS+, page 7-10
- TACACS+ Operation, page 7-12
- Configuring TACACS+, page 7-12
- Displaying the TACACS+ Configuration, page 7-17

Understanding TACACS+

TACACS+ is a security application that provides centralized validation of users attempting to gain access to your switch. TACACS+ services are maintained in a database on a TACACS+ daemon typically running on a UNIX or Windows NT workstation. You should have access to and should configure a TACACS+ server before the configuring TACACS+ features on your switch.

Note: We recommend a redundant connection between a switch stack and the TACACS+ server. This is to help ensure that the TACACS+ server remains accessible in case one of the connected stack members is removed from the switch stack.

TACACS+ provides for separate and modular authentication, authorization, and accounting facilities. TACACS+ allows for a single access control server (the TACACS+ daemon) to provide each service—authentication, authorization, and accounting—individually. Each service can be tied into its own database to take advantage of other services available on that server or on the network, depending on the capabilities of the daemon.

The goal of TACACS+ is to provide a method for managing multiple network access points from a single management service. Your switch can be a network access server along with other Cisco routers and access servers. A network access server provides connections to a single user, to a network or subnetwork, and to interconnected networks as shown in Figure 7-1.
TACACS+, administered through the AAA security services, can provide these services:

- **Authentication**—Provides complete control of authentication through login and password dialog, challenge and response, and messaging support.

 The authentication facility can conduct a dialog with the user (for example, after a username and password are provided, to challenge a user with several questions, such as home address, mother’s maiden name, service type, and social security number). The TACACS+ authentication service can also send messages to user screens. For example, a message could notify users that their passwords must be changed because of the company’s password aging policy.

- **Authorization**—Provides fine-grained control over user capabilities for the duration of the user’s session, including but not limited to setting autocommands, access control, session duration, or protocol support. You can also enforce restrictions on what commands a user can execute with the TACACS+ authorization feature.

- **Accounting**—Collects and sends information used for billing, auditing, and reporting to the TACACS+ daemon. Network managers can use the accounting facility to track user activity for a security audit or to provide information for user billing. Accounting records include user identities, start and stop times, executed commands (such as PPP), number of packets, and number of bytes.

The TACACS+ protocol provides authentication between the switch and the TACACS+ daemon, and it ensures confidentiality because all protocol exchanges between the switch and the TACACS+ daemon are encrypted.

You need a system running the TACACS+ daemon software to use TACACS+ on your switch.
TACACS+ Operation

When a user attempts a simple ASCII login by authenticating to a switch using TACACS+, this process occurs:

1. When the connection is established, the switch contacts the TACACS+ daemon to obtain a username prompt, which is then displayed to the user. The user enters a username, and the switch then contacts the TACACS+ daemon to obtain a password prompt. The switch displays the password prompt to the user, the user enters a password, and the password is then sent to the TACACS+ daemon.

 TACACS+ allows a conversation to be held between the daemon and the user until the daemon receives enough information to authenticate the user. The daemon prompts for a username and password combination, but can include other items, such as the user’s mother’s maiden name.

2. The switch eventually receives one of these responses from the TACACS+ daemon:
 - ACCEPT—The user is authenticated and service can begin. If the switch is configured to require authorization, authorization begins at this time.
 - REJECT—The user is not authenticated. The user can be denied access or is prompted to retry the login sequence, depending on the TACACS+ daemon.
 - ERROR—An error occurred at some time during authentication with the daemon or in the network connection between the daemon and the switch. If an ERROR response is received, the switch typically tries to use an alternative method for authenticating the user.
 - CONTINUE—The user is prompted for additional authentication information.

 After authentication, the user undergoes an additional authorization phase if authorization has been enabled on the switch. Users must first successfully complete TACACS+ authentication before proceeding to TACACS+ authorization.

3. If TACACS+ authorization is required, the TACACS+ daemon is again contacted, and it returns an ACCEPT or REJECT authorization response. If an ACCEPT response is returned, the response contains data in the form of attributes that direct the EXEC or NETWORK session for that user, determining the services that the user can access:
 - Telnet, rlogin, or privileged EXEC services
 - Connection parameters, including the host or client IP address, access list, and user timeouts

Configuring TACACS+

This section describes how to configure your switch to support TACACS+. At a minimum, you must identify the host or hosts maintaining the TACACS+ daemon and define the method lists for TACACS+ authentication. You can optionally define method lists for TACACS+ authorization and accounting. A method list defines the sequence and methods to be used to authenticate, to authorize, or to keep accounts on a user. You can use method lists to designate one or more security protocols to be used, thus ensuring a backup system if the initial method fails. The software uses the first method listed to authenticate, to authorize, or to keep accounts on users; if that method does not respond, the software selects the next method in the list. This process continues until there is successful communication with a listed method or the method list is exhausted.
This section contains this configuration information:

- Default TACACS+ Configuration, page 7-13
- Identifying the TACACS+ Server Host and Setting the Authentication Key, page 7-13
- Configuring TACACS+ Login Authentication, page 7-14
- Configuring TACACS+ Authorization for Privileged EXEC Access and Network Services, page 7-16
- Starting TACACS+ Accounting, page 7-17

Default TACACS+ Configuration

TACACS+ and AAA are disabled by default.

To prevent a lapse in security, you cannot configure TACACS+ through a network management application. When enabled, TACACS+ can authenticate users accessing the switch through the CLI.

Note

Although TACACS+ configuration is performed through the CLI, the TACACS+ server authenticates HTTP connections that have been configured with a privilege level of 15.

Identifying the TACACS+ Server Host and Setting the Authentication Key

You can configure the switch to use a single server or AAA server groups to group existing server hosts for authentication. You can group servers to select a subset of the configured server hosts and use them for a particular service. The server group is used with a global server-host list and contains the list of IP addresses of the selected server hosts.

Beginning in privileged EXEC mode, follow these steps to identify the IP host or host maintaining TACACS+ server and optionally set the encryption key:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>tacacs-server host hostname [port integer] [timeout integer] [key string]</td>
<td>Identify the IP host or hosts maintaining a TACACS+ server. Enter this command multiple times to create a list of preferred hosts. The software searches for hosts in the order in which you specify them.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For hostname, specify the name or IP address of the host.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) For port integer, specify a server port number. The default is port 49. The range is 1 to 65535.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) For timeout integer, specify a time in seconds the switch waits for a response from the daemon before it times out and declares an error. The default is 5 seconds. The range is 1 to 1000 seconds.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) For key string, specify the encryption key for encrypting and decrypting all traffic between the switch and the TACACS+ daemon. You must configure the same key on the TACACS+ daemon for encryption to be successful.</td>
</tr>
<tr>
<td>Step 3</td>
<td>aaa new-model</td>
<td>Enable AAA.</td>
</tr>
</tbody>
</table>
Chapter 7 Administering the Switch

Controlling Switch Access with TACACS+

To remove the specified TACACS+ server name or address, use the `no tacacs-server host hostname` global configuration command. To remove a server group from the configuration list, use the `no aaa group server tacacs+ group-name` global configuration command. To remove the IP address of a TACACS+ server, use the `no server ip-address` server group subconfiguration command.

Configuring TACACS+ Login Authentication

To configure AAA authentication, you define a named list of authentication methods and then apply that list to various interfaces. The method list defines the types of authentication to be performed and the sequence in which they are performed; it must be applied to a specific interface before any of the defined authentication methods are performed. The only exception is the default method list (which, by coincidence, is named `default`). The default method list is automatically applied to all interfaces except those that have a named method list explicitly defined. A defined method list overrides the default method list.

A method list describes the sequence and authentication methods to be queried to authenticate a user. You can designate one or more security protocols to be used for authentication, thus ensuring a backup system for authentication in case the initial method fails. The software uses the first method listed to authenticate users; if that method fails to respond, the software selects the next authentication method in the method list. This process continues until there is successful communication with a listed authentication method or until all defined methods are exhausted. If authentication fails at any point in this cycle—meaning that the security server or local username database responds by denying the user access—the authentication process stops, and no other authentication methods are attempted.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4</td>
<td><code>aaa group server tacacs+ group-name</code> (Optional) Define the AAA server-group with a group name. This command puts the switch in a server group subconfiguration mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>server ip-address</code> (Optional) Associate a particular TACACS+ server with the defined server group. Repeat this step for each TACACS+ server in the AAA server group. Each server in the group must be previously defined in Step 2.</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>end</code> Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 7</td>
<td><code>show tacacs</code> Verify your entries.</td>
</tr>
<tr>
<td>Step 8</td>
<td><code>copy running-config startup-config</code> (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Beginning in privileged EXEC mode, follow these steps to configure login authentication:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>aaa new-model</td>
<td>Enable AAA.</td>
</tr>
<tr>
<td>3</td>
<td>aaa authentication login {default</td>
<td>list-name} method1 [method2...</td>
</tr>
<tr>
<td></td>
<td>}</td>
<td>- To create a default list that is used when a named list is not specified in the login authentication command, use the default keyword followed by the methods that are to be used in default situations. The default method list is automatically applied to all interfaces.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- For list-name, specify a character string to name the list you are creating.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- For method1..., specify the actual method the authentication algorithm tries. The additional methods of authentication are used only if the previous method returns an error, not if it fails.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Select one of these methods:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- enable—Use the enable password for authentication. Before you can use this authentication method, you must define an enable password by using the enable password global configuration command.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- group tacacs+—Uses TACACS+ authentication. Before you can use this authentication method, you must configure the TACACS+ server. For more information, see the “Identifying the TACACS+ Server Host and Setting the Authentication Key” section on page 7-13.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- line—Use the line password for authentication. Before you can use this authentication method, you must define a line password. Use the password password line configuration command.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- local—Use the local username database for authentication. You must enter username information in the database. Use the username password global configuration command.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- local-case—Use a case-sensitive local username database for authentication. You must enter username information in the database by using the username name password global configuration command.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- none—Do not use any authentication for login.</td>
</tr>
<tr>
<td>4</td>
<td>line [console</td>
<td>tty</td>
</tr>
<tr>
<td>5</td>
<td>login authentication {default</td>
<td>list-name}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- If you specify default, use the default list created with the aaa authentication login command.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- For list-name, specify the list created with the aaa authentication login command.</td>
</tr>
<tr>
<td>6</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>7</td>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>8</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
To disable AAA, use the `no aaa new-model` global configuration command. To disable AAA authentication, use the `no aaa authentication login {default | list-name} method1 [method2...]` global configuration command. To either disable TACACS+ authentication for logins or to return to the default value, use the `no login authentication {default | list-name}` line configuration command.

Configuring TACACS+ Authorization for Privileged EXEC Access and Network Services

AAA authorization limits the services available to a user. When AAA authorization is enabled, the switch uses information retrieved from the user’s profile, which is located either in the local user database or on the security server, to configure the user’s session. The user is granted access to a requested service only if the information in the user profile allows it.

You can use the `aaa authorization` global configuration command with the `tacacs+` keyword to set parameters that restrict a user’s network access to privileged EXEC mode.

The `aaa authorization exec tacacs+ local` command sets these authorization parameters:

- Use TACACS+ for privileged EXEC access authorization if authentication was performed by using TACACS+.
- Use the local database if authentication was not performed by using TACACS+.

Note

Authorization is bypassed for authenticated users who log in through the CLI even if authorization has been configured.

Beginning in privileged EXEC mode, follow these steps to specify TACACS+ authorization for privileged EXEC access and network services:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>aaa authorization network tacacs+</code> Configure the switch for user TACACS+ authorization for all network-related service requests.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>aaa authorization exec tacacs+</code> Configure the switch for user TACACS+ authorization to determine if the user has privileged EXEC access. The <code>exec</code> keyword might return user profile information (such as <code>autocommand</code> information).</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>end</code> Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>show running-config</code> Verify your entries.</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>copy running-config startup-config</code> (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable authorization, use the `no aaa authorization {network | exec} method1` global configuration command.
Starting TACACS+ Accounting

The AAA accounting feature tracks the services that users are accessing and the amount of network resources that they are consuming. When AAA accounting is enabled, the switch reports user activity to the TACACS+ security server in the form of accounting records. Each accounting record contains accounting attribute-value (AV) pairs and is stored on the security server. This data can then be analyzed for network management, client billing, or auditing.

Beginning in privileged EXEC mode, follow these steps to enable TACACS+ accounting for each Cisco IOS privilege level and for network services:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>aaa accounting network start-stop tacacs+</td>
<td>Enable TACACS+ accounting for all network-related service requests.</td>
</tr>
<tr>
<td>Step 3</td>
<td>aaa accounting exec start-stop tacacs+</td>
<td>Enable TACACS+ accounting to send a start-record accounting notice at the beginning of a privileged EXEC process and a stop-record at the end.</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable accounting, use the `no aaa accounting {network | exec} {start-stop} method1...` global configuration command.

Displaying the TACACS+ Configuration

To display TACACS+ server statistics, use the `show tacacs` privileged EXEC command.
Controlling Switch Access with RADIUS

This section describes how to enable and configure the Remote Authentication Dial-In User Service (RADIUS), which provides detailed accounting information and flexible administrative control over authentication and authorization processes. RADIUS is facilitated through AAA and can be enabled only through AAA commands.

Note

For complete syntax and usage information for the commands used in this section, refer to the Cisco IOS Security Command Reference for Release 12.1.

This section contains this configuration information:

- Understanding RADIUS, page 7-18
- RADIUS Operation, page 7-19
- Configuring RADIUS, page 7-20
- Displaying the RADIUS Configuration, page 7-31

Understanding RADIUS

RADIUS is a distributed client/server system that secures networks against unauthorized access. RADIUS clients run on supported Cisco routers and switches. Clients send authentication requests to a central RADIUS server, which contains all user authentication and network service access information. The RADIUS host is normally a multiuser system running RADIUS server software from Cisco (Cisco Secure Access Control Server version 3.0), Livingston, Merit, Microsoft, or another software provider. For more information, refer to the RADIUS server documentation.

Note

We recommend a redundant connection between a switch stack and the RADIUS server. This is to help ensure that the RADIUS server remains accessible in case one of the connected stack members is removed from the switch stack.

Use RADIUS in these network environments that require access security:

- Networks with multiple-vendor access servers, each supporting RADIUS. For example, access servers from several vendors use a single RADIUS server-based security database. In an IP-based network with multiple vendors’ access servers, dial-in users are authenticated through a RADIUS server that has been customized to work with the Kerberos security system.
- Turnkey network security environments in which applications support the RADIUS protocol, such as in an access environment that uses a smart card access control system. In one case, RADIUS has been used with Enigma’s security cards to validates users and to grant access to network resources.
- Networks already using RADIUS. You can add a Cisco switch containing a RADIUS client to the network. This might be the first step when you make a transition to a TACACS+ server. See Figure 7-2 on page 7-19.
- Network in which the user must only access a single service. Using RADIUS, you can control user access to a single host, to a single utility such as Telnet, or to the network through a protocol such as IEEE 802.1X. For more information about this protocol, see Chapter 8, “Configuring 802.1X Port-Based Authentication.”
Networks that require resource accounting. You can use RADIUS accounting independently of RADIUS authentication or authorization. The RADIUS accounting functions allow data to be sent at the start and end of services, showing the amount of resources (such as time, packets, bytes, and so forth) used during the session. An Internet service provider might use a freeware-based version of RADIUS access control and accounting software to meet special security and billing needs.

RADIUS is not suitable in these network security situations:

- Multiprotocol access environments. RADIUS does not support AppleTalk Remote Access (ARA), NetBIOS Frame Control Protocol (NBFCP), NetWare Asynchronous Services Interface (NASI), or X.25 PAD connections.
- Switch-to-switch or router-to-router situations. RADIUS does not provide two-way authentication. RADIUS can be used to authenticate from one device to a non-Cisco device if the non-Cisco device requires authentication.
- Networks using a variety of services. RADIUS generally binds a user to one service model.

Figure 7-2 Transitioning from RADIUS to TACACS+ Services

RADIUS Operation

When a user attempts to log in and authenticate to a switch that is access controlled by a RADIUS server, these events occur:

1. The user is prompted to enter a username and password.
2. The username and encrypted password are sent over the network to the RADIUS server.
3. The user receives one of these responses from the RADIUS server:
 a. ACCEPT—The user is authenticated.
 b. REJECT—The user is either not authenticated and is prompted to re-enter the username and password, or access is denied.
 c. CHALLENGE—A challenge requires additional data from the user.
 d. CHALLENGE PASSWORD—A response requests the user to select a new password.
The ACCEPT or REJECT response is bundled with additional data that is used for privileged EXEC or network authorization. Users must first successfully complete RADIUS authentication before proceeding to RADIUS authorization, if it is enabled. The additional data included with the ACCEPT or REJECT packets includes these items:

- Telnet, rlogin, or privileged EXEC services
- Connection parameters, including the host or client IP address, access list, and user timeouts

Configuring RADIUS

This section describes how to configure your switch to support RADIUS. At a minimum, you must identify the host or hosts that run the RADIUS server software and define the method lists for RADIUS authentication. You can optionally define method lists for RADIUS authorization and accounting.

A method list defines the sequence and methods to be used to authenticate, to authorize, or to keep accounts on a user. You can use method lists to designate one or more security protocols to be used (such as TACACS+ or local username lookup), thus ensuring a backup system if the initial method fails. The software uses the first method listed to authenticate, to authorize, or to keep accounts on users; if that method does not respond, the software selects the next method in the list. This process continues until there is successful communication with a listed method or the method list is exhausted.

You should have access to and should configure a RADIUS server before configuring RADIUS features on your switch.

This section contains this configuration information:

- Default RADIUS Configuration, page 7-20
- Identifying the RADIUS Server Host, page 7-21 (required)
- Configuring RADIUS Login Authentication, page 7-23 (required)
- Defining AAA Server Groups, page 7-25 (optional)
- Configuring RADIUS Authorization for User Privileged Access and Network Services, page 7-27 (optional)
- Starting RADIUS Accounting, page 7-28 (optional)
- Configuring Settings for All RADIUS Servers, page 7-29 (optional)
- Configuring the Switch to Use Vendor-Specific RADIUS Attributes, page 7-29 (optional)
- Configuring the Switch for Vendor-Proprietary RADIUS Server Communication, page 7-30 (optional)

Default RADIUS Configuration

RADIUS and AAA are disabled by default.

To prevent a lapse in security, you cannot configure RADIUS through a network management application. When enabled, RADIUS can authenticate users accessing the switch through the CLI.
Identifying the RADIUS Server Host

Switch-to-RADIUS-server communication involves several components:

- Host name or IP address
- Authentication destination port
- Accounting destination port
- Key string
- Timeout period
- Retransmission value

You identify RADIUS security servers by their host name or IP address, host name and specific UDP port numbers, or their IP address and specific UDP port numbers. The combination of the IP address and the UDP port number creates a unique identifier, allowing different ports to be individually defined as RADIUS hosts providing a specific AAA service. This unique identifier enables RADIUS requests to be sent to multiple UDP ports on a server at the same IP address.

If two different host entries on the same RADIUS server are configured for the same service—for example, accounting—the second host entry configured acts as a fail-over backup to the first one. Using this example, if the first host entry fails to provide accounting services, the switch tries the second host entry configured on the same device for accounting services. (The RADIUS host entries are tried in the order that they are configured.)

A RADIUS server and the switch use a shared secret text string to encrypt passwords and exchange responses. To configure RADIUS to use the AAA security commands, you must specify the host running the RADIUS server daemon and a secret text (key) string that it shares with the switch.

The timeout, retransmission, and encryption key values can be configured globally for all RADIUS servers, on a per-server basis, or in some combination of global and per-server settings. To apply these settings globally to all RADIUS servers communicating with the switch, use the three unique global configuration commands: `radius-server timeout`, `radius-server retransmit`, and `radius-server key`. To apply these values on a specific RADIUS server, use the `radius-server host` global configuration command.

Note

If you configure both global and per-server functions (timeout, retransmission, and key commands) on the switch, the per-server timer, retransmission, and key value commands override global timer, retransmission, and key value commands. For information on configuring these setting on all RADIUS servers, see the “Configuring Settings for All RADIUS Servers” section on page 7-29.

You can configure the switch to use AAA server groups to group existing server hosts for authentication. For more information, see the “Defining AAA Server Groups” section on page 7-25.
Beginning in privileged EXEC mode, follow these steps to configure per-server RADIUS server communication. This procedure is required.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2: radius-server host {hostname</td>
<td>ip-address} [auth-port port-number] [acct-port port-number] [timeout seconds] [retransmit retries] [key string]</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For auth-port port-number, specify the UDP destination port for authentication requests.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For acct-port port-number, specify the UDP destination port for accounting requests.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For timeout seconds, specify the time interval that the switch waits for the RADIUS server to reply before resending. The range is 1 to 1000. This setting overrides the radius-server timeout global configuration command setting. If no timeout is set with the radius-server host command, the setting of the radius-server timeout command is used.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For retransmit retries, specify the number of times a RADIUS request is resent to a server if that server is not responding or responding slowly. The range is 1 to 1000. If no retransmit value is set with the radius-server host command, the setting of the radius-server retransmit global configuration command is used.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For key string, specify the authentication and encryption key used between the switch and the RADIUS daemon running on the RADIUS server.</td>
</tr>
<tr>
<td>Step 3: end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4: show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5: copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove the specified RADIUS server, use the `no radius-server host hostname | ip-address` global configuration command.
This example shows how to configure one RADIUS server to be used for authentication and another to be used for accounting:

```
Switch(config)# radius-server host 172.29.36.49 auth-port 1612 key rad1
Switch(config)# radius-server host 172.20.36.50 acct-port 1618 key rad2
```

This example shows how to configure host1 as the RADIUS server and to use the default ports for both authentication and accounting:

```
Switch(config)# radius-server host host1
```

Note

You also need to configure some settings on the RADIUS server. These settings include the IP address of the switch and the key string to be shared by both the server and the switch. For more information, refer to the RADIUS server documentation.

Configuring RADIUS Login Authentication

To configure AAA authentication, you define a named list of authentication methods and then apply that list to various interfaces. The method list defines the types of authentication to be performed and the sequence in which they are performed; it must be applied to a specific interface before any of the defined authentication methods are performed. The only exception is the default method list (which, by coincidence, is named `default`). The default method list is automatically applied to all interfaces except those that have a named method list explicitly defined.

A method list describes the sequence and authentication methods to be queried to authenticate a user. You can designate one or more security protocols to be used for authentication, thus ensuring a backup system for authentication in case the initial method fails. The software uses the first method listed to authenticate users; if that method fails to respond, the software selects the next authentication method in the method list. This process continues until there is successful communication with a listed authentication method or until all defined methods are exhausted. If authentication fails at any point in this cycle—meaning that the security server or local username database responds by denying the user access—the authentication process stops, and no other authentication methods are attempted.

Beginning in privileged EXEC mode, follow these steps to configure login authentication. This procedure is required.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>aaa new-model</td>
<td>Enable AAA.</td>
</tr>
</tbody>
</table>
Controlling Switch Access with RADIUS

Chapter 7 Administering the Switch

Controlling Switch Access with RADIUS

Command	Purpose
Step 3 | aaa authentication login {default | list-name} method1 [method2...]
Create a login authentication method list.
- To create a default list that is used when a named list is *not* specified in the `login authentication` command, use the `default` keyword followed by the methods that are to be used in default situations. The default method list is automatically applied to all interfaces.
- For `list-name`, specify a character string to name the list you are creating.
- For `method1...`, specify the actual method the authentication algorithm tries. The additional methods of authentication are used only if the previous method returns an error, not if it fails.
Select one of these methods:
- **enable**—Use the enable password for authentication. Before you can use this authentication method, you must define an enable password by using the `enable password` global configuration command.
- **group radius**—Use RADIUS authentication. Before you can use this authentication method, you must configure the RADIUS server. For more information, see the “Identifying the RADIUS Server Host” section on page 7-21.
- **line**—Use the line password for authentication. Before you can use this authentication method, you must define a line password. Use the `password password` line configuration command.
- **local**—Use the local username database for authentication. You must enter username information in the database. Use the `username name password` global configuration command.
- **local-case**—Use a case-sensitive local username database for authentication. You must enter username information in the database by using the `username password` global configuration command.
- **none**—Do not use any authentication for login.

Step 4 | line [console | tty | vty] line-number [ending-line-number]
Enter line configuration mode, and configure the lines to which you want to apply the authentication list.

Step 5 | login authentication {default | list-name}
Apply the authentication list to a line or set of lines.
- If you specify `default`, use the default list created with the `aaa authentication login` command.
- For `list-name`, specify the list created with the `aaa authentication login` command.

Step 6 | end
Return to privileged EXEC mode.

Step 7 | show running-config
Verify your entries.

Step 8 | copy running-config startup-config
(Optional) Save your entries in the configuration file.
To disable AAA, use the `no aaa new-model` global configuration command. To disable AAA authentication, use the `no aaa authentication login {default | list-name} method1 [method2...]` global configuration command. To either disable RADIUS authentication for logins or to return to the default value, use the `no login authentication {default | list-name}` line configuration command.

Defining AAA Server Groups

You can configure the switch to use AAA server groups to group existing server hosts for authentication. You select a subset of the configured server hosts and use them for a particular service. The server group is used with a global server-host list, which lists the IP addresses of the selected server hosts.

Server groups also can include multiple host entries for the same server if each entry has a unique identifier (the combination of the IP address and UDP port number), allowing different ports to be individually defined as RADIUS hosts providing a specific AAA service. If you configure two different host entries on the same RADIUS server for the same service, (for example, accounting), the second configured host entry acts as a fail-over backup to the first one.

You use the `server` group server configuration command to associate a particular server with a defined group server. You can either identify the server by its IP address or identify multiple host instances or entries by using the optional `auth-port` and `acct-port` keywords.
Beginning in privileged EXEC mode, follow these steps to define the AAA server group and associate a particular RADIUS server with it:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>radius-server host {hostname</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note The key is a text string that must match the encryption key used on the RADIUS server. Always configure the key as the last item in the radius-server host command. Leading spaces are ignored, but spaces within and at the end of the key are used. If you use spaces in your key, do not enclose the key in quotation marks unless the quotation marks are part of the key.

To configure the switch to recognize more than one host entry associated with a single IP address, enter this command as many times as necessary, making sure that each UDP port number is different. The switch software searches for hosts in the order in which you specify them. Set the timeout, retransmit, and encryption key values to use with the specific RADIUS host.

<table>
<thead>
<tr>
<th>Step 3</th>
<th>aaa new-model</th>
<th>Enable AAA.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4</td>
<td>aaa group server radius group-name</td>
<td>Define the AAA server-group with a group name. This command puts the switch in a server group configuration mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>server ip-address</td>
<td>Associate a particular RADIUS server with the defined server group. Repeat this step for each RADIUS server in the AAA server group. Each server in the group must be previously defined in Step 2.</td>
</tr>
<tr>
<td>Step 6</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 7</td>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
</tbody>
</table>
Controlling Switch Access with RADIUS

To remove the specified RADIUS server, use the `no radius-server host hostname | ip-address` global configuration command. To remove a server group from the configuration list, use the `no aaa group server radius group-name` global configuration command. To remove the IP address of a RADIUS server, use the `no server ip-address` server group configuration command.

In this example, the switch is configured to recognize two different RADIUS group servers (`group1` and `group2`). Group1 has two different host entries on the same RADIUS server configured for the same services. The second host entry acts as a fail-over backup to the first entry.

```
Switch(config)# radius-server host 172.20.0.1 auth-port 1000 acct-port 1001
Switch(config)# radius-server host 172.10.0.1 auth-port 1645 acct-port 1646
Switch(config)# aaa new-model
Switch(config)# aaa group server radius group1
Switch(config-sg-radius)# server 172.20.0.1 auth-port 1000 acct-port 1001
Switch(config-sg-radius)# exit
Switch(config)# aaa group server radius group2
Switch(config-sg-radius)# server 172.20.0.1 auth-port 2000 acct-port 2001
Switch(config-sg-radius)# exit
```

Configuring RADIUS Authorization for User Privileged Access and Network Services

AAA authorization limits the services available to a user. When AAA authorization is enabled, the switch uses information retrieved from the user’s profile, which is in the local user database or on the security server, to configure the user’s session. The user is granted access to a requested service only if the information in the user profile allows it.

You can use the `aaa authorization global configuration command with the radius keyword to set parameters that restrict a user’s network access to privileged EXEC mode.

The `aaa authorization exec radius local` command sets these authorization parameters:

- Use RADIUS for privileged EXEC access authorization if authentication was performed by using RADIUS.
- Use the local database if authentication was not performed by using RADIUS.

Note

Authorization is bypassed for authenticated users who log in through the CLI even if authorization has been configured.

<table>
<thead>
<tr>
<th>Step 8</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 9</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>enable radius</code></td>
<td>Enable RADIUS login authentication. See the “Configuring RADIUS Login Authentication” section on page 7-23.</td>
</tr>
</tbody>
</table>
Beginning in privileged EXEC mode, follow these steps to specify RADIUS authorization for privileged EXEC access and network services:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>aaa authorization network radius</td>
</tr>
<tr>
<td>Step 3</td>
<td>aaa authorization exec radius</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To disable authorization, use the `no aaa authorization {network | exec} method1` global configuration command.

Starting RADIUS Accounting

The AAA accounting feature tracks the services that users are accessing and the amount of network resources that they are consuming. When AAA accounting is enabled, the switch reports user activity to the RADIUS security server in the form of accounting records. Each accounting record contains accounting attribute-value (AV) pairs and is stored on the security server. This data can then be analyzed for network management, client billing, or auditing.

Beginning in privileged EXEC mode, follow these steps to enable RADIUS accounting for each Cisco IOS privilege level and for network services:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>aaa accounting network start-stop radius</td>
</tr>
<tr>
<td>Step 3</td>
<td>aaa accounting exec start-stop radius</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To disable accounting, use the `no aaa accounting {network | exec} {start-stop} method1...` global configuration command.
Configuring Settings for All RADIUS Servers

Beginning in privileged EXEC mode, follow these steps to configure global communication settings between the switch and all RADIUS servers:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 radius-server key string</td>
<td>Specify the shared secret text string used between the switch and all RADIUS servers.</td>
</tr>
<tr>
<td>Note</td>
<td>The key is a text string that must match the encryption key used on the RADIUS server. Leading spaces are ignored, but spaces within and at the end of the key are used. If you use spaces in your key, do not enclose the key in quotation marks unless the quotation marks are part of the key.</td>
</tr>
<tr>
<td>Step 3 radius-server retransmit retries</td>
<td>Specify the number of times the switch sends each RADIUS request to the server before giving up. The default is 3; the range is 1 to 1000.</td>
</tr>
<tr>
<td>Step 4 radius-server timeout seconds</td>
<td>Specify the number of seconds a switch waits for a reply to a RADIUS request before resending the request. The default is 5 seconds; the range is 1 to 1000.</td>
</tr>
<tr>
<td>Step 5 radius-server deadtime minutes</td>
<td>Specify the number of minutes a RADIUS server, which is not responding to authentication requests, is skipped, thus avoiding the wait for the request to timeout before trying the next configured server. The default is 0; the range is 1 to 1440 minutes.</td>
</tr>
<tr>
<td>Step 6 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 7 show running-config</td>
<td>Verify your settings.</td>
</tr>
<tr>
<td>Step 8 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default setting for the retransmit, timeout, and deadtime, use the no forms of these commands.

Configuring the Switch to Use Vendor-Specific RADIUS Attributes

The Internet Engineering Task Force (IETF) draft standard specifies a method for communicating vendor-specific information between the switch and the RADIUS server by using the vendor-specific attribute (attribute 26). Vendor-specific attributes (VSAs) allow vendors to support their own extended attributes not suitable for general use. The Cisco RADIUS implementation supports one vendor-specific option by using the format recommended in the specification. Cisco’s vendor-ID is 9, and the supported option has vendor-type 1, which is named cisco-avpair. The value is a string with this format:

```
protocol : attribute sep value *
```

Protocol is a value of the Cisco protocol attribute for a particular type of authorization. *Attribute* and *value* are an appropriate attribute-value (AV) pair defined in the Cisco TACACS+ specification, and *sep* is = for mandatory attributes and * for optional attributes. This allows the full set of features available for TACACS+ authorization to also be used for RADIUS.
For example, the following AV pair activates Cisco’s *multiple named ip address pools* feature during IP authorization (during PPP’s IPCP address assignment):

```
cisco-avpair= "ip:addr-pool=first"
```

The following example shows how to provide a user logging in from a switch with immediate access to privileged EXEC commands:

```
cisco-avpair= "shell:priv-lvl=15"
```

Other vendors have their own unique vendor-IDs, options, and associated VSAs. For more information about vendor-IDs and VSAs, refer to RFC 2138, “Remote Authentication Dial-In User Service (RADIUS).”

Beginning in privileged EXEC mode, follow these steps to configure the switch to recognize and use VSAs:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 radius-server vsa send [accounting</td>
<td>Enable the switch to recognize and use VSAs as defined by RADIUS IETF attribute 26.</td>
</tr>
<tr>
<td></td>
<td>authentication]</td>
</tr>
<tr>
<td></td>
<td>* (Optional) Use the accounting keyword to limit the set of recognized vendor-specific attributes to only accounting attributes.</td>
</tr>
<tr>
<td></td>
<td>* (Optional) Use the authentication keyword to limit the set of recognized vendor-specific attributes to only authentication attributes.</td>
</tr>
<tr>
<td></td>
<td>If you enter this command without keywords, both accounting and authentication vendor-specific attributes are used.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show running-config</td>
<td>Verify your settings.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

For a complete list of RADIUS attributes or more information about vendor-specific attribute 26, refer to the “RADIUS Attributes” appendix in the *Cisco IOS Security Configuration Guide for Release 12.1*.

Configuring the Switch for Vendor-Proprietary RADIUS Server Communication

Although an IETF draft standard for RADIUS specifies a method for communicating vendor-proprietary information between the switch and the RADIUS server, some vendors have extended the RADIUS attribute set in a unique way. Cisco IOS software supports a subset of vendor-proprietary RADIUS attributes.

As mentioned earlier, to configure RADIUS (whether vendor-proprietary or IETF draft-compliant), you must specify the host running the RADIUS server daemon and the secret text string it shares with the switch. You specify the RADIUS host and secret text string by using the **radius-server** global configuration commands.
Beginning in privileged EXEC mode, follow these steps to specify a vendor-proprietary RADIUS server host and a shared secret text string:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>radius-server host {hostname</td>
</tr>
<tr>
<td>Step 3</td>
<td>radius-server key string</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To delete the vendor-proprietary RADIUS host, use the **no radius-server host {hostname | ip-address} non-standard** global configuration command.

This example shows how to specify a vendor-proprietary RADIUS host and to use a secret key of rad124 between the switch and the server:

```
Switch(config)# radius-server host 172.20.30.15 nonstandard
Switch(config)# radius-server key rad124
```

Displaying the RADIUS Configuration

To display the RADIUS configuration, use the **show running-config** privileged EXEC command.
Configuring the Switch for Local Authentication and Authorization

You can configure AAA to operate without a server by setting the switch to implement AAA in local mode. The switch then handles authentication and authorization. No accounting is available in this configuration.

Beginning in privileged EXEC mode, follow these steps to configure the switch for local AAA:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>aaa new-model</td>
</tr>
<tr>
<td>Step 3</td>
<td>aaa authentication login default local</td>
</tr>
<tr>
<td>Step 4</td>
<td>aaa authorization exec local</td>
</tr>
<tr>
<td>Step 5</td>
<td>aaa authorization network local</td>
</tr>
<tr>
<td>Step 6</td>
<td>username name [privilege level] [password encryption-type password]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>end</td>
</tr>
<tr>
<td>Step 8</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 9</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To disable AAA, use the no aaa new-model global configuration command. To disable authorization, use the no aaa authorization [network | exec] method global configuration command.
Managing the System Time and Date

You can manage the system time and date on your switch using automatic configuration, such as the Network Time Protocol (NTP), or manual configuration methods.

Note

For complete syntax and usage information for the commands used in this section, refer to the Cisco IOS Configuration Fundamentals Command Reference for Release 12.1.

This section contains this configuration information:
- Understanding the System Clock, page 7-33
- Understanding Network Time Protocol, page 7-33
- Configuring NTP, page 7-35
- Configuring Time and Date Manually, page 7-42

Understanding the System Clock

The heart of the time service is the system clock. This clock runs from the moment the system starts up and keeps track of the date and time.

The system clock can then be set from these sources:
- Network Time Protocol
- Manual configuration

The system clock can provide time to these services:
- User show commands
- Logging and debugging messages

The system clock keeps track of time internally based on Universal Time Coordinated (UTC), also known as Greenwich Mean Time (GMT). You can configure information about the local time zone and summer time (daylight saving time) so that the time is correctly displayed for the local time zone.

The system clock keeps track of whether the time is authoritative or not (that is, whether it has been set by a time source considered to be authoritative). If it is not authoritative, the time is available only for display purposes and is not redistributed. For configuration information, see the “Configuring Time and Date Manually” section on page 7-42.

Understanding Network Time Protocol

The NTP is designed to time-synchronize a network of devices. NTP runs over User Datagram Protocol (UDP), which runs over IP. NTP is documented in RFC 1305.

An NTP network usually gets its time from an authoritative time source, such as a radio clock or an atomic clock attached to a time server. NTP then distributes this time across the network. NTP is extremely efficient; no more than one packet per minute is necessary to synchronize two devices to within a millisecond of one another.

NTP uses the concept of a stratum to describe how many NTP hops away a device is from an authoritative time source. A stratum 1 time server has a radio or atomic clock directly attached, a stratum 2 time server receives its time through NTP from a stratum 1 time server, and so on. A device
running NTP automatically chooses as its time source the device with the lowest stratum number with which it communicates through NTP. This strategy effectively builds a self-organizing tree of NTP speakers.

NTP avoids synchronizing to a device whose time might not be accurate by never synchronizing to a device that is not synchronized. NTP also compares the time reported by several devices and does not synchronize to a device whose time is significantly different than the others, even if its stratum is lower.

The communications between devices running NTP (known as associations) are usually statically configured; each device is given the IP address of all devices with which it should form associations. Accurate timekeeping is possible by exchanging NTP messages between each pair of devices with an association. However, in a LAN environment, NTP can be configured to use IP broadcast messages instead. This alternative reduces configuration complexity because each device can simply be configured to send or receive broadcast messages. However, in that case, information flow is one-way only.

The time kept on a device is a critical resource; you should use the security features of NTP to avoid the accidental or malicious setting of an incorrect time. Two mechanisms are available: an access list-based restriction scheme and an encrypted authentication mechanism.

Cisco’s implementation of NTP does not support stratum 1 service; it is not possible to connect to a radio or atomic clock. We recommend that the time service for your network be derived from the public NTP servers available on the IP Internet. Figure 7-3 show a typical network example using NTP.

If the network is isolated from the Internet, Cisco’s implementation of NTP allows a device to act as though it is synchronized through NTP, when in fact it has determined the time by using other means. Other devices then synchronize to that device through NTP.

When multiple sources of time are available, NTP is always considered to be more authoritative. NTP time overrides the time set by any other method.

Several manufacturers include NTP software for their host systems, and a publicly available version for systems running UNIX and its various derivatives is also available. This software allows host systems to be time-synchronized as well.
Configuring NTP

The switches do not have a hardware-supported clock, and they cannot function as an NTP master clock to which peers synchronize themselves when an external NTP source is not available. These switches also have no hardware support for a calendar. As a result, the `ntp update-calendar` and the `ntp master` global configuration commands are not available.

This section contains this configuration information:

- Default NTP Configuration, page 7-36
- Configuring NTP Authentication, page 7-36
- Configuring NTP Associations, page 7-37
- Configuring NTP Broadcast Service, page 7-38
- Configuring NTP Access Restrictions, page 7-39
- Configuring the Source IP Address for NTP Packets, page 7-41
- Displaying the NTP Configuration, page 7-42
Default NTP Configuration

Table 7-2 shows the default NTP configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTP authentication</td>
<td>Disabled. No authentication key is specified.</td>
</tr>
<tr>
<td>NTP peer or server</td>
<td>None configured.</td>
</tr>
<tr>
<td>associations</td>
<td></td>
</tr>
<tr>
<td>NTP broadcast service</td>
<td>Disabled; no interface sends or receives NTP broadcast packets.</td>
</tr>
<tr>
<td>NTP access restrictions</td>
<td>No access control is specified.</td>
</tr>
<tr>
<td>NTP packet source IP</td>
<td>The source address is determined by the outgoing interface.</td>
</tr>
<tr>
<td>address</td>
<td></td>
</tr>
</tbody>
</table>

NTP is enabled on all interfaces by default. All interfaces receive NTP packets.

Configuring NTP Authentication

This procedure must be coordinated with the administrator of the NTP server; the information you configure in this procedure must be matched by the servers used by the switch to synchronize its time to the NTP server.

Beginning in privileged EXEC mode, follow these steps to authenticate the associations (communications between devices running NTP that provide for accurate timekeeping) with other devices for security purposes:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 ntp authenticate</td>
<td>Enable the NTP authentication feature, which is disabled by default.</td>
</tr>
<tr>
<td>Step 3 ntp authentication-key number md5 value</td>
<td>Define the authentication keys. By default, none are defined.</td>
</tr>
<tr>
<td></td>
<td>• For number, specify a key number. The range is 1 to 4294967295.</td>
</tr>
<tr>
<td></td>
<td>• md5 specifies that message authentication support is provided</td>
</tr>
<tr>
<td></td>
<td>by using the message digest algorithm 5 (MD5).</td>
</tr>
<tr>
<td></td>
<td>• For value, enter an arbitrary string of up to eight characters for</td>
</tr>
<tr>
<td></td>
<td>the key.</td>
</tr>
<tr>
<td></td>
<td>The switch does not synchronize to a device unless both have one of</td>
</tr>
<tr>
<td></td>
<td>these authentication keys, and the key number is specified by the</td>
</tr>
<tr>
<td></td>
<td>ntp trusted-key key-number command.</td>
</tr>
<tr>
<td>Step 4 ntp trusted-key key-number</td>
<td>Specify one or more key numbers (defined in Step 3) that a peer NTP</td>
</tr>
<tr>
<td></td>
<td>device must provide in its NTP packets for this switch to synchronize</td>
</tr>
<tr>
<td></td>
<td>to it.</td>
</tr>
<tr>
<td></td>
<td>By default, no trusted keys are defined.</td>
</tr>
<tr>
<td></td>
<td>For key-number, specify the key defined in Step 3.</td>
</tr>
<tr>
<td></td>
<td>This command provides protection against accidentally synchronizing</td>
</tr>
<tr>
<td></td>
<td>the switch to a device that is not trusted.</td>
</tr>
</tbody>
</table>
To disable NTP authentication, use the **no ntp authenticate** global configuration command. To remove an authentication key, use the **no ntp authentication-key number** global configuration command. To disable authentication of the identity of a device, use the **no ntp trusted-key key-number** global configuration command.

This example shows how to configure the switch to synchronize only to devices providing authentication key 42 in the device’s NTP packets:

```
Switch(config)# ntp authenticate
Switch(config)# ntp authentication-key 42 md5 aNiceKey
Switch(config)# ntp trusted-key 42
```

Configuring NTP Associations

An NTP association can be a peer association (this switch can either synchronize to the other device or allow the other device to synchronize to it), or it can be a server association (meaning that only this switch synchronizes to the other device, and not the other way around).

Beginning in privileged EXEC mode, follow these steps to form an NTP association with another device:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>ntp peer ip-address [version number] [key keyid] [source interface] [prefer] Configure the switch system clock to synchronize a peer or to be synchronized by a peer (peer association). or</td>
</tr>
</tbody>
</table>

No peer or server associations are defined by default.

- For *ip-address* in a peer association, specify either the IP address of the peer providing, or being provided, the clock synchronization. For a server association, specify the IP address of the time server providing the clock synchronization.
- (Optional) For *number*, specify the NTP version number. The range is 1 to 3. By default, version 3 is selected.
- (Optional) For *keyid*, enter the authentication key defined with the **ntp authentication-key** global configuration command.
- (Optional) For *interface*, specify the interface from which to pick the IP source address. By default, the source IP address is taken from the outgoing interface.
- (Optional) Enter the **prefer** keyword to make this peer or server the preferred one that provides synchronization. This keyword reduces switching back and forth between peers and servers.
Managing the System Time and Date

You need to configure only one end of an association; the other device can automatically establish the association. If you are using the default NTP version (version 3) and NTP synchronization does not occur, try using NTP version 2. Many NTP servers on the Internet run version 2.

To remove a peer or server association, use the `no ntp peer ip-address` or the `no ntp server ip-address` global configuration command.

This example shows how to configure the switch to synchronize its system clock with the clock of the peer at IP address 172.16.22.44 using NTP version 2:

```
Switch(config)# ntp server 172.16.22.44 version 2
```

Configuring NTP Broadcast Service

The communications between devices running NTP (known as associations) are usually statically configured; each device is given the IP addresses of all devices with which it should form associations. Accurate timekeeping is possible by exchanging NTP messages between each pair of devices with an association. However, in a LAN environment, NTP can be configured to use IP broadcast messages instead. This alternative reduces configuration complexity because each device can simply be configured to send or receive broadcast messages. However, the information flow is one-way only.

The switch can send or receive NTP broadcast packets on an interface-by-interface basis if there is an NTP broadcast server, such as a router, broadcasting time information on the network. The switch can send NTP broadcast packets to a peer so that the peer can synchronize to it. The switch can also receive NTP broadcast packets to synchronize its own clock. This section provides procedures for both sending and receiving NTP broadcast packets.

Beginning in privileged EXEC mode, follow these steps to configure the switch to send NTP broadcast packets to peers so that they can synchronize their clock to the switch:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><code>interface interface-id</code></td>
<td>Specify the interface to send NTP broadcast packets, and enter interface configuration mode.</td>
</tr>
<tr>
<td><code>ntp broadcast [version number] [key keyid] [destination-address]</code></td>
<td>Enable the interface to send NTP broadcast packets to a peer. By default, this feature is disabled on all interfaces.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For <code>number</code>, specify the NTP version number. The range is 1 to 3. If you do not specify a version, version 3 is used.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For <code>keyid</code>, specify the authentication key to use when sending packets to the peer.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For <code>destination-address</code>, specify the IP address of the peer that is synchronizing its clock to this switch.</td>
</tr>
<tr>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>show running-config</code></td>
<td>Verify your entries.</td>
</tr>
</tbody>
</table>
To disable the interface from sending NTP broadcast packets, use the `no ntp broadcast` interface configuration command.

This example shows how to configure an interface to send NTP version 2 packets:

```
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# ntp broadcast version 2
```

Beginning in privileged EXEC mode, follow these steps to configure the switch to receive NTP broadcast packets from connected peers:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>interface interface-id</code> Specify the interface to receive NTP broadcast packets, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>ntp broadcast client</code> Enable the interface to receive NTP broadcast packets. By default, no interfaces receive NTP broadcast packets.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>exit</code> Return to global configuration mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>ntp broadcastdelay microseconds</code> (Optional) Change the estimated round-trip delay between the switch and the NTP broadcast server. The default is 3000 microseconds; the range is 1 to 999999.</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>end</code> Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 7</td>
<td><code>show running-config</code> Verify your entries.</td>
</tr>
<tr>
<td>Step 8</td>
<td><code>copy running-config startup-config</code> (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable an interface from receiving NTP broadcast packets, use the `no ntp broadcast client` interface configuration command. To change the estimated round-trip delay to the default, use the `no ntp broadcastdelay` global configuration command.

This example shows how to configure an interface to receive NTP broadcast packets:

```
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# ntp broadcast client
```

Configuring NTP Access Restrictions

You can control NTP access on two levels as described in these sections:

- Creating an Access Group and Assigning a Basic IP Access List, page 7-40
- Disabling NTP Services on a Specific Interface, page 7-41
Managing the System Time and Date

Creating an Access Group and Assigning a Basic IP Access List

Beginning in privileged EXEC mode, follow these steps to control access to NTP services by using access lists:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>ntp access-group { query-only</td>
</tr>
<tr>
<td></td>
<td>Create an access group, and apply a basic IP access list. The keywords have these meanings:</td>
</tr>
<tr>
<td></td>
<td>• query-only—Allows only NTP control queries.</td>
</tr>
<tr>
<td></td>
<td>• serve-only—Allows only time requests.</td>
</tr>
<tr>
<td></td>
<td>• serve—Allows time requests and NTP control queries, but does not allow the switch to synchronize to the remote device.</td>
</tr>
<tr>
<td></td>
<td>• peer—Allows time requests and NTP control queries and allows the switch to synchronize to the remote device.</td>
</tr>
<tr>
<td></td>
<td>For access-list-number, enter a standard IP access list number from 1 to 99.</td>
</tr>
<tr>
<td>Step 3</td>
<td>access-list access-list-number permit source [source-wildcard]</td>
</tr>
<tr>
<td></td>
<td>Create the access list.</td>
</tr>
<tr>
<td></td>
<td>• For access-list-number, enter the number specified in Step 2.</td>
</tr>
<tr>
<td></td>
<td>• Enter the permit keyword to permit access if the conditions are matched.</td>
</tr>
<tr>
<td></td>
<td>• For source, enter the IP address of the device that is permitted access to the switch.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For source-wildcard, enter the wildcard bits to be applied to the source.</td>
</tr>
<tr>
<td></td>
<td>Note When creating an access list, remember that, by default, the end of the access list contains an implicit deny statement for everything if it did not find a match before reaching the end.</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>show running-config</td>
</tr>
<tr>
<td></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

The access group keywords are scanned in this order, from least restrictive to most restrictive:

1. peer—Allows time requests and NTP control queries and allows the switch to synchronize itself to a device whose address passes the access list criteria.
2. serve—Allows time requests and NTP control queries, but does not allow the switch to synchronize itself to a device whose address passes the access list criteria.
3. serve-only—Allows only time requests from a device whose address passes the access list criteria.
4. query-only—Allows only NTP control queries from a device whose address passes the access list criteria.
If the source IP address matches the access lists for more than one access type, the first type is granted. If no access groups are specified, all access types are granted to all devices. If any access groups are specified, only the specified access types are granted.

To remove access control to the switch NTP services, use the `no ntp access-group { query-only | serve-only | serve | peer }` global configuration command.

This example shows how to configure the switch to allow itself to synchronize to a peer from access list 99. However, the switch restricts access to allow only time requests from access list 42:

```
Switch# configure terminal
Switch(config)# ntp access-group peer 99
Switch(config)# ntp access-group serve-only 42
Switch(config)# access-list 99 permit 172.20.130.5
Switch(config)# access list 42 permit 172.20.130.6
```

Disabling NTP Services on a Specific Interface

NTP services are enabled on all interfaces by default.

Beginning in privileged EXEC mode, follow these steps to disable NTP packets from being received on an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface to disable.</td>
</tr>
<tr>
<td>Step 3 ntp disable</td>
<td>Disable NTP packets from being received on the interface.</td>
</tr>
<tr>
<td></td>
<td>By default, all interfaces receive NTP packets.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To re-enable receipt of NTP packets on an interface, use the `no ntp disable` interface configuration command.

Configuring the Source IP Address for NTP Packets

When the switch sends an NTP packet, the source IP address is normally set to the address of the interface through which the NTP packet is sent. Use the `ntp source` global configuration command when you want to use a particular source IP address for all NTP packets. The address is taken from the specified interface. This command is useful if the address on an interface cannot be used as the destination for reply packets.
Managing the System Time and Date

Beginning in privileged EXEC mode, follow these steps to configure a specific interface from which the IP source address is to be taken:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 ntp source type number</td>
<td>Specify the interface type and number from which the IP source address is taken. By default, the source address is determined by the outgoing interface.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

The specified interface is used for the source address for all packets sent to all destinations. If a source address is to be used for a specific association, use the `source` keyword in the `ntp peer` or `ntp server` global configuration command as described in the “Configuring NTP Associations” section on page 7-37.

Displaying the NTP Configuration

You can use two privileged EXEC commands to display NTP information:

- `show ntp associations [detail]`
- `show ntp status`

For detailed information about the fields in these displays, refer to the _Cisco IOS Configuration Fundamentals Command Reference for Release 12.1_.

Configuring Time and Date Manually

If no other source of time is available, you can manually configure the time and date after the system is restarted. The time remains accurate until the next system restart. We recommend that you use manual configuration only as a last resort. If you have an outside source to which the switch can synchronize, you do not need to manually set the system clock.

Note You must reset this setting if you have manually set the system clock and the stack master fails and different stack member resumes the role of stack master.

This section contains this configuration information:

- Setting the System Clock, page 7-43
- Displaying the Time and Date Configuration, page 7-43
- Configuring the Time Zone, page 7-44
- Configuring Summer Time (Daylight Saving Time), page 7-45
Setting the System Clock

If you have an outside source on the network that provides time services, such as an NTP server, you do not need to manually set the system clock.

Beginning in privileged EXEC mode, follow these steps to set the system clock:

1. **clock set hh:mm:ss day month year**
 or
 clock set hh:mm:ss month day year
 Manually set the system clock using one of these formats.
 - For **hh:mm:ss**, specify the time in hours (24-hour format), minutes, and seconds. The time specified is relative to the configured time zone.
 - For **day**, specify the day by date in the month.
 - For **month**, specify the month by name.
 - For **year**, specify the year (no abbreviation).

2. **show running-config**
 Verify your entries.

3. **copy running-config startup-config**
 (Optional) Save your entries in the configuration file.

This example shows how to manually set the system clock to 1:32 p.m. on July 23, 2001:

```
Switch# clock set 13:32:00 23 July 2001
```

Displaying the Time and Date Configuration

To display the time and date configuration, use the **show clock [detail]** privileged EXEC command.

The system clock keeps an **authoritative** flag that shows whether the time is authoritative (believed to be accurate). If the system clock has been set by a timing source such as NTP, the flag is set. If the time is not authoritative, it is used only for display purposes. Until the clock is authoritative and the **authoritative** flag is set, the flag prevents peers from synchronizing to the clock when the peers’ time is invalid.

The symbol that precedes the **show clock** display has this meaning:

- *—Time is not authoritative.
- (blank)—Time is authoritative.
- .—Time is authoritative, but NTP is not synchronized.
Configuring the Time Zone

Beginning in privileged EXEC mode, follow these steps to manually configure the time zone:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 clock timezone zone hours-offset</td>
<td>Set the time zone.</td>
</tr>
<tr>
<td>[minutes-offset]</td>
<td>The switch keeps internal time in universal time coordinated (UTC), so this command is used only for display purposes and when the time is manually set.</td>
</tr>
<tr>
<td></td>
<td>• For zone, enter the name of the time zone to be displayed when standard time is in effect. The default is UTC.</td>
</tr>
<tr>
<td></td>
<td>• For hours-offset, enter the hours offset from UTC.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For minutes-offset, enter the minutes offset from UTC.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

The *minutes-offset* variable in the *clock timezone* global configuration command is available for those cases where a local time zone is a percentage of an hour different from UTC. For example, the time zone for some sections of Atlantic Canada (AST) is UTC-3.5, where the 3 means 3 hours and .5 means 50 percent. In this case, the necessary command is *clock timezone AST -3 30*.

To set the time to UTC, use the *no clock timezone* global configuration command.
Configuring Summer Time (Daylight Saving Time)

Beginning in privileged EXEC mode, follow these steps to configure summer time (daylight saving time) in areas where it starts and ends on a particular day of the week each year:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>clock summer-time zone recurring [week day month hh:mm week day month hh:mm [offset]]</td>
<td>Configure summer time to start and end on the specified days every year. Summer time is disabled by default. If you specify clock summer-time zone recurring without parameters, the summer time rules default to the United States rules.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For zone, specify the name of the time zone (for example, PDT) to be displayed when summer time is in effect.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) For week, specify the week of the month (1 to 5 or last).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) For day, specify the day of the week (Sunday, Monday...).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) For month, specify the month (January, February...).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) For hh:mm, specify the time (24-hour format) in hours and minutes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) For offset, specify the number of minutes to add during summer time. The default is 60.</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

The first part of the clock summer-time global configuration command specifies when summer time begins, and the second part specifies when it ends. All times are relative to the local time zone. The start time is relative to standard time. The end time is relative to summer time. If the starting month is after the ending month, the system assumes that you are in the southern hemisphere.

This example shows how to specify that summer time starts on the first Sunday in April at 02:00 and ends on the last Sunday in October at 02:00:

\[\text{Switch(config)}\# \text{clock summer-time PDT recurring 1 Sunday April 2:00 last Sunday October 2:00}\]
Beginning in privileged EXEC mode, follow these steps if summer time in your area does not follow a recurring pattern (configure the exact date and time of the next summer time events):

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>clock summer-time zone date [month date year hh:mm month date year hh:mm [offset]]</td>
<td>Configure summer time to start on the first date and end on the second date. Summer time is disabled by default.</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>clock summer-time zone date [date month year hh:mm date month year hh:mm [offset]]</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>end</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>show running-config</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

The first part of the `clock summer-time` global configuration command specifies when summer time begins, and the second part specifies when it ends. All times are relative to the local time zone. The start time is relative to standard time. The end time is relative to summer time. If the starting month is after the ending month, the system assumes that you are in the southern hemisphere.

To disable summer time, use the `no clock summer-time` global configuration command.

This example shows how to set summer time to start on October 12, 2000, at 02:00, and end on April 26, 2001, at 02:00:

Switch(config)# clock summer-time pdt date 12 October 2000 2:00 26 April 2001 2:00
Configuring a System Name and Prompt

You configure the system name on the switch to identify it. By default, the system name and prompt are Switch.

If you have not configured a system prompt, the first 20 characters of the system name are used as the system prompt. A greater-than symbol [>] is appended. The prompt is updated whenever the system name changes, unless you manually configure the prompt by using the prompt global configuration command.

If you are accessing a stack member through the stack master, you must use the session stack-member-number privileged EXEC command. The stack member number range is from 1 through 9. When you use this command, the stack member number is appended to the system prompt. For example, Switch-2# is the prompt in privileged EXEC mode for stack member 2, and the system prompt for the switch stack is Switch.

Note

For complete syntax and usage information for the commands used in this section, refer to the Cisco IOS Configuration Fundamentals Command Reference and the Cisco IOS IP and IP Routing Command Reference for Release 12.1.

This section contains this configuration information:

- Default System Name and Prompt Configuration, page 7-47
- Configuring a System Name, page 7-47
- Configuring a System Prompt, page 7-48
- Understanding DNS, page 7-48

Default System Name and Prompt Configuration

The default switch system name and prompt is Switch.

Configuring a System Name

Beginning in privileged EXEC mode, follow these steps to manually configure a system name:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 hostname name</td>
<td>Manually configure a system name.</td>
</tr>
<tr>
<td></td>
<td>The default setting is switch.</td>
</tr>
<tr>
<td></td>
<td>The name must follow the rules for ARPANET host names. They</td>
</tr>
<tr>
<td></td>
<td>must start with a letter, end with a letter or digit, and</td>
</tr>
<tr>
<td></td>
<td>have as interior characters only letters, digits, and</td>
</tr>
<tr>
<td></td>
<td>hyphens. Names can be up to 63 characters.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
When you set the system name, it is also used as the system prompt. You can override the prompt setting by using the `prompt` global configuration command.

To return to the default hostname, use the `no hostname` global configuration command.

Configuring a System Prompt

Beginning in privileged EXEC mode, follow these steps to manually configure a system prompt:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>prompt string</code> Configure the command-line prompt to override the setting from the <code>hostname</code> command. The default prompt is either <code>switch</code> or the name defined with the <code>hostname</code> global configuration command, followed by an angle bracket (>) for user EXEC mode or a pound sign (#) for privileged EXEC mode. The prompt can consist of all printing characters and escape sequences.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>end</code> Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>show running-config</code> Verify your entries.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>copy running-config startup-config</code> (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default prompt, use the `no prompt [string]` global configuration command.

Understanding DNS

The DNS protocol controls the Domain Name System (DNS), a distributed database with which you can map host names to IP addresses. When you configure DNS on your switch, you can substitute the host name for the IP address with all IP commands, such as `ping`, `telnet`, `connect`, and related Telnet support operations.

IP defines a hierarchical naming scheme that allows a device to be identified by its location or domain. Domain names are pieced together with periods (.) as the delimiting characters. For example, Cisco Systems is a commercial organization that IP identifies by a `com` domain name, so its domain name is `cisco.com`. A specific device in this domain, for example, the File Transfer Protocol (FTP) system is identified as `ftp.cisco.com`.

To keep track of domain names, IP has defined the concept of a domain name server, which holds a cache (or database) of names mapped to IP addresses. To map domain names to IP addresses, you must first identify the host names, specify the name server that is present on your network, and enable the DNS.

This section contains this configuration information:

- Default DNS Configuration, page 7-49
- Setting Up DNS, page 7-49
- Displaying the DNS Configuration, page 7-50
Default DNS Configuration

Table 7-3 shows the default DNS configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS enable state</td>
<td>Enabled.</td>
</tr>
<tr>
<td>DNS default domain name</td>
<td>None configured.</td>
</tr>
<tr>
<td>DNS servers</td>
<td>No name server addresses are configured.</td>
</tr>
</tbody>
</table>

Setting Up DNS

Beginning in privileged EXEC mode, follow these steps to set up your switch to use the DNS:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>ip domain-name name</td>
<td>Define a default domain name that the software uses to complete unqualified host names (names without a dotted-decimal domain name). Do not include the initial period that separates an unqualified name from the domain name. At boot time, no domain name is configured; however, if the switch configuration comes from a BOOTP or Dynamic Host Configuration Protocol (DHCP) server, then the default domain name might be set by the BOOTP or DHCP server (if the servers were configured with this information).</td>
</tr>
<tr>
<td>3</td>
<td>ip name-server server-address1 [server-address2 ... server-address6]</td>
<td>Specify the address of one or more name servers to use for name and address resolution. You can specify up to six name servers. Separate each server address with a space. The first server specified is the primary server. The switch sends DNS queries to the primary server first. If that query fails, the backup servers are queried.</td>
</tr>
<tr>
<td>4</td>
<td>ip domain-lookup</td>
<td>(Optional) Enable DNS-based host name-to-address translation on your switch. This feature is enabled by default. If your network devices require connectivity with devices in networks for which you do not control name assignment, you can dynamically assign device names that uniquely identify your devices by using the global Internet naming scheme (DNS).</td>
</tr>
<tr>
<td>5</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>6</td>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>7</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
domain name is the value set by the `ip domain-name` global configuration command. If there is a period (.) in the hostname, the IOS software looks up the IP address without appending any default domain name to the hostname.

To remove a domain name, use the `no ip domain-name name` global configuration command. To remove a name server address, use the `no ip name-server server-address` global configuration command. To disable DNS on the switch, use the `no ip domain-lookup` global configuration command.

Displaying the DNS Configuration

To display the DNS configuration information, use the `show running-config` privileged EXEC command.

Creating a Banner

You can configure a message-of-the-day (MOTD) and a login banner. The MOTD banner displays on all connected terminals at login and is useful for sending messages that affect all network users (such as impending system shutdowns).

The login banner also displays on all connected terminals. It is displayed after the MOTD banner and before the login prompts.

For complete syntax and usage information for the commands used in this section, refer to the *Cisco IOS Configuration Fundamentals Command Reference for Release 12.1*.

This section contains this configuration information:

- Default Banner Configuration, page 7-50
- Configuring a Message-of-the-Day Login Banner, page 7-51
- Configuring a Login Banner, page 7-52

Default Banner Configuration

The MOTD and login banners are not configured.
Configuring a Message-of-the-Day Login Banner

You can create a single or multiline message banner that appears on the screen when someone logs in to the switch.

Beginning in privileged EXEC mode, follow these steps to configure a MOTD login banner:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 banner motd c message c</td>
<td>Specify the message of the day.</td>
</tr>
<tr>
<td></td>
<td>For c, enter the delimiting character of your choice, for example, a pound sign (#), and press the Return key. The delimiting character signifies the beginning and end of the banner text. Characters after the ending delimiter are discarded.</td>
</tr>
<tr>
<td></td>
<td>For message, enter a banner message up to 255 characters. You cannot use the delimiting character in the message.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To delete the MOTD banner, use the no banner motd global configuration command.

This example shows how to configure a MOTD banner for the switch by using the pound sign (#) symbol as the beginning and ending delimiter:

Switch(config)# banner motd #
This is a secure site. Only authorized users are allowed.
For access, contact technical support.
#
Switch(config)#

This example shows the banner displayed from the previous configuration:

Unix> telnet 172.2.5.4
Trying 172.2.5.4...
Connected to 172.2.5.4.
Escape character is '^]'.

This is a secure site. Only authorized users are allowed.
For access, contact technical support.

User Access Verification

Password:
Creating a Banner

You can configure a login banner to be displayed on all connected terminals. This banner appears after the MOTD banner and before the login prompt.

Beginning in privileged EXEC mode, follow these steps to configure a login banner:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 banner login c message c</td>
<td>Specify the login message. For c, enter the delimiting character of your choice, for example, a pound sign (#), and press the Return key. The delimiting character signifies the beginning and end of the banner text. Characters after the ending delimiter are discarded. For message, enter a login message up to 255 characters. You cannot use the delimiting character in the message.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To delete the login banner, use the no banner login global configuration command.

This example shows how to configure a login banner for the switch by using the dollar sign ($) symbol as the beginning and ending delimiter:

```
Switch(config)# banner login $
Access for authorized users only. Please enter your username and password.
$
Switch(config)#
```
Managing the MAC Address Table

The MAC address table contains address information that the switch uses to forward traffic between ports. All MAC addresses in the address table are associated with one or more ports. The address table includes these types of addresses:

- Dynamic address: a source MAC address that the switch learns and then ages when it is not in use.
- Static address: a manually entered unicast address that does not age and that is not lost when the switch resets.

The address table lists the destination MAC address, the associated VLAN ID, and port number associated with the address and the type (static or dynamic).

Note

For complete syntax and usage information for the commands used in this section, refer to the command reference for this release.

This section contains this configuration information:

- Building the Address Table, page 7-53
- MAC Addresses and VLANs, page 7-54
- MAC Addresses and Switch Stacks, page 7-54
- Default MAC Address Table Configuration, page 7-54
- Changing the Address Aging Time, page 7-54
- Removing Dynamic Address Entries, page 7-55
- Configuring MAC Address Notification Traps, page 7-55
- Adding and Removing Static Address Entries, page 7-57
- Displaying Address Table Entries, page 7-58

Building the Address Table

With multiple MAC addresses supported on all ports, you can connect any port on the switch to individual workstations, repeaters, switches, routers, or other network devices. The switch provides dynamic addressing by learning the source address of packets it receives on each port and adding the address and its associated port number to the address table. As stations are added or removed from the network, the switch updates the address table, adding new dynamic addresses and aging out those that are not in use.

The aging interval is globally configured on a standalone switch or on the switch stack. However, the switch maintains an address table for each VLAN, and STP can accelerate the aging interval on a per-VLAN basis.

The switch sends packets between any combination of ports, based on the destination address of the received packet. Using the MAC address table, the switch forwards the packet only to the port associated with the destination address. If the destination address is on the port that sent the packet, the packet is filtered and not forwarded. The switch always uses the store-and-forward method: complete packets are stored and checked for errors before transmission.
MAC Addresses and VLANs

All addresses are associated with a VLAN. An address can exist in more than one VLAN and have different destinations in each. Unicast addresses, for example, could forward to port 1 in VLAN 1 and port 9 in VLAN 5.

Note

Multiport static addresses are not supported.

Each VLAN maintains its own logical address table. A known address in one VLAN is unknown in another until it is learned or statically associated with a port in the other VLAN.

MAC Addresses and Switch Stacks

The MAC address tables on all stack members are synchronized. At any given time, each stack member has the same copy of the address tables for each VLAN. When an address ages out, the address is removed from the address tables on all stack members. When a switch joins a switch stack, that switch receives the addresses for each VLAN learned on the other stack members. When a stack member leaves the switch stack, the remaining stack members age out or remove all addresses learned by the former stack member.

Default MAC Address Table Configuration

Table 7-4 shows the default MAC address table configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aging time</td>
<td>300 seconds</td>
</tr>
<tr>
<td>Dynamic addresses</td>
<td>Automatically learned</td>
</tr>
<tr>
<td>Static addresses</td>
<td>None configured</td>
</tr>
</tbody>
</table>

Changing the Address Aging Time

Dynamic addresses are source MAC addresses that the switch learns and then ages when they are not in use. You can change the aging time setting for all VLANs or for a specified VLAN.

Setting too short an aging time can cause addresses to be prematurely removed from the table. Then when the switch receives a packet for an unknown destination, it floods the packet to all ports in the same VLAN as the receiving port. This unnecessary flooding can impact performance. Setting too long an aging time can cause the address table to be filled with unused addresses, which prevents new addresses from being learned. Flooding results, which can impact switch performance.
Beginning in privileged EXEC mode, follow these steps to configure the dynamic address table aging time:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>mac-address-table aging-time [0</td>
</tr>
<tr>
<td></td>
<td>10-1000000] [vlan vlan-id]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show mac-address-table aging-time</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return to the default value, use the **no mac-address-table aging-time** global configuration command.

Removing Dynamic Address Entries

To remove all dynamic entries, use the **clear mac-address-table dynamic** command in privileged EXEC mode. You can also remove a specific MAC address (**clear mac-address-table dynamic address mac-address**), remove all addresses on the specified physical port or port channel (**clear mac-address-table dynamic interface interface-id**), or remove all addresses on a specified VLAN (**clear mac-address-table dynamic vlan vlan-id**).

To verify that dynamic entries have been removed, use the **show mac-address-table dynamic** privileged EXEC command.

Configuring MAC Address Notification Traps

MAC address notification enables you to track users on a network by storing the MAC address activity on the switch. Whenever the switch learns or removes a MAC address, an SNMP notification can be generated and sent to the NMS. If you have many users coming and going from the network, you can set a trap interval time to bundle the notification traps and reduce network traffic. The MAC notification history table stores the MAC address activity for each hardware port for which the trap is enabled. MAC address notifications are generated for dynamic and secure MAC addresses; events are not generated for self addresses, multicast addresses, or other static addresses.
Beginning in privileged EXEC mode, follow these steps to configure the switch to send MAC address notification traps to an NMS host:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| 2 | snmp-server host host-addr {traps | informs} {version {1 | 2c | 3}} community-string notification-type | Specify the recipient of the trap message.
 • For host-addr, specify the name or address of the NMS.
 • Specify traps (the default) to send SNMP traps to the host. Specify informs to send SNMP informs to the host.
 • Specify the SNMP version to support. Version 1, the default, is not available with informs.
 • For community-string, specify the string to send with the notification operation. Though you can set this string by using the snmp-server host command, we recommend that you define this string by using the snmp-server community command before using the snmp-server host command.
 • For notification-type, use the mac-notification keyword. |
| 3 | snmp-server enable traps mac-notification | Enable the switch to send MAC address traps to the NMS. |
| 4 | mac-address-table notification | Enable the MAC address notification feature. |
| 5 | mac-address-table notification [interval value] | Enter the trap interval time and the history table size.
 • (Optional) For interval value, specify the notification trap interval in seconds between each set of traps that are generated to the NMS. The range is 0 to 2147483647 seconds; the default is 1 second.
 • (Optional) For history-size value, specify the maximum number of entries in the MAC notification history table. The range is 0 to 500; the default is 1. |
| 6 | interface interface-id | Enter interface configuration mode, and specify the interface on which to enable the SNMP MAC address notification trap. |
| 7 | snmp trap mac-notification {added | removed} | Enable the MAC address notification trap.
 • Enable the MAC notification trap whenever a MAC address is added on this interface.
 • Enable the MAC notification trap whenever a MAC address is removed from this interface. |
| 8 | end | Return to privileged EXEC mode. |
Managing the MAC Address Table

To disable the switch from sending MAC address notification traps, use the `no snmp-server enable traps mac-notification` global configuration command. To disable the MAC address notification traps on a specific interface, use the `no snmp trap mac-notification {added | removed} interface` configuration command. To disable the MAC address notification feature, use the `no mac-address-table notification` global configuration command.

This example shows how to specify 172.20.10.10 as the NMS, enable the switch to send MAC address notification traps to the NMS, enable the MAC address notification feature, set the interval time to 60 seconds, set the history-size to 100 entries, and enable traps whenever a MAC address is added on Fast Ethernet interface 1/0/4.

```plaintext
Switch(config)# snmp-server host 172.20.10.10 traps private
Switch(config)# snmp-server enable traps mac-notification
Switch(config)# mac-address-table notification
Switch(config)# mac-address-table notification interval 60
Switch(config)# mac-address-table notification history-size 100
Switch(config)# interface gigabitethernet1/0/4
Switch(config-if)# snmp trap mac-notification added
```

You can verify the previous commands by entering the `show mac-address-table notification interface` and the `show mac-address-table notification` privileged EXEC commands.

Adding and Removing Static Address Entries

A static address has these characteristics:
- It is manually entered in the address table and must be manually removed.
- It can be a unicast address.
- It does not age and is retained when the switch restarts.

You can add and remove static addresses and define the forwarding behavior for them. The forwarding behavior determines how a port that receives a packet forwards it to another port for transmission. Because all ports are associated with at least one VLAN, the switch acquires the VLAN ID for the address from the ports that you specify.

A packet with a static address that arrives on a VLAN where it has not been statically entered is flooded to all ports and not learned.

You add a static address to the address table by specifying the destination MAC unicast address and the VLAN from which it is received. Packets received with this destination address are forwarded to the interface specified with the `interface-id` option.
Beginning in privileged EXEC mode, follow these steps to add a static address:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>

Step 2

```
mac-address-table static mac-addr vlan vlan-id interface interface-id
```

Add a static address to the MAC address table.
- For `mac-addr`, specify the destination MAC unicast address to add to the address table. Packets with this destination address received in the specified VLAN are forwarded to the specified interface.
- For `vlan-id`, specify the VLAN for which the packet with the specified MAC address is received. Valid VLAN IDs are 1 to 4094; do not enter leading zeros.
- For `interface-id...`, specify the interface to which the received packet is forwarded. Valid interfaces include physical ports.

Step 3

```
end
```

Return to privileged EXEC mode.

Step 4

```
show mac-address-table static
```

Verify your entries.

Step 5

```
copy running-config startup-config
```

(Optional) Save your entries in the configuration file.

To remove static entries from the address table, use the `no mac-address-table static mac-addr vlan vlan-id interface interface-id` global configuration command.

This example shows how to add the static address c2f3.220a.12f4 to the MAC address table. When a packet is received in VLAN 4 with this MAC address as its destination address, the packet is forwarded to the specified interface:

```
Switch(config)# mac-address-table static c2f3.220a.12f4 vlan 4 interface gigabitethernet1/0/1
```

Displaying Address Table Entries

You can display the MAC address table by using one or more of the privileged EXEC commands described in Table 7-5:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show mac-address-table address</td>
<td>Displays MAC address table information for the specified MAC address.</td>
</tr>
<tr>
<td>show mac-address-table aging-time</td>
<td>Displays the aging time in all VLANs or the specified VLAN.</td>
</tr>
<tr>
<td>show mac-address-table count</td>
<td>Displays the number of addresses present in all VLANs or the specified VLAN.</td>
</tr>
<tr>
<td>show mac-address-table dynamic</td>
<td>Displays only dynamic MAC address table entries.</td>
</tr>
<tr>
<td>show mac-address-table interface</td>
<td>Displays the MAC address table information for the specified interface.</td>
</tr>
<tr>
<td>show mac-address-table multicast</td>
<td>Displays the Layer 2 multicast entries for all VLANs or the specified VLAN.</td>
</tr>
<tr>
<td>show mac-address-table notification</td>
<td>Displays the MAC notification parameters and history table.</td>
</tr>
<tr>
<td>show mac-address-table static</td>
<td>Displays only static MAC address table entries.</td>
</tr>
<tr>
<td>show mac-address-table vlan</td>
<td>Displays the MAC address table information for the specified VLAN.</td>
</tr>
</tbody>
</table>
This chapter describes how to configure IEEE 802.1X port-based authentication on the Catalyst 3750 switch. As LANs extend to hotels, airports, and corporate lobbies, creating insecure environments, 802.1X prevents unauthorized devices (clients) from gaining access to the network. Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

For complete syntax and usage information for the commands used in this chapter, refer to the command reference for this release.

This chapter consists of these sections:
- Understanding 802.1X Port-Based Authentication, page 8-1
- Configuring 802.1X Authentication, page 8-6
- Displaying 802.1X Statistics and Status, page 8-14

Understanding 802.1X Port-Based Authentication

The IEEE 802.1X standard defines a client-server-based access control and authentication protocol that restricts unauthorized clients from connecting to a LAN through publicly accessible ports. The authentication server authenticates each client connected to a switch port before making available any services offered by the switch or the LAN.

Until the client is authenticated, 802.1X access control allows only Extensible Authentication Protocol over LAN (EAPOL), Cisco Discovery Protocol (CDP), and Spanning Tree Protocol (STP) traffic through the port to which the client is connected. After authentication is successful, normal traffic can pass through the port.

These sections describe 802.1X port-based authentication:
- Device Roles, page 8-2
- Authentication Initiation and Message Exchange, page 8-3
- Ports in Authorized and Unauthorized States, page 8-4
- Supported Topologies, page 8-4
- 802.1X and Switch Stacks, page 8-5
Device Roles

With 802.1X port-based authentication, the devices in the network have specific roles as shown in Figure 8-1.

- **Client**—the device (workstation) that requests access to the LAN and switch services and responds to requests from the switch. The workstation must be running 802.1X-compliant client software such as that offered in the Microsoft Windows XP operating system. (The client is the *supplicant* in the IEEE 802.1X specification.)

- **Authentication server**—performs the actual authentication of the client. The authentication server validates the identity of the client and notifies the switch whether or not the client is authorized to access the LAN and switch services. Because the switch acts as the proxy, the authentication service is transparent to the client. In this release, the Remote Authentication Dial-In User Service (RADIUS) security system with Extensible Authentication Protocol (EAP) extensions is the only supported authentication server. It is available in Cisco Secure Access Control Server version 3.0. RADIUS operates in a client/server model in which secure authentication information is exchanged between the RADIUS server and one or more RADIUS clients.

- **Switch** (edge switch or wireless access point)—controls the physical access to the network based on the authentication status of the client. The switch acts as an intermediary (proxy) between the client and the authentication server, requesting identity information from the client, verifying that information with the authentication server, and relaying a response to the client. The switch includes the RADIUS client, which is responsible for encapsulating and decapsulating the EAP frames and interacting with the authentication server.

When the switch receives EAPOL frames and relays them to the authentication server, the Ethernet header is stripped and the remaining EAP frame is re-encapsulated in the RADIUS format. The EAP frames are not modified or examined during encapsulation, and the authentication server must support EAP within the native frame format. When the switch receives frames from the authentication server, the server’s frame header is removed, leaving the EAP frame, which is then encapsulated for Ethernet and sent to the client.

The devices that can act as intermediaries include the Catalyst 3750, Catalyst 3550 switch, the Catalyst 2950 switch, or a wireless access point. These devices must be running software that supports the RADIUS client and 802.1X.
Authentication Initiation and Message Exchange

The switch or the client can initiate authentication. If you enable authentication on a port by using the `dot1x port-control auto` interface configuration command, the switch must initiate authentication when it determines that the port link state transitions from down to up. It then sends an EAP-request/identity frame to the client to request its identity (typically, the switch sends an initial identity/request frame followed by one or more requests for authentication information). Upon receipt of the frame, the client responds with an EAP-response/identity frame.

However, if during bootup, the client does not receive an EAP-request/identity frame from the switch, the client can initiate authentication by sending an EAPOL-start frame, which prompts the switch to request the client’s identity.

Note

If 802.1X is not enabled or supported on the network access device, any EAPOL frames from the client are dropped. If the client does not receive an EAP-request/identity frame after three attempts to start authentication, the client sends frames as if the port is in the authorized state. A port in the authorized state effectively means that the client has been successfully authenticated. For more information, see the “Ports in Authorized and Unauthorized States” section on page 8-4.

When the client supplies its identity, the switch begins its role as the intermediary, passing EAP frames between the client and the authentication server until authentication succeeds or fails. If the authentication succeeds, the switch port becomes authorized. For more information, see the “Ports in Authorized and Unauthorized States” section on page 8-4.

The specific exchange of EAP frames depends on the authentication method being used. Figure 8-2 shows a message exchange initiated by the client using the One-Time-Password (OTP) authentication method with a RADIUS server.

Figure 8-2 Message Exchange

![Message Exchange Diagram](image)
Understanding 802.1X Port-Based Authentication

Ports in Authorized and Unauthorized States

The switch port state determines whether or not the client is granted access to the network. The port starts in the unauthorized state. While in this state, the port disallows all ingress and egress traffic except for 802.1X, CDP, and STP protocol packets. When a client is successfully authenticated, the port transitions to the authorized state, allowing all traffic for the client to flow normally.

If a client that does not support 802.1X is connected to an unauthorized 802.1X port, the switch requests the client’s identity. In this situation, the client does not respond to the request, the port remains in the unauthorized state, and the client is not granted access to the network.

In contrast, when an 802.1X-enabled client connects to a port that is not running the 802.1X protocol, the client initiates the authentication process by sending the EAPOL-start frame. When no response is received, the client sends the request for a fixed number of times. Because no response is received, the client begins sending frames as if the port is in the authorized state.

You control the port authorization state by using the dot1x port-control interface configuration command and these keywords:

- **force-authorized**—disables 802.1X authentication and causes the port to transition to the authorized state without any authentication exchange required. The port sends and receives normal traffic without 802.1X-based authentication of the client. This is the default setting.
- **force-unauthorized**—causes the port to remain in the unauthorized state, ignoring all attempts by the client to authenticate. The switch cannot provide authentication services to the client through the interface.
- **auto**—enables 802.1X authentication and causes the port to begin in the unauthorized state, allowing only EAPOL frames to be sent and received through the port. The authentication process begins when the link state of the port transitions from down to up or when an EAPOL-start frame is received. The switch requests the identity of the client and begins relaying authentication messages between the client and the authentication server. Each client attempting to access the network is uniquely identified by the switch by using the client’s MAC address.

If the client is successfully authenticated (receives an Accept frame from the authentication server), the port state changes to authorized, and all frames from the authenticated client are allowed through the port. If the authentication fails, the port remains in the unauthorized state, but authentication can be retried. If the authentication server cannot be reached, the switch can resend the request. If no response is received from the server after the specified number of attempts, authentication fails, and network access is not granted.

When a client logs off, it sends an EAPOL-logoff message, causing the switch port to transition to the unauthorized state.

If the link state of a port transitions from up to down, or if an EAPOL-logoff frame is received, the port returns to the unauthorized state.

Supported Topologies

The 802.1X port-based authentication is supported in two topologies:

- Point-to-point
- Wireless LAN
In a point-to-point configuration (see Figure 8-1 on page 8-2), only one client can be connected to the 802.1X-enabled switch port. The switch detects the client when the port link state changes to the up state. If a client leaves or is replaced with another client, the switch changes the port link state to down, and the port returns to the unauthorized state.

Figure 8-3 shows 802.1X port-based authentication in a wireless LAN. The 802.1X port is configured as a multiple-host port that becomes authorized as soon as one client is authenticated. When the port is authorized, all other hosts indirectly attached to the port are granted access to the network. If the port becomes unauthorized (re-authentication fails or an EAPOL-logoff message is received), the switch denies access to the network to all of the attached clients. In this topology, the wireless access point is responsible for authenticating the clients attached to it, and the wireless access point acts as a client to the switch.

Figure 8-3 Wireless LAN Example

802.1X and Switch Stacks

If a switch is added to or removed from a switch stack, 802.1X authentication is not affected as long as the IP connectivity between the RADIUS server and the stack remains intact. This statement also applies if the stack master is removed from the switch stack. Note that if the stack master fails, a stack member becomes the new stack master by using the election process described in Chapter 5, “Managing Switch Stacks,” and the 802.1X authentication process continues as usual.

If IP connectivity to the RADIUS server is interrupted because the switch that was connected to the server is removed or fails, these events occur:

- Ports that are already authenticated and that do not have periodic re-authentication enabled remain in the authenticated state. Communication with the RADIUS server is not required.
- Ports that are already authenticated and that have periodic re-authentication enabled (with the `dot1x re-authentication` global configuration command) fail the authentication process when the re-authentication occurs. Ports return to the unauthenticated state during the re-authentication process. Communication with the RADIUS server is required.

For an ongoing authentication, the authentication fails immediately because there is no server connectivity.

If the switch that failed comes up and rejoins the switch stack, the authentications might or might not fail depending on the boot-up time and whether the connectivity to the RADIUS server is re-established by the time the authentication is attempted.

To avoid loss of connectivity to the RADIUS server, you should ensure that there is a redundant connection to it. For example, you can have a redundant connection to the stack master and another to a stack member, and if the stack master fails, the switch stack still has connectivity to the RADIUS server.
Configuring 802.1X Authentication

These sections describe how to configure 802.1X port-based authentication on your switch:

- Default 802.1X Configuration, page 8-6
- 802.1X Configuration Guidelines, page 8-7
- Enabling 802.1X Authentication, page 8-8 (required)
- Configuring the Switch-to-RADIUS-Server Communication, page 8-9 (required)
- Enabling Periodic Re-Authentication, page 8-10 (optional)
- Manually Re-Authenticating a Client Connected to a Port, page 8-11 (optional)
- Changing the Quiet Period, page 8-11 (optional)
- Changing the Switch-to-Client Retransmission Time, page 8-12 (optional)
- Setting the Switch-to-Client Frame-Retransmission Number, page 8-12 (optional)
- Enabling Multiple Hosts, page 8-13 (optional)
- Resetting the 802.1X Configuration to the Default Values, page 8-14 (optional)

Default 802.1X Configuration

Table 8-1 shows the default 802.1X configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication, authorization, and accounting (AAA)</td>
<td>Disabled.</td>
</tr>
<tr>
<td>RADIUS server</td>
<td></td>
</tr>
<tr>
<td>• IP address</td>
<td>• None specified.</td>
</tr>
<tr>
<td>• UDP authentication port</td>
<td>• 1812.</td>
</tr>
<tr>
<td>• Key</td>
<td>• None specified.</td>
</tr>
<tr>
<td>Per-interface 802.1X enable state</td>
<td>Disabled (force-authorized).</td>
</tr>
<tr>
<td></td>
<td>The port sends and receives normal traffic without 802.1X-based authentication of the client.</td>
</tr>
<tr>
<td>Periodic re-authentication</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Number of seconds between re-authentication attempts</td>
<td>3600 seconds.</td>
</tr>
<tr>
<td>Quiet period</td>
<td>60 seconds (number of seconds that the switch remains in the quiet state following a failed authentication exchange with the client).</td>
</tr>
<tr>
<td>Retransmission time</td>
<td>30 seconds (number of seconds that the switch should wait for a response to an EAP request/identity frame from the client before resending the request).</td>
</tr>
</tbody>
</table>
802.1X Configuration Guidelines

These are the 802.1X authentication configuration guidelines:

- When 802.1X is enabled, ports are authenticated before any other Layer 2 or Layer 3 features are enabled.
- The 802.1X protocol is supported on Layer 2 static-access ports, voice VLAN ports, and Layer 3 routed ports, but it is not supported on these port types:
 - Trunk port—If you try to enable 802.1X on a trunk port, an error message appears, and 802.1X is not enabled. If you try to change the mode of an 802.1X-enabled port to trunk, an error message appears, and the port mode is not changed.
 - Dynamic ports—A port in dynamic mode can negotiate with its neighbor to become a trunk port. If you try to enable 802.1X on a dynamic port, an error message appears, and 802.1X is not enabled. If you try to change the mode of an 802.1X-enabled port to dynamic, an error message appears, and the port mode is not changed.
 - Dynamic-access ports—If you try to enable 802.1X on a dynamic-access (VLAN Query Protocol [VQP]) port, an error message appears, and 802.1X is not enabled. If you try to change an 802.1X-enabled port to dynamic VLAN assignment, an error message appears, and the VLAN configuration is not changed.
 - EtherChannel port—Do not configure a port that is an active member of an EtherChannel as an 802.1X port. If 802.1X is enabled on a not-yet active port of an EtherChannel, the port does not join the EtherChannel.
 - Secure port—You cannot configure a secure port as an 802.1X port. If you try to enable 802.1X on a secure port, an error message appears, and 802.1X is not enabled. If you try to change an 802.1X-enabled port to a secure port, an error message appears, and the security settings are not changed.
 - Switched Port Analyzer (SPAN) destination port—You can enable 802.1X on a port that is a SPAN destination port; however, 802.1X is disabled until the port is removed as a SPAN destination. You can enable 802.1X on a SPAN source port.

Table 8-1 Default 802.1X Configuration (continued)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum retransmission number</td>
<td>2 times (number of times that the switch will send an EAP-request/identity frame before restarting the authentication process).</td>
</tr>
<tr>
<td>Multiple host support</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Client timeout period</td>
<td>30 seconds (when relaying a request from the authentication server to the client, the amount of time the switch waits for a response before resending the request to the client.)</td>
</tr>
<tr>
<td>Authentication server timeout period</td>
<td>30 seconds (when relaying a response from the client to the authentication server, the amount of time the switch waits for a reply before resending the response to the server. This setting is not configurable.)</td>
</tr>
</tbody>
</table>
Enabling 802.1X Authentication

To enable 802.1X port-based authentication, you must enable AAA and specify the authentication method list. A method list describes the sequence and authentication methods to be queried to authenticate a user.

The software uses the first method listed to authenticate users. If that method fails to respond, the software selects the next authentication method in the method list. This process continues until there is successful communication with a listed authentication method or until all defined methods are exhausted. If authentication fails at any point in this cycle, the authentication process stops, and no other authentication methods are attempted.

Beginning in privileged EXEC mode, follow these steps to configure 802.1X port-based authentication. This procedure is required.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>aaa new-model</td>
</tr>
<tr>
<td>Step 3</td>
<td>aaa authentication dot1x {default} method1 [method2...]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 5</td>
<td>dot1x port-control auto</td>
</tr>
<tr>
<td>Step 6</td>
<td>end</td>
</tr>
<tr>
<td>Step 7</td>
<td>show dot1x</td>
</tr>
<tr>
<td>Step 8</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To disable AAA, use the no aaa new-model global configuration command. To disable 802.1X AAA authentication, use the no aaa authentication dot1x {default | list-name} global configuration command. To disable 802.1X authentication, use the dot1x port-control force-authorized or the no dot1x port-control interface configuration command.
This example shows how to enable AAA and 802.1X on Fast Ethernet port 0/1 on stack member 2:

```
Switch# configure terminal
Switch(config)# aaa new-model
Switch(config)# aaa authentication dot1x default group radius
Switch(config)# interface fastethernet2/0/1
Switch(config-if)# dot1x port-control auto
Switch(config-if)# end
```

Configuring the Switch-to-RADIUS-Server Communication

RADIUS security servers are identified by their host name or IP address, host name and specific UDP port numbers, or IP address and specific UDP port numbers. The combination of the IP address and UDP port number creates a unique identifier, which enables RADIUS requests to be sent to multiple UDP ports on a server at the same IP address. If two different host entries on the same RADIUS server are configured for the same service—for example, authentication—the second host entry configured acts as the fail-over backup to the first one. The RADIUS host entries are tried in the order that they were configured.

Beginning in privileged EXEC mode, follow these steps to configure the RADIUS server parameters. This procedure is required.

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>radius-server host {hostname</td>
<td>Configure the RADIUS server parameters.</td>
</tr>
<tr>
<td></td>
<td>ip-address} auth-port port-number key string</td>
<td>For hostname</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For auth-port port-number, specify the UDP destination port for authentication requests. The default is 1812. The range is 0 to 65536.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For key string, specify the authentication and encryption key used between the switch and the RADIUS daemon running on the RADIUS server. The key is a text string that must match the encryption key used on the RADIUS server.</td>
</tr>
</tbody>
</table>

Note Always configure the key as the last item in the radius-server host command syntax because leading spaces are ignored, but spaces within and at the end of the key are used. If you use spaces in the key, do not enclose the key in quotation marks unless the quotation marks are part of the key. This key must match the encryption used on the RADIUS daemon.

If you want to use multiple RADIUS servers, re-enter this command.

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To delete the specified RADIUS server, use the **no radius-server host {hostname | ip-address}** global configuration command.
This example shows how to specify the server with IP address 172.20.39.46 as the RADIUS server, to use port 1612 as the authorization port, and to set the encryption key to rad123, matching the key on the RADIUS server:

```snmp
Switch(config)# radius-server host 172.120.39.46 auth-port 1612 key rad123
```

You can globally configure the timeout, retransmission, and encryption key values for all RADIUS servers by using the `radius-server host` global configuration command. If you want to configure these options on a per-server basis, use the `radius-server timeout`, `radius-server retransmit`, and the `radius-server key` global configuration commands. For more information, see the “Configuring Settings for All RADIUS Servers” section on page 7-29.

You also need to configure some settings on the RADIUS server. These settings include the IP address of the switch and the key string to be shared by both the server and the switch. For more information, refer to the RADIUS server documentation.

Enabling Periodic Re-Authentication

You can enable periodic 802.1X client re-authentication and specify how often it occurs. If you do not specify a time period before enabling re-authentication, the number of seconds between re-authentication attempts is 3600.

Automatic 802.1X client re-authentication is a global setting and cannot be set for clients connected to individual ports. To manually re-authenticate the client connected to a specific port, see the “Manually Re-Authenticating a Client Connected to a Port” section on page 8-11.

Beginning in privileged EXEC mode, follow these steps to enable periodic re-authentication of the client and to configure the number of seconds between re-authentication attempts. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2: dot1x re-authentication</td>
<td>Enable periodic re-authentication of the client, which is disabled by default.</td>
</tr>
<tr>
<td>Step 3: dot1x timeout re-authperiod <code>seconds</code></td>
<td>Set the number of seconds between re-authentication attempts. The range is 1 to 4294967295; the default is 3600 seconds. This command affects the behavior of the switch only if periodic re-authentication is enabled.</td>
</tr>
<tr>
<td>Step 4: end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5: show dot1x</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6: copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable periodic re-authentication, use the `no dot1x re-authentication` global configuration command. To return to the default number of seconds between re-authentication attempts, use the `no dot1x timeout re-authperiod` global configuration command.

This example shows how to enable periodic re-authentication and set the number of seconds between re-authentication attempts to 4000:

```snmp
Switch(config)# dot1x re-authentication
Switch(config)# dot1x timeout re-authperiod 4000
```
Manually Re-Authenticating a Client Connected to a Port

You can manually re-authenticate the client connected to a specific port at any time by entering the `dot1x re-authenticate interface interface-id` privileged EXEC command. This step is optional. If you want to enable or disable periodic re-authentication, see the “Enabling Periodic Re-Authentication” section on page 8-10.

This example shows how to manually re-authenticate the client connected to Fast Ethernet port 0/1 on stack member 2:

```
Switch# dot1x re-authenticate interface fastethernet2/0/1
Starting reauthentication on FastEthernet2/0/1
```

Changing the Quiet Period

When the switch cannot authenticate the client, the switch remains idle for a set period of time and then tries again. The idle time is determined by the quiet-period value. A failed authentication of the client might occur because the client provided an invalid password. You can provide a faster response time to the user by entering a smaller number than the default.

Beginning in privileged EXEC mode, follow these steps to change the quiet period. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 dot1x timeout quiet-period seconds</td>
<td>Set the number of seconds that the switch remains in the quiet state following a failed authentication exchange with the client. The range is 0 to 65535 seconds; the default is 60.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show dot1x</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default quiet time, use the `no dot1x timeout quiet-period` global configuration command.

This example shows how to set the quiet time on the switch to 30 seconds:

```
Switch(config)# dot1x timeout quiet-period 30
```
Changing the Switch-to-Client Retransmission Time

The client responds to the EAP-request/identity frame from the switch with an EAP-response/identity frame. If the switch does not receive this response, it waits a set period of time (known as the retransmission time) and then resends the frame.

You should change the default value of this command only to adjust for unusual circumstances such as unreliable links or specific behavioral problems with certain clients and authentication servers.

Beginning in privileged EXEC mode, follow these steps to change the amount of time that the switch waits for client notification. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 dot1x timeout tx-period seconds</td>
<td>Set the number of seconds that the switch waits for a response to an EAP-request/identity frame from the client before resending the request. The range is 1 to 65535 seconds; the default is 30.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show dot1x</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default retransmission time, use the no dot1x timeout tx-period global configuration command.

This example shows how to set 60 as the number of seconds that the switch waits for a response to an EAP-request/identity frame from the client before resending the request:

Switch(config)# dot1x timeout tx-period 60

Setting the Switch-to-Client Frame-Retransmission Number

In addition to changing the switch-to-client retransmission time, you can change the number of times that the switch sends an EAP-request/identity frame (assuming no response is received) to the client before restarting the authentication process.

You should change the default value of this command only to adjust for unusual circumstances such as unreliable links or specific behavioral problems with certain clients and authentication servers.
Beginning in privileged EXEC mode, follow these steps to set the switch-to-client frame-retransmission number. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>dot1x max-req count</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show dot1x</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return to the default retransmission number, use the no dot1x max-req global configuration command.

This example shows how to set 5 as the number of times that the switch sends an EAP-request/identity request before restarting the authentication process:

```
Switch(config)# dot1x max-req 5
```

Enabling Multiple Hosts

You can attach multiple hosts to a single 802.1X-enabled port as shown in Figure 8-3 on page 8-5. In this mode, only one of the attached hosts must be successfully authorized for all hosts to be granted network access. If the port becomes unauthorized (re-authentication fails or an EAPOL-logoff message is received), all attached clients are denied access to the network.

Beginning in privileged EXEC mode, follow these steps to allow multiple hosts (clients) on an 802.1X-authorized port that has the dot1x port-control interface configuration command set to auto. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>dot1x multiple-hosts</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show dot1x interface interface-id</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To disable multiple hosts on the port, use the no dot1x multiple-hosts interface configuration command.
This example shows how to enable 802.1X and to allow multiple hosts on Fast Ethernet interface 0/1 of stack member 2:

```
Switch(config)# interface fastethernet2/0/1
Switch(config-if)# dot1x port-control auto
Switch(config-if)# dot1x multiple-hosts
```

Displaying 802.1X Statistics and Status

Beginning in privileged EXEC mode, follow these steps to reset the 802.1X configuration to the default values:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 dot1x default</td>
<td>Reset the configurable 802.1X parameters to the default values.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show dot1x</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Displaying 802.1X Statistics and Status

To display 802.1X statistics for all interfaces, use the `show dot1x statistics` privileged EXEC command. To display 802.1X statistics for a specific interface, use the `show dot1x statistics interface interface-id` privileged EXEC command.

To display the 802.1X administrative and operational status for the switch, use the `show dot1x` privileged EXEC command. To display the 802.1X administrative and operational status for a specific interface, use the `show dot1x interface interface-id` privileged EXEC command.

For detailed information about the fields in these displays, refer to the command reference for this release.
Configuring Interface Characteristics

This chapter defines the types of interfaces on the Catalyst 3750 switch and describes how to configure them. Unless otherwise noted, the term switch refers to a standalone switch and a switch stack.

The chapter has these sections:
- Understanding Interface Types, page 9-1
- Using Interface Configuration Mode, page 9-6
- Configuring Layer 2 Interfaces, page 9-11
- Configuring Layer 3 Interfaces, page 9-16
- Configuring the System MTU, page 9-17
- Monitoring and Maintaining the Interfaces, page 9-19

Note: For complete syntax and usage information for the commands used in this chapter, refer to the switch command reference for this release and the online Cisco IOS Interface Command Reference for Release 12.1.

Understanding Interface Types

This section describes the different types of interfaces supported by the switch with references to chapters that contain more detailed information about configuring these interface types. The rest of the chapter describes configuration procedures for physical interface characteristics.

Note: The stack ports on the rear of the switch are not Ethernet ports and cannot be configured.

These sections are included:
- Port-Based VLANs, page 9-2
- Switch Ports, page 9-2
- Routed Ports, page 9-3
- Switch Virtual Interfaces, page 9-4
- EtherChannel Port Groups, page 9-5
- Connecting Interfaces, page 9-5
Port-Based VLANs

A VLAN is a switched network that is logically segmented by function, team, or application, without regard to the physical location of the users. For more information about VLANs, see Chapter 10, “Configuring VLANs.” Packets received on a port are forwarded only to ports that belong to the same VLAN as the receiving port. Network devices in different VLANs cannot communicate with one another without a Layer 3 device to route traffic between the VLANs.

VLAN partitions provide hard firewalls for traffic in the VLAN, and each VLAN has its own MAC address table. A VLAN comes into existence when a local port is configured to be associated with the VLAN, when the VLAN Trunking Protocol (VTP) learns of its existence from a neighbor on a trunk, or when a user creates a VLAN. VLANs can be formed with ports across the stack.

To configure normal-range VLANs (VLAN IDs 1 to 1005), use the `vlan vlan-id` global configuration command to enter config-vlan mode or the `vlan database` privileged EXEC command to enter VLAN database configuration mode. The VLAN configurations for VLAN IDs 1 to 1005 are saved in the VLAN database, which is downloaded to all switches in a stack. All switches in the stack build the same VLAN database. To configure extended-range VLANs (VLAN IDs 1006 to 4094), you must use config-vlan mode with VTP mode set to transparent. Extended-range VLANs are not added to the VLAN database. When VTP mode is transparent, the VTP and VLAN configuration is saved in the switch running configuration, and you can save it in the switch startup configuration file by entering the `copy running-config startup-config` privileged EXEC command. The running configuration and the saved configuration are the same for all switches in a stack.

Add ports to a VLAN by using the `switchport` interface configuration commands:

- Identify the interface.
- For a trunk port, set trunk characteristics, and if desired, define the VLANs to which it can belong.
- For an access port, set and define the VLAN to which it belongs.

Switch Ports

Switch ports are Layer 2-only interfaces associated with a physical port. Switch ports belong to one or more VLANs. A switch port can be an access port or a trunk port. You can configure a port as an access port or trunk port or let the Dynamic Trunking Protocol (DTP) operate on a per-port basis to determine switchport mode by negotiating with the port on the other end of the link. Switch ports are used for managing the physical interface and associated Layer 2 protocols and do not handle routing or bridging.

Configure switch ports by using the `switchport` interface configuration commands. For detailed information about configuring access port and trunk port characteristics, see Chapter 10, “Configuring VLANs.”

Access Ports

An access port belongs to and carries the traffic of only one VLAN (unless it is configured as a voice VLAN port). Traffic is received and sent in native formats with no VLAN tagging. Traffic arriving on an access port is assumed to belong to the VLAN assigned to the port. If an access port receives a tagged packet (Inter-Switch Link [ISL] or 802.1Q tagged), the packet is dropped, and the source address is not learned.
Two types of access ports are supported:

- Static access ports are manually assigned to a VLAN.
- Dynamic access ports are learned through incoming packets. By default, a dynamic access port is a member of no VLAN, and forwarding to and from the port is enabled only when the VLAN membership of the port is discovered. Dynamic access ports on the switch are assigned to a VLAN by a VLAN Membership Policy Server (VMPS). The VMPS can be a Catalyst 6000 series switch; the Catalyst 3750 switch cannot be a VMPS server.

You can also configure an access port with an attached Cisco IP Phone to use one VLAN for voice traffic and another VLAN for data traffic from a device attached to the phone. For more information about voice VLAN ports, see Chapter 12, “Configuring Voice VLAN.”

Trunk Ports

A trunk port carries the traffic of multiple VLANs and by default is a member of all VLANs in the VLAN database. Two types of trunk ports are supported:

- In an ISL trunk port, all received packets are expected to be encapsulated with an ISL header, and all transmitted packets are sent with an ISL header. Native (non-tagged) frames received from an ISL trunk port are dropped.
- An IEEE 802.1Q trunk port supports simultaneous tagged and untagged traffic. An 802.1Q trunk port is assigned a default Port VLAN ID (PVID), and all untagged traffic travels on the port default PVID. All untagged traffic and tagged traffic with a NULL VLAN ID are assumed to belong to the port default PVID. A packet with a VLAN ID equal to the outgoing port default PVID is sent untagged. All other traffic is sent with a VLAN tag.

Although by default, a trunk port is a member of every VLAN known to the VTP, you can limit VLAN membership by configuring an allowed list of VLANs for each trunk port. The list of allowed VLANs does not affect any other port but the associated trunk port. By default, all possible VLANs (VLAN ID 1 to 4094) are in the allowed list. A trunk port can only become a member of a VLAN if VTP knows of the VLAN and the VLAN is in the enabled state. If VTP learns of a new, enabled VLAN and the VLAN is in the allowed list for a trunk port, the trunk port automatically becomes a member of that VLAN and traffic is forwarded to and from the trunk port for that VLAN. If VTP learns of a new, enabled VLAN that is not in the allowed list for a trunk port, the port does not become a member of the VLAN, and no traffic for the VLAN is forwarded to or from the port.

Note

VLAN 1 cannot be excluded from the allowed list.

For more information about trunk ports, see Chapter 10, “Configuring VLANs.”

Routed Ports

A routed port is a physical port that acts like a port on a router; it does not have to be connected to a router. A routed port is not associated with a particular VLAN, as is an access port. A routed port behaves like a regular router interface, except that it does not support VLAN subinterfaces. Routed ports can be configured with a Layer 3 routing protocol. A routed port is a Layer 3 interface only and does not support Layer 2 protocols, such as DTP and STP.

Configure routed ports by putting the interface into Layer 3 mode with the `no switchport` interface configuration command. Then assign an IP address to the port, enable routing, and assign routing protocol characteristics by using the `ip routing` and `router protocol` global configuration commands.
Caution

Entering a no switchport interface configuration command shuts down the interface and then re-enables it, which might generate messages on the device to which the interface is connected.

The number of routed ports that you can configure is not limited by software. However, the interrelationship between this number and the number of other features being configured might impact CPU performance because of hardware limitations. See the “Configuring Layer 3 Interfaces” section on page 9-16 for information about what happens when hardware resource limitations are reached.

For more information about IP unicast and multicast routing and routing protocols, see Chapter 26, “Configuring IP Unicast Routing” and Chapter 28, “Configuring IP Multicast Routing.”

Note

The standard multilayer software image (SMI) supports static routing and the Routing Information Protocol (RIP). For full Layer 3 routing or for fallback bridging, you must have the enhanced multilayer software image (EMI) installed on the stack master.

Switch Virtual Interfaces

A switch virtual interface (SVI) represents a VLAN of switch ports as one interface to the routing or bridging function in the system. Only one SVI can be associated with a VLAN, but you need to configure an SVI for a VLAN only when you wish to route between VLANs, to fallback-bridge nonroutable protocols between VLANs, or to provide IP host connectivity to the switch. By default, an SVI is created for the default VLAN (VLAN 1) to permit remote switch administration. Additional SVIs must be explicitly configured. SVIs provide IP host connectivity only to the system; in Layer 3 mode, you can configure routing across SVIs.

Although the switch stack supports a total or 1005 VLANs (and SVIs), the interrelationship between the number of SVIs and routed ports and the number of other features being configured might impact CPU performance because of hardware limitations. See the “Configuring Layer 3 Interfaces” section on page 9-16 for information about what happens when hardware resource limitations are reached.

SVIs are created the first time that you enter the vlan interface configuration command for a VLAN interface. The VLAN corresponds to the VLAN tag associated with data frames on an ISL or 802.1Q encapsulated trunk or the VLAN ID configured for an access port. Configure a VLAN interface for each VLAN for which you want to route traffic, and assign it an IP address. For more information, see the “Manually Assigning IP Information” section on page 4-9.

Note

When you create an SVI, it does not become active until it is associated with a physical port.

SVIs support routing protocols and bridging configurations. For more information about configuring IP routing, see Chapter 26, “Configuring IP Unicast Routing,” Chapter 28, “Configuring IP Multicast Routing,” and Chapter 30, “Configuring Fallback Bridging.”

Note

The SMI supports static routing and RIP; for more advanced routing or for fallback bridging, you must have the EMI installed on the stack master.
EtherChannel Port Groups

EtherChannel port groups provide the ability to treat multiple switch ports as one switch port. These port groups act as a single logical port for high-bandwidth connections between switches or between switches and servers. An EtherChannel balances the traffic load across the links in the channel. If a link within the EtherChannel fails, traffic previously carried over the failed link changes to the remaining links. You can group multiple trunk ports into one logical trunk port, group multiple access ports into one logical access port, or group multiple routed ports into one logical routed port. Most protocols operate over either single ports or aggregated switch ports and do not recognize the physical ports within the port group. Exceptions are the DTP, the Cisco Discovery Protocol (CDP), and the Port Aggregation Protocol (PAgP), which operate only on physical ports.

When you configure an EtherChannel, you create a port-channel logical interface and assign an interface to the EtherChannel. For Layer 3 interfaces, you manually create the logical interface by using the `interface port-channel` global configuration command. Then you manually assign an interface to the EtherChannel by using the `channel-group` interface configuration command. For Layer 2 interfaces, use the `channel-group` interface configuration command to dynamically create the port-channel logical interface. This command binds the physical and logical ports together. For more information, see Chapter 25, “Configuring EtherChannels.”

Connecting Interfaces

Devices within a single VLAN can communicate directly through any switch. Ports in different VLANs cannot exchange data without going through a routing device. With a standard Layer 2 switch, ports in different VLANs have to exchange information through a router. In the configuration shown in Figure 9-1, when Host A in VLAN 20 sends data to Host B in VLAN 30, it must go from Host A to the switch, to the router, back to the switch, and then to Host B.

![Figure 9-1 Connecting VLANs with Layer 2 Switches](image)

By using the switch with routing enabled, when you configure VLAN 20 and VLAN 30 each with an SVI to which an IP address is assigned, packets can be sent from Host A to Host B directly through the switch with no need for an external router (Figure 9-2).
When the EMI is running on the stack master, the switch supports two methods of forwarding traffic between interfaces: routing and fallback bridging. If the SMI is on the stack master, only basic routing (static routing and RIP) is supported. Whenever possible, to maintain high performance, forwarding is done by the switch hardware. However, only IP version 4 packets with Ethernet II encapsulation can be routed in hardware. Non-IP traffic and traffic with other encapsulation methods can be fallback-bridged by hardware.

- The routing function can be enabled on all SVIs and routed ports. The switch routes only IP traffic. When IP routing protocol parameters and address configuration are added to an SVI or routed port, any IP traffic received from these ports is routed. For more information, see Chapter 26, “Configuring IP Unicast Routing,” Chapter 28, “Configuring IP Multicast Routing,” and Chapter 29, “Configuring MSDP.”

- Fallback bridging forwards traffic that the switch does not route or traffic belonging to a nonroutable protocol, such as DECnet. Fallback bridging connects multiple VLANs into one bridge domain by bridging between two or more SVIs or routed ports. When configuring fallback bridging, you assign SVIs or routed ports to bridge groups with each SVI or routed port assigned to only one bridge group. All interfaces in the same group belong to the same bridge domain. For more information, see Chapter 30, “Configuring Fallback Bridging.”

Using Interface Configuration Mode

The switch supports these interface types:

- Physical ports—including switch ports and routed ports
- VLANs—switch virtual interfaces
- Port-channels—EtherChannel of interfaces

You can also configure a range of interfaces (see the “Configuring a Range of Interfaces” section on page 9-8).

To configure a physical interface (port), enter interface configuration mode, and specify the interface type, stack member number, module number, and switch port number.

- Type—Fast Ethernet (fastethernet or fa) for 10/100 Mbps Ethernet or Gigabit Ethernet (gigabitethernet or gi) for 10/100/1000 Mbps Ethernet ports or small form-factor pluggable (SFP) Gigabit Ethernet interfaces.
Stack member number—The number used to identify the switch within the stack. The switch number ranges from 1 to 9 and is assigned the first time the switch initializes. The default switch number, before it is integrated into a switch stack, is 1; when a switch has been assigned a stack member number, it keeps that number until another is assigned to it.

You can use the switch port LEDs in Stack mode to identify the stack member number of a switch.

Note For information about stack member numbers, see the “Stack Member Numbers” section on page 5-6.

Module number—The module or slot number on the switch (always 0 on the Catalyst 3750 switch).

Port number—The interface number on the switch. The port numbers always begin at 1, starting at the left when facing the front of the switch, for example, fastethernet 1/0/1, fastethernet 1/0/2. If there is more than one media type (for example, 10/100 ports and Gigabit Ethernet ports), the port number starts again with the second media: gigabitethernet1/0/1, gigabitethernet 1/0/2.

You can identify physical interfaces by physically checking the interface location on the switch. You can also use the IOS show privileged EXEC commands to display information about a specific interface or all the interfaces on the switch. The remainder of this chapter primarily provides physical interface configuration procedures.

These are examples of identifying interfaces:

- To configure 10/100/1000 port 4 on a standalone switch, enter this command:
  ```
  Switch(config)# interface gigabitethernet1/0/4
  ```

- To configure 10/100 port 4 on stack member 3, enter this command:
  ```
  Switch(config)# interface fastethernet3/0/4
  ```

If the switch has SFP modules, the numbering of these ports depends on the type of other interfaces on the switch. If the port type changes from Fast Ethernet to Gigabit Ethernet (SFP), the port numbers begin again from 1; if the port type remains Gigabit Ethernet, the port numbers continue consecutively.

- To configure the first SFP port on stack member 1 with 24 10/100/1000 ports, enter this command:
  ```
  Switch(config)# interface gigabitethernet1/0/25
  ```

- To configure the first SFP port on stack member 1 with 24 10/100 ports, enter this command:
  ```
  Switch(config)# interface gigabitethernet1/0/1
  ```

Procedures for Configuring Interfaces

These general instructions apply to all interface configuration processes.

Step 1 Enter the `configure terminal` command at the privileged EXEC prompt:

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)#
```

Step 2 Enter the `interface` global configuration command. Identify the interface type, the switch number, and the number of the connector. In this example, Gigabit Ethernet interface 0/1 on switch 1 is selected:

```
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)#
```
Using Interface Configuration Mode

Chapter 9 Configuring Interface Characteristics

Note
You do not need to add a space between the interface type and interface number. For example, in the preceding line, you can specify either gigabitethernet 1/0/1, gigabitethernet1/0/1, gi 1/0/1, or gi1/0/1.

Step 3
Follow each interface command with the interface configuration commands that the interface requires. The commands that you enter define the protocols and applications that will run on the interface. The commands are collected and applied to the interface when you enter another interface command or enter end to return to privileged EXEC mode.

You can also configure a range of interfaces by using the interface range or interface range macro global configuration commands. Interfaces configured in a range must be the same type and must be configured with the same feature options.

Step 4
After you configure an interface, verify its status by using the show privileged EXEC commands listed in the “Monitoring and Maintaining the Interfaces” section on page 9-19.

Enter the show interfaces privileged EXEC command to see a list of all interfaces on or configured for the switch. A report is provided for each interface that the device supports or for the specified interface.

Configuring a Range of Interfaces

You can use the interface range global configuration command to configure multiple interfaces with the same configuration parameters. When you enter the interface range configuration mode, all command parameters that you enter are attributed to all interfaces within that range until you exit this mode.

Beginning in privileged EXEC mode, follow these steps to configure a range of interfaces with the same parameters:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface range {port-range</td>
</tr>
<tr>
<td></td>
<td>• You can use the interface range command to configure up to five port ranges or a previously defined macro.</td>
</tr>
<tr>
<td></td>
<td>• The macro variable is explained in the “Configuring and Using Interface Range Macros” section on page 9-10.</td>
</tr>
<tr>
<td></td>
<td>• In a comma-separated port-range, you must enter the interface type for each entry and enter spaces before and after the comma.</td>
</tr>
<tr>
<td></td>
<td>• In a hyphen-separated port-range, you do not need to re-enter the interface type, but you must enter a space before the hyphen.</td>
</tr>
<tr>
<td>Step 3</td>
<td>You can now use the normal configuration commands to apply the configuration parameters to all interfaces in the range.</td>
</tr>
<tr>
<td>Step 4</td>
<td>end Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>show interfaces [interface-id] Verify the configuration of the interfaces in the range.</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
When using the **interface range** global configuration command, note these guidelines:

- **Valid entries for** *port-range*:
 - *vlan* `vlan-ID - vlan-ID`, where VLAN ID is from 1 to 4094
 - *fastethernet* `switch/module/first port - last port`, where switch is the switch number and the module is 0
 - *gigabitethernet* `switch/module/first port - last port`, where switch is the switch number and the module is 0
 - *port-channel* `port-channel-number - port-channel-number`, where `port-channel-number` is from 1 to 12

Note When you use the **interface range** command with port channels, the first and last port channel number must be active port channels.

- You must add a space between the first interface number and the hyphen when using the **interface range** command. For example, the command `interface range gigabitethernet 1/0/1 - 5` is a valid range; the command `interface range gigabitethernet 1/0/1-5` is not a valid range.

- The **interface range** command only works with VLAN interfaces that have been configured with the **interface vlan** command. The **show running-config** privileged EXEC command displays the configured VLAN interfaces. VLAN interfaces not displayed by the **show running-config** command cannot be used with the **interface range** command.

- All interfaces defined as in a range must be the same type (all Fast Ethernet ports, all Gigabit Ethernet ports, all EtherChannel ports, or all VLANs), but you can enter multiple ranges in a command.

This example shows how to use the **interface range** global configuration command to set the speed on 10/100/1000 interfaces 0/1 to 0/5 on switch 1 to 100 Mbps:

```
Switch# configure terminal
Switch(config)# interface range gigabitethernet1/0/1 - 5
Switch(config-if-range)# speed 100
```

This example shows how to use a comma to add different interface type strings to the range to enable Fast Ethernet interfaces in the range 0/1 to 0/3 on switch 1 and Gigabit Ethernet interfaces 0/1 and 0/2 on switch 2 to receive flow control pause frames:

```
Switch# configure terminal
Switch(config)# interface range fastethernet1/0/1 - 3 , gigabitethernet2/0/1 - 2
Switch(config-if-range)# flowcontrol receive on
```

If you enter multiple configuration commands while you are in interface range mode, each command is executed as it is entered. The commands are not batched together and executed after you exit interface range mode. If you exit interface range configuration mode while the commands are being executed, some commands might not be executed on all interfaces in the range. Wait until the command prompt reappears before exiting interface range configuration mode.
Configuring and Using Interface Range Macros

You can create an interface range macro to automatically select a range of interfaces for configuration. Before you can use the `macro` keyword in the `interface range macro` global configuration command string, you must use the `define interface-range` global configuration command to define the macro.

Beginning in privileged EXEC mode, follow these steps to define an interface range macro:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>define interface-range <code>macro_name</code> <code>interface-range</code></td>
</tr>
<tr>
<td></td>
<td>Define the interface-range macro, and save it in NVRAM.</td>
</tr>
<tr>
<td></td>
<td>• The <code>macro_name</code> is a 32-character maximum character string.</td>
</tr>
<tr>
<td></td>
<td>• A macro can contain up to five comma-separated interface ranges.</td>
</tr>
<tr>
<td></td>
<td>• Each <code>interface-range</code> must consist of the same port type.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>interface range macro</code> <code>macro_name</code></td>
</tr>
<tr>
<td></td>
<td>Select the interface range to be configured using the values saved in the interface-range macro called <code>macro_name</code>. You can now use the normal configuration commands to apply the configuration to all interfaces in the defined macro.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>end</code></td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>`show running-config</td>
</tr>
<tr>
<td></td>
<td>Show the defined interface range macro configuration.</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>copy running-config startup-config</code></td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the `no define interface-range `macro_name` global configuration command to delete a macro.

When using the `define interface-range` global configuration command, note these guidelines:

• Valid entries for `interface-range`:
 • `vlan vlan-ID - vlan-ID`, where VLAN ID is from 1 to 4094
 • `fastethernet switch/module/{first port} - {last port}`, where switch is the switch number and the module is 0
 • `gigabitethernet switch/module/{first port} - {last port}`, where switch is the switch number and the module is 0
 • `port-channel port-channel-number - port-channel-number`, where port-channel-number is from 1 to 12.

Note When you use the interface ranges with port channels, the first and last port channel number must be active port channels.

• You must add a space between the first interface number and the hyphen when entering an `interface-range`. For example, `gigabitethernet 1/0/1 - 5` is a valid range; `gigabitethernet 1/0/1-5` is not a valid range.

• The VLAN interfaces must have been configured with the `interface vlan` command. The `show running-config` privileged EXEC command displays the configured VLAN interfaces. VLAN interfaces not displayed by the `show running-config` command cannot be used as `interface-ranges`.
• All interfaces defined as in a range must be the same type (all Fast Ethernet ports, all Gigabit Ethernet ports, all EtherChannel ports, or all VLANs), but you can combine multiple interface types in a macro.

This example shows how to define an interface-range macro named `enet_list` to select Gigabit Ethernet ports 0/1 to 0/4 on switch 1 and to verify the macro configuration:

```
Switch# configure terminal
Switch(config)# define interface-range enet_list gigabitethernet1/0/1 - 4
Switch(config)# end
Switch# show running-config | include define
define interface-range enet_list GigabitEthernet1/0/1 - 4
```

This example shows how to create a multiple-interface macro named `macro1`:

```
Switch# configure terminal
Switch(config)# define interface-range macro1 gigabitethernet1/0/1 - 2, gigabitethernet2/0/5 - 7
Switch(config)# end
```

This example shows how to enter interface range configuration mode for the interface-range macro `enet_list`:

```
Switch# configure terminal
Switch(config)# interface range macro enet_list
Switch(config-if-range)#
```

This example shows how to delete the interface-range macro `enet_list` and to verify that it was deleted.

```
Switch# configure terminal
Switch(config)# no define interface-range enet_list
Switch(config)# end
Switch# show run | include define
Switch#
```

Configuring Layer 2 Interfaces

These sections describe the default interface configuration and the optional features that you can configure on most physical interfaces:

- Default Layer 2 Ethernet Interface Configuration, page 9-12
- Configuring Interface Speed and Duplex Mode, page 9-12
- Configuring IEEE 802.3X Flow Control, page 9-14
- Adding a Description for an Interface, page 9-15

Caution

If the interface is in Layer 3 mode, after entering interface configuration mode, you must enter the `switchport` interface configuration command without any parameters to put the interface into Layer 2 mode. This shuts down the interface and then re-enables it, which might generate messages on the device to which the interface is connected. Furthermore, when you use this command to put the interface into Layer 2 mode, you are deleting any Layer 3 characteristics configured on the interface.
Default Layer 2 Ethernet Interface Configuration

Table 9-1 shows the Layer 2 Ethernet interface default configuration. For more details on the VLAN parameters listed in the table, see Chapter 10, “Configuring VLANs.” For details on controlling traffic to the port, see Chapter 16, “Configuring Port-Based Traffic Control.”

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating mode</td>
<td>Layer 2 or switching mode (switchport command).</td>
</tr>
<tr>
<td>Allowed VLAN range</td>
<td>VLANs 1 – 4094.</td>
</tr>
<tr>
<td>Default VLAN (for access ports)</td>
<td>VLAN 1.</td>
</tr>
<tr>
<td>Native VLAN (for 802.1Q trunks)</td>
<td>VLAN 1.</td>
</tr>
<tr>
<td>VLAN trunking</td>
<td>Switchport mode dynamic auto (supports DTP).</td>
</tr>
<tr>
<td>Port enable state</td>
<td>All ports are enabled.</td>
</tr>
<tr>
<td>Port description</td>
<td>None defined.</td>
</tr>
<tr>
<td>Speed</td>
<td>Autonegotiate.</td>
</tr>
<tr>
<td>Duplex mode</td>
<td>Autonegotiate.</td>
</tr>
<tr>
<td>Flow control</td>
<td>Flow control is set to receive: off. It is always off for sent packets.</td>
</tr>
<tr>
<td>EtherChannel (PAgP)</td>
<td>Disabled on all Ethernet ports. See Chapter 25, “Configuring EtherChannels.”</td>
</tr>
<tr>
<td>Port blocking (unknown multicast and unknown unicast traffic)</td>
<td>Disabled (not blocked). See the “Configuring Port Blocking” section on page 16-5.</td>
</tr>
<tr>
<td>Broadcast, multicast, and unicast storm control</td>
<td>Disabled. See the “Default Storm Control Configuration” section on page 16-3.</td>
</tr>
<tr>
<td>Protected port</td>
<td>Disabled. See the “Configuring Protected Ports” section on page 16-4.</td>
</tr>
<tr>
<td>Port security</td>
<td>Disabled. See the “Default Port Security Configuration” section on page 16-8.</td>
</tr>
<tr>
<td>Port Fast</td>
<td>Disabled.</td>
</tr>
</tbody>
</table>

Configuring Interface Speed and Duplex Mode

Ethernet interfaces on the switch operate at 10, 100, or 1000 Mbps and in either full- or half-duplex mode. In full-duplex mode, two stations can send and receive traffic at the same time. Normally, 10-Mbps ports operate in half-duplex mode, which means that stations can either receive or send traffic.

Switch models include combinations of Fast Ethernet (10/100-Mbps) ports or Gigabit Ethernet (10/100/1000-Mbps) ports and small form-factor pluggable (SFP) module slots supporting Gigabit SFP modules. You can configure interface speed on Fast Ethernet (10/100-Mbps) and Gigabit Ethernet (10/100/1000-Mbps) interfaces. You can configure duplex mode to full, half, or autonegotiate on Fast Ethernet interfaces. You can configure Gigabit Ethernet interfaces to full-duplex mode or to autonegotiate; you cannot configure half-duplex mode on Gigabit Ethernet ports.
You cannot configure speed or duplex mode on SFP ports, but you can configure speed to not negotiate *(nonegotiate)* if connected to a device that does not support autonegotiation.

These sections describe how to configure the interface speed and duplex mode:

- Configuration Guidelines, page 9-13
- Setting the Interface Speed and Duplex Parameters, page 9-13

Configuration Guidelines

When configuring an interface speed and duplex mode, note these guidelines:

- If both ends of the line support autonegotiation, we highly recommend the default setting of *auto* negotiation.
- If one interface supports autonegotiation and the other end does not, configure duplex and speed on both interfaces; do not use the *auto* setting on the supported side.
- You cannot configure duplex mode on SFP module ports; they operate only in full-duplex mode.
- When STP is enabled and a port is reconfigured, the switch can take up to 30 seconds to check for loops. The port LED is amber while STP reconfigures.

Caution

Changing the interface speed and duplex mode configuration might shut down and re-enable the interface during the reconfiguration.

Setting the Interface Speed and Duplex Parameters

Beginning in privileged EXEC mode, follow these steps to set the speed and duplex mode for a physical interface:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>interface interface-id</td>
<td>Enter interface configuration mode and the physical interface identification.</td>
</tr>
<tr>
<td>3</td>
<td>speed {10</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>duplex {auto</td>
<td>full</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note Gigabit Ethernet interfaces cannot be configured for half-duplex mode. This command is not available on SFP module ports.</td>
</tr>
<tr>
<td>5</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>6</td>
<td>show interfaces interface-id</td>
<td>Display the interface speed and duplex mode configuration.</td>
</tr>
<tr>
<td>7</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Use the **no speed** and **no duplex** interface configuration commands to return the interface to the default speed and duplex settings (autonegotiate). To return all interface settings to the defaults, use the **default interface interface-id** interface configuration command.

This example shows how to set the interface speed to 10 Mbps and the duplex mode to half on FastEthernet interface 0/3 on switch 1:

```
Switch# configure terminal
Switch(config)# interface fastethernet1/0/3
Switch(config-if)# speed 10
Switch(config-if)# duplex half
```

Configuring IEEE 802.3X Flow Control

Flow control enables connected Ethernet ports to control traffic rates during congestion by allowing congested nodes to pause link operation at the other end. If one port experiences congestion and cannot receive any more traffic, it notifies the other port to stop sending until the condition clears by sending a pause frame. Upon receipt of a pause frame, the sending device stops sending any data packets, which prevents any loss of data packets during the congestion period.

Note

Catalyst 3750 ports are capable of receiving, but not sending, pause frames.

You use the **flowcontrol** interface configuration command to set the interface’s ability to **receive** pause frames to **on**, **off**, or **desired**. The default state is **off**.

When set to **desired**, an interface can operate with an attached device that is required to send flow-control packets or with an attached device that is not required to but can send flow-control packets.

These rules apply to flow control settings on the device:

- **receive on** (or **desired**): The port cannot send pause frames but can operate with an attached device that is required to or can send pause frames; the port can receive pause frames.
- **receive off**: Flow control does not operate in either direction. In case of congestion, no indication is given to the link partner, and no pause frames are sent or received by either device.

Note

For details on the command settings and the resulting flow control resolution on local and remote ports, refer to the **flowcontrol** interface configuration command in the command reference for this release.

Beginning in privileged EXEC mode, follow these steps to configure flow control on an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>configure terminal</code></td>
<td>Enter global configuration mode</td>
</tr>
<tr>
<td>Step 2 <code>interface interface-id</code></td>
<td>Enter interface configuration mode and the physical interface to be configured.</td>
</tr>
<tr>
<td>Step 3 `flowcontrol {receive} {on</td>
<td>off</td>
</tr>
<tr>
<td>Step 4 <code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 <code>show interfaces interface-id</code></td>
<td>Verify the interface flow control settings.</td>
</tr>
<tr>
<td>Step 6 <code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
To disable flow control, use the `flowcontrol receive off` interface configuration command.

This example shows how to turn on flow control on Gigabit Ethernet interface 0/1 on switch 1:

```
Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# flowcontrol receive on
Switch(config-if)# end
```

Adding a Description for an Interface

You can add a description about an interface to help you remember its function. The description appears in the output of these privileged EXEC commands: `show configuration`, `show running-config`, and `show interfaces`.

Beginning in privileged EXEC mode, follow these steps to add a description for an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2: interface interface-id</td>
<td>Enter interface configuration mode, and enter the interface for which you are adding a description.</td>
</tr>
<tr>
<td>Step 3: description string</td>
<td>Add a description (up to 240 characters) for an interface.</td>
</tr>
<tr>
<td>Step 4: end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5: show interfaces interface-id description or show running-config</td>
<td>Verify your entry.</td>
</tr>
<tr>
<td>Step 6: copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the `no description` interface configuration command to delete the description.

This example shows how to add a description on Gigabit Ethernet interface 1/0/3 and to verify the description:

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface gigabitethernet1/0/3
Switch(config-if)# description Connects to Marketing
Switch(config-if)# end
Switch# show interfaces gigabitethernet1/0/3 description
Interface Status Protocol Description
G1/0/3 admin down down Connects to Marketing
```
Configuring Layer 3 Interfaces

The Catalyst 3750 switch supports these types of Layer 3 interfaces:

- SVIs: You should configure SVIs for any VLANs for which you want to route traffic. SVIs are created when you enter a VLAN ID following the `interface vlan` global configuration command. To delete an SVI, use the `no interface vlan` global configuration command.

| Note | When you create an SVI, it does not become active until it is associated with a physical port. For information about assigning Layer 2 ports to VLANs, see Chapter 10, “Configuring VLANs.” |

- Routed ports: Routed ports are physical ports configured to be in Layer 3 mode by using the `no switchport` interface configuration command.

- Layer 3 EtherChannel ports: EtherChannel interfaces made up of routed ports.

 EtherChannel port interfaces are described in Chapter 25, “Configuring EtherChannels.”

A Layer 3 switch can have an IP address assigned to each routed port and SVI. There is no defined limit to the number of SVIs and routed ports that can be configured in a switch stack. However, the interrelationship between the number of SVIs and routed ports and the number of other features being configured might have an impact on CPU usage because of hardware limitations. If the switch is using maximum hardware resources, attempts to create a routed port or SVI have these results:

- If you try to create a new routed port, the switch generates a message that there are not enough resources to convert the interface to a routed port, and the interface remains as a switchport.

- If you try to create an extended-range VLAN, an error message is generated, and the extended-range VLAN is rejected.

- If the switch is notified by VLAN Trunking Protocol (VTP) of a new VLAN, it sends a message that there are not enough hardware resources available and shuts down the VLAN. The output of the `show vlan` user EXEC command shows the VLAN in a suspended state.

- If the switch attempts to boot up with a configuration that has more VLANs and routed ports than hardware can support, the VLANs are created, but the routed ports are shut down, and the switch sends a message that this was due to insufficient hardware resources.

All Layer 3 interfaces require an IP address to route traffic. This procedure shows how to configure an interface as a Layer 3 interface and how to assign an IP address to an interface.

| Note | If the physical port is in Layer 2 mode (the default), you must enter the `no switchport` interface configuration command to put the interface into Layer 3 mode. Entering a `no switchport` command disables and then re-enables the interface, which might generate messages on the device to which the interface is connected. |
Beginning in privileged EXEC mode, follow these steps to configure a Layer 3 interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface {{fastethernet</td>
</tr>
<tr>
<td>Step 3</td>
<td>no switchport</td>
</tr>
<tr>
<td>Step 4</td>
<td>ip address ip_address subnet_mask</td>
</tr>
<tr>
<td>Step 5</td>
<td>no shutdown</td>
</tr>
<tr>
<td>Step 6</td>
<td>end</td>
</tr>
<tr>
<td>Step 7</td>
<td>show interfaces [interface-id]</td>
</tr>
<tr>
<td>show ip interface [interface-id]</td>
<td></td>
</tr>
<tr>
<td>show running-config interface [interface-id]</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To remove an IP address from an interface, use the **no ip address** interface configuration command.

