THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED "AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: http://www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

© 2013 Cisco Systems, Inc. All rights reserved.
CONTENTS

Preface lix

Document Conventions lix
Related Documentation lxi
Obtaining Documentation and Submitting a Service Request lxi

CHAPTER 1

Using the Command-Line Interface 1

Information About Using the Command-Line Interface 1

Command Modes 1
Understanding Abbreviated Commands 3
No and Default Forms of Commands 3
CLI Error Messages 4
Configuration Logging 4
Using the Help System 4

How to Use the CLI to Configure Features 6

Configuring the Command History 6

Changing the Command History Buffer Size 6
Recalling Commands 6
Disabling the Command History Feature 7

Enabling and Disabling Editing Features 7

Editing Commands Through Keystrokes 8
Editing Command Lines That Wrap 9

Searching and Filtering Output of show and more Commands 10

Accessing the CLI on a Switch Stack 11
Accessing the CLI Through a Console Connection or Through Telnet 11

PART I

EnergyWise 13
CHAPTER 2 Configuring EnergyWise

Finding Feature Information 15

Prerequisites for Configuring EnergyWise 15

Prerequisites for Activity Check 15

Prerequisites for Wake on LAN 16

Prerequisites for Hibernation 16

Restrictions for Configuring EnergyWise 17

Information About Configuring EnergyWise 18

Cisco EnergyWise Network 18

EnergyWise Domain 19

Power Level Energy Management 19

Hibernation 20

Attributes 21

Security 22

Recurrences 23

Time Format and Time Zone 23

Day of the Month and Day of the Week Recurrences 23

Queries 24

Activity Check 25

Wake on LAN 26

WoL with Cisco EnergyWise 26

Configuration Guidelines 27

Enabling Cisco EnergyWise and Powering Devices 27

PoE and EnergyWise Interactions 27

CLI Compatibility 28

How to Configure EnergyWise 29

Enabling Cisco EnergyWise 29

Configuring Domain Member or Endpoint Attributes 31

Powering the PoE Port 34

Configuring Port Attributes 35

Configuring Recurrences 38

Using Queries to Manage Power in the Domain 41

Hibernating Immediately 43

Configuring Hibernation Start and End Times 44
Configuring Activity Check 47
Testing Activity Check 48
Using WoL with a MAC Address 48
Using WoL Without a MAC Address 49
Monitoring and Troubleshooting EnergyWise 49
Monitoring EnergyWise 49
Verifying Power Usage 50
Detecting Communication Failures 50
Disabling EnergyWise 51
Configuration Examples for EnergyWise 53
Examples: Setting the Domain 53
Examples: Manually Managing Power 53
Examples: Automatically Managing Power 54
Examples: Querying to Analyze Domains 56
Examples: Querying with the Name Attribute 56
Examples: Querying with Keywords 56
Examples: Querying to Set Power Levels 57
Example: Hibernating a Switch 58
Examples: Activity Check 58
Additional References 59
Feature Information for EnergyWise 60

PART II

IGMP Snooping 63

CHAPTER 3

Configuring IGMP Snooping 65
Finding Feature Information 65
Restrictions for IGMP Snooping 65
Information About IGMP Snooping 66
IGMP Snooping 66
IGMP Versions 66
Joining a Multicast Group 67
Leaving a Multicast Group 69
Immediate Leave 69
IGMP Configurable-Leave Timer 69
IGMP Report Suppression 70
Example: Applying IGMP Profile 101
Example: Setting the Maximum Number of IGMP Groups 102
Where to Go Next for IGMP Snooping 102
Additional References 102
Feature History and Information for IGMP Snooping 103

CHAPTER 4
Configuring Multicast VLAN Registration 105
Finding Feature Information 105
Prerequisites for MVR 105
Restrictions for MVR 106
Information About Multicast VLAN Registration 106
 MVR and IGMP 107
 Modes of Operation 107
 MVR and Switch Stacks 107
 MVR in a Multicast Television Application 107
 Default MVR Configuration 109
How to Configure MVR 109
 Configuring MVR Global Parameters 109
 Configuring MVR Interfaces 112
Monitoring MVR 115
Configuration Examples for MVR 115
 Example: Configuring MVR Global Parameters 115
 Example: Configuring MVR Interfaces 116
Where to Go Next for MVR 116
Additional References 116
Feature History and Information for MVR 117

PART III
Interface and Hardware 119

CHAPTER 5
Configuring Interface Characteristics 121
Finding Feature Information 121
Information About Configuring Interface Characteristics 121
 Interface Types 121
 Port-Based VLANs 122
 Switch Ports 122
Access Ports 122
Trunk Ports 123
Switch Virtual Interfaces 123
SVI Autostate Exclude 123
EtherChannel Port Groups 124
Power over Ethernet Ports 124
Using the Switch USB Ports 124
USB Mini-Type B Console Port 125
Console Port Change Logs 125
USB Type A Ports 125
Interface Connections 126
Interface Configuration Mode 126
Default Ethernet Interface Configuration 127
Interface Speed and Duplex Mode 128
Speed and Duplex Configuration Guidelines 129
IEEE 802.3x Flow Control 129
How to Configure Interface Characteristics 130
Configuring Interfaces 130
Adding a Description for an Interface 131
Configuring a Range of Interfaces 132
Configuring and Using Interface Range Macros 134
Configuring Ethernet Interfaces 135
 Setting the Interface Speed and Duplex Parameters 135
Configuring IEEE 802.3x Flow Control 137
Configuring SVI Autostate Exclude 138
Shutting Down and Restarting the Interface 140
Configuring the Console Media Type 141
Configuring the USB Inactivity Timeout 142
Monitoring Interface Characteristics 144
 Monitoring Interface Status 144
 Clearing and Resetting Interfaces and Counters 145
Configuration Examples for Interface Characteristics 145
 Adding a Description to an Interface: Example 145
 Configuring a Range of Interfaces: Examples 145
 Configuring and Using Interface Range Macros: Examples 146
CHAPTER 6 Configuring Auto-MDIX 151
Prerequisites for Auto-MDIX 151
Restrictions for Auto-MDIX 151
Information about Configuring Auto-MDIX 151
Auto-MDIX on an Interface 151
How to Configure Auto-MDIX 152
Configuring Auto-MDIX on an Interface 152
Example for Configuring Auto-MDIX 153
Additional References 154
Feature History and Information for Auto-MDIX 154

CHAPTER 7 Configuring Ethernet Management Port 157
Finding Feature Information 157
Prerequisites for Ethernet Management Ports 157
Information about the Ethernet Management Port 157
Ethernet Management Port Direct Connection to a Switch 158
Ethernet Management Port Connection to Stack Switches using a Hub 158
Supported Features on the Ethernet Management Port 158
How to Configure the Ethernet Management Port 159
Disabling and Enabling the Ethernet Management Port 159
Additional References 160
Feature Information for Ethernet Management Ports 161

CHAPTER 8 Configuring LLDP, LLDP-MED, and Wired Location Service 163
Finding Feature Information 163
LLDP, LLDP-MED, and Wired Location Service Overview 163
LLDP 163
LLDP Supported TLVs 164
LLDP and Cisco Switch Stacks 164
CHAPTER 11

Configuring EEE 205

Finding Feature Information 205

Information About EEE 205

EEE Overview 205

Default EEE Configuration 206

Restrictions for EEE 206

How to Configure EEE 206

Enabling or Disabling EEE 206

Monitoring EEE 207

Configuration Examples for Configuring EEE 208

Additional References 208

Feature History and Information for Configuring EEE 209

PART IV

IPv6 211

CHAPTER 12

Configuring MLD Snooping 213

Finding Feature Information 213
CHAPTER 14 Configuring IPv6 ACL 243

Finding Feature Information 243

Information About Configuring IPv6 ACLs 243

Understanding IPv6 ACLs 243

Supported ACL Features 244

IPv6 ACL Limitations 244

Configuring IPv6 ACLs 245

Default IPv6 ACL Configuration 246

Interaction with Other Features and Switches 246

Creating IPv6 ACL 246

Applying an IPv6 ACL to an Interface 250

Displaying IPv6 ACLs 250

Configuration Examples for IPv6 ACL 251

Example: Creating IPv6 ACL 251

Example: Applying IPv6 ACLs 251

Example: Displaying IPv6 ACLs 251
Contents

PART V Layer 2 253

CHAPTER 15 Configuring Spanning Tree Protocol 255

Finding Feature Information 255
Restrictions for STP 255
Information About Spanning Tree Protocol 256

Spanning Tree Protocol 256

Spanning-Tree Topology and BPDUs 257
Bridge ID, Device Priority, and Extended System ID 258
Port Priority Versus Path Cost 259
Spanning-Tree Interface States 260

Blocking State 261
Listening State 262
Learning State 262
Forwarding State 262
Disabled State 262

How a Switch or Port Becomes the Root Switch or Root Port 263

Spanning Tree and Redundant Connectivity 263
Spanning-Tree Address Management 264
Accelerated Aging to Retain Connectivity 264

Spanning-Tree Modes and Protocols 265
Supported Spanning-Tree Instances 265

Spanning-Tree Interoperability and Backward Compatibility 266

STP and IEEE 802.1Q Trunks 266
VLAN-Bridge Spanning Tree 266

Spanning Tree and Switch Stacks 267

Default Spanning-Tree Configuration 267

How to Configure Spanning-Tree Features 268

Changing the Spanning-Tree Mode 268
Disabling Spanning Tree 270
Configuring the Root Switch 271
Configuring a Secondary Root Device 273

Configuring Port Priority 274
Configuring Path Cost 275
CHAPTER 16

Configuring Multiple Spanning-Tree Protocol 285

Finding Feature Information 285
Prerequisites for MSTP 285
Restrictions for MSTP 286
Information About MSTP 287
MSTP Configuration 287
MSTP Configuration Guidelines 287
Root Switch 288
Multiple Spanning-Tree Regions 289
IST, CIST, and CST 289
Operations Within an MST Region 290
Operations Between MST Regions 290
IEEE 802.1s Terminology 291
Illustration of MST Regions 292
Hop Count 292
Boundary Ports 293
IEEE 802.1s Implementation 293
Port Role Naming Change 294
Interoperation Between Legacy and Standard Switches 294
Detecting Unidirectional Link Failure 295
MSTP and Switch Stacks 295
Interoperability with IEEE 802.1D STP 296
RSTP Overview 296
Port Roles and the Active Topology 296
Rapid Convergence 297
Synchronization of Port Roles 298
Bridge Protocol Data Unit Format and Processing 299
Restrictions for EtherChannels 367
Information About EtherChannels 368
EtherChannel Overview 368
VTetherChannel Modes 369
EtherChannel on Switches 370
EtherChannel Link Failover 371
Channel Groups and Port-Channel Interfaces 371
Port Aggregation Protocol 372
PAgP Modes 373
Silent Mode 374
PAgP Learn Method and Priority 374
PAgP Interaction with Virtual Switches and Dual-Active Detection 375
PAgP Interaction with Other Features 375
Link Aggregation Control Protocol 376
LACP Modes 376
LACP Interaction with Other Features 377
EtherChannel On Mode 377
Load-Balancing and Forwarding Methods 377
MAC Address Forwarding 378
IP Address Forwarding 378
Load-Balancing Advantages 379
EtherChannel Load Deferral Overview 380
EtherChannel and Switch Stacks 381
Switch Stack and PAgP 381
Switch Stacks and LACP 381
Default EtherChannel Configuration 381
EtherChannel Configuration Guidelines 383
Layer 2 EtherChannel Configuration Guidelines 384
Auto-LAG 385
Auto-LAG Configuration Guidelines 386
How to Configure EtherChannels 387
Configuring Layer 2 EtherChannels 387
Configuring EtherChannel Load-Balancing 389
Configuring Port Channel Load Deferral 390
Configuring the PAgP Learn Method and Priority 392
Configuring LACP Hot-Standby Ports 394
Configuring the LACP System Priority 394
Configuring the LACP Port Priority 395
Configuring the LACP Port Channel Min-Links Feature 397
Configuring LACP Fast Rate Timer 398
Configuring Auto-LAG Globally 400
Configuring Auto-LAG on a Port Interface 401
Configuring Persistence with Auto-LAG 402
Monitoring EtherChannel, PAgP, and LACP Status 403
Configuration Examples for Configuring EtherChannels 404
 Configuring Layer 2 EtherChannels: Examples 404
 Example: Configuring Port Channel Load Deferral 405
 Configuring Auto LAG: Examples 405
 Configuring LACP Port Channel Min-Links: Examples 406
 Example: Configuring LACP Fast Rate Timer 407
Additional References for EtherChannels 407
Feature Information for EtherChannels 409

CHAPTER 19
Configuring Link-State Tracking 411
Finding Feature Information 411
Restrictions for Configuring Link-State Tracking 411
Understanding Link-State Tracking 412
How to Configure Link-State Tracking 415
Monitoring Link-State Tracking 416
Configuring Link-State Tracking: Example 416
Additional References for Link-State Tracking 417
Feature Information for Link-State Tracking 418

CHAPTER 20
Configuring Flex Links and the MAC Address-Table Move Update Feature 419
Finding Feature Information 419
Restrictions for Configuring Flex Links and MAC Address-Table Move Update 419
Information About Flex Links and MAC Address-Table Move Update 420
 Flex Links 420
 Flex Links Configuration 421
 VLAN Flex Links Load Balancing and Support 421
Configuring UniDirectional Link Detection 441
Finding Feature Information 441
Restrictions for Configuring UDLD 441
Information About UDLD 442
Modes of Operation 442
Normal Mode 442
Aggressive Mode 443
Methods to Detect Unidirectional Links 443
Neighbor Database Maintenance 443
Event-Driven Detection and Echoing 444
Monitoring NetFlow Lite 477
Configuration Examples for NetFlow Lite 478
 Example: Configuring a Flow 478
Additional References 479
Feature History and Information for NetFlow Lite 480

PART VII
Network Management 481

CHAPTER 23
 Configuring Cisco IOS Configuration Engine 483
 Finding Feature Information 483
 Prerequisites for Configuring the Configuration Engine 483
 Restrictions for Configuring the Configuration Engine 484
 Information About Configuring the Configuration Engine 484
 Cisco Configuration Engine Software 484
 Configuration Service 485
 Event Service 486
 NameSpace Mapper 486
 Cisco Networking Services IDs and Device Hostnames 486
 ConfigID 486
 DeviceID 487
 Hostname and DeviceID 487
 Hostname, DeviceID, and ConfigID 487
 Cisco IOS CNS Agents 488
 Initial Configuration 488
 Incremental (Partial) Configuration 489
 Synchronized Configuration 489
 Automated CNS Configuration 489
 How to Configure the Configuration Engine 490
 Enabling the CNS Event Agent 490
 Enabling the Cisco IOS CNS Agent 492
 Enabling an Initial Configuration for Cisco IOS CNS Agent 494
 Refreshing DeviceIDs 499
 Enabling a Partial Configuration for Cisco IOS CNS Agent 501
 Monitoring CNS Configurations 503
 Additional References 504
Feature History and Information for the Configuration Engine 505

CHAPTER 24
Configuring the Cisco Discovery Protocol 507
Finding Feature Information 507
Information About CDP 507
 CDP Overview 507
 CDP and Stacks 508
 Default CDP Configuration 508
How to Configure CDP 508
 Configuring CDP Characteristics 508
 Disabling CDP 510
 Enabling CDP 512
 Disabling CDP on an Interface 513
 Enabling CDP on an Interface 515
Monitoring and Maintaining CDP 517
Additional References 518
Feature History and Information for Cisco Discovery Protocol 519

CHAPTER 25
Configuring Simple Network Management Protocol 521
Finding Feature Information 521
Prerequisites for SNMP 521
Restrictions for SNMP 524
Information About SNMP 524
 SNMP Overview 524
 SNMP Manager Functions 524
 SNMP Agent Functions 525
 SNMP Community Strings 525
 SNMP MIB Variables Access 525
 SNMP Notifications 526
 SNMP ifIndex MIB Object Values 526
 Default SNMP Configuration 527
 SNMP Configuration Guidelines 527
How to Configure SNMP 528
 Disabling the SNMP Agent 528
 Configuring Community Strings 530
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring a VLAN as an RSPAN VLAN</td>
<td>567</td>
</tr>
<tr>
<td>Creating an RSPAN Source Session</td>
<td>569</td>
</tr>
<tr>
<td>Specifying VLANs to Filter</td>
<td>571</td>
</tr>
<tr>
<td>Creating an RSPAN Destination Session</td>
<td>573</td>
</tr>
<tr>
<td>Creating an RSPAN Destination Session and Configuring Incoming Traffic</td>
<td>575</td>
</tr>
<tr>
<td>Monitoring SPAN and RSPAN Operations</td>
<td>577</td>
</tr>
<tr>
<td>SPAN and RSPAN Configuration Examples</td>
<td>578</td>
</tr>
<tr>
<td>Example: Configuring Local SPAN</td>
<td>578</td>
</tr>
<tr>
<td>Examples: Creating an RSPAN VLAN</td>
<td>579</td>
</tr>
<tr>
<td>Additional References</td>
<td>580</td>
</tr>
<tr>
<td>Feature History and Information for SPAN and RSPAN</td>
<td>581</td>
</tr>
</tbody>
</table>

PART VIII

QoS 583

CHAPTER 27

Configuring QoS 585

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finding Feature Information</td>
<td>585</td>
</tr>
<tr>
<td>Prerequisites for QoS</td>
<td>585</td>
</tr>
<tr>
<td>QoS ACL Guidelines</td>
<td>586</td>
</tr>
<tr>
<td>Policing Guidelines</td>
<td>586</td>
</tr>
<tr>
<td>General QoS Guidelines</td>
<td>587</td>
</tr>
<tr>
<td>Restrictions for QoS</td>
<td>587</td>
</tr>
<tr>
<td>Information About QoS</td>
<td>588</td>
</tr>
<tr>
<td>QoS Implementation</td>
<td>588</td>
</tr>
<tr>
<td>Layer 2 Frame Prioritization Bits</td>
<td>589</td>
</tr>
<tr>
<td>Layer 3 Packet Prioritization Bits</td>
<td>589</td>
</tr>
<tr>
<td>End-to-End QoS Solution Using Classification</td>
<td>590</td>
</tr>
<tr>
<td>QoS Basic Model</td>
<td>590</td>
</tr>
<tr>
<td>Actions at Ingress Port</td>
<td>590</td>
</tr>
<tr>
<td>Actions at Egress Port</td>
<td>591</td>
</tr>
<tr>
<td>Classification Overview</td>
<td>591</td>
</tr>
<tr>
<td>Non-IP Traffic Classification</td>
<td>591</td>
</tr>
<tr>
<td>IP Traffic Classification</td>
<td>592</td>
</tr>
<tr>
<td>Classification Flowchart</td>
<td>594</td>
</tr>
<tr>
<td>Access Control Lists</td>
<td>594</td>
</tr>
<tr>
<td>Classification Based on Class Maps and Policy Maps</td>
<td>595</td>
</tr>
</tbody>
</table>
Policing and Marking Overview 596
 Physical Port Policing 596
Mapping Tables Overview 598
Queueing and Scheduling Overview 600
 Weighted Tail Drop 600
 SRR Shaping and Sharing 601
Queueing and Scheduling on Ingress Queues 602
 Configurable Ingress Queue Types 603
 WTD Thresholds 604
 Buffer and Bandwidth Allocation 605
 Priority Queueing 605
Queueing and Scheduling on Egress Queues 606
 Egress Expedite Queue 607
 Egress Queue Buffer Allocation 607
 Buffer and Memory Allocation 607
 Queues and WTD Thresholds 608
 Shaped or Shared Mode 608
Packet Modification 609
Standard QoS Default Configuration 609
 Default Ingress Queue Configuration 609
 Default Egress Queue Configuration 611
 Default Mapping Table Configuration 612
DSCP Maps 612
 Default CoS-to-DSCP Map 612
 Default IP-Precedence-to-DSCP Map 613
 Default DSCP-to-CoS Map 614
How to Configure QoS 614
 Enabling QoS Globally 614
 Enabling VLAN-Based QoS on Physical Ports 616
Configuring Classification Using Port Trust States 617
 Configuring the Trust State on Ports Within the QoS Domain 618
 Configuring the CoS Value for an Interface 620
 Configuring a Trusted Boundary to Ensure Port Security 622
 Enabling DSCP Transparency Mode 624
 DSCP Transparency Mode 625
Configuring the DSCP Trust State on a Port Bordering Another QoS Domain 626

Configuring a QoS Policy 628

Classifying Traffic by Using ACLs 628

Creating an IP Standard ACL for IPv4 Traffic 628

Creating an IP Extended ACL for IPv4 Traffic 630

Creating an IPv6 ACL for IPv6 Traffic 632

Creating a Layer 2 MAC ACL for Non-IP Traffic 634

Classifying Traffic by Using Class Maps 636

Classifying Traffic by Using Class Maps and Filtering IPv6 Traffic 639

Classifying, Policing, and Marking Traffic on Physical Ports by Using Policy Maps 641

Classifying, Policing, and Marking Traffic by Using Aggregate Policers 645

Configuring DSCP Maps 648

Configuring the CoS-to-DSCP Map 648

Configuring the IP-Precedence-to-DSCP Map 650

Configuring the Policed-DSCP Map 651

Configuring the DSCP-to-CoS Map 652

Configuring the DSCP-to-DSCP-Mutation Map 654

Configuring Ingress Queue Characteristics 656

Configuration Guidelines 656

Mapping DSCP or CoS Values to an Ingress Queue and Setting WTD Thresholds 656

Allocating Buffer Space Between the Ingress Queues 658

Allocating Bandwidth Between the Ingress Queues 660

Configuring Egress Queue Characteristics 662

Configuration Guidelines 662

Allocating Buffer Space to and Setting WTD Thresholds for an Egress Queue-Set 662