This example shows how to configure an interface as a routed port and to assign it an IP address:

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# no switchport
Switch(config-if)# ip address 192.20.135.21 255.255.255.0
Switch(config-if)# no shutdown
```

Configuring the System MTU

The default maximum transmission unit (MTU) size for frames received and transmitted on all interfaces on the switch stack is 1500 bytes. You can increase the MTU size for all interfaces operating at 10 or 100 Mbps by using the **system mtu** global configuration command. You can increase the MTU size to support jumbo frames on all Gigabit Ethernet interfaces by using the **system mtu jumbo** global configuration command. Gigabit Ethernet ports are not affected by the **system mtu** command; 10/100 ports are not affected by the **system jumbo mtu** command.

You cannot set the MTU size for an individual interface; you set it for all 10/100 or all Gigabit Ethernet interfaces on the switch stack. When you change the MTU size, you must reset the switch before the new configuration takes effect.

The size of frames that can be received by the switch CPU is limited to 1500 bytes, no matter what value was entered with the **system mtu** or **system mtu jumbo** commands. Although frames that are forwarded or routed typically are not received by the CPU, in some cases packets are sent to the CPU, such as traffic sent to control traffic, SNMP, Telnet, or routing protocols.

Note
If Gigabit Ethernet interfaces are configured to accept frames greater than the 10/100 interfaces, jumbo frames ingressing on a Gigabit Ethernet interface and egressing on a 10/100 interface are dropped.
Beginning in privileged EXEC mode, follow these steps to change MTU size for all 10/100 or Gigabit Ethernet interfaces:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>**system mtu <i>bytes</i></td>
</tr>
<tr>
<td></td>
<td>(Optional) Change the MTU size for all 10/100 or 10/100/1000 interfaces on the switch stack. The range is from 1500 to 1546 bytes; the default is 1500 bytes.</td>
</tr>
<tr>
<td>Step 3</td>
<td>**system mtu jumbo <i>bytes</i></td>
</tr>
<tr>
<td></td>
<td>(Optional) Change the MTU size for all Gigabit Ethernet interfaces on the switch stack. The range is from 1500 to 9000 bytes; the default is 1500 bytes.</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>Save your entries in the configuration file.</td>
</tr>
<tr>
<td>Step 6</td>
<td>reload</td>
</tr>
<tr>
<td></td>
<td>Reload the operating system.</td>
</tr>
</tbody>
</table>

If you enter a value that is outside the allowed range for the specific type of interface, the value is not accepted.

Once the switch reloads, you can verify your settings by entering the `show system mtu` privileged EXEC command.

This example shows how to set the maximum packet size for a Gigabit Ethernet port to 1800 bytes:

```
Switch(config)# system jumbo mtu 1800
Switch(config)# exit
Switch# reload
```

This example shows the response when you try to set Gigabit Ethernet interfaces to an out-of-range number:

```
Switch(config)# system mtu jumbo 2500
^%
% Invalid input detected at '^' marker.
```
Monitoring and Maintaining the Interfaces

You can perform the tasks in these sections to monitor and maintain interfaces:

- Monitoring Interface Status, page 9-19
- Clearing and Resetting Interfaces and Counters, page 9-19
- Shutting Down and Restarting the Interface, page 9-20

Monitoring Interface Status

Commands entered at the privileged EXEC prompt display information about the interface, including the versions of the software and the hardware, the configuration, and statistics about the interfaces. Table 9-2 lists some of these interface monitoring commands. (You can display the full list of `show` commands by using the `show ?` command at the privileged EXEC prompt.) These commands are fully described in the *Cisco IOS Interface Command Reference for Release 12.1*.

Table 9-2 Show Commands for Interfaces

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show interfaces [interface-id]</code></td>
<td>Display the status and configuration of all interfaces or a specific interface.</td>
</tr>
<tr>
<td><code>show interfaces interface-id status [err-disabled]</code></td>
<td>Display interface status or a list of interfaces in an error-disabled state.</td>
</tr>
<tr>
<td><code>show interfaces [interface-id] switchport</code></td>
<td>Display administrative and operational status of switching (nonrouting) ports. You can use this command to determine if a port is in routing or switching mode.</td>
</tr>
<tr>
<td><code>show interfaces [interface-id] description</code></td>
<td>Display the description configured on an interface or all interfaces and the interface status.</td>
</tr>
<tr>
<td><code>show ip interface [interface-id]</code></td>
<td>Display the usability status of all interfaces configured for IP routing or the specified interface.</td>
</tr>
<tr>
<td><code>show running-config interface [interface-id]</code></td>
<td>Display the running configuration in RAM for the interface.</td>
</tr>
<tr>
<td><code>show version</code></td>
<td>Display the hardware configuration, software version, the names and sources of configuration files, and the boot images.</td>
</tr>
</tbody>
</table>

Clearing and Resetting Interfaces and Counters

Table 9-3 lists the privileged EXEC mode `clear` commands that you can use to clear counters and reset interfaces.

Table 9-3 Clear Commands for Interfaces

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>clear counters [interface-id]</code></td>
<td>Clear interface counters.</td>
</tr>
<tr>
<td><code>clear interface interface-id</code></td>
<td>Reset the hardware logic on an interface.</td>
</tr>
<tr>
<td>`clear line [number</td>
<td>console 0</td>
</tr>
</tbody>
</table>
To clear the interface counters shown by the `show interfaces` privileged EXEC command, use the `clear counters` privileged EXEC command. The `clear counters` command clears all current interface counters from the interface unless optional arguments are specified to clear only a specific interface type from a specific interface number.

Note
The `clear counters` privileged EXEC command does not clear counters retrieved by using Simple Network Management Protocol (SNMP), but only those seen with the `show interface` privileged EXEC command.

Shutting Down and Restarting the Interface

Shutting down an interface disables all functions on the specified interface and marks the interface as unavailable on all monitoring command displays. This information is communicated to other network servers through all dynamic routing protocols. The interface is not mentioned in any routing updates.

Beginning in privileged EXEC mode, follow these steps to shut down an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>`interface {vlan vlan-id}</td>
<td>{{fastethernet</td>
</tr>
<tr>
<td><code>shutdown</code></td>
<td>Shut down an interface.</td>
</tr>
<tr>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>show running-config</code></td>
<td>Verify your entry.</td>
</tr>
</tbody>
</table>

Use the `no shutdown` interface configuration command to restart the interface.

To verify that an interface is disabled, enter the `show interfaces` privileged EXEC command. A disabled interface is shown as `administratively down` in the `show interface` command display.
CHAPTER 10

Configuring VLANs

This chapter describes how to configure normal-range VLANs (VLAN IDs 1 to 1005) and extended-range VLANs (VLAN IDs 1006 to 4094) on the Catalyst 3750 switch. It includes information about VLAN membership modes, VLAN configuration modes, VLAN trunks, and dynamic VLAN assignment from a VLAN Membership Policy Server (VMPS). Unless otherwise noted, the term switch refers to a standalone switch and a switch stack.

Note

For complete syntax and usage information for the commands used in this chapter, refer to the command reference for this release.

The chapter includes these sections:

- Understanding VLANs, page 10-1
- Configuring Normal-Range VLANs, page 10-4
- Configuring Extended-Range VLANs, page 10-12
- Displaying VLANs, page 10-15
- Configuring VLAN Trunks, page 10-16
- Configuring VMPS, page 10-28

Understanding VLANs

A VLAN is a switched network that is logically segmented by function, project team, or application, without regard to the physical locations of the users. VLANs have the same attributes as physical LANs, but you can group end stations even if they are not physically located on the same LAN segment. Any switch port can belong to a VLAN, and unicast, broadcast, and multicast packets are forwarded and flooded only to end stations in the VLAN. Each VLAN is considered a logical network, and packets destined for stations that do not belong to the VLAN must be forwarded through a router or a switch supporting fallback bridging, as shown in Figure 10-1. VLANs can be formed with ports across the stack. Because a VLAN is considered a separate logical network, it contains its own bridge Management Information Base (MIB) information and can support its own implementation of spanning tree. See Chapter 13, “Configuring STP.”

Note

Before you create VLANs, you must decide whether to use VLAN Trunking Protocol (VTP) to maintain global VLAN configuration for your network. For more information on VTP, see Chapter 11, “Configuring VTP.”
Figure 10-1 shows an example of VLANs segmented into logically defined networks.

Figure 10-1 VLANs as Logically Defined Networks

VLANs are often associated with IP subnetworks. For example, all the end stations in a particular IP subnet belong to the same VLAN. Interface VLAN membership on the switch is assigned manually on an interface-by-interface basis. When you assign switch interfaces to VLANs by using this method, it is known as interface-based, or static, VLAN membership.

Traffic between VLANs must be routed or fallback bridged. The switch can route traffic between VLANs by using switch virtual interfaces (SVIs). An SVI must be explicitly configured and assigned an IP address to route traffic between VLANs. For more information, see the “Switch Virtual Interfaces” section on page 9-4 and the “Configuring Layer 3 Interfaces” section on page 9-16.

Note
If you plan to configure many VLANs on the switch and to not enable routing, you can use the `sdm prefer vlan` global configuration command to set the Switch Database Management (sdm) feature to the VLAN template, which configures system resources to support the maximum number of unicast MAC addresses. For more information on the SDM templates, see the “Using the SDM Templates” section on page 31-13 or refer to the `sdm prefer` command in the command reference for this release.

Supported VLANs

The switch supports 1005 VLANs in VTP client, server, and transparent modes. VLANs are identified with a number from 1 to 4094. VLAN IDs 1002 through 1005 are reserved for Token Ring and FDDI VLANs. VTP only learns normal-range VLANs, with VLAN IDs 1 to 1005; VLAN IDs greater than 1005 are extended-range VLANs and are not stored in the VLAN database. The switch must be in VTP transparent mode when you create VLAN IDs from 1006 to 4094.
Although the switch stack supports a total of 1005 (normal-range and extended-range) VLANs, the number of routed ports, SVIs, and other configured features affects the use of the switch hardware.

The switch supports per-VLAN spanning tree (PVST) with a maximum of 128 spanning-tree instances. One spanning-tree instance is allowed per VLAN. See the “Normal-Range VLAN Configuration Guidelines” section on page 10-5 for more information about the number of spanning-tree instances and the number of VLANs. The switch supports both Inter-Switch Link (ISL) and IEEE 802.1Q trunking methods for sending VLAN traffic over Ethernet ports.

VLAN Port Membership Modes

You configure a port to belong to a VLAN by assigning a membership mode that determines the kind of traffic the port carries and the number of VLANs to which it can belong. Table 10-1 lists the membership modes and membership and VTP characteristics.

<table>
<thead>
<tr>
<th>Membership Mode</th>
<th>VLAN Membership Characteristics</th>
<th>VTP Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static-access</td>
<td>A static-access port can belong to one VLAN and is manually assigned to that VLAN. For more information, see the “Assigning Static-Access Ports to a VLAN” section on page 10-11.</td>
<td>VTP is not required. If you do not want VTP to globally propagate information, set the VTP mode to transparent to disable VTP. To participate in VTP, there must be at least one trunk port on the switch stack connected to a trunk port of a second switch or switch stack.</td>
</tr>
<tr>
<td>Trunk (ISL or IEEE 802.1Q)</td>
<td>A trunk port is a member of all VLANs by default, including extended-range VLANs, but membership can be limited by configuring the allowed-VLAN list. You can also modify the pruning-eligible list to block flooded traffic to VLANs on trunk ports that are included in the list. For information about configuring trunk ports, see the “Configuring an Ethernet Interface as a Trunk Port” section on page 10-19.</td>
<td>VTP is recommended but not required. VTP maintains VLAN configuration consistency by managing the addition, deletion, and renaming of VLANs on a network-wide basis. VTP exchanges VLAN configuration messages with other switches over trunk links.</td>
</tr>
<tr>
<td>Dynamic access</td>
<td>A dynamic-access port can belong to one VLAN (VLAN ID 1 to 4094) and is dynamically assigned by a VMPS. The VMPS can be a Catalyst 5000 or Catalyst 6000 series switch, for example, but never a Catalyst 3750 switch. The Catalyst 3750 switch is a VMPS client. You can have dynamic-access ports and trunk ports on the same switch, but you must connect the dynamic-access port to an end station or hub and not to another switch. For configuration information, see the “Configuring Dynamic-Access Ports on VMPS Clients” section on page 10-31.</td>
<td>VTP is required. Configure the VMPS and the client with the same VTP domain name. To participate in VTP, there must be at least one trunk port on the switch stack connected to a trunk port of a second switch or switch stack.</td>
</tr>
<tr>
<td>Voice VLAN</td>
<td>A voice VLAN port is an access port attached to a Cisco IP Phone, configured to use one VLAN for voice traffic and another VLAN for data traffic from a device attached to the phone. For more information about voice VLAN ports, see Chapter 12, “Configuring Voice VLAN.”</td>
<td>VTP is not required; it has no affect on voice VLAN.</td>
</tr>
</tbody>
</table>
For more detailed definitions of the modes and their functions, see Table 10-4 on page 10-17.

When a port belongs to a VLAN, the switch learns and manages the addresses associated with the port on a per-VLAN basis. For more information, see the “Managing the MAC Address Table” section on page 7-53.

Configuring Normal-Range VLANs

Normal-range VLANs are VLANs with VLAN IDs 1 to 1005. If the switch is in VTP server or transparent mode, you can add, modify or remove configurations for VLANs 2 to 1001 in the VLAN database. (VLAN IDs 1 and 1002 to 1005 are automatically created and cannot be removed.)

Note

When the switch is in VTP transparent mode, you can also create extended-range VLANs (VLANs with IDs from 1006 to 4094), but these VLANs are not saved in the VLAN database. See the “Configuring Extended-Range VLANs” section on page 10-12.

Configurations for VLAN IDs 1 to 1005 are written to the file `vlan.dat` (VLAN database), and you can display them by entering the `show vlan` privileged EXEC command. The `vlan.dat` file is stored in nonvolatile RAM (NVRAM) on the stack master. Stack members have a `vlan.dat` file that is consistent with the stack master.

Caution

You can cause inconsistency in the VLAN database if you attempt to manually delete the `vlan.dat` file. If you want to modify the VLAN configuration, use the commands described in these sections and in the command reference for this release. To change the VTP configuration, see Chapter 11, “Configuring VTP.”

You use the interface configuration mode to define the port membership mode and to add and remove ports from VLANs. The results of these commands are written to the running-configuration file, and you can display the file by entering the `show running-config` privileged EXEC command.

You can set these parameters when you create a new normal-range VLAN or modify an existing VLAN in the VLAN database:

- VLAN ID
- VLAN name
- VLAN type (Ethernet, Fiber Distributed Data Interface [FDDI], FDDI network entity title [NET], TrBRF, or TrCRF, Token Ring, Token Ring-Net)
- VLAN state (active or suspended)
- Maximum transmission unit (MTU) for the VLAN
- Security Association Identifier (SAID)
- Bridge identification number for TrBRF VLANs
- Ring number for FDDI and TrCRF VLANs
- Parent VLAN number for TrCRF VLANs
- Spanning Tree Protocol (STP) type for TrCRF VLANs
- VLAN number to use when translating from one VLAN type to another
Chapter 10 Configuring VLANs

Configuring Normal-Range VLANs

This section does not provide configuration details for most of these parameters. For complete information on the commands and parameters that control VLAN configuration, refer to the command reference for this release.

This section includes information about these topics about normal-range VLANs:

- **Token Ring VLANs**, page 10-5
- **Normal-Range VLAN Configuration Guidelines**, page 10-5
- **VLAN Configuration Mode Options**, page 10-6
- **Saving VLAN Configuration**, page 10-7
- **Default Ethernet VLAN Configuration**, page 10-7
- **Creating or Modifying an Ethernet VLAN**, page 10-8
- **Deleting a VLAN**, page 10-10
- **Assigning Static-Access Ports to a VLAN**, page 10-11

Token Ring VLANs

Although the switch does not support Token Ring connections, a remote device such as a Catalyst 5000 series switch with Token Ring connections could be managed from one of the supported switches. Switches running VTP version 2 advertise information about these Token Ring VLANs:

- **Token Ring TrBRF VLANs**
- **Token Ring TrCRF VLANs**

For more information on configuring Token Ring VLANs, refer to the *Catalyst 5000 Series Software Configuration Guide*.

Normal-Range VLAN Configuration Guidelines

Follow these guidelines when creating and modifying normal-range VLANs in your network:

- The switch supports 1005 VLANs in VTP client, server, and transparent modes.
- Normal-range VLANs are identified with a number between 1 and 1001. VLAN numbers 1002 through 1005 are reserved for Token Ring and FDDI VLANs.
- VLAN configuration for VLANs 1 to 1005 are always saved in the VLAN database. If VTP mode is transparent, VTP and VLAN configuration is also saved in the switch running configuration file.
- The switch also supports VLAN IDs 1006 through 4094 in VTP transparent mode (VTP disabled). These are extended-range VLANs and configuration options are limited. Extended-range VLANs are not saved in the VLAN database. See the “Configuring Extended-Range VLANs” section on page 10-12.
- Before you can create a VLAN, the switch must be in VTP server mode or VTP transparent mode. If the switch is a VTP server, you must define a VTP domain or VTP will not function.
- The switch does not support Token Ring or FDDI media. The switch does not forward FDDI, FDDI-Net, TrCRF, or TrBRF traffic, but it does propagate the VLAN configuration through VTP.
The switch supports 128 spanning-tree instances. If a switch has more active VLANs than supported spanning-tree instances, spanning tree can be enabled on 128 VLANs and is disabled on the remaining VLANs. If you have already used all available spanning-tree instances on a switch, adding another VLAN anywhere in the VTP domain creates a VLAN on that switch that is not running spanning-tree. If you have the default allowed list on the trunk ports of that switch (which is to allow all VLANs), the new VLAN is carried on all trunk ports. Depending on the topology of the network, this could create a loop in the new VLAN that would not be broken, particularly if there are several adjacent switches that all have run out of spanning-tree instances. You can prevent this possibility by setting allowed lists on the trunk ports of switches that have used up their allocation of spanning-tree instances.

When a switch in a stack learns a new VLAN or deletes or modifies an existing VLAN (either through VTP over network ports or through the CLI), the VLAN information is communicated to all stack members.

When a switch joins a stack or when stacks merge, VTP information (the vlan.dat file) on the new switches will be consistent with the stack master.

VLAN Configuration Mode Options

You can configure normal-range VLANs (with VLAN IDs 1 to 1005) by using these two configuration modes:

- **VLAN Configuration in config-vlan Mode, page 10-6**
 You access config-vlan mode by entering the `vlan vlan-id` global configuration command.

- **VLAN Configuration in VLAN Database Configuration Mode, page 10-6**
 You access VLAN database configuration mode by entering the `vlan database` privileged EXEC command.

VLAN Configuration in config-vlan Mode

To access config-vlan mode, enter the `vlan` global configuration command with a VLAN ID. Enter a new VLAN ID to create a VLAN, or enter an existing VLAN ID to modify the VLAN. You can use the default VLAN configuration (Table 10-2) or enter multiple commands to configure the VLAN. For more information about commands available in this mode, refer to the `vlan` global configuration command description in the command reference for this release. When you have finished the configuration, you must exit config-vlan mode for the configuration to take effect. To display the VLAN configuration, enter the `show vlan` privileged EXEC command.

You must use this config-vlan mode when creating extended-range VLANs (VLAN IDs greater than 1005). See the “Configuring Extended-Range VLANs” section on page 10-12.

VLAN Configuration in VLAN Database Configuration Mode

To access VLAN database configuration mode, enter the `vlan database` privileged EXEC command. Then enter the `vlan` command with a new VLAN ID to create a VLAN, or enter an existing VLAN ID to modify the VLAN. You can use the default VLAN configuration (Table 10-2) or enter multiple commands to configure the VLAN. For more information about keywords available in this mode, refer to the `vlan` VLAN database configuration command description in the command reference for this release. When you have finished the configuration, you must enter `apply` or `exit` for the configuration to
take effect. When you enter the `exit` command, it applies all commands and updates the VLAN database. VTP messages are sent to other switches in the VTP domain, and the privileged EXEC mode prompt appears.

Saving VLAN Configuration

The configurations of VLAN IDs 1 to 1005 are always saved in the VLAN database (vlan.dat file). If VTP mode is transparent, they are also saved in the switch running configuration file and you can enter the `copy running-config startup-config` privileged EXEC command to save the configuration in the startup configuration file. You can use the `show running-config vlan` privileged EXEC command to display the switch running configuration file. In a switch stack, the whole stack uses the same vlan.dat file and running configuration. To display the VLAN configuration, enter the `show vlan` privileged EXEC command.

When you save VLAN and VTP information (including extended-range VLAN configuration information) in the startup configuration file and reboot the switch, the switch configuration is determined as follows:

- If the VTP mode is transparent in the startup configuration, and the VLAN database and the VTP domain name from the VLAN database matches that in the startup configuration file, the VLAN database is ignored (cleared), and the VTP and VLAN configurations in the startup configuration file are used. The VLAN database revision number remains unchanged in the VLAN database.
- If the VTP mode or domain name in the startup configuration does not match the VLAN database, the domain name and VTP mode and configuration for the first 1005 VLANs use the VLAN database information.
- If VTP mode is server, the domain name and VLAN configuration for the first 1005 VLANs use the VLAN database information

Caution

If the VLAN database configuration is used at startup and the startup configuration file contains extended-range VLAN configuration, this information is lost when the system boots up.

Default Ethernet VLAN Configuration

Table 10-2 shows the default configuration for Ethernet VLANs.

Note

The switch supports Ethernet interfaces exclusively. Because FDDI and Token Ring VLANs are not locally supported, you only configure FDDI and Token Ring media-specific characteristics for VTP global advertisements to other switches.
Chapter 10 Configuring VLANs

Configuring Normal-Range VLANs

Creating or Modifying an Ethernet VLAN

Each Ethernet VLAN in the VLAN database has a unique, 4-digit ID that can be a number from 1 to 1001. VLAN IDs 1002 to 1005 are reserved for Token Ring and FDDI VLANs. To create a normal-range VLAN to be added to the VLAN database, assign a number and name to the VLAN.

Note When the switch is in VTP transparent mode, you can assign VLAN IDs greater than 1006, but they are not added to the VLAN database. See the “Configuring Extended-Range VLANs” section on page 10-12.

For the list of default parameters that are assigned when you add a VLAN, see the “Configuring Normal-Range VLANs” section on page 10-4.

Beginning in privileged EXEC mode, follow these steps to use config-vlan mode to create or modify an Ethernet VLAN:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>vlan vlan-id</code></td>
<td>Enter a VLAN ID, and enter config-vlan mode. Enter a new VLAN ID to create a VLAN, or enter an existing VLAN ID to modify a VLAN.</td>
</tr>
</tbody>
</table>

Note The available VLAN ID range for this command is 1 to 4094. For information about adding VLAN IDs greater than 1005 (extended-range VLANs), see the “Configuring Extended-Range VLANs” section on page 10-12.

Table 10-2 Ethernet VLAN Defaults and Ranges

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN ID</td>
<td>1</td>
<td>1 to 4094.</td>
</tr>
<tr>
<td>Note</td>
<td>Extended-range VLANs (VLAN IDs 1006 to 4094) are not saved in the VLAN database.</td>
<td></td>
</tr>
<tr>
<td>VLAN name</td>
<td>VLANxxxx, where xxxx represents four numeric digits (including leading zeros) equal to the VLAN ID number</td>
<td>No range</td>
</tr>
<tr>
<td>802.10 SAID</td>
<td>100001 (100000 plus the VLAN ID)</td>
<td>1–4294967294</td>
</tr>
<tr>
<td>MTU size</td>
<td>1500</td>
<td>1500–18190</td>
</tr>
<tr>
<td>Translational bridge 1</td>
<td>0</td>
<td>0–1005</td>
</tr>
<tr>
<td>Translational bridge 2</td>
<td>0</td>
<td>0–1005</td>
</tr>
<tr>
<td>VLAN state</td>
<td>active</td>
<td>active, suspend</td>
</tr>
<tr>
<td>Remote SPAN</td>
<td>disabled</td>
<td>enabled, disabled</td>
</tr>
</tbody>
</table>
Configuring Normal-Range VLANs

To return the VLAN name to the default settings, use the `no name`, `no mtu`, or `no remote-span` config-vlan commands.

This example shows how to use config-vlan mode to create Ethernet VLAN 20, name it `test20`, and add it to the VLAN database:

```plaintext
Switch# configure terminal
Switch(config)# vlan 20
Switch(config-vlan)# name test20
Switch(config-vlan)# end
```

You can also create or modify Ethernet VLANs by using the VLAN database configuration mode.

Note

VLAN database configuration mode does not support RSPAN VLAN configuration or extended-range VLANs.

Beginning in privileged EXEC mode, follow these steps to use VLAN database configuration mode to create or modify an Ethernet VLAN:

Command Table

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 vlan database</td>
<td>Enter VLAN database configuration mode.</td>
</tr>
</tbody>
</table>
| Step 2 vlan vlan-id name vlan-name | Add an Ethernet VLAN by assigning a number to it. The range is 1 to 1001. You can create or modify a range of consecutive VLANs by entering `vlan first-vlan-id end last-vlan-id`.
 Note When entering a VLAN ID in VLAN database configuration mode, do not enter leading zeros.
 If no name is entered for the VLAN, the default is to append the `vlan-id` with leading zeros to the word VLAN. For example, VLAN0004 is a default VLAN name for VLAN 4. |
| Step 3 vlan vlan-id mtu mtu-size | (Optional) To modify a VLAN, identify the VLAN and change a characteristic, such as the MTU size. |
Configuring Normal-Range VLANs

Configuring VLANs

To return the VLAN name to the default settings, use the `no vlan vlan-id name` or `no vlan vlan-id mtu` VLAN database configuration command.

This example shows how to use VLAN configuration mode to create Ethernet VLAN 20, name it `test20`, and add it to the VLAN database:

```
Switch# vlan database
Switch(vlan)# vlan 20 name test20
Switch(vlan)# exit
APPLY completed.
Exiting....
```

Deleting a VLAN

When you delete a VLAN from a switch that is in VTP server mode, the VLAN is removed from the VLAN database for all switches in the VTP domain. When you delete a VLAN from a switch that is in VTP transparent mode, the VLAN is deleted only on that specific switch stack.

You cannot delete the default VLANs for the different media types: Ethernet VLAN 1 and FDDI or Token Ring VLANs 1002 to 1005.

Caution

When you delete a VLAN, any ports assigned to that VLAN become inactive. They remain associated with the VLAN (and thus inactive) until you assign them to a new VLAN.

Beginning in privileged EXEC mode, follow these steps to delete a VLAN on the switch by using global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>no vlan vlan-id</code> Remove the VLAN by entering the VLAN ID.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>end</code> Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>show vlan brief</code> Verify the VLAN removal.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>copy running-config startup config</code> (Optional) If the switch is in VTP transparent mode, the VLAN configuration is saved in the running configuration file as well as in the VLAN database. This saves the configuration in the switch startup configuration file.</td>
</tr>
</tbody>
</table>
To delete a VLAN by using VLAN database configuration mode, use the `vlan database` privileged EXEC command to enter VLAN database configuration mode and the `no vlan vlan-id` VLAN database configuration command.

Assigning Static-Access Ports to a VLAN

You can assign a static-access port to a VLAN without having VTP globally propagate VLAN configuration information by disabling VTP (VTP transparent mode).

If you are assigning a port on a cluster member switch to a VLAN, first use the `rcommand` privileged EXEC command to log in to the cluster member switch.

Note

If you assign an interface to a VLAN that does not exist, the new VLAN is created. (See the “Creating or Modifying an Ethernet VLAN” section on page 10-8.)

Beginning in privileged EXEC mode, follow these steps to assign a port to a VLAN in the VLAN database:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>configure terminal</code></td>
<td>Enter global configuration mode</td>
</tr>
<tr>
<td>Step 2 <code>interface interface-id</code></td>
<td>Enter the interface to be added to the VLAN.</td>
</tr>
<tr>
<td>Step 3 <code>switchport mode access</code></td>
<td>Define the VLAN membership mode for the port (Layer 2 access port).</td>
</tr>
<tr>
<td>Step 4 <code>switchport access vlan vlan-id</code></td>
<td>Assign the port to a VLAN. Valid VLAN IDs are 1 to 4094.</td>
</tr>
<tr>
<td>Step 5 <code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6 <code>show running-config interface interface-id</code></td>
<td>Verify the VLAN membership mode of the interface.</td>
</tr>
<tr>
<td>Step 7 <code>show interfaces interface-id switchport</code></td>
<td>Verify your entries in the Administrative Mode and the Access Mode VLAN fields of the display.</td>
</tr>
<tr>
<td>Step 8 <code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return an interface to its default configuration, use the `default interface interface-id` interface configuration command.

This example shows how to configure Gigabit Ethernet interface 0/1 on switch 2 as an access port in VLAN 2:

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# switchport mode access
Switch(config-if)# switchport access vlan 2
Switch(config-if)# end
```
Configuring Extended-Range VLANs

When the switch is in VTP transparent mode (VTP disabled), you can create extended-range VLANs (in the range 1006 to 4094). Extended-range VLANs enable service providers to extend their infrastructure to a greater number of customers. The extended-range VLAN IDs are allowed for any switchport commands that allow VLAN IDs. You always use config-vlan mode (accessed by entering the `vlan vlan-id` global configuration command) to configure extended-range VLANs. The extended range is not supported in VLAN database configuration mode (accessed by entering the `vlan database` privileged EXEC command).

Extended-range VLAN configurations are not stored in the VLAN database, but because VTP mode is transparent, they are stored in the switch running configuration file, and you can save the configuration in the startup configuration file by using the `copy running-config startup-config` privileged EXEC command.

Note

Although the switch supports 4094 VLAN IDs, see the “Supported VLANs” section on page 10-2 for the actual number of VLANs supported.

This section includes this information about extended-range VLANs:

- Default VLAN Configuration, page 10-12
- Extended-Range VLAN Configuration Guidelines, page 10-12
- Creating an Extended-Range VLAN, page 10-13
- Creating an Extended-Range VLAN with an Internal VLAN ID, page 10-14

Default VLAN Configuration

See Table 10-2 on page 10-8 for the default configuration for Ethernet VLANs. You can change only the MTU size and remote SPAN configuration state on extended-range VLANs; all other characteristics must remain at the default state.

Extended-Range VLAN Configuration Guidelines

Follow these guidelines when creating extended-range VLANs:

- To add an extended-range VLAN, you must use the `vlan vlan-id` global configuration command and access config-vlan mode. You cannot add extended-range VLANs in VLAN database configuration mode (accessed by entering the `vlan database` privileged EXEC command).
- VLAN IDs in the extended range are not saved in the VLAN database and are not recognized by VTP.
- You cannot include extended-range VLANs in the pruning eligible range.
- The switch must be in VTP transparent mode when you create extended-range VLANs. If VTP mode is server or client, an error message is generated, and the extended-range VLAN is rejected.
- You can set the VTP mode to transparent in global configuration mode or in VLAN database configuration mode. See the “Disabling VTP (VTP Transparent Mode)” section on page 11-12. You should save this configuration to the startup configuration so that the switch boots up in VTP transparent mode. Otherwise, you lose the extended-range VLAN configuration if the switch resets.
STP is enabled by default on extended-range VLANs, but you can disable it by using the `no spanning-tree vlan vlan-id` global configuration command. When the maximum number of spanning-tree instances (128) are on the switch, spanning tree is disabled on any newly created VLANs.

Each routed port on the switch creates an internal VLAN for its use. These internal VLANs use extended-range VLAN numbers, and the internal VLAN ID cannot be used for an extended-range VLAN. If you try to create an extended-range VLAN with a VLAN ID that is already allocated as an internal VLAN, an error message is generated, and the command is rejected.

- Because internal VLAN IDs are in the lower part of the extended range, we recommend that you create extended-range VLANs beginning from the highest number (4094) and moving to the lowest (1006) to reduce the possibility of using an internal VLAN ID.
- Before configuring extended-range VLANs, enter the `show vlan internal usage` privileged EXEC command to see which VLANs have been allocated as internal VLANs.
- If necessary, you can shut down the routed port assigned to the internal VLAN, which frees up the internal VLAN, and then create the extended-range VLAN and re-enable the port, which then uses another VLAN as its internal VLAN. See the “Creating an Extended-Range VLAN with an Internal VLAN ID” section on page 10-14.

Although the switch stack supports a total of 1005 (normal-range and extended-range) VLANs, the number of routed ports, SVIs, and other configured features affects the use of the switch hardware. If you try to create an extended-range VLAN and there are not enough hardware resources available, an error message is generated, and the extended-range VLAN is rejected.

In a switch stack, the whole stack uses the same running configuration and saved configuration, and extended-range VLAN information is shared across the stack.

Creating an Extended-Range VLAN

You create an extended-range VLAN in global configuration mode by entering the `vlan` global configuration command with a VLAN ID from 1006 to 4094. This command accesses the config-vlan mode. The extended-range VLAN has the default Ethernet VLAN characteristics (see Table 10-2) and the MTU size and RSPAN configuration are the only parameters you can change. Refer to the description of the `vlan` global configuration command in the command reference for defaults of all parameters. If you enter an extended-range VLAN ID when the switch is not in VTP transparent mode, an error message is generated when you exit from config-vlan mode, and the extended-range VLAN is not created.

Extended-range VLANs are not saved in the VLAN database; they are saved in the switch running configuration file. You can save the extended-range VLAN configuration in the switch startup configuration file by using the `copy running-config startup-config` privileged EXEC command.

Before you create an extended-range VLAN, you can verify that the VLAN ID is not used internally by entering the `show vlan internal usage` privileged EXEC command. If the VLAN ID is used internally and you want to free it up, go to the “Creating an Extended-Range VLAN with an Internal VLAN ID” section on page 10-14 before creating the extended-range VLAN.
Beginning in privileged EXEC mode, follow these steps to create an extended-range VLAN:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 vtp mode transparent</td>
<td>Configure the switch for VTP transparent mode, disabling VTP.</td>
</tr>
<tr>
<td>Step 3 vlan vlan-id</td>
<td>Enter an extended-range VLAN ID and enter config-vlan mode. The range is 1006 to 4094.</td>
</tr>
<tr>
<td>Step 4 mtu mtu-size</td>
<td>(Optional) Modify the VLAN by changing the MTU size.</td>
</tr>
<tr>
<td>Step 5 remote-span</td>
<td>(Optional) Configure the VLAN as the RSPAN VLAN. See the “Configuring a VLAN as an RSPAN VLAN” section on page 19-16.</td>
</tr>
<tr>
<td>Step 6 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 7 show vlan id vlan-id</td>
<td>Verify that the VLAN has been created.</td>
</tr>
<tr>
<td>Step 8 copy running-config startup config</td>
<td>Save your entries in the switch startup configuration file. To save extended-range VLAN configurations, you need to save the VTP transparent mode configuration and the extended-range VLAN configuration in the switch startup configuration file. Otherwise, if the switch resets, it will default to VTP server mode, and the extended-range VLAN IDs will not be saved.</td>
</tr>
</tbody>
</table>

To delete an extended-range VLAN, use the `no vlan vlan-id` global configuration command.

The procedure for assigning static-access ports to an extended-range VLAN is the same as for normal-range VLANs. See the “Assigning Static-Access Ports to a VLAN” section on page 10-11.

This example shows how to create a new extended-range VLAN with all default characteristics, enter config-vlan mode, and save the new VLAN in the switch startup configuration file:

```
Switch(config)# vtp mode transparent
Switch(config)# vlan 2000
Switch(config-vlan)# end
Switch# copy running-config startup config
```

Creating an Extended-Range VLAN with an Internal VLAN ID

If you enter an extended-range VLAN ID that is already assigned to an internal VLAN, an error message is generated, and the extended-range VLAN is rejected. To manually free an internal VLAN ID, you must temporarily shut down the routed port that is using the internal VLAN ID.
Beginning in privileged EXEC mode, follow these steps to release a VLAN ID that is assigned to an internal VLAN and to create an extended-range VLAN with that ID:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>show vlan internal usage</td>
<td>Display the VLAN IDs being used internally by the switch. If the VLAN ID that you want to use is an internal VLAN, the display shows the routed port that is using the VLAN ID. Enter that port number in Step 3.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>interface interface-id</td>
<td>Enter the interface ID for the routed port that is using the VLAN ID.</td>
</tr>
<tr>
<td>Step 4</td>
<td>shutdown</td>
<td>Shut down the port to free the internal VLAN ID.</td>
</tr>
<tr>
<td>Step 5</td>
<td>exit</td>
<td>Return to global configuration mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>vtp mode transparent</td>
<td>Set the VTP mode to transparent for creating extended-range VLANs.</td>
</tr>
<tr>
<td>Step 7</td>
<td>vlan vlan-id</td>
<td>Enter the new extended-range VLAN ID, and enter config-vlan mode.</td>
</tr>
<tr>
<td>Step 8</td>
<td>exit</td>
<td>Exit from config-vlan mode, and return to global configuration mode.</td>
</tr>
<tr>
<td>Step 9</td>
<td>interface interface-id</td>
<td>Enter the interface ID for the routed port that you shut down in Step 4.</td>
</tr>
<tr>
<td>Step 10</td>
<td>no shutdown</td>
<td>Re-enable the routed port. It will be assigned a new internal VLAN ID.</td>
</tr>
<tr>
<td>Step 11</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 12</td>
<td>copy running-config startup config</td>
<td>Save your entries in the switch startup configuration file. To save an extended-range VLAN configuration, you need to save the VTP transparent mode configuration and the extended-range VLAN configuration in the switch startup configuration file. Otherwise, if the switch resets, it will default to VTP server mode, and the extended-range VLAN IDs will not be saved.</td>
</tr>
</tbody>
</table>

Displaying VLANs

Use the `show vlan` privileged EXEC command to display a list of all VLANs on the switch, including extended-range VLANs. The display includes VLAN status, ports, and configuration information. To view normal-range VLANs in the VLAN database (1 to 1005), use the `show VLAN database configuration` command (accessed by entering the `vlan database` privileged EXEC command). For a list of the VLAN IDs on the switch, use the `show running-config vlan` privileged EXEC command, optionally entering a VLAN ID range.

Table 10-3 lists the commands for monitoring VLANs.

<table>
<thead>
<tr>
<th>Command</th>
<th>Command Mode</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show</td>
<td>VLAN database configuration</td>
<td>Display status of VLANs in the VLAN database.</td>
</tr>
<tr>
<td>show current [vlan-id]</td>
<td>VLAN database configuration</td>
<td>Display status of all or the specified VLAN in the VLAN database.</td>
</tr>
<tr>
<td>show interfaces [vlan vlan-id]</td>
<td>Privileged EXEC</td>
<td>Display characteristics for all interfaces or for the specified VLAN configured on the switch.</td>
</tr>
</tbody>
</table>
Table 10-3 VLAN Monitoring Commands (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Command Mode</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show running-config vlan</td>
<td>Privileged EXEC</td>
<td>Display all or a range of VLANs on the switch.</td>
</tr>
<tr>
<td>show vlan [id vlan-id]</td>
<td>Privileged EXEC</td>
<td>Display parameters for all VLANs or the specified VLAN on the switch.</td>
</tr>
</tbody>
</table>

For more details about the show command options and explanations of output fields, refer to the command reference for this release.

Configuring VLAN Trunks

These sections describe how VLAN trunks function on the switch:

- Trunking Overview, page 10-16
- Encapsulation Types, page 10-18
- Default Layer 2 Ethernet Interface VLAN Configuration, page 10-19
- Configuring an Ethernet Interface as a Trunk Port, page 10-19
- Configuring Trunk Ports for Load Sharing, page 10-24

Trunking Overview

A trunk is a point-to-point link between one or more Ethernet switch interfaces and another networking device such as a router or a switch. Ethernet trunks carry the traffic of multiple VLANs over a single link, and you can extend the VLANs across an entire network.

Two trunking encapsulations are available on all Ethernet interfaces:

- Inter-Switch Link (ISL)—ISL is Cisco-proprietary trunking encapsulation.
- 802.1Q—802.1Q is industry-standard trunking encapsulation.

Figure 10-2 shows a network of switches that are connected by ISL trunks.
You can configure a trunk on a single Ethernet interface or on an EtherChannel bundle. For more information about EtherChannel, see Chapter 25, “Configuring EtherChannels.”

Ethernet trunk interfaces support different trunking modes (see Table 10-4). You can set an interface as trunking or nontrunking or to negotiate trunking with the neighboring interface. To autonegotiate trunking, the interfaces must be in the same VTP domain.

Trunk negotiation is managed by the Dynamic Trunking Protocol (DTP), which is a Point-to-Point Protocol. However, some internetworking devices might forward DTP frames improperly, which could cause misconfigurations.

To avoid this, you should configure interfaces connected to devices that do not support DTP to not forward DTP frames, that is, to turn off DTP.

- If you do not intend to trunk across those links, use the `switchport mode access` interface configuration command to disable trunking.
- To enable trunking to a device that does not support DTP, use the `switchport mode trunk` and `switchport nonegotiate` interface configuration commands to cause the interface to become a trunk but not generate DTP frames. Use the `switchport trunk encapsulation isl` or `switchport trunk encapsulation dot1q` interface to select the encapsulation type on the trunk port.

You can also specify on DTP interfaces whether the trunk uses ISL or 802.1Q encapsulation or if the encapsulation type is autonegotiated. The DTP supports autonegotiation of both ISL and 802.1Q trunks.

Table 10-4 Layer 2 Interface Modes

<table>
<thead>
<tr>
<th>Mode</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>switchport mode access</code></td>
<td>Puts the interface (access port) into permanent nontrunking mode and negotiates to convert the link into a nontrunk link. The interface becomes a nontrunk interface regardless of whether or not the neighboring interface is a trunk interface.</td>
</tr>
<tr>
<td><code>switchport mode dynamic auto</code></td>
<td>Makes the interface able to convert the link to a trunk link. The interface becomes a trunk interface if the neighboring interface is set to <code>trunk or desirable</code> mode. The default switchport mode for all Ethernet interfaces is <code>dynamic auto</code>.</td>
</tr>
</tbody>
</table>
Chapter 10 Configuring VLANs

Encapsulation Types

Table 10-5 lists the Ethernet trunk encapsulation types and keywords.

<table>
<thead>
<tr>
<th>Encapsulation</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>switchport trunk encapsulation isl</td>
<td>Specifies ISL encapsulation on the trunk link.</td>
</tr>
<tr>
<td>switchport trunk encapsulation dot1q</td>
<td>Specifies 802.1Q encapsulation on the trunk link.</td>
</tr>
<tr>
<td>switchport trunk encapsulation negotiate</td>
<td>Specifies that the interface negotiate with the neighboring interface to become an ISL (preferred) or 802.1Q trunk, depending on the configuration and capabilities of the neighboring interface. This is the default for the switch.</td>
</tr>
</tbody>
</table>

Note: The switch does not support Layer 3 trunks; you cannot configure subinterfaces or use the encapsulation keyword on Layer 3 interfaces. The switch does support Layer 2 trunks and Layer 3 VLAN interfaces, which provide equivalent capabilities.

The trunking mode, the trunk encapsulation type, and the hardware capabilities of the two connected interfaces determine whether a link becomes an ISL or 802.1Q trunk.

802.1Q Configuration Considerations

802.1Q trunks impose these limitations on the trunking strategy for a network:

- In a network of Cisco switches connected through 802.1Q trunks, the switches maintain one instance of spanning tree for each VLAN allowed on the trunks. Non-Cisco devices might support one spanning-tree instance for all VLANs.

When you connect a Cisco switch to a non-Cisco device through an 802.1Q trunk, the Cisco switch combines the spanning-tree instance of the VLAN of the trunk with the spanning-tree instance of the non-Cisco 802.1Q switch. However, spanning-tree information for each VLAN is maintained by Cisco switches separated by a cloud of non-Cisco 802.1Q switches. The non-Cisco 802.1Q cloud separating the Cisco switches is treated as a single trunk link between the switches.
• Make sure the native VLAN for an 802.1Q trunk is the same on both ends of the trunk link. If the native VLAN on one end of the trunk is different from the native VLAN on the other end, spanning-tree loops might result.

• Disabling spanning tree on the native VLAN of an 802.1Q trunk without disabling spanning tree on every VLAN in the network can potentially cause spanning-tree loops. We recommend that you leave spanning tree enabled on the native VLAN of an 802.1Q trunk or disable spanning tree on every VLAN in the network. Make sure your network is loop-free before disabling spanning tree.

Default Layer 2 Ethernet Interface VLAN Configuration

Table 10-6 shows the default Layer 2 Ethernet interface VLAN configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface mode</td>
<td>switchport mode dynamic auto</td>
</tr>
<tr>
<td>Trunk encapsulation</td>
<td>switchport trunk encapsulation negotiate</td>
</tr>
<tr>
<td>Allowed VLAN range</td>
<td>VLANs 1 to 4094</td>
</tr>
<tr>
<td>VLAN range eligible for pruning</td>
<td>VLANs 2 to 1001</td>
</tr>
<tr>
<td>Default VLAN (for access ports)</td>
<td>VLAN 1</td>
</tr>
<tr>
<td>Native VLAN (for 802.1Q trunks)</td>
<td>VLAN 1</td>
</tr>
</tbody>
</table>

Configuring an Ethernet Interface as a Trunk Port

Because trunk ports send and receive VTP advertisements, to use VTP you must ensure that at least one trunk port is configured on the switch and that this trunk port is connected to the trunk port of a second switch. Otherwise, the switch cannot receive any VTP advertisements.

This section includes these procedures for configuring an Ethernet interface as a trunk port on the switch:

• Interaction with Other Features, page 10-20
• Defining the Allowed VLANs on a Trunk, page 10-21
• Changing the Pruning-Eligible List, page 10-22
• Configuring the Native VLAN for Untagged Traffic, page 10-23

By default, an interface is in Layer 2 mode. The default mode for Layer 2 interfaces is switchport mode dynamic auto. If the neighboring interface supports trunking and is configured to allow trunking, the link is a Layer 2 trunk or, if the interface is in Layer 3 mode, it becomes a Layer 2 trunk when you enter the switchport interface configuration command. By default, trunks negotiate encapsulation. If the neighboring interface supports ISL and 802.1Q encapsulation and both interfaces are set to negotiate the encapsulation type, the trunk uses ISL encapsulation.
Interaction with Other Features

Trunking interacts with other features in these ways:

- A trunk port cannot be a secure port.
- Trunk ports can be grouped into EtherChannel port groups, but all trunks in the group must have the same configuration. When a group is first created, all ports follow the parameters set for the first port to be added to the group. If you change the configuration of one of these parameters, the switch propagates the setting you entered to all ports in the group:
 - allowed-VLAN list
 - STP port priority for each VLAN
 - STP Port Fast setting
 - trunk status: if one port in a port group ceases to be a trunk, all ports cease to be trunks.
- If you try to enable 802.1X on a trunk port, an error message appears, and 802.1X is not enabled. If you try to change the mode of an 802.1X-enabled port to trunk, the port mode is not changed.
- A port in dynamic mode can negotiate with its neighbor to become a trunk port. If you try to enable 802.1X on a dynamic port, an error message appears, and 802.1X is not enabled. If you try to change the mode of an 802.1X-enabled port to dynamic, the port mode is not changed.

Configuring a Trunk Port

Beginning in privileged EXEC mode, follow these steps to configure a port as an ISL or 802.1Q trunk port:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td></td>
<td>Enter the interface configuration mode and the port to be configured for trunking.</td>
</tr>
<tr>
<td>Step 3</td>
<td>switchport trunk encapsulation {isl</td>
</tr>
<tr>
<td></td>
<td>Configure the port to support ISL or 802.1Q encapsulation or to negotiate (the default) with the neighboring interface for encapsulation type. You must configure each end of the link with the same encapsulation type.</td>
</tr>
<tr>
<td>Step 4</td>
<td>switchport mode {dynamic {auto</td>
</tr>
<tr>
<td></td>
<td>Configure the interface as a Layer 2 trunk (required only if the interface is a Layer 2 access port or to specify the trunking mode).</td>
</tr>
<tr>
<td></td>
<td>• dynamic auto—Set the interface to a trunk link if the neighboring interface is set to trunk or desirable mode. This is the default.</td>
</tr>
<tr>
<td></td>
<td>• dynamic desirable—Set the interface to a trunk link if the neighboring interface is set to trunk, desirable, or auto mode.</td>
</tr>
<tr>
<td></td>
<td>• trunk—Set the interface in permanent trunking mode and negotiate to convert the link to a trunk link even if the neighboring interface is not a trunk interface.</td>
</tr>
<tr>
<td>Step 5</td>
<td>switchport access vlan vlan-id</td>
</tr>
<tr>
<td></td>
<td>(Optional) Specify the default VLAN, which is used if the interface stops trunking.</td>
</tr>
<tr>
<td>Step 6</td>
<td>switchport trunk native vlan vlan-id</td>
</tr>
<tr>
<td></td>
<td>Specify the native VLAN for 802.1Q trunks.</td>
</tr>
<tr>
<td>Step 7</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Configuring VLAN Trunks

To return an interface to its default configuration, use the `default interface interface-id` interface configuration command. To reset all trunking characteristics of a trunking interface to the defaults, use the `no switchport trunk` interface configuration command. To disable trunking, use the `switchport mode access` interface configuration command to configure the port as a static-access port.

This example shows how to configure the Gigabit Ethernet interface 0/4 on switch 1 as an 802.1Q trunk. The example assumes that the neighbor interface is configured to support 802.1Q trunking.

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface gigabitethernet1/0/4
Switch(config-if)# switchport mode dynamic desirable
Switch(config-if)# switchport trunk encapsulation dot1q
Switch(config-if)# end
```

Defining the Allowed VLANs on a Trunk

By default, a trunk port sends traffic to and receives traffic from all VLANs. All VLAN IDs, 1 to 4094, are allowed on each trunk. However, you can remove VLANs from the allowed list, preventing traffic from those VLANs from passing over the trunk. To restrict the traffic a trunk carries, use the `switchport trunk allowed vlan remove vlan-list` interface configuration command to remove specific VLANs from the allowed list.

Command Purpose
--- | ---
Step 8 | `show interfaces interface-id switchport` Display the switchport configuration of the interface in the Administrative Mode and the Administrative Trunking Encapsulation fields of the display.
Step 9 | `show interfaces interface-id trunk` Display the trunk configuration of the interface.
Step 10 | `copy running-config startup-config` (Optional) Save your entries in the configuration file.

To return an interface to its default configuration, use the default interface interface-id interface configuration command. To reset all trunking characteristics of a trunking interface to the defaults, use the no switchport trunk interface configuration command. To disable trunking, use the switchport mode access interface configuration command to configure the port as a static-access port.

This example shows how to configure the Gigabit Ethernet interface 0/4 on switch 1 as an 802.1Q trunk. The example assumes that the neighbor interface is configured to support 802.1Q trunking.

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface gigabitethernet1/0/4
Switch(config-if)# switchport mode dynamic desirable
Switch(config-if)# switchport trunk encapsulation dot1q
Switch(config-if)# end
```

Defining the Allowed VLANs on a Trunk

By default, a trunk port sends traffic to and receives traffic from all VLANs. All VLAN IDs, 1 to 4094, are allowed on each trunk. However, you can remove VLANs from the allowed list, preventing traffic from those VLANs from passing over the trunk. To restrict the traffic a trunk carries, use the `switchport trunk allowed vlan remove vlan-list` interface configuration command to remove specific VLANs from the allowed list.

Command Purpose
--- | ---
Step 1 | `configure terminal` Enter global configuration mode.
Step 2 | `interface interface-id` Enter interface configuration mode and the port to be configured.
Step 3 | `switchport mode trunk` Configure the interface as a VLAN trunk port.

Note: You cannot remove VLAN 1 or VLANs 1002 to 1005 from the allowed VLAN list.

A trunk port can become a member of a VLAN if the VLAN is enabled, if VTP knows of the VLAN, and if the VLAN is in the allowed list for the port. When VTP detects a newly enabled VLAN and the VLAN is in the allowed list for a trunk port, the trunk port automatically becomes a member of the enabled VLAN. When VTP detects a new VLAN and the VLAN is not in the allowed list for a trunk port, the trunk port does not become a member of the new VLAN.

Beginning in privileged EXEC mode, follow these steps to modify the allowed list of an ISL or 802.1Q trunk:

Command Purpose
--- | ---
Step 1 | `configure terminal` Enter global configuration mode.
Step 2 | `interface interface-id` Enter interface configuration mode and the port to be configured.
Step 3 | `switchport mode trunk` Configure the interface as a VLAN trunk port.
Configuring VLAN Trunks

Chapter 10 Configuring VLANs

Configuring VLAN Trunks

Step 4

```
switchport trunk allowed vlan {add | all | except | remove} vlan-list
```

(Optional) Configure the list of VLANs allowed on the trunk.

For explanations about using the `add`, `all`, `except`, and `remove` keywords, refer to the command reference for this release.

The `vlan-list` parameter is either a single VLAN number from 1 to 4094 or a range of VLANs described by two VLAN numbers, the lower one first, separated by a hyphen. Do not enter any spaces between comma-separated VLAN parameters or in hyphen-specified ranges.

All VLANs are allowed by default. You cannot remove any of the default VLANs (1 or 1002 to 1005) from a trunk.

Step 5

```
end
```

Return to privileged EXEC mode.

Step 6

```
show interfaces interface-id switchport
```

Verify your entries in the **Trunking VLANs Enabled** field of the display.

Step 7

```
copy running-config startup-config
```

(Optional) Save your entries in the configuration file.

To return to the default allowed VLAN list of all VLANs, use the **no switchport trunk allowed vlan** interface configuration command.

This example shows how to remove VLAN 2 from the allowed VLAN list on an interface:

```
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# switchport trunk allowed vlan remove 2
Switch(config-if)# end
```

Changing the Pruning-Eligible List

The pruning-eligible list applies only to trunk ports. Each trunk port has its own eligibility list. VTP pruning must be enabled for this procedure to take effect. The “Enabling VTP Pruning” section on page 11-14 describes how to enable VTP pruning.

Beginning in privileged EXEC mode, follow these steps to remove VLANs from the pruning-eligible list on a trunk port:

Step 1

```
configure terminal
```

Enter global configuration mode.

Step 2

```
interface interface-id
```

Enter interface configuration mode, and select the trunk port for which VLANs should be pruned.

Step 3

```
switchport trunk pruning vlan {add | except | none | remove} vlan-list
```

Configure the list of VLANs allowed to be pruned from the trunk. (See the “VTP Pruning” section on page 11-4).

For explanations about using the `add`, `except`, `none`, and `remove` keywords, refer to the command reference for this release.

Separate nonconsecutive VLAN IDs with a comma and no spaces; use a hyphen to designate a range of IDs. Valid IDs are from 2 to 1001. Extended-range VLANs (VLAN IDs 1006 to 4094) cannot be pruned.

VLANs that are pruning-eligible receive flooded traffic.

The default list of VLANs allowed to be pruned contains VLANs 2 to 1001.

Step 4

```
end
```

Return to privileged EXEC mode.
Chapter 10 Configuring VLANs

Configuring VLAN Trunks

To return to the default pruning-eligible list of all VLANs, use the `no switchport trunk pruning vlan` interface configuration command.

Configuring the Native VLAN for Untagged Traffic

A trunk port configured with 802.1Q tagging can receive both tagged and untagged traffic. By default, the switch forwards untagged traffic in the native VLAN configured for the port. The native VLAN is VLAN 1 by default.

Note
The native VLAN can be assigned any VLAN ID.

For information about 802.1Q configuration issues, see the “802.1Q Configuration Considerations” section on page 10-18.

Beginning in privileged EXEC mode, follow these steps to configure the native VLAN on an 802.1Q trunk:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1. <code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2. <code>interface interface-id</code></td>
<td>Enter interface configuration mode, and define the interface that is configured as the 802.1Q trunk.</td>
</tr>
<tr>
<td>Step 3. <code>switchport trunk native vlan vlan-id</code></td>
<td>Configure the VLAN that is sending and receiving untagged traffic on the trunk port. For <code>vlan-id</code>, the range is 1 to 4094.</td>
</tr>
<tr>
<td>Step 4. <code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5. <code>show interfaces interface-id switchport</code></td>
<td>Verify your entries in the Trunking Native Mode VLAN field.</td>
</tr>
<tr>
<td>Step 6. <code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default native VLAN, VLAN 1, use the `no switchport trunk native vlan` interface configuration command.

If a packet has a VLAN ID that is the same as the outgoing port native VLAN ID, the packet is sent untagged; otherwise, the switch sends the packet with a tag.
Configuring Trunk Ports for Load Sharing

Load sharing divides the bandwidth supplied by parallel trunks connecting switches. To avoid loops, STP normally blocks all but one parallel link between switches. Using load sharing, you divide the traffic between the links according to which VLAN the traffic belongs.

You configure load sharing on trunk ports by using STP port priorities or STP path costs. For load sharing using STP port priorities, both load-sharing links must be connected to the same switch. For load sharing using STP path costs, each load-sharing link can be connected to the same switch or to two different switches. For more information about STP, see Chapter 13, “Configuring STP.”

Load Sharing Using STP Port Priorities

When two ports on the same switch form a loop, the STP port priority setting determines which port is enabled and which port is in a blocking state. You can set the priorities on a parallel trunk port so that the port carries all the traffic for a given VLAN. The trunk port with the higher priority (lower values) for a VLAN is forwarding traffic for that VLAN. The trunk port with the lower priority (higher values) for the same VLAN remains in a blocking state for that VLAN. One trunk port sends or receives all traffic for the VLAN.

Figure 10-3 shows two trunks connecting supported switches. In this example, the switches are configured as follows:

- VLANs 8 through 10 are assigned a port priority of 10 on Trunk 1.
- VLANs 3 through 6 retain the default port priority of 128 on Trunk 1.
- VLANs 3 through 6 are assigned a port priority of 10 on Trunk 2.
- VLANs 8 through 10 retain the default port priority of 128 on Trunk 2.

In this way, Trunk 1 carries traffic for VLANs 8 through 10, and Trunk 2 carries traffic for VLANs 3 through 6. If the active trunk fails, the trunk with the lower priority takes over and carries the traffic for all of the VLANs. No duplication of traffic occurs over any trunk port.

Figure 10-3 Load Sharing by Using STP Port Priorities

![Diagram of load sharing by using STP port priorities]
Configuring VLAN Trunks

Note

If your switch is a member of a switch stack, you must use the `spanning-tree [vlan vlan-id] cost cost` interface configuration command instead of the `spanning-tree [vlan vlan-id] port-priority priority` interface configuration command to select an interface to put in the forwarding state. Assign lower cost values to interfaces that you want selected first and higher cost values that you want selected last. For more information, see the “Load Sharing Using STP Path Cost” section on page 10-26.

Beginning in privileged EXEC mode, follow these steps to configure the network shown in Figure 10-3.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>vtp domain domain-name</code></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>vtp mode server</code></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>end</code></td>
</tr>
<tr>
<td>Step 5</td>
<td><code>show vtp status</code></td>
</tr>
<tr>
<td>Step 6</td>
<td><code>show vlan</code></td>
</tr>
<tr>
<td>Step 7</td>
<td><code>configure terminal</code></td>
</tr>
<tr>
<td>Step 8</td>
<td><code>interface gigabitethernet1/0/1</code></td>
</tr>
<tr>
<td>Step 9</td>
<td>`switchport trunk encapsulation {isl</td>
</tr>
<tr>
<td>Step 10</td>
<td><code>switchport mode trunk</code></td>
</tr>
<tr>
<td>Step 11</td>
<td><code>end</code></td>
</tr>
<tr>
<td>Step 12</td>
<td><code>show interfaces gigabitethernet1/0/1 switchport</code></td>
</tr>
<tr>
<td>Step 13</td>
<td></td>
</tr>
<tr>
<td>Step 14</td>
<td></td>
</tr>
<tr>
<td>Step 15</td>
<td><code>show vlan</code></td>
</tr>
<tr>
<td>Step 16</td>
<td><code>configure terminal</code></td>
</tr>
<tr>
<td>Step 17</td>
<td><code>interface gigabitethernet1/0/1</code></td>
</tr>
<tr>
<td>Step 18</td>
<td><code>spanning-tree vlan 8 port-priority 10</code></td>
</tr>
<tr>
<td>Step 19</td>
<td><code>spanning-tree vlan 9 port-priority 10</code></td>
</tr>
<tr>
<td>Step 20</td>
<td><code>spanning-tree vlan 10 port-priority 10</code></td>
</tr>
</tbody>
</table>
Configuring VLAN Trunks

Load Sharing Using STP Path Cost

You can configure parallel trunks to share VLAN traffic by setting different path costs on a trunk and associating the path costs with different sets of VLANs, blocking different ports for different VLANs. The VLANs keep the traffic separate and maintain redundancy in the event of a lost link.

In Figure 10-4, Trunk ports 1 and 2 are configured as 100BASE-T ports. These VLAN path costs are assigned:

- VLANs 2 through 4 are assigned a path cost of 30 on Trunk port 1.
- VLANs 8 through 10 retain the default 100BASE-T path cost on Trunk port 1 of 19.
- VLANs 8 through 10 are assigned a path cost of 30 on Trunk port 2.
- VLANs 2 through 4 retain the default 100BASE-T path cost on Trunk port 2 of 19.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>exit</td>
<td>Return to global configuration mode.</td>
</tr>
<tr>
<td>interface gigabitethernet1/0/2</td>
<td>Enter interface configuration mode, and define the interface to set the STP port priority.</td>
</tr>
<tr>
<td>spanning-tree vlan 3 port-priority 10</td>
<td>Assign the port priority of 10 for VLAN 3.</td>
</tr>
<tr>
<td>spanning-tree vlan 4 port-priority 10</td>
<td>Assign the port priority of 10 for VLAN 4.</td>
</tr>
<tr>
<td>spanning-tree vlan 5 port-priority 10</td>
<td>Assign the port priority of 10 for VLAN 5.</td>
</tr>
<tr>
<td>spanning-tree vlan 6 port-priority 10</td>
<td>Assign the port priority of 10 for VLAN 6.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Figure 10-4 Load-Sharing Trunks with Traffic Distributed by Path Cost
Beginning in privileged EXEC mode, follow these steps to configure the network shown in Figure 10-4:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface gigabitethernet1/0/1</td>
</tr>
<tr>
<td>Step 3</td>
<td>switchport trunk encapsulation {isl</td>
</tr>
<tr>
<td>Step 4</td>
<td>switchport mode trunk</td>
</tr>
<tr>
<td>Step 5</td>
<td>exit</td>
</tr>
<tr>
<td>Step 6</td>
<td>repeat Steps 2 through 4 on a second interface in the Switch A stack.</td>
</tr>
<tr>
<td>Step 7</td>
<td>end</td>
</tr>
<tr>
<td>Step 8</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 9</td>
<td>show vlan</td>
</tr>
<tr>
<td>Step 10</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 11</td>
<td>interface gigabitethernet1/0/1</td>
</tr>
<tr>
<td>Step 12</td>
<td>spanning-tree vlan 2 cost 30</td>
</tr>
<tr>
<td>Step 13</td>
<td>spanning-tree vlan 3 cost 30</td>
</tr>
<tr>
<td>Step 14</td>
<td>spanning-tree vlan 4 cost 30</td>
</tr>
<tr>
<td>Step 15</td>
<td>end</td>
</tr>
<tr>
<td>Step 16</td>
<td>Repeat Steps 9 through 11 on the other configured trunk interface on Switch A, and set the spanning-tree path cost to 30 for VLANs 8, 9, and 10.</td>
</tr>
<tr>
<td>Step 17</td>
<td>exit</td>
</tr>
<tr>
<td>Step 18</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 19</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>
Configuring VMPS

The VLAN Query Protocol (VQP) is used to support dynamic-access ports, which are not permanently assigned to a VLAN, but given VLAN assignments based on the MAC source addresses seen on the port. Each time an unknown MAC address is seen, the switch sends a VQP query to a remote VMPS; the query includes the newly seen MAC address and the port on which it was seen. The VMPS responds with a VLAN assignment for the port. The switch cannot be a VMPS server but can act as a client to the VMPS and communicate with it through VQP.

This section includes this information about configuring VMPS:

- “Understanding VMPS” section on page 10-28
- “Default VMPS Client Configuration” section on page 10-29
- “VMPS Configuration Guidelines” section on page 10-29
- “Configuring the VMPS Client” section on page 10-30
- “Monitoring the VMPS” section on page 10-32
- “Troubleshooting Dynamic-Access Port VLAN Membership” section on page 10-33
- “VMPS Configuration Example” section on page 10-33

Understanding VMPS

Each time the client switch receives the MAC address of a new host, it sends a VQP query to the VMPS. When the VMPS receives this query, it searches its database for a MAC-address-to-VLAN mapping. The server response is based on this mapping and whether or not the server is in open or secure mode. In secure mode, the server shuts down the port when an illegal host is detected. In open mode, the server simply denies the host access to the port.

If the port is currently unassigned (that is, it does not yet have a VLAN assignment), the VMPS provides one of these responses:

- If the host is allowed on the port, the VMPS sends the client a vlan-assignment response containing the assigned VLAN name and allowing access to the host.
- If the host is not allowed on the port and the VMPS is in open mode, the VMPS sends an access-denied response.
- If the VLAN is not allowed on the port and the VMPS is in secure mode, the VMPS sends a port-shutdown response.

If the port already has a VLAN assignment, the VMPS provides one of these responses:

- If the VLAN in the database matches the current VLAN on the port, the VMPS sends an success response, allowing access to the host.
- If the VLAN in the database does not match the current VLAN on the port and active hosts exist on the port, the VMPS sends an access-denied or a port-shutdown response, depending on the secure mode of the VMPS.

If the switch receives an access-denied response from the VMPS, it continues to block traffic to and from the host MAC address. The switch continues to monitor the packets directed to the port and sends a query to the VMPS when it identifies a new host address. If the switch receives a port-shutdown response from the VMPS, it disables the port. The port must be manually re-enabled by using the CLI, CMS, or SNMP.
Dynamic-Access Port VLAN Membership

A dynamic-access port can belong to only one VLAN with an ID from 1 to 4094. When the link comes up, the switch does not forward traffic to or from this port until the VMPS provides the VLAN assignment. The VMPS receives the source MAC address from the first packet of a new host connected to the dynamic-access port and attempts to match the MAC address to a VLAN in the VMPS database.

If there is a match, the VMPS sends the VLAN number for that port. If the client switch was not previously configured, it uses the domain name from the first VTP packet it receives on its trunk port from the VMPS. If the client switch was previously configured, it includes its domain name in the query packet to the VMPS to obtain its VLAN number. The VMPS verifies that the domain name in the packet matches its own domain name before accepting the request and responds to the client with the assigned VLAN number for the client. If there is no match, the VMPS either denies the request or shuts down the port (depending on the VMPS secure mode setting).

Multiple hosts (MAC addresses) can be active on a dynamic-access port if they are all in the same VLAN; however, the VMPS shuts down a dynamic-access port if more than 20 hosts are active on the port.

If the link goes down on a dynamic-access port, the port returns to an isolated state and does not belong to a VLAN. Any hosts that come online through the port are checked again through the VQP with the VMPS before the port is assigned to a VLAN.

Dynamic-access ports can be used for direct host connections, or they can connect to a network. A maximum of 20 MAC addresses are allowed per port on the switch. A dynamic-access port can belong to only one VLAN at a time, but the VLAN can change over time, depending on the MAC addresses seen.

Default VMPS Client Configuration

Table 10-7 shows the default VMPS and dynamic-access port configuration on client switches.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMPS domain server</td>
<td>None</td>
</tr>
<tr>
<td>VMPS reconfirm interval</td>
<td>60 minutes</td>
</tr>
<tr>
<td>VMPS server retry count</td>
<td>3</td>
</tr>
<tr>
<td>Dynamic-access ports</td>
<td>None configured</td>
</tr>
</tbody>
</table>

VMPS Configuration Guidelines

These guidelines and restrictions apply to dynamic-access port VLAN membership:

- You should configure the VMPS before you configure ports as dynamic-access ports.
- When you configure a port as a dynamic-access port, the spanning-tree Port Fast feature is automatically enabled for that port. The Port Fast mode accelerates the process of bringing the port into the forwarding state.
• 802.1X ports cannot be configured as dynamic-access ports. If you try to enable 802.1X on a
dynamic-access (VQP) port, an error message appears, and 802.1X is not enabled. If you try to
change an 802.1X-enabled port to dynamic VLAN assignment, an error message appears, and the
VLAN configuration is not changed.

• Trunk ports cannot be dynamic-access ports, but you can enter the `switchport access vlan dynamic`
interface configuration command for a trunk port. In this case, the switch retains the setting and
applies it if the port is later configured as an access port.

You must turn off trunking on the port before the dynamic-access setting takes effect.

• Dynamic-access ports cannot be monitor ports.

• Secure ports cannot be dynamic-access ports. You must disable port security on a port before it
becomes dynamic.

• Dynamic-access ports cannot be members of an EtherChannel group.

• Port channels cannot be configured as dynamic-access ports.

• A dynamic-access port can participate in fallback bridging.

• The VTP management domain of the VMPS client and the VMPS server must be the same.

• The VLAN configured on the VMPS server should not be a voice VLAN.

Configuring the VMPS Client

You configure dynamic VLANs by using the VMPS (server). The switch can be a VMPS client; it cannot
be a VMPS server.

Entering the IP Address of the VMPS

You must first enter the IP address of the server to configure the switch as a client.

Note

If the VMPS is being defined for a cluster of switches, enter the address on the command switch.

Beginning in privileged EXEC mode, follow these steps to enter the IP address of the VMPS:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>vmpls server ipaddress primary</code></td>
</tr>
<tr>
<td></td>
<td>Enter the IP address of the switch acting as the primary VMPS server.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>vmpls server ipaddress</code></td>
</tr>
<tr>
<td></td>
<td>(Optional) Enter the IP address of the switch acting as a secondary VMPS</td>
</tr>
<tr>
<td></td>
<td>server. You can enter up to three secondary server addresses.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>end</code></td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>show vmpls</code></td>
</tr>
<tr>
<td></td>
<td>Verify your entries in the <code>VMPS Domain Server</code> field of the display.</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>copy running-config startup-config</code></td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
You must have IP connectivity to the VMPS for dynamic-access ports to work. You can test for IP connectivity by pinging the IP address of the VMPS and verifying that you get a response.

Configuring Dynamic-Access Ports on VMPS Clients

If you are configuring a port on a cluster member switch as a dynamic-access port, first use the `rcommand` privileged EXEC command to log into the cluster member switch.

<table>
<thead>
<tr>
<th>Caution</th>
<th>Dynamic-access port VLAN membership is for end stations or hubs connected to end stations. Connecting dynamic-access ports to other switches can cause a loss of connectivity.</th>
</tr>
</thead>
</table>

Beginning in privileged EXEC mode, follow these steps to configure a dynamic-access port on a VMPS client switch:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>switchport mode access</td>
</tr>
<tr>
<td>Step 4</td>
<td>switchport access vlan dynamic</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td>Step 6</td>
<td>show interfaces interface-id switchport</td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return an interface to its default configuration, use the `default interface interface-id` interface configuration command. To return an interface to its default switchport mode (dynamic auto), use the `no switchport mode` interface configuration command. To reset the access mode to the default VLAN for the switch, use the `no switchport access vlan` interface configuration command.

Reconfirming VLAN Memberships

Beginning in privileged EXEC mode, follow these steps to confirm the dynamic-access port VLAN membership assignments that the switch has received from the VMPS:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>vmps reconfirm</td>
</tr>
<tr>
<td>Step 2</td>
<td>show vmps</td>
</tr>
</tbody>
</table>
Changing the Reconfirmation Interval

VMPS clients periodically reconfirm the VLAN membership information received from the VMPS. You can set the number of minutes after which reconfirmation occurs.

If you are configuring a member switch in a cluster, this parameter must be equal to or greater than the reconfirmation setting on the command switch. You must also first use the `recommand` privileged EXEC command to log into the member switch.

Beginning in privileged EXEC mode, follow these steps to change the reconfirmation interval:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>vmps reconfirm minutes</code></td>
<td>Enter the number of minutes between reconfirmations of the dynamic VLAN membership. The range is from 1 to 120. The default is 60 minutes.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td><code>show vmps</code></td>
<td>Verify the dynamic VLAN reconfirmation status in the Reconfirm Interval field of the display.</td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return the switch to its default setting, use the `no vmps reconfirm` global configuration command.

Changing the Retry Count

Beginning in privileged EXEC mode, follow these steps to change the number of times that the switch attempts to contact the VMPS before querying the next server:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>vmps retry count</code></td>
<td>Change the retry count. The retry range is from 1 to 10; the default is 3.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td><code>show vmps</code></td>
<td>Verify your entry in the Server Retry Count field of the display.</td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return the switch to its default setting, use the `no vmps retry` global configuration command.

Monitoring the VMPS

You can display information about the VMPS by using the `show vmps` privileged EXEC command. The switch displays this information about the VMPS:

- VMPS VQP Version—the version of VQP used to communicate with the VMPS. The switch queries the VMPS that is using VQP version 1.
- Reconfirm Interval—the number of minutes the switch waits before reconfirming the VLAN-to-MAC-address assignments.
Configuring VMPS

- Server Retry Count—the number of times VQP resends a query to the VMPS. If no response is received after this many tries, the switch starts to query the secondary VMPS.
- VMPS domain server—the IP address of the configured VLAN membership policy servers. The switch sends queries to the one marked current. The one marked primary is the primary server.
- VMPS Action—the result of the most recent reconfirmation attempt. A reconfirmation attempt can occur automatically when the reconfirmation interval expired, or you can force it by entering the `vmps reconfirm` privileged EXEC command or its CMS or SNMP equivalent.

This is an example of output for the `show vmps` privileged EXEC command:

```
Switch# show vmps
VQP Client Status:
-------------------
VMPS VQP Version:   1
Reconfirm Interval: 60 min
Server Retry Count: 3
VMPS domain server: 172.20.128.86 (primary, current)
                     172.20.128.87

Reconfirmation status
---------------------
VMPS Action:         other
```

Troubleshooting Dynamic-Access Port VLAN Membership

The VMPS shuts down a dynamic-access port under these conditions:
- The VMPS is in secure mode, and it does not allow the host to connect to the port. The VMPS shuts down the port to prevent the host from connecting to the network.
- More than 20 active hosts reside on a dynamic-access port.

To re-enable a disabled dynamic-access port, enter the `shutdown` interface configuration command followed by the `no shutdown` interface configuration command.

VMPS Configuration Example

Figure 10-5 shows a network with a VMPS server switch and VMPS client switches with dynamic-access ports. In this example, these assumptions apply:
- The VMPS server and the VMPS client are separate switches.
- The Catalyst 6000 series Switch A is the primary VMPS server.
- The Catalyst 6000 series Switch F is the secondary VMPS server.
- End stations are connected to the clients, Switch B and Switch E.
- The database configuration file is stored on the TFTP server with the IP address 172.20.22.7.
Figure 10-5 Dynamic Port VLAN Membership Configuration

Catalyst 6000 series
Primary VMPS
Server 1
Switch A
172.20.26.150

TFTP server
172.20.22.7

Switch 1
172.20.26.151

Primary VMPS
Server 1

Switch 2
172.20.26.156

Switch 3
172.20.26.157

Catalyst 3750 switch stack B
as client

Switch C
172.20.26.156

Switch D
172.20.26.157

End station 1

Dynamic-access port

Stackwise
port connections

Catalyst 6000 series
Secondary VMPS
Server 3
Switch E
172.20.26.158
Trunk port

End station 2

Switch F
172.20.26.159

Catalyst 3750 switch stack B
as client

T runk port

Ethernet segment
(T runk link)

Router
172.20.26.151
172.20.26.151

Dynamic-access port

172.20.22.7
86836

Router
172.20.26.151
172.20.26.151

Dynamic-access port
Configuring VTP

This chapter describes how to use the VLAN Trunking Protocol (VTP) and the VLAN database for managing VLANs with the Catalyst 3750 switch. Unless otherwise noted, the term switch refers to a standalone switch and a switch stack.

Note

For complete syntax and usage information for the commands used in this chapter, refer to the command reference for this release.

The chapter includes these sections:

- Understanding VTP, page 11-1
- Configuring VTP, page 11-6
- Monitoring VTP, page 11-16

Understanding VTP

VTP is a Layer 2 messaging protocol that maintains VLAN configuration consistency by managing the addition, deletion, and renaming of VLANs on a network-wide basis. VTP minimizes misconfigurations and configuration inconsistencies that can cause several problems, such as duplicate VLAN names, incorrect VLAN-type specifications, and security violations.

Before you create VLANs, you must decide whether to use VTP in your network. Using VTP, you can make configuration changes centrally on one or more switches and have those changes automatically communicated to all the other switches in the network. Without VTP, you cannot send information about VLANs to other switches.

VTP is designed to work in an environment where updates are made on a single switch and are sent through VTP to other switches in the domain. It does not work well in a situation where multiple updates to the VLAN database occur simultaneously on switches in the same domain, which would result in an inconsistency in the VLAN database.

VTP functionality is supported across the stack, and all switches in the stack maintain the same VLAN and VTP configuration inherited from the stack master. When a switch learns of a new VLAN through VTP messages or when a new VLAN is configured by the user, the new VLAN information is communicated to all switches in the stack.

When a switch joins the stack or when stacks merge, the new switches get VTP information from the stack master.
The switch supports 1005 VLANs, but the number of routed ports, SVIs, and other configured features affects the usage of the switch hardware. If the switch is notified by VTP of a new VLAN and the switch is already using the maximum available hardware resources, it sends a message that there are not enough hardware resources available and shuts down the VLAN. The output of the `show vlan` user EXEC command shows the VLAN in a suspended state.

VTP only learns about normal-range VLANs (VLAN IDs 1 to 1005). Extended-range VLANs (VLAN IDs greater than 1005) are not supported by VTP or stored in the VTP VLAN database.

This section contains information about these VTP parameters and characteristics.

- **The VTP Domain, page 11-2**
- **VTP Modes, page 11-3**
- **VTP Advertisements, page 11-3**
- **VTP Version 2, page 11-4**
- **VTP Pruning, page 11-4**
- **VTP and the Switch Stack, page 11-6**

The VTP Domain

A VTP domain (also called a VLAN management domain) consists of one switch or several interconnected switches or switch stacks under the same administrative responsibility sharing the same VTP domain name. A switch can be in only one VTP domain. You make global VLAN configuration changes for the domain by using the command-line interface (CLI), Cluster Management Suite (CMS) software, or Simple Network Management Protocol (SNMP).

By default, the switch is in VTP no-management-domain state until it receives an advertisement for a domain over a trunk link (a link that carries the traffic of multiple VLANs) or until you configure a domain name. Until the management domain name is specified or learned, you cannot create or modify VLANs on a VTP server, and VLAN information is not propagated over the network.

If the switch receives a VTP advertisement over a trunk link, it inherits the management domain name and the VTP configuration revision number. The switch then ignores advertisements with a different domain name or an earlier configuration revision number.

⚠️ **Caution**

Before adding a VTP client switch to a VTP domain, always verify that its VTP configuration revision number is *lower* than the configuration revision number of the other switches in the VTP domain. Switches in a VTP domain always use the VLAN configuration of the switch with the highest VTP configuration revision number. If you add a switch that has a revision number higher than the revision number in the VTP domain, it can erase all VLAN information from the VTP server and VTP domain. See the “Adding a VTP Client Switch to a VTP Domain” section on page 11-15 for the procedure for verifying and resetting the VTP configuration revision number.

When you make a change to the VLAN configuration on a VTP server, the change is propagated to all switches in the VTP domain. VTP advertisements are sent over all IEEE trunk connections, including Inter-Switch Link (ISL) and IEEE 802.1Q. VTP dynamically maps VLANs with unique names and internal index associates across multiple LAN types. Mapping eliminates excessive device administration required from network administrators.
If you configure a switch for VTP transparent mode, you can create and modify VLANs, but the changes are not sent to other switches in the domain, and they affect only the individual switch. However, configuration changes made when the switch is in this mode are saved in the switch running configuration and can be saved to the switch startup configuration file.

For domain name and password configuration guidelines, see the “VTP Configuration Guidelines” section on page 11-8.

VTP Modes

You can configure a supported switch stack to be in one of the VTP modes listed in Table 11-1.

<table>
<thead>
<tr>
<th>VTP Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTP server</td>
<td>In VTP server mode, you can create, modify, and delete VLANs, and specify other configuration parameters (such as the VTP version) for the entire VTP domain. VTP servers advertise their VLAN configurations to other switches in the same VTP domain and synchronize their VLAN configurations with other switches based on advertisements received over trunk links. In VTP server mode, VLAN configurations are saved in nonvolatile RAM (NVRAM). VTP server is the default mode.</td>
</tr>
<tr>
<td>VTP client</td>
<td>A VTP client behaves like a VTP server and transmits and receives VTP updates on its trunks, but you cannot create, change, or delete VLANs on a VTP client. VLANs are configured on another switch in the domain that is in server mode. In VTP client mode, VLAN configurations are not saved in NVRAM.</td>
</tr>
<tr>
<td>VTP transparent</td>
<td>VTP transparent switches do not participate in VTP. A VTP transparent switch does not advertise its VLAN configuration and does not synchronize its VLAN configuration based on received advertisements. However, in VTP version 2, transparent switches do forward VTP advertisements that they receive from other switches from their trunk interfaces. You can create, modify, and delete VLANs on a switch in VTP transparent mode. The switch must be in VTP transparent mode when you create extended-range VLANs. See the “Configuring Extended-Range VLANs” section on page 10-12. When the switch is in VTP transparent mode, the VTP and VLAN configurations are saved in NVRAM, but they are not advertised to other switches. In this mode, VTP mode and domain name are saved in the switch running configuration and you can save this information in the switch startup configuration file by entering the <code>copy running-config startup-config</code> privileged EXEC command. The running configuration and the saved configuration are the same for all switches in a stack.</td>
</tr>
</tbody>
</table>

VTP Advertisements

Each switch in the VTP domain sends periodic global configuration advertisements from each trunk port to a reserved multicast address. Neighboring switches receive these advertisements and update their VTP and VLAN configurations as necessary.

Note

Because trunk ports send and receive VTP advertisements, you must ensure that at least one trunk port is configured on the switch stack and that this trunk port is connected to the trunk port of another switch. Otherwise, the switch cannot receive any VTP advertisements. For more information on trunk ports, see the “Configuring VLAN Trunks” section on page 10-16.
VTP advertisements distribute this global domain information:

- VTP domain name
- VTP configuration revision number
- Update identity and update timestamp
- MD5 digest VLAN configuration, including maximum transmission unit (MTU) size for each VLAN.
- Frame format

VTP advertisements distribute this VLAN information for each configured VLAN:

- VLAN IDs (ISL and 802.1Q)
- VLAN name
- VLAN type
- VLAN state
- Additional VLAN configuration information specific to the VLAN type

VTP Version 2

If you use VTP in your network, you must decide whether to use version 1 or version 2. By default, VTP operates in version 1.

VTP version 2 supports these features not supported in version 1:

- Token Ring support—VTP version 2 supports Token Ring Bridge Relay Function (TrBRF) and Token Ring Concentrator Relay Function (TrCRF) VLANs. For more information about Token Ring VLANs, see the “Configuring Normal-Range VLANs” section on page 10-4.
- Unrecognized Type-Length-Value (TLV) support—A VTP server or client propagates configuration changes to its other trunks, even for TLVs it is not able to parse. The unrecognized TLV is saved in NVRAM when the switch is operating in VTP server mode.
- Version-Dependent Transparent Mode—In VTP version 1, a VTP transparent switch inspects VTP messages for the domain name and version and forwards a message only if the version and domain name match. Because VTP version 2 supports only one domain, it forwards VTP messages in transparent mode without inspecting the version and domain name.
- Consistency Checks—In VTP version 2, VLAN consistency checks (such as VLAN names and values) are performed only when you enter new information through the CLI, the Cluster Management Software (CMS), or SNMP. Consistency checks are not performed when new information is obtained from a VTP message or when information is read from NVRAM. If the MD5 digest on a received VTP message is correct, its information is accepted.

VTP Pruning

VTP pruning increases network available bandwidth by restricting flooded traffic to those trunk links that the traffic must use to reach the destination devices. Without VTP pruning, a switch floods broadcast, multicast, and unknown unicast traffic across all trunk links within a VTP domain even though receiving switches might discard them. VTP pruning is disabled by default.
VTP pruning blocks unneeded flooded traffic to VLANs on trunk ports that are included in the pruning-eligible list. Only VLANs included in the pruning-eligible list can be pruned. By default, VLANs 2 through 1001 are pruning eligible switch trunk ports. If the VLANs are configured as pruning-ineligible, the flooding continues. VTP pruning is supported with VTP version 1 and version 2.

Figure 11-1 shows a switched network without VTP pruning enabled. Port 1 on Switch A and Port 2 on Switch D are assigned to the Red VLAN. If a broadcast is sent from the host connected to Switch A, Switch A floods the broadcast and every switch in the network receives it, even though Switches C, E, and F have no ports in the Red VLAN.

Figure 11-2 shows a switched network with VTP pruning enabled. The broadcast traffic from Switch A is not forwarded to Switches C, E, and F because traffic for the Red VLAN has been pruned on the links shown (Port 5 on Switch B and Port 4 on Switch D).

Figure 11-2 Optimized Flooded Traffic with VTP Pruning
Enabling VTP pruning on a VTP server enables pruning for the entire management domain. Making VLANs pruning-eligible or pruning-ineligible affects pruning eligibility for those VLANs on that trunk only (not on all switches in the VTP domain).

See the “Enabling VTP Pruning” section on page 11-14. VTP pruning takes effect several seconds after you enable it. VTP pruning does not prune traffic from VLANs that are pruning-ineligible. VLAN 1 and VLANs 1002 to 1005 are always pruning-ineligible; traffic from these VLANs cannot be pruned. Extended-range VLANs (VLAN IDs higher than 1005) are also pruning-ineligible.

VTP pruning is not designed to function in VTP transparent mode. If one or more switches in the network are in VTP transparent mode, you should do one of these:

- Turn off VTP pruning in the entire network.
- Turn off VTP pruning by making all VLANs on the trunk of the switch upstream to the VTP transparent switch pruning ineligible.

To configure VTP pruning on an interface, use the `switchport trunk pruning vlan` interface configuration command (see the “Changing the Pruning-Eligible List” section on page 10-22). VTP pruning operates when an interface is trunking. You can set VLAN pruning-eligibility, whether or not VTP pruning is enabled for the VTP domain, whether or not any given VLAN exists, and whether or not the interface is currently trunking.

VTP and the Switch Stack

VTP configuration is the same in all members of a switch stack. When the switch stack is in VTP server or client mode, all switches in the stack carry the same VTP configuration. When VTP mode is transparent, the stack is not taking part in VTP.

- When a switch joins the stack, it inherits the VTP and VLAN properties of the stack master.
- All VTP updates are carried across the stack.
- When VTP mode is changed in a switch in the stack, the other switches in the stack also change VTP mode, and the switch VLAN database remains consistent.

For more information about the switch stack, see Chapter 5, “Managing Switch Stacks.”

Configuring VTP

This section includes guidelines and procedures for configuring VTP. These sections are included:

- Default VTP Configuration, page 11-7
- VTP Configuration Options, page 11-7
- VTP Configuration Guidelines, page 11-8
- Configuring a VTP Server, page 11-9
- Configuring a VTP Client, page 11-11
- Disabling VTP (VTP Transparent Mode), page 11-12
- Enabling VTP Version 2, page 11-13
- Enabling VTP Pruning, page 11-14
- Adding a VTP Client Switch to a VTP Domain, page 11-15
Default VTP Configuration

Table 11-2 shows the default VTP configuration.

Table 11-2 Default VTP Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTP domain name</td>
<td>Null.</td>
</tr>
<tr>
<td>VTP mode</td>
<td>Server.</td>
</tr>
<tr>
<td>VTP version</td>
<td>Version 1 (version 2 is disabled).</td>
</tr>
<tr>
<td>VTP password</td>
<td>None.</td>
</tr>
<tr>
<td>VTP pruning</td>
<td>Disabled.</td>
</tr>
</tbody>
</table>

VTP Configuration Options

You can configure VTP by using these configuration modes.

- VTP Configuration in Global Configuration Mode, page 11-7
- VTP Configuration in VLAN Database Configuration Mode, page 11-8

You access VLAN database configuration mode by entering the `vlan database` privileged EXEC command.

For detailed information about `vtp` commands, refer to the command reference for this release.

VTP Configuration in Global Configuration Mode

You can use the `vtp` global configuration command to set the VTP password, the version, the VTP file name, the interface providing updated VTP information, the domain name, and the mode, and to disable or enable pruning. For more information about available keywords, refer to the command descriptions in the command reference for this release. The VTP information is saved in the VTP VLAN database. When VTP mode is transparent, the VTP domain name and mode are also saved in the switch running configuration file, and you can save it in the switch startup configuration file by entering the `copy running-config startup-config` privileged EXEC command. You must use this command if you want to save VTP mode as transparent, even if the switch resets.

When you save VTP information in the switch startup configuration file and reboot the switch, the switch configuration is determined as follows:

- If the VTP mode is transparent in the startup configuration and the VLAN database and the VTP domain name from the VLAN database matches that in the startup configuration file, the VLAN database is ignored (cleared), and the VTP and VLAN configurations in the startup configuration file are used. The VLAN database revision number remains unchanged in the VLAN database.
- If the VTP mode or domain name in the startup configuration do not match the VLAN database, the domain name and VTP mode and configuration for the first 1005 VLANs use the VLAN database information.
VTP Configuration in VLAN Database Configuration Mode

You can configure all VTP parameters in VLAN database configuration mode, which you access by entering the `vlan database` privileged EXEC command. For more information about available keywords, refer to the `vtp` VLAN database configuration command description in the command reference for this release. When you enter the `exit` command in VLAN database configuration mode, it applies all the commands that you entered and updates the VLAN database. VTP messages are sent to other switches in the VTP domain, and the privileged EXEC mode prompt appears.

If VTP mode is transparent, the domain name and the mode (transparent) are saved in the switch running configuration, and you can save this information in the switch startup configuration file by entering the `copy running-config startup-config` privileged EXEC command.

VTP Configuration Guidelines

These sections describe guidelines you should follow when implementing VTP in your network.

Domain Names

When configuring VTP for the first time, you must always assign a domain name. You must configure all switches in the VTP domain with the same domain name. Switches in VTP transparent mode do not exchange VTP messages with other switches, and you do not need to configure a VTP domain name for them.

Note

If NVRAM and DRAM storage is sufficient, all switches in a VTP domain should be in VTP server mode.

Caution

Do not configure a VTP domain if all switches are operating in VTP client mode. If you configure the domain, it is impossible to make changes to the VLAN configuration of that domain. Make sure that you configure at least one switch in the VTP domain for VTP server mode.

Passwords

You can configure a password for the VTP domain, but it is not required. If you do configure a domain password, all domain switches must share the same password and you must configure the password on each switch in the management domain. Switches without a password or with the wrong password reject VTP advertisements.

If you configure a VTP password for a domain, a switch that is booted without a VTP configuration does not accept VTP advertisements until you configure it with the correct password. After the configuration, the switch accepts the next VTP advertisement that uses the same password and domain name in the advertisement.

If you are adding a new switch to an existing network with VTP capability, the new switch learns the domain name only after the applicable password has been configured on it.

Caution

When you configure a VTP domain password, the management domain does not function properly if you do not assign a management domain password to each switch in the domain.
VTP Version

Follow these guidelines when deciding which VTP version to implement:

- All switches in a VTP domain must run the same VTP version.
- A VTP version 2-capable switch can operate in the same VTP domain as a switch running VTP version 1 if version 2 is disabled on the version 2-capable switch (version 2 is disabled by default).
- Do not enable VTP version 2 on a switch unless all of the switches in the same VTP domain are version-2-capable. When you enable version 2 on a switch, all of the version-2-capable switches in the domain enable version 2. If there is a version 1-only switch, it does not exchange VTP information with switches with version 2 enabled.
- If there are TrBRF and TrCRF Token Ring networks in your environment, you must enable VTP version 2 for Token Ring VLAN switching to function properly. To run Token Ring and Token Ring-Net, disable VTP version 2.

Configuration Requirements

When you configure VTP, you must configure a trunk port on the switch stack so that the switch can send and receive VTP advertisements to and from other switches in the domain.

For more information, see the “Configuring VLAN Trunks” section on page 10-16.

If you are configuring VTP on a cluster member switch to a VLAN, use the `rcommand` privileged EXEC command to log into the member switch. For more information about the command, refer to the command reference for this release.

If you are configuring extended-range VLANs on the switch, the switch must be in VTP transparent mode.

Configuring a VTP Server

When a switch is in VTP server mode, you can change the VLAN configuration and have it propagated throughout the network.

Note

If extended-range VLANs are configured on the switch, you cannot change VTP mode to server. You receive an error message, and the configuration is not allowed.

Beginning in privileged EXEC mode, follow these steps to configure the switch as a VTP server:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>vtp mode server</td>
<td>Configure the switch for VTP server mode (the default).</td>
</tr>
<tr>
<td>Step 3</td>
<td>vtp domain domain-name</td>
<td>Configure the VTP administrative-domain name. The name can be from 1 to 32 characters. All switches operating in VTP server or client mode under the same administrative responsibility must be configured with the same domain name.</td>
</tr>
</tbody>
</table>
When you configure a domain name, it cannot be removed; you can only reassign a switch to a different domain.

To return the switch to a no-password state, use the `no vtp password` global configuration command.

This example shows how to use global configuration mode to configure the switch as a VTP server with the domain name `eng_group` and the password `mypassword`:

```
Switch# config terminal
Switch(config)# vtp mode server
Switch(config)# vtp domain eng_group
Switch(config)# vtp password mypassword
Switch(config)# end
```

You can also use VLAN database configuration mode to configure VTP parameters.

Beginning in privileged EXEC mode, follow these steps to use VLAN database configuration mode to configure the switch as a VTP server:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>vlan database</code></td>
<td>Enter VLAN database configuration mode.</td>
</tr>
<tr>
<td>Step 2 <code>vtp server</code></td>
<td>Configure the switch for VTP server mode (the default).</td>
</tr>
<tr>
<td>Step 3 <code>vtp domain domain-name</code></td>
<td>Configure a VTP administrative-domain name. The name can be from 1 to 32 characters. All switches operating in VTP server or client mode under the same administrative responsibility must be configured with the same domain name.</td>
</tr>
<tr>
<td>Step 4 <code>vtp password password</code></td>
<td>(Optional) Set a password for the VTP domain. The password can be from 8 to 64 characters. If you configure a VTP password, the VTP domain does not function properly if you do not assign the same password to each switch in the domain.</td>
</tr>
<tr>
<td>Step 5 <code>exit</code></td>
<td>Update the VLAN database, propagate it throughout the administrative domain, and return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6 <code>show vtp status</code></td>
<td>Verify your entries in the VTP Operating Mode and the VTP Domain Name fields of the display.</td>
</tr>
</tbody>
</table>

When you configure a domain name, it cannot be removed; you can only reassign a switch to a different domain.

To return the switch to a no-password state, use the `no vtp password` VLAN database configuration command.
This example shows how to use VLAN database configuration mode to configure the switch as a VTP server with the domain name eng_group and the password mypassword:

```
Switch# vlan database
Switch (vlan)# vtp server
Switch (vlan)# vtp domain eng_group
Switch (vlan)# vtp password mypassword
Switch (vlan)# exit
APPLY completed.
Exiting....
Switch#
```

Configuring a VTP Client

When a switch is in VTP client mode, you cannot change its VLAN configuration. The client switch receives VTP updates from a VTP server in the VTP domain and then modifies its configuration accordingly.

Note

If extended-range VLANs are configured on the switch stack, you cannot change VTP mode to client. You receive an error message, and the configuration is not allowed.

Caution

If all switches are operating in VTP client mode, do not configure a VTP domain name. If you do, it is impossible to make changes to the VLAN configuration of that domain. Therefore, make sure you configure at least one switch as a VTP server.

Beginning in privileged EXEC mode, follow these steps to configure the switch as a VTP client:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 vtp mode client</td>
<td>Configure the switch for VTP client mode. The default setting is VTP server.</td>
</tr>
<tr>
<td>Step 3 vtp domain domain-name</td>
<td>(Optional) Enter the VTP administrative-domain name. The name can be from 1 to 32 characters. This should be the same domain name as the VTP server. All switches operating in VTP server or client mode under the same administrative responsibility must be configured with the same domain name.</td>
</tr>
<tr>
<td>Step 4 vtp password password</td>
<td>(Optional) Enter the password for the VTP domain.</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6 show vtp status</td>
<td>Verify your entries in the VTP Operating Mode and the VTP Domain Name fields of the display.</td>
</tr>
</tbody>
</table>

Use the `no vtp mode` global configuration command to return the switch to VTP server mode. To return the switch to a no-password state, use the `no vtp password` privileged EXEC command. When you configure a domain name, it cannot be removed; you can only reassign a switch to a different domain.
Disabling VTP (VTP Transparent Mode)

When you configure the switch for VTP transparent mode, you disable VTP on the switch. The switch does not send VTP updates and does not act on VTP updates received from other switches. However, a VTP transparent switch running VTP version 2 does forward received VTP advertisements on all of its trunk links.

Note
Before you create extended-range VLANs (VLAN IDs 1006 to 4094), you must set VTP mode to transparent by using the `vtp mode transparent` global configuration command. Save this configuration to the startup configuration so that the switch boots up in VTP transparent mode. Otherwise, you lose the extended-range VLAN configuration if the switch resets and boots up in VTP server mode (the default).

Beginning in privileged EXEC mode, follow these steps to configure VTP transparent mode and save the VTP configuration in the switch startup configuration file:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 vtp mode transparent</td>
<td>Configure the switch for VTP transparent mode (disable VTP).</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show vtp status</td>
<td>Verify your entries in the VTP Operating Mode and the VTP Domain Name fields of the display.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save the configuration in the startup configuration file.</td>
</tr>
</tbody>
</table>

To return the switch to VTP server mode, use the `no vtp mode` global configuration command.

Note
If extended-range VLANs are configured on the switch stack, you cannot change the VTP mode to server. You receive an error message, and the configuration is not allowed.
Note
You can also configure VTP transparent mode by using the `vlan database` privileged EXEC command to enter VLAN database configuration mode and by entering the `vtp transparent` command, similar to the second procedure under the “Configuring a VTP Server” section on page 11-9. Use the `no vtp transparent` VLAN database configuration command to return the switch to VTP server mode. If extended-range VLANs are configured on the switch, you cannot change VTP mode to server. You receive an error message, and the configuration is not allowed.

Enabling VTP Version 2

VTP version 2 is disabled by default on VTP version 2-capable switches. When you enable VTP version 2 on a switch, every VTP version 2-capable switch in the VTP domain enables version 2. You can only configure the version on switches in VTP server or transparent mode.

Caution
VTP version 1 and VTP version 2 are not interoperable on switches in the same VTP domain. Every switch in the VTP domain must use the same VTP version. Do not enable VTP version 2 unless every switch in the VTP domain supports version 2.

Note
In TrCRF and TrBRF Token ring environments, you must enable VTP version 2 for Token Ring VLAN switching to function properly. For Token Ring and Token Ring-Net media, VTP version 2 must be disabled.

For more information on VTP version configuration guidelines, see the “VTP Version” section on page 11-9.

Beginning in privileged EXEC mode, follow these steps to enable VTP version 2:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| Step 2 | vtp version 2 | Enable VTP version 2 on the switch.
VTP version 2 is disabled by default on VTP version 2-capable switches. |
| Step 3 | end | Return to privileged EXEC mode. |
| Step 4 | show vtp status | Verify that VTP version 2 is enabled in the *VTP V2 Mode* field of the display. |

To disable VTP version 2, use the `no vtp version` global configuration command.

Note
You can also enable VTP version 2 by using the `vlan database` privileged EXEC command to enter VLAN database configuration mode and entering the `vtp v2-mode` VLAN database configuration command. To disable VTP version 2, use the `no vtp v2-mode` VLAN database configuration command.
Enabling VTP Pruning

Pruning increases available bandwidth by restricting flooded traffic to those trunk links that the traffic must use to access the destination devices. You can only enable VTP pruning on a switch in VTP server mode.

Beginning in privileged EXEC mode, follow these steps to enable VTP pruning in the VTP domain:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>vtp pruning</td>
<td>Enable pruning in the VTP administrative domain. By default, pruning is disabled. You need to enable pruning on only one switch in VTP server mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>show vtp status</td>
<td>Verify your entries in the VTP Pruning Mode field of the display.</td>
</tr>
</tbody>
</table>

To disable VTP pruning, use the **no vtp pruning** global configuration command.

You can also enable VTP pruning by using the **vlan database** privileged EXEC command to enter VLAN database configuration mode and entering the **vtp pruning** VLAN database configuration command. To disable VTP pruning, use the **no vtp pruning** VLAN database configuration command. You can also enable VTP version 2 by using the **vtp pruning** privileged EXEC command. However, this command will not be available in future releases.

Pruning is supported with VTP version 1 and version 2. If you enable pruning on the VTP server, it is enabled for the entire VTP domain.

Only VLANs included in the pruning-eligible list can be pruned. By default, VLANs 2 through 1001 are pruning eligible on trunk ports. Reserved VLANs and extended-range VLANs cannot be pruned. To change the pruning-eligible VLANs, see the “Changing the Pruning-Eligible List” section on page 10-22.
Adding a VTP Client Switch to a VTP Domain

Before adding a VTP client to a VTP domain, always verify that its VTP configuration revision number is lower than the configuration revision number of the other switches in the VTP domain. Switches in a VTP domain always use the VLAN configuration of the switch with the highest VTP configuration revision number. If you add a switch that has a revision number higher than the revision number in the VTP domain, it can erase all VLAN information from the VTP server and VTP domain.

Beginning in privileged EXEC mode, follow these steps to verify and reset the VTP configuration revision number on a switch before adding it to a VTP domain:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>show vtp status</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>vtp domain domain-name</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show vtp status</td>
</tr>
<tr>
<td>Step 6</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 7</td>
<td>vtp domain domain-name</td>
</tr>
<tr>
<td>Step 8</td>
<td>end</td>
</tr>
<tr>
<td>Step 9</td>
<td>show vtp status</td>
</tr>
</tbody>
</table>

You can also change the VTP domain name by entering the `vlan database` privileged EXEC command to enter VLAN database configuration mode and by entering the `vtp domain domain-name` command. In this mode, you must enter the `exit` command to update VLAN information and return to privileged EXEC mode.

After resetting the configuration revision number, add the switch to the VTP domain.

Note

You can use the `vtp mode transparent` global configuration command or the `vtp transparent` VLAN database configuration command to disable VTP on the switch, and then change its VLAN information without affecting the other switches in the VTP domain.
Monitoring VTP

You monitor VTP by displaying VTP configuration information: the domain name, the current VTP revision, and the number of VLANs. You can also display statistics about the advertisements sent and received by the switch.

Table 11-3 shows the privileged EXEC commands for monitoring VTP activity.

Table 11-3 VTP Monitoring Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show vtp status</td>
<td>Display the VTP switch configuration information.</td>
</tr>
<tr>
<td>show vtp counters</td>
<td>Display counters about VTP messages that have been sent and received.</td>
</tr>
</tbody>
</table>
Configuring Voice VLAN

This chapter describes how to configure the voice VLAN feature on the Catalyst 3750 switch. Unless otherwise noted, the term switch refers to a standalone switch and a switch stack. Voice VLAN is referred to as an auxiliary VLAN in some Catalyst 6000 family switch documentation.

Note

For complete syntax and usage information for the commands used in this chapter, refer to the command reference for this release.

This chapter consists of these sections:

- Understanding Voice VLAN, page 12-1
- Configuring Voice VLAN, page 12-3
- Displaying Voice VLAN, page 12-6

Understanding Voice VLAN

The voice VLAN feature enables access ports to carry IP voice traffic from an IP phone. When the switch is connected to a Cisco 7960 IP Phone, the IP Phone sends voice traffic with Layer 3 IP precedence and Layer 2 class of service (CoS) values, which are both set to 5 by default. Because the sound quality of an IP phone call can deteriorate if the data is unevenly sent, the switch supports quality of service (QoS) based on IEEE 802.1P CoS. QoS uses classification and scheduling to send network traffic from the switch in a predictable manner. For more information on QoS, see Chapter 24, “Configuring QoS.”

The Cisco 7960 IP Phone is a configurable device, and you can configure it to forward traffic with an 802.1P priority. You can configure the switch to trust or override the traffic priority assigned by an IP Phone.

The Cisco IP Phone contains an integrated three-port 10/100 switch as shown in Figure 12-1. The ports provide dedicated connections to these devices:

- Port 1 connects to the switch or other voice-over-IP (VoIP) device.
- Port 2 is an internal 10/100 interface that carries the IP phone traffic.
- Port 3 (access port) connects to a PC or other device.
Understanding Voice VLAN

Figure 12-1 shows one way to connect a Cisco 7960 IP Phone.

Cisco IP Phone Voice Traffic

You can configure an access port with an attached Cisco IP Phone to use one VLAN for voice traffic and another VLAN for data traffic from a device attached to the phone. You can configure access ports on the switch to send Cisco Discovery Protocol (CDP) packets that instruct an attached Cisco IP Phone to send voice traffic to the switch in any of these ways:

- In the voice VLAN tagged with a Layer 2 CoS priority value
- In the access VLAN tagged with a Layer 2 CoS priority value
- In the access VLAN, untagged (no Layer 2 CoS priority value)

Note

In all configurations, the voice traffic carries a Layer 3 IP precedence value (the default is 5 for voice traffic and 3 for voice control traffic).

Cisco IP Phone Data Traffic

The switch can also process tagged data traffic (traffic in 802.1Q or 802.1P frame types) from the device attached to the access port on the Cisco IP Phone (see Figure 12-1). You can configure Layer 2 access ports on the switch to send CDP packets that instruct the attached Cisco IP Phone to configure the IP phone access port in one of these modes:

- In trusted mode, all traffic received through the access port on the Cisco IP Phone passes through the IP phone unchanged.
- In untrusted mode, all traffic in 802.1Q or 802.1P frames received through the access port on the IP phone receive a configured Layer 2 CoS value. The default Layer 2 CoS value is 0. Untrusted mode is the default.
Note
Untagged traffic from the device attached to the Cisco IP Phone passes through the IP phone unchanged, regardless of the trust state of the access port on the IP phone.

Configuring Voice VLAN

This section describes how to configure voice VLAN on access ports. This section contains this configuration information:

- Default Voice VLAN Configuration, page 12-3
- Voice VLAN Configuration Guidelines, page 12-3
- Configuring a Port Connected to a Cisco 7960 IP Phone, page 12-4

Default Voice VLAN Configuration

The voice VLAN feature is disabled by default.
When the voice VLAN feature is enabled, all untagged traffic is sent according to the default CoS priority of the port.
The CoS value is not trusted for 802.1P or 802.1Q tagged traffic.

Voice VLAN Configuration Guidelines

These are the voice VLAN configuration guidelines:

- You should configure voice VLAN on switch access ports. You can only configure a voice VLAN on Layer 2 ports.
- Before you enable voice VLAN, we recommend that you enable QoS on the switch by entering the mls qos global configuration command and configure the port trust state to trust by entering the mls qos trust cos interface configuration command.
- You must enable CDP on the switch port connected to the Cisco IP Phone to send configuration to the Cisco IP Phone. (CDP is enabled by default globally and on all switch interfaces.)
- The Port Fast feature is automatically enabled when voice VLAN is configured. When you disable voice VLAN, the Port Fast feature is not automatically disabled.
- You cannot configure static secure MAC addresses in the voice VLAN.
- Voice VLAN ports can also be these port types:
 - Dynamic access port. See the “Configuring Dynamic-Access Ports on VMPS Clients” section on page 10-31 for more information.
 - Secure port. See the “Configuring Port Security” section on page 16-7 for more information.
 - 802.1X authenticated port. See the “Enabling 802.1X Authentication” section on page 8-8 for more information.
 - Protected port. See the “Configuring Protected Ports” section on page 16-4 for more information.
 - A source or destination port for a SPAN or RSPAN session.
If the Cisco IP Phone and a device attached to the Cisco IP Phone are in the same VLAN, they must be in the same IP subnet. These conditions indicate that they are in the same VLAN:

- They both use 802.1p or untagged frames.
- The Cisco IP Phone uses 802.1p frames and the device uses untagged frames.
- The Cisco IP Phone uses untagged frames and the device uses 802.1p frames.
- The Cisco IP Phone uses 802.1Q frames and the voice VLAN is the same as the access VLAN.

The Cisco IP Phone and a device attached to the phone cannot communicate if they are in the same VLAN and subnet but use different frame types because traffic in the same subnet is not routed (routing would eliminate the frame type difference).

Configuring a Port Connected to a Cisco 7960 IP Phone

Because a Cisco 7960 IP Phone also supports a connection to a PC or other device, a port connecting the switch to a Cisco IP Phone can carry mixed traffic. You can configure a port to determine how the IP phone carries voice traffic and data traffic.

This section includes these topics:

- **Configuring IP Phone Voice Traffic, page 12-4**
- **Configuring the Priority of Incoming Data Frames, page 12-5**

Configuring IP Phone Voice Traffic

You can configure a port connected to the Cisco IP Phone to send CDP packets to the phone to configure the way in which the phone sends voice traffic. The phone can carry voice traffic in 802.1Q frames for a specified voice VLAN with a Layer 2 CoS value. It can use 802.1P priority tagging to give voice traffic a higher priority and forward all voice traffic through the native (access) VLAN. The IP phone can also send untagged voice traffic or use its own configuration to send voice traffic in the access VLAN. In all configurations, the voice traffic carries a Layer 3 IP precedence value (the default is 5).

Beginning in privileged EXEC mode, follow these steps to configure voice traffic on a port:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface connected to the IP phone.</td>
</tr>
</tbody>
</table>
| Step 3 | mls qos trust cos | Configure the interface to classify ingress traffic packets by using the packet CoS value. For untagged packets, the port default CoS value is used.
Note Before configuring the port trust state, you must first globally enable QoS by using the `mls qos` global configuration command. |
Chapter 12 Configuring Voice VLAN

Configuring Voice VLAN

To return the port to its default setting, use the `no switchport voice vlan` command.

Configuring the Priority of Incoming Data Frames

You can connect a PC or other data device to a Cisco IP Phone port. To process tagged data traffic (in 802.1Q or 802.1P frames), you can configure the switch to send CDP packets to instruct the IP phone how to send data packets from the device attached to the access port on the Cisco IP Phone. The PC can generate packets with an assigned CoS value. You can configure the Cisco IP Phone to not change (trust) or to override (not trust) the priority of frames arriving on the IP phone port from connected devices.

Beginning in privileged EXEC mode, follow these steps to set the priority of data traffic received from the nonvoice port on the Cisco IP Phone:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface <code>interface-id</code></td>
<td>Enter interface configuration mode, and specify the interface connected to the IP phone.</td>
</tr>
<tr>
<td>Step 3 switchport priority extend {cos value</td>
<td>trust}</td>
</tr>
<tr>
<td></td>
<td>• cos value—Configure the IP phone to override the priority received from the PC or the attached device with the specified CoS value. The value is a number from 0 to 7, with 7 as the highest priority. The default priority is cos 0.</td>
</tr>
<tr>
<td></td>
<td>• trust—Configure the IP phone access port to trust the priority received from the PC or the attached device.</td>
</tr>
</tbody>
</table>
To return the port to its default setting, use the `no switchport priority extend` interface configuration command.

Displaying Voice VLAN

To display voice VLAN configuration for an interface, use the `show interfaces interface-id switchport` privileged EXEC command.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show interfaces</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td><code>interface-id switchport</code></td>
<td></td>
</tr>
<tr>
<td>Step 6 copy running-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
<tr>
<td><code>startup-config</code></td>
<td></td>
</tr>
</tbody>
</table>
Configuring STP

This chapter describes how to configure the Spanning Tree Protocol (STP) on the Catalyst 3750 switch. A switch stack appears as a single spanning-tree node to the rest of the network, and all stack members use the same bridge ID. Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

Note

For complete syntax and usage information for the commands used in this chapter, refer to the command reference for this release.

For information about optional spanning-tree features, see Chapter 14, “Configuring Optional Spanning-Tree Features.”

This chapter consists of these sections:

- Understanding Spanning-Tree Features, page 13-1
- Configuring Spanning-Tree Features, page 13-12
- Displaying the Spanning-Tree Status, page 13-21

Understanding Spanning-Tree Features

These sections describe how basic spanning-tree features work:

- STP Overview, page 13-2
- Bridge Protocol Data Units, page 13-2
- Election of the Root Switch, page 13-4
- Bridge ID, Switch Priority, and Extended System ID, page 13-5
- Spanning-Tree Timers, page 13-5
- Creating the Spanning-Tree Topology, page 13-6
- Spanning-Tree Interface States, page 13-6
- Spanning-Tree Address Management, page 13-9
- Supported Spanning-Tree Instances, page 13-9
- STP and IEEE 802.1Q Trunks, page 13-9
- VLAN-Bridge STP, page 13-10
STP Overview

STP is a Layer 2 link management protocol that provides path redundancy while preventing loops in the network. For a Layer 2 Ethernet network to function properly, only one active path can exist between any two stations. Spanning-tree operation is transparent to end stations, which cannot detect whether they are connected to a single LAN segment or a switched LAN of multiple segments.

When you create fault-tolerant internetworks, you must have a loop-free path between all nodes in a network. The spanning-tree algorithm calculates the best loop-free path throughout a switched Layer 2 network. Switches send and receive spanning-tree frames, called bridge protocol data units (BPDUs), at regular intervals. The switches do not forward these frames, but use the frames to construct a loop-free path.

Multiple active paths among end stations cause loops in the network. If a loop exists in the network, end stations might receive duplicate messages. Switches might also learn end-station MAC addresses on multiple Layer 2 interfaces. These conditions result in an unstable network.

Spanning tree defines a tree with a root switch and a loop-free path from the root to all switches in the Layer 2 network. Spanning tree forces redundant data paths into a standby (blocked) state. If a network segment in the spanning tree fails and a redundant path exists, the spanning-tree algorithm recalculates the spanning-tree topology and activates the standby path.

When two interfaces on a switch are part of a loop, the spanning-tree port priority and path cost settings determine which interface is put in the forwarding state and which is put in the blocking state. The spanning-tree port priority value represents the location of an interface in the network topology and how well it is located to pass traffic. The path cost value represents media speed.

Bridge Protocol Data Units

The stable, active spanning-tree topology of a switched network is determined by these elements:

- The unique bridge ID (switch priority and MAC address) associated with each VLAN on each switch. In a switch stack, all switches use the same bridge ID for a given spanning-tree instance.
- The spanning-tree path cost to the root switch.
- The port identifier (port priority and MAC address) associated with each Layer 2 interface.

When the switches in a network are powered up, each functions as the root switch. Each switch sends a configuration BPDU through all of its ports. The BPDUs communicate and compute the spanning-tree topology. Each configuration BPDU contains this information:

- The unique bridge ID of the switch that the sending switch identifies as the root switch
- The spanning-tree path cost to the root
- The bridge ID of the sending switch
- Message age
• The identifier of the sending interface
• Values for the hello, forward delay, and max-age protocol timers

When a switch receives a configuration BPDU that contains superior information (lower bridge ID, lower path cost, and so forth), it stores the information for that port. If this BPDU is received on the root port of the switch, the switch also forwards it with an updated message to all attached LANs for which it is the designated switch.

If a switch receives a configuration BPDU that contains inferior information to that currently stored for that port, it discards the BPDU. If the switch is a designated switch for the LAN from which the inferior BPDU was received, it sends that LAN a BPDU containing the up-to-date information stored for that port. In this way, inferior information is discarded, and superior information is propagated on the network.

A BPDU exchange results in these actions:
• One switch in the network is elected as the root switch. In a switch stack, one stack member is elected as the stack root switch. The stack root switch contains the outgoing root port (Switch 1), as shown in Figure 13-1 on page 13-4.
• A root port is selected for each switch (except the root switch). This port provides the best path (lowest cost) when the switch forwards packets to the root switch.

When selecting the root port on a switch stack, spanning tree follows this sequence:
 - Selects the lowest root bridge ID
 - Selects the lowest path cost to the root switch
 - Selects the lowest designated bridge ID
 - Selects the lowest sender bridge ID
 - Selects the lowest port ID

Only one outgoing port on the stack root switch is selected as the root port. The remaining switches in the stack become its designated switches (Switch 2 and Switch 3) as shown in Figure 13-1 on page 13-4.

• The shortest distance to the root switch is calculated for each switch based on the path cost.
• A designated switch for each LAN segment is selected. The designated switch incurs the lowest path cost when forwarding packets from that LAN to the root switch. The port through which the designated switch is attached to the LAN is called the designated port.
Election of the Root Switch

All switches in the Layer 2 network participating in spanning tree gather information about other switches in the network through an exchange of BPDU data messages. This exchange of messages results in these actions:

- The election of a unique root switch for each spanning-tree instance
- The election of a designated switch for every switched LAN segment
- The removal of loops in the switched network by blocking Layer 2 interfaces connected to redundant links

For each VLAN, the switch with the highest switch priority (the lowest numerical priority value) is elected as the root switch. If all switches are configured with the default priority (32768), the switch with the lowest MAC address in the VLAN becomes the root switch. The switch priority value occupies the most significant bits of the bridge ID.

When you change the switch priority value, you change the probability that the switch will be elected as the root switch. Configuring a higher value decreases the probability; a lower value increases the probability.

The root switch is the logical center of the spanning-tree topology in a switched network. All paths that are not needed to reach the root switch from anywhere in the switched network are placed in the spanning-tree blocking mode.

BPDUs contain information about the sending switch and its ports, including switch and MAC addresses, switch priority, port priority, and path cost. Spanning tree uses this information to elect the root switch and root port for the switched network and the root port and designated port for each switched segment.
Bridge ID, Switch Priority, and Extended System ID

The IEEE 802.1D standard requires that each switch has a unique bridge identifier (bridge ID), which determines the selection of the root switch. Because each VLAN is considered as a different logical bridge with per-VLAN spanning-tree plus (PVST+), the same switch must have as many different bridge IDs as VLANs configured on it. Each VLAN on the switch has a unique 8-byte bridge ID. The two most-significant bytes are used for the switch priority, and the remaining six bytes are derived from the switch MAC address.

The Catalyst 3750 switch supports the 802.1T spanning-tree extensions, and some of the bits previously used for the switch priority are now used as the VLAN identifier. The result is that fewer MAC addresses are reserved for the switch, and a larger range of VLAN IDs can be supported, all while maintaining the uniqueness of the bridge ID. As shown in Table 13-1, the two bytes previously used for the switch priority are reallocated into a 4-bit priority value and a 12-bit extended system ID value equal to the VLAN ID.

Support for the extended system ID affects how you manually configure the root switch, the secondary root switch, and the switch priority of a VLAN. For more information, see the “Configuring the Root Switch” section on page 13-14, “Configuring a Secondary Root Switch” section on page 13-15, and “Configuring the Switch Priority of a VLAN” section on page 13-19.

Spanning-Tree Timers

Table 13-2 describes the timers that affect the entire spanning-tree performance.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hello timer</td>
<td>Determines how often the switch broadcasts hello messages to other switches.</td>
</tr>
<tr>
<td>Forward-delay timer</td>
<td>Determines how long each of the listening and learning states last before</td>
</tr>
<tr>
<td></td>
<td>the interface begins forwarding.</td>
</tr>
<tr>
<td>Maximum-age timer</td>
<td>Determines the amount of time the switch stores protocol information</td>
</tr>
<tr>
<td></td>
<td>received on an interface.</td>
</tr>
</tbody>
</table>
Creating the Spanning-Tree Topology

In Figure 13-2, Switch A is elected as the root switch because the switch priority of all the switches is set to the default (32768) and Switch A has the lowest MAC address. However, because of traffic patterns, number of forwarding interfaces, or link types, Switch A might not be the ideal root switch. By increasing the priority (lowering the numerical value) of the ideal switch so that it becomes the root switch, you force a spanning-tree recalculation to form a new topology with the ideal switch as the root.

![Figure 13-2 Spanning-Tree Topology](image)

When the spanning-tree topology is calculated based on default parameters, the path between source and destination end stations in a switched network might not be ideal. For instance, connecting higher-speed links to an interface that has a higher number than the root port can cause a root-port change. The goal is to make the fastest link the root port.

For example, assume that one port on Switch B is a Gigabit Ethernet link and that another port on Switch B (a 10/100 link) is the root port. Network traffic might be more efficient over the Gigabit Ethernet link. By changing the spanning-tree port priority on the Gigabit Ethernet interface to a higher priority (lower numerical value) than the root port, the Gigabit Ethernet interface becomes the new root port.

Spanning-Tree Interface States

Propagation delays can occur when protocol information passes through a switched LAN. As a result, topology changes can take place at different times and at different places in a switched network. When an interface transitions directly from nonparticipation in the spanning-tree topology to the forwarding state, it can create temporary data loops. Interfaces must wait for new topology information to propagate through the switched LAN before starting to forward frames. They must allow the frame lifetime to expire for forwarded frames that have used the old topology.

Each Layer 2 interface on a switch using spanning tree exists in one of these states:

- **Blocking**—The interface does not participate in frame forwarding.
- **Listening**—The first transitional state after the blocking state when the spanning tree determines that the interface should participate in frame forwarding.
- **Learning**—The interface prepares to participate in frame forwarding.
- **Forwarding**—The interface forwards frames.
- **Disabled**—The interface is not participating in spanning tree because of a shutdown port, no link on the port, or no spanning-tree instance running on the port.
An interface moves through these states:
- From initialization to blocking
- From blocking to listening or to disabled
- From listening to learning or to disabled
- From learning to forwarding or to disabled
- From forwarding to disabled

Figure 13-3 illustrates how an interface moves through the states.

Figure 13-3 Spanning-Tree Interface States

When you power up the switch, STP is enabled by default, and every interface in the switch, VLAN, or network goes through the blocking state and the transitory states of listening and learning. Spanning tree stabilizes each interface at the forwarding or blocking state.

When the spanning-tree algorithm places a Layer 2 interface in the forwarding state, this process occurs:

1. The interface is in the listening state while spanning tree waits for protocol information to transition the interface to the blocking state.
2. While spanning tree waits the forward-delay timer to expire, it moves the interface to the learning state and resets the forward-delay timer.
3. In the learning state, the interface continues to block frame forwarding as the switch learns end-station location information for the forwarding database.
4. When the forward-delay timer expires, spanning tree moves the interface to the forwarding state, where both learning and frame forwarding are enabled.
Chapter 13 Configuring STP

Understanding Spanning-Tree Features

Blocking State

A Layer 2 interface in the blocking state does not participate in frame forwarding. After initialization, a BPDU is sent to each interface in the switch. A switch initially functions as the root until it exchanges BPDUs with other switches. This exchange establishes which switch in the network is the root or root switch. If there is only one switch in the network, no exchange occurs, the forward-delay timer expires, and the interfaces move to the listening state. An interface always enters the blocking state after switch initialization.

An interface in the blocking state performs as follows:
- Discards frames received on the port
- Discards frames switched from another interface for forwarding
- Does not learn addresses
- Receives BPDUs

Listening State

The listening state is the first state a Layer 2 interface enters after the blocking state. The interface enters this state when the spanning tree determines that the interface should participate in frame forwarding.

An interface in the listening state performs as follows:
- Discards frames received on the port
- Discards frames switched from another interface for forwarding
- Does not learn addresses
- Receives BPDUs

Learning State

A Layer 2 interface in the learning state prepares to participate in frame forwarding. The interface enters the learning state from the listening state.

An interface in the learning state performs as follows:
- Discards frames received on the port
- Discards frames switched from another interface for forwarding
- Learns addresses
- Receives BPDUs

Forwarding State

A Layer 2 interface in the forwarding state forwards frames. The interface enters the forwarding state from the learning state.

An interface in the forwarding state performs as follows:
- Receives and forwards frames received on the port
- Forwards frames switched from another port
- Learns addresses
- Receives BPDUs
Chapter 13 Configuring STP

Understanding Spanning-Tree Features

Disabled State

A Layer 2 interface in the disabled state does not participate in frame forwarding or in the spanning tree. An interface in the disabled state is nonoperational.

A disabled interface performs as follows:

- Discards frames received on the port
- Discards frames switched from another interface for forwarding
- Does not learn addresses
- Does not receive BPDUs

Spanning-Tree Address Management

IEEE 802.1D specifies 17 multicast addresses, ranging from 0x00180C2000000 to 0x0180C2000010, to be used by different bridge protocols. These addresses are static addresses that cannot be removed.

Regardless of the spanning-tree state, each switch in the stack receives but does not forward packets destined for addresses between 0x0180C2000000 and 0x0180C200001F. If STP is enabled, the CPU on each switch in the stack receives packets destined for 0x0180C2000000 and 0x0180C2000010. If STP is disabled, each switch in the stack forwards those packets as unknown multicast addresses.

Supported Spanning-Tree Instances

A switch stack supports the per-VLAN spanning tree (PVST) and a maximum of 128 spanning-tree instances.

For information about how spanning tree interoperates with the VLAN Trunking Protocol (VTP), see the “STP Configuration Guidelines” section on page 13-13.

STP and IEEE 802.1Q Trunks

The IEEE 802.1Q standard for VLAN trunks imposes some limitations on the spanning-tree strategy for a network. The standard requires only one spanning-tree instance for all VLANs allowed on the trunks. However, in a network of Cisco switches connected through 802.1Q trunks, the switches maintain one spanning-tree instance for each VLAN allowed on the trunks.

When you connect a Cisco switch to a non-Cisco device through an 802.1Q trunk, the Cisco switch uses PVST+ to provide spanning-tree interoperability. It combines the spanning-tree instance of the 802.1Q VLAN of the trunk with the spanning-tree instance of the non-Cisco 802.1Q switch.

However, all PVST+ information is maintained by Cisco switches separated by a cloud of non-Cisco 802.1Q switches. The non-Cisco 802.1Q cloud separating the Cisco switches is treated as a single trunk link between the switches.

PVST+ is automatically enabled on 802.1Q trunks, and no user configuration is required. The external spanning-tree behavior on access ports and Inter-Switch Link (ISL) trunk ports is not affected by PVST+.

For more information on 802.1Q trunks, see Chapter 10, “Configuring VLANs.”
VLAN-Bridge STP

Cisco VLAN-bridge STP is used with the fallback bridging feature (bridge groups), which forwards non-IP protocols such as DECnet between two or more VLAN bridge domains or routed ports. The VLAN-bridge STP allows the bridge groups to form a spanning tree on top of the individual VLAN spanning trees to prevent loops from forming if there are multiple connections among VLANs. It also prevents the individual spanning trees from the VLANs being bridged from collapsing into a single spanning tree.

To support VLAN-bridge STP, some of the spanning-tree timers are increased. To use the fallback bridging feature, you must have the enhanced multilayer software image installed on your switch. For more information, see Chapter 30, “Configuring Fallback Bridging.”

Spanning Tree and Redundant Connectivity

You can create a redundant backbone with spanning tree by connecting two switch interfaces to another device or to two different devices. Spanning tree automatically disables one interface but enables it if the other one fails, as shown in Figure 13-4. If one link is high-speed and the other is low-speed, the low-speed link is always disabled. If the speeds are the same, the port priority and port ID are added together, and spanning tree disables the link with the lowest value.

![Figure 13-4 Spanning Tree and Redundant Connectivity](image)

You can also create redundant links between switches by using EtherChannel groups. For more information, see the Chapter 25, “Configuring EtherChannels.”
Accelerated Aging to Retain Connectivity

The default for aging dynamic addresses is 5 minutes, the default setting of the `mac-address-table aging-time` global configuration command. However, a spanning-tree reconfiguration can cause many station locations to change. Because these stations could be unreachable for 5 minutes or more during a reconfiguration, the address-aging time is accelerated so that station addresses can be dropped from the address table and then relearned. The accelerated aging is the same as the forward-delay parameter value (`spanning-tree vlan vlan-id forward-time seconds` global configuration command) when the spanning tree reconfigures.

Because each VLAN is a separate spanning-tree instance, the switch accelerates aging on a per-VLAN basis. A spanning-tree reconfiguration on one VLAN can cause the dynamic addresses learned on that VLAN to be subject to accelerated aging. Dynamic addresses on other VLANs can be unaffected and remain subject to the aging interval entered for the switch.

Spanning Tree and Switch Stacks

A switch stack appears as a single spanning-tree node to the rest of the network, and all stack members use the same bridge ID for a given spanning tree. The bridge ID is derived from the MAC address of the stack master.

When a new switch joins the stack, it sets its bridge ID to the stack-master bridge ID. If the newly added switch has the lowest ID and if the root path cost is the same among all stack members, the newly added switch becomes the stack root.

When a stack member leaves the stack, spanning-tree reconvergence occurs within the stack (and possibly outside the stack). The remaining stack member with the lowest stack port ID becomes the stack root.

If the stack master fails or leaves the stack, the stack members elect a new stack master, and all stack members change their bridge IDs of the spanning trees to the new master bridge ID.

If the stack switch is the spanning-tree root and the stack master fails or leaves the stack, the stack members elect a new stack master, and a spanning-tree reconvergence occurs.

If a neighboring switch external to the switch stack fails or is powered down, normal spanning-tree processing occurs. Spanning-tree reconvergence might occur as a result of losing a switch in the active topology.

If a new switch external to the switch stack is added to the network, normal spanning-tree processing occurs. Spanning-tree reconvergence might occur as a result of adding a switch in the network.

For more information about switch stacks, see Chapter 5, “Managing Switch Stacks.”
Chapter 13 Configuring STP

Configuring Spanning-Tree Features

These sections describe how to configure spanning-tree features:

- Default STP Configuration, page 13-12
- STP Configuration Guidelines, page 13-13
- Disabling STP, page 13-14 (optional)
- Configuring the Root Switch, page 13-14 (optional)
- Configuring a Secondary Root Switch, page 13-15 (optional)
- Configuring Port Priority, page 13-16 (optional)
- Configuring Path Cost, page 13-17 (optional)
- Configuring the Switch Priority of a VLAN, page 13-19 (optional)
- Configuring the Hello Time, page 13-19 (optional)
- Configuring the Forwarding-Delay Time for a VLAN, page 13-20 (optional)
- Configuring the Maximum-Aging Time for a VLAN, page 13-21 (optional)

Default STP Configuration

Table 13-3 shows the default STP configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable state</td>
<td>Enabled on VLAN 1.</td>
</tr>
<tr>
<td></td>
<td>Up to 128 spanning-tree instances can be enabled on</td>
</tr>
<tr>
<td></td>
<td>the switch stack.</td>
</tr>
<tr>
<td>Switch priority</td>
<td>32768.</td>
</tr>
<tr>
<td>Spanning-tree port priority</td>
<td>128.</td>
</tr>
<tr>
<td>(configurable on a per-interface basis)</td>
<td></td>
</tr>
<tr>
<td>Spanning-tree port cost</td>
<td>1000 Mbps: 4.</td>
</tr>
<tr>
<td>(configurable on a per-interface basis)</td>
<td>100 Mbps: 19.</td>
</tr>
<tr>
<td></td>
<td>10 Mbps: 100.</td>
</tr>
<tr>
<td>Spanning-tree VLAN port priority</td>
<td>128.</td>
</tr>
<tr>
<td>(configurable on a per-VLAN basis)</td>
<td></td>
</tr>
<tr>
<td>Spanning-tree VLAN port cost</td>
<td>1000 Mbps: 4.</td>
</tr>
<tr>
<td>(configurable on a per-VLAN basis)</td>
<td>100 Mbps: 19.</td>
</tr>
<tr>
<td></td>
<td>10 Mbps: 100.</td>
</tr>
<tr>
<td>Hello time</td>
<td>2 seconds.</td>
</tr>
<tr>
<td>Forward-delay time</td>
<td>15 seconds.</td>
</tr>
<tr>
<td>Maximum-aging time</td>
<td>20 seconds.</td>
</tr>
</tbody>
</table>
STP Configuration Guidelines

Each stack member runs its own spanning tree, and the entire stack appears as a single switch to the rest of the network.

If more VLANs are defined in the VTP than there are spanning-tree instances, you can enable STP on only 128 VLANs on each switch stack. The remaining VLANs operate with spanning tree disabled.

If 128 instances of spanning tree are already in use, you can disable STP on one of the VLANs and then enable it on the VLAN where you want it to run. Use the `no spanning-tree vlan vlan-id` global configuration command to disable STP on a specific VLAN, and use the `spanning-tree vlan vlan-id` global configuration command to enable STP on the desired VLAN.

Caution

Switches that are not running spanning tree still forward BPDUs that they receive so that the other switches on the VLAN that have a running spanning-tree instance can break loops. Therefore, spanning tree must be running on enough switches to break all the loops in the network; for example, at least one switch on each loop in the VLAN must be running spanning tree. It is not absolutely necessary to run spanning tree on all switches in the VLAN. However, if you are running spanning tree only on a minimal set of switches, an incautious change to the network that introduces another loop into the VLAN can result in a broadcast storm.

Note

If you have already used all available spanning-tree instances on your switch, adding another VLAN anywhere in the VTP domain creates a VLAN that is not running spanning tree on that switch. If you have the default allowed list on the trunk ports of that switch, the new VLAN is carried on all trunk ports. Depending on the topology of the network, this could create a loop in the new VLAN that will not be broken, particularly if there are several adjacent switches that have all run out of spanning-tree instances. You can prevent this possibility by setting up allowed lists on the trunk ports of switches that have used up their allocation of spanning-tree instances. Setting up allowed lists is not necessary in many cases and can make it more labor-intensive to add another VLAN to the network.

Spanning-tree commands determine the configuration of VLAN spanning-tree instances. You create a spanning-tree instance when you assign an interface to a VLAN. The spanning-tree instance is removed when the last interface is moved to another VLAN. You can configure switch and port parameters before a spanning-tree instance is created; these parameters are applied when the spanning-tree instance is created.
Disabling STP

STP is enabled by default on VLAN 1 and on all newly created VLANs up to the spanning-tree limit specified in Table 13-3 on page 13-12. Disable STP only if you are sure there are no loops in the network topology.

Caution

When STP is disabled and loops are present in the topology, excessive traffic and indefinite packet duplication can drastically reduce network performance.

Beginning in privileged EXEC mode, follow these steps to disable STP on a per-VLAN basis. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>no spanning-tree vlan vlan-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show spanning-tree vlan vlan-id</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To re-enable STP, use the spanning-tree vlan vlan-id global configuration command.

Configuring the Root Switch

The switch maintains a separate spanning-tree instance for each active VLAN configured on it. A bridge ID, consisting of the switch priority and the switch MAC address, is associated with each instance. For each VLAN, the switch with the lowest bridge ID becomes the root switch for that VLAN.

To configure a switch to become the root for the specified VLAN, use the spanning-tree vlan vlan-id root global configuration command to modify the switch priority from the default value (32768) to a significantly lower value. When you enter this command, the software checks the switch priority of the root switches for each VLAN. Because of the extended system ID support, the switch sets its own priority for the specified VLAN to 24576 if this value will cause this switch to become the root for the specified VLAN.

If any root switch for the specified VLAN has a switch priority lower than 24576, the switch sets its own priority for the specified VLAN to 4096 less than the lowest switch priority. (4096 is the value of the least-significant bit of a 4-bit switch priority value as shown in Table 13-1 on page 13-5.)

Note

The spanning-tree vlan vlan-id root global configuration command fails if the value necessary to be the root switch is less than 1.

Note

If your network consists of switches that both do and do not support the extended system ID, it is unlikely that the switch with the extended system ID support will become the root switch. The extended system ID increases the switch priority value every time the VLAN number is greater than the priority of the connected switches running older software.
Chapter 13: Configuring STP

Configuring Spanning-Tree Features

The root switch for each spanning-tree instance should be a backbone or distribution switch. Do not configure an access switch as the spanning-tree primary root.

Use the **diameter** keyword to specify the Layer 2 network diameter (that is, the maximum number of switch hops between any two end stations in the Layer 2 network). When you specify the network diameter, the switch automatically sets an optimal hello time, forward-delay time, and maximum-age time for a network of that diameter, which can significantly reduce the convergence time. You can use the **hello** keyword to override the automatically calculated hello time.

Note

After configuring the switch as the root switch, we recommend that you avoid manually configuring the hello time, forward-delay time, and maximum-age time by using the `spanning-tree vlan vlan-id hello-time`, `spanning-tree vlan vlan-id forward-time`, and the `spanning-tree vlan vlan-id max-age` global configuration commands.

Beginning in privileged EXEC mode, follow these steps to configure a switch to become the root for the specified VLAN. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
</tbody>
</table>
| **Step 2** | `spanning-tree vlan vlan-id root primary [diameter net-diameter [hello-time seconds]]` | Configure a switch to become the root for the specified VLAN.
- For `vlan-id`, the range is 1 to 4094.
- (Optional) For `diameter net-diameter`, specify the maximum number of switches between any two end stations. The range is 2 to 7.
- (Optional) For `hello-time seconds`, specify the interval in seconds between the generation of configuration messages by the root switch. The range is 1 to 10; the default is 2. |
| **Step 3** | `end` | Return to privileged EXEC mode. |
| **Step 4** | `show spanning-tree detail` | Verify your entries. |
| **Step 5** | `copy running-config startup-config` | (Optional) Save your entries in the configuration file. |

To return to the default setting, use the **no spanning-tree vlan vlan-id root** global configuration command.

Configuring a Secondary Root Switch

When you configure a Catalyst 3750 switch as the secondary root, the switch priority is modified from the default value (32768) to 28672. The switch is then likely to become the root switch for the specified VLAN if the primary root switch fails. This is assuming that the other network switches use the default switch priority of 32768 and therefore are unlikely to become the root switch.

You can execute this command on more than one switch to configure multiple backup root switches. Use the same network diameter and hello-time values as you used when you configured the primary root switch with the `spanning-tree vlan vlan-id root primary` global configuration command.
Beginning in privileged EXEC mode, follow these steps to configure a switch to become the secondary root for the specified VLAN. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>spanning-tree vlan vlan-id root secondary [diameter net-diameter [hello-time seconds]]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show spanning-tree detail</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return to the default setting, use the no spanning-tree vlan vlan-id root global configuration command.

Configuring Port Priority

If a loop occurs, spanning tree uses the port priority when selecting an interface to put into the forwarding state. You can assign higher priority values (lower numerical values) to interfaces that you want selected first and lower priority values (higher numerical values) that you want selected last. If all interfaces have the same priority value, spanning tree puts the interface with the lowest interface number in the forwarding state and blocks the other interfaces.