Mapping DSCP or CoS Values to an Egress Queue and to a Threshold ID 665

Configuring SRR Shaped Weights on Egress Queues 667

Configuring SRR Shared Weights on Egress Queues 669

Configuring the Egress Expedite Queue 671

Limiting the Bandwidth on an Egress Interface 673

Monitoring Standard QoS 674

Configuration Examples for QoS 675

Example: Configuring Port to the DSCP- Trusted State and Modifying the DSCP-to-DSCP-Mutation Map 675
Examples: Classifying Traffic by Using ACLs 675
Examples: Classifying Traffic by Using Class Maps 676
Examples: Classifying, Policing, and Marking Traffic on Physical Ports Using Policy Maps 678
Examples: Classifying, Policing, and Marking Traffic on SVIs by Using Hierarchical Policy Maps 679
Examples: Classifying, Policing, and Marking Traffic by Using Aggregate Policers 681
Examples: Configuring DSCP Maps 681
Examples: Configuring Ingress Queue Characteristics 683
Examples: Configuring Egress Queue Characteristics 684

Where to Go Next 685
Additional References 686
Feature History and Information for QoS 687

CHAPTER 28

Configuring Auto-QoS 689
Finding Feature Information 689
Prerequisites for Auto-QoS 689
Restrictions for Auto-QoS 690
Information about Configuring Auto-QoS 690
 Auto-QoS Overview 690
 Generated Auto-QoS Configuration 690
 VoIP Device Specifics 691
 Enhanced Auto-QoS for Video, Trust, and Classification 692
 Auto-QoS Configuration Migration 692
 Auto-QoS Configuration Guidelines 693
 Auto-QoS VoIP Considerations 693
 Auto-QoS Enhanced Considerations 694
 Effects of Auto-QoS on Running Configuration 694
How to Configure Auto-QoS 694
 Configuring Auto-QoS 694
 Enabling Auto-QoS 694
 Troubleshooting Auto-QoS 697
Monitoring Auto-QoS 697
Configuration Examples for Auto-Qos 698
 Examples: Global Auto-QoS Configuration 698
Examples: Auto-QoS Generated Configuration for VoIP Devices 701
Examples: Auto-QoS Generated Configuration for VoIP Devices 704
Examples: Auto-QoS Generated Configuration For Enhanced Video, Trust, and Classify Devices 705
Where to Go Next for Auto-QoS 707
Additional References for Auto-QoS 707
Feature History and Information for Auto-QoS 709

PART IX Routing 711

CHAPTER 29 Configuring IP Unicast Routing 713
Finding Feature Information 713
Information About Configuring IP Unicast Routing 713
Information About IP Routing 714
Types of Routing 714
IP Routing and Switch Stacks 714
Configuring IP Unicast Routing 715
Enabling IP Unicast Routing 716
Assigning IP Addresses to SVIs 717
Configuring Static Unicast Routes 719
Monitoring and Maintaining the IP Network 720

PART X Security 721

CHAPTER 30 Managing Switch Stacks 723
Finding Feature Information 723
Prerequisites for Switch Stacks 723
Restrictions for Switch Stacks 724
Information About Switch Stacks 724
Switch Stack Overview 724
Supported Features in a Switch Stack 725
Encryption Features 725
FlexStack-Plus 725
Fast Stack Convergence 725
Switch Stack Membership 725
Mixed Stack Membership 726
Changes to Switch Stack Membership 727
Stack Member Numbers 727
Stack Member Priority Values 729
Switch Stack Bridge ID and MAC Address 729
 Persistent MAC Address on the Switch Stack 729
Stack Master Election and Reelection 730
Switch Stack Configuration Files 731
Offline Configuration to Provision a Stack Member 731
 Effects of Adding a Provisioned Switch to a Switch Stack 732
 Effects of Replacing a Provisioned Switch in a Switch Stack 733
 Effects of Removing a Provisioned Switch from a Switch Stack 733
Stack Protocol Version 733
 Major Stack Protocol Version Number Incompatibility Among Stack-Capable
 Switches 734
 Minor Stack Protocol Version Number Incompatibility Among Stack-Capable
 Switches 734
 Auto-Upgrade 734
 Auto-Advise 735
 Examples of Auto-Advise Messages 735
SDM Template Mismatch in Switch Stacks 737
Switch Stack Management Connectivity 737
 Connectivity to Specific Stack Members 737
 Connectivity to the Switch Stack Through an IP Address 737
 Connectivity to the Switch Stack Through Console Ports or Ethernet Management
 Ports 738
How to Configure a Switch Stack 738
 Enabling the Persistent MAC Address Feature 738
 Assigning a Stack Member Number 740
 Setting the Stack Member Priority Value 741
 Setting the Stack Port Speed to 10 Gbps 742
 Provisioning a New Member for a Switch Stack 743
 Removing Provisioned Switch Information 744
Troubleshooting the Switch Stack 745
 Accessing the CLI of a Specific Member 745
Contents

CHAPTER 31 Security Features Overview 753

Security Features Overview 753

CHAPTER 32 Preventing Unauthorized Access 757

Finding Feature Information 757
Preventing Unauthorized Access 757

CHAPTER 33 Controlling Switch Access with Passwords and Privilege Levels 759

Finding Feature Information 759
Restrictions for Controlling Switch Access with Passwords and Privileges 759
Information About Passwords and Privilege Levels 760
Default Password and Privilege Level Configuration 760
Additional Password Security 760
Password Recovery 761
Terminal Line Telnet Configuration 761
Username and Password Pairs 761
Privilege Levels 761
How to Control Switch Access with Passwords and Privilege Levels 762
Setting or Changing a Static Enable Password 762
Protecting Enable and Enable Secret Passwords with Encryption 764
Disabling Password Recovery 766
Setting a Telnet Password for a Terminal Line 767
Configuring Username and Password Pairs 769
Setting the Privilege Level for a Command 771
Changing the Default Privilege Level for Lines 773
Logging into and Exiting a Privilege Level 774

Temporary Disabling a Stack Port 746
Reenabling a Stack Port While Another Member Starts 747
Monitoring the Switch Stack 747
Configuration Examples for Switch Stacks 748
Switch Stack Configuration Scenarios 748
Enabling the Persistent MAC Address Feature: Example 750
Provisioning a New Member for a Switch Stack: Example 750
Additional References for Switch Stacks 751
CHAPTER 34 Configuring TACACS+ 779

Finding Feature Information 779
Prerequisites for TACACS+ 779
Information About TACACS+ 781
 TACACS+ and Switch Access 781
 TACACS+ Overview 781
 TACACS+ Operation 783
Method List 784
TACACS+ Configuration Options 784
TACACS+ Login Authentication 784
TACACS+ Authorization for Privileged EXEC Access and Network Services 784
TACACS+ Accounting 785
Default TACACS+ Configuration 785
How to Configure TACACS+ 785
 Identifying the TACACS+ Server Host and Setting the Authentication Key 785
 Configuring TACACS+ Login Authentication 787
 Configuring TACACS+ Authorization for Privileged EXEC Access and Network Services 790
 Starting TACACS+ Accounting 791
 Establishing a Session with a Router if the AAA Server is Unreachable 793
Monitoring TACACS+ 793
Additional References 794

CHAPTER 35 Configuring RADIUS 797

Finding Feature Information 797
Prerequisites for Configuring RADIUS 797
Restrictions for Configuring RADIUS 798
Information about RADIUS 799
 RADIUS and Switch Access 799
 RADIUS Overview 799
 RADIUS Operation 800
 RADIUS Change of Authorization 801
 Change-of-Authorization Requests 802
 RFC 5176 Compliance 803
 CoA Request Response Code 804
 Session Identification 804
 CoA ACK Response Code 805
 CoA NAK Response Code 805
 CoA Request Commands 805
 Session Reauthentication 805
 Session Reauthentication in a Switch Stack 806
 Session Termination 806
 CoA Disconnect-Request 806
 CoA Request: Disable Host Port 807
 CoA Request: Bounce-Port 807
 Stacking Guidelines for Session Termination 808
 Stacking Guidelines for CoA-Request Bounce-Port 808
 Stacking Guidelines for CoA-Request Disable-Port 808
 Default RADIUS Configuration 808
 RADIUS Server Host 809
 RADIUS Login Authentication 809
 AAA Server Groups 810
 AAA Authorization 810
 RADIUS Accounting 810
 Vendor-Specific RADIUS Attributes 811
 Vendor-Proprietary RADIUS Server Communication 822
How to Configure RADIUS 822
 Identifying the RADIUS Server Host 822
 Configuring RADIUS Login Authentication 825
 Defining AAA Server Groups 827
 Configuring RADIUS Authorization for User Privileged Access and Network Services 829
 Starting RADIUS Accounting 831
Configuring Settings for All RADIUS Servers 832
Configuring the Switch to Use Vendor-Specific RADIUS Attributes 834
Configuring the Switch for Vendor-Proprietary RADIUS Server Communication 836
Configuring CoA on the Switch 837
Monitoring CoA Functionality 840
Configuration Examples for Controlling Switch Access with RADIUS 841
Examples: Identifying the RADIUS Server Host 841
Example: Using Two Different RADIUS Group Servers 841
Examples: Configuring the Switch to Use Vendor-Specific RADIUS Attributes 841
Example: Configuring the Switch for Vendor-Proprietary RADIUS Server Communication 842
Additional References 842

CHAPTER 36 Configuring Kerberos 845
Finding Feature Information 845
Prerequisites for Controlling Switch Access with Kerberos 845
Information about Kerberos 846
Kerberos and Switch Access 846
Kerberos Overview 846
Kerberos Operation 849
Authenticating to a Boundary Switch 849
Obtaining a TGT from a KDC 849
Authenticating to Network Services 849
How to Configure Kerberos 850
Monitoring the Kerberos Configuration 850
Additional References 850

CHAPTER 37 Configuring Local Authentication and Authorization 853
Finding Feature Information 853
How to Configure Local Authentication and Authorization 853
Configuring the Switch for Local Authentication and Authorization 853
Monitoring Local Authentication and Authorization 856
Additional References 856

CHAPTER 38 Configuring Secure Shell (SSH) 859
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco TrustSec and ACLs</td>
<td>885</td>
</tr>
<tr>
<td>ACL Overview</td>
<td>885</td>
</tr>
<tr>
<td>Access Control Entries</td>
<td>886</td>
</tr>
<tr>
<td>ACL Supported Types</td>
<td>886</td>
</tr>
<tr>
<td>Supported ACLs</td>
<td>886</td>
</tr>
<tr>
<td>ACL Precedence</td>
<td>886</td>
</tr>
<tr>
<td>Port ACLs</td>
<td>887</td>
</tr>
<tr>
<td>Router ACLs</td>
<td>888</td>
</tr>
<tr>
<td>VLAN Maps</td>
<td>889</td>
</tr>
<tr>
<td>ACEs and Fragmented and Unfragmented Traffic</td>
<td>889</td>
</tr>
<tr>
<td>ACEs and Fragmented and Unfragmented Traffic Examples</td>
<td>890</td>
</tr>
<tr>
<td>ACLs and Switch Stacks</td>
<td>890</td>
</tr>
<tr>
<td>Active Switch and ACL Functions</td>
<td>890</td>
</tr>
<tr>
<td>Stack Member and ACL Functions</td>
<td>891</td>
</tr>
<tr>
<td>Active Switch Failure and ACLs</td>
<td>891</td>
</tr>
<tr>
<td>Standard and Extended IPv4 ACLs</td>
<td>891</td>
</tr>
<tr>
<td>IPv4 ACL Switch Unsupported Features</td>
<td>891</td>
</tr>
<tr>
<td>Access List Numbers</td>
<td>891</td>
</tr>
<tr>
<td>Numbered Standard IPv4 ACLs</td>
<td>892</td>
</tr>
<tr>
<td>Numbered Extended IPv4 ACLs</td>
<td>893</td>
</tr>
<tr>
<td>Named IPv4 ACLs</td>
<td>893</td>
</tr>
<tr>
<td>ACL Logging</td>
<td>894</td>
</tr>
<tr>
<td>Smart Logging</td>
<td>894</td>
</tr>
<tr>
<td>Hardware and Software Treatment of IP ACLs</td>
<td>894</td>
</tr>
<tr>
<td>VLAN Map Configuration Guidelines</td>
<td>895</td>
</tr>
<tr>
<td>VLAN Maps with Router ACLs</td>
<td>896</td>
</tr>
<tr>
<td>VLAN Maps and Router ACL Configuration Guidelines</td>
<td>896</td>
</tr>
<tr>
<td>VACL Logging</td>
<td>897</td>
</tr>
<tr>
<td>Time Ranges for ACLs</td>
<td>897</td>
</tr>
<tr>
<td>IPv4 ACL Interface Considerations</td>
<td>898</td>
</tr>
<tr>
<td>How to Configure ACLs</td>
<td>898</td>
</tr>
<tr>
<td>Configuring IPv4 ACLs</td>
<td>898</td>
</tr>
<tr>
<td>Creating a Numbered Standard ACL</td>
<td>899</td>
</tr>
<tr>
<td>Creating a Numbered Extended ACL</td>
<td>900</td>
</tr>
<tr>
<td>Creating Named Standard ACLs</td>
<td>904</td>
</tr>
</tbody>
</table>
Creating Extended Named ACLs 905
Configuring Time Ranges for ACLs 907
Applying an IPv4 ACL to a Terminal Line 909
Applying an IPv4 ACL to an Interface 911
Creating Named MAC Extended ACLs 912
Applying a MAC ACL to a Layer 2 Interface 914
Configuring VLAN Maps 916
Creating a VLAN Map 918
Applying a VLAN Map to a VLAN 920
Configuring VACL Logging 921
Monitoring IPv4 ACLs 923
Configuration Examples for ACLs 924
Examples: Using Time Ranges with ACLs 924
Examples: Including Comments in ACLs 924
Examples: Troubleshooting ACLs 925
IPv4 ACL Configuration Examples 926
ACLs in a Small Networked Office 926
Examples: ACLs in a Small Networked Office 927
Example: Numbered ACLs 927
Examples: Extended ACLs 927
Examples: Named ACLs 928
Examples: Time Range Applied to an IP ACL 929
Examples: Configuring Commented IP ACL Entries 929
Examples: ACL Logging 930
Configuration Examples for ACLs and VLAN Maps 931
Example: Creating an ACL and a VLAN Map to Deny a Packet 931
Example: Creating an ACL and a VLAN Map to Permit a Packet 931
Example: Default Action of Dropping IP Packets and Forwarding MAC Packets 931
Example: Default Action of Dropping MAC Packets and Forwarding IP Packets 932
Example: Default Action of Dropping All Packets 932
Configuration Examples for Using VLAN Maps in Your Network 933
Example: Wiring Closet Configuration 933
Example: Restricting Access to a Server on Another VLAN 934
Example: Denying Access to a Server on Another VLAN 934
Configuration Examples of Router ACLs and VLAN Maps Applied to VLANs 935
CHAPTER 41

Configuring IPv6 ACLs 941

Finding Feature Information 941
IPv6 ACLs Overview 941
Switch Stacks and IPv6 ACLs 942
Interactions with Other Features and Switches 942
Restrictions for IPv6 ACLs 942
Default Configuration for IPv6 ACLs 943
Configuring IPv6 ACLs 944
Attaching an IPv6 ACL to an Interface 947
Monitoring IPv6 ACLs 949
Additional References 950

CHAPTER 42

Configuring DHCP 953

Finding Feature Information 953
Information About DHCP 953
DHCP Server 953
DHCP Relay Agent 953
DHCP Snooping 954
Option-82 Data Insertion 955
Cisco IOS DHCP Server Database 958
DHCP Snooping Binding Database 958
DHCP Snooping and Switch Stacks 960
How to Configure DHCP Features 960
Default DHCP Snooping Configuration 960
DHCP Snooping Configuration Guidelines 961
Configuring the DHCP Server 961
DHCP Server and Switch Stacks 961
Configuring the DHCP Relay Agent 961
Relative Priority of ARP ACLs and DHCP Snooping Entries 991
Configuring ARP ACLs for Non-DHCP Environments 991
Configuring Dynamic ARP Inspection in DHCP Environments 994
Limiting the Rate of Incoming ARP Packets 997
Performing Dynamic ARP Inspection Validation Checks 999
Monitoring DAI 1001
Verifying the DAI Configuration 1002
Additional References 1002

CHAPTER 45 Configuring IEEE 802.1x Port-Based Authentication 1005
Finding Feature Information 1005
Information About 802.1x Port-Based Authentication 1005
Port-Based Authentication Process 1006
Port-Based Authentication Initiation and Message Exchange 1008
Authentication Manager for Port-Based Authentication 1010
Port-Based Authentication Methods 1010
Per-User ACLs and Filter-Ids 1011
Port-Based Authentication Manager CLI Commands 1012
Ports in Authorized and Unauthorized States 1013
Port-Based Authentication and Switch Stacks 1014
802.1x Host Mode 1015
802.1x Multiple Authentication Mode 1015
Multi-auth Per User VLAN assignment 1016
Limitation in Multi-auth Per User VLAN assignment 1017
MAC Move 1018
MAC Replace 1018
802.1x Accounting 1019
802.1x Accounting Attribute-Value Pairs 1019
802.1x Readiness Check 1020
Switch-to-RADIUS-Server Communication 1020
802.1x Authentication with VLAN Assignment 1021
802.1x Authentication with Per-User ACLs 1022
802.1x Authentication with Downloadable ACLs and Redirect URLs 1023
Cisco Secure ACS and Attribute-Value Pairs for the Redirect URL 1025
Cisco Secure ACS and Attribute-Value Pairs for downloadable ACLs 1025
VLAN ID-based MAC Authentication 1026
802.1x Authentication with Guest VLAN 1026
802.1x Authentication with Restricted VLAN 1027
802.1x Authentication with Inaccessible Authentication Bypass 1028
 Inaccessible Authentication Bypass Support on Multiple-Authentication Ports 1028
 Inaccessible Authentication Bypass Authentication Results 1028
 Inaccessible Authentication Bypass Feature Interactions 1029
802.1x Critical Voice VLAN 1030
802.1x User Distribution 1030
 802.1x User Distribution Configuration Guidelines 1031
IEEE 802.1x Authentication with Voice VLAN Ports 1031
IEEE 802.1x Authentication with Port Security 1032
IEEE 802.1x Authentication with Wake-on-LAN 1032
IEEE 802.1x Authentication with MAC Authentication Bypass 1032
Network Admission Control Layer 2 IEEE 802.1x Validation 1033
Flexible Authentication Ordering 1034
Open1x Authentication 1034
Multidomain Authentication 1035
Limiting Login for Users 1036
802.1x Supplicant and Authenticator Switches with Network Edge Access Topology (NEAT) 1036
Voice Aware 802.1x Security 1038
Common Session ID 1039
How to Configure 802.1x Port-Based Authentication 1039
Default 802.1x Authentication Configuration 1039
802.1x Authentication Configuration Guidelines 1041
 802.1x Authentication 1041
 VLAN Assignment, Guest VLAN, Restricted VLAN, and Inaccessible Authentication Bypass 1042
 MAC Authentication Bypass 1042
 Maximum Number of Allowed Devices Per Port 1043
Configuring 802.1x Readiness Check 1043
Configuring Voice Aware 802.1x Security 1045
Configuring 802.1x Violation Modes 1047
Configuring 802.1x Authentication 1048
CHAPTER 46

Configuring Web-Based Authentication 1103

Finding Feature Information 1103

Web-Based Authentication Overview 1103

Device Roles 1104

Host Detection 1105

Session Creation 1105

Authentication Process 1106

Local Web Authentication Banner 1106

Web Authentication Customizable Web Pages 1109

Guidelines 1109

Authentication Proxy Web Page Guidelines 1111

Redirection URL for Successful Login Guidelines 1112

Web-based Authentication Interactions with Other Features 1112

Port Security 1112

LAN Port IP 1112

Gateway IP 1113

ACLs 1113

Context-Based Access Control 1113

EtherChannel 1113

How to Configure Web-Based Authentication 1113

Default Web-Based Authentication Configuration 1113

Web-Based Authentication Configuration Guidelines and Restrictions 1114

Configuring the Authentication Rule and Interfaces 1115

Configuring AAA Authentication 1117

Configuring Switch-to-RADIUS-Server Communication 1119

Configuring the HTTP Server 1120

Customizing the Authentication Proxy Web Pages 1122

Specifying a Redirection URL for Successful Login 1123

Configuring the Web-Based Authentication Parameters 1124

Configuring a Web-Based Authentication Local Banner 1125

Configuring Web-Based Authentication without SVI 1127

Configuring Web-Based Authentication with VRF Aware 1128

Removing Web-Based Authentication Cache Entries 1129

Monitoring Web-Based Authentication Status 1130
CHAPTER 47

Configuring Port-Based Traffic Control 1133

Overview of Port-Based Traffic Control 1133
Finding Feature Information 1134
Information About Storm Control 1134

Storm Control 1134
How Traffic Activity is Measured 1134
Traffic Patterns 1135

How to Configure Storm Control 1136
Configuring Storm Control and Threshold Levels 1136
Configuring Small-Frame Arrival Rate 1138

Information About Protected Ports 1141

Protected Ports 1141
Default Protected Port Configuration 1141
Protected Ports Guidelines 1141

How to Configure Protected Ports 1141
Configuring a Protected Port 1141

Monitoring Protected Ports 1143

Where to Go Next 1143

Information About Port Blocking 1143

Port Blocking 1143

How to Configure Port Blocking 1144

Blocking Flooded Traffic on an Interface 1144

Monitoring Port Blocking 1146

Prerequisites for Port Security 1146
Restrictions for Port Security 1146

Information About Port Security 1146

Port Security 1146
Types of Secure MAC Addresses 1147
Sticky Secure MAC Addresses 1147
Security Violations 1147
Port Security Aging 1148
Port Security and Switch Stacks 1149
Default Port Security Configuration 1149
Port Security Configuration Guidelines 1149
Overview of Port-Based Traffic Control

<table>
<thead>
<tr>
<th>How to Configure Port Security</th>
<th>1151</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enabling and Configuring Port Security</td>
<td>1151</td>
</tr>
<tr>
<td>Enabling and Configuring Port Security Aging</td>
<td>1156</td>
</tr>
<tr>
<td>Finding Feature Information</td>
<td>1157</td>
</tr>
<tr>
<td>Information About Storm Control</td>
<td>1158</td>
</tr>
<tr>
<td>Storm Control</td>
<td>1158</td>
</tr>
<tr>
<td>How Traffic Activity is Measured</td>
<td>1158</td>
</tr>
<tr>
<td>Traffic Patterns</td>
<td>1159</td>
</tr>
<tr>
<td>How to Configure Storm Control</td>
<td>1159</td>
</tr>
<tr>
<td>Configuring Storm Control and Threshold Levels</td>
<td>1159</td>
</tr>
<tr>
<td>Configuring Small-Frame Arrival Rate</td>
<td>1162</td>
</tr>
<tr>
<td>Information About Protected Ports</td>
<td>1164</td>
</tr>
<tr>
<td>Protected Ports</td>
<td>1164</td>
</tr>
<tr>
<td>Default Protected Port Configuration</td>
<td>1165</td>
</tr>
<tr>
<td>Protected Ports Guidelines</td>
<td>1165</td>
</tr>
<tr>
<td>How to Configure Protected Ports</td>
<td>1165</td>
</tr>
<tr>
<td>Configuring a Protected Port</td>
<td>1165</td>
</tr>
<tr>
<td>Monitoring Protected Ports</td>
<td>1166</td>
</tr>
<tr>
<td>Where to Go Next</td>
<td>1167</td>
</tr>
<tr>
<td>Information About Port Blocking</td>
<td>1167</td>
</tr>
<tr>
<td>Port Blocking</td>
<td>1167</td>
</tr>
<tr>
<td>How to Configure Port Blocking</td>
<td>1167</td>
</tr>
<tr>
<td>Blocking Flooded Traffic on an Interface</td>
<td>1167</td>
</tr>
<tr>
<td>Monitoring Port Blocking</td>
<td>1169</td>
</tr>
<tr>
<td>Configuration Examples for Port Security</td>
<td>1169</td>
</tr>
<tr>
<td>Information About Protocol Storm Protection</td>
<td>1170</td>
</tr>
<tr>
<td>Protocol Storm Protection</td>
<td>1170</td>
</tr>
<tr>
<td>Default Protocol Storm Protection Configuration</td>
<td>1171</td>
</tr>
<tr>
<td>How to Configure Protocol Storm Protection</td>
<td>1171</td>
</tr>
<tr>
<td>Enabling Protocol Storm Protection</td>
<td>1171</td>
</tr>
<tr>
<td>Monitoring Protocol Storm Protection</td>
<td>1172</td>
</tr>
</tbody>
</table>

CHAPTER 48

Configuring IPv6 First Hop Security

| Finding Feature Information | 1173 |
Prerequisites for First Hop Security in IPv6 1173
Restrictions for First Hop Security in IPv6 1174
Information about First Hop Security in IPv6 1174
How to Configure an IPv6 Snooping Policy 1176
 How to Attach an IPv6 Snooping Policy to an Interface 1178
 How to Attach an IPv6 Snooping Policy to a Layer 2 EtherChannel Interface 1179
 How to Attach an IPv6 Snooping Policy to VLANs Globally 1181
How to Configure the IPv6 Binding Table Content 1181
How to Configure an IPv6 Neighbor Discovery Inspection Policy 1183
 How to Attach an IPv6 Neighbor Discovery Inspection Policy to an Interface 1185
 How to Attach an IPv6 Neighbor Discovery Inspection Policy to a Layer 2 EtherChannel Interface 1186
 How to Attach an IPv6 Neighbor Discovery Inspection Policy to VLANs Globally 1187
How to Configure an IPv6 Router Advertisement Guard Policy 1188
 How to Attach an IPv6 Router Advertisement Guard Policy to an Interface 1190
 How to Attach an IPv6 Router Advertisement Guard Policy to a Layer 2 EtherChannel Interface 1191
How to Configure an IPv6 DHCP Guard Policy 1193
 How to Attach an IPv6 DHCP Guard Policy to an Interface or a VLAN on an Interface 1195
 How to Attach an IPv6 DHCP Guard Policy to a Layer 2 EtherChannel Interface 1196
 How to Attach an IPv6 DHCP Guard Policy to VLANs Globally 1197
How to Configure IPv6 Source Guard 1198
 How to Attach an IPv6 Source Guard Policy to an Interface 1199
Additional References 1200

CHAPTER 49 Configuring Cisco TrustSec 1203
 Information about Cisco TrustSec 1203
 Finding Feature Information 1203
 Cisco TrustSec Features 1204
 Feature Information for Cisco TrustSec 1204

CHAPTER 50 Configuring FIPS 1205
 Information About FIPS and Common Criteria 1205
Switch Stack Management Connectivity 1223
 Connectivity to Specific Stack Members 1223
 Connectivity to the Switch Stack Through an IP Address 1223
 Connectivity to the Switch Stack Through Console Ports or Ethernet Management Ports 1224
How to Configure a Switch Stack 1224
 Enabling the Persistent MAC Address Feature 1224
 Assigning a Stack Member Number 1226
 Setting the Stack Member Priority Value 1227
 Setting the Stack Port Speed to 10 Gbps 1228
 Provisioning a New Member for a Switch Stack 1229
 Removing Provisioned Switch Information 1230
Troubleshooting the Switch Stack 1231
 Accessing the CLI of a Specific Member 1231
 Temporarily Disabling a Stack Port 1232
 Reenabling a Stack Port While Another Member Starts 1233
Monitoring the Switch Stack 1233
Configuration Examples for Switch Stacks 1234
 Switch Stack Configuration Scenarios 1234
 Enabling the Persistent MAC Address Feature: Example 1236
 Provisioning a New Member for a Switch Stack: Example 1236
Additional References for Switch Stacks 1237

PART XII
System Management 1239

CHAPTER 52
Administering the System 1241
 Finding Feature Information 1241
 Information About Administering the Switch 1241
 System Time and Date Management 1241
 System Clock 1242
 Real Time Clock 1242
 Network Time Protocol 1242
 NTP Stratum 1244
 NTP Associations 1245
 NTP Security 1245
Example: Configuring a MOTD Banner 1273
Example: Configuring a Login Banner 1274
Example: Configuring MAC Address Change Notification Traps 1274
Example: Configuring MAC Threshold Notification Traps 1274
Example: Adding the Static Address to the MAC Address Table 1275
Example: Configuring Unicast MAC Address Filtering 1275

Additional References for Switch Administration 1275
Feature History and Information for Switch Administration 1276

CHAPTER 53
Performing Switch Setup Configuration 1277
Finding Feature Information 1277
Information About Performing Switch Setup Configuration 1277
 Boot Process 1277
 Switches Information Assignment 1278
 Default Switch Information 1279
 DHCP-Based Autoconfiguration Overview 1279
 DHCP Client Request Process 1279
 DHCP-based Autoconfiguration and Image Update 1281
 Restrictions for DHCP-based Autoconfiguration 1281
 DHCP Autoconfiguration 1281
 DHCP Auto-Image Update 1281
 DHCP Server Configuration Guidelines 1282
 Purpose of the TFTP Server 1282
 Purpose of the DNS Server 1283
 How to Obtain Configuration Files 1283
 How to Control Environment Variables 1284
 Common Environment Variables 1284
 Environment Variables for TFTP 1286
 Scheduled Reload of the Software Image 1287
How to Perform Switch Setup Configuration 1288
 Configuring DHCP Autoconfiguration (Only Configuration File) 1288
 Configuring DHCP Auto-Image Update (Configuration File and Image) 1290
 Configuring the Client to Download Files from DHCP Server 1294
 Manually Assigning IP Information to Multiple SVIs 1295
 Configuring the NVRAM Buffer Size 1297
System Log Message Format 1316

Default System Message Logging Settings 1317

Syslog Message Limits 1318

How to Configure System Message Logs 1318

- Setting the Message Display Destination Device 1318
- Synchronizing Log Messages 1320
- Disabling Message Logging 1321
- Enabling and Disabling Time Stamps on Log Messages 1322
- Enabling and Disabling Sequence Numbers in Log Messages 1323
- Defining the Message Severity Level 1324
- Limiting Syslog Messages Sent to the History Table and to SNMP 1325

- Logging Messages to a UNIX Syslog Daemon 1326

- Monitoring and Maintaining System Message Logs 1327
 - Monitoring Configuration Archive Logs 1327

Configuration Examples for System Message Logs 1328

- Example: Switch System Message 1328
- Examples: Displaying Service Timestamps Log 1328

Additional References for System Message Logs 1329

- Feature History and Information For System Message Logs 1329

CHAPTER 56 Configuring Online Diagnostics 1331

Finding Feature Information 1331

Information About Configuring Online Diagnostics 1331

Online Diagnostics 1331

How to Configure Online Diagnostics 1332

- Starting Online Diagnostic Tests 1332
- Configuring Online Diagnostics 1333
- Scheduling Online Diagnostics 1333

- Configuring Health-Monitoring Diagnostics 1334

Monitoring and Maintaining Online Diagnostics 1337

- Displaying Online Diagnostic Tests and Test Results 1337

Configuration Examples for Online Diagnostic Tests 1337

- Starting Online Diagnostic Tests 1337
- Example: Configure a Health Monitoring Test 1338
- Examples: Schedule Diagnostic Test 1338
Displaying Online Diagnostics: Examples 1339
Additional References for Online Diagnostics 1341
Feature History and Information for Configuring Online Diagnostics 1342

CHAPTER 57
Troubleshooting the Software Configuration 1343
Finding Feature Information 1343
Information About Troubleshooting the Software Configuration 1344
Software Failure on a Switch 1344
Lost or Forgotten Password on a Switch 1344
Power over Ethernet Ports 1344
 Disabled Port Caused by Power Loss 1345
 Monitoring PoE Port Status 1345
 Disabled Port Caused by False Link-Up 1345
Ping 1345
Layer 2 Traceroute 1346
 Layer 2 Traceroute Guidelines 1346
IP Traceroute 1347
Time Domain Reflector Guidelines 1347
Debug Commands 1348
Onboard Failure Logging on the Switch 1349
Possible Symptoms of High CPU Utilization 1349
How to Troubleshoot the Software Configuration 1350
Recovering from a Software Failure 1350
Recovering from a Lost or Forgotten Password 1352
 Procedure with Password Recovery Enabled 1353
 Procedure with Password Recovery Disabled 1355
Recovering from a Command Switch Failure 1356
 Replacing a Failed Command Switch with a Cluster Member 1357
 Replacing a Failed Command Switch with Another Switch 1359
Preventing Switch Stack Problems 1360
Preventing Autonegotiation Mismatches 1361
Troubleshooting SFP Module Security and Identification 1361
 Monitoring SFP Module Status 1362
Executing Ping 1362
Monitoring Temperature 1362
Monitoring the Physical Path 1362
Executing IP Traceroute 1363
Running TDR and Displaying the Results 1363
Redirecting Debug and Error Message Output 1363
Using the show platform forward Command 1364
Configuring OBFL 1364
Verifying Troubleshooting of the Software Configuration 1365
Displaying OBFL Information 1365
Example: Verifying the Problem and Cause for High CPU Utilization 1367
Scenarios for Troubleshooting the Software Configuration 1368
Scenarios to Troubleshoot Power over Ethernet (PoE) 1368
Configuration Examples for Troubleshooting Software 1370
Example: Pinging an IP Host 1370
Example: Performing a Traceroute to an IP Host 1371
Example: Enabling All System Diagnostics 1372
Additional References for Troubleshooting Software Configuration 1373
Feature History and Information for Troubleshooting Software Configuration 1374

PART XIII
VLAN 1375

CHAPTER 58
Configuring VTP 1377
Finding Feature Information 1377
Prerequisites for VTP 1377
Restrictions for VTP 1378
Information About VTP 1378
VTP 1378
VTP Domain 1379
VTP Modes 1380
VTP Advertisements 1381
VTP Version 2 1381
VTP Version 3 1382
VTP Pruning 1383
VTP and Switch Stacks 1383
VTP Configuration Guidelines 1384
VTP Configuration Requirements 1384
CHAPTER 59

Configuring VLANs 1403

Finding Feature Information 1403
Prerequisites for VLANs 1403
Restrictions for VLANs 1404
Information About VLANs 1404

Logical Networks 1404
Supported VLANs 1405
VLAN Port Membership Modes 1406
VLAN Configuration Files 1407
Normal-Range VLAN Configuration Guidelines 1408
Extended-Range VLAN Configuration Guidelines 1409
Default VLAN Configurations 1410
Preface

This book describes configuration information and examples for NetFlow Lite on the switch.

- Document Conventions, page lix
- Related Documentation, page lxi
- Obtaining Documentation and Submitting a Service Request, page lxi

Document Conventions

This document uses the following conventions:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>^ or Ctrl</td>
<td>Both the ^ symbol and Ctrl represent the Control (Ctrl) key on a keyboard. For example, the key combination ^D or Ctrl-D means that you hold down the Control key while you press the D key. (Keys are indicated in capital letters but are not case sensitive.)</td>
</tr>
<tr>
<td>bold font</td>
<td>Commands and keywords and user-entered text appear in bold font.</td>
</tr>
<tr>
<td>Italic font</td>
<td>Document titles, new or emphasized terms, and arguments for which you supply values are in italic font.</td>
</tr>
<tr>
<td>Courier font</td>
<td>Terminal sessions and information the system displays appear in Courier font.</td>
</tr>
<tr>
<td>Bold Courier font</td>
<td>Bold Courier font indicates text that the user must enter.</td>
</tr>
<tr>
<td>[x]</td>
<td>Elements in square brackets are optional.</td>
</tr>
<tr>
<td>...</td>
<td>An ellipsis (three consecutive nonbolded periods without spaces) after a syntax element indicates that the element can be repeated.</td>
</tr>
<tr>
<td></td>
<td>A vertical line, called a pipe, indicates a choice within a set of keywords or arguments.</td>
</tr>
</tbody>
</table>
Document Conventions

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[x</td>
<td>y]</td>
</tr>
<tr>
<td>{x</td>
<td>y}</td>
</tr>
<tr>
<td>[x {y</td>
<td>z}]</td>
</tr>
<tr>
<td>string</td>
<td>A nonquoted set of characters. Do not use quotation marks around the string or the string will include the quotation marks.</td>
</tr>
<tr>
<td><></td>
<td>Nonprinting characters such as passwords are in angle brackets.</td>
</tr>
<tr>
<td>[]</td>
<td>Default responses to system prompts are in square brackets.</td>
</tr>
<tr>
<td>!, #</td>
<td>An exclamation point (!) or a pound sign (#) at the beginning of a line of code indicates a comment line.</td>
</tr>
</tbody>
</table>

Reader Alert Conventions

This document may use the following conventions for reader alerts:

- **Note**

 Means *reader take note*. Notes contain helpful suggestions or references to material not covered in the manual.

- **Tip**

 Means *the following information will help you solve a problem*.

- **Caution**

 Means *reader be careful*. In this situation, you might do something that could result in equipment damage or loss of data.

- **Timesaver**

 Means *the described action saves time*. You can save time by performing the action described in the paragraph.
IMPORTANT SAFETY INSTRUCTIONS

This warning symbol means danger. You are in a situation that could cause bodily injury. Before you work on any equipment, be aware of the hazards involved with electrical circuitry and be familiar with standard practices for preventing accidents. Use the statement number provided at the end of each warning to locate its translation in the translated safety warnings that accompanied this device. Statement 1071

SAVE THESE INSTRUCTIONS

Related Documentation

Before installing or upgrading the switch, refer to the switch release notes.

• Cisco SFP and SFP+ modules documentation, including compatibility matrixes, located at:
• Cisco Validated Designs documents, located at:
 http://www.cisco.com/go/designzone

Obtaining Documentation and Submitting a Service Request

For information on obtaining documentation, submitting a service request, and gathering additional information, see the monthly What's New in Cisco Product Documentation, which also lists all new and revised Cisco technical documentation, at:

Subscribe to the What's New in Cisco Product Documentation as a Really Simple Syndication (RSS) feed and set content to be delivered directly to your desktop using a reader application. The RSS feeds are a free service and Cisco currently supports RSS version 2.0.
Using the Command-Line Interface

Information About Using the Command-Line Interface

Command Modes

The Cisco IOS user interface is divided into many different modes. The commands available to you depend on which mode you are currently in. Enter a question mark (?) at the system prompt to obtain a list of commands available for each command mode.

You can start a CLI session through a console connection, through Telnet, an SSH, or by using the browser. When you start a session, you begin in user mode, often called user EXEC mode. Only a limited subset of the commands are available in user EXEC mode. For example, most of the user EXEC commands are one-time commands, such as show commands, which show the current configuration status, and clear commands, which clear counters or interfaces. The user EXEC commands are not saved when the switch reboots.

To have access to all commands, you must enter privileged EXEC mode. Normally, you must enter a password to enter privileged EXEC mode. From this mode, you can enter any privileged EXEC command or enter global configuration mode.

Using the configuration modes (global, interface, and line), you can make changes to the running configuration. If you save the configuration, these commands are stored and used when the switch reboots. To access the various configuration modes, you must start at global configuration mode. From global configuration mode, you can enter interface configuration mode and line configuration mode.

This table describes the main command modes, how to access each one, the prompt you see in that mode, and how to exit the mode.
Table 1: Command Mode Summary

<table>
<thead>
<tr>
<th>Mode</th>
<th>Access Method</th>
<th>Prompt</th>
<th>Exit Method</th>
<th>About This Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>User EXEC</td>
<td>Begin a session using Telnet, SSH, or console.</td>
<td>Switch></td>
<td>Enter <code>logout</code> or <code>quit</code>.</td>
<td>Use this mode to</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Change terminal settings.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Perform basic tests.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Display system information.</td>
</tr>
<tr>
<td>Privileged EXEC</td>
<td>While in user EXEC mode, enter the <code>enable</code> command.</td>
<td>Switch#</td>
<td>Enter <code>disable</code> to exit.</td>
<td>Use this mode to verify commands that you have entered. Use a password to protect access to this mode.</td>
</tr>
<tr>
<td>Global configuration</td>
<td>While in privileged EXEC mode, enter the <code>configure</code> command.</td>
<td>Switch(config)#</td>
<td>To exit to privileged EXEC mode, enter <code>exit</code> or <code>end</code>. or press Ctrl-Z.</td>
<td>Use this mode to configure parameters that apply to the entire switch.</td>
</tr>
<tr>
<td>VLAN configuration</td>
<td>While in global configuration mode, enter the <code>vlan vlan-id</code> command.</td>
<td>Switch(config-vlan)#</td>
<td>To exit to global configuration mode, enter the <code>exit</code> command.</td>
<td>Use this mode to configure VLAN parameters. When VTP mode is transparent, you can create extended-range VLANs (VLAN IDs greater than 1005) and save configurations in the switch startup configuration file.</td>
</tr>
<tr>
<td>Interface configuration</td>
<td>While in global configuration mode, enter the <code>interface</code> command (with a specific interface).</td>
<td>Switch(config-if)#</td>
<td>To return to privileged EXEC mode, press Ctrl-Z or enter <code>end</code>.</td>
<td>Use this mode to configure parameters for the Ethernet ports.</td>
</tr>
</tbody>
</table>
Understanding Abbreviated Commands

You need to enter only enough characters for the switch to recognize the command as unique.

This example shows how to enter the `show configuration` privileged EXEC command in an abbreviated form:

```
Switch# show conf
```

No and Default Forms of Commands

Almost every configuration command also has a `no` form. In general, use the `no` form to disable a feature or function or reverse the action of a command. For example, the `no shutdown` interface configuration command reverses the shutdown of an interface. Use the command without the keyword `no` to reenable a disabled feature or to enable a feature that is disabled by default.

Configuration commands can also have a `default` form. The `default` form of a command returns the command setting to its default. Most commands are disabled by default, so the `default` form is the same as the `no` form. However, some commands are enabled by default and have variables set to certain default values. In these cases, the `default` command enables the command and sets variables to their default values.
CLI Error Messages

This table lists some error messages that you might encounter while using the CLI to configure your switch.

Table 2: Common CLI Error Messages

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Meaning</th>
<th>How to Get Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Ambiguous command: "show con"</td>
<td>You did not enter enough characters for your switch to recognize the command.</td>
<td>Reenter the command followed by a question mark (?) without any space between the command and the question mark. The possible keywords that you can enter with the command appear.</td>
</tr>
<tr>
<td>% Incomplete command.</td>
<td>You did not enter all of the keywords or values required by this command.</td>
<td>Reenter the command followed by a question mark (?) with a space between the command and the question mark. The possible keywords that you can enter with the command appear.</td>
</tr>
<tr>
<td>% Invalid input detected at '^' marker.</td>
<td>You entered the command incorrectly. The caret (^) marks the point of the error.</td>
<td>Enter a question mark (?) to display all of the commands that are available in this command mode. The possible keywords that you can enter with the command appear.</td>
</tr>
</tbody>
</table>

Configuration Logging

You can log and view changes to the switch configuration. You can use the Configuration Change Logging and Notification feature to track changes on a per-session and per-user basis. The logger tracks each configuration command that is applied, the user who entered the command, the time that the command was entered, and the parser return code for the command. This feature includes a mechanism for asynchronous notification to registered applications whenever the configuration changes. You can choose to have the notifications sent to the syslog.

Note

Only CLI or HTTP changes are logged.

Using the Help System

You can enter a question mark (?) at the system prompt to display a list of commands available for each command mode. You can also obtain a list of associated keywords and arguments for any command.
SUMMARY STEPS

1. help
2. abbreviated-command-entry ?
3. abbreviated-command-entry <Tab>
4. ?
5. command ?
6. command keyword ?