Note

If your switch is a member of a switch stack, you must use the spanning-tree [vlan vlan-id] cost cost interface configuration command instead of the spanning-tree [vlan vlan-id] port-priority priority interface configuration command to select an interface to put in the forwarding state. Assign lower cost values to interfaces that you want selected first and higher cost values that you want selected last. For more information, see the “Configuring Path Cost” section on page 13-17.
Beginning in privileged EXEC mode, follow these steps to configure the port priority of an interface. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>spanning-tree port-priority priority</td>
</tr>
<tr>
<td>Step 4</td>
<td>spanning-tree vlan vlan-id port-priority priority</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td>Step 6</td>
<td>show spanning-tree interface interface-id</td>
</tr>
<tr>
<td>or</td>
<td>show spanning-tree vlan vlan-id</td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

Note

The show spanning-tree interface interface-id privileged EXEC command displays information only if the port is in a link-up operative state. Otherwise, you can use the show running-config interface privileged EXEC command to confirm the configuration.

To return to the default setting, use the no spanning-tree [vlan vlan-id] port-priority interface configuration command. For information on how to configure load sharing on trunk ports by using spanning-tree port priorities, see the “Configuring Trunk Ports for Load Sharing” section on page 10-24.

Configuring Path Cost

The spanning-tree path cost default value is derived from the media speed of an interface. If a loop occurs, spanning tree uses cost when selecting an interface to put in the forwarding state. You can assign lower cost values to interfaces that you want selected first and higher cost values that you want selected last. If all interfaces have the same cost value, spanning tree puts the interface with the lowest interface number in the forwarding state and blocks the other interfaces.
Beginning in privileged EXEC mode, follow these steps to configure the cost of an interface. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td></td>
<td>Enter interface configuration mode, and specify an interface to configure. Valid interfaces include physical interfaces and port-channel logical interfaces (port-channel port-channel-number).</td>
</tr>
<tr>
<td>Step 3</td>
<td>spanning-tree cost cost</td>
</tr>
<tr>
<td></td>
<td>Configure the cost for an interface.</td>
</tr>
<tr>
<td></td>
<td>If a loop occurs, spanning tree uses the path cost when selecting an interface to place into the forwarding state. A lower path cost represents higher-speed transmission.</td>
</tr>
<tr>
<td></td>
<td>For cost, the range is 1 to 200000000; the default value is derived from the media speed of the interface.</td>
</tr>
<tr>
<td>Step 4</td>
<td>spanning-tree vlan vlan-id cost cost</td>
</tr>
<tr>
<td></td>
<td>Configure the cost for a VLAN.</td>
</tr>
<tr>
<td></td>
<td>If a loop occurs, spanning tree uses the path cost when selecting an interface to place into the forwarding state. A lower path cost represents higher-speed transmission.</td>
</tr>
<tr>
<td></td>
<td>• For vlan-id, the range is 1 to 4094.</td>
</tr>
<tr>
<td></td>
<td>• For cost, the range is 1 to 200000000; the default value is derived from the media speed of the interface.</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>show spanning-tree interface interface-id</td>
</tr>
<tr>
<td>or</td>
<td>show spanning-tree vlan vlan-id</td>
</tr>
<tr>
<td></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Note

The `show spanning-tree interface interface-id` privileged EXEC command displays information only for ports that are in a link-up operative state. Otherwise, you can use the `show running-config` privileged EXEC command to confirm the configuration.

To return to the default setting, use the `no spanning-tree [vlan vlan-id] cost` interface configuration command. For information on how to configure load sharing on trunk ports by using spanning-tree path costs, see the “Configuring Trunk Ports for Load Sharing” section on page 10-24.
Configuring the Switch Priority of a VLAN

You can configure the switch priority and make it more likely that a standalone switch or a switch in the stack will be chosen as the root switch.

Note
Exercise care when using this command. For most situations, we recommend that you use the `spanning-tree vlan vlan-id root primary` and the `spanning-tree vlan vlan-id root secondary` global configuration commands to modify the switch priority.

Beginning in privileged EXEC mode, follow these steps to configure the switch priority of a VLAN. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>spanning-tree vlan vlan-id priority priority</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show spanning-tree vlan vlan-id</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return to the default setting, use the `no spanning-tree vlan vlan-id priority` global configuration command.

Configuring the Hello Time

You can configure the interval between the generation of configuration messages by the root switch by changing the hello time.

Note
Exercise care when using this command. For most situations, we recommend that you use the `spanning-tree vlan vlan-id root primary` and the `spanning-tree vlan vlan-id root secondary` global configuration commands to modify the hello time.
Beginning in privileged EXEC mode, follow these steps to configure the hello time of a VLAN. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| spanning-tree vlan vlan-id hello-time seconds | Configure the hello time of a VLAN. The hello time is the interval between the generation of configuration messages by the root switch. These messages mean that the switch is alive.
 - For vlan-id, the range is 1 to 4094.
 - For seconds, the range is 1 to 10; the default is 2. |
| end | Return to privileged EXEC mode. |
| show spanning-tree vlan vlan-id | Verify your entries. |
| copy running-config startup-config | (Optional) Save your entries in the configuration file. |

To return to the default setting, use the no spanning-tree vlan vlan-id hello-time global configuration command.

Configuring the Forwarding-Delay Time for a VLAN

Beginning in privileged EXEC mode, follow these steps to configure the forwarding-delay time for a VLAN. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| spanning-tree vlan vlan-id forward-time seconds | Configure the forward time of a VLAN. The forward delay is the number of seconds a port waits before changing from its spanning-tree learning and listening states to the forwarding state.
 - For vlan-id, the range is 1 to 4094.
 - For seconds, the range is 4 to 30; the default is 15. |
| end | Return to privileged EXEC mode. |
| show spanning-tree vlan vlan-id | Verify your entries. |
| copy running-config startup-config | (Optional) Save your entries in the configuration file. |

To return to the default setting, use the no spanning-tree vlan vlan-id forward-time global configuration command.
Configuring the Maximum-Aging Time for a VLAN

Beginning in privileged EXEC mode, follow these steps to configure the maximum-aging time for a VLAN. This procedure is optional.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| 2 | spanning-tree vlan `vlan-id max-age seconds` | Configure the maximum-aging time of a VLAN. The maximum-aging time is the number of seconds a switch waits without receiving spanning-tree configuration messages before attempting a reconfiguration.
 - For `vlan-id`, the range is 1 to 4094.
 - For `seconds`, the range is 6 to 40; the default is 20. |
| 3 | end | Return to privileged EXEC mode. |
| 4 | show spanning-tree vlan `vlan-id` | Verify your entries. |
| 5 | copy running-config startup-config | (Optional) Save your entries in the configuration file. |

To return to the default setting, use the `no spanning-tree vlan `vlan-id max-age` global configuration command.

Displaying the Spanning-Tree Status

To display the spanning-tree status, use one or more of the privileged EXEC commands in Table 13-4:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show spanning-tree active</td>
<td>Displays spanning-tree information on active interfaces only.</td>
</tr>
<tr>
<td>show spanning-tree detail</td>
<td>Displays a detailed summary of interface information.</td>
</tr>
<tr>
<td>show spanning-tree interface <code>interface-id</code></td>
<td>Displays spanning-tree information for the specified interface.</td>
</tr>
<tr>
<td>show spanning-tree summary [totals]</td>
<td>Displays a summary of port states or displays the total lines of the STP state section.</td>
</tr>
</tbody>
</table>

For information about other keywords for the `show spanning-tree` privileged EXEC command, refer to the command reference for this release.
Displaying the Spanning-Tree Status
Configuring Optional Spanning-Tree Features

This chapter describes how to configure optional spanning-tree features on the Catalyst 3750 switch. Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

For information on configuring the Spanning Tree Protocol (STP), see Chapter 13, “Configuring STP.”

Note
For complete syntax and usage information for the commands used in this chapter, refer to the command reference for this release.

This chapter consists of these sections:

- Understanding Optional Spanning-Tree Features, page 14-1
- Configuring Optional Spanning-Tree Features, page 14-11
- Displaying the Spanning-Tree Status, page 14-17

Understanding Optional Spanning-Tree Features

These sections describe how the optional spanning-tree features work:

- Understanding Port Fast, page 14-2
- Understanding BPDU Guard, page 14-3
- Understanding BPDU Filtering, page 14-3
- Understanding UplinkFast, page 14-4
- Understanding Cross-Stack UplinkFast, page 14-5
- Understanding BackboneFast, page 14-8
- Understanding Root Guard, page 14-10
- Understanding Loop Guard, page 14-11
Understanding Port Fast

Port Fast immediately brings an interface configured as an access or trunk port to the forwarding state from a blocking state, bypassing the listening and learning states. You can use Port Fast on ports connected to a single workstation or server, as shown in Figure 14-1, to allow those devices to immediately connect to the network, rather than waiting for the spanning tree to converge.

Ports connected to a single workstation or server should not receive bridge protocol data units (BPDUs). A port with Port Fast enabled goes through the normal cycle of spanning-tree status changes when the switch is restarted.

Note
Because the purpose of Port Fast is to minimize the time ports must wait for spanning-tree to converge, it is effective only when used on ports connected to end stations. If you enable Port Fast on a port connecting to another switch, you risk creating a spanning-tree loop.

You can enable this feature by using the `spanning-tree portfast` interface configuration or the `spanning-tree portfast default` global configuration command.

Figure 14-1 Port Fast-Enabled Ports
Understanding BPDU Guard

The BPDU guard feature can be globally enabled on the switch or can be enabled per interface, but the feature operates with some differences.

At the global level, you can enable BPDU guard on Port Fast-enabled ports by using the `spanning-tree portfast bpduguard default` global configuration command. Spanning tree shuts down ports that are in a Port Fast-operational state. In a valid configuration, Port Fast-enabled ports do not receive BPDUs. Receiving a BPDU on a Port Fast-enabled port signals an invalid configuration, such as the connection of an unauthorized device, and the BPDU guard feature puts the port in the error-disabled state.

At the interface level, you can enable BPDU guard on any port by using the `spanning-tree bpduguard enable` interface configuration command without also enabling the Port Fast feature. When the port receives a BPDU, it is put in the error-disabled state.

The BPDU guard feature provides a secure response to invalid configurations because you must manually put the port back in service. Use the BPDU guard feature in a service-provider network to prevent an access port from participating in the spanning tree.

Understanding BPDU Filtering

The BPDU filtering feature can be globally enabled on the switch or can be enabled per interface, but the feature operates with some differences.

At the global level, you can enable BPDU filtering on Port Fast-enabled ports by using the `spanning-tree portfast bpdufilter default` global configuration command. This command prevents ports that are in a Port Fast-operational state from sending or receiving BPDUs. The ports still send a few BPDUs at link-up before the switch begins to filter outbound BPDUs. You should globally enable BPDU filtering on a switch so that hosts connected to these ports do not receive BPDUs. If a BPDU is received on a Port Fast-enabled port, the port loses its Port Fast-operational status, and BPDU filtering is disabled.

At the interface level, you can enable BPDU filtering on any port without also enabling the Port Fast feature by using the `spanning-tree bpdufilter enable` interface configuration command. This command prevents the port from sending or receiving BPDUs.

Caution

Enabling BPDU filtering on an interface is the same as disabling spanning tree on it and can result in spanning-tree loops.
Understanding UplinkFast

Switches in hierarchical networks can be grouped into backbone switches, distribution switches, and access switches. Figure 14-2 shows a complex network where distribution switches and access switches each have at least one redundant link that spanning tree blocks to prevent loops.

Figure 14-2 Switches in a Hierarchical Network

If a switch looses connectivity, it begins using the alternate paths as soon as the spanning tree selects a new root port. By enabling UplinkFast with the `spanning-tree uplinkfast` global configuration command, you can accelerate the choice of a new root port when a link or switch fails or when the spanning tree reconfigures itself. The root port transitions to the forwarding state immediately without going through the listening and learning states, as it would with the normal spanning-tree procedures.

Note

UplinkFast is most useful in wiring-closet switches at the access or edge of the network. It is not appropriate for backbone devices. This feature might not be useful for other types of applications.

UplinkFast provides fast convergence after a direct link failure and achieves load balancing between redundant Layer 2 links using uplink groups. An uplink group is a set of Layer 2 interfaces (per VLAN), only one of which is forwarding at any given time. Specifically, an uplink group consists of the root port (which is forwarding) and a set of blocked ports, except for self-looping ports. The uplink group provides an alternate path in case the currently forwarding link fails.

Figure 14-3 shows an example topology with no link failures. Switch A, the root switch, is connected directly to Switch B over link L1 and to Switch C over link L2. The Layer 2 interface on Switch C that is connected directly to Switch B is in a blocking state.
Understanding Optional Spanning-Tree Features

If Switch C detects a link failure on the currently active link L2 on the root port (a direct link failure), UplinkFast unblocks the blocked port on Switch C and transitions it to the forwarding state without going through the listening and learning states, as shown in Figure 14-4. This change takes approximately 1 to 5 seconds.

Understanding Cross-Stack UplinkFast

For Catalyst 3750 switches, the UplinkFast feature is the cross-stack UplinkFast feature. Cross-stack UplinkFast (CSUF) provides a fast spanning-tree transition (fast convergence in less than 1 second under normal network conditions) across a switch stack. During the fast transition, an alternate redundant link on the switch stack is placed in the forwarding state without causing temporary spanning-tree loops or loss of connectivity to the backbone. With this feature, you can have a redundant and resilient network in some configurations. CSUF is automatically enabled when you enable the UplinkFast feature by using the *spanning-tree uplinkfast* global configuration command.

CSUF might not provide a fast transition all the time; in these cases, the normal spanning-tree transition occurs, completing in 30 to 40 seconds. For more information, see the “Events that Cause Fast Convergence” section on page 14-7.
How CSUF Works

CSUF ensures that one link in the stack is elected as the path to the root. As shown in Figure 14-5, the stack-root port on Switch 1 provides the path to the root of the spanning tree. The alternate stack-root ports on Switches 2 and 3 can provide an alternate path to the spanning-tree root if the current stack-root switch fails or if its link to the spanning-tree root fails.

Link 1, the root link, is in the spanning-tree forwarding state. Links 2 and 3 are alternate redundant links that are in the spanning-tree blocking state. If Switch 1 fails, if its stack-root port fails, or if Link 1 fails, CSUF selects either the alternate stack-root port on Switch 2 or Switch 3 and puts it into the forwarding state in less than 1 second.

When certain link loss or spanning-tree events occur (described in “Events that Cause Fast Convergence” section on page 14-7), the Fast Uplink Transition Protocol uses the neighbor list to send fast-transition requests to stack members.

The switch sending the fast-transition request needs to do a fast transition to the forwarding state of a port that it has chosen as the root port, and it must obtain an acknowledgement from each stack switch before performing the fast transition.
Each switch in the stack determines if the sending switch is a better choice than itself to be the stack root of this spanning-tree instance by comparing the root, cost, and bridge ID. If the sending switch is the best choice as the stack root, each switch in the stack returns an acknowledgement; otherwise, it sends a fast-transition request. The sending switch then has not received acknowledgements from all stack switches.

When acknowledgements are received from all stack switches, the Fast Uplink Transition Protocol on the sending switch immediately transitions its alternate stack-root port to the forwarding state. If acknowledgements from all stack switches are not obtained by the sending switch, the normal spanning-tree transitions (blocking, listening, learning, and forwarding) take place, and the spanning-tree topology converges at its normal rate (2 * forward-delay time + max-age time).

The Fast Uplink Transition Protocol is implemented on a per-VLAN basis and affects only one spanning-tree instance at a time.

Events that Cause Fast Convergence

Depending on the network event or failure, the CSUF fast convergence might or might not occur.

Fast convergence (less than 1 second under normal network conditions) occurs under these circumstances:

- The stack-root port link fails.
 - If two switches in the stack have alternate paths to the root, only one of the switches performs the fast transition.
- The failed link, which connects the stack root to the spanning-tree root, recovers.
- A network reconfiguration causes a new stack-root switch to be selected.
- A network reconfiguration causes a new port on the current stack-root switch to be chosen as the stack-root port.

Note

The fast transition might not occur if multiple events occur simultaneously. For example, if a stack member is powered off, and at the same time, the link connecting the stack root to the spanning-tree root comes back up, the normal spanning-tree convergence occurs.

Normal spanning-tree convergence (30 to 40 seconds) occurs under these conditions:

- The stack-root switch is powered off, or the software failed.
- The stack-root switch, which was powered off or failed, is powered on.
- A new switch, which might become the stack root, is added to the stack.
Understanding Optional Spanning-Tree Features

Chapter 14 Configuring Optional Spanning-Tree Features

Understanding BackboneFast

BackboneFast detects indirect failures in the core of the backbone. BackboneFast is a complementary technology to the UplinkFast feature, which responds to failures on links directly connected to access switches. BackboneFast optimizes the maximum-age timer, which determines the amount of time the switch stores protocol information received on an interface. When a switch receives an inferior BPDU from the designated port of another switch, the BPDU is a signal that the other switch might have lost its path to the root, and BackboneFast tries to find an alternate path to the root.

BackboneFast, which is enabled by using the `spanning-tree backbonefast` global configuration command, starts when a root port or blocked port on a switch receives inferior BPDUs from its designated switch. An inferior BPDU identifies a switch that declares itself as both the root bridge and the designated switch. When a switch receives an inferior BPDU, it means that a link to which the switch is not directly connected (an indirect link) has failed (that is, the designated switch has lost its connection to the root switch). Under spanning-tree rules, the switch ignores inferior BPDUs for the configured maximum aging time specified by the `spanning-tree vlan vlan-id max-age` global configuration command.

The switch tries to determine if it has an alternate path to the root switch. If the inferior BPDU arrives on a blocked port, the root port and other blocked ports on the switch become alternate paths to the root switch. (Self-looped ports are not considered alternate paths to the root switch.) If the inferior BPDU arrives on the root port, all blocked ports become alternate paths to the root switch. If the inferior BPDU arrives on the root port and there are no blocked ports, the switch assumes that it has lost connectivity to the root switch, causes the maximum aging time on the root port to expire, and becomes the root switch according to normal spanning-tree rules.

If the switch has alternate paths to the root switch, it uses these alternate paths to send a root link query (RLQ) request. The switch sends the RLQ request on all alternate paths to determine if any stack member has an alternate root to the root switch and waits for an RLQ reply from other switches in the network and in the stack.

When a stack member receives an RLQ reply from a nonstack member on a blocked port and the reply is destined for another nonstacked switch, it forwards the reply packet, regardless of the spanning-tree port state.

When a stack member receives an RLQ reply from a nonstack member and the response is destined for the stack, the stack member forwards the reply so that all the other stack members receive it.

If the switch determines that it still has an alternate path to the root, it expires the maximum aging time on the port that received the inferior BPDU. If all the alternate paths to the root switch indicate that the switch has lost connectivity to the root switch, the switch expires the maximum aging time on the port that received the RLQ reply. If one or more alternate paths can still connect to the root switch, the switch makes all ports on which it received an inferior BPDU its designated ports and moves them from the blocking state (if they were in the blocking state), through the listening and learning states, and into the forwarding state.
Figure 14-6 shows an example topology with no link failures. Switch A, the root switch, connects directly to Switch B over link L1 and to Switch C over link L2. The Layer 2 interface on Switch C that connects directly to Switch B is in the blocking state.

Figure 14-6 BackboneFast Example Before Indirect Link Failure

If link L1 fails as shown in Figure 14-7, Switch C cannot detect this failure because it is not connected directly to link L1. However, because Switch B is directly connected to the root switch over L1, it detects the failure, elects itself the root, and begins sending BPDU's to Switch C, identifying itself as the root. When Switch C receives the inferior BPDU's from Switch B, Switch C assumes that an indirect failure has occurred. At that point, BackboneFast allows the blocked port on Switch C to move immediately to the listening state without waiting for the maximum aging time for the port to expire. BackboneFast then transitions the Layer 2 interface on Switch C to the forwarding state, providing a path from Switch B to Switch A. This switchover takes approximately 30 seconds, twice the Forward Delay time if the default Forward Delay time of 15 seconds is set. Figure 14-7 shows how BackboneFast reconfigures the topology to account for the failure of link L1.

Figure 14-7 BackboneFast Example After Indirect Link Failure

If a new switch is introduced into a shared-medium topology as shown in Figure 14-8, BackboneFast is not activated because the inferior BPDU's did not come from the recognized designated switch (Switch B). The new switch begins sending inferior BPDU's that indicate it is the root switch. However, the other switches ignore these inferior BPDU's, and the new switch learns that Switch B is the designated switch to Switch A, the root switch.
Understanding Root Guard

The Layer 2 network of a service provider (SP) can include many connections to switches that are not owned by the SP. In such a topology, the spanning tree can reconfigure itself and select a customer switch as the root switch, as shown in Figure 14-9. You can avoid this situation by enabling root guard on SP switch interfaces that connect to switches in your customer’s network. If spanning-tree calculations cause an interface in the customer network to be selected as the root port, root guard then places the interface in the root-inconsistent (blocked) state to prevent the customer’s switch from becoming the root switch or being in the path to the root.

If a switch outside the SP network becomes the root switch, the interface is blocked (root-inconsistent state), and spanning tree selects a new root switch. The customer’s switch does not become the root switch and is not in the path to the root.

You can enable this feature by using the `spanning-tree guard root` interface configuration command.

Caution

Misuse of the root-guard feature can cause a loss of connectivity.
Understanding Loop Guard

You can use loop guard to prevent alternate or root ports from becoming designated ports because of a failure that leads to a unidirectional link. This feature is most effective when it is enabled on the entire switched network. Loop guard prevents alternate and root ports from becoming designated ports, and spanning tree does not send BPDUs on root or alternate ports.

You can enable this feature by using the `spanning-tree loopguard default` global configuration command.

Configuring Optional Spanning-Tree Features

These sections describe how to configure optional spanning-tree features:

- Default Optional Spanning-Tree Configuration, page 14-12
- Enabling Port Fast, page 14-12 (optional)
- Enabling BPDU Guard, page 14-13 (optional)
- Enabling BPDU Filtering, page 14-14 (optional)
- Enabling Cross-Stack UplinkFast, page 14-15 (optional)
- Enabling BackboneFast, page 14-15 (optional)
- Enabling Root Guard, page 14-16 (optional)
- Enabling Loop Guard, page 14-17 (optional)
Default Optional Spanning-Tree Configuration

Table 14-1 shows the default optional spanning-tree configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Fast, BPDU filtering, BPDU guard</td>
<td>Globally disabled (unless they are individually configured per interface).</td>
</tr>
<tr>
<td>UplinkFast</td>
<td>Globally disabled. (On Catalyst 3750 switches, the UplinkFast feature is the CSUF feature.)</td>
</tr>
<tr>
<td>BackboneFast</td>
<td>Globally disabled.</td>
</tr>
<tr>
<td>Root guard</td>
<td>Disabled on all interfaces.</td>
</tr>
<tr>
<td>Loop guard</td>
<td>Disabled on all interfaces.</td>
</tr>
</tbody>
</table>

Enabling Port Fast

A port with the Port Fast feature enabled is moved directly to the spanning-tree forwarding state without waiting for the standard forward-time delay.

⚠️ Caution

Use Port Fast only when connecting a single end station to an access or trunk port. Enabling this feature on a port connected to a switch or hub could prevent spanning tree from detecting and disabling loops in your network, which could cause broadcast storms and address-learning problems.

If you enable the voice VLAN feature, the Port Fast feature is automatically enabled. When you disable voice VLAN, the Port Fast feature is not automatically disabled. For more information, see Chapter 12, “Configuring Voice VLAN.”

Beginning in privileged EXEC mode, follow these steps to enable Port Fast. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td></td>
<td>Enter interface configuration mode, and specify an interface to configure.</td>
</tr>
<tr>
<td>Step 3</td>
<td>spanning-tree portfast [trunk]</td>
</tr>
<tr>
<td></td>
<td>Enable Port Fast on an access port connected to a single workstation or server. By specifying the trunk keyword, you can enable Port Fast on a trunk port.</td>
</tr>
<tr>
<td></td>
<td>⚠️ Caution</td>
</tr>
<tr>
<td></td>
<td>Make sure that there are no loops in the network between the trunk port and the workstation or server before you enable Port Fast on a trunk port.</td>
</tr>
<tr>
<td></td>
<td>By default, Port Fast is disabled on all ports.</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Chapter 14 Configuring Optional Spanning-Tree Features

Configuring Optional Spanning-Tree Features

Note

You can use the `spanning-tree portfast default` global configuration command to globally enable the Port Fast feature on all nontrunking ports.

To disable the Port Fast feature, use the `spanning-tree portfast disable` interface configuration command.

Enabling BPDU Guard

When you globally enable BPDU guard on ports that are Port Fast-enabled (the ports are in a Port Fast-operational state), spanning tree shuts down Port Fast-enabled ports that receive BPDUs.

In a valid configuration, Port Fast-enabled ports do not receive BPDUs. Receiving a BPDU on a Port Fast-enabled port signals an invalid configuration, such as the connection of an unauthorized device, and the BPDU guard feature puts the port in the error-disabled state. The BPDU guard feature provides a secure response to invalid configurations because you must manually put the port back in service. Use the BPDU guard feature in a service-provider network to prevent an access port from participating in the spanning tree.

Caution

Configure Port Fast only on ports that connect to end stations; otherwise, an accidental topology loop could cause a data packet loop and disrupt switch and network operation.

You also can use the `spanning-tree bpduguard enable` interface configuration command to enable BPDU guard on any port without also enabling the Port Fast feature. When the port receives a BPDU, it is put in the error-disabled state.

Beginning in privileged EXEC mode, follow these steps to globally enable the BPDU guard feature. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 spanning-tree portfast bpduguard default</td>
<td>Globally enable BPDU guard.</td>
</tr>
<tr>
<td></td>
<td>By default, BPDU guard is disabled.</td>
</tr>
<tr>
<td>Step 3 interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface connected to an end station.</td>
</tr>
<tr>
<td>Step 4 spanning-tree portfast</td>
<td>Enable the Port Fast feature.</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 7 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
To disable BPDU guard, use the `no spanning-tree portfast bpduguard default` global configuration command.

You can override the setting of the `no spanning-tree portfast bpduguard default` global configuration command by using the `spanning-tree bpduguard enable` interface configuration command.

Enabling BPDU Filtering

When you globally enable BPDU filtering on Port Fast-enabled ports, it prevents ports that are in a Port Fast-operational state from sending or receiving BPDUs. The ports still send a few BPDUs at link-up before the switch begins to filter outbound BPDUs. You should globally enable BPDU filtering on a switch so that hosts connected to these ports do not receive BPDUs. If a BPDU is received on a Port Fast-enabled port, the port loses its Port Fast-operational status, and BPDU filtering is disabled.

Caution
Configure Port Fast only on ports that connect to end stations; otherwise, an accidental topology loop could cause a data packet loop and disrupt switch and network operation.

You can also use the `spanning-tree bpdufilter enable` interface configuration command to enable BPDU filtering on any port without also enabling the Port Fast feature. This command prevents the port from sending or receiving BPDUs.

Caution
Enabling BPDU filtering on an interface is the same as disabling spanning tree on it and can result in spanning-tree loops.

Beginning in privileged EXEC mode, follow these steps to globally enable the BPDU filtering feature. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>spanning-tree portfast bpdufilter default</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 4</td>
<td>spanning-tree portfast</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td>Step 6</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To disable BPDU filtering, use the `no spanning-tree portfast bpdufilter default` global configuration command.

You can override the setting of the `no spanning-tree portfast bpdufilter default` global configuration command by using the `spanning-tree bpdufilter enable` interface configuration command.
Enabling UplinkFast for Use with Redundant Links

UplinkFast cannot be enabled on VLANs that have been configured with a switch priority. To enable UplinkFast on a VLAN with switch priority configured, first restore the switch priority on the VLAN to the default value by using the `no spanning-tree vlan vlan-id priority` global configuration command.

Note
When you enable UplinkFast, it affects all VLANs on the switch stack. You cannot configure UplinkFast on an individual VLAN.

Beginning in privileged EXEC mode, follow these steps to enable UplinkFast and CSUF. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 spanning-tree uplinkfast</td>
<td>Enable UplinkFast. When you enter this command, CSUF also is enabled on all nonstack port interfaces.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show spanning-tree summary</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

When UplinkFast is enabled, the switch priority of all VLANs is set to 49152. If you change the path cost to a value less than 3000 and you enable UplinkFast or UplinkFast is already enabled, the path cost of all interfaces and VLAN trunks is increased by 3000 (if you change the path cost to 3000 or above, the path cost is not altered). The changes to the switch priority and the path cost reduces the chance that a switch will become the root switch.

When UplinkFast is disabled, the switch priorities of all VLANs and path costs of all interfaces are set to default values if you did not modify them from their defaults.

To disable UplinkFast, use the `no spanning-tree uplinkfast` command.

Enabling Cross-Stack UplinkFast

When you enable or disable the UplinkFast feature by using the `spanning-tree uplinkfast` global configuration command, CSUF is automatically globally enabled or disabled on nonstack port interfaces. For more information, see the “Enabling UplinkFast for Use with Redundant Links” section on page 14-15.

To disable UplinkFast on the switch and all its VLANs, use the `no spanning-tree uplinkfast` global configuration command.

Enabling BackboneFast

You can enable BackboneFast to detect indirect link failures and to start the spanning-tree reconfiguration sooner.
Chapter 14 Configuring Optional Spanning-Tree Features

Configuring Optional Spanning-Tree Features

Note

If you use BackboneFast, you must enable it on all switches in the network. BackboneFast is not supported on Token Ring VLANs. This feature is supported for use with third-party switches.

Beginning in privileged EXEC mode, follow these steps to enable BackboneFast. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 <code>spanning-tree backbonefast</code></td>
<td>Enable BackboneFast.</td>
</tr>
<tr>
<td>Step 3 <code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 <code>show spanning-tree summary</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5 <code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable the BackboneFast feature, use the `no spanning-tree backbonefast` global configuration command.

Enabling Root Guard

Root guard enabled on an interface applies to all the VLANs to which the interface belongs. Do not enable the root guard on interfaces to be used by the UplinkFast feature. With UplinkFast, the backup interfaces (in the blocked state) replace the root port in the case of a failure. However, if root guard is also enabled, all the backup interfaces used by the UplinkFast feature are placed in the root-inconsistent state (blocked) and are prevented from reaching the forwarding state.

Note

You cannot enable both root guard and loop guard at the same time.

Beginning in privileged EXEC mode, follow these steps to enable root guard on an interface. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 <code>interface interface-id</code></td>
<td>Enter interface configuration mode, and specify an interface to configure.</td>
</tr>
<tr>
<td>Step 3 <code>spanning-tree guard root</code></td>
<td>Enable root guard on the interface.</td>
</tr>
<tr>
<td></td>
<td>By default, root guard is disabled on all interfaces.</td>
</tr>
<tr>
<td>Step 4 <code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 <code>show running-config</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6 <code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable root guard, use the `no spanning-tree guard` interface configuration command.
Enabling Loop Guard

You can use loop guard to prevent alternate or root ports from becoming designated ports because of a failure that leads to a unidirectional link. This feature is most effective when it is configured on the entire switched network. Loop guard operates only on ports that are considered point-to-point by the spanning tree.

Note

You cannot enable both loop guard and root guard at the same time.

Beginning in privileged EXEC mode, follow these steps to enable loop guard. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: show spanning-tree active</td>
<td>Determine which ports are alternate or root ports.</td>
</tr>
<tr>
<td>Step 2: configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 3: spanning-tree loopguard default</td>
<td>Enable loop guard. By default, loop guard is disabled.</td>
</tr>
<tr>
<td>Step 4: end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5: show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6: copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To globally disable loop guard, use the `no spanning-tree loopguard default` global configuration command. You can override the setting of the `no spanning-tree loopguard default` global configuration command by using the `spanning-tree guard loop` interface configuration command.

Displaying the Spanning-Tree Status

To display the spanning-tree status, use one or more of the privileged EXEC commands in Table 14-2:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show spanning-tree active</td>
<td>Displays spanning-tree information on active interfaces only.</td>
</tr>
<tr>
<td>show spanning-tree detail</td>
<td>Displays a detailed summary of interface information.</td>
</tr>
<tr>
<td>show spanning-tree interface <code>interface-id</code></td>
<td>Displays spanning-tree information for the specified interface.</td>
</tr>
<tr>
<td>show spanning-tree summary <code>[totals]</code></td>
<td>Displays a summary of port states or displays the total lines of the spanning-tree state section.</td>
</tr>
</tbody>
</table>

For information about other keywords for the `show spanning-tree` privileged EXEC command, refer to the command reference for this release.
This chapter describes how to configure Internet Group Management Protocol (IGMP) snooping on the Catalyst 3750 switch, including an application of local IGMP snooping, Multicast VLAN Registration (MVR). It also includes procedures for controlling multicast group membership by using IGMP filtering. Unless otherwise noted, the term switch refers to a standalone switch and a switch stack.

Note
For complete syntax and usage information for the commands used in this chapter, refer to the switch command reference for this release and the *Cisco IOS Release Network Protocols Command Reference, Part 1, for Release 12.1.*

This chapter consists of these sections:

- Understanding IGMP Snooping, page 15-2
- Configuring IGMP Snooping, page 15-5
- Displaying IGMP Snooping Information, page 15-11
- Understanding Multicast VLAN Registration, page 15-12
- Configuring MVR, page 15-14
- Displaying MVR Information, page 15-18
- Configuring IGMP Filtering, page 15-19
- Displaying IGMP Filtering Configuration, page 15-22

Note
You can either manage IP multicast group addresses through features such as IGMP snooping and MVR, or you can use static IP addresses.
Understanding IGMP Snooping

Layer 2 switches can use IGMP snooping to constrain the flooding of multicast traffic by dynamically configuring Layer 2 interfaces so that multicast traffic is forwarded to only those interfaces associated with IP multicast devices. As the name implies, IGMP snooping requires the LAN switch to snoop on the IGMP transmissions between the host and the router and to keep track of multicast groups and member ports. When the switch receives an IGMP report from a host for a particular multicast group, the switch adds the host port number to the forwarding table entry; when it receives an IGMP Leave Group message from a host, it removes the host port from the table entry. It also periodically deletes entries if it does not receive IGMP membership reports from the multicast clients.

Note

For more information on IP multicast and IGMP, refer to RFC 1112 and RFC 2236.

The multicast router (which could be a Catalyst 3750 switch with the enhanced multilayer software image on the stack master) sends out periodic general queries to all VLANs. All hosts interested in this multicast traffic send join requests and are added to the forwarding table entry. The switch creates one entry per VLAN in the IGMP snooping IP multicast forwarding table for each group from which it receives an IGMP join request.

The Catalyst 3750 switch supports IP multicast group-based bridging, rather than MAC-addressed based groups. With multicast MAC address-based groups, if an IP address being configured translates (aliases) to a previously configured MAC address or to any reserved multicast MAC addresses (in the range 224.0.0.xxx), the command fails. Because the Catalyst 3750 switch uses IP multicast groups, there are no address aliasing issues.

The IP multicast groups learned through IGMP snooping are dynamic. However, you can statically configure multicast groups by using the `ip igmp snooping vlan vlan-id static ip_address interface interface-id` global configuration command. If you specify group membership for a multicast group address statically, your setting supersedes any automatic manipulation by IGMP snooping. Multicast group membership lists can consist of both user-defined and IGMP snooping-learned settings.

If a port spanning-tree, a port group, or a VLAN ID change occurs, the IGMP snooping-learned multicast groups from this port on the VLAN are deleted.

These sections describe characteristics of IGMP snooping on the switch and switch stack:

- Joining a Multicast Group, page 15-2
- Leaving a Multicast Group, page 15-4
- Immediate-Leave Processing, page 15-4
- IGMP Snooping and Switch Stacks, page 15-5

Joining a Multicast Group

When a host connected to the switch wants to join an IP multicast group, if it is an IGMP version 2 client, it sends an unsolicited IGMP join message, specifying the IP multicast group to join. Alternatively, when the switch receives a general query from the router, it forwards the query to all ports in the VLAN. IGMP version 1 or version 2 hosts wanting to join the multicast group respond by sending a join message to the switch. The switch CPU creates a multicast forwarding-table entry for the group if it is not already present. The CPU also adds the interface where the join message was received to the forwarding-table entry. The host associated with that interface receives multicast traffic for that multicast group. See Figure 15-1.
Router A sends a general query to the switch, which forwards the query to ports 2 through 5, all members of the same VLAN. Host 1 wants to join multicast group 224.1.2.3 and multicasts an IGMP membership report (IGMP join message) to the group. When the CPU receives the IGMP report multicast by Host 1, the CPU uses the information in the IGMP report to set up a forwarding-table entry, as shown in Table 15-1, that includes the port numbers connected to Host 1 and the router.

<table>
<thead>
<tr>
<th>Destination Address</th>
<th>Type of Packet</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>224.1.2.3</td>
<td>IGMP</td>
<td>1, 2</td>
</tr>
</tbody>
</table>

The switch hardware can distinguish IGMP information packets from other packets for the multicast group. The information in the table tells the switching engine to send frames addressed to the 224.1.2.3 multicast IP address that are not IGMP packets to the router and to the host that has joined the group.

If another host (for example, Host 4) sends an unsolicited IGMP join message for the same group (Figure 15-2), the CPU receives that message and adds the port number of Host 4 to the forwarding table as shown in Table 15-2. Note that because the forwarding table directs IGMP messages to only the CPU, the message is not flooded to other ports on the switch. Any known multicast traffic is forwarded to the group and not to the CPU.
Understanding IGMP Snooping

Leaving a Multicast Group

The router sends periodic multicast general queries, and the switch forwards these queries through all ports in the VLAN. Interested hosts respond to the queries. If at least one host in the VLAN wishes to receive multicast traffic, the router continues forwarding the multicast traffic to the VLAN. The switch forwards multicast group traffic only to those hosts listed in the forwarding table for that IP multicast group maintained by IGMP snooping.

When hosts want to leave a multicast group, they can silently leave or they can send a leave message. When the switch receives a leave message from a host, it sends out a MAC-based general query to determine if any other devices connected to that interface are interested in traffic for the specific multicast group. The switch then updates the forwarding table for that MAC group so that only those hosts interested in receiving multicast traffic for the group are listed in the forwarding table. If the router receives no reports from a VLAN, it removes the group for the VLAN from its IGMP cache.

Immediate-Leave Processing

The switch uses IGMP snooping Immediate-Leave processing to remove from the forwarding table an interface that sends a leave message without the switch sending MAC-based general queries to the interface. The VLAN interface is pruned from the multicast tree for the multicast group specified in the original leave message. Immediate-Leave processing ensures optimal bandwidth management for all hosts on a switched network, even when multiple multicast groups are simultaneously in use.
You should only use the Immediate-Leave processing feature on VLANs where a single host is connected to each port. If Immediate Leave is enabled in VLANs where more than one host is connected to a port, some hosts might be inadvertently dropped. Immediate Leave is only supported with IGMP version 2 hosts.

IGMP Snooping and Switch Stacks

IGMP snooping functions across the switch stack; that is, IGMP control information obtained from one switch is distributed to all switches in the stack. (See Chapter 5, “Managing Switch Stacks,” for more information about switch stacks.) Regardless of the stack member through which IGMP multicast data enters the stack, the data reaches the hosts that have registered for that group.

If a switch in the stack fails or is removed from the stack, only the members of the multicast group that are on that switch will not receive the multicast data. All other members of a multicast group on other switches in the stack continue to receive multicast data streams. However, multicast groups that are common for both Layer 2 and Layer 3 (IP multicast routing) might take longer to converge if the stack master is removed.

Configuring IGMP Snooping

IGMP snooping allows switches to examine IGMP packets and make forwarding decisions based on their content.

These sections describe how to configure IGMP snooping:

- Default IGMP Snooping Configuration, page 15-5
- Enabling or Disabling IGMP Snooping, page 15-6
- Setting the Snooping Method, page 15-6
- Configuring a Multicast Router Port, page 15-8
- Configuring a Host Staticaly to Join a Group, page 15-9
- Enabling IGMP Immediate-Leave Processing, page 15-10

Default IGMP Snooping Configuration

Table 15-3 shows the default IGMP snooping configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGMP snooping</td>
<td>Enabled globally and per VLAN</td>
</tr>
<tr>
<td>Multicast routers</td>
<td>None configured</td>
</tr>
<tr>
<td>Multicast router learning (snooping) method</td>
<td>PIM-DVMRP</td>
</tr>
<tr>
<td>IGMP snooping Immediate Leave</td>
<td>Disabled</td>
</tr>
<tr>
<td>Static groups</td>
<td>None configured</td>
</tr>
</tbody>
</table>
Enabling or Disabling IGMP Snooping

By default, IGMP snooping is globally enabled on the switch. When globally enabled or disabled, it is also enabled or disabled in all existing VLAN interfaces. IGMP snooping is by default enabled on all VLANs, but can be enabled and disabled on a per-VLAN basis.

Global IGMP snooping overrides the VLAN IGMP snooping. If global snooping is disabled, you cannot enable VLAN snooping. If global snooping is enabled, you can enable or disable VLAN snooping.

Beginning in privileged EXEC mode, follow these steps to globally enable IGMP snooping on the switch:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip igmp snooping</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To globally disable IGMP snooping on all VLAN interfaces, use the `no ip igmp snooping` global configuration command.

Beginning in privileged EXEC mode, follow these steps to enable IGMP snooping on a VLAN interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
</tbody>
</table>
| Step 2 | ip igmp snooping vlan vlan-id | Enable IGMP snooping on the VLAN interface. The VLAN ID range is 1 to 4094.
Note IGMP snooping must be globally enabled before you can enable VLAN snooping. |
| Step 3 | end | Return to privileged EXEC mode. |
| Step 4 | copy running-config startup-config | (Optional) Save your entries in the configuration file. |

To disable IGMP snooping on a VLAN interface, use the `no ip igmp snooping vlan vlan-id` global configuration command for the specified VLAN number.

Setting the Snooping Method

Multicast-capable router ports are added to the forwarding table for every Layer 2 multicast entry. The switch learns of such ports through one of these methods:

- Snooping on IGMP queries, Protocol Independent Multicast (PIM) packets, and Distance Vector Multicast Routing Protocol (DVMRP) packets
- Listening to Cisco Group Management Protocol (CGMP) packets from other routers
- Statically connecting to a multicast router port with the `ip igmp snooping mrouter` global configuration command
You can configure the switch either to snoop on IGMP queries and PIM/DVMRP packets or to listen to CGMP self-join or proxy-join packets. By default, the switch snoops on PIM/DVMRP packets on all VLANs. To learn of multicast router ports through only CGMP packets, use the `ip igmp snooping vlan vlan-id mrouter learn cgmp` global configuration command. When this command is entered, the router listens to only CGMP self-join and CGMP proxy-join packets and no other CGMP packets. To learn of multicast router ports through only PIM-DVMRP packets, use the `ip igmp snooping vlan vlan-id mrouter learn pim-dvmrp` global configuration command.

Note

If you want to use CGMP as the learning method and no multicast routers in the VLAN are CGMP proxy-enabled, you must enter the `ip cgmp router-only` command to dynamically access the router. For more information, see Chapter 28, “Configuring IP Multicast Routing.”

Beginning in privileged EXEC mode, follow these steps to alter the method in which a VLAN interface dynamically accesses a multicast router:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| 2 | `ip igmp snooping vlan vlan-id mrouter learn {cgmp | pim-dvmrp}` | Enable IGMP snooping on a VLAN. The VLAN ID range is 1 to 4094. Specify the multicast router learning method:
 - `cgmp`—Listen for CGMP packets. This method is useful for reducing control traffic.
 - `pim-dvmrp`—Snoop on IGMP queries and PIM-DVMRP packets. This is the default. |
| 3 | `end` | Return to privileged EXEC mode. |
| 4 | `show ip igmp snooping` | Verify the configuration. |
| 5 | `copy running-config startup-config` | *(Optional)* Save your entries in the configuration file. |

This example shows how to configure IGMP snooping to use CGMP packets as the learning method and verify the configuration:

```bash
Switch# configure terminal
Switch(config)# ip igmp snooping vlan 1 mrouter learn cgmp
Switch(config)# end
Switch(config)# show ip igmp snooping vlan 1
IGMP snooping is globally enabled
IGMP snooping is enabled on this Vlan
IGMP snooping immediate-leave is disabled on this Vlan
IGMP snooping mrouter learn mode is cgmp on this Vlan
IGMP snooping is running in IGMP_ONLY mode on this Vlan
```

To return to the default learning method, use the `no ip igmp snooping vlan vlan-id mrouter learn cgmp` global configuration command.
Configuring a Multicast Router Port

To add a multicast router port (add a static connection to a multicast router), use the `ip igmp snooping vlan mrouter` global configuration command on the switch.

Note
Static connections to multicast routers are supported only on switch ports.

Beginning in privileged EXEC mode, follow these steps to enable a static connection to a multicast router:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| **Step 2** ip igmp snooping vlan `vlan-id` mrouter interface `interface-id` | Specify the multicast router VLAN ID and specify the interface to the multicast router.
 • The VLAN ID range is 1 to 4094.
 • The interface can be a physical interface or a port channel.
 The port channel range is 1 to 12. |
| **Step 3** end | Return to privileged EXEC mode. |
| **Step 4** show ip igmp snooping mrouter [vlan `vlan-id`] | Verify that IGMP snooping is enabled on the VLAN interface. |
| **Step 5** copy running-config startup-config | (Optional) Save your entries in the configuration file. |

To remove a multicast router port from the VLAN, use the `no ip igmp snooping vlan `vlan-id` mrouter interface `interface-id` global configuration command.

This example shows how to enable a static connection to a multicast router and verify the configuration:

```
Switch# configure terminal
Switch(config)# ip igmp snooping vlan 200 mrouter interface gigabitethernet1/0/2
Switch(config)# end
Switch# show ip igmp snooping mrouter vlan 200
Vlan ports
-------------------------
200 Gi1/0/2(static)
```
Configuring a Host Staticaly to Join a Group

Hosts or Layer 2 ports normally join multicast groups dynamically, but you can also statically configure a host on an interface.

Beginning in privileged EXEC mode, follow these steps to add a Layer 2 port as a member of a multicast group:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip igmp snooping vlan vlan-id static ip-address interface interface-id</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show ip igmp snooping multicast</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To remove the Layer 2 port from the multicast group, use the **no ip igmp snooping vlan vlan-id static mac-address interface interface-id** global configuration command.

This example shows how to statically configure a host on an interface and verify the configuration:

```
Switch# configure terminal
Switch(config)# ip igmp snooping vlan 1 static 224.1.2.3 interface gigabitethernet1/0/1
Switch(config)# end

Switch# show ip igmp snooping multicast
```

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Group Address</th>
<th>Type</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>224.1.2.3</td>
<td>USER</td>
<td>Gi1/0/1</td>
</tr>
</tbody>
</table>
Enabling IGMP Immediate-Leave Processing

When you enable IGMP Immediate-Leave processing, the switch immediately removes a port when it detects an IGMP version 2 leave message on that port. You should use the Immediate-Leave feature only when there is a single receiver present on every port in the VLAN.

Note

Immediate Leave is supported with only IGMP version 2 hosts.

Beginning in privileged EXEC mode, follow these steps to enable IGMP Immediate-Leave processing:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip igmp snooping vlan (vlan-id) immediate-leave</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show ip igmp snooping vlan (vlan-id)</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To disable IGMP Immediate-Leave on a VLAN, use the `no ip igmp snooping vlan \(vlan-id\) immediate-leave` global configuration command.

This example shows how to enable IGMP immediate-leave processing on VLAN 130:

```
Switch# configure terminal
Switch(config)# ip igmp snooping vlan 130 immediate-leave
Switch(config)# end
```
Displaying IGMP Snooping Information

You can display IGMP snooping information for dynamically learned and statically configured router ports and VLAN interfaces. You can also display MAC address multicast entries for a VLAN configured for IGMP snooping.

To display IGMP snooping information, use one or more of the privileged EXEC commands in Table 15-4.

Table 15-4 Commands for Displaying IGMP Snooping Information

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ip igmp snooping [vlan vlan-id]</code></td>
<td>Display the snooping configuration information for all VLANs on the switch or for a specified VLAN.</td>
</tr>
</tbody>
</table>
| `show ip igmp snooping multicast [count | dynamic [count | group ip_address] | group ip_address | user [count | group ip_address]]` | Display multicast table information for the switch or about a specific parameter:
 - `count`—Display the total number of entries for the specified command options instead of the actual entries.
 - `dynamic`—Display entries learned through IGMP snooping.
 - `group ip_address`—Display characteristics of the multicast group with the specified group IP address.
 - `user`—Display only the user-configured multicast entries. |
| `show ip igmp snooping multicast vlan vlan-id [count | dynamic [count | group ip_address] | group ip_address | user [count | group ip_address]]` | Display multicast table information for a multicast VLAN or about a specific parameter for the VLAN:
 - `count`—Display the total number of entries for the specified command options instead of the actual entries.
 - `dynamic`—Display entries learned through IGMP snooping.
 - `group ip_address`—Display characteristics of the multicast group with the specified group IP address.
 - `user`—Display only the user-configured multicast entries. |
| `show ip igmp snooping mrouter [vlan vlan-id]` | Display information on dynamically learned and manually configured multicast router interfaces.
Note When you enable IGMP snooping, the switch automatically learns the interface to which a multicast router is connected. These are dynamically learned interfaces. |

(Optional) Enter `vlan vlan-id` to display information for a single VLAN.

For more information about the keywords and options in these commands, refer to the command reference for this release.
Understanding Multicast VLAN Registration

Multicast VLAN Registration (MVR) is designed for applications using wide-scale deployment of multicast traffic across an Ethernet ring-based service provider network (for example, the broadcast of multiple television channels over a service-provider network). MVR allows a subscriber on a port to subscribe and unsubscribe to a multicast stream on the network-wide multicast VLAN. It allows the single multicast VLAN to be shared in the network while subscribers remain in separate VLANs. MVR provides the ability to continuously send multicast streams in the multicast VLAN, but to isolate the streams from the subscriber VLANs for bandwidth and security reasons.

MVR assumes that subscriber ports subscribe and unsubscribe (join and leave) these multicast streams by sending out IGMP join and leave messages. These messages can originate from an IGMP version-2-compatible host with an Ethernet connection. Although MVR operates on the underlying mechanism of IGMP snooping, the two features operate independently of each other. One can be enabled or disabled without affecting the behavior of the other feature. However, if IGMP snooping and MVR are both enabled, MVR reacts only to join and leave messages from multicast groups configured under MVR. Join and leave messages from all other multicast groups are managed by IGMP snooping.

The switch CPU identifies the MVR IP multicast streams and their associated IP multicast group in the switch forwarding table, intercepts the IGMP messages, and modifies the forwarding table to include or remove the subscriber as a receiver of the multicast stream, even though the receivers might be in a different VLAN from the source. This forwarding behavior selectively allows traffic to cross between different VLANs.

You can set the switch for compatible or dynamic mode of MVR operation.

- In compatible mode, multicast data received by MVR hosts is forwarded to all MVR data ports, regardless of MVR host membership on those ports. The multicast data is forwarded only to those receiver ports which MVR hosts have explicitly joined, either by IGMP reports or by MVR static configuration. IGMP reports received from MVR hosts are never forwarded out of MVR data ports that were configured in the switch.

- In dynamic mode, multicast data received by MVR hosts on the switch is forwarded from only those MVR data and client ports that the MVR hosts have explicitly joined, either by IGMP reports or by MVR static configuration. Any IGMP reports received from MVR hosts are also forwarded from all the MVR data ports in the switch. This eliminates using unnecessary bandwidth on MVR data port links, which occurs when the switch runs in compatible mode.

Only Layer 2 ports take part in MVR. You must configure ports as MVR receiver ports. Only one MVR multicast VLAN per switch stack is supported.

Receiver ports and source ports can be on different switches in a switch stack. Multicast data sent on the multicast VLAN is forwarded to all MVR receiver ports across the stack. When a new switch is added to a stack, by default it has no receiver ports.

If a switch fails or is removed from the stack, only those receiver ports belonging to that switch will not receive the multicast data. All other receiver ports on other switches continue to receive the multicast data.
Using MVR in a Multicast Television Application

In a multicast television application, a PC or a television with a set-top box can receive the multicast stream. Multiple set-top boxes or PCs can be connected to one subscriber port, which is a switch port configured as an MVR receiver port. Figure 15-3 is an example configuration. DHCP assigns an IP address to the set-top box or the PC. When a subscriber selects a channel, the set-top box or PC sends an IGMP report to the S1 switch to join the appropriate multicast. If the IGMP report matches one of the configured IP multicast group addresses, the switch CPU modifies the hardware address table to include this receiver port and VLAN as a forwarding destination of the specified multicast stream when it is received from the multicast VLAN. Uplink ports that send and receive multicast data to and from the multicast VLAN are called MVR source ports.

Figure 15-3 Multicast VLAN Registration Example
When a subscriber changes channels or turns off the television, the set-top box sends an IGMP leave message for the multicast stream. The switch CPU sends a MAC-based general query through the receiver port VLAN. If there is another set-top box in the VLAN still subscribing to this group, that set-top box must respond within the maximum response time specified in the query. If the CPU does not receive a response, it eliminates the receiver port as a forwarding destination for this group.

If the Immediate-Leave feature is enabled on a receiver port, the port leaves a multicast group more quickly. Without Immediate Leave, when the switch receives an IGMP leave message from a subscriber on a receiver port, it sends out an IGMP query on that port and waits for IGMP group membership reports. If no reports are received in a configured time period, the receiver port is removed from multicast group membership. With Immediate Leave, an IGMP query is not sent from the receiver port on which the IGMP leave was received. As soon as the leave message is received, the receiver port is removed from multicast group membership, which speeds up leave latency. Enable the Immediate Leave feature only on receiver ports to which a single receiver device is connected.

MVR eliminates the need to duplicate television-channel multicast traffic for subscribers in each VLAN. Multicast traffic for all channels is only sent around the VLAN trunk once—only on the multicast VLAN. The IGMP leave and join messages are in the VLAN to which the subscriber port is assigned. These messages dynamically register for streams of multicast traffic in the multicast VLAN on the Layer 3 device. The access layer switch (S1 switch) modifies the forwarding behavior to allow the traffic to be forwarded from the multicast VLAN to the subscriber port in a different VLAN, selectively allowing traffic to cross between two VLANs.

IGMP reports are sent to the same IP multicast group address as the multicast data. The S1 CPU must capture all IGMP join and leave messages from receiver ports and forward them to the multicast VLAN of the source (uplink) port, based on the MVR mode.

Configuring MVR

These sections include basic MVR configuration information:

- Default MVR Configuration, page 15-14
- MVR Configuration Guidelines and Limitations, page 15-15
- Configuring MVR Global Parameters, page 15-15
- Configuring MVR Interfaces, page 15-17

Default MVR Configuration

Table 15-5 shows the default MVR configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVR</td>
<td>Disabled globally and per interface</td>
</tr>
<tr>
<td>Multicast addresses</td>
<td>None configured</td>
</tr>
<tr>
<td>Query response time</td>
<td>0.5 second</td>
</tr>
<tr>
<td>Multicast VLAN</td>
<td>VLAN 1</td>
</tr>
<tr>
<td>Mode</td>
<td>Compatible</td>
</tr>
</tbody>
</table>
Table 15-5 Default MVR Configuration (continued)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface (per port) default</td>
<td>Neither a receiver nor a source port</td>
</tr>
<tr>
<td>Immediate Leave</td>
<td>Disabled on all ports</td>
</tr>
</tbody>
</table>

MVR Configuration Guidelines and Limitations

Follow these guidelines when configuring MVR:

- Receiver ports can only be access ports; they cannot be trunk ports. Receiver ports on a switch can be in different VLANs, but should not belong to the multicast VLAN.
- The maximum number of multicast entries (MVR group addresses) that can be configured on a switch (that is, the maximum number of television channels that can be received) is 256.
- MVR multicast data received in the source VLAN and leaving from receiver ports has its time-to-live (TTL) decremented by 1 in the Catalyst 3750 switch.
- Because MVR on the Catalyst 3750 switch uses IP multicast addresses instead of MAC multicast addresses, aliased IP multicast addresses are allowed on the switch. However, if the switch is interoperating with Catalyst 3550 or Catalyst 3500 XL switches, you should not configure IP addresses that alias between themselves or with the reserved IP multicast addresses (in the range 224.0.0.xxx).
- MVR is not supported when multicast routing is enabled on a switch. If you enable multicast routing and a multicast routing protocol while MVR is enabled, MVR is disabled, and you receive a warning message. If you try to enable MVR while multicast routing and a multicast routing protocol are enabled, the operation to enable MVR is cancelled, and you receive an error message.
- MVR can coexist with IGMP snooping on a switch.
- MVR data received on an MVR receiver port is not forwarded to MVR source ports.

Configuring MVR Global Parameters

You do not need to set the optional MVR parameters if you choose to use the default settings. If you do want to change the default parameters (except for the MVR VLAN), you must first enable MVR.

Note

For complete syntax and usage information for the commands used in this section, refer to the command reference for this release.

Beginning in privileged EXEC mode, follow these steps to configure MVR parameters:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>mvr</td>
<td>Enable MVR on the switch.</td>
</tr>
</tbody>
</table>
To return the switch to its default settings, use the `no mvr [mode | group ip-address | querytime | vlan]` global configuration commands.

This example shows how to enable MVR, configure the group address, set the query time to 1 second (10 tenths), specify the MVR multicast VLAN as VLAN 22, and set the MVR mode as dynamic:

```
Switch(config)# mvr
Switch(config)# mvr group 228.1.23.4
Switch(config)# mvr querytime 10
Switch(config)# mvr vlan 22
Switch(config)# mvr mode dynamic
Switch(config)# end
```

You can use the `show mvr members` privileged EXEC command to verify the MVR multicast group addresses on the switch.

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>mvr group ip-address [count]</td>
<td>Configure an IP multicast address on the switch or use the <code>count</code> parameter to configure a contiguous series of MVR group addresses (the range for <code>count</code> is 1 to 256; the default is 1). Any multicast data sent to this address is sent to all source ports on the switch and all receiver ports that have elected to receive data on that multicast address. Each multicast address would correspond to one television channel.</td>
<td></td>
</tr>
</tbody>
</table>

| Step 4 | mvr querytime value | (Optional) Define the maximum time to wait for IGMP report memberships on a receiver port before removing the port from multicast group membership. The value is in units of tenths of a second. The range is from 1 to 100 and the default is 5 tenths or one-half second. |

| Step 5 | mvr vlan vlan-id | (Optional) Specify the VLAN in which multicast data is received; all source ports must belong to this VLAN. The VLAN range is 1 to 4094. The default is VLAN 1. |

Step 6	mvr mode {dynamic	compatible}	(Optional) Specify the MVR mode of operation:
		• **dynamic**—Allows dynamic MVR membership on source ports.	
		• **compatible**—Is compatible with Catalyst 3500 XL and Catalyst 2900 XL switches and does not support IGMP dynamic joins on source ports.	
		The default is **compatible** mode.	

| Step 7 | end | Return to privileged EXEC mode. |

| Step 8 | show mvr or show mvr members | Verify the configuration. |

| Step 9 | copy running-config startup-config | (Optional) Save your entries in the configuration file. |
Configuring MVR Interfaces

Beginning in privileged EXEC mode, follow these steps to configure Layer 2 MVR interfaces:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>mvr</td>
</tr>
<tr>
<td>Step 3</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 4</td>
<td>mvr type {source</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>The default configuration is as a non-MVR port. If you attempt to configure a non-MVR port with MVR characteristics, the operation fails.</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>mvr vlan vlan-id group [ip-address]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>mvr immediate</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>end</td>
</tr>
<tr>
<td>Step 8</td>
<td>show mvr</td>
</tr>
<tr>
<td></td>
<td>show mvr interface</td>
</tr>
<tr>
<td></td>
<td>or show mvr members</td>
</tr>
<tr>
<td>Step 9</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return the interface to its default settings, use the **no mvr [type | immediate | vlan vlan-id | group]** interface configuration commands.
Displaying MVR Information

You can display MVR information for the switch or for a specified interface. Beginning in privileged EXEC mode, use the commands in Table 15-6 to display MVR configuration:

<table>
<thead>
<tr>
<th>Table 15-6 Commands for Displaying MVR Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>show mvr</td>
</tr>
</tbody>
</table>
| **show mvr interface [interface-id]** [members [vlan vlan-id]] | Displays all MVR interfaces and their MVR configurations. When a specific interface is entered, displays this information:
 • Type—Receiver or Source
 • Status—One of these:
 - Active means the port is part of a VLAN.
 - Up/Down means that the port is forwarding or nonforwarding.
 - Inactive means that the port is not part of any VLAN.
 • Immediate Leave—Enabled or Disabled
 If the members keyword is entered, displays all multicast group members on this port or, if a VLAN identification is entered, all multicast group members on the VLAN. The VLAN ID range is 1 to 4094; do not enter leading zeros. |
| **show mvr members [ip-address]** | Displays all receiver and source ports that are members of any IP multicast group or the specified IP multicast group IP address. |
Configuring IGMP Filtering

In some environments, for example metropolitan or multiple-dwelling unit (MDU) installations, an administrator might want to control the set of multicast groups to which a user on a switch port can belong. This allows the administrator to control the distribution of multicast services, such as IP/TV, based on some type of subscription or service plan. With the IGMP filtering feature, you can filter multicast joins on a per-port basis by configuring IP multicast profiles and associating them with individual switch ports. An IGMP profile can contain one or more multicast groups and specifies whether access to the group is permitted or denied. If an IGMP profile denying access to a multicast group is applied to a switch port, the IGMP join report requesting the stream of IP multicast traffic is dropped, and the port is not allowed to receive IP multicast traffic from that group. If the filtering action permits access to the multicast group, the IGMP report from the port is forwarded for normal processing.

IGMP filtering controls only group specific query and membership reports, including join and leave reports. It does not control general IGMP queries. IGMP filtering has no relationship with the function that directs the forwarding of IP multicast traffic. The filtering feature operates in the same manner whether CGMP or MVR is used to forward the multicast traffic.

IGMP filtering is only applicable to dynamic learning of IP multicast group addresses; not static configuration.

You can also set the maximum number of IGMP groups that a Layer 2 interface can join.

Default IGMP Filtering Configuration

Table 15-7 shows the default IGMP filtering configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGMP filters</td>
<td>None applied</td>
</tr>
<tr>
<td>IGMP Maximum number of IGMP groups</td>
<td>No maximum set</td>
</tr>
<tr>
<td>IGMP profiles</td>
<td>None defined</td>
</tr>
<tr>
<td>IGMP profile action</td>
<td>Deny the range addresses</td>
</tr>
</tbody>
</table>

Configuring IGMP Profiles

To configure an IGMP profile, use the `ip igmp profile` global configuration command with a profile number to create an IGMP profile and to enter IGMP profile configuration mode. From this mode, you can specify the parameters of the IGMP profile to be used for filtering IGMP join requests from a port. When you are in IGMP profile configuration mode, you can create the profile by using these commands:

- **deny**: Specifies that matching addresses are denied; this is the default condition.
- **exit**: Exits from igmp-profile configuration mode.
- **no**: Negates a command or sets its defaults.
- **permit**: Specifies that matching addresses are permitted.
- **range**: Specifies a range of IP addresses for the profile. You can enter a single IP address or a range with a start and an end address.
Configuring IGMP Snooping and MVR

Chapter 15

Configuring IGMP Snooping and MVR

The default is for the switch to have no IGMP profiles configured. When a profile is configured, if neither the permit nor deny keyword is included, the default is to deny access to the range of IP addresses.

Beginning in privileged EXEC mode, follow these steps to create an IGMP profile:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 ip igmp profile profile number</td>
<td>Enter IGMP profile configuration mode, and assign a number to the profile you are configuring. The range is from 1 to 4294967295.</td>
</tr>
<tr>
<td>Step 3 permit</td>
<td>deny</td>
</tr>
<tr>
<td>Step 4 range ip multicast address</td>
<td>Enter the IP multicast address or range of IP multicast addresses to which access is being controlled. If entering a range, enter the low IP multicast address, a space, and the high IP multicast address. You can use the range command multiple times to enter multiple addresses or ranges of addresses.</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6 show ip igmp profile profile number</td>
<td>Verify the profile configuration.</td>
</tr>
<tr>
<td>Step 7 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To delete a profile, use the no ip igmp profile profile number global configuration command.

To delete an IP multicast address or range of IP multicast addresses, use the no range ip multicast address IGMP profile configuration command.

This example shows how to create IGMP profile 4 allowing access to the single IP multicast address and how to verify the configuration. If the action was to deny (the default), it would not appear in the show ip igmp profile output display.

```
Switch(config)# ip igmp profile 4
Switch(config-igmp-profile)# permit
Switch(config-igmp-profile)# range 229.9.9.0
Switch(config-igmp-profile)# end
Switch# show ip igmp profile 4
IGMP Profile 4
    permit
    range 229.9.9.0 229.9.9.0
```

Applying IGMP Profiles

To control access as defined in an IGMP profile, use the ip igmp filter interface configuration command to apply the profile to the appropriate interfaces. You can apply IGMP profiles to layer 2 access ports only; you cannot apply IGMP profiles to routed ports or SVIs. You cannot apply profiles to ports that belong to an EtherChannel port group. You can apply a profile to multiple interfaces, but each interface can only have one profile applied to it.
Beginning in privileged EXEC mode, follow these steps to apply an IGMP profile to a switch port:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Enter interface configuration mode, and enter the physical interface to configure. The interface must be a Layer 2 port that does not belong to an EtherChannel port group.</td>
</tr>
<tr>
<td>Step 3 ip igmp filter profile number</td>
<td>Apply the specified IGMP profile to the interface. The profile number can be from 1 to 4294967295.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show running-config interface interface-id</td>
<td>Verify the configuration.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove a profile from an interface, use the no ip igmp filter profile number interface configuration command.

This example shows how to apply IGMP profile 4 to an interface:

```
Switch(config)# interface gigabitethernet1/0/12
Switch(config-if)# ip igmp filter 4
Switch(config-if)# end
```

Setting the Maximum Number of IGMP Groups

You can set the maximum number of IGMP groups that a Layer 2 interface can join by using the ip igmp mac-groups interface configuration command. Use the no form of this command to set the maximum back to the default, which is no limit.

This restriction can be applied to Layer 2 ports only; you cannot set a maximum number of IGMP groups on routed ports or SVIs. You also cannot use this command on ports that belong to an EtherChannel port group.

Beginning in privileged EXEC mode, follow these steps to apply an IGMP profile to a switch port:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Enter interface configuration mode, and enter the physical interface to configure. The interface must be a Layer 2 port that does not belong to an EtherChannel port group.</td>
</tr>
<tr>
<td>Step 3 ip igmp max-groups number</td>
<td>Set the maximum number of IGMP groups that the interface can join. The range is from 0 to 4294967294. The default is to have no maximum set.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show running-config interface interface-id</td>
<td>Verify the configuration.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
To remove the maximum group limitation and return to the default of no maximum, use the `no ip igmp max-groups` interface configuration command.

This example shows how to limit the number of IGMP groups that an interface can join to 25.

```
Switch(config)# interface gigabitethernet1/0/12
Switch(config-if)# ip igmp max-groups 25
Switch(config-if)# end
```

Displaying IGMP Filtering Configuration

You can display IGMP profile characteristics, and you can display the IGMP profile and maximum group configuration for all interfaces on the switch or for a specified interface.

Use the privileged EXEC commands in Table 15-8 to display IGMP filtering configuration:

Table 15-8 Commands for Displaying IGMP Filtering Configuration

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ip igmp profile [profile number]</code></td>
<td>Displays the specified IGMP profile or all IGMP profiles defined on the switch.</td>
</tr>
<tr>
<td><code>show running-config [interface interface-id]</code></td>
<td>Displays the configuration of the specified interface or all interfaces on the switch, including (if configured) the maximum number of IGMP groups to which an interface can belong and the IGMP profile applied to the interface.</td>
</tr>
</tbody>
</table>
Configuring Port-Based Traffic Control

This chapter describes how to configure the port-based traffic control features on the Catalyst 3750 switch. Unless otherwise noted, the term switch refers to a standalone switch and a switch stack.

For complete syntax and usage information for the commands used in this chapter, refer to the command reference for this release.

This chapter consists of these sections:

- Configuring Storm Control, page 16-1
- Configuring Protected Ports, page 16-4
- Configuring Port Blocking, page 16-5
- Configuring Port Security, page 16-7
- Displaying Port-Based Traffic Control Settings, page 16-12

Configuring Storm Control

These sections include storm control configuration information and procedures:

- Understanding Storm Control, page 16-1
- Default Storm Control Configuration, page 16-3
- Enabling Storm Control, page 16-3

Understanding Storm Control

Storm control prevents switchports on a LAN from being disrupted by a broadcast, multicast, or unicast storm on one of the physical interfaces. A LAN storm occurs when packets flood the LAN, creating excessive traffic and degrading network performance. Errors in the protocol-stack implementation or in the network configuration can cause a storm.

Storm control (or traffic suppression) monitors incoming traffic statistics over a time period and compares the measurement with a predefined suppression level threshold. The threshold represents the percentage of the total available bandwidth of the port. The switch supports separate storm control thresholds for broadcast, multicast, and unicast traffic. If the threshold of a traffic type is reached, further traffic of that type is suppressed until the incoming traffic falls below the threshold level.
When the storm control threshold for multicast traffic is reached, all multicast traffic except control traffic, such as bridge protocol data unit (BDPU) and Cisco Discovery Protocol (CDP) frames, are blocked. However, the switch does not differentiate between routing updates, such as OSPF, and regular multicast data traffic, so both types of traffic are blocked.

When storm control is enabled, the switch monitors packets passing from an interface to the switching bus and determines if the packet is unicast, multicast, or broadcast. The switch monitors the number of broadcast, multicast, or unicast packets received within a 200-millisecond time interval, and when a threshold for one type of traffic is reached, that type of traffic is dropped. This threshold is specified as a percentage of total available bandwidth that can be used by broadcast (multicast or unicast) traffic.

The graph in Figure 16-1 shows broadcast traffic patterns on an interface over a given period of time. The example can also be applied to multicast and unicast traffic. In this example, the broadcast traffic being forwarded exceeded the configured threshold between time intervals T1 and T2 and between T4 and T5. When the amount of specified traffic exceeds the threshold, all traffic of that kind is dropped for the next time period. Therefore, broadcast traffic is blocked during the intervals following T2 and T5. At the next time interval (for example, T3), if broadcast traffic does not exceed the threshold, it is again forwarded.

The combination of the storm-control suppression level and the 200-millisecond time interval control the way the storm control algorithm works. A higher threshold allows more packets to pass through. A threshold value of 100 percent means that no limit is placed on the traffic. A value of 0.0 means that all broadcast, multicast, or unicast traffic on that port is blocked.

Because packets do not arrive at uniform intervals, the 200-millisecond time interval during which traffic activity is measured can affect the behavior of storm control.

The switch continues to monitor traffic on the port, and when the utilization level is below the threshold level, the type of traffic that was dropped is forwarded again.

You use the `storm-control` interface configuration commands to set the threshold value for each traffic type.
Chapter 16 Configuring Port-Based Traffic Control

Configuring Storm Control

Note

Although visible in the command-line interface (CLI) online help, the switchport broadcast, switchport multicast, and switchport unicast interface configuration commands for setting suppression levels are not available. These commands are obsolete, replaced by the storm-control interface configuration commands.

Default Storm Control Configuration

By default, unicast, broadcast, and multicast storm control is disabled on the switch interfaces; that is, the suppression level is 100 percent.

Enabling Storm Control

You enable storm control on an interface and enter the percentage of total available bandwidth that you want to be used by a particular type of traffic; entering 100 percent allows all traffic. However, because of hardware limitations and the way in which packets of different sizes are counted, threshold percentages are approximations. Depending on the sizes of the packets making up the incoming traffic, the actual enforced threshold might differ from the configured level by several percentage points.

Note

Storm control is supported only on physical interfaces; it is not supported on EtherChannel port channels even though the command is available in the CLI.

Beginning in privileged EXEC mode, follow these steps to enable a particular type of storm control:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and enter the type and number of the physical interface to configure, for example gigabitethernet1/0/1.</td>
</tr>
<tr>
<td>3</td>
<td>storm-control broadcast level level [.level]</td>
<td>Specify the broadcast traffic suppression level for an interface as a percentage of total bandwidth. The level can be from 1 to 100; the optional fraction of a level can be from 0 to 99. A threshold value of 100 percent means that no limit is placed on broadcast traffic. A value of 0.0 means that all broadcast traffic on that port is blocked.</td>
</tr>
<tr>
<td>4</td>
<td>storm-control multicast level level [.level]</td>
<td>Specify the multicast traffic suppression level for an interface as a percentage of total bandwidth. The level can be from 1 to 100; the optional fraction of a level can be from 0 to 99. A threshold value of 100 percent means that no limit is placed on broadcast traffic. A value of 0.0 means that all multicast traffic on that port is blocked.</td>
</tr>
<tr>
<td>5</td>
<td>storm-control unicast level level [.level]</td>
<td>Specify the unicast traffic suppression level for an interface as a percentage of total bandwidth. The level can be from 1 to 100; the optional fraction of a level can be from 0 to 99. A threshold value of 100 percent means that no limit is placed on broadcast traffic. A value of 0.0 means that all unicast traffic on that port is blocked.</td>
</tr>
<tr>
<td>6</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Chapter 16 Configuring Port-Based Traffic Control

Configuring Protected Ports

Some applications require that no traffic be forwarded at Layer 2 between ports on the same switch so that one neighbor does not see the traffic generated by another neighbor. In such an environment, the use of protected ports ensures that there is no exchange of unicast, broadcast, or multicast traffic between these ports on the switch.

Protected ports have these features:

- A protected port does not forward any traffic (unicast, multicast, or broadcast) to any other port that is also a protected port. Traffic cannot be forwarded between protected ports at Layer 2; all traffic passing between protected ports must be forwarded through a Layer 3 device.
- Forwarding behavior between a protected port and a nonprotected port proceeds as usual.

Because a switch stack represents a single logical switch, Layer 2 traffic is not forwarded between any protected ports in the switch stack, whether they are on the same or different switches in the stack.

Default Protected Port Configuration

The default is to have no protected ports defined.

Command Table

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>show storm-control [interface-id] [broadcast</td>
<td>multicast</td>
</tr>
<tr>
<td>8</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable storm control, use the `no storm-control broadcast level`, `no storm-control multicast level`, or `no storm-control unicast level` interface configuration commands.

This example shows how to set the multicast storm control level at 70.5 percent on Gigabit Ethernet interface 0/17 on switch 2 and verify the configuration:

```
Switch# configure terminal
Switch(config)# interface gigabitethernet2/0/17
Switch(config-if)# storm-control multicast level 70.5
Switch(config-if)# end
Switch# show storm-control gigabitethernet2/0/17 multicast
Interface  Filter State   Level    Current
---------  -------------  -------  -------
Gi2/0/17   Forwarding     70.50%    0.00%
```

This example shows how to disable the multicast storm control on Gigabit Ethernet interface 0/17 on switch 2 and verify the configuration:

```
Switch# configure terminal
Switch(config)# interface gigabitethernet2/0/17
Switch(config-if)# no storm-control multicast level
Switch(config-if)# end
Switch# show storm-control gigabitethernet2/0/17 multicast
Interface  Filter State   Level    Current
---------  -------------  -------  -------
Gi2/0/17   inactive       100.00%  N/A
```
Protected Port Configuration Guidelines

You can configure protected ports on a physical interface (for example, Gigabit Ethernet 1/0/1) or an EtherChannel group (for example, port-channel 5). When you enable protected ports for a port channel, it is enabled for all ports in the port-channel group.

Configuring a Protected Port

Beginning in privileged EXEC mode, follow these steps to define a port as a protected port:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Enter interface configuration mode, and enter the type and number of the interface to configure, for example gigabitethernet1/0/1.</td>
</tr>
<tr>
<td>Step 3 switchport protected</td>
<td>Configure the interface to be a protected port.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show interfaces interface-id switchport</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable protected port, use the no switchport protected interface configuration command.

This example shows how to configure Gigabit Ethernet interface 0/1 on switch 1 as a protected port:

Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# switchport protected
Switch(config-if)# end

Configuring Port Blocking

By default, the switch floods packets with unknown destination MAC addresses out of all ports. If unknown unicast and multicast traffic is forwarded to a protected port, there could be security issues. To prevent unknown unicast or multicast traffic from being forwarded from one port to another, you can block a port (protected or nonprotected) from flooding unknown unicast or multicast packets to other ports.

Default Port Blocking Configuration

The default is to not block flooding of unknown multicast and unicast traffic out of a port, but to flood these packets to all ports.
Blocking Flooded Traffic on an Interface

The interface can be a physical interface (for example, Gigabit Ethernet 1/0/1) or an EtherChannel group (for example, port-channel 5). When you block multicast or unicast traffic for a port channel, it is blocked on all ports in the port channel group.

Beginning in privileged EXEC mode, follow these steps to disable the flooding of multicast and unicast packets from an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Enter interface configuration mode, and enter the type and number of the interface to configure, for example gigabitethernet1/0/1.</td>
</tr>
<tr>
<td>Step 3 switchport block multicast</td>
<td>Block unknown multicast forwarding out of the port.</td>
</tr>
<tr>
<td>Step 4 switchport block unicast</td>
<td>Block unknown unicast forwarding out of the port.</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6 show interfaces interface-id switchport</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 7 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return the interface to the default condition where no traffic is blocked and normal forwarding occurs on the port, use the **no switchport block {multicast | unicast}** interface configuration commands.

This example shows how to block unicast and multicast flooding on Gigabit Ethernet interface 0/1 on switch 1:

Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# switchport block multicast
Switch(config-if)# switchport block unicast
Switch(config-if)# end
Configuring Port Security

You can use the port security feature to restrict input to an interface by limiting and identifying MAC addresses of the stations allowed to access the port. When you assign secure MAC addresses to a secure port, the port does not forward packets with source addresses outside the group of defined addresses. If you limit the number of secure MAC addresses to one and assign a single secure MAC address, the workstation attached to that port is assured the full bandwidth of the port.

If a port is configured as a secure port and the maximum number of secure MAC addresses is reached, when the MAC address of a station attempting to access the port is different from any of the identified secure MAC addresses, a security violation occurs. Also, if a station with a secure MAC address configured or learned on one secure port attempts to access another secure port, a violation is flagged.

These sections include port security configuration information and procedures:
- Understanding Port Security, page 16-7
- Default Port Security Configuration, page 16-8
- Configuration Guidelines, page 16-9
- Enabling and Configuring Port Security, page 16-9
- Enabling and Configuring Port Security Aging, page 16-11
- Port Security and Stack Changes, page 16-12

Understanding Port Security

This section contains information about these topics:
- Secure MAC Addresses, page 16-7
- Security Violations, page 16-8

Secure MAC Addresses

A secure port can have from 1 to 128 associated secure addresses. You configure the maximum number of secure addresses by using the `switchport port-security maximum` value interface configuration command.

Note
If you try to set the maximum value to a number less than the number of secure addresses already configured on an interface, the command is rejected.

After you have set the maximum number of secure MAC addresses on a port, the secure addresses are included in an address table in one of these ways:

- You can configure all secure MAC addresses by using the `switchport port-security mac-address` command.
- You can allow the port to dynamically configure secure MAC addresses with the MAC addresses of connected devices.
- You can configure a number of addresses and allow the rest to be dynamically configured.

Note
If the port shuts down, all dynamically learned addresses are removed.
Once the maximum number of secure MAC addresses is configured, they are stored in an address table. Setting a maximum number of addresses to one and configuring the MAC address of an attached device ensures that the device has the full bandwidth of the port.

Security Violations

It is a security violation when one of these situations occurs:

- The maximum number of secure MAC addresses have been added to the address table, and a station whose MAC address is not in the address table attempts to access the interface.
- An address learned or configured on one secure interface is seen on another secure interface in the same VLAN.

You can configure the interface for one of three violation modes, based on the action to be taken if a violation occurs:

- protect—when the number of secure MAC addresses reaches the maximum limit allowed on the port, packets with unknown source addresses are dropped until you remove a sufficient number of secure MAC addresses to drop below the maximum value.
- restrict—a port security violation restricts data.
- shutdown—a port security violation causes the interface to shut down immediately.

When a secure port is in the error-disabled state, you can bring it out of this state by entering the `errdisable recovery cause psecure-violation` global configuration command, or you can manually re-enable it by entering the `shutdown` and `no shut down` interface configuration commands. This is the default mode.

Note

When the maximum number of secure addresses on an interface is reached and a user tries to configure an address, the command has no affect.

Default Port Security Configuration

Table 16-1 shows the default port security configuration for an interface.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port security</td>
<td>Disabled on a port.</td>
</tr>
<tr>
<td>Maximum number of secure MAC addresses per port</td>
<td>1. (The range is from 1 to 128.)</td>
</tr>
<tr>
<td>Violation mode</td>
<td>Shutdown. The port shuts down when the maximum number of secure MAC addresses is exceeded.</td>
</tr>
<tr>
<td>Port security aging</td>
<td>Disabled. Aging time is 0.</td>
</tr>
<tr>
<td></td>
<td>Static aging is disabled.</td>
</tr>
<tr>
<td></td>
<td>Type is absolute.</td>
</tr>
</tbody>
</table>
Configuration Guidelines

Follow these guidelines when configuring port security:

- Port security can only be configured on static access ports. A secure port cannot be a dynamic access port or a trunk port.
- A secure port cannot be a destination port for Switch Port Analyzer (SPAN).
- A secure port cannot belong to a Fast EtherChannel or Gigabit EtherChannel port group.
- A secure port cannot be an 802.1X port.
- You cannot configure static secure MAC addresses in the voice VLAN.
- When you enter a maximum secure address value for an interface, if the new value is greater than the previous value, the new value overrides the previously configured value. If the new value is less than the previous value and the number of configured secure addresses on the interface exceeds the new value, the command is rejected.
- Although the maximum number of secured addresses per port is 128, the maximum number per system (switch stack) is 1024.

Enabling and Configuring Port Security

Beginning in privileged EXEC mode, follow these steps to restrict input to an interface by limiting and identifying MAC addresses of the stations allowed to access the port:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Enter interface configuration mode, and enter the physical interface to configure, for example <code>gigabitethernet1/0/1</code>.</td>
</tr>
<tr>
<td>Step 3 switchport mode access</td>
<td>Set the interface switchport mode as access; an interface in the default mode (dynamic auto) cannot be configured as a secure port.</td>
</tr>
<tr>
<td>Step 4 switchport port-security</td>
<td>Enable port security on the interface.</td>
</tr>
<tr>
<td>Step 5 switchport port-security maximum value</td>
<td>(Optional) Set the maximum number of secure MAC addresses for the interface. The range is 1 to 128; the default is 1.</td>
</tr>
</tbody>
</table>
Section 16-10: Configuring Port Security

Step 6

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`switchport port-security violation [protect</td>
<td>restrict</td>
</tr>
<tr>
<td></td>
<td>• <code>protect</code>—When the number of port secure MAC addresses reaches the maximum limit allowed on the port, packets with unknown source addresses are dropped until you remove a sufficient number of secure MAC addresses to drop below the maximum value.</td>
</tr>
<tr>
<td></td>
<td>• <code>restrict</code>—A port security violation restricts data and causes the SecurityViolation counter to increment.</td>
</tr>
<tr>
<td></td>
<td>• <code>shutdown</code>—The interface is error-disabled when a violation occurs.</td>
</tr>
<tr>
<td></td>
<td>Note When a secure port is in the error-disabled state, you can bring it out of this state by entering the <code>errdisable recovery cause psecure-violation</code> global configuration command, or you can manually re-enable it by entering the <code>shutdown</code> and <code>no shutdown</code> interface configuration commands.</td>
</tr>
</tbody>
</table>

Step 7

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>switchport port-security mac-address mac-address</code></td>
<td>(Optional) Enter a secure MAC address for the interface. You can use this command to enter the maximum number of secure MAC addresses. If you configure fewer secure MAC addresses than the maximum, the remaining MAC addresses are dynamically learned.</td>
</tr>
</tbody>
</table>

Step 8

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Step 9

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show port-security</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td><code>show port-security address</code></td>
<td></td>
</tr>
<tr>
<td><code>show port-security interface</code></td>
<td></td>
</tr>
<tr>
<td><code>interface-id</code></td>
<td></td>
</tr>
</tbody>
</table>

Step 10

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return the interface to the default condition as not a secure port, use the `no switchport port-security` interface configuration command. To return the interface to the default number of secure MAC addresses, use the `no switchport port-security maximum value` interface configuration command. To return the violation mode to the default condition (shutdown mode), use the `no switchport port-security violation {protocol | restrict}` interface configuration command.

To delete a static secure MAC address from the address table, use the `no switchport port-security mac-address mac-address` interface configuration command. Enter the command once for each static MAC address to be deleted.

This example shows how to enable port security on Gigabit Ethernet port 0/1 on switch 1 and to set the maximum number of secure addresses to 50. The violation mode is the default and no static secure MAC addresses are configured.

```
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# switchport mode access
Switch(config-if)# switchport port-security
Switch(config-if)# switchport port-security maximum 50
```

This example shows how to configure a static secure MAC address on Gigabit Ethernet port 0/12 of switch 1:

```
Switch(config)# interface gigabitethernet1/0/12
Switch(config-if)# switchport mode access
Switch(config-if)# switchport port-security
Switch(config-if)# switchport port-security mac-address 0000.02000.0004
```
Enabling and Configuring Port Security Aging

You can use port security aging to set the aging time for all secure addresses on a port. Two types of aging are supported per port:

- **Absolute**—The secure addresses on the port are deleted after the specified aging time.
- **Inactivity**—The secure addresses on the port are deleted only if the secure addresses are inactive for the specified aging time.

Use this feature to remove and add devices on a secure port without manually deleting the existing secure MAC addresses and to still limit the number of secure addresses on a port. You can enable or disable the aging of statically configured secure addresses on a per-port basis.

Beginning in privileged EXEC mode, follow these steps to configure port security aging:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>switchport port-security aging {static</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show port-security [interface interface-id] [address]</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To disable port security aging for all secure addresses on a port, use the **no switchport port-security aging time** interface configuration command. To disable aging for only statically configured secure addresses, use the **no switchport port-security aging static** interface configuration command.

This example shows how to set the aging time as 2 hours for the secure addresses on Gigabit Ethernet interface 0/1 on switch 1:

```
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# switchport port-security aging time 120
```
This example shows how to set the aging time as 2 minutes for the inactivity aging type with aging enabled for the configured secure addresses on the interface:

Switch(config-if)# switchport port-security aging time 2
Switch(config-if)# switchport port-security aging type inactivity
Switch(config-if)# switchport port-security aging static

You can verify the previous commands by entering the `show port-security interface interface-id` privileged EXEC command.

Port Security and Stack Changes

When a switch joins a stack, the new switch will get the configured secure addresses. All dynamic secure addresses are downloaded by the new stack member from the other stack members.

When a switch (either the stack master or a stack member) leaves the stack, the remaining stack members are notified, and the secure MAC addresses configured or learned by that switch are deleted from the secure MAC address table. For more information about switch stacks, see Chapter 5, “Managing Switch Stacks.”

Displaying Port-Based Traffic Control Settings

The `show interfaces interface-id switchport` privileged EXEC command displays (among other characteristics) the interface traffic suppression and control configuration. The `show interfaces counters` and `show port-security` privileged EXEC commands display those features.

To display traffic control information, use one or more of the privileged EXEC commands in Table 16-2.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show interfaces [interface-id] switchport</code></td>
<td>Displays the administrative and operational status of all switching (nonrouting) ports or the specified port, including port blocking and port protection settings.</td>
</tr>
<tr>
<td>`show storm-control [interface-id] [broadcast</td>
<td>Displays storm control suppression levels set on all interfaces or the specified interface for the specified traffic type or for broadcast traffic if no traffic type is entered.</td>
</tr>
<tr>
<td>multicast</td>
<td>unicast]`</td>
</tr>
<tr>
<td><code>show interfaces [interface-id] counters broadcast</code></td>
<td>Displays the storm-control broadcast suppression discard counter with the number of packets discarded for all interfaces or the specified interface.</td>
</tr>
<tr>
<td><code>show interfaces [interface-id] counters multicast</code></td>
<td>Displays the storm-control multicast suppression discard counter with the number of packets discarded for all interfaces or the specified interface.</td>
</tr>
<tr>
<td><code>show interfaces [interface-id] counters unicast</code></td>
<td>Displays the storm-control unicast suppression discard counter with the number of packets discarded for all interfaces or the specified interface.</td>
</tr>
</tbody>
</table>
Table 16-2 Commands for Displaying Traffic Control Status and Configuration (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show port-security [interface interface-id]</code></td>
<td>Displays port security settings for the switch or for the specified interface, including the maximum allowed number of secure MAC addresses for each interface, the number of secure MAC addresses on the interface, the number of security violations that have occurred, and the violation mode.</td>
</tr>
<tr>
<td><code>show port-security [interface interface-id] address</code></td>
<td>Displays all secure MAC addresses configured on all switch interfaces or on a specified interface with aging information for each address.</td>
</tr>
</tbody>
</table>
This chapter describes how to configure Cisco Discovery Protocol (CDP) on the Catalyst 3750 switch. Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

Note
For complete syntax and usage information for the commands used in this chapter, refer to the command reference for this release and the Cisco IOS Configuration Fundamentals Command Reference for Release 12.1.

This chapter consists of these sections:
- Understanding CDP, page 17-1
- Configuring CDP, page 17-2
- Monitoring and Maintaining CDP, page 17-5

Understanding CDP

CDP is a device discovery protocol that runs over Layer 2 (the data link layer) on all Cisco-manufactured devices (routers, bridges, access servers, and switches) and allows network management applications to discover Cisco devices that are neighbors of already known devices. With CDP, network management applications can learn the device type and the Simple Network Management Protocol (SNMP) agent address of neighboring devices running lower-layer, transparent protocols. This feature enables applications to send SNMP queries to neighboring devices.

CDP runs on all media that support Subnetwork Access Protocol (SNAP). Because CDP runs over the data-link layer only, two systems that support different network-layer protocols can learn about each other.

Each CDP-configured device sends periodic messages to a multicast address, advertising at least one address at which it can receive SNMP messages. The advertisements also contain time-to-live, or holdtime information, which is the length of time a receiving device holds CDP information before discarding it. Each device also listens to the messages sent by other devices to learn about neighboring devices.

On the switch, CDP enables the Cluster Management Suite to display a graphical view of the network. The switch uses CDP to find cluster candidates and maintain information about cluster members and other devices up to three cluster-enabled devices away from the command switch by default. The switch supports CDP version 2.
CDP and Switch Stacks

A switch stack appears as a single switch in the network. Therefore, CDP discovers the switch stack, not the individual stack members. The switch stack sends CDP messages to neighboring network devices when there are changes to the switch stack membership, such as stack members being added or removed.

Configuring CDP

These sections include CDP configuration information and procedures:
- Default CDP Configuration, page 17-2
- Configuring the CDP Characteristics, page 17-2
- Disabling and Enabling CDP, page 17-3
- Disabling and Enabling CDP on an Interface, page 17-4

Default CDP Configuration

Table 17-1 shows the default CDP configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDP global state</td>
<td>Enabled</td>
</tr>
<tr>
<td>CDP interface state</td>
<td>Enabled</td>
</tr>
<tr>
<td>CDP timer (packet update frequency)</td>
<td>60 seconds</td>
</tr>
<tr>
<td>CDP holdtime (before discarding)</td>
<td>180 seconds</td>
</tr>
<tr>
<td>CDP version-2 advertisements</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

Configuring the CDP Characteristics

You can configure the frequency of CDP updates, the amount of time to hold the information before discarding it, and whether or not to send version-2 advertisements.

Beginning in privileged EXEC mode, follow these steps to configure the CDP timer, holdtime, and advertisement type.

Note

Steps 2 through 4 are all optional and can be performed in any order.

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>cdp timer seconds</td>
<td>(Optional) Set the transmission frequency of CDP updates in seconds. The range is from 5 to 254; the default is 60 seconds.</td>
</tr>
</tbody>
</table>
Chapter 17 Configuring CDP

Configuring CDP

This example shows how to configure and verify CDP characteristics.

Switch# configure terminal
Switch(config)# cdp timer 50
Switch(config)# cdp holdtime 120
Switch(config)# cdp advertise-v2
Switch(config)# end

Switch#

Global CDP information:
Sending CDP packets every 50 seconds
Sending a holdtime value of 120 seconds
Sending CDPv2 advertisements is enabled

For additional CDP show commands, see the “Monitoring and Maintaining CDP” section on page 17-5.

Disabling and Enabling CDP

CDP is enabled by default.

Note
Switch clusters and other Cisco devices (such as Cisco IP Phones) regularly exchange CDP messages. Disabling CDP can interrupt cluster discovery and device connectivity. For more information, see Chapter 6, “Clustering Switches.”

Beginning in privileged EXEC mode, follow these steps to disable the CDP device discovery capability:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>no cdp run</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
</tbody>
</table>
Beginning in privileged EXEC mode, follow these steps to enable CDP when it has been disabled:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>cdp run</td>
<td>Enable CDP after disabling it.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

This example shows how to enable CDP if it has been disabled.

Switch# configure terminal
Switch(config)# cdp run
Switch(config)# end

Disabling and Enabling CDP on an Interface

CDP is enabled by default on all supported interfaces to send and receive CDP information.

Beginning in privileged EXEC mode, follow these steps to disable CDP on an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and enter the interface on which you are disabling CDP.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>no cdp enable</td>
<td>Disable CDP on an interface.</td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Beginning in privileged EXEC mode, follow these steps to enable CDP on an interface when it has been disabled:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and enter the interface on which you are enabling CDP.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>cdp enable</td>
<td>Enable CDP on an interface after disabling it.</td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

This example shows how to enable CDP on an interface when it has been disabled.

Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/5
Switch(config-if)# cdp enable
Switch(config-if)# end
Monitoring and Maintaining CDP

To monitor and maintain CDP on your device, perform one or more of these tasks, beginning in privileged EXEC mode.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear cdp counters</td>
<td>Reset the traffic counters to zero.</td>
</tr>
<tr>
<td>clear cdp table</td>
<td>Delete the CDP table of information about neighbors.</td>
</tr>
<tr>
<td>show cdp</td>
<td>Display global information, such as frequency of transmissions and the holdtime for packets being sent.</td>
</tr>
<tr>
<td>show cdp entry entry-name [protocol</td>
<td>version]</td>
</tr>
<tr>
<td>show cdp interface [type number]</td>
<td>Display information about interfaces where CDP is enabled. You can limit the display to the type of interface or the number of the interface about which you want information (for example, entering <code>gigabitethernet 1/0/1</code> displays information only about Gigabit Ethernet port 1).</td>
</tr>
<tr>
<td>show cdp neighbors [type number] [detail]</td>
<td>Display information about neighbors, including device type, interface type and number, holdtime settings, capabilities, platform, and port ID. You can limit the display to neighbors on a specific type or number of interface or expand the display to provide more detailed information.</td>
</tr>
<tr>
<td>show cdp traffic</td>
<td>Display CDP counters, including the number of packets sent and received and checksum errors.</td>
</tr>
</tbody>
</table>

This is an example of the output from the `show cdp` privileged EXEC commands:

```
Switch# show cdp
Global CDP information:
    Sending CDP packets every 50 seconds
    Sending a holdtime value of 120 seconds
    Sending CDPv2 advertisements is enabled
```
Configuring UDLD

This chapter describes how to configure the UniDirectional Link Detection (UDLD) protocol on the Catalyst 3750 switch. Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

Note

For complete syntax and usage information for the commands used in this chapter, refer to the command reference for this release.

This chapter consists of these sections:

• Understanding UDLD, page 18-1
• Configuring UDLD, page 18-3
• Displaying UDLD Status, page 18-5

Understanding UDLD

UDLD is a Layer 2 protocol that enables devices connected through fiber-optic or twisted-pair Ethernet cables to monitor the physical configuration of the cables and detect when a unidirectional link exists. All connected devices must support UDLD for the protocol to successfully identify and disable unidirectional links. When UDLD detects a unidirectional link, it administratively shuts down the affected port and alerts you. Unidirectional links can cause a variety of problems, including spanning-tree topology loops.

UDLD works with the Layer 1 mechanisms to determine the physical status of a link. At Layer 1, autonegotiation takes care of physical signaling and fault detection. UDLD performs tasks that autonegotiation cannot perform, such as detecting the identities of neighbors and disabling misconnected interfaces that are down. When you enable both autonegotiation and UDLD, Layer 1 and Layer 2 detections work together to prevent physical and logical unidirectional connections and the malfunctioning of other protocols.

A unidirectional link occurs whenever traffic sent by the local device is received by the neighbor but traffic from the neighbor is not received by the local device. If one of the fiber strands in a pair is disconnected, as long as autonegotiation is active, the link does not stay up. In this case, the logical link is undetermined, and UDLD does not take any action. If both fibers are working normally from a Layer 1 perspective, UDLD at Layer 2 determines whether those fibers are connected correctly and whether traffic is flowing bidirectionally between the correct neighbors. This check cannot be performed by autonegotiation because autonegotiation operates at Layer 1.
UDLD operates by using two mechanisms:

- Neighbor database maintenance

 UDLD learns about other UDLD-capable neighbors by periodically sending a hello packet (also called an advertisement or probe) on every active interface to keep each device informed about its neighbors.

 When the switch receives a hello message, it caches the information until the age time (hold time or time-to-live) expires. If the switch receives a new hello message before an older cache entry ages, the switch replaces the older entry with the new one.

 Whenever an interface is disabled and UDLD is running, whenever UDLD is disabled on an interface, or whenever the switch is reset, UDLD clears all existing cache entries for the interfaces affected by the configuration change. UDLD sends at least one message to inform the neighbors to flush the part of their caches affected by the status change. The message is intended to keep the caches synchronized.

- Event-driven detection and echoing

 UDLD relies on echoing as its detection mechanism. Whenever a UDLD device learns about a new neighbor or receives a resynchronization request from an out-of-sync neighbor, it restarts the detection window on its side of the connection and sends echo messages in reply. Because this behavior is the same on all UDLD neighbors, the sender of the echoes expects to receive an echo in reply. If the detection window ends and no valid reply message is received, the link is considered unidirectional, and the interface is disabled.

Figure 18-1 shows an example of a unidirectional link condition.

Figure 18-1 UDLD Detection of a Unidirectional Link

Switch B successfully receives traffic from Switch A on this port. However, Switch A does not receive traffic from Switch B on the same port. UDLD detects the problem and disables the port.
Configuring UDLD

This section describes how to configure UDLD on your switch. It contains this configuration information:

- Default UDLD Configuration, page 18-3
- Enabling UDLD Globally, page 18-4
- Enabling UDLD on an Interface, page 18-4
- Resetting an Interface Disabled by UDLD, page 18-5

Default UDLD Configuration

Table 18-1 shows the default UDLD configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDLD global enable state</td>
<td>Globally disabled</td>
</tr>
<tr>
<td>UDLD per-interface enable state for fiber-optic media</td>
<td>Disabled on all Ethernet fiber-optic interfaces</td>
</tr>
<tr>
<td>UDLD per-interface enable state for twisted-pair (copper) media</td>
<td>Disabled on all Ethernet 10/100 and 1000BASE-TX interfaces</td>
</tr>
<tr>
<td>UDLD aggressive mode</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

UDLD is not supported on ATM interfaces. A UDLD-capable interface also cannot detect a unidirectional link if it is connected to a UDLD-incapable port of another switch.
Enabling UDLD Globally

Beginning in privileged EXEC mode, follow these steps to enable UDLD in the aggressive or normal mode and to set the configurable message timer on all fiber-optic interfaces on the switch and all members in the switch stack:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>udld {aggressive</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show udld</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To disable UDLD globally, use the no udld enable global configuration command to disable normal mode UDLD on all fiber-optic ports. Use the no udld aggressive global configuration command to disable aggressive mode UDLD on all fiber-optic ports.

Enabling UDLD on an Interface

Beginning in privileged EXEC mode, follow these steps either to enable UDLD in the aggressive or normal mode or to disable UDLD on an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
</tbody>
</table>
Resetting an Interface Disabled by UDLD

Beginning in privileged EXEC mode, follow these steps to reset all interfaces disabled by UDLD:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>udld reset</td>
<td>Reset all interfaces disabled by UDLD.</td>
</tr>
<tr>
<td>2</td>
<td>show udld</td>
<td>Verify your entries.</td>
</tr>
</tbody>
</table>

You can also bring up the interface by using these commands:
- The `shutdown` interface configuration command followed by the `no shutdown` interface configuration command restarts the disabled interface.
- The `no udld enable` global configuration command followed by the `udld enable` global configuration command re-enables the disabled interfaces.
- The `udld port disable` interface configuration command followed by the `udld port` interface configuration command re-enables the disabled fiber-optic interface.

Displaying UDLD Status

To display the UDLD status for the specified interface or for all interfaces, use the `show udld [interface-id]` privileged EXEC command.

For detailed information about the fields in the display, refer to the command reference for this release.
Configuring SPAN and RSPAN

This chapter describes how to configure Switched Port Analyzer (SPAN) and Remote SPAN (RSPAN) on the Catalyst 3750 switch. Unless otherwise noted, the term switch refers to a standalone switch and a switch stack.

For complete syntax and usage information for the commands used in this chapter, refer to the command reference for this release.

This chapter consists of these sections:

- Understanding SPAN and RSPAN, page 19-1
- Configuring SPAN and RSPAN, page 19-10
- Displaying SPAN and RSPAN Status, page 19-20

Understanding SPAN and RSPAN

You can analyze network traffic passing through ports or VLANs by using SPAN or RSPAN to send a copy of the traffic to another port on the switch or on another switch that has been connected to a network analyzer or other monitoring device. SPAN copies (or mirrors) traffic received or sent (or both) on source ports or source VLANs to a destination port for analysis. SPAN does not affect the switching of network traffic on the source ports or VLANs. You must dedicate the destination port for SPAN use. Except for traffic that is required for the SPAN or RSPAN session, destination ports do not receive or forward traffic.

Only traffic that enters or leaves source ports or traffic that enters or leaves source VLANs can be monitored by using SPAN; traffic routed to a source VLAN cannot be monitored. For example, if incoming traffic is being monitored, traffic that gets routed from another VLAN to the source VLAN cannot be monitored; however, traffic that is received on the source VLAN and routed to another VLAN can be monitored.

This section includes these topics:

- Local SPAN, page 19-2
- Remote SPAN, page 19-3
- SPAN and RSPAN Concepts and Terminology, page 19-3
- SPAN and RSPAN Interaction with Other Features, page 19-8
- SPAN and RSPAN and Stack Changes, page 19-9
Local SPAN

Local SPAN supports a SPAN session entirely within one switch; all source ports or source VLANs and destination ports reside in the same switch or switch stack. Local SPAN copies traffic from one or more source ports in any VLAN or from one or more VLANs to a destination port for analysis. For example, in Figure 19-1, all traffic on port 5 (the source port) is mirrored to port 10 (the destination port). A network analyzer on port 10 receives all network traffic from port 5 without being physically attached to port 5.

Figure 19-1 Example of Local SPAN Configuration on a Single Switch

Figure 19-1 is an example of a local SPAN in a switch stack, where the source and destination ports reside on different stack members.

Figure 19-2 Example of Local SPAN Configuration on a Switch Stack
Remote SPAN

RSPAN supports source ports, source VLANs, and destination ports on different switches (or different switch stacks), enabling remote monitoring of multiple switches across your network as shown in Figure 19-3. The traffic for each RSPAN session is carried over a user-specified RSPAN VLAN that is dedicated for that RSPAN session in all participating switches. The RSPAN traffic from the source ports or VLANs is copied into the RSPAN VLAN and forwarded over trunk ports carrying the RSPAN VLAN to a destination session monitoring the RSPAN VLAN. Each RSPAN source switch must have either ports or VLANs as RSPAN sources. The destination is always a physical port.

![Figure 19-3 Example of RSPAN Configuration](image)

SPAN and RSPAN Concepts and Terminology

This section describes concepts and terminology associated with SPAN and RSPAN configuration.

SPAN Sessions

SPAN sessions (local or remote) allow you to monitor traffic on one or more ports, or one or more VLANs, and send the monitored traffic to one or more destination ports.
A local SPAN session is an association of a destination port with source ports or source VLANs, all on a single network device. Local SPAN does not have separate source and destination sessions. Local SPAN sessions gather a set of ingress and egress packets specified by the user and form them into a stream of SPAN data, which is directed to the destination port.

RSPAN consists of at least one RSPAN source session, an RSPAN VLAN, and at least one RSPAN destination session. You separately configure RSPAN source sessions and RSPAN destination sessions on different network devices. To configure an RSPAN source session on a device, you associate a set of source ports or source VLANs with an RSPAN VLAN. The output of this session is the stream of SPAN packets that are sent to the RSPAN VLAN. To configure an RSPAN destination session on another device, you associate the destination port with the RSPAN VLAN. The destination session collects all RSPAN VLAN traffic and sends it out the RSPAN destination port.

An RSPAN source session is very similar to a local SPAN session, except for where the packet stream is directed. In an RSPAN source session, SPAN packets are relabeled with the RSPAN VLAN ID and directed over normal trunk ports to the destination switch.

An RSPAN destination session takes all packets received on the RSPAN VLAN, strips off the VLAN tagging, and presents them on the destination port. Its purpose is to present a copy of all RSPAN VLAN packets (except Layer 2 control packets) to the user for analysis.

There can be more than one source session and more than one destination session active in the same RSPAN VLAN. There can also be intermediate switches separating the RSPAN source and destination sessions. These switches need not be capable of running RSPAN, but they must handle the requirements of the RSPAN VLAN (see the “RSPAN VLAN” section on page 19-8).

Traffic monitoring in a SPAN session has these restrictions:

- Sources can be ports or VLANs, but you cannot mix source ports and source VLANs in the same session.
- The switch supports up to two source sessions; you can run both a local SPAN and an RSPAN source session in the same switch stack. The switch stack supports a total of 66 source and RSPAN destination sessions.
- You can have multiple destination ports in a SPAN session, but no more than 64 destination ports per switch stack.
- You can configure two separate SPAN or RSPAN source sessions with separate or overlapping sets of SPAN source ports and VLANs. Both switched and routed ports can be configured as SPAN sources and destinations.
- SPAN sessions do not interfere with the normal operation of the switch. However, an oversubscribed SPAN destination, for example, a 10-Mbps port monitoring a 100-Mbps port, can result in dropped or lost packets.
- When RSPAN is enabled, each packet being monitored is transmitted twice, once as normal traffic and once as a monitored packet. Therefore monitoring a large number of ports or VLANs could potentially generate large amounts of network traffic.
- You can configure SPAN sessions on disabled ports; however, a SPAN session does not become active unless you enable the destination port and at least one source port or VLAN for that session.
- The switch does not support a combination of local SPAN and RSPAN in a single session. That is, an RSPAN source session cannot have a local destination port, an RSPAN destination session cannot have a local source port, and an RSPAN destination session and an RSPAN source session that are using the same RSPAN VLAN cannot run on the same switch stack.
Monitored Traffic

SPAN sessions can monitor these traffic types:

- **Receive (Rx) SPAN**—The goal of receive (or ingress) SPAN is to monitor as much as possible all the packets received by the source interface or VLAN before any modification or processing is performed by the switch. A copy of each packet received by the source is sent to the destination port for that SPAN session.

 Packets that are modified because of routing or quality of service (QoS)—for example, modified Differentiated Services Code Point (DSCP)—are copied before modification.

 Features that can cause a packet to be dropped during receive processing have no effect on ingress SPAN; the destination port receives a copy of the packet even if the actual incoming packet is dropped. These features include IP standard and extended input access control lists (ACLs), ingress QoS policing, VLAN ACLs and egress QoS policing.

- **Transmit (Tx) SPAN**—The goal of transmit (or egress) SPAN is to monitor as much as possible all the packets sent by the source interface after all modification and processing is performed by the switch. A copy of each packet sent by the source is sent to the destination port for that SPAN session. The copy is provided after the packet is modified.

 Packets that are modified because of routing—for example, with modified time-to-live (TTL), MAC-address, or QoS values—are duplicated (with the modifications) at the destination port.

 Features that can cause a packet to be dropped during transmit processing also affect the duplicated copy for SPAN. These features include IP standard and extended output ACLs and egress QoS policing.

- **Both**—In a SPAN session, you can also monitor a port or VLAN for both received and sent packets. This is the default.

The default configuration for local SPAN session ports is to send all packets untagged. SPAN also does not normally monitor bridge protocol data unit (BPDU) packets and Layer 2 protocols, such as Cisco Discovery Protocol (CDP), VLAN Trunk Protocol (VTP), Dynamic Trunking Protocol (DTP), Spanning Tree Protocol (STP), and Port Aggregation Protocol (PAgP). However, when you enter the encapsulation replicate keywords when configuring a destination port, these changes occur:

- Packets are sent on the destination port with the same encapsulation—untagged, IEEE 802.1Q, or Inter-Switch Link (ISL)—that they had on the source port.

- Packets of all types, including BPDU and Layer 2 protocol packets are monitored.

Therefore, a local SPAN session with encapsulation replicate enabled can have a mixture of untagged, 802.1Q, and ISL tagged packets appear on the destination port.

Switch congestion can cause packets to be dropped at ingress source ports, egress source ports, or SPAN destination ports. In general, these characteristics are independent of one another. For example:

- A packet might be forwarded normally but dropped from monitoring due to an oversubscribed SPAN destination port.

- An ingress packet might be dropped from normal forwarding, but still appear on the SPAN destination port.

- An egress packet dropped because of switch congestion is also dropped from egress SPAN.

In some SPAN configurations, multiple copies of the same source packet are sent to the SPAN destination port. For example, a bidirectional (both Rx and Tx) SPAN session is configured for the Rx monitor on port A and Tx monitor on port B. If a packet enters the switch through port A and is switched...
to port B, both incoming and outgoing packets are sent to the destination port. Both packets are the same (unless a Layer-3 rewrite occurs, in which case the packets are different because of the packet modification).

Source Ports

A source port (also called a monitored port) is a switched or routed port that you monitor for network traffic analysis. In a local SPAN session or RSPAN source session, you can monitor source ports or VLANs for traffic in one or both directions. The switch supports any number of source ports (up to the maximum number of available ports on the switch) and any number of source VLANs (up to the maximum number of VLANs supported). However, the switch supports a maximum of two sessions (local or RSPAN) with source ports or VLANs and you cannot mix ports and VLANs in a single session.

A source port has these characteristics:

- It can be monitored in multiple SPAN sessions.
- Each source port can be configured with a direction (ingress, egress, or both) to monitor.
- It can be any port type (for example, EtherChannel, Fast Ethernet, Gigabit Ethernet, and so forth).
- For EtherChannel sources, you can monitor traffic for the entire EtherChannel or individually on a physical port as it participates in the port channel.
- It can be an access port, trunk port, routed port, or voice VLAN port.
- It cannot be a destination port.
- Source ports can be in the same or different VLANs.
- You can monitor multiple source ports in a single session.

Source VLANs

VLAN-based SPAN (VSPAN) is the monitoring of the network traffic in one or more VLANs. The SPAN or RSPAN source interface in VSPAN is a VLAN ID and traffic is monitored on all the ports for that VLAN.

VSPAN has these characteristics:

- All active ports in the source VLAN are included as source ports and can be monitored in either or both directions.
- On a given port, only traffic on the monitored VLAN is sent to the destination port.
- If a destination port belongs to a source VLAN, it is excluded from the source list and is not monitored.
- If ports are added to or removed from the source VLANs, the traffic on the source VLAN received by those ports is added to or removed from the sources being monitored.
- You cannot use filter VLANs in the same session with VLAN sources.
- You can monitor only Ethernet VLANs.
VLAN Filtering

When you monitor a trunk port as a source port, by default, all VLANs active on the trunk are monitored. You can limit SPAN traffic monitoring on trunk source ports to specific VLANs by using VLAN filtering.

- VLAN filtering applies only to trunk ports or to voice VLAN ports.
- VLAN filtering applies only to port-based sessions and is not allowed in sessions with VLAN sources.
- When a VLAN filter list is specified, only those VLANs in the list are monitored on trunk ports or on voice VLAN access ports.
- SPAN traffic coming from other port types is not affected by VLAN filtering; that is, all VLANs are allowed on other ports.
- VLAN filtering affects only traffic forwarded to the destination SPAN port and does not affect the switching of normal traffic.

Destination Port

Each local SPAN session or RSPAN destination session must have a destination port (also called a monitoring port) that receives a copy of traffic from the source ports or VLANs and sends the SPAN packets to the user, usually a network analyzer.

A destination port has these characteristics:

- For a local SPAN session, the destination port must reside on the same switch stack as the source port. For an RSPAN session, it is located on the switch containing the RSPAN destination session. There is no destination port on a switch or switch stack running only an RSPAN source session.
- When a port is configured as a SPAN destination port, the configuration overwrites the original port configuration. When the SPAN destination configuration is removed, the port reverts to its previous configuration. If a configuration change is made to the port while it is acting as a SPAN destination port, the change does not take effect until the SPAN destination configuration had been removed.
- If the port was in an EtherChannel group, it is removed from the group while it is a destination port. If it was a routed port, it is no longer a routed port.
- It can be any Ethernet physical port.
- It cannot be a secure port.
- It cannot be a source port.
- It cannot be an EtherChannel group or a VLAN.
- It can participate in only one SPAN session at a time (a destination port in one SPAN session cannot be a destination port for a second SPAN session).
- When it is active, incoming traffic is disabled. The port does not transmit any traffic except that required for the SPAN session. Incoming traffic is never learned or forwarded on a destination port.
- It does not participate in any of the Layer 2 protocols (STP, VTP, CDP, DTP, PagP).
- A destination port that belongs to a source VLAN of any SPAN session is excluded from the source list and is not monitored.
- The maximum number of destination ports in a switch stack is 64.
Local SPAN and RSPAN destination ports behave differently regarding VLAN tagging and encapsulation:

- For local SPAN, if the **encapsulation replicate** keywords are specified for the destination port, these packets appear with the original encapsulation (untagged, ISL, or 802.1Q). If these keywords are not specified, packets appear in the untagged format. Therefore, the output of a local SPAN session with **encapsulation replicate** enabled can contain a mixture of untagged, 802.1Q, or ISL tagged packets.
- For RSPAN, the original VLAN ID is lost because it is overwritten by the RSPAN VLAN identification. Therefore, all packets appear on the destination port as untagged.

RSPAN VLAN

The RSPAN VLAN carries SPAN traffic between RSPAN source and destination sessions. It has these special characteristics:

- All traffic in the RSPAN VLAN is always flooded.
- No MAC address learning occurs on the RSPAN VLAN.
- RSPAN VLAN traffic only flows on trunk ports.
- RSPAN VLANs must be configured in VLAN configuration mode by using the **remote-span VLAN** configuration mode command.
- STP can run on RSPAN VLAN trunks but not on SPAN destination ports.

For VLANs 1 to 1005 that are visible to VLAN Trunking Protocol (VTP), the VLAN ID and its associated RSPAN characteristic are propagated by VTP. If you assign an RSPAN VLAN ID in the extended VLAN range (1006 to 4094), you must manually configure all intermediate switches.

It is normal to have multiple RSPAN VLANs in a network at the same time with each RSPAN VLAN defining a network-wide RSPAN session. That is, multiple RSPAN source sessions anywhere in the network can contribute packets to the RSPAN session. It is also possible to have multiple RSPAN destination sessions throughout the network, monitoring the same RSPAN VLAN and presenting traffic to the user. The RSPAN VLAN ID separates the sessions.

SPAN and RSPAN Interaction with Other Features

SPAN interacts with these features:

- **Routing**—SPAN does not monitor routed traffic. VSPAN only monitors traffic that enters or exits the switch, not traffic that is routed between VLANs. For example, if a VLAN is being Rx-monitored and the switch routes traffic from another VLAN to the monitored VLAN, that traffic is not monitored and not received on the SPAN destination port.
- **Spanning Tree Protocol (STP)**—A destination port does not participate in STP while its SPAN or RSPAN session is active. The destination port can participate in STP after the SPAN or RSPAN session is disabled. On a source port, SPAN does not affect the STP status. STP can be active on trunk ports carrying an RSPAN VLAN.
- **Cisco Discovery Protocol (CDP)**—A SPAN destination port does not participate in CDP while the SPAN session is active. After the SPAN session is disabled, the port again participates in CDP.
- **VLAN Trunking Protocol (VTP)**—You can use VTP to prune an RSPAN VLAN between switches.
• VLAN and trunking—You can modify VLAN membership or trunk settings for source or destination ports at any time. However, changes in VLAN membership or trunk settings for a destination port do not take effect until you remove the SPAN destination configuration. Changes in VLAN membership or trunk settings for a source port immediately take effect, and the respective SPAN sessions automatically adjust accordingly.

• EtherChannel—You can configure an EtherChannel group as a source port but not as a SPAN destination port. When a group is configured as a SPAN source, the entire group is monitored. If a physical port is added to a monitored EtherChannel group, the new port is added to the SPAN source port list. If a port is removed from a monitored EtherChannel group, it is automatically removed from the source port list. If the port is the only port in the EtherChannel group, because there are no longer any ports in the group, there is no data to monitor.

A physical port that belongs to an EtherChannel group can be configured as a SPAN source port and still be a part of the EtherChannel. In this case, data from the physical port is monitored as it participates in the EtherChannel. However, if a physical port that belongs to an EtherChannel group is configured as a SPAN destination, it is removed from the group. After the port is removed from the SPAN session, it rejoins the EtherChannel group. Ports removed from an EtherChannel group remain members of the group, but they are in the inactive or standalone state.

If a physical port that belongs to an EtherChannel group is a destination port and the EtherChannel group is a source, the port is removed from the EtherChannel group and from the list of monitored ports.

• Multicast traffic can be monitored. For egress and ingress port monitoring, only a single unedited packet is sent to the SPAN destination port. It does not reflect the number of times the multicast packet is sent.

• A secure port cannot be a SPAN destination port.

• An 802.1X port can be a SPAN source port. You can enable 802.1X on a port that is a SPAN destination port; however, 802.1X is disabled until the port is removed as a SPAN destination.

SPAN and RSPAN and Stack Changes

Because the stack of switches is treated as one logical switch, local SPAN source ports and destination ports can be in different switches in the stack. Therefore, the addition or deletion of switches in the stack can affect a local SPAN session, as well as an RSPAN source or destination session. An active session can become inactive when a switch is removed from the stack or an inactive session can become active when a switch is added to the stack.

For more information about switch stacks, see Chapter 5, “Managing Switch Stacks.”
Configuring SPAN and RSPAN

This section describes how to configure SPAN on your switch. It contains this configuration information:

- Default SPAN and RSPAN Configuration, page 19-10
- Configuring Local SPAN, page 19-10
- Configuring RSPAN, page 19-15

Default SPAN and RSPAN Configuration

Table 19-1 shows the default SPAN and RSPAN configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPAN state (SPAN and RSPAN)</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Source port traffic to monitor</td>
<td>Both received and sent traffic (both).</td>
</tr>
<tr>
<td>Encapsulation type (destination port)</td>
<td>Native form (untagged packets).</td>
</tr>
<tr>
<td>VLAN filtering</td>
<td>On a trunk interface used as a source port, all VLANs are monitored.</td>
</tr>
<tr>
<td>RSPAN VLANs</td>
<td>None configured.</td>
</tr>
</tbody>
</table>

Configuring Local SPAN

This section describes how to configure Local SPAN on your switch. It contains this configuration information:

- SPAN Configuration Guidelines, page 19-10
- Creating a Local SPAN Session, page 19-11
- Specifying VLANs to Filter, page 19-14

SPAN Configuration Guidelines

Follow these guidelines when configuring SPAN:

- You can configure a total of two local SPAN sessions or RSPAN source sessions on each switch stack. You can have a total of 66 SPAN sessions (local, RSPAN source, and RSPAN destination) on a switch stack.
- For SPAN sources, you can monitor traffic for a single port or VLAN or a series or range of ports or VLANs for each session. You cannot mix source ports and source VLANs within a single SPAN session.
Configuring SPAN and RSPAN

Chapter 19 Configuring SPAN and RSPAN

The destination port cannot be a source port; a source port cannot be a destination port.

You cannot have two SPAN sessions using the same destination port.

When you configure a switch port as a SPAN destination port, it is no longer a normal switch port; only monitored traffic passes through the SPAN destination port.

Entering SPAN configuration commands does not clear previously configured SPAN parameters. You must enter the no monitor session {session_number | all | local | remote} global configuration command to clear configured SPAN parameters.

For local SPAN, outgoing packets through the SPAN destination port carry the original encapsulation headers—untagged, ISL, or IEEE 802.1Q—if the encapsulation replicate keywords are specified. If the keywords are not specified, the packets are sent in native form. For RSPAN destination ports, outgoing packets are not tagged.

You can configure a disabled port to be a source or destination port, but the SPAN function does not start until the destination port and at least one source port or source VLAN are enabled.

You can limit SPAN traffic to specific VLANs by using the filter vlan keyword. If a trunk port is being monitored, only traffic on the VLANs specified with this keyword is monitored. By default, all VLANs are monitored on a trunk port.

You cannot mix source VLANs and filter VLANs within a single SPAN session.

Creating a Local SPAN Session

Beginning in privileged EXEC mode, follow these steps to create a SPAN session and specify the source (monitored) ports or VLANs and the destination (monitoring) ports:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>no monitor session {session_number</td>
</tr>
</tbody>
</table>
Configuring SPAN and RSPAN

Chapter 19

Configuring SPAN and RSPAN

Step 3

```plaintext
monitor session session_number source
   [interface interface-id | vlan vlan-id] [, | -] [both | rx | tx]
```

Specify the SPAN session and the source port (monitored port).

For `session_number`, the range is from 1 to 66.

For `interface-id`, specify the source port or source VLAN to monitor.

- For `interface-id`, specify the source port to monitor. Valid interfaces include physical interfaces and port-channel logical interfaces (`port-channel port-channel-number`). Valid port channel numbers are 1 to 12.
- For `vlan-id`, specify the source VLAN to monitor. The range is 1 to 4094 (excluding the RSPAN VLAN).

Note

A single session can include multiple sources (ports or VLANs), defined in a series of commands, but you cannot combine source ports and source VLANs in one session.

(Optional) `[| -]` Specify a series or range of interfaces. Enter a space before and after the comma; enter a space before and after the hyphen.

(Optional) Specify the direction of traffic to monitor. If you do not specify a traffic direction, the SPAN monitors both sent and received traffic.

- `both` — Monitor both received and sent traffic.
- `rx` — Monitor received traffic.
- `tx` — Monitor sent traffic.

Note

You can use the `monitor session session_number source` command multiple times to configure multiple destination ports.

Step 4

```plaintext
monitor session session_number destination
   [interface interface-id [, | -] [encapsulation replicate]]
```

Specify the SPAN session and the destination port (monitoring port).

For `session_number`, specify the session number entered in step 3.

Note

For local SPAN, you must use the same session number for the source and destination interfaces.

For `interface-id`, specify the destination port. The destination interface must be a physical port; it cannot be an EtherChannel, and it cannot be a VLAN.

(Optional) `[| -]` Specify a series or range of interfaces. Enter a space before and after the comma; enter a space before and after the hyphen.

(Optional) Enter `encapsulation replicate` to specify that the destination interface replicates the source interface encapsulation method. If not selected, the default is to send packets in native form (untagged).

Note

You can use `monitor session session_number destination` command multiple times to configure multiple destination ports.

Step 5

```plaintext
end
```

Return to privileged EXEC mode.
Chapter 19 Configuring SPAN and RSPAN

Configuring SPAN and RSPAN

To delete a SPAN session, use the `no monitor session session_number` global configuration command. To remove a source or destination port or VLAN from the SPAN session, use the `no monitor session session_number source {interface interface-id | vlan vlan-id}` global configuration command or the `no monitor session session_number destination interface interface-id` global configuration command. For destination interfaces, the `encapsulation replicate` keywords are ignored with the `no` form of the command.

This example shows how to set up SPAN session 1, for monitoring source port traffic to a destination port. First, any existing SPAN configuration for session 1 is cleared, and then bidirectional traffic is mirrored from source Gigabit Ethernet port 0/1 to destination Gigabit Ethernet port 0/10 on switch 1, retaining the encapsulation method.

```
Switch(config)# no monitor session 1
Switch(config)# monitor session 1 source interface gigabitethernet1/0/1
Switch(config)# monitor session 1 destination interface gigabitethernet1/0/10
Switch(config)# encapsulation replicate
Switch(config)# end
```

This example shows how to remove port 0/1 as a SPAN source for SPAN session 1:

```
Switch(config)# no monitor session 1 source interface gigabitethernet1/0/1
Switch(config)# end
```

This example shows how to disable received traffic monitoring on port 0/1, which was configured for bidirectional monitoring:

```
Switch(config)# no monitor session 1 source interface gigabitethernet1/0/1 rx
```

The monitoring of traffic received on port 0/1 is disabled, but traffic sent from this port continues to be monitored.

This example shows how to clear any existing configuration on SPAN session 2, configure SPAN session 2 to monitor received traffic on all ports belonging to VLANs 1 through 3, and send it to destination Gigabit Ethernet port 0/2 on switch 1. The configuration is then modified to also monitor all traffic on all ports belonging to VLAN 10.

```
Switch(config)# no monitor session 2
Switch(config)# monitor session 2 source vlan 1 - 3 rx
Switch(config)# monitor session 2 destination interface gigabitethernet1/0/2
Switch(config)# monitor session 2 source vlan 10
Switch(config)# end
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6</td>
<td>show monitor [session session_number] Verify your entries.</td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To delete a SPAN session, use the `no monitor session session_number` global configuration command. To remove a source or destination port or VLAN from the SPAN session, use the `no monitor session session_number source {interface interface-id | vlan vlan-id}` global configuration command or the `no monitor session session_number destination interface interface-id` global configuration command. For destination interfaces, the `encapsulation replicate` keywords are ignored with the `no` form of the command.

This example shows how to set up SPAN session 1, for monitoring source port traffic to a destination port. First, any existing SPAN configuration for session 1 is cleared, and then bidirectional traffic is mirrored from source Gigabit Ethernet port 0/1 to destination Gigabit Ethernet port 0/10 on switch 1, retaining the encapsulation method.

```
Switch(config)# no monitor session 1
Switch(config)# monitor session 1 source interface gigabitethernet1/0/1
Switch(config)# monitor session 1 destination interface gigabitethernet1/0/10
Switch(config)# encapsulation replicate
Switch(config)# end
```

This example shows how to remove port 0/1 as a SPAN source for SPAN session 1:

```
Switch(config)# no monitor session 1 source interface gigabitethernet1/0/1
Switch(config)# end
```

This example shows how to disable received traffic monitoring on port 0/1, which was configured for bidirectional monitoring:

```
Switch(config)# no monitor session 1 source interface gigabitethernet1/0/1 rx
```

The monitoring of traffic received on port 0/1 is disabled, but traffic sent from this port continues to be monitored.

This example shows how to clear any existing configuration on SPAN session 2, configure SPAN session 2 to monitor received traffic on all ports belonging to VLANs 1 through 3, and send it to destination Gigabit Ethernet port 0/2 on switch 1. The configuration is then modified to also monitor all traffic on all ports belonging to VLAN 10.

```
Switch(config)# no monitor session 2
Switch(config)# monitor session 2 source vlan 1 - 3 rx
Switch(config)# monitor session 2 destination interface gigabitethernet1/0/2
Switch(config)# monitor session 2 source vlan 10
Switch(config)# end
```
Specifying VLANs to Filter

Beginning in privileged EXEC mode, follow these steps to limit SPAN source traffic to specific VLANs:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>no monitor session {session_number</td>
</tr>
<tr>
<td></td>
<td>Clear any existing SPAN configuration for the session. For session_number, the range is from 1 to 66. Specify all to remove all SPAN sessions, local to remove all local sessions, or remote to remove all remote SPAN sessions.</td>
</tr>
<tr>
<td>Step 3</td>
<td>monitor session session_number source interface interface-id</td>
</tr>
<tr>
<td></td>
<td>Specify the characteristics of the source port (monitored port) and SPAN session. For session_number, the range is from 1 to 66. For interface-id, specify the source port to monitor. The interface specified must already be configured as a trunk port.</td>
</tr>
<tr>
<td>Step 4</td>
<td>monitor session session_number filter vlan vlan-id [,</td>
</tr>
<tr>
<td></td>
<td>Limit the SPAN source traffic to specific VLANs. For session_number, enter the session number specified in Step 3. For vlan-id, the range is 1 to 4094. (Optional) Use a comma (,) to specify a series of VLANs, or use a hyphen (-) to specify a range of VLANs. Enter a space before and after the comma; enter a space before and after the hyphen.</td>
</tr>
<tr>
<td>Step 5</td>
<td>monitor session session_number destination {interface interface-id [,</td>
</tr>
<tr>
<td></td>
<td>Specify the SPAN session and the destination port (monitoring port). For session_number, specify the session number entered in step 3. For interface-id, specify the destination port. The destination interface must be a physical port; it cannot be an EtherChannel, and it cannot be a VLAN. (Optional) [,</td>
</tr>
<tr>
<td>Step 6</td>
<td>end</td>
</tr>
<tr>
<td>Step 7</td>
<td>show monitor [session session_number]</td>
</tr>
<tr>
<td></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 8</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To monitor all VLANs on the trunk port, use the no monitor session session_number filter global configuration command.
This example shows how to clear any existing configuration on SPAN session 2, configure SPAN session 2 to monitor traffic received on Gigabit Ethernet trunk port 0/4 on switch 1, and send traffic for only VLANs 1 through 5 and 9 to destination Gigabit Ethernet port 8 on switch 1.

```
Switch(config)# no monitor session 2
Switch(config)# monitor session 2 source interface gigabitethernet1/0/4 rx
Switch(config)# monitor session 2 filter vlan 1 - 5, 9
Switch(config)# monitor session 2 destination interface gigabitethernet1/0/8
Switch(config)# end
```

Configuring RSPAN

This section describes how to configure RSPAN on your switch. It contains this configuration information:

- **RSPAN Configuration Guidelines, page 19-15**
- **Configuring a VLAN as an RSPAN VLAN, page 19-16**
- **Creating an RSPAN Source Session, page 19-17**
- **Creating an RSPAN Destination Session, page 19-18**
- **Specifying VLANs to Filter, page 19-19**

RSPAN Configuration Guidelines

Follow these guidelines when configuring RSPAN:

- All the items in the “SPAN Configuration Guidelines” section on page 19-10 apply to RSPAN.

Note

As RSPAN VLANs have special properties, you should reserve a few VLANs across your network for use as RSPAN VLANs; do not assign access ports to these VLANs.

Note

You can apply an output access control list (ACL) to RSPAN traffic to selectively filter or monitor specific packets. Specify these ACLs on the RSPAN VLAN in the RSPAN source switches.

- For RSPAN configuration, you can distribute the source ports and the destination ports across multiple switches in your network.
- RSPAN does not support BPDU packet monitoring or other Layer 2 switch protocols.
- The RSPAN VLAN is configured only on trunk ports and not on access ports. To avoid unwanted traffic in RSPAN VLANs, make sure that the VLAN remote-span feature is supported in all the participating switches.
- Access ports (including voice VLAN ports) on the RSPAN VLAN are put in the inactive state.
- RSPAN VLANs are included as sources for port-based RSPAN sessions when source trunk ports have active RSPAN VLANs. RSPAN VLANs can also be sources in SPAN sessions. However, since the switch does not monitor spanned traffic, it does not support egress spanning of packets on any RSPAN VLAN identified as the destination of an RSPAN source session on the switch.
You can configure any VLAN as an RSPAN VLAN as long as these conditions are met:
- The same RSPAN VLAN is used for an RSPAN session in all the switches.
- All participating switches support RSPAN.

We recommend that you configure an RSPAN VLAN before you configure an RSPAN source or a destination session.

If you enable VTP and VTP pruning, RSPAN traffic is pruned in the trunks to prevent the unwanted flooding of RSPAN traffic across the network for VLAN IDs that are lower than 1005.

Configuring a VLAN as an RSPAN VLAN

First create a new VLAN to be the RSPAN VLAN for the RSPAN session. You must create the RSPAN VLAN in all switches that will participate in RSPAN. If the RSPAN VLAN-ID is in the normal range (lower than 1005) and VTP is enabled in the network, you can create the RSPAN VLAN in one switch, and VTP propagates it to the other switches in the VTP domain. For extended-range VLANs (greater than 1005), you must configure RSPAN VLAN on both source and destination switches and any intermediate switches.

Use VTP pruning to get an efficient flow of RSPAN traffic, or manually delete the RSPAN VLAN from all trunks that do not need to carry the RSPAN traffic.

Beginning in privileged EXEC mode, follow these steps to create an RSPAN VLAN:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>vlan vlan-id</td>
</tr>
<tr>
<td></td>
<td>Enter a VLAN ID to create a VLAN, or enter the VLAN ID of an existing</td>
</tr>
<tr>
<td></td>
<td>VLAN, and enter VLAN configuration mode. The range is from 2 to 1001 and</td>
</tr>
<tr>
<td></td>
<td>from 1006 to 4094.</td>
</tr>
<tr>
<td></td>
<td>Note The RSPAN VLAN cannot be VLAN 1 (the default VLAN) or VLAN</td>
</tr>
<tr>
<td></td>
<td>IDs 1002 through 1005 (reserved for Token Ring and FDDI VLANs).</td>
</tr>
<tr>
<td>Step 3</td>
<td>remote-span</td>
</tr>
<tr>
<td></td>
<td>Configure the VLAN as an RSPAN VLAN.</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove the remote SPAN characteristic from a VLAN and convert it back to a normal VLAN, use the `no remote-span` VLAN configuration command.

This example shows how to create RSPAN VLAN 901.

```
Switch(config)# vlan 901
Switch(config-vlan)# remote span
Switch(config-vlan)# end
```
Creating an RSPAN Source Session

Beginning in privileged EXEC mode, follow these steps to start an RSPAN source session and to specify the monitored source and the destination RSPAN VLAN:

Command	**Purpose**
Step 1 configure terminal | Enter global configuration mode.
Step 2 no monitor session {session_number | all | local | remote} | Clear any existing RSPAN configuration for the session. For session_number, the range is from 1 to 66. Specify all to remove all RSPAN sessions, local to remove all local sessions, or remote to remove all remote SPAN sessions.
Step 3 monitor session session_number source {interface interface-id | vlan vlan-id} [,, | -] [both | rx | tx] | Specify the RSPAN session and the source port (monitored port). For session_number, the range is from 1 to 66. Enter a source port or source VLAN for the RSPAN session:
 - For interface-id, specify the source port to monitor. Valid interfaces include physical interfaces and port-channel logical interfaces (port-channel port-channel-number). Valid port channel numbers are 1 to 12.
 - For vlan-id, specify the source VLAN to monitor. The range is 1 to 4094 (excluding the RSPAN VLAN).
Note A single session can include multiple sources (ports or VLANs), defined in a series of commands, but you cannot combine source ports and source VLANs in one session.
(Optional) [,, | -] Specify a series or range of interfaces. Enter a space before and after the comma; enter a space before and after the hyphen.
(Optional) Specify the direction of traffic to monitor. If you do not specify a traffic direction, the source interface sends both sent and received traffic.
 - both—Monitor both received and sent traffic.
 - rx—Monitor received traffic.
 - tx—Monitor sent traffic.
Step 4 monitor session session_number destination remote vlan vlan-id | Specify the RSPAN session and the destination RSPAN VLAN. For session_number, enter the number defined in Step 3. For vlan-id, specify the source RSPAN VLAN to monitor.
Step 5 end | Return to privileged EXEC mode.
Step 6 show monitor [session session_number] | Verify your entries.
Step 7 copy running-config startup-config | (Optional) Save your entries in the configuration file.

To delete a SPAN session, use the no monitor session session_number global configuration command. To remove a source port or VLAN from the SPAN session, use the no monitor session session_number source {interface interface-id | vlan vlan-id} global configuration command. To remove the RSPAN VLAN from the session, use the no monitor session session_number destination remote vlan vlan-id.
This example shows how to clear any existing RSPAN configuration for session 1, configure RSPAN session 1 to monitor multiple source interfaces, and configure the destination as RSPAN VLAN 901.

```
Switch(config)# no monitor session 1
Switch(config)# monitor session 1 source interface gigabitethernet1/0/10 tx
Switch(config)# monitor session 1 source interface gigabitethernet1/0/2 rx
Switch(config)# monitor session 1 source interface gigabitethernet2/0/3
Switch(config)# monitor session 1 source interface port-channel 12
Switch(config)# monitor session 1 destination remote vlan 901
Switch(config)# end
```

Creating an RSPAN Destination Session

You configure the RSPAN destination session on a different switch or switch stack; that is, not the switch or switch stack on which the source session was configured. Beginning in privileged EXEC mode, follow these steps to define the RSPAN VLAN on that switch, to create an RSPAN destination session, and to specify the source RSPAN VLAN and the destination port:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>vlan vlan-id</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>remote-span</td>
</tr>
<tr>
<td>Step 4</td>
<td>exit</td>
</tr>
<tr>
<td>Step 5</td>
<td>no monitor session {session_number</td>
</tr>
<tr>
<td>Step 6</td>
<td>monitor session session_number source remote vlan vlan-id</td>
</tr>
<tr>
<td>Step 7</td>
<td>monitor session session_number destination interface interface-id</td>
</tr>
</tbody>
</table>
To delete a SPAN session, use the `no monitor session session_number` global configuration command. To remove a destination port from the SPAN session, use the `no monitor session session_number destination interface interface-id` global configuration command. To remove the RSPAN VLAN from the session, use the `no monitor session session_number source remote vlan vlan-id`.

This example shows how to configure VLAN 901 as the source remote VLAN and port 0/5 on switch 2 as the destination interface:

```
Switch(config)# monitor session 1 source remote vlan 901
Switch(config)# monitor session 1 destination interface gigabitethernet2/0/5
Switch(config)# end
```

Specifying VLANs to Filter

Beginning in privileged EXEC mode, follow these steps to configure the RSPAN source session to limit RSPAN source traffic to specific VLANs:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>no monitor session {session_number</td>
</tr>
<tr>
<td>Step 3</td>
<td>monitor session session_number source interface interface-id</td>
</tr>
<tr>
<td>Step 4</td>
<td>monitor session session_number filter vlan vlan-id [,</td>
</tr>
<tr>
<td>Step 5</td>
<td>monitor session session_number destination remote vlan vlan-id</td>
</tr>
<tr>
<td>Step 6</td>
<td>end</td>
</tr>
</tbody>
</table>
To monitor all VLANs on the trunk port, use the `no monitor session session_number filter vlan` global configuration command.

This example shows how to clear any existing configuration on RSPAN session 2, configure RSPAN session 2 to monitor traffic received on trunk port 0/4 on switch 1, and send traffic for only VLANs 1 through 5 and 9 to destination RSPAN VLAN 902.

```
Switch(config)# no monitor session 2
Switch(config)# monitor session 2 source interface gigabitethernet1/0/4 rx
Switch(config)# monitor session 2 filter vlan 1 - 5 , 9
Switch(config)# monitor session 2 destination remote vlan 902
Switch(config)# end
```

To display the status of the current SPAN or RSPAN configuration, use the `show monitor` privileged EXEC command.

This is an example of output for the `show monitor` privileged EXEC for a switch with two source sessions configured:

```
Switch# show monitor
Session 1
----------
Type :Local Session
Source Ports:
    RX Only:  Fa4/0/24
    TX Only:  None
    Both:     Fa2/0/1-2,Fa4/0/1-5
Source VLANs:
    RX Only:  None
    TX Only:  None
    Both:     None
Source RSPAN VLAN:None
Destination Ports:Fa2/0/18
Encapsulation:Replicate
Filter VLANs:     None
Dest RSPAN VLAN:  None

Session 2
----------
Type :Remote Source Session
Source Ports:
    RX Only:  None
    TX Only:  None
    Both:     None
Source VLANs:
    RX Only:  None
    TX Only:  10
    Both:     1-9
Source RSPAN VLAN:None
Destination Ports:None
Filter VLANs:     None
Dest RSPAN VLAN:  105
```
Configuring RMON

This chapter describes how to configure Remote Network Monitoring (RMON) on the Catalyst 3750 switch. Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

RMON is a standard monitoring specification that defines a set of statistics and functions that can be exchanged between RMON-compliant console systems and network probes. RMON provides you with comprehensive network-fault diagnosis, planning, and performance-tuning information.

For complete syntax and usage information for the commands used in this chapter, refer to the Cisco IOS Configuration Fundamentals Command Reference for Release 12.1.

This chapter consists of these sections:

- Understanding RMON, page 20-1
- Configuring RMON, page 20-2
- Displaying RMON Status, page 20-6

Understanding RMON

RMON is an Internet Engineering Task Force (IETF) standard monitoring specification that allows various network agents and console systems to exchange network monitoring data. You can use the RMON feature with the Simple Network Management Protocol (SNMP) agent in the switch to monitor all the traffic flowing among switches on all connected LAN segments.
The switch supports these RMON groups (defined in RFC 1757):

- **Statistics (RMON group 1)**—Collects Ethernet, Fast Ethernet, and Gigabit Ethernet statistics on an interface.
- **History (RMON group 2)**—Collects a history group of statistics on Ethernet, Fast Ethernet, and Gigabit Ethernet interfaces for a specified polling interval.
- **Alarm (RMON group 3)**—Monitors a specific management information base (MIB) object for a specified interval, triggers an alarm at a specified value (rising threshold), and resets the alarm at another value (falling threshold). Alarms can be used with events; the alarm triggers an event, which can generate a log entry or an SNMP trap.
- **Event (RMON group 9)**—Determines the action to take when an event is triggered by an alarm. The action can be to generate a log entry or an SNMP trap.

Because switches supported by this software release use hardware counters for RMON data processing, the monitoring is more efficient, and little processing power is required.

Configuring RMON

These sections describe how to configure RMON on your switch:

- **Default RMON Configuration, page 20-3**
- **Configuring RMON Alarms and Events, page 20-3** (required)
- **Collecting Group History Statistics on an Interface, page 20-5** (optional)
- **Collecting Group Ethernet Statistics on an Interface, page 20-6** (optional)
Default RMON Configuration

RMON is disabled by default; no alarms or events are configured.
Only RMON 1 is supported on the switch.

Configuring RMON Alarms and Events

You can configure your switch for RMON by using the command-line interface (CLI) or an SNMP-compatible network management station. We recommend that you use a generic RMON console application on the network management station (NMS) to take advantage of RMON’s network management capabilities. You must also configure SNMP on the switch to access RMON MIB objects. For more information, see Chapter 22, “Configuring SNMP.”

Beginning in privileged EXEC mode, follow these steps to enable RMON alarms and events. This procedure is required.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>rmon alarm number variable interval {absolute</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
To disable an alarm, use the `no rmon alarm number` global configuration command on each alarm you configured. You cannot disable at once all the alarms that you configured. To disable an event, use the `no rmon event number` global configuration command. To learn more about alarms and events and how they interact with each other, refer to RFC 1757.

You can set an alarm on any MIB object. The following example configures RMON alarm number 10 by using the `rmon alarm` command. The alarm monitors the MIB variable `ifEntry.20.1` once every 20 seconds until the alarm is disabled and checks the change in the variable’s rise or fall. If the `ifEntry.20.1` value shows a MIB counter increase of 15 or more, such as from 100000 to 100015, the alarm is triggered. The alarm in turn triggers event number 1, which is configured with the `rmon event` command. Possible events can include a log entry or an SNMP trap. If the `ifEntry.20.1` value changes by 0, the alarm is reset and can be triggered again.

```
Switch(config)# rmon alarm 10 ifEntry.20.1 20 delta rising-threshold 15 1
falling-threshold 0 owner jjohnson
```

The following example creates RMON event number 1 by using the `rmon event` command. The event is defined as `High ifOutErrors` and generates a log entry when the event is triggered by the alarm. The user `jjones` owns the row that is created in the event table by this command. This example also generates an SNMP trap when the event is triggered.

```
Switch(config)# rmon event 1 log trap eventtrap description "High ifOutErrors" owner jjones
```

Command Table

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td><code>rmon event number [description string] [log] [owner string] [trap community]</code></td>
<td>Add an event in the RMON event table that is associated with an RMON event number.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- For <code>number</code>, assign an event number. The range is 1 to 65535.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- (Optional) For <code>description string</code>, specify a description of the event.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- (Optional) Use the <code>log</code> keyword to generate an RMON log entry when the event is triggered.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- (Optional) For <code>owner string</code>, specify the owner of this event.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- (Optional) For <code>trap community</code>, enter the SNMP community string used for this trap.</td>
</tr>
<tr>
<td>4</td>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>5</td>
<td><code>show running-config</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>6</td>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Collecting Group History Statistics on an Interface

You must first configure RMON alarms and events to display collection information. Beginning in privileged EXEC mode, follow these steps to collect group history statistics on an interface. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
</tbody>
</table>
| Step 3 | rmon collection history index [buckets bucket-number] [interval seconds] [owner ownername] | Enable history collection for the specified number of buckets and time period.
 - For `index`, identify the RMON group of statistics. The range is 1 to 65535.
 - (Optional) For `buckets bucket-number`, specify the maximum number of buckets desired for the RMON collection history group of statistics. The range is 1 to 65535. The default is 50 buckets.
 - (Optional) For `interval seconds`, specify the number of seconds in each polling cycle. The range is 1 to 3600. The default is 1800 seconds.
 - (Optional) For `owner ownername`, enter the name of the owner of the RMON group of statistics. |
| Step 4 | end | Return to privileged EXEC mode. |
| Step 5 | show running-config | Verify your entries. |
| Step 6 | show rmon history | Display the contents of the switch history table. |
| Step 7 | copy running-config startup-config | (Optional) Save your entries in the configuration file. |

To disable history collection, use the `no rmon collection history index` interface configuration command.
Collecting Group Ethernet Statistics on an Interface

Beginning in privileged EXEC mode, follow these steps to collect group Ethernet statistics on an interface. This procedure is optional.

To disable the collection of group Ethernet statistics, use the `no rmon collection stats index` interface configuration command.

This example shows how to collect RMON statistics for the owner `root` on Gigabit Ethernet interface 0/1 of stack member 2:

```
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# rmon collection stats 2 owner root
```

Displaying RMON Status

To display the RMON status, use one or more of the privileged EXEC commands in Table 20-1:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show rmon</td>
<td>Displays general RMON statistics.</td>
</tr>
<tr>
<td>show rmon alarms</td>
<td>Displays the RMON alarm table.</td>
</tr>
<tr>
<td>show rmon events</td>
<td>Displays the RMON event table.</td>
</tr>
<tr>
<td>show rmon history</td>
<td>Displays the RMON history table.</td>
</tr>
<tr>
<td>show rmon statistics</td>
<td>Displays the RMON statistics table.</td>
</tr>
</tbody>
</table>

For information about the fields in these displays, refer to the `Cisco IOS Configuration Fundamentals Command Reference for Release 12.1`.
Configuring System Message Logging

This chapter describes how to configure system message logging on the Catalyst 3750 switch. Unless otherwise noted, the term *switch* refers to a standalone switch and to a switch stack.

For complete syntax and usage information for the commands used in this chapter, refer to the *Cisco IOS Configuration Fundamentals Command Reference for Release 12.1*.

This chapter consists of these sections:
- Understanding System Message Logging, page 21-1
- Configuring System Message Logging, page 21-2
- Displaying the Logging Configuration, page 21-13

Understanding System Message Logging

By default, a switch sends the output from system messages and *debug* privileged EXEC commands to a logging process. Stack members can trigger system messages. A stack member that generates a system message appends its hostname in the form of *hostname-n*, where *n* is a switch number from 1 to 9, and redirects the output to the logging process on the stack master. Though the stack master is a stack member, it does not append its hostname to system messages. The logging process controls the distribution of logging messages to various destinations, such as the logging buffer, terminal lines, or a UNIX syslog server, depending on your configuration. The process also sends messages to the console.

The syslog format is compatible with 4.3 BSD UNIX.

When the logging process is disabled, messages are sent only to the console. The messages are sent as they are generated, so message and debug output are interspersed with prompts or output from other commands. Messages are displayed on the active consoles after the process that generated them has finished.

You can set the severity level of the messages to control the type of messages displayed on the consoles and each of the destinations. You can timestamp log messages or set the syslog source address to enhance real-time debugging and management. For information on possible messages, refer to the system message guide for this release.
You can access logged system messages by using the switch command-line interface (CLI) or by saving them to a properly configured syslog server. The switch software saves syslog messages in an internal buffer on a standalone switch, and in the case of a switch stack, on the stack master. If a standalone switch or the stack master fails, the log is lost unless you had saved it to Flash memory.

You can remotely monitor system messages by viewing the logs on a syslog server or by accessing the switch through Telnet or through the console port. In a switch stack, all stack member consoles provide the same console output.

Configuring System Message Logging

These sections describe how to configure system message logging:

- **System Log Message Format, page 21-2**
- **Default System Message Logging Configuration, page 21-4**
- **Disabling Message Logging, page 21-4 (optional)**
- **Setting the Message Display Destination Device, page 21-5 (optional)**
- **Synchronizing Log Messages, page 21-6 (optional)**
- **Enabling and Disabling Timestamps on Log Messages, page 21-8 (optional)**
- **Enabling and Disabling Sequence Numbers in Log Messages, page 21-8 (optional)**
- **Defining the Message Severity Level, page 21-9 (optional)**
- **Limiting Syslog Messages Sent to the History Table and to SNMP, page 21-10 (optional)**
- **Configuring UNIX Syslog Servers, page 21-11 (optional)**

System Log Message Format

System log messages can contain up to 80 characters and a percent sign (%), which follows the optional sequence number or timestamp information, if configured. Messages are displayed in this format:

```
seq no:timestamp: %facility-severity-MNEMONIC:description (hostname-n)
```

The part of the message preceding the percent sign depends on the setting of the `service sequence-numbers`, `service timestamps log datetime`, `service timestamps log datetime [localtime] [msec] [show-timezone]`, or `service timestamps log uptime` global configuration command.
Table 21-1 describes the elements of syslog messages.

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>seq no:</td>
<td>Stamps log messages with a sequence number only if the service sequence-numbers global configuration command is configured. For more information, see the “Enabling and Disabling Sequence Numbers in Log Messages” section on page 21-8.</td>
</tr>
<tr>
<td>timestamp</td>
<td>Date and time of the message or event. This information appears only if the service timestamps log [datetime</td>
</tr>
<tr>
<td>facility</td>
<td>The facility to which the message refers (for example, SNMP, SYS, and so forth). For a list of supported facilities, see Table 21-4 on page 21-13.</td>
</tr>
<tr>
<td>severity</td>
<td>Single-digit code from 0 to 7 that is the severity of the message. For a description of the severity levels, see Table 21-3 on page 21-10.</td>
</tr>
<tr>
<td>MNEMONIC</td>
<td>Text string that uniquely describes the message.</td>
</tr>
<tr>
<td>description</td>
<td>Text string containing detailed information about the event being reported.</td>
</tr>
<tr>
<td>hostname-n</td>
<td>Host name of a stack member and its switch number in the stack. Though the stack master is a stack member, it does not append its hostname to system messages.</td>
</tr>
</tbody>
</table>

This example shows a partial switch system message for a stack master and a stack member (hostname Switch-2):

00:00:46: %LINK-3-UPDOWN: Interface Port-channel1, changed state to up
00:00:47: %LINK-3-UPDOWN: Interface GigabitEthernet1/0/1, changed state to up
00:00:47: %LINK-3-UPDOWN: Interface GigabitEthernet1/0/2, changed state to up
00:00:48: %LINK-3-UPDOWN: Interface Port-channel1, changed state to up (Switch-2)
00:00:47: %LINK-3-UPDOWN: Interface GigabitEthernet2/0/1, changed state to up (Switch-2)
00:00:47: %LINK-3-UPDOWN: Interface GigabitEthernet2/0/2, changed state to up (Switch-2)
00:00:48: %LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan1, changed state to down (Switch-2)
00:00:48: %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet1/0/1, changed state to down 2 (Switch-2)

*Mar 1 18:46:11: %SYS-5-CONFIG_I: Configured from console by vty2 (10.34.195.36)
18:47:02: %SYS-5-CONFIG_I: Configured from console by vty2 (10.34.195.36)
*Mar 1 18:48:50.483 UTC: %SYS-5-CONFIG_I: Configured from console by vty2 (10.34.195.36)
Default System Message Logging Configuration

Table 21-2 shows the default system message logging configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>System message logging to the console</td>
<td>Enabled.</td>
</tr>
<tr>
<td>Console severity</td>
<td>Debugging (and numerically lower levels; see Table 21-3 on page 21-10).</td>
</tr>
<tr>
<td>Logging file configuration</td>
<td>No filename specified.</td>
</tr>
<tr>
<td>Logging buffer size</td>
<td>4096 bytes.</td>
</tr>
<tr>
<td>Logging history size</td>
<td>1 message.</td>
</tr>
<tr>
<td>Timestamps</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Synchronous logging</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Logging server</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Syslog server IP address</td>
<td>None configured.</td>
</tr>
<tr>
<td>Server facility</td>
<td>Local7 (see Table 21-4 on page 21-13).</td>
</tr>
<tr>
<td>Server severity</td>
<td>Informational (and numerically lower levels; see Table 21-3 on page 21-10).</td>
</tr>
</tbody>
</table>

Disabling Message Logging

Message logging is enabled by default. It must be enabled to send messages to any destination other than the console. When enabled, log messages are sent to a logging process, which logs messages to designated locations asynchronously to the processes that generated the messages.

Beginning in privileged EXEC mode, follow these steps to disable message logging. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>no logging on</td>
<td>Disable message logging.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>show logging</td>
<td></td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Disabling the logging process can slow down the switch because a process must wait until the messages are written to the console before continuing. When the logging process is disabled, messages are displayed on the console as soon as they are produced, often appearing in the middle of command output.
Chapter 21 Configuring System Message Logging

The **logging synchronous** global configuration command also affects the display of messages to the console. When this command is enabled, messages appear only after you press Return. For more information, see the “Synchronizing Log Messages” section on page 21-6.

To re-enable message logging after it has been disabled, use the **logging on** global configuration command.

Setting the Message Display Destination Device

If message logging is enabled, you can send messages to specific locations in addition to the console. Beginning in privileged EXEC mode, use one or more of the following commands to specify the locations that receive messages. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 logging buffered [size]</td>
<td>Log messages to an internal buffer on a standalone switch or, in the case of a switch stack, on the stack master. The default buffer size is 4096. The range is 4096 to 2147483647 bytes. If the standalone switch or the stack master fails, the log file is lost unless you previously saved it to Flash memory. See Step 4. Note Do not make the buffer size too large because the switch could run out of memory for other tasks. Use the show memory privileged EXEC command to view the free processor memory on the switch. However, this value is the maximum available, and the buffer size should not be set to this amount.</td>
</tr>
<tr>
<td>Step 3 logging host</td>
<td>Log messages to a UNIX syslog server host.</td>
</tr>
<tr>
<td></td>
<td>For host, specify the name or IP address of the host to be used as the syslog server.</td>
</tr>
<tr>
<td></td>
<td>To build a list of syslog servers that receive logging messages, enter this command more than once.</td>
</tr>
<tr>
<td></td>
<td>For complete syslog server configuration steps, see the “Configuring UNIX Syslog Servers” section on page 21-11.</td>
</tr>
<tr>
<td>Step 4 logging file flash:filename [max-file-size [min-file-size]] [severity-level-number</td>
<td>type]</td>
</tr>
<tr>
<td></td>
<td>• For filename, enter the log message filename.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For max-file-size, specify the maximum logging file size. The range is 4096 to 2147483647. The default is 4096 bytes.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For min-file-size, specify the minimum logging file size. The range is 1024 to 2147483647. The default is 2048 bytes.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For **severity-level-number</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Chapter 21 Configuring System Message Logging

Configuring System Message Logging

The **logging buffered** global configuration command copies logging messages to an internal buffer. The buffer is circular, so newer messages overwrite older messages after the buffer is full. To display the messages that are logged in the buffer, use the **show logging** privileged EXEC command. The first message displayed is the oldest message in the buffer. To clear the contents of the buffer, use the **clear logging** privileged EXEC command.

To disable logging to the console, use the **no logging console** global configuration command. To disable logging to a file, use the **no logging file** [severity-level-number | type] global configuration command.

Synchronizing Log Messages

You can synchronize unsolicited messages and **debug** privileged EXEC command output with solicited device output and prompts for a specific console port line or virtual terminal line. You can identify the types of messages to be output asynchronously based on the level of severity. You can also determine the maximum number of buffers for storing asynchronous messages for the terminal after which messages are dropped.

When synchronous logging of unsolicited messages and **debug** command output is enabled, unsolicited device output is displayed on the console or printed after solicited device output is displayed or printed. Unsolicited messages and **debug** command output is displayed on the console after the prompt for user input is returned. Therefore, unsolicited messages and **debug** command output are not interspersed with solicited device output and prompts. After the unsolicited messages are displayed, the console again displays the user prompt.

Beginning in privileged EXEC mode, follow these steps to configure synchronous logging. This procedure is optional.

<table>
<thead>
<tr>
<th>Step 6</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>terminal monitor</td>
<td>Log messages to a nonconsole terminal during the current session.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Terminal parameter-setting commands are set locally and do not remain in effect after the session has ended. You must perform this step for each session to see the debugging messages.</td>
</tr>
<tr>
<td>Step 7</td>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 8</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

The **logging buffered** global configuration command copies logging messages to an internal buffer. The buffer is circular, so newer messages overwrite older messages after the buffer is full. To display the messages that are logged in the buffer, use the **show logging** privileged EXEC command. The first message displayed is the oldest message in the buffer. To clear the contents of the buffer, use the **clear logging** privileged EXEC command.

To disable logging to the console, use the **no logging console** global configuration command. To disable logging to a file, use the **no logging file** [severity-level-number | type] global configuration command.
Configuring System Message Logging

To disable synchronization of unsolicited messages and debug output, use the `no logging synchronous` line configuration command.

Command Summary

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>line [console</td>
<td>vty] line-number [ending-line-number]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Use the <code>console</code> keyword for configurations that occur through the switch console port.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Use the <code>line vty line-number</code> command to specify which vty lines are to have synchronous logging enabled. You use a vty connection for configurations that occur through a Telnet session. The range of line numbers is from 0 to 15.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>You can change the setting of all 16 vty lines at once by entering:</td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>line vty 0 15</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Or you can change the setting of the single vty line being used for your current connection. For example, to change the setting for vty line 2, enter:</td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>line vty 2</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td>When you enter this command, the mode changes to line configuration.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- (Optional) For <code>level severity-level</code>, specify the message severity level. Messages with a severity level equal to or higher than this value are printed asynchronously. Low numbers mean greater severity and high numbers mean lesser severity. The default is 2.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- (Optional) Specifying <code>level all</code> means that all messages are printed asynchronously regardless of the severity level.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- (Optional) For <code>limit number-of-buffers</code>, specify the number of buffers to be queued for the terminal after which new messages are dropped. The range is 0 to 2147483647. The default is 20.</td>
</tr>
<tr>
<td>4</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>5</td>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>6</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Enabling and Disabling Timestamps on Log Messages

By default, log messages are not timestamped.

Beginning in privileged EXEC mode, follow these steps to enable timestamping of log messages. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 service timestamps log uptime</td>
<td>Enable log timestamps.</td>
</tr>
<tr>
<td>or</td>
<td>The first command enables timestamps on log messages, showing the time</td>
</tr>
<tr>
<td></td>
<td>since the system was rebooted.</td>
</tr>
<tr>
<td></td>
<td>The second command enables timestamps on log messages. Depending on the</td>
</tr>
<tr>
<td>service timestamps log datetime [msec] [localtime] [show-timezone]</td>
<td>options selected, the timestamp can include the date, time in</td>
</tr>
<tr>
<td></td>
<td>milliseconds relative to the local time zone, and the time zone name.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable timestamps for both debug and log messages, use the **no service timestamps** global configuration command.

This example shows part of a logging display with the **service timestamps log datetime** global configuration command enabled:

```
*Mar 1 18:46:11: %SYS-5-CONFIG_I: Configured from console by vty2 (10.34.195.36) (Switch-2)
```

This example shows part of a logging display with the **service timestamps log uptime** global configuration command enabled:

```
00:00:46: %LINK-3-UPDOWN: Interface Port-channel1, changed state to up (Switch-2)
```

Enabling and Disabling Sequence Numbers in Log Messages

Because there is a chance that more than one log message can have the same timestamp, you can display messages with sequence numbers so that you can unambiguously refer to a single message. By default, sequence numbers in log messages are not displayed.

Beginning in privileged EXEC mode, follow these steps to enable sequence numbers in log messages. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 service sequence-numbers</td>
<td>Enable sequence numbers.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Configuring System Message Logging

Chapter 21

Configuring System Message Logging

Configuring System Message Logging

To disable sequence numbers, use the `no service sequence-numbers` global configuration command.

This example shows part of a logging display with sequence numbers enabled:

```
000019: %SYS-5-CONFIG_I: Configured from console by vty2 (10.34.195.36) (Switch-2)
```

Defining the Message Severity Level

You can limit messages displayed to the selected device by specifying the severity level of the message, which are described in Table 21-3.

Beginning in privileged EXEC mode, follow these steps to define the message severity level. This procedure is optional.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>logging console <code>level</code></td>
<td>Limit messages logged to the console.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>By default, the console receives debugging messages and numerically lower levels (see Table 21-3 on page 21-10).</td>
</tr>
<tr>
<td>Step 3</td>
<td>logging monitor <code>level</code></td>
<td>Limit messages logged to the terminal lines.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>By default, the terminal receives debugging messages and numerically lower levels (see Table 21-3 on page 21-10).</td>
</tr>
<tr>
<td>Step 4</td>
<td>logging trap <code>level</code></td>
<td>Limit messages logged to the syslog servers.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>By default, syslog servers receive informational messages and numerically lower levels (see Table 21-3 on page 21-10).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For complete syslog server configuration steps, see the “Configuring UNIX Syslog Servers” section on page 21-11.</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td></td>
<td>or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>show logging</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Note

Specifying a `level` causes messages at that level and numerically lower levels to be displayed at the destination.

To disable logging to the console, use the `no logging console` global configuration command. To disable logging to a terminal other than the console, use the `no logging monitor` global configuration command. To disable logging to syslog servers, use the `no logging trap` global configuration command.
Table 21-3 describes the *level* keywords. It also lists the corresponding UNIX syslog definitions from the most severe level to the least severe level.

Table 21-3 Message Logging Level Keywords

<table>
<thead>
<tr>
<th>Level Keyword</th>
<th>Level</th>
<th>Description</th>
<th>Syslog Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>emergencies</td>
<td>0</td>
<td>System unstable</td>
<td>LOG_EMERG</td>
</tr>
<tr>
<td>alerts</td>
<td>1</td>
<td>Immediate action needed</td>
<td>LOG_ALERT</td>
</tr>
<tr>
<td>critical</td>
<td>2</td>
<td>Critical conditions</td>
<td>LOG_CRIT</td>
</tr>
<tr>
<td>errors</td>
<td>3</td>
<td>Error conditions</td>
<td>LOG_ERR</td>
</tr>
<tr>
<td>warnings</td>
<td>4</td>
<td>Warning conditions</td>
<td>LOG_WARNING</td>
</tr>
<tr>
<td>notifications</td>
<td>5</td>
<td>Normal but significant condition</td>
<td>LOG_NOTICE</td>
</tr>
<tr>
<td>informational</td>
<td>6</td>
<td>Informational messages only</td>
<td>LOG_INFO</td>
</tr>
<tr>
<td>debugging</td>
<td>7</td>
<td>Debugging messages</td>
<td>LOG_DEBUG</td>
</tr>
</tbody>
</table>

The software generates four other categories of messages:

- Error messages about software or hardware malfunctions, displayed at levels *warnings* through *emergencies*. These types of messages mean that the functionality of the switch is affected. For information on how to recover from these malfunctions, refer to the system message guide for this release.
- Output from the *debug* commands, displayed at the *debugging* level. Debug commands are typically used only by the Technical Assistance Center.
- Interface up or down transitions and system restart messages, displayed at the *notifications* level. This message is only for information; switch functionality is not affected.
- Reload requests and low-process stack messages, displayed at the *informational* level. This message is only for information; switch functionality is not affected.

Limiting Syslog Messages Sent to the History Table and to SNMP

If you enabled syslog message traps to be sent to an SNMP network management station by using the `snmp-server enable trap` global configuration command, you can change the level of messages sent and stored in the switch history table. You also can change the number of messages that are stored in the history table.

Messages are stored in the history table because SNMP traps are not guaranteed to reach their destination. By default, one message of the level *warning* and numerically lower levels (see Table 21-3 on page 21-10) are stored in the history table even if syslog traps are not enabled.
Beginning in privileged EXEC mode, follow these steps to change the level and history table size defaults. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>logging history level(^1)</td>
</tr>
<tr>
<td>Step 3</td>
<td>logging history size number</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

When the history table is full (it contains the maximum number of message entries specified with the logging history size global configuration command), the oldest message entry is deleted from the table to allow the new message entry to be stored.

To return the logging of syslog messages to the default level, use the no logging history global configuration command. To return the number of messages in the history table to the default value, use the no logging history size global configuration command.

Configuring UNIX Syslog Servers

The next sections describe how to configure the UNIX server syslog daemon and how to define the UNIX system logging facility.

Logging Messages to a UNIX Syslog Daemon

Before you can send system log messages to a UNIX syslog server, you must configure the syslog daemon on a UNIX server. This procedure is optional.

Log in as root, and perform these steps:

| Note | Some recent versions of UNIX syslog daemons no longer accept by default syslog packets from the network. If this is the case with your system, use the UNIX man syslogd command to determine what options must be added to or removed from the syslog command line to enable logging of remote syslog messages. |
Chapter 21 Configuring System Message Logging

Configuring System Message Logging

Step 1 Add a line such as the following to the file /etc/syslog.conf:

 local7.debug /usr/adm/logs/cisco.log

The local7 keyword specifies the logging facility to be used; see Table 21-4 on page 21-13 for information on the facilities. The debug keyword specifies the syslog level; see Table 21-3 on page 21-10 for information on the severity levels. The syslog daemon sends messages at this level or at a more severe level to the file specified in the next field. The file must already exist, and the syslog daemon must have permission to write to it.

Step 2 Create the log file by entering these commands at the UNIX shell prompt:

 $ touch /var/log/cisco.log
 $ chmod 666 /var/log/cisco.log

Step 3 Make sure the syslog daemon reads the new changes:

 $ kill -HUP `cat /etc/syslog.pid`

For more information, see the man syslog.conf and man syslogd commands on your UNIX system.

Configuring the UNIX System Logging Facility

When sending system log messages to an external device, you can cause the switch to identify its messages as originating from any of the UNIX syslog facilities.

Beginning in privileged EXEC mode, follow these steps to configure UNIX system facility message logging. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 logging host</td>
<td>Log messages to a UNIX syslog server host by entering its IP address.</td>
</tr>
<tr>
<td></td>
<td>To build a list of syslog servers that receive logging messages, enter this command more than once.</td>
</tr>
<tr>
<td>Step 3 logging trap level</td>
<td>Limit messages logged to the syslog servers.</td>
</tr>
<tr>
<td></td>
<td>Be default, syslog servers receive informational messages and lower. See Table 21-3 on page 21-10 for level keywords.</td>
</tr>
<tr>
<td>Step 4 logging facility facility-type</td>
<td>Configure the syslog facility. See Table 21-4 on page 21-13 for facility-type keywords.</td>
</tr>
<tr>
<td></td>
<td>The default is local7.</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 7 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove a syslog server, use the no logging host global configuration command, and specify the syslog server IP address. To disable logging to syslog servers, enter the no logging trap global configuration command.
Table 21-4 lists the UNIX system facilities supported by the software. For more information about these facilities, consult the operator’s manual for your UNIX operating system.

Table 21-4 Logging Facility-Type Keywords

<table>
<thead>
<tr>
<th>Facility Type Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>auth</td>
<td>Authorization system</td>
</tr>
<tr>
<td>cron</td>
<td>Cron facility</td>
</tr>
<tr>
<td>daemon</td>
<td>System daemon</td>
</tr>
<tr>
<td>kern</td>
<td>Kernel</td>
</tr>
<tr>
<td>local0-7</td>
<td>Locally defined messages</td>
</tr>
<tr>
<td>lpr</td>
<td>Line printer system</td>
</tr>
<tr>
<td>mail</td>
<td>Mail system</td>
</tr>
<tr>
<td>news</td>
<td>USENET news</td>
</tr>
<tr>
<td>syslog</td>
<td>System log</td>
</tr>
<tr>
<td>user</td>
<td>User process</td>
</tr>
<tr>
<td>uucp</td>
<td>UNIX-to-UNIX copy system</td>
</tr>
</tbody>
</table>

Displaying the Log Configuration

To display the logging configuration and the contents of the log buffer, use the `show logging` privileged EXEC command. For information about the fields in this display, refer to the *Cisco IOS Configuration Fundamentals Command Reference for Release 12.1*.
Configuring SNMP

This chapter describes how to configure the Simple Network Management Protocol (SNMP) on the Catalyst 3750 switch. Unless otherwise noted, the term switch refers to a standalone switch and a switch stack.

For complete syntax and usage information for the commands used in this chapter, refer to the switch command reference for this release and to the Cisco IOS Configuration Fundamentals Command Reference for Release 12.1.

This chapter consists of these sections:
- Understanding SNMP, page 22-1
- Configuring SNMP, page 22-5
- Displaying SNMP Status, page 22-11

Understanding SNMP

SNMP is an application-layer protocol that provides a message format for communication between managers and agents. The SNMP system consists of an SNMP manager, an SNMP agent, and a management information base (MIB). The SNMP manager can be part of a network management system (NMS) such as CiscoWorks. The agent and MIB reside on the switch. To configure SNMP on the switch, you define the relationship between the manager and the agent.

The SNMP agent contains MIB variables whose values the SNMP manager can request or change. A manager can get a value from an agent or store a value into the agent. The agent gathers data from the MIB, the repository for information about device parameters and network data. The agent can also respond to a manager’s requests to get or set data.

An agent can send unsolicited traps to the manager. Traps are messages alerting the SNMP manager to a condition on the network. Traps can mean improper user authentication, restarts, link status (up or down), MAC address tracking, closing of a Transmission Control Protocol (TCP) connection, loss of connection to a neighbor, or other significant events.

On the Catalyst 3750, the stack master handles the SNMP requests and traps for the whole switch stack. The stack master transparently manages any requests or traps that are related to all stack members. When a new stack master is elected, the new master continues to handle SNMP requests and traps as configured on the previous stack master, assuming that IP connectivity to the SNMP management stations is still in place after the new master has taken control.

For more information about switch stacks, see Chapter 5, “Managing Switch Stacks.”
This section includes information about these topics:

- SNMP Versions, page 22-2
- SNMP Manager Functions, page 22-3
- SNMP Agent Functions, page 22-3
- SNMP Community Strings, page 22-3
- Using SNMP to Access MIB Variables, page 22-4
- SNMP Notifications, page 22-4

SNMP Versions

This software release supports these SNMP versions:

- SNMPv1—The Simple Network Management Protocol, a Full Internet Standard, defined in RFC 1157.
- SNMPv2C replaces the Party-based Administrative and Security Framework of SNMPv2Classic with the community-string-based Administrative Framework of SNMPv2C while retaining the bulk retrieval and improved error handling of SNMPv2Classic. It has these features:
 - SNMPv2C—The community-string-based Administrative Framework for SNMPv2, an Experimental Internet Protocol defined in RFC 1901.

Note

Though v3-related keywords are sometimes visible in the command-line help string, SNMPv3 is not supported in this release.

Both SNMPv1 and SNMPv2C use a community-based form of security. The community of managers able to access the agent’s MIB is defined by an IP address access control list and password.

SNMPv2C includes a bulk retrieval mechanism and more detailed error message reporting to management stations. The bulk retrieval mechanism retrieves tables and large quantities of information, minimizing the number of round-trips required. The SNMPv2C improved error-handling includes expanded error codes that distinguish different kinds of error conditions; these conditions are reported through a single error code in SNMPv1. Error return codes in SNMPv2C report the error type.

You must configure the SNMP agent to use the SNMP version supported by the management station. Because an agent can communicate with multiple managers, you can configure the software to support communications using SNMPv1 and SNMPv2C protocols.
SNMP Manager Functions

The SNMP manager uses information in the MIB to perform the operations described in Table 22-1.

Table 22-1 SNMP Operations

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>get-request</td>
<td>Retrieves a value from a specific variable.</td>
</tr>
<tr>
<td>get-next-request</td>
<td>Retrieves a value from a variable within a table.¹</td>
</tr>
<tr>
<td>get-bulk-request</td>
<td>Retrieves large blocks of data, such as multiple rows in a table, that would otherwise require the transmission of many small blocks of data.</td>
</tr>
<tr>
<td>get-response</td>
<td>Replies to a get-request, get-next-request, and set-request sent by an NMS.</td>
</tr>
<tr>
<td>set-request</td>
<td>Stores a value in a specific variable.</td>
</tr>
<tr>
<td>trap</td>
<td>An unsolicited message sent by an SNMP agent to an SNMP manager when some event has occurred.</td>
</tr>
</tbody>
</table>

¹ With this operation, an SNMP manager does not need to know the exact variable name. A sequential search is performed to find the needed variable from within a table.

² The get-bulk command only works with SNMPv2 or later.

SNMP Agent Functions

The SNMP agent responds to SNMP manager requests as follows:

- Get a MIB variable—The SNMP agent begins this function in response to a request from the NMS. The agent retrieves the value of the requested MIB variable and responds to the NMS with that value.
- Set a MIB variable—The SNMP agent begins this function in response to a message from the NMS. The SNMP agent changes the value of the MIB variable to the value requested by the NMS.

The SNMP agent also sends unsolicited trap messages to notify an NMS that a significant event has occurred on the agent. Examples of trap conditions include, but are not limited to, when a port or module goes up or down, when spanning-tree topology changes occur, and when authentication failures occur.

SNMP Community Strings

SNMP community strings authenticate access to MIB objects and function as embedded passwords. In order for the NMS to access the switch, the community string definitions on the NMS must match at least one of the three community string definitions on the switch.

A community string can have one of these attributes:

- Read-only (RO)—Gives read access to authorized management stations to all objects in the MIB except the community strings, but does not allow write access
- Read-write (RW)—Gives read and write access to authorized management stations to all objects in the MIB, but does not allow access to the community strings
- Read-write-all—Gives read and write access to authorized management stations to all objects in the MIB, including the community strings
Understanding SNMP

When a cluster is created, the command switch manages the exchange of messages among member switches and the SNMP application. The Cluster Management software appends the member switch number (@esN, where N is the switch number) to the first configured RW and RO community strings on the command switch and propagates them to the member switches. For more information, see Chapter 6, “Clustering Switches.”

Using SNMP to Access MIB Variables

An example of an NMS is the CiscoWorks network management software. CiscoWorks 2000 software uses the switch MIB variables to set device variables and to poll devices on the network for specific information. The results of a poll can be displayed as a graph and analyzed to troubleshoot internetworking problems, increase network performance, verify the configuration of devices, monitor traffic loads, and more.

As shown in Figure 22-1, the SNMP agent gathers data from the MIB. The agent can send traps, or notification of certain events, to the SNMP manager, which receives and processes the traps. Traps alert the SNMP manager to a condition on the network such as improper user authentication, restarts, link status (up or down), MAC address tracking, and so forth. The SNMP agent also responds to MIB-related queries sent by the SNMP manager in get-request, get-next-request, and set-request format.

![Figure 22-1 SNMP Network](image)

For information on supported MIBs and how to access them, see Appendix A, “Supported MIBs.”

SNMP Notifications

SNMP allows the switch to send notifications to SNMP managers when particular events occur. SNMP notifications can be sent as traps or inform requests. In command syntax, unless there is an option in the command to select either traps or informing, the keyword traps refers to either traps or informs, or both. Use the `snmp-server host` command to specify whether to send SNMP notifications as traps or informs.

Note

SNMPv1 does not support informs.

Traps are unreliable because the receiver does not send an acknowledgment when it receives a trap, and the sender cannot determine if the trap was received. When an SNMP manager receives an inform request, it acknowledges the message with an SNMP response protocol data unit (PDU). If the sender does not receive a response, the inform request can be sent again. Because they can be re-sent, informs are more likely than traps to reach their intended destination.
The characteristics that make informs more reliable than traps also consume more resources in the switch and in the network. Unlike a trap, which is discarded as soon as it is sent, an inform request is held in memory until a response is received or the request times out. Traps are sent only once, but an inform might be re-sent or retried several times. The retries increase traffic and contribute to a higher overhead on the network. Therefore, traps and informs require a trade-off between reliability and resources. If it is important that the SNMP manager receive every notification, use inform requests. If traffic on the network or memory in the switch is a concern and notification is not required, use traps.

Configuring SNMP

This section describes how to configure SNMP on your switch. It contains this configuration information:

- Default SNMP Configuration, page 22-5
- Disabling the SNMP Agent, page 22-6
- Configuring Community Strings, page 22-6
- Configuring SNMP Notifications, page 22-7
- Setting the Agent Contact and Location Information, page 22-9
- Limiting TFTP Servers Used Through SNMP, page 22-10
- SNMP Examples, page 22-11

Default SNMP Configuration

Table 22-2 shows the default SNMP configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNMP agent</td>
<td>Enabled</td>
</tr>
<tr>
<td>SNMP community strings</td>
<td>Read-Only: Public</td>
</tr>
<tr>
<td></td>
<td>Read-Write: Private</td>
</tr>
<tr>
<td></td>
<td>Read-Write-all: Secret</td>
</tr>
<tr>
<td>SNMP trap receiver</td>
<td>None configured</td>
</tr>
<tr>
<td>SNMP traps</td>
<td>None enabled</td>
</tr>
<tr>
<td>SNMP version</td>
<td>If no version keyword is present, the default is version 1.</td>
</tr>
<tr>
<td>SNMP notification type</td>
<td>If no type is specified, all notifications are sent.</td>
</tr>
</tbody>
</table>
Disabling the SNMP Agent

Beginning in privileged EXEC mode, follow these steps to disable the SNMP agent:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>no snmp-server</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

The `no snmp-server` global configuration command disables all running versions (version 1 and version 2C) on the device. No specific IOS command exists to enable SNMP. The first `snmp-server` global configuration command that you enter enables all versions of SNMP.

Configuring Community Strings

You use the SNMP community string to define the relationship between the SNMP manager and the agent. The community string acts like a password to permit access to the agent on the switch. Optionally, you can specify one or more of these characteristics associated with the string:

- An access list of IP addresses of the SNMP managers that are permitted to use the community string to gain access to the agent
- A MIB view, which defines the subset of all MIB objects accessible to the given community
- Read and write or read-only permission for the MIB objects accessible to the community

Beginning in privileged EXEC mode, follow these steps to configure a community string on the switch:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>snmp-server community string [view view-name] [ro</td>
</tr>
</tbody>
</table>

- For `string`, specify a string that acts like a password and permits access to the SNMP protocol. You can configure one or more community strings of any length.
- (Optional) For `view`, specify the view record accessible to the community.
- (Optional) Specify either read-only (`ro`) if you want authorized management stations to retrieve MIB objects, or specify read-write (`rw`) if you want authorized management stations to retrieve and modify MIB objects. By default, the community string permits read-only access to all objects.
- (Optional) For `access-list-number`, enter an IP standard access list numbered from 1 to 99 and 1300 to 1999.
Chapter 22 Configuring SNMP

Configuring SNMP

Note
To disable access for an SNMP community, set the community string for that community to the null string (do not enter a value for the community string).

To remove a specific community string, use the no snmp-server community string global configuration command.

This example shows how to assign the string comaccess to SNMP, to allow read-only access, and to specify that IP access list 4 can use the community string to gain access to the switch SNMP agent:

```
Switch(config)# snmp-server community comaccess ro 4
```

Step 3

```
access-list access-list-number { deny | permit } source [source-wildcard]
```
(Optional) If you specified an IP standard access list number in Step 2, then create the list, repeating the command as many times as necessary.
- For `access-list-number`, enter the access list number specified in Step 2.
- The `deny` keyword denies access if the conditions are matched. The `permit` keyword permits access if the conditions are matched.
- For `source`, enter the IP address of the SNMP managers that are permitted to use the community string to gain access to the agent.
- (Optional) For `source-wildcard`, enter the wildcard bits in dotted decimal notation to be applied to the source. Place ones in the bit positions that you want to ignore.

Recall that the access list is always terminated by an implicit deny statement for everything.

Step 4

```
end
```
Return to privileged EXEC mode.

Step 5

```
show running-config
```
Verify your entries.

Step 6

```
copy running-config startup-config
```
(Optional) Save your entries in the configuration file.

Command Purpose

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td>access-list access-list-number { deny</td>
</tr>
<tr>
<td>Step 4</td>
<td>end Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>show running-config Verify your entries.</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Note

Configuring SNMP Notifications

A trap manager is a management station that receives and processes traps. Traps are system alerts that the switch generates when certain events occur. By default, no trap manager is defined, and no traps are sent. Switches running this IOS release can have an unlimited number of trap managers.

Many commands use the word `traps` in the command syntax. Unless there is an option in the command to select either traps or informs, the keyword `traps` refers to either traps, informs, or both. Use the `snmp-server host` command to specify whether to send SNMP notifications as traps or informs.

Table 22-3 describes the supported switch traps (notification types). You can enable any or all of these traps and configure a trap manager to receive them.
Chapter 22 Configuring SNMP

You can use the `snmp-server host` global configuration command to a specific host to receive the notification types listed in Table 22-3.

Beginning in privileged EXEC mode, follow these steps to configure the switch to send traps or informs to a host:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>`snmp-server host host-addr [traps</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 22-3 Switch Notification Types

<table>
<thead>
<tr>
<th>Notification Type Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bridge</td>
<td>Generates STP bridge MIB traps.</td>
</tr>
<tr>
<td>cluster</td>
<td>Generates a trap when the cluster configuration changes.</td>
</tr>
<tr>
<td>config</td>
<td>Generates a trap for SNMP configuration changes.</td>
</tr>
<tr>
<td>entity</td>
<td>Generates a trap for SNMP entity changes.</td>
</tr>
<tr>
<td>envmon</td>
<td>Generates a trap for environmental monitor traps.</td>
</tr>
<tr>
<td>fru-ctrl</td>
<td>Generates entity FRU control traps. In the Catalyst 3750 switch stack, this trap refers to the insertion or removal of a switch in the stack.</td>
</tr>
<tr>
<td>hsrp</td>
<td>Generates a trap for Hot Standby Router Protocol (HSRP) changes.</td>
</tr>
<tr>
<td>mac-notification</td>
<td>Generates a trap for MAC address notifications.</td>
</tr>
<tr>
<td>rtr</td>
<td>Generates a trap for the SNMP Response Time Reporter (RTR).</td>
</tr>
<tr>
<td>snmp</td>
<td>Generates a trap for SNMP-type notifications.</td>
</tr>
<tr>
<td>tty</td>
<td>Generates a trap for TCP connections.</td>
</tr>
<tr>
<td>vlan-membership</td>
<td>Generates a trap for SNMP VLAN membership changes.</td>
</tr>
<tr>
<td>vtp</td>
<td>Generates a trap for VLAN Trunking Protocol (VTP) changes.</td>
</tr>
</tbody>
</table>
Chapter 22 Configuring SNMP

Configuring SNMP

The `snmp-server host` command specifies which hosts receive the notifications. The `snmp-server enable traps` command globally enables the mechanism for the specified notification (for traps and informs). To enable a host to receive an inform, you must configure an `snmp-server host informs` command for the host and globally enable informs by using the `snmp-server enable traps` command.

To remove the specified host from receiving traps, use the `no snmp-server host host` global configuration command. The `no snmp-server host` command with no keywords disables traps, but not informs, to the host. To disable informs, use the `no snmp-server host informs` global configuration command. To disable a specific trap type, use the `no snmp-server enable traps notification-types` global configuration command.

Setting the Agent Contact and Location Information

Beginning in privileged EXEC mode, follow these steps to set the system contact and location of the SNMP agent so that these descriptions can be accessed through the configuration file:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>snmp-server contact text</code> Set the system contact string. For example: <code>snmp-server contact Dial System Operator at beeper 21555</code>.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>snmp-server location text</code> Set the system location string. For example: <code>snmp-server location Building 3/Room 222</code>.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>end</code> Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>show running-config</code> Verify your entries.</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>copy running-config startup-config</code> (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Limiting TFTP Servers Used Through SNMP

Beginning in privileged EXEC mode, follow these steps to limit the TFTP servers used for saving and loading configuration files through SNMP to the servers specified in an access list:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>snmp-server tftp-server-list access-list-number Limit TFTP servers used for configuration file copies through SNMP to the servers in the access list. For access-list-number, enter an IP standard access list numbered from 1 to 99 and 1300 to 1999.</td>
</tr>
<tr>
<td>Step 3</td>
<td>access-list access-list-number {deny</td>
</tr>
<tr>
<td>Step 4</td>
<td>end Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>show running-config Verify your entries.</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
SNMP Examples

This example shows how to enable all versions of SNMP. The configuration permits any SNMP manager to access all objects with read-only permissions using the community string `public`. This configuration does not cause the switch to send any traps.

```
Switch(config)# snmp-server community public
```

This example shows how to permit any SNMP manager to access all objects with read-only permission using the community string `public`. The switch also sends VTP traps to the hosts 192.180.1.111 and 192.180.1.33 using SNMPv1 and to the host 192.180.1.27 using SNMPv2C. The community string `public` is sent with the traps.

```
Switch(config)# snmp-server community public
Switch(config)# snmp-server enable traps vtp
Switch(config)# snmp-server host 192.180.1.27 version 2c public
Switch(config)# snmp-server host 192.180.1.111 version 1 public
Switch(config)# snmp-server host 192.180.1.33 public
```

This example shows how to allow read-only access for all objects to members of access list 4 that use the `comaccess` community string. No other SNMP managers have access to any objects. SNMP Authentication Failure traps are sent by SNMPv2C to the host `cisco.com` using the community string `public`.

```
Switch(config)# snmp-server community comaccess ro 4
Switch(config)# snmp-server enable traps snmp authentication
Switch(config)# snmp-server host cisco.com version 2c public
```

This example shows how to send Entity MIB traps to the host `cisco.com`. The community string is restricted. The first line enables the switch to send Entity MIB traps in addition to any traps previously enabled. The second line specifies the destination of these traps and overwrites any previous `snmp-server host` commands for the host `cisco.com`.

```
Switch(config)# snmp-server enable traps entity
Switch(config)# snmp-server host cisco.com restricted entity
```

This example shows how to enable the switch to send all traps to the host `myhost.cisco.com` using the community string `public`:

```
Switch(config)# snmp-server enable traps
Switch(config)# snmp-server host myhost.cisco.com public
```

Displaying SNMP Status

To display SNMP input and output statistics, including the number of illegal community string entries, errors, and requested variables, use the `show snmp` privileged EXEC command. For information about the fields in the output displays, refer to the Cisco IOS Configuration Fundamentals Command Reference for Release 12.1.
Configuring Network Security with ACLs

This chapter describes how to configure network security on the Catalyst3750 switch by using access control lists (ACLs), which are also referred to in commands and tables as access lists. Unless otherwise noted, the term switch refers to a standalone switch and a switch stack.

For complete syntax and usage information for the commands used in this chapter, refer to the command reference for this release and the “Configuring IP Services” section of the Cisco IOS IP and IP Routing Configuration Guide and the Cisco IOS IP and IP Routing Command Reference for IOS Release 12.1.

This chapter consists of these sections:

- Understanding ACLs, page 23-1
- Configuring IP ACLs, page 23-5
- Configuring Router ACLs, page 23-18
- Configuring VLAN Maps, page 23-25
- Using VLAN Maps with Router ACLs, page 23-34
- Displaying ACL Configuration, page 23-39

Understanding ACLs

Packet filtering can help limit network traffic and restrict network use by certain users or devices. ACLs can filter traffic as it passes through a router or switch and permit or deny packets crossing specified interfaces. An ACL is a sequential collection of permit and deny conditions that apply to packets. When a packet is received on an interface, the switch compares the fields in the packet against any applied ACLs to verify that the packet has the required permissions to be forwarded, based on the criteria specified in the access lists. It tests packets against the conditions in an access list one by one. The first match determines whether the switch accepts or rejects the packets. Because the switch stops testing conditions after the first match, the order of conditions in the list is critical. If no conditions match, the switch rejects the packets. If there are no restrictions, the switch forwards the packet; otherwise, the switch drops the packet. The switch can access-control all packets it switches, including packets bridged within a VLAN.

You configure access lists on a router or Layer 3 switch to provide basic security for your network. If you do not configure ACLs, all packets passing through the switch could be allowed onto all parts of the network. You can use ACLs to control which hosts can access different parts of a network or to decide...
which types of traffic are forwarded or blocked at router interfaces. For example, you can allow e-mail traffic to be forwarded but not Telnet traffic. ACLs can be configured to block inbound traffic, outbound traffic, or both.

An ACL contains an ordered list of access control entries (ACEs). Each ACE specifies permit or deny and a set of conditions the packet must satisfy in order to match the ACE. The meaning of permit or deny depends on the context in which the ACL is used.

The switch supports two types of ACLs:

- **IP ACLs** filter IP traffic, including TCP, User Datagram Protocol (UDP), Internet Group Management Protocol (IGMP), and Internet Control Message Protocol (ICMP).
- **Ethernet ACLs** filter non-IP traffic.

This switch also supports Quality of Service (QoS) classification ACLs. For more information, see the “Classification Based on QoS ACLs” section on page 24-7.

This section includes information on these topics:
- Supported ACLs, page 23-2
- Handling Fragmented and Unfragmented Traffic, page 23-4
- ACLs and Switch Stacks, page 23-5

Supported ACLs

The switch supports two applications of ACLs to filter traffic:

- **Router ACLs** access-control routed traffic between VLANs and are applied to Layer 3 interfaces.
- **VLAN ACLs** or VLAN maps access-control all packets (bridged and routed). You can use VLAN maps to filter traffic between devices in the same VLAN. VLAN maps are configured to provide access-control based on Layer 3 addresses for IP. Unsupported protocols are access-controlled through MAC addresses using Ethernet ACEs. After a VLAN map is applied to a VLAN, all packets (routed or bridged) entering the VLAN are checked against the VLAN map. Packets can either enter the VLAN through a switch port or through a routed port after being routed.

Router ACLs

You can apply router ACLs on switch virtual interfaces (SVIs), which are Layer 3 interfaces to VLANs; on physical Layer 3 interfaces; and on Layer 3 EtherChannel interfaces. You apply router ACLs on interfaces for specific directions (inbound or outbound). You can apply one router ACL in each direction on an interface.

One ACL can be used with multiple features for a given interface, and one feature can use multiple ACLs. When a single router ACL is used by multiple features, it is examined multiple times.

- **Standard IP access lists** use source addresses for matching operations.
- **Extended IP access lists** use source and destination addresses and optional protocol type information for matching operations.

The switch examines ACLs associated with features configured on a given interface and a direction. As packets enter the switch on an interface, ACLs associated with all inbound features configured on that interface are examined. After packets are routed and before they are forwarded to the next hop, all ACLs associated with outbound features configured on the egress interface are examined.
ACLs permit or deny packet forwarding based on how the packet matches the entries in the ACL, and can be used to control access to a network or to part of a network. In Figure 23-1, ACLs applied at the router input allow Host A to access the Human Resources network, but prevent Host B from accessing the same network.

Figure 23-1 Using ACLs to Control Traffic to a Network

VLAN Maps

VLAN maps can access-control *all* traffic. You can apply VLAN maps to all packets that are routed into or out of a VLAN or are bridged within a VLAN in the stack. VLAN maps are used for security packet filtering. Unlike router ACLs, VLAN maps are not defined by direction (input or output).

You can configure VLAN maps to match Layer 3 addresses for IP traffic. All non-IP protocols are access-controlled through MAC addresses and Ethertype using MAC VLAN maps. (IP traffic is *not* access controlled by MAC VLAN maps.) You can enforce VLAN maps only on packets going through the switch; you cannot enforce VLAN maps on traffic between hosts on a hub or on another switch connected to this switch.

With VLAN maps, forwarding of packets is permitted or denied, based on the action specified in the map. Figure 23-2 illustrates how a VLAN map is applied to deny a specific type of traffic from Host A in VLAN 10 from being forwarded. You can apply only one VLAN map to a VLAN.
Handling Fragmented and Unfragmented Traffic

IP packets can be fragmented as they cross the network. When this happens, only the fragment containing the beginning of the packet contains the Layer 4 information, such as TCP or UDP port numbers, ICMP type and code, and so on. All other fragments are missing this information.

Some ACEs do not check Layer 4 information and therefore can be applied to all packet fragments. ACEs that do test Layer 4 information cannot be applied in the standard manner to most of the fragments in a fragmented IP packet. When the fragment contains no Layer 4 information and the ACE tests some Layer 4 information, the matching rules are modified:

- Permit ACEs that check the Layer 3 information in the fragment (including protocol type, such as TCP, UDP, and so on) are considered to match the fragment regardless of what the missing Layer 4 information might have been.
- Deny ACEs that check Layer 4 information never match a fragment unless the fragment contains Layer 4 information.

Consider access list 102, configured with these commands, applied to three fragmented packets:

```
Switch(config)# access-list 102 permit tcp any host 10.1.1.1 eq smtp
Switch(config)# access-list 102 deny tcp any host 10.1.1.2 eq telnet
Switch(config)# access-list 102 permit tcp any host 10.1.1.2
Switch(config)# access-list 102 deny tcp any any
```

Note

In the first and second ACEs in the examples, the `eq` keyword after the destination address means to test for the TCP-destination-port well-known numbers equaling Simple Mail Transfer Protocol (SMTP) and Telnet, respectively.

- Packet A is a TCP packet from host 10.2.2.2, port 65000, going to host 10.1.1.1 on the SMTP port. If this packet is fragmented, the first fragment matches the first ACE (a permit) as if it were a complete packet because all Layer 4 information is present. The remaining fragments also match the first ACE, even though they do not contain the SMTP port information, because the first ACE only checks Layer 3 information when applied to fragments. The information in this example is that the packet is TCP and that the destination is 10.1.1.1.
- Packet B is from host 10.2.2.2, port 65001, going to host 10.1.1.2 on the Telnet port. If this packet is fragmented, the first fragment matches the second ACE (a deny) because all Layer 3 and Layer 4 information is present. The remaining fragments in the packet do not match the second ACE because they are missing Layer 4 information. Instead, they match the third ACE (a permit).
Because the first fragment was denied, host 10.1.1.2 cannot reassemble a complete packet, so packet B is effectively denied. However, the later fragments that are permitted will consume bandwidth on the network and resources of host 10.1.1.2 as it tries to reassemble the packet.

- Fragmented packet C is from host 10.2.2.2, port 65001, going to host 10.1.1.3, port ftp. If this packet is fragmented, the first fragment matches the fourth ACE (a deny). All other fragments also match the fourth ACE because that ACE does not check any Layer 4 information and because Layer 3 information in all fragments shows that they are being sent to host 10.1.1.3, and the earlier permit ACEs were checking different hosts.

ACLs and Switch Stacks

ACL support is the same for a switch stack as for a standalone switch. ACL configuration information is propagated to all switches in the stack and all switches in the stack, including the master, process the information and program their hardware. (For more information about switch stacks, see Chapter 5, “Managing Switch Stacks.”)

The stack master performs these ACL functions:

- It processes the ACL configuration and propagates the information to all stack members.
- It distributes the ACL information to any switch that joins the stack.
- If packets must be forwarded by software for any reason (for example, not enough hardware resources), the master switch forwards the packets only after applying ACLs on the packets.
- It programs its hardware with the ACL information it processes.

Stack members perform these ACL functions:

- They receive the ACL information from the master switch and program their hardware.
- They act as standby switches, ready to take over the role of the stack master if the existing master were to fail and they were to be elected as the new stack master.

When a stack master fails and a new stack master is elected, the newly elected master reparses the backed up running configuration. (See Chapter 5, “Managing Switch Stacks.”) The ACL configuration that is part of the running configuration is also reparsed during this step. The new stack master distributes the ACL information to all switches in the stack.

Configuring IP ACLs

Configuring ACLs on the switch is the same as configuring ACLs on other Cisco switches and routers. The process is briefly described here. For more detailed information on configuring ACLs, refer to the “Configuring IP Services” chapter in the Cisco IP and IP Routing Configuration Guide for IOS Release 12.1. For detailed information about the commands, refer to Cisco IOS IP and IP Routing Command Reference for IOS Release 12.1.

The switch does not support these IOS router ACL-related features:

- Non-IP protocol ACLs (see Table 23-1 on page 23-7) or bridge-group ACLs
- IP accounting
- Inbound and outbound rate limiting (except with QoS ACLs)
- Reflexive ACLs or dynamic ACLs (except for some specialized dynamic ACLs used by the switch clustering feature)
These are the steps to use IP ACLs on the switch:

Step 1
Create an ACL by specifying an access list number or name and access conditions.

Step 2
Apply the ACL to interfaces or terminal lines. You can also apply standard and extended IP ACLs to VLAN maps.

This section includes the following information:
- Creating Standard and Extended IP ACLs, page 23-6
- Applying an IP ACL to a Terminal Line, page 23-17

Creating Standard and Extended IP ACLs

This section describes IP ACLs. An ACL is a sequential collection of permit and deny conditions. The switch tests packets against the conditions in an access list one by one. The first match determines whether the switch accepts or rejects the packet. Because the switch stops testing conditions after the first match, the order of the conditions is critical. If no conditions match, the switch denies the packet.

The software supports these types of ACLs or access lists for IP:
- Standard IP access lists use source addresses for matching operations.
- Extended IP access lists use source and destination addresses for matching operations and optional protocol-type information for finer granularity of control.

These sections describe access lists and how to create them:
- Access List Numbers, page 23-6
- Creating a Numbered Standard ACL, page 23-8
- Creating a Numbered Extended ACL, page 23-9
- Creating Named Standard and Extended ACLs, page 23-13
- Using Time Ranges with ACLs, page 23-14
- Including Comments in ACLs, page 23-17

Access List Numbers

The number you use to denote your ACL shows the type of access list that you are creating. Table 23-1 lists the access-list number and corresponding access list type and shows whether or not they are supported in the switch. The switch supports IP standard and IP extended access lists, numbers 1 to 199 and 1300 to 2699.
Table 23-1 Access List Numbers

<table>
<thead>
<tr>
<th>Access List Number</th>
<th>Type</th>
<th>Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–99</td>
<td>IP standard access list</td>
<td>Yes</td>
</tr>
<tr>
<td>100–199</td>
<td>IP extended access list</td>
<td>Yes</td>
</tr>
<tr>
<td>200–299</td>
<td>Protocol type-code access list</td>
<td>No</td>
</tr>
<tr>
<td>300–399</td>
<td>DECnet access list</td>
<td>No</td>
</tr>
<tr>
<td>400–499</td>
<td>XNS standard access list</td>
<td>No</td>
</tr>
<tr>
<td>500–599</td>
<td>XNS extended access list</td>
<td>No</td>
</tr>
<tr>
<td>600–699</td>
<td>AppleTalk access list</td>
<td>No</td>
</tr>
<tr>
<td>700–799</td>
<td>48-bit MAC address access list</td>
<td>No</td>
</tr>
<tr>
<td>800–899</td>
<td>IPX standard access list</td>
<td>No</td>
</tr>
<tr>
<td>900–999</td>
<td>IPX extended access list</td>
<td>No</td>
</tr>
<tr>
<td>1000–1099</td>
<td>IPX SAP access list</td>
<td>No</td>
</tr>
<tr>
<td>1100–1199</td>
<td>Extended 48-bit MAC address access list</td>
<td>No</td>
</tr>
<tr>
<td>1200–1299</td>
<td>IPX summary address access list</td>
<td>No</td>
</tr>
<tr>
<td>1300–1999</td>
<td>IP standard access list (expanded range)</td>
<td>Yes</td>
</tr>
<tr>
<td>2000–2699</td>
<td>IP extended access list (expanded range)</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Note: In addition to numbered standard and extended ACLs, you can also create standard and extended named IP ACLs using the supported numbers. That is, the name of a standard IP ACL can be 1 to 99; the name of an extended IP ACL can be 100 to 199. The advantage of using named ACLs instead of numbered lists is that you can delete individual entries from a named list.
Creating a Numbered Standard ACL

Beginning in privileged EXEC mode, follow these steps to create a numbered standard ACL:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 access-list access-list-number {deny</td>
<td>Define a standard IP access list by using a source address and</td>
</tr>
<tr>
<td></td>
<td>permit} source [source-wildcard] [log]</td>
</tr>
<tr>
<td></td>
<td>The access-list-number is a decimal number from 1 to 99 or 1300</td>
</tr>
<tr>
<td></td>
<td>to 1999.</td>
</tr>
<tr>
<td></td>
<td>Enter deny or permit to specify whether to deny or permit access</td>
</tr>
<tr>
<td></td>
<td>if conditions are matched.</td>
</tr>
<tr>
<td></td>
<td>The source is the source address of the network or host from which the</td>
</tr>
<tr>
<td></td>
<td>packet is being sent specified as:</td>
</tr>
<tr>
<td></td>
<td>• The 32-bit quantity in dotted-decimal format.</td>
</tr>
<tr>
<td></td>
<td>• The keyword any as an abbreviation for source and source-wildcard of</td>
</tr>
<tr>
<td></td>
<td>0.0.0.0 255.255.255.255. You do not need to enter a source-wildcard.</td>
</tr>
<tr>
<td></td>
<td>• The keyword host as an abbreviation for source and source-wildcard of</td>
</tr>
<tr>
<td></td>
<td>source 0.0.0.0.</td>
</tr>
<tr>
<td></td>
<td>(Optional) The source-wildcard applies wildcard bits to the source.</td>
</tr>
<tr>
<td></td>
<td>(Optional) Enter log to create an informational logging message</td>
</tr>
<tr>
<td></td>
<td>about the packet that matches the entry to be sent to the console.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show access-lists [number</td>
<td>name]</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the no access-list access-list-number global configuration command to delete the entire ACL. You cannot delete individual ACEs from numbered access lists.

When creating an ACL, remember that, by default, the end of the ACL contains an implicit deny statement for all packets that it did not find a match for before reaching the end. With standard access lists, if you omit the mask from an associated IP host address ACL specification, 0.0.0.0 is assumed to be the mask.

This example shows how to create a standard ACL to deny access to IP host 171.69.198.102, permit access to any others, and display the results.

Switch (config)# access-list 2 deny host 171.69.198.102
Switch (config)# access-list 2 permit any
Switch(config)# end
Switch# show access-lists
Standard IP access list 2
 deny 171.69.198.102
 permit any
The switch always rewrites the order of standard access lists so that entries with \texttt{host} matches and entries with matches having a \texttt{don't care} mask of \texttt{0.0.0.0} are moved to the top of the list, above any entries with non-zero \texttt{don't care} masks. Therefore, in \texttt{show} command output and in the configuration file, the ACEs do not necessarily appear in the order in which they were entered.

The switch software can provide logging messages about packets permitted or denied by a standard IP access list. That is, any packet that matches the ACL causes an informational logging message about the packet to be sent to the console. The level of messages logged to the console is controlled by the logging console commands controlling the syslog messages.

\begin{table}[h]
 \centering
 \begin{tabular}{|c|c|}
 \hline
 \textbf{Note} & Because routing is done in hardware and logging is done in software, if a large number of packets match a \texttt{permit} or \texttt{deny} ACE containing a \texttt{log} keyword, the software might not be able to match the hardware processing rate, and not all packets will be logged. \tabularnewline
 \hline
 \end{tabular}
 \caption{Note Example}
\end{table}

The first packet that triggers the ACL causes a logging message right away, and subsequent packets are collected over 5-minute intervals before they are displayed or logged. The logging message includes the access list number, whether the packet was permitted or denied, the source IP address of the packet, and the number of packets from that source permitted or denied in the prior 5-minute interval.

After creating a numbered standard IP ACL, you can apply it to terminal lines (see the “Applying an IP ACL to a Terminal Line” section on page 23-17), routed interfaces (see the “Configuring Router ACLs” section on page 23-18), or VLAN maps (see the “Configuring VLAN Maps” section on page 23-25).

\section*{Creating a Numbered Extended ACL}

Although standard ACLs use only source addresses for matching, you can use extended ACL source and destination addresses for matching operations and optional protocol type information for finer granularity of control. When you are creating ACEs in numbered extended access lists, remember that after you create the ACL, any additions are placed at the end of the list. You cannot reorder the list or selectively add or remove ACEs from a numbered list.

Some protocols also have specific parameters and keywords that apply to that protocol.

These IP protocols are supported (protocol keywords are in parentheses in bold):

\begin{table}[h]
 \centering
 \begin{tabular}{|c|c|}
 \hline
 \textbf{Note} & ICMP echo-reply cannot be filtered. All other ICMP codes or types can be filtered. \tabularnewline
 \hline
 \end{tabular}
 \caption{Note Example}
\end{table}

For more details on the specific keywords relative to each protocol, refer to \textit{Cisco IP and IP Routing Command Reference for IOS Release 12.1}.

\begin{table}[h]
 \centering
 \begin{tabular}{|c|c|}
 \hline
 \textbf{Note} & The switch does not support dynamic or reflexive access lists. It also does not support filtering based on the type of service (ToS) minimize-monetary-cost bit. \tabularnewline
 \hline
 \end{tabular}
 \caption{Note Example}
\end{table}

Supported parameters can be grouped into these categories: TCP, UDP, ICMP, IGMP, or other IP.
Beginning in privileged EXEC mode, follow these steps to create an extended ACL:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| access-list access-list-number \{deny | permit\} protocol source source-wildcard destination destination-wildcard \[precedence precedence\] \[tos tos\] \[fragments\] \[log\] \[log-input\] \[time-range time-range-name\] \[dscp dscp\] | Define an extended IP access list and the access conditions. The access-list-number is a decimal number from 100 to 199 or 2000 to 2699. Enter deny or permit to specify whether to deny or permit the packet if conditions are matched. For protocol, enter the name or number of an IP protocol: ahp, eigrp, esp, gre, icmp, igmp, igrp, ip, ipinip, nos, ospf, pcp, pim, tcp, or udp, or an integer in the range 0 to 255 representing an IP protocol number. To match any Internet protocol (including ICMP, TCP, and UDP) use the keyword ip. Note This step includes options for most IP protocols. For additional specific parameters for TCP, UDP, ICMP, and IGMP, see steps 2b through 2e. The source is the number of the network or host from which the packet is sent. The source-wildcard applies wildcard bits to the source. The destination is the network or host number to which the packet is sent. The destination-wildcard applies wildcard bits to the destination. Source, source-wildcard, destination, and destination-wildcard can be specified as:
 - The 32-bit quantity in dotted-decimal format.
 - The keyword any for 0.0.0.0 255.255.255.255 (any host).
 - The keyword host for a single host 0.0.0.0. The other keywords are optional and have these meanings:
 - precedence—Enter to match packets with a precedence level specified as a number from 0 to 7 or by name: routine (0), priority (1), immediate (2), flash (3), flash-override (4), critical (5), internet (6), network (7).
 - fragments—Enter to check non-initial fragments.
 - tos—Enter to match by type of service level, specified by a number from 0 to 15 or a name: normal (0), max-reliability (2), max-throughput (4), min-delay (8).
 - log—Enter to create an informational logging message to be sent to the console about the packet that matches the entry or log-input to include the input interface in the log entry.
 - time-range—For an explanation of this keyword, see the “Using Time Ranges with ACLs” section on page 23-14.
 - dscp—Enter to match packets with the DSCP value specified by a number from 0 to 63, or use the question mark (?) to see a list of available values. |
Table: Configuring IP ACLs

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>access-list access-list-number {deny | permit} protocol any any {precedence precedence} {tos tos} {fragments} {log} {log-input} {time-range time-range-name} {dscp dscp}</td>
<td>In access-list configuration mode, define an extended IP access list using an abbreviation for a source and source wildcard of 0.0.0.0 255.255.255.255 and an abbreviation for a destination and destination wildcard of 0.0.0.0 255.255.255.255. You can use the any keyword in place of source and destination address and wildcard.</td>
</tr>
<tr>
<td>access-list access-list-number {deny | permit} protocol host source host destination {precedence precedence} {tos tos} {fragments} {log} {log-input} {time-range time-range-name} {dscp dscp}</td>
<td>Define an extended IP access list using an abbreviation for a source and source wildcard of source 0.0.0.0 and an abbreviation for a destination and destination wildcard of destination 0.0.0.0. You can use the host keyword in place of source and destination wildcard or mask.</td>
</tr>
<tr>
<td>access-list access-list-number {deny | permit} tcp source source-wildcard [operator port] destination destination-wildcard [operator port] [established] {precedence precedence} {tos tos} {fragments} {log} {log-input} {time-range time-range-name} {dscp dscp} {flag}</td>
<td>(Optional) Define an extended TCP access list and the access conditions. Enter tcp for Transmission Control Protocol. The parameters are the same as those described in Step 2a with these exceptions: (Optional) Enter an operator and port to compare source (if positioned after source source-wildcard) or destination (if positioned after destination destination-wildcard) port. Possible operators include eq (equal), gt (greater than), lt (less than), neq (not equal), and range (inclusive range). Operators require a port number (range requires two port numbers separated by a space). Enter the port number as a decimal number (from 0 to 65535) or the name of a TCP port. To see TCP port names, use the ? or refer to “Configuring IP Services” section of Cisco IOS IP and IP Routing Command Reference for IOS Release 12.1. Use only TCP port numbers or names when filtering TCP. The additional optional keywords have these meanings: • established—Enter to match an established connection. This has the same function as matching on the ack or rst flag. • flag—Enter one of these flags to match by the specified TCP header bits: ack (acknowledge), fin (finish), psh (push), rst (reset), syn (synchronize), or urg (urgent).</td>
</tr>
<tr>
<td>access-list access-list-number {deny | permit} udp source source-wildcard [operator port] destination destination-wildcard [operator port] {precedence precedence} {tos tos} {fragments} {log} {log-input} {time-range time-range-name} {dscp dscp}</td>
<td>(Optional) Define an extended UDP access list and the access conditions. Enter udp for the User Datagram Protocol. The UDP parameters are the same as those described for TCP except that [operator [port]] port number or name must be a UDP port number or name, and the flag and established parameters are not valid for UDP.</td>
</tr>
</tbody>
</table>
Chapter 23 Configuring Network Security with ACLs

Step 2d

access-list access-list-number
 {deny | permit} icmp source source-wildcard destination
destination-wildcard [icmp-type | [icmp-type icmp-code] | [precedence precedence] [tos tos] [fragments]
 [log] [log-input] [time-range time-range-name] [dscp dscp]

(Optional) Define an extended ICMP access list and the access conditions.
Enter icmp for Internet Control Message Protocol.
The ICMP parameters are the same as those described for most IP protocols in
Step 2a, with the addition of the ICMP message type and code parameters.
These optional keywords have these meanings:

- **icmp-type**—Enter to filter by ICMP message type, a number from 0 to 255.
- **icmp-code**—Enter to filter ICMP packets that are filtered by ICMP message
type by the ICMP message code, a number from 0 to 255.
- **icmp-message**—Enter to filter ICMP packets by ICMP message type name or
ICMP message type and code name. To see a list of ICMP message type
names and ICMP message type and code names, use the ? or refer to the
“Configuring IP Services” section of Cisco IOS IP and IP Routing

Step 2e

access-list access-list-number
 {deny | permit} igmp source source-wildcard destination
destination-wildcard [igmp-type]
 [precedence precedence] [tos tos] [fragments] [log] [log-input]
 [time-range time-range-name] [dscp dscp]

(Optional) Define an extended IGMP access list and the access conditions.
Enter igmp for Internet Group Management Protocol.
The IGMP parameters are the same as those described for most IP protocols in
Step 2a, with the addition of this optional parameter.
igmp-type—To match IGMP message type, enter a number from 0 to 15, or enter
the message name (dvmrp, host-query, host-report, pim, or trace).

Step 3

show access-lists [number | name]

Verify the access list configuration.

Step 4

copy running-config startup-config

(Optional) Save your entries in the configuration file.

Use the no access-list access-list-number global configuration command to delete the entire access list.
You cannot delete individual ACEs from numbered access lists.

This example shows how to create and display an extended access list to deny Telnet access from any
host in network 171.69.198.0 to any host in network 172.20.52.0 and permit any others. (The eq
keyword after the destination address means to test for the TCP destination port number equaling Telnet.)

Switch(config)# access-list 102 deny tcp 171.69.198.0 0.0.0.255 172.20.52.0 0.0.0.255 eq
telnet
Switch(config)# access-list 102 permit tcp any any
Switch(config)# end
Switch# show access-lists
Extended IP access list 102
deny tcp 171.69.198.0 0.0.0.255 172.20.52.0 0.0.0.255 eq telnet
permit tcp any any

After an ACL is created, any additions (possibly entered from the terminal) are placed at the end of the
list. You cannot selectively add or remove access list entries from a numbered access list.

Note

When you are creating an ACL, remember that, by default, the end of the access list contains an implicit
deny statement for all packets if it did not find a match before reaching the end.
After creating a numbered extended ACL, you can apply it to terminal lines (see the “Applying an IP ACL to a Terminal Line” section on page 23-17), routed interfaces (see the “Configuring Router ACLs” section on page 23-18), or VLANs (see the “Configuring VLAN Maps” section on page 23-25).

Creating Named Standard and Extended ACLs

You can identify IP ACLs with an alphanumeric string (a name) rather than a number. You can use named ACLs to configure more IP access lists in a router than if you were to use numbered access lists. If you identify your access list with a name rather than a number, the mode and command syntax are slightly different. However, not all commands that use IP access lists accept a named access list.

Note
The name you give to a standard or extended ACL can also be a number in the supported range of access list numbers. That is, the name of a standard IP ACL can be 1 to 99; the name of an extended IP ACL can be 100 to 199. The advantage of using named ACLs instead of numbered lists is that you can delete individual entries from a named list.

Consider these guidelines and limitations before configuring named ACLs:

- Not all commands that accept a numbered ACL accept a named ACL. ACLs for packet filters and route filters on interfaces can use a name. VLAN maps also accept a name.
- A standard ACL and an extended ACL cannot have the same name.
- Numbered ACLs are also available, as described in the “Creating Standard and Extended IP ACLs” section on page 23-6.
- You can use standard and extended ACLs (named or numbered) in VLAN maps.

Beginning in privileged EXEC mode, follow these steps to create a standard ACL using names:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2: ip access-list standard name</td>
<td>Define a standard IP access list using a name, and enter access-list configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Note The name can be a number from 1 to 99.</td>
</tr>
<tr>
<td>Step 3: deny {source [source-wildcard]</td>
<td>In access-list configuration mode, specify one or more conditions denied or permitted to determine if the packet is forwarded or dropped.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>or permit {source [source-wildcard]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4: end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5: show access-lists [number</td>
<td>Show the access list configuration.</td>
</tr>
<tr>
<td></td>
<td>name]</td>
</tr>
<tr>
<td>Step 6: copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove a named standard ACL, use the **no ip access-list standard name** global configuration command.
Beginning in privileged EXEC mode, follow these steps to create an extended ACL using names:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip access-list extended name</td>
</tr>
<tr>
<td>Step 3</td>
<td>{deny</td>
</tr>
</tbody>
</table>

See the “Creating a Numbered Extended ACL” section on page 23-9 for definitions of protocols and other keywords.

- host source—A source and source wildcard of source 0.0.0.0.
- host destination—A destination and destination wildcard of destination 0.0.0.0.
- any—A source and source wildcard or destination and destination wildcard of 0.0.0.0 255.255.255.255.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show access-lists [number</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To remove a named extended ACL, use the no ip access-list extended name global configuration command.

When you are creating standard extended ACLs, remember that, by default, the end of the ACL contains an implicit deny statement for everything if it did not find a match before reaching the end. For standard ACLs, if you omit the mask from an associated IP host address access list specification, 0.0.0.0 is assumed to be the mask.

After you create an ACL, any additions are placed at the end of the list. You cannot selectively add ACL entries to a specific ACL. However, you can use no permit and no deny access-list configuration mode commands to remove entries from a named ACL. This example shows how you can delete individual ACEs from the named access list border-list:

Switch(config)# ip access-list extended border-list
Switch(config-ext-nacl)# no permit ip host 10.1.1.3 any

Being able to selectively remove lines from a named ACL is one reason you might use named ACLs instead of numbered ACLs.

After creating a named ACL, you can apply it to routed interfaces (see the “Configuring Router ACLs” section on page 23-18) or VLANs (see the “Configuring VLAN Maps” section on page 23-25).

Using Time Ranges with ACLs

You can selectively apply extended ACLs based on the time of day and week by using the time-range global configuration command. First, define a time-range name and set the times and the dates or the days of the week in the time range. Then enter the time-range name when applying an ACL to set restrictions to the access list. You can use the time range to define when the permit or deny statements in the ACL are in effect, for example, during a specified time period or on specified days of the week.
Chapter 23 Configuring Network Security with ACLs

Configuring IP ACLs

The **time-range** keyword and argument are referenced in the named and numbered extended ACL task tables in the previous sections, the “Creating Standard and Extended IP ACLs” section on page 23-6, and the “Creating Named Standard and Extended ACLs” section on page 23-13.

These are some of the many possible benefits of using time ranges:

- You have more control over permitting or denying a user access to resources, such as an application (identified by an IP address/mask pair and a port number).
- You can control logging messages. ACL entries can be set to log traffic only at certain times of the day. Therefore, you can simply deny access without needing to analyze many logs generated during peak hours.

Time-based access lists trigger CPU activity because the new configuration of the access list must be merged with other features and the combined configuration loaded into the TCAM. For this reason, you should be careful not to have several access lists configured to take affect in close succession (within a small number of minutes of each other.)

Note

The time range relies on the switch system clock; therefore, you need a reliable clock source. We recommend that you use Network Time Protocol (NTP) to synchronize the switch clock. For more information, see the “Managing the System Time and Date” section on page 7-33.

Beginning in privileged EXEC mode, follow these steps to configure an **time-range** parameter for an ACL:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>time-range time-range-name</td>
<td>Assign a meaningful name (for example, workhours) to the time range to be created, and enter time-range configuration mode. The name cannot contain a space or quotation mark and must begin with a letter.</td>
</tr>
<tr>
<td>Step 3</td>
<td>absolute [start time date]</td>
<td>Specify when the function it will be applied to is operational.</td>
</tr>
<tr>
<td></td>
<td>[end time date]</td>
<td>You can use only one absolute statement in the time range. If you configure more than one absolute statement, only the one configured last is executed.</td>
</tr>
<tr>
<td></td>
<td>or periodic day-of-the-week hh:mm to</td>
<td>You can enter multiple periodic statements. For example, you could configure different hours for weekdays and weekends.</td>
</tr>
<tr>
<td></td>
<td>[day-of-the-week] hh:mm</td>
<td>Refer to the example configurations.</td>
</tr>
<tr>
<td></td>
<td>or periodic weekdays</td>
<td>hh:mm to hh:mm</td>
</tr>
<tr>
<td></td>
<td>or weekend</td>
<td>hh:mm to hh:mm</td>
</tr>
<tr>
<td></td>
<td>or daily</td>
<td>hh:mm to hh:mm</td>
</tr>
</tbody>
</table>

Step 4	end	Return to privileged EXEC mode.
Step 5	show time-range	Verify the time-range configuration.
Step 6	copy running-config startup-config	(Optional) Save your entries in the configuration file.

Repeat the steps if you have multiple items that you want in effect at different times.

To remove a configured time-range limitation, use the **no time-range time-range-name** global configuration command.
This example shows how to configure time ranges for *workhours* and for company holidays and to verify your configuration.

Switch(config)# time-range workhours
Switch(config-time-range)# periodic weekdays 8:00 to 12:00
Switch(config-time-range)# periodic weekdays 13:00 to 17:00
Switch(config-time-range)# exit
Switch(config)# time-range new_year_day_2003
Switch(config-time-range)# absolute start 00:00 1 Jan 2003 end 23:59 1 Jan 2003
Switch(config-time-range)# exit
Switch(config)# time-range thanksgiving_2003
Switch(config-time-range)# absolute start 00:00 27 Nov 2003 end 23:59 28 Nov 2003
Switch(config-time-range)# exit
Switch(config)# time-range christmas_2003
Switch(config-time-range)# absolute start 00:00 24 Dec 2003 end 23:50 25 Dec 2003
Switch(config-time-range)# exit

To apply a time-range, enter the time-range name in an extended ACL that can implement time ranges. This example shows how to create and verify extended access list 188 that denies TCP traffic from any source to any destination during the defined holiday times and permits all TCP traffic during work hours.

Switch(config)# access-list 188 deny tcp any any time-range new_year_day_2003
Switch(config)# access-list 188 deny tcp any any time-range thanksgiving_2003
Switch(config)# access-list 188 deny tcp any any time-range christmas_2003
Switch(config)# access-list 188 permit tcp any any time-range workhours
Switch(config)# exit
Switch(config)# show access-lists
Extended IP access list 188
 deny tcp any any time-range new_year_day_2003 (inactive)
 deny tcp any any time-range thanksgiving_2003 (inactive)
 deny tcp any any time-range christmas_2003 (inactive)
 permit tcp any any time-range workhours (inactive)

This example uses named ACLs to permit and deny the same traffic.

Switch(config)# ip access-list extended deny_access
Switch(config-ext-nacl)# deny tcp any any time-range new_year_day_2003
Switch(config-ext-nacl)# deny tcp any any time-range thanksgiving_2003
Switch(config-ext-nacl)# deny tcp any any time-range christmas_2003
Switch(config-ext-nacl)# exit
Switch(config)# ip access-list extended may_access
Switch(config-ext-nacl)# permit tcp any any time-range workhours
Switch(config-ext-nacl)# exit
Switch(config)# show ip access-lists
Extended IP access list deny_access
 deny tcp any any time-range new_year_day_2003 (inactive)
 deny tcp any any time-range thanksgiving_2003 (inactive)
 deny tcp any any time-range christmas_2003 (inactive)
Extended IP access list may_access
 permit tcp any any time-range workhours (inactive)
Including Comments in ACLs

You can use the remark keyword to include comments (remarks) about entries in any IP standard or extended ACL. The remarks make the ACL easier for you to understand and scan. Each remark line is limited to 100 characters.

The remark can go before or after a permit or deny statement. You should be consistent about where you put the remark so that it is clear which remark describes which permit or deny statement. For example, it would be confusing to have some remarks before the associated permit or deny statements and some remarks after the associated statements.

To include a comment for IP numbered standard or extended ACLs, use the access-list access-list number remark remark global configuration command. To remove the remark, use the no form of this command.

In this example, the workstation belonging to Jones is allowed access, and the workstation belonging to Smith is not allowed access:

```
Switch(config)# access-list 1 remark Permit only Jones workstation through
Switch(config)# access-list 1 permit 171.69.2.88
Switch(config)# access-list 1 remark Do not allow Smith workstation through
Switch(config)# access-list 1 deny 171.69.3.13
```

For an entry in a named IP ACL, use the remark access-list configuration command. To remove the remark, use the no form of this command.

In this example, the Jones subnet is not allowed to use outbound Telnet:

```
Switch(config)# ip access-list extended telnetting
Switch(config-ext-nacl)# remark Do not allow Jones subnet to telnet out
Switch(config-ext-nacl)# deny tcp host 171.69.2.88 any eq telnet
```

Applying an IP ACL to a Terminal Line

You can use numbered ACLs to control access to one or more terminal lines. You cannot apply named ACLs to lines. You must set identical restrictions on all the virtual terminal lines because a user can attempt to connect to any of them.

For procedures for applying ACLs to routed interfaces, see the “Configuring Router ACLs” section on page 23-18. For applying ACLs to VLANs, see the “Configuring VLAN Maps” section on page 23-25.

Beginning in privileged EXEC mode, follow these steps to restrict incoming and outgoing connections between a virtual terminal line and the addresses in an ACL:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>line [console</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>access-class access-list-number {in</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
</tbody>
</table>
Chapter 23 Configuring Network Security with ACLs

Configuring Router ACLs

This section describes how to apply router ACLs to Layer 3 network interfaces. You can apply an ACL either outbound or inbound interfaces. Note these guidelines:

- When controlling access to an interface, you can use a named or numbered ACL.
- You can apply ACLs to routed interfaces only; the switch does not support ACLs on Layer 2 interfaces.
- If you apply an ACL to a Layer 3 interface and routing is not enabled, the ACL only filters packets that are intended for the CPU, such as SNMP, Telnet, or Web traffic.

By default, the router sends Internet Control Message Protocol (ICMP) unreachable messages when a packet is denied by an access group; these access-group denied packets are not dropped in hardware but are bridged to the switch CPU so that it can generate the ICMP-unreachable message.

These sections describe using router ACLs:
- Applying an IP ACL to a Layer 3 Interface, page 23-18
- Hardware and Software Handling of Router ACLs, page 23-19
- Router ACL Configuration Examples, page 23-20

Applying an IP ACL to a Layer 3 Interface

Beginning in privileged EXEC mode, follow these steps to control access to a Layer 3 interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>interface interface-id</td>
<td>Identify a specific interface for configuration, and enter interface configuration mode. The interface must be a Layer 3 interface, either a routed port or an SVI VLAN ID.</td>
</tr>
<tr>
<td>ip access-group {access-list-number</td>
<td>name} [in</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show running-config</td>
<td>Display the access list configuration.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove an ACL from a terminal line, use the no access-class access-list-number {in | out} line configuration command.
To remove the specified access group, use the **no ip access-group** \(access-list-number \mid name \) \{ in \mid out \} interface configuration command.

This example shows how to apply access list 2 on Gigabit Ethernet interface 0/3 of switch 1 in the stack to filter packets entering the interface:

```
Switch(config)# interface gigabitethernet1/0/3
Router(config-if)# ip access-group 2 in
```

Note
The **ip access-group** interface configuration command is only valid when applied to a Layer 3 interface: an SVI, a Layer 3 EtherChannel, or a routed port. The interface must have been configured with an IP address. Layer 3 access groups filter packets that are routed or are received by Layer 3 processes on the CPU. They do not affect packets bridged within a VLAN.

For inbound ACLs, after receiving a packet, the switch checks the packet against the ACL. If the ACL permits the packet, the switch continues to process the packet. If the ACL rejects the packet, the switch discards the packet.

For outbound ACLs, after receiving and routing a packet to a controlled interface, the switch checks the packet against the ACL. If the ACL permits the packet, the switch sends the packet. If the ACL rejects the packet, the switch discards the packet.

By default, the input interface sends ICMP Unreachable messages whenever a packet is discarded, regardless of whether the packet was discarded because of an ACL on the input interface or because of an ACL on the output interface. ICMP Unreachables are normally limited to no more than one every one-half second per input interface, but this can be changed by using the **ip icmp rate-limit unreachable** global configuration command.

When you apply an undefined ACL to an interface, the switch acts as if the ACL has not been applied to the interface and permits all packets. Remember this behavior if you use undefined ACLs for network security.

Hardware and Software Handling of Router ACLs

ACL processing is primarily accomplished in hardware, but requires forwarding of some traffic flows to the CPU for software processing. The forwarding rate for software-forwarded traffic is substantially less than for hardware-forwarded traffic. When traffic flows are both logged and forwarded, forwarding is done by hardware, but logging must be done by software. Because of the difference in packet handling capacity between hardware and software, if the sum of all flows being logged (both permitted flows and denied flows) is of great enough bandwidth, not all of the packets that are forwarded can be logged.

These factors can cause packets to be sent to the CPU:

- Using the **log** keyword
- Generating ICMP unreachable messages
- Hardware reaching its capacity to store ACL configurations

Note
If an ACL configuration cannot be implemented in hardware due to an out-of-resource condition on a stack member, then only the traffic in that VLAN arriving on that switch is affected (forwarded in software). Software forwarding of packets might adversely impact the performance of the switch stack, depending on the number of CPU cycles that this consumes.
If router ACL configuration cannot be applied in hardware, packets arriving in a VLAN that must be routed are routed in software, but are bridged in hardware. If ACLs cause large numbers of packets to be sent to the CPU, the switch performance can be negatively affected.

When you enter the `show ip access-lists` privileged EXEC command, the match count displayed does not account for packets that are access controlled in hardware. Use the `show access-lists hardware counters` privileged EXEC command to obtain some basic hardware ACL statistics for switched and routed packets.

Router ACLs function as follows:

- The hardware controls permit and deny actions of standard and extended ACLs (input and output) for security access control.
- If `log` has not been specified, the flows that match a `deny` statement in a security ACL are dropped by the hardware if `ip unreachables` is disabled. The flows matching a `permit` statement are switched in hardware.
- Adding the `log` keyword to an ACE in a router ACL causes a copy of the packet to be sent to the CPU for logging only. If the ACE is a `permit` statement, the packet is still switched and routed in hardware.

Router ACL Configuration Examples

This section provides examples of configuring and applying router ACLs. For detailed information about compiling ACLs, refer to the Security Configuration Guide and the “IP Services” chapter of the Cisco IOS IP and IP Routing Configuration Guide for IOS Release 12.1.

Figure 23-3 shows a small networked office environment with the routed port 1/0/2 connected to Server A, containing benefits and other information that all employees can access, and routed port 0/3 connected to Server B, containing confidential payroll data. All users can access Server A, but Server B has restricted access.

Use router ACLs to do this in one of two ways:

- Create a standard ACL, and filter traffic coming to the server from port 1/0/3.
- Create an extended ACL, and filter traffic coming from the server into port 1/0/3.
This example uses a standard ACL to filter traffic coming into Server B from Gigabit Ethernet port 3 on switch 1, permitting traffic only from Accounting’s source addresses 172.20.128.64 to 172.20.128.95.

Switch(config)# access-list 6 permit 172.20.128.64 0.0.0.31
Switch(config)# end
Switch(config)# show access-lists
Standard IP access list 6
 permit 172.20.128.64, wildcard bits 0.0.0.31
Switch(config)# interface gigabitethernet1/0/3
Switch(config-if)# ip access-group 6 out

The ACL is applied to traffic coming out of routed port 3 on switch 1 from the specified source address.

This example uses an extended ACL to filter traffic coming from Server B into port 3 on switch 1, permitting traffic from any source address (in this case Server B) to only the Accounting destination addresses 172.20.128.64 to 172.20.128.95.

Switch(config)# access-list 106 permit ip any 172.20.128.64 0.0.0.31
Switch(config)# end
Switch(config)# show access-lists
Extended IP access list 106
 permit ip any 172.20.128.64 0.0.0.31
Switch(config)# interface gigabitethernet1/0/3
Switch(config-if)# ip access-group 106 in

The ACL is then applied to traffic going into routed port 3 on switch 1, permitting it to go only to the specified destination addresses. Note that with extended ACLs, you must enter the protocol (IP) before the source and destination information.
Numbered ACLs

In this example, network 36.0.0.0 is a Class A network whose second octet specifies a subnet; that is, its subnet mask is 255.255.0.0. The third and fourth octets of a network 36.0.0.0 address specify a particular host. Using access list 2, the switch accepts one address on subnet 48 and reject all others on that subnet. The last line of the list shows that the switch accepts addresses on all other network 36.0.0.0 subnets. The ACL is then applied to packets entering Gigabit Ethernet interface 1 on switch 2.

```
Switch(config)# access-list 2 permit 36.48.0.3
Switch(config)# access-list 2 deny 36.48.0.0 0.0.255.255
Switch(config)# access-list 2 permit 36.0.0.0 0.255.255.255
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# ip access-group 2 in
```

Extended ACLs

In this example, the first line permits any incoming TCP connections with destination ports greater than 1023. The second line permits incoming TCP connections to the Simple Mail Transfer Protocol (SMTP) port of host 128.88.1.2. The third line permits incoming ICMP messages for error feedback.

```
Switch(config)# access-list 102 permit tcp any 128.88.0.0 0.0.255.255 gt 1023
Switch(config)# access-list 102 permit tcp any host 128.88.1.2 eq 25
Switch(config)# access-list 102 permit icmp any any
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# ip access-group 102 in
```

For another example of using an extended ACL, suppose that you have a network connected to the Internet, and you want any host on the network to be able to form TCP connections to any host on the Internet. However, you do not want IP hosts to be able to form TCP connections to hosts on your network, except to the mail (SMTP) port of a dedicated mail host.

SMTP uses TCP port 25 on one end of the connection and a random port number on the other end. The same port numbers are used throughout the life of the connection. Mail packets coming in from the Internet have a destination port of 25. Outbound packets have the port numbers reversed. Because the secure system behind the router always accepts mail connections on port 25, the incoming and outgoing services are separately controlled. The ACL must be configured as an input ACL on the outbound interface and an output ACL on the inbound interface.

In this example, the network is a Class B network with the address 128.88.0.0, and the mail host address is 128.88.1.2. The `established` keyword is used only for the TCP to show an established connection. A match occurs if the TCP datagram has the ACK or RST bits set, which show that the packet belongs to an existing connection. Gigabit Ethernet interface 0/1 on switch 1 is the interface that connects the router to the Internet.

```
Switch(config)# access-list 102 permit tcp any 128.88.0.0 0.0.255.255 established
Switch(config)# access-list 102 permit tcp any host 128.88.1.2 eq 25
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# ip access-group 102 in
```
Named ACLs

This example creates a standard ACL named `internet_filter` and an extended ACL named `marketing_group`. The `internet_filter` ACL allows all traffic from the source address 1.2.3.4.

Switch(config)# ip access-list standard internet_filter
Switch(config-ext-nacl)# permit 1.2.3.4
Switch(config-ext-nacl)# exit

The `marketing_group` ACL allows any TCP Telnet traffic to the destination address and wildcard 171.69.0.0 0.0.255.255 and denies any other TCP traffic. It permits any ICMP traffic, denies UDP traffic from any source to the destination address range 171.69.0.0 through 179.69.255.255 with a destination port less than 1024, denies any other IP traffic, and provides a log of the result.

Switch(config)# ip access-list extended marketing_group
Switch(config-ext-nacl)# permit tcp any 171.69.0.0 0.0.255.255 eq telnet
Switch(config-ext-nacl)# deny tcp any any
Switch(config-ext-nacl)# permit icmp any any
Switch(config-ext-nacl)# deny udp any 171.69.0.0 0.0.255.255 lt 1024
Switch(config-ext-nacl)# deny ip any any log
Switch(config-ext-nacl)# exit

The ACLs are applied to Gigabit Ethernet port 0/5 on switch 3, which is configured as a Layer 3 port, with the `internet_filter` ACL applied to incoming traffic and the `marketing_group` ACL applied to outgoing traffic.

Switch(config)# interface gigabitethernet3/0/5
Switch(config-if)# no switchport
Switch(config-if)# ip address 2.0.5.1 255.255.255.0
Switch(config-if)# ip access-group Internet_filter out
Switch(config-if)# ip access-group marketing_group in

Time Range Applied to an IP ACL

This example denies Hypertext Transfer Protocol (HTTP) traffic on IP on Monday through Friday between the hours of 8:00 a.m. and 6:00 p.m. The example allows UDP traffic only on Saturday and Sunday from noon to 8:00 p.m.

Switch(config)# time-range no-http
Switch(config)# periodic weekdays 8:00 to 18:00

Switch(config)# time-range udp-yes
Switch(config)# periodic weekend 12:00 to 20:00

Switch(config)# ip access-list extended strict
Switch(config-ext-nacl)# deny tcp any any eq www time-range no-http
Switch(config-ext-nacl)# permit udp any any time-range udp-yes

Switch(config-ext-nacl)# exit
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# ip access-group strict in
Commented IP ACL Entries

In this example of a numbered ACL, the workstation belonging to Jones is allowed access, and the workstation belonging to Smith is not allowed access:

Switch(config)# access-list 1 remark Permit only Jones workstation through
Switch(config)# access-list 1 permit 171.69.2.88
Switch(config)# access-list 1 remark Do not allow Smith workstation through
Switch(config)# access-list 1 deny 171.69.3.13

In this example of a numbered ACL, the Winter and Smith workstations are not allowed to browse the Web:

Switch(config)# access-list 100 remark Do not allow Winter to browse the web
Switch(config)# access-list 100 deny host 171.69.3.85 any eq www
Switch(config)# access-list 100 remark Do not allow Smith to browse the web
Switch(config)# access-list 100 deny host 171.69.3.13 any eq www

In this example of a named ACL, the Jones subnet is not allowed access:

Switch(config)# ip access-list standard prevention
Switch(config-standard-nacl)# remark Do not allow Jones subnet through
Switch(config-standard-nacl)# deny 171.69.0.0 0.0.255.255

In this example of a named ACL, the Jones subnet is not allowed to use outbound Telnet:

Switch(config)# ip access-list extended telnetting
Switch(config-ext-nacl)# remark Do not allow Jones subnet to telnet out
Switch(config-ext-nacl)# deny tcp 171.69.0.0 0.0.255.255 any eq telnet

ACL Logging

Two variations of logging are supported on router ACLs. The log keyword sends an informational logging message to the console about the packet that matches the entry; the log-input keyword includes the input interface in the log entry.

In this example, standard named access list stan1 denies traffic from 10.1.1.0 0.0.0.255, allows traffic from all other sources, and includes the log keyword.

Switch(config)# ip access-list standard stan1
Switch(config-standard-nacl)# deny 10.1.1.0 0.0.0.255 log
Switch(config-standard-nacl)# permit any log
Switch(config-standard-nacl)# exit
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# ip access-group stan1 in
Switch(config-if)# end

Switch# show logging
Syslog logging: enabled (0 messages dropped, 0 flushes, 0 overruns)
Console logging: level debugging, 37 messages logged
Monitor logging: level debugging, 0 messages logged
Buffer logging: level debugging, 37 messages logged
File logging: disabled
Trap logging: level debugging, 39 message lines logged

Log Buffer (4096 bytes):

00:00:48: NTP: authentication delay calculation problems
<output truncated>

00:09:34:%SEC-6-IPACCESSLOGS:list stan1 permitted 0.0.0.0 1 packet
00:09:59:%SEC-6-IPACCESSLOGS:list stan1 denied 10.1.1.15 1 packet
00:10:11:%SEC-6-IPACCESSLOGS:list stan1 permitted 0.0.0.0 1 packet
This example is a named extended access list ext1 that permits ICMP packets from any source to 10.1.1.0 0.0.0.255 and denies all UDP packets.

```
Switch(config)# ip access-list extended ext1
Switch(config-ext-nacl)# permit icmp any 10.1.1.0 0.0.0.255 log
Switch(config-ext-nacl)# deny udp any any log
Switch(config-std-nacl)# exit
Switch(config)# interface gigabitethernet1/0/3
Switch(config-if)# ip access-group ext1 in
```

This is an example of a log for an extended ACL:

```
01:24:23:%SEC-6-IPACCESSLOGDP:list ext1 permitted icmp 10.1.1.15 -> 10.1.1.61 (0/0), 1 packet
01:25:14:%SEC-6-IPACCESSLOGDP:list ext1 permitted icmp 10.1.1.15 -> 10.1.1.61 (0/0), 7 packets
01:26:12:%SEC-6-IPACCESSLOGP:list ext1 denied udp 0.0.0.0(0) -> 255.255.255.255(0), 1 packet
01:31:33:%SEC-6-IPACCESSLOGP:list ext1 denied udp 0.0.0.0(0) -> 255.255.255.255(0), 8 packets
```

Note that all logging entries for IP ACLs start with %SEC-6-IPACCESSLOG with minor variations in format depending on the kind of ACL and the access entry that has been matched.

This is an example of an output message when the log-input keyword is entered:

```
00:04:21:%SEC-6-IPACCESSLOGDP:list inputlog permitted icmp 10.1.1.10 (Vlan1 0001.42ef.a400) -> 10.1.1.61 (0/0), 1 packet
```

A log message for the same sort of packet using the log keyword does not include the input interface information:

```
00:05:47:%SEC-6-IPACCESSLOGDP:list inputlog permitted icmp 10.1.1.10 -> 10.1.1.61 (0/0), 1 packet
```

Configuring VLAN Maps

This section describes how to configure VLAN maps, which is the only way to control filtering within a VLAN. VLAN maps have no direction. To filter traffic in a specific direction by using a VLAN map, you need to include an ACL with specific source or destination addresses. If there is a match clause for that type of packet (IP or MAC) in the VLAN map, the default action is to drop the packet if the packet does not match any of the entries within the map. If there is no match clause for that type of packet, the default is to forward the packet.

Note

For complete syntax and usage information for the commands used in this section, refer to the command reference for this release.

To create a VLAN map and apply it to one or more VLANs, perform these steps:

1. **Step 1** Create the standard or extended IP ACLs or named MAC extended ACLs that you want to apply to the VLAN. See the “Creating Standard and Extended IP ACLs” section on page 23-6 and the “Creating Named MAC Extended ACLs” section on page 23-27.

2. **Step 2** Enter the `vlan access-map` global configuration command to create a VLAN ACL map entry.
Step 3 In access map configuration mode, optionally enter an **action**—**forward** (the default) or **drop**—and enter the **match** command to specify an IP packet or a non-IP packet (with only a known MAC address) and to match the packet against one or more ACLs (standard or extended).

Note If the VLAN map has a match clause for the type of packet (IP or MAC) and the packet does not match the type, the default is to drop the packet. If there is no match clause in the VLAN map for that type of packet, and no action specified, the packet is forwarded.

Step 4 Use the **vlan filter** global configuration command to apply a VLAN map to one or more VLANs.

This section contains these topics:

- VLAN Map Configuration Guidelines, page 23-26
- Creating Named MAC Extended ACLs, page 23-27
- Creating a VLAN Map, page 23-28
- Applying a VLAN Map to a VLAN, page 23-31
- Using VLAN Maps in Your Network, page 23-31

VLAN Map Configuration Guidelines

Follow these guidelines when configuring VLAN maps:

- If there is no router ACL configured to deny traffic on a routed VLAN interface (input or output), and no VLAN map configured, all traffic is permitted.
- Each VLAN map consists of a series of entries. The order of entries in an VLAN map is important. A packet that comes into the switch is tested against the first entry in the VLAN map. If it matches, the action specified for that part of the VLAN map is taken. If there is no match, the packet is tested against the next entry in the map.
- If the VLAN map has at least one match clause for the type of packet (IP or MAC) and the packet does not match any of these match clauses, the default is to drop the packet. If there is no match clause for that type of packet in the VLAN map, the default is to forward the packet.
- The system might take longer to boot if you have configured a very large number of ACLs.
- Logging is not supported for VLAN maps.
- If VLAN map configuration cannot be applied in hardware, all packets in that VLAN must be bridged and routed by software.
- See the “Using VLAN Maps in Your Network” section on page 23-31 for configuration examples.
- For information about using both router ACLs and VLAN maps, see the “Guidelines” section on page 23-34.
Creating Named MAC Extended ACLs

You can filter non-IP traffic on a VLAN by using MAC addresses and named MAC extended ACLs. The procedure is similar to that of configuring other extended named ACLs.

Note

You can apply named MAC extended ACLs only to VLAN maps.

For more information about the supported non-IP protocols in the `mac access-list extended` command, refer to the command reference for this release.

Note

Though visible in the command-line help strings, `appletalk` is not supported as a matching condition for the `deny` and `permit` MAC access-list configuration mode commands.

Beginning in privileged EXEC mode, follow these steps to create a named MAC extended ACL:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>mac access-list extended name</td>
</tr>
</tbody>
</table>
| Step 3 | `{deny | permit} {any | host source MAC address | source MAC address mask} {any | host destination MAC address | destination MAC address mask} {type mask | lsap lsap mask | aarp | amber | dec-spanning | decnet-iv | diagnostic | dsm | etype-6000 | etype-8042 | lat | lavc-sca | mop-console | mop-dump | msdos | mumps | netbios | vines-echo | vines-ip | xns-idp | 0-65535} [cos cos]` | In extended MAC access-list configuration mode, specify to `permit` or `deny any` source MAC address, a source MAC address with a mask, or a specific `host source MAC address` and `any` destination MAC address, destination MAC address with a mask, or a specific destination MAC address. (Optional) You can also enter these options:
 - `type mask`—An arbitrary EtherType number of a packet with Ethernet II or SNAP encapsulation in decimal, hex, or octal with optional mask of `don't care` bits applied to the EtherType before testing for a match.
 - `lsap lsap mask`—An LSAP number of a packet with 802.2 encapsulation in decimal, hex, or octal with optional mask of `don't care` bits.
 - `cos cos`—An IEEE 802.1Q cost of service number from 0 to 7 used to set priority. |
| Step 4 | end | Return to privileged EXEC mode. | |
| Step 5 | show access-lists [number | name] | Show the access list configuration. |
| Step 6 | copy running-config startup-config | (Optional) Save your entries in the configuration file. |

Use the `no mac access-list extended name` global configuration command to delete the entire ACL. You can also delete individual ACEs from named MAC extended ACLs.
This example shows how to create and display an access list named `mac1`, denying only EtherType DECnet Phase IV traffic, but permitting all other types of traffic.

```
Switch(config)# mac access-list extended mac1
Switch(config-ext-macl)# deny any any decnet-iv
Switch(config-ext-macl)# permit any any
Switch(config-ext-macl)# end
Switch # show access-lists
Extended MAC access list mac1
deny   any any decnet-iv
permit any any
```

Creating a VLAN Map

Each VLAN map consists of an ordered series of entries. Beginning in privileged EXEC mode, follow these steps to create, add to, or delete a VLAN map entry:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Purpose</td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Step 3</td>
</tr>
<tr>
<td>vlan access-map <code>name</code> [number]</td>
<td>Create a VLAN map, and give it a name and (optionally) a number. The number is the sequence number of the entry within the map. When you create VLAN maps with the same name, numbers are assigned sequentially in increments of 10. When modifying or deleting maps, you can enter the number of the map entry that you want to modify or delete.</td>
</tr>
<tr>
<td>action `{drop</td>
<td>forward}`</td>
</tr>
<tr>
<td>match `{ip</td>
<td>mac} address `{name</td>
</tr>
<tr>
<td>Step 5</td>
<td>Step 6</td>
</tr>
<tr>
<td>end</td>
<td>Return to global configuration mode.</td>
</tr>
<tr>
<td>show running-config</td>
<td>Display the access list configuration.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the `no vlan access-map name` global configuration command to delete a map.

Use the `no vlan access-map name number` global configuration command to delete a single sequence entry from within the map.

Use the `no action` access-map configuration command to enforce the default action, which is to forward.

VLAN maps do not use the specific permit or deny keywords. To deny a packet by using VLAN maps, create an ACL that would match the packet, and set the action to drop. A permit in the ACL counts as a match. A deny in the ACL means no match.
Examples of ACLs and VLAN Maps

These examples show how to create ACLs and VLAN maps that for specific purposes.

Example 1

This example shows how to create an ACL and a VLAN map to deny a packet. In the first map, any packets that match the ip1 ACL (TCP packets) would be dropped. You first create the ip1 ACL to permit any TCP packet and no other packets. Because there is a match clause for IP packets in the VLAN map, the default action is to drop any IP packet that does not match any of the match clauses.

Switch(config)# ip access-list extended ip1
Switch(config-ext-nacl)# permit tcp any any
Switch(config-ext-nacl)# exit
Switch(config)# vlan access-map map_1 10
Switch(config-access-map)# match ip address ip1
Switch(config-access-map)# action drop

This example shows how to create a VLAN map to permit a packet. ACL ip2 permits UDP packets and any packets that match the ip2 ACL are forwarded. In this map, any IP packets that did not match any of the previous ACLs (that is, packets that are not TCP packets or UDP packets) would get dropped.

Switch(config)# ip access-list extended ip2
Switch(config-ext-nacl)# permit udp any any
Switch(config-ext-nacl)# exit
Switch(config)# vlan access-map map_1 20
Switch(config-access-map)# match ip address ip2
Switch(config-access-map)# action forward

Example 2

In this example, the VLAN map has a default action of drop for IP packets and a default action of forward for MAC packets. Used with standard ACL 101 and extended named access lists igmp-match and tcp-match, the map will have the following results:

- Forward all UDP packets
- Drop all IGMP packets
- Forward all TCP packets
- Drop all other IP packets
- Forward all non-IP packets

Switch(config)# access-list 101 permit udp any any
Switch(config)# ip access-list extended igmp-match
Switch(config-ext-nacl)# permit igmp any any
Switch(config)# ip access-list extended tcp-match
Switch(config-ext-nacl)# permit tcp any any
Switch(config-ext-nacl)# exit
Switch(config)# vlan access-map drop-ip-default 10
Switch(config-access-map)# match ip address 101
Switch(config-access-map)# action forward
Switch(config-access-map)# exit
Switch(config)# vlan access-map drop-ip-default 20
Switch(config-access-map)# match ip address igmp-match
Switch(config-access-map)# action drop
Switch(config-access-map)# exit
Switch(config)# vlan access-map drop-ip-default 30
Switch(config-access-map)# match ip address tcp-match
Switch(config-access-map)# action forward
Example 3

In this example, the VLAN map has a default action of drop for MAC packets and a default action of forward for IP packets. Used with MAC extended access lists `good-hosts` and `good-protocols`, the map will have the following results:

- Forward MAC packets from hosts 0000.0c00.0111 and 0000.0c00.0211
- Forward MAC packets with decnet-iv or vines-ip protocols
- Drop all other non-IP packets
- Forward all IP packets

```
Switch(config)# mac access-list extended good-hosts
Switch(config-ext-macl)# permit host 000.0c00.0111 any
Switch(config-ext-macl)# permit host 000.0c00.0211 any
Switch(config-ext-nacl)# exit
Switch(config)# mac access-list extended good-protocols
Switch(config-ext-macl)# permit any any decnet-ip
Switch(config-ext-macl)# permit any any vines-ip
Switch(config-ext-nacl)# exit
Switch(config)# vlan access-map drop-mac-default 10
Switch(config-access-map)# match mac address good-hosts
Switch(config-access-map)# action forward
Switch(config-access-map)# exit
Switch(config)# vlan access-map drop-mac-default 20
Switch(config-access-map)# match mac address good-protocols
Switch(config-access-map)# action forward
```

Example 4

In this example, the VLAN map has a default action of drop for all packets (IP and non-IP). Used with access lists `tcp-match` and `good-hosts` from Examples 2 and 3, the map will have the following results:

- Forward all TCP packets
- Forward MAC packets from hosts 0000.0c00.0111 and 0000.0c00.0211
- Drop all other IP packets
- Drop all other MAC packets

```
Switch(config)# vlan access-map drop-all-default 10
Switch(config-access-map)# match ip address tcp-match
Switch(config-access-map)# action forward
Switch(config-access-map)# exit
Switch(config)# vlan access-map drop-all-default 20
Switch(config-access-map)# match mac address good-hosts
Switch(config-access-map)# action forward
```
Applying a VLAN Map to a VLAN

Beginning in privileged EXEC mode, follow these steps to apply a VLAN map to one or more VLANs:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>vlan filter mapname vlan-list list</td>
</tr>
<tr>
<td>Step 3</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 4</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To remove the VLAN map, use the `no vlan filter mapname vlan-list list` global configuration command.

This example shows how to apply VLAN map 1 to VLANs 20 through 22:

```
Switch(config)# vlan filter map 1 vlan-list 20-22
```

Using VLAN Maps in Your Network

This section describes some typical uses for VLAN maps and includes these topics:
- Wiring Closet Configuration, page 23-31
- Denying Access to a Server on Another VLAN, page 23-33

Wiring Closet Configuration

In a wiring closet configuration, routing might not be enabled on the switch. In this configuration, the switch can still support a VLAN map and a QoS classification ACL. In Figure 23-4, assume that Host X and Host Y are in different VLANs and are connected to wiring closet switches A and C. Traffic from Host X to Host Y is eventually being routed by Switch B, which has routing enabled. Traffic from Host X to Host Y can be access-controlled at the traffic entry point, Switch A.
If you do not want HTTP traffic switched from Host X to Host Y, you can configure a VLAN map on Switch A to drop all HTTP traffic from Host X (IP address 10.1.1.32) to Host Y (IP address 10.1.1.34) at Switch A and not bridge it to Switch B.

First, define the IP access list `http` that permits (matches) any TCP traffic on the HTTP port.

```snippets
Switch(config)# ip access-list extended http
Switch(config-ext-nacl)# permit tcp host 10.1.1.32 host 10.1.1.34 eq www
Switch(config-ext-nacl)# exit
```

Next, create VLAN access map `map2` so that traffic that matches the `http` access list is dropped and all other IP traffic is forwarded.

```snippets
Switch(config)# vlan access-map map2 10
Switch(config-access-map)# match ip address http
Switch(config-access-map)# action drop
Switch(config-access-map)# exit
Switch(config)# ip access-list extended match_all
Switch(config-ext-nacl)# permit ip any any
Switch(config-ext-nacl)# exit
Switch(config)# vlan access-map map2 20
Switch(config-access-map)# match ip address match_all
Switch(config-access-map)# action forward
```

Then, apply VLAN access map `map2` to VLAN 1.