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 help</td>
<td>Obtains a brief description of the help system in any command mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# help</td>
<td></td>
</tr>
<tr>
<td>Step 2 abbreviated-command-entry ?</td>
<td>Obtains a list of commands that begin with a particular character string.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# ? dir disable disconnect</td>
<td></td>
</tr>
<tr>
<td>Step 3 abbreviated-command-entry <Tab></td>
<td>Completes a partial command name.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# sh conf<tab></td>
<td></td>
</tr>
<tr>
<td>Switch# show configuration</td>
<td></td>
</tr>
<tr>
<td>Step 4 ?</td>
<td>Lists all commands available for a particular command mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch> ?</td>
<td></td>
</tr>
<tr>
<td>Step 5 command ?</td>
<td>Lists the associated keywords for a command.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch> show ?</td>
<td></td>
</tr>
<tr>
<td>Step 6 command keyword ?</td>
<td>Lists the associated arguments for a keyword.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# cdp holdtime ?</td>
<td></td>
</tr>
<tr>
<td><10-255> Length of time (in sec) that receiver must keep this packet</td>
<td></td>
</tr>
</tbody>
</table>
How to Use the CLI to Configure Features

Configuring the Command History

The software provides a history or record of commands that you have entered. The command history feature is particularly useful for recalling long or complex commands or entries, including access lists. You can customize this feature to suit your needs.

Changing the Command History Buffer Size

By default, the switch records ten command lines in its history buffer. You can alter this number for a current terminal session or for all sessions on a particular line. This procedure is optional.

SUMMARY STEPS

1. **terminal history [size number-of-lines]**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>terminal history [size number-of-lines]</code></td>
<td>Changes the number of command lines that the switch records during the current terminal session in privileged EXEC mode. You can configure the size from 0 to 256.</td>
</tr>
</tbody>
</table>

Example:

```
Switch# terminal history size 200
```

Recalling Commands

To recall commands from the history buffer, perform one of the actions listed in this table. These actions are optional.

Note

The arrow keys function only on ANSI-compatible terminals such as VT100s.

SUMMARY STEPS

1. Ctrl-P or use the **up arrow** key
2. Ctrl-N or use the **down arrow** key
3. **show history**
Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Recalls commands in the history buffer, beginning with the most recent command. Repeat the key sequence to recall successively older commands.</td>
</tr>
<tr>
<td>Ctrl-P or use the up arrow key</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Returns to more recent commands in the history buffer after recalling commands with Ctrl-P or the up arrow key. Repeat the key sequence to recall successively more recent commands.</td>
</tr>
<tr>
<td>Ctrl-N or use the down arrow key</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Lists the last several commands that you just entered in privileged EXEC mode. The number of commands that appear is controlled by the setting of the terminal history global configuration command and the history line configuration command.</td>
</tr>
<tr>
<td>show history</td>
<td></td>
</tr>
</tbody>
</table>

Disabling the Command History Feature

The command history feature is automatically enabled. You can disable it for the current terminal session or for the command line. This procedure is optional.

Summary Steps

1. terminal no history

Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Disables the feature during the current terminal session in privileged EXEC mode.</td>
</tr>
<tr>
<td>terminal no history</td>
<td></td>
</tr>
</tbody>
</table>

Enabling and Disabling Editing Features

Although enhanced editing mode is automatically enabled, you can disable it and reenable it.

Summary Steps

1. terminal editing
2. terminal no editing
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>terminal editing</code></td>
<td>Reenables the enhanced editing mode for the current terminal session in privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch# terminal editing</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>terminal no editing</code></td>
<td>Disables the enhanced editing mode for the current terminal session in privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch# terminal no editing</code></td>
<td></td>
</tr>
</tbody>
</table>

Editing Commands Through Keystrokes

The keystrokes help you to edit the command lines. These keystrokes are optional.

Note

The arrow keys function only on ANSI-compatible terminals such as VT100s.

<table>
<thead>
<tr>
<th>Table 3: Editing Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Editing Commands</td>
</tr>
<tr>
<td>Ctrl-B or use the left arrow key</td>
</tr>
<tr>
<td>Ctrl-F or use the right arrow key</td>
</tr>
<tr>
<td>Ctrl-A</td>
</tr>
<tr>
<td>Ctrl-E</td>
</tr>
<tr>
<td>Esc B</td>
</tr>
<tr>
<td>Esc F</td>
</tr>
<tr>
<td>Ctrl-T</td>
</tr>
<tr>
<td>Delete or Backspace key</td>
</tr>
<tr>
<td>Ctrl-D</td>
</tr>
<tr>
<td>Ctrl-K</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>Ctrl-U or Ctrl-X</td>
</tr>
<tr>
<td>Ctrl-W</td>
</tr>
<tr>
<td>Esc D</td>
</tr>
<tr>
<td>Esc C</td>
</tr>
<tr>
<td>Esc L</td>
</tr>
<tr>
<td>Esc U</td>
</tr>
<tr>
<td>Ctrl-V or Esc Q</td>
</tr>
<tr>
<td>Return key</td>
</tr>
<tr>
<td>Space bar</td>
</tr>
<tr>
<td>Ctrl-L or Ctrl-R</td>
</tr>
</tbody>
</table>

Editing Command Lines That Wrap

You can use a wraparound feature for commands that extend beyond a single line on the screen. When the cursor reaches the right margin, the command line shifts ten spaces to the left. You cannot see the first ten characters of the line, but you can scroll back and check the syntax at the beginning of the command. The keystroke actions are optional.

To scroll back to the beginning of the command entry, press Ctrl-B or the left arrow key repeatedly. You can also press Ctrl-A to immediately move to the beginning of the line.

Note The arrow keys function only on ANSI-compatible terminals such as VT100s.

The following example shows how to wrap a command line that extends beyond a single line on the screen.
SUMMARY STEPS

1. access-list
2. Ctrl-A
3. Return key

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 access-list</td>
<td>Displays the global configuration command entry that extends beyond one line. When the cursor first reaches the end of the line, the line is shifted ten spaces to the left and redisplayed. The dollar sign ($) shows that the line has been scrolled to the left. Each time the cursor reaches the end of the line, the line is again shifted ten spaces to the left.</td>
</tr>
<tr>
<td>Example: Switch(config)# access-list 101 permit tcp 10.15.22.25 255.255.255.0 10.15.22.35 255.25 Switch(config)# $ 101 permit tcp 10.15.22.25 255.255.255.0 10.15.22.35 255.25 Switch(config)# $t tcp 10.15.22.25 255.255.255.0 131.108.1.20 255.255.255.0 eq Switch(config)# $15.22.25 255.255.255.0 10.15.22.35 255.255.255.0 eq 45</td>
<td></td>
</tr>
<tr>
<td>Step 2 Ctrl-A</td>
<td>Checks the complete syntax. The dollar sign ($) appears at the end of the line to show that the line has been scrolled to the right.</td>
</tr>
<tr>
<td>Example: Switch(config)# access-list 101 permit tcp 10.15.22.25 255.255.255.0 10.15.22$</td>
<td></td>
</tr>
<tr>
<td>Step 3 Return key</td>
<td>Execute the commands. The software assumes that you have a terminal screen that is 80 columns wide. If you have a different width, use the terminal width privileged EXEC command to set the width of your terminal. Use line wrapping with the command history feature to recall and modify previous complex command entries.</td>
</tr>
</tbody>
</table>

Searching and Filtering Output of show and more Commands

You can search and filter the output for **show** and **more** commands. This is useful when you need to sort through large amounts of output or if you want to exclude output that you do not need to see. Using these commands is optional.

SUMMARY STEPS

1. `{show | more} command | {begin | include | exclude} regular-expression`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Searches and filters the output. Expressions are case sensitive. For example, if you enter `</td>
</tr>
</tbody>
</table>

Example:

```
Switch# show interfaces | include protocol
Vlan1 is up, line protocol is up
Vlan10 is up, line protocol is down
GigabitEthernet1/0/1 is up, line protocol is down
GigabitEthernet1/0/2 is up, line protocol is up
```

Accessing the CLI on a Switch Stack

You can access the CLI through a console connection, through Telnet, a SSH, or by using the browser.

You manage the switch stack and the stack member interfaces through the stack master. You cannot manage stack members on an individual switch basis. You can connect to the stack master through the console port or the Ethernet management port of one or more stack members. Be careful with using multiple CLI sessions on the stack master. Commands that you enter in one session are not displayed in the other sessions. Therefore, it is possible to lose track of the session from which you entered commands.

Note

We recommend using one CLI session when managing the switch stack.

If you want to configure a specific stack member port, you must include the stack member number in the CLI command interface notation.

Accessing the CLI Through a Console Connection or Through Telnet

Before you can access the CLI, you must connect a terminal or a PC to the switch console or connect a PC to the Ethernet management port and then power on the switch, as described in the hardware installation guide that shipped with your switch.

If your switch is already configured, you can access the CLI through a local console connection or through a remote Telnet session, but your switch must first be configured for this type of access.

You can use one of these methods to establish a connection with the switch:

- Connect the switch console port to a management station or dial-up modem, or connect the Ethernet management port to a PC. For information about connecting to the console or Ethernet management port, see the switch hardware installation guide.

- Use any Telnet TCP/IP or encrypted Secure Shell (SSH) package from a remote management station. The switch must have network connectivity with the Telnet or SSH client, and the switch must have an enable secret password configured.
• The switch supports up to 16 simultaneous Telnet sessions. Changes made by one Telnet user are reflected in all other Telnet sessions.

• The switch supports up to five simultaneous secure SSH sessions.

After you connect through the console port, through the Ethernet management port, through a Telnet session or through an SSH session, the user EXEC prompt appears on the management station.
EnergyWise

- Configuring EnergyWise, page 15
Configuring EnergyWise

- Finding Feature Information, page 15
- Prerequisites for Configuring EnergyWise, page 15
- Restrictions for Configuring EnergyWise, page 17
- Information About Configuring EnergyWise, page 18
- Configuration Guidelines, page 27
- How to Configure EnergyWise, page 29
- Monitoring and Troubleshooting EnergyWise, page 49
- Configuration Examples for EnergyWise, page 53
- Additional References, page 59
- Feature Information for EnergyWise, page 60

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Configuring EnergyWise

Prerequisites for Activity Check

- Ensure that all packets from the IP phone have the class of service (CoS) value at 5. Use the show mls qos maps cos-output-q privileged EXEC command to display the CoS output queue threshold map.
• Use the `auto qos voip` interface configuration command to enable auto quality of service (auto-QoS) for VoIP on the PoE port.

• Use the `auto qos voip cisco-phone` interface configuration command to enable auto-QoS on the IP phone. The switch does not change the CoS value in the packet that comes from the IP phone.

• If the switch is connected to the IP phone through multiple Cisco devices, use the `auto qos voip trust` interface configuration command to ensure that they trust the CoS value in incoming packets and do not change it.

Related Topics
- Configuring Activity Check, on page 47
- Activity Check, on page 25

Prerequisites for Wake on LAN

• Check that you have enabled Wake on LAN (WoL) in the BIOS and the NIC of the PC that you want to wake up. Refer to your PC documentation for instructions on how to enable WoL in the BIOS and the NIC.

• WoL packets are sent as Layer 2 broadcast packets. To prevent broadcast storms, remove loops by using the Spanning Tree Protocol (STP).

• Check that an EnergyWise WoL query always has a name or keyword attribute associated with it. The importance, name, and keyword fields in the WoL query packet refer to attributes set on the interface that the PC connects to. WoL packets are sent only from interfaces where the name or key word attribute is set, which prevents broadcast storms. For example, enter this command:

```
DomainMember# configure terminal
DomainMember(config)# interface gigabitethernet 0/1
DomainMember(config-if)# energywise name PC-1
DomainMember(config-if)# end
DomainMember(config)# end
DomainMember# energywise query importance 100 name PC-1 wol mac <mac-address>
```

Related Topics
- Using WoL with a MAC Address, on page 48
- Using WoL Without a MAC Address, on page 49
- Wake on LAN, on page 26

Prerequisites for Hibernation

• Check that you have configured an EnergyWise domain before configuring hibernation.

• If you are running a query to hibernate the switch, check that you have already configured a hibernation end time. If you are configuring a Cisco IOS time-based recurrence, ensure that you configure hibernation start and end times. If you have not configured an end-time, you cannot hibernate the switch.
If you have configured multiple recurrences using the `energywise level level recurrence importance importance time-range time-range-name` global configuration command, the recurrence you configured first is effective. Only after you remove the first recurrence does the next recurrence take effect.

Check that you have not configured overlapping time periods when configuring the periodic condition. In case of overlaps, the system considers the earlier time-period. For example, if you have configured

```
DomainMember(config-time-range)# periodic weekday 9:30 to 11:30
```

and

```
DomainMember(config-time-range)# periodic weekday 10:30 to 12:30
```

The switch hibernates from 9:30 a.m. to 11:30 a.m. The second periodic condition is disregarded because the switch will already be in hibernation.

Check that there is a minimum time interval of 5 minutes between one hibernation end time and the next hibernation start time (the next hibernation start time should be greater than the total time taken for system boot).

When multiple switches are connected as neighbors, the system adds a 1-to-3-minute delay to the hibernation end time across the switches to avoid network traffic bottlenecks.

When you configure hibernation on a switch stack:

- We recommend that you ensure that all the members on the stack support hibernation. If you configure hibernation on a mixed switch stack, only supported devices hibernate at the scheduled time.
- By running a query, ensure that you run the query on the stack master.

Related Topics

- Configuring Hibernation Start and End Times, on page 44
- Hibernating Immediately, on page 43
- Hibernation, on page 20

Restrictions for Configuring EnergyWise

Voice over IP and the Emergency Calling Services

Warning

Voice over IP (VoIP) service and the emergency calling service do not function if power fails or is disrupted. After power is restored, you might have to reset or reconfigure equipment to regain access to VoIP and the emergency calling service. In the USA, this emergency number is 911. You need to be aware of the emergency number in your country. Statement 361.

For more information, see the "Important Notice" appendix.
Hibernation

The system does not perform activity check before hibernating (scheduled or immediate hibernation). This means that the switch configured to hibernate at a certain time will do so even if a PoE port on the switch is sending or receiving traffic.

Information About Configuring EnergyWise

Cisco EnergyWise Network

In a network, Cisco EnergyWise monitors and manages the power usage of network devices and devices connected to the network.

Figure 1: Cisco EnergyWise Network

- Management stations—Control applications and devices that use EnergyWise to monitor and manage the power usage of domain members and endpoints. Management stations also send queries to domain members.

- Domain members—This group includes Cisco switches, routers, and network devices. They forward messages across an EnergyWise domain to endpoints. They also forward and reply to queries from the management station and other domain members and aggregate power-usage information from the endpoints.

- Endpoints—Devices that are connected to a domain member and that use power. They respond to queries but do not send or forward them. You can install the SDK library on IP endpoints. A Cisco EnergyWise domain member can also use SNMP to communicate with endpoint devices.
Domain members and endpoints receive power from an AC or DC power source or a power supply.
PoE domain members and endpoints also receive power from PoE switches or Cisco EtherSwitch service modules. For example, IP phones and access points connected to a PoE switch receive power from the switch.

EnergyWise Domain

A Cisco EnergyWise domain is considered to be one unit of power management. The domain consists of Cisco networking devices, Power over Ethernet (PoE) endpoints, and endpoints running agents that are built using the software development kit (SDK) library. This domain is similar to a network-management community such as a VLAN Trunking Protocol (VTP) domain.

For example, if you have a building with a core router, 10 access switches, and 400 endpoints, such as phones, access points, and PCs, you can create an EnergyWise domain called MyBuilding with the router and switches as domain members.

If you want to implement power management applications on a management station and endpoints, all the domain members must run Cisco EnergyWise Version 2.6 or later.

After you enable and configure EnergyWise on the core router and access switches, the MyBuilding domain configures itself. Neighbor relationships are set among the domain members.

- Domain members use CDP when it is enabled or EnergyWise UDP messages to automatically discover neighbors.
- You can manually configure static neighbors.

Each domain member sets up a parent-child relationship with an attached endpoint. For example, an IP phone (child) is connected to a PoE switch (parent), or a PC (child) is connected to a router (parent).

After the domain is set, a domain member can forward queries and control messages to other domain members and endpoints. You can do the following:

- Use SNMP or a management station to query every domain member or endpoint.
- Use the domain member CLI to run an EnergyWise query to receive or set power usage information.
- Use a management application, server, or domain member CLI to define power usage policies or receive power usage information.

Related Topics

- Configuring Domain Member or Endpoint Attributes, on page 31
- Examples: Setting the Domain, on page 53

Power Level Energy Management

Cisco EnergyWise uses a set of power levels to consistently manage power usage. A power level is a measure of the energy consumed by devices in an EnergyWise network.

The range is from 0 to 10. The default is 10.
Table 4: Power Levels

<table>
<thead>
<tr>
<th>Category</th>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational</td>
<td>10</td>
<td>Full</td>
</tr>
<tr>
<td>Operational</td>
<td>9</td>
<td>High</td>
</tr>
<tr>
<td>Operational</td>
<td>8</td>
<td>Reduced</td>
</tr>
<tr>
<td>Standby</td>
<td>7</td>
<td>Medium</td>
</tr>
<tr>
<td>Standby</td>
<td>6</td>
<td>Frugal</td>
</tr>
<tr>
<td>Standby</td>
<td>5</td>
<td>Low</td>
</tr>
<tr>
<td>Standby</td>
<td>4</td>
<td>Ready</td>
</tr>
<tr>
<td>Standby</td>
<td>3</td>
<td>Standby</td>
</tr>
<tr>
<td>Nonoperational</td>
<td>2</td>
<td>Sleep</td>
</tr>
<tr>
<td>Nonoperational</td>
<td>1</td>
<td>Hibernate</td>
</tr>
<tr>
<td>Nonoperational</td>
<td>0</td>
<td>Shut</td>
</tr>
</tbody>
</table>

The devices in an EnergyWise network can be from different manufacturers.

Note
A Cisco switch does not support level 0. You cannot turn off the power on a switch.

A PoE endpoint, such as an IP phone, receives power from a PoE switch port. The following are the PoE endpoint power characteristics:

- The power level applies to the port.
- The port supports levels 0 to 10.
- If the port power level is 0, the port does not provide power to connected endpoints.
- If the power level is between 1 and 10, the port is operational.

Hibernation

You can manage the power usage of the switch during periods of nonoperation, by setting the power level to hibernate. A hibernation end time determines when the power level is restored to operational.

- Power level 1 denotes hibernation.
- Power levels 2 to 10 denote that the switch is operational.
You can use these methods to hibernate the switch:

- Configure a Cisco IOS time-based recurrence with scheduled hibernation start and end times.
- Run an EnergyWise query to hibernate the switch immediately.
- Use SNMP.

Important Irrespective of the method you use, before you hibernate the switch ensure that you have configured a hibernation end-time by configuring the `periodic` command in the time-range configuration mode and associating that time range with the `energywise level` global configuration command.

Related Topics
- Configuring Hibernation Start and End Times, on page 44
- Hibernating Immediately, on page 43
- Example: Hibernating a Switch, on page 58
- Prerequisites for Hibernation, on page 16

Attributes

The following table describes Cisco EnergyWise attributes.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Definition</th>
<th>Defaults</th>
</tr>
</thead>
<tbody>
<tr>
<td>Importance</td>
<td>Device rating based on the business or deployment context.</td>
<td>The range is from 1 (least important) to 100 (most important). The default is 1.</td>
</tr>
<tr>
<td>Keywords</td>
<td>Device description (other than the name or role) for which query results are filtered.</td>
<td>None.</td>
</tr>
<tr>
<td>Name</td>
<td>Device identity for which query results are filtered.</td>
<td>For a PoE port, the short version of the port name. For example, Gi0.2 for Gigabit Ethernet 0/2. For a domain member, the hostname. For an endpoint, see the endpoint documentation. We recommend that you use the hostname.</td>
</tr>
</tbody>
</table>
For a PoE port, the default is interface. For a domain member, the default can be the model number or the supervisor model number. For an endpoint, see the endpoint documentation.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Definition</th>
<th>Defaults</th>
</tr>
</thead>
<tbody>
<tr>
<td>Role</td>
<td>Device function based on the business or deployment context.</td>
<td>For a PoE port, the default is interface. For a domain member, the default can be the model number or the supervisor model number. For an endpoint, see the endpoint documentation.</td>
</tr>
</tbody>
</table>

Related Topics

Configuring Port Attributes, on page 35

Security

A Cisco EnergyWise network has three levels of security to prevent unauthorized communication.

- The management secret authenticates communication between the domain members and the management station.
- The domain secret authenticates communication between domain members.
- The endpoint secret authenticates communication between domain members and endpoints.

The network enforces security with shared secrets, also referred to as passwords.

Figure 2: Cisco EnergyWise Security Levels
Recurrences

A recurrence is an event that repeats on a regular schedule. You can use this feature to schedule jobs to run periodically or at certain times or date. For example, you can configure the domain member to power an endpoint or interface on and off based on the time or date.

A recurrence uses the domain member time.

When configuring recurrences, you specify the time in CRON format (24-hour format). Cron is the time-based job scheduler in Unix computer operating systems.

When a recurrence occurs, changes to the Cisco EnergyWise power level exist only in the running configuration and are not saved in the startup configuration. If the domain member fails and then restarts, it uses the power level in the saved startup configuration.

Related Topics

Configuring Recurrences, on page 38

Time Format and Time Zone

For time format, use the 24-hour clock. The time zone is based on the domain member.

- To set a recurrence at a specific time, enter the energywise level level recurrence importance importance at minute hour day_of_month month day_of_week interface configuration command.

For example, to configure a recurrence that occurs every day at 06:34, enter the energywise level level recurrence importance at 34 6 * * * command.

- minute is 34.
- hour is 6.
- day_of_month is the wildcard (*) for every day in the month.
- month is the wildcard (*) for every month.
- day_of_week is the wildcard (*) for every day in the week.

- To set 06:34 in a time range, enter the absolute 06:34 * * 2009 and the periodic 06:34 interface configuration commands.

Note

When configuring recurrences, do not schedule multiple recurrence events to start at the same time. We recommend that you configure events at least 15 minutes apart.

Day of the Month and Day of the Week Recurrences

When you use the day_of_month and the day_of_week variables in the energywise level level recurrence importance importance at minute hour day_of_month month day_of_week interface configuration command, follow these guidelines:
• The recurrence occurs when either the day_of_month or the day_of_week occurs first (in releases earlier than the Cisco EnergyWise Version 2.7 releases). See the Release Notes for Cisco EnergyWise, EnergyWise Version 2.7 on Cisco.com for software releases with Cisco EnergyWise Version 2.7.

• If you specify both the day_of_month and the day_of_week, the event occurs when either the day_of_month or the day_of_week is first.

• If you specify the day_of_month and use a wildcard (*) for the day_of_week, the event occurs on the day_of_month.

• If you use a wildcard for the day_of_month and specify the day_of_week, the event occurs on the day_of_week.

• If you use wildcards for both the day_of_month and the day_of_week, the event occurs on any day.

Queries

The management station sending a query receives all the power-usage responses from the EnergyWise domain. The domain members use neighbor relationships to forward the query.

For secure communication, the domain members use a shared secret and send only authenticated queries to the endpoints.

Figure 3: Query Requests and Replies

Table 6: Query Requests and Replies

<table>
<thead>
<tr>
<th>Number</th>
<th>Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The management station sends queries and messages to the domain.</td>
</tr>
<tr>
<td>2</td>
<td>The domain member replies to queries and messages from the management station.</td>
</tr>
<tr>
<td>3</td>
<td>The domain member sends queries and messages to other domain members and endpoints.</td>
</tr>
</tbody>
</table>
EnergyWise supports the following query types:

- **Collect**—Receives power-usage information in watts (W) from the domain members and endpoints.
- **Save**—Saves the running configuration of a domain member. Use the `energywise allow query save` global configuration command.
- **Set**—Changes the power level of a domain member or endpoint in the running configuration.
- **Sum**—Summarizes the information from domain members and endpoints.

You can use these attributes to filter the results:

- **Importance**—Rate your devices based on the business or deployment context. For example, a desk phone has a lower importance than a business-critical emergency phone. The range is from 1 (least important) to 100 (most important). The default is 1.
- **Keywords**—Describes the device (other than the name or role).
- **Name**—Identifies the device.
- **Role**—Specifies the device function based on the business or deployment context.
- **Usage**—Specifies the energy usage type of the Cisco EnergyWise device. The default is consumer.
 - All—Devices of all usage types.
 - Consumer—A device that consumes power, such as a switch.
 - Meter—A device that measures the pass-through power, such as a power distribution unit (PDU) that sends power from a source to a connected device.
 - Producer—A device that generates power, such as a solar panel.

The query results show domain members and endpoints with importance values less than or equal to the specified value in the query.

Related Topics

- Examples: Querying to Analyze Domains, on page 56
- Examples: Querying with the Name Attribute, on page 56
- Examples: Querying with Keywords, on page 56
- Examples: Querying to Set Power Levels, on page 57

Activity Check

You can use this feature to ensure that the switch does not power off a phone that is in use. For example, if you have a Cisco IP phone connected to a PoE port and activity check is enabled, the switch does not power off the phone if it is sending or receiving voice traffic. If the phone is not in use, it powers off within...
approximately 1 minute. If a PC is connected to the switch port of the phone, the PC loses network connectivity when the phone is powered off.

You can configure activity check on these Cisco devices:

- Cisco Catalyst 4500 and 6500 series switches.
- Cisco Industrial Ethernet (IE) 2000, 3000, and 3010 series switches.

Related Topics

Configuring Activity Check, on page 47
Examples: Activity Check, on page 58
Prerequisites for Activity Check, on page 15

Wake on LAN

Wake on LAN (WoL) is an Ethernet computer networking standard that uses a network message called a magic packet to wake up an endpoint device. The magic packet contains the MAC address of the destination endpoint device (typically a PC). For example, you can send a WoL magic packet to a PC. The listening PC waits for a magic packet addressed to it and then initiates the system to wake up.

WoL is implemented on the motherboard (BIOS) and the network interface. It is operating-system independent. WoL could be disabled by default on some PCs.

Related Topics

Using WoL with a MAC Address, on page 48
Using WoL Without a MAC Address, on page 49
Prerequisites for Wake on LAN, on page 16

WoL with Cisco EnergyWise

You can configure the EnergyWise domain member to send a WoL magic packet to a specific endpoint device or all endpoint devices in the EnergyWise network. When a WoL-enabled PC is connected to the domain member, it receives the WoL magic packet and the power level of the PC changes from nonoperational to operational.

Some network interface cards (NICs) have a SecureOn feature with which you can store a hexadecimal password within the NIC. When you send WoL packets to NICs with SecureOn, the NICs store this password as part of the packet, making the wake up process secure. If the PC you are trying to wake up has an NIC that supports SecureOn, the domain member must send a magic packet with the hexadecimal password to power on the PC.
Configuration Guidelines

Enabling Cisco EnergyWise and Powering Devices

By default, Cisco EnergyWise is disabled on the domain member. If you enter the `no energywise level` interface configuration command, the domain member does not immediately change to the default power level. The power level changes when you restart the domain member or enter the `energywise level level` command.

Domain Member with PoE Ports

For a domain member with PoE ports, such as a PoE-capable switch:

- When you add an endpoint to an EnergyWise domain, it becomes an EnergyWise domain member and EnergyWise is enabled on the new domain member and all the PoE ports.
- When you use the `energywise level 0` interface configuration command, the port does not provide power to connected endpoints.
- You cannot use the `energywise level 0` global configuration command to power off the domain member.

Error-Disabled Ports

If a port is error-disabled:

- It appears as an EnergyWise domain member or endpoint in the `show` command output and in the `collect` query results. The query results show that the port uses 0 watts.
- It does not respond to a `set` query.

PoE and EnergyWise Interactions

You can configure EnergyWise on the port and configure the port power level. The following table shows you how to find out if a domain member port participates in Cisco EnergyWise. For each combination of port and PoE mode check the matrix entry, if it is `Yes`, then the port participates in Cisco EnergyWise; if it is `No`, then the port does not participate in EnergyWise.

For example, if the port is PoE and the PoE mode is `never`, the table matrix entry is `No`; this means Cisco EnergyWise is not disabled even if the port power is off.

Table 7: Domain Member Port Participation in Cisco EnergyWise

<table>
<thead>
<tr>
<th>Port</th>
<th>PoE Mode—auto</th>
<th>PoE Mode—never</th>
<th>PoE mode—static</th>
</tr>
</thead>
<tbody>
<tr>
<td>PoE</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Non-PoE</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
When you change the port mode using the **power inline auto** or **power inline static** interface configuration commands, changes are effective immediately. You do not need to restart the domain member.

If Cisco EnergyWise is disabled, the domain member can use PoE to manage the port power usage.

When you configure a recurrence for PoE interfaces, EnergyWise functions the same way as when the **power inline** and **no power inline** interface configuration commands are executed. You might see messages that show the interface going up and down at time of the event.

CLI Compatibility

Follow these guidelines for EnergyWise to work properly:

- All domain members must run Cisco EnergyWise Version 1 or Cisco EnergyWise Version 2.6 or later.
- All domain members must have the same domain name and security mode.
- If your switch is stacking-capable and is a member of a switch stack, all the stack members must run the same Cisco EnergyWise version.
- If your domain member is running Cisco EnergyWise Version 1, and you upgrade your software to a release supporting Cisco EnergyWise Version 2.6 or later:
 - The EnergyWise settings in the running configuration are updated. The domain member sets the management password as the same domain password in the **energywise domain** command.
 - Enter the **copy running-config startup-config** privileged EXEC command to save the EnergyWise settings in the configuration file.
- If your domain member is running Cisco EnergyWise Version 2.6 or later and you need to downgrade to Cisco EnergyWise Version 1.0 due to domain member compatibility issues, enter the **no energywise domain** global configuration command to disable EnergyWise before downgrading your software to a release supporting EnergyWise Version 1.

To display the Cisco EnergyWise version running on your domain member, use the **show energywise version** privileged EXEC command. The Cisco EnergyWise version is referred to as the EnergyWise specification in the command output.

To display the software version running on your domain member, use the **show version** privileged EXEC command.

In Cisco EnergyWise Version 1, these commands were modified:

- **energywise domain domain-name secret [0 | 7] password** global configuration command

 We recommend that you reconfigure the EnergyWise domain with the **energywise domain domain-name security {ntp-shared-secret | shared-secret} [0 | 7] shared-secret [protocol udp port udp-port-number [interface interface-id | ip ip-address]]** global configuration command.

 If you do not reconfigure the domain, the domain member synchronizes the management password with the domain password.

- **energywise management tcp-port-number** global configuration command

 We recommend that you reconfigure the management password for the domain with the **energywise management security shared-secret [0 | 7] shared-secret port tcp-port-number** global configuration command.
How to Configure EnergyWise

Enabling Cisco EnergyWise

SUMMARY STEPS

1. `configure terminal`
2. `service password-encryption`
3. `energywise domain domain-name security {ntp-shared-secret | shared-secret} [0 | 7] domain-password [protocol udp port udp-port-number [interface interface-id | ip ip-address]]`
4. `end`
5. `show energywise`
6. `show energywise domain`
7. `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**

   ```
   configure terminal
   ```

<table>
<thead>
<tr>
<th>Example:</th>
<th>Enters the global configuration mode.</th>
</tr>
</thead>
</table>
| **Step 2**

   ```
   service password-encryption
   ```

<table>
<thead>
<tr>
<th>Example:</th>
<th>(Optional) Enables password encryption. If you set a hidden password in Step 3, enter this command.</th>
</tr>
</thead>
</table>
| **Step 3**

   ```
   energywise domain domain-name security {ntp-shared-secret | shared-secret} [0 | 7] domain-password [protocol udp port udp-port-number [interface interface-id | ip ip-address]]
   ```

| Example: | Enables Cisco EnergyWise on the network device, assigns it to a domain with the specified domain-name, sets the domain security mode, and sets the domain password to authenticate all communication in the domain. |

 - *ntp-shared-secret*—Sets a strong password with NTP. If the time between members varies ±30 seconds, the domain member drops events.
 - *shared-secret*—Sets a strong password without NTP.
 - *(Optional) 0*—Uses a plain-text password. This is the default.
 - *(Optional) 7*—Uses a hidden password.
 - *(Optional) port udp-port-number*—Specifies the UDP port that communicates with the domain.

| Example: | The range is from 1 to 65000. The default is 43440. |

29 Cisco 2960-X Switch Series Configuration Guide, Cisco IOS Release 15.0(2)EX
### Command or Action	Purpose
• (Optional) **interface interface-id**—Specifies the port that communicates with the domain if the IP address is dynamically assigned. We recommend that you specify the `interface-id` value. You should use this in a bridged network.
• (Optional) **ip ip-address**—Specifies the IP address that communicates with the domain if the interface is a switched virtual interface (SVI) and VLAN trunking protocol (VTP) pruning is enabled. You should use this in a routed network.

For the `domain-name` and `domain-password`:
• You can enter alphanumeric characters and symbols such as #, (, $, !, and &.
• Do not enter an asterisk (*) or a space between the characters or symbols.

Step 4

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Example:

```
DomainMember(config)# end
```

Step 5

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show energywise</td>
<td>Verifies your entries</td>
</tr>
</tbody>
</table>

Example:

```
DomainMember# show energywise
```

Step 6

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show energywise domain</td>
<td>Verifies your entries.</td>
</tr>
</tbody>
</table>

Example:

```
DomainMember# show energywise domain
```

Step 7

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Example:

```
DomainMember# copy running-config startup-config
```
Configuring Domain Member or Endpoint Attributes

SUMMARY STEPS

1. `configure terminal`
2. `energywise importance` *importance*
3. `energywise keywords` *word, word, word...
4. `service password-encryption`
5. `energywise management security shared-secret` [0 | 7] *mgmt-password* [port tcp-port-number]
6. `energywise name` *name*
7. `energywise neighbor` [hostname | ip-address] udp-port-number
8. `energywise role` *role*
9. `energywise allow query` [save | set]
10. `energywise endpoint security` [none | shared-secret] [0 | 7] *shared-secret*
11. `end`
12. `show energywise`
13. `show energywise domain`
14. `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>configure terminal</code></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: DomainMember# <code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 2 <code>energywise importance</code> importance</td>
<td>Sets the importance. The range is from 1 to 100. The default is 1.</td>
</tr>
<tr>
<td>Example: DomainMember(config)# <code>energywise importance 65</code></td>
<td></td>
</tr>
<tr>
<td>Step 3 <code>energywise keywords</code> word, word, word...</td>
<td>Assigns at least one keyword. When assigning multiple keywords, separate the keywords with commas, and do not use spaces between keywords.</td>
</tr>
</tbody>
</table>
| **Example:** DomainMember(config)# `energywise keywords lab1,devlab` | - You can enter alphanumeric characters and symbols such as #, (, $, !, and &.
 - Do not enter an asterisk (*) or a space between the characters or symbols. By default, keywords are not defined. |
| **Step 4** `service password-encryption` | (Optional) Enables password encryption. |
How to Configure EnergyWise

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example: DomainMember(config)# service password-encryption</td>
<td>If you set a hidden password in Step 3, enter this command.</td>
</tr>
<tr>
<td>Step 5 energywise management security shared-secret [0</td>
<td>7] mgmt-password [port tcp-port-number]</td>
</tr>
</tbody>
</table>
| **Example:** DomainMember(config)# energywise management security shared-secret cisco port 1055 | - (Optional) 0—Uses a plain-text password.
 - (Optional) 7—Uses a hidden password.
 If you do not enter 0 or 7, the default is 0.

For the mgmt-password:
- You can enter alphanumeric characters and symbols such as #, (, $, !, and &.
- Do not enter an asterisk (*) or a space between the characters or symbols.
(Optional) port tcp-port-number—Specifies the TCP port for management access. The range is from 1025 to 65535. The default is 43440.
By default, the management password is not set. |
| **Step 6** energywise name name | Specifies the EnergyWise-specific name. |
| **Example:** DomainMember(config)# energywise name LabSwitch | - You can enter alphanumeric characters and symbols such as #, (, $, !, and &.
- Do not enter an asterisk (*) or a space between the characters or symbols.
The default is the host name. |
| **Step 7** energywise neighbor [hostname | ip-address] udp-port-number | Assigns a static neighbor. |
| **Example:** DomainMember(config)# energywise neighbor member1 43440 | - Domain Name System (DNS) hostname (hostname) or IP address (ip-address).
- UDP port (udp-port-number) that sends and receives queries.
The range is from 1 to 65000.
By default, static neighbors are not assigned. |
| **Step 8** energywise role role | Specifies the role in the EnergyWise domain. For example, lobby.b20. |
| **Example:** DomainMember(config)# energywise role role.labaccess | - You can enter alphanumeric characters and symbols such as #, (, $, !, and &.
- Do not enter an asterisk (*) or a space between the characters or symbols. |
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 9</td>
<td>Purpose</td>
</tr>
<tr>
<td>`energywise allow query [save</td>
<td>set]`</td>
</tr>
<tr>
<td>Example:</td>
<td>DomainMember(config)# <code>energywise allow query save</code></td>
</tr>
<tr>
<td></td>
<td>save—Responds to a query to save the running configuration.</td>
</tr>
<tr>
<td></td>
<td>set—Responds to a query to change the power level or the EnergyWise attributes.</td>
</tr>
<tr>
<td>By default, the domain member</td>
<td>responds to the set query.</td>
</tr>
<tr>
<td>Step 10</td>
<td>Sets the security mode for an endpoint.</td>
</tr>
<tr>
<td>`energywise endpoint security [none</td>
<td>shared-secret [0</td>
</tr>
<tr>
<td>Example:</td>
<td>DomainMember(config)# <code>energywise endpoint security shared-secret cisco</code></td>
</tr>
<tr>
<td></td>
<td>none—Disables security.</td>
</tr>
<tr>
<td></td>
<td>shared-secret—Uses a password for secure communication with the domain member.</td>
</tr>
<tr>
<td></td>
<td>(Optional) 0—Uses a plain-text password.</td>
</tr>
<tr>
<td></td>
<td>(Optional) 7—Uses a hidden password.</td>
</tr>
<tr>
<td>If you do not enter 0 or 7,</td>
<td>the default is 0.</td>
</tr>
<tr>
<td></td>
<td>For the shared-secret:</td>
</tr>
<tr>
<td></td>
<td>◦ You can enter alphanumeric characters and symbols such as #, $, !, and &.</td>
</tr>
<tr>
<td></td>
<td>◦ Do not enter an asterisk (*) or a space between the characters or symbols.</td>
</tr>
<tr>
<td>By default, the password is not set.</td>
<td></td>
</tr>
<tr>
<td>Step 11</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>end</code></td>
<td>Example: DomainMember(config)# <code>end</code></td>
</tr>
<tr>
<td>Step 12</td>
<td>Verifies your entries</td>
</tr>
<tr>
<td><code>show energywise</code></td>
<td>Example: DomainMember# <code>show energywise</code></td>
</tr>
<tr>
<td>Step 13</td>
<td>Verifies your entries</td>
</tr>
<tr>
<td><code>show energywise domain</code></td>
<td>Example: DomainMember# <code>show energywise domain</code></td>
</tr>
<tr>
<td>Step 14</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>Example: DomainMember# <code>copy running-config startup-config</code></td>
</tr>
</tbody>
</table>
Powering the PoE Port

SUMMARY STEPS

1. `configure terminal`
2. `interface interface-id`
3. `energywise level level`
4. `end`
5. `show energywise`
6. `show energywise domain`
7. `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code> Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>DomainMember# <code>configure terminal</code></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>interface interface-id</code> Specifies the port or the range of ports to be configured and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>DomainMember(config)# <code>interface gigabitethernet1/0/2</code></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>energywise level level</code> Manually powers on the port.</td>
</tr>
<tr>
<td>Example:</td>
<td>DomainMember(config-if)# <code>energywise level 3</code></td>
</tr>
<tr>
<td></td>
<td>• For a connected PoE endpoint, enter a power level of 10.</td>
</tr>
<tr>
<td></td>
<td>• For an non-PoE-capable endpoint, enter a power level from 1 to 10. The endpoint determines the appropriate action.</td>
</tr>
</tbody>
</table>
How to Configure EnergyWise

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 4 | `end` | Returns to privileged EXEC mode.
Example:
DomainMember(config-if)#`end` |
| Step 5 | `show energywise` | Verifies your entries.
Example:
DomainMember# `show energywise` |
| Step 6 | `show energywise domain` | Verifies your entries.
Example:
DomainMember# `show energywise domain` |
| Step 7 | `copy running-config startup-config` | (Optional) Saves your entries in the configuration file.
Note: The power level that you set in Step 3 is the default power level when the domain member restarts.
Example:
DomainMember# `copy running-config startup-config` |

Configuring Port Attributes

Before You Begin

Before entering the `energywise activitycheck` command in Step 7:

- Verify that automatic quality of service (auto-QoS) is enabled on the port and on the connected IP phone.
- If the domain member is connected to the IP phones through multiple Cisco devices, verify that they trust the CoS value in the incoming packets.