```snippets
Switch(config)# vlan filter map2 vlan 1
```
Denying Access to a Server on Another VLAN

You can restrict access to a server on another VLAN. For example, server 10.1.1.100 in VLAN 10 needs to have access denied to these hosts (see Figure 23-5):

- Hosts in subnet 10.1.2.0/8 in VLAN 20 should not have access.
- Hosts 10.1.1.4 and 10.1.1.8 in VLAN 10 should not have access.

Figure 23-5 Deny Access to a Server on Another VLAN

This example shows how to deny access to a server on another VLAN by creating the VLAN map SERVER1 that denies access to hosts in subnet 10.1.2.0/8, host 10.1.1.4, and host 10.1.1.8 and permits other IP traffic. The final step is to apply the map SERVER1 to VLAN 10.

Step 1 Define the IP ACL that will match the correct packets.

Switch(config)# ip access-list extended SERVER1_ACL
Switch(config-ext-nacl)# permit ip 10.1.2.0 0.0.0.255 host 10.1.1.100
Switch(config-ext-nacl)# permit ip host 10.1.1.4 host 10.1.1.100
Switch(config-ext-nacl)# permit ip host 10.1.1.8 host 10.1.1.100
Switch(config-ext-nacl)# exit

Step 2 Define a VLAN map using this ACL that will drop IP packets that match SERVER1_ACL and forward IP packets that do not match the ACL.

Switch(config)# vlan access-map SERVER1_MAP
Switch(config-access-map)# match ip address SERVER1_ACL
Switch(config-access-map)# action drop
Switch(config)# vlan access-map SERVER1_MAP 20
Switch(config-access-map)# action forward
Switch(config-access-map)# exit

Step 3 Apply the VLAN map to VLAN 10.

Switch(config)# vlan filter SERVER1_MAP vlan-list 10.
Using VLAN Maps with Router ACLs

To access control both bridged and routed traffic, you can use VLAN maps only or a combination of router ACLs and VLAN maps. You can define router ACLs on both input and output routed VLAN interfaces, and you can define a VLAN map to access control the bridged traffic.

If a packet flow matches a VLAN-map deny clause in the ACL, regardless of the router ACL configuration, the packet flow is denied.

Note

When you use router ACLs with VLAN maps, packets that require logging on the router ACLs are not logged if they are denied by a VLAN map.

If the VLAN map has a match clause for the type of packet (IP or MAC) and the packet does not match the type, the default is to drop the packet. If there is no match clause in the VLAN map, and no action specified, the packet is forwarded if it does not match any VLAN map entry.

This section includes this information about using VLAN maps with router ACLs:

- Guidelines, page 23-34
- Examples of Router ACLs and VLAN Maps Applied to VLANs, page 23-35

Guidelines

These guidelines are for configurations where you need to have a router ACL and a VLAN map on the same VLAN. These guidelines do not apply to configurations where you are mapping router ACLs and VLAN maps on different VLANs.

The switch hardware provides one lookup for security ACLs for each direction (input and output); therefore, you must merge a router ACL and a VLAN map when they are configured on the same VLAN. Merging the router ACL with the VLAN map might significantly increase the number of ACEs.

If you must configure a router ACL and a VLAN map on the same VLAN, use these guidelines for both router ACL and VLAN map configuration:

- You can configure only one VLAN map and one router ACL in each direction (input/output) on a VLAN interface.
- Whenever possible, try to write the ACL with all entries having a single action except for the final, default action of the other type. That is, write the ACL using one of these two forms:

  ```
  permit...
  permit...
  permit...
  deny ip any any
  ```

 or

  ```
  deny...
  deny...
  deny...
  permit ip any any
  ```

- To define multiple actions in an ACL (permit, deny), group each action type together to reduce the number of entries.
Avoid including Layer 4 information in an ACL; adding this information complicates the merging process. The best merge results are obtained if the ACLs are filtered based on IP addresses (source and destination) and not on the full flow (source IP address, destination IP address, protocol, and protocol ports). It is also helpful to use don’t care bits in the IP address, whenever possible.

If you need to specify the full-flow mode and the ACL contains both IP ACEs and TCP/UDP/ICMP ACEs with Layer 4 information, put the Layer 4 ACEs at the end of the list. This gives priority to the filtering of traffic based on IP addresses.

Examples of Router ACLs and VLAN Maps Applied to VLANs

This section gives examples of applying router ACLs and VLAN maps to a VLAN for switched, bridged, routed, and multicast packets. Although the following illustrations show packets being forwarded to their destination, each time the packet’s path crosses a line indicating a VLAN map or an ACL, it is also possible that the packet might be dropped, rather than forwarded.

ACLs and Switched Packets

Figure 23-6 shows how an ACL is applied on packets that are switched within a VLAN. Packets switched within the VLAN without being routed or forwarded by fallback bridging are only subject to the VLAN map of the input VLAN.

Figure 23-6 Applying ACLs on Switched Packets
ACLs and Bridged Packets

Figure 23-7 shows how an ACL is applied on fallback-bridged packets. For bridged packets, only Layer 2 ACLs are applied to the input VLAN. Only non-IP, non-ARP packets can be fallback-bridged.

Figure 23-7 Applying ACLs on Bridged Packets
ACLs and Routed Packets

Figure 23-8 shows how ACLs are applied on routed packets. For routed packets, the ACLs are applied in this order:

1. VLAN map for input VLAN
2. Input router ACL
3. Output router ACL
4. VLAN map for output VLAN

Figure 23-8 Applying ACLs on Routed Packets
ACLs and Multicast Packets

Figure 23-9 shows how ACLs are applied on packets that are replicated for IP multicasting. A multicast packet being routed has two different kinds of filters applied: one for destinations that are other ports in the input VLAN and another for each of the destinations that are in other VLANs to which the packet has been routed. The packet might be routed to more than one output VLAN, in which case a different router output ACL and VLAN map would apply for each destination VLAN.

The final result is that the packet might be permitted in some of the output VLANs and not in others. A copy of the packet is forwarded to those destinations where it is permitted. However, if the input VLAN map (VLAN 10 map in Figure 23-9) drops the packet, no destination receives a copy of the packet.

![Figure 23-9 Applying ACLs on Multicast Packets](image)
Displaying ACL Configuration

You can display the ACLs that are configured on the switch, and you can display the ACLs that have been applied to interfaces and VLANs.

When you use the `ip access-group` interface configuration command to apply ACLs to a Layer 3 interface, you can display the access groups on the interface. You can use the privileged EXEC commands as described in Table 23-2 to display this information.

Table 23-2 Commands for Displaying Access Lists and Access Groups

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`show access-lists [number</td>
<td>name]`</td>
</tr>
<tr>
<td>`show ip access-lists [number</td>
<td>name]`</td>
</tr>
<tr>
<td><code>show ip interface interface-id</code></td>
<td>Display detailed configuration and status of an interface. If IP is enabled on the interface and ACLs have been applied by using the <code>ip access-group</code> interface configuration command, the access groups are included in the display.</td>
</tr>
<tr>
<td><code>show running-config [interface interface-id]</code></td>
<td>Displays the contents of the configuration file for the switch or the specified interface, including all configured MAC and IP access lists and which access groups are applied to an interface.</td>
</tr>
</tbody>
</table>

You can also display information about VLAN access maps or VLAN filters. Use the privileged EXEC commands in Table 23-3 to display VLAN map information.

Table 23-3 Commands for Displaying VLAN Map Information

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show vlan access-map [mapname]</code></td>
<td>Show information about all VLAN access-maps or the specified access map.</td>
</tr>
<tr>
<td>`show vlan filter [access-map name</td>
<td>vlan vlan-id]`</td>
</tr>
</tbody>
</table>
Configuring QoS

This chapter describes how to configure quality of service (QoS) on the Catalyst 3750 switch. With this feature, you can provide preferential treatment to certain traffic at the expense of others. Without QoS, the switch offers best-effort service to each packet, regardless of the packet contents or size. It sends the packets without any assurance of reliability, delay bounds, or throughput. Unless otherwise noted, the term switch refers to a standalone switch and a switch stack.

Note

For complete syntax and usage information for the commands used in this chapter, refer to the command reference this release.

This chapter consists of these sections:

- Understanding QoS, page 24-1
- Configuring QoS, page 24-18
- Displaying QoS Information, page 24-55

Understanding QoS

Typically, networks operate on a best-effort delivery basis, which means that all traffic has equal priority and an equal chance of being delivered in a timely manner. When congestion occurs, all traffic has an equal chance of being dropped.

When you configure the QoS feature, you can select specific network traffic, prioritize it according to its relative importance, and use congestion-management and congestion-avoidance techniques to provide preferential treatment. Implementing QoS in your network makes network performance more predictable and bandwidth utilization more effective.

The QoS implementation is based on the Differentiated Services (Diff-Serv) architecture, an emerging standard from the Internet Engineering Task Force (IETF). This architecture specifies that each packet is classified upon entry into the network.
The classification is carried in the IP packet header, using 6 bits from the deprecated IP type of service (TOS) field to carry the classification (class) information. Classification can also be carried in the Layer 2 frame. These special bits in the Layer 2 frame or a Layer 3 packet are described here and shown in Figure 24-1:

- Prioritization bits in Layer 2 frames:
 Layer 2 Inter-Switch Link (ISL) frame headers have a 1-byte User field that carries an IEEE 802.1P class of service (CoS) value in the three least-significant bits. On interfaces configured as Layer 2 ISL trunks, all traffic is in ISL frames.
 Layer 2 802.1Q frame headers have a 2-byte Tag Control Information field that carries the CoS value in the three most-significant bits, which are called the User Priority bits. On interfaces configured as Layer 2 802.1Q trunks, all traffic is in 802.1Q frames except for traffic in the native VLAN.
 Other frame types cannot carry Layer 2 CoS values.
 Layer 2 CoS values range from 0 for low priority to 7 for high priority.

- Prioritization bits in Layer 3 packets:
 Layer 3 IP packets can carry either an IP precedence value or a Differentiated Services Code Point (DSCP) value. QoS supports the use of either value because DSCP values are backward-compatible with IP precedence values.
 IP precedence values range from 0 to 7.
 DSCP values range from 0 to 63.

Figure 24-1 QoS Classification Layers in Frames and Packets

Encapsulated Packet

<table>
<thead>
<tr>
<th>Layer 2 header</th>
<th>IP header</th>
<th>Data</th>
</tr>
</thead>
</table>

Layer 2 ISL Frame

<table>
<thead>
<tr>
<th>ISL header (26 bytes)</th>
<th>Encapsulated frame 1... (24.5 KB)</th>
<th>FCS (4 bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 bits used for CoS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Layer 2 802.1Q/P Frame

<table>
<thead>
<tr>
<th>Preamble</th>
<th>Start frame delimiter</th>
<th>DA</th>
<th>SA</th>
<th>Tag</th>
<th>PT</th>
<th>Data</th>
<th>FCS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 bits used for CoS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Layer 3 IPv4 Packet

<table>
<thead>
<tr>
<th>Version length (1 byte)</th>
<th>ToS</th>
<th>Len</th>
<th>ID</th>
<th>Offset</th>
<th>TTL</th>
<th>Proto</th>
<th>FCS</th>
<th>IP-SA</th>
<th>IP-DA</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP precedence or DSCP</td>
<td></td>
</tr>
</tbody>
</table>

Note

Layer 3 IPv6 packets are treated as non-IP packets and are bridged by the switch.
All switches and routers that access the Internet rely on the class information to provide the same forwarding treatment to packets with the same class information and different treatment to packets with different class information. The class information in the packet can be assigned by end hosts or by switches or routers along the way, based on a configured policy, detailed examination of the packet, or both. Detailed examination of the packet is expected to happen closer to the edge of the network so that the core switches and routers are not overloaded with this task.

Switches and routers along the path can use the class information to limit the amount of resources allocated per traffic class. The behavior of an individual device when handling traffic in the DiffServ architecture is called per-hop behavior. If all devices along a path provide a consistent per-hop behavior, you can construct an end-to-end QoS solution.

Implementing QoS in your network can be a simple or complex task and depends on the QoS features offered by your internetworking devices, the traffic types and patterns in your network, and the granularity of control that you need over incoming and outgoing traffic.

Basic QoS Model

To implement QoS, the switch must distinguish packets or flow from one another (classify), assign a label to indicate the given quality of service as the packets move through the switch, make the packets comply with the configured resource usage limits (police and mark), and provide different treatment (queue and schedule) in all situations where resource contention exists. The switch also needs to ensure that traffic sent from it meets a specific traffic profile (shape).

Figure 24-2 shows the basic QoS model. Actions at the ingress interface include classifying traffic, policing, marking, queueing, and scheduling:

- Classification is the process of generating a distinct path for a packet by associating it with a QoS label. The switch maps the CoS or DSCP in the packet to a QoS label to distinguish one kind of traffic from another. The QoS label that is generated identifies all future QoS actions to be performed on this packet. For more information, see the “Classification” section on page 24-4.

- Policing determines whether a packet is in or out of profile by comparing the rate of the incoming traffic to the configured policer. The policer limits the bandwidth consumed by a flow of traffic. The result of this determination is passed to the marker. For more information, see the “Policing and Marking” section on page 24-8.

- Marking evaluates the policer and configuration information for the action to be taken when a packet is out of profile and decides what to do with the packet (pass through a packet without modification, mark down the QoS label in the packet, or drop the packet). For more information, see the “Policing and Marking” section on page 24-8.

- Queueing evaluates the QoS label and the corresponding DSCP or CoS value to determine into which of the two ingress queues to place a packet. Queueing is enhanced with the weighted tail-drop (WTD) algorithm, a congestion-avoidance mechanism. If the threshold is exceeded, the packet is dropped. For more information, see the “Queueing and Scheduling Overview” section on page 24-11.

- Scheduling services the queues based on their configured shaped round robin (SRR) weights. One of the ingress queues is the priority queue, and SRR services it for its configured share before servicing the other queue. For more information, see the “SRR Shaping and Sharing” section on page 24-12.
Actions at the egress interface include queueing and scheduling:

- Queueing evaluates the QoS label and the corresponding DSCP or CoS value to determine into which of the four egress queues to place a packet. Because congestion can occur when multiple ingress ports simultaneously send data to an egress port, WTD is used to differentiate traffic classes and to subject the packets to different thresholds based on the QoS label. If the threshold is exceeded, the packet is dropped. For more information, see the “Queueing and Scheduling Overview” section on page 24-11.

- Scheduling services the four egress queues based on their configured SRR shared or shaped weights.

Figure 24-2 Basic QoS Model

![Basic QoS Model Diagram]

Classification

Classification is the process of distinguishing one kind of traffic from another by examining the fields in the packet. Classification is enabled only if QoS is globally enabled on the switch. By default, QoS is globally disabled, so no classification occurs.

Note Classification occurs only on a physical interface basis. No support exists for classifying packets at the VLAN or the switch virtual interface level.

During classification, the switch performs a lookup and assigns a QoS label to the packet. The QoS label identifies all QoS actions to be performed on the packet and from which queue the packet is sent.

The QoS label is based on the DSCP or the CoS value in the packet and determines the queueing and scheduling actions to perform on the packet. The label is mapped according to the trust setting and the packet type as shown in Figure 24-3 on page 24-6.
You specify which fields in the frame or packet that you want to use to classify incoming traffic. For non-IP traffic, you have these classification options as shown in Figure 24-3:

- Trust the CoS value in the incoming frame (configure the port to trust CoS). Then use the configurable CoS-to-DSCP map to generate a DSCP value for the packet. Layer 2 ISL frame headers carry the CoS value in the three least-significant bits of the 1-byte User field. Layer 2 802.1Q frame headers carry the CoS value in the three most-significant bits of the Tag Control Information field. CoS values range from 0 for low priority to 7 for high priority.
- Trust the DSCP or trust IP precedence value in the incoming frame. These configurations are meaningless for non-IP traffic. If you configure a port with either of these options and non-IP traffic is received, the switch assigns a CoS value and generates a DSCP value from the CoS-to-DSCP map.
- Perform the classification based on a configured Layer 2 MAC access control list (ACL), which can examine the MAC source address, the MAC destination address, and other fields. If no ACL is configured, the packet is assigned 0 as the DSCP and CoS values, which means best-effort traffic. Otherwise, the policy-map action specifies a DSCP or CoS value to assign to the incoming frame.

For IP traffic, you have these classification options as shown in Figure 24-3:

- Trust the DSCP value in the incoming packet (configure the port to trust DSCP), and assign the same DSCP value to the packet. The IETF defines the six most-significant bits of the 1-byte TOS field as the DSCP. The priority represented by a particular DSCP value is configurable. DSCP values range from 0 to 63.

 For ports that are on the boundary between two QoS administrative domains, you can modify the DSCP to another value by using the configurable DSCP-to-DSCP-mutation map.
- Trust the IP precedence value in the incoming packet (configure the port to trust IP precedence), and generate a DSCP value for the packet by using the configurable IP-precedence-to-DSCP map. The IP version 4 specification defines the three most-significant bits of the 1-byte ToS field as the IP precedence. IP precedence values range from 0 for low priority to 7 for high priority.
- Trust the CoS value (if present) in the incoming packet, and generate a DSCP value for the packet by using the CoS-to-DSCP map. If the CoS value is not present, use the default port CoS value.
- Perform the classification based on a configured IP standard or an extended ACL, which examines various fields in the IP header. If no ACL is configured, the packet is assigned 0 as the DSCP and CoS values, which means best-effort traffic. Otherwise, the policy-map action specifies a DSCP or CoS value to assign to the incoming frame.

For information on the maps described in this section, see the “Mapping Tables” section on page 24-10. For configuration information on port trust states, see the “Configuring Classification Using Port Trust States” section on page 24-22.

After classification, the packet is sent to the policing, marking, and the ingress queueing and scheduling stages.
Figure 24-3 Classification Flowchart

Start

IP and non-IP traffic

Read ingress interface configuration for classification.

Trust CoS (IP and non-IP traffic).

Trust DSCP (IP traffic).

Trust IP precedence (IP traffic).

Check if packet came with CoS label (tag).

Yes

Use CoS from frame.

Assign default port CoS.

Generate DSCP from CoS-to-DSCP map. Use the DSCP value to generate the QoS label.

Done

No

Assign DSCP identical to DSCP in packet.

(Optional) Modify the DSCP by using the DSCP-to-DSCP-mutation map. Use the DSCP value to generate the QoS label.

Done

Generate the DSCP based on IP precedence in packet. Use the IP-precedence-to-DSCP map. Use the DSCP value to generate the QoS label.

Are there any (more) QoS ACLs configured for this interface?

No

Yes

Read next ACL. Is there a match with a "permit" action?

No

Use the CoS value to generate the QoS label.

Assign the default port CoS and generate a DSCP from the CoS-to-DSCP map.

Assign the default DSCP (0).

Done

Yes

Assign the DSCP or CoS as specified by ACL action to generate the QoS label.

Generate the DSCP by using the CoS-to-DSCP map.

Done
Classification Based on QoS ACLs

You can use IP standard, IP extended, or Layer 2 MAC ACLs to define a group of packets with the same characteristics (class). In the QoS context, the permit and deny actions in the access control entries (ACEs) have different meanings than with security ACLs:

- If a match with a permit action is encountered (first-match principle), the specified QoS-related action is taken.
- If a match with a deny action is encountered, the ACL being processed is skipped, and the next ACL is processed.
- If no match with a permit action is encountered and all the ACEs have been examined, no QoS processing occurs on the packet, and the switch offers best-effort service to the packet.
- If multiple ACLs are configured on an interface, the lookup stops after the packet matches the first ACL with a permit action, and QoS processing begins.

Note

When creating an access list, remember that, by default, the end of the access list contains an implicit deny statement for everything if it did not find a match before reaching the end.

After a traffic class has been defined with the ACL, you can attach a policy to it. A policy might contain multiple classes with actions specified for each one of them. A policy might include commands to classify the class as a particular aggregate (for example, assign a DSCP) or rate-limit the class. This policy is then attached to a particular port on which it becomes effective.

You implement IP ACLs to classify IP traffic by using the `access-list` global configuration command; you implement Layer 2 MAC ACLs to classify non-IP traffic by using the `mac access-list extended` global configuration command. For configuration information, see the “Configuring a QoS Policy” section on page 24-27.

Classification Based on Class Maps and Policy Maps

A class map is a mechanism that you use to name a specific traffic flow (or class) and to isolate it from all other traffic. The class map defines the criteria used to match against a specific traffic flow to further classify it. The criteria can include matching the access group defined by the ACL or matching a specific list of DSCP or IP precedence values. If you have more than one type of traffic that you want to classify, you can create another class map and use a different name. After a packet is matched against the class-map criteria, you further classify it through the use of a policy map.

A policy map specifies which traffic class to act on. Actions can include trusting the CoS, DSCP, or IP precedence values in the traffic class; setting a specific DSCP or IP precedence value in the traffic class; or specifying the traffic bandwidth limitations and the action to take when the traffic is out of profile. Before a policy map can be effective, you must attach it to an interface.

You create a class map by using the `class-map` global configuration command or the `class` policy-map configuration command. You should use the `class-map` command when the map is shared among many ports. When you enter the `class-map` command, the switch enters the class-map configuration mode. In this mode, you define the match criterion for the traffic by using the `match` class-map configuration command.
You create and name a policy map by using the `policy-map` global configuration command. When you enter this command, the switch enters the policy-map configuration mode. In this mode, you specify the actions to take on a specific traffic class by using the `class`, `trust`, or `set` policy-map configuration and policy-map class configuration commands.

The policy map can contain the `police` and `police aggregate` policy-map class configuration commands, which define the policer, the bandwidth limitations of the traffic, and the action to take if the limits are exceeded.

To make the policy map effective, you attach it to an interface by using the `service-policy` interface configuration command.

For more information, see the “Policing and Marking” section on page 24-8. For configuration information, see the “Configuring a QoS Policy” section on page 24-27.

Policing and Marking

After a packet is classified and has a DSCP-based or CoS-based QoS label assigned to it, the policing and marking process can begin as shown in Figure 24-4.

Policing involves creating a policer that specifies the bandwidth limits for the traffic. Packets that exceed the limits are out of profile or nonconforming. Each policer determines on a packet-by-packet basis whether the packet is in or out of profile and specifies the actions on the packet. These actions, carried out by the marker, include passing through the packet without modification, dropping the packet, or modifying (marking down) the assigned DSCP of the packet and allowing the packet to pass through.

The configurable policed-DSCP map provides the packet with a new DSCP-based QoS label. For information on the policed-DSCP map, see the “Mapping Tables” section on page 24-10. Marked-down packets use the same queues as the original QoS label to prevent packets in a flow from getting out of order.

Note

All traffic, regardless of whether it is bridged or routed, is subjected to a policer, if one is configured. As a result, bridged packets might be dropped or might have their DSCP or CoS fields modified when they are policed and marked.

You can create these types of policers:

- **Individual**

 QoS applies the bandwidth limits specified in the policer separately to each matched traffic class. You configure this type of policer within a policy map by using the `police` policy-map class configuration command.

- **Aggregate**

 QoS applies the bandwidth limits specified in an aggregate policer cumulatively to all matched traffic flows. You configure this type of policer by specifying the aggregate policer name within a policy map by using the `police aggregate` policy-map class configuration command. You specify the bandwidth limits of the policer by using the `mls qos aggregate-policer` global configuration command. In this way, the aggregate policer is shared by multiple classes of traffic within a policy map.
Policing uses a token-bucket algorithm. As each frame is received by the switch, a token is added to the bucket. The bucket has a hole in it and leaks at a rate that you specify as the average traffic rate in bits per second. Each time a token is added to the bucket, the switch performs a check to determine if there is enough room in the bucket. If there is not enough room, the packet is marked as nonconforming, and the specified policer action is taken (dropped or marked down).

How quickly the bucket fills is a function of the bucket depth (burst-byte), the rate at which the tokens are removed (rate-bps), and the duration of the burst above the average rate. The size of the bucket imposes an upper limit on the burst length and determines the number of frames that can be transmitted back-to-back. If the burst is short, the bucket does not overflow, and no action is taken against the traffic flow. However, if a burst is long and at a higher rate, the bucket overflows, and the policing actions are taken against the frames in that burst.

You configure the bucket depth (the maximum burst that is tolerated before the bucket overflows) by using the burst-byte option of the police policy-map class configuration command or the mls qos aggregate-policer global configuration command. You configure how fast (the average rate) that the tokens are removed from the bucket by using the rate-bps option of the police policy-map class configuration command or the mls qos aggregate-policer global configuration command.

After you configure the policy map and policing actions, attach the policy to an ingress interface by using the service-policy interface configuration command. For configuration information, see the “Classifying, Policing, and Marking Traffic by Using Policy Maps” section on page 24-33 and the “Classifying, Policing, and Marking Traffic by Using Aggregate Policers” section on page 24-36.
Mapping Tables

During QoS processing, the switch represents the priority of all traffic (including non-IP traffic) with an QoS label based on the DSCP or CoS value from the classification stage:

- During classification, QoS uses configurable mapping tables to derive a corresponding DSCP or CoS value from a received CoS, DSCP, or IP precedence value. These maps include the CoS-to-DSCP map and the IP-precedence-to-DSCP map. You configure these maps by using the `mls qos map cos-dscp` and the `mls qos map ip-prec-dscp` global configuration commands.

On an ingress interface configured in the DSCP-trusted state, if the DSCP values are different between the QoS domains, you can apply the configurable DSCP-to-DSCP-mutation map to the interface that is on the boundary between the two QoS domains. You configure this map by using the `mls qos map dscp-mutation` global configuration command.

- During policing, QoS can assign another DSCP value to an IP or a non-IP packet (if the packet is out of profile and the policer specifies a marked-down value). This configurable map is called the policed-DSCP map. You configure this map by using the `mls qos map policed-dscp` global configuration command.

- Before the traffic reaches the scheduling stage, QoS stores the packet in an ingress and an egress queue according to the QoS label. The QoS label is based on the DSCP or the CoS value in the packet and selects the queue through the DSCP input and output queue threshold maps or through the CoS input and output queue threshold maps. You configure these maps by using the `mls qos srr-queue {input | output} dscp-map` and the `mls qos srr-queue {input | output} cos-map` global configuration commands.

The CoS-to-DSCP, DSCP-to-CoS, and the IP-precedence-to-DSCP maps have default values that might or might not be appropriate for your network.

The default DSCP-to-DSCP-mutation map and the default policed-DSCP map are null maps; they map an incoming DSCP value to the same DSCP value. The DSCP-to-DSCP-mutation map is the only map you apply to a specific port. All other maps apply to the entire switch.

For configuration information, see the “Configuring DSCP Maps” section on page 24-38.

For information about the DSCP and CoS input queue threshold maps, see the “Queueing and Scheduling on Ingress Queues” section on page 24-13. For information about the DSCP and CoS output queue threshold maps, see the “Queueing and Scheduling on Egress Queues” section on page 24-15.
Queueing and Scheduling Overview

The switch has queues at specific points to help prevent congestion as shown in Figure 24-5.

Figure 24-5 Ingress and Egress Queue Location

Because the total ingress bandwidth of all ports can exceed the bandwidth of the stack ring, ingress queues are located after the packet is classified, policed, and marked and before packets are forwarded into the switch fabric. Because multiple ingress ports can simultaneously send packets to an egress port and cause congestion, egress queues are located after the stack ring.

Weighted Tail Drop

Both the ingress and egress queues use an enhanced version of the tail-drop congestion-avoidance mechanism called weighted tail drop (WTD). WTD is implemented on queues to manage the queue lengths and to provide drop precedences for different traffic classifications.

As a frame is enqueued to a particular queue, WTD uses the frame’s assigned QoS label to subject it to different thresholds. If the threshold is exceeded for that QoS label (the space available in the destination queue is less than the size of the frame), the switch drops the frame.

Figure 24-6 shows an example of WTD operating on a queue whose size is 1000 frames. Three drop percentages are configured: 40 percent (400 frames), 60 percent (600 frames), and 100 percent (1000 frames). These percentages mean that up to 400 frames can be queued at the 40-percent threshold, up to 600 frames at the 60-percent threshold, and up to 1000 frames at the 100-percent threshold.

In this example, CoS values 6 and 7 have a greater importance than the other CoS values, and they are assigned to the 100-percent drop threshold (queue-full state). CoS values 4 and 5 are assigned to the 60-percent threshold, and CoS values 0 to 3 are assigned to the 40-percent threshold.

Suppose the queue is already filled with 600 frames, and a new frame arrives. It contains CoS values 4 and 5 and is subjected to the 60-percent threshold. If this frame is added to the queue, the threshold will be exceeded, so the switch drops it.
Understanding QoS

Figure 24-6 WTD and Queue Operation

For more information, see the “Mapping DSCP or CoS Values to an Ingress Queue and Setting WTD Thresholds” section on page 24-44, the “Allocating Buffer Space to and Setting WTD Thresholds for an Egress Queue-Set” section on page 24-48, and the “Mapping DSCP or CoS Values to an Egress Queue and to a Threshold ID” section on page 24-50.

SRR Shaping and Sharing

Both the ingress and egress queues are serviced by SRR, which determines the rate at which packets are sent. On the ingress queues, SRR sends packets to the stack ring. On the egress queues, SRR sends packets to the egress interface.

You can configure SRR on egress queues for sharing or for shaping. However, for ingress queues, sharing is the default mode, and it is the only mode supported.

In shaped mode, the egress queues are guaranteed a percentage of the bandwidth, and they are rate-limited to that amount. Shaped traffic does not use more than the allocated bandwidth even if the link is idle. Shaping provides a more even flow of traffic over time and reduces the peaks and valleys of bursty traffic. With shaping, the absolute value of each weight is used to compute the bandwidth available for the queues.

In shared mode, the queues share the bandwidth among them according to the configured weights. The bandwidth is guaranteed at this level but not limited to it. For example, if a queue is empty and no longer requires a share of the link, the remaining queues can expand into the unused bandwidth and share it among them. With sharing, the ratio of the weights determines the frequency of dequeuing; the absolute values are meaningless.

For more information, see the “Allocating Bandwidth Between the Ingress Queues” section on page 24-46, the “Configuring SRR Shaped Weights on Egress Queues” section on page 24-52, and the “Configuring SRR Shared Weights on Egress Queues” section on page 24-53.
Queueing and Scheduling on Ingress Queues

Figure 24-7 shows the queueing and scheduling flowchart for ingress ports.

Figure 24-7 Queueing and Scheduling Flowchart for Ingress Ports

Start

Read QoS label (DSCP or CoS value).

Determine ingress queue number, buffer allocation, and WTD thresholds.

Are thresholds being exceeded? Yes

No

Queue the packet. Service the queue according to the SRR weights.

Send packet to the stack ring.

Drop packet.

Note

SRR services the priority queue for its configured share before servicing the other queue.

The switch supports two configurable ingress queues, which are serviced by SRR in shared mode only. Table 24-1 describes the queues.

Table 24-1 Ingress Queue Types

<table>
<thead>
<tr>
<th>Queue Type†</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>User traffic that is considered to be normal priority. You can configure three different thresholds to differentiate among the flows. You can use the mls qos srr-queue input threshold, the mls qos srr-queue input dscp-map, and the mls qos srr-queue input cos-map global configuration commands.</td>
</tr>
<tr>
<td>Expedite</td>
<td>High-priority user traffic such as differentiated services (DF) expedited forwarding or voice traffic. You can configure the bandwidth required for this traffic as a percentage of the total stack traffic by using the mls qos srr-queue input priority-queue global configuration command. The expedite queue has guaranteed bandwidth.</td>
</tr>
</tbody>
</table>

Note 1. The switch uses two nonconfigurable queues for traffic that is essential for proper network and stack operation.
You assign each packet that flows through the switch to a queue and to a threshold. Specifically, you map DSCP or CoS values to an ingress queue and map DSCP or CoS values to a threshold ID. You use the `mls qos srr-queue input dscp-map queue queue-id {dscp1...dscp8 | threshold threshold-id dscp1...dscp8}` or the `mls qos srr-queue input cos-map queue queue-id {cos1...cos8 | threshold threshold-id cos1...cos8}` global configuration command. You can display the DSCP input queue threshold map and the CoS input queue threshold map by using the `show mls qos maps` privileged EXEC command.

WTD Thresholds

The queues use WTD to support distinct drop percentages for different traffic classes. Each queue has three drop thresholds: two configurable (explicit) WTD thresholds and one nonconfigurable (implicit) threshold preset to the queue-full state. You assign the two explicit WTD threshold percentages for threshold ID 1 and ID 2 to the ingress queues by using the `mls qos srr-queue input threshold queue-id threshold-percentage1 threshold-percentage2` global configuration command. Each threshold value is a percentage of the total number of allocated buffers for the queue. The drop threshold for threshold ID 3 is preset to the queue-full state, and you cannot modify it. For more information about how WTD works, see the “Weighted Tail Drop” section on page 24-11.

Buffer and Bandwidth Allocation

You define the ratio (allocate the amount of space) with which to divide the ingress buffers between the two queues by using the `mls qos srr-queue input buffers percentage1 percentage2` global configuration command. The buffer allocation together with the bandwidth allocation determine how much data can be buffered and sent before packets are dropped. You allocate bandwidth as a percentage by using the `mls qos srr-queue input bandwidth weight1 weight2` global configuration command. The ratio of the weights is the ratio of the frequency in which the SRR scheduler sends packets from each queue.

Priority Queueing

You can configure one ingress queue as the priority queue by using the `mls qos srr-queue input priority-queue queue-id bandwidth weight` global configuration command. The priority queue should be used for traffic (such as voice) that requires guaranteed delivery because this queue is guaranteed part of the bandwidth regardless of the load on the stack ring.

SRR services the priority queue for its configured weight as specified by the `bandwidth` keyword in the `mls qos srr-queue input priority-queue queue-id bandwidth weight` global configuration command. Then, SRR shares the remaining bandwidth with both ingress queues and services them as specified by the weights configured with the `mls qos srr-queue input bandwidth weight1 weight2` global configuration command.

You can combine the commands described in this section to prioritize traffic by placing packets with particular DSCPs or CoSs into certain queues, by allocating a large queue size or by servicing the queue more frequently, and by adjusting queue thresholds so that packets with lower priorities are dropped. For configuration information, see the “Configuring Ingress Queue Characteristics” section on page 24-43.
Queueing and Scheduling on Egress Queues

Figure 24-8 shows the queueing and scheduling flowchart for egress ports.

Each port supports four egress queues. These queues are assigned to a queue-set. All traffic exiting the switch flows through one of these four queues and is subjected to a threshold based on the QoS label assigned to the packet.

Figure 24-9 shows the egress queue buffer. The buffer space is divided between the common pool and the reserved pool. The switch uses a buffer allocation scheme to reserve a minimum amount of buffers for each egress queue, to prevent any queue or port from consuming all the buffers and depriving other queues, and to determine whether to grant buffer space to a requesting queue. The switch determines
whether the target queue has not consumed more buffers than its reserved amount (under-limit), whether it has consumed all of its maximum buffers (over limit), and whether the common pool is empty (no free buffers) or not empty (free buffers). If the queue is not over-limit, the switch can allocate buffer space from the reserved pool or from the common pool (if it is not empty). If there are no free buffers in the common pool or if the queue is over-limit, the switch drops the frame.

Figure 24-9 Egress Queue Buffer Allocation

Buffer and Memory Allocation
You guarantee the availability of buffers, set drop thresholds, and configure the maximum memory allocation for a queue-set by using the `mls qos queue-set output qset-id threshold queue-id drop-threshold1 drop-threshold2 reserved-threshold maximum-threshold` global configuration command. Each threshold value is a percentage of the queue’s allocated memory, which you specify by using the `mls qos queue-set output qset-id buffers allocation1 ... allocation4` global configuration command. The sum of all the allocated buffers represents the reserved pool, and the remaining buffers are part of the common pool.

Through buffer allocation, you can ensure that high-priority traffic is buffered. For example, if the buffer space is 400, you can allocate 70 percent of it to queue 1 and 10 percent to queues 2 through 4. Queue 1 then has 280 buffers allocated to it, and queues 2 through 4 each have 40 buffers allocated to them.

You can guarantee that the allocated buffers are reserved for a specific queue in a queue-set. For example, if there are 100 buffers for a queue, you can reserve 50 percent (50 buffers). The switch returns the remaining 50 buffers to the common pool. You also can enable a queue in the full condition to obtain more buffers than are reserved for it by setting a maximum threshold. The switch can allocate the needed buffers from the common pool if the common pool is not empty.

WTD Thresholds
You can assign each packet that flows through the switch to a queue and to a threshold. Specifically, you map DSCP or CoS values to an egress queue and map DSCP or CoS values to a threshold ID. You use the `mls qos srr-queue output dscp-map queue queue-id {dscp1...dscp8 | threshold threshold-id dscp1...dscp8}` or the `mls qos srr-queue output cos-map queue queue-id {cos1...cos8 | threshold threshold-id cos1...cos8}` global configuration command. You can display the DSCP output queue threshold map and the CoS output queue threshold map by using the `show mls qos maps` privileged EXEC command.

The queues use WTD to support distinct drop percentages for different traffic classes. Each queue has three drop thresholds: two configurable (explicit) WTD thresholds and one nonconfigurable (implicit) threshold preset to the queue-full state. You assign the two WTD threshold percentages for threshold
ID 1 and ID 2. The drop threshold for threshold ID 3 is preset to the queue-full state, and you cannot modify it. For more information about how WTD works, see the “Weighted Tail Drop” section on page 24-11.

Shaped or Shared Mode

SRR services each queue-set in shared or shaped mode. You map an interface to a queue-set by using the `queue-set qset-id` interface configuration command. You assign shared or shaped weights to the interface by using the `srr-queue bandwidth share weight1 weight2 weight3 weight4` or the `srr-queue bandwidth shape weight1 weight2 weight3 weight4` interface configuration command. For an explanation of the differences between shaping and sharing, see the “SRR Shaping and Sharing” section on page 24-12.

The buffer allocation together with the SRR weight ratios determine how much data can be buffered and sent before packets are dropped. The weight ratio is the ratio of the frequency in which the SRR scheduler sends packets from each queue.

You can combine the commands described in this section to prioritize traffic by placing packets with particular DSCPs or CoSs into certain queues, by allocating a large queue size or by servicing the queue more frequently, and by adjusting queue thresholds so that packets with lower priorities are dropped. For configuration information, see the “Configuring Egress Queue Characteristics” section on page 24-48.

Note

The egress queue default settings are suitable for most situations. You should change them only when you have a thorough understanding of the egress queues and if these settings do not meet your QoS solution.

Packet Modification

A packet is classified, policed, and queued to provide QoS. Packet modifications can occur during this process:

- For IP and non-IP packets, classification involves assigning a QoS label to a packet based on the DSCP or CoS of the received packet. However, the packet is not modified at this stage; only an indication of the assigned DSCP or CoS value is carried along. The reason for this is that QoS classification and forwarding lookups occur in parallel, and it is possible that the packet is forwarded with its original DSCP to the CPU where it is again processed through software.

- During policing, IP and non-IP packets can have another DSCP assigned to them (if they are out of profile and the policer specifies a markdown DSCP). Once again, the DSCP in the packet is not modified, but an indication of the marked-down value is carried along. For IP packets, the packet modification occurs at a later stage; for non-IP packets the DSCP is converted to CoS and used for queueing and scheduling decisions.

- Depending on the QoS label assigned to a frame and the mutation chosen, the DSCP and CoS values of the frame are rewritten. If you do not configure the mutation map and if you configure the interface to trust the DSCP of the incoming frame, the DSCP value in the frame is not changed, but the CoS is rewritten according to the DSCP-to-CoS map. If you configure the interface to trust the CoS of the incoming frame and it is an IP packet, the CoS value in the frame is not changed, but the DSCP might be changed according to the CoS-to-DSCP map.

The input mutation causes the DSCP to be rewritten depending on the new value of DSCP chosen. The set action in a policy map also causes the DSCP to be rewritten.
Configuring QoS

Before configuring QoS, you must have a thorough understanding of these items:

- The types of applications used and the traffic patterns on your network.
- Traffic characteristics and needs of your network. Is the traffic bursty? Do you need to reserve bandwidth for voice and video streams?
- Bandwidth requirements and speed of the network.
- Location of congestion points in the network.

These sections describe how to configure QoS on your switch:

- Default QoS Configuration, page 24-18
- QoS Configuration Guidelines, page 24-21
- Enabling QoS Globally, page 24-22 (required)
- Configuring Classification Using Port Trust States, page 24-22 (required)
- Configuring a QoS Policy, page 24-27 (required)
- Configuring DSCP Maps, page 24-38 (optional, unless you need to use the DSCP-to-DSCP-mutation map or the policed-DSCP map)
- Configuring Ingress Queue Characteristics, page 24-43 (optional)
- Configuring Egress Queue Characteristics, page 24-48 (optional)

Default QoS Configuration

QoS is disabled. There is no concept of trusted or untrusted ports because the packets are not modified (the CoS, DSCP, and IP precedence values in the packet are not changed). Traffic is switched in pass-through mode (packets are switched without any rewrites and classified as best effort without any policing).

When QoS is enabled with the mls qos global configuration command and all other QoS settings are at their defaults, traffic is classified as best effort (the DSCP and CoS value is set to 0) without any policing. No policy maps are configured. The default port trust state on all ports is untrusted. The default ingress and egress queue settings are described in the “Default Ingress Queue Configuration” section on page 24-19 and the “Default Egress Queue Configuration” section on page 24-20.
Default Ingress Queue Configuration

Table 24-2 shows the default ingress queue configuration when QoS is enabled.

Table 24-2 Default Ingress Queue Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Queue 1</th>
<th>Queue 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffer Allocation</td>
<td>90 percent</td>
<td>10 percent</td>
</tr>
<tr>
<td>Bandwidth Allocation ¹</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Priority Queue Bandwidth ²</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>WTD Drop Threshold 1</td>
<td>100 percent</td>
<td>100 percent</td>
</tr>
<tr>
<td>WTD Drop Threshold 2</td>
<td>100 percent</td>
<td>100 percent</td>
</tr>
</tbody>
</table>

¹ The bandwidth is equally shared between the queues. SRR sends packets in shared mode only.
² Queue 2 is the priority queue. SRR services the priority queue for its configured share before servicing the other queue.

Table 24-3 shows the default CoS input queue threshold map when QoS is enabled.

Table 24-3 Default CoS Input Queue Threshold Map

<table>
<thead>
<tr>
<th>CoS Value</th>
<th>0–4</th>
<th>5</th>
<th>6, 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queue ID - Threshold ID</td>
<td>1 - 1</td>
<td>2 - 1</td>
<td>1 - 1</td>
</tr>
</tbody>
</table>

Table 24-4 shows the default DSCP input queue threshold map when QoS is enabled.

Table 24-4 Default DSCP Input Queue Threshold Map

<table>
<thead>
<tr>
<th>DSCP Value</th>
<th>0–39</th>
<th>40–47</th>
<th>48–63</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queue ID - Threshold ID</td>
<td>1 - 1</td>
<td>2 - 1</td>
<td>1 - 1</td>
</tr>
</tbody>
</table>
Default Egress Queue Configuration

Table 24-5 shows the default egress queue configuration for each queue-set when QoS is enabled. All ports are mapped to queue-set 1. The port bandwidth limit is set to 100 percent and rate unlimited.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Queue 1</th>
<th>Queue 2</th>
<th>Queue 3</th>
<th>Queue 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffer Allocation</td>
<td>25 percent</td>
<td>25 percent</td>
<td>25 percent</td>
<td>25 percent</td>
</tr>
<tr>
<td>WTD Drop Threshold 1</td>
<td>100 percent</td>
<td>50 percent</td>
<td>100 percent</td>
<td>100 percent</td>
</tr>
<tr>
<td>WTD Drop Threshold 2</td>
<td>100 percent</td>
<td>50 percent</td>
<td>100 percent</td>
<td>100 percent</td>
</tr>
<tr>
<td>Reserved Threshold</td>
<td>50 percent</td>
<td>100 percent</td>
<td>50 percent</td>
<td>50 percent</td>
</tr>
<tr>
<td>Maximum Threshold</td>
<td>400 percent</td>
<td>400 percent</td>
<td>400 percent</td>
<td>400 percent</td>
</tr>
<tr>
<td>SRR Shaped Weights (absolute)</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SRR Shared Weights</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
</tbody>
</table>

1. A shaped weight of zero means that this queue is operating in shared mode.
2. One quarter of the bandwidth is allocated to each queue.

Table 24-6 shows the default CoS output queue threshold map when QoS is enabled.

<table>
<thead>
<tr>
<th>CoS Value</th>
<th>0, 1</th>
<th>2, 3</th>
<th>4</th>
<th>5</th>
<th>6, 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queue ID - Threshold ID</td>
<td>2 - 1</td>
<td>3 - 1</td>
<td>4 - 1</td>
<td>1 - 1</td>
<td>4 - 1</td>
</tr>
</tbody>
</table>

Table 24-7 shows the default DSCP output queue threshold map when QoS is enabled.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Queue ID - Threshold ID</td>
<td>2 - 1</td>
<td>3 - 1</td>
<td>4 - 1</td>
<td>1 - 1</td>
<td>4 - 1</td>
</tr>
</tbody>
</table>

Default Mapping Table Configuration

The default CoS-to-DSCP map is shown in Table 24-8 on page 24-38.

The default IP-precedence-to-DSCP map is shown in Table 24-9 on page 24-39.

The default DSCP-to-CoS map is shown in Table 24-10 on page 24-41.

The default DSCP-to-DSCP-mutation map is a null map, which maps an incoming DSCP value to the same DSCP value.

The default policed-DSCP map is a null map, which maps an incoming DSCP value to the same DSCP value (no markdown).
QoS Configuration Guidelines

Before beginning the QoS configuration, you should be aware of this information:

- You configure QoS only on physical ports; there is no support for it on the VLAN or switch virtual interface level.
- It is not possible to match IP fragments against configured IP extended ACLs to enforce QoS. IP fragments are sent as best-effort. IP fragments are denoted by fields in the IP header.
- Only one ACL per class map and only one match class-map configuration command per class map are supported. The ACL can have multiple ACEs, which match fields against the contents of the packet.
- Incoming traffic is classified, policed, and marked down (if configured) regardless of whether the traffic is bridged, routed, or sent to the CPU. It is possible for bridged frames to be dropped or to have their DSCP and CoS values modified.
- Only one policer is applied to a packet on an ingress interface. Only the average rate and committed burst parameters are configurable.
- The port ASIC supports 256 policers (255 policers plus 1 no policer). The maximum number of policers supported per port is 64. For example, you could configure 32 policers on a Gigabit Ethernet port and 8 policers on a Fast Ethernet port, or you could configure 64 policers on a Gigabit Ethernet port and 5 policers on a Fast Ethernet port. Policers are allocated on demand by the software and are constrained by the hardware and ASIC boundaries. You cannot reserve policers per port; there is no guarantee that a port will be assigned to any policer.
- On an interface configured for QoS, all traffic received through the interface is classified, policed, and marked according to the policy map attached to the interface. On a trunk interface configured for QoS, traffic in all VLANs received through the interface is classified, policed, and marked according to the policy map attached to the interface.
- You can create an aggregate policer that is shared by multiple traffic classes within the same policy map. However, you cannot use the aggregate policer across different policy maps.
- If you have EtherChannel ports configured on your switch, you must configure QoS classification, policing, mapping, and queueing on the individual physical ports that comprise the EtherChannel. You must decide whether the QoS configuration should match on all ports in the EtherChannel.
- Control traffic (such as spanning-tree bridge protocol data units [BPDUs] and routing update packets) received by the switch are subject to all ingress QoS processing.
- You are likely to lose data when you change queue settings; therefore, try to make changes when traffic is at a minimum.
Enabling QoS Globally

By default, QoS is disabled on the switch.

Beginning in privileged EXEC mode, follow these steps to enable QoS. This procedure is required.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>mls qos</td>
<td>Enable QoS globally.</td>
</tr>
<tr>
<td></td>
<td>QoS runs from the default settings described in the “Default QoS Configuration” section on page 24-18, the “Queueing and Scheduling on Ingress Queues” section on page 24-13, and the “Queueing and Scheduling on Egress Queues” section on page 24-15.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show mls qos</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable QoS, use the no mls qos global configuration command.

Configuring Classification Using Port Trust States

These sections describe how to classify incoming traffic by using port trust states. Depending on your network configuration, you must perform one or more of these tasks or one or more of the tasks in the “Configuring a QoS Policy” section on page 24-27:

- Configuring the Trust State on Ports within the QoS Domain, page 24-23
- Configuring the CoS Value for an Interface, page 24-25
- Configuring the DSCP Trust State on a Port Bordering Another QoS Domain, page 24-26
Configuring the Trust State on Ports within the QoS Domain

Packets entering a QoS domain are classified at the edge of the QoS domain. When the packets are classified at the edge, the switch port within the QoS domain can be configured to one of the trusted states because there is no need to classify the packets at every switch within the QoS domain. Figure 24-10 shows a sample network topology.

Figure 24-10 Port Trusted States within the QoS Domain
Beginning in privileged EXEC mode, follow these steps to configure the port to trust the classification of the traffic that it receives:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface to be trusted. Valid interfaces include physical interfaces.</td>
</tr>
</tbody>
</table>
| 3 | mls qos trust [cos | dscp | ip-precedence] | Configure the port trust state. By default, the port is not trusted. If no keyword is specified, the default is dscp. The keywords have these meanings:
 - **cos**—Classifies an ingress packet by using the packet CoS value. For an untagged packet, the port default CoS value is used. The default port CoS value is 0.
 - **dscp**—Classifies an ingress packet by using the packet DSCP value. For a non-IP packet, the packet CoS value is used if the packet is tagged; for an untagged packet, the default port CoS is used. Internally, the switch maps the CoS value to a DSCP value by using the CoS-to-DSCP map.
 - **ip-precedence**—Classifies an ingress packet by using the packet IP-precedence value. For a non-IP packet, the packet CoS value is used if the packet is tagged; for an untagged packet, the default port CoS is used. Internally, the switch maps the CoS value to a DSCP value by using the CoS-to-DSCP map. |
| 4 | end | Return to privileged EXEC mode. |
| 5 | show mls qos interface | Verify your entries. |
| 6 | copy running-config startup-config | (Optional) Save your entries in the configuration file. |

To return a port to its untrusted state, use the **no mls qos trust** interface configuration command.

For information on how to change the default CoS value, see the “Configuring the CoS Value for an Interface” section on page 24-25. For information on how to configure the CoS-to-DSCP map, see the “Configuring the CoS-to-DSCP Map” section on page 24-38.
Configuring QoS

Chapter 24 Configuring QoS

Configuring the CoS Value for an Interface

QoS assigns the CoS value specified with the mls qos cos interface configuration command to untagged frames received on trusted and untrusted ports.

Beginning in privileged EXEC mode, follow these steps to define the default CoS value of a port or to assign the default CoS to all incoming packets on the port:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id Enter interface configuration mode, and specify the interface to be configured. Valid interfaces include physical interfaces.</td>
</tr>
<tr>
<td>Step 3</td>
<td>mls qos cos {default-cos</td>
</tr>
<tr>
<td></td>
<td>• For default-cos, specify a default CoS value to be assigned to a port. If the packet is untagged, the default CoS value becomes the packet CoS value. The CoS range is 0 to 7. The default is 0.</td>
</tr>
<tr>
<td></td>
<td>• Use the override keyword to override the previously configured trust state of the incoming packet and to apply the default port CoS value to the port on all incoming packets. By default, CoS override is disabled. Use the override keyword when all incoming packets on specified ports deserve higher or lower priority than packets entering from other ports. Even if a port was previously set to trust DSCP, CoS, or IP precedence, this command overrides the previously configured trust state, and all the incoming CoS values are assigned the default CoS value configured with this command. If an incoming packet is tagged, the CoS value of the packet is modified with the default CoS of the port at the ingress port.</td>
</tr>
<tr>
<td>Step 4</td>
<td>end Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>show mls qos interface Verify your entries.</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default setting, use the no mls qos cos {default-cos | override} interface configuration command.
Configuring the DSCP Trust State on a Port Bordering Another QoS Domain

If you are administering two separate QoS domains between which you want to implement QoS features for IP traffic, you can configure the switch ports bordering the domains to a DSCP-trusted state as shown in Figure 24-11. Then the receiving port accepts the DSCP-trusted value and avoids the classification stage of QoS. If the two domains use different DSCP values, you can configure the DSCP-to-DSCP-mutation map to translate a set of DSCP values to match the definition in the other domain.

![Figure 24-11 DSCP-Trusted State on a Port Bordering Another QoS Domain](image)

Beginning in privileged EXEC mode, follow these steps to configure the DSCP-trusted state on a port and modify the DSCP-to-DSCP-mutation map. To ensure a consistent mapping strategy across both QoS domains, you must perform this procedure on the ports in both domains:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>mls qos map dscp-mutation</code></td>
<td>Modify the DSCP-to-DSCP-mutation map.</td>
</tr>
<tr>
<td><code><dscp-mutation-name></code></td>
<td>The default DSCP-to-DSCP-mutation map is a null map, which maps an incoming DSCP value to the same DSCP value.</td>
</tr>
<tr>
<td><code>in-dscp</code></td>
<td>• For <code><dscp-mutation-name></code>, enter the mutation map name. You can create more than one map by specifying a new name.</td>
</tr>
<tr>
<td><code>to</code> <code>out-dscp</code></td>
<td>• For <code>in-dscp</code>, enter up to eight DSCP values separated by spaces. Then enter the <code>to</code> keyword.</td>
</tr>
<tr>
<td></td>
<td>• For <code>out-dscp</code>, enter a single DSCP value.</td>
</tr>
<tr>
<td></td>
<td>The DSCP range is 0 to 63.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td><code>interface interface-id</code></td>
<td>Enter interface configuration mode, and specify the interface to be trusted.</td>
</tr>
<tr>
<td></td>
<td>Valid interfaces include physical interfaces.</td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td><code>mls qos trust dscp</code></td>
<td>Configure the ingress port as a DSCP-trusted port. By default, the port is not trusted.</td>
</tr>
</tbody>
</table>
To return a port to its non-trusted state, use the `no mls qos trust` interface configuration command. To return to the default DSCP-to-DSCP-mutation map values, use the `no mls qos map dscp-mutation dscp-mutation-name` global configuration command.

This example shows how to configure Gigabit Ethernet port 0/3 on stack member 2 to the DSCP-trusted state and to modify the DSCP-to-DSCP-mutation map (named `gi2/0/3-mutation`) so that incoming DSCP values 10 to 13 are mapped to DSCP 30:

```
Switch(config)# mls qos map dscp-mutation gi2/0/3-mutation 10 11 12 13 to 30
Switch(config)# interface gigabitethernet2/0/3
Switch(config-if)# mls qos trust dscp
Switch(config-if)# mls qos dscp-mutation gi2/0/3-mutation
Switch(config-if)# end
```

Configuring a QoS Policy

Configuring a QoS policy typically requires classifying traffic into classes, configuring policies applied to those traffic classes, and attaching policies to interfaces.

For background information, see the “Classification” section on page 24-4 and the “Policing and Marking” section on page 24-8. For configuration guidelines, see the “QoS Configuration Guidelines” section on page 24-21.

These sections describe how to classify, police, and mark traffic. Depending on your network configuration, you must perform one or more of these tasks:

- Classifying Traffic by Using ACLs, page 24-28
- Classifying Traffic by Using Class Maps, page 24-31
- Classifying, Policing, and Marking Traffic by Using Policy Maps, page 24-33
- Classifying, Policing, and Marking Traffic by Using Aggregate Policers, page 24-36
Classifying Traffic by Using ACLs

You can classify IP traffic by using IP standard or IP extended ACLs; you can classify non-IP traffic by using Layer 2 MAC ACLs.

Beginning in privileged EXEC mode, follow these steps to create an IP standard ACL for IP traffic:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>access-list access-list-number [deny</td>
</tr>
<tr>
<td></td>
<td>permit] source [source-wildcard]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show access-lists</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To delete an access list, use the no access-list access-list-number global configuration command.

This example shows how to allow access for only those hosts on the three specified networks. The wildcard bits apply to the host portions of the network addresses. Any host with a source address that does not match the access list statements is rejected.

\[
\text{Switch(config)# access-list 1 permit 192.5.255.0 0.0.0.255} \\
\text{Switch(config)# access-list 1 permit 128.88.0.0 0.0.255.255} \\
\text{Switch(config)# access-list 1 permit 36.0.0.0 0.0.0.255} \\
\text{! (Note: all other access implicitly denied)}
\]
Beginning in privileged EXEC mode, follow these steps to create an IP extended ACL for IP traffic:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| Step 2 | access-list access-list-number {deny | permit} protocol source source-wildcard destination destination-wildcard | Create an IP extended ACL, repeating the command as many times as necessary.
- For access-list-number, enter the access list number. The range is 100 to 199 and 2000 to 2699.
- Use the permit keyword to permit a certain type of traffic if the conditions are matched. Use the deny keyword to deny a certain type of traffic if conditions are matched.
- For protocol, enter the name or number of an IP protocol. Use the question mark (?) to see a list of available protocol keywords.
- For source, enter the network or host from which the packet is being sent. You specify this by using dotted decimal notation, by using the any keyword as an abbreviation for source 0.0.0.0 source-wildcard 255.255.255.255, or by using the host keyword for source 0.0.0.0.
- For source-wildcard, enter the wildcard bits by placing ones in the bit positions that you want to ignore. You specify the wildcard by using dotted decimal notation, by using the any keyword as an abbreviation for source 0.0.0.0 source-wildcard 255.255.255.255, or by using the host keyword for source 0.0.0.0.
- For destination, enter the network or host to which the packet is being sent. You have the same options for specifying the destination and destination-wildcard as those described by source and source-wildcard.
Note: When creating an access list, remember that, by default, the end of the access list contains an implicit deny statement for everything if it did not find a match before reaching the end. |
| Step 3 | end | Return to privileged EXEC mode. |
| Step 4 | show access-lists | Verify your entries. |
| Step 5 | copy running-config startup-config | (Optional) Save your entries in the configuration file. |

To delete an access list, use the no access-list access-list-number global configuration command.

This example shows how to create an ACL that permits IP traffic from any source to any destination that has the DSCP value set to 32:

Switch(config)# access-list 100 permit ip any any dscp 32

This example shows how to create an ACL that permits IP traffic from a source host at 10.1.1.1 to a destination host at 10.1.1.2 with a precedence value of 5:

Switch(config)# access-list 100 permit ip host 10.1.1.1 host 10.1.1.2 precedence 5

This example shows how to create an ACL that permits PIM traffic from any source to a destination group address of 224.0.0.2 with a DSCP set to 32:

Switch(config)# access-list 102 permit pim any 224.0.0.2 dscp 32
Beginning in privileged EXEC mode, follow these steps to create a Layer 2 MAC ACL for non-IP traffic:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>mac access-list extended name</td>
</tr>
<tr>
<td>Step 3</td>
<td>{permit</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show access-lists [access-list-number</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To delete an access list, use the **no mac access-list extended access-list-name** global configuration command.

This example shows how to create a Layer 2 MAC ACL with two permit statements. The first statement allows traffic from the host with MAC address 0001.0000.0001 to the host with MAC address 0002.0000.0001. The second statement allows only Ethertype XNS-IDP traffic from the host with MAC address 0001.0000.0002 to the host with MAC address 0002.0000.0002.

```
Switch(config)# mac access-list extended maclist1
Switch(config-ext-macl)# permit 0001.0000.0001 0.0.0 0002.0000.0001 0.0.0
Switch(config-ext-macl)# permit 0001.0000.0002 0.0.0 0002.0000.0002 0.0.0 xns-idp
! (Note: all other access implicitly denied)
```
Classifying Traffic by Using Class Maps

You use the `class-map` global configuration command to name and to isolate a specific traffic flow (or class) from all other traffic. The class map defines the criteria to use to match against a specific traffic flow to further classify it. Match statements can include criteria such as an ACL, IP precedence values, or DSCP values. The match criterion is defined with one match statement entered within the class-map configuration mode.

You can also create class-maps during policy map creation by using the `class` policy-map configuration command. For more information, see the “Classifying, Policing, and Marking Traffic by Using Policy Maps” section on page 24-33.

Beginning in privileged EXEC mode, follow these steps to create a class map and to define the match criterion to classify traffic:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>**access-list access-list-number [deny</td>
</tr>
<tr>
<td>Step 3</td>
<td>**class-map [match-all</td>
</tr>
<tr>
<td>Step 3</td>
<td>(Optional) Use the match-all keyword to perform a logical-AND of all matching statements under this class map. All match criteria in the class map must be matched.</td>
</tr>
<tr>
<td>Step 3</td>
<td>(Optional) Use the match-any keyword to perform a logical-OR of all matching statements under this class map. One or more match criteria must be matched.</td>
</tr>
<tr>
<td>Step 3</td>
<td>For class-map-name, specify the name of the class map. If neither the match-all or match-any keyword is specified, the default is match-all. Note Because only one match command per class map is supported, the match-all and match-any keywords function the same.</td>
</tr>
</tbody>
</table>
Chapter 24 Configuring QoS

Configuring QoS

To delete an existing class map, use the `no class-map [match-all | match-any] class-map-name` global configuration command. To remove a match criterion, use the `no match [access-group acl-index-or-name | ip dscp dscp-list | ip precedence ip-precedence-list]` class-map configuration command.

This example shows how to configure the class map called `class1`. The `class1` has one match criterion, which is access list 103. It permits traffic from any host to any destination that matches a DSCP value of 10.

```
Switch(config)# access-list 103 permit any any dscp 10
Switch(config)# class-map class1
Switch(config-cmap)# match access-group 103
Switch(config-cmap)# end
Switch#
```

This example shows how to create a class map called `class2`, which matches incoming traffic with DSCP values of 10, 11, and 12.

```
Switch(config)# class-map class2
Switch(config-cmap)# match ip dscp 10 11 12
Switch(config-cmap)# end
Switch#
```

This example shows how to create a class map called `class3`, which matches incoming traffic with IP-precedence values of 5, 6, and 7:

```
Switch(config)# class-map class3
Switch(config-cmap)# match ip precedence 5 6 7
Switch(config-cmap)# end
Switch#
```

Command Table

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4</td>
<td>match [access-group acl-index-or-name</td>
<td>ip dscp dscp-list</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Only one match criterion per class map is supported, and only one ACL per class map is supported.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For <code>access-group acl-index-or-name</code>, specify the number or name of the ACL created in Step 2.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For <code>ip dscp dscp-list</code>, enter a list of up to eight IP DSCP values to match against incoming packets. Separate each value with a space. The range is 0 to 63.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For <code>ip precedence ip-precedence-list</code>, enter a list of up to eight IP-precedence values to match against incoming packets. Separate each value with a space. The range is 0 to 7.</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>show class-map</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Classifying, Policing, and Marking Traffic by Using Policy Maps

A policy map specifies which traffic class to act on. Actions can include trusting the CoS, DSCP, or IP precedence values in the traffic class; setting a specific DSCP or IP precedence value in the traffic class; and specifying the traffic bandwidth limitations for each matched traffic class (policer) and the action to take when the traffic is out of profile (marking).

A policy map also has these characteristics:

- A policy map can contain multiple class statements, each with different match criteria and policers.
- A separate policy-map class can exist for each type of traffic received through an interface.
- A policy-map trust state and an interface trust state are mutually exclusive, and whichever is configured last takes affect.

You can attach only one policy map per ingress interface.

Beginning in privileged EXEC mode, follow these steps to create a policy map:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>class-map [match-all</td>
<td>match-any] class-map-name</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Optional) Use the match-all keyword to perform a logical-AND of all matching statements under this class map. All match criteria in the class map must be matched.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Optional) Use the match-any keyword to perform a logical-OR of all matching statements under this class map. One or more match criteria must be matched.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For class-map-name, specify the name of the class map.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If neither the match-all or match-any keyword is specified, the default is match-all.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note Because only one match command per class map is supported, the match-all and match-any keywords function the same.</td>
</tr>
<tr>
<td>Step 3</td>
<td>policy-map policy-map-name</td>
<td>Create a policy map by entering the policy map name, and enter policy-map configuration mode. By default, no policy maps are defined.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The default behavior of a policy map is to set the DSCP to 0 if the packet is an IP packet and to set the CoS to 0 if the packet is tagged. No policing is performed.</td>
</tr>
<tr>
<td>Step 4</td>
<td>class class-map-name</td>
<td>Define a traffic classification, and enter policy-map class configuration mode. By default, no policy map class-maps are defined.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If a traffic class has already been defined by using the class-map global configuration command, specify its name for class-map-name in this command.</td>
</tr>
</tbody>
</table>
Configuring QoS

Step 5

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>trust [cos</td>
<td>dscp</td>
</tr>
</tbody>
</table>

Note
This command is mutually exclusive with the `set` command within the same policy map. If you enter the `trust` command, then skip Step 6.

By default, the port is not trusted. If no keyword is specified when the command is entered, the default is `dscp`.

The keywords have these meanings:

- **cos**—QoS derives the DSCP value by using the received or default port CoS value and the CoS-to-DSCP map.
- **dscp**—QoS derives the DSCP value by using the DSCP value from the ingress packet. For non-IP packets that are tagged, QoS derives the DSCP value by using the received CoS value; for non-IP packets that are untagged, QoS derives the DSCP value by using the default port CoS value. In either case, the DSCP value is derived from the CoS-to-DSCP map.
- **ip-precedence**—QoS derives the DSCP value by using the IP precedence value from the ingress packet and the IP-precedence-to-DSCP map. For non-IP packets that are tagged, QoS derives the DSCP value by using the received CoS value; for non-IP packets that are untagged, QoS derives the DSCP value by using the default port CoS value. In either case, the DSCP value is derived from the CoS-to-DSCP map.

For more information, see the “Configuring the CoS-to-DSCP Map” section on page 24-38.

Step 6

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>set {ip dscp new-dscp</td>
<td>ip precedence new-precedence}</td>
</tr>
</tbody>
</table>

- For `ip dscp new-dscp`, enter a new DSCP value to be assigned to the classified traffic. The range is 0 to 63.
- For `ip precedence new-precedence`, enter a new IP-precedence value to be assigned to the classified traffic. The range is 0 to 7.

Step 7

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>police rate-bps burst-byte [exceed-action (drop</td>
<td>policed-dscp-transmit)]</td>
</tr>
</tbody>
</table>

- For `rate-bps`, specify average traffic rate in bits per second (bps). The range is 8000 to 1000000000.
- For `burst-byte`, specify the normal burst size in bytes. The range is 8000 to 1000000.

- (Optional) Specify the action to take when the rates are exceeded. Use the `exceed-action drop` keywords to drop the packet. Use the `exceed-action policed-dscp-transmit` keywords to mark down the DSCP value (by using the policed-DSCP map) and send the packet. For more information, see the “Configuring the Policed-DSCP Map” section on page 24-40.
To delete an existing policy map, use the `no policy-map policy-map-name` global configuration command. To delete an existing class map, use the `no class class-map-name` policy-map configuration command. To return to the untrusted state, use the `no trust policy-map configuration` command. To remove an assigned DSCP or IP precedence value, use the `no set {ip dscp new-dscp} | ip precedence new-precedence` policy-map configuration command. To remove an existing policer, use the `no police rate-bps burst-byte [exceed-action {drop | policed-dscp-transmit}]` policy-map configuration command. To remove the policy map and interface association, use the `no service-policy input policy-map-name` interface configuration command.

This example shows how to create a policy map and attach it to an ingress interface on stack member 2. In the configuration, the IP standard ACL permits traffic from network 10.1.0.0. For traffic matching this classification, the DSCP value in the incoming packet is trusted. If the matched traffic exceeds an average traffic rate of 48000 bps and a normal burst size of 8000 bytes, its DSCP is marked down (based on the policed-DSCP map) and sent:

```plaintext
Switch(config)# access-list 1 permit 10.1.0.0 0.0.255.255
Switch(config)# class-map ipclass1
Switch(config-cmap)# match access-group 1
Switch(config-cmap)# exit
Switch(config)# policy-map flow1t
Switch(config-pmap)# class ipclass1
Switch(config-pmap-c)# trust dscp
Switch(config-pmap-c)# police 48000 8000 exceed-action policed-dscp-transmit
Switch(config-pmap-c)# exit
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# service-policy input flow1t
```

This example shows how to create a Layer 2 MAC ACL with two permit statements and attach it to an ingress interface on the stack master. The first permit statement allows traffic from the host with MAC address 0001.0000.0001 destined for the host with MAC address 0002.0000.0001. The second permit statement allows only Ethertype XNS-IDP traffic from the host with MAC address 0001.0000.0002 destined for the host with MAC address 0002.0000.0002.

```plaintext
Switch(config)# mac access-list extended maclist1
Switch(config-ext-mac)# permit 0001.0000.0001 0.0.0 0002.0000.0001 0.0.0
Switch(config-ext-mac)# permit 0001.0000.0002 0.0.0 0002.0000.0002 0.0.0 xns-idp
Switch(config-ext-mac)# exit
Switch(config)# mac access-list extended maclist2
Switch(config-ext-mac)# permit 0001.0000.0003 0.0.0 0002.0000.0003 0.0.0
Switch(config-ext-mac)# permit 0001.0000.0004 0.0.0 0002.0000.0004 0.0.0 aarp
```

Command	**Purpose**
Step 8 | Return to policy map configuration mode.
Step 9 | Return to global configuration mode.
Step 10 | Enter interface configuration mode, and specify the interface to attach to the policy map. Valid interfaces include physical interfaces.
Step 11 | Specify the policy-map name, and apply it to an ingress interface. Only one policy map per ingress interface is supported.
Step 12 | Return to privileged EXEC mode.
Step 13 | Verify your entries.
Step 14 | (Optional) Save your entries in the configuration file.
Switch(config-ext-mac)# exit
Switch(config)# class-map macclass1
Switch(config-cmap)# match access-group maclist1
Switch(config-cmap)# exit
Switch(config)# policy-map macpolicy1
Switch(config-pmap)# class macclass1
Switch(config-pmap-c)# set ip dscp 63
Switch(config-pmap-c)# exit
Switch(config-pmap-c)# class macclass2 maclist2
Switch(config-pmap-c)# set ip dscp 45
Switch(config-pmap-c)# exit
Switch(config-pmap)# exit
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# mls qos trust cos
Switch(config-if)# service-policy input macpolicy1

Classifying, Policing, and Marking Traffic by Using Aggregate Policers

By using an aggregate policer, you can create a policer that is shared by multiple traffic classes within the same policy map. However, you cannot use the aggregate policer across different policy maps or interfaces.

Beginning in privileged EXEC mode, follow these steps to create an aggregate policer:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mls qos aggregate-policer</td>
<td>Define the policer parameters that can be applied to multiple traffic classes within the same policy map.</td>
</tr>
<tr>
<td></td>
<td>aggregate-policer-name rate-bps burst-byte exceed-action { drop</td>
<td>policed-dscp-transmit }</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For aggregate-policer-name, specify the name of the aggregate policer.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For rate-bps, specify average traffic rate in bits per second (bps). The range is 8000 to 100000000.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For burst-byte, specify the normal burst size in bytes. The range is 8000 to 1000000.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Specify the action to take when the rates are exceeded. Use the exceed-action drop keywords to drop the packet. Use the exceed-action policed-dscp-transmit keywords to mark down the DSCP value (by using the policed-DSCP map) and send the packet. For more information, see the “Configuring the Policed-DSCP Map” section on page 24-40.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>class-map [match-all</td>
<td>match-any]</td>
</tr>
<tr>
<td></td>
<td>class-map-name</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>policy-map policy-map-name</td>
<td>Create a policy map by entering the policy map name, and enter policy-map configuration mode. For more information, see the “Classifying, Policing, and Marking Traffic by Using Policy Maps” section on page 24-33.</td>
</tr>
</tbody>
</table>
To remove the specified aggregate policer from a policy map, use the `no police aggregate aggregate-policer-name` policy map configuration mode. To delete an aggregate policer and its parameters, use the `no mls qos aggregate-policer aggregate-policer-name` global configuration command.

This example shows how to create an aggregate policer and attach it to multiple classes within a policy map. In the configuration, the IP ACLs permit traffic from network 10.1.0.0 and from host 11.3.1.1. For traffic coming from network 10.1.0.0, the DSCP in the incoming packets is trusted. For traffic coming from host 11.3.1.1, the DSCP in the packet is changed to 56. The traffic rate from the 10.1.0.0 network and from host 11.3.1.1 is policed. If the traffic exceeds an average rate of 48000 bps and a normal burst size of 8000 bytes, its DSCP is marked down (based on the policed-DSCP map) and sent. The policy map is attached to an ingress interface on stack member 2.

```
Switch(config)# access-list 1 permit 10.1.0.0 0.0.255.255
Switch(config)# access-list 2 permit 11.3.1.1
Switch(config)# mls qos aggregate-policer transmit1 48000 8000 exceed-action policed-dscp-transmit
Switch(config)# class-map ipclass1
Switch(config-cmap)# match access-group 1
Switch(config-cmap)# exit
Switch(config)# class-map ipclass2
Switch(config-cmap)# match access-group 2
Switch(config-cmap)# exit
Switch(config)# policy-map ipflow1
Switch(config-pmap)# class ipclass1
Switch(config-pmap-c)# trust dscp
Switch(config-pmap-c)# police aggregate transmit1
Switch(config-pmap-c)# exit
Switch(config-pmap)# class ipclass2
Switch(config-pmap-c)# set ip dscp 56
Switch(config-pmap-c)# police aggregate transmit1
Switch(config-pmap-c)# exit
Switch(config-pmap)# exit
```
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# service-policy input aggflow1
Switch(config-if)# exit

Configuring DSCP Maps

These sections describe how to configure the DSCP maps:

- Configuring the CoS-to-DSCP Map, page 24-38 (optional)
- Configuring the IP-Precedence-to-DSCP Map, page 24-39 (optional)
- Configuring the Policed-DSCP Map, page 24-40 (optional, unless the null settings in the map are not appropriate)
- Configuring the DSCP-to-CoS Map, page 24-41 (optional)
- Configuring the DSCP-to-DSCP-Mutation Map, page 24-42 (optional, unless the null settings in the map are not appropriate)

All the maps, except the DSCP-to-DSCP-mutation map, are globally defined and are applied to all ports.

Configuring the CoS-to-DSCP Map

You use the CoS-to-DSCP map to map CoS values in incoming packets to a DSCP value that QoS uses internally to represent the priority of the traffic.

Table 24-8 shows the default CoS-to-DSCP map.

<table>
<thead>
<tr>
<th>CoS value</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSCP value</td>
<td>0</td>
<td>8</td>
<td>16</td>
<td>24</td>
<td>32</td>
<td>40</td>
<td>48</td>
<td>56</td>
</tr>
</tbody>
</table>

If these values are not appropriate for your network, you need to modify them.

Beginning in privileged EXEC mode, follow these steps to modify the CoS-to-DSCP map. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>mls qos map cos-dscp dscp1...dscp8</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show mls qos maps cos-dscp</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return to the default map, use the no mls qos cos-dscp global configuration command.
This example shows how to modify and display the CoS-to-DSCP map:

Switch(config)# mls qos map cos-dscp 10 15 20 25 30 35 40 45
Switch(config)# end
Switch# show mls qos maps cos-dscp

Cos-dscp map:
 cos: 0 1 2 3 4 5 6 7

 dscp: 10 15 20 25 30 35 40 45

Configuring the IP-Precedence-to-DSCP Map

You use the IP-precedence-to-DSCP map to map IP precedence values in incoming packets to a DSCP value that QoS uses internally to represent the priority of the traffic.

Table 24-9 shows the default IP-precedence-to-DSCP map:

<table>
<thead>
<tr>
<th>IP precedence value</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSCP value</td>
<td>0</td>
<td>8</td>
<td>16</td>
<td>24</td>
<td>32</td>
<td>40</td>
<td>48</td>
<td>56</td>
</tr>
</tbody>
</table>

If these values are not appropriate for your network, you need to modify them.

Beginning in privileged EXEC mode, follow these steps to modify the IP-precedence-to-DSCP map. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 mls qos map ip-prec-dscp</td>
<td>Modify the IP-precedence-to-DSCP map.</td>
</tr>
<tr>
<td>Step 2 dscp1...dscp8</td>
<td>For dscp1...dscp8, enter eight DSCP values that correspond to the IP precedence values 0 to 7. Separate each DSCP value with a space. The DSCP range is 0 to 63.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show mls qos maps ip-prec-dscp</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default map, use the no mls qos ip-prec-dscp global configuration command.

This example shows how to modify and display the IP-precedence-to-DSCP map:

Switch(config)# mls qos map ip-prec-dscp 10 15 20 25 30 35 40 45
Switch(config)# end
Switch# show mls qos maps ip-prec-dscp

IpPrecedence-dscp map:
 ipprec: 0 1 2 3 4 5 6 7

 dscp: 10 15 20 25 30 35 40 45
Configuring the Policed-DSCP Map

You use the policed-DSCP map to mark down a DSCP value to a new value as the result of a policing and marking action.

The default policed-DSCP map is a null map, which maps an incoming DSCP value to the same DSCP value.

Beginning in privileged EXEC mode, follow these steps to modify the policed-DSCP map. This procedure is optional.

To return to the default map, use the no mls qos policed-dscp global configuration command.

This example shows how to map DSCP 50 to 57 to a marked-down DSCP value of 0:

```plaintext
Switch(config)# mls qos map policed-dscp 50 51 52 53 54 55 56 57 to 0
Switch(config)# end
```

To return to the default map, use the no mls qos policed-dscp global configuration command.

This example shows how to map DSCP 50 to 57 to a marked-down DSCP value of 0:

```plaintext
Switch(config)# mls qos map policed-dscp 50 51 52 53 54 55 56 57 to 0
Switch(config)# end
```

Policed-dscp map:
```
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00</td>
<td>01</td>
<td>02</td>
<td>03</td>
<td>04</td>
<td>05</td>
<td>06</td>
<td>07</td>
<td>08</td>
<td>09</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
</tr>
<tr>
<td>5</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>58</td>
<td>59</td>
</tr>
<tr>
<td>6</td>
<td>60</td>
<td>61</td>
<td>62</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Note

In this policed-DSCP map, the marked-down DSCP values are shown in the body of the matrix. The d1 column specifies the most-significant digit of the original DSCP; the d2 row specifies the least-significant digit of the original DSCP. The intersection of the d1 and d2 values provides the marked-down value. For example, an original DSCP value of 53 corresponds to a marked-down DSCP value of 0.
Configuring the DSCP-to-CoS Map

You use the DSCP-to-CoS map to generate a CoS value, which is used to select one of the four egress queues.

Table 24-10 shows the default DSCP-to-CoS map.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CoS value</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

If these values are not appropriate for your network, you need to modify them.

Beginning in privileged EXEC mode, follow these steps to modify the DSCP-to-CoS map. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>mls qos map dscp-cos dscp-list to cos</td>
</tr>
<tr>
<td></td>
<td>• For dscp-list, enter up to eight DSCP values separated by spaces. Then enter the to keyword.</td>
</tr>
<tr>
<td></td>
<td>• For cos, enter the CoS value to which the DSCP values correspond. The DSCP range is 0 to 63; the CoS range is 0 to 7.</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show mls qos maps dscp-to-cos</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return to the default map, use the no mls qos dscp-cos global configuration command.

This example shows how to map DSCP values 0, 8, 16, 24, 32, 40, 48, and 50 to CoS value 0 and to display the map:

```
Switch(config)# mls qos map dscp-cos 0 8 16 24 32 40 48 50 to 0
Switch(config)# end
Switch# show mls qos maps dscp-to-cos
Dscp-cos map:
    d1 : d2 0 1 2 3 4 5 6 7 8 9
    ------------------------------------------
    0 : 00 00 00 00 00 00 00 00 00 00 01
    1 : 01 01 01 01 01 01 01 00 02 02 02
    2 : 02 02 02 02 00 03 03 03 03 03 03
    3 : 03 03 00 04 04 04 04 04 04 04 04
    4 : 00 05 05 05 05 05 05 05 00 06 06
    5 : 00 06 06 06 06 06 07 07 07 07 07
    6 : 07 07 07 07 07 07 07 07 07 07 07
```

In the above DSCP-to-CoS map, the CoS values are shown in the body of the matrix. The d1 column specifies the most-significant digit of the DSCP; the d2 row specifies the least-significant digit of the DSCP. The intersection of the d1 and d2 values provides the CoS value. For example, in the DSCP-to-CoS map, a DSCP value of 08 corresponds to a CoS value of 0.
Configuring the DSCP-to-DSCP-Mutation Map

If two QoS domains have different DSCP definitions, use the DSCP-to-DSCP-mutation map to translate one set of DSCP values to match the definition of another domain. You apply the DSCP-to-DSCP-mutation map to the receiving interface (ingress mutation) at the boundary of a QoS administrative domain.

With ingress mutation, the new DSCP value overwrites the one in the packet, and QoS treats the packet with this new value. The switch sends the packet out the interface with the new DSCP value.

You can configure multiple DSCP-to-DSCP-mutation maps on an ingress port. The default DSCP-to-DSCP-mutation map is a null map, which maps an incoming DSCP value to the same DSCP value.

Beginning in privileged EXEC mode, follow these steps to modify the DSCP-to-DSCP-mutation map. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>mls qos map dscp-mutation dscp-mutation-name in-dscp to out-dscp Modify the DSCP-to-DSCP-mutation map.</td>
</tr>
<tr>
<td></td>
<td>• For dscp-mutation-name, enter the mutation map name. You can create more than one map by specifying a new name.</td>
</tr>
<tr>
<td></td>
<td>• For in-dscp, enter up to eight DSCP values separated by spaces. Then enter the to keyword.</td>
</tr>
<tr>
<td></td>
<td>• For out-dscp, enter a single DSCP value.</td>
</tr>
<tr>
<td></td>
<td>The DSCP range is 0 to 63.</td>
</tr>
<tr>
<td>Step 3</td>
<td>interface interface-id Enter interface configuration mode, and specify the interface to which to attach the map. Valid interfaces include physical interfaces.</td>
</tr>
<tr>
<td>Step 4</td>
<td>mls qos trust dscp Configure the ingress port as a DSCP-trusted port. By default, the port is not trusted.</td>
</tr>
<tr>
<td>Step 5</td>
<td>mls qos dscp-mutation dscp-mutation-name Apply the map to the specified ingress DSCP-trusted port. For dscp-mutation-name, enter the mutation map name specified in Step 2.</td>
</tr>
<tr>
<td>Step 6</td>
<td>end Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 7</td>
<td>show mls qos maps dscp-mutation Verify your entries.</td>
</tr>
<tr>
<td>Step 8</td>
<td>copy running-config startup-config (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default map, use the no mls qos dscp-mutation dscp-mutation-name global configuration command.
This example shows how to define the DSCP-to-DSCP-mutation map. All the entries that are not explicitly configured are not modified (remains as specified in the null map):

```
Switch(config)# mls qos map dscp-mutation mutation1 0 1 2 3 4 5 6 7 to 0
Switch(config)# mls qos map dscp-mutation mutation1 8 9 10 11 12 13 to 10
Switch(config)# mls qos map dscp-mutation mutation1 20 21 22 to 20
Switch(config)# mls qos map dscp-mutation mutation1 30 31 32 33 34 to 30
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# mls qos trust dscp
Switch(config-if)# mls qos dscp-mutation mutation1
Switch(config-if)# end
Switch# show mls qos maps dscp-mutation mutation1
Dscp-dscp mutation map:
mutation1:
  d1 :  d2 0  1  2  3  4  5  6  7  8  9
  ---------------------------------------
 0 :  00 00 00 00 00 00 00 00 10 10
 1 :  10 10 10 10 14 15 16 17 18 19
 2 :  20 20 20 23 24 25 26 27 28 29
 3 :  30 30 30 30 30 35 36 37 38 39
 4 :  40 41 42 43 44 45 46 47 48 49
 5 :  50 51 52 53 54 55 56 57 58 59
 6 :  60 61 62 63
```

Note
In the above DSCP-to-DSCP-mutation map, the mutated values are shown in the body of the matrix. The d1 column specifies the most-significant digit of the original DSCP; the d2 row specifies the least-significant digit of the original DSCP. The intersection of the d1 and d2 values provides the mutated value. For example, a DSCP value of 12 corresponds to a mutated value of 10.

Configuring Ingress Queue Characteristics

Depending on the complexity of your network and your QoS solution, you might need to perform all of the tasks in the next sections. You will need to make decisions about these characteristics:

- Which packets are assigned (by DSCP or CoS value) to each queue?
- What drop percentage thresholds apply to each queue, and which CoS or DSCP values map to each threshold?
- How much of the available buffer space is allocated between the queues?
- How much of the available bandwidth is allocated between the queues?
- Is there traffic (such as voice) that should be given high priority?

These sections describe how to configure ingress queue characteristics:

- **Mapping DSCP or CoS Values to an Ingress Queue and Setting WTD Thresholds**, page 24-44 (optional)
- **Allocating Buffer Space Between the Ingress Queues**, page 24-45 (optional)
- **Allocating Bandwidth Between the Ingress Queues**, page 24-46 (optional)
- **Configuring the Ingress Priority Queue**, page 24-47 (optional)
Chapter 24 Configuring QoS

Configuring QoS

- **Mapping DSCP or CoS Values to an Ingress Queue and Setting WTD Thresholds**

 You can prioritize traffic by placing packets with particular DSCPs or CoSs into certain queues and adjusting the queue thresholds so that packets with lower priorities are dropped.

 Beginning in privileged EXEC mode, follow these steps to map DSCP or CoS values to an ingress queue and to set WTD thresholds. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
</tr>
<tr>
<td>configure terminal</td>
</tr>
<tr>
<td>Purpose</td>
</tr>
<tr>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>

| **Step 2** |
| mls qos srr-queue input dscp-map queue queue-id threshold threshold-id dscp1...dscp8 |
| or |
| mls qos srr-queue input cos-map queue queue-id threshold threshold-id cos1...cos8 |
| Purpose |
| Map DSCP or CoS values to an ingress queue and to a threshold ID. |

 - By default, DSCP values 0–39 and 48–63 are mapped to queue 1 and threshold 1. DSCP values 40–47 are mapped to queue 2 and threshold 1.

 - For `queue-id`, the range is 1 to 2.

 - For `threshold-id`, the range is 1 to 3. The drop-threshold percentage for threshold 3 is predefined. It is set to the queue-full state.

 - For `dscp1...dscp8`, enter up to eight values, and separate each value with a space. The range is 0 to 63.

 - For `cos1...cos8`, enter up to eight values, and separate each value with a space. The range is 0 to 7.

| **Step 3** |
| mls qos srr-queue input threshold queue-id threshold-percentage1 threshold-percentage2 |
| Purpose |
| Assign the two WTD threshold percentages for (threshold 1 and 2) to an ingress queue. The default, both thresholds are set to 100 percent. |

 - For `queue-id`, the range is 1 to 2.

 - For `threshold-percentage1 threshold-percentage2`, the range is 1 to 100. Separate each value with a space.

 Each threshold value is a percentage of the total number of queue descriptors allocated for the queue.

| **Step 4** |
| end |
| Purpose |
| Return to privileged EXEC mode. |

| **Step 5** |
| show mls qos maps |
| Purpose |
| Verify your entries. |

 The DSCP input queue threshold map is displayed as a matrix. The d1 column specifies the most-significant digit of the DSCP number; the d2 row specifies the least-significant digit in the DSCP number. The intersection of the d1 and the d2 values provides the queue ID and threshold ID; for example, queue 2 and threshold 1 (02-01).

 The CoS input queue threshold map shows the CoS value in the top row and the corresponding queue ID and threshold ID in the second row; for example, queue 2 and threshold 2 (2-2).

| **Step 6** |
| copy running-config startup-config |
| (Optional) Save your entries in the configuration file. |

To return to the default CoS input queue threshold map or the default DSCP input queue threshold map, use the `no mls qos srr-queue input cos-map` or the `no mls qos srr-queue input dscp-map` global configuration command. To return to the default WTD threshold percentages, use the `no mls qos srr-queue input threshold queue-id` global configuration command.
This example shows how to map DSCP values 0 to 6 to ingress queue 1 and to threshold 1 with a drop threshold of 50 percent. It maps DSCP values 20 to 26 to ingress queue 1 and to threshold 2 with a drop threshold of 70 percent:

Switch(config)# mls qos srr-queue input dscp-map queue 1 threshold 1 0 1 2 3 4 5 6
Switch(config)# mls qos srr-queue input dscp-map queue 1 threshold 2 20 21 22 23 24 25 26
Switch(config)# mls qos srr-queue input threshold 1 50 70

In this example, the DSCP values (0 to 6) are assigned the WTD threshold of 50 percent and will be dropped sooner than the DSCP values (20 to 26) assigned to the WTD threshold of 70 percent.

Allocating Buffer Space Between the Ingress Queues

You define the ratio (allocate the amount of space) with which to divide the ingress buffers between the two queues. The buffer and the bandwidth allocation determine how much data can be buffered before packets are dropped.

Beginning in privileged EXEC mode, follow these steps to allocate the buffers between the ingress queues. This procedure is optional.

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mls qos srr-queue input buffers percentage1 percentage2</td>
<td>Allocate the buffers between the ingress queues. By default 90 percent of the buffers are allocated to queue 1, and 10 percent of the buffers are allocated to queue 2. For percentage1 percentage2, the range is 0 to 100. Separate each value with a space. You should allocate the buffers so that the queues can handle any incoming bursty traffic.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>show mls qos interface buffer</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td></td>
<td>or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>show mls qos input-queue</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default setting, use the no mls qos srr-queue input buffers global configuration command.

This example shows how to allocate 60 percent of the buffer space to ingress queue 1 and 40 percent of the buffer space to ingress queue 2:

Switch(config)# mls qos srr-queue input buffers 60 40
Allocating Bandwidth Between the Ingress Queues

You need to specify how much of the available bandwidth is allocated between the ingress queues. The ratio of the weights is the ratio of the frequency in which the SRR scheduler sends packets from each queue. The bandwidth and the buffer allocation determine how much data can be buffered before packets are dropped. On ingress queues, SRR operates only in shared mode.

Beginning in privileged EXEC mode, follow these steps to allocate bandwidth between the ingress queues. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>mls qos srr-queue input bandwidth weight1 weight2</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show mls qos interface queueing</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return to the default setting, use the no mls qos srr-queue input bandwidth global configuration command.

This example shows how to assign the ingress bandwidth for the queues in the stack. Priority queueing is disabled, and the shared bandwidth ratio allocated to queue 1 is 25/(25+75) and to queue 2 is 75/(25+75):

```
Switch(config)# mls qos srr-queue input priority-queue 2 bandwidth 0
Switch(config)# mls qos srr-queue input bandwidth 25 75
```
Configuring the Ingress Priority Queue

You should use the priority queue only for traffic that needs to be expedited (for example, voice traffic, which needs minimum delay and jitter).

The priority queue is guaranteed part of the bandwidth to reduce the delay and jitter under heavy network traffic on an oversubscribed ring (when there is more traffic than the backplane can carry, and the queues are full and dropping frames).

SRR services the priority queue for its configured weight as specified by the \texttt{bandwidth} keyword in the \texttt{mls qos srr-queue input priority-queue queue-id bandwidth} global configuration command. Then, SRR shares the remaining bandwidth with both ingress queues and services them as specified by the weights configured with the \texttt{mls qos srr-queue input bandwidth} weight1 weight2 global configuration command.

Beginning in privileged EXEC mode, follow these steps to configure the priority queue. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{configure terminal}</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>\texttt{mls qos srr-queue input priority-queue queue-id bandwidth weight}</td>
<td>Assign a queue as the priority queue and guarantee bandwidth on the stack ring if the ring is congested. By default, the priority queue is queue 2, and 10 percent of the bandwidth is allocated to it. • For \texttt{queue-id}, the range is 1 to 2. • For \texttt{bandwidth} weight, assign the bandwidth percentage of the stack ring. The range is 0 to 40. The amount of bandwidth that can be guaranteed is restricted because a large value affects the entire ring and can degrade the stack performance.</td>
</tr>
<tr>
<td>\texttt{end}</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>\texttt{show mls qos interface queueing} or \texttt{show mls qos input-queue}</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>\texttt{copy running-config startup-config}</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default setting, use the \texttt{no mls qos srr-queue input priority-queue queue-id} global configuration command. To disable priority queueing, set the bandwidth weight to 0, for example, \texttt{mls qos srr-queue input priority-queue queue-id bandwidth 0}.

This example shows how to assign the ingress bandwidths for the queues in the stack. Queue 1 is the priority queue with 10 percent of the bandwidth allocated to it. The bandwidth ratios allocated to queues 1 and 2 is 4/(4+4). SRR services queue 1 (the priority queue) first for its configured 10 percent bandwidth. Then SRR equally shares the remaining 90 percent of the bandwidth between queues 1 and 2 by allocating 45 percent to each queue:

\begin{verbatim}
Switch(config)# mls qos srr-queue input priority-queue 1 bandwidth 10
Switch(config)# mls qos srr-queue input bandwidth 4 4
\end{verbatim}
Configuring Egress Queue Characteristics

Depending on the complexity of your network and your QoS solution, you might need to perform all of the tasks in the next sections. You will need to make decisions about these characteristics:

- Which packets are mapped by DSCP or CoS value to each queue and threshold ID?
- What drop percentage thresholds apply to the queue-set (four egress queues per port), and how much reserved and maximum memory is needed for the traffic type?
- How much of the fixed buffer space is allocated to the queue-set?
- Does the bandwidth of the port need to be rate limited?
- How often should the egress queues be serviced and which technique (shaped, shared, or both) should be used?

These sections describe how to configure egress queue characteristics:

- Allocating Buffer Space to and Setting WTD Thresholds for an Egress Queue-Set, page 24-48 (optional)
- Mapping DSCP or CoS Values to an Egress Queue and to a Threshold ID, page 24-50 (optional)
- Configuring SRR Shaped Weights on Egress Queues, page 24-52 (optional)
- Configuring SRR Shared Weights on Egress Queues, page 24-53 (optional)
- Limiting the Bandwidth on an Egress Interface, page 24-54 (optional)

Allocating Buffer Space to and Setting WTD Thresholds for an Egress Queue-Set

You can guarantee the availability of buffers, set WTD thresholds, and configure the maximum memory allocation for a queue-set by using the `mls qos queue-set output qset-id threshold queue-id drop-threshold1 drop-threshold2 reserved-threshold maximum-threshold` global configuration command.

Each threshold value is a percentage of the queue’s allocated memory, which you specify by using the `mls qos queue-set output qset-id buffers allocation1 ... allocation4` global configuration command. The queues use WTD to support distinct drop percentages for different traffic classes.

Note

The egress queue default settings are suitable for most situations. You should change them only when you have a thorough understanding of the egress queues and if these settings do not meet your QoS solution.
Beginning in privileged EXEC mode, follow these steps to configure the memory allocation and drop thresholds for a queue-set. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>mls qos queue-set output qset-id buffers allocation1 ... allocation4</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>mls qos queue-set output qset-id threshold queue-id drop-threshold1 drop-threshold2 reserved-threshold maximum-threshold</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 5</td>
<td>queue-set qset-id</td>
</tr>
<tr>
<td>Step 6</td>
<td>end</td>
</tr>
</tbody>
</table>
To return to the default setting, use the `no mls qos queue-set output qset-id buffers` global configuration command. To return to the default WTD threshold percentages, use the `no mls qos queue-set output qset-id threshold [queue-id]` global configuration command.

This example shows how to map Fast Ethernet interface 0/1 on stack member 2 to queue-set 2. It allocates 40 percent of the buffer space to egress queue 1 and 20 percent to egress queues 2, 3, and 4. It configures the drop thresholds for queue 2 to 40 and 60 percent of the allocated memory, guarantees (reserves) 100 percent of the allocated memory, and configures 200 percent as the maximum memory this queue can have before packets are dropped:

```
Switch(config)# mls qos queue-set output 2 buffers 40 20 20 20
Switch(config)# mls qos queue-set output 2 threshold 2 40 60 100 200
Switch(config)# interface fastethernet2/0/1
Switch(config-if)# queue-set 2
```

Mapping DSCP or CoS Values to an Egress Queue and to a Threshold ID

You can prioritize traffic by placing packets with particular DSCPs or CoSs into certain queues and adjusting the queue thresholds so that packets with lower priorities are dropped.

Note

The egress queue default settings are suitable for most situations. You should change them only when you have a thorough understanding of the egress queues and if these settings do not meet your QoS solution.

Beginning in privileged EXEC mode, follow these steps to map DSCP or CoS values to an egress queue and to a threshold ID. This procedure is optional.
To return to the default DSCP output queue threshold map or the default CoS output queue threshold map, use the **no mls qos srr-queue output dscp-map** or the **no mls qos srr-queue output cos-map** global configuration command.

This example shows how to map DSCP values 10 and 11 to egress queue 1 and to threshold 2:

```
Switch(config)# mls qos srr-queue output dscp-map queue 1 threshold 2 10 11
```
Configuring SRR Shaped Weights on Egress Queues

You can specify how much of the available bandwidth is allocated to each queue. The ratio of the weights is the ratio of frequency in which the SRR scheduler sends packets from each queue.

You can configure the egress queues for shaped or shared weights, or both. Use shaping to smooth bursty traffic or to provide a smoother output over time. For information about, see the “SRR Shaping and Sharing” section on page 24-12. For information about shared weights, see the “Configuring SRR Shared Weights on Egress Queues” section on page 24-53.

Note

The egress queue default settings are suitable for most situations. You should change them only when you have a thorough understanding of the egress queues and if these settings do not meet your QoS solution.

Beginning in privileged EXEC mode, follow these steps to assign the shaped weights and to enable bandwidth shaping on the four egress queues mapped to a port. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>srr-queue bandwidth shape weight1 weight2 weight3 weight4</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show mls qos interface interface-id queueing</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return to the default setting, use the **no srr-queue bandwidth shape** interface configuration command.
This example shows how to configure bandwidth shaping on queue 1. Because the weight ratios for
queues 2, 3, and 4 are set to 0, these queues operate in shared mode. The bandwidth weight for queue 1
is 1/8, which is 12.5 percent:

Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# srr-queue bandwidth shape 8 0 0 0

Configuring SRR Shared Weights on Egress Queues

In shared mode, the queues share the bandwidth among them according to the configured weights. The
bandwidth is guaranteed at this level but not limited to it. For example, if a queue empties and does not
require a share of the link, the remaining queues can expand into the unused bandwidth and share it
among them. With sharing, the ratio of the weights determines the frequency of dequeuing; the absolute
values are meaningless.

Note
The egress queue default settings are suitable for most situations. You should change them only when
you have a thorough understanding of the egress queues and if these settings do not meet your QoS
solution.

Beginning in privileged EXEC mode, follow these steps to assign the shared weights and to enable
bandwidth sharing on the four egress queues mapped to a port. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2: interface interface-id</td>
<td>Specify the interface of the outbound traffic, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3: srr-queue bandwidth share weight1 weight2 weight3 weight4</td>
<td>Assign SRR weights to the egress queues. By default, all four weights are 25 (1/4 of the bandwidth is allocated to each queue). For weight1 weight2 weight3 weight4, enter the weights to determine the ratio of the frequency in which the SRR scheduler sends packets. Separate each value with a space. The range is 1 to 255.</td>
</tr>
<tr>
<td>Step 4: end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5: show mls qos interface interface-id queueing</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6: copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default setting, use the **no srr-queue bandwidth share** interface configuration command.

This example shows how to configure the weight ratio of the SRR scheduler running on egress port
Gigabit Ethernet 0/1 on stack member 2. Four queues are used, and the bandwidth ratio allocated for
each queue in shared mode is 1/(1+2+3+4), 2/(1+2+3+4), 3/(1+2+3+4), and 4/(1+2+3+4), which is
10 percent, 20 percent, 30 percent, and 40 percent for queues 1, 2, 3, and 4. This means that queue 4 has
four times the bandwidth of queue 1, twice the bandwidth of queue 2, and one-and-a-third times the
bandwidth of queue 3.

Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# srr-queue bandwidth share 1 2 3 4
Limiting the Bandwidth on an Egress Interface

You can limit the bandwidth on an egress interface. For example, if a customer pays only for a small percentage of a high-speed link, you can limit the bandwidth to that amount.

Note

The egress queue default settings are suitable for most situations. You should change them only when you have a thorough understanding of the egress queues and if these settings do not meet your QoS solution.

Beginning in privileged EXEC mode, follow these steps to limit the bandwidth on an egress interface. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Specify the interface to be rate limited, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3 srr-queue bandwidth limit weight1</td>
<td>Specify the percentage of the port speed to which the port should be limited. The range is 10 to 90. By default, the port is not rate limited and is set to 100 percent.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show mls qos interface [interface-id] queueing</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default setting, use the no srr-queue bandwidth limit interface configuration command.

This example shows how to limit the bandwidth on Gigabit Ethernet interface 0/1 on stack member 2 to 80 percent:

Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# srr-queue bandwidth limit 80

When you configure this command to 80 percent, the port is idle 20 percent of the time. The line rate drops to 80 percent of the connected speed, which is 800 Mbps. These values are not exact because the hardware adjusts the line rate in increments of six.
Displaying QoS Information

To display QoS information, use one or more of the privileged EXEC commands in Table 24-11:

Table 24-11 Commands for Displaying QoS Information

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show class-map [class-map-name]</code></td>
<td>Display QoS class maps, which define the match criteria to classify traffic.</td>
</tr>
<tr>
<td><code>show mls qos</code></td>
<td>Display global QoS configuration information.</td>
</tr>
<tr>
<td><code>show mls qos aggregate-policer [aggregate-policer-name]</code></td>
<td>Display the aggregate policer configuration.</td>
</tr>
<tr>
<td><code>show mls qos input-queue</code></td>
<td>Display QoS settings for the ingress queues.</td>
</tr>
<tr>
<td>`show mls qos interface [interface-id] [buffers</td>
<td>policers</td>
</tr>
<tr>
<td><code>show mls qos queue-set [qset-id]</code></td>
<td>Display QoS settings for the egress queues.</td>
</tr>
<tr>
<td><code>show policy-map [policy-map-name [class class-map-name]]</code></td>
<td>Display QoS policy maps, which define classification criteria for incoming traffic.</td>
</tr>
</tbody>
</table>

Note: Do not use the `show policy-map interface` privileged EXEC command to display classification information for incoming traffic. The `interface` keyword is not supported, and the statistics shown in the display should be ignored.
Configuring EtherChannels

This chapter describes how to configure EtherChannels on Layer 2 and Layer 3 interfaces on the Catalyst 3750 switch. EtherChannel provides fault-tolerant high-speed links between switches, routers, and servers. You can use it to increase the bandwidth between the wiring closets and the data center, and you can deploy it anywhere in the network where bottlenecks are likely to occur. EtherChannel provides automatic recovery for the loss of a link by redistributing the load across the remaining links. If a link fails, EtherChannel redirects traffic from the failed link to the remaining links in the channel without intervention. Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

For complete syntax and usage information for the commands used in this chapter, refer to the command reference for this release.

This chapter consists of these sections:

- Understanding EtherChannels, page 25-1
- Configuring EtherChannels, page 25-9
- Displaying EtherChannel and PAgP Status, page 25-19

Understanding EtherChannels

These sections describe how EtherChannels work:

- EtherChannel Overview, page 25-2
- Port-Channel Interfaces, page 25-4
- Port Aggregation Protocol, page 25-5
- Load Balancing and Forwarding Methods, page 25-6
- EtherChannel and Switch Stacks, page 25-8
EtherChannel Overview

An EtherChannel consists of individual Fast Ethernet or Gigabit Ethernet links bundled into a single logical link as shown in Figure 25-1.

The EtherChannel provides full-duplex bandwidth up to 800 Mbps (Fast EtherChannel) or 8 Gbps (Gigabit EtherChannel) between your switch and another switch or host.

Each EtherChannel can consist of up to eight compatibly configured Ethernet interfaces. All interfaces in each EtherChannel must be configured as either Layer 2 or Layer 3 interfaces. For Catalyst 3750 switches, the number of EtherChannels is limited to 12. For more information, see the “EtherChannel Configuration Guidelines” section on page 25-10. The EtherChannel Layer 3 interfaces are made up of routed ports. Routed ports are physical ports configured to be in Layer 3 mode by using the `no switchport` interface configuration command. For more information, see the Chapter 9, “Configuring Interface Characteristics.”

You can create an EtherChannel on a standalone switch, on a single switch in the stack, or on multiple switches in the stack (known as cross-stack EtherChannel). See Figure 25-2 and Figure 25-3.

If a link within an EtherChannel fails, traffic previously carried over that failed link changes to the remaining links within the EtherChannel. A trap is sent for a failure, identifying the switch, the EtherChannel, and the failed link. Inbound broadcast and multicast packets on one link in an EtherChannel are blocked from returning on any other link of the EtherChannel.
Figure 25-2 Single-Switch EtherChannel

Figure 25-3 Cross-Stack EtherChannel
Port-Channel Interfaces

When you create an EtherChannel, a port-channel logical interface is involved:

- With Layer 2 interfaces, use the `channel-group` interface configuration command to dynamically create the port-channel logical interface.

 You also can use the `interface port-channel port-channel-number` global configuration command to manually create the port-channel logical interface, but then you must use the `channel-group channel-group-number` command to bind the logical interface to a physical port. The `channel-group-number` can be the same as the `port-channel-number`, or you can use a new number. If you use a new number, the `channel-group` command dynamically creates a new port channel.

- With Layer 3 interfaces, you should manually create the logical interface by using the `interface port-channel` global configuration command followed by the `no switchport` interface configuration command. Then you manually assign an interface to the EtherChannel by using the `channel-group` interface configuration command.

For both Layer 2 and Layer 3 interfaces, the `channel-group` command binds the physical and logical ports together as shown in Figure 25-4.

Each EtherChannel has a port-channel logical interface numbered from 1 to 12. This port-channel interface number corresponds to the one specified with the `channel-group` interface configuration command.

![Figure 25-4 Relationship of Physical Ports, Logical Port Channels, and Channel Groups](image)

After you configure an EtherChannel, configuration changes applied to the port-channel interface apply to all the physical interfaces assigned to the port-channel interface. Configuration changes applied to the physical interface affect only the interface where you apply the configuration. To change the parameters of all ports in an EtherChannel, apply configuration commands to the port-channel interface, for example, spanning-tree commands or commands to configure a Layer 2 EtherChannel as a trunk.
Port Aggregation Protocol

The Port Aggregation Protocol (PAgP) is a Cisco-proprietary protocol that can be run only on Cisco switches and on those switches licensed by vendors to support PAgP. PAgP facilitates the automatic creation of EtherChannels by exchanging PAgP packets between Ethernet interfaces. You can use PAgP only in single-switch EtherChannel configurations; PAgP cannot be enabled on cross-stack EtherChannels. For more information, see the “EtherChannel Configuration Guidelines” section on page 25-10.

By using PAgP, the switch stack learns the identity of partners capable of supporting PAgP and the capabilities of each interface. It then dynamically groups similarly configured interfaces (on a single switch in the stack) into a single logical link (channel or aggregate port). Similarly configured interfaces are grouped based on hardware, administrative, and port parameter constraints. For example, PAgP groups the interfaces with the same speed, duplex mode, native VLAN, VLAN range, and trunking status and type. After grouping the links into an EtherChannel, PAgP adds the group to the spanning tree as a single switch port.

PAgP Modes

Table 25-1 shows the user-configurable EtherChannel PAgP modes for the channel-group interface configuration command.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>auto</td>
<td>Places an interface into a passive negotiating state, in which the interface responds to PAgP packets it receives but does not start PAgP packet negotiation. This setting minimizes the transmission of PAgP packets.</td>
</tr>
<tr>
<td>desirable</td>
<td>Places an interface into an active negotiating state, in which the interface starts negotiations with other interfaces by sending PAgP packets.</td>
</tr>
<tr>
<td>on</td>
<td>Forces the interface to channel without PAgP. With the on mode, a usable EtherChannel exists only when an interface group in the on mode is connected to another interface group in the on mode. This is the only setting that is supported when the EtherChannel members are from different switches in the switch stack (cross-stack EtherChannel).</td>
</tr>
</tbody>
</table>

Switch interfaces exchange PAgP packets only with partner interfaces configured in the auto or desirable modes. Interfaces configured in the on mode do not exchange PAgP packets.

Both the auto and desirable modes allow interfaces to negotiate with partner interfaces to determine if they can form an EtherChannel based on criteria such as interface speed and, for Layer 2 EtherChannels, trunking state and VLAN numbers.

Interfaces can form an EtherChannel when they are in different PAgP modes as long as the modes are compatible. For example:

- An interface in the desirable mode can form an EtherChannel with another interface that is in the desirable or auto mode.
- An interface in the auto mode can form an EtherChannel with another interface in the desirable mode.

An interface in the auto mode cannot form an EtherChannel with another interface that is also in the auto mode because neither interface starts PAgP negotiation.
Understanding EtherChannels

An interface in the on mode that is added to a port channel is forced to have the same characteristics as the already existing on mode interfaces in the channel.

Caution

You should exercise care when setting the mode to on (manual configuration). All ports configured in the on mode are bundled in the same group and are forced to have similar characteristics. If the group is misconfigured, packet loss or spanning-tree loops might occur.

If your switch is connected to a partner that is PAgP-capable, you can configure the switch interface for nonsilent operation by using the non-silent keyword. If you do not specify non-silent with the auto or desirable mode, silent mode is assumed.

Use the silent mode when the switch is connected to a device that is not PAgP-capable and seldom, if ever, sends packets. An example of a silent partner is a file server or a packet analyzer that is not generating traffic. In this case, running PAgP on a physical port connected to a silent partner prevents that switch port from ever becoming operational. However, the silent setting allows PAgP to operate, to attach the interface to a channel group, and to use the interface for transmission.

PAgP Interaction with Other Features

The Dynamic Trunking Protocol (DTP) and the Cisco Discovery Protocol (CDP) send and receive packets over the physical interfaces in the EtherChannel. Trunk ports send and receive PAgP protocol data units (PDUs) on the lowest numbered VLAN.

In Layer 2 EtherChannels, the first port in the channel that comes up provides its MAC address to the EtherChannel. If this port is removed from the bundle, one of the remaining ports in the bundle provides its MAC address to the EtherChannel. For Layer 3 EtherChannels, the MAC address is allocated by the stack master as soon as the interface is created (through the interface port-channel global configuration command).

PAgP sends and receives PAgP PDUs only from interfaces that are up and have PAgP enabled for the auto or desirable mode.

Load Balancing and Forwarding Methods

EtherChannel balances the traffic load across the links in a channel by reducing part of the binary pattern formed from the addresses in the frame to a numerical value that selects one of the links in the channel. EtherChannel load balancing can use MAC addresses or IP addresses, source or destination addresses, or both source and destination addresses. The selected mode applies to all EtherChannels configured on the switch. You configure the load balancing and forwarding method by using the port-channel load-balance global configuration command.

With source-MAC address forwarding, when packets are forwarded to an EtherChannel, they are distributed across the ports in the channel based on the source-MAC address of the incoming packet. Therefore, to provide load balancing, packets from different hosts use different ports in the channel, but packets from the same host use the same port in the channel.

With destination-MAC address forwarding, when packets are forwarded to an EtherChannel, they are distributed across the ports in the channel based on the destination host’s MAC address of the incoming packet. Therefore, packets to the same destination are forwarded over the same port, and packets to a different destination are sent on a different port in the channel.

With source-and-destination MAC address forwarding, when packets are forwarded to an EtherChannel, they are distributed across the ports in the channel based on both the source and destination MAC addresses. This forwarding method, a combination source-MAC and destination-MAC address
forwarding methods of load distribution, can be used if it is not clear whether source-MAC or destination-MAC address forwarding is better suited on a particular switch. With source-and-destination MAC address forwarding, packets sent from host A to host B, host A to host C, and host C to host B could all use different ports in the channel.

With source-IP address-based forwarding, when packets are forwarded to an EtherChannel, they are distributed across the ports in the EtherChannel based on the source-IP address of the incoming packet. Therefore, to provide load-balancing, packets from different IP addresses use different ports in the channel, but packets from the same IP address use the same port in the channel.

With destination-IP address-based forwarding, when packets are forwarded to an EtherChannel, they are distributed across the ports in the EtherChannel based on the destination-IP address of the incoming packet. Therefore, to provide load-balancing, packets from the same IP source address sent to different IP destination addresses could be sent on different ports in the channel. But packets sent from different source IP addresses to the same destination IP address are always sent on the same port in the channel.

With source-and-destination IP address-based forwarding, when packets are forwarded to an EtherChannel, they are distributed across the ports in the EtherChannel based on both the source and destination IP addresses of the incoming packet. This forwarding method, a combination of source-IP and destination-IP address-based forwarding, can be used if it is not clear whether source-IP or destination-IP address-based forwarding is better suited on a particular switch. In this method, packets sent from the IP address A to IP address B, from IP address A to IP address C, and from IP address C to IP address B could all use different ports in the channel.

Different load-balancing methods have different advantages, and the choice of a particular load-balancing method should be based on the position of the switch in the network and the kind of traffic that needs to be load-distributed. In Figure 25-5, an EtherChannel of four workstations communicates with a router. Because the router is a single-MAC-address device, source-based forwarding on the switch EtherChannel ensures that the switch uses all available bandwidth to the router. The router is configured for destination-based forwarding because the large number of workstations ensures that the traffic is evenly distributed from the router EtherChannel.

Use the option that provides the greatest variety in your configuration. For example, if the traffic on a channel is going only to a single MAC address, using the destination-MAC address always chooses the same link in the channel. Using source addresses or IP addresses might result in better load balancing.
EtherChannel and Switch Stacks

If a stack member that has ports participating in an EtherChannel fails or leaves the stack, the stack master removes the failed stack member switch ports from the EtherChannel. The remaining ports of the EtherChannel, if any, continue to provide connectivity.

When a switch is added to an existing stack, the new switch receives the running configuration from the stack master and updates itself with the EtherChannel-related stack configuration. The stack member also receives the operational information (the list of ports that are up and are members of a channel).

When two stacks merge that have EtherChannels configured between them, self-looped ports result. Spanning tree detects this condition and acts accordingly.

If the stack master fails or leaves the stack, a new stack master is elected. A spanning-tree reconvergence is not triggered unless there is a change in the EtherChannel bandwidth. The new stack master synchronizes the configuration of the stack members to that of the stack master.

For more information about switch stacks, see Chapter 5, “Managing Switch Stacks.”
Configuring EtherChannels

These sections describe how to configure EtherChannel on Layer 2 and Layer 3 interfaces:

- Default EtherChannel Configuration, page 25-9
- EtherChannel Configuration Guidelines, page 25-10
- Configuring Layer 2 EtherChannels, page 25-11 (required)
- Configuring Layer 3 EtherChannels, page 25-13 (required)
- Configuring EtherChannel Load Balancing, page 25-16 (optional)
- Configuring the PAgP Learn Method and Priority, page 25-17 (optional)

Note: Make sure that the interfaces are correctly configured. For more information, see the “EtherChannel Configuration Guidelines” section on page 25-10.

Note: After you configure an EtherChannel, configuration changes applied to the port-channel interface apply to all the physical interfaces assigned to the port-channel interface, and configuration changes applied to the physical interface affect only the interface where you apply the configuration.

Default EtherChannel Configuration

Table 25-2 shows the default EtherChannel configuration.

Table 25-2 Default EtherChannel Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel groups</td>
<td>None assigned.</td>
</tr>
<tr>
<td>Port-channel logical interface</td>
<td>None defined.</td>
</tr>
<tr>
<td>PAgP mode</td>
<td>No default.</td>
</tr>
<tr>
<td>PAgP learn method</td>
<td>Aggregate-port learning on all interfaces.</td>
</tr>
<tr>
<td>PAgP priority</td>
<td>128 on all interfaces.</td>
</tr>
<tr>
<td>Load balancing</td>
<td>Load distribution on the switch is based on the source-MAC address of the incoming packet.</td>
</tr>
</tbody>
</table>
EtherChannel Configuration Guidelines

If improperly configured, some EtherChannel interfaces are automatically disabled to avoid network loops and other problems. Follow these guidelines to avoid configuration problems:

- More than 12 EtherChannels cannot be configured on a Catalyst 3750 switch stack.
- Configure an EtherChannel with up to eight Ethernet interfaces of the same type.
- Configure all interfaces in an EtherChannel to operate at the same speeds and duplex modes.
- Enable all interfaces in an EtherChannel. An interface in an EtherChannel that is disabled by using the `shutdown` interface configuration command is treated as a link failure, and its traffic is transferred to one of the remaining interfaces in the EtherChannel.
- When a group is first created, all ports follow the parameters set for the first port to be added to the group. If you change the configuration of one of these parameters, you must also make the changes to all ports in the group:
 - Allowed-VLAN list
 - Spanning-tree path cost for each VLAN
 - Spanning-tree port priority for each VLAN
 - Spanning-tree Port Fast setting
- Do not configure a Switched Port Analyzer (SPAN) destination as part of an EtherChannel.
- Do not configure a secure port as part of an EtherChannel.
- Do not configure a port that is an active member of an EtherChannel as an 802.1X port. If 802.1X is enabled on a not-yet active port of an EtherChannel, the port does not join the EtherChannel.
- For Layer 2 EtherChannels:
 - Assign all interfaces in the EtherChannel to the same VLAN, or configure them as trunks. Interfaces with different native VLANs cannot form an EtherChannel.
 - If you configure an EtherChannel from trunk interfaces, verify that the trunking mode (ISL or 802.1Q) is the same on all the trunks. Inconsistent trunk modes on EtherChannel interfaces can have unexpected results.
 - An EtherChannel supports the same allowed range of VLANs on all the interfaces in a trunking Layer 2 EtherChannel. If the allowed range of VLANs is not the same, the interfaces do not form an EtherChannel even when PAgP is set to the `auto` or `desirable` mode.
 - Interfaces with different spanning-tree path costs can form an EtherChannel if they are otherwise compatibly configured. Setting different spanning-tree path costs does not, by itself, make interfaces incompatible for the formation of an EtherChannel.
- For Layer 3 EtherChannels, assign the Layer 3 address to the port-channel logical interface, not to the physical interfaces in the channel.
- For cross-stack EtherChannel configurations, disable PAgP on all interfaces targeted for the EtherChannel by using the `channel-group channel-group-number mode on` interface configuration command. Before adding a stack member interface to an existing EtherChannel, manually disable PAgP on all the interfaces that are members of the channel group, and then manually configure the cross-stack EtherChannel.
- If cross-stack EtherChannel is configured and the switch stack partitions, loops and forwarding misbehaviors can occur.
Configuring Layer 2 EtherChannels

You configure Layer 2 EtherChannels by assigning interfaces to a channel group with the `channel-group` interface configuration command. This command automatically creates the port-channel logical interface.

If you enabled PAgP on an interface in the auto or desirable mode, you must reconfigure it for the on mode by using the `channel-group channel-group-number mode on` interface configuration command before adding this interface to a cross-stack EtherChannel. PAgP is not supported on cross-stack EtherChannels.

Beginning in privileged EXEC mode, follow these steps to assign a Layer 2 Ethernet interface to a Layer 2 EtherChannel. This procedure is required.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Enter interface configuration mode, and specify a physical interface to configure. Valid interfaces include physical interfaces. Up to eight interfaces of the same type and speed can be configured for the same group.</td>
</tr>
<tr>
<td>Step 3 switchport mode {access</td>
<td>Assign all interfaces as static-access ports in the same VLAN, or trunk} configure them as trunks.</td>
</tr>
<tr>
<td>switchport access vlan vlan-id</td>
<td>If you configure the interface as a static-access port, assign it to only one VLAN. The range is 1 to 4094.</td>
</tr>
</tbody>
</table>
To remove an interface from the EtherChannel group, use the no channel-group interface configuration command.

This example shows how to configure an EtherChannel on a single switch in the stack. It assigns Gigabit Ethernet interfaces 0/4 and 0/5 on stack member 2 as static-access ports in VLAN 10 to channel 5 with the PAgP mode desirable:

```bash
Switch# configure terminal
Switch(config)# interface range gigabitethernet2/0/4 -5
Switch(config-if-range)# switchport mode access
Switch(config-if-range)# switchport access vlan 10
Switch(config-if-range)# channel-group 5 mode desirable non-silent
Switch(config-if-range)# end
```
This example shows how to configure cross-stack EtherChannel. It assigns Gigabit Ethernet interfaces 0/4 and 0/5 on stack member 2 and Gigabit Ethernet interface 0/3 on stack member 3 as static-access ports in VLAN 10 to channel 5 with the PAgP mode disabled (on):

```
Switch# configure terminal
Switch(config)# interface range gigabitethernet2/0/4 -5
Switch(config-if-range)# switchport mode access
Switch(config-if-range)# switchport access vlan 10
Switch(config-if-range)# channel-group 5 mode on
Switch(config-if-range)# exit
Switch(config)# interface gigabitethernet3/0/3
Switch(config-if)# switchport mode access
Switch(config-if)# switchport access vlan 10
Switch(config-if)# channel-group 5 mode on
Switch(config-if)# exit
```

Configuring Layer 3 EtherChannels

To configure Layer 3 EtherChannels, you create the port-channel logical interface and then put the Ethernet interfaces into the port-channel as described in the next two sections.

Creating Port-Channel Logical Interfaces

When configuring Layer 3 EtherChannels, you should first manually create the port-channel logical interface by using the `interface port-channel` global configuration command. Then you put the logical interface into the channel group by using the `channel-group` interface configuration command.

Note
To move an IP address from a physical interface to an EtherChannel, you must delete the IP address from the physical interface before configuring it on the port-channel interface.

Beginning in privileged EXEC mode, follow these steps to create a port-channel interface for a Layer 3 EtherChannel. This procedure is required.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface port-channel port-channel-number</td>
<td>Enter interface configuration mode, and create the port-channel logical interface. For port-channel-number, the range is 1 to 12.</td>
</tr>
<tr>
<td>Step 3 no switchport</td>
<td>Put the interface into Layer 3 mode.</td>
</tr>
<tr>
<td>Step 4 ip address ip-address mask</td>
<td>Assign an IP address and subnet mask to the EtherChannel.</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6 show etherchannel channel-group-number detail</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 7 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
<tr>
<td>Step 8</td>
<td>Assign an Ethernet interface to the Layer 3 EtherChannel. For more information, see the “Configuring the Physical Interfaces” section on page 25-14.</td>
</tr>
</tbody>
</table>

To remove the port-channel, use the `no interface port-channel port-channel-number` global configuration command.

This example shows how to create the logical port channel (5) and assign 172.10.20.10 as its IP address:

```
Switch# configure terminal
Switch(config)# interface port-channel 5
Switch(config-if)# no switchport
Switch(config-if)# ip address 172.10.20.10 255.255.255.0
Switch(config-if)# end
```

Configuring the Physical Interfaces

Beginning in privileged EXEC mode, follow these steps to assign an Ethernet interface to a Layer 3 EtherChannel. This procedure is required.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| **Step 2** interface `interface-id` | Enter interface configuration mode, and specify a physical interface to configure.
Valid interfaces include physical interfaces.
Up to eight interfaces of the same type and speed can be configured for the same group. |
| **Step 3** no ip address | Ensure that there is no IP address assigned to the physical interface. |
To remove an interface from the EtherChannel group, use the **no channel-group** interface configuration command.

This example shows how to configure an EtherChannel on a single switch in the stack. It assigns Gigabit Ethernet interfaces 0/4 and 0/5 on stack member 2 to channel 5 with the PAgP mode **desirable**:

```
Switch# configure terminal
Switch(config)# interface range gigabitethernet2/0/4 -5
Switch(config-if-range)# no ip address
Switch(config-if-range)# channel-group 5 mode desirable non-silent
Switch(config-if-range)# end
```
This example shows how to configure cross-stack EtherChannel. It assigns Gigabit Ethernet interfaces 0/4 and 0/5 on stack member 2 and Gigabit Ethernet interface 0/3 on stack member 3 to channel 5 with the PAgP mode disabled (on):

```
Switch# configure terminal
Switch(config)# interface range gigabitethernet2/0/4 -5
Switch(config-if-range)# no ip address
Switch(config-if-range)# channel-group 5 mode on
Switch(config-if-range)# exit
Switch(config)# interface gigabitethernet3/0/3
Switch(config-if)# no ip address
Switch(config-if)# channel-group 5 mode on
Switch(config-if)# exit
```

Configuring EtherChannel Load Balancing

This section describes how to configure EtherChannel load balancing by using source-based or destination-based forwarding methods. For more information, see the “Load Balancing and Forwarding Methods” section on page 25-6.

Beginning in privileged EXEC mode, follow these steps to configure EtherChannel load balancing. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>port-channel load-balance {dst-ip</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show etherchannel load-balance</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return EtherChannel load balancing to the default configuration, use the `no port-channel load-balance` global configuration command.
Configuring the PAgP Learn Method and Priority

Network devices are classified as PAgP physical learners or aggregate-port learners. A device is a physical learner if it learns addresses by physical ports and directs transmissions based on that knowledge. A device is an aggregate-port learner if it learns addresses by aggregate (logical) ports. The learn method must be configured the same at both ends of the link.

When a device and its partner are both aggregate-port learners, they learn the address on the logical port-channel. The device sends packets to the source by using any of the interfaces in the EtherChannel. With aggregate-port learning, it is not important on which physical port the packet arrives.

PAgP cannot automatically detect when the partner device is a physical learner and when the local device is an aggregate-port learner. Therefore, you must manually set the learning method on the local device to learn addresses by physical ports. You also must set the load-distribution method to source-based distribution, so that any given source MAC address is always sent on the same physical port.

You also can configure a single interface within the group for all transmissions and use other interfaces for hot standby. The unused interfaces in the group can be swapped into operation in just a few seconds if the selected single interface loses hardware-signal detection. You can configure which interface is always selected for packet transmission by changing its priority with the `pagp port-priority` interface configuration command. The higher the priority, the more likely that the port will be selected.

Note

The Catalyst 3750 switch supports address learning only on aggregate ports even though the physical-port keyword is provided in the CLI. The `pagp learn-method` command and the `pagp port-priority` command have no effect on the switch hardware, but they are required for PAgP interoperability with devices that only support address learning by physical ports, such as the Catalyst 1900 switch.

When the link partner to the Catalyst 3750 switch is a physical learner (such as a Catalyst 1900 series switch), we recommend that you configure the Catalyst 3750 switch as a physical-port learner by using the `pagp learn-method physical-port` interface configuration command. Set the load-distribution method based on the source MAC address by using the `port-channel load-balance src-mac` global configuration command. The switch then sends packets to the Catalyst 1900 switch using the same interface in the EtherChannel from which it learned the source address. Use the `pagp learn-method` command only in this situation.
Beginning in privileged EXEC mode, follow these steps to configure your switch as a PAgP physical-port learner and to adjust the priority so that the same port in the bundle is selected for sending packets. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>interface interface-id</code></td>
</tr>
<tr>
<td>Step 3</td>
<td>pagp learn-method physical-port</td>
</tr>
<tr>
<td>Step 4</td>
<td>pagp port-priority <code>priority</code></td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td>Step 6</td>
<td>show running-config</td>
</tr>
<tr>
<td>or</td>
<td><code>show pagp channel-group-number internal</code></td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return the priority to its default setting, use the ```no pagp port-priority``` interface configuration command. To return the learning method to its default setting, use the ```no pagp learn-method``` interface configuration command.
Displaying EtherChannel and PAgP Status

To display EtherChannel and PAgP status information, use the privileged EXEC commands described in Table 25-3:

Table 25-3 Commands for Displaying EtherChannel and PAgP Status

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show etherchannel [channel-group-number] {brief</td>
<td>detail</td>
</tr>
<tr>
<td>show pagp [channel-group-number] {counters</td>
<td>internal</td>
</tr>
</tbody>
</table>

1. You can clear PAgP channel-group information and traffic counters by using the clear pagp {channel-group-number [counters | counters} privileged EXEC command.

For detailed information about the fields in the displays, refer to the command reference for this release.
Configuring IP Unicast Routing

This chapter describes how to configure IP unicast routing on the Catalyst 3750 switch. Unless otherwise noted, the term switch refers to a standalone switch and a switch stack. A switch stack operates and appears as a single router to the rest of the routers in the network. Basic routing functions, including static routing and the Routing Information Protocol (RIP), are available with both the standard multilayer software image (SMI) and the enhanced multilayer software image (EMI). To use advanced routing features and other routing protocols, you must have the enhanced multilayer software image installed on the standalone switch or on the stack master.

For more detailed IP unicast configuration information, refer to the Cisco IOS IP and IP Routing Configuration Guide for Release 12.1. For complete syntax and usage information for the commands used in this chapter, refer to the Cisco IOS IP and IP Routing Command Reference for Release 12.1.

This chapter consists of these sections:

- Understanding IP Routing, page 26-2
- Steps for Configuring Routing, page 26-4
- Configuring IP Addressing, page 26-5
- Enabling IP Unicast Routing, page 26-19
- Configuring RIP, page 26-20
- Configuring IGRP, page 26-25
- Configuring OSPF, page 26-30
- Configuring EIGRP, page 26-39
- Configuring Protocol-Independent Features, page 26-45
- Monitoring and Maintaining the IP Network, page 26-55

When configuring routing parameters on the switch, to allocate system resources to maximize the number of unicast routes allowed, you can use the sdm prefer routing global configuration command to set the Switch Database Management (sdm) feature to the routing template. For more information on the SDM templates, see the “Using the SDM Templates” section on page 31-13 or refer to the sdm prefer command in the command reference for this release.
Understanding IP Routing

In some network environments, VLANs are associated with individual networks or subnetworks. In an IP network, each subnetwork is mapped to an individual VLAN. Configuring VLANs helps control the size of the broadcast domain and keeps local traffic local. However, network devices in different VLANs cannot communicate with one another without a Layer 3 device (router) to route traffic between the VLAN, referred to as inter-VLAN routing. You configure one or more routers to route traffic to the appropriate destination VLAN.

Figure 26-1 shows a basic routing topology. Switch A is in VLAN 10, and Switch B is in VLAN 20. The router has an interface in each VLAN.

When Host A in VLAN 10 needs to communicate with Host B in VLAN 10, it sends a packet addressed to that host. Switch A forwards the packet directly to Host B, without sending it to the router.

When Host A sends a packet to Host C in VLAN 20, Switch A forwards the packet to the router, which receives the traffic on the VLAN 10 interface. The router checks the routing table, determines the correct outgoing interface, and forwards the packet on the VLAN 20 interface to Switch B. Switch B receives the packet and forwards it to Host C.

This section contains information on these routing topics:

- Types of Routing, page 26-2
- IP Routing and Switch Stacks, page 26-3

Types of Routing

Routers and Layer 3 switches can route packets in three different ways:

- By using default routing
- By using preprogrammed static routes for the traffic
- By dynamically calculating routes by using a routing protocol

Default routing refers to sending traffic with a destination unknown to the router to a default outlet or destination.

Static unicast routing forwards packets from predetermined ports through a single path into and out of a network. Static routing is secure and uses little bandwidth, but does not automatically respond to changes in the network, such as link failures, and therefore, might result in unreachable destinations. As networks grow, static routing becomes a labor-intensive liability.
Dynamic routing protocols are used by routers to dynamically calculate the best route for forwarding traffic. There are two types of dynamic routing protocols:

- Routers using distance-vector protocols maintain routing tables with distance values of networked resources, and periodically pass these tables to their neighbors. Distance-vector protocols use one or a series of metrics for calculating the best routes. These protocols are easy to configure and use.

- Routers using link-state protocols maintain a complex database of network topology, based on the exchange of link-state advertisements (LSAs) between routers. LSAs are triggered by an event in the network, which speeds up the convergence time or time required to respond to these changes. Link-state protocols respond quickly to topology changes, but require greater bandwidth and more resources than distance-vector protocols.

Distance-vector protocols supported by the Catalyst 3750 switch are Routing Information Protocol (RIP), which uses a single distance metric (cost) to determine the best path, and Interior Gateway Routing Protocol (IGRP), which uses a series of metrics. The switch also supports the Open Shortest Path First (OSPF) link-state protocol and Enhanced IGRP (EIGRP), which adds some link-state routing features to traditional IGRP to improve efficiency.

Note
On a switch stack, the supported protocols are determined by the software running on the stack master. If the stack master is running the SMI, only default routing, static routing and RIP are supported. All other routing protocols require the EMI.

IP Routing and Switch Stacks

A Catalyst 3750 switch stack appears to the network as a single router, regardless of which switch in the stack is connected to a routing peer. For additional information about switch stack operation, see Chapter 5, “Managing Switch Stacks.”

The master switch performs these functions:

- It initializes and configures the routing protocols.
- It sends routing protocol messages and updates to other routers.
- It processes routing protocol messages and updates received from peer routers.
- It generates, maintains, and distributes the distributed Cisco Express Forwarding (dCEF) database to all stack members. The routes are programmed on all switches in the stack bases on this database.
- The MAC address of the stack master is used as the router MAC address for the whole stack, and all outside devices use this address to send IP packets to the stack.
- All IP packets that require software forwarding or processing go through the CPU of the master switch.

Stack members perform these functions:

- They act as routing standby switches, ready to take over in case they are elected as the stack master if the stack master fails.
- They program the routes into hardware. The routes programmed by the stack member are the same that are downloaded by the stack master as part of the dCEF database.

If a stack master fails, the stack detects that the master is down and elects one of the stack members to be the new stack master. During this period, except for a momentary interruption, the hardware continues to forward packets with no protocols active.
Upon election, the new stack master performs these functions:

- It starts generating, receiving, and processing routing updates.
- It builds routing tables, generates the CEF database, and distributes it to stack members.
- It begins using its MAC address as the router MAC address. To update its network peers of the new MAC address, it periodically (every few seconds for 5 minutes) sends a gratuitous ARP reply with the new router MAC address.

Note

When a stack master is running the EMI, the stack is able to run all supported protocols, including Open Shortest Path First (OSPF), Interior Gateway Routing Protocol (IGRP), and Enhanced IGRP (EIGRP). If the master fails and the new elected master switch is running the SMI, these protocols will no longer run in the stack.

Caution

Partitioning of the switch stack into two or more stacks might lead to undesirable behavior in the network.

Steps for Configuring Routing

By default, IP routing is disabled on the switch, and you must enable it before routing can take place. For detailed IP routing configuration information, refer to the *Cisco IOS IP and IP Routing Configuration Guide for Release 12.1*.

In the following procedures, the specified interface must be one of these Layer 3 interfaces:

- A routed port: a physical port configured as a Layer 3 port by using the `no switchport` interface configuration command.
- A switch virtual interface (SVI): a VLAN interface created by using the `interface vlan vlan_id` global configuration command and by default a Layer 3 interface.
- An EtherChannel port channel in Layer 3 mode: a port-channel logical interface created by using the `interface port-channel port-channel-number` global configuration command and binding the Ethernet interface into the channel group. For more information, see the “Configuring Layer 3 EtherChannels” section on page 25-13.

Note

A Layer 3 switch can have an IP address assigned to each routed port and SVI. The number of routed ports and SVIs that you can configure is not limited by software. However, the interrelationship between this number and the number and volume of features being implemented might have an impact on CPU utilization because of hardware limitations. To optimize system memory for routing, use the `sdm prefer routing` global configuration command.

All Layer 3 interfaces on which routing will occur must have IP addresses assigned to them. See the “Assigning IP Addresses to Network Interfaces” section on page 26-6.

Configuring routing consists of several main procedures:

- To support VLAN interfaces, create and configure VLANs on the switch stack, and assign VLAN membership to Layer 2 interfaces. For more information, see Chapter 10, “Configuring VLANs.”
- Configure Layer 3 interfaces.
- Enable IP routing on the switch.
• Assign IP addresses to the Layer 3 interfaces.
• Enable selected routing protocols on the switch.
• Configure routing protocol parameters (optional).

Configuring IP Addressing

A required task for configuring IP routing is to assign IP addresses to Layer 3 network interfaces to enable the interfaces and allow communication with the hosts on those interfaces that use IP. These sections describe how to configure various IP addressing features. Assigning IP addresses to the interface is required; the other procedures are optional.

- Default Addressing Configuration, page 26-5
- Assigning IP Addresses to Network Interfaces, page 26-6
- Configuring Address Resolution Methods, page 26-9
- Routing Assistance When IP Routing is Disabled, page 26-12
- Configuring Broadcast Packet Handling, page 26-14
- Monitoring and Maintaining IP Addressing, page 26-18

Default Addressing Configuration

Table 26-1 shows the default addressing configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address</td>
<td>None defined.</td>
</tr>
<tr>
<td>ARP</td>
<td>No permanent entries in the Address Resolution Protocol (ARP) cache.</td>
</tr>
<tr>
<td></td>
<td>Encapsulation: Standard Ethernet-style ARP.</td>
</tr>
<tr>
<td></td>
<td>Timeout: 14400 seconds (4 hours).</td>
</tr>
<tr>
<td>IP broadcast address</td>
<td>255.255,255.255 (all ones).</td>
</tr>
<tr>
<td>IP classless routing</td>
<td>Enabled.</td>
</tr>
<tr>
<td>IP default gateway</td>
<td>Disabled.</td>
</tr>
<tr>
<td>IP directed broadcast</td>
<td>Disabled (all IP directed broadcasts are dropped).</td>
</tr>
<tr>
<td>IP domain</td>
<td>Domain list: No domain names defined.</td>
</tr>
<tr>
<td></td>
<td>Domain lookup: Enabled.</td>
</tr>
<tr>
<td></td>
<td>Domain name: Enabled.</td>
</tr>
<tr>
<td>IP forward-protocol</td>
<td>If a helper address is defined or User Datagram Protocol (UDP) flooding is</td>
</tr>
<tr>
<td></td>
<td>configured, UDP forwarding is enabled on default ports.</td>
</tr>
<tr>
<td></td>
<td>Any-local-broadcast: Disabled.</td>
</tr>
<tr>
<td></td>
<td>Spanning Tree Protocol (STP): Disabled.</td>
</tr>
<tr>
<td></td>
<td>Turbo-flood: Disabled.</td>
</tr>
</tbody>
</table>
Assigning IP Addresses to Network Interfaces

An IP address identifies a location to which IP packets can be sent. Some IP addresses are reserved for special uses and cannot be used for host, subnet, or network addresses. RFC 1166, “Internet Numbers,” contains the official description of IP addresses.

An interface can have one primary IP address. A mask identifies the bits that denote the network number in an IP address. When you use the mask to subnet a network, the mask is referred to as a subnet mask. To receive an assigned network number, contact your Internet service provider.

Beginning in privileged EXEC mode, follow these steps to assign an IP address and a network mask to a Layer 3 interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Enter interface configuration mode, and specify the Layer 3 interface to configure.</td>
</tr>
<tr>
<td>Step 3 no switchport</td>
<td>Remove the interface from Layer 2 configuration mode (if it is a physical interface).</td>
</tr>
<tr>
<td>Step 4 ip address ip-address subnet-mask</td>
<td>Configure the IP address and IP subnet mask.</td>
</tr>
<tr>
<td>Step 5 no shutdown</td>
<td>Enable the interface.</td>
</tr>
<tr>
<td>Step 6 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 7 show interfaces [interface-id]</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 7 show ip interface [interface-id]</td>
<td></td>
</tr>
<tr>
<td>Step 7 show running-config interface [interface-id]</td>
<td></td>
</tr>
<tr>
<td>Step 8 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Use of Subnet Zero

Subnetting with a subnet address of zero is strongly discouraged because of the problems that can arise if a network and a subnet have the same addresses. For example, if network 131.108.0.0 is subnetted as 255.255.255.0, subnet zero would be written as 131.108.0.0, which is the same as the network address.

You can use the all ones subnet (131.108.255.0) and even though it is discouraged, you can enable the use of subnet zero if you need the entire subnet space for your IP address.

Beginning in privileged EXEC mode, follow these steps to enable subnet zero:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 ip subnet-zero</td>
<td>Enable the use of subnet zero for interface addresses and routing updates.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show running-config</td>
<td>Verify your entry.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entry in the configuration file.</td>
</tr>
</tbody>
</table>

Use the no ip subnet-zero global configuration command to restore the default and disable the use of subnet zero.

Classless Routing

By default, classless routing behavior is enabled on the switch when it is configured to route. With classless routing, if a router receives packets for a subnet of a network with no default route, the router forwards the packet to the best supernet route. A supernet consists of contiguous blocks of Class C address spaces used to simulate a single, larger address space and is designed to relieve the pressure on the rapidly depleting Class B address space.

In Figure 26-2, classless routing is enabled. When the host sends a packet to 120.20.4.1, instead of discarding the packet, the router forwards it to the best supernet route. If you disable classless routing and a router receives packets destined for a subnet of a network with no network default route, the router discards the packet.

Figure 26-2 IP Classless Routing
In Figure 26-3, the router in network 128.20.0.0 is connected to subnets 128.20.1.0, 128.20.2.0, and 128.20.3.0. If the host sends a packet to 120.20.4.1, because there is no network default route, the router discards the packet.

Figure 26-3 No IP Classless Routing

To prevent the switch from forwarding packets destined for unrecognized subnets to the best supernet route possible, you can disable classless routing behavior.

Beginning in privileged EXEC mode, follow these steps to disable classless routing:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 no ip classless</td>
<td>Disable classless routing behavior.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show running-config</td>
<td>Verify your entry.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entry in the configuration file.</td>
</tr>
</tbody>
</table>

To restore the default and have the switch forward packets destined for a subnet of a network with no network default route to the best supernet route possible, use the **ip classless** global configuration command.
Configuring Address Resolution Methods

You can control interface-specific handling of IP by using address resolution. A device using IP can have both a local address or MAC address, which uniquely defines the device on its local segment or LAN, and a network address, which identifies the network to which the device belongs.

In a Catalyst 3750 switch stack, network communication uses a single MAC address and the IP address of the stack.

The local address or MAC address is known as a data link address because it is contained in the data link layer (Layer 2) section of the packet header and is read by data link (Layer 2) devices. To communicate with a device on Ethernet, the software must determine the MAC address of the device. The process of determining the MAC address from an IP address is called address resolution. The process of determining the IP address from the MAC address is called reverse address resolution.

The switch can use these forms of address resolution:

- Address Resolution Protocol (ARP) is used to associate IP address with MAC addresses. Taking an IP address as input, ARP determines the associated MAC address and then stores the IP address/MAC address association in an ARP cache for rapid retrieval. Then the IP datagram is encapsulated in a link-layer frame and sent over the network. Encapsulation of IP datagrams and ARP requests or replies on IEEE 802 networks other than Ethernet is specified by the Subnetwork Access Protocol (SNAP).

- Proxy ARP helps hosts with no routing tables determine the MAC addresses of hosts on other networks or subnets. If the switch (router) receives an ARP request for a host that is not on the same interface as the ARP request sender, and if the router has all of its routes to the host through other interfaces, it generates a proxy ARP packet giving its own local data link address. The host that sent the ARP request then sends its packets to the router, which forwards them to the intended host.

Catalyst 3750 switches also use the Reverse Address Resolution Protocol (RARP), which functions the same as ARP does, except that the RARP packets request an IP address instead of a local MAC address. Using RARP requires a RARP server on the same network segment as the router interface. Use the `ip rarp-server address` interface configuration command to identify the server.

For more information on RARP, refer to the Cisco IOS Configuration Fundamentals Configuration Guide for Release 12.1.

You can perform these tasks to configure address resolution:

- Define a Static ARP Cache, page 26-9
- Set ARP Encapsulation, page 26-11
- Enable Proxy ARP, page 26-11

Define a Static ARP Cache

ARP and other address resolution protocols provide dynamic mapping between IP addresses and MAC addresses. Because most hosts support dynamic address resolution, you usually do not need to specify static ARP cache entries. If you must define a static ARP cache entry, you can do so globally, which installs a permanent entry in the ARP cache that the switch uses to translate IP addresses into MAC addresses. Optionally, you can also specify that the switch respond to ARP requests as if it were the owner of the specified IP address. If you do not want the ARP entry to be permanent, you can specify a timeout period for the ARP entry.
Beginning in privileged EXEC mode, follow these steps to provide static mapping between IP addresses and MAC addresses:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| Step 2 arp ip-address hardware-address type | Globally associate an IP address with a MAC (hardware) address in the ARP cache, and specify encapsulation type as one of these: | arpa—ARP encapsulation for Ethernet interfaces
| | snap—Subnetwork Address Protocol encapsulation for Token Ring and FDDI interfaces |
| Step 3 arp ip-address hardware-address type [alias] | (Optional) Specify that the switch respond to ARP requests as if it were the owner of the specified IP address. |
| Step 4 interface interface-id | Enter interface configuration mode, and specify the interface to configure. |
| Step 5 arp timeout seconds | (Optional) Set the length of time an ARP cache entry will stay in the cache. The default is 14400 seconds (4 hours). The range is 0 to 2147483 seconds. |
| Step 6 end | Return to privileged EXEC mode. |
| Step 7 show interfaces [interface-id] | Verify the type of ARP and the timeout value used on all interfaces or a specific interface. |
| Step 8 show arp | View the contents of the ARP cache. |
| | or |
| Step 9 copy running-config startup-config | (Optional) Save your entries in the configuration file. |
| | or |

To remove an entry from the ARP cache, use the no arp ip-address hardware-address type global configuration command. To remove all nonstatic entries from the ARP cache, use the clear arp-cache privileged EXEC command.
Set ARP Encapsulation

By default, Ethernet ARP encapsulation (represented by the `arpa` keyword) is enabled on an IP interface. You can change the encapsulation methods to SNAP if required by your network.

Beginning in privileged EXEC mode, follow these steps to specify the ARP encapsulation type:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface <code>interface-id</code></td>
<td>Enter interface configuration mode, and specify the Layer 3 interface to configure.</td>
</tr>
</tbody>
</table>
| Step 3 `arp {arpa | snap}` | Specify the ARP encapsulation method:
 • `arpa`—Address Resolution Protocol
 • `snap`—Subnetwork Address Protocol |
| Step 4 end | Return to privileged EXEC mode. |
| Step 5 show interfaces `[interface-id]` | Verify ARP encapsulation configuration on all interfaces or the specified interface. |
| Step 6 copy running-config startup-config | (Optional) Save your entries in the configuration file. |

To disable an encapsulation type, use the `no arp arpa` or `no arp snap` interface configuration command.

Enable Proxy ARP

By default, the switch uses proxy ARP to help hosts determine MAC addresses of hosts on other networks or subnets.

Beginning in privileged EXEC mode, follow these steps to enable proxy ARP if it has been disabled:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface <code>interface-id</code></td>
<td>Enter interface configuration mode, and specify the Layer 3 interface to configure.</td>
</tr>
<tr>
<td>Step 3 <code>ip proxy-arp</code></td>
<td>Enable proxy ARP on the interface.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show ip interface <code>[interface-id]</code></td>
<td>Verify the configuration on the interface or all interfaces.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable proxy ARP on the interface, use the `no ip proxy-arp` interface configuration command.
Routing Assistance When IP Routing is Disabled

These mechanisms allow the switch to learn about routes to other networks when it does not have IP routing enabled:

- Proxy ARP, page 26-12
- Default Gateway, page 26-12
- ICMP Router Discovery Protocol (IRDP), page 26-13

Proxy ARP

Proxy ARP, the most common method for learning about other routes, enables an Ethernet host with no routing information to communicate with hosts on other networks or subnets. The host assumes that all hosts are on the same local Ethernet and that they can use ARP to determine their MAC addresses. If a switch receives an ARP request for a host that is not on the same network as the sender, the switch evaluates whether it has the best route to that host. If it does, it sends an ARP reply packet with its own Ethernet MAC address, and the host that sent the request sends the packet to the switch, which forwards it to the intended host. Proxy ARP treats all networks as if they are local and performs ARP requests for every IP address.

Proxy ARP is enabled by default. To enable it after it has been disabled, see the “Enable Proxy ARP” section on page 26-11. Proxy ARP works as long as other routers support it.

Default Gateway

Another method for locating routes is to define a default router or default gateway. All nonlocal packets are sent to this router, which either routes them appropriately or sends an IP Control Message Protocol (ICMP) redirect message back, defining which local router the host should use. The switch caches the redirect messages and forwards each packet as efficiently as possible. A limitation of this method is that there is no means of detecting when the default router has gone down or is unavailable.

Beginning in privileged EXEC mode, follow these steps to define a default gateway (router) when IP routing is disabled:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip default-gateway ip-address</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show ip redirects</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

Use the no ip default-gateway global configuration command to disable this function.
ICMP Router Discovery Protocol (IRDP)

Router discovery allows the switch to dynamically learn about routes to other networks using IRDP. IRDP allows hosts to locate routers. When operating as a host, the switch generates router discovery packets. When operating as a host, the switch receives router discovery packets. The switch can also listen to Routing Information Protocol (RIP) and Interior Gateway Routing Protocol (IGRP) routing updates and use this information to infer locations of routers. The switch does not actually store the routing tables sent by routing devices; it merely keeps track of which systems are sending the data. The advantage of using IRDP is that it allows each router to specify both a priority and the time after which a device is assumed to be down if no further packets are received.

Each device discovered becomes a candidate for the default router, and a new highest-priority router is selected when a higher priority router is discovered, when the current default router is declared down, or when a TCP connection is about to time out because of excessive retransmissions.

The only required task for IRDP routing on an interface is to enable IRDP processing on that interface. When enabled, the default parameters apply. You can optionally change any of these parameters.

Beginning in privileged EXEC mode, follow these steps to enable and configure IRDP on an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>ip irdp</td>
</tr>
<tr>
<td>Step 4</td>
<td>ip irdp multicast</td>
</tr>
<tr>
<td>Step 5</td>
<td>ip irdp holdtime seconds</td>
</tr>
<tr>
<td>Step 6</td>
<td>ip irdp maxadvertinterval seconds</td>
</tr>
<tr>
<td>Step 7</td>
<td>ip irdp minadvertinterval seconds</td>
</tr>
<tr>
<td>Step 8</td>
<td>ip irdp preference number</td>
</tr>
<tr>
<td>Step 9</td>
<td>ip irdp address address [number]</td>
</tr>
<tr>
<td>Step 10</td>
<td>end</td>
</tr>
<tr>
<td>Step 11</td>
<td>show ip irdp</td>
</tr>
<tr>
<td>Step 12</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>
If you change the `maxadvertinterval` value, the `holdtime` and `minadvertinterval` values also change, so it is important to first change the `maxadvertinterval` value, before manually changing either the `holdtime` or `minadvertinterval` values.

Use the `no ip irdp` interface configuration command to disable IRDP routing.

Configuring Broadcast Packet Handling

After configuring an IP interface address, you can enable routing and configure one or more routing protocols, or you can configure the way the switch responds to network broadcasts. A broadcast is a data packet destined for all hosts on a physical network. The switch supports two kinds of broadcasting:

- A directed broadcast packet is sent to a specific network or series of networks. A directed broadcast address includes the network or subnet fields.
- A flooded broadcast packet is sent to every network.

You can also limit broadcast, unicast, and multicast traffic on Layer 2 interfaces by using the `storm-control` interface configuration command to set traffic suppression levels. For more information, see Chapter 16, “Configuring Port-Based Traffic Control.”

Routers provide some protection from broadcast storms by limiting their extent to the local cable. Bridges (including intelligent bridges), because they are Layer 2 devices, forward broadcasts to all network segments, thus propagating broadcast storms. The best solution to the broadcast storm problem is to use a single broadcast address scheme on a network. In most modern IP implementations, you can set the address to be used as the broadcast address. Many implementations, including the one in the Catalyst 3750 switch, support several addressing schemes for forwarding broadcast messages.

Perform the tasks in these sections to enable these schemes:

- Enabling Directed Broadcast-to-Physical Broadcast Translation, page 26-14
- Forwarding UDP Broadcast Packets and Protocols, page 26-15
- Establishing an IP Broadcast Address, page 26-16
- Flooding IP Broadcasts, page 26-17

Enabling Directed Broadcast-to-Physical Broadcast Translation

By default, IP directed broadcasts are dropped; they are not forwarded. Dropping IP-directed broadcasts makes routers less susceptible to denial-of-service attacks.

You can enable forwarding of IP-directed broadcasts on an interface where the broadcast becomes a physical (MAC-layer) broadcast. Only those protocols configured by using the `ip forward-protocol` global configuration command are forwarded.

You can specify an access list to control which broadcasts are forwarded. When an access list is specified, only those IP packets permitted by the access list are eligible to be translated from directed broadcasts to physical broadcasts. For more information on access lists, see Chapter 23, “Configuring Network Security with ACLs.”
Beginning in privileged EXEC mode, follow these steps to enable forwarding of IP-directed broadcasts on an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface to configure.</td>
</tr>
<tr>
<td>Step 3 ip directed-broadcast [access-list-number]</td>
<td>Enable directed broadcast-to-physical broadcast translation on the interface. You can include an access list to control which broadcasts are forwarded. When an access list is specified, only IP packets permitted by the access list are eligible to be translated.</td>
</tr>
<tr>
<td>Step 4 exit</td>
<td>Return to global configuration mode.</td>
</tr>
<tr>
<td>Step 5 ip forward-protocol { udp [port]</td>
<td>nd</td>
</tr>
<tr>
<td>Step 6 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 7 show ip interface [interface-id]</td>
<td>Verify the configuration on the interface or all interfaces.</td>
</tr>
<tr>
<td>Step 8 show running-config</td>
<td></td>
</tr>
<tr>
<td>Step 8 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the no ip directed-broadcast interface configuration command to disable translation of directed broadcast to physical broadcasts. Use the no ip forward-protocol global configuration command to remove a protocol or port.

Forwarding UDP Broadcast Packets and Protocols

User Datagram Protocol (UDP) is an IP host-to-host layer protocol, as is TCP. UDP provides a low-overhead, connectionless session between two end systems and does not provide for acknowledgment of received datagrams. Network hosts occasionally use UDP broadcasts to determine address, configuration, and name information. If such a host is on a network segment that does not include a server, UDP broadcasts are normally not forwarded. You can remedy this situation by configuring an interface on a router to forward certain classes of broadcasts to a helper address. You can use more than one helper address per interface.

You can specify a UDP destination port to control which UDP services are forwarded. You can specify multiple UDP protocols. You can also specify the Network Disk (ND) protocol, which is used by older diskless Sun workstations and the network security protocol SDNS.

By default, both UDP and ND forwarding are enabled if a helper address has been defined for an interface. The description for the ip forward-protocol interface configuration command in the Cisco IOS IP and IP Routing Command Reference for Release 12.1 lists the ports that are forwarded by default if you do not specify any UDP ports.
If you do not specify any UDP ports when you configure the forwarding of UDP broadcasts, you are configuring the router to act as a BOOTP forwarding agent. BOOTP packets carry Dynamic Host Configuration Protocol (DHCP) information.

Beginning in privileged EXEC mode, follow these steps to enable forwarding UDP broadcast packets on an interface and specify the destination address:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Enter interface configuration mode, and specify the Layer 3 interface to configure.</td>
</tr>
<tr>
<td>Step 3 ip helper-address address</td>
<td>Enable forwarding and specify the destination address for forwarding UDP broadcast packets, including BOOTP.</td>
</tr>
<tr>
<td>Step 4 exit</td>
<td>Return to global configuration mode.</td>
</tr>
<tr>
<td>Step 5 ip forward-protocol { udp [port]</td>
<td>nd</td>
</tr>
<tr>
<td>Step 6 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 7 show ip interface [interface-id]</td>
<td>Verify the configuration on the interface or all interfaces.</td>
</tr>
<tr>
<td>or show running-config</td>
<td></td>
</tr>
<tr>
<td>Step 8 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the **no ip helper-address** interface configuration command to disable the forwarding of broadcast packets to specific addresses. Use the **no ip forward-protocol** global configuration command to remove a protocol or port.

Establishing an IP Broadcast Address

The most popular IP broadcast address (and the default) is an address consisting of all ones (255.255.255.255). However, the switch can be configured to generate any form of IP broadcast address.

Beginning in privileged EXEC mode, follow these steps to set the IP broadcast address on an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface to configure.</td>
</tr>
<tr>
<td>Step 3 ip broadcast-address ip-address</td>
<td>Enter a broadcast address different from the default, for example 128.1.255.255.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show ip interface [interface-id]</td>
<td>Verify the broadcast address on the interface or all interfaces.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To restore the default IP broadcast address, use the **no ip broadcast-address** interface configuration command.
Flooding IP Broadcasts

You can allow IP broadcasts to be flooded throughout your internetwork in a controlled fashion by using the database created by the bridging STP. Using this feature also prevents loops. To support this capability, bridging must be configured on each interface that is to participate in the flooding. If bridging is not configured on an interface, it still can receive broadcasts. However, the interface never forwards broadcasts it receives, and the router never uses that interface to send broadcasts received on a different interface.

Packets that are forwarded to a single network address using the IP helper-address mechanism can be flooded. Only one copy of the packet is sent on each network segment.

To be considered for flooding, packets must meet these criteria. (Note that these are the same conditions used to consider packet forwarding using IP helper addresses.)

- The packet must be a MAC-level broadcast.
- The packet must be an IP-level broadcast.
- The packet must be a TFTP, DNS, Time, NetBIOS, ND, or BOOTP packet, or a UDP specified by the `ip forward-protocol udp` global configuration command.
- The time-to-live (TTL) value of the packet must be at least two.

A flooded UDP datagram is given the destination address specified with the `ip broadcast-address` interface configuration command on the output interface. The destination address can be set to any address. Thus, the destination address might change as the datagram propagates through the network. The source address is never changed. The TTL value is decremented.

When a flooded UDP datagram is sent out an interface (and the destination address possibly changed), the datagram is handed to the normal IP output routines and is, therefore, subject to access lists, if they are present on the output interface.

Beginning in privileged EXEC mode, follow these steps to use the bridging spanning-tree database to flood UDP datagrams:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 ip forward-protocol spanning-tree</td>
<td>Use the bridging spanning-tree database to flood UDP datagrams.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show running-config</td>
<td>Verify your entry.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entry in the configuration file.</td>
</tr>
</tbody>
</table>

Use the `no ip forward-protocol spanning-tree` global configuration command to disable the flooding of IP broadcasts.

In the Catalyst 3750 switch, the majority of packets are forwarded in hardware; most packets do not go through the switch CPU. For those packets that do go to the CPU, you can speed up spanning tree-based UDP flooding by a factor of about four to five times by using turbo-flooding. This feature is supported over Ethernet interfaces configured for ARP encapsulation.
Beginning in privileged EXEC mode, follow these steps to increase spanning-tree-based flooding:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode</td>
</tr>
<tr>
<td>Step 2 ip forward-protocol turbo-flood</td>
<td>Use the spanning-tree database to speed up flooding of UDP datagrams.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode</td>
</tr>
<tr>
<td>Step 4 show running-config</td>
<td>Verify your entry.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entry in the configuration file.</td>
</tr>
</tbody>
</table>

To disable this feature, use the `no ip forward-protocol turbo-flood` global configuration command.

Monitoring and Maintaining IP Addressing

When the contents of a particular cache, table, or database have become or are suspected to be invalid, you can remove all its contents by using the `clear` privileged EXEC commands. Table 26-2 lists the commands for clearing contents.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear arp-cache</td>
<td>Clear the IP ARP cache and the fast-switching cache.</td>
</tr>
<tr>
<td>clear host {name</td>
<td>}</td>
</tr>
<tr>
<td>clear ip route {network [mask]</td>
<td>}</td>
</tr>
</tbody>
</table>

You can display specific statistics, such as the contents of IP routing tables, caches, and databases; the reachability of nodes; and the routing path that packets are taking through the network. Table 26-3 lists the privileged EXEC commands for displaying IP statistics.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show arp</td>
<td>Display the entries in the ARP table.</td>
</tr>
<tr>
<td>show hosts</td>
<td>Display the default domain name, style of lookup service, name server hosts, and the cached list of host names and addresses.</td>
</tr>
<tr>
<td>show ip aliases</td>
<td>Display IP addresses mapped to TCP ports (aliases).</td>
</tr>
<tr>
<td>show ip arp</td>
<td>Display the IP ARP cache.</td>
</tr>
<tr>
<td>show ip interface [interface-id]</td>
<td>Display the IP status of interfaces.</td>
</tr>
<tr>
<td>show ip irdp</td>
<td>Display IRDP values.</td>
</tr>
<tr>
<td>show ip masks address</td>
<td>Display the masks used for network addresses and the number of subnets using each mask.</td>
</tr>
<tr>
<td>show ip redirects</td>
<td>Display the address of a default gateway.</td>
</tr>
<tr>
<td>show ip route [address [mask]]</td>
<td>Display the current state of the routing table.</td>
</tr>
<tr>
<td>show ip route summary</td>
<td>Display the current state of the routing table in summary form.</td>
</tr>
</tbody>
</table>
Enabling IP Unicast Routing

By default, the switch is in Layer 2 switching mode and IP routing is disabled. To use the Layer 3 capabilities of the switch, you must enable IP routing.

Beginning in privileged EXEC mode, follow these steps to enable IP routing:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 ip routing</td>
<td>Enable IP routing.</td>
</tr>
<tr>
<td>Step 3 router ip_routing_protocol</td>
<td>Specify an IP routing protocol. This step might include other commands, such as specifying the networks to route with the network (RIP) router configuration command. For information on specific protocols, refer to sections later in this chapter and to the Cisco IOS IP and IP Routing Configuration Guide for Release 12.1. Note The SMI supports only RIP as a routing protocol</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the no ip routing global configuration command to disable routing.

This example shows how to enable IP routing using RIP as the routing protocol:

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# ip routing
Switch(config)# router rip
Switch(config-router)# network 10.0.0.0
Switch(config-router)# end
```

You can now set up parameters for the selected routing protocols as described in these sections:

- Configuring RIP, page 26-20
- Configuring IGRP, page 26-25
- Configuring OSPF, page 26-30
- Configuring EIGRP, page 26-39

You can also configure nonprotocol-specific features:

- Configuring Protocol-Independent Features, page 26-45
Configuring RIP

The Routing Information Protocol (RIP) is an interior gateway protocol (IGP) created for use in small, homogeneous networks. It is a distance-vector routing protocol that uses broadcast User Datagram Protocol (UDP) data packets to exchange routing information. The protocol is documented in RFC 1058. You can find detailed information about RIP in *IP Routing Fundamentals*, published by Cisco Press.

Note

RIP is the only routing protocol supported by the SMI; other routing protocols require the master switch to be running the EMI.

Using RIP, the switch sends routing information updates (advertisements) every 30 seconds. If a router does not receive an update from another router for 180 seconds or more, it marks the routes served by that router as unusable. If there is still no update after 240 seconds, the router removes all routing table entries for the non-updating router.

RIP uses hop counts to rate the value of different routes. The hop count is the number of routers that can be traversed in a route. A directly connected network has a hop count of zero; a network with a hop count of 16 is unreachable. This small range (0 to 15) makes RIP unsuitable for large networks.

If the router has a default network path, RIP advertises a route that links the router to the pseudonetwork 0.0.0.0. The 0.0.0.0 network does not exist; it is treated by RIP as a network to implement the default routing feature. The switch advertises the default network if a default was learned by RIP or if the router has a gateway of last resort and RIP is configured with a default metric. RIP sends updates to the interfaces in specified networks. If an interface’s network is not specified, it is not advertised in any RIP update.

This section briefly describes how to configure RIP. It includes this information:

- Default RIP Configuration, page 26-20
- Configuring Basic RIP Parameters, page 26-21
- Configuring RIP Authentication, page 26-23
- Configuring Summary Addresses and Split Horizon, page 26-23

Default RIP Configuration

Table 26-4 shows the default RIP configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto summary</td>
<td>Enabled.</td>
</tr>
<tr>
<td>Default-information originate</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Default metric</td>
<td>Built-in; automatic metric translations.</td>
</tr>
<tr>
<td>IP RIP authentication key-chain</td>
<td>No authentication. Authentication mode: clear text.</td>
</tr>
<tr>
<td>IP RIP receive version</td>
<td>According to the version router configuration command.</td>
</tr>
<tr>
<td>IP RIP send version</td>
<td>According to the version router configuration command.</td>
</tr>
<tr>
<td>IP RIP triggered</td>
<td>According to the version router configuration command.</td>
</tr>
</tbody>
</table>
Configuring Basic RIP Parameters

To configure RIP, you enable RIP routing for a network and optionally configure other parameters.

Beginning in privileged EXEC mode, follow these steps to enable and configure RIP:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>ip routing</td>
<td>Enable IP routing. (Required only if IP routing is disabled.)</td>
</tr>
<tr>
<td>router rip</td>
<td>Enable a RIP routing process, and enter router configuration mode.</td>
</tr>
<tr>
<td>network network number</td>
<td>Associate a network with a RIP routing process. You can specify multiple</td>
</tr>
<tr>
<td></td>
<td>networks. RIP routing updates are sent and received through interfaces</td>
</tr>
<tr>
<td></td>
<td>only on these networks.</td>
</tr>
<tr>
<td>neighbor ip-address</td>
<td>(Optional) Define a neighboring router with which to exchange routing</td>
</tr>
<tr>
<td></td>
<td>information. This step allows routing updates from RIP (normally a</td>
</tr>
<tr>
<td></td>
<td>broadcast protocol) to reach nonbroadcast networks.</td>
</tr>
<tr>
<td>offset list [access-list number</td>
<td>name] {in</td>
</tr>
<tr>
<td></td>
<td>and outgoing metrics to routes learned through RIP. You can limit the</td>
</tr>
<tr>
<td></td>
<td>offset list with an access list or an interface.</td>
</tr>
</tbody>
</table>
Configuring RIP

To turn off the RIP routing process, use the `no router rip` global configuration command.

To display the parameters and current state of the active routing protocol process, use the `show ip protocols` privileged EXEC command. Use the `show ip rip database` privileged EXEC command to display summary address entries in the RIP database.

Table: Command Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 7 | timers basic update invalid holddown flush | (Optional) Adjust routing protocol timers. Valid ranges for all timers are 0 to 4294967295 seconds.
 - `update`—The time between sending routing updates. The default is 30 seconds.
 - `invalid`—The timer after which a route is declared invalid. The default is 180 seconds.
 - `holddown`—The time before a route is removed from the routing table. The default is 180 seconds.
 - `flush`—The amount of time for which routing updates are postponed. The default is 240 seconds. |
| 8 | version {1 | 2} | (Optional) Configure the switch to receive and send only RIP Version 1 or RIP version 2 packets. By default, the switch receives Version 1 and 2 but sends only Version 1. You can also use the interface commands `ip rip {send | receive} version 1 | 2 | 1 2` to control what versions are used for sending and receiving on interfaces. |
| 9 | no auto summary | (Optional) Disable automatic summarization. By default, the switch summarizes subprefixes when crossing classful network boundaries. Disable summarization (RIP version 2 only) to advertise subnet and host routing information to classful network boundaries. |
| 10 | no validate-update-source | (Optional) Disable validation of the source IP address of incoming RIP routing updates. By default, the switch validates the source IP address of incoming RIP routing updates and discards the update if the source address is not valid. Under normal circumstances, disabling this feature is not recommended. However, if you have a router that is off-network and you want to receive its updates, you can use this command. |
| 11 | output-delay delay | (Optional) Add interpacket delay for RIP updates sent. By default, packets in a multiple-packet RIP update have no delay added between packets. If you are sending packets to a lower-speed device, you can add an interpacket delay in the range of 8 to 50 milliseconds. |
| 12 | end | Return to privileged EXEC mode. |
| 13 | show ip protocols | Verify your entries. |
| 14 | copy running-config startup-config | (Optional) Save your entries in the configuration file. |
Configuring RIP Authentication

RIP version 1 does not support authentication. If you are sending and receiving RIP Version 2 packets, you can enable RIP authentication on an interface. The key chain determines the set of keys that can be used on the interface. If a key chain is not configured, no authentication is performed, not even the default. Therefore, you must also perform the tasks in the “Managing Authentication Keys” section on page 26-54.

The switch supports two modes of authentication on interfaces for which RIP authentication is enabled: plain text and MD5. The default is plain text.

Beginning in privileged EXEC mode, follow these steps to configure RIP authentication on an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>ip rip authentication key-chain name-of-chain</td>
</tr>
<tr>
<td>Step 4</td>
<td>ip rip authentication mode [text</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td>Step 6</td>
<td>show running-config interface [interface-id]</td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To restore clear text authentication, use the **no ip rip authentication mode** interface configuration command. To prevent authentication, use the **no ip rip authentication key-chain** interface configuration command.

Configuring Summary Addresses and Split Horizon

Routers connected to broadcast-type IP networks and using distance-vector routing protocols normally use the split-horizon mechanism to reduce the possibility of routing loops. Split horizon blocks information about routes from being advertised by a router on any interface from which that information originated. This feature usually optimizes communication among multiple routers, especially when links are broken.

Note

In general, disabling split horizon is not recommended unless you are certain that your application requires it to properly advertise routes.

If you want to configure an interface running RIP to advertise a summarized local IP address pool on a network access server for dial-up clients, use the **ip summary-address rip** interface configuration command.

Note

If split horizon is enabled, neither autosummary nor interface IP summary addresses are advertised.
Beginning in privileged EXEC mode, follow these steps to set an interface to advertise a summarized local IP address and to disable split horizon on the interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>ip address ip-address subnet-mask</td>
</tr>
<tr>
<td>Step 4</td>
<td>ip summary-address rip ip address ip-network mask</td>
</tr>
<tr>
<td>Step 5</td>
<td>no ip split horizon</td>
</tr>
<tr>
<td>Step 6</td>
<td>end</td>
</tr>
<tr>
<td>Step 7</td>
<td>show ip interface interface-id</td>
</tr>
<tr>
<td>Step 8</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To disable IP summarization, use the `no ip summary-address rip` router configuration command.

In this example, the major net is 10.0.0.0. The summary address 10.2.0.0 overrides the autosummary address of 10.0.0.0 so that 10.2.0.0 is advertised out interface Gigabit Ethernet 2 on switch 1, and 10.0.0.0 is not advertised. In the example, if the interface is still in Layer 2 mode (the default), you must enter a `no switchport` interface configuration command before entering the `ip address` interface configuration command.

Note: If split horizon is enabled, neither autosummary nor interface summary addresses (those configured with the `ip summary-address rip` router configuration command) are advertised.

```
Switch(config)# router rip
Switch(config-router)# interface gi1/0/2
Switch(config-if)# ip address 10.1.5.1 255.255.255.0
Switch(config-if)# ip summary-address rip 10.2.0.0 255.255.0.0
Switch(config-if)# no ip split-horizon
Switch(config-if)# exit
Switch(config)# router rip
Switch(config-router)# network 10.0.0.0
Switch(config-router)# neighbor 2.2.2.2 peer-group mygroup
Switch(config-router)# end
```
Configuring IGRP

Interior Gateway Routing Protocol (IGRP) is a dynamic, distance-vector routing, proprietary Cisco protocol for routing in an autonomous system (AS) that contains large, arbitrarily complex networks with diverse bandwidth and delay characteristics. IGRP uses a combination of user-configurable metrics, including internetwork delay, bandwidth, reliability, and load. IGRP also advertises types of routes: interior, system, and exterior, as shown in Figure 26-4.

- **Interior routes** are routes between subnets in the network attached to a router interface. If the network attached to a router is not subnetted, IGRP does not advertise interior routes.
- **System routes** are routes to networks within an autonomous system. The router derives system routes from directly connected network interfaces and system route information provided by other IGRP-speaking routers or access servers. System routes do not include subnet information.
- **Exterior routes** are routes to networks outside the AS that are considered when identifying a gateway of last resort. The router chooses a gateway of last resort from the list of exterior routes that IGRP provides if it does not have a better route for a packet and the destination is not a connected network. If the AS has more than one connection to an external network, different routers can choose different exterior routers as the gateway of last resort.

Figure 26-4 Interior, System, and Exterior Routes

By default, a router running IGRP sends an update broadcast every 90 seconds and declares a route inaccessible if it does not receive an update from the first router in the route within three update periods (270 seconds). After seven update periods (630 seconds), the route is removed from the routing table.

This section briefly describes how to configure IGRP. It includes this information:

- **Default IGRP Configuration**, page 26-26
- **Understanding Load Balancing and Traffic Distribution Control**, page 26-26
- **Configuring Basic IGRP Parameters**, page 26-27
- **Configuring Split Horizon**, page 26-29

Note

To enable IGRP, the stack master must be running the EMI.
Default IGRP Configuration

Table 26-5 shows the default IGRP configuration.

Table 26-5 Default IGRP Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP split horizon</td>
<td>Varies with media.</td>
</tr>
<tr>
<td>Metric holddown</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Metric maximum-hops</td>
<td>100 hops.</td>
</tr>
<tr>
<td>Neighbor</td>
<td>None defined.</td>
</tr>
<tr>
<td>Network</td>
<td>None specified.</td>
</tr>
<tr>
<td>Offset-list</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Set metric</td>
<td>None set in route map.</td>
</tr>
<tr>
<td>Timers basic</td>
<td>Update: 90 seconds.</td>
</tr>
<tr>
<td></td>
<td>Invalid: 270 seconds.</td>
</tr>
<tr>
<td></td>
<td>Hold-down: 280 seconds.</td>
</tr>
<tr>
<td></td>
<td>Flush: 630 seconds.</td>
</tr>
<tr>
<td></td>
<td>Sleeptime: 0 milliseconds.</td>
</tr>
<tr>
<td>Traffic-share</td>
<td>Distributed proportionately to the ratios of the metrics.</td>
</tr>
</tbody>
</table>

Routers running IGRP use flash and poison-reverse updates to speed up the convergence of the routing algorithm. Flash updates are updates sent before the standard interval, notifying other routers of a metric change. Poison-reverse updates are intended to defeat larger routing loops caused by increases in routing metrics. The poison-reverse updates are sent to remove a route and place it in hold-down, which keeps new routing information from being used for a certain period of time.

Understanding Load Balancing and Traffic Distribution Control

IGRP can simultaneously use an asymmetric set of paths for a given destination. This unequal-cost load balancing allows traffic to be distributed among up to four unequal-cost paths to provide greater overall throughput and reliability.

Alternate path variance (that is, the difference in desirability between the primary and alternate paths) determines the feasibility of a potential route. An alternate route is feasible if the next router in the path is closer to the destination (has a lower metric value) than the router being used, and if the metric for the entire alternate path is within the variance. Only feasible paths are used for load balancing and are included in the routing table. These conditions limit the number of load balancing occurrences, but ensure that the dynamics of the network remain stable.

These general rules apply to IGRP unequal-cost load balancing:

- IGRP accepts up to four paths for a given destination network.
- The local best metric must be greater than the metric learned from the next router; that is, the next hop router must be closer (have a smaller metric value) to the destination than the local best metric.
The alternative path metric must be within the specified variance of the local best metric. The multiplier times the local best metric for the destination must be greater than or equal to the metric through the next router.

If these conditions are met, the route is determined to be feasible and can be added to the routing table. By default, the amount of variance is set to one (equal-cost load balancing). Use the `variance` router configuration command to define how much worse an alternate path can be before that path is disallowed.

If variance is configured as described in the preceding section, IGRP or Enhanced IGRP distributes traffic among multiple routes of unequal cost to the same destination. If you want faster convergence to alternate routes, but you do not want to send traffic across inferior routes in the normal case, you might prefer to have no traffic flow along routes with higher metrics. Use the `traffic-share` router configuration command to control distribution of traffic among multiple routes of unequal cost.

Note For more information and examples, refer to the *Cisco IOS IP and IP Routing Configuration Guide for Release 12.1.*

Configuring Basic IGRP Parameters

Beginning in privileged EXEC mode, follow these steps to configure IGRP. Configuring the routing process is required; other steps are optional:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>router igrp autonomous-system</td>
</tr>
<tr>
<td>Step 3</td>
<td>network network-number</td>
</tr>
<tr>
<td>Step 4</td>
<td>offset list [access-list number</td>
</tr>
<tr>
<td>Step 5</td>
<td>neighbor ip-address</td>
</tr>
<tr>
<td>Step 6</td>
<td>metric weights tos k1 k2 k3 k4 k5</td>
</tr>
</tbody>
</table>

- `tos`—Type of services; the default is 0.
- `k1-k5`—Constants that convert a metric vector into a scalar quantity. Defaults for k1 and k3 are 1; all others are 0.
To shut down an IGRP routing process, use the `no router igrp` global configuration command.

Command Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 7 | **timers basic update invalid holddown flush [sleeptime]** | (Optional) Adjust routing protocol timers.
 - *update*—The time (in seconds) between sending of routing updates. The default is 90 seconds.
 - *invalid*—The timer interval (in seconds) after which a route is declared invalid. The default is 270 seconds.
 - *holddown*—The time (in seconds) during which routing information about better paths is suppressed. The default is 280 seconds.
 - *flush*—The time (in seconds) that must pass before a route is removed from the routing table. The default is 630 seconds.
 - *sleeptime*—Interval in milliseconds for postponing routing updates. The default is 0. |
| 8 | **no metric holddown** | (Optional) Disable the IGRP hold-down period. The route to a network is placed in holddown if the router learns that the network is farther away than previously known or is down. Holddown keeps new routing information from being used for a certain period of time. This can prevent routing loops caused by slow convergence. It is sometimes advantageous to disable holddown to increase the network's ability to quickly respond to topology changes; this command provides this function. Use the `metric holddown` command if other routers or access servers within the IGRP autonomous system are not configured with the `no metric holddown` command. If all routers are not configured the same way, you increase the possibility of routing loops. |
| 9 | **metric maximum-hops hops** | (Optional) Configure the maximum network diameter. Routes with hop counts exceeding this diameter are not advertised. The default is 100 hops; the maximum is 255 hops. |
| 10 | **no validate-update-source** | (Optional) Disable validation of the source IP address of incoming RIP routing updates. By default, the switch validates the source IP address of incoming RIP routing updates and discards the update if the source address is not valid. |
| 11 | **variance multiplier** | (Optional) Define the variance associated with a particular path to enable unequal-cost load balancing if desired, balancing traffic across all feasible paths to converge to a new path if a path should fail. The multiplier can be from 1 to 128; the default is 1 (equal-cost load balancing). |
| 12 | **traffic-share { balanced | min }** | (Optional) Distribute traffic by one of these methods:
 - *balanced*—Proportionately to the ratios of metrics
 - *min*—By the minimum-cost route. |
| 13 | **end** | Return to privileged EXEC mode. |
| 14 | **show ip protocols** | Verify your entries. |
| 15 | **copy running-config startup-config** | (Optional) Save your entries in the configuration file. |
This example shows how to configure a router for IGRP and assign it autonomous system 109. The `network` router configuration commands show the networks directly connected to the router.

```
Switch(config)# router igrp 109
Switch(config-router)# network 131.108.0.0
Switch(config-router)# network 192.31.7.0
```

Configuring Split Horizon

Routers connected to broadcast-type IP networks and using distance-vector routing protocols normally use the split-horizon mechanism to reduce the possibility of routing loops. Split horizon blocks information about routes from being advertised by a router on any interface from which that information originated. This feature can optimize communication among multiple routers, especially when links are broken.

Note

In general, we do not recommend disabling split horizon unless you are certain that your application requires it to properly advertise routes.

Beginning in privileged EXEC mode, follow these steps to disable split horizon on the interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface to configure.</td>
</tr>
<tr>
<td>Step 3 ip address ip-address subnet-mask</td>
<td>Configure the IP address and IP subnet.</td>
</tr>
<tr>
<td>Step 4 no ip split-horizon</td>
<td>Disable split horizon on the interface.</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6 show ip interface interface-id</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 7 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To enable the split horizon mechanism, use the **ip split-horizon** interface configuration command.
Configuring OSPF

This section briefly describes how to configure Open Shortest Path First (OSPF). For a complete description of the OSPF commands, refer to the “OSPF Commands” chapter of the Cisco IOS IP and IP Routing Command Reference for Release 12.1.

Note

OSPF classifies different media into broadcast, nonbroadcast, and point-to-point networks. The Catalyst 3750 switch supports broadcast (Ethernet, Token Ring, and FDDI) and point-to-point networks (Ethernet interfaces configured as point-to-point links).

OSPF is an Interior Gateway Protocol (IGP) designed expressly for IP networks, supporting IP subnetting and tagging of externally derived routing information. OSPF also allows packet authentication and uses IP multicast when sending and receiving packets. The Cisco implementation supports RFC 1253, OSPF management information base (MIB).

The Cisco implementation conforms to the OSPF Version 2 specifications with these key features:

- Definition of stub areas is supported.
- Routes learned through any IP routing protocol can be redistributed into another IP routing protocol. At the intradomain level, this means that OSPF can import routes learned through IGRP and RIP. OSPF routes can also be exported into IGRP and RIP.
- Plain text and MD5 authentication among neighboring routers within an area is supported.
- Configurable routing interface parameters include interface output cost, retransmission interval, interface transmit delay, router priority, router dead and hello intervals, and authentication key.
- Virtual links are supported.
- Not-so-stubby-areas (NSSAs) per RFC 1587 are supported.

OSPF typically requires coordination among many internal routers, area border routers (ABRs) connected to multiple areas, and autonomous system boundary routers (ASBRs). The minimum configuration would use all default parameter values, no authentication, and interfaces assigned to areas. If you customize your environment, you must ensure coordinated configuration of all routers.

This section briefly describes how to configure OSPF. It includes this information:

- Default OSPF Configuration, page 26-31
- Configuring Basic OSPF Parameters, page 26-32
- Configuring OSPF Interfaces, page 26-33
- Configuring OSPF Area Parameters, page 26-34
- Configuring Other OSPF Parameters, page 26-35
- Changing LSA Group Pacing, page 26-37
- Configuring a Loopback Interface, page 26-37
- Monitoring OSPF, page 26-38

Note

To enable OSPF, the stack master must be running the EMI.
Default OSPF Configuration

Table 26-6 shows the default OSPF configuration.

Table 26-6 Default OSPF Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface parameters</td>
<td>Cost: No default cost predefined.</td>
</tr>
<tr>
<td></td>
<td>Retransmit interval: 5 seconds.</td>
</tr>
<tr>
<td></td>
<td>Transmit delay: 1 second.</td>
</tr>
<tr>
<td></td>
<td>Priority: 1.</td>
</tr>
<tr>
<td></td>
<td>Hello interval: 10 seconds.</td>
</tr>
<tr>
<td></td>
<td>Dead interval: 4 times the hello interval.</td>
</tr>
<tr>
<td></td>
<td>No authentication.</td>
</tr>
<tr>
<td></td>
<td>No password specified.</td>
</tr>
<tr>
<td></td>
<td>MD5 authentication disabled.</td>
</tr>
<tr>
<td>Area</td>
<td>Authentication type: 0 (no authentication).</td>
</tr>
<tr>
<td></td>
<td>Default cost: 1.</td>
</tr>
<tr>
<td></td>
<td>Range: Disabled.</td>
</tr>
<tr>
<td></td>
<td>Stub: No stub area defined.</td>
</tr>
<tr>
<td></td>
<td>NSSA: No NSSA area defined.</td>
</tr>
<tr>
<td>Auto cost</td>
<td>100 Mbps.</td>
</tr>
<tr>
<td>Default-information originate</td>
<td>Disabled. When enabled, the default metric setting is 10, and the external route type default is Type 2.</td>
</tr>
<tr>
<td>Default metric</td>
<td>Built-in, automatic metric translation, as appropriate for each routing protocol.</td>
</tr>
<tr>
<td>Distance OSPF</td>
<td>dist1 (all routes within an area): 110.</td>
</tr>
<tr>
<td></td>
<td>dist2 (all routes from one area to another): 110.</td>
</tr>
<tr>
<td></td>
<td>and dist3 (routes from other routing domains): 110.</td>
</tr>
<tr>
<td>OSPF database filter</td>
<td>Disabled. All outgoing link-state advertisements (LSAs) are flooded to the interface.</td>
</tr>
<tr>
<td>IP OSPF name lookup</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Log adjacency changes</td>
<td>Enabled.</td>
</tr>
<tr>
<td>Neighbor</td>
<td>None specified.</td>
</tr>
<tr>
<td>Neighbor database filter</td>
<td>Disabled. All outgoing LSAs are flooded to the neighbor.</td>
</tr>
<tr>
<td>Network area</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Router ID</td>
<td>No OSPF routing process defined.</td>
</tr>
<tr>
<td>Summary address</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Timers LSA group pacing</td>
<td>240 seconds.</td>
</tr>
</tbody>
</table>
Configuring OSPF

Enabling OSPF requires that you create an OSPF routing process, specify the range of IP addresses to be associated with the routing process, and assign area IDs to be associated with that range.

Beginning in privileged EXEC mode, follow these steps to enable OSPF:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>router ospf process-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>network address wildcard-mask area area-id</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show ip protocols</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To terminate an OSPF routing process, use the no router ospf process-id global configuration command.

This example shows how to configure an OSPF routing process and assign it a process number of 109:

```
Switch(config)# router ospf 109
Switch(config-router)# network 131.108.0.0 255.255.255.0 area 24
```
Configuring OSPF Interfaces

You can use the `ip ospf` interface configuration commands to modify interface-specific OSPF parameters. You are not required to modify any of these parameters, but some interface parameters (hello interval, dead interval, and authentication key) must be consistent across all routers in an attached network. If you modify these parameters, be sure all routers in the network have compatible values.

Note

The `ip ospf` interface configuration commands are all optional.

Beginning in privileged EXEC mode, follow these steps to modify OSPF interface parameters:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>interface interface-id</code> Enter interface configuration mode, and specify the Layer 3 interface to configure.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>ip ospf cost</code> (Optional) Explicitly specify the cost of sending a packet on the interface.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>ip ospf retransmit-interval seconds</code> (Optional) Specify the number of seconds between link state advertisement transmissions. The range is 1 to 65535 seconds. The default is 5 seconds.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>ip ospf transmit-delay seconds</code> (Optional) Set the estimated number of seconds to wait before sending a link state update packet. The range is 1 to 65535 seconds. The default is 1 second.</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>ip ospf priority number</code> (Optional) Set priority to help determine the OSPF designated router for a network. The range is from 0 to 255. The default is 1.</td>
</tr>
<tr>
<td>Step 7</td>
<td><code>ip ospf hello-interval seconds</code> (Optional) Set the number of seconds between hello packets sent on an OSPF interface. The value must be the same for all nodes on a network. The range is 1 to 65535 seconds. The default is 10 seconds.</td>
</tr>
<tr>
<td>Step 8</td>
<td><code>ip ospf dead-interval seconds</code> (Optional) Set the number of seconds after the last device hello packet was seen before its neighbors declare the OSPF router to be down. The value must be the same for all nodes on a network. The range is 1 to 65535 seconds. The default is 4 times the hello interval.</td>
</tr>
<tr>
<td>Step 9</td>
<td><code>ip ospf authentication-key key</code> (Optional) Assign a password to be used by neighboring OSPF routers. The password can be any string of keyboard-entered characters up to 8 bytes in length. All neighboring routers on the same network must have the same password to exchange OSPF information.</td>
</tr>
</tbody>
</table>
| **Step 10** | `ip ospf message digest-key keyid md5 key` (Optional) Enable MDS authentication.
 - `keyid`—An identifier from 1 to 255.
 - `key`—An alphanumeric password of up to 16 bytes. |
| **Step 11** | `ip ospf database-filter all out` (Optional) Block flooding of OSPF LSA packets to the interface. By default, OSPF floods new LSAs over all interfaces in the same area, except the interface on which the LSA arrives. |
| **Step 12** | `end` Return to privileged EXEC mode. |
Configuring OSPF

You can optionally configure several OSPF area parameters. These parameters include authentication for password-based protection against unauthorized access to an area, stub areas, and not-so-stubby-areas (NSSAs). Stub areas are areas into which information on external routes is not sent. Instead, the area border router (ABR) generates a default external route into the stub area for destinations outside the autonomous system (AS). An NSSA does not flood all LSAs from the core into the area, but can import AS external routes within the area by redistribution.

Route summarization is the consolidation of advertised addresses into a single summary route to be advertised by other areas. If network numbers are contiguous, you can use the area range router configuration command to configure the ABR to advertise a summary route that covers all networks in the range.

Note
The OSPF area router configuration commands are all optional.

Beginning in privileged EXEC mode, follow these steps to configure area parameters:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>router ospf process-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>area area-id authentication</td>
</tr>
<tr>
<td>Step 4</td>
<td>area area-id authentication message-digest</td>
</tr>
<tr>
<td>Step 5</td>
<td>area area-id stub [no-summary]</td>
</tr>
<tr>
<td>Step 6</td>
<td>area area-id nssa [no-redistribution] [default-information-originate] [no-summary]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Configuring OSPF Parameters

You can optionally configure other OSPF parameters in router configuration mode.

- **Route summarization:** When redistributing routes from other protocols as described in the “Using Route Maps to Redistribute Routing Information” section on page 26-49, each route is advertised individually in an external LSA. To help decrease the size of the OSPF link state database, you can use the `summary-address` router configuration command to advertise a single router for all the redistributed routes included in a specified network address and mask.

- **Virtual links:** In OSPF, all areas must be connected to a backbone area. You can establish a virtual link in case of a backbone-continuity break by configuring two Area Border Routers as endpoints of a virtual link. Configuration information includes the identity of the other virtual endpoint (the other ABR) and the nonbackbone link that the two routers have in common (the transit area). Virtual links cannot be configured through a stub area.

- **Default route:** When you specifically configure redistribution of routes into an OSPF routing domain, the route automatically becomes an autonomous system boundary router (ASBR). You can force the ASBR to generate a default route into the OSPF routing domain.

- **Domain Name Server (DNS) names for use in all OSPF `show` privileged EXEC command displays makes it easier to identify a router than displaying it by router ID or neighbor ID.**

- **Default Metrics:** OSPF calculates the OSPF metric for an interface according to the bandwidth of the interface. The metric is calculated as `ref-bw` divided by bandwidth, where `ref` is 10 by default, and bandwidth (`bw`) is determined by the `bandwidth` interface configuration command. For multiple links with high bandwidth, you can specify a larger number to differentiate the cost on those links.

- **Administrative distance:** is a rating of the trustworthiness of a routing information source, an integer between 0 and 255, with a higher value meaning a lower trust rating. An administrative distance of 255 means the routing information source cannot be trusted at all and should be ignored. OSPF uses three different administrative distances: routes within an area (interarea), routes to another area (interarea), and routes from another routing domain learned through redistribution (external). You can change any of the distance values.

- **Passive interfaces:** Because interfaces between two devices on an Ethernet represent only one network segment, to prevent OSPF from sending hello packets for the sending interface, you must configure the sending device to be a passive interface. Both devices can identify each other through the hello packet for the receiving interface.

Configuring Other OSPF Parameters

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>area area-id range address mask</td>
<td>(Optional) Specify an address range for which a single route is advertised. Use this command only with area border routers.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show ip ospf [process-id]</td>
<td>Display information about the OSPF routing process in general or for a specific process ID to verify configuration.</td>
</tr>
<tr>
<td>show ip ospf [process-id [area-id]] database</td>
<td>Display lists of information related to the OSPF database for a specific router.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the `no` form of these commands to remove the configured parameter value or to return to the default value.
Route calculation timers: You can configure the delay time between when OSPF receives a topology change and when it starts the shortest path first (SPF) calculation and the hold time between two SPF calculations.

Log neighbor changes: You can configure the router to send a syslog message when an OSPF neighbor state changes, providing a high-level view of changes in the router.

Beginning in privileged EXEC mode, follow these steps to configure these OSPF parameters:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>router ospf process-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>summary-address address mask</td>
</tr>
<tr>
<td>Step 4</td>
<td>area area-id virtual-link router-id [hello-interval seconds] [retransmit-interval seconds] [trans] [[authentication-key key] [message-digest-key keyid md5 key]]</td>
</tr>
<tr>
<td>Step 5</td>
<td>default-information originate [always] [metric metric-value] [metric-type type-value] [route-map map-name]</td>
</tr>
<tr>
<td>Step 6</td>
<td>ip ospf name-lookup</td>
</tr>
<tr>
<td>Step 7</td>
<td>ip auto-cost reference-bandwidth ref-bw</td>
</tr>
<tr>
<td>Step 8</td>
<td>distance ospf [inter-area dist1] [inter-area dist2] [external dist3]</td>
</tr>
<tr>
<td>Step 9</td>
<td>passive-interface type number</td>
</tr>
<tr>
<td>Step 10</td>
<td>timers spf spf-delay spf-holdtime</td>
</tr>
<tr>
<td>Step 11</td>
<td>ospf log-adj-changes</td>
</tr>
<tr>
<td>Step 12</td>
<td>end</td>
</tr>
<tr>
<td>Step 13</td>
<td>show ip ospf [process-id [area-id]] database</td>
</tr>
<tr>
<td>Step 14</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>
Changing LSA Group Pacing

The OSPF LSA group pacing feature allows the router to group OSPF LSAs and pace the refreshing, check-summing, and aging functions for more efficient router use. This feature is enabled by default with a 4-minute default pacing interval, and you will not usually need to modify this parameter. The optimum group pacing interval is inversely proportional to the number of LSAs the router is refreshing, check-summing, and aging. For example, if you have approximately 10,000 LSAs in the database, decreasing the pacing interval would benefit you. If you have a very small database (40 to 100 LSAs), increasing the pacing interval to 10 to 20 minutes might benefit you slightly.

Beginning in privileged EXEC mode, follow these steps to configure OSPF LSA pacing:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 router ospf process-id</td>
<td>Enable OSPF routing, and enter router configuration mode.</td>
</tr>
<tr>
<td>Step 3 timers lsa-group-pacing seconds</td>
<td>Change the group pacing of LSAs.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default value, use the no timers lsa-group-pacing router configuration command.

Configuring a Loopback Interface

OSPF uses the highest IP address configured on the interfaces as its router ID. If this interface is down or removed, the OSPF process must recalculate a new router ID and resend all its routing information out its interfaces. If a loopback interface is configured with an IP address, OSPF uses this IP address as its router ID, even if other interfaces have higher IP addresses. Because loopback interfaces never fail, this provides greater stability. OSPF automatically prefers a loopback interface over other interfaces, and it chooses the highest IP address among all loopback interfaces.

Beginning in privileged EXEC mode, follow these steps to configure a loopback interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface loopback 0</td>
<td>Create a loopback interface, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3 ip address address mask</td>
<td>Assign an IP address to this interface.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show ip interface</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the no interface loopback 0 global configuration command to disable the loopback interface.
Monitoring OSPF

You can display specific statistics such as the contents of IP routing tables, caches, and databases.

Table 26-7 lists some of the privileged EXEC commands for displaying statistics. For more show ip ospf database privileged EXEC command options and for explanations of fields in the resulting display, refer to the Cisco IOS IP and IP Routing Command Reference for Release 12.1.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip ospf [process-id] database [router] [link-state-id]</td>
<td>Display lists of information related to the OSPF database.</td>
</tr>
<tr>
<td>show ip ospf [process-id] database [router] [self-originate]</td>
<td></td>
</tr>
<tr>
<td>show ip ospf [process-id] database [router] [adv-router [ip-address]]</td>
<td></td>
</tr>
<tr>
<td>show ip ospf [process-id] database [network] [link-state-id]</td>
<td></td>
</tr>
<tr>
<td>show ip ospf [process-id] database [summary] [link-state-id]</td>
<td></td>
</tr>
<tr>
<td>show ip ospf [process-id] database [asbr-summary] [link-state-id]</td>
<td></td>
</tr>
<tr>
<td>show ip ospf [process-id] database [external] [link-state-id]</td>
<td></td>
</tr>
<tr>
<td>show ip ospf [process-id area-id] database [database-summary]</td>
<td></td>
</tr>
<tr>
<td>show ip ospf border-routes</td>
<td>Display the internal OSPF routing ABR and ASBR table entries.</td>
</tr>
<tr>
<td>show ip ospf interface [interface-name]</td>
<td>Display OSPF-related interface information.</td>
</tr>
<tr>
<td>show ip ospf neighbor [interface-name] [neighbor-id] detail</td>
<td>Display OSPF interface neighbor information.</td>
</tr>
<tr>
<td>show ip ospf virtual-links</td>
<td>Display OSPF-related virtual links information.</td>
</tr>
</tbody>
</table>
Configuring EIGRP

Enhanced IGRP (EIGRP) is a Cisco proprietary enhanced version of the IGRP. Enhanced IGRP uses the same distance vector algorithm and distance information as IGRP; however, the convergence properties and the operating efficiency of Enhanced IGRP are significantly improved.

The convergence technology employs an algorithm referred to as the Diffusing Update Algorithm (DUAL), which guarantees loop-free operation at every instant throughout a route computation and allows all devices involved in a topology change to synchronize at the same time. Routers that are not affected by topology changes are not involved in recomputations.

IP EIGRP provides increased network width. With RIP, the largest possible width of your network is 15 hops. When IGRP is enabled, the largest possible width is 224 hops. Because the EIGRP metric is large enough to support thousands of hops, the only barrier to expanding the network is the transport-layer hop counter. EIGRP increments the transport control field only when an IP packet has traversed 15 routers and the next hop to the destination was learned through EIGRP. When a RIP route is used as the next hop to the destination, the transport control field is incremented as usual.

EIGRP offers these features:

- Fast convergence.
- Incremental updates when the state of a destination changes, instead of sending the entire contents of the routing table, minimizing the bandwidth required for EIGRP packets.
- Less CPU usage than IGRP because full update packets need not be processed each time they are received.
- Protocol-independent neighbor discovery mechanism to learn about neighboring routers.
- Variable-length subnet masks (VLSMs).
- Arbitrary route summarization.
- EIGRP scales to large networks.

Enhanced IGRP has these four basic components:

- **Neighbor discovery and recovery** is the process that routers use to dynamically learn of other routers on their directly attached networks. Routers must also discover when their neighbors become unreachable or inoperative. Neighbor discovery and recovery is achieved with low overhead by periodically sending small hello packets. As long as hello packets are received, the Cisco IOS software can determine that a neighbor is alive and functioning. When this status is determined, the neighboring routers can exchange routing information.

- **The reliable transport protocol** is responsible for guaranteed, ordered delivery of EIGRP packets to all neighbors. It supports intermixed transmission of multicast and unicast packets. Some EIGRP packets must be sent reliably, and others need not be. For efficiency, reliability is provided only when necessary. For example, on a multiaccess network that has multicast capabilities (such as Ethernet), it is not necessary to send hellos reliably to all neighbors individually. Therefore, EIGRP sends a single multicast hello with an indication in the packet informing the receivers that the packet need not be acknowledged. Other types of packets (such as updates) require acknowledgment, which is shown in the packet. The reliable transport has a provision to send multicast packets quickly when there are unacknowledged packets pending. Doing so helps ensure that convergence time remains low in the presence of varying speed links.

- **The DUAL finite state machine** embodies the decision process for all route computations. It tracks all routes advertised by all neighbors. DUAL uses the distance information (known as a metric) to select efficient, loop-free paths. DUAL selects routes to be inserted into a routing table based on feasible successors. A successor is a neighboring router used for packet forwarding that has a least-cost path to a destination that is guaranteed not to be part of a routing loop. When there are no
feasible successors, but there are neighbors advertising the destination, a recomputation must occur. This is the process whereby a new successor is determined. The amount of time it takes to recompute the route affects the convergence time. recomputation is processor-intensive; it is advantageous to avoid recomputation if it is not necessary. When a topology change occurs, DUAL tests for feasible successors. If there are feasible successors, it uses any it finds to avoid unnecessary recomputation.

• The protocol-dependent modules are responsible for network layer protocol-specific tasks. An example is the IP EIGRP module, which is responsible for sending and receiving EIGRP packets that are encapsulated in IP. It is also responsible for parsing EIGRP packets and informing DUAL of the new information received. EIGRP asks DUAL to make routing decisions, but the results are stored in the IP routing table. EIGRP is also responsible for redistributing routes learned by other IP routing protocols.

This section briefly describes how to configure EIGRP. It includes this information:
• Default EIGRP Configuration, page 26-40
• Configuring Basic EIGRP Parameters, page 26-41
• Configuring EIGRP Interfaces, page 26-42
• Configuring EIGRP Route Authentication, page 26-43
• Monitoring and Maintaining EIGRP, page 26-44

Note
To enable EIGRP, the stack master must be running the EMI.

Default EIGRP Configuration

Table 26-8 shows the default EIGRP configuration.

Table 26-8 Default EIGRP Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto summary</td>
<td>Enabled. Subprefixes are summarized to the classful network boundary when crossing classful network boundaries.</td>
</tr>
<tr>
<td>Default-information</td>
<td>Exterior routes are accepted and default information is passed between IGRP or EIGRP processes when doing redistribution.</td>
</tr>
<tr>
<td>Default metric</td>
<td>Only connected routes and interface static routes can be redistributed without a default metric. The metric includes:</td>
</tr>
<tr>
<td></td>
<td>• Bandwidth: 0 or greater kbps.</td>
</tr>
<tr>
<td></td>
<td>• Delay (tens of microseconds): 0 or any positive number that is a multiple of 39.1 nanoseconds.</td>
</tr>
<tr>
<td></td>
<td>• Reliability: any number between 0 and 255 (255 means 100 percent reliability).</td>
</tr>
<tr>
<td></td>
<td>• Loading: effective bandwidth as a number between 0 and 255 (255 is 100 percent loading).</td>
</tr>
<tr>
<td></td>
<td>• MTU: maximum transmission unit size of the route in bytes. 0 or any positive integer.</td>
</tr>
</tbody>
</table>
To create an EIGRP routing process, you must enable EIGRP and associate networks. EIGRP sends updates to the interfaces in the specified networks. If you do not specify an interface network, it is not advertised in any EIGRP update.

Note
If you have routers on your network that are configured for IGRP, and you want to change to EIGRP, you must designate transition routers that have both IGRP and EIGRP configured. In these cases, perform Steps 1 through 3 in the next section and also see the “Configuring IGRP” section on page 26-25. You must use the same AS number for routes to be automatically redistributed.

Configuring Basic EIGRP Parameters

Beginning in privileged EXEC mode, follow these steps to configure EIGRP. Configuring the routing process is required; other steps are optional:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Step 2</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure</td>
<td>router eigrp autonomous-system</td>
<td>Enable an EIGRP routing process, and enter router configuration mode. The AS number identifies the routes to other EIGRP routers and is used to tag routing information.</td>
</tr>
<tr>
<td></td>
<td>terminal</td>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
Chapter 26 Configuring IP Unicast Routing

Configuring EIGRP

Use the no forms of these commands to disable the feature or return the setting to the default value.

Configuring EIGRP Interfaces

Other optional EIGRP parameters can be configured on an interface basis.

Beginning in privileged EXEC mode, follow these steps to configure EIGRP interfaces:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id Enter interface configuration mode, and specify the Layer 3 interface to configure.</td>
</tr>
<tr>
<td>Step 3</td>
<td>ip bandwidth-percent eigrp percent (Optional) Configure the percentage of bandwidth that can be used by EIGRP on an interface. The default is 50 percent.</td>
</tr>
<tr>
<td>Step 4</td>
<td>ip summary-address eigrp autonomous-system-number address mask (Optional) Configure a summary aggregate address for a specified interface (not usually necessary if auto-summary is enabled).</td>
</tr>
</tbody>
</table>
Configuring EIGRP

Use the **no** forms of these commands to disable the feature or return the setting to the default value.

Configuring EIGRP Route Authentication

EIGRP route authentication provides MD5 authentication of routing updates from the EIGRP routing protocol to prevent the introduction of unauthorized or false routing messages from unapproved sources.

Beginning in privileged EXEC mode, follow these steps to enable authentication:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Enter interface configuration mode, and specify the Layer 3 interface to configure.</td>
</tr>
<tr>
<td>Step 3 ip authentication mode eigrp autonomous-system md5</td>
<td>Enable MD5 authentication in IP EIGRP packets.</td>
</tr>
<tr>
<td>Step 4 ip authentication key-chain eigrp autonomous-system key-chain</td>
<td>Enable authentication of IP EIGRP packets.</td>
</tr>
<tr>
<td>Step 5 exit</td>
<td>Return to global configuration mode.</td>
</tr>
<tr>
<td>Step 6 key chain name-of-chain</td>
<td>Identify a key chain and enter key-chain configuration mode. Match the name configured in Step 4.</td>
</tr>
<tr>
<td>Step 7 key number</td>
<td>In key-chain configuration mode, identify the key number.</td>
</tr>
<tr>
<td>Step 8 key-string text</td>
<td>In key-chain key configuration mode, identify the key string.</td>
</tr>
</tbody>
</table>

Step 5

```
no ip hello-interval eigrp autonomous-system-number seconds
```

(Optional) Change the hello time interval for an EIGRP routing process. The range is 1 to 65535 seconds. The default is 60 seconds for low-speed NBMA networks and 5 seconds for all other networks.

Step 6

```
o ip hold-time eigrp autonomous-system-number seconds
```

(Optional) Change the hold time interval for an EIGRP routing process. The range is 1 to 65535 seconds. The default is 180 seconds for low-speed NBMA networks and 15 seconds for all other networks.

⚠️ **Caution**

Do not adjust the hold time without consulting Cisco technical support.

Step 7

```
no ip split-horizon eigrp autonomous-system-number
```

(Optional) Disable split horizon to allow route information to be advertised by a router out any interface from which that information originated.

Step 8

```
end
```

Return to privileged EXEC mode.

Step 9

```
show ip eigrp interface
```

Display which interfaces EIGRP is active on and information about EIGRP relating to those interfaces.

Step 10

```
copy running-config startup-config
```

(Optional) Save your entries in the configuration file.
Chapter 26 Configuring IP Unicast Routing

Use the no forms of these commands to disable the feature or to return the setting to the default value.

Monitoring and Maintaining EIGRP

You can delete neighbors from the neighbor table. You can also display various EIGRP routing statistics. Table 26-9 lists the privileged EXEC commands for deleting neighbors and displaying statistics. For explanations of fields in the resulting display, refer to the Cisco IOS IP and IP Routing Command Reference for Release 12.1.

Table 26-9 IP EIGRP Clear and Show Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear ip eigrp neighbors</td>
<td>[if-address</td>
</tr>
<tr>
<td>show ip eigrp interface</td>
<td>[interface] [as number] Display information about interfaces configured for EIGRP.</td>
</tr>
<tr>
<td>show ip eigrp neighbors</td>
<td>[type-number] Display EIGRP discovered neighbors.</td>
</tr>
<tr>
<td>show ip eigrp topology</td>
<td>[autonomous-system-number]</td>
</tr>
<tr>
<td>show ip eigrp traffic</td>
<td>[autonomous-system-number] Display the number of packets sent and received for all or a specified EIGRP process.</td>
</tr>
</tbody>
</table>
Configuring Protocol-Independent Features

This section describes how to configure IP routing protocol-independent features. These features are available on switches running the SMI or the EMI; except that with the SMI, protocol-related features are available only for RIP. For a complete description of the IP routing protocol-independent commands in this chapter, refer to the “IP Routing Protocol-Independent Commands” chapter of the Cisco IOS IP and IP Routing Command Reference for Release 12.1.

This section includes these procedures:

- Configuring Distributed Cisco Express Forwarding, page 26-45
- Configuring the Number of Equal-Cost Routing Paths, page 26-46
- Configuring Static Routes, page 26-47
- Specifying Default Routes and Networks, page 26-48
- Using Route Maps to Redistribute Routing Information, page 26-49
- Filtering Routing Information, page 26-52
- Managing Authentication Keys, page 26-54

Configuring Distributed Cisco Express Forwarding

Cisco Express Forwarding (CEF) is a Layer 3 IP switching technology used to optimize network performance. CEF implements an advanced IP look-up and forwarding algorithm to deliver maximum Layer 3 switching performance. CEF is less CPU-intensive than fast switching route caching, allowing more CPU processing power to be dedicated to packet forwarding. In a Catalyst 3750 switch stack, the hardware uses distributed CEF (dCEF) to achieve Gigabit-speed line rate IP traffic for each switch in the stack. In dynamic networks, fast switching cache entries are frequently invalidated because of routing changes, which can cause traffic to be process switched using the routing table, instead of fast switched using the route cache. CEF and dCEF use the Forwarding Information Base (FIB) lookup table to perform destination-based switching of IP packets.

The two main components in dCEF are the distributed FIB and the distributed adjacency tables.

- The FIB is similar to a routing table or information base and maintains a mirror image of the forwarding information in the IP routing table. When routing or topology changes occur in the network, the IP routing table is updated, and those changes are reflected in the FIB. The FIB maintains next-hop address information based on the information in the IP routing table. Because the FIB contains all known routes that exist in the routing table, CEF eliminates route cache maintenance, is more efficient for switching traffic, and is not affected by traffic patterns.

- Nodes in the network are said to be adjacent if they can reach each other with a single hop across a link layer. CEF uses adjacency tables to prepend Layer 2 addressing information. The adjacency table maintains Layer 2 next-hop addresses for all FIB entries.

Distributed CEF is enabled globally by default. If for some reason it is disabled, you can re-enable it by using the `ip cef distributed` global configuration command.

The default configuration is dCEF enabled on all Layer 3 interfaces.

⚠️ **Caution** Although the `no ip route-cache cef` interface configuration command to disable CEF on an interface is visible in the CLI, we strongly recommend that you do not disable dCEF on interfaces.
Beginning in privileged EXEC mode, follow these steps to enable dCEF globally and on an interface in case, if, for some reason, it has been disabled:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 1 ip cef distributed</td>
<td>Enable dCEF operation.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Enter interface configuration mode, and specify the Layer 3 interface to configure.</td>
</tr>
<tr>
<td>Step 3 ip route-cache cef</td>
<td>Enable CEF on the interface.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show ip cef</td>
<td>Display the CEF status on all interfaces.</td>
</tr>
<tr>
<td>Step 6 show cef linecard</td>
<td>Display CEF-related interface information by stack member for all switches in the stack or for the specified switch. (Optional) For slot-number, enter the stack member switch number.</td>
</tr>
<tr>
<td>Step 7 show cef interface</td>
<td>Display detailed CEF information for all interfaces or the specified interface.</td>
</tr>
<tr>
<td>Step 8 show adjacency</td>
<td>Display CEF adjacency table information.</td>
</tr>
<tr>
<td>Step 9 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Configuring the Number of Equal-Cost Routing Paths

When a router has two or more routes to the same network with the same metrics, these routes can be thought of as having an equal cost. The term *parallel path* is another way to refer to occurrences of equal-cost routes in a routing table. If a router has two or more equal-cost paths to a network, it can use them concurrently. Parallel paths provide redundancy in case of a circuit failure and also enable a router to load balance packets over the available paths for more efficient use of available bandwidth. Equal-cost routes are supported across switches in a stack.

Although the router automatically learns about and configures equal-cost routes, you can control the maximum number of parallel paths supported by an IP routing protocol in its routing table.

Beginning in privileged EXEC mode, follow these steps to change the maximum number of parallel paths installed in a routing table from the default:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 router [rip</td>
<td>ospf</td>
</tr>
<tr>
<td>Step 3 maximum-paths maximum</td>
<td>Set the maximum number of parallel paths for the protocol routing table. The range is from 1 to 8; the default is 4.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show ip protocols</td>
<td>Verify the setting in the Maximum path field.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the no maximum-paths router configuration command to restore the default value.
Configuring Static Routes

Static unicast routes are user-defined routes that cause packets moving between a source and a destination to take a specified path. Static routes can be important if the router cannot build a route to a particular destination and are useful for specifying a gateway of last resort to which all unroutable packets are sent.

Beginning in privileged EXEC mode, follow these steps to configure a static route:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip route prefix mask { address</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show ip route</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

Use the **no ip route prefix mask \{ address | interface \}** global configuration command to remove a static route.

The switch retains static routes until you remove them. However, you can override static routes with dynamic routing information by assigning administrative distance values. Each dynamic routing protocol has a default administrative distance, as listed in Table 26-10. If you want a static route to be overridden by information from a dynamic routing protocol, set the administrative distance of the static route higher than that of the dynamic protocol.

<table>
<thead>
<tr>
<th>Route Source</th>
<th>Default Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connected interface</td>
<td>0</td>
</tr>
<tr>
<td>Static route</td>
<td>1</td>
</tr>
<tr>
<td>Enhanced IRGP summary route</td>
<td>5</td>
</tr>
<tr>
<td>Internal Enhanced IGRP</td>
<td>90</td>
</tr>
<tr>
<td>IGRP</td>
<td>100</td>
</tr>
<tr>
<td>OSPF</td>
<td>110</td>
</tr>
<tr>
<td>RIP</td>
<td>120</td>
</tr>
<tr>
<td>Unknown</td>
<td>225</td>
</tr>
</tbody>
</table>

Static routes that point to an interface are advertised through RIP, IGRP, and other dynamic routing protocols, whether or not static **redistribute** router configuration commands were specified for those routing protocols. These static routes are advertised because static routes that point to an interface are considered in the routing table to be connected and hence lose their static nature. However, if you define a static route to an interface that is not one of the networks defined in a network command, no dynamic routing protocols advertise the route unless a **redistribute** static command is specified for these protocols.
When an interface goes down, all static routes through that interface are removed from the IP routing table. When the software can no longer find a valid next hop for the address specified as the forwarding router's address in a static route, the static route is also removed from the IP routing table.

Specifying Default Routes and Networks

A router might not be able to determine the routes to all other networks. To provide complete routing capability, you can use some routers as smart routers and give the remaining routers default routes to the smart router. (Smart routers have routing table information for the entire internetwork.) These default routes can be dynamically learned or can be configured in the individual routers. Most dynamic interior routing protocols include a mechanism for causing a smart router to generate dynamic default information that is then forwarded to other routers.

If a router has a directly connected interface to the specified default network, the dynamic routing protocols running on that device generate a default route. In RIP, it advertises the pseudonetwork 0.0.0.0. In IGRP, the network itself is advertised and flagged as an exterior route.

A router that is generating the default for a network also might need a default of its own. One way a router can generate its own default is to specify a static route to the network 0.0.0.0 through the appropriate device.

Beginning in privileged EXEC mode, follow these steps to define a static route to a network as the static default route:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip default-network network number</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show ip route</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

Use the **no ip default-network network number** global configuration command to remove the route.

When default information is passed through a dynamic routing protocol, no further configuration is required. The system periodically scans its routing table to choose the optimal default network as its default route. In IGRP networks, there might be several candidate networks for the system default. Cisco routers use administrative distance and metric information to determine the default route or the gateway of last resort.

If dynamic default information is not being passed to the system, candidates for the default route are specified with the **ip default-network** global configuration command. If this network appears in the routing table from any source, it is flagged as a possible choice for the default route. If the router has no interface on the default network, but does have a path to it, the network is considered as a possible candidate, and the gateway to the best default path becomes the gateway of last resort.
Using Route Maps to Redistribute Routing Information

The switch can run multiple routing protocols simultaneously, and it can redistribute information from one routing protocol to another. For example, you can instruct the switch to readvertise IGRP-derived routes by using RIP or to readvertise static routes by using IGRP. Redistributing information from one routing protocol to another applies to all supported IP-based routing protocols.

You can also conditionally control the redistribution of routes between routing domains by defining route maps between the two domains. The `match` and `set` route-map configuration commands define the condition portion of a route map. The `match` command specifies that a criterion must be matched; the `set` command specifies an action to be taken if the routing update meets the conditions defined by the `match` command. Although redistribution is a protocol-independent feature, some of the `match` and `set` route-map configuration commands are specific to a particular protocol.

One or more `match` commands and one or more `set` commands follow a `route-map` command. If there are no `match` commands, everything matches. If there are no `set` commands, nothing is done, other than the match. Therefore, you need at least one `match` or `set` command.

Note

Although each of Steps 3 through 14 in the following section is optional, you must enter at least one `match` route-map configuration command and one `set` route-map configuration command.

Beginning in privileged EXEC mode, follow these steps to configure a route map for redistribution:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>`route-map map-tag [permit</td>
<td>deny] [sequence number]`</td>
</tr>
<tr>
<td>3</td>
<td>`match ip address {access-list-number</td>
<td>access-list-name} [...access-list-number</td>
</tr>
<tr>
<td>4</td>
<td><code>match metric metric-value</code></td>
<td>Match the specified route metric. The <code>metric-value</code> can be an IGRP five-part metric with a specified value from 0 to 4294967295.</td>
</tr>
<tr>
<td>5</td>
<td>`match ip next-hop {access-list-number</td>
<td>access-list-name} [...access-list-number</td>
</tr>
</tbody>
</table>
Chapter 26 Configuring IP Unicast Routing

Configuring Protocol-Independent Features

#### Command	Purpose
Step 6
match tag *tag value* [...*tag-value*]
match tag *tag value* [...*tag-value*]
match interface *type number* [...*type number*]
match ip route-source { *access-list-number* | *access-list-name* } [...*access-list-number* | [...*access-list-name*]
match route-type { *internal* | *external* [*type-1* | *type-2*] }
set level { *level-1* | *level-2* | *level-1-2* | *stub-area* | *backbone* }
set metric *metric value*
set metric *bandwidth delay reliability loading mtu*
set metric-type { *type-1* | *type-2* }
end
show route-map
copy running-config startup-config

To delete an entry, use the **no route-map** *map tag* global configuration command or the **no match** or **no set** route-map configuration commands.
You can distribute routes from one routing domain into another and control route distribution.

Beginning in privileged EXEC mode, follow these steps to control route redistribution. Note that the keywords are the same as defined in the previous procedure.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>router {rip</td>
<td>ospf</td>
</tr>
<tr>
<td>Step 3</td>
<td>redistribute protocol [process-id] {level-1</td>
<td>level-1-2</td>
</tr>
<tr>
<td>Step 4</td>
<td>default-metric number</td>
<td>Cause the current routing protocol to use the same metric value for all redistributed routes (RIP and OSPF).</td>
</tr>
<tr>
<td>Step 5</td>
<td>default-metric bandwidth delay reliability loading mtu</td>
<td>Cause the IGRP or EIGRP routing protocol to use the same metric value for all non-IGRP redistributed routes.</td>
</tr>
<tr>
<td>Step 6</td>
<td>no default-information [in</td>
<td>out]</td>
</tr>
<tr>
<td>Step 7</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 8</td>
<td>show route-map</td>
<td>Display all route maps configured or only the one specified to verify configuration.</td>
</tr>
<tr>
<td>Step 9</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable redistribution, use the no form of the commands.

The metrics of one routing protocol do not necessarily translate into the metrics of another. For example, the RIP metric is a hop count, and the IGRP metric is a combination of five qualities. In these situations, an artificial metric is assigned to the redistributed route. Uncontrolled exchanging of routing information between different routing protocols can create routing loops and seriously degrade network operation.

If you have not defined a default redistribution metric that replaces metric conversion, some automatic metric translations occur between routing protocols:

- RIP can automatically redistribute static routes. It assigns static routes a metric of 1 (directly connected).
- IGRP can automatically redistribute static routes and information from other IGRP-routed autonomous systems. IGRP assigns static routes a metric that identifies them as directly connected. It does not change the metrics of routes derived from IGRP updates from other autonomous systems.
- Any protocol can redistribute other routing protocols if a default mode is in effect.
Filtering Routing Information

You can filter routing protocol information by performing the tasks described in this section.

Note When routes are redistributed between OSPF processes, no OSPF metrics are preserved.

Setting Passive Interfaces

To prevent other routers on a local network from dynamically learning about routes, you can use the `passive-interface` router configuration command to keep routing update messages from being sent through a router interface. When you use this command in the OSPF protocol, the interface address you specify as passive appears as a stub network in the OSPF domain. OSPF routing information is neither sent nor received through the specified router interface.

In networks with many interfaces, to avoid having to manually set them as passive, you can set all interfaces to be passive by default by using the `passive-interface default` router configuration command and manually setting interfaces where adjacencies are desired.

Beginning in privileged EXEC mode, follow these steps to configure passive interfaces:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>`router {rip</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>passive-interface interface-id</code> Suppress sending routing updates through the specified Layer 3 interface.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>passive-interface default</code> (Optional) Set all interfaces as passive by default.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>no passive-interface interface type</code> (Optional) Activate only those interfaces that need to have adjacencies sent.</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>network network-address</code> (Optional) Specify the list of networks for the routing process. The <code>network-address</code> is an IP address.</td>
</tr>
<tr>
<td>Step 7</td>
<td><code>end</code> Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 8</td>
<td><code>copy running-config startup-config</code> (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use a network monitoring privileged EXEC command such as `show ip ospf interface` to verify the interfaces that you enabled as passive, or use the `show ip interface` privileged EXEC command to verify the interfaces that you enabled as active.

To re-enable the sending of routing updates, use the `no passive-interface interface-id` router configuration command. The `default` keyword sets all interfaces as passive by default. You can then configure individual interfaces where you want adjacencies by using the `no passive-interface` router configuration command. The `default` keyword is useful in Internet service provider and large enterprise networks where many of the distribution routers have more than 200 interfaces.
Controlling Advertising and Processing in Routing Updates

You can use the `distribute-list` router configuration command with access control lists to suppress routes from being advertised in routing updates and to prevent other routers from learning one or more routes. When used in OSPF, this feature applies to only external routes, and you cannot specify an interface name.

You can also use a `distribute-list` router configuration command to avoid processing certain routes listed in incoming updates. (This feature does not apply to OSPF.)

Beginning in privileged EXEC mode, follow these steps to control the advertising or processing of routing updates:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>router { rip</td>
</tr>
<tr>
<td>Step 3</td>
<td>distribute-list {access-list-number</td>
</tr>
<tr>
<td>Step 4</td>
<td>distribute-list {access-list-number</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

Use the `no distribute-list in` router configuration command to change or cancel a filter. To cancel suppression of network advertisements in updates, use the `no distribute-list out` router configuration command.

Filtering Sources of Routing Information

Because some routing information might be more accurate than others, you can use filtering to prioritize information coming from different sources. An *administrative distance* is a rating of the trustworthiness of a routing information source, such as a router or group of routers. In a large network, some routing protocols can be more reliable than others. By specifying administrative distance values, you enable the router to intelligently discriminate between sources of routing information. The router always picks the route whose routing protocol has the lowest administrative distance. Table 26-10 on page 26-47 shows the default administrative distances for various routing information sources.

Because each network has its own requirements, there are no general guidelines for assigning administrative distances.

Beginning in privileged EXEC mode, follow these steps to filter sources of routing information:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>router { rip</td>
</tr>
</tbody>
</table>
Chapter 26 Configuring IP Unicast Routing

Configuring Protocol-Independent Features

To remove a distance definition, use the **no distance** router configuration command.

Managing Authentication Keys

Key management is a method of controlling authentication keys used by routing protocols. Not all protocols can use key management. Authentication keys are available for EIGRP and RIP Version 2.

Before you manage authentication keys, you must enable authentication. See the appropriate protocol section to see how to enable authentication for that protocol. To manage authentication keys, define a key chain, identify the keys that belong to the key chain, and specify how long each key is valid. Each key has its own key identifier (specified with the **key number** key chain configuration command), which is stored locally. The combination of the key identifier and the interface associated with the message uniquely identifies the authentication algorithm and Message Digest 5 (MD5) authentication key in use.

You can configure multiple keys with life times. Only one authentication packet is sent, regardless of how many valid keys exist. The software examines the key numbers in order from lowest to highest, and uses the first valid key it encounters. The lifetimes allow for overlap during key changes. Note that the router must know these lifetimes.

Beginning in privileged EXEC mode, follow these steps to manage authentication keys:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 key chain name-of-chain</td>
<td>Identify a key chain, and enter key chain configuration mode.</td>
</tr>
<tr>
<td>Step 3 key number</td>
<td>Identify the key number. The range is 0 to 2147483647.</td>
</tr>
<tr>
<td>Step 4 key-string text</td>
<td>Identify the key string. The string can contain from 1 to 80 uppercase and lowercase alphanumeric characters, but the first character cannot be a number.</td>
</tr>
</tbody>
</table>

To remove a distance definition, use the **no distance** router configuration command.
To remove the key chain, use the `no key chain name-of-chain` global configuration command.

Monitoring and Maintaining the IP Network

You can remove all contents of a particular cache, table, or database. You can also display specific statistics. Use the privileged EXEC commands in Table 26-11 to clear routes or display status:

<table>
<thead>
<tr>
<th>Table 26-11 Commands to Clear IP Routes or Display Route Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command</td>
</tr>
<tr>
<td>clear ip route {network [mask</td>
</tr>
<tr>
<td>show ip protocols</td>
</tr>
<tr>
<td>show ip route {address [mask] [longer-prefixes]</td>
</tr>
<tr>
<td>show ip route summary</td>
</tr>
<tr>
<td>show ip route supernets-only</td>
</tr>
<tr>
<td>show ip cache</td>
</tr>
<tr>
<td>show route-map {map-name}</td>
</tr>
</tbody>
</table>
Configuring HSRP

This chapter describes how to use Hot Standby Router Protocol (HSRP) on the Catalyst 3750 switch to provide routing redundancy for routing IP traffic without being dependent on the availability of any single router.

Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

You can also use a version of HSRP in Layer 2 mode to configure a redundant command switch to take over cluster management if the cluster command switch fails. For more information about clustering, see Chapter 6, “Clustering Switches.”

For complete syntax and usage information for the commands used in this chapter, refer to the switch command reference for this release and the Cisco IOS IP and IP Routing Command Reference for Release 12.1.

This chapter consists of these sections:

- Understanding HSRP, page 27-1
- Configuring HSRP, page 27-3
- Displaying HSRP Configurations, page 27-10

Understanding HSRP

HSRP is Cisco’s standard method of providing high network availability by providing first-hop redundancy for IP hosts on an IEEE 802 LAN configured with a default gateway IP address. HSRP routes IP traffic without relying on the availability of any single router. It enables a set of router interfaces to work together to present the appearance of a single virtual router or default gateway to the hosts on a LAN. When HSRP is configured on a network or segment, it provides a virtual Media Access Control (MAC) address and an IP address that is shared among a group of configured routers. HSRP allows two or more HSRP-configured routers to use the MAC address and IP network address of a virtual router. The virtual router does not exist; it represents the common target for routers that are configured to provide backup to each other. One of the routers is selected to be the active router and another to be the standby router, which assumes control of the group MAC address and IP address should the designated active router fail.
Chapter 27 Configuring HSRP

Understanding HSRP

Note

Routers in an HSRP group can be any router interface that supports HSRP, including Catalyst 3750 routed ports and switch virtual interfaces (SVIs).

HSRP provides high network availability by providing redundancy for IP traffic from hosts on networks. In a group of router interfaces, the active router is the router of choice for routing packets; the standby router is the router that takes over the routing duties when an active router fails or when preset conditions are met.

HSRP is useful for hosts that do not support a router discovery protocol and cannot switch to a new router when their selected router reloads or loses power. When HSRP is configured on a network segment, it provides a virtual MAC address and an IP address that is shared among router interfaces in a group of router interfaces running HSRP. The router selected by the protocol to be the active router receives and routes packets destined for the group’s MAC address. For \(n \) routers running HSRP, there are \(n + 1 \) IP and MAC addresses assigned.

HSRP detects when the designated active router fails, and a selected standby router assumes control of the Hot Standby group’s MAC and IP addresses. A new standby router is also selected at that time. Devices running HSRP send and receive multicast UDP-based hello packets to detect router failure and to designate active and standby routers. When HSRP is configured on an interface, Internet Control Message Protocol (ICMP) redirect messages are disabled by default for the interface.

You can configure multiple Hot Standby groups among Catalyst 3750 switches and switch stacks that are operating in Layer 3 to make more use of the redundant routers. To do so, specify a group number for each Hot Standby command group you configure for an interface. For example, you might configure an interface on switch 1 as an active router and one on switch 2 as a standby router and also configure another interface on switch 2 as an active router with another interface on switch 1 as its standby router.

Figure 27-1 shows a segment of a network configured for HSRP. Each router is configured with the MAC address and IP network address of the virtual router. Instead of configuring hosts on the network with the IP address of Router A, you configure them with the IP address of the virtual router as their default router. When Host C sends packets to Host B, it sends them to the MAC address of the virtual router. If for any reason, Router A stops transferring packets, Router B responds to the virtual IP address and virtual MAC address and becomes the active router, assuming the active router duties. Host C continues to use the IP address of the virtual router to address packets destined for Host B, which Router B now receives and sends to Host B. Until Router A resumes operation, HSRP allows Router B to provide uninterrupted service to users on Host C’s segment that need to communicate with users on Host B’s segment and also continues to perform its normal function of handling packets between the Host A segment and Host B.

HSRP and Switch Stacks

HSRP hello messages are generated by the stack master. If an HSRP-active stack master fails, a flap in the HSRP active state might occur. This is because HSRP hello messages are not generated while a new stack master is elected and initialized, and the standby router might become active after the stack master fails.
These sections include HSRP configuration information:

- Default HSRP Configuration, page 27-4
- Enabling HSRP, page 27-4
- Configuring HSRP Group Attributes, page 27-6
- Configuring HSRP Groups and Clustering, page 27-9

Note

If HSRP is enabled, the switch can recognize 32 additional MAC addresses, each associated with a set of VLANs or routing interfaces.

In the following procedures, the specified interface must be one of these Layer 3 interfaces:

- Routed port: a physical port configured as a Layer 3 port by entering the `no switchport` interface configuration command.
- SVI: a VLAN interface created by using the `interface vlan vlan_id` global configuration command and by default a Layer 3 interface.
Etherchannel port channel in Layer 3 mode: a port-channel logical interface created by using the `interface port-channel port-channel-number` global configuration command and binding the Ethernet interface into the channel group. For more information, see the “Configuring Layer 3 EtherChannels” section on page 25-13.

All Layer 3 interfaces must have IP addresses assigned to them. See the “Configuring Layer 3 Interfaces” section on page 9-16.

Default HSRP Configuration

Table 27-1 shows the default HSRP configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSRP groups</td>
<td>None configured</td>
</tr>
<tr>
<td>Standby group number</td>
<td>0</td>
</tr>
<tr>
<td>Standby MAC address</td>
<td>System assigned as: 0000.0c07.acXX, where XX is the HSRP group number</td>
</tr>
<tr>
<td>Standby priority</td>
<td>100</td>
</tr>
<tr>
<td>Standby delay</td>
<td>0 (no delay)</td>
</tr>
<tr>
<td>Standby track interface priority</td>
<td>10</td>
</tr>
<tr>
<td>Standby hello time</td>
<td>3 seconds</td>
</tr>
<tr>
<td>Standby holdtime</td>
<td>10 seconds</td>
</tr>
</tbody>
</table>

Enabling HSRP

The **standby ip** interface configuration command activates HSRP on the configured interface. If an IP address is specified, that address is used as the designated address for the Hot Standby group. If no IP address is specified, the address is learned through the standby function. You must configure at least one routing port on the cable with the designated address. Configuring an IP address always overrides another designated address currently in use.

When the **standby ip** command is enabled on an interface and proxy ARP is enabled, if the interface’s Hot Standby state is active, proxy ARP requests are answered using the Hot Standby group MAC address. If the interface is in a different state, proxy ARP responses are suppressed.

Note

When multi-VRF CE is configured, you cannot assign the same HSRP standby address to two different VPNs.
Beginning in privileged EXEC mode, follow these steps to create or enable HSRP on a Layer 3 interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>standby [group-number] ip [ip-address [secondary]]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show standby [interface-id [group]]</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

Use the **no standby [group-number] ip [ip-address]** interface configuration command to disable HSRP.

This example shows how to activate HSRP for group 1 on Gigabit Ethernet interface 1/0/1. The IP address used by the hot standby group is learned by using HSRP.

Note

This procedure is the minimum number of steps required to enable HSRP.

```
Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# no switchport
Switch(config-if)# standby 1 ip
Switch(config-if)# end
Switch# show standby
```
Configuring HSRP Group Attributes

Although HSRP can run with no other configuration required, you can configure attributes for the HSRP group, including authentication, priority, preemption and preemption delay, timers, or MAC address.

Configuring HSRP Priority

The standby priority, standby preempt, and standby track interface configuration commands are all used to set characteristics for determining active and standby routers and behavior regarding when a new active router takes over. When configuring priority, follow these guidelines:

- Assigning priority helps select the active and standby routers. If preemption is enabled, the router with the highest priority becomes the designated active router. If priorities are equal, the primary IP addresses are compared, and the higher IP address has priority.
- The highest number (1 to 255) represents the highest priority (most likely to become the active router).
- When setting the priority, preempt, or both, you must specify at least one keyword (priority, preempt, or both).
- The priority of the device can change dynamically if an interface is configured with the standby track command and another interface on the router goes down.
- The standby track interface configuration command ties the router hot standby priority to the availability of its interfaces and is useful for tracking interfaces that are not configured for HSRP. When a tracked interface fails, the hot standby priority on the device on which tracking has been configured decreases by 10. If an interface is not tracked, its state changes do not affect the hot standby priority of the configured device. For each interface configured for hot standby, you can configure a separate list of interfaces to be tracked.
- The standby track interface-priority interface configuration command specifies how much to decrement the hot standby priority when a tracked interface goes down. When the interface comes back up, the priority is incremented by the same amount.
- When multiple tracked interfaces are down and interface-priority values have been configured, the configured priority decrements are cumulative. If tracked interfaces that were not configured with priority values fail, the default decrement is 10, and it is noncumulative.
- When routing is first enabled for the interface, it does not have a complete routing table. If it is configured to preempt, it becomes the active router, even though it is unable to provide adequate routing services. To solve this problem, configure a delay time to allow the router to update its routing table.
Beginning in privileged EXEC mode, use one or more of these steps to configure HSRP priority characteristics on an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Enter interface configuration mode, and enter the HSRP interface on which you want to set priority.</td>
</tr>
</tbody>
</table>
| **Step 3** standby [group-number] priority priority [preempt [delay delay]] | Set a priority value used in choosing the active router. The range is 1 to 255; the default priority is 100. The highest number represents the highest priority.
 - (Optional) group-number—The group number to which the command applies.
 - (Optional) preempt—Select so that when the local router has a higher priority than the active router, it assumes control as the active router.
 - (Optional) delay—Set to cause the local router to postpone taking over the active role for the shown number of seconds. The range is 0 to 36000 (1 hour); the default is 0 (no delay before taking over).
Use the no form of the command to restore the default values. |
| **Step 4** standby [group-number] [priority priority] preempt [delay delay] | Configure the router to preempt, which means that when the local router has a higher priority than the active router, it assumes control as the active router.
 - (Optional) group-number—The group number to which the command applies.
 - (Optional) priority—Enter to set or change the group priority. The range is 1 to 255; the default is 100.
 - (Optional) delay—Set to cause the local router to postpone taking over the active role for the number of seconds shown. The range is 0 to 36000 (1 hour); the default is 0 (no delay before taking over).
Use the no form of the command to restore the default values. |
| **Step 5** standby [group-number] track type number [interface-priority] | Configure an interface to track other interfaces so that if one of the other interfaces goes down, the device’s Hot Standby priority is lowered.
 - (Optional) group-number—The group number to which the command applies.
 - type—Enter the interface type (combined with interface number) that is tracked.
 - number—Enter the interface number (combined with interface type) that is tracked.
 - (Optional) interface-priority—Enter the amount by which the hot standby priority for the router is decremented or incremented when the interface goes down or comes back up. The default value is 10. |
| **Step 6** end | Return to privileged EXEC mode. |
| **Step 7** show running-config | Verify the configuration of the standby groups. |
| **Step 8** copy running-config startup-config | (Optional) Save your entries in the configuration file. |
Chapter 27 Configuring HSRP

Use the no standby [group-number] priority priority [preempt [delay delay]] and no standby [group-number] [priority priority] preempt [delay delay] interface configuration commands to restore default priority, preempt, and delay values.

Use the no standby [group-number] track type number [interface-priority] interface configuration command to remove the tracking.

This example activates Gigabit Ethernet interface 1/0/1, sets an IP address and a priority of 120 (higher than the default value), and waits for 300 seconds (5 minutes) before attempting to become the active router:

```
Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# no switchport
Switch(config-if)# standby ip 172.19.108.254
Switch(config-if)# standby priority 120 preempt delay 300
Switch(config-if)# end
```

Configuring HSRP Authentication and Timers

You can optionally configure an HSRP authentication string or change the hello-time interval and holdtime.

When configuring these attributes, follow these guidelines:

- The authentication string is sent unencrypted in all HSRP messages. You must configure the same authentication string on all routers and access servers on a cable to ensure interoperability. Authentication mismatch prevents a device from learning the designated Hot Standby IP address and timer values from other routers configured with HSRP.
- Routers or access servers on which standby timer values are not configured can learn timer values from the active or standby router. The timers configured on an active router always override any other timer settings.
- All routers in a Hot Standby group should use the same timer values. Normally, the holdtime is greater than or equal to 3 times the hellotime.

Beginning in privileged EXEC mode, use one or more of these steps to configure HSRP authentication and timers on an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>standby [group-number] authentication string</td>
</tr>
</tbody>
</table>
Configuring HSRP

When a device is participating in an HSRP standby routing and clustering is enabled, you can use the same standby group for command switch redundancy and HSRP redundancy. Use the `cluster standby-group HSRP-group-name [routing-redundancy]` global configuration command to enable the same HSRP standby group to be used for command switch and routing redundancy. If you create a cluster with the same HSRP standby group name without entering the `routing-redundancy` keyword, HSRP standby routing is disabled for the group.

Command Table

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>standby [group-number] timers hellotime holdtime</td>
<td>(Optional) Configure the time between hello packets and the time before other routers declare the active router to be down.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <code>group-number</code>—The group number to which the command applies.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <code>hellotime</code>—The hello interval in seconds. The range is from 1 to 255; the default is 3 seconds.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <code>holdtime</code>—The time in seconds before the active or standby router is declared to be down. The range is from 1 to 255; the default is 10 seconds.</td>
</tr>
<tr>
<td>5</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>6</td>
<td>show running-config</td>
<td>Verify the configuration of the standby groups.</td>
</tr>
<tr>
<td>7</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the `no standby [group-number] authentication string` interface configuration command to delete an authentication string. Use the `no standby [group-number] timers hellotime holdtime` interface configuration command to restore timers to their default values.

This example shows how to configure `word` as the authentication string required to allow Hot Standby routers in group 1 to interoperate:

```plaintext
Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# no switchport
Switch(config-if)# standby 1 authentication word
Switch(config-if)# end
Switch#
```

This example shows how to set the timers on standby group 1 with the time between hello packets at 5 seconds and the time after which a router is considered down to be 15 seconds:

```plaintext
Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# no switchport
Switch(config-if)# standby 1 ip
Switch(config-if)# standby 1 timers 5 15
Switch(config-if)# end
Switch#
```
This example shows how to bind standby group my_hsrp to the cluster and enable the same HSRP group to be used for command switch redundancy and router redundancy. The command can only be executed on the command switch. If the standby group name or number does not exist, or if the switch is a member switch, an error message appears.

Switch# configure terminal
Switch(config)# cluster standby-group my_hsrp routing-redundancy
Switch(config)# end

Displaying HSRP Configurations

From privileged EXEC mode, use this command to display HSRP settings:

```
show standby [interface-id [group]] [brief] [detail]
```

You can display HSRP information for the whole switch, for a specific interface, for an HSRP group, or for an HSRP group on an interface. You can also specify whether to display a concise overview of HSRP information or detailed HSRP information. The default display is `detail`. If there are a large number of HSRP groups, using the `show standby` command without qualifiers can result in an unwieldy display.

This is an example of output from the `show standby` privileged EXEC command, displaying HSRP information for two standby groups (group 1 and group 100):

```
Switch# show standby
VLAN1 - Group 1
   Local state is Standby, priority 105, may preempt
   Hello time 3 hold time 10
   Next hello sent in 00:00:02.182
   Hot standby IP address is 10.0.0.1 configured
   Active router is 172.20.138.35 expires in 00:00:09
   Standby router is local
   Standby virtual mac address is 0000.0c07.ac01
   Name is bbb
VLAN1 - Group 100
   Local state is Active, priority 105, may preempt
   Hello time 3 hold time 10
   Next hello sent in 00:00:02.262
   Hot standby IP address is 172.20.138.51 configured
   Active router is local
   Standby router is unknown expired
   Standby virtual mac address is 0000.0c07.ac64
   Name is test
```
Configuring IP Multicast Routing

This chapter describes how to configure IP multicast routing on the Catalyst 3750 switch. IP multicasting is a more efficient way to use network resources, especially for bandwidth-intensive services such as audio and video. IP multicast routing enables a host (source) to send packets to a group of hosts (receivers) anywhere within the IP network by using a special form of IP address called the IP multicast group address. The sending host inserts the multicast group address into the IP destination address field of the packet, and IP multicast routers and multilayer switches forward incoming IP multicast packets out all interfaces that lead to members of the multicast group. Any host, regardless of whether it is a member of a group, can send to a group. However, only the members of a group receive the message.

To use this feature, the stack master must be running the enhanced multilayer software image (EMI). Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

For complete syntax and usage information for the commands used in this chapter, refer to the Cisco IOS IP and IP Routing Command Reference for Release 12.1.

This chapter consists of these sections:

- Understanding Cisco’s Implementation of IP Multicast Routing, page 28-2
- Multicast Routing and Switch Stacks, page 28-8
- Configuring IP Multicast Routing, page 28-8
- Configuring Advanced PIM Features, page 28-23
- Configuring Optional IGMP Features, page 28-27
- Configuring Optional Multicast Routing Features, page 28-32
- Configuring Basic DVMRP Interoperability Features, page 28-37
- Configuring Advanced DVMRP Interoperability Features, page 28-42
- Monitoring and Maintaining IP Multicast Routing, page 28-50

For information on configuring the Multicast Source Discovery Protocol (MSDP), see Chapter 29, “Configuring MSDP.”
Understanding Cisco’s Implementation of IP Multicast Routing

The Cisco IOS software supports these protocols to implement IP multicast routing:

- Internet Group Management Protocol (IGMP) is used among hosts on a LAN and the routers (and multilayer switches) on that LAN to track the multicast groups of which hosts are members.
- Protocol-Independent Multicast (PIM) protocol is used among routers and multilayer switches to track which multicast packets to forward to each other and to their directly connected LANs.
- Distance Vector Multicast Routing Protocol (DVMRP) is used on the multicast backbone of the Internet (MBONE). The software supports PIM-to-DVMRP interaction.
- Cisco Group Management Protocol (CGMP) is used on Cisco routers and multilayer switches connected to Layer 2 Catalyst switches to perform tasks similar to those performed by IGMP.

Figure 28-1 shows where these protocols operate within the IP multicast environment.

Understanding IGMP

To participate in IP multicasting, multicast hosts, routers, and multilayer switches must have the IGMP operating. This protocol defines the querier and host roles:

- A querier is a network device that sends query messages to discover which network devices are members of a given multicast group.
- A host is a receiver that sends report messages (in response to query messages) to inform a querier of a host membership.

A set of queriers and hosts that receive multicast data streams from the same source is called a multicast group. Queriers and hosts use IGMP messages to join and leave multicast groups.

Any host, regardless of whether it is a member of a group, can send to a group. However, only the members of a group receive the message. Membership in a multicast group is dynamic; hosts can join and leave at any time. There is no restriction on the location or number of members in a multicast group.

A host can be a member of more than one multicast group at a time. How active a multicast group is and
what members it has can vary from group to group and from time to time. A multicast group can be active for a long time, or it can be very short-lived. Membership in a group can constantly change. A group that has members can have no activity.

IP multicast traffic uses group addresses, which are class D addresses. The high-order bits of a Class D address are 1110. Therefore, host group addresses can be in the range 224.0.0.0 through 239.255.255.255. Multicast addresses in the range 224.0.0.0 to 24.0.0.255 are reserved for use by routing protocols and other network control traffic. The address 224.0.0.0 is guaranteed not to be assigned to any group.

IGMP packets are sent using these IP multicast group addresses:
- IGMP general queries are destined to the address 224.0.0.1 (all systems on a subnet).
- IGMP group-specific queries are destined to the group IP address for which the switch is querying.
- IGMP group membership reports are destined to the group IP address for which the switch is reporting.
- IGMP Version 2 (IGMPv2) leave messages are destined to the address 224.0.0.2 (all-multicast-routers on a subnet). In some old host IP stacks, leave messages might be destined to the group IP address rather than to the all-routers address.

IGMP Version 1

IGMP Version 1 (IGMPv1) primarily uses a query-response model that enables the multicast router and multilayer switch to determine which multicast groups are active (have one or more hosts interested in a multicast group) on the local subnet. IGMPv1 has other processes that enable a host to join and leave a multicast group. For more information, refer to RFC 1112.

IGMP Version 2

IGMPv2 extends IGMP functionality by providing such features as the IGMP leave process to reduce leave latency, group-specific queries, and an explicit maximum query response time. IGMPv2 also adds the capability for routers to elect the IGMP querier without depending on the multicast protocol to perform this task. For more information, refer to RFC 2236.

Understanding PIM

PIM is called *protocol-independent*: regardless of the unicast routing protocols used to populate the unicast routing table, PIM uses this information to perform multicast forwarding instead of maintaining a separate multicast routing table.

PIM is defined in RFC 2362, *Protocol-Independent Multicast-Sparse Mode (PIM-SM): Protocol Specification*. PIM is defined in these Internet Engineering Task Force (IETF) Internet drafts:
- *Protocol Independent Multicast (PIM): Motivation and Architecture*
- *Protocol Independent Multicast (PIM), Dense Mode Protocol Specification*
- *Protocol Independent Multicast (PIM), Sparse Mode Protocol Specification*
- draft-ietf-pim-v2-dm-03.txt, *PIM Version 2 Dense Mode*
PIM Versions

PIMv2 includes these improvements over PIMv1:

- A single, active rendezvous point (RP) exists per multicast group, with multiple backup RPs. This single RP compares to multiple active RPs for the same group in PIMv1.
- A bootstrap router (BSR) provides a fault-tolerant, automated RP discovery and distribution mechanism that enables routers and multilayer switches to dynamically learn the group-to-RP mappings.
- Sparse mode and dense mode are properties of a group, as opposed to an interface. We strongly recommend sparse-dense mode, as opposed to either sparse mode or dense mode only.
- PIM join and prune messages have more flexible encoding for multiple address families.
- A more flexible hello packet format replaces the query packet to encode current and future capability options.
- Register messages to an RP specify whether they are sent by a border router or a designated router.
- PIM packets are no longer inside IGMP packets; they are standalone packets.

PIM Modes

PIM can operate in dense mode (DM), sparse mode (SM), or in sparse-dense mode (PIM DM-SM), which handles both sparse groups and dense groups at the same time.

PIM DM

PIM DM builds source-based multicast distribution trees. In dense mode, a PIM DM router or multilayer switch assumes that all other routers or multilayer switches forward multicast packets for a group. If a PIM DM device receives a multicast packet and has no directly connected members or PIM neighbors present, a prune message is sent back to the source to stop unwanted multicast traffic. Subsequent multicast packets are not flooded to this router or switch on this pruned branch because branches without receivers are pruned from the distribution tree, leaving only branches that contain receivers.

When a new receiver on a previously pruned branch of the tree joins a multicast group, the PIM DM device detects the new receiver and immediately sends a graft message up the distribution tree toward the source. When the upstream PIM DM device receives the graft message, it immediately puts the interface on which the graft was received into the forwarding state so that the multicast traffic begins flowing to the receiver.

PIM SM

PIM SM uses shared trees and shortest-path-trees (SPTs) to distribute multicast traffic to multicast receivers in the network. In PIM SM, a router or multilayer switch assumes that other routers or switches do not forward multicast packets for a group, unless there is an explicit request for the traffic (join message). When a host joins a multicast group using IGMP, its directly connected PIM SM device sends PIM join messages toward the root, also known as the RP. This join message travels router-by-router toward the root, constructing a branch of the shared tree as it goes.

The RP keeps track of multicast receivers. It also registers sources through register messages received from the source’s first-hop router (designated router [DR]) to complete the shared tree path from the source to the receiver. When using a shared tree, sources must send their traffic to the RP so that the traffic reaches all receivers.
Prune messages are sent up the distribution tree to prune multicast group traffic. This action permits branches of the shared tree or SPT that were created with explicit join messages to be torn down when they are no longer needed.

Auto-RP

This proprietary feature eliminates the need to manually configure the RP information in every router and multilayer switch in the network. For Auto-RP to work, you configure a Cisco router or multilayer switch as the mapping agent. It uses IP multicast to learn which routers or switches in the network are possible candidate RPs to receive candidate RP announcements. Candidate RPs periodically send multicast RP-announce messages to a particular group or group range to announce their availability.

Mapping agents listen to these candidate RP announcements and use the information to create entries in their Group-to-RP mapping caches. Only one mapping cache entry is created for any Group-to-RP range received, even if multiple candidate RPs are sending RP announcements for the same range. As the RP-announce messages arrive, the mapping agent selects the router or switch with the highest IP address as the active RP and stores this RP address in the Group-to-RP mapping cache.

Mapping agents periodically multicast the contents of their Group-to-RP mapping cache. Thus, all routers and switches automatically discover which RP to use for the groups they support. If a router or switch fails to receive RP-discovery messages and the Group-to-RP mapping information expires, it switches to a statically configured RP that was defined with the `ip pim rp-address` global configuration command. If no statically configured RP exists, the router or switch changes the group to dense-mode operation.

Multiple RPs serve different group ranges or serve as hot backups of each other.

Bootstrap Router

PIMv2 BSR is another method to distribute group-to-RP mapping information to all PIM routers and multilayer switches in the network. It eliminates the need to manually configure RP information in every router and switch in the network. However, instead of using IP multicast to distribute group-to-RP mapping information, BSR uses hop-by-hop flooding of special BSR messages to distribute the mapping information.

The BSR is elected from a set of candidate routers and switches in the domain that have been configured to function as BSRs. The election mechanism is similar to the root-bridge election mechanism used in bridged LANs. The BSR election is based on the BSR priority of the device contained in the BSR messages that are sent hop-by-hop through the network. Each BSR device examines the message and forwards out all interfaces only the message that has either a higher BSR priority than its BSR priority or the same BSR priority, but with a higher BSR IP address. Using this method, the BSR is elected.

The elected BSR sends BSR messages with a TTL of 1. Neighboring PIMv2 routers or multilayer switches receive the BSR message and multicast it out all other interfaces (except the one on which it was received) with a TTL of 1. In this way, BSR messages travel hop-by-hop throughout the PIM domain. Because BSR messages contain the IP address of the current BSR, the flooding mechanism enables candidate RPs to automatically learn which device is the elected BSR.

Candidate RPs send candidate RP advertisements showing the group range for which they are responsible to the BSR, which stores this information in its local candidate-RP cache. The BSR periodically advertises the contents of this cache in BSR messages to all other PIM devices in the domain. These messages travel hop-by-hop through the network to all routers and switches, which store the RP information in the BSR message in their local RP cache. The routers and switches select the same RP for a given group because they all use a common RP hashing algorithm.
Multicast Forwarding and Reverse Path Check

With unicast routing, routers and multilayer switches forward traffic through the network along a single path from the source to the destination host whose IP address appears in the destination address field of the IP packet. Each router and switch along the way makes a unicast forwarding decision, using the destination IP address in the packet, by looking up the destination address in the unicast routing table and forwarding the packet through the specified interface to the next hop toward the destination.

With multicasting, the source is sending traffic to an arbitrary group of hosts represented by a multicast group address in the destination address field of the IP packet. To determine whether to forward or drop an incoming multicast packet, the router or multilayer switch uses a reverse path forwarding (RPF) check on the packet as follows and shown in Figure 28-2:

1. The router or multilayer switch examines the source address of the arriving multicast packet to determine whether the packet arrived on an interface that is on the reverse path back to the source.
2. If the packet arrives on the interface leading back to the source, the RPF check is successful and the packet is forwarded to all interfaces in the outgoing interface list (which might not be all interfaces on the router).
3. If the RPF check fails, the packet is discarded.

Some multicast routing protocols, such as DVMRP, maintain a separate multicast routing table and use it for the RPF check. However, PIM uses the unicast routing table to perform the RPF check.

Figure 28-2 shows Gigabit Ethernet interface 0/2 on stack member 1 receiving a multicast packet from source 151.10.3.21. A check of the routing table shows that the interface on the reverse path to the source is Gigabit Ethernet interface 0/1, not interface 0/2. Because the RPF check fails, the multilayer switch discards the packet. Another multicast packet from source 151.10.3.21 is received on interface 0/1, and the routing table shows this interface is on the reverse path to the source. Because the RPF check passes, the switch forwards the packet to all interfaces in the outgoing interface list.
PIM uses both source trees and RP-rooted shared trees to forward datagrams (described in the “PIM DM” section on page 28-4 and the “PIM SM” section on page 28-4). The RPF check is performed differently for each:

- If a PIM router or multilayer switch has a source-tree state (that is, an (S,G) entry is present in the multicast routing table), it performs the RPF check against the IP address of the source of the multicast packet.
- If a PIM router or multilayer switch has a shared-tree state (and no explicit source-tree state), it performs the RPF check on the RP address (which is known when members join the group).

Sparse-mode PIM uses the RPF lookup function to determine where it needs to send joins and prunes:

- (S,G) joins (which are source-tree states) are sent toward the source.
- (*,G) joins (which are shared-tree states) are sent toward the RP.

DVMRP and dense-mode PIM use only source trees and use RPF as previously described.

Understanding DVMRP

DVMRP is implemented in the equipment of many vendors and is based on the public-domain mrouted program. This protocol has been deployed in the MBONE and in other intradomain multicast networks. Cisco routers and multilayer switches run PIM and can forward multicast packets to and receive from a DVMRP neighbor. It is also possible to propagate DVMRP routes into and through a PIM cloud. The software propagates DVMRP routes and builds a separate database for these routes on each router and multilayer switch, but PIM uses this routing information to make the packet-forwarding decision. The software does not implement the complete DVMRP. However, it supports dynamic discovery of DVMRP routers and can interoperate with them over traditional media (such as Ethernet and FDDI) or over DVMRP-specific tunnels.

DVMRP neighbors build a route table by periodically exchanging source network routing information in route-report messages. The routing information stored in the DVMRP routing table is separate from the unicast routing table and is used to build a source distribution tree and to perform multicast forward using RPF.

DVMRP is a dense-mode protocol and builds a parent-child database using a constrained multicast model to build a forwarding tree rooted at the source of the multicast packets. Multicast packets are initially flooded down this source tree. If redundant paths are on the source tree, packets are not forwarded along those paths. Forwarding occurs until prune messages are received on those parent-child links, which further constrain the broadcast of multicast packets.

Understanding CGMP

This software release provides CGMP-server support on your switch; no client-side functionality is provided. The switch serves as a CGMP server for devices that do not support IGMP snooping but have CGMP-client functionality.

CGMP is a protocol used on Cisco routers and multilayer switches connected to Layer 2 Catalyst switches to perform tasks similar to those performed by IGMP. CGMP permits Layer 2 group membership information to be communicated from the CGMP server to the switch. The switch can then learn on which ports multicast members reside instead of flooding multicast traffic to all switch ports. (IGMP snooping is another method to constrain the flooding of multicast packets. For more information, see Chapter 15, “Configuring IGMP Snooping and MVR.”)
CGMP is necessary because the Layer 2 switch cannot distinguish between IP multicast data packets and IGMP report messages, which are both at the MAC-level and are addressed to the same group address.

Multicast Routing and Switch Stacks

For all multicast routing protocols, the entire stack appears as a single router to the network and operates as a single multicast router.

In a Catalyst 3750 switch stack, the routing master (stack master) performs these functions:

- It is responsible for completing the IP multicast routing functions of the stack. It fully initializes and runs the IP multicast routing protocols.
- It builds and maintains the multicast routing table for the entire stack.
- It is responsible for distributing the multicast routing table to all stack members.

The stack members perform these functions:

- They act as multicast routing standby devices and are ready to take over if there is a stack master failure.
 - If the stack master fails, all stack members delete their multicast routing tables. The newly elected stack master starts building the routing tables and distributes them to the stack members.

Note

If a stack master running the EMI fails and if the newly elected stack master is running the SMI, the switch stack will lose its multicast routing capability.

For information about the stack master election process, see Chapter 5, “Managing Switch Stacks.”

- They do not build multicast routing tables. Instead, they use the multicast routing table that is distributed by the stack master.

Configuring IP Multicast Routing

These sections describe how to configure IP multicast routing:

- **Default Multicast Routing Configuration, page 28-9**
- **Multicast Routing Configuration Guidelines, page 28-9**
- **Configuring Basic Multicast Routing, page 28-10** (required)
- **Configuring a Rendezvous Point, page 28-12** (required if the interface is in sparse-dense mode, and you want to treat the group as a sparse group)
- **Using Auto-RP and a BSR, page 28-22** (required for non-Cisco PIMv2 devices to interoperate with Cisco PIM v1 devices))
- **Monitoring the RP Mapping Information, page 28-23** (optional)
- **Troubleshooting PIMv1 and PIMv2 Interoperability Problems, page 28-23** (optional)
Default Multicast Routing Configuration

Table 28-1 shows the default multicast routing configuration.

Table 28-1 Default Multicast Routing Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multicast routing</td>
<td>Disabled on all interfaces.</td>
</tr>
<tr>
<td>PIM version</td>
<td>Version 2.</td>
</tr>
<tr>
<td>PIM mode</td>
<td>No mode is defined.</td>
</tr>
<tr>
<td>PIM RP address</td>
<td>None configured.</td>
</tr>
<tr>
<td>PIM domain border</td>
<td>Disabled.</td>
</tr>
<tr>
<td>PIM multicast boundary</td>
<td>None.</td>
</tr>
<tr>
<td>Candidate BSRs</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Candidate RPs</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Shortest-path tree threshold rate</td>
<td>0 kbps.</td>
</tr>
<tr>
<td>PIM router query message interval</td>
<td>30 seconds.</td>
</tr>
</tbody>
</table>

Multicast Routing Configuration Guidelines

To avoid misconfiguring multicast routing on your switch, review the information in these sections:

- PIMv1 and PIMv2 Interoperability, page 28-9
- Auto-RP and BSR Configuration Guidelines, page 28-10

PIM v1 and PIM v2 Interoperability

The Cisco PIMv2 implementation provides interoperability and transition between Version 1 and Version 2, although there might be some minor problems.

You can upgrade to PIMv2 incrementally. PIM Versions 1 and 2 can be configured on different routers and multilayer switches within one network. Internally, all routers and multilayer switches on a shared media network must run the same PIM version. Therefore, if a PIMv2 device detects a PIMv1 device, the Version 2 device downgrades itself to Version 1 until all Version 1 devices have been shut down or upgraded.

PIMv2 uses the BSR to discover and announce RP-set information for each group prefix to all the routers and multilayer switches in a PIM domain. PIMv1, together with the Auto-RP feature, can perform the same tasks as the PIMv2 BSR. However, Auto-RP is a standalone protocol, separate from PIMv1, and is a proprietary Cisco protocol. PIMv2 is a standards track protocol in the IETF. We recommend that you use PIMv2. The BSR mechanism interoperates with Auto-RP on Cisco routers and multilayer switches. For more information, see the “Auto-RP and BSR Configuration Guidelines” section on page 28-10.

When PIMv2 devices interoperate with PIMv1 devices, Auto-RP should have already been deployed. A PIMv2 BSR that is also an Auto-RP mapping agent automatically advertises the RP elected by Auto-RP. That is, Auto-RP sets its single RP on every router or multilayer switch in the group. Not all routers and switches in the domain use the PIMv2 hash function to select multiple RPs.

Dense-mode groups in a mixed PIMv1 and PIMv2 region need no special configuration; they automatically interoperate.
Sparse-mode groups in a mixed PIMv1 and PIMv2 region are possible because the Auto-RP feature in PIMv1 interoperates with the PIMv2 RP feature. Although all PIMv2 devices can also use PIMv1, we recommend that the RPs be upgraded to PIMv2. To ease the transition to PIMv2, we have these recommendations:

- Use Auto-RP throughout the region.
- Configure sparse-dense mode throughout the region.

If Auto-RP is not already configured in the PIMv1 regions, configure Auto-RP. For more information, see the “Configuring Auto-RP” section on page 28-14.

Auto-RP and BSR Configuration Guidelines

There are two approaches to using PIMv2. You can use Version 2 exclusively in your network or migrate to Version 2 by employing a mixed PIM version environment.

- If your network is all Cisco routers and multilayer switches, you can use either Auto-RP or BSR.
- If you have non-Cisco routers in your network, you must use BSR.
- If you have Cisco PIMv1 and PIMv2 routers and multilayer switches and non-Cisco routers, you must use both Auto-RP and BSR. If your network includes routers from other vendors, configure the Auto-RP mapping agent and the BSR on a Cisco PIMv2 device. Ensure that no PIMv1 device is located in the path between the BSR and a non-Cisco PIMv2 device.
- Because bootstrap messages are sent hop-by-hop, a PIMv1 device prevents these messages from reaching all routers and multilayer switches in your network. Therefore, if your network has a PIMv1 device in it and only Cisco routers and multilayer switches, it is best to use Auto-RP.
- If you have a network that includes non-Cisco routers, configure the Auto-RP mapping agent and the BSR on a Cisco PIMv2 router or multilayer switch. Ensure that no PIMv1 device is on the path between the BSR and a non-Cisco PIMv2 router.
- If you have non-Cisco PIMv2 routers that need to interoperate with Cisco PIMv1 routers and multilayer switches, both Auto-RP and a BSR are required. We recommend that a Cisco PIMv2 device be both the Auto-RP mapping agent and the BSR. For more information, see the “Using Auto-RP and a BSR” section on page 28-22.

Configuring Basic Multicast Routing

You must enable IP multicast routing and configure the PIM version and PIM mode so that the software can forward multicast packets and determine how the switch populates its multicast routing table.

You can configure an interface to be in PIM dense mode, sparse mode, or sparse-dense mode. The mode determines how the switch populates its multicast routing table and how it forwards multicast packets it receives from its directly connected LANs. You must enable PIM in one of these modes for an interface to perform IP multicast routing. Enabling PIM on an interface also enables IGMP operation on that interface.

In populating the multicast routing table, dense-mode interfaces are always added to the table. Sparse-mode interfaces are added to the table only when periodic join messages are received from downstream devices or when there is a directly connected member on the interface. When forwarding from a LAN, sparse-mode operation occurs if there is an RP known for the group. If so, the packets are encapsulated and sent toward the RP. When no RP is known, the packet is flooded in a dense-mode fashion. If the multicast traffic from a specific source is sufficient, the receiver’s first-hop router might send join messages toward the source to build a source-based distribution tree.
By default, multicast routing is disabled, and there is no default mode setting. This procedure is required.

Beginning in privileged EXEC mode, follow these steps to enable IP multicasting, to configure a PIM version, and to configure a PIM mode. This procedure is required.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 ip multicast-routing distributed</td>
<td>Enable IP multicast distributed switching.</td>
</tr>
</tbody>
</table>
| Step 3 interface interface-id | Enter interface configuration mode, and specify the Layer 3 interface on which you want to enable multicast routing. The specified interface must be one of the following:
 • A routed port: a physical port that has been configured as a Layer 3 port by entering the no switchport interface configuration command.
 • An SVI: a VLAN interface created by using the interface vlan vlan-id global configuration command. These ports must have IP addresses assigned to them. For more information, see the “Configuring Layer 3 Interfaces” section on page 9-16. |
| Step 4 ip pim version [1 | 2] | Configure the PIM version on the interface. By default, Version 2 is enabled and is the recommended setting. An interface in PIMv2 mode automatically downgrades to PIMv1 mode if that interface has a PIMv1 neighbor. The interface returns to Version 2 mode after all Version 1 neighbors are shut down or upgraded. For more information, see the “PIMv1 and PIMv2 Interoperability” section on page 28-9. |
| Step 5 ip pim { dense-mode | sparse-mode | sparse-dense-mode } | Enable a PIM mode on the interface. By default, no mode is configured. The keywords have these meanings:
 • dense-mode—Enables dense mode of operation.
 • sparse-mode—Enables sparse mode of operation. If you configure sparse-mode, you must also configure an RP. For more information, see the “Configuring a Rendezvous Point” section on page 28-12.
 • sparse-dense-mode—Causes the interface to be treated in the mode in which the group belongs. Sparse-dense-mode is the recommended setting. |
| Note | After you enable a PIM mode on the interface, the ip mroute-cache distributed interface configuration command is automatically entered for the interface and appears in the running configuration. |
| Step 6 end | Return to privileged EXEC mode. |
| Step 7 show running-config | Verify your entries. |
| Step 8 copy running-config startup-config | (Optional) Save your entries in the configuration file. |
To disable multicasting, use the `no ip multicast-routing distributed` global configuration command. To return to the default PIM version, use the `no ip pim version` interface configuration command. To disable PIM on an interface, use the `no ip pim` interface configuration command.

Configuring a Rendezvous Point

You must have an RP if the interface is in sparse-dense mode and if you want to treat the group as a sparse group. You can use several methods, as described in these sections:

- Manually Assigning an RP to Multicast Groups, page 28-12
- Configuring Auto-RP, page 28-14 (a standalone, Cisco-proprietary protocol separate from PIMv1)
- Configuring PIMv2 BSR, page 28-18 (a standards track protocol in the Internet Engineering Task Force (IETF))

You can use Auto-RP, BSR, or a combination of both, depending on the PIM version you are running and the types of routers in your network. For more information, see the “PIMv1 and PIMv2 Interoperability” section on page 28-9 and the “Auto-RP and BSR Configuration Guidelines” section on page 28-10.

Manually Assigning an RP to Multicast Groups

This section explains how to manually configure an RP. If the RP for a group is learned through a dynamic mechanism (such as Auto-RP or BSR), you need not perform this task for that RP.

Senders of multicast traffic announce their existence through register messages received from the source’s first-hop router (designated router) and forwarded to the RP. Receivers of multicast packets use RPs to join a multicast group by using explicit join messages. RPs are not members of the multicast group; rather, they serve as a *meeting place* for multicast sources and group members.

You can configure a single RP for multiple groups defined by an access list. If there is no RP configured for a group, the multilayer switch treats the group as dense and uses the dense-mode PIM techniques.

Beginning in privileged EXEC mode, follow these steps to manually configure the address of the RP. This procedure is optional.
Chapter 28 Configuring IP Multicast Routing

Configuring IP Multicast Routing

To remove an RP address, use the `no ip pim rp-address ip-address [access-list-number] [override]` global configuration command.

This example shows how to configure the address of the RP to 147.106.6.22 for multicast group 225.2.2.2 only:

```
Switch(config)# access-list 1 permit 225.2.2.2 0.0.0.0
Switch(config)# ip pim rp-address 147.106.6.22 1
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>ip pim rp-address ip-address [access-list-number] [override]</code></td>
</tr>
<tr>
<td>Step 3</td>
<td>`access-list access-list-number {deny</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

Recall that the access list is always terminated by an implicit deny statement for everything.
Configuring Auto-RP

Auto-RP uses IP multicast to automate the distribution of group-to-RP mappings to all Cisco routers and multilayer switches in a PIM network. It has these benefits:

- It is easy to use multiple RPs within a network to serve different group ranges.
- It provides load splitting among different RPs and arrangement of RPs according to the location of group participants.
- It avoids inconsistent, manual RP configurations on every router and multilayer switch in a PIM network, which can cause connectivity problems.

Note

If you configure PIM in sparse mode or sparse-dense mode and do not configure Auto-RP, you must manually configure an RP as described in the “Manually Assigning an RP to Multicast Groups” section on page 28-12.

Note

If routed interfaces are configured in sparse mode, Auto-RP can still be used if all devices are configured with a manual RP address for the Auto-RP groups.

These sections describe how to configure Auto-RP:

- Setting up Auto-RP in a New Internetwork, page 28-14 (optional)
- Adding Auto-RP to an Existing Sparse-Mode Cloud, page 28-14 (optional)
- Preventing Join Messages to False RPs, page 28-16 (optional)
- Filtering Incoming RP Announcement Messages, page 28-17 (optional)

For overview information, see the “Auto-RP” section on page 28-5.

Setting up Auto-RP in a New Internetwork

If you are setting up Auto-RP in a new internetwork, you do not need a default RP because you configure all the interfaces for sparse-dense mode. Follow the process described in the next section “Adding Auto-RP to an Existing Sparse-Mode Cloud” section on page 28-14. However, skip Step 3 to configure a PIM router as the RP for the local group.

Adding Auto-RP to an Existing Sparse-Mode Cloud

This section contains some suggestions for the initial deployment of Auto-RP into an existing sparse-mode cloud to minimize disruption of the existing multicast infrastructure.

Beginning in privileged EXEC mode, follow these steps to deploy Auto-RP in an existing sparse-mode cloud. This procedure is optional.
Configuring IP Multicast Routing

Command Purpose

Step 1
- **show running-config**
 - Verify that a default RP is already configured on all PIM devices and the RP in the sparse-mode network. It was previously configured with the `ip pim rp-address` global configuration command.
 - This step is not required for sparse-dense-mode environments.

 The selected RP should have good connectivity and be available across the network. Use this RP for the global groups (for example 224.x.x.x and other global groups). Do not reconfigure the group address range that this RP serves. RPs dynamically discovered through Auto-RP take precedence over statically configured RPs. Assume that it is desirable to use a second RP for the local groups.

Step 2
- **configure terminal**
 - Enter global configuration mode.

Step 3
- **ip pim send-rp-announce**
 - Configure another PIM device to be the candidate RP for local groups.
 - **interface-id**
 - For **interface-id**, enter the interface type and number that identifies the RP address. Valid interfaces include physical ports, port channels, and VLANs.
 - **scope ttl**
 - For **scope ttl**, specify the time-to-live value in hops. Enter a hop count that is high enough so that the RP-announce messages reach all mapping agents in the network. There is no default setting. The range is 1 to 255.
 - **group-list access-list-number**
 - For **group-list access-list-number**, enter an IP standard access list number from 1 to 99. If no access list is configured, the RP is used for all groups.
 - **interval seconds**
 - For **interval seconds**, specify how often the announcement messages must be sent. The default is 60 seconds. The range is 1 to 16383.

Step 4
- **access-list access-list-number [deny | permit] source [source-wildcard]**
 - Create a standard access list, repeating the command as many times as necessary.
 - For **access-list-number**, enter the access list number specified in Step 3.
 - The **deny** keyword denies access if the conditions are matched. The **permit** keyword permits access if the conditions are matched.
 - For **source**, enter the multicast group address range for which the RP should be used.
 - (Optional) For **source-wildcard**, enter the wildcard bits in dotted decimal notation to be applied to the source. Place ones in the bit positions that you want to ignore.

 Recall that the access list is always terminated by an implicit deny statement for everything.
Chapter 28 Configuring IP Multicast Routing

Configuring IP Multicast Routing

To remove the PIM device configured as the candidate RP, use the `no ip pim send-rp-announce` global configuration command. To remove the switch as the RP-mapping agent, use the `no ip pim send-rp-discovery` global configuration command.

This example shows how to send RP announcements out all PIM-enabled interfaces for a maximum of 31 hops. The IP address of Gigabit Ethernet interface 0/1 on stack member 1 is the RP. Access list 5 describes the group for which this switch serves as RP:

```
Switch(config)# ip pim send-rp-announce gigabitethernet1/0/1 scope 31 group-list 5
Switch(config)# access-list 5 permit 224.0.0.0 15.255.255.255
```

Preventing Join Messages to False RPs

Determine whether the `ip pim accept-rp` command was previously configured throughout the network by using the `show running-config` privileged EXEC command. If the `ip pim accept-rp` command is not configured on any device, this problem can be addressed later. In those routers or multilayer switches already configured with the `ip pim accept-rp` command, you must enter the command again to accept the newly advertised RP.

To accept all RPs advertised with Auto-RP and reject all other RPs by default, use the `ip pim accept-rp auto-rp` global configuration command. This procedure is optional.

If all interfaces are in sparse mode, use a default-configured RP to support the two well-known groups 224.0.1.39 and 224.0.1.40. Auto-RP uses these two well-known groups to collect and distribute RP-mapping information. When this is the case and the `ip pim accept-rp auto-rp` command is configured, another `ip pim accept-rp` command accepting the RP must be configured as follows:

```
Switch(config)# ip pim accept-rp 172.10.20.1 1
Switch(config)# access-list 1 permit 224.0.1.39
Switch(config)# access-list 1 permit 224.0.1.40
```

Command	**Purpose**

Step 5 | `ip pim send-rp-discovery scope ttl`
Find a switch whose connectivity is not likely to be interrupted, and assign it the role of RP-mapping agent.
For `scope ttl`, specify the time-to-live value in hops to limit the RP discovery packets. All devices within the hop count from the source device receive the Auto-RP discovery messages. These messages tell other devices which group-to-RP mapping to use to avoid conflicts (such as overlapping group-to-RP ranges). There is no default setting. The range is 1 to 255.

Step 6 | `end`
Return to privileged EXEC mode.

Step 7 | `show running-config`
Verify your entries.

`show ip pim rp mapping`
Display active RPs that are cached with associated multicast routing entries.

`show ip pim rp`
Display the information cached in the routing table.

Step 8 | `copy running-config startup-config`
(Optional) Save your entries in the configuration file.

To remove the PIM device configured as the candidate RP, use the `no ip pim send-rp-announce interface-id` global configuration command. To remove the switch as the RP-mapping agent, use the `no ip pim send-rp-discovery` global configuration command.

This example shows how to send RP announcements out all PIM-enabled interfaces for a maximum of 31 hops. The IP address of Gigabit Ethernet interface 0/1 on stack member 1 is the RP. Access list 5 describes the group for which this switch serves as RP:

```
Switch(config)# ip pim send-rp-announce gigabitethernet1/0/1 scope 31 group-list 5
Switch(config)# access-list 5 permit 224.0.0.0 15.255.255.255
```
Filtering Incoming RP Announcement Messages

You can add configuration commands to the mapping agents to prevent a maliciously configured router from masquerading as a candidate RP and causing problems.

Beginning in privileged EXEC mode, follow these steps to filter incoming RP announcement messages. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>ip pim rp-announce-filter rp-list access-list-number group-list access-list-number</code></td>
</tr>
<tr>
<td>Step 3</td>
<td>`access-list access-list-number {deny</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To remove a filter on incoming RP announcement messages, use the **no ip pim rp-announce-filter rp-list access-list-number [group-list access-list-number]** global configuration command.
This example shows a sample configuration on an Auto-RP mapping agent that is used to prevent candidate RP announcements from being accepted from unauthorized candidate RPs:

```
Switch(config)# ip pim rp-announce-filter rp-list 10 group-list 20
Switch(config)# access-list 10 permit host 172.16.5.1
Switch(config)# access-list 10 permit host 172.16.2.1
Switch(config)# access-list 20 deny 239.0.0.0 0.0.255.255
Switch(config)# access-list 20 permit 224.0.0.0 15.255.255.255
```

In this example, the mapping agent accepts candidate RP announcements from only two devices, 172.16.5.1 and 172.16.2.1. The mapping agent accepts candidate RP announcements from these two devices only for multicast groups that fall in the group range of 224.0.0.0 to 239.255.255.255. The mapping agent does not accept candidate RP announcements from any other devices in the network. Furthermore, the mapping agent does not accept candidate RP announcements from 172.16.5.1 or 172.16.2.1 if the announcements are for any groups in the 239.0.0.0 through 239.255.255.255 range. This range is the administratively scoped address range.

Configuring PIMv2 BSR

These sections describe how to set up BSR in your PIMv2 network:

- Defining the PIM Domain Border, page 28-18 (optional)
- Defining the IP Multicast Boundary, page 28-19 (optional)
- Configuring Candidate BSRs, page 28-20 (optional)
- Configuring Candidate RPs, page 28-21 (optional)

For overview information, see the “Bootstrap Router” section on page 28-5.

Defining the PIM Domain Border

As IP multicast becomes more widespread, the chance of one PIMv2 domain bordering another PIMv2 domain is increasing. Because these two domains probably do not share the same set of RPs, BSR, candidate RPs, and candidate BSRs, you need to constrain PIMv2 BSR messages from flowing into or out of the domain. Allowing these messages to leak across the domain borders could adversely affect the normal BSR election mechanism and elect a single BSR across all bordering domains and co-mingle candidate RP advertisements, resulting in the election of RPs in the wrong domain.

Beginning in privileged EXEC mode, follow these steps to define the PIM domain border. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface to be configured.</td>
</tr>
<tr>
<td>Step 3 ip pim bsr-border</td>
<td>Define a PIM bootstrap message boundary for the PIM domain. Enter this command on each interface that connects to other bordering PIM domains. This command instructs the switch to neither send or receive PIMv2 BSR messages on this interface as shown in Figure 28-3.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
To remove the PIM border, use the `no ip pim bsr-border` interface configuration command.

Figure 28-3 Constraining PIMv2 BSR Messages

Defining the IP Multicast Boundary

You define a multicast boundary to prevent Auto-RP messages from entering the PIM domain. You create an access list to deny packets destined for 224.0.1.39 and 224.0.1.40, which carry Auto-RP information.

Beginning in privileged EXEC mode, follow these steps to define a multicast boundary. This procedure is optional.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| Step 2 | `access-list access-list-number deny source [source-wildcard]` | Create a standard access list, repeating the command as many times as necessary.
| | | • For `access-list-number`, the range is 1 to 99. |
| | | • The `deny` keyword denies access if the conditions are matched. |
| | | • For `source`, enter multicast addresses 224.0.1.39 and 224.0.1.40, which carry Auto-RP information. |
| | | • (Optional) For `source-wildcard`, enter the wildcard bits in dotted decimal notation to be applied to the source. Place ones in the bit positions that you want to ignore. |
| | | Recall that the access list is always terminated by an implicit deny statement for everything. |
| Step 3 | `interface interface-id` | Enter interface configuration mode, and specify the interface to be configured. |
| Step 4 | `ip multicast boundary access-list-number` | Configure the boundary, specifying the access list you created in Step 2. |
| Step 5 | `end` | Return to privileged EXEC mode. |
| Step 6 | `show running-config` | Verify your entries. |
| Step 7 | `copy running-config startup-config` | (Optional) Save your entries in the configuration file. |
To remove the boundary, use the `no ip multicast boundary` interface configuration command.

This example shows a portion of an IP multicast boundary configuration that denies Auto-RP information:

```
Switch(config)# access-list 1 deny 224.0.1.39
Switch(config)# access-list 1 deny 224.0.1.40
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# ip multicast boundary 1
```

Configuring Candidate BSRs

You can configure one or more candidate BSRs. The devices serving as candidate BSRs should have good connectivity to other devices and be in the backbone portion of the network.

Beginning in privileged EXEC mode, follow these steps to configure your switch as a candidate BSR. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip pim bsr-candidate interface-id hash-mask-length [priority]</td>
</tr>
<tr>
<td></td>
<td>Configure your switch to be a candidate BSR.</td>
</tr>
<tr>
<td></td>
<td>• For <code>interface-id</code>, enter the interface on this switch from which the BSR address is derived to make it a candidate. This interface must be enabled with PIM. Valid interfaces include physical ports, port channels, and VLANs.</td>
</tr>
<tr>
<td></td>
<td>• For <code>hash-mask-length</code>, specify the mask length (32 bits maximum) that is to be ANDed with the group address before the hash function is called. All groups with the same seed hash correspond to the same RP. For example, if this value is 24, only the first 24 bits of the group addresses matter.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For <code>priority</code>, enter a number from 0 to 255. The BSR with the larger priority is preferred. If the priority values are the same, the device with the highest IP address is selected as the BSR. The default is 0.</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>show running-config</td>
</tr>
<tr>
<td></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove this device as a candidate BSR, use the `no ip pim bsr-candidate` global configuration command.

This example shows how to configure a candidate BSR, which uses the IP address 172.21.24.18 on Gigabit Ethernet interface 0/2 on stack member 1 as the advertised BSR address, uses 30 bits as the hash-mask-length, and has a priority of 10.

```
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# ip address 172.21.24.18 255.255.255.0
Switch(config-if)# ip pim sparse-dense-mode
Switch(config-if)# ip pim bsr-candidate gigabitethernet1/0/2 30 10
```
Configuring Candidate RPs

You can configure one or more candidate RPs. Similar to BSRs, the RPs should also have good connectivity to other devices and be in the backbone portion of the network. An RP can serve the entire IP multicast address space or a portion of it. Candidate RPs send candidate RP advertisements to the BSR. When deciding which devices should be RPs, consider these options:

- In a network of Cisco routers and multilayer switches where only Auto-RP is used, any device can be configured as an RP.
- In a network that includes only Cisco PIMv2 routers and multilayer switches and with routers from other vendors, any device can be used as an RP.
- In a network of Cisco PIMv1 routers, Cisco PIMv2 routers, and routers from other vendors, configure only Cisco PIMv2 routers and multilayer switches as RPs.

Beginning in privileged EXEC mode, follow these steps to configure your switch to advertise itself as a PIMv2 candidate RP to the BSR. This procedure is optional.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>ip pim rp-candidate interface-id [group-list access-list-number]</td>
<td>Configure your switch to be a candidate RP.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- For interface-id, specify the interface whose associated IP address is advertised as a candidate RP address. Valid interfaces include physical ports, port channels, and VLANs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- (Optional) For group-list access-list-number, enter an IP standard access list number from 1 to 99. If no group-list is specified, the switch is a candidate RP for all groups.</td>
</tr>
<tr>
<td>3</td>
<td>access-list access-list-number {deny</td>
<td>permit} source [source-wildcard]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- For access-list-number, enter the access list number specified in Step 2.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- The deny keyword denies access if the conditions are matched. The permit keyword permits access if the conditions are matched.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- For source, enter the number of the network or host from which the packet is being sent.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- (Optional) For source-wildcard, enter the wildcard bits in dotted decimal notation to be applied to the source. Place ones in the bit positions that you want to ignore.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recall that the access list is always terminated by an implicit deny statement for everything.</td>
</tr>
<tr>
<td>4</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>5</td>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>6</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove this device as a candidate RP, use the **no ip pim rp-candidate interface-id** global configuration command.
This example shows how to configure the switch to advertise itself as a candidate RP to the BSR in its PIM domain. Standard access list number 4 specifies the group prefix associated with the RP that has the address identified by Gigabit Ethernet interface 0/2 on stack member 1. That RP is responsible for the groups with the prefix 239.

Switch(config)# ip pim rp-candidate gigabitethernet1/0/2 group-list 4
Switch(config)# access-list 4 permit 239.0.0.0 0.255.255.255

Using Auto-RP and a BSR

If there are only Cisco devices in your network (no routers from other vendors), there is no need to configure a BSR. Configure Auto-RP in a network that is running both PIMv1 and PIMv2.

If you have non-Cisco PIMv2 routers that need to interoperate with Cisco PIMv1 routers and multilayer switches, both Auto-RP and a BSR are required. We recommend that a Cisco PIMv2 router or multilayer switch be both the Auto-RP mapping agent and the BSR.

If you must have one or more BSRs, we have these recommendations:

- Configure the candidate BSRs as the RP-mapping agents for Auto-RP. For more information, see the “Configuring Auto-RP” section on page 28-14 and the “Configuring Candidate BSRs” section on page 28-20.
- For group prefixes advertised through Auto-RP, the PIMv2 BSR mechanism should not advertise a subrange of these group prefixes served by a different set of RPs. In a mixed PIMv1 and PIMv2 domain, have backup RPs serve the same group prefixes. This prevents the PIMv2 DRs from selecting a different RP from those PIMv1 DRs, due to the longest match lookup in the RP-mapping database.

Beginning in privileged EXEC mode, follow these steps to verify the consistency of group-to-RP mappings. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>show ip pim rp [[group-name</td>
<td>group-address]</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For group-name, specify the name of the group about which to display RPs.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For group-address, specify the address of the group about which to display RPs.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) Use the mapping keyword to display all group-to-RP mappings of which the Cisco device is aware (either configured or learned from Auto-RP).</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>show ip pim rp-hash group</td>
<td>On a PIMv2 router or multilayer switch, confirm that the same RP is the one that a PIMv1 system chooses.</td>
</tr>
<tr>
<td></td>
<td>For group, enter the group address for which to display RP information.</td>
</tr>
</tbody>
</table>
Monitoring the RP Mapping Information

To monitor the RP mapping information, use these commands in privileged EXEC mode:

- `show ip pim bsr` displays information about the elected BSR.
- `show ip pim rp-hash group` displays the RP that was selected for the specified group.
- `show ip pim rp [group-name | group-address | mapping]` displays how the switch learns of the RP (through the BSR or the Auto-RP mechanism).

Troubleshooting PIMv1 and PIMv2 Interoperability Problems

When debugging interoperability problems between PIMv1 and PIMv2, check these in the order shown:

1. Verify RP mapping with the `show ip pim rp-hash` privileged EXEC command, making sure that all systems agree on the same RP for the same group.
2. Verify interoperability between different versions of DRs and RPs. Make sure the RPs are interacting with the DRs properly (by responding with register-stops and forwarding decapsulated data packets from registers).

Configuring Advanced PIM Features

These sections describe the optional advanced PIM features:

- Understanding PIM Shared Tree and Source Tree, page 28-23
- Delaying the Use of PIM Shortest-Path Tree, page 28-25 (optional)
- Modifying the PIM Router-Query Message Interval, page 28-26 (optional)

Understanding PIM Shared Tree and Source Tree

By default, members of a group receive data from senders to the group across a single data-distribution tree rooted at the RP. Figure 28-4 shows this type of shared-distribution tree. Data from senders is delivered to the RP for distribution to group members joined to the shared tree.
If the data rate warrants, leaf routers (routers without any downstream connections) on the shared tree can use the data distribution tree rooted at the source. This type of distribution tree is called a shortest-path tree or source tree. By default, the software switches to a source tree upon receiving the first data packet from a source.

This process describes the move from a shared tree to a source tree:

1. A receiver joins a group; leaf Router C sends a join message toward the RP.
2. The RP puts a link to Router C in its outgoing interface list.
3. A source sends data; Router A encapsulates the data in a register message and sends it to the RP.
4. The RP forwards the data down the shared tree to Router C and sends a join message toward the source. At this point, data might arrive twice at Router C, once encapsulated and once natively.
5. When data arrives natively (unencapsulated) at the RP, it sends a register-stop message to Router A.
6. By default, reception of the first data packet prompts Router C to send a join message toward the source.
7. When Router C receives data on (S,G), it sends a prune message for the source up the shared tree.
8. The RP deletes the link to Router C from the outgoing interface of (S,G). The RP triggers a prune message toward the source.

Join and prune messages are sent for sources and RPs. They are sent hop-by-hop and are processed by each PIM device along the path to the source or RP. Register and register-stop messages are not sent hop-by-hop. They are sent by the designated router that is directly connected to a source and are received by the RP for the group.

Multiple sources sending to groups use the shared tree.

You can configure the PIM device to stay on the shared tree. For more information, see the “Delaying the Use of PIM Shortest-Path Tree” section on page 28-25.
Delaying the Use of PIM Shortest-Path Tree

The change from shared to source tree happens when the first data packet arrives at the last-hop router (Router C in Figure 28-4). This change occurs because the `ip pim spt-threshold` global configuration command controls that timing.

The shortest-path tree requires more memory than the shared tree but reduces delay. You might want to postpone its use. Instead of allowing the leaf router to immediately move to the shortest-path tree, you can specify that the traffic must first reach a threshold.

You can configure when a PIM leaf router should join the shortest-path tree for a specified group. If a source sends at a rate greater than or equal to the specified kbps rate, the multilayer switch triggers a PIM join message toward the source to construct a source tree (shortest-path tree). If the traffic rate from the source drops below the threshold value, the leaf router switches back to the shared tree and sends a prune message toward the source.

You can specify to which groups the shortest-path tree threshold applies by using a group list (a standard access list). If a value of 0 is specified or if the group list is not used, the threshold applies to all groups.

Beginning in privileged EXEC mode, follow these steps to configure a traffic rate threshold that must be reached before multicast routing is switched from the source tree to the shortest-path tree. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>`access-list access-list-number {deny</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>`ip pim spt-threshold {kbps</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modifying the PIM Router-Query Message Interval

PIM routers and multilayer switches send PIM router-query messages to determine which device will be the DR for each LAN segment (subnet). The DR is responsible for sending IGMP host-query messages to all hosts on the directly connected LAN.

With PIM DM operation, the DR has meaning only if IGMPv1 is in use. IGMPv1 does not have an IGMP querier election process, so the elected DR functions as the IGMP querier. With PIM SM operation, the DR is the device that is directly connected to the multicast source. It sends PIM register messages to notify the RP that multicast traffic from a source needs to be forwarded down the shared tree. In this case, the DR is the device with the highest IP address.

Beginning in privileged EXEC mode, follow these steps to modify the router-query message interval. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface to be configured.</td>
</tr>
<tr>
<td>ip pim query-interval seconds</td>
<td>Configure the frequency at which the switch sends PIM router-query messages. The default is 30 seconds. The range is 1 to 65535.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show ip igmp interface [interface-id]</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default setting, use the `no ip pim query-interval [seconds]` interface configuration command.
Configuring Optional IGMP Features

These sections describe how to configure optional IGMP features:
- Default IGMP Configuration, page 28-27
- Configuring the Switch as a Member of a Group, page 28-27 (optional)
- Controlling Access to IP Multicast Groups, page 28-28 (optional)
- Changing the IGMP Version, page 28-29 (optional)
- Modifying the IGMP Host-Query Message Interval, page 28-30 (optional)
- Changing the IGMP Query Timeout for IGMPv2, page 28-31 (optional)
- Changing the Maximum Query Response Time for IGMPv2, page 28-31 (optional)
- Configuring the Switch as a Statically Connected Member, page 28-32 (optional)

Default IGMP Configuration

Table 28-2 shows the default IGMP configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multilayer switch as a member of a multicast group</td>
<td>No group memberships are defined.</td>
</tr>
<tr>
<td>Access to multicast groups</td>
<td>All groups are allowed on an interface.</td>
</tr>
<tr>
<td>IGMP version</td>
<td>Version 2 on all interfaces.</td>
</tr>
<tr>
<td>IGMP host-query message interval</td>
<td>60 seconds on all interfaces.</td>
</tr>
<tr>
<td>IGMP query timeout</td>
<td>60 seconds on all interfaces.</td>
</tr>
<tr>
<td>IGMP maximum query response time</td>
<td>10 seconds on all interfaces.</td>
</tr>
<tr>
<td>Multilayer switch as a statically connected member</td>
<td>Disabled.</td>
</tr>
</tbody>
</table>

Configuring the Switch as a Member of a Group

You can configure the switch as a member of a multicast group. This is useful to determine multicast reachability in a network. If all the multicast-capable routers and multilayer switches that you administer are members of a multicast group, pinging that group causes all these devices to respond. The devices respond to ICMP echo-request packets addressed to a group of which they are members. Another example is the multicast trace-route tools provided in the software.