For more information about activity check and configuring auto-QoS, see Activity Check, on page 25.
SUMMARY STEPS

1. configure terminal
2. interface interface-id
3. energywise importance importance
4. energywise keywords word, word, word...
5. energywise name name
6. energywise role role
7. energywise activitycheck
8. energywise allow query set
9. end
10. show running-config
11. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: DomainMember# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Specifies the port or the range of ports to be configured, and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example: DomainMember(config)# interface gigabitethernet1/0/2</td>
<td></td>
</tr>
<tr>
<td>Step 3 energywise importance importance</td>
<td>Sets the importance.</td>
</tr>
<tr>
<td>Example: DomainMember(config-if)# energywise importance 90</td>
<td>The range is from 1 to 100. The default is 1.</td>
</tr>
<tr>
<td>Step 4 energywise keywords word, word, word...</td>
<td>Assigns at least one keyword.</td>
</tr>
<tr>
<td>Example: DomainMember(config-if)# energywise keywords lab</td>
<td>When assigning multiple keywords, separate the keywords with commas, and do not use spaces between keywords.</td>
</tr>
<tr>
<td></td>
<td>• You can enter alphanumeric characters and symbols such as #, $, !, and &.</td>
</tr>
<tr>
<td></td>
<td>• Do not enter an asterisk (*) or a space between the characters or symbols.</td>
</tr>
<tr>
<td></td>
<td>By default, keywords are not defined.</td>
</tr>
<tr>
<td>Step 5 energywise name name</td>
<td>Specifies the EnergyWise-specific name.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| Example: ![Image](example1.png) | - You can enter alphanumeric characters and symbols such as #, $, !, and &.
- Do not enter an asterisk (*) or a space between the characters or symbols. The default is the host name. |
| Step 6 | energywise role role |
| Example: ![Image](example2.png) | Specifies the role in the EnergyWise domain. For example, lobby.b20.
- You can enter alphanumeric characters and symbols such as #, $, !, and &.
- Do not enter an asterisk (*) or a space between the characters or symbols. The default is the model number. |
| Step 7 | energywise activitycheck |
| Example: ![Image](example3.png) | Verifies that the connected IP phone is not sending or receiving traffic before the domain member powers off the port. **Note** The domain member cannot determine if the IP phone is in the hold state. |
| Step 8 | energywise allow query set |
| Example: ![Image](example4.png) | If the interface receives a query from the management station or another domain member, configures the interface to respond to a query changing the power level and the EnergyWise attributes. By default, the domain member responds to this query. |
| Step 9 | end |
| Example: ![Image](example5.png) | Returns to privileged EXEC mode. |
| Step 10 | show running-config |
| Example: ![Image](example6.png) | Verifies your entries. |
| Step 11 | copy running-config startup-config |
| Example: ![Image](example7.png) | (Optional) Saves your entries in the configuration file. |

Related Topics

Attributes, on page 21
Configuring Recurrences

SUMMARY STEPS

1. `show energywise`
2. `configure terminal`
3. `time-range time-range-name`
4. `absolute start hh:mm day_of_month month year`
5. `periodic days_of_the_week hh:mm`
6. `interface interface-id`
7. `energywise level level recurrence importance importance {at minute hour day_of_month month day_of_week | time-range time-range-name}`
8. `end`
9. `show energywise recurrence`
10. `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>show energywise</td>
</tr>
<tr>
<td>Example:</td>
<td>DomainMember# <code>show energywise</code></td>
</tr>
<tr>
<td>Purpose</td>
<td>Verifies that EnergyWise is enabled.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>DomainMember# <code>configure terminal</code></td>
</tr>
<tr>
<td>Purpose</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>time-range time-range-name</td>
</tr>
<tr>
<td>Example:</td>
<td>DomainMember(config)# <code>time-range onfirstfloor</code></td>
</tr>
<tr>
<td>Purpose</td>
<td>Assigns a name to the time range, and enters the time-range configuration mode. If you do not configure a time range, go to Step 6. The time range is based on the system clock.</td>
</tr>
<tr>
<td></td>
<td>- If EnergyWise is not running on the endpoint (for example, a PoE endpoint), the specified times are based on the domain member time zone.</td>
</tr>
<tr>
<td></td>
<td>- If an agent or client is running on the endpoint, the specified times are based on the endpoint time zone.</td>
</tr>
</tbody>
</table>

Use the **absolute** and the **periodic** time-range configuration commands to specify times and days for a recurrence. You can use one absolute condition and multiple periodic conditions.
Command or Action

<table>
<thead>
<tr>
<th>Step 4</th>
<th><code>absolute start hh:mm day_of_month month year</code></th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sets the start time and day for the recurrence. If the <code>absolute</code> condition has an end time and day, the domain member ignores these values.</td>
<td></td>
</tr>
</tbody>
</table>

Example:

```bash
DomainMember(config-time-range)#
absolute start 0:00 1 August 2009
```

- `hh:mm` — Specifies the time (24-hour format) in hours and minutes.
- `day month year` — Specifies the date.
 - `day_of_month` — The range is from 1 to 31.
 - `month` — The range is from January to December.
 - `year` — The minimum year is 1993.

When configuring the absolute time range, the wildcard * option is not supported for `day_of_month` and `month`.

<table>
<thead>
<tr>
<th>Step 5</th>
<th><code>periodic days_of_the_week hh:mm</code></th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sets the weekly start time and day for the recurrence.</td>
<td></td>
</tr>
</tbody>
</table>

Example:

```bash
DomainMember(config-time-range)#
periodic weekdays 06:00 to 22:00
DomainMember(config-time-range)#
periodic weekend 10:00 to 16:00
```

- `days_of_the_week` — Valid values:
 - `Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, or Sunday` — Enter a single day, a range of days with a dash between the starting and ending days, or multiple days separated by a comma.
 - `daily` — Enter if the recurrence starts from Monday to Sunday.
 - `weekdays` — Enter if the recurrence starts from Monday to Friday.
 - `weekend` — Enter if the event occurs on Saturday and Sunday.
- `hh:mm` — Specifies the time (24-hour format) in hours and minutes.

<table>
<thead>
<tr>
<th>Step 6</th>
<th><code>interface interface-id</code></th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Specifies the port or a range of ports to be configured, and enters interface configuration mode.</td>
<td></td>
</tr>
</tbody>
</table>

Example:

```bash
DomainMember(config)#
interface gigabitethernet1/0/2
```

| Step 7 | `energywise level level recurrence importance importance {at minute hour day_of_month month day_of_week | time-range time-range-name}` | Purpose |
|--------|---|---------|
| | Schedules a power-on or power-off event. | |

Example:

```bash
DomainMember(config-if)#
energywise level 10 recurrence importance 70
time-range onfirstfloor
```

- `level` — Specifies the power level.
 - To power off the endpoint, enter 0.
 - To power on the endpoint:
 - If it is a PoE endpoint, enter 10.
 - If it is another powered device, enter a power level from 1 to 10. The endpoint determines the appropriate action.
- `importance` — The event occurs if the importance value of the endpoint is less than or equal to the importance value. The range is from 1 to 100.
### Command or Action	Purpose

• at minute hour day_of_month month day_of_week—Specifies the time (24-hour format) in cron format for the recurrence.
 - *minute*—The range is from 0 to 59. Use * for the wildcard.
 - *hour*—The range is from 0 to 23. Use * for the wildcard.
 - *day_of_month*—The range is from 1 to 31. Use * for the wildcard.
 - *month*—The range is from 1 (January) to 12 (December). Use * for the wildcard.
 - *day_of_week*—The range is from 0 (Sunday) to 6 (Saturday). Use * for the wildcard.

• time-range time-range-name—Specifies the time range for the recurrence.

The event uses the domain member time.
Repeat this step to schedule another event.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>DomainMember(config)# end</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>show energywise recurrence</td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td>Example:</td>
<td>DomainMember# show energywise recurrence</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td>Example:</td>
<td>DomainMember# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

Related Topics

Recurrences, on page 23
Using Queries to Manage Power in the Domain

Note
If the timeout value in the `energywise query importance` privileged EXEC command is too short, the management station does not receive query results even if the domain members and endpoints respond to the query. For example, if you want to power off a specific phone but the timeout value in the `energywise query importance` command is too short, the phone is not powered off. When configuring the timeout, configure a minimum of 6 seconds to display correct output.

In the procedure, Steps 2 and 3 are interchangeable. You can perform either Step 2 or Step 3.

SUMMARY STEPS

1. `energywise query analyze domain domain-name`

 Example:
   ```
   DomainMember# energywise query analyze domain
   ```

 Step 1
 Runs a query to analyze and display information about the domain, including the domain size and the number of members and endpoints.

2. `energywise query importance importance {keywords word, word,... | name name} collect {delta | usage} [all [timeout timeout] | consumer [timeout timeout] | meter [timeout timeout] | producer [timeout timeout] | timeout timeout]`

 Step 2
 Runs a query to display power information for the domain members and endpoints. Runs a query to change the power level and to power on or off the domain members, PoE ports, or endpoints.

 - **importance importance**—Filters the results based on the importance value. Only domain members and endpoints with importance values less than or equal to the specified value respond to the query. The importance range is from 1 to 100.
 - **keywords word, word**—Filters the results based on one or more keywords.

 Example:
   ```
   DomainMember# energywise query
   importance 100 name * collect usage consumer
   ```

 Note
 Do not run a query with **keywords** *. No results are generated.

 Example:
   ```
   DomainMember# energywise query
   importance 100 name * collect usage consumer
   ```

 SUMMARY STEPS

 1. `energywise query analyze domain domain-name`

 Example:
   ```
   DomainMember# energywise query analyze domain
   ```

 Step 1
 Runs a query to analyze and display information about the domain, including the domain size and the number of members and endpoints.

2. `energywise query importance importance {keywords word, word,... | name name} collect {delta | usage} [all [timeout timeout] | consumer [timeout timeout] | meter [timeout timeout] | producer [timeout timeout] | timeout timeout]`

 Step 2
 Runs a query to display power information for the domain members and endpoints. Runs a query to change the power level and to power on or off the domain members, PoE ports, or endpoints.

 - **importance importance**—Filters the results based on the importance value. Only domain members and endpoints with importance values less than or equal to the specified value respond to the query. The importance range is from 1 to 100.
 - **keywords word, word**—Filters the results based on one or more keywords.

 Example:
   ```
   DomainMember# energywise query
   importance 100 name * collect usage consumer
   ```

 Note
 Do not run a query with **keywords** *. No results are generated.

 SUMMARY STEPS

 1. `energywise query analyze domain domain-name`

 Example:
   ```
   DomainMember# energywise query analyze domain
   ```

 Step 1
 Runs a query to analyze and display information about the domain, including the domain size and the number of members and endpoints.

2. `energywise query importance importance {keywords word, word,... | name name} collect {delta | usage} [all [timeout timeout] | consumer [timeout timeout] | meter [timeout timeout] | producer [timeout timeout] | timeout timeout]`

 Step 2
 Runs a query to display power information for the domain members and endpoints. Runs a query to change the power level and to power on or off the domain members, PoE ports, or endpoints.

 - **importance importance**—Filters the results based on the importance value. Only domain members and endpoints with importance values less than or equal to the specified value respond to the query. The importance range is from 1 to 100.
 - **keywords word, word**—Filters the results based on one or more keywords.

 Example:
   ```
   DomainMember# energywise query
   importance 100 name * collect usage consumer
   ```

 Note
 Do not run a query with **keywords** *. No results are generated.
Purpose

Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• name name—Filters the results based on the name. For the wildcard, use * or name* with the asterisk at the end of the name phrase.</td>
<td></td>
</tr>
<tr>
<td>• **collect {delta</td>
<td>usage}**—Displays power-usage information in watts (W) from the domain members and endpoints.</td>
</tr>
<tr>
<td></td>
<td>* delta—Displays the delta vector with the difference between the actual power usage and the maximum power usage for each power level for what-if calculations.</td>
</tr>
<tr>
<td></td>
<td>* usage—Displays the actual power usage.</td>
</tr>
<tr>
<td>• **sum {delta</td>
<td>usage}**—Displays the summary of the power-usage information from domain members and endpoints.</td>
</tr>
<tr>
<td></td>
<td>* delta—Displays the delta vector.</td>
</tr>
<tr>
<td></td>
<td>* usage—Displays the actual power usage.</td>
</tr>
<tr>
<td>• (Optional) all—Displays EnergyWise devices of all usage types.</td>
<td></td>
</tr>
<tr>
<td>• (Optional) consumer—Filters the results to display devices that consume power, such as a switch. This is the default usage type.</td>
<td></td>
</tr>
<tr>
<td>• (Optional) meter—Filters the results to display devices that measure the pass-through power, such as a PDU that sends power from a source to a connected device.</td>
<td></td>
</tr>
<tr>
<td>• (Optional) producer—Filters the results to display devices that generate power, such as a solar panel.</td>
<td></td>
</tr>
<tr>
<td>• (Optional) timeout timeout—Sets the time in seconds that the management station waits for query results. When configuring the timeout, configure a minimum of 6 seconds to display correct output.</td>
<td></td>
</tr>
</tbody>
</table>

The default **timeout** is 6 seconds. The range is from 1 to 180.

Repeat this step to run another query.

Step 3

energywise query importance importance

{keywords word, word.... | name name}

sum {delta | usage} [all | timeout timeout]

<table>
<thead>
<tr>
<th>consumer</th>
<th>meter</th>
</tr>
</thead>
<tbody>
<tr>
<td>[timeout timeout]</td>
<td>[timeout timeout]</td>
</tr>
</tbody>
</table>

producer [timeout timeout]

timeout timeout

Example:

DomainMember# energywise query importance 90 keyword lobby sum usage

You can perform Step 2 or Step 3

Step 4

energywise query importance importance

{keywords word, word.... | name name}

(Optional) Runs a query to change the power level and to power on or off the domain members, PoE ports, or endpoints.
Purpose

Command or Action	Purpose
set level level [all [timeout timeout]] | Use this query with care. It affects both the domain member on which you enter the command and other domain members and endpoints that match the query criteria.
consumer [timeout timeout] | • importance importance—Filters the results based on the importance value. Only domain members and endpoints with values less than or equal to the specified value appear. The range is from 1 to 100.
meter [timeout timeout] | • keywords word, word...—Filters the results based on one or more keywords.
producer [timeout timeout] | **Note**

Example:
DomainMember# energywise query importance 80 name shipping.2 set level 0

Hibernating Immediately

To activate the hibernation immediately, run the following EnergyWise query in the privileged EXEC mode:

Before You Begin

Check that you have configured a hibernation end time.

SUMMARY STEPS

1. energywise query importance importance name name set level level

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
| `energywise query importance importance name name` **set level level**
| Example: `DomainMember# energywise query importance 90 name cisco building1 set level 1`
| Immediately hibernates all the switches in the domain matching the given name. Hibernation ends at the time that you have specified by using the `energywise level` global configuration command. |

The switch console displays the scheduled hibernation end times before hibernating. For example:

```
-----------------------------------------------
Power level: Hibernation
Hibernation start time:--- -- ---- --:--:--
Hibernation end time: May 02 2013 03:00:00
To end hibernation ahead of schedule, push the Mode button.
-----------------------------------------------
```

Related Topics

- Hibernation, on page 20
- Example: Hibernating a Switch, on page 58
- Prerequisites for Hibernation, on page 16

Configuring Hibernation Start and End Times

Follow this procedure to configure a Cisco IOS time-based recurrence with scheduled hibernation start and end times.

SUMMARY STEPS

1. `show energywise`
2. `configure terminal`
3. `time-range time-range-name`
4. `absolute start hh:mm day_of_month month year`
5. `periodic days_of_the_week hh:mm to hh:mm`
6. `exit`
7. `energywise level level recurrence importance importance time-range time-range-name`
8. `exit`
9. `show energywise recurrence`
Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
show energywise
Example:
 DomainMember# show energywise | Verifies that EnergyWise is enabled. |
| **Step 2**
configure terminal
Example:
 DomainMember# configure terminal | Enters the global configuration mode. |
| **Step 3**
time-range time-range-name
Example:
 DomainMember(config)# time-range building1 | Assigns a name to the time range and enters the time-range configuration mode.
 The time range is based on the system clock. If EnergyWise is not running on the switch (for example, a PoE switch), the specified times are based on the domain member time zone.
 After entering the `time-range time-range-name` command, configure the `periodic` time-range configuration command, the `absolute` time-range configuration command, or a combination of the commands to define when the feature is in effect. Multiple periodic commands are allowed in a time range; only one absolute command is allowed. |
| **Step 4**
absolute start hh:mm day_of_month month year
Example:
 DomainMember(config-time-range)# absolute start 0:00 1 August 2013 | Sets the start time and day for the recurrence. If the absolute condition has an end time and day, the domain member ignores these values.
 Note If you configure an absolute condition for hibernation, you must configure an associated periodic condition with the start and end times.
 For more information, see the `absolute` time-range configuration command in the *Cisco IOS Configuration Fundamentals Command Reference*. |
| **Step 5**
periodic days_of_the_week hh:mm to hh:mm
Example:
 DomainMember(config-time-range)# periodic weekdays 00:00 to 05:30
 DomainMember(config-time-range)# periodic weekdays 21:00 to 23:59 | Sets the weekly start time and day for the recurrence. You can specify these values:
 * `days_of_the_week` — Valid values:
 * Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, or Sunday — Enter a single day, a range of days with a dash between the starting and ending days, or multiple days separated by a comma.
 * daily — Enter if the recurrence applies from Monday to Sunday.
 * weekdays — Enter if the recurrence applies from Monday to Friday.
 * weekend — Enter if the recurrence applies on Saturday and Sunday.
 * `to hh:mm` — Sets the ending day and time. Specifies the time in hours and minutes (24-hour format).
 You can enter multiple periodic conditions. For each periodic condition you must enter the start and end time. The `absolute start hh:mm day_of_month month year` time-range configuration command, if configured, takes precedence over |
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>exit</td>
<td>Exits the time-range configuration mode and returns to the global configuration mode.</td>
</tr>
</tbody>
</table>

Step 7

energywise level *level*
recurrence *importance*
time-range *time-range-name*

Sets the power level and schedules a recurrence.

- **level level** — Sets the power level.
 - To hibernate, enter power level 1.
- **recurrence** — Denotes that the configured event should recur at the specified time.
- **importance importance** — The event occurs if the importance value of the switch is less than or equal to the importance value. The range is from 1 to 100.
- **time-range time-range-name** — Assigns a time range to the event.

Recurrences use the domain member time. To see domain member time, enter the `show clock` privileged EXEC command.

If you configure multiple recurrences using this comment, the system uses the one that is configured first. Only after the first recurrence is removed does the next recurrence with the `energywise level 1` configuration take effect.

Step 8

exit

Exits the global configuration mode.

Step 9

show energywise recurrence

Displays the EnergyWise settings and status for recurrence.

```bash
Example:
DomainMember# show energywise recurrences
```

The switch console displays the scheduled hibernation start and end times before hibernating. For example:

```
Building configuration...
[OK]
Apr 20 20:51:59.235: %SYS-5-CONFIG_I: Configured from console by console
================================================================================================
Power level: Hibernation
Hibernation start time: Apr 20 2013 20:52:00
Hibernation end time: Apr 20 2013 20:58:00
To end hibernation ahead of schedule, push the Mode button.
```
Configuring Activity Check

SUMMARY STEPS

1. configure terminal
2. interface interface-id
3. energywise activity check

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters the global configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DomainMember# configure terminal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Specifies the port or a range of ports to be configured, and enters the interface configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DomainMember(config)# interface gigabitethernet0/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3 energywise activity check</td>
<td>Configures the domain member to wait until a Cisco IP phone connected to a PoE port is not sending or receiving traffic before the domain member powers off the port.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DomainMember(config-if)# energywise activitycheck</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note The domain member cannot determine if the IP phone is in the hold state.

What to Do Next
Proceed to test activity check.

Related Topics

- Activity Check, on page 25
- Examples: Activity Check, on page 58
- Prerequisites for Activity Check, on page 15
Testing Activity Check

After you have enabled activity check, perform the following checks to make sure that the switch powers off the port only when a connected Cisco IP phone is not sending or receiving voice traffic.

While making a phone call, set the port power level to 0. The switch should not power off the IP phone. To set the port power level, you can:

• Run a query (using the CLI or the management application programming interface [MAPI]) — The switch performs an activity check before powering off.
• Use a recurrence — The switch performs an activity check before powering off.
• Use the CLI — The switch does not perform an activity check and powers off the PoE port immediately.

Use the show mls qos interface statistics privileged EXEC command to display the port QoS statistics, including the number of packets in queue 1.

Using WoL with a MAC Address

SUMMARY STEPS

1. energywise query importance importance {keywords word, word,... | name name} wol mac mac-address [password password] | port tcp-port-number [password password]]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 energywise query importance importance {keywords word, word,...</td>
<td>name name} wol mac mac-address [password password]</td>
</tr>
<tr>
<td>Example:</td>
<td>If you know that the PC that you want to power on is connected to an interface with the keyword PC, use the energywise query importance 100 keyword PC wol mac mac-address command. You can also use a name qualifier.</td>
</tr>
<tr>
<td></td>
<td>• importance importance — Only domain members and endpoints with importance values less than or equal to the specified value respond to the query. The range is from 1 to 100.</td>
</tr>
<tr>
<td></td>
<td>• keywords word, word... — Filters the results based on one or more keywords.</td>
</tr>
<tr>
<td></td>
<td>Note If you do not know where the device is located, use the energywise query importance 100 name * wol mac mac-address command to send the WoL packet to all the domain members.</td>
</tr>
<tr>
<td></td>
<td>• name name — Filters the results based on the name. For the wildcard, use * or name* with the asterisk at the end of the name phrase.</td>
</tr>
<tr>
<td></td>
<td>• wol mac mac-address — Filters the results based on the MAC address and powers on only the device with the matching MAC address.</td>
</tr>
</tbody>
</table>

Note
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• (Optional) password password—Sets the password for the WoL-enabled endpoint.</td>
<td></td>
</tr>
<tr>
<td>• (Optional) port port-number—Specifies a port number to communicate with the EnergyWise domain. The default is 7.</td>
<td></td>
</tr>
</tbody>
</table>

Related Topics

- Wake on LAN, on page 26
- Prerequisites for Wake on LAN, on page 16

Using WoL Without a MAC Address

To use WoL without entering a MAC address, first configure the EnergyWise endpoint device to include off-state caching and WoL. To wake up the device and set its power level, use the `energywise query` privileged EXEC command. For example, enter this command:

```
DomainMember# energywise query importance 100 keywords pc set level 10
```

Device MAC addresses are cached along with their keywords or names. The domain member matches the keywords or name you enter with the cached keywords, names, and MAC addresses and sends the WoL packet to the matching device.

The WoL packet is sent only if the device is powered off.

Related Topics

- Wake on LAN, on page 26
- Prerequisites for Wake on LAN, on page 16

Monitoring and Troubleshooting EnergyWise

Monitoring EnergyWise

Use the following commands to monitor EnergyWise.

Table 8: show Privileged EXEC Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show energywise</code></td>
<td>Displays the settings and status for the domain member or endpoint.</td>
</tr>
<tr>
<td><code>show energywise children</code></td>
<td>Displays the status of the connected endpoints.</td>
</tr>
</tbody>
</table>
Purpose

Command	**Purpose**
`show energywise provisioned` | Displays a summary of the EnergyWise information for the domain member and the connected endpoints. |
`show energywise domain` | Displays the domain to which the domain member or endpoint belongs. |
`show energywise events` | Display the last ten events (messages) sent to other domain members or endpoints in the domain. |
`show energywise neighbor` | Displays the neighbor tables for the domain member. |
`show energywise recurrences` | Displays the EnergyWise settings and status for recurrence. |
`show energywise statistics` | Displays the counters for events and errors. |
`show energywise usage` | Displays the actual power usage on the domain member or endpoint. |
`show energywise version` | Displays the EnergyWise version. |
`show version` | Displays the software version. |
`show power inline` | Displays the PoE status. |
`show cdp neighbors` | Displays the neighbors discovered by CDP. |

Verifying Power Usage

This example shows you how to verify that the Cisco 7960 IP Phone uses 6.3 W and that the Cisco 7970G IP Phone uses 10.3 W:

```
Switch# show energywise usage children
  Interface Name Usage Caliber
  --------- ---- ----- -------
  Switch 144.0 (W) max
  Gi0/1 Gi0.1 6.3 (W) trusted
  Gi0/2 Gi0.2 10.3 (W) trusted
```

Detecting Communication Failures

Use the EnergyWise debug mode commands to show communication failures.