⚠️ Caution

Performing this procedure might impact the CPU performance because the CPU will receive all data traffic for the group address.
Beginning in privileged EXEC mode, follow these steps to configure the switch to be a member of a group. This procedure is optional.

To cancel membership in a group, use the no ip igmp join-group group-address interface configuration command.

This example shows how to enable the switch to join multicast group 255.2.2.2:

```
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# ip igmp join-group 255.2.2.2
```

Controlling Access to IP Multicast Groups

The switch sends IGMP host-query messages to determine which multicast groups have members on attached local networks. The switch then forwards to these group members all packets addressed to the multicast group. You can place a filter on each interface to restrict the multicast groups that hosts on the subnet serviced by the interface can join.

Beginning in privileged EXEC mode, follow these steps to filter multicast groups allowed on an interface. This procedure is optional.
To disable groups on an interface, use the `no ip igmp access-group` interface configuration command.

This example shows how to configure hosts attached to Gigabit Ethernet interface 0/1 on stack member 1 as able to join only group 255.2.2.2:

Switch(config)# access-list 1 255.2.2.2 0.0.0.0
Switch(config-if)# interface gigabitethernet1/0/1
Switch(config-if)# ip igmp access-group 1

Changing the IGMP Version

By default, the switch uses IGMP Version 2, which provides features such as the IGMP query timeout and the maximum query response time.

All systems on the subnet must support the same version. The switch does not automatically detect Version 1 systems and switch to Version 1. You can mix Version 1 and Version 2 hosts on the subnet because Version 2 routers or switches always work correctly with IGMPv1 hosts.

Configure the switch for Version 1 if your hosts do not support Version 2.

Beginning in privileged EXEC mode, follow these steps to change the IGMP version. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><code>interface interface-id</code></td>
<td>Enter interface configuration mode, and specify the interface to be configured.</td>
</tr>
<tr>
<td>`ip igmp version [1</td>
<td>2]`</td>
</tr>
</tbody>
</table>

Note: If you change to Version 1, you cannot configure the `ip igmp query-interval` or the `ip igmp query-max-response-time` interface configuration commands.
Configuring Optional IGMP Features

Chapter 28 Configuring IP Multicast Routing

Configuring Optional IGMP Features

Modifying the IGMP Host-Query Message Interval

The switch periodically sends IGMP host-query messages to discover which multicast groups are present on attached networks. These messages are sent to the all-hosts multicast group (224.0.0.1) with a time-to-live (TTL) of 1. The switch sends host-query messages to refresh its knowledge of memberships present on the network. If, after some number of queries, the software discovers that no local hosts are members of a multicast group, the software stops forwarding multicast packets to the local network from remote origins for that group and sends a prune message upstream toward the source.

The switch elects a PIM designated router (DR) for the LAN (subnet). The DR is the router or multilayer switch with the highest IP address for IGMPv2. For IGMPv1, the DR is elected according to the multicast routing protocol that runs on the LAN. The designated router is responsible for sending IGMP host-query messages to all hosts on the LAN. In sparse mode, the designated router also sends PIM register and PIM join messages toward the RP router.

Beginning in privileged EXEC mode, follow these steps to modify the host-query interval. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface to be configured.</td>
</tr>
<tr>
<td>Step 3 ip igmp query-interval seconds</td>
<td>Configure the frequency at which the designated router sends IGMP host-query messages.</td>
</tr>
<tr>
<td></td>
<td>By default, the designated router sends IGMP host-query messages every 60 seconds to keep the IGMP overhead very low on hosts and networks. The range is 1 to 65535.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show ip igmp interface [interface-id]</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default setting, use the **no ip igmp query-interval** interface configuration command.
Changing the IGMP Query Timeout for IGMPv2

If you are using IGMPv2, you can specify the period of time before the switch takes over as the querier for the interface. By default, the switch waits twice the query interval controlled by the `ip igmp query-interval` interface configuration command. After that time, if the switch has received no queries, it becomes the querier.

You can determine the query interval by entering the `show ip igmp interface interface-id` privileged EXEC command.

Beginning in privileged EXEC mode, follow these steps to change the IGMP query timeout. This procedure is optional.

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface to be configured.</td>
</tr>
<tr>
<td></td>
<td>ip igmp querier-timeout seconds</td>
<td>Specify the IGMP query timeout. The default is 60 seconds (twice the query interval). The range is 60 to 300.</td>
</tr>
<tr>
<td></td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>show ip igmp interface [interface-id]</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td></td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default setting, use the `no ip igmp querier-timeout` interface configuration command.

Changing the Maximum Query Response Time for IGMPv2

If you are using IGMPv2, you can change the maximum query response time advertised in IGMP queries. The maximum query response time enables the switch to quickly detect that there are no more directly connected group members on a LAN. Decreasing the value enables the switch to prune groups faster.

Beginning in privileged EXEC mode, follow these steps to change the maximum query response time. This procedure is optional.

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface to be configured.</td>
</tr>
<tr>
<td></td>
<td>ip igmp query-max-response-time seconds</td>
<td>Change the maximum query response time advertised in IGMP queries. The default is 10 seconds. The range is 1 to 25.</td>
</tr>
<tr>
<td></td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>show ip igmp interface [interface-id]</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td></td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
To return to the default setting, use the `no ip igmp query-max-response-time` interface configuration command.

Configuring the Switch as a Statically Connected Member

Sometimes there is either no group member on a network segment or a host cannot report its group membership by using IGMP. However, you might want multicast traffic to go to that network segment. These are ways to pull multicast traffic down to a network segment:

- Use the `ip igmp join-group` interface configuration command. With this method, the switch accepts the multicast packets in addition to forwarding them. Accepting the multicast packets prevents the switch from fast switching.
- Use the `ip igmp static-group` interface configuration command. With this method, the switch does not accept the packets itself, but only forwards them. This method enables fast switching. The outgoing interface appears in the IGMP cache, but the switch itself is not a member, as evidenced by lack of an `L` (local) flag in the multicast route entry.

Beginning in privileged EXEC mode, follow these steps to configure the switch itself to be a statically connected member of a group (and enable fast switching). This procedure is optional.

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td></td>
<td><code>interface interface-id</code></td>
<td>Enter interface configuration mode, and specify the interface to be configured.</td>
</tr>
<tr>
<td></td>
<td><code>ip igmp static-group group-address</code></td>
<td>Configure the switch as a statically connected member of a group. By default, this feature is disabled.</td>
</tr>
<tr>
<td></td>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td><code>show ip igmp interface [interface-id]</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td></td>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove the switch as a member of the group, use the `no ip igmp static-group group-address` interface configuration command.

Configuring Optional Multicast Routing Features

This section describes how to configure optional multicast routing features, which are grouped as follows:

- Features for Layer 2 connectivity and MBONE multimedia conference session and set up:
 - Enabling CGMP Server Support, page 28-33 (optional)
 - Configuring sdr Listener Support, page 28-34 (optional)
- Features that control bandwidth utilization:
 - Configuring an IP Multicast Boundary, page 28-35 (optional)
Enabling CGMP Server Support

The switch serves as a CGMP server for devices that do not support IGMP snooping but have CGMP client functionality. CGMP is a protocol used on Cisco routers and multilayer switches connected to Layer 2 Catalyst switches to perform tasks similar to those performed by IGMP. CGMP is necessary because the Layer 2 switch cannot distinguish between IP multicast data packets and IGMP report messages, which are both at the MAC-level and are addressed to the same group address.

Beginning in privileged EXEC mode, follow these steps to enable the CGMP server on the switch interface. This procedure is optional.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface that is connected to the Layer 2 Catalyst switch.</td>
</tr>
<tr>
<td>3</td>
<td>ip cgmp [proxy]</td>
<td>Enable CGMP on the interface. By default, CGMP is disabled on all interfaces. Enabling CGMP triggers a CGMP join message. Enable CGMP only on Layer 3 interfaces connected to Layer 2 Catalyst switches. (Optional) When you enter the proxy keyword, the CGMP proxy function is enabled. The proxy router advertises the existence of non-CGMP-capable routers by sending a CGMP join message with the non-CGMP-capable router MAC address and a group address of 0000.0000.0000. Note: To perform CGMP proxy, the switch must be the IGMP querier. If you configure the ip cgmp proxy command, you must manipulate the IP addresses so that the switch is the IGMP querier, which might be the highest or lowest IP address, depending on which version of IGMP is running on the network. An IGMP Version 2 querier is selected based on the lowest IP address on the interface. An IGMP Version 1 querier is selected based on the multicast routing protocol used on the interface.</td>
</tr>
<tr>
<td>4</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>5</td>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>6</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Verify the Layer 2 Catalyst switch CGMP-client configuration. For more information, refer to the documentation that shipped with the product.</td>
</tr>
</tbody>
</table>

To disable CGMP on the interface, use the no ip cgmp interface configuration command.

When multiple Cisco CGMP-capable devices are connected to a switched network and the ip cgmp proxy command is needed, we recommend that all devices be configured with the same CGMP option and have precedence for becoming the IGMP querier over non-Cisco routers.
Configuring Optional Multicast Routing Features

Chapter 28 Configuring IP Multicast Routing

Configuring sdr Listener Support

The MBONE is the small subset of Internet routers and hosts that are interconnected and capable of forwarding IP multicast traffic. Other interesting multimedia content is often broadcast over the MBONE. Before you can join a multimedia session, you need to know what multicast group address and port are being used for the session, when the session is going to be active, and what sort of applications (audio, video, and so forth) are required on your workstation. The MBONE Session Directory version 2 (sdr) tool provides this information. This freeware application can be downloaded from several sites on the World Wide Web, one of which is http://www.video.ja.net/mice/index.html.

SDR is a multicast application that listens to a well-known multicast group address and port for Session Announcement Protocol (SAP) multicast packets from SAP clients, which announce their conference sessions. These SAP packets contain a session description, the time the session is active, its IP multicast group addresses, media format, contact person, and other information about the advertised multimedia session. The information in the SAP packet is displayed in the SDR Session Announcement window.

Enabling sdr Listener Support

By default, the switch does not listen to session directory advertisements.

Beginning in privileged EXEC mode, follow these steps to enable the switch to join the default session directory group (224.2.127.254) on the interface and listen to session directory advertisements. This procedure is optional.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface to be enabled for sdr.</td>
</tr>
<tr>
<td>3</td>
<td>ip sdr listen</td>
<td>Enable sdr listener support.</td>
</tr>
<tr>
<td>4</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>5</td>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>6</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable sdr support, use the **no ip sdr listen** interface configuration command.
Limiting How Long an sdr Cache Entry Exists

By default, entries are never deleted from the sdr cache. You can limit how long the entry remains active so that if a source stops advertising SAP information, old advertisements are not needlessly kept.

Beginning in privileged EXEC mode, follow these steps to limit how long an sdr cache entry stays active in the cache. This procedure is optional.

<table>
<thead>
<tr>
<th>Step 1: Configure terminal</th>
<th>Purpose: Enter global configuration mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2: ip sdr cache-timeout minutes</td>
<td>Limit how long an sdr cache entry stays active in the cache.</td>
</tr>
<tr>
<td></td>
<td>By default, entries are never deleted from the cache.</td>
</tr>
<tr>
<td></td>
<td>For minutes, the range is 1 to 4294967295.</td>
</tr>
<tr>
<td>Step 3: end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4: show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5: copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default setting, use the `no ip sdr cache-timeout` global configuration command. To delete the entire cache, use the `clear ip sdr` privileged EXEC command.

To display the session directory cache, use the `show ip sdr` privileged EXEC command.

Configuring an IP Multicast Boundary

Administratively-scoped boundaries can be used to limit the forwarding of multicast traffic outside of a domain or subdomain. This approach uses a special range of multicast addresses, called administratively-scoped addresses, as the boundary mechanism. If you configure an administratively-scoped boundary on a routed interface, multicast traffic whose multicast group addresses fall in this range cannot enter or exit this interface, thereby providing a firewall for multicast traffic in this address range.

Note

Multicast boundaries and TTL thresholds control the scoping of multicast domains; however, TTL thresholds are not supported by the switch. You should use multicast boundaries instead of TTL thresholds to limit the forwarding of multicast traffic outside of a domain or a subdomain.

Figure 28-5 shows that Company XYZ has an administratively-scoped boundary set for the multicast address range 239.0.0.0/8 on all routed interfaces at the perimeter of its network. This boundary prevents any multicast traffic in the range 239.0.0.0 through 239.255.255.255 from entering or leaving the network. Similarly, the engineering and marketing departments have an administratively-scoped boundary of 239.128.0.0/16 around the perimeter of their networks. This boundary prevents multicast traffic in the range of 239.128.0.0 through 239.128.255.255 from entering or leaving their respective networks.
You can define an administratively-scoped boundary on a routed interface for multicast group addresses. A standard access list defines the range of addresses affected. When a boundary is defined, no multicast data packets are allowed to flow across the boundary from either direction. The boundary allows the same multicast group address to be reused in different administrative domains.

The IANA has designated the multicast address range 239.0.0.0 to 239.255.255.255 as the administratively-scoped addresses. This range of addresses can then be reused in domains administered by different organizations. The addresses would be considered local, not globally unique.

Beginning in privileged EXEC mode, follow these steps to set up an administratively-scoped boundary. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>access-list access-list-number [deny</td>
</tr>
<tr>
<td></td>
<td>permit] source [source-wildcard]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 4</td>
<td>ip multicast boundary access-list-number</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td>Step 6</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>
To remove the boundary, use the `no ip multicast boundary` interface configuration command.

This example shows how to set up a boundary for all administratively-scoped addresses:

```
Switch(config)# access-list 1 deny 239.0.0.0 0.255.255.255
Switch(config)# access-list 1 permit 224.0.0.0 15.255.255.255
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# ip multicast boundary 1
```

Configuring Basic DVMRP Interoperability Features

These sections describe how to perform basic configuration tasks on your switch to interoperate with DVMRP devices:

- Configuring DVMRP Interoperability, page 28-37 (optional)
- Configuring a DVMRP Tunnel, page 28-39 (optional)
- Advertising Network 0.0.0.0 to DVMRP Neighbors, page 28-41 (optional)
- Responding to mrinfo Requests, page 28-42 (optional)

For more advanced DVMRP features, see the “Configuring Advanced DVMRP Interoperability Features” section on page 28-42.

Configuring DVMRP Interoperability

Cisco multicast routers and multilayer switches using PIM can interoperate with non-Cisco multicast routers that use the DVMRP.

PIM devices dynamically discover DVMRP multicast routers on attached networks by listening to DVMR probe messages. When a DVMRP neighbor has been discovered, the PIM device periodically sends DVMRP report messages advertising the unicast sources reachable in the PIM domain. By default, directly connected subnets and networks are advertised. The device forwards multicast packets that have been forwarded by DVMRP routers and, in turn, forwards multicast packets to DVMRP routers.

You can configure an access list on the PIM routed interface connected to the MBONE to limit the number of unicast routes that are advertised in DVMRP route reports. Otherwise, all routes in the unicast routing table are advertised.

Note

The mrouted protocol is a public-domain implementation of DVMRP. You must use mrouted Version 3.8 (which implements a nonpruning version of DVMRP) when Cisco routers and multilayer switches are directly connected to DVMRP routers or interoperate with DVMRP routers over an MBONE tunnel. DVMRP advertisements produced by the Cisco IOS software can cause older versions of the mrouted protocol to corrupt their routing tables and those of their neighbors.

You can configure what sources are advertised and what metrics are used by configuring the `ip dvmrp metric` interface configuration command. You can also direct all sources learned through a particular unicast routing process to be advertised into DVMRP.
Chapter 28 Configuring IP Multicast Routing

Beginning in privileged EXEC mode, follow these steps to configure the sources that are advertised and the metrics that are used when DVMRP route-report messages are sent. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>access-list access-list-number {deny</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 4</td>
<td>ip dvmrp metric metric [list access-list-number] [protocol process-id] [dvmrp]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td>Step 6</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To disable the metric or route map, use the no ip dvmrp metric metric [list access-list-number] [protocol process-id] [dvmrp] or the no ip dvmrp metric metric route-map map-name interface configuration command.

A more sophisticated way to achieve the same results as the preceding command is to use a route map (ip dvmrp metric metric route-map map-name interface configuration command) instead of an access list. You subject unicast routes to route-map conditions before they are injected into DVMRP.
This example shows how to configure DVMRP interoperability when the PIM device and the DVMRP router are on the same network segment. In this example, access list 1 advertises the networks (198.92.35.0, 198.92.36.0, 198.92.37.0, 131.108.0.0, and 150.136.0.0) to the DVMRP router, and access list 2 prevents all other networks from being advertised (ip dvmrp metric 0 interface configuration command).

Configuring a DVMRP Tunnel

The software supports DVMRP tunnels to the MBONE. You can configure a DVMRP tunnel on a router or multilayer switch if the other end is running DVMRP. The software then sends and receives multicast packets through the tunnel. This strategy enables a PIM domain to connect to the DVMRP router when all routers on the path do not support multicast routing. You cannot configure a DVMRP tunnel between two routers.

When a Cisco router or multilayer switch runs DVMRP through a tunnel, it advertises sources in DVMRP report messages, much as it does on real networks. The software also caches DVMRP report messages it receives and uses them in its RPF calculation. This behavior enables the software to forward multicast packets received through the tunnel.

When you configure a DVMRP tunnel, you should assign an IP address to a tunnel in these cases:

- To send IP packets through the tunnel
- To configure the software to perform DVMRP summarization

The software does not advertise subnets through the tunnel if the tunnel has a different network number from the subnet. In this case, the software advertises only the network number through the tunnel.
Beginning in privileged EXEC mode, follow these steps to configure a DVMRP tunnel. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>access-list access-list-number</td>
</tr>
<tr>
<td></td>
<td>deny</td>
</tr>
<tr>
<td></td>
<td>permit</td>
</tr>
<tr>
<td></td>
<td>source [source-wildcard]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>interface tunnel number</td>
</tr>
<tr>
<td>Step 4</td>
<td>tunnel source ip-address</td>
</tr>
<tr>
<td>Step 5</td>
<td>tunnel destination ip-address</td>
</tr>
<tr>
<td>Step 6</td>
<td>tunnel mode dvmrp</td>
</tr>
<tr>
<td>Step 7</td>
<td>ip address address mask</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>ip unnumbered type number</td>
</tr>
<tr>
<td>Step 8</td>
<td>ip pim [dense-mode</td>
</tr>
<tr>
<td>Step 9</td>
<td>ip dvmrp accept-filter access-list-number [distance] neighbor-list access-list-number</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td>end</td>
</tr>
</tbody>
</table>
To disable the filter, use the `no ip dvmrp accept-filter access-list-number [distance] neighbor-list access-list-number` interface configuration command.

This example shows how to configure a DVMRP tunnel. In this configuration, the IP address of the tunnel on the Cisco switch is assigned `unnumbered`, which causes the tunnel to appear to have the same IP address as Gigabit Ethernet interface 0/1 on stack member 1. The tunnel endpoint source address is 172.16.2.1, and the tunnel endpoint address of the remote DVMRP router to which the tunnel is connected is 192.168.1.10. Any packets sent through the tunnel are encapsulated in an outer IP header. The Cisco switch is configured to accept incoming DVMRP reports with a distance of 100 from 198.92.37.0 through 198.92.37.255.

```bash
Switch(config)# ip multicast-routing
Switch(config)# interface tunnel 0
Switch(config-if)# ip unnumbered gigabitethernet1/0/1
Switch(config-if)# ip pim dense-mode
Switch(config-if)# tunnel source gigabitethernet1/0/1
Switch(config-if)# tunnel destination 192.168.1.10
Switch(config-if)# tunnel mode dvmrp
Switch(config-if)# ip dvmrp accept-filter 1 100
Switch(config-if)# interface gigabitethernet1/0/1
Switch(config-if)# ip address 172.16.2.1 255.255.255.0
Switch(config-if)# ip pim dense-mode
Switch(config)# exit
Switch(config)# access-list 1 permit 198.92.37.0 0.0.0.255
```

Advertising Network 0.0.0.0 to DVMRP Neighbors

If your switch is a neighbor of an mrouted version 3.6 device, you can configure the software to advertise network 0.0.0.0 (the default route) to the DVMRP neighbor. The DVMRP default route computes the RPF information for any multicast sources that do not match a more specific route.

Do not advertise the DVMRP default into the MBONE.

Beginning in privileged EXEC mode, follow these steps to advertise network 0.0.0.0 to DVMRP neighbors on an interface. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface that is connected to the DVMRP router.</td>
</tr>
</tbody>
</table>
Configuring Advanced DVMRP Interoperability Features

Cisco routers and multilayer switches run PIM to forward multicast packets to receivers and receive multicast packets from senders. It is also possible to propagate DVMRP routes into and through a PIM cloud. PIM uses this information; however, Cisco routers and multilayer switches do not implement DVMRP to forward multicast packets.

Responding to mrinfo Requests

The software answers mrinfo requests sent by mrouted systems and Cisco routers and multilayer switches. The software returns information about neighbors through DVMRP tunnels and all the routed interfaces. This information includes the metric (always set to 1), the configured TTL threshold, the status of the interface, and various flags. You can also use the `mrinfo` privileged EXEC command to query the router or switch itself, as in this example:

```
Switch# mrinfo
171.69.214.27 (mm1-7kd.cisco.com) [version cisco 11.1] [flags: PMS]:
  171.69.214.27 -> 171.69.214.26 (mm1-r7kb.cisco.com) [1/0/pim/querier]
  171.69.214.27 -> 171.69.214.25 (mm1-45a.cisco.com) [1/0/pim/querier]
  171.69.214.33 -> 171.69.214.34 (mm1-45c.cisco.com) [1/0/pim]
  171.69.214.137 -> 0.0.0.0 [1/0/pim/querier/down/leaf]
  171.69.214.203 -> 0.0.0.0 [1/0/pim/querier/down/leaf]
  171.69.214.18 -> 171.69.214.20 (mm1-45e.cisco.com) [1/0/pim]
  171.69.214.18 -> 171.69.214.19 (mm1-45c.cisco.com) [1/0/pim]
  171.69.214.18 -> 171.69.214.17 (mm1-45a.cisco.com) [1/0/pim]
```

Configuring Advanced DVMRP Interoperability Features

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td><code>ip dvmrp default-information</code></td>
<td>Advertise network 0.0.0.0 to DVMRP neighbors.</td>
</tr>
<tr>
<td>`(originates</td>
<td>only)`</td>
</tr>
<tr>
<td></td>
<td>3.6 machines.</td>
</tr>
<tr>
<td></td>
<td>The keywords have these meanings:</td>
</tr>
<tr>
<td></td>
<td>• <code>originates</code>—Specifies that other routes more specific than 0.0.0.0 can</td>
</tr>
<tr>
<td></td>
<td>also be advertised.</td>
</tr>
<tr>
<td></td>
<td>• <code>only</code>—Specifies that no DVMRP routes other than 0.0.0.0 are</td>
</tr>
<tr>
<td></td>
<td>advertised.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>end</code></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td><code>show running-config</code></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td></td>
</tr>
</tbody>
</table>

To prevent the default route advertisement, use the **no ip dvmrp default-information** interface configuration command.
These sections describe how to perform advanced optional configuration tasks on your switch to interoperate with DVMRP devices:

- **Enabling DVMRP Unicast Routing**, page 28-43 (optional)
- **Rejecting a DVMRP Nonpruning Neighbor**, page 28-44 (optional)
- **Controlling Route Exchanges**, page 28-46 (optional)

For information on basic DVMRP features, see the “Configuring Basic DVMRP Interoperability Features” section on page 28-37.

Enabling DVMRP Unicast Routing

Because multicast routing and unicast routing require separate topologies, PIM must follow the multicast topology to build loopless distribution trees. Using DVMRP unicast routing, Cisco routers, multilayer switches, and mrouted-based machines exchange DVMRP unicast routes, to which PIM can then reverse-path forward.

Cisco devices do not perform DVMRP multicast routing among each other, but they can exchange DVMRP routes. The DVMRP routes provide a multicast topology that might differ from the unicast topology. This enables PIM to run over the multicast topology, thereby enabling sparse-mode PIM over the MBONE topology.

When DVMRP unicast routing is enabled, the router or switch caches routes learned in DVMRP report messages in a DVMRP routing table. When PIM is running, these routes might be preferred over routes in the unicast routing table, enabling PIM to run on the MBONE topology when it is different from the unicast topology.

DVMRP unicast routing can run on all interfaces. For DVMRP tunnels, it uses DVMRP multicast routing. This feature does not enable DVMRP multicast routing among Cisco routers and multilayer switches. However, if there is a DVMRP-capable multicast router, the Cisco device can do PIM/DVMRP multicast routing.

Beginning in privileged EXEC mode, follow these steps to enable DVMRP unicast routing. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface that is connected to the DVMRP router.</td>
</tr>
<tr>
<td>Step 3 ip dvmrp unicast-routing</td>
<td>Enable DVMRP unicast routing (to send and receive DVMRP routes). This feature is disabled by default.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable this feature, use the **no ip dvmrp unicast-routing** interface configuration command.
Rejecting a DVMRP Nonpruning Neighbor

By default, Cisco devices accept all DVMRP neighbors as peers, regardless of their DVMRP capability. However, some non-Cisco devices run old versions of DVMRP that cannot prune, so they continuously receive forwarded packets, wasting bandwidth. Figure 28-6 shows this scenario.

Figure 28-6 Leaf Nonpruning DVMRP Neighbor

You can prevent the switch from peering (communicating) with a DVMRP neighbor if that neighbor does not support DVMRP pruning or grafting. To do so, configure the switch (which is a neighbor to the leaf, nonpruning DVMRP machine) with the `ip dvmrp reject-non-pruners` interface configuration command on the interface connected to the nonpruning machine as shown in Figure 28-7. In this case, when the switch receives DVMRP probe or report message without the prune-capable flag set, the switch logs a syslog message and discards the message.
Note that the `ip dvmrp reject-non-pruners` interface configuration command prevents peering with neighbors only. If there are any nonpruning routers multiple hops away (downstream toward potential receivers) that are not rejected, a nonpruning DVMRP network might still exist.

Beginning in privileged EXEC mode, follow these steps to prevent peering with nonpruning DVMRP neighbors. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface <code>interface-id</code></td>
<td>Enter interface configuration mode, and specify the interface connected to the nonpruning DVMRP neighbor.</td>
</tr>
<tr>
<td>Step 3 ip dvmrp reject-non-pruners</td>
<td>Prevent peering with nonpruning DVMRP neighbors.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable this function, use the `no ip dvmrp reject-non-pruners` interface configuration command.
Controlling Route Exchanges

These sections describe how to tune the Cisco device advertisements of DVMRP routes:

- **Limiting the Number of DVMRP Routes Advertised**, page 28-46 (optional)
- **Changing the DVMRP Route Threshold**, page 28-46 (optional)
- **Configuring a DVMRP Summary Address**, page 28-47 (optional)
- **Disabling DVMRP Autosummarization**, page 28-49 (optional)
- **Adding a Metric Offset to the DVMRP Route**, page 28-49 (optional)

Limiting the Number of DVMRP Routes Advertised

By default, only 7000 DVMRP routes are advertised over an interface enabled to run DVMRP (that is, a DVMRP tunnel, an interface where a DVMRP neighbor has been discovered, or an interface configured to run the `ip dvmrp unicast-routing` interface configuration command).

Beginning in privileged EXEC mode, follow these steps to change the DVMRP route limit. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>ip dvmrp route-limit count</code></td>
<td>Change the number of DVMRP routes advertised over an interface enabled for DVMRP.</td>
</tr>
<tr>
<td></td>
<td>This command prevents misconfigured `ip dvmrp metric interface configuration commands from causing massive route injection into the MBONE.</td>
</tr>
<tr>
<td></td>
<td>By default, 7000 routes are advertised. The range is 0 to 4294967295.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To configure no route limit, use the **no ip dvmrp route-limit** global configuration command.

Changing the DVMRP Route Threshold

By default, 10,000 DVMRP routes can be received per interface within a 1-minute interval. When that rate is exceeded, a syslog message is issued, warning that there might be a route surge occurring. The warning is typically used to quickly detect when devices have been misconfigured to inject a large number of routes into the MBONE.
Beginning in privileged EXEC mode, follow these steps to change the threshold number of routes that trigger the warning. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Command</td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Command</td>
</tr>
<tr>
<td>ip dvmrp routehog-notification route-count</td>
<td>Configure the number of routes that trigger a syslog message.</td>
</tr>
<tr>
<td></td>
<td>The default is 10,000 routes. The range is 1 to 4294967295.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Command</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Command</td>
</tr>
<tr>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Command</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default setting use the `no ip dvmrp routehog-notification` global configuration command.

Use the `show ip igmp interface` privileged EXEC command to display a running count of routes. When the count is exceeded, ***ALERT*** is appended to the line.

Configuring a DVMRP Summary Address

By default, a Cisco device advertises in DVMRP route-report messages only connected unicast routes (that is, only routes to subnets that are directly connected to the router) from its unicast routing table. These routes undergo normal DVMRP classful route summarization. This process depends on whether the route being advertised is in the same classful network as the interface over which it is being advertised.

Figure 28-8 shows an example of the default behavior. This example shows that the DVMRP report sent by the Cisco router contains the three original routes received from the DVMRP router that have been poison-reversed by adding 32 to the DVMRP metric. Listed after these routes are two routes that are advertisements for the two directly connected networks (176.32.10.0/24 and 176.32.15.0/24) that were taken from the unicast routing table. Because the DVMRP tunnel shares the same IP address as Fast Ethernet 0/1 and falls into the same Class B network as the two directly connected subnets, classful summarization of these routes was not performed. As a result, the DVMRP router is able to poison-reverse only these two routes to the directly connected subnets and is able to only RPF properly for multicast traffic sent by sources on these two Ethernet segments. Any other multicast source in the network behind the Cisco router that is not on these two Ethernet segments does not properly RPF-check on the DVMRP router and is discarded.

You can force the Cisco router to advertise the summary address (specified by the address and mask pair in the `ip dvmrp summary-address address mask interface configuration command`) in place of any route that falls in this address range. The summary address is sent in a DVMRP route report if the unicast routing table contains at least one route in this range; otherwise, the summary address is not advertised. In Figure 28-8, you configure the `ip dvmrp summary-address` command on the Cisco router tunnel interface. As a result, the Cisco router sends only a single summarized Class B advertisement for network 176.32.0.0.16 from the unicast routing table.
Beginning in privileged EXEC mode, follow these steps to customize the summarization of DVMRP routes if the default classful autosummarization does not suit your needs. This procedure is optional.

At least one more-specific route must be present in the unicast routing table before a configured summary address is advertised.

Command	**Purpose**
Step 1 configure terminal	Enter global configuration mode.
Step 2 interface interface-id	Enter interface configuration command, and specify the interface that is connected to the DVMRP router.
Step 3 ip dvmrp summary-address address mask [metric value]	Specify a DVMRP summary address.
• For summary-address address mask, specify the summary IP address and mask that is advertised instead of the more specific route.	
• (Optional) For metric value, specify the metric that is advertised with the summary address. The default is 1. The range is 1 to 32.	
Step 4 end | Return to privileged EXEC mode.
Step 5 show running-config | Verify your entries.
Step 6 copy running-config startup-config | (Optional) Save your entries in the configuration file.

To remove the summary address, use the no ip dvmrp summary-address address mask [metric value] interface configuration command.
Disabling DVMRP Autosummarization

By default, the software automatically performs some level of DVMRP summarization. Disable this function if you want to advertise all routes, not just a summary. In some special cases, you can use the neighboring DVMRP router with all subnet information to better control the flow of multicast traffic in the DVMRP network. One such case might occur if the PIM network is connected to the DVMRP cloud at several points and more specific (unsummarized) routes are being injected into the DVMRP network to advertise better paths to individual subnets inside the PIM cloud.

If you configure the `ip dvmrp summary-address` interface configuration command and did not configure `no ip dvmrp auto-summary`, you get both custom and autosummaries.

Beginning in privileged EXEC mode, follow these steps to disable DVMRP autosummarization. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface connected to the DVMRP router.</td>
</tr>
<tr>
<td>Step 3 no ip dvmrp auto-summary</td>
<td>Disable DVMRP autosummarization.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To re-enable auto summarization, use the `ip dvmrp auto-summary` interface configuration command.

Adding a Metric Offset to the DVMRP Route

By default, the switch increments by one the metric (hop count) of a DVMRP route advertised in incoming DVMRP reports. You can change the metric if you want to favor or not favor a certain route.

For example, a route is learned by multilayer switch A, and the same route is learned by multilayer switch B with a higher metric. If you want to use the path through switch B because it is a faster path, you can apply a metric offset to the route learned by switch A to make it larger than the metric learned by switch B, and you can choose the path through switch B.
Beginning in privileged EXEC mode, follow these steps to change the default metric. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>ip dvmrp metric-offset [in</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return to the default setting, use the no ip dvmrp metric-offset interface configuration command.

Monitoring and Maintaining IP Multicast Routing

These sections describe how to monitor and maintain IP multicast routing:

- Clearing Caches, Tables, and Databases, page 28-51
- Displaying System and Network Statistics, page 28-51
- Monitoring IP Multicast Routing, page 28-52
Clearing Caches, Tables, and Databases

You can remove all contents of a particular cache, table, or database. Clearing a cache, table, or database might be necessary when the contents of the particular structure are or suspected to be invalid.

You can use any of the privileged EXEC commands in Table 28-3 to clear IP multicast caches, tables, and databases:

Table 28-3 Commands for Clearing Caches, Tables, and Databases

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear ip cgmp</td>
<td>Clear all group entries the Catalyst switches have cached.</td>
</tr>
<tr>
<td>clear ip dvmrp route {*</td>
<td>route}</td>
</tr>
<tr>
<td>clear ip igmp group [group-name</td>
<td>group-address</td>
</tr>
<tr>
<td>clear ip mroute {*</td>
<td>group [source]}</td>
</tr>
<tr>
<td>clear ip mroute [source]</td>
<td>Clear the Auto-RP cache.</td>
</tr>
<tr>
<td>clear ip mroute rp-address</td>
<td></td>
</tr>
</tbody>
</table>

Displaying System and Network Statistics

You can display specific statistics, such as the contents of IP routing tables, caches, and databases.

Note This release does not support per-route statistics.

You can display information to determine resource utilization and solve network problems. You can also display information about node reachability and discover the routing path your device’s packets are taking through the network.

You can use any of the privileged EXEC commands in Table 28-4 to display various routing statistics:

Table 28-4 Commands for Displaying System and Network Statistics

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>ping [group-name</td>
<td>group-address]</td>
</tr>
<tr>
<td>show ip dvmrp route [ip-address]</td>
<td>Display the entries in the DVMRP routing table.</td>
</tr>
<tr>
<td>show ip igmp groups [group-name</td>
<td>group-address</td>
</tr>
<tr>
<td>show ip igmp interface [type number]</td>
<td>Display multicast-related information about an interface.</td>
</tr>
<tr>
<td>show ip mcache [group [source]]</td>
<td>Display the contents of the IP fast-switching cache.</td>
</tr>
</tbody>
</table>
Table 28-4 Commands for Displaying System and Network Statistics (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ip mpacket</code></td>
<td>Display the contents of the circular cache-header buffer.</td>
</tr>
<tr>
<td><code>show ip mroute</code></td>
<td>Display the contents of the IP multicast routing table.</td>
</tr>
<tr>
<td><code>show ip pim interface</code></td>
<td>Display information about interfaces configured for PIM.</td>
</tr>
<tr>
<td><code>show ip pim neighbor</code></td>
<td>List the PIM neighbors discovered by the switch.</td>
</tr>
<tr>
<td><code>show ip pim rp</code></td>
<td>Display the RP routers associated with a sparse-mode multicast group.</td>
</tr>
<tr>
<td><code>show ip rpf</code></td>
<td>Display how the switch is doing Reverse-Path Forwarding (that is, from the unicast routing table, DVMRP routing table, or static mroutes).</td>
</tr>
<tr>
<td><code>show ip sdr</code></td>
<td>Display the Session Directory Protocol Version 2 cache.</td>
</tr>
</tbody>
</table>

Monitoring IP Multicast Routing

You can use the privileged EXEC commands in Table 28-5 to monitor IP multicast routers, packets, and paths:

Table 28-5 Commands for Monitoring IP Multicast Routing

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mrinfo</code></td>
<td>Query a multicast router or multilayer switch about which neighboring multicast devices are peering with it.</td>
</tr>
<tr>
<td><code>mstat</code></td>
<td>Display IP multicast packet rate and loss information.</td>
</tr>
<tr>
<td><code>mtrace</code></td>
<td>Trace the path from a source to a destination branch for a multicast distribution tree for a given group.</td>
</tr>
</tbody>
</table>
Configuring MSDP

This chapter describes how to configure the Multicast Source Discovery Protocol (MSDP) on the Catalyst 3750 switch. The MSDP connects multiple Protocol-Independent Multicast sparse-mode (PIM-SM) domains.

MSDP is not fully supported in this software release because of a lack of support for Multicast Border Gateway Protocol (MBGP), which works closely with MSDP. However, it is possible to create default peers that MSDP can operate with if MBGP is not running.

To use this feature, the stack master must be running the enhanced multilayer software image (EMI). Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

For complete syntax and usage information for the commands used in this chapter, refer to the Cisco IOS IP and IP Routing Command Reference for Release 12.1.

This chapter consists of these sections:

- Understanding MSDP, page 29-1
- Configuring MSDP, page 29-4
- Monitoring and Maintaining MSDP, page 29-19

Understanding MSDP

MSDP allows multicast sources for a group to be known to all rendezvous points (RPs) in different domains. Each PIM-SM domain uses its own RPs and does not depend on RPs in other domains. An RP runs MSDP over the Transmission Control Protocol (TCP) to discover multicast sources in other domains.

An RP in a PIM-SM domain has an MSDP peering relationship with MSDP-enabled devices in another domain. The peering relationship occurs over a TCP connection, primarily exchanging a list of sources sending to multicast groups. The TCP connections between RPs are achieved by the underlying routing system. The receiving RP uses the source lists to establish a source path.
The purpose of this topology is to have domains discover multicast sources in other domains. If the multicast sources are of interest to a domain that has receivers, multicast data is delivered over the normal, source-tree building mechanism in PIM-SM. MSDP is also used to announce sources sending to a group. These announcements must originate at the domain’s RP.

MSDP depends heavily on the Border Gateway Protocol (BGP) or MBGP for interdomain operation. We recommend that you run MSDP in RPs in your domain that are RPs for sources sending to global groups to be announced to the Internet.

MSDP Operation

Figure 29-1 shows MSDP operating between two MSDP peers. PIM uses MSDP as the standard mechanism to register a source with the RP of a domain. When MSDP is configured, this sequence occurs.

When a source sends its first multicast packet, the first-hop router (designated router or RP) directly connected to the source sends a PIM register message to the RP. The RP uses the register message to register the active source and to forward the multicast packet down the shared tree in the local domain. With MSDP configured, the RP also forwards a source-active (SA) message to all MSDP peers. The SA message identifies the source, the group the source is sending to, and the address of the RP or the originator ID (the IP address of the interface used as the RP address), if configured.

Each MSDP peer receives and forwards the SA message away from the originating RP to achieve peer reverse-path flooding (RPF). The MSDP device examines the BGP or MBGP routing table to determine which peer is the next hop toward the originating RP of the SA message. Such a peer is called an RPF peer (reverse-path forwarding peer). The MSDP device forwards the message to all MSDP peers other than the RPF peer. For information on how to configure an MSDP peer when BGP and MBGP are not supported, see the “Configuring a Default MSDP Peer” section on page 29-4.

If the MSDP peer receives the same SA message from a non-RPF peer toward the originating RP, it drops the message. Otherwise, it forwards the message to all its MSDP peers.

When the RP for a domain receives the SA message from an MSDP peer, it determines if it has any join requests for the group the SA message describes. If the (*,G) entry exists with a nonempty outgoing interface list, the domain is interested in the group, and the RP triggers an (S,G) join toward the source. After the (S,G) join reaches the source’s DR, a branch of the source tree has been built from the source to the RP in the remote domain. Multicast traffic can now flow from the source across the source tree to the RP and then down the shared tree in the remote domain to the receiver.
MSDP Benefits

MSDP has these benefits:

- It breaks up the shared multicast distribution tree. You can make the shared tree local to your domain. Your local members join the local tree, and join messages for the shared tree never need to leave your domain.
- PIM sparse-mode domains can rely only on their own RPs, decreasing reliance on RPs in another domain. This increases security because you can prevent your sources from being known outside your domain.
- Domains with only receivers can receive data without globally advertising group membership.
- Global source multicast routing table state is not required, saving memory.
Configuring MSDP

These sections describe how to configure MSDP:

- Default MSDP Configuration, page 29-4
- Configuring a Default MSDP Peer, page 29-4 (required)
- Caching Source-Active State, page 29-6 (optional)
- Requesting Source Information from an MSDP Peer, page 29-8 (optional)
- Controlling Source Information that Your Switch Originates, page 29-8 (optional)
- Controlling Source Information that Your Switch Forwards, page 29-12 (optional)
- Controlling Source Information that Your Switch Receives, page 29-14 (optional)
- Configuring an MSDP Mesh Group, page 29-16 (optional)
- Shutting Down an MSDP Peer, page 29-16 (optional)
- Including a Bordering PIM Dense-Mode Region in MSDP, page 29-17 (optional)
- Configuring an Originating Address other than the RP Address, page 29-18 (optional)

Default MSDP Configuration

MSDP is not enabled, and no default MSDP peer exists.

Configuring a Default MSDP Peer

In this software release, because BGP and MBGP are not supported, you cannot configure an MSDP peer on the local switch by using the `ip msdp peer` global configuration command. Instead, you define a default MSDP peer (by using the `ip msdp default-peer` global configuration command) from which to accept all SA messages for the switch. The default MSDP peer must be a previously configured MSDP peer. Configure a default MSDP peer when the switch is not BGP- or MBGP-peering with an MSDP peer. If a single MSDP peer is configured, the switch always accepts all SA messages from that peer.

Figure 29-2 shows a network in which default MSDP peers might be used. In Figure 29-2, a customer who owns Switch B is connected to the Internet through two Internet service providers (ISPs), one owning Router A and the other owning Router C. They are not running BGP or MBGP between them. To learn about sources in the ISP’s domain or in other domains, Switch B at the customer site identifies Router A as its default MSDP peer. Switch B advertises SA messages to both Router A and Router C but accepts SA messages only from Router A or only from Router C. If Router A is first in the configuration file, it is used if it is running. If Router A is not running, only then does Switch B accept SA messages from Router C. This is the default behavior without a prefix list.

If you specify a prefix list, the peer is a default peer only for the prefixes in the list. You can have multiple active default peers when you have a prefix list associated with each. When you do not have any prefix lists, you can configure multiple default peers, but only the first one is the active default peer as long as the router has connectivity to this peer and the peer is alive. If the first configured peer fails or the connectivity to this peer fails, the second configured peer becomes the active default, and so on.

The ISP probably uses a prefix list to define which prefixes it accepts from the customer’s router.
Beginning in privileged EXEC mode, follow these steps to specify a default MSDP peer. This procedure is required.

Command Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| 2 | ip msdp default-peer ip-address | Define a default peer from which to accept all MSDP SA messages.
| | name [prefix-list list] | - For ip-address | name, enter the IP address or Domain Name System (DNS) server name of the MSDP default peer.
| | | - (Optional) For prefix-list list, enter the list name that specifies the peer to be the default peer only for the listed prefixes. You can have multiple active default peers when you have a prefix list associated with each.
| | | When you enter multiple ip msdp default-peer commands with the prefix-list keyword, you use all the default peers at the same time for different RP prefixes. This syntax is typically used in a service provider cloud that connects stub site clouds.
| | | When you enter multiple ip msdp default-peer commands without the prefix-list keyword, a single active peer accepts all SA messages. If that peer fails, the next configured default peer accepts all SA messages. This syntax is typically used at a stub site. |
Caching Source-Active State

By default, the switch does not cache source/group pairs from received SA messages. When the switch forwards the MSDP SA information, it does not store it in memory. Therefore, if a member joins a group soon after a SA message is received by the local RP, that member needs to wait until the next SA message to hear about the source. This delay is known as join latency.

If you want to sacrifice some memory in exchange for reducing the latency of the source information, you can configure the switch to cache SA messages.

Command Purpose

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3 ip prefix-list name [description string]</td>
<td>(Optional) Create a prefix list using the name specified in Step 2.</td>
</tr>
<tr>
<td>seq number [permit</td>
<td>deny] network length</td>
</tr>
<tr>
<td></td>
<td>(Optional) For description string, enter a description of up to 80 characters to describe this prefix list.</td>
</tr>
<tr>
<td></td>
<td>• For seq number, enter the sequence number of the entry. The range is 1 to 4294967294.</td>
</tr>
<tr>
<td></td>
<td>• The deny keyword denies access to matching conditions.</td>
</tr>
<tr>
<td></td>
<td>• The permit keyword permits access to matching conditions.</td>
</tr>
<tr>
<td></td>
<td>• For network length, specify the network number and length (in bits) of the network mask that is permitted or denied.</td>
</tr>
<tr>
<td>Step 4 ip msdp description peer-name</td>
<td>(Optional) Configure a description for the specified peer to make it easier to identify in a configuration or in show command output.</td>
</tr>
<tr>
<td>peer-address* text</td>
<td>By default, no description is associated with an MSDP peer.</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 7 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove the default peer, use the **no ip msdp default-peer *ip-address* | *name*** global configuration command.

This example shows a partial configuration of Router A and Router C in Figure 29-2. Each of these ISPs have more than one customer (like the customer in Figure 29-2) who use default peering (no BGP or MBGP). In that case, they might have similar configurations. That is, they accept SAs only from a default peer if the SA is permitted by the corresponding prefix list.

Router A

```
Router(config)# ip msdp default-peer 10.1.1.1
Router(config)# ip msdp default-peer 10.1.1.1 prefix-list site-a
Router(config)# ip prefix-list site-b permit 10.0.0.0/8
```

Router C

```
Router(config)# ip msdp default-peer 10.1.1.1 prefix-list site-a
Router(config)# ip prefix-list site-b permit 10.0.0.0/8
```
Beginning in privileged EXEC mode, follow these steps to enable the caching of source/group pairs. This procedure is optional.

Step 1
configure terminal

Enter global configuration mode.

Step 2
ip msdp cache-sa-state

Enable the caching of source/group pairs (create an SA state). Those pairs that pass the access list are cached.

Note

An alternative to this command is the `ip msdp sa-request` global configuration command, which causes the switch to send an SA request message to the MSDP peer when a new member for a group becomes active. For more information, see the next section.

For **list access-list-number**, the range is 100 to 199.

Step 3
access-list access-list-number (deny | permit) protocol source source-wildcard destination destination-wildcard

Create an IP extended access list, repeating the command as many times as necessary.

- For **access-list-number**, the range is 100 to 199. Enter the same number created in Step 2.
- The **deny** keyword denies access if the conditions are matched. The **permit** keyword permits access if the conditions are matched.
- For **protocol**, enter `ip` as the protocol name.
- For **source**, enter the number of the network or host from which the packet is being sent.
- For **source-wildcard**, enter the wildcard bits in dotted decimal notation to be applied to the source. Place ones in the bit positions that you want to ignore.
- For **destination**, enter the number of the network or host to which the packet is being sent.
- For **destination-wildcard**, enter the wildcard bits in dotted decimal notation to be applied to the destination. Place ones in the bit positions that you want to ignore.

Recall that the access list is always terminated by an implicit deny statement for everything.

Step 4
end

Return to privileged EXEC mode.

Step 5
show running-config

Verify your entries.

Step 6
copy running-config startup-config

(Optional) Save your entries in the configuration file.

To return to the default setting (no SA state is created), use the `no ip msdp cache-sa-state` global configuration command.

This example shows how to enable the cache state for all sources in 171.69.0.0/16 sending to groups 224.2.0.0/16:

```
Switch(config)# ip msdp cache-sa-state 100
Switch(config)# access-list 100 permit ip 171.69.0.0 0.0.255.255 224.2.0.0 0.0.255.255
```
Requesting Source Information from an MSDP Peer

Local RPs can send SA requests and get immediate responses for all active sources for a given group. By default, the switch does not send any SA request messages to its MSDP peers when a new member joins a group and wants to receive multicast traffic. The new member waits to receive the next periodic SA message.

If you want a new member of a group to learn the active multicast sources in a connected PIM sparse-mode domain that are sending to a group, configure the switch to send SA request messages to the specified MSDP peer when a new member joins a group. The peer replies with the information in its SA cache. If the peer does not have a cache configured, this command has no result. Configuring this feature reduces join latency but sacrifices memory.

Beginning in privileged EXEC mode, follow these steps to configure the switch to send SA request messages to the MSDP peer when a new member joins a group and wants to receive multicast traffic. This procedure is optional.

Command Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| Step 2 | ip msdp sa-request {ip-address | name} | Configure the switch to send SA request messages to the specified MSDP peer.
 For ip-address | name, enter the IP address or name of the MSDP peer
 from which the local switch requests SA messages when a new member
 for a group becomes active.
 Repeat the command for each MSDP peer that you want to supply with
 SA messages. |
| Step 3 | end | Return to privileged EXEC mode. |
| Step 4 | show running-config | Verify your entries. |
| Step 5 | copy running-config startup-config | (Optional) Save your entries in the configuration file. |

To return to the default setting, use the `no ip msdp sa-request {ip-address | name}` global configuration command.

This example shows how to configure the switch to send SA request messages to the MSDP peer at 171.69.1.1:

```
Switch(config)# ip msdp sa-request 171.69.1.1
```

Controlling Source Information that Your Switch Originates

You can control the multicast source information that originates with your switch:

- Sources you advertise (based on your sources)
- Receivers of source information (based on knowing the requestor)

For more information, see the “Redistributing Sources” section on page 29-9 and the “Filtering Source-Active Request Messages” section on page 29-11.
Redistributing Sources

SA messages originate on RPs to which sources have registered. By default, any source that registers with an RP is advertised. The A flag is set in the RP when a source is registered, which means the source is advertised in an SA unless it is filtered.

Beginning in privileged EXEC mode, follow these steps to further restrict which registered sources are advertised. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip msdp redistribute [list access-list-name] [asn aspath-access-list-number] [route-map map]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The access list or autonomous system path access list determines which (S,G) pairs are advertised.
Configuring MSDP

Step 3

access-list access-list-number {deny | permit} source [source-wildcard]

or

access-list access-list-number {deny | permit} protocol source source-wildcard
destination destination-wildcard

Create an IP standard access list, repeating the command as many times as necessary.

or

Create an IP extended access list, repeating the command as many times as necessary.

- For access-list-number, the range is 1 to 99 for standard access lists and 100 to 199 for extended lists. Enter the same number created in Step 2.
- The deny keyword denies access if the conditions are matched. The permit keyword permits access if the conditions are matched.
- For protocol, enter ip as the protocol name.
- For source, enter the number of the network or host from which the packet is being sent.
- For source-wildcard, enter the wildcard bits in dotted decimal notation to be applied to the source. Place ones in the bit positions that you want to ignore.
- For destination, enter the number of the network or host to which the packet is being sent.
- For destination-wildcard, enter the wildcard bits in dotted decimal notation to be applied to the destination. Place ones in the bit positions that you want to ignore.

Recall that the access list is always terminated by an implicit deny statement for everything.

Step 4

end

Return to privileged EXEC mode.

Step 5

show running-config

Verify your entries.

Step 6

copy running-config startup-config

(Optional) Save your entries in the configuration file.

To remove the filter, use the no ip msdp redistribute global configuration command.
Filtering Source-Active Request Messages

By default, only switches that are caching SA information can respond to SA requests. By default, such a switch honors all SA request messages from its MSDP peers and supplies the IP addresses of the active sources.

However, you can configure the switch to ignore all SA requests from an MSDP peer. You can also honor only those SA request messages from a peer for groups described by a standard access list. If the groups in the access list pass, SA request messages are accepted. All other such messages from the peer for other groups are ignored.

Beginning in privileged EXEC mode, follow these steps to configure one of these options. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 ip msdp filter-sa-request ip-address</td>
<td>Filter all SA request messages from the specified MSDP peer.</td>
</tr>
<tr>
<td></td>
<td>or name</td>
</tr>
<tr>
<td>or ip msdp filter-sa-request</td>
<td>Filter SA request messages from the specified MSDP peer for groups</td>
</tr>
<tr>
<td></td>
<td>list access-list-number</td>
</tr>
<tr>
<td>Step 3 access-list access-list-number {deny</td>
<td>Create an IP standard access list, repeating the command as many times</td>
</tr>
<tr>
<td>permit} source [source-wildcard]</td>
<td>as necessary.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default setting, use the **no ip msdp filter-sa-request {ip-address | name}** global configuration command.

This example shows how to configure the switch to filter SA request messages from the MSDP peer at 171.69.2.2. SA request messages from sources on network 192.4.22.0 pass access list 1 and are accepted; all others are ignored.

```
Switch(config)# ip msdp filter sa-request 171.69.2.2 list 1
Switch(config)# access-list 1 permit 192.4.22.0 0.0.0.255
```
Controlling Source Information that Your Switch Forwards

By default, the switch forwards all SA messages it receives to all its MSDP peers. However, you can prevent outgoing messages from being forwarded to a peer by using a filter or by setting a time-to-live (TTL) value. These methods are described in the next sections.

Using a Filter

By creating a filter, you can perform one of these actions:

- Filter all source/group pairs
- Specify an IP extended access list to pass only certain source/group pairs
- Filter based on match criteria in a route map

Beginning in privileged EXEC mode, follow these steps to apply a filter. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>ip msdp sa-filter out ip-address</td>
<td>Filter all SA messages to the specified MSDP peer.</td>
</tr>
<tr>
<td>name</td>
<td>or</td>
</tr>
<tr>
<td>ip msdp sa-filter out {ip-address</td>
<td>name} list access-list-number</td>
</tr>
<tr>
<td></td>
<td>If both the list and the route-map keywords are used, all conditions must be true to pass any (S,G) pair in outgoing SA messages.</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>ip msdp sa-filter out {ip-address</td>
<td>name} route-map map-tag</td>
</tr>
<tr>
<td></td>
<td>If all match criteria are true, a permit from the route map passes routes through the filter. A deny filters routes.</td>
</tr>
</tbody>
</table>
Chapter 29 Configuring MSDP

Configuring MSDP

To remove the filter, use the `no ip msdp sa-filter out {ip-address | name} [list access-list-number] [route-map map-tag]` global configuration command.

This example shows how to allow only (S,G) pairs that pass access list 100 to be forwarded in an SA message to the peer named `switch.cisco.com`:

```plaintext
Switch(config)# ip msdp peer switch.cisco.com connect-source gigabitethernet1/0/1
Switch(config)# ip msdp sa-filter out switch.cisco.com list 100
Switch(config)# access-list 100 permit ip 171.69.0.0 0.0.255.255 224.20 0 0.0.255.255
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 3** | **access-list access-list-number {deny | permit} protocol source source-wildcard destination destination-wildcard** | (Optional) Create an IP extended access list, repeating the command as many times as necessary.
- For `access-list-number`, enter the number specified in Step 2.
- The `deny` keyword denies access if the conditions are matched. The `permit` keyword permits access if the conditions are matched.
- For `protocol`, enter `ip` as the protocol name.
- For `source`, enter the number of the network or host from which the packet is being sent.
- For `source-wildcard`, enter the wildcard bits in dotted decimal notation to be applied to the source. Place ones in the bit positions that you want to ignore.
- For `destination`, enter the number of the network or host to which the packet is being sent.
- For `destination-wildcard`, enter the wildcard bits in dotted decimal notation to be applied to the destination. Place ones in the bit positions that you want to ignore.
Recall that the access list is always terminated by an implicit deny statement for everything. |
| **Step 4** | **end** | Return to privileged EXEC mode. |
| **Step 5** | **show running-config** | Verify your entries. |
| **Step 6** | **copy running-config startup-config** | (Optional) Save your entries in the configuration file. |
Using TTL to Limit the Multicast Data Sent in SA Messages

You can use a TTL value to control what data is encapsulated in the first SA message for every source. Only multicast packets with an IP-header TTL greater than or equal to the \(\texttt{ttl} \) argument are sent to the specified MSDP peer. For example, you can limit internal traffic to a TTL of 8. If you want other groups to go to external locations, you must send those packets with a TTL greater than 8.

Beginning in privileged EXEC mode, follow these steps to establish a TTL threshold. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>\texttt{ip msdp ttl-threshold} {ip-address</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 5</td>
<td>\texttt{copy running-config startup-config}</td>
</tr>
</tbody>
</table>

To return to the default setting, use the \texttt{no ip msdp ttl-threshold} \{ip-address | name\} global configuration command.

Controlling Source Information that Your Switch Receives

By default, the switch receives all SA messages that its MSDP RPF peers send to it. However, you can control the source information that you receive from MSDP peers by filtering incoming SA messages. In other words, you can configure the switch to not accept them.

You can perform one of these actions:
\begin{itemize} \item Filter all incoming SA messages from an MSDP peer \item Specify an IP extended access list to pass certain source/group pairs \item Filter based on match criteria in a route map \end{itemize}
Beginning in privileged EXEC mode, follow these steps to apply a filter. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>ip msdp sa-filter in {ip-address</td>
<td>name} or ip msdp sa-filter in {ip-address</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>From the specified peer, pass only those SA messages that pass the IP extended access list. The range for the extended access-list-number is 100 to 199. If both the list and the route-map keywords are used, all conditions must be true to pass any (S,G) pair in incoming SA messages. If the specified MSDP peer, pass only those SA messages that meet the match criteria in the route map map-tag. If all match criteria are true, a permit from the route map passes routes through the filter. A deny will filter routes.</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>(Optional) Create an IP extended access list, repeating the command as many times as necessary.</td>
</tr>
</tbody>
</table>
| access-list access-list-number [deny | permit} protocol source source-wildcard destination destination-wildcard | • For access-list-number, enter the number specified in Step 2.
• The deny keyword denies access if the conditions are matched. The permit keyword permits access if the conditions are matched.
• For protocol, enter ip as the protocol name.
• For source, enter the number of the network or host from which the packet is being sent.
• For source-wildcard, enter the wildcard bits in dotted decimal notation to be applied to the source. Place ones in the bit positions that you want to ignore.
• For destination, enter the number of the network or host to which the packet is being sent.
• For destination-wildcard, enter the wildcard bits in dotted decimal notation to be applied to the destination. Place ones in the bit positions that you want to ignore.
Recall that the access list is always terminated by an implicit deny statement for everything. |
| **Step 4** | Return to privileged EXEC mode. |
| end | |
| **Step 5** | Verify your entries. |
| show running-config | |
| **Step 6** | (Optional) Save your entries in the configuration file. |
| copy running-config startup-config | |

To remove the filter, use the no ip msdp sa-filter in {ip-address | name} [list access-list-number] [route-map map-tag] global configuration command.

This example shows how to filter all SA messages from the peer named switch.cisco.com:

```
Switch(config)# ip msdp peer switch.cisco.com connect-source gigabitethernet1/0/1
Switch(config)# ip msdp sa-filter in switch.cisco.com
```
Chapter 29 Configuring MSDP

Configuring an MSDP Mesh Group

An MSDP mesh group is a group of MSDP speakers that have fully meshed MSDP connectivity among one another. Any SA messages received from a peer in a mesh group are not forwarded to other peers in the same mesh group. Thus, you reduce SA message flooding and simplify peer-RPF flooding. Use the ip msdp mesh-group global configuration command when there are multiple RPs within a domain. It is especially used to send SA messages across a domain. You can configure multiple mesh groups (with different names) in a single switch.

Beginning in privileged EXEC mode, follow these steps to create a mesh group. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip msdp mesh-group name {ip-address</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td>Step 6</td>
<td></td>
</tr>
</tbody>
</table>

To remove an MSDP peer from a mesh group, use the no ip msdp mesh-group name global configuration command.

Shutting Down an MSDP Peer

If you want to configure many MSDP commands for the same peer and you do not want the peer to become active, you can shut down the peer, configure it, and later bring it up. When a peer is shut down, the TCP connection is terminated and is not restarted. You can also shut down an MSDP session without losing configuration information for the peer.
Beginning in privileged EXEC mode, follow these steps to shut down a peer. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip msdp shutdown {peer-name</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To bring the peer back up, use the **no ip msdp shutdown {peer-name | peer address}** global configuration command. The TCP connection is reestablished.

Including a Bordering PIM Dense-Mode Region in MSDP

You can configure MSDP on a switch that borders a PIM sparse-mode region with a dense-mode region. By default, active sources in the dense-mode region do not participate in MSDP.

Note

We do not recommend using the **ip msdp border sa-address** global configuration command. It is better to configure the border router in the sparse-mode domain to proxy-register sources in the dense-mode domain to the RP of the sparse-mode domain and have the sparse-mode domain use standard MSDP procedures to advertise these sources.

Beginning in privileged EXEC mode, follow these steps to configure the border router to send SA messages for sources active in the dense-mode region to the MSDP peers. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip msdp border sa-address interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>ip msdp redistribute [list access-list-name]</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
</tbody>
</table>
Configuring MSDP

Chapter 29 Configuring MSDP

Configuring MSDP

Note that the `ip msdp originator-id` global configuration command also identifies an interface to be used as the RP address. If both the `ip msdp border sa-address` and the `ip msdp originator-id` global configuration commands are configured, the address derived from the `ip msdp originator-id` command determines the RP address.

To return to the default setting (active sources in the dense-mode region do not participate in MSDP), use the `no ip msdp border sa-address interface-id` global configuration command.

Configuring an Originating Address other than the RP Address

You can allow an MSDP speaker that originates an SA message to use the IP address of the interface as the RP address in the SA message by changing the Originator ID. You might change the Originator ID in one of these cases:

- If you configure a logical RP on multiple switches in an MSDP mesh group.

- If you have a switch that borders a PIM sparse-mode domain and a dense-mode domain. If a switch borders a dense-mode domain for a site, and sparse-mode is being used externally, you might want dense-mode sources to be known to the outside world. Because this switch is not an RP, it would not have an RP address to use in an SA message. Therefore, this command provides the RP address by specifying the address of the interface.

Beginning in privileged EXEC mode, follow these steps to allow an MSDP speaker that originates an SA message to use the IP address on the interface as the RP address in the SA message. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Note that the `ip msdp originator-id` global configuration command also identifies an interface to be used as the RP address. If both the `ip msdp border sa-address` and the `ip msdp originator-id` global configuration commands are configured, the address derived from the `ip msdp originator-id` command determines the address of the RP.

To prevent the RP address from being derived in this way, use the `no ip msdp originator-id interface-id` global configuration command.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 <code>ip msdp originator-id interface-id</code></td>
<td>Configures the RP address in SA messages to be the address of the originating device interface. For <code>interface-id</code>, specify the interface on the local switch.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

If both the `ip msdp border sa-address` and the `ip msdp originator-id` global configuration commands are configured, the address derived from the `ip msdp originator-id` command determines the address of the RP.

To prevent the RP address from being derived in this way, use the `no ip msdp originator-id interface-id` global configuration command.
Monitoring and Maintaining MSDP

To monitor MSDP SA messages, peers, state, or peer status, use one or more of the privileged EXEC commands in Table 29-1:

Table 29-1 Commands for Monitoring and Maintaining MSDP

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`debug ip msdp [peer-address</td>
<td>name] [detail] [routes]`</td>
</tr>
<tr>
<td><code>debug ip msdp resets</code></td>
<td>Debugs MSDP peer reset reasons.</td>
</tr>
<tr>
<td><code>show ip msdp count [autonomous-system-number]</code></td>
<td>Displays the number of sources and groups originated in SA messages from each autonomous system. The <code>ip msdp cache-sa-state</code> command must be configured for this command to produce any output.</td>
</tr>
<tr>
<td>`show ip msdp peer [peer-address</td>
<td>name]`</td>
</tr>
<tr>
<td>`show ip msdp sa-cache [group-address</td>
<td>source-address</td>
</tr>
<tr>
<td><code>show ip msdp summary</code></td>
<td>Displays MSDP peer status and SA message counts.</td>
</tr>
</tbody>
</table>

To clear MSDP connections, statistics, or SA cache entries, use the privileged EXEC commands in Table 29-2:

Table 29-2 Commands for Clearing MSDP Connections, Statistics, or SA Cache Entries

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`clear ip msdp peer peer-address</td>
<td>name`</td>
</tr>
<tr>
<td>`clear ip msdp statistics [peer-address</td>
<td>name]`</td>
</tr>
<tr>
<td>`clear ip msdp sa-cache [group-address</td>
<td>name]`</td>
</tr>
</tbody>
</table>
Configuring Fallback Bridging

This chapter describes how to configure fallback bridging (VLAN bridging) on the Catalyst 3750 switch. With fallback bridging, you can forward non-IP packets that the switch does not route between VLAN bridge domains and routed ports.

To use this feature, the stack master must be running the enhanced multilayer software image (EMI). Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

Note
For complete syntax and usage information for the commands used in this chapter, refer to the Cisco IOS Bridging and IBM Networking Command Reference for Release 12.1.

This chapter consists of these sections:

- Understanding Fallback Bridging, page 30-1
- Configuring Fallback Bridging, page 30-3
- Monitoring and Maintaining Fallback Bridging, page 30-11

Understanding Fallback Bridging

These sections describe how fallback bridging works:

- Fallback Bridging Overview, page 30-2
- Fallback Bridging and Switch Stacks, page 30-3
Chapter 30 Configuring Fallback Bridging

Understanding Fallback Bridging

With fallback bridging, the switch bridges together two or more VLANs or routed ports, essentially connecting multiple VLANs within one bridge domain. Fallback bridging forwards traffic that the switch does not route and forwards traffic belonging to a nonroutable protocol such as DECnet.

A VLAN bridge domain is represented with switch virtual interfaces (SVIs). A set of SVIs and routed ports (which do not have any VLANs associated with them) can be configured (grouped together) to form a bridge group. Recall that an SVI represents a VLAN of switch ports as one interface to the routing or bridging function in the system. You associate only one SVI with a VLAN, and you configure an SVI for a VLAN only when you want to route between VLANs, to fallback-bridge nonroutable protocols between VLANs, or to provide IP host connectivity to the switch. A routed port is a physical port that acts like a port on a router, but it is not connected to a router. A routed port is not associated with a particular VLAN, does not support VLAN subinterfaces, but behaves like a normal routed interface. For more information about SVIs and routed ports, see Chapter 9, “Configuring Interface Characteristics.”

A bridge group is an internal organization of network interfaces on a switch. You cannot use bridge groups to identify traffic switched within the bridge group outside the switch on which they are defined. Bridge groups on the switch function as distinct bridges; that is, bridged traffic and bridge protocol data units (BPDUs) are not exchanged between different bridge groups on a switch.

Fallback bridging does not allow the spanning trees from the VLANs being bridged to collapse. Each VLAN has its own spanning-tree instance and a separate spanning tree, called the VLAN-bridge spanning tree, which runs on top of the bridge group to prevent loops.

The switch creates a VLAN-bridge spanning-tree instance when a bridge group is created. The switch runs the bridge group and treats the SVIs and routed ports in the bridge group as its spanning-tree ports.

These are the reasons for placing network interfaces into a bridge group:

- To bridge all nonrouted traffic among the network interfaces making up the bridge group. If the packet destination address is in the bridge table, the packet is forwarded on a single interface in the bridge group. If the packet destination address is not in the bridge table, the packet is flooded on all forwarding interfaces in the bridge group. A source MAC address is learned on a bridge group only when the address is learned on a VLAN (the reverse is not true). Any address that is learned on a stack member is learned by all switches in the stack.

- To participate in the spanning-tree algorithm by receiving, and in some cases sending, BPDUs on the LANs to which they are attached. A separate spanning-tree process runs for each configured bridge group. Each bridge group participates in a separate spanning-tree instance. A bridge group establishes a spanning-tree instance based on the BPDUs it receives on only its member interfaces. If the bridge STP BPDU is received on a port whose VLAN does not belong to a bridge group, the BPDU is flooded on all the forwarding ports of the VLAN.

Figure 30-1 shows a fallback bridging network example. The switch has two interfaces configured as SVIs with different assigned IP addresses and attached to two different VLANs. Another interface is configured as a routed port with its own IP address. If all three of these ports are assigned to the same bridge group, non-IP protocol frames can be forwarded among the end stations connected to the switch even though they are on different networks and in different VLANs. IP addresses do not need to be assigned to routed ports or SVIs for fallback bridging to work.
Configuring Fallback Bridging

These sections describe how to configure fallback bridging on your switch:

- Default Fallback Bridging Configuration, page 30-4
- Fallback Bridging Configuration Guidelines, page 30-4
- Creating a Bridge Group, page 30-4 (required)
- Adjusting Spanning-Tree Parameters, page 30-6 (optional)
Default Fallback Bridging Configuration

Table 30-1 shows the default fallback bridging configuration.

Table 30-1 Default Fallback Bridging Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge groups</td>
<td>None are defined or assigned to an interface. No VLAN-bridge STP is defined.</td>
</tr>
<tr>
<td>Switch forwards frames for stations that it has dynamically learned</td>
<td>Enabled.</td>
</tr>
<tr>
<td>Spanning tree parameters:</td>
<td></td>
</tr>
<tr>
<td>• Switch priority</td>
<td>• 32768.</td>
</tr>
<tr>
<td>• Interface priority</td>
<td>• 128.</td>
</tr>
<tr>
<td>• Interface path cost</td>
<td>• 10 Mbps: 100. 100 Mbps: 19. 1000 Mbps: 4.</td>
</tr>
<tr>
<td>• Hello BPDU interval</td>
<td>• 2 seconds.</td>
</tr>
<tr>
<td>• Forward-delay interval</td>
<td>• 20 seconds.</td>
</tr>
<tr>
<td>• Maximum idle interval</td>
<td>• 30 seconds.</td>
</tr>
</tbody>
</table>

Fallback Bridging Configuration Guidelines

Up to 32 bridge groups can be configured on the switch.

An interface (an SVI or routed port) can be a member of only one bridge group.

Use a bridge group for each separately bridged (topologically distinct) network connected to the switch.

Creating a Bridge Group

To configure fallback bridging for a set of SVIs or routed ports, these interfaces must be assigned to bridge groups. All interfaces in the same group belong to the same bridge domain. Each SVI or routed port can be assigned to only one bridge group.

Note

The protected port feature is not compatible with fallback bridging. When fallback bridging is enabled, it is possible for packets to be forwarded from one protected port on a switch to another protected port on the same switch if the ports are in different VLANs.
Beginning in privileged EXEC mode, follow these steps to create a bridge group and to assign an interface to it. This procedure is required.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>bridge bridge-group protocol vlan-bridge</td>
</tr>
<tr>
<td>Step 3</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 4</td>
<td>bridge-group bridge-group</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td>Step 6</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To remove a bridge group, use the no bridge bridge-group global configuration command. The no bridge bridge-group command automatically removes all SVIs and routes ports from that bridge group. To remove an interface from a bridge group and to remove the bridge group, use the no bridge-group bridge-group interface configuration command.

This example shows how to create bridge group 10, to specify that the VLAN-bridge STP runs in the bridge group, to define the interface on stack member 3 as a routed port, and to assign the interface to the bridge group:

```
Switch(config)# bridge 10 protocol vlan-bridge
Switch(config)# interface gigabitethernet3/0/1
Switch(config-if)# no switchport
Switch(config-if)# no shutdown
Switch(config-if)# bridge-group 10
```
This example shows how to create bridge group 10 and to specify that the VLAN-bridge STP runs in the bridge group. It defines an interface on stack member 2 as an SVI and assigns this interface to VLAN 2 and to the bridge group:

```
Switch(config)# bridge 10 protocol vlan-bridge
Switch(config)# vlan 2
Switch(config-vlan)# exit
Switch(config)# interface vlan 2
Switch(config-if)# bridge-group 10
Switch(config-if)# no shutdown
Switch(config-if)# exit
Switch(config)# interface gigabitethernet2/0/2
Switch(config-if)# switchport mode access
Switch(config-if)# switchport access vlan 2
Switch(config-if)# no shutdown
```

Adjusting Spanning-Tree Parameters

You might need to adjust certain spanning-tree parameters if the default values are not suitable. You configure parameters affecting the entire spanning tree by using variations of the `bridge` global configuration command. You configure interface-specific parameters by using variations of the `bridge-group` interface configuration command.

You can adjust spanning-tree parameters by performing any of the tasks in these sections:

- Changing the VLAN-Bridge Spanning-Tree Priority, page 30-7 (optional)
- Changing the Interface Priority, page 30-7 (optional)
- Assigning a Path Cost, page 30-8 (optional)
- Adjusting BPDU Intervals, page 30-9 (optional)
- Disabling the Spanning Tree on an Interface, page 30-11 (optional)

Note

Only network administrators with a good understanding of how switches and STP function should make adjustments to spanning-tree parameters. Poorly planned adjustments can have a negative impact on performance. A good source on switching is the IEEE 802.1D specification. For more information, refer to the “References and Recommended Reading” appendix in the *Cisco IOS Configuration Fundamentals Command Reference.*
Changing the VLAN-Bridge Spanning-Tree Priority

You can globally configure the VLAN-bridge spanning-tree priority of a switch when it ties with another switch for the position as the root switch. You also can configure the likelihood that the switch will be selected as the root switch. This priority is determined by default; however, you can change it.

Beginning in privileged EXEC mode, follow these steps to change the switch priority. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>bridge bridge-group priority number Change the VLAN-bridge spanning-tree priority of the switch.</td>
</tr>
<tr>
<td></td>
<td>• For bridge-group, specify the bridge group number. The range is 1 to 255.</td>
</tr>
<tr>
<td></td>
<td>• For number, enter a number from 0 to 65535. The default is 32768. The lower the number, the more likely the switch will be chosen as the root.</td>
</tr>
<tr>
<td>Step 3</td>
<td>end Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>show running-config Verify your entry.</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config (Optional) Save your entry in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default setting, use the `no bridge bridge-group priority` global configuration command. To change the priority on an interface, use the `bridge-group priority` interface configuration command (described in the next section).

This example shows how to set the switch priority to 100 for bridge group 10:

```
Switch(config) # bridge 10 priority 100
```

Changing the Interface Priority

You can change the priority for an interface. When two switches tie for position as the root switch, you configure an interface priority to break the tie. The switch with the lowest interface value is elected.

Beginning in privileged EXEC mode, follow these steps to change the interface priority. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id Enter interface configuration mode, and specify the interface to set the priority.</td>
</tr>
<tr>
<td>Step 3</td>
<td>bridge-group bridge-group priority number Change the priority of an interface.</td>
</tr>
<tr>
<td></td>
<td>• For bridge-group, specify the bridge group number. The range is 1 to 255.</td>
</tr>
<tr>
<td></td>
<td>• For number, enter a number from 0 to 255 in increments of 4. The lower the number, the more likely that the interface on the switch will be chosen as the root. The default is 128.</td>
</tr>
<tr>
<td>Step 4</td>
<td>end Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Chapter 30 Configuring Fallback Bridging

Configuring Fallback Bridging

To return to the default setting, use the `no bridge-group bridge-group priority` interface configuration command.

This example shows how to change the priority to 20 on an interface on stack member 2 in bridge group 10:

```
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# bridge-group 10 priority 20
```

Assigning a Path Cost

Each interface has a path cost associated with it. By convention, the path cost is 1000/data rate of the attached LAN, in Mbps.

Beginning in privileged EXEC mode, follow these steps to assign a path cost. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface to set the path cost.</td>
</tr>
<tr>
<td>Step 3 bridge-group bridge-group path-cost cost</td>
<td>Assign the path cost of an interface.</td>
</tr>
<tr>
<td></td>
<td>• For <code>bridge-group</code>, specify the bridge group number. The range is 1 to 255.</td>
</tr>
<tr>
<td></td>
<td>• For <code>cost</code>, enter a number from 0 to 65535. The higher the value, the higher the cost.</td>
</tr>
<tr>
<td></td>
<td>• For 10 Mbps, the default path cost is 100.</td>
</tr>
<tr>
<td></td>
<td>• For 100 Mbps, the default path cost is 19.</td>
</tr>
<tr>
<td></td>
<td>• For 1000 Mbps, the default path cost is 4.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show running-config</td>
<td>Verify your entry.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entry in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default path cost, use the `no bridge-group bridge-group path-cost` interface configuration command.

This example shows how to change the path cost to 20 on an interface on stack member 2 in bridge group 10:

```
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# bridge-group 10 path-cost 20
```
Adjusting BPDU Intervals

You can adjust BPDU intervals as described in these sections:

- Adjusting the Interval between Hello BPDUs, page 30-9 (optional)
- Changing the Forward-Delay Interval, page 30-10 (optional)
- Changing the Maximum-Idle Interval, page 30-10 (optional)

Note Each switch in a spanning tree adopts the interval between hello BPDUs, the forward delay interval, and the maximum idle interval parameters of the root switch, regardless of what its individual configuration might be.

Adjusting the Interval between Hello BPDUs

Beginning in privileged EXEC mode, follow these steps to adjust the interval between hello BPDUs. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 bridge bridge-group hello-time seconds</td>
<td>Specify the interval between hello BPDUs.</td>
</tr>
<tr>
<td></td>
<td>• For bridge-group, specify the bridge group number. The range is 1 to 255.</td>
</tr>
<tr>
<td></td>
<td>• For seconds, enter a number from 1 to 10. The default is 2.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show running-config</td>
<td>Verify your entry.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entry in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default setting, use the no bridge bridge-group hello-time global configuration command.

This example shows how to change the hello interval to 5 seconds in bridge group 10:

Switch(config) # bridge 10 hello-time 5
Changing the Forward-Delay Interval

The forward-delay interval is the amount of time spent listening for topology change information after an interface has been activated for switching and before forwarding actually begins.

Beginning in privileged EXEC mode, follow these steps to change the forward-delay interval. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| bridge bridge-group forward-time seconds | Specify the forward-delay interval.
 • For bridge-group, specify the bridge group number. The range is 1 to 255.
 • For seconds, enter a number from 4 to 200. The default is 20. |
| end | Return to privileged EXEC mode. |
| show running-config | Verify your entry. |
| copy running-config startup-config | (Optional) Save your entry in the configuration file. |

To return to the default setting, use the `no bridge bridge-group forward-time` global configuration command.

This example shows how to change the forward-delay interval to 10 seconds in bridge group 10:

```
Switch(config)# bridge 10 forward-time 10
```

Changing the Maximum-Idle Interval

If a switch does not receive BPDUs from the root switch within a specified interval, it recomputes the spanning-tree topology.

Beginning in privileged EXEC mode, follow these steps to change the maximum-idle interval (maximum aging time). This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| bridge bridge-group max-age seconds | Specify the interval that the switch waits to hear BPDUs from the root switch.
 • For bridge-group, specify the bridge group number. The range is 1 to 255.
 • For seconds, enter a number from 6 to 200. The default is 30. |
| end | Return to privileged EXEC mode. |
| show running-config | Verify your entry. |
| copy running-config startup-config | (Optional) Save your entry in the configuration file. |

To return to the default setting, use the `no bridge bridge-group max-age` global configuration command.

This example shows how to change the maximum-idle interval to 30 seconds in bridge group 10:

```
Switch(config)# bridge 10 max-age 30
```
Disabling the Spanning Tree on an Interface

When a loop-free path exists between any two switched subnetworks, you can prevent BPDUs generated in one switching subnetwork from impacting devices in the other switching subnetwork, yet still permit switching throughout the network as a whole. For example, when switched LAN subnetworks are separated by a WAN, BPDUs can be prevented from traveling across the WAN link.

Beginning in privileged EXEC mode, follow these steps to disable spanning tree on an interface. This procedure is optional.

To re-enable spanning tree on the interface, use the `no bridge-group bridge-group spanning-disabled` interface configuration command.

This example shows how to disable spanning tree on an interface on stack member 2 in bridge group 10:

```bash
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# bridge-group 10 spanning-disabled
```

Monitoring and Maintaining Fallback Bridging

To monitor and maintain the network, use one or more of the privileged EXEC commands in Table 30-2:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>clear bridge bridge-group</code></td>
<td>Removes any learned entries from the forwarding database.</td>
</tr>
<tr>
<td><code>show bridge [bridge-group] group</code></td>
<td>Displays details about the bridge group.</td>
</tr>
<tr>
<td>`show bridge [bridge-group] [interface-id</td>
<td>mac-address</td>
</tr>
</tbody>
</table>

Table 30-2 Commands for Monitoring and Maintaining Fallback Bridging

To display the bridge-group MAC address table on a stack member, start a session from the stack master to the stack member by using the `session stack-member-number` global configuration command. Enter the `show bridge [bridge-group] [interface-id | mac-address | verbose]` privileged EXEC command at the stack member prompt.

For information about the fields in these displays, refer to the `Cisco IOS Bridging and IBM Networking Command Reference for Release 12.1`.
Troubleshooting

This chapter describes how to identify and resolve software problems related to the Cisco IOS software on the Catalyst 3750 switch. Depending on the nature of the problem, you can use the command-line interface (CLI) or the Cluster Management Suite (CMS) to identify and solve problems.

Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack. Additional troubleshooting information is provided in the hardware installation guide.

For complete syntax and usage information for the commands used in this chapter, refer to the command reference for this release and the Cisco IOS Command Summary for Release 12.1.

This chapter consists of these sections:

- Recovering from Corrupted Software By Using the XMODEM Protocol, page 31-2
- Recovering from a Lost or Forgotten Password, page 31-4
- Recovering from Switch Stack Problems, page 31-8
- Recovering from a Command Switch Failure, page 31-9
- Recovering from Lost Cluster Member Connectivity, page 31-12

For complete syntax and usage information for the commands used in this chapter, refer to the command reference for this release and the Cisco IOS Command Summary for Release 12.1.

This chapter consists of these sections:

- Preventing Autonegotiation Mismatches, page 31-13
- Using the SDM Templates, page 31-13
- SFP Module Security and Identification, page 31-15
- Diagnosing Connectivity Problems, page 31-16
- Using Debug Commands, page 31-19
- Using the show platform forward Command, page 31-21
- Using the crashinfo File, page 31-23

Note: Recovery procedures require that you have physical access to the switch.
Recovering from Corrupted Software By Using the XMODEM Protocol

Switch software can be corrupted during an upgrade, by downloading the wrong file to the switch, and by deleting the image file. In all of these cases, the switch does not pass the power-on self-test (POST), and there is no connectivity.

This procedure uses the XMODEM Protocol to recover from a corrupt or wrong image file. There are many software packages that support the XMODEM Protocol, and this procedure is largely dependent on the emulation software you are using.

This recovery procedure requires that you have physical access to the switch.

Step 1
From your PC, download the software image tar file *(image_filename.tar)* from Cisco.com.

The Cisco IOS image is stored as a bin file in a directory in the tar file. For information about locating the software image files on Cisco.com, refer to the release notes.

Step 2
Extract the bin file from the tar file.

- If you are using Windows, use a zip program that is capable of reading a tar file. Use the zip program to navigate to and extract the bin file.
- If you are using UNIX, follow these steps:

 1. Display the contents of the tar file by using the `tar -tvf <image_filename.tar>` UNIX command.

```
switch% tar -tvf image_filename.tar
drwxr-xr-x 9658/25 0 Apr 21 13:20 2003 c3750-i5-mz.121.11-AX/
  -rw-r--r-- 9658/25 4005 Apr 18 15:56 2003 c3750-i5-mz.121.11-AX/html/
  -rw-r--r-- 9658/25 1392 Apr 18 15:56 2003 c3750-i5-mz.121.11-AX/html/not_supported.html
  -rw-r--r-- 9658/25 22152 Apr 18 15:56 2003 c3750-i5-mz.121.11-AX/html/Redirect.jar
  -rw-r--r-- 9658/25 14984 Apr 18 15:56 2003 c3750-i5-mz.121.11-AX/html/cms_boot.jar
  -rw-r--r-- 9658/25 3970586 Apr 21 12:00 2003 c3750-i5-mz.121.11-AX/c3750-i5-mz.121.11-AX.bin
```
2. Locate the bin file and extract it by using the `tar -xvf <image_filename.tar> <image_filename.bin>` UNIX command.

```
switch% tar -xvf image_filename.tar image_filename.bin
x c3750-i5-mz.121.11-AX/c3750-i5-mz.121.11-AX.bin, 3970586 bytes, 7756 tape blocks
```

3. Verify that the bin file was extracted by using the `ls -l <image_filename.bin>` UNIX command.

```
switch% ls -l image_filename.bin
-rw-r--r--   1 boba      3970586 Apr 21 12:00 c3750-i5-mz.121.11-AX/c3750-i5-mz.121.11-AX.bin
```

Step 3 Connect your PC with terminal-emulation software supporting the XMODEM Protocol to the switch console port.

Step 4 Set the line speed on the emulation software to 9600 baud.

Step 5 Unplug the switch power cord.

Step 6 Press the **Mode** button, and at the same time, reconnect the power cord to the switch.

You can release the **Mode** button a second or two after the LED above port 1 goes off. Several lines of information about the software appear along with instructions:

```
The system has been interrupted prior to initializing the flash file system. The following commands will initialize the flash file system, and finish loading the operating system software#
```

```
flash_init
load_helper
boot
```

Step 7 Initialize the Flash file system:

```
switch: flash_init
```

Step 8 If you had set the console port speed to anything other than 9600, it has been reset to that particular speed. Change the emulation software line speed to match that of the switch console port.

Step 9 Load any helper files:

```
switch: load_helper
```

Step 10 Start the file transfer by using the XMODEM protocol.

```
switch: copy xmodem: flash:image_filename.bin
```

Step 11 After the XMODEM request appears, use the appropriate command on the terminal-emulation software to start the transfer and to copy the software image into Flash memory.

Step 12 Boot the newly-downloaded IOS image.

```
switch: boot flash:image_filename.bin
```

Step 13 Use the `archive download-sw` privileged EXEC command to download the software image to the switch or to the switch stack.

Step 14 Use the `reload` privileged EXEC command to restart the switch and to verify that the new software image is operating properly.

Step 15 Delete the `flash:image_filename.bin` file from the switch.
Recovering from a Lost or Forgotten Password

The default configuration for the switch allows an end user with physical access to the switch to recover from a lost password by interrupting the boot process during power-on and by entering a new password.

Note

On these switches, a system administrator can disable some of the functionality of this feature by allowing an end user to reset a password only by agreeing to return to the default configuration. If you are an end user trying to reset a password when password recovery has been disabled, a status message shows this during the recovery process.

This section describes how to recover a forgotten or lost switch password. It also provides two other solutions:

- Procedure with Password Recovery Enabled, page 31-5
- Procedure with Password Recovery Disabled, page 31-6

These recovery procedures require that you have physical access to the switch.

Follow the steps in this procedure if you have forgotten or lost the switch password.

Step 1 Connect a terminal or PC with terminal-emulation software to the switch console port. If you are recovering the password to a switch stack, connect to the console port of the stack master.

Step 2 Set the line speed on the emulation software to 9600 baud.

Step 3 Power off the standalone switch or the entire switch stack.

Step 4 Press the Mode button, and at the same time, reconnect the power cord to the standalone switch or the stack master.

You can release the Mode button a second or two after the LED above port 1 turns off. Several lines of information about the software appear with instructions, informing you if the password recovery procedure has been disabled or not.

- If you see a message that begins with this:

 The system has been interrupted prior to initializing the flash file system. The following commands will initialize the flash file system

 proceed to the “Procedure with Password Recovery Enabled” section on page 31-5, and follow the steps.

- If you see a message that begins with this:

 The password-recovery mechanism has been triggered, but is currently disabled.

 proceed to the “Procedure with Password Recovery Disabled” section on page 31-6, and follow the steps.

Step 5 After recovering the password, reload the standalone switch or the stack master:

```
Switch> reload slot <stack-master-member-number>
Proceed with reload? [confirm] y
```

Step 6 Power on the rest of the switch stack.
Procedure with Password Recovery Enabled

If the password-recovery mechanism is enabled, this message appears:

```
The system has been interrupted prior to initializing the flash file system. The following
commands will initialize the flash file system, and finish loading the operating system
software:

flash_init
load_helper
boot
```

Step 1 Initialize the Flash file system:
```
switch: flash_init
```

Step 2 If you had set the console port speed to anything other than 9600, it has been reset to that particular
speed. Change the emulation software line speed to match that of the switch console port.

Step 3 Load any helper files:
```
switch: load_helper
```

Step 4 Display the contents of Flash memory:
```
switch: dir flash:
```

The switch file system appears:
```
Directory of flash:

13   drwx  192  Mar 01 1993 22:30:48  c3750-i5-mz-121-1.0
11   -rwx  5825  Mar 01 1993 22:31:59  config.text
18   -rwx  720  Mar 01 1993 02:21:30  vlan.dat

16128000 bytes total (10003456 bytes free)
```

Step 5 Rename the configuration file to config.text.old.
This file contains the password definition.
```
switch: rename flash:config.text flash:config.text.old
```

Step 6 Boot the system:
```
switch: boot
```

You are prompted to start the setup program. Enter **N** at the prompt:
```
Continue with the configuration dialog? [yes/no]: N
```

Step 7 At the switch prompt, enter privileged EXEC mode:
```
Switch> enable
```

Step 8 Rename the configuration file to its original name:
```
Switch# rename flash:config.text.old flash:config.text
```

Note Before continuing to Step 9, power on any connected stack members and wait until they have completely
initialized.
Step 9 Copy the configuration file into memory:
Switch# copy flash: config.text system: running-config
Source filename [config.text]?
Destination filename [running-config]?

Press Return in response to the confirmation prompts.
The configuration file is now reloaded, and you can change the password.

Step 10 Enter global configuration mode:
Switch# configure terminal

Step 11 Change the password:
Switch (config)# enable secret password

The secret password can be from 1 to 25 alphanumeric characters, can start with a number, is case sensitive, and allows spaces but ignores leading spaces.

Step 12 Return to privileged EXEC mode:
Switch (config)# exit
Switch#

Step 13 Write the running configuration to the startup configuration file:
Switch# copy running-config startup-config

The new password is now in the startup configuration.

```
Note
This procedure is likely to leave your switch virtual interface in a shutdown state. You can see which interface is in this state by entering the show running-config privileged EXEC command. To re-enable the interface, enter the interface vlan vlan-id global configuration command, and specify the VLAN ID of the shutdown interface. With the switch in interface configuration mode, enter the no shutdown command.
```

Step 14 Reload the switch stack:
Switch# reload

Procedure with Password Recovery Disabled

If the password-recovery mechanism is disabled, this message appears:

The password-recovery mechanism has been triggered, but is currently disabled. Access to the boot loader prompt through the password-recovery mechanism is disallowed at this point. However, if you agree to let the system be reset back to the default system configuration, access to the boot loader prompt can still be allowed.

Would you like to reset the system back to the default configuration (y/n)?

```
Caution
Returning the switch to the default configuration results in the loss of all existing configurations. We recommend that you contact your system administrator to verify if there are backup switch and VLAN configuration files.
```
If you enter \texttt{n} (no), the normal boot process continues as if the \textbf{Mode} button had not been pressed; you cannot access the boot loader prompt, and you cannot enter a new password. You see the message:

\texttt{Press Enter to continue.........}

If you enter \texttt{y} (yes), the configuration file in Flash memory and the VLAN database file are deleted. When the default configuration loads, you can reset the password.

\textbf{Step 1} Elect to continue with password recovery and lose the existing configuration:

Would you like to reset the system back to the default configuration (y/n)? \texttt{Y}

\textbf{Step 2} Load any helper files:

Switch: \texttt{load_helper}

\textbf{Step 3} Display the contents of Flash memory:

switch: \texttt{dir flash:}

The switch file system appears:

Directory of flash:
13 drwx 192 Mar 01 1993 22:30:48 c3750-i5-mz-121-1.0

16128000 bytes total (10003456 bytes free)

\textbf{Step 4} Boot the system:

Switch: \texttt{boot}

You are prompted to start the setup program. To continue with password recovery, enter \texttt{N} at the prompt:

Continue with the configuration dialog? [yes/no]: \texttt{N}

\textbf{Step 5} At the switch prompt, enter privileged EXEC mode:

Switch> \texttt{enable}

\textbf{Step 6} Enter global configuration mode:

Switch\# \texttt{configure terminal}

\textbf{Step 7} Change the password:

Switch (config)# \texttt{enable secret password}

The secret password can be from 1 to 25 alphanumeric characters, can start with a number, is case sensitive, and allows spaces but ignores leading spaces.

\textbf{Step 8} Return to privileged EXEC mode:

Switch (config)# \texttt{exit}
Switch#

\textbf{Note} Before continuing to Step 9, power on any connected stack members and wait until they have completely initialized.
Step 9 Write the running configuration to the startup configuration file:

```
Switch# copy running-config startup-config
```

The new password is now in the startup configuration.

Note This procedure is likely to leave your switch virtual interface in a shutdown state. You can see which interface is in this state by entering the `show running-config` privileged EXEC command. To re-enable the interface, enter the `interface vlan vlan-id` global configuration command, and specify the VLAN ID of the shutdown interface. With the switch in interface configuration mode, enter the `no shutdown` command.

Step 10 You must now reconfigure the switch. If the system administrator has the backup switch and VLAN configuration files available, you should use those.

Recovering from Switch Stack Problems

Note
- Make sure the switches that you add to or remove from the switch stack are powered off. For all powering considerations in switch stacks, refer to the “Switch Installation” chapter in the hardware installation guide.
- After adding or removing stack members, make sure that the switch stack is operating at full bandwidth (32 Gbps). Press the Mode button on a stack member until the Stack mode LED is on. The last two port LEDs on the switch should be green. Depending on the switch model, the last two ports are either 10/100/1000 ports or SFP module ports. If one or both of the last two port LEDs are not green, the stack is not operating at full bandwidth.
- We recommend using only one CLI session when managing the switch stack. Be careful when using multiple CLI sessions to the stack master. Commands you enter in one session are not displayed in the other sessions. Therefore, it is possible that you might not be able to identify the session from which you entered a command.
- Manually assigning stack member numbers according to the placement of the switches in the stack can make it easier to remotely troubleshoot the switch stack. However, you will need to remember that the switches have manually assigned numbers if you add, remove, or rearrange switches later. Use the `switch current-stack-member-number renumber new-stack-member-number` global configuration command to manually assign a stack member number. For more information about stack member numbers, see the “Stack Member Numbers” section on page 5-6.

If you replace a stack member with an identical model, the new switch functions with the exact same configuration as the replaced switch. This is also assuming the new switch is using the same member number as the replaced switch.

Removing powered-on stack members causes the switch stack to divide (partition) into two or more switch stacks, each with the same configuration. If you want the switch stacks to remain separate, change the IP address of the newly created switch stacks. To recover from a partitioned switch stack:

1. Power off the newly created switch stacks.
2. Reconnect them to the original switch stack through their StackWise ports.
3. Power on the switches.

For the commands you can use to monitor the switch stack and its members, see the “Displaying Information about the Switch Stack” section on page 5-14.
Recovering from a Command Switch Failure

This section describes how to recover from a failed command switch. You can configure a redundant command switch group by using the Hot Standby Router Protocol (HSRP). For more information, see Chapter 6, “Clustering Switches” and Chapter 27, “Configuring HSRP.”

Note

HSRP is the preferred method for supplying redundancy to a cluster.

If you have not configured a standby command switch, and your command switch loses power or fails in some other way, management contact with the member switches is lost, and you must install a new command switch. However, connectivity between switches that are still connected is not affected, and the member switches forward packets as usual. You can manage the members as standalone switches through the console port or, if they have IP addresses, through the other management interfaces.

You can prepare for a command switch failure by assigning an IP address to a member switch or another switch that is command-capable, making a note of the command-switch password, and cabling your cluster to provide redundant connectivity between the member switches and the replacement command switch. This section describes two solutions for replacing a failed command switch:

- Replacing a Failed Command Switch with a Cluster Member, page 31-9
- Replacing a Failed Command Switch with Another Switch, page 31-11

These recovery procedures require that you have physical access to the switch. For information on command-capable switches, refer to the release notes.

Replacing a Failed Command Switch with a Cluster Member

To replace a failed command switch with a command-capable member in the same cluster, follow these steps:

Step 1 Disconnect the command switch from the member switches, and physically remove it from the cluster.

Step 2 Insert the member switch in place of the failed command switch, and duplicate its connections to the cluster members.

Step 3 Start a CLI session on the new command switch.

You can access the CLI by using the console port or, if an IP address has been assigned to the switch, by using Telnet. For details about using the console port, refer to the switch hardware installation guide.

Step 4 At the switch prompt, enter privileged EXEC mode:

```
Switch> enable
Switch#
```

Step 5 Enter the password of the failed command switch.

Step 6 Enter global configuration mode.

```
Switch# configure terminal
```

Enter configuration commands, one per line. End with CNTL/Z.

Step 7 Remove the member switch from the cluster.

```
Switch(config)# no cluster commander-address
```
Step 8 Return to privileged EXEC mode.

Switch(config)# end
Switch#

Step 9 Use the setup program to configure the switch IP information. This program prompts you for IP address information and passwords. From privileged EXEC mode, enter setup, and press Return.

Switch# setup
--- System Configuration Dialog ---
Continue with configuration dialog? [yes/no]: y

At any point you may enter a question mark '?' for help.
Use ctrl-c to abort configuration dialog at any prompt.
Default settings are in square brackets '{}'.

Basic management setup configures only enough connectivity for management of the system, extended setup will ask you to configure each interface on the system

Would you like to enter basic management setup? [yes/no]:

Step 10 Enter Y at the first prompt.

The prompts in the setup program vary depending on the member switch you selected to be the command switch:

Continue with configuration dialog? [yes/no]: y

or

Configuring global parameters:

If this prompt does not appear, enter enable, and press Return. Enter setup, and press Return to start the setup program.

Step 11 Respond to the questions in the setup program.

When prompted for the host name, recall that on a command switch, the host name is limited to 28 characters; on a member switch to 31 characters. Do not use -n, where n is a number, as the last characters in a host name for any switch.

When prompted for the Telnet (virtual terminal) password, recall that it can be from 1 to 25 alphanumeric characters, is case sensitive, allows spaces, but ignores leading spaces.

Step 12 When prompted for the enable secret and enable passwords, enter the passwords of the failed command switch again.

Step 13 When prompted, make sure to enable the switch as the cluster command switch, and press Return.

Step 14 When prompted, assign a name to the cluster, and press Return.

The cluster name can be 1 to 31 alphanumeric characters, dashes, or underscores.

Step 15 After the initial configuration displays, verify that the addresses are correct.

Step 16 If the displayed information is correct, enter Y, and press Return.

If this information is not correct, enter N, press Return, and begin again at Step 9.

Step 17 Start your browser, and enter the IP address of the new command switch.

Step 18 From the Cluster menu, select Add to Cluster to display a list of candidate switches to add to the cluster.
Recovering from a Command Switch Failure

Replacing a Failed Command Switch with Another Switch

To replace a failed command switch with a switch that is command-capable but not part of the cluster, follow these steps:

Step 1 Insert the new switch in place of the failed command switch, and duplicate its connections to the cluster members.

Step 2 Start a CLI session on the new command switch.
You can access the CLI by using the console port or, if an IP address has been assigned to the switch, by using Telnet. For details about using the console port, refer to the switch hardware installation guide.

Step 3 At the switch prompt, enter privileged EXEC mode:
```
Switch> enable
Switch#
```

Step 4 Enter the password of the failed command switch.

Step 5 Use the setup program to configure the switch IP information.
This program prompts you for IP address information and passwords. From privileged EXEC mode, enter `setup`, and press Return.
```
Switch# setup
--- System Configuration Dialog ---
Continue with configuration dialog? [yes/no]: y
```
At any point you may enter a question mark '?' for help. Use ctrl-c to abort configuration dialog at any prompt. Default settings are in square brackets '[]'.

Basic management setup configures only enough connectivity for management of the system, extended setup will ask you to configure each interface on the system

Would you like to enter basic management setup? [yes/no]:

Step 6 Enter Y at the first prompt.
The prompts in the setup program vary depending on the switch you selected to be the command switch:
```
Continue with configuration dialog? [yes/no]: y
```
or
```
Configuring global parameters:
```
If this prompt does not appear, enter `enable`, and press Return. Enter `setup`, and press Return to start the setup program.
Recovering from Lost Cluster Member Connectivity

Some configurations can prevent the command switch from maintaining contact with member switches. If you are unable to maintain management contact with a member, and the member switch is forwarding packets normally, check for these conflicts:

- A member switch (Catalyst 3750, Catalyst 3550, Catalyst 3500 XL, Catalyst 2950, Catalyst 2900 XL, Catalyst 2820, and Catalyst 1900 switch) cannot connect to the command switch through a port that is defined as a network port.

- Catalyst 3500 XL, Catalyst 2900 XL, Catalyst 2820, and Catalyst 1900 member switches must connect to the command switch through a port that belongs to the same management VLAN.

- A member switch (Catalyst 3750, Catalyst 3550, Catalyst 2950, Catalyst 3500 XL, Catalyst 2900 XL, Catalyst 2820, and Catalyst 1900 switch) connected to the command switch through a secured port can lose connectivity if the port is disabled because of a security violation.
Preventing Autonegotiation Mismatches

The IEEE 802.3AB autonegotiation protocol manages the switch settings for speed (10 Mbps, 100 Mbps, and 1000 Mbps, excluding SFP ports) and duplex (half or full). There are situations when this protocol can incorrectly align these settings, reducing performance. A mismatch occurs under these circumstances:

- A manually-set speed or duplex parameter is different from the manually set speed or duplex parameter on the connected port.
- A port is set to autonegotiate, and the connected port is set to full duplex with no autonegotiation.

To maximize switch performance and ensure a link, follow one of these guidelines when changing the settings for duplex and speed:

- Let both ports autonegotiate both speed and duplex.
- Manually set the speed and duplex parameters for the ports on both ends of the connection.

Note

If a remote device does not autonegotiate, configure the duplex settings on the two ports to match. The speed parameter can adjust itself even if the connected port does not autonegotiate.

Using the SDM Templates

You can use the Switch Database Management (SDM) templates to configure system resources in the switch to optimize support for specific features, depending on how the switch is used in the network. You can select a template to provide maximum system utilization for unicast routing or for VLAN configuration or use the default template to balance resources.

The templates prioritize system memory to optimize support for these types of features:

- **Routing**—The routing template maximizes system resources for unicast routing, typically required for a router or aggregator in the center of a network.
- **VLANs**—The VLAN template disables routing and supports the maximum number of unicast MAC addresses. It would typically be selected for a Layer 2 switch.
- **Default**—The default template gives balance to all functions.

Table 31-1 lists the approximate number of each resource supported in each of the three templates.

<table>
<thead>
<tr>
<th>Resource</th>
<th>Default Template</th>
<th>Routing Template</th>
<th>VLAN Template</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unicast MAC addresses</td>
<td>6 K</td>
<td>3 K</td>
<td>12 K</td>
</tr>
<tr>
<td>IGMP groups and multicast routes</td>
<td>1 K</td>
<td>1 K</td>
<td>1 K</td>
</tr>
<tr>
<td>Unicast routes</td>
<td>8 K</td>
<td>11 K</td>
<td>0</td>
</tr>
<tr>
<td>• Directly connected hosts</td>
<td>6 K</td>
<td>3 K</td>
<td>0</td>
</tr>
<tr>
<td>• Indirect routes</td>
<td>2 K</td>
<td>8 K</td>
<td>0</td>
</tr>
<tr>
<td>QoS classification ACEs</td>
<td>512</td>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td>Security ACEs</td>
<td>1 K</td>
<td>1 K</td>
<td>1 K</td>
</tr>
</tbody>
</table>
The first seven rows in the tables (unicast MAC addresses through security ACEs) represent approximate hardware boundaries set when a template is selected. If a section of a hardware resource is full, all processing overflow is sent to the CPU, seriously impacting switch performance.

The last two rows, the total number of routed ports and SVIs and the number of Layer 2 VLANs, are guidelines used to calculate hardware resource consumption related to the other resource parameters.

The total number of routed interfaces is not limited by software and can be set to a number higher than shown in the tables. If the number of routed interfaces configured is lower or equal to the number in the tables, the number of entries in each category (unicast MAC addresses, IGMP groups, and so on) for each template will be as shown. As the number of routed interfaces is increased, CPU utilization typically increases. If the number of routed interfaces is increased beyond the number shown in the tables, the number of supported entries in each category could decrease depending on other features that are enabled.

Follow these guidelines when using the SDM templates:

- When you use the VLAN template, no system resources are reserved for routing entries and any routing is done through software. This overloads the central processing unit (CPU) and severely degrades routing performance. Use the `sdm prefer vlan` global configuration command only on switches intended for Layer 2 switching with no routing.

- Do not use the routing template if you do not have routing enabled on your switch. Entering the `sdm prefer routing` global configuration command prevents other features from using the hardware resources allocated to unicast routing in the routing template (approximately 11 K).

- The switch must reload for the configuration to take effect. If you use the `show sdm prefer` privileged EXEC command before the switch reloads, the previous configuration is displayed.

All stack members use the same SDM template, stored on the stack master. When a new switch member is added to a stack, as with the switch configuration file and VLAN database file, the SDM configuration that is stored on the stack master overrides the template configured on an individual switch.

Beginning in privileged EXEC mode, follow these steps to use the SDM template to maximize feature usage:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 sdm prefer {routing | vlan}</td>
<td>Specify the SDM template to be used on the switch:</td>
</tr>
<tr>
<td></td>
<td>The keywords have these meanings:</td>
</tr>
<tr>
<td></td>
<td>• routing—Maximizes routing on the switch.</td>
</tr>
<tr>
<td></td>
<td>• vlan—Maximizes VLAN configuration on the switch with no routing allowed.</td>
</tr>
<tr>
<td></td>
<td>The default template (if neither of these is configured) balances system resources across all resources.</td>
</tr>
</tbody>
</table>
After the system reboots, you can use the `show sdm prefer` privileged EXEC command to verify the new template configuration. If you use the `show sdm prefer` command before the `reload` privileged EXEC command, the previous template is displayed instead of the new one. To return to the default template, use the `no sdm prefer` global configuration command.

Note

Use the `show sdm prefer {default | routing | vlan}` privileged EXEC command to display the resource numbers supported by the specified template. Use the `show sdm prefer` privileged EXEC command with no parameters to display the active template.

This example shows how to configure a switch with the routing template and verify the configuration:

```
Switch(config)# sdm prefer routing
Switch(config)# end
Switch# reload
Proceed with reload? [confirm]
```

SFP Module Security and Identification

Cisco-approved small form-factor pluggable (SFP) modules have a serial EEPROM that contains the module serial number, the vendor name and ID, a unique security code, and cyclic redundancy check (CRC). When an SFP module is inserted in the switch, the switch software reads the EEPROM to verify the serial number, vendor name and vendor ID, and recompute the security code and CRC. If the serial number, the vendor name or vendor ID, the security code, or CRC is invalid, the software generates a security error message and places the interface in an error-disabled state.

Note

The security error message references the GBIC_SECURITY facility. The Catalyst 3750 supports SFP modules and does not support GBIC modules. Although the error message text refers to GBIC interfaces and modules, the security messages actually refer to the SFP interfaces and modules. For more information about error messages, refer to the system message guide for this release.

If you are using a non-Cisco approved SFP module, remove the SFP from the switch, and replace it with a Cisco-approved module. After inserting a Cisco-approved SFP module, use the `errdisable recovery cause gbic-invalid` global configuration command to verify the port status, and enter a time interval for recovering from the error-disabled state. After the elapsed interval, the switch brings the interface out of the error-disabled state and retries the operation. For more information about the `errdisable recovery` command, refer to the command reference for this release.

If the SFP is identified as a Cisco SFP module, but the system is unable to read vendor-data information to verify its accuracy, an SFP error message is generated. In this case, you should remove and re-insert the SFP module. If it continues to fail, the SFP module might be defective.
Diagnosing Connectivity Problems

This section describes how to troubleshoot connectivity problems:

- Understanding Ping, page 31-16
- Executing Ping, page 31-16
- Understanding IP Traceroute, page 31-17
- Executing IP Traceroute, page 31-18

Understanding Ping

The switch supports IP ping, which you can use to test connectivity to remote hosts. Ping sends an echo request packet to an address and waits for a reply. Ping returns one of these responses:

- Normal response—The normal response (hostname is alive) occurs in 1 to 10 seconds, depending on network traffic.
- Destination does not respond—If the host does not respond, a no-answer message is returned.
- Unknown host—If the host does not exist, an unknown host message is returned.
- Destination unreachable—If the default gateway cannot reach the specified network, a destination-unreachable message is returned.
- Network or host unreachable—If there is no entry in the route table for the host or network, a network or host unreachable message is returned.

Executing Ping

If you attempt to ping a host in a different IP subnetwork, you must define a static route to the network or have IP routing configured to route between those subnets. For more information, see Chapter 26, “Configuring IP Unicast Routing.”

IP routing is disabled by default on all switches. If you need to enable or configure IP routing, see Chapter 26, “Configuring IP Unicast Routing.”

Beginning in privileged EXEC mode, use this command to ping another device on the network from the switch:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>ping ip host</td>
<td>address</td>
</tr>
</tbody>
</table>

Note

Though other protocol keywords are available with the ping command, they are not supported in this release.

This example shows how to ping an IP host:

```
Switch# ping 172.20.52.3
```

Type escape sequence to abort.
Table 31-2 describes the possible ping character output.

<table>
<thead>
<tr>
<th>Character</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>Each exclamation point means receipt of a reply.</td>
</tr>
<tr>
<td>.</td>
<td>Each period means the network server timed out while waiting for a reply.</td>
</tr>
<tr>
<td>U</td>
<td>A destination unreachable error PDU was received.</td>
</tr>
<tr>
<td>C</td>
<td>A congestion experienced packet was received.</td>
</tr>
<tr>
<td>I</td>
<td>User interrupted test.</td>
</tr>
<tr>
<td>?</td>
<td>Unknown packet type.</td>
</tr>
<tr>
<td>&</td>
<td>Packet lifetime exceeded.</td>
</tr>
</tbody>
</table>

To terminate a ping session, enter the escape sequence (Ctrl-^ X by default). You enter the default by simultaneously pressing and releasing the Ctrl, Shift, and 6 keys, and then pressing the X key.

Understanding IP Traceroute

You can use IP traceroute to identify the path that packets take through the network on a hop-by-hop basis. The command output displays all network layer (Layer 3) devices, such as routers, that the traffic passes through on the way to the destination.

Your switches can participate as the source or destination of the traceroute privileged EXEC command and might or might not appear as a hop in the traceroute command output. If the switch is the destination of the traceroute, it is displayed as the final destination in the traceroute output. Intermediate switches do not show up in the traceroute output if they are only bridging the packet from one port to another within the same VLAN. However, if the intermediate switch is a multilayer switch that is routing a particular packet, this switch shows up as a hop in the traceroute output.

The traceroute privileged EXEC command uses the Time To Live (TTL) field in the IP header to cause routers and servers to generate specific return messages. Traceroute starts by sending a User Datagram Protocol (UDP) datagram to the destination host with the TTL field set to 1. If a router finds a TTL value of 1 or 0, it drops the datagram and sends back an Internet Control Message Protocol (ICMP) time-to-live-exceeded message to the sender. Traceroute determines the address of the first hop by examining the source address field of the ICMP time-to-live-exceeded message.

To identify the next hop, traceroute sends a UDP packet with a TTL value of 2. The first router decrements the TTL field by 1 and sends the datagram to the next router. The second router sees a TTL value of 1, discards the datagram, and returns the time-to-live-exceeded message to the source. This process continues until the TTL is incremented to a value large enough for the datagram to reach the destination host (or until the maximum TTL is reached).

To determine when a datagram reaches its destination, traceroute sets the UDP destination port number in the datagram to a very large value that the destination host is unlikely to be using. When a host receives a datagram destined to itself containing a destination port number that is unused locally, it sends
Diagnosing Connectivity Problems

Chapter 31 Troubleshooting

Executing IP Traceroute

Beginning in privileged EXEC mode, follow this step to trace the path packets take through the network:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>traceroute ip host</td>
<td>Trace the path packets take through the network by using IP.</td>
</tr>
</tbody>
</table>

Note

Though other protocol keywords are available with the traceroute privileged EXEC command, they are not supported in this release.

This example shows how to perform a traceroute to an IP host:

Switch# traceroute ip 171.9.15.10

Type escape sequence to abort.
Tracing the route to 171.69.115.10

1 172.2.52.1 0 msec 0 msec 4 msec
2 172.2.1.203 12 msec 8 msec 0 msec
3 171.9.16.6 4 msec 0 msec 0 msec
4 171.9.4.5 0 msec 4 msec 0 msec
5 171.9.121.34 0 msec 4 msec 4 msec
6 171.9.15.9 120 msec 132 msec 128 msec
7 171.9.15.10 132 msec 128 msec 128 msec
Switch#

The display shows the hop count, IP address of the router, and the round-trip time in milliseconds for each of the three probes that are sent.

Table 31-3 Traceroute Output Display Characters

<table>
<thead>
<tr>
<th>Character</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>The probe timed out.</td>
</tr>
<tr>
<td>?</td>
<td>Unknown packet type.</td>
</tr>
<tr>
<td>A</td>
<td>Administratively unreachable. Usually, this output means that an access list is blocking traffic.</td>
</tr>
<tr>
<td>H</td>
<td>Host unreachable.</td>
</tr>
<tr>
<td>N</td>
<td>Network unreachable.</td>
</tr>
<tr>
<td>P</td>
<td>Protocol unreachable.</td>
</tr>
<tr>
<td>Q</td>
<td>Source quench.</td>
</tr>
<tr>
<td>U</td>
<td>Port unreachable.</td>
</tr>
</tbody>
</table>

To terminate a trace in progress, enter the escape sequence (Ctrl-^ X by default). You enter the default by simultaneously pressing and releasing the Ctrl, Shift, and 6 keys, and then pressing the X key.
Using Debug Commands

This section explains how you use `debug` commands to diagnose and resolve internetworking problems. It contains this information:

- Enabling Debugging on a Specific Feature, page 31-19
- Enabling All-System Diagnostics, page 31-20
- Redirecting Debug and Error Message Output, page 31-20

Caution

Because debugging output is assigned high priority in the CPU process, it can render the system unusable. For this reason, use `debug` commands only to troubleshoot specific problems or during troubleshooting sessions with Cisco technical support staff. It is best to use `debug` commands during periods of lower network traffic and fewer users. Debugging during these periods decreases the likelihood that increased `debug` command processing overhead will affect system use.

Note

For complete syntax and usage information for specific `debug` commands, refer to the command reference for this release.

Enabling Debugging on a Specific Feature

When you enable debugging, it is enabled only on the stack master switch. To enable debugging on a stack member, you must start a session from the stack master by using the `session switch-number` privileged EXEC command. Then, enter the `debug` command at the command-line prompt of the stack member.

All `debug` commands are entered in privileged EXEC mode, and most `debug` commands take no arguments. For example, beginning in privileged EXEC mode, enter this command to enable the debugging for Switched Port Analyzer (SPAN):

```
Switch# debug span-session
```

The switch continues to generate output until you enter the `no` form of the command.

If you enable a `debug` command and no output appears, consider these possibilities:

- The switch might not be properly configured to generate the type of traffic you want to monitor. Use the `show running-config` command to check its configuration.
- Even if the switch is properly configured, it might not generate the type of traffic you want to monitor during the particular period that debugging is enabled. Depending on the feature you are debugging, you can use commands such as the TCP/IP `ping` command to generate network traffic.

To disable debugging of SPAN, enter this command in privileged EXEC mode:

```
Switch# no debug span-session
```

Alternately, in privileged EXEC mode, you can enter the `undebug` form of the command:

```
Switch# undebug span-session
```

To display the state of each debugging option, enter this command in privileged EXEC mode:

```
Switch# show debugging
```
Enabling All-System Diagnostics

Beginning in privileged EXEC mode, enter this command to enable all-system diagnostics:

```
Switch# debug all
```

Caution

Because debugging output takes priority over other network traffic, and because the `debug all` privileged EXEC command generates more output than any other `debug` command, it can severely diminish switch performance or even render it unusable. In virtually all cases, it is best to use more specific `debug` commands.

The `no debug all` privileged EXEC command disables all diagnostic output. Using the `no debug all` command is a convenient way to ensure that you have not accidentally left any `debug` commands enabled.

Redirecting Debug and Error Message Output

By default, the network server sends the output from `debug` commands and system error messages to the console. If you use this default, you can use a virtual terminal connection to monitor debug output instead of connecting to the console port.

Possible destinations include the console, virtual terminals, internal buffer, and UNIX hosts running a syslog server. The syslog format is compatible with 4.3 Berkeley Standard Distribution (BSD) UNIX and its derivatives.

Note

Be aware that the debugging destination you use affects system overhead. Logging messages to the console produces very high overhead, whereas logging messages to a virtual terminal produces less overhead. Logging messages to a syslog server produces even less, and logging to an internal buffer produces the least overhead of any method.

When stack members generate a system error message, the stack master displays the error message to all stack members. The syslog resides on the stack master.

Note

Make sure to save the syslog to Flash memory so that the syslog is not lost if the stack master fails.

For more information about system message logging, see Chapter 21, “Configuring System Message Logging.”
Using the show platform forward Command

The output from the **show platform forward** privileged EXEC command provides some useful information about the forwarding results if a packet entering an interface is sent through the system. Depending upon the parameters entered about the packet, the output provides lookup table results and port maps used to calculate forwarding destinations, bitmaps, and egress information.

Note
For more syntax and usage information for the **show platform forward** command, refer to the switch command reference for this release.

Most of the information in the output from the command is useful mainly for technical support personnel, who have access to detailed information about the switch application-specific integrated circuits (ASICs). However, packet forwarding information can also be helpful in troubleshooting.

This is an example of the output from the **show platform forward** command on Gigabit Ethernet port 24 on stack member 1 in VLAN 5 when the packet entering that port is addressed to unknown MAC addresses. The packet should be flooded to all other ports in VLAN 5.

```
Switch# show platform forward gigabitethernet1/0/24 vlan 5 1.1.1 2.2.2 ip 13.1.1.1 13.2.2.2 udp 10 20
Global Port Number:24, Asic Number:5
Src Real Vlan Id:5, Mapped Vlan Id:5

Ingress:

<table>
<thead>
<tr>
<th>Lookup</th>
<th>Key-Used</th>
<th>Index-Hit</th>
<th>A-Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>InptACL 40_0D020202_0D010101-00_40000014_000A0000</td>
<td>01FFA</td>
<td>03000000</td>
<td></td>
</tr>
<tr>
<td>L2Local 80_00050002_00020002-00_00000000_00000000</td>
<td>00C71</td>
<td>0000002B</td>
<td></td>
</tr>
</tbody>
</table>

Station Descriptor:02340000, DestIndex:0239, RewriteIndex:F005

Egress:Asic 2, switch 1
Output Packets:

```
Packet 1

<table>
<thead>
<tr>
<th>Lookup</th>
<th>Key-Used</th>
<th>Index-Hit</th>
<th>A-Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>OutptACL 50_0D020202_0D010101-00_40000014_000A0000</td>
<td>01FFE</td>
<td>03000000</td>
<td></td>
</tr>
</tbody>
</table>

Port Vlan SrcMac DstMac Cos DscpV
Gi1/0/3 0005 0001.0001.0001 0002.0002.0002

Packet 2

<table>
<thead>
<tr>
<th>Lookup</th>
<th>Key-Used</th>
<th>Index-Hit</th>
<th>A-Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>OutptACL 50_0D020202_0D010101-00_40000014_000A0000</td>
<td>01FFE</td>
<td>03000000</td>
<td></td>
</tr>
</tbody>
</table>

Port Vlan SrcMac DstMac Cos DscpV
Gi1/0/4 0005 0001.0001.0001 0002.0002.0002

Packet 3

<table>
<thead>
<tr>
<th>Lookup</th>
<th>Key-Used</th>
<th>Index-Hit</th>
<th>A-Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>OutptACL 50_0D020202_0D010101-00_40000014_000A0000</td>
<td>01FFE</td>
<td>03000000</td>
<td></td>
</tr>
</tbody>
</table>

Port Vlan SrcMac DstMac Cos DscpV
Gi1/0/2 0005 0001.0001.0001 0002.0002.0002
```
Using the show platform forward Command

Switch# show platform forward gigabitethernet1/0/24 vlan 5 1.1.1.1 0009.43a8.0145 ip 13.1.1.1 13.2.2.2 udp 10 20
Global Port Number:24, Asic Number:5
Src Real Vlan Id:5, Mapped Vlan Id:5

Ingress:
Lookup Key-Used Index-Hit A-Data
InptACL 40_0D020202_0D010101-00_40000014_000A0000 01FFA 03000000
L3Local 80_00050009_43A80145-00_00000000_00000000 00086 02010197
Station Descriptor:F0050003, DestIndex:F005, RewriteIndex:0003

Egress:Asic 3, switch 1
Output Packets:

Packet 1
Lookup Key-Used Index-Hit A-Data
OutptACL 50_0D020202_0D010101-00_40000014_000A0000 01FFE 03000000

Port Vlan SrcMac DstMac Cos DscpV
Gi1/0/5 0005 0001.0001.0001 0009.43A8.0145

This is an example of the output when the packet coming in on Gigabit Ethernet port 24 on stack member 1 in VLAN 5 has a destination MAC address set to the router MAC address in VLAN 5 and the destination IP address unknown. Since there is no default route set, the packet should be dropped.

Switch# show platform forward gigabitethernet1/0/24 vlan 5 1.1.1.1 03.e319.ee44 ip 13.1.1.1 13.2.2.2 udp 10 20
Global Port Number:24, Asic Number:5
Src Real Vlan Id:5, Mapped Vlan Id:5

Ingress:
Lookup Key-Used Index-Hit A-Data
InptACL 40_0D020202_0D010101-00_40000014_000A0000 01FFA 03000000
L3Local 00_00000000_00000000-90_00001400_0D020202 010F0 01880290
L3Scndr 12_00020202_0D010101-00_40000014_000A0000 034E0 00C001D_00000000
Lookup Used:Secondary
Station Descriptor:02260000, DestIndex:0226, RewriteIndex:0000

This is an example of the output when the packet coming in on Gigabit Ethernet port 24 on stack member 1 in VLAN 5 has a destination MAC address set to the router MAC address in VLAN 5 and the destination IP address set to an IP address that is in the IP routing table. It should be forwarded as specified in the routing table.

Switch# show platform forward gigabitethernet1/0/24 vlan 5 1.1.1.1 03.e319.ee44 ip 110.1.5.5 16.1.10.5
Global Port Number:24, Asic Number:5
Src Real Vlan Id:5, Mapped Vlan Id:5

Ingress:
Lookup Key-Used Index-Hit A-Data
Using the crashinfo File

The crashinfo file saves information that helps Cisco technical support representatives to debug problems that caused the IOS image to fail (crash). The switch writes the crash information to the console at the time of the failure, and the file is created the next time you boot the IOS image after the failure (instead of while the system is failing).

The information in the file includes the IOS image name and version that failed, a dump of the processor registers, and a stack trace. You can provide this information to the Cisco technical support representative by using the `show tech-support` privileged EXEC command.

All crashinfo files are kept in this directory on the Flash file system:

```
flash:/crashinfo/crashinfo_<n>
```

where `<n>` is a sequence number. Each new crashinfo file that is created uses a sequence number that is larger than any previously-existing sequence number, so the file with the largest sequence number describes the most recent failure. Version numbers are used instead of a timestamp because the switches do not include a real-time clock. You cannot change the name of the file that the system will use when it creates the file. However, after the file is created, you can use the `rename` privileged EXEC command to rename it, but the contents of the renamed file will not be displayed by the `show stacks` or the `show tech-support` privileged EXEC command. You can delete crashinfo files by using the `delete` privileged EXEC command.

You can display the most recent crashinfo file (that is, the file with the highest sequence number at the end of its filename) by entering the `show stacks` or the `show tech-support` privileged EXEC command. You also can access the file by using any command that can copy or display files, such as the `more` or the `copy` privileged EXEC command.

InptACL 40_10010A05_0A010505-00_41000014_000A0000 01FFA 03000000
L3Local 00_00000000_00000000-90_00001400_10010A05 010F0 01800290
L3Scndr 12_10010A05_0A010505-00_40000014_000A0000 01D28 30090001_00000000

Lookup Used:Secondary
Station Descriptor:F0070007, DestIndex:F007, RewriteIndex:0007

Egress:Asic 3, switch 1
Output Packets:

```
Packet 1
Lookup Key-Used Index-Hit A-Data
OutptACL 50_10010A05_0A010505-00_40000014_000A0000 01FFE 03000000

Port Vlan SrcMac DstMac Cos Dscp
Gi1/0/7 0007 XXXX.XXXX.0246 0009.43A8.0147
```
Supported MIBs

This appendix lists the supported management information base (MIBs) for this release on the Catalyst 3750 switch. It contains these sections:

- MIB List, page A-1
- Using FTP to Access the MIB Files, page A-3

MIB List

- BRIDGE-MIB (RFC1493)

Note: The BRIDGE-MIB supports the context of a single VLAN. By default, SNMP messages using the configured community string always provide information for VLAN 1. To obtain the BRIDGE-MIB information for other VLANs, for example VLAN x, use this community string in the SNMP message: configured community string @x.

- CISCO-CDP-MIB
- CISCO-CLUSTER-MIB
- CISCO-CONFIG-MAN-MIB
- CISCO-FLASH-MIB (Flash memory on all switches are modeled as removable Flash memory.)
- CISCO-FLASH-MIB
- CISCO-FLASH-EXT-MIB (partial support)
- CISCO-IGMP-FILTER-MIB
- CISCO-IMAGE-MIB (Only stack master image details are shown.)
- CISCO-FLASH-MIB
- CISCO-FLASH-EXT-MIB (partial support)
- CISCO-IMAGE-MIB (Only stack master image details are shown.)
- CISCO-PAGP-MIB
- CISCO-PING-MIB
- CISCO-PROCESS-MIB (Only stack master details are shown.)
- CISCO-RTTMON-MIB
Appendix A  Supported MIBs

- CISCO-STACK-MIB (Partial support: for some objects, only stack master information is supported. ENTITY MIB is a better alternative.)
- CISCO-STP-EXTENSIONS-MIB
- CISCO-TCP-MIB
- CISCO-VLAN-IFTABLE-RELATIONSHIP-MIB
- CISCO-VLAN-MEMBERSHIP-MIB
- CISCO-VTP-MIB
- ENTITY-MIB
- ETHERLIKE_MIB
- IF-MIB (In and out counters for VLANs are not supported.)
- IGMP-MIB
- IPMROUTE-MIB
- OLD-CISCO-CHASSIS-MIB (Partial support: some objects reflect only the stack master.)
- OLD-CISCO-FLASH-MIB (Supports only the stack master. Use CISCO-FLASH_MIB.)
- OLD-CISCO-INTERFACES-MIB
- OLD-CISCO-IP-MIB
- OLD-CISCO-SYS-MIB
- OLD-CISCO-TCP-MIB
- OLD-CISCO-TS-MIB
- PIM-MIB
- RFC1213-MIB (Functionality is as per the agent capabilities specified in the CISCO-RFC1213-CAPABILITY.my.)
- RFC1253-MIB (OSPF-MIB)
- RMON-MIB
- RMON2-MIB
- SNMP-FRAMEWORK-MIB
- SNMP-MPD-MIB
- SNMP-NOTIFICATION-MIB
- SNMP-TARGET-MIB
- SNMPv2-MIB
- TCP-MIB
- UDP-MIB

Note
You can also use this URL for a list of supported MIBs for the Catalyst 3750 switch:

You can access other information about MIBs and Cisco products on the Cisco web site:
Using FTP to Access the MIB Files

You can obtain each MIB file by using this procedure:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Use FTP to access the server ftp.cisco.com.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>Log in with the username anonymous.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Enter your e-mail username when prompted for the password.</td>
</tr>
<tr>
<td>Step 4</td>
<td>At the ftp&gt; prompt, change directories to /pub/mibs/v1 and /pub/mibs/v2.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Use the get MIB_filename command to obtain a copy of the MIB file.</td>
</tr>
</tbody>
</table>
Using FTP to Access the MIB Files
Working with the IOS File System, Configuration Files, and Software Images

This appendix describes how to manipulate the Catalyst 3750 Flash file system, how to copy configuration files, and how to archive (upload and download) software images to a standalone switch or to a switch stack.

Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

For complete syntax and usage information for the commands used in this chapter, refer to the switch command reference for this release and the Cisco IOS Configuration Fundamentals Command Reference for Release 12.1.

This appendix consists of these sections:

- Working with the Flash File System, page B-1
- Working with Configuration Files, page B-9
- Working with Software Images, page B-21

Working with the Flash File System

The Flash file system is a single Flash device on which you can store files. It also provides several commands to help you manage software image and configuration files. The default Flash file system on the switch is named flash:

As viewed from the stack master, or any stack member, flash: refers to the local Flash device, which is the device attached to the same switch on which the file system is being viewed. In a switch stack, each of the Flash devices from the various stack members can be viewed from the stack master. The names of these Flash file systems include the corresponding switch member numbers. For example, flash3:, as viewed from the stack master, refers to the same file system as does flash: on stack member 3. Use the show file systems privileged EXEC command to list all file systems, including the Flash file systems in the switch stack.

No more than one user at a time can manage the software images and configuration files for a switch stack.

This section contains this information:

- Displaying Available File Systems, page B-2
- Setting the Default File System, page B-3
Displaying Available File Systems

To display the available file systems on your switch, use the `show file systems` privileged EXEC command as shown in this example. In this example, the stack master is stack member 3; therefore `flash3:` is aliased to `flash:`. The file system on stack member 5 is displayed as `flash5` on the stack master.

```
Switch# show file systems
File Systems:
 Size(b) Free(b) Type Flags Prefixes
 * 15998976 5135872 flash rw flash:flash3:
 - - opaque rw bs:
 - - opaque rw vb:
 524288 520138 nvram rw nvram:
 - - network rw tftp:
 - - opaque rw null:
 - - opaque rw system:
 - - opaque ro xmodem:
 - - opaque ro ymodem:
 15998976 645120 unknown rw flash5:
 - - network rw rcp:
 - - network rw ftp:
```

Table B-1  show file systems Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size(b)</td>
<td>Amount of memory in the file system in bytes.</td>
</tr>
<tr>
<td>Free(b)</td>
<td>Amount of free memory in the file system in bytes.</td>
</tr>
<tr>
<td>Type</td>
<td>Type of file system.</td>
</tr>
<tr>
<td>flash</td>
<td>The file system is for a Flash memory device.</td>
</tr>
<tr>
<td>nvram</td>
<td>The file system is for a nonvolatile RAM (NVRAM) device.</td>
</tr>
<tr>
<td>opaque</td>
<td>The file system is a locally generated pseudo file system (for example, the system) or a download interface, such as brimux.</td>
</tr>
<tr>
<td>unknown</td>
<td>The file system is an unknown type.</td>
</tr>
<tr>
<td>Flags</td>
<td>Permission for file system.</td>
</tr>
<tr>
<td>ro</td>
<td>read-only.</td>
</tr>
<tr>
<td>rw</td>
<td>read/write.</td>
</tr>
<tr>
<td>wo</td>
<td>write-only.</td>
</tr>
</tbody>
</table>
You can specify the file system or directory that the system uses as the default file system by using the `cd filesystem:` privileged EXEC command. You can set the default file system to omit the `filesystem:` argument from related commands. For example, for all privileged EXEC commands that have the optional `filesystem:` argument, the system uses the file system specified by the `cd` command.

By default, the default file system is `flash:`.

You can display the current default file system as specified by the `cd` command by using the `pwd` privileged EXEC command.

### Displaying Information about Files on a File System

You can view a list of the contents of a file system before manipulating its contents. For example, before copying a new configuration file to Flash memory, you might want to verify that the file system does not already contain a configuration file with the same name. Similarly, before copying a Flash configuration file to another location, you might want to verify its filename for use in another command.

To display information about files on a file system, use one of the privileged EXEC commands in Table B-2:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dir [all] [filesystem:]filename</code></td>
<td>Display a list of files on a file system.</td>
</tr>
<tr>
<td><code>show file systems</code></td>
<td>Display more information about each of the files on a file system.</td>
</tr>
<tr>
<td><code>show file information file-url</code></td>
<td>Display information about a specific file.</td>
</tr>
<tr>
<td><code>show file descriptors</code></td>
<td>Display a list of open file descriptors. File descriptors are the internal representations of open files. You can use this command to see if another user has a file open.</td>
</tr>
</tbody>
</table>
Changing Directories and Displaying the Working Directory

Beginning in privileged EXEC mode, follow these steps to change directories and display the working directory.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>dir filesystem: Display the directories on the specified file system.</td>
</tr>
<tr>
<td></td>
<td>For filesystem:, use flash: for the system board Flash device.</td>
</tr>
<tr>
<td>Step 2</td>
<td>cd new_configs Change to the directory of interest.</td>
</tr>
<tr>
<td></td>
<td>The command example shows how to change to the directory named new_configs.</td>
</tr>
<tr>
<td>Step 3</td>
<td>pwd Display the working directory.</td>
</tr>
</tbody>
</table>

Creating and Removing Directories

Beginning in privileged EXEC mode, follow these steps to create and remove a directory:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>dir filesystem: Display the directories on the specified file system.</td>
</tr>
<tr>
<td></td>
<td>For filesystem:, use flash: for the system board Flash device.</td>
</tr>
<tr>
<td>Step 2</td>
<td>mkdir old_configs Create a new directory.</td>
</tr>
<tr>
<td></td>
<td>The command example shows how to create the directory named old_configs.</td>
</tr>
<tr>
<td></td>
<td>Directory names are case sensitive.</td>
</tr>
<tr>
<td></td>
<td>Directory names are limited to 45 characters between the slashes (/); the name cannot contain control characters, spaces, deletes, slashes, quotes, semicolons, or colons.</td>
</tr>
<tr>
<td>Step 3</td>
<td>dir filesystem: Verify your entry.</td>
</tr>
</tbody>
</table>

To delete a directory with all its files and subdirectories, use the `delete /force /recursive filesystem:file-url` privileged EXEC command.

Use the `/recursive` keyword to delete the named directory and all subdirectories and the files contained in it. Use the `/force` keyword to suppress the prompting that confirms a deletion of each file in the directory. You are prompted only once at the beginning of this deletion process. Use the `/force` and `/recursive` keywords for deleting old software images that were installed by using the archive `download-sw` command but are no longer needed.

For `filesystem`, use flash: for the system board Flash device. For `file-url`, enter the name of the directory to be deleted. All the files in the directory and the directory are removed.

⚠️ Caution When files and directories are deleted, their contents cannot be recovered.
Copying Files

To copy a file from a source to a destination, use the `copy source-url destination-url` privileged EXEC command. For the source and destination URLS, you can use `running-config` and `startup-config` keyword shortcuts. For example, the `copy running-config startup-config` command saves the currently running configuration file to the NVRAM section of Flash memory to be used as the configuration during system initialization.

You can also copy from special file systems (`xmodem:`, `ymodem:`) as the source for the file from a network machine that uses the XMODEM or YMODEM protocol.

Network file system URLs include `ftp:`, `rcp:`, and `tftp:` and have these syntaxes:

- File Transfer Protocol (FTP)—`ftp://username [:password]@location|directory|filename`
- Remote Copy Protocol (RCP)—`rcp://username@location|directory|filename`
- Trivial File Transfer Protocol (TFTP)—`tftp://location|directory|filename`

Local writable file systems include `flash:`.

Some invalid combinations of source and destination exist. Specifically, you cannot copy these combinations:

- From a running configuration to a running configuration
- From a startup configuration to a startup configuration
- From a device to the same device (for example, the `copy flash: flash:` command is invalid)

For specific examples of using the `copy` command with configuration files, see the “Working with Configuration Files” section on page B-9.

To copy software images either by downloading a new version or uploading the existing one, use the `archive download-sw` or the `archive upload-sw` privileged EXEC command. For more information, see the “Working with Software Images” section on page B-21.