Table 9: Detecting Communication Failures

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>debug energywise debug</code></td>
<td>Displays errors such as invalid sequence numbers and communication errors on the domain.</td>
</tr>
</tbody>
</table>
Disabling EnergyWise

To disable EnergyWise, enter the interface configuration commands followed by the global configuration commands.

Table 10: Interface Configuration Commands for Disabling EnergyWise

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>no energywise</td>
<td>Disables EnergyWise on the PoE port or on the endpoint.</td>
</tr>
<tr>
<td>no energywise activitycheck</td>
<td>Configures the domain member not to wait until a Cisco IP phone connected to a PoE port is not sending or receiving voice traffic before the domain member powers off the port.</td>
</tr>
<tr>
<td>Command</td>
<td>Purpose</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>no energywise allow query set</td>
<td>Configures the interface to drop all set queries for the interface and children. If configured, you cannot change the power level or EnergyWise attributes of connected devices on the interface. To prevent power levels on all interfaces from being changed, apply the command to all interfaces.</td>
</tr>
<tr>
<td>no energywise [importance</td>
<td>keywords [word, word,]</td>
</tr>
<tr>
<td>no energywise level level recurrence importance [at</td>
<td>minute</td>
</tr>
</tbody>
</table>

Table 11: Global Configuration Commands for Disabling EnergyWise

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>no energywise allow query save</td>
<td>Configures the domain member not to respond to a query that saves the running configuration.</td>
</tr>
<tr>
<td>no energywise allow query set</td>
<td>Configures the domain member to drop all set queries for the parent entity. If configured, you cannot change the power level or EnergyWise attributes of the domain member. This configuration does not apply to the interfaces or endpoints connected to any interfaces.</td>
</tr>
<tr>
<td>no energywise domain</td>
<td>Disables EnergyWise on the domain member.</td>
</tr>
<tr>
<td>no energywise endpoint</td>
<td>Configures the domain member not to establish parent-child relationships with connected EnergyWise-compatible endpoints. The endpoints cannot receive queries or messages from the domain member.</td>
</tr>
<tr>
<td>no energywise [importance</td>
<td>keywords [word, word,]</td>
</tr>
<tr>
<td>no energywise management</td>
<td>Configures the domain member to not communicate with a connected management station that sends queries.</td>
</tr>
</tbody>
</table>
Configuration Examples for EnergyWise

Examples: Setting the Domain

The following example displays how to set the domain:

DomainMember# show energywise
Interface Role Name Usage Lvl Imp Type
--------- ---- ---- ----- --- --- ----
fanfare jsmith 1009.0(W) 5 100 paren

DomainMember# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
DomainMember(config)# energywise domain cisco security ntp-shared-secret cisco protocol udp port 43440 ip 2.2.4.30
DomainMember(config)# energywise importance 50
DomainMember(config)# energywise keywords lab1,devlab
DomainMember(config)# energywise name LabSwitch
DomainMember(config)# energywise neighbor member1 43440
DomainMember(config)# energywise role role.labaccess
DomainMember(config)# energywise allow query save
DomainMember(config)# end

DomainMember# show energywise domain
Name : member1
Domain : cisco
Protocol : udp
IP : 2.2.2.21
Port : 43440

DomainMember# show energywise neighbors
Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
S - Switch, H - Host, I - IGMP, r - Repeater, P - Phone
Id Neighbor Name Ip:Port Prot Capability
-- ------------- ------- ---- ----------
1 member-21 2.2.2.21:43440 udp S I
2 member-31 2.2.4.31:43440 static S I
3 member-22 2.2.2.22:43440 cdp S I

Related Topics
Configuring Domain Member or Endpoint Attributes, on page 31
EnergyWise Domain, on page 19

Examples: Manually Managing Power

The following example displays how to manually manage the power.

To power on the lab IP phones:

DomainMember# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
DomainMember(config)# energywise domain cisco security shared-secret cisco protocol udp port 43440 ip 2.2.4.44
DomainMember(config)# interface gigabitethernet0/3
DomainMember(config-if)# energywise importance 65
DomainMember(config-if)# energywise name labphone.5
DomainMember(config-if)# energywise role role.labphone
To power off an IP phone connected to a PoE port:

```
DomainMember(config-if)# end
```

The domain member powers the IP phone whether Cisco EnergyWise is enabled or not.

Examples: Automatically Managing Power

The following example displays how to automatically manage the power:

```
DomainMember# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
DomainMember(config)# energywise domain cisco security shared-secret cisco protocol udp port 43440 ip 2.2.4.44
DomainMember(config)# interface gigabitethernet0/2
DomainMember(config-if)# energywise importance 65
DomainMember(config-if)# energywise name labphone.5
DomainMember(config-if)# energywise role role.labphone
DomainMember(config-if)# energywise level 0
DomainMember(config-if)# end
```

```
DomainMember# show energywise recurrences
Id Addr Class Action Lvl Cron
-- ---- ----- ------ --- ----
1 Gi0/3 QUERY SET 10 minutes: 0 hour: 8 day: * month: * weekday: *
2 Gi0/3 QUERY SET 0 minutes: 0 hour: 20 day: * month: * weekday: *
```

```
DomainMember# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
DomainMember(config)# energywise domain cisco security shared-secret cisco protocol udp port 43440 ip 2.2.4.30
DomainMember(config)# interface gigabitethernet1/0/3
DomainMember(config-if)# energywise level 10 recurrence importance 90 at 0 8 * * *
DomainMember(config-if)# energywise level 0 recurrence importance 90 at 0 20 * * *
DomainMember(config-if)# energywise importance 50
DomainMember(config-if)# energywise name labInterface.3
DomainMember(config-if)# energywise role role.labphone
DomainMember(config-if)# end
```

```
DomainMember# show running-config
<output truncated>
interface GigabitEthernet0/3
    energywise level 10 recurrence at 0 8 *
    energywise level 0 recurrence at 0 20 *
    energywise importance 50
    energywise name labInterface.3
    energywise role role.labphone
end
<output truncated>
```

To automatically power on the lab IP phones at 08:00 and power off at 20:00:

```
DomainMember# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
DomainMember(config)# energywise domain cisco security shared-secret cisco protocol udp port 43440 ip 2.2.4.30
DomainMember(config)# interface gigabitethernet1/0/3
DomainMember(config-if)# energywise level 10 recurrence importance 90 at 0 8 * * *
DomainMember(config-if)# energywise level 0 recurrence importance 90 at 0 20 * * *
DomainMember(config-if)# energywise importance 50
DomainMember(config-if)# energywise name labInterface.3
DomainMember(config-if)# energywise role role.labphone
DomainMember(config-if)# end
```

```
DomainMember# show energywise recurrences
Id Addr Class Action Lvl Cron
-- ---- ----- ------ --- ----
1 Gi0/3 QUERY SET 10 minutes: 0 hour: 8 day: * month: * weekday: *
2 Gi0/3 QUERY SET 0 minutes: 0 hour: 20 day: * month: * weekday: *
```
To automatically power on the PCs on the first floor at 06:00 and power off at 21:00:

```
DomainMember# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
DomainMember(config)# service password-encryption
DomainMember(config)# energywise domain cisco security shared-secret cisco protocol udp port 43440 ip 2.2.4.30

DomainMember(config)# time-range onfirstfloor
DomainMember(config-time-range)# absolute start 0:00 1 August 2009
DomainMember(config-time-range)# periodic daily 06:00 to 21:00

DomainMember(config)# time-range offfirstfloor
DomainMember(config-time-range)# absolute start 0:00 1 August 2009
DomainMember(config-time-range)# periodic daily 00:00 to 05:55
DomainMember(config-time-range)# periodic daily 21:01 to 23:59
DomainMember(config-time-range)# exit

DomainMember(config)# interface gigabitethernet0/3
DomainMember(config-if)# energywise level 10 recurrence importance 70 time-range onfirstfloor
DomainMember(config-if)# energywise level 0 recurrence importance 70 time-range offfirstfloor
DomainMember(config-if)# energywise name floor.1
DomainMember(config-if)# energywise role pc-mgr
DomainMember(config-if)# end

DomainMember# show energywise recurrences
Id Addr Class Action Lvl Cron
-- ----- ----- ------ --- ----
1 G10/3 QUERY SET 10 onfirstfloor
2 G10/3 QUERY SET 0 offfirstfloor

DomainMember# show running-config
<output truncated>
interface GigabitEthernet0/3
energywise level 10 recurrence importance 70 time-range onfirstfloor
energywise level 0 recurrence importance 70 time-range offfirstfloor
energywise role pc-mgr
energywise name floor.1
end
<output truncated>
```

Note
Cisco EnergyWise uses only the start time for the **absolute** condition. Any configured end times are ignored. However, a start and end time is mandatory for the **periodic** condition.
Examples: Querying to Analyze Domains

This example shows how to display information about the domain, such as the number of members, endpoints and the domain size:

```
DomainMember# energywise query analyze domain
EnergyWise is currently analyzing the domain, please wait...
```

```
EnergyWise Domain Statistics
-----------------------------
Querying from HW Model: WS-C3560G-48PS
Number of Domain Members: 3
Number of Endpoints: 1
```

Related Topics

Queries, on page 24

Examples: Querying with the Name Attribute

In this example, Switch 1 and Switch 2 are in the same domain. shipping.1 is a PoE port on Switch 1, and shipping.2 is a PoE port on Switch 2.

The example shows the power usage of the domain members and endpoints with names beginning with shipping and with importance values less than or equal to 80. Run this query on Switch 1:

```
DomainMember# energywise query importance 80 name shipping.* collect usage
EnergyWise query, timeout is 6 seconds:
Host Name Usage Level Imp
---- ---- ----- ----- ---
192.168.20.1 shipping.1 6.3 (W) 10 1
192.168.20.2 shipping.2 8.5 (W) 10 1
Queried: 2 Responded: 2 Time: 0.4 seconds
```

The first row (shipping.1) is from Switch 1. The second row (shipping.2) is from Switch 2, a neighbor of Switch 1.

Related Topics

Queries, on page 24

Examples: Querying with Keywords

In this example, Switch 1 and Switch 2 are in the same domain. shipping.1 is a PoE port on Switch 1, and shipping.2 is a PoE port on Switch 2.

The example shows the power usage of IP phones with different names, different roles, and importance values less than or equal to 80, but all that have the Admin keyword. Run this query on Switch 1:

```
DomainMember# energywise query importance 80 keyword Admin collect usage
EnergyWise query, timeout is 6 seconds:
Host Name Usage Level Imp
---- ---- ----- ----- ---
192.168.40.2 shipping.1 6.3 (W) 10 1
192.168.50.2 orders.1 10.3 (W) 10 1
192.168.60.3 pc.1 200.0 (W) 8 75
Queried: 3 Responded: 3 Time: 0.5 seconds
```

Switch 1 reports two phones connected to Switch 2, a neighbor of Switch 1.
Do not run a query with keywords *. No results are generated.

Related Topics
Queries, on page 24

Examples: Querying to Set Power Levels

In these examples shipping.1 and shipping.2 are PoE ports on Switch 1. Run these queries on Switch 1:

• Set the power level of PoE port shipping.2 to 0:
  ```
  DomainMember# energywise query importance 80 name shipping.2 set level 0
  ```

• Set the power level of PoE ports shipping.1 and shipping.2 to 0:
  ```
  DomainMember# energywise query importance 90 name shipping.* set level 0
  ```

• Set the power level of devices that have the keyword Admin to 10:
  ```
  DomainMember# energywise query importance 60 keyword Admin set level 10
  ```

EnergyWise query, timeout is 6 seconds:

Success rate is (2/2) setting entities
Queried: 2 Responded: 2 Time: 0.15 seconds

To show the power usage of EnergyWise devices with usage type all:

```
DomainMember# energywise query importance 100 name * collect usage all
```

EnergyWise query, timeout is 6 seconds:

<table>
<thead>
<tr>
<th>Host Name</th>
<th>Usage Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEP5475d0db0dcb</td>
<td>3.8 (W) 10 5</td>
</tr>
<tr>
<td>SEP1C17D340834E</td>
<td>8.8 (W) 10 1</td>
</tr>
<tr>
<td>SEP3037A61748E2</td>
<td>8.8 (W) 10 1</td>
</tr>
<tr>
<td>Local_InfeedA_Outlet1</td>
<td>0.0 (W) 0 50</td>
</tr>
<tr>
<td>Local_InfeedA_Outlet2</td>
<td>0.0 (W) 0 50</td>
</tr>
<tr>
<td>Local_InfeedA_Outlet3</td>
<td>0.0 (W) 0 50</td>
</tr>
<tr>
<td>Local_InfeedA_Outlet4</td>
<td>0.0 (W) 0 50</td>
</tr>
<tr>
<td>Local_InfeedA_Outlet5</td>
<td>0.0 (W) 0 50</td>
</tr>
<tr>
<td>Local_InfeedA_Outlet6</td>
<td>34.0 (W) 0 50</td>
</tr>
</tbody>
</table>

To show the power usage of an IP phone with usage type consumer:

```
DomainMember# energywise query importance 100 name * collect usage consumer
```

EnergyWise query, timeout is 6 seconds:

<table>
<thead>
<tr>
<th>Host Name</th>
<th>Usage Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEP5475d0db0dcb</td>
<td>3.8 (W) 10 5</td>
</tr>
<tr>
<td>SEP1C17D340834E</td>
<td>8.8 (W) 10 1</td>
</tr>
<tr>
<td>SEP3037A61748E2</td>
<td>8.8 (W) 10 1</td>
</tr>
</tbody>
</table>

To show the power usage of a PDU outlet with usage type meter:

```
DomainMember# energywise query importance 100 name * collect usage meter
```

EnergyWise query, timeout is 6 seconds:

<table>
<thead>
<tr>
<th>Host Name</th>
<th>Usage Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local_InfeedA_Outlet1</td>
<td>0.0 (W) 0 50</td>
</tr>
<tr>
<td>Local_InfeedA_Outlet2</td>
<td>0.0 (W) 0 50</td>
</tr>
<tr>
<td>Local_InfeedA_Outlet3</td>
<td>0.0 (W) 0 50</td>
</tr>
<tr>
<td>Local_InfeedA_Outlet4</td>
<td>0.0 (W) 0 50</td>
</tr>
<tr>
<td>Local_InfeedA_Outlet5</td>
<td>0.0 (W) 0 50</td>
</tr>
</tbody>
</table>
Example: Hibernating a Switch

This example shows you how to configure a Cisco IOS time-based recurrence. Time-range building1 hibernate is created and the periodic condition is used to configure the hibernation start and end times from 01:00 a.m. to 09:00 a.m. on weekdays.

1. Configure the energywise domain:

 DomainMember(config)# energywise domain cisco security shared-secret cisco protocol udp port 43440 ip 2.2.4.30

2. Create a time-range name and configure periodic conditions:

 DomainMember(config)# time-range building1hibernate
 DomainMember(config-time-range)# periodic weekdays 01:00 to 09:00
 DomainMember(config-time-range)# exit

3. Configure the recurrence:

 DomainMember(config)# energywise level 1 recurrence importance 100 time-range building1hibernate

Related Topics

Configuring Hibernation Start and End Times, on page 44
Hibernating Immediately, on page 43
Hibernation, on page 20

Examples: Activity Check

Example: CoS Values Mapped to Queue and Threshold Values

In this example, CoS value 5 is mapped to queue 1 and threshold 3 on the Gigabit Ethernet 0/1 port:

Cos-outputq-threshold map:

<table>
<thead>
<tr>
<th>cos: 0 1 2 3 4 5 6 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>queue-threshold: 4-3 4-2 3-3 2-3 3-3 1-3 2-3 2-3</td>
</tr>
</tbody>
</table>

Example: PoE Port Configuration

<output truncated>
interface GigabitEthernet0/1
srr-queue bandwidth share 10 10 60 20
queue-set 2
priority-queue out
mls qos trust device cisco-phone
mls qos trust cos
auto qos voip cisco-phone
service-policy input AutoQoS-PoE-CiscoPhone
Example: Testing Activity Check

This example shows you how to test activity check. The example uses the `show mls qos maps cos-output-q` privileged EXEC command to show which output queue and threshold is mapped to CoS 5 for voice traffic. The `show mls qos interface statistics` privileged EXEC command then displays the number of packets in the output queue to determine if the domain member (an IP phone in this case) is sending out packets.

```
DomainMember# show mls qos maps cos-output-q
Cos-outputq-threshold map:
cos: 0 1 2 3 4 5 6 7
queue-threshold: 2=1 2=1 3=1 3=1 4=1 1=1 4=1 4=1
```

CoS 5 is mapped to queue-threshold: 1-1 (queue 1 and threshold 1):

```
DomainMember# show mls qos interface statistics
output queues enqueued:
queue: threshold1 threshold2 threshold3
queue 0: 0 0 0
queue 1: 0 0 0
queue 2: 0 0 0
queue 3: 0 0 0
```

The output queue for queue 1 and threshold 1 is 0, which means that the phone is not sending out packets and the switch can power off the phone. If a phone conversation was in progress, the output queue would have nonzero packets in the output queue.

Related Topics

- Configuring Activity Check, on page 47
- Activity Check, on page 25

Additional References

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
</table>
Related Topic | Document Title
--- | ---
Cisco EnergyWise partner documentation | Go to the [Cisco Developer Network](#).
• [Cisco EnergyWise Documentation Roadmap](#)
• [Cisco EnergyWise Partner Development Guide](#)
• [Cisco EnergyWise Programmer Reference Guide for the Endpoint SDK](#)
• [Cisco EnergyWise Programmer Reference Guide for the Management API](#)

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco EnergyWise domain members support the CISCO-ENERGYWISE-MIB.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco IOS MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/support</td>
</tr>
</tbody>
</table>

Feature Information for EnergyWise

<table>
<thead>
<tr>
<th>Feature / EW Version</th>
<th>Cisco IOS Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EnergyWise Version 2.8</td>
<td>Cisco IOS Release 15.0(2)EX</td>
<td>This feature was introduced.</td>
</tr>
<tr>
<td>Feature / EW Version</td>
<td>Cisco IOS Release</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Hibernation</td>
<td>Cisco IOS Release 15.0(2)EX3</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>
PART II

IGMP Snooping

• Configuring IGMP Snooping, page 65
• Configuring Multicast VLAN Registration, page 105
CHAPTER 3

Configuring IGMP Snooping

- Finding Feature Information, page 65
- Restrictions for IGMP Snooping, page 65
- Information About IGMP Snooping, page 66
- How to Configure IGMP Snooping, page 72
- Monitoring IGMP Snooping, page 97
- Configuration Examples for IGMP Snooping, page 99
- Where to Go Next for IGMP Snooping, page 102
- Additional References, page 102
- Feature History and Information for IGMP Snooping, page 103

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Restrictions for IGMP Snooping

The following are the restrictions for IGMP snooping:

- The switch supports homogeneous stacking and mixed stacking. Mixed stacking is supported only with the Catalyst 2960-S switches. A homogenous stack can have up to eight stack members, while a mixed stack can have up to four stack members. All switches in a switch stack must be running the LAN Base image.
Information About IGMP Snooping

IGMP Snooping

Layer 2 switches can use IGMP snooping to constrain the flooding of multicast traffic by dynamically configuring Layer 2 interfaces so that multicast traffic is forwarded to only those interfaces associated with IP multicast devices. As the name implies, IGMP snooping requires the LAN switch to snoop on the IGMP transmissions between the host and the router and to keep track of multicast groups and member ports. When the switch receives an IGMP report from a host for a particular multicast group, the switch adds the host port number to the forwarding table entry; when it receives an IGMP Leave Group message from a host, it removes the host port from the table entry. It also periodically deletes entries if it does not receive IGMP membership reports from the multicast clients.

Note

For more information on IP multicast and IGMP, see RFC 1112 and RFC 2236.

The multicast router sends out periodic general queries to all VLANs. All hosts interested in this multicast traffic send join requests and are added to the forwarding table entry. The switch creates one entry per VLAN in the IGMP snooping IP multicast forwarding table for each group from which it receives an IGMP join request.

The switch supports IP multicast group-based bridging, instead of MAC-addressed based groups. With multicast MAC address-based groups, if an IP address being configured translates (aliases) to a previously configured MAC address or to any reserved multicast MAC addresses (in the range 224.0.0.xxx), the command fails. Because the switch uses IP multicast groups, there are no address aliasing issues.

The IP multicast groups learned through IGMP snooping are dynamic. However, you can statically configure multicast groups by using the `ip igmp snooping vlan vlan-id static ip_address interface interface-id` global configuration command. If you specify group membership for a multicast group address statically, your setting supersedes any automatic manipulation by IGMP snooping. Multicast group membership lists can consist of both user-defined and IGMP snooping-learned settings.

Note

You can manage IP multicast group addresses through features such as IGMP snooping and Multicast VLAN Registration (MVR), or by using static IP addresses. For information about MVR, see the next chapter.

You can configure an IGMP snooping querier to support IGMP snooping in subnets without multicast interfaces because the multicast traffic does not need to be routed.

If a port spanning tree, a port group, or a VLAN ID change occurs, the IGMP snooping-learned multicast groups from this port on the VLAN are deleted.

IGMP Versions

The switch supports IGMP Version 1, IGMP Version 2, and IGMP Version 3. These versions are interoperable on the switch. For example, if IGMP snooping is enabled on an IGMPv2 switch and the switch receives an IGMPv3 report from a host, the switch can forward the IGMPv3 report to the multicast router.
The switch supports IGMPv3 snooping based only on the destination multicast MAC address. It does not support snooping based on the source MAC address or on proxy reports.