Deleting Files

When you no longer need a file on a Flash memory device, you can permanently delete it. To delete a file or directory from a specified Flash device, use the `delete [/force] [/recursive] [filesystem:]file-url` privileged EXEC command.

Use the `/recursive` keyword for deleting a directory and all subdirectories and the files contained in it. Use the `/force` keyword to suppress the prompting that confirms a deletion of each file in the directory. You are prompted only once at the beginning of this deletion process. Use the `/force` and `/recursive` keywords for deleting old software images that were installed by using the `archive download-sw` command but are no longer needed.

If you omit the `filesystem` option, the switch uses the default device specified by the `cd` command. For `file-url`, you specify the path (directory) and the name of the file to be deleted.

When you attempt to delete any files, the system prompts you to confirm the deletion.

![Caution]

When files are deleted, their contents cannot be recovered.

This example shows how to delete the file `myconfig` from the default Flash memory device:

```
Switch# delete myconfig
```
Creating, Displaying, and Extracting tar Files

You can create a tar file and write files into it, list the files in a tar file, and extract the files from a tar file as described in the next sections.

Note

Instead of using the copy privileged EXEC command or the archive tar privileged EXEC command, we recommend using the archive download-sw and archive upload-sw privileged EXEC commands to download and upload software image files. For switch stacks, the archive download-sw and archive upload-sw privileged EXEC commands can only be used through the stack master. Software images downloaded to the stack master are automatically downloaded to the rest of the stack members.

To upgrade a switch with an incompatible software image, use the archive copy-sw privileged EXEC command to copy the software image from an existing stack member to the incompatible switch. That switch automatically reloads and joins the stack as a fully functioning member.

Creating a tar File

To create a tar file and write files into it, use this privileged EXEC command:

archive tar /create destination-url flash:/file-url

For destination-url, specify the destination URL alias for the local or network file system and the name of the tar file to create. These options are supported:

- For the local Flash file system, the syntax is flash:
- For the File Transfer Protocol (FTP), the syntax is
  ftp://[/username[:password]@location]/directory]/tar-filename.tar
- For the Remote Copy Protocol (RCP), the syntax is
  rcp://[/username@location]/directory]/tar-filename.tar
- For the Trivial File Transfer Protocol (TFTP), the syntax is
  tftp://[/location]/directory]/tar-filename.tar

The tar-filename.tar is the tar file to be created.

For flash:/file-url, specify the location on the local Flash file system from which the new tar file is created. You can also specify an optional list of files or directories within the source directory to write to the new tar file. If none are specified, all files and directories at this level are written to the newly created tar file.

This example shows how to create a tar file. This command writes the contents of the new-configs directory on the local Flash device to a file named saved.tar on the TFTP server at 172.20.10.30:

Switch# archive tar /create tftp:172.20.10.30/saved.tar flash:/new-configs
Displaying the Contents of a tar File

To display the contents of a tar file on the screen, use this privileged EXEC command:

```
archive tar /table source-url
```

For `source-url`, specify the source URL alias for the local or network file system. These options are supported:

- For the local Flash file system, the syntax is `flash:
- For the File Transfer Protocol (FTP), the syntax is `ftp://[username[:password]@location][directory]/tar-filename.tar`
- For the Remote Copy Protocol (RCP), the syntax is `rcp://[username@location][directory]/tar-filename.tar`
- For the Trivial File Transfer Protocol (TFTP), the syntax is `tftp://[location][directory]/tar-filename.tar`

The `tar-filename.tar` is the tar file to display.

You can also limit the display of the files by specifying an optional list of files or directories after the tar file; then only those files appear. If none are specified, all files and directories appear.

This example shows how to display the contents of a switch tar file that is in Flash memory:

```
Switch# archive tar /table flash:c3750-i5q3l2-mz.121-6.AX1.tar
info (219 bytes)
c3750-i5q3l2-mz.121-6.AX1/ (directory)
c3750-i5q3l2-mz.121-6.AX1/html/ (directory)
c3750-i5q3l2-mz.121-6.AX1/html/foo.html (0 bytes)
c3750-i5q3l2-mz.121-6.AX1/info (219 bytes)
```

This example shows how to display only the /html directory and its contents:

```
Switch# archive tar /table flash:c3750-tv0-m.tar c3750-i5q3l2-mz.121-6.AX1/html
```

This example shows how to display only the /html directory and its contents:

```
Switch# archive tar /table flash:c3750-tv0-m.tar c3750-i5q3l2-mz.121-6.AX1/html
c3750-i5q3l2-mz.121-6.AX1/html/ (directory)
c3750-i5q3l2-mz.121-6.AX1/html/foo.html (0 bytes)
```
Extracting a tar File

To extract a tar file into a directory on the Flash file system, use this privileged EXEC command:

```
archive tar /xtract source-url flash:/file-url
```

For `source-url`, specify the source URL alias for the local or network file system. These options are supported:

- For the local Flash file system, the syntax is `flash:`
- For the File Transfer Protocol (FTP), the syntax is `ftp://[username[:password]@[location]directory]/tar-filename.tar`
- For the Remote Copy Protocol (RCP), the syntax is `rcp://[username@[location]directory]/tar-filename.tar`
- For the Trivial File Transfer Protocol (TFTP), the syntax is `tftp://[location]directory]/tar-filename.tar`

The `tar-filename.tar` is the tar file from which to extract files.

For `flash:/file-url`, specify the location on the local Flash file system into which the tar file is extracted. You can also specify an optional list of files or directories within the tar file for extraction. If none are specified, all files and directories are extracted.

This example shows how to extract the contents of a tar file located on the TFTP server at 172.20.10.30. This command extracts just the `new-configs` directory into the root directory on the local Flash file system. The remaining files in the `saved.tar` file are ignored.

```
Switch# archive tar /xtract tftp://172.20.10.30/saved.tar flash:/new-configs
```

Displaying the Contents of a File

To display the contents of any readable file, including a file on a remote file system, use the `more` command:

```
more [ascii | /binary | /ebcdic] file-url
```

This example shows how to display the contents of a configuration file on a TFTP server:

```
Switch# more tftp://serverA/hampton/savedconfig
!
! Saved configuration on server
!
version 11.3
service timestamps log datetime localtime
service linenum
service udp-small-servers
service pt-vty-logging
!
<output truncated>
```
Working with Configuration Files

This section describes how to create, load, and maintain configuration files.

Note
For information about configuration files in switch stacks, see the “Switch Stack Configuration Files” section on page 5-8.

Configuration files contain commands entered to customize the function of the Cisco IOS software. A way to create a basic configuration file is to use the setup program or to enter the setup privileged EXEC command. For more information, see Chapter 4, “Assigning the Switch IP Address and Default Gateway.”

You can copy (download) configuration files from a TFTP, FTP, or RCP server to the running configuration or startup configuration of the switch. You might want to perform this for one of these reasons:

- To restore a backed-up configuration file.
- To use the configuration file for another switch. For example, you might add another switch to your network and want it to have a configuration similar to the original switch. By copying the file to the new switch, you can change the relevant parts rather than recreating the whole file.
- To load the same configuration commands on all the switches in your network so that all the switches have similar configurations.

You can copy (upload) configuration files from the switch to a file server by using TFTP, FTP, or RCP. You might perform this task to back up a current configuration file to a server before changing its contents so that you can later restore the original configuration file from the server.

The protocol you use depends on which type of server you are using. The FTP and RCP transport mechanisms provide faster performance and more reliable delivery of data than TFTP. These improvements are possible because FTP and RCP are built on and use the Transmission Control Protocol/Internet Protocol (TCP/IP) stack, which is connection-oriented.

This section includes this information:

- Guidelines for Creating and Using Configuration Files, page B-10
- Configuration File Types and Location, page B-10
- Creating a Configuration File By Using a Text Editor, page B-11
- Copying Configuration Files By Using TFTP, page B-11
- Copying Configuration Files By Using FTP, page B-13
- Copying Configuration Files By Using RCP, page B-17
- Clearing Configuration Information, page B-20
- Copying an Image File from One Stack Member to Another, page B-35
Guidelines for Creating and Using Configuration Files

Creating configuration files can aid in your switch configuration. Configuration files can contain some or all of the commands needed to configure one or more switches. For example, you might want to download the same configuration file to several switches that have the same hardware configuration.

Use these guidelines when creating a configuration file:

- We recommend that you connect through the console port for the initial configuration of the switch. If you are accessing the switch through a network connection instead of through a direct connection to the console port, keep in mind that some configuration changes (such as changing the switch IP address or disabling ports) can cause a loss of connectivity to the switch.

- If no password has been set on the switch, we recommend that you set one by using the `enable secret secret-password` global configuration command.

Note

The `copy {ftp: | rcp: | tftp:} system:running-config` privileged EXEC command loads the configuration files on the switch as if you were entering the commands at the command line. The switch does not erase the existing running configuration before adding the commands. If a command in the copied configuration file replaces a command in the existing configuration file, the existing command is erased. For example, if the copied configuration file contains a different IP address in a particular command than the existing configuration, the IP address in the copied configuration is used. However, some commands in the existing configuration might not be replaced or negated. In this case, the resulting configuration file is a mixture of the existing configuration file and the copied configuration file, with the copied configuration file having precedence.

To restore a configuration file to an exact copy of a file stored on a server, copy the configuration file directly to the startup configuration (by using the `copy {ftp: | rcp: | tftp:} nvram:startup-config` privileged EXEC command), and reload the switch.

Configuration File Types and Location

Startup configuration files are used during system startup to configure the software. Running configuration files contain the current configuration of the software. The two configuration files can be different. For example, you might want to change the configuration for a short time period rather than permanently. In this case, you would change the running configuration but not save the configuration by using the `copy running-config startup-config` privileged EXEC command.

The running configuration is saved in DRAM; the startup configuration is stored in the NVRAM section of Flash memory.
Creating a Configuration File By Using a Text Editor

When creating a configuration file, you must list commands logically so that the system can respond appropriately. This is one method of creating a configuration file:

**Step 1** Copy an existing configuration from a switch to a server.

For more information, see the “Downloading the Configuration File By Using TFTP” section on page B-12, the “Downloading a Configuration File By Using FTP” section on page B-14, or the “Downloading a Configuration File By Using RCP” section on page B-18.

**Step 2** Open the configuration file in a text editor, such as vi or emacs on UNIX or Notepad on a PC.

**Step 3** Extract the portion of the configuration file with the desired commands, and save it in a new file.

**Step 4** Copy the configuration file to the appropriate server location. For example, copy the file to the TFTP directory on the workstation (usually /tftpboot on a UNIX workstation).

**Step 5** Make sure the permissions on the file are set to world-read.

Copying Configuration Files By Using TFTP

You can configure the switch by using configuration files you create, download from another switch, or download from a TFTP server. You can copy (upload) configuration files to a TFTP server for storage.

This section includes this information:

- Preparing to Download or Upload a Configuration File By Using TFTP, page B-11
- Downloading the Configuration File By Using TFTP, page B-12
- Uploading the Configuration File By Using TFTP, page B-12

Preparing to Download or Upload a Configuration File By Using TFTP

Before you begin downloading or uploading a configuration file by using TFTP, do these tasks:

- Ensure that the workstation acting as the TFTP server is properly configured. On a Sun workstation, make sure that the /etc/inetd.conf file contains this line:

  tftp dgram udp wait root /usr/etc/in.tftpd in.tftpd -p -s /tftpboot

  Make sure that the /etc/services file contains this line:

  tftp 69/udp

  **Note** You must restart the inetd daemon after modifying the /etc/inetd.conf and /etc/services files. To restart the daemon, either stop the inetd process and restart it, or enter a `fastboot` command (on the SunOS 4.x) or a `reboot` command (on Solaris 2.x or SunOS 5.x). For more information on the TFTP daemon, refer to the documentation for your workstation.

- Ensure that the switch has a route to the TFTP server. The switch and the TFTP server must be in the same subnetwork if you do not have a router to route traffic between subnets. Check connectivity to the TFTP server by using the `ping` command.
Appendix B      Working with the IOS File System, Configuration Files, and Software Images

Working with Configuration Files

- Ensure that the configuration file to be downloaded is in the correct directory on the TFTP server (usually /tftpboot on a UNIX workstation).
- For download operations, ensure that the permissions on the file are set correctly. The permission on the file should be world-read.
- Before uploading the configuration file, you might need to create an empty file on the TFTP server. To create an empty file, enter the `touch filename` command, where `filename` is the name of the file you will use when uploading it to the server.
- During upload operations, if you are overwriting an existing file (including an empty file, if you had to create one) on the server, ensure that the permissions on the file are set correctly. Permissions on the file should be world-write.

**Downloading the Configuration File By Using TFTP**

To configure the switch by using a configuration file downloaded from a TFTP server, follow these steps:

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Copy the configuration file to the appropriate TFTP directory on the workstation.</td>
</tr>
<tr>
<td>2</td>
<td>Verify that the TFTP server is properly configured by referring to the “Preparing to Download or Upload a Configuration File By Using TFTP” section on page B-11.</td>
</tr>
<tr>
<td>3</td>
<td>Log into the switch through the console port or a Telnet session.</td>
</tr>
<tr>
<td>4</td>
<td>Download the configuration file from the TFTP server to configure the switch. Specify the IP address or host name of the TFTP server and the name of the file to download. Use one of these privileged EXEC commands:</td>
</tr>
</tbody>
</table>

- `copy tftp://[location]/directory/filename system:running-config`
- `copy tftp://[location]/directory/filename nvram:startup-config`

The configuration file downloads, and the commands are executed as the file is parsed line-by-line.

This example shows how to configure the software from the file `tokyo-confg` at IP address 172.16.2.155:

```
Switch# copy tftp://172.16.2.155/tokyo-confg system:running-config
```

Configure using tokyo-confg from 172.16.2.155? [confirm] y
Booting tokyo-confg from 172.16.2.155:!!! [OK - 874/16000 bytes]

**Uploading the Configuration File By Using TFTP**

To upload a configuration file from a switch to a TFTP server for storage, follow these steps:

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Verify that the TFTP server is properly configured by referring to the “Preparing to Download or Upload a Configuration File By Using TFTP” section on page B-11.</td>
</tr>
<tr>
<td>2</td>
<td>Log into the switch through the console port or a Telnet session.</td>
</tr>
<tr>
<td>3</td>
<td>Upload the switch configuration to the TFTP server. Specify the IP address or host name of the TFTP server and the destination filename. Use one of these privileged EXEC commands:</td>
</tr>
</tbody>
</table>

- `copy system:running-config tftp://[location]/directory/filename`
- `copy nvram:startup-config tftp://[location]/directory/filename`
The file is uploaded to the TFTP server.

This example shows how to upload a configuration file from a switch to a TFTP server:

Switch# copy system:running-config tftp://172.16.2.155/tokyo-config
Write file tokyo-config on host 172.16.2.155? [confirm] y

Writing tokyo-config!!! [OK]

Copy Configuration Files By Using FTP

You can copy configuration files to or from an FTP server.

The FTP protocol requires a client to send a remote username and password on each FTP request to a server. When you copy a configuration file from the switch to a server by using FTP, the Cisco IOS software sends the first valid username in this list:

- The username specified in the `copy` command if a username is specified.
- The username set by the `ip ftp username username` global configuration command if the command is configured.
- Anonymous.

The switch sends the first valid password in this list:

- The password specified in the `copy` command if a password is specified.
- The password set by the `ip ftp password password` global configuration command if the command is configured.
- The switch forms a password named `username@switchname.domain`. The variable `username` is the username associated with the current session, `switchname` is the configured host name, and `domain` is the domain of the switch.

The username and password must be associated with an account on the FTP server. If you are writing to the server, the FTP server must be properly configured to accept your FTP write request.

Use the `ip ftp username` and `ip ftp password` commands to specify a username and password for all copies. Include the username in the `copy` command if you want to specify only a username for that copy operation.

If the server has a directory structure, the configuration file is written to or copied from the directory associated with the username on the server. For example, if the configuration file resides in the home directory of a user on the server, specify that user's name as the remote username.

For more information, refer to the documentation for your FTP server.

This section includes this information:

- Preparing to Download or Upload a Configuration File By Using FTP, page B-14
- Downloading a Configuration File By Using FTP, page B-14
- Uploading a Configuration File By Using FTP, page B-16
Preparation to Download or Upload a Configuration File By Using FTP

Before you begin downloading or uploading a configuration file by using FTP, do these tasks:

- Ensure that the switch has a route to the FTP server. The switch and the FTP server must be in the same subnetwork if you do not have a router to route traffic between subnets. Check connectivity to the FTP server by using the `ping` command.

- If you are accessing the switch through the console or a Telnet session and you do not have a valid username, make sure that the current FTP username is the one that you want to use for the FTP download. You can enter the `show users` privileged EXEC command to view the valid username. If you do not want to use this username, create a new FTP username by using the `ip ftp username` global configuration command during all copy operations. The new username is stored in NVRAM. If you are accessing the switch through a Telnet session and you have a valid username, this username is used, and you do not need to set the FTP username. Include the username in the `copy` command if you want to specify a username for only that copy operation.

- When you upload a configuration file to the FTP server, it must be properly configured to accept the write request from the user on the switch.

For more information, refer to the documentation for your FTP server.

Downloading a Configuration File By Using FTP

Beginning in privileged EXEC mode, follow these steps to download a configuration file by using FTP:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Verify that the FTP server is properly configured by referring to the “Preparing to Download or Upload a Configuration File By Using FTP” section on page B-14.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Log into the switch through the console port or a Telnet session.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>configure terminal</code> Enter global configuration mode on the switch. This step is required only if you override the default remote username or password (see Steps 4, 5, and 6).</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>ip ftp username username</code> (Optional) Change the default remote username.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>ip ftp password password</code> (Optional) Change the default password.</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>end</code> Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 7</td>
<td><code>copy ftp://[username[:password]@[location]/directory]/filename</code> or <code>copy ftp://[username[:password]@[location]/directory]/filename nvram:startup-config</code> Using FTP, copy the configuration file from a network server to the running configuration or to the startup configuration file.</td>
</tr>
</tbody>
</table>
This example shows how to copy a configuration file named `host1-confg` from the `netadmin1` directory on the remote server with an IP address of 172.16.101.101 and to load and run those commands on the switch:

Switch# `copy ftp://netadmin1:mypass@172.16.101.101/host1-confg system:running-config`
Configure using host1-confg from 172.16.101.101? [confirm]
Connected to 172.16.101.101
Loading 1112 byte file host1-confg:![OK]
Switch#
%SYS-5-CONFIG: Configured from host1-config by ftp from 172.16.101.101

This example shows how to specify a remote username of `netadmin1`. The software copies the configuration file `host2-confg` from the `netadmin1` directory on the remote server with an IP address of 172.16.101.101 to the switch startup configuration.

Switch# `configure terminal`
Switch(config)# `ip ftp username netadmin1`
Switch(config)# `ip ftp password mypass`
Switch(config)# `end`
Switch# `copy ftp: nvram:startup-config`
Address of remote host [255.255.255.255]? 172.16.101.101
Name of configuration file[rtr2-confg]? `host2-confg`
Configure using host2-confg from 172.16.101.101?[confirm]
Connected to 172.16.101.101
Loading 1112 byte file host2-confg:![OK]
[OK]
Switch#
%SYS-5-CONFIG_NV:Non-volatile store configured from host2-config by ftp from 172.16.101.101
### Uploading a Configuration File By Using FTP

Beginning in privileged EXEC mode, follow these steps to upload a configuration file by using FTP:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Verify that the FTP server is properly configured by referring to the “Preparing to Download or Upload a Configuration File By Using FTP” section on page B-14.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Log into the switch through the console port or a Telnet session.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><code>configure terminal</code> Enter global configuration mode. This step is required only if you override the default remote username or password (see Steps 4, 5, and 6).</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><code>ip ftp username username</code> (Optional) Change the default remote username.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><code>ip ftp password password</code> (Optional) Change the default password.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><code>end</code> Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td><code>copy system:running-config ftp://[username]:[password]@[location]/[directory]/[filename]</code> or <code>copy nvram:startup-config ftp://[username]:[password]@[location]/[directory]/[filename]</code> Using FTP, store the switch running or startup configuration file to the specified location.</td>
</tr>
</tbody>
</table>

This example shows how to copy the running configuration file named `switch2-confg` to the `netadmin1` directory on the remote host with an IP address of 172.16.101.101:

```
Switch# copy system:running-config ftp://netadmin1:mypass@172.16.101.101/switch2-confg
```  

This example shows how to store a startup configuration file on a server by using FTP to copy the file:

```
Switch# configure terminal
Switch(config)# ip ftp username netadmin2
Switch(config)# ip ftp password mypass
Switch(config)# end
Switch# copy nvram:startup-config ftp://netadmin1:mypass@172.16.101.101/switch2-confg
```  

Remote host []? 172.16.101.101
Name of configuration file to write [switch2-confg]? 
Write file switch2-confg on host 172.16.101.101?[confirm] ![OK]
Copy Configuration Files By Using RCP

The Remote Copy Protocol (RCP) provides another method of downloading, uploading, and copying configuration files between remote hosts and the switch. Unlike TFTP, which uses User Datagram Protocol (UDP), a connectionless protocol, RCP uses TCP, which is connection-oriented.

To use RCP to copy files, the server from or to which you will be copying files must support RCP. The RCP copy commands rely on the rsh server (or daemon) on the remote system. To copy files by using RCP, you do not need to create a server for file distribution as you do with TFTP. You only need to have access to a server that supports the remote shell (rsh). (Most UNIX systems support rsh.) Because you are copying a file from one place to another, you must have read permission on the source file and write permission on the destination file. If the destination file does not exist, RCP creates it for you.

The RCP requires a client to send a remote username with each RCP request to a server. When you copy a configuration file from the switch to a server, the Cisco IOS software sends the first valid username in this list:

- The username specified in the copy command if a username is specified.
- The username set by the `ip rcmd remote-username username` global configuration command if the command is configured.
- The remote username associated with the current TTY (terminal) process. For example, if the user is connected to the router through Telnet and was authenticated through the `username` command, the switch software sends the Telnet username as the remote username.
- The switch host name.

For a successful RCP copy request, you must define an account on the network server for the remote username. If the server has a directory structure, the configuration file is written to or copied from the directory associated with the remote username on the server. For example, if the configuration file is in the home directory of a user on the server, specify that user's name as the remote username.

This section includes this information:

- Preparing to Download or Upload a Configuration File By Using RCP, page B-17
- Downloading a Configuration File By Using RCP, page B-18
- Uploading a Configuration File By Using RCP, page B-19

Preparing to Download or Upload a Configuration File By Using RCP

Before you begin downloading or uploading a configuration file by using RCP, do these tasks:

- Ensure that the workstation acting as the RCP server supports the remote shell (rsh).
- Ensure that the switch has a route to the RCP server. The switch and the server must be in the same subnetwork if you do not have a router to route traffic between subnets. Check connectivity to the RCP server by using the ping command.
- If you are accessing the switch through the console or a Telnet session and you do not have a valid username, make sure that the current RCP username is the one that you want to use for the RCP download. You can enter the `show users` privileged EXEC command to view the valid username. If you do not want to use this username, create a new RCP username by using the `ip rcmd remote-username username` global configuration command to be used during all copy operations. The new username is stored in NVRAM. If you are accessing the switch through a Telnet session and you have a valid username, this username is used, and you do not need to set the RCP username. Include the username in the copy command if you want to specify a username for only that copy operation.
When you upload a file to the RCP server, it must be properly configured to accept the RCP write request from the user on the switch. For UNIX systems, you must add an entry to the .rhosts file for the remote user on the RCP server. For example, suppose that the switch contains these configuration lines:

```
hostname Switch1
ip rcmd remote-username User0
```

If the switch IP address translates to `Switch1.company.com`, the .rhosts file for User0 on the RCP server should contain this line:

```
Switch1.company.com Switch1
```

For more information, refer to the documentation for your RCP server.

### Downloading a Configuration File By Using RCP

Beginning in privileged EXEC mode, follow these steps to download a configuration file by using RCP:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Verify that the RCP server is properly configured by referring to the “Preparing to Download or Upload a Configuration File By Using RCP” section on page B-17.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Log into the switch through the console port or a Telnet session.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><code>configure terminal</code> Enter global configuration mode. This step is required only if you override the default remote username (see Steps 4 and 5).</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><code>ip rcmd remote-username username</code> (Optional) Specify the remote username.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><code>end</code> Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><code>copy rcp://username@location/directory/filename</code> system:running-config Using RCP, copy the configuration file from a network server to the running configuration or to the startup configuration file.</td>
</tr>
</tbody>
</table>

This example shows how to copy a configuration file named `host1-config` from the `netadmin1` directory on the remote server with an IP address of 172.16.101.101 and load and run those commands on the switch:

```
Switch# copy rcp://netadmin1@172.16.101.101/host1-config system:running-config
Configure using host1-config from 172.16.101.101? [confirm]
Connected to 172.16.101.101
Loading 1112 byte file host1-config: ![OK]
Switch#
%SYS-5-CONFIG: Configured from host1-config by rcp from 172.16.101.101
```
This example shows how to specify a remote username of `netadmin1`. Then it copies the configuration file `host2-config` from the `netadmin1` directory on the remote server with an IP address of 172.16.101.101 to the startup configuration:

```
Switch# configure terminal
Switch(config)# ip rcmd remote-username netadmin1
Switch(config)# end
Switch# copy rcp: nvram:startup-config
Address of remote host [255.255.255.255]? 172.16.101.101
Name of configuration file[rtr2-config]? host2-config
Configure using host2-config from 172.16.101.101?[confirm]
Connected to 172.16.101.101
Loading 1112 byte file host2-config:![OK]
[OK]
Switch#
%SYS-5-CONFIG_NV:Non-volatile store configured from host2-config by rcp from 172.16.101.101
```

### Uploading a Configuration File By Using RCP

Beginning in privileged EXEC mode, follow these steps to upload a configuration file by using RCP:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><strong>Step 1</strong></td>
<td>Verify that the RCP server is properly configured by referring to the “Preparing to Download or Upload a Configuration File By Using RCP” section on page B-17.</td>
</tr>
<tr>
<td>2</td>
<td><strong>Step 2</strong></td>
<td>Log into the switch through the console port or a Telnet session.</td>
</tr>
<tr>
<td>3</td>
<td><strong>Step 3</strong></td>
<td>Enter global configuration mode. This step is required only if you override the default remote username (see Steps 4 and 5).</td>
</tr>
<tr>
<td>4</td>
<td><strong>Step 4</strong></td>
<td>(Optional) Specify the remote username.</td>
</tr>
<tr>
<td>5</td>
<td><strong>Step 5</strong></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>6</td>
<td><strong>Step 6</strong></td>
<td>Using RCP, copy the configuration file from a switch running or startup configuration file to a network server.</td>
</tr>
</tbody>
</table>

This example shows how to copy the running configuration file named `switch2-config` to the `netadmin1` directory on the remote host with an IP address of 172.16.101.101:

```
Switch# copy system:running-config rcp://netadmin1@172.16.101.101/switch2-config
Write file switch-config on host 172.16.101.101?[confirm]
Building configuration...[OK]
Connected to 172.16.101.101
Switch#
```
This example shows how to store a startup configuration file on a server:

```
Switch# configure terminal
Switch(config)# ip rcmd remote-username netadmin2
Switch(config)# end
Switch# copy nvram:startup-config rcp:
Remote host[]? 172.16.101.101
Name of configuration file to write [switch2-config]? switch2-config
Write file switch2-config on host 172.16.101.101?[confirm]
[OK]
```

### Clearing Configuration Information

You can clear the configuration information from the startup configuration. If you reboot the switch with no startup configuration, the switch enters the setup program so that you can reconfigure the switch with all new settings.

#### Clearing the Startup Configuration File

To clear the contents of your startup configuration, use the `erase nvram:` or the `erase startup-config` privileged EXEC command.

⚠️ **Caution**

You cannot restore the startup configuration file after it has been deleted.

#### Deleting a Stored Configuration File

To delete a saved configuration from Flash memory, use the `delete flash:filename` privileged EXEC command. Depending on the setting of the `file prompt` global configuration command, you might be prompted for confirmation before you delete a file. By default, the switch prompts for confirmation on destructive file operations. For more information about the `file prompt` command, refer to the *Cisco IOS Command Reference for Release 12.1*.

⚠️ **Caution**

You cannot restore a file after it has been deleted.
Working with Software Images

This section describes how to archive (download and upload) software image files, which contain the system software, IOS code, and the web management HTML files.

Note

Instead of using the `copy` privileged EXEC command or the `archive tar` privileged EXEC command, we recommend using the `archive download-sw` and `archive upload-sw` privileged EXEC commands to download and upload software image files. For switch stacks, the `archive download-sw` and `archive upload-sw` privileged EXEC commands can only be used through the stack master. Software images downloaded to the stack master are automatically downloaded to the rest of the stack members.

To upgrade a switch with an incompatible software image, use the `archive copy-sw` privileged EXEC command to copy the software image from an existing stack member to the incompatible switch. That switch automatically reloads and joins the stack as a fully functioning member.

You download a switch image file from a TFTP, FTP, or RCP server to upgrade the switch software. You can replace the current image with the new one or keep the current image in Flash memory after a download.

You upload a switch image file to a TFTP, FTP, or RCP server for backup purposes. You can use this uploaded image for future downloads to the same switch or another of the same type.

The protocol you use depends on which type of server you are using. The FTP and RCP transport mechanisms provide faster performance and more reliable delivery of data than TFTP. These improvements are possible because FTP and RCP are built on and use the Transmission Control Protocol/Internet Protocol (TCP/IP) stack, which is connection-oriented.

This section includes this information:

- Image Location on the Switch, page B-21
- `tar` File Format of Images on a Server or Cisco.com, page B-22
- Copying Image Files By Using TFTP, page B-23
- Copying Image Files By Using FTP, page B-26
- Copying Image Files By Using RCP, page B-30

Note

For a list of software images and the supported upgrade paths, refer to the release notes that shipped with your switch.

Image Location on the Switch

The IOS image is stored as a `.bin` file in a directory that shows the version number. A subdirectory contains the HTML files needed for web management. The image is stored on the system board Flash memory (`flash:`).

You can use the `show version` privileged EXEC command to see the software version that is currently running on your switch. In the display, check the line that begins with `System image file is...`. It shows the directory name in Flash memory where the image is stored.

You can also use the `dir filesystem` privileged EXEC command to see the directory names of other software images you might have stored in Flash memory.
tar File Format of Images on a Server or Cisco.com

Software images located on a server or downloaded from Cisco.com are provided in a tar file format, which contains these files:

- An *info* file, which serves as a table of contents for the tar file
- One or more subdirectories containing other images and files, such as IOS images and web management files

This example shows some of the information contained in the info file. Table B-3 provides additional details about this information:

```plaintext
system_type:0x00000000:c3750-i5-mz.121.11-AX
 image_family:C3750
 stacking_number:1.0
 info_end:

version_suffix:i5-121.11-AX
 version_directory:c3750-i5-mz.121.11-AX
 image_system_type_id:0x00000000
 image_name:c3750-i5-mz.121.11-AX.bin
 ios_image_file_size:3973632
 total_image_file_size:5929472
 image_feature:LAYER_3|MIN_DRAM_MEG=64
 image_family:C3750
 stacking_number:1.0
 board_ids:0x401100c4 0x00000000 0x00000001 0x00000003 0x00000002 0x00080000 0x00008002 0x40110000
 info_end:
```

<table>
<thead>
<tr>
<th><strong>Table B-3</strong></th>
<th><strong>info File Description</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>version_suffix</td>
<td>Specifies the IOS image version string suffix</td>
</tr>
<tr>
<td>version_directory</td>
<td>Specifies the directory where the IOS image and the HTML subdirectory are installed</td>
</tr>
<tr>
<td>image_name</td>
<td>Specifies the name of the IOS image within the tar file</td>
</tr>
<tr>
<td>ios_image_file_size</td>
<td>Specifies the IOS image size in the tar file, which is an approximate measure of how much Flash memory is required to hold just the IOS image</td>
</tr>
<tr>
<td>total_image_file_size</td>
<td>Specifies the size of all the images (the IOS image and the HTML files) in the tar file, which is an approximate measure of how much Flash memory is required to hold them</td>
</tr>
<tr>
<td>image_feature</td>
<td>Describes the core functionality of the image</td>
</tr>
<tr>
<td>image_min_dram</td>
<td>Specifies the minimum amount of DRAM needed to run this image</td>
</tr>
<tr>
<td>image_family</td>
<td>Describes the family of products on which the software can be installed</td>
</tr>
</tbody>
</table>
Copy:ng Image Files By Using TFTP

You can download a switch image from a TFTP server or upload the image from the switch to a TFTP server.

You download a switch image file from a server to upgrade the switch software. You can overwrite the current image with the new one or keep the current image after a download.

You upload a switch image file to a server for backup purposes; this uploaded image can be used for future downloads to the same or another switch of the same type.

Note

Instead of using the copy privileged EXEC command or the archive tar privileged EXEC command, we recommend using the archive download-sw and archive upload-sw privileged EXEC commands to download and upload software image files. For switch stacks, the archive download-sw and archive upload-sw privileged EXEC commands can only be used through the stack master. Software images downloaded to the stack master are automatically downloaded to the rest of the stack members.

To upgrade a switch with an incompatible software image, use the archive copy-sw privileged EXEC command to copy the software image from an existing stack member to the incompatible switch. That switch automatically reloads and joins the stack as a fully functioning member.

This section includes this information:

- Preparing to Download or Upload an Image File By Using TFTP, page B-23
- Downloading an Image File By Using TFTP, page B-24
- Uploading an Image File By Using TFTP, page B-25

Preparing to Download or Upload an Image File By Using TFTP

Before you begin downloading or uploading an image file by using TFTP, do these tasks:

- Ensure that the workstation acting as the TFTP server is properly configured. On a Sun workstation, make sure that the /etc/inetd.conf file contains this line:

  `tftp dgram udp wait root /usr/etc/in.tftpd in.tftpd -p -s /tftpboot`

  Make sure that the /etc/services file contains this line:

  `tftp 69/udp`

  You must restart the inetd daemon after modifying the /etc/inetd.conf and /etc/services files. To restart the daemon, either stop the inetd process and restart it, or enter a fastboot command (on the SunOS 4.x) or a reboot command (on Solaris 2.x or SunOS 5.x). For more information on the TFTP daemon, refer to the documentation for your workstation.

- Ensure that the switch has a route to the TFTP server. The switch and the TFTP server must be in the same subnet or if you do not have a router to route traffic between subnets. Check connectivity to the TFTP server by using the ping command.

- Ensure that the image to be downloaded is in the correct directory on the TFTP server (usually /tftpboot on a UNIX workstation).

- For download operations, ensure that the permissions on the file are set correctly. The permission on the file should be world-read.
Before uploading the image file, you might need to create an empty file on the TFTP server. To create an empty file, enter the `touch filename` command, where *filename* is the name of the file you will use when uploading the image to the server.

During upload operations, if you are overwriting an existing file (including an empty file, if you had to create one) on the server, ensure that the permissions on the file are set correctly. Permissions on the file should be world-write.

**Downloading an Image File By Using TFTP**

You can download a new image file and replace the current image or keep the current image.

Beginning in privileged EXEC mode, follow Steps 1 through 3 to download a new image from a TFTP server and overwrite the existing image. To keep the current image, skip Step 3.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Copy the image to the appropriate TFTP directory on the workstation. Make sure the TFTP server is properly configured; see the “Preparing to Download or Upload an Image File By Using TFTP” section on page B-23.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Log into the switch through the console port or a Telnet session.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Download the image file from the TFTP server to the switch, and overwrite the current image.</td>
</tr>
</tbody>
</table>
| `archive download-sw /overwrite /reload tftp://[location]/directory/image-name.tar` | - The `/overwrite` option overwrites the software image in Flash memory with the downloaded image.  
- The `/reload` option reloads the system after downloading the image unless the configuration has been changed and not been saved.  
- For `/location`, specify the IP address of the TFTP server.  
- For `/directory/image-name.tar`, specify the directory (optional) and the image to download. Directory and image names are case sensitive. |
| **Step 4** | Download the image file from the TFTP server to the switch, and keep the current image. |
| `archive download-sw /leave-old-sw /reload tftp://[location]/directory/image-name.tar` | - The `/leave-old-sw` option keeps the old software version after a download.  
- The `/reload` option reloads the system after downloading the image unless the configuration has been changed and not been saved.  
- For `/location`, specify the IP address of the TFTP server.  
- For `/directory/image-name.tar`, specify the directory (optional) and the image to download. Directory and image names are case sensitive. |

The download algorithm verifies that the image is appropriate for the switch model and that enough DRAM is present, or it aborts the process and reports an error. If you specify the `/overwrite` option, the download algorithm removes the existing image on the Flash device whether or not it is the same as the new one, downloads the new image, and then reloads the software.
If the Flash device has sufficient space to hold two images and you want to overwrite one of these images with the same version, you must specify the `overwrite` option.

If you specify the `/leave-old-sw`, the existing files are not removed. If there is not enough space to install the new image and keep the current running image, the download process stops, and an error message is displayed.

The algorithm installs the downloaded image on the system board Flash device (flash:). The image is placed into a new directory named with the software version string, and the BOOT environment variable is updated to point to the newly installed image.

If you kept the old image during the download process (you specified the `/leave-old-sw` keyword), you can remove it by entering the `delete /force /recursive filesystem:/file-url` privileged EXEC command.

For `filesystem`, use `flash:` for the system board Flash device. For `file-url`, enter the directory name of the old image. All the files in the directory and the directory are removed.

For the download and upload algorithms to operate properly, do not rename image names.

### Uploading an Image File By Using TFTP

You can upload an image from the switch to a TFTP server. You can later download this image to the switch or to another switch of the same type.

The upload feature is available only if the HTML pages associated with the Cluster Management Suite (CMS) have been installed with the existing image.

Beginning in privileged EXEC mode, follow these steps to upload an image to a TFTP server:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Make sure the TFTP server is properly configured; see the</td>
</tr>
<tr>
<td></td>
<td>&quot;Preparing to Download or Upload an Image File By Using TFTP&quot; section on page B-23.</td>
</tr>
<tr>
<td>Step 1</td>
<td>Log into the switch through the console port or a Telnet session.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Upload the currently running switch image to the TFTP server.</td>
</tr>
<tr>
<td>archive upload-sw</td>
<td>Make sure the TFTP server is properly configured; see the</td>
</tr>
<tr>
<td>tftp://[//location]/directory/image-name.tar</td>
<td>&quot;Preparing to Download or Upload an Image File By Using TFTP&quot; section on page B-23.</td>
</tr>
<tr>
<td></td>
<td>• For <code>//location</code>, specify the IP address of the TFTP server.</td>
</tr>
<tr>
<td></td>
<td>• For <code>/directory/image-name.tar</code>, specify the directory (optional)</td>
</tr>
<tr>
<td></td>
<td>and the name of the software image to be uploaded. Directory</td>
</tr>
<tr>
<td></td>
<td>and image names are case sensitive. The <code>image-name.tar</code> is the</td>
</tr>
<tr>
<td></td>
<td>name of the software image to be stored on the server.</td>
</tr>
</tbody>
</table>

The `archive upload-sw` privileged EXEC command builds an image file on the server by uploading these files in order: info, the IOS image, and the HTML files. After these files are uploaded, the upload algorithm creates the tar file format.

For the download and upload algorithms to operate properly, do not rename image names.
Copying Image Files By Using FTP

You can download a switch image from an FTP server or upload the image from the switch to an FTP server.

You download a switch image file from a server to upgrade the switch software. You can overwrite the current image with the new one or keep the current image after a download.

You upload a switch image file to a server for backup purposes. You can use this uploaded image for future downloads to the switch or another switch of the same type.

Note

Instead of using the copy privileged EXEC command or the archive tar privileged EXEC command, we recommend using the archive download-sw and archive upload-sw privileged EXEC commands to download and upload software image files. For switch stacks, the archive download-sw and archive upload-sw privileged EXEC commands can only be used through the stack master. Software images downloaded to the stack master are automatically downloaded to the rest of the stack members.

To upgrade a switch with an incompatible software image, use the archive copy-sw privileged EXEC command to copy the software image from an existing stack member to the incompatible switch. That switch automatically reloads and joins the stack as a fully functioning member.

This section includes this information:

- Preparing to Download or Upload an Image File By Using FTP, page B-26
- Downloading an Image File By Using FTP, page B-27
- Uploading an Image File By Using FTP, page B-29

Preparing to Download or Upload an Image File By Using FTP

You can copy images files to or from an FTP server.

The FTP protocol requires a client to send a remote username and password on each FTP request to a server. When you copy an image file from the switch to a server by using FTP, the Cisco IOS software sends the first valid username in this list:

- The username specified in the archive download-sw or archive upload-sw privileged EXEC command if a username is specified.
- The username set by the ip ftp username username global configuration command if the command is configured.
- Anonymous.

The switch sends the first valid password in this list:

- The password specified in the archive download-sw or archive upload-sw privileged EXEC command if a password is specified.
- The password set by the ip ftp password password global configuration command if the command is configured.
- The switch forms a password named username@switchname.domain. The variable username is the username associated with the current session, switchname is the configured host name, and domain is the domain of the switch.

The username and password must be associated with an account on the FTP server. If you are writing to the server, the FTP server must be properly configured to accept the FTP write request from you.
Use the `ip ftp username` and `ip ftp password` commands to specify a username and password for all copies. Include the username in the `archive download-sw` or `archive upload-sw` privileged EXEC command if you want to specify a username only for that operation.

If the server has a directory structure, the image file is written to or copied from the directory associated with the username on the server. For example, if the image file resides in the home directory of a user on the server, specify that user’s name as the remote username.

Before you begin downloading or uploading an image file by using FTP, do these tasks:

- Ensure that the switch has a route to the FTP server. The switch and the FTP server must be in the same subnet if you do not have a router to route traffic between subnets. Check connectivity to the FTP server by using the `ping` command.

- If you are accessing the switch through the console or a Telnet session and you do not have a valid username, make sure that the current FTP username is the one that you want to use for the FTP download. You can enter the `show users` privileged EXEC command to view the valid username. If you do not want to use this username, create a new FTP username by using the `ip ftp username username` global configuration command. This new name will be used during all archive operations. The new username is stored in NVRAM. If you are accessing the switch through a Telnet session and you have a valid username, this username is used, and you do not need to set the FTP username. Include the username in the `archive download-sw` or `archive upload-sw` privileged EXEC command if you want to specify a username for that operation only.

- When you upload an image file to the FTP server, it must be properly configured to accept the write request from the user on the switch.

For more information, refer to the documentation for your FTP server.

### Downloading an Image File By Using FTP

You can download a new image file and overwrite the current image or keep the current image.

Beginning in privileged EXEC mode, follow Steps 1 through 7 to download a new image from an FTP server and overwrite the existing image. To keep the current image, skip Step 7.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Verify that the FTP server is properly configured by referring to the “Preparing to Download or Upload an Image File By Using FTP” section on page B-26.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Log into the switch through the console port or a Telnet session.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode. This step is required only if you override the default remote username or password (see Steps 4, 5, and 6).</td>
</tr>
<tr>
<td><code>ip ftp username username</code></td>
<td>(Optional) Change the default remote username.</td>
</tr>
<tr>
<td><code>ip ftp password password</code></td>
<td>(Optional) Change the default password.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Working with Software Images

### Appendix B  Working with the IOS File System, Configuration Files, and Software Images

#### Working with Software Images

The download algorithm verifies that the image is appropriate for the switch model and that enough DRAM is present, or it aborts the process and reports an error. If you specify the /overwrite option, the download algorithm removes the existing image on the Flash device, whether or not it is the same as the new one, downloads the new image, and then reloads the software.

**Note**

If the Flash device has sufficient space to hold two images and you want to overwrite one of these images with the same version, you must specify the /overwrite option.

If you specify the /leave-old-sw, the existing files are not removed. If there is not enough space to install the new image and keep the running image, the download process stops, and an error message is displayed.

---

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 7**
archive download-sw /overwrite /reload ftp:[/Username[:password]@location]/directory/image-name.tar | Download the image file from the FTP server to the switch, and overwrite the current image.  
- The /overwrite option overwrites the software image in Flash memory with the downloaded image.  
- The /reload option reloads the system after downloading the image unless the configuration has been changed and not been saved.  
- For /Username[:password], specify the username and password; these must be associated with an account on the FTP server. For more information, see the “Preparing to Download or Upload an Image File By Using FTP” section on page B-26.  
- For @location, specify the IP address of the FTP server.  
- For directory/image-name.tar, specify the directory (optional) and the image to download. Directory and image names are case sensitive. |

| **Step 8**
archive download-sw /leave-old-sw /reload ftp:[/Username[:password]@location]/directory/image-name.tar | Download the image file from the FTP server to the switch, and keep the current image.  
- The /leave-old-sw option keeps the old software version after a download.  
- The /reload option reloads the system after downloading the image unless the configuration has been changed and not been saved.  
- For /Username[:password], specify the username and password. These must be associated with an account on the FTP server. For more information, see the “Preparing to Download or Upload an Image File By Using FTP” section on page B-26.  
- For @location, specify the IP address of the FTP server.  
- For directory/image-name.tar, specify the directory (optional) and the image to download. Directory and image names are case sensitive. |
The algorithm installs the downloaded image onto the system board Flash device (flash:). The image is placed into a new directory named with the software version string, and the BOOS environment variable is updated to point to the newly installed image.

If you kept the old image during the download process (you specified the /leave-old-sw keyword), you can remove it by entering the delete /force /recursive filesystem/file-url privileged EXEC command. For filesystem, use flash: for the system board Flash device. For file-url, enter the directory name of the old software image. All the files in the directory and the directory are removed.

<table>
<thead>
<tr>
<th>Caution</th>
</tr>
</thead>
<tbody>
<tr>
<td>For the download and upload algorithms to operate properly, do not rename image names.</td>
</tr>
</tbody>
</table>

### Uploading an Image File By Using FTP

You can upload an image from the switch to an FTP server. You can later download this image to the same switch or to another switch of the same type.

The upload feature is available only if the HTML pages associated with the Cluster Management Suite (CMS) have been installed with the existing image.

Beginning in privileged EXEC mode, follow these steps to upload an image to an FTP server:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Verify that the FTP server is properly configured by referring to the “Preparing to Download or Upload a Configuration File By Using FTP” section on page B-14.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Log into the switch through the console port or a Telnet session.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Enter global configuration mode. Enter global configuration mode. This step is required only if you override the default remote username or password (see Steps 4, 5, and 6).</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>ip ftp username username</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>ip ftp password password</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>end</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>archive upload-sw ftp://username:password@location/directory/image-name.tar</td>
</tr>
<tr>
<td></td>
<td>• For /username:password, specify the username and password. These must be associated with an account on the FTP server. For more information, see the “Preparing to Download or Upload an Image File By Using FTP” section on page B-26.</td>
</tr>
<tr>
<td></td>
<td>• For @location, specify the IP address of the FTP server.</td>
</tr>
<tr>
<td></td>
<td>• For /directory/image-name.tar, specify the directory (optional) and the name of the software image to be uploaded. Directory and image names are case sensitive. The image-name.tar is the name of the software image to be stored on the server.</td>
</tr>
</tbody>
</table>
Appendix B  Working with the IOS File System, Configuration Files, and Software Images

Working with Software Images

The archive upload-sw command builds an image file on the server by uploading these files in order: info, the IOS image, and the HTML files. After these files are uploaded, the upload algorithm creates the tar file format.

⚠️ Caution

For the download and upload algorithms to operate properly, do not rename image names.

Copying Image Files By Using RCP

You can download a switch image from an RCP server or upload the image from the switch to an RCP server.

You download a switch image file from a server to upgrade the switch software. You can overwrite the current image with the new one or keep the current image after a download.

You upload a switch image file to a server for backup purposes. You can use this uploaded image for future downloads to the same switch or another of the same type.

🔍 Note

Instead of using the copy privileged EXEC command or the archive tar privileged EXEC command, we recommend using the archive download-sw and archive upload-sw privileged EXEC commands to download and upload software image files. For switch stacks, the archive download-sw and archive upload-sw privileged EXEC commands can only be used through the stack master. Software images downloaded to the stack master are automatically downloaded to the rest of the stack members.

To upgrade a switch with an incompatible software image, use the archive copy-sw privileged EXEC command to copy the software image from an existing stack member to the incompatible switch. That switch automatically reloads and joins the stack as a fully functioning member.

This section includes this information:

- Preparing to Download or Upload an Image File By Using RCP, page B-30
- Downloading an Image File By Using RCP, page B-32
- Uploading an Image File By Using RCP, page B-34

Preparing to Download or Upload an Image File By Using RCP

RCP provides another method of downloading and uploading image files between remote hosts and the switch. Unlike TFTP, which uses User Datagram Protocol (UDP), a connectionless protocol, RCP uses TCP, which is connection-oriented.

To use RCP to copy files, the server from or to which you will be copying files must support RCP. The RCP copy commands rely on the rsh server (or daemon) on the remote system. To copy files by using RCP, you do not need to create a server for file distribution as you do with TFTP. You only need to have access to a server that supports the remote shell (rsh). (Most UNIX systems support rsh.) Because you are copying a file from one place to another, you must have read permission on the source file and write permission on the destination file. If the destination file does not exist, RCP creates it for you.
RCP requires a client to send a remote username on each RCP request to a server. When you copy an image from the switch to a server by using RCP, the Cisco IOS software sends the first valid username in this list:

- The username specified in the `archive download-sw` or `archive upload-sw` privileged EXEC command if a username is specified.
- The username set by the `ip rcmd remote-username username` global configuration command if the command is entered.
- The remote username associated with the current TTY (terminal) process. For example, if the user is connected to the router through Telnet and was authenticated through the `username` command, the switch software sends the Telnet username as the remote username.
- The switch host name.

For the RCP copy request to execute successfully, an account must be defined on the network server for the remote username. If the server has a directory structure, the image file is written to or copied from the directory associated with the remote username on the server. For example, if the image file resides in the home directory of a user on the server, specify that user’s name as the remote username.

Before you begin downloading or uploading an image file by using RCP, do these tasks:

- Ensure that the workstation acting as the RCP server supports the remote shell (rsh).
- Ensure that the switch has a route to the RCP server. The switch and the server must be in the same subnet if you do not have a router to route traffic between subnets. Check connectivity to the RCP server by using the `ping` command.
- If you are accessing the switch through the console or a Telnet session and you do not have a valid username, make sure that the current RCP username is the one that you want to use for the RCP download. You can enter the `show users` privileged EXEC command to view the valid username. If you do not want to use this username, create a new RCP username by using the `ip rcmd remote-username username` global configuration command to be used during all archive operations. The new username is stored in NVRAM. If you are accessing the switch through a Telnet session and you have a valid username, this username is used, and there is no need to set the RCP username. Include the username in the `archive download-sw` or `archive upload-sw` privileged EXEC command if you want to specify a username only for that operation.
- When you upload an image to the RCP to the server, it must be properly configured to accept the RCP write request from the user on the switch. For UNIX systems, you must add an entry to the `.rhosts` file for the remote user on the RCP server. For example, suppose the switch contains these configuration lines:

```
hostname Switch1
ip rcmd remote-username User0
```

If the switch IP address translates to `Switch1.company.com`, the `.rhosts` file for User0 on the RCP server should contain this line:

```
Switch1.company.com Switch1
```

For more information, refer to the documentation for your RCP server.
# Downloading an Image File By Using RCP

You can download a new image file and replace or keep the current image. Beginning in privileged EXEC mode, follow Steps 1 through 6 to download a new image from an RCP server and overwrite the existing image. To keep the current image, skip Step 6.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Verify that the RCP server is properly configured by referring to the “Preparing to Download or Upload an Image File By Using RCP” section on page B-30.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Log into the switch through the console port or a Telnet session.</td>
</tr>
<tr>
<td><strong>Step 3</strong> configure terminal</td>
<td>Enter global configuration mode. This step is required only if you override the default remote username (see Steps 4 and 5).</td>
</tr>
<tr>
<td><strong>Step 4</strong> ip rcmd remote-username username</td>
<td>(Optional) Specify the remote username.</td>
</tr>
<tr>
<td><strong>Step 5</strong> end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 6</strong> archive download-sw /overwrite /reload rcp://username@location/directory/image-name.tar</td>
<td>Download the image file from the RCP server to the switch, and overwrite the current image.</td>
</tr>
</tbody>
</table>

- The `/overwrite` option overwrites the software image in Flash memory with the downloaded image.
- The `/reload` option reloads the system after downloading the image unless the configuration has been changed and not been saved.
- For `Username`, specify the username. For the RCP copy request to execute successfully, an account must be defined on the network server for the remote username. For more information, see the “Preparing to Download or Upload an Image File By Using RCP” section on page B-30.
- For `@location`, specify the IP address of the RCP server.
- For `/directory/image-name.tar`, specify the directory (optional) and the image to download. Directory and image names are case sensitive.
Working with Software Images

The download algorithm verifies that the image is appropriate for the switch model and that enough DRAM is present, or it aborts the process and reports an error. If you specify the /overwrite option, the download algorithm removes the existing image on the Flash device whether or not it is the same as the new one, downloads the new image, and then reloads the software.

- The /overwrite option keeps the old software version after a download.
- The /reload option reloads the system after downloading the image unless the configuration has been changed and not been saved.
- For /username, specify the username. For the RCP copy request to execute, an account must be defined on the network server for the remote username. For more information, see the “Preparing to Download or Upload an Image File By Using RCP” section on page B-30.
- For @location, specify the IP address of the RCP server.
- For /directory/image-name.tar, specify the directory (optional) and the image to download. Directory and image names are case sensitive.

The download algorithm verifies that the image is appropriate for the switch model and that enough DRAM is present, or it aborts the process and reports an error. If you specify the /overwrite option, the download algorithm removes the existing image on the Flash device whether or not it is the same as the new one, downloads the new image, and then reloads the software.

If the Flash device has sufficient space to hold two images and you want to overwrite one of these images with the same version, you must specify the /overwrite option.

If you specify the /leave-old-sw, the existing files are not removed. If there is not enough room to install the new image an keep the running image, the download process stops, and an error message is displayed.

The algorithm installs the downloaded image onto the system board Flash device (flash:). The image is placed into a new directory named with the software version string, and the BOOT environment variable is updated to point to the newly installed image.

If you kept the old software during the download process (you specified the /leave-old-sw keyword), you can remove it by entering the delete /force /recursive filesystem:file-url privileged EXEC command. For filesystem, use flash: for the system board Flash device. For file-url, enter the directory name of the old software image. All the files in the directory and the directory are removed.

Caution
For the download and upload algorithms to operate properly, do not rename image names.
Uploading an Image File By Using RCP

You can upload an image from the switch to an RCP server. You can later download this image to the same switch or to another switch of the same type.

The upload feature is available only if the HTML pages associated with the Cluster Management Suite (CMS) have been installed with the existing image.

Beginning in privileged EXEC mode, follow these steps to upload an image to an RCP server:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Verify that the RCP server is properly configured by referring to the “Preparing to Download or Upload an Image File By Using RCP” section on page B-30.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Log into the switch through the console port or a Telnet session.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Enter global configuration mode. This step is required only if you override the default remote username (see Steps 4 and 5).</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>(Optional) Specify the remote username.</td>
</tr>
<tr>
<td><code>ip rcmd remote-username username</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>end</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>Upload the currently running switch image to the RCP server.</td>
</tr>
</tbody>
</table>
| `archive upload-sw rcp:\[[//username@]location[/directory[/image-name.tar]]` | • For `//username`, specify the username; for the RCP copy request to execute, an account must be defined on the network server for the remote username. For more information, see the “Preparing to Download or Upload an Image File By Using RCP” section on page B-30.  
  • For `@location`, specify the IP address of the RCP server.  
  • For `/directory[/image-name.tar]`, specify the directory (optional) and the name of the software image to be uploaded. Directory and image names are case sensitive.  
  • The `image-name.tar` is the name of software image to be stored on the server. |

The `archive upload-sw` privileged EXEC command builds an image file on the server by uploading these files in order: info, the IOS image, and the HTML files. After these files are uploaded, the upload algorithm creates the tar file format.

⚠️ **Caution** For the download and upload algorithms to operate properly, do not rename image names.
Copying an Image File from One Stack Member to Another

For switch stacks, the `archive download-sw` and `archive upload-sw` privileged EXEC commands can only be used through the stack master. Software images downloaded to the stack master are automatically downloaded to the rest of the stack members.

To upgrade a switch with an incompatible software image, use the `archive copy-sw` privileged EXEC command to copy the software image from an existing stack member to the incompatible switch. That switch automatically reloads and joins the stack as a fully functioning member.

Beginning in privileged EXEC mode from the stack member that you want to upgrade, follow these steps to copy the running image file from the Flash memory from a different stack member.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
</tbody>
</table>
| `archive copy-sw source-stack-member-number`<br>`/force-reload`<br>`/destination-system destination-stack-member-number` | Copy the running image file from a stack member, and then unconditionally reload the updated stack member.  
For `source-stack-member-number`, specify the stack member number of the stack member from which you want to copy its running image file. The stack member number range is from 1 through 9.  
For `destination-stack-member-number`, specify the stack member number of the stack member to which you want to copy its running image file. If you do not specify this stack member number, the default is to copy the running image file to all stack members. |
| **Step 2** | |
| `reload slot stack-member-number` | Reset the stack member and put this configuration change into effect. |
Unsupported CLI Commands in Release 12.1(11)AX

This appendix lists some of the command-line interface (CLI) commands that are displayed when you enter the question mark (?) at the Catalyst 3750 switch prompt but are not supported in this release, either because they are not tested, or because of Catalyst 3750 hardware limitations. This is not a complete list. The unsupported commands are listed by software feature and command mode.

Access Control Lists

Unsupported Privileged EXEC Commands

access-enable [host] [timeout minutes]
access-template [access-list-number | name] [dynamic-name] [source] [destination] [timeout minutes]
clear access-template [access-list-number | name] [dynamic-name] [source] [destination].

Unsupported Global Configuration Commands

access-list rate-limit acl-index {precedence | mask prec-mask}
access-list dynamic extended
ARP Commands

Unsupported Global Configuration Commands

- `arp ip-address hardware-address smds`
- `arp ip-address hardware-address srp-a`
- `arp ip-address hardware-address srp-b`

Unsupported Interface Configuration Commands

- `arp probe`
- `ip probe proxy`

FallBack Bridging

Unsupported Privileged EXEC Commands

- `clear bridge [bridge-group] multicast [router-ports | groups | counts] [group-address] [interface-unit] [counts]`
- `clear vlan statistics`
- `show bridge [bridge-group] circuit-group [circuit-group] [src-mac-address] [dst-mac-address]`
- `show bridge [bridge-group] multicast [router-ports | groups] [group-address]`
- `show bridge vlan`
- `show interfaces crb`
- `show interfaces {ethernet | fastethernet} [interface | slot/port] irb`
- `show subscriber-policy range`

Unsupported Global Configuration Commands

- `bridge bridge-group acquire`
- `bridge bridge-group address mac-address {forward | discard} [interface-id]`
- `bridge bridge-group aging-time seconds`
- `bridge bridge-group bitswap_l3_addresses`
- `bridge bridge-group bridge ip`
- `bridge bridge-group circuit-group circuit-group pause milliseconds`
- `bridge bridge-group circuit-group circuit-group source-based`
- `bridge cmf`
- `bridge crb`
bridge bridge-group domain domain-name
bridge irb
bridge bridge-group mac-address-table limit number
bridge bridge-group multicast-source
bridge bridge-group protocol dec
bridge bridge-group route protocol
bridge bridge-group subscriber policy policy
subscriber-policy policy [[no | default] packet [permit | deny]]

Unsupported Interface Configuration Commands

bridge-group bridge-group cbus-bridging
bridge-group bridge-group circuit-group circuit-number
bridge-group bridge-group input-address-list access-list-number
bridge-group bridge-group input-lat-service-deny group-list
bridge-group bridge-group input-lat-service-permit group-list
bridge-group bridge-group input-lsap-list access-list-number
bridge-group bridge-group input-pattern-list access-list-number
bridge-group bridge-group input-type-list access-list-number
bridge-group bridge-group lat-compression
bridge-group bridge-group output-address-list access-list-number
bridge-group bridge-group output-lat-service-deny group-list
bridge-group bridge-group output-lat-service-permit group-list
bridge-group bridge-group output-lsap-list access-list-number
bridge-group bridge-group output-pattern-list access-list-number
bridge-group bridge-group output-type-list access-list-number
bridge-group bridge-group sse
bridge-group bridge-group subscriber-loop-control
bridge-group bridge-group subscriber-trunk
bridge bridge-group lat-service-filtering
frame-relay map bridge dlci broadcast
interface bvi bridge-group
x25 map bridge x.121-address broadcast [options-keywords]
**HSRP**

**Unsupported Global Configuration Commands**

- interface Async
- interface BVI
- interface Dialer
- interface Group-Async
- interface Lex
- interface Multilink
- interface Virtual-Template
- interface Virtual-Tokenring

**Unsupported Interface Configuration Commands**

- mtu
- standby mac-refresh *seconds*
- standby use-bia

**Interface Commands**

**Unsupported Privileged EXEC Commands**

```
show interfaces [interface-id | vlan vlan-id] [capabilities | crb | fair-queue | irb | mac-accounting | precedence | irb | random-detect | rate-limit | shape]
```

**Unsupported Interface Configuration Commands**

- switchport broadcast *level*
- switchport multicast *level*
- switchport unicast *level*

**Note**

These commands have been replaced by the `storm-control {broadcast | multicast | unicast} level level [.level]` interface configuration command.
IP Multicast Routing

Unsupported Privileged EXEC Commands

clear ip rtp header-compression [type number]
The debug ip packet command displays packets received by the switch CPU. It does not display packets that are hardware-switched.
The debug ip mcache command affects packets received by the switch CPU. It does not display packets that are hardware-switched.
The debug ip mpacket [detail] [access-list-number [group-name-or-address] command affects only packets received by the switch CPU. Because most multicast packets are hardware-switched, use this command only when you know that the route will forward the packet to the CPU.
debug ip pim atm
show frame-relay ip rtp header-compression [interface type number]
The show ip mcache command displays entries in the cache for those packets that are sent to the switch CPU. Because most multicast packets are switched in hardware without CPU involvement, you can use this command, but multicast packet information is not displayed.
The show ip mpacket commands are supported but are only useful for packets received at the switch CPU. If the route is hardware-switched, the command has no effect because the CPU does not receive the packet and cannot display it.
show ip pim vc [group-address | name] [type number]
show ip rtp header-compression [type number] [detail]

Unsupported Global Configuration Commands

ip pim accept-rp {address | auto-rp} [group-access-list-number]

ip pim message-interval seconds

Unsupported Interface Configuration Commands

frame-relay ip rtp header-compression [active | passive]
frame-relay map ip ip-address dci [broadcast] compress
frame-relay map ip ip-address dci rtp header-compression [active | passive]
ip igmp helper-address ip-address
ip multicast helper-map {group-address | broadcast} {broadcast-address | multicast-address} extended-access-list-number
ip multicast rate-limit {in | out} [video | whiteboard] [group-list access-list] [source-list access-list] kbps
ip multicast ttl-threshold ttl-value (instead, use the ip multicast boundary access-list-number interface configuration command)
ip multicast use-functional
Appendix C
Unsupported CLI Commands in Release 12.1(11)AX

IP Unicast Routing

Unsupported Privileged EXEC or User EXEC Commands

- clear ip accounting [checkpoint]
- show cef [drop | not-cef-switched]
- show ip accounting [checkpoint] [output-packets | access-violations]
- show ip prefix-list regular expression

Unsupported Global Configuration Commands

- ip accounting-list ip-address wildcard
- ip as-path access-list
- ip accounting-transits count
- ip cef accounting [per-prefix] [non-recursive]
- ip cef traffic-statistics [load-interval seconds] [update-rate seconds]
- ip flow-aggregation
- ip flow-cache
- ip flow-export
- ip gratuitous-arps
- ip local
- ip prefix-list
- ip reflexive-list
- router egp
- router-isis
- router iso-igrp
- router mobile
- router odr
- router static
Unsupported Interface Configuration Commands

- `ip accounting`
- `ip load-sharing [per-packet]`
- `ip mtu` bytes
- `ip route-cache`
- `ip verify`
- `ip unnumbered` type number
- All `ip security` commands

Unsupported BGP Router Configuration Commands

All

Unsupported VPN Configuration Commands

All

Unsupported Route Map Commands

- `match route-type` { `set as-path` { `tag` | `prepend` as-path-string } `set automatic-tag` `set dampening` half-life reuse suppress max-suppress-time `set ip destination` ip-address mask `set ip next-hop` `set ip precedence` value `set ip qos-group` `set metric-type internal` `set origin` `set metric-type internal` `set tag` tag-value
MSDP

Unsupported Privileged EXEC Commands

show access-expression
show exception
show location
show pm LINE
show smf [interface-id]
show subscriber-policy [policy-number]
show template [template-name]

Unsupported Global Configuration Commands

ip msdp default-peer ip-address | name [prefix-list list] (Because BGP/MBGP is not supported, use the ip msdp peer command instead of this command.)

RADIUS

Unsupported Global Configuration Commands

aaa nas port extended
radius-server attribute nas-port
radius-server configure
radius-server extended-portnames

SNMP

Unsupported Global Configuration Commands

snmp-server enable informs
Spanning Tree

Unsupported Global Configuration Commands

- spanning-tree etherchannel guard misconfig
- no spanning-tree mode
- spanning-tree pathcost method \{long | short\}

Unsupported Interface Configuration Commands

- spanning-tree link-type \{point-to-point | shared\}
- spanning-tree stack-port

VLAN

Unsupported vlan-config Commands

- private-vlan

Unsupported User EXEC Commands

- show vlan ifindex
- show vlan private-vlan

VTP

Unsupported Privileged EXEC Commands

- vtp \{password password | pruning | version number\}private-vlan

**Note**
This command has been replaced by the vtp global configuration command.
Numerics

802.1D
  See STP
802.1Q
  and trunk ports 9-3
  configuration limitations 10-18
  encapsulation 10-16
  native VLAN for untagged traffic 10-23
  trunk mode 3-9
802.1X
  See port-based authentication
802.3Z flow control 9-14

accessing
  clusters, switch 6-14
  CMS 3-28
  command switches 6-12
  HTTP port 3-29
  member switches 6-14
  stack members 5-14
  switch clusters 6-14
access lists
  See ACLs
access ports
  defined 9-2
  in switch clusters 6-10
accounting
  with RADIUS 7-28
  with TACACS+ 7-11, 7-17
ACEs
  and QoS 24-7
  defined 23-2
  Ethernet 23-2
  IP 23-2
ACLs
  ACEs 23-2
  any keyword 23-11
applying
  on bridged packets 23-36
  on multicast packets 23-38
  on routed packets 23-37
  on switched packets 23-35
  time ranges to 23-14
  to a routed interface 23-18
  to QoS 24-7

Abbreviating commands 2-4
ABRs 26-30
AC (command switch) 6-11, 6-21
access-class command 23-17
access control entries
  See ACEs
access-denied response, VMPS 10-28
access groups
  IP 23-19
  Layer 3 23-19
ACLs (continued)
classifying traffic for QoS 24-28
comments in 23-17
compiling 23-20
configuring with VLAN maps 23-34
defined 23-1, 23-6
examples of 23-20, 24-28
extended IP
configuring for QoS classification 24-29
creating 23-9
matching criteria 23-6
hardware and software handling 23-19
host keyword 23-11
IP
applying to interface 23-18
creating 23-6
fragments and QoS guidelines 24-21
implicit deny 23-8, 23-12, 23-14
implicit masks 23-8
matching criteria 23-2, 23-6
named 23-13
undefined 23-19
violations, logging 23-14
virtual terminal lines, setting on 23-17
limiting actions 23-35
logging messages 23-9
log keyword 23-14
MAC extended 23-27, 24-30
matching 23-6, 23-19
monitoring 23-39
named 23-13
number per QoS class map 24-21
numbers 23-6
QoS 24-7, 24-28
router 23-2
standard IP
configuring for QoS classification 24-28
creating 23-8
matching criteria 23-6
ACLs (continued)
supported features 23-19
support for 1-5
time ranges 23-15
unsupported features 23-5
using router ACLs with VLAN maps 23-34
VLAN maps
configuration guidelines 23-26
configuring 23-25
defined 23-3
active router 27-1
address aliasing 15-2
addresses
displaying the MAC address table 7-58
dynamic
accelerated aging 13-11
changing the aging time 7-54
default aging 13-11
defined 7-53
learning 7-53
removing 7-55
multicast
group address range 28-3
STP address management 13-9
static
adding and removing 7-57
defined 7-53
address resolution 26-9
Address Resolution Protocol
See ARP
adjacency tables, with CEF 26-45
administrative distances
defined 26-53
OSPF 26-35
routing protocol defaults 26-47
advertisements
  CDP  17-1
  IGRP  26-25
  RIP  26-20
  VTP  10-19, 11-3
aggregated ports
  See EtherChannel
aggregate policers  24-36
aggregate policing  1-6
aging, accelerating  13-11
aging time
  accelerated for STP  13-11, 13-20
  MAC address table  7-54
  maximum for STP  13-21
alarms, RMON  20-3
allowed-VLAN list  10-21
alternate routes, IGRP  26-26
Apply button  3-27
area border routers
  See ABRs
ARP
  configuring  26-9
  defined  26-9
  encapsulation  26-11
  static cache configuration  26-9
  support for  1-4
ASBRs  26-30
attributes, RADIUS
  vendor-proprietary  7-30
  vendor-specific  7-29
audience  xxix
authentication
  EIGRP  26-43
  HSRP  27-8
  local mode with AAA  7-32
  NTP associations  7-36
  RADIUS
    key  7-21
    login  7-23
  authentication (continued)
    See also port-based authentication
  TACACS+
    defined  7-11
    key  7-13
    login  7-14
  authentication keys, and routing protocols  26-54
  authoritative time source, described  7-33
  authorization
    with RADIUS  7-27
    with TACACS+  7-11, 7-16
  authorized ports with 802.1X  8-4
  autoconfiguration  4-3
  automatic discovery
    adding member switches  6-19
    considerations
      beyond a non-candidate device  6-8
      brand new switches  6-10
      connectivity  6-5
      different VLANs  6-7
      management VLANs  6-8
      non-CDP-capable devices  6-6
      non-cluster-capable devices  6-6
      routed ports  6-9
    creating a cluster standby group  6-21
    in switch clusters  6-5
    See also CDP
  automatic recovery, clusters  6-11
    See also HSRP
  autonegotiation
    duplex mode  1-3
    interface configuration guidelines  9-13
    mismatches  31-13
  autonomous system boundary routers
    See ASBRs
  Auto-RP, described  28-5
  autosensing, port speed  1-3
auxiliary VLAN
See voice VLAN
availability, features 1-4

B
BackboneFast
described 14-8
enabling 14-15
support for 1-4
bandwidth graphs 3-7
banners
configuring
  login 7-52
  message-of-the-day login 7-51
default configuration 7-50
  when displayed 7-50
binding cluster group and HSRP group 27-9
blocking packets 16-5
booting
  boot loader, function of 4-2
  boot process 4-1
  manually 4-13
  specific image 4-14
boot loader
accessing 4-15
described 4-2
environment variables 4-15
prompt 4-15
trap-door mechanism 4-2
bootstrap router (BSR), described 28-5
BPDU
error-disabled state 14-3
filtering 14-3
BPDU filtering
described 14-3
enabling 14-14
BPDU guard
described 14-3
enabling 14-13
support for 1-5
bridged packets, ACLs on 23-36
bridge groups
  See fallback bridging
bridge protocol data unit
  See BPDU
broadcast flooding 26-17
broadcast packets
directed 26-14
flooded 26-14
broadcast storm-control command 16-3
broadcast storms 16-1, 26-14
browser configuration 3-1
buttons, CMS 3-27

C
cables, monitoring for unidirectional links 18-1
Cancel button 3-27
candidate switch
  adding 6-19
  automatic discovery 6-5
defined 6-4
  HC 6-21
  passwords 6-19
  requirements 6-4
  standby group 6-21
  See also command switch, cluster standby group, and
  member switch
cautions, described xxx
CC (command switch) 6-21
CDP
- automatic discovery in switch clusters 6-5
- configuring 17-2
- default configuration 17-2
- described 17-1
- disabling for routing device 17-3, 17-4
- enabling and disabling
  - on an interface 17-4
  - on a switch 17-3
- monitoring 17-5
- overview 17-1
- support for 1-4
- switch stack considerations 17-2
- transmission timer and holdtime, setting 17-2
- updates 17-2

CEF 26-45

CGMP
- as IGMP snooping learning method 15-7
- clearing cached group entries 28-51
- enabling server support 28-33
- joining multicast group 15-2
- overview 28-7
- server support only 28-7
- switch support of 1-3
- change notification, CMS 3-30

Cisco 7960 IP Phone 12-1
Cisco Discovery Protocol
- See CDP
Cisco Express Forwarding
- See CEF
Cisco Group Management Protocol
- See CGMP
Cisco StackWise technology 1-2
- See also stacks, switch
Cisco Technical Assistance Center xxxiii
CiscoWorks 2000 1-3, 22-4
- classless routing 26-7

class maps for QoS
- configuring 24-31
- described 24-7
- displaying 24-55

class of service
- See CoS

clearing interfaces 9-19

CLI
- abbreviating commands 2-4
- command modes 2-1
- described 1-3
- editing features
  - enabling and disabling 2-7
  - keystroke editing 2-7
  - wrapped lines 2-8
- error messages 2-5
- filtering command output 2-9
- getting help 2-3
- history
  - changing the buffer size 2-5
  - described 2-5
  - disabling 2-6
    - recalling commands 2-6
  - managing clusters 6-24
  - no and default forms of commands 2-4
- client mode, VTP 11-3
- clock
  - See system clock
Cluster Management Suite
- See CMS
clusters, switch
- accessing 6-14
- adding member switches 6-19
- automatic discovery 6-5
- automatic recovery 6-11
- benefits 1-2
- command switch configuration 6-18
- compatibility 6-4
clusters, switch (continued)

creating 6-18
creating a cluster standby group 6-21
described 6-1
managing
  through CLI 6-24
  through SNMP 6-25
planning 6-4
planning considerations
  automatic discovery 6-5
  automatic recovery 6-11
  CLI 6-24
  host names 6-14
  IP addresses 6-14
  passwords 6-15
  RADIUS 6-17
  SNMP 6-15, 6-25
  switch-specific features 6-17
  switch stacks 6-15
  TACACS+ 6-17
redundancy 6-6
troubleshooting 6-23
verifying 6-22
See also candidate switch, command switch, cluster standby group, member switch, and standby command switch

cluster standby group
  and HSRP group 27-9
  automatic recovery 6-13
  considerations 6-12
  creating 6-21
  defined 6-2
  requirements 6-3
  virtual IP address 6-12
See also HSRP

collapsed cluster view
  3-11

center tree
  described 3-5
  icons 3-5

CMS
  accessing 3-28
  benefits 1-2
  change notification 3-30
  cluster tree 3-5
  described 1-2, 1-3, 3-1
different versions of 3-31
  displaying system messages 3-17
error checking 3-30
  features 3-2
  Front Panel images 3-5
  Front Panel view 3-4
  interaction modes 3-23
  menu bar 3-14
  online help 3-25
  requirements 3-28
  saving configuration changes 3-30
toolbar 3-18
tool tips 3-24
  Topology view 3-9
  verifying configuration changes 3-30
  window components 3-26
  wizards 3-24
collapsible cluster view 3-11
command-line interface
  See CLI
command modes 2-1
commands
  abbreviating 2-4
  no and default 2-4
  setting privilege levels 7-8
command switch
  accessing 6-12
  active (AC) 6-11, 6-21
  command switch with HSRP disabled (CC) 6-21
  configuration conflicts 31-12
defined 6-2
  enabling 6-18
command switch (continued)
  passive (PC) 6-11, 6-21
  password privilege levels 6-24
  priority 6-11
  recovery
    from command-switch failure 6-11
    from failure 31-9
    from lost member connectivity 31-12
  redundant 6-11, 6-21
  replacing
    with another switch 31-11
    with cluster member 31-9
  requirements 6-3
  standby (SC) 6-11, 6-21
See also candidate switch, cluster standby group,
  member switch, and standby command switch

configuration files (continued)
  downloading
    automatically 4-12
  preparing B-11, B-14, B-17
  reasons for B-9
  using FTP B-14
  using RCP B-18
  using TFTP B-12
  guidelines for creating and using B-10
  invalid combinations when copying B-5
  limiting TFTP server access 22-10
  obtaining with DHCP 4-7
  password recovery disable considerations 7-5
  specifying the filename 4-13
  system contact and location information 22-9
  types and location B-10
  uploading
    preparing B-11, B-14, B-17
    reasons for B-9
    using FTP B-16
    using RCP B-19
    using TFTP B-12
  configuration settings, saving 4-10
  configure terminal command 9-7
  config-vlan mode 2-2, 10-6
  conflicts, configuration 31-12
  connectivity problems 31-16
  consistency checks in VTP version 2 11-4
  console port, connecting to 2-10
  conventions
    command xxx
    for examples xxx
    publication xxx
text xxx
  corrupted software, recovery steps with XMODEM 31-2
CoS
  in Layer 2 frames  24-2
  override priority  12-5
  trust priority  12-5
CoS input queue threshold map for QoS  24-14
CoS output queue threshold map for QoS  24-16
CoS-to-DSCP map for QoS  24-38
  counters, clearing interface  9-19
  crashinfo file  31-23
  cross-stack UplinkFast, STP
described  14-5
  enabling  14-15
  fast-convergence events  14-7
  Fast Uplink Transition Protocol  14-6
  normal-convergence events  14-7
  support for  1-4
  CWDM GBIC modules, wavelength colors on CMS  3-6

daylight saving time  7-45
default configuration (continued)
  IGMP snooping  15-5
  IGRP  26-26
  initial switch information  4-3
  IP addressing, IP routing  26-5
  IP multicast routing  28-9
  Layer 2 interfaces  9-12
  MAC address table  7-54
  MSDP  29-4
  MVR  15-14
  NTP  7-36
  optional spanning-tree features  14-12
  OSPF  26-31
  password and privilege level  7-2
  QoS  24-18
  RADIUS  7-20
  RIP  26-20
  RMON  20-3
  RSPAN  19-10
  SNMP  22-5
  SPAN  19-10
  STP  13-12
  switch stacks  5-13
  system message logging  21-4
  system name and prompt  7-47
  TACACS+  7-13
  UDLD  18-3
  VLAN, Layer 2 Ethernet interfaces  10-19
  VLANs  10-7
  VMPS  10-29
  voice VLAN  12-3
  VTP  11-7
default gateway  4-10, 26-12
default networks  26-48
default routes  26-48
default routing  26-2
deleting VLANs  10-10
describing your network, examples  1-10
destination addresses, in ACLs 23-10
destination-IP address based forwarding, EtherChannel 25-7
destination-MAC address forwarding, EtherChannel 25-6
detecting indirect link failures, STP 14-8
device discovery protocol 17-1
device icons, Front Panel view 3-5
device information 3-12
Device Manager 3-2
See also Switch Manager
device pop-up menu
Front Panel view 3-19
Topology view 3-21
DHCP-based autoconfiguration
client request message exchange 4-4
configuring
client side 4-3
DNS 4-6
relay device 4-6
server-side 4-5
TFTP server 4-5
example 4-8
lease options
for IP address information 4-5
for receiving the configuration file 4-5
overview 4-3
relationship to BOOTP 4-4
relay support 1-7
support for 1-3
Differentiated Services architecture, QoS 24-1
Differentiated Services Code Point 24-2
Diffusing Update Algorithm (DUAL) 26-39
directed unicast requests 1-4
directories
changing 8-4
creating and removing 8-4
displaying the working 8-4
discovery, clusters
See automatic discovery
display options, Topology view 3-14
display options, Topology view
Disqualification Code option 3-23
distance-vector protocols 26-3
distribute-list protocols 26-53
DNS
and DHCP-based autoconfiguration 4-6
default configuration 7-49
displaying the configuration 7-50
overview 7-48
setting up 7-49
support for 1-3
documentation
feedback xxxii
obtaining
CD-ROM xxxi
world wide web xxxi
ordering xxxii
related xxxi
domain names
DNS 7-48
VTP 11-8
Domain Name System
See DNS
downloading
configuration files
preparing B-11, B-14, B-17
reasons for B-9
using FTP B-14
using RCP B-18
using TFTP B-12
downloading (continued)

image files
  deleting old image  B-25
  preparing  B-23, B-26, B-30
  reasons for  B-21
  using FTP  B-27
  using RCP  B-32
  using TFTP  B-24

DSCP  1-6, 24-2
  DSCP input queue threshold map for QoS  24-14
  DSCP output queue threshold map for QoS  24-16
  DSCP-to-CoS map for QoS  24-41
  DSCP-to-DSCP-mutation map for QoS  24-42

DTP  1-5, 10-17
  DUAL finite state machine, EIGRP  26-39

duplex mode, configuring  9-12

DVMRP
  autosummarization
    configuring a summary address  28-47
    disabling  28-49
  connecting PIM domain to DVMRP router  28-39
  enabling unicast routing  28-43
  interoperability
    with Cisco devices  28-37
    with IOS software  28-7
  mrinfo requests, responding to  28-42
  neighbors
    advertising the default route to  28-41
    discovery with Probe messages  28-37
    displaying information  28-42
    prevent peering with nonpruning  28-45
    rejecting nonpruning  28-44
  overview  28-7

DVMRP (continued)

  routes
    adding a metric offset  28-49
    advertising all  28-49
    advertising the default route to neighbors  28-41
    caching DVMRP routes learned in report messages  28-43
    changing the threshold for syslog messages  28-46
    deleting  28-51
    displaying  28-51
    favoring one over another  28-49
    limiting the number injected into MBONE  28-46
    limiting unicast route advertisements  28-37
    routing table  28-7
    source distribution tree, building  28-7
    support for  1-7
    tunnels
      configuring  28-39
      displaying neighbor information  28-42
  dynamic access mode  3-9
  dynamic access ports
    characteristics  10-3
    configuring  10-31
    defined  9-3
  dynamic addresses
    See addresses
  dynamic auto trunking mode  10-17
  dynamic desirable trunking mode  10-18
  Dynamic Host Configuration Protocol
    See DHCP-based autoconfiguration
  dynamic port VLAN membership
    described  10-29
    reconfirming  10-31, 10-32
    troubleshooting  10-33
    types of connections  10-31
dynamic routing 26-3

Dynamic Trunking Protocol
See DTP

E

editing features
enabling and disabling 2-7
keystrokes used 2-7
wrapped lines 2-8

EIGRP
and IGRP 26-41
authentication 26-43
components 26-39
configuring 26-41
default configuration 26-40
definition 26-39
interface parameters, configuring 26-42
monitoring 26-44
support for 1-7
elections
See stack master
enable password 7-4
enable secret password 7-4
encryption for passwords 7-4

Enhanced IGRP
See EIGRP

environment variables
function of 4-16
equal-cost routing 1-7, 26-46
error checking, CMS 3-30
error messages during command entry 2-5

EtherChannel
automatic creation of 25-5
channel groups
binding physical and logical interfaces 25-4
numbering of 25-4
configuration guidelines 25-10
configuring
Layer 2 interfaces 25-11
Layer 3 physical interfaces 25-14
Layer 3 port-channel logical interfaces 25-13
default configuration 25-9
described 25-2
displaying status 25-19
forwarding methods 25-6, 25-16
interaction
with STP 25-10
with VLANs 25-10
Layer 3 interface 26-4
load balancing 25-6, 25-16
logical interfaces, described 25-4
number of interfaces per 25-2

PAgP
aggregate-port learners 25-17
compatibility with Catalyst 1900 25-17
described 25-5
displaying status 25-19
interaction with other features 25-6
learn method and priority configuration 25-17
modes 25-5
silent mode 25-6
support for 1-3
port-channel interfaces
described 25-4
numbering of 25-4
port groups 9-5
See also cross-stack EtherChannel
stack changes, effects of 25-8
support for 1-3
Ethernet VLANs
  adding 10-8
  defaults and ranges 10-8
  modifying 10-8
  events, RMON 20-3
  examples
    conventions for xxx
    network configuration 1-10
  expanded cluster view 3-10
  expanded stack view 3-11
  expert mode 3-24
  extended-range VLANs
    configuration guidelines 10-12
    configuring 10-12
    creating 10-12, 10-13
    defined 10-1
  extended system ID for STP 13-5, 13-14
  Extensible Authentication Protocol over LAN 8-1
  exterior routes, IGRP 26-25

  fallback bridging (continued)
    frame forwarding
      flooding packets 30-2
      forwarding packets 30-2
    overview 30-2
    stack changes, effects of 30-3
  STP
    disabling on an interface 30-11
    forward-delay interval 30-10
    hello BPDU interval 30-9
    interface priority 30-7
    maximum-idle interval 30-10
    path cost 30-8
    VLAN-bridge spanning-tree priority 30-7
    VLAN-bridge STP 30-2
  support for 1-7
  SVIs and routed ports 30-2
  VLAN-bridge STP 13-10, 30-2

  fan fault indication 3-5
  Fast Uplink Transition Protocol 14-6

  feedback to Cisco Systems, web xxxii
  FIB 26-45
  fiber-optic, detecting unidirectional links 18-1
  files
    copying B-5
    crashinfo
      description 31-23
      displaying the contents of 31-23
      location 31-23
    deleting B-5
  tar
    creating B-6
    displaying the contents of B-7
    extracting B-8
    image file format B-22
file system
   displaying available file systems  B-2
   displaying file information  B-3
   local file system names  B-1
   network file system names  B-5
   setting the default  B-3
filtering
   in a VLAN  23-25
   non-IP traffic  23-27
   show and more command output  2-9
filtering show and more command output  2-9
filters, IP
   See ACLs, IP
Flash device, number of  B-1
flash updates, IGRP  26-26
flooded traffic, blocking  16-6
flow-based packet classification  1-6
flowcharts
   QoS classification  24-6
   QoS egress queueing and scheduling  24-15
   QoS ingress queueing and scheduling  24-13
   QoS policing and marking  24-9
flow control  1-3, 9-14
forward-delay time, STP  13-20
Forwarding Information Base
   See FIB
forwarding non-routable protocols  30-1
Front Panel images, CMS  3-5
Front Panel view
   cluster tree  3-5
   command switch  3-4
described  3-4
   pop-up menus  3-19
   port icons  3-6
   port LEDs  3-7
   RPS LED  3-7
   switch images  3-5
FTP
   accessing MIB files  A-3
coloration files
   downloading  B-14
   overview  B-13
   preparing the server  B-14
   uploading  B-16
image files
   deleting old image  B-29
downloading  B-27
   preparing the server  B-26
   uploading  B-29
G
   get-bulk-request operation  22-3
   get-next-request operation  22-3, 22-4
   get-request operation  22-3, 22-4
   get-response operation  22-3
Gigabit modules
   See SFPs
global configuration mode  2-2
guide
   audience  xxix
   purpose of  xxix
guide mode  1-2, 3-23
H
   hardware limitations and Layer 3 interfaces  9-16
   HC (candidate switch)  6-21
   hello time, STP  13-19
   help, for the command line  2-3
   Help button, CMS  3-27
   Help Contents  3-25
Index

history
  changing the buffer size 2-5
  described 2-5
  disabling 2-6
  recalling commands 2-6
history table, level and number of syslog messages 21-10
host name list, CMS 3-26
host names
  abbreviations appended to 6-21
  in clusters 6-14
hosts, limit on dynamic ports 10-33
Hot Standby Router Protocol
  See HSRP
HP OpenView 1-3
HSRP
  authentication string 27-8
  automatic cluster recovery 6-13
  binding to cluster group 27-9
  cluster standby group considerations 6-12
  command-switch redundancy 1-1, 1-4
  configuring 27-3
  default configuration 27-3
  definition 27-1
  monitoring 27-10
  overview 27-1
  priority 27-6
  routing redundancy 1-7
  switch stack considerations 27-2
  timers 27-8
  tracking 27-6
  See also clusters, cluster standby group, and standby command switch
HTTP access 3-28, 3-29
Hypertext Transfer Protocol
  See HTTP access
ICMP
  redirect messages 26-12
  support for 1-7
  time exceeded messages 31-17
  traceroute and 31-17
  unreachable messages 23-18
  unreachables and ACLs 23-19
ICMP ping
  executing 31-16
  overview 31-16
ICMP Router Discovery Protocol
  See IRDP
icons
  cluster tree 3-5
  colors
    cluster tree 3-5
  Topology view 3-13
  Front Panel view 3-6
  toolbar 3-18
  Topology view 3-12
IEEE 802.1P 12-1
IFS 1-4
IGMP
  configuring the switch
    as a member of a group 28-27
    statically connected member 28-32
  controlling access to groups 28-28
  default configuration 28-27
  deleting cache entries 28-51
  displaying groups 28-51
  fast switching 28-32
  host-query interval, modifying 28-30
  joining multicast group 15-2
  join messages 15-2
  leave processing, enabling 15-10
  leaving multicast group 15-4
  multicast reachability 28-27
IGMP (continued)

overview 28-2
queries 15-3
support for 1-3
Version 1
changing to Version 2 28-29
described 28-3
Version 2
changing to Version 1 28-29
described 28-3
maximum query response time value 28-31
pruning groups 28-31
query timeout value 28-31

IGMP filtering
configuring 15-19
default configuration 15-19
described 15-19
monitoring 15-22
support for 1-3
IGMP groups, setting the maximum number 15-21

IGMP profile
applying 15-20
configuration mode 15-19
configuring 15-20

IGMP snooping
and address aliasing 15-2
and stack changes 15-5
configuring 15-5
default configuration 15-5
definition 15-2
enabling and disabling 15-6
global configuration 15-6
Immediate Leave 15-4
in the switch stack 15-5
method 15-6
monitoring 15-11
support for 1-3
VLAN configuration 15-6

IGP 26-30

IGRP
advertisements 26-25
alternate routes 26-26
configuring 26-27
default configuration 26-26
described 26-25
exterior routes 26-25
flash updates 26-26
interior routes 26-25
load balancing 26-26
poison-reverse updates 26-26
split horizon 26-29
support for 1-7
system routes 26-25
traffic sharing 26-27
unequal-cost load balancing 26-26

Immediate-Leave, IGMP 15-4
initial configuration
defaults 1-8
See also hardware installation guide
interaction modes, CMS 3-23
interface
number 9-7
range macros 9-10
interface command 9-6, 9-7
interface configuration mode 2-3
interfaces
configuration guidelines 9-13
configuring 9-7
configuring duplex mode 9-12
configuring speed 9-12
counters, clearing 9-19
described 9-15
descriptive name, adding 9-15
displaying information about 9-19
flow control 9-14
management 1-3
monitoring 9-19
naming 9-15
interfaces (continued)
  physical, identifying 9-6
  range of 9-8
  restarting 9-20
  shutting down 9-20
  supported 9-6
  types of 9-1
interfaces range macro command 9-10
interface types 9-6
Interior Gateway Protocol
  See IGP
Interior Gateway Routing Protocol
  See IGRP
interior routes, IGRP 26-25
Internet Control Message Protocol
  See ICMP
Internet Group Management Protocol
  See IGMP
Inter-Switch Link
  See ISL
inter-VLAN routing 1-7, 26-2
inventory, cluster 6-22
IOS File System
  See IFS
ip access group command 23-19
IP ACLs
  applying to an interface 23-18
  extended, creating 23-9
  for QoS classification 24-7
  implicit deny 23-8, 23-12, 23-14
  implicit masks 23-8
  logging 23-14
  named 23-13
  standard, creating 23-8
  undefined 23-19
  virtual terminal lines, setting on 23-17
IP addresses
  candidate or member 6-4, 6-14
  classes of 26-6
  cluster access 6-2
  command switch 6-3, 6-12, 6-14
  default configuration 26-5
  for IP routing 26-5
  MAC address association 26-9
  monitoring 26-18
  redundant clusters 6-12
  standby command switch 6-12, 6-14
  See also IP information
IP broadcast address 26-16
ip cef distributed command 26-45
IP directed broadcasts 26-14
ip igmp profile command 15-19
IP information
  assigned
    manually 4-9
    through DHCP-based autoconfiguration 4-3
    default configuration 4-3
IP multicast routing
  addresses
    all-hosts 28-3
    all-multicast-routers 28-3
    host group address range 28-3
    administratively-scoped boundaries, described 28-35
    and IGMP snooping 15-2
Auto-RP
  adding to an existing sparse-mode cloud 28-14
  benefits of 28-14
  clearing the cache 28-51
  configuration guidelines 28-10
  filtering incoming RP announcement messages 28-17
  overview 28-5
  preventing candidate RP spoofing 28-17
  preventing join messages to false RPs 28-16
  setting up in a new internetwork 28-14
  using with BSR 28-22
IP multicast routing (continued)

bootstrap router
  configuration guidelines 28-10
  configuring candidate BSRs 28-20
  configuring candidate RPs 28-21
  defining the IP multicast boundary 28-19
  defining the PIM domain border 28-18
  overview 28-5
  using with Auto-RP 28-22

Cisco implementation 28-2

configuring
  basic multicast routing 28-10
  IP multicast boundary 28-35

default configuration 28-9

enabling
  multicast forwarding 28-11
  PIM mode 28-11

group-to-RP mappings
  Auto-RP 28-5
  BSR 28-5

MBONE
  deleting sdr cache entries 28-51
  described 28-34
  displaying sdr cache 28-52
  enabling sdr listener support 28-34
  limiting DVMRP routes advertised 28-46
  limiting sdr cache entry lifetime 28-35

  SAP packets for conference session announcement 28-34

  Session Directory (sdr) tool, described 28-34

monitoring
  packet rate loss 28-52
  peering devices 28-52
  tracing a path 28-52

multicast forwarding, described 28-6

PIMv1 and PIMv2 interoperability 28-9

protocol interaction 28-2

reverse path check (RPF) 28-6

IP multicast routing (continued)

routing table
  deleting 28-51
  displaying 28-52

RP
  assigning manually 28-12
  configuring Auto-RP 28-14
  configuring PIMv2 BSR 28-18
  monitoring mapping information 28-23
  using Auto-RP and BSR 28-22

stacking
  stack master functions 28-8
  stack member functions 28-8

statistics, displaying system and network 28-51

See also CGMP

See also DVMRP

See also IGMP

See also PIM

IP phones
  and QoS 12-1
  configuring 12-4

IP precedence 24-2

IP-precedence-to-DSCP map for QoS 24-39

IP protocols
  in ACLs 23-10
  routing 1-7

IP routes, monitoring 26-55

IP routing
  connecting interfaces with 9-6
  enabling 26-19

IP traceroute
  executing 31-18

overview 31-17

IP unicast routing
  address resolution 26-9
  administrative distances 26-47, 26-53

ARP 26-9

assigning IP addresses to Layer 3 interfaces 26-6

authentication keys 26-54
IP unicast routing (continued)

broadcast
  address 26-16
flooding 26-17
packets 26-14
storms 26-14
classless routing 26-7
configuring static routes 26-47
default
  addressing configuration 26-5
gateways 26-12
networks 26-48
routes 26-48
routng 26-2
directed broadcasts 26-14
dynamic routing 26-3
enabling 26-19
EtherChannel Layer 3 interface 26-4
IGP 26-30
inter-VLAN 26-2
IP addressing
  classes 26-6
  configuring 26-5
IRDP 26-13
Layer 3 interfaces 26-4
MAC address and IP address 26-9
passive interfaces 26-52
protoclos
  distance-vector 26-3
dynamic 26-3
link-state 26-3
proxy ARP 26-9
redistribution 26-49
reverse address resolution 26-9
routed ports 26-4
static routing 26-2
steps to configure 26-4
subnet mask 26-6
subnet zero 26-7
IP unicast routing (continued)
supernet 26-7
UDP 26-16
with SVIs 26-4
See also EIGRP
See also IGRP
See also OSPF
See also RIP
IRDP
  configuring 26-13
definition 26-13
  support for 1-7
ISL
  and trunk ports 9-3
  encapsulation 1-5, 10-16
  trunk mode 3-9

J
Java plug-in configuration 3-1
join messages, IGMP 15-2

L
Layer 2 frames, classification with CoS 24-2
Layer 2 interfaces, default configuration 9-12
Layer 2 trunks 10-17
Layer 3 features 1-7
Layer 3 interfaces
  assigning IP addresses to 26-6
  changing from Layer 2 mode 26-6
  types of 26-4
Layer 3 packets, classification methods 24-2
leave processing. IGMP 15-10
LEDs
  port 3-7, 3-8
  port modes 3-7
  RPS 3-7
legend, CMS icons and labels 3-18
line configuration mode 2-3
link information 3-12
link pop-up menu, Topology view 3-20
links, unidirectional 18-1
link state advertisements (LSAs) 26-34
link-state protocols 26-3
lists, CMS 3-27
load balancing, IGRP 26-26
logging messages, ACL 23-9
Logical Link Content window 3-21
login authentication
with RADIUS 7-23
with TACACS+ 7-14
login banners 7-50
log messages
See system message logging
Long-Reach Ethernet (LRE) technology 1-11
loop guard
described 14-11
enabling 14-17
MAC address notification, support for 1-7
MAC address-to-VLAN mapping 10-28
MAC extended access lists 23-27, 24-5, 24-30
manageability features 1-3
management access
in-band
browser session 1-4
CLI session 1-4
SNMP 1-4
out-of-band console port connection 1-4
management options
benefits 1-2
clustering 1-2
CMS 1-2
switch stacks 1-2
CLI 2-1
CMS 3-1
overview 1-3
management VLAN
considerations in switch clusters 6-8
discovery through different management VLANs 6-8
mapping tables for QoS
configuring
CoS-to-DSCP 24-38
DSCP 24-38
DSCP-to-CoS 24-41
DSCP-to-DSCP-mutation 24-42
IP-precedence-to-DSCP 24-39
policed-DSCP 24-40
described 24-10
marking
action in policy map 24-33
action with aggregate policers 24-36
described 24-3, 24-8
matching, ACLs 23-6
maximum aging time, STP 13-21
maximum-paths command 26-46
membership mode, VLAN port 3-8, 10-3
member switch
  adding 6-19
  automatic discovery 6-5
defined 6-2
managing 6-24
passwords 6-14
recovering from lost connectivity 31-12
requirements 6-4
See also candidate switch, cluster standby group, and standby command switch

menu bar
described 3-14
variations 3-14

messages
  logging ACL violations 23-14
  system 3-17
to users through banners 7-50

metric translations, between routing protocols 26-51

MIBs
  accessing files with FTP A-3
  location of files A-3
  overview 22-1
  SNMP interaction with 22-4
  supported A-1

mirroring traffic for analysis 19-1
mismatches, autonegotiation 31-13

Mode button 3-7
modes
  port 3-7
  VLAN port membership 3-8
Modify button 3-27
module number 9-7
monitoring
  access groups 23-39
  ACL configuration 23-39
cables for unidirectional links 18-1
  CDP 17-5
  CEF 26-46
  EIGRP 26-44
monitoring (continued)
fallback bridging 30-11
  features 1-7
  HSRP 27-10
  IGMP
    filters 15-22
    snooping 15-11
  interfaces 9-19
IP
  address tables 26-18
  multicast routing 28-50
  routes 26-55
  MSDP peers 29-19
  multicast router interfaces 15-11
  MVR 15-18
  network traffic for analysis with probe 19-2
  OSPF 26-38
  port
    blocking 16-12
    protection 16-12
  RP mapping information 28-23
  source-active messages 29-19
  speed and duplex mode 9-13
  traffic flowing among switches 20-1
  traffic suppression 16-12
  VLAN
    filters 23-39
    maps 23-39
  VLANs 10-15
  VMPS 10-32
  VTP 11-16

MSDP
  benefits of 29-3
  clearing MSDP connections and statistics 29-19
  controlling source information
    forwarded by switch 29-12
    originated by switch 29-8
    received by switch 29-14
default configuration 29-4
MDSP (continued)

dense-mode regions
  sending SA messages to 29-17
  specifying the originating address 29-18
filtering
  incoming SA messages 29-14
  SA messages to a peer 29-12
  SA requests from a peer 29-11
join latency, defined 29-6
meshed groups
  configuring 29-16
  defined 29-16
originating address, changing 29-18
overview 29-1
peer-RPF flooding 29-2
peers
  configuring a default 29-4
  monitoring 29-19
  requesting relationship, overview 29-1
requesting source information from 29-8
shutting down 29-16
source-active messages
  caching 29-6
  clearing cache entries 29-19
  defined 29-2
  filtering from a peer 29-11
  filtering incoming 29-14
  filtering to a peer 29-12
  limiting data with TTL 29-14
  monitoring 29-19
  restricting advertised sources 29-9
support for 1-7
multicast groups
  Immediate Leave 15-4
  joining 15-2
  leaving 15-4
  static joins 15-9
  multicasts packets
    ACLs on 23-38
    blocking 16-6
  multicast router interfaces, monitoring 15-11
  multicast router ports, adding 15-8
  Multicast Source Discovery Protocol
    See MSDP
  multicast storm-control command 16-3
  multicast storms 16-1
  Multicast VLAN Registration
    See MVR
  multiple MVRs in Topology view 3-21
  MVR
    and address aliasing 15-15
    configuring interfaces 15-17
    default configuration 15-14
    described 15-12
    in the switch stack 15-14
    modes 15-16
    monitoring 15-18
    setting global parameters 15-15
    support for 1-3

N
	named IP ACLs 23-13
	native VLAN
  configuring 10-23
  default 10-23
  negotiate trunk mode 3-9
	normal neighbor discovery/recovery, EIGRP 26-39
	normal neighboring devices, types of 3-12

network configuration examples
  cost-effective wiring closet 1-12
  high-performance wiring closet 1-12
  increasing network performance 1-10
  large network 1-16
  providing network services 1-11
  small to medium-sized network 1-15
network design
  performance  1-10
  services  1-11
network management
  CDP  17-1
  RMON  20-1
  SNMP  22-1
Network Time Protocol
  See NTP
no commands  2-4
non-IP traffic filtering  23-27
nontrunking mode  10-17
normal-range VLANs
  configuration modes  10-6
  defined  10-1
no switchport command  9-4
note, described  xxx
not-so-stubby areas
  See NSSA
NSSA, OSPF  26-34
NTP
  associations
    authenticating  7-36
    defined  7-34
    enabling broadcast messages  7-38
    peer  7-37
    server  7-37
  default configuration  7-36
  displaying the configuration  7-42
  overview  7-33
  restricting access
    creating an access group  7-40
    disabling NTP services per interface  7-41
  source IP address, configuring  7-41
  stratum  7-33
  support for  1-4
  synchronizing devices  7-37

NTP (continued)
  time
    services  7-34
    synchronizing  7-33

O

OK button  3-27
online help  3-25
Open Shortest Path First
  See OSPF
optimizing system resources  31-13
options, management  1-3
OSPF
  area parameters, configuring  26-34
  configuring  26-32
  default configuration
    metrics  26-35
    route  26-35
    settings  26-31
  described  26-30
  interface parameters, configuring  26-33
  LSA group pacing  26-37
  monitoring  26-38
  router IDs  26-37
  route summarization  26-35
  support for  1-7
  virtual links  26-35
  out-of-profile markdown  1-6
  overheating indication, switch  3-5

P

packet modification, with QoS  24-17
PAgP
  See EtherChannel
parallel paths, in routing tables  26-46
passive interfaces
  configuring  26-52
  OSPF  26-35

passwords
  default configuration  7-2
  disabling recovery of  7-5
  encrypting  7-4
  for security  1-5
  in clusters  6-15, 6-19
  in CMS  3-28
  overview  7-1
  recovery of  31-4
  setting
    enable  7-3
    enable secret  7-4
    Telnet  7-6
      with usernames  7-7
  VTP domain  11-8

path cost, STP  13-17
PC (passive command switch)  6-11, 6-21
performance, network design  1-10
performance features  1-3
per-VLAN Spanning Tree (PVST)  13-9
per-VLAN spanning tree plus (PVST+)  13-9
physical ports  9-2

PIM
  default configuration  28-9
  dense mode
    overview  28-4
    rendezvous point (RP), described  28-4
    RPF lookups  28-7
  displaying neighbors  28-52
  enabling a mode  28-11
  overview  28-3
  router-query message interval, modifying  28-26
  shared tree and source tree, overview  28-23
  shortest path tree, delaying the use of  28-25

PIM (continued)
  sparse mode
    join messages and shared tree  28-4
    overview  28-4
    prune messages  28-5
    RPF lookups  28-7
  support for  1-7
  versions
    interoperability  28-9
    troubleshooting interoperability problems  28-23
    v2 improvements  28-4

PIM-DVMRP, as snooping method  15-7
ping
  character output description  31-17
  executing  31-16
  overview  31-16
  poison-reverse updates, IGRP  26-26
  policed-DSCP map for QoS  24-40
  policers
    configuring
      for each matched traffic class  24-33
      for more than one traffic class  24-36
    described  24-3
    displaying  24-55
    number of  24-21
    types of  24-8
  policing
    described  24-3
    token-bucket algorithm  24-9

policy maps for QoS
  characteristics of  24-33
  configuring  24-33
  described  24-7
  displaying  24-55

Port Aggregation Protocol
  See EtherChannel
  See PAgP
port-based authentication
authentication server
defined 8-2
  RADIUS server 8-2
client, defined 8-2
configuration guidelines 8-7
configuring
  manual re-authentication of a client 8-11
  quiet period 8-11
  RADIUS server 8-10
  RADIUS server parameters on the switch 8-9
  switch-to-client frame-retransmission number 8-12
  switch-to-client retransmission time 8-12
default configuration 8-6
described 8-1
device roles 8-2
displaying statistics 8-14
EAPOL-start frame 8-3
EAP-request/identity frame 8-3
EAP-response/identity frame 8-3
enabling
  802.1X authentication 8-8
  periodic re-authentication 8-10
  encapsulation 8-2
  initiation and message exchange 8-3
  method lists 8-8
  ports
    authorization state and dot1x port-control command 8-4
    authorized and unauthorized 8-4
resetting to default values 8-14
stack changes, effects of 8-5
switch
  as proxy 8-2
  RADIUS client 8-2
topologies, supported 8-4
port blocking 1-3, 16-5
Index

Catalyst 3750 Switch Software Configuration Guide

port security
  aging 16-11
  and stacking 16-12
  configuring 16-9
  default configuration 16-8
  described 16-7
  displaying 16-13
  violations 16-8
  with other features 16-9

port-shutdown response, VMPS 10-28

preventing unauthorized access 7-1

priority
  HSRP 27-6
    overriding CoS 12-5
    trusting CoS 12-5

private VLAN edge ports
  See protected ports

privileged EXEC mode 2-2

privilege levels
  changing the default for lines 7-9
  command switch 6-24
  exiting 7-9
  logging into 7-9
  mapping on member switches 6-24
  overview 7-2, 7-7
  setting a command with 7-8

protected ports 1-5, 16-4

protocol-dependent modules, EIGRP 26-40

Protocol-Independent Multicast Protocol
  See PIM

proxy ARP
  configuring 26-11
  definition 26-9
  with IP routing disabled 26-12

pruning, VTP
  enabling 11-14
  enabling on a port 10-22
  examples 11-5
  overview 11-4

pruning-eligible list
  changing 10-22
  for VTP pruning 11-5
  VLANs 11-14

publications for products, technologies, and network solutions xxxiv

PVST 10-3

Q

QoS
  basic model 24-3
  classification
    class maps, described 24-7
    defined 24-3
    flowchart 24-6
    forwarding treatment 24-3
    in frames and packets 24-2
    IP ACLs, described 24-5, 24-7
    MAC ACLs, described 24-5, 24-7
    options for IP traffic 24-5
    options for non-IP traffic 24-5
    policy maps, described 24-7
    trust DSCP, described 24-5
    trusted CoS, described 24-5
    trust IP precedence, described 24-5
  class maps
    configuring 24-31
    displaying 24-55
    configuration guidelines 24-21
QoS (continued)

configuring
  aggregate policers 24-36
  default port CoS value 24-25
  DSCP maps 24-38
  DSCP trust states bordering another domain 24-26
  egress queue characteristics 24-48
  ingress queue characteristics 24-43
  IP extended ACLs 24-29
  IP standard ACLs 24-28
  MAC ACLs 24-30
  policy maps 24-33
    port trust states within the domain 24-23
  default configuration 24-18
  displaying statistics 24-55

egress queues
  allocating buffer space 24-48
  buffer allocation scheme, described 24-15
  configuring shaped weights for SRR 24-52
  configuring shared weights for SRR 24-53
    described 24-4
  displaying the threshold map 24-51
    flowchart 24-15
  mapping DSCP or CoS values 24-50
    scheduling, described 24-4
  setting WTD thresholds 24-48
  WTD, described 24-16
  enabling globally 24-22

flowcharts
  classification 24-6
  egress queueing and scheduling 24-15
  ingress queueing and scheduling 24-13
  policing and marking 24-9
  implicit deny 24-7

QoS (continued)

ingress queues
  allocating bandwidth 24-46
  allocating buffer space 24-45
  buffer and bandwidth allocation, described 24-14
  configuring shared weights for SRR 24-46
  configuring the priority queue 24-47
    described 24-3
  displaying the threshold map 24-44
    flowchart 24-13
  mapping DSCP or CoS values 24-44
    priority queue, described 24-14
    scheduling, described 24-3
    setting WTD thresholds 24-44
    WTD, described 24-14
  limiting bandwidth on egress interface 24-54

mapping tables
  CoS-to-DSCP 24-38
    displaying 24-55
  DSCP-to-CoS 24-41
  DSCP-to-DSCP-mutation 24-42
  IP-precedence-to-DSCP 24-39
  policed-DSCP 24-40
    types of 24-10
  marked-down actions 24-34
  marking, described 24-3, 24-8
  overview 24-1
  packet modification 24-17
  policers
    configuring 24-34, 24-36
    described 24-8
    displaying 24-55
    number of 24-21
    types of 24-8
  policies, attaching to an interface 24-9
  policing
    described 24-3, 24-8
  token bucket algorithm 24-9
QoS (continued)

policy maps
  characteristics of 24-33
  configuring 24-33
  displaying 24-55
QoS label, defined 24-3
queues
  configuring egress characteristics 24-48
  configuring ingress characteristics 24-43
location of 24-11
SRR, described 24-12
WTD, described 24-11
rewrites 24-17
support for 1-6
trust states
  bordering another domain 24-26
  described 24-5
  within the domain 24-23
quality of service
  See QoS
queries, IGMP 15-3

R

RADIUS (continued)
in clusters 6-17
limiting the services to the user 7-27
method list, defined 7-20
operation of 7-19
overview 7-18
suggested network environments 7-18
support for 1-6
tracking services accessed by user 7-28
range
  macro 9-10
  of interfaces 9-8
RARP 26-9
rcommand command 6-24
RCP
  configuration files
    downloading B-18
    overview B-17
    preparing the server B-17
    uploading B-19
  image files
    deleting old image B-33
    downloading B-32
    preparing the server B-30
    uploading B-34
reconfirmation interval, VMPS, changing 10-32
recovery procedures 31-1
redundancy
  EtherChannel 25-2
  HSRP 27-1
  STP
    backbone 13-10
    multidrop backbone 14-5
    path cost 10-26
    port priority 10-24
redundant clusters
  See cluster standby group
redundant links and UplinkFast 14-15
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
</table>

Redundant power system	See RPS
Refresh button	3-27
Reliable transport protocol, EIGRP	26-39
Reloading software	4-17
Remote Authentication Dial-In User Service	See RADIUS
Remote Copy Protocol	See RCP
Remote Network Monitoring	See RMON
Resetting a UDLD-shutdown interface	18-5
Restricting access	NTP services 7-39
	Overview 7-1
	Passwords and privilege levels 7-2
	RADIUS 7-18
	TACACS+ 7-10
Retry count, VMPS, changing	10-32
Reverse address resolution	26-9
Reverse Address Resolution Protocol	See RARP
RFC	1058, RIP 26-20
	1112, IP multicast and IGMP 15-2
	1157, SNMPv1 22-2
	1166, IP addresses 26-6
	1253, OSPF 26-30
	1305, NTP 7-33
	1587, NSSAs 26-30
	1757, RMON 20-2
	1901, SNMPv2C 22-2
	1902 to 1907, SNMPv2 22-2
	2236, IP multicast and IGMP 15-2

RIP	Advertisements 26-20
	Authentication 26-23
	Configuring 26-21
	Default configuration 26-20
	Described 26-20
	Hop counts 26-20
	Split horizon 26-23
	Summary addresses 26-23
	Support for 1-7

RMON	Default configuration 20-3
	Displaying status 20-6
	Enabling alarms and events 20-3
	Groups supported 20-2
	Overview 20-1
	Statistics
	Collecting group Ethernet 20-6
	Collecting group history 20-5
	Support for 1-7

Root guard	Described 14-10
	Enabling 14-16
	Support for 1-5

Root switch, STP	13-14
Route calculation timers, OSPF	26-36
Routed packets, ACLs on	23-37
Routed ports	Configuring 26-4
	Defined 9-3
	In switch clusters 6-9
	IP addresses on 9-16, 26-4
Router ACLs	23-2
Router ID, OSPF	26-37
Route summarization, OSPF	26-35
routing
  default 26-2
  dynamic 26-3
  redistribution of information 26-49
  static 26-2
Routing Information Protocol
  See RIP
routing protocol administrative distances 26-47
RPS LED 3-7
RSPAN
  and stack changes 19-9
  configuration guidelines 19-15
  default configuration 19-10
  destination ports 19-7
  displaying status 19-20
  in a switch stack 19-2
  interaction with other features 19-8
  monitored ports 19-6
  monitoring ports 19-7
  overview 1-7, 19-1
  received traffic 19-5
  session limits 19-10
  sessions
    creating 19-16
    defined 19-3
    limiting source traffic to specific VLANs 19-19
    specifying monitored ports 19-16
  source ports 19-6
  transmitted traffic 19-5
  VLAN-based 19-6
  running configuration, saving 4-10
SDM
  described 31-13
  templates
    configuring 31-14
    number of 31-13
  secure MAC addresses, and switch stacks 16-12
  secure ports
    and switch stacks 16-12
    configuring 16-7
  security, port 16-7
  security features 1-5
  sequence numbers in log messages 21-8
  server mode, VTP 11-3
  set-request operation 22-4
  setup program, failed command switch replacement 31-9, 31-11
  severity levels, defining in system messages 21-9
SFPs
  numbering of 9-7
  security and identification 31-15
  shaped round robin
  See SRR
  show access-lists hw-summary command 23-20
  show and more command output, filtering 2-9
  show cdp traffic command 17-5
  show cluster members command 6-24
  show configuration command 9-15
  show forward command 31-21
  show interfaces command 9-13, 9-15
  show platform forward command 31-21
  show running-config command
    displaying ACLs 23-18, 23-28, 23-31
    interface description in 9-15
  shutdown command on interfaces 9-20
Simple Network Management Protocol
  See SNMP
SNAP 17-1
SNMP
   accessing MIB variables with   22-4
      agent
         described  22-3
         disabling  22-6
   community strings
      configuring  22-6
         for cluster switches  22-4
      overview  22-3
   configuration examples  22-11
   default configuration  22-5
   in-band management  1-4
   in clusters  6-15
   informs
      and trap keyword  22-7
         described  22-4
         differences from traps  22-5
         enabling  22-9
   limiting access by TFTP servers  22-10
   limiting system log messages to NMS  21-10
   manager functions  1-3, 22-3
   managing clusters with  6-25
   MIBs
      location of  A-3
         supported  A-1
      notifications  22-4
      overview  22-1, 22-4
      status, displaying  22-11
   system contact and location  22-9
   trap manager, configuring  22-8
   traps
      described  22-3, 22-4
      differences from informs  22-5
      enabling  22-7
      enabling MAC address notification  7-55
      overview  22-1, 22-4
   types of  22-7
   versions supported  22-2
   snooping, IGMP  15-2
   software compatibility
      See stacks, switch
   software images
      location in Flash  B-21
      recovery procedures  31-2
      scheduling reloads  4-17
      tar file format, described  B-22
      See also downloading and uploading
   source addresses, in ACLs  23-10
   source-and-destination-IP address based forwarding, EtherChannel  25-7
   source-and-destination MAC address forwarding, EtherChannel  25-6
   source-IP address based forwarding, EtherChannel  25-7
   source-MAC address forwarding, EtherChannel  25-6
   SPAN
      and stack changes  19-9
      configuration guidelines  19-10
      default configuration  19-10
      destination ports  19-7
      displaying status  19-20
      interaction with other features  19-8
      monitored ports  19-6
      monitoring ports  19-7
      overview  1-7, 19-1
      received traffic  19-5
      session limits  19-10
      sessions
         creating  19-11
            defined  19-3
            limiting source traffic to specific VLANs  19-14
            removing destination (monitoring) ports  19-13
            specifying monitored ports  19-11
            source ports  19-6
            transmitted traffic  19-5
            VLAN-based  19-6
      spanning tree and native VLANs  10-19
      Spanning Tree Protocol
         See STP
speed, configuring on interfaces 9-12
split horizon
IGRP 26-29
RIP 26-23
SRR
configuring
  shaped weights on egress queues 24-52
  shared weights on egress queues 24-53
  shared weights on ingress queues 24-46
described 24-12
shaped mode 24-12
shared mode 24-12
support for 1-6
stack changes, effects on
cross-stack EtherChannel 25-10
EtherChannel 25-8
fallback bridging 30-3
multicast routing 28-8
port-based authentication 8-5
STP 13-11
system message log 21-2
stack master
  bridge ID (MAC address) 5-5
defined 5-1
election 5-5
re-election 5-5
See also stacks, switch
stack member
  accessing CLI of specific member 5-14
configuring 5-13
    member number 5-13
    priority value 5-14
defined 5-1
displaying information of 5-14
hot-swappable 5-9
number 5-6
priority value 5-7
See also stacks, switch
stack member number 9-7
stack protocol version 5-7
stacks, switch
  accessing CLI of specific member 5-14
  assigning information 5-13
    member number 5-13
    priority value 5-14
  benefits 1-2
  bridge ID 5-5
  CDP considerations 17-2
  compatibility, software 5-7
  configuration file 5-8
  configuration scenarios 5-11
  default configuration 5-13
  default settings 5-13
description of 5-1
displaying information of 5-14
hot-swappable 5-9
HSRP considerations 27-2
in clusters 6-15
MAC address considerations 7-54
management connectivity 5-10
managing 5-1
membership 5-3
merged 5-3
multicast routing, stack master and member roles 28-8
partitioned 5-3, 31-8
See also stack master and stack member
software compatibility 5-7
software image version 5-8
stack protocol version 5-7
STP
  bridge ID 13-2
  root port selection 13-3
  stack root switch election 13-3
  supported spanning-tree instances 13-9
system messages
  hostnames in the display 21-1
  remotely monitoring 21-2
  system prompt consideration 7-47
Index

stacks, switch (continued)
  system-wide configuration considerations  5-9
  upgrading  B-35
StackWise technology, Cisco  1-2
  See also stacks, switch
Standby Command Configuration window  6-22
standby command switch
  configuring  6-21
  considerations  6-12
  defined  6-2
  priority  6-11
  requirements  6-3
  virtual IP address  6-12
  See also cluster standby group and HSRP
standby group, cluster
  See cluster standby group and HSRP
standby ip command  27-4
standby router  27-1
standby timers, HSRP  27-8
startup configuration
  booting
    manually  4-13
    specific image  4-14
  clearing  B-20
  configuration file
    automatically downloading  4-12
    specifying the filename  4-13
  default boot configuration  4-12
static access mode  3-9
static access ports
  assigning to VLAN  10-11
  defined  9-3, 10-3
static addresses
  See addresses
static IP routing  1-7
static MAC addressing  1-5
static routes, configuring  26-47
static routing  26-2
static VLAN membership  10-2
statistics
  802.1X  8-14
  CDP  17-5
  interface  9-19
  IP multicast routing  28-51
  OSPF  26-38
  QoS ingress and egress  24-55
  RMON group Ethernet  20-6
  RMON group history  20-5
  SNMP input and output  22-11
  VTP  11-16
status bar
  change notification  3-30
  error notification  3-30
storm control
  configuring  16-3
  described  16-1
  displaying  16-12
  support for  1-3
  thresholds  16-1
STP
  802.1D and bridge ID  13-5
  802.1D and multicast addresses  13-9
  802.1T and VLAN identifier  13-5
  accelerating root port selection  14-4
  BackboneFast
    described  14-8
    enabling  14-15
  BPDU filtering
    described  14-3
    enabling  14-14
  BPDU guard
    described  14-3
    enabling  14-13
  BPDU message exchange  13-2
  configuration guidelines  13-13
STP (continued)
configuring
  disable 13-14
  forward-delay time 13-20
  hello time 13-19
  maximum aging time 13-21
  path cost 13-17
  port priority 13-16
  root switch 13-14
  secondary root switch 13-15
  switch priority 13-19
cross-stack UplinkFast
  described 14-5
  enabling 14-15
default configuration 13-12
default optional feature configuration 14-12
designated port, defined 13-3
designated switch, defined 13-3
detecting indirect link failures 14-8
displaying status 13-21
extended system ID
  affects on root switch 13-14
  affects on the secondary root switch 13-15
  overview 13-5
  unexpected behavior 13-14
features supported 1-4
inferior BPDU 13-3
interface state, blocking to forwarding 14-2
interface states
  blocking 13-8
  disabled 13-9
  forwarding 13-7, 13-8
  learning 13-8
  listening 13-8
  overview 13-6
limitations with 802.1Q trunks 13-9

STP (continued)
load sharing
  overview 10-24
  using path costs 10-26
  using port priorities 10-24
loop guard
  described 14-11
  enabling 14-17
multicast addresses, affect of 13-9
optional features supported 1-5
overview 13-2
path costs 10-26, 10-27
Port Fast
  described 14-2
  enabling 14-12
port priorities 10-25
preventing root switch selection 14-10
redundant connectivity 13-10
root guard
  described 14-10
  enabling 14-16
root port, defined 13-3
root port selection on a switch stack 13-3
root switch
  affects of extended system ID 13-5, 13-14
  configuring 13-14
  election 13-4
  unexpected behavior 13-14
shutdown Port Fast-enabled port 14-3
stack changes, effects of 13-11
superior BPDU 13-3
supported number of spanning-tree instances 13-9
timers, described 13-5
UplinkFast
  described 14-4
  enabling 14-15
VLAN-bridge 13-10
stratum, NTP 7-33
stub areas, OSPF 26-34
subnet mask 26-6
subnet zero 26-7
success response, VMPS 10-28
summer time 7-45
SunNet Manager 1-3
supernet 26-7
SVIs
  and IP unicast routing 26-4
  and router ACLs 23-2
  connecting VLANs 9-5
defined 9-4
  routing between VLANs 10-2
switch clustering technology 6-1
  See also clusters, switch 1-2
  See clusters, switch
switch console port 1-4
Switch Database Management
  See SDM
switched packets, ACLs on 23-35
switched ports 9-2
Switch Manager 3-31
switchport block multicast command 16-6
switchport block unicast command 16-6
switchport command 9-11
switchport protected command 16-5
switch priority, STP 13-19
switch software features 1-1
switch virtual interface
  See SVI
syslog
  See system message logging
system clock
  configuring
    daylight saving time 7-45
    manually 7-43
    summer time 7-45
    time zones 7-44
  system clock (continued)
    displaying the time and date 7-43
    overview 7-33
    See also NTP
system message logging
  default configuration 21-4
  defining error message severity levels 21-9
disabling 21-4
displaying the configuration 21-13
  enabling 21-5
  facility keywords, described 21-13
  level keywords, described 21-10
  limiting messages 21-10
message format 21-2
  overview 21-1
  sequence numbers, enabling and disabling 21-8
  setting the display destination device 21-2
  stack changes, effects of 21-2
  synchronizing log messages 21-6
syslog facility 1-7
timestamps, enabling and disabling 21-8
UNIX syslog servers
  configuring the daemon 21-11
  configuring the logging facility 21-12
  facilities supported 21-13
system messages on CMS 3-17
system name
  default configuration 7-47
  default setting 7-47
  manual configuration 7-47
  See also DNS
system prompt
  default setting 7-47
  manual configuration 7-48
system resources, optimizing 31-13
system routes, IGRP 26-25
T
tables, CMS  3-27
tabs, CMS  3-27
TAC
  inquiries  xxxiii
toll-free telephone numbers  xxxiv
website  xxxiii
TACACS+
  accounting, defined  7-11
  authentication, defined  7-11
  authorization, defined  7-11
  configuring
    accounting  7-17
    authentication key  7-13
    authorization  7-16
    login authentication  7-14
  default configuration  7-13
  displaying the configuration  7-17
  identifying the server  7-13
  in clusters  6-17
  limiting the services to the user  7-16
  operation of  7-12
  overview  7-10
  support for  1-6
  tracking services accessed by user  7-17
tar files
  creating  B-6
  displaying the contents of  B-7
  extracting  B-8
  image file format  B-22
technical assistance
  Cisco.com  xxxii
  TAC  xxxiii
  TAC website  xxxiii
  toll-free telephone numbers  xxxiv
Telnet
  accessing management interfaces  2-10
  from a browser  2-10
  number of connections  1-4
  setting a password  7-6
Terminal Access Controller Access Control System Plus
  See TACACS+
terminal lines, setting a password  7-6
TFTP
  configuration files
    downloading  B-12
    preparing the server  B-11
    uploading  B-12
  configuration files in base directory  4-6
  configuring for autoconfiguration  4-5
  image files
    deleting  B-25
    downloading  B-24
    preparing the server  B-23
    uploading  B-25
  limiting access by servers  22-10
TFTP server  1-3
threshold, traffic level  16-2
time
  See NTP and system clock
time-range command  23-14
time ranges in ACLs  23-14
timestamps in log messages  21-8
time zones  7-44
Token Ring VLANs
  support for  10-5
  VTP support  11-4
toolbar  3-18
tool tips  3-24
Topology view
  collapsed cluster view 3-11
described 3-2, 3-9
device icons 3-13
device information 3-12
display options 3-14
expanded cluster view 3-10
expanded stack view 3-11
icons 3-12
link information 3-12
multiple links 3-21
neighboring devices 3-12
pop-up menus 3-20
TOS 1-6
traceroute command 31-18
  See also IP traceroute
traffic
  blocking flooded 16-6
  fragmented 23-4
  unfragmented 23-4
traffic policing 1-6
traffic suppression 16-1
transparent mode, VTP 11-3, 11-12
trap-door mechanism 4-2
traps
  configuring MAC address notification 7-55
  configuring managers 22-7
  defined 22-3
  enabling 7-55, 22-7
  notification types 22-7
  overview 22-1, 22-4
troubleshooting
  connectivity problems 31-16
detecting unidirectional links 18-1
determining packet forwarding 31-21
displaying crash information 31-23
PIMv1 and PIMv2 interoperability problems 28-23
SFP security and identification 31-15
show forward command 31-21
troubleshooting (continued)
  with CiscoWorks 22-4
  with debug commands 31-19
  with ping 31-16
  with system message logging 21-1
  with traceroute 31-17
trunking encapsulation 1-5
trunk ports
  configuring 10-20
  defined 9-3, 10-3
  encapsulation 10-20, 10-25, 10-27
trunks
  allowed-VLAN list 10-21
  configuring 10-20, 10-25, 10-27
ISL 10-16
load sharing
  setting STP path costs 10-26
  using STP port priorities 10-24, 10-25
native VLAN for untagged traffic 10-23
parallel 10-26
pruning-eligible list 10-22
to non-DTP device 10-17
understanding 10-17
trusted port states
  between QoS domains 24-26
  classification options 24-5
  support for 1-6
  within a QoS domain 24-23
 twisted-pair Ethernet, detecting unidirectional links 18-1
  type-of-service
  See TOS
U
UDLD
  default configuration 18-3
  echoing detection mechanism 18-2
UDLD (continued)
  enabling
    globally 18-4
    per interface 18-4
  link-detection mechanism 18-1
  neighbor database 18-2
  overview 18-1
  resetting an interface 18-5
  status, displaying 18-5
  support for 1-4
UDP, configuring 26-16
unauthorized ports with 802.1X 8-4
unequal-cost load balancing, IGRP 26-26
unicast storm control command 16-3
unicast storms 16-1
unicast traffic, blocking 16-6
UniDirectional Link Detection protocol
  See UDLD
UNIX syslog servers
  daemon configuration 21-11
  facilities supported 21-13
  message logging configuration 21-12
unrecognized Type-Length-Value (TLV) support 11-4
upgrading software images
  See downloading
UplinkFast
  described 14-4
  enabling 14-15
  support for 1-4
uploading
  configuration files
    preparing B-11, B-14, B-17
    reasons for B-9
    using FTP B-16
    using RCP B-19
    using TFTP B-12
uploading (continued)
  image files
    preparing B-23, B-26, B-30
    reasons for B-21
    using FTP B-29
    using RCP B-34
    using TFTP B-25
User Datagram Protocol
  See UDP
user EXEC mode 2-2
username-based authentication 7-7

\section*{V}

verifying changes in CMS 3-30
version-dependent transparent mode 11-4
version mismatch (VM) mode 5-8
virtual IP address
  cluster standby group 6-12, 6-21
  command switch 6-12, 6-21
  See also IP addresses
virtual router 27-1, 27-2
vlan.dat file 10-4
VLAN ACLs
  See VLAN maps
vlan-assignment response, VMPS 10-28
VLAN configuration
  at bootup 10-7
  saving 10-7
VLAN configuration mode 2-2, 10-6
VLAN database
  and startup configuration file 10-7
  and VTP 11-1
  VLAN configuration saved in 10-7
  VLANs saved in 10-4
vlan database command 10-6
vlan global configuration command 10-6
VLAN management domain 11-2
VLAN Management Policy Server
   See VMPS
VLAN map entries, order of 23-26
VLAN maps
   applying 23-31
   common uses for 23-31
   configuration example 23-32
   configuration guidelines 23-26
   configuring 23-25
   creating 23-28
   defined 23-2
   denying access example 23-33
   denying and permitting packets 23-28
   displaying 23-39
   examples 23-33
   support for 1-5
   usage 23-3
   with router ACLs 23-39
VLAN membership
   confirming 10-31
   modes 3-8, 10-3
VLAN Query Protocol
   See VQP
VLANs
   adding 10-8
   adding to VLAN database 10-8
   aging dynamic addresses 13-11
   allowed on trunk 10-21
   and spanning-tree instances 10-3, 10-13
   configuration guidelines, normal-range VLANs 10-5
   configuration options 10-6
   configuring 10-1
   configuring IDs 1006 to 4094 10-12
   connecting through SVIs 9-5
   creating in config-vlan mode 10-8
   creating in VLAN configuration mode 10-9
   default configuration 10-7
   deleting 10-10
   described 9-2, 10-1
VLANs (continued)
   displaying 10-15
   extended-range 10-1, 10-12
   features 1-5
   illustrated 10-2
   internal 10-13
   in the switch stack 10-6
   limiting source traffic with RSPAN 19-19
   limiting source traffic with SPAN 19-14
   modifying 10-8
   native, configuring 10-23
   normal-range 10-1, 10-4
   number supported 1-5
   parameters 10-4
   port membership modes 3-8, 10-3
   static-access ports 10-11
   STP and 802.1Q trunks 13-9
   supported 10-2
   Token Ring 10-5
   traffic between 10-2
   VLAN-bridge STP 13-10, 30-2
   VTP modes 11-3
VLAN Trunking Protocol
   See VTP
VLAN trunks 10-16, 10-17
VMPS
   administering 10-32
   configuration example 10-33
   configuration guidelines 10-29
   default configuration 10-29
   description 10-28
   dynamic port membership
      described 10-29
      reconfirming 10-32
      troubleshooting 10-33
   entering server address 10-30
   mapping MAC addresses to VLANs 10-28
   monitoring 10-32
   reconfirmation interval, changing 10-32
<table>
<thead>
<tr>
<th><strong>VMPS (continued)</strong></th>
<th><strong>VTP (continued)</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>reconfirming membership</td>
<td>configuring</td>
</tr>
<tr>
<td>retry count, changing</td>
<td>client mode 11-11</td>
</tr>
<tr>
<td></td>
<td>server mode 11-9</td>
</tr>
<tr>
<td>voice-over-IP 12-1</td>
<td>transparent mode 11-12</td>
</tr>
<tr>
<td>voice VLAN</td>
<td>consistency checks 11-4</td>
</tr>
<tr>
<td></td>
<td>default configuration 11-7</td>
</tr>
<tr>
<td></td>
<td>described 11-1</td>
</tr>
<tr>
<td></td>
<td>disabling 11-12</td>
</tr>
<tr>
<td></td>
<td>domain names 11-8</td>
</tr>
<tr>
<td></td>
<td>domains 11-2</td>
</tr>
<tr>
<td></td>
<td>modes</td>
</tr>
<tr>
<td></td>
<td>client 11-3, 11-11</td>
</tr>
<tr>
<td></td>
<td>server 11-3, 11-9</td>
</tr>
<tr>
<td></td>
<td>transitions 11-3</td>
</tr>
<tr>
<td></td>
<td>transparent 11-3, 11-12</td>
</tr>
<tr>
<td></td>
<td>monitoring 11-16</td>
</tr>
<tr>
<td></td>
<td>passwords 11-8</td>
</tr>
<tr>
<td></td>
<td>pruning</td>
</tr>
<tr>
<td></td>
<td>disabling 11-14</td>
</tr>
<tr>
<td></td>
<td>enabling 11-14</td>
</tr>
<tr>
<td></td>
<td>examples 11-5</td>
</tr>
<tr>
<td></td>
<td>overview 11-4</td>
</tr>
<tr>
<td></td>
<td>support for 1-5</td>
</tr>
<tr>
<td></td>
<td>pruning-eligible list, changing 10-22</td>
</tr>
<tr>
<td></td>
<td>server mode, configuring 11-9</td>
</tr>
<tr>
<td></td>
<td>statistics 11-16</td>
</tr>
<tr>
<td></td>
<td>support for 1-5</td>
</tr>
<tr>
<td></td>
<td>Token Ring support 11-4</td>
</tr>
<tr>
<td></td>
<td>transparent mode, configuring 11-12</td>
</tr>
<tr>
<td></td>
<td>using 11-1</td>
</tr>
<tr>
<td></td>
<td>version, guidelines 11-9</td>
</tr>
<tr>
<td></td>
<td>version 1 11-4</td>
</tr>
<tr>
<td></td>
<td>version 2</td>
</tr>
<tr>
<td></td>
<td>configuration guidelines 11-9</td>
</tr>
<tr>
<td></td>
<td>disabling 11-13</td>
</tr>
<tr>
<td></td>
<td>enabling 11-13</td>
</tr>
<tr>
<td></td>
<td>overview 11-4</td>
</tr>
</tbody>
</table>

VQP 1-5, 10-28

VTP

adding a client to a domain 11-15
advertisements 10-19, 11-3
and extended-range VLANs 11-2
and normal-range VLANs 11-2
client mode, configuring 11-11
configuration
  global configuration mode 11-7
  guidelines 11-8
  privileged EXEC mode 11-7
  requirements 11-9
  saving 11-7
VLAN configuration mode 11-8
configuration mode options 11-7
configuration requirements 11-9
configuration revision number
  guideline 11-15
  resetting 11-15

retry count, changing 10-32
reconfirming membership 10-31
voice VLAN
Cisco 7960 phone, port connections 12-1
configuration guidelines 12-3
configuring IP phones for data traffic
  override CoS of incoming frame 12-5
  trust CoS priority of incoming frame 12-5
configuring ports for voice traffic in
  802.1P priority tagged frames 12-5
  802.1Q frames 12-4
connecting to an IP phone 12-4
default configuration 12-3
described 12-1
displaying 12-6

VMPS (continued)

VTP (continued)
web-based management software
  See CMS
weighted tail drop
  See WTD
window components, CMS  3-26
wizards  1-2, 3-24
WTD
  described  24-11
  setting thresholds
    egress queue-sets  24-48
    ingress queues  24-44
  support for  1-6

X

XMODEM protocol  31-2