An IGMPv3 switch supports Basic IGMPv3 Snooping Support (BISS), which includes support for the snooping features on IGMPv1 and IGMPv2 switches and for IGMPv3 membership report messages. BISS constrains the flooding of multicast traffic when your network includes IGMPv3 hosts. It constrains traffic to approximately the same set of ports as the IGMP snooping feature on IGMPv2 or IGMPv1 hosts.

The switch supports IGMPv3 snooping based only on the destination multicast MAC address. It does not support snooping based on the source MAC address or on proxy reports.

An IGMPv3 switch supports Basic IGMPv3 Snooping Support (BISS), which includes support for the snooping features on IGMPv1 and IGMPv2 switches and for IGMPv3 membership report messages. BISS constrains the flooding of multicast traffic when your network includes IGMPv3 hosts. It constrains traffic to approximately the same set of ports as the IGMP snooping feature on IGMPv2 or IGMPv1 hosts.

An IGMPv3 switch supports Basic IGMPv3 Snooping Support (BISS), which includes support for the snooping features on IGMPv1 and IGMPv2 switches and for IGMPv3 membership report messages. BISS constrains the flooding of multicast traffic when your network includes IGMPv3 hosts. It constrains traffic to approximately the same set of ports as the IGMP snooping feature on IGMPv2 or IGMPv1 hosts.

Joining a Multicast Group

When a host connected to the switch wants to join an IP multicast group and it is an IGMP version 2 client, it sends an unsolicited IGMP join message, specifying the IP multicast group to join. Alternatively, when the switch receives a general query from the router, it forwards the query to all ports in the VLAN. IGMP version 1 or version 2 hosts wanting to join the multicast group respond by sending a join message to the switch. The switch CPU creates a multicast forwarding-table entry for the group if it is not already present. The CPU also adds the interface where the join message was received to the forwarding-table entry. The host associated with that interface receives multicast traffic for that multicast group.

Figure 4: Initial IGMP Join Message

Router A sends a general query to the switch, which forwards the query to ports 2 through 5, all of which are members of the same VLAN. Host 1 wants to join multicast group 224.1.2.3 and multicasts an IGMP
membership report (IGMP join message) to the group. The switch CPU uses the information in the IGMP report to set up a forwarding-table entry that includes the port numbers connected to Host 1 and to the router.

Table 12: IGMP Snooping Forwarding Table

<table>
<thead>
<tr>
<th>Destination Address</th>
<th>Type of Packet</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>224.1.2.3</td>
<td>IGMP</td>
<td>1, 2</td>
</tr>
</tbody>
</table>

The switch hardware can distinguish IGMP information packets from other packets for the multicast group. The information in the table tells the switching engine to send frames addressed to the 224.1.2.3 multicast IP address that are not IGMP packets to the router and to the host that has joined the group.

If another host (for example, Host 4) sends an unsolicited IGMP join message for the same group, the CPU receives that message and adds the port number of Host 4 to the forwarding table. Because the forwarding table directs IGMP messages only to the CPU, the message is not flooded to other ports on the switch. Any known multicast traffic is forwarded to the group and not to the CPU.

Figure 5: Second Host Joining a Multicast Group

![Diagram showing second host joining a multicast group]

Table 13: Updated IGMP Snooping Forwarding Table

<table>
<thead>
<tr>
<th>Destination Address</th>
<th>Type of Packet</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>224.1.2.3</td>
<td>IGMP</td>
<td>1, 2, 5</td>
</tr>
</tbody>
</table>

Related Topics

Configuring a Host Statically to Join a Group, on page 78
Example: Statically Configuring a Host on a Port, on page 100

Leaving a Multicast Group

The router sends periodic multicast general queries, and the switch forwards these queries through all ports in the VLAN. Interested hosts respond to the queries. If at least one host in the VLAN wants to receive multicast traffic, the router continues forwarding the multicast traffic to the VLAN. The switch forwards multicast group traffic only to those hosts listed in the forwarding table for that IP multicast group maintained by IGMP snooping.

When hosts want to leave a multicast group, they can silently leave, or they can send a leave message. When the switch receives a leave message from a host, it sends a group-specific query to learn if any other devices connected to that interface are interested in traffic for the specific multicast group. The switch then updates the forwarding table for that MAC group so that only those hosts interested in receiving multicast traffic for the group are listed in the forwarding table. If the router receives no reports from a VLAN, it removes the group for the VLAN from its IGMP cache.

Immediate Leave

The switch uses IGMP snooping Immediate Leave to remove from the forwarding table an interface that sends a leave message without the switch sending group-specific queries to the interface. The VLAN interface is pruned from the multicast tree for the multicast group specified in the original leave message. Immediate Leave ensures optimal bandwidth management for all hosts on a switched network, even when multiple multicast groups are simultaneously in use.

Immediate Leave is only supported on IGMP version 2 hosts. IGMP version 2 is the default version for the switch.

Note

You should use the Immediate Leave feature only on VLANs where a single host is connected to each port. If Immediate Leave is enabled on VLANs where more than one host is connected to a port, some hosts may be dropped inadvertently.

Related Topics

- Enabling IGMP Immediate Leave, on page 79
- Example: Enable Immediate Leave on a VLAN, on page 100

IGMP Configurable-Leave Timer

You can configure the time that the switch waits after sending a group-specific query to determine if hosts are still interested in a specific multicast group. The IGMP leave response time can be configured from 100 to 32767 milliseconds.

Related Topics

- Configuring the IGMP Leave Timer, on page 81
IGMP Report Suppression

Note
IGMP report suppression is supported only when the multicast query has IGMPv1 and IGMPv2 reports. This feature is not supported when the query includes IGMPv3 reports.

The switch uses IGMP report suppression to forward only one IGMP report per multicast router query to multicast devices. When IGMP report suppression is enabled (the default), the switch sends the first IGMP report from all hosts for a group to all the multicast routers. The switch does not send the remaining IGMP reports for the group to the multicast routers. This feature prevents duplicate reports from being sent to the multicast devices.

If the multicast router query includes requests only for IGMPv1 and IGMPv2 reports, the switch forwards only the first IGMPv1 or IGMPv2 report from all hosts for a group to all the multicast routers.

If the multicast router query also includes requests for IGMPv3 reports, the switch forwards all IGMPv1, IGMPv2, and IGMPv3 reports for a group to the multicast devices.

If you disable IGMP report suppression, all IGMP reports are forwarded to the multicast routers.

Related Topics
Disabling IGMP Report Suppression, on page 89

IGMP Snooping and Switch Stacks

IGMP snooping functions across the switch stack; that is, IGMP control information from one switch is distributed to all switches in the stack. Regardless of the stack member through which IGMP multicast data enters the stack, the data reaches the hosts that have registered for that group.

If a switch in the stack fails or is removed from the stack, only the members of the multicast group that are on that switch will not receive the multicast data. All other members of a multicast group on other switches in the stack continue to receive multicast data streams. However, multicast groups that are common for both Layer 2 and Layer 3 (IP multicast routing) might take longer to converge if the active switch is removed.

Related Topics
Configuring the IGMP Snooping Querier, on page 86
Example: Setting the IGMP Snooping Querier Source Address, on page 100
Example: Setting the IGMP Snooping Querier Maximum Response Time, on page 100
Example: Setting the IGMP Snooping Querier Timeout, on page 101
Example: Setting the IGMP Snooping Querier Feature, on page 101

IGMP Filtering and Throttling

In some environments, for example, metropolitan or multiple-dwelling unit (MDU) installations, you might want to control the set of multicast groups to which a user on a switch port can belong. You can control the distribution of multicast services, such as IP/TV, based on some type of subscription or service plan. You might also want to limit the number of multicast groups to which a user on a switch port can belong.
With the IGMP filtering feature, you can filter multicast joins on a per-port basis by configuring IP multicast profiles and associating them with individual switch ports. An IGMP profile can contain one or more multicast groups and specifies whether access to the group is permitted or denied. If an IGMP profile denying access to a multicast group is applied to a switch port, the IGMP join report requesting the stream of IP multicast traffic is dropped, and the port is not allowed to receive IP multicast traffic from that group. If the filtering action permits access to the multicast group, the IGMP report from the port is forwarded for normal processing. You can also set the maximum number of IGMP groups that a Layer 2 interface can join.

IGMP filtering controls only group-specific query and membership reports, including join and leave reports. It does not control general IGMP queries. IGMP filtering has no relationship with the function that directs the forwarding of IP multicast traffic. The filtering feature operates in the same manner whether CGMP or MVR is used to forward the multicast traffic.

IGMP filtering applies only to the dynamic learning of IP multicast group addresses, not static configuration. With the IGMP throttling feature, you can set the maximum number of IGMP groups that a Layer 2 interface can join. If the maximum number of IGMP groups is set, the IGMP snooping forwarding table contains the maximum number of entries, and the interface receives an IGMP join report, you can configure an interface to drop the IGMP report or to replace the randomly selected multicast entry with the received IGMP report.

Note

IGMPv3 join and leave messages are not supported on switches running IGMP filtering.

Related Topics

Configuring the IGMP Throttling Action, on page 95

Default IGMP Snooping Configuration

This table displays the default IGMP snooping configuration for the switch.

Table 14: Default IGMP Snooping Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGMP snooping</td>
<td>Enabled globally and per VLAN</td>
</tr>
<tr>
<td>Multicast routers</td>
<td>None configured</td>
</tr>
<tr>
<td>Multicast router learning (snooping) method</td>
<td>PIM-DVMRP</td>
</tr>
<tr>
<td>IGMP snooping Immediate Leave</td>
<td>Disabled</td>
</tr>
<tr>
<td>Static groups</td>
<td>None configured</td>
</tr>
<tr>
<td>TCN(^1) flood query count</td>
<td>2</td>
</tr>
<tr>
<td>TCN query solicitation</td>
<td>Disabled</td>
</tr>
<tr>
<td>IGMP snooping querier</td>
<td>Disabled</td>
</tr>
<tr>
<td>IGMP report suppression</td>
<td>Enabled</td>
</tr>
</tbody>
</table>
Default IGMP Filtering and Throttling Configuration

This table displays the default IGMP filtering and throttling configuration for the switch.

Table 15: Default IGMP Filtering Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGMP filters</td>
<td>None applied.</td>
</tr>
<tr>
<td>IGMP maximum number of IGMP groups</td>
<td>No maximum set.</td>
</tr>
<tr>
<td>Note</td>
<td>When the maximum number of groups is in the forwarding table, the default IGMP throttling action is to deny the IGMP report.</td>
</tr>
<tr>
<td>IGMP profiles</td>
<td>None defined.</td>
</tr>
<tr>
<td>IGMP profile action</td>
<td>Deny the range addresses.</td>
</tr>
</tbody>
</table>

How to Configure IGMP Snooping

Enabling or Disabling IGMP Snooping on a Switch

When IGMP snooping is globally enabled or disabled, it is also enabled or disabled in all existing VLAN interfaces. IGMP snooping is enabled on all VLANs by default, but can be enabled and disabled on a per-VLAN basis.

Global IGMP snooping overrides the VLAN IGMP snooping. If global snooping is disabled, you cannot enable VLAN snooping. If global snooping is enabled, you can enable or disable VLAN snooping.

Follow these steps to globally enable IGMP snooping on the switch:

SUMMARY STEPS

1. enable
2. configure terminal
3. ip igmp snooping
4. end
5. copy running-config startup-config
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ip igmp snooping</td>
<td>Globally enables IGMP snooping in all existing VLAN interfaces.</td>
</tr>
<tr>
<td>Example:</td>
<td>Note: To globally disable IGMP snooping on all VLAN interfaces, use the no ip igmp snooping global configuration command.</td>
</tr>
<tr>
<td>Switch(config)# ip igmp snooping</td>
<td></td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# end</td>
<td></td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

Enabling or Disabling IGMP Snooping on a VLAN Interface

Follow these steps to enable IGMP snooping on a VLAN interface:

SUMMARY STEPS

1. enable
2. configure terminal
3. ip igmp snooping vlan vlan-id
4. end
5. copy running-config startup-config
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ip igmp snooping vlan vlan-id</td>
<td>Enables IGMP snooping on the VLAN interface. The VLAN ID range is 1 to 1001 and 1006 to 4094. IGMP snooping must be globally enabled before you can enable VLAN snooping.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# ip igmp snooping vlan 7</td>
<td></td>
</tr>
<tr>
<td>Note To disable IGMP snooping on a VLAN interface, use the no ip igmp snooping vlan vlan-id global configuration command for the specified VLAN number.</td>
<td></td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# end</td>
<td></td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

Setting the Snooping Method

Multicast-capable router ports are added to the forwarding table for every Layer 2 multicast entry. The switch learns of the ports through one of these methods:

- Snooping on IGMP queries, Protocol-Independent Multicast (PIM) packets, and Distance Vector Multicast Routing Protocol (DVMRP) packets.
- Listening to Cisco Group Management Protocol (CGMP) packets from other routers.
- Statically connecting to a multicast router port using the **ip igmp snooping mrouter** global configuration command.
You can configure the switch either to snoop on IGMP queries and PIM/DVMRP packets or to listen to CGMP self-join or proxy-join packets. By default, the switch snoops on PIM/DVMRP packets on all VLANs. To learn of multicast router ports through only CGMP packets, use the `ip igmp snooping vlan vlan-id mrouter learn cgmp` global configuration command. When this command is entered, the router listens to only CGMP self-join and CGMP proxy-join packets and to no other CGMP packets. To learn of multicast router ports through only PIM-DVMRP packets, use the `ip igmp snooping vlan vlan-id mrouter learn pim-dvmrp` global configuration command.

If you want to use CGMP as the learning method and no multicast routers in the VLAN are CGMP proxy-enabled, you must enter the `ip cgmp router-only` command to dynamically access the router.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ip igmp snooping vlan vlan-id mrouter learn {cgmp | pim-dvmrp}
4. `end`
5. `show ip igmp snooping`
6. `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Example: <code>Switch> enable</code></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Example: <code>Switch# configure terminal</code></td>
</tr>
<tr>
<td>Step 3</td>
<td>Specifies the multicast router learning method:</td>
</tr>
<tr>
<td>`ip igmp snooping vlan vlan-id mrouter learn {cgmp</td>
<td>pim-dvmrp}`</td>
</tr>
<tr>
<td></td>
<td>- <code>pim-dvmrp</code>—Snoops on IGMP queries and PIM-DVMRP packets. This is the default.</td>
</tr>
<tr>
<td>Example: <code>Switch{config}# ip igmp snooping vlan 1 mrouter learn cgmp</code></td>
<td>Note To return to the default learning method, use the <code>no ip igmp snooping vlan vlan-id mrouter learn cgmp</code> global configuration command.</td>
</tr>
</tbody>
</table>
How to Configure IGMP Snooping

#### Command or Action	Purpose
Step 4 | **end**
Example:
Switch(config)# **end**

- Returns to privileged EXEC mode.

Step 5 | **show ip igmp snooping**
Example:
Switch# **show ip igmp snooping**

- Verifies the configuration.

Step 6 | **copy running-config startup-config**
Example:
Switch# **copy running-config startup-config**

- (Optional) Saves your entries in the configuration file.

Related Topics

Example: Configuring IGMP Snooping Using CGMP Packets, on page 99

Configuring a Multicast Router Port

Perform these steps to add a multicast router port (enable a static connection to a multicast router) on the switch.

Note

Static connections to multicast routers are supported only on switch ports.

SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. **ip igmp snooping vlan** `vlan-id` **mrouter interface** `interface-id`
4. **end**
5. **show ip igmp snooping mrouter** `[vlan` `vlan-id]`
6. **copy running-config startup-config**
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enable</td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch> enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>ip igmp snooping vlan vlan-id mrouter interface interface-id</td>
</tr>
<tr>
<td>ip igmp snooping vlan vlan-id mrouter interface interface-id</td>
<td>Specifies the multicast router VLAN ID and the interface to the multicast router.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# ip igmp snooping vlan 5 mrouter interface gigabitethernet1/0/1</td>
</tr>
<tr>
<td>Note</td>
<td>To remove a multicast router port from the VLAN, use the no ip igmp snooping vlan vlan-id mrouter interface interface-id global configuration command.</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show ip igmp snooping mrouter [vlan vlan-id]</td>
</tr>
<tr>
<td>show ip igmp snooping mrouter [vlan vlan-id]</td>
<td>Verifies that IGMP snooping is enabled on the VLAN interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# show ip igmp snooping mrouter vlan 5</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# copy running-config startup-config</td>
</tr>
</tbody>
</table>

Related Topics

Example: Enabling a Static Connection to a Multicast Router, on page 99
Configuring a Host Staticalys to Join a Group

Hosts or Layer 2 ports normally join multicast groups dynamically, but you can also statically configure a host on an interface.

Follow these steps to add a Layer 2 port as a member of a multicast group:

SUMMARY STEPS

1. enable
2. configure terminal
3. **ip igmp snooping vlan** vlan-id static ip_address interface interface-id
4. end
5. show ip igmp snooping groups
6. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch> enable</td>
</tr>
<tr>
<td></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>ip igmp snooping vlan vlan-id static ip_address interface interface-id</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# ip igmp snooping vlan 105 static 230.0.0.1 interface gigabitethernet1/0/1</td>
</tr>
<tr>
<td></td>
<td>Statically configures a Layer 2 port as a member of a multicast group:</td>
</tr>
<tr>
<td></td>
<td>• vlan-id is the multicast group VLAN ID. The range is 1 to 1001 and 1006 to 4094.</td>
</tr>
<tr>
<td></td>
<td>• ip-address is the group IP address.</td>
</tr>
<tr>
<td></td>
<td>• interface-id is the member port. It can be a physical interface or a port channel (1 to 128).</td>
</tr>
<tr>
<td>Note</td>
<td>To remove the Layer 2 port from the multicast group, use the no ip igmp snooping vlan vlan-id static mac-address interface interface-id global configuration command.</td>
</tr>
</tbody>
</table>
Step 4

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Example:

```
Switch(config)# end
```

Step 5

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ip igmp snooping groups</code></td>
<td>Verifies the member port and the IP address.</td>
</tr>
</tbody>
</table>

Example:

```
Switch# show ip igmp snooping groups
```

Step 6

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Example:

```
Switch# copy running-config startup-config
```

Related Topics

- Joining a Multicast Group, on page 67
- Example: Statically Configuring a Host on a Port, on page 100

Enabling IGMP Immediate Leave

When you enable IGMP Immediate Leave, the switch immediately removes a port when it detects an IGMP Version 2 leave message on that port. You should use the Immediate-Leave feature only when there is a single receiver present on every port in the VLAN.

Note

Immediate Leave is supported only on IGMP Version 2 hosts. IGMP Version 2 is the default version for the switch.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ip igmp snooping vlan vlan-id immediate-leave`
4. `end`
5. `show ip igmp snooping vlan vlan-id`
6. `end`
Detailed Steps

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch > enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>ip igmp snooping vlan vlan-id immediate-leave</td>
<td>Enables IGMP Immediate Leave on the VLAN interface. Note To disable IGMP Immediate Leave on a VLAN, use the no ip igmp snooping vlan vlan-id immediate-leave global configuration command.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# ip igmp snooping vlan 21 immediate-leave</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# end</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>show ip igmp snooping vlan vlan-id</td>
<td>Verifies that Immediate Leave is enabled on the VLAN interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# show ip igmp snooping vlan 21</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# end</td>
<td></td>
</tr>
</tbody>
</table>

Related Topics
- Immediate Leave, on page 69
- Example: Enable Immediate Leave on a VLAN, on page 100
Configuring the IGMP Leave Timer

You can configure the leave time globally or on a per-VLAN basis. Follow these steps to enable the IGMP configurable-leave timer:

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ip igmp snooping last-member-query-interval time`
4. `ip igmp snooping vlan vlan-id last-member-query-interval time`
5. `end`
6. `show ip igmp snooping`
7. `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch> enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>Configures the IGMP leave timer globally. The range is 100 to 32767 milliseconds. The default leave time is 1000 milliseconds.</td>
</tr>
<tr>
<td><code>ip igmp snooping last-member-query-interval time</code></td>
<td>Configures the IGMP leave timer globally. The range is 100 to 32767 milliseconds. The default leave time is 1000 milliseconds.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# ip igmp snooping last-member-query-interval 1000</td>
</tr>
<tr>
<td>Note</td>
<td>To globally reset the IGMP leave timer to the default setting, use the <code>no ip igmp snooping last-member-query-interval</code> global configuration command.</td>
</tr>
<tr>
<td>Step 4</td>
<td>(Optional) Configures the IGMP leave time on the VLAN interface. The range is 100 to 32767 milliseconds.</td>
</tr>
<tr>
<td><code>ip igmp snooping vlan vlan-id last-member-query-interval time</code></td>
<td>(Optional) Configures the IGMP leave time on the VLAN interface. The range is 100 to 32767 milliseconds.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# ip igmp snooping vlan 210 last-member-query-interval 1000</td>
</tr>
<tr>
<td>Note</td>
<td>Configuring the leave time on a VLAN overrides the globally configured timer.</td>
</tr>
<tr>
<td>Note</td>
<td>To remove the configured IGMP leave-time setting from the specified VLAN, use the <code>no ip igmp snooping vlan vlan-id last-member-query-interval</code> global configuration command.</td>
</tr>
</tbody>
</table>
How to Configure IGMP Snooping

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td><code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch(config)# end</code></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td></td>
</tr>
<tr>
<td><code>show ip igmp snooping</code></td>
<td>(Optional) Displays the configured IGMP leave time.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch# show ip igmp snooping</code></td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td></td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch# copy running-config startup-config</code></td>
<td></td>
</tr>
</tbody>
</table>

Related Topics

IGMP Configurable-Leave Timer, on page 69

Configuring TCN-Related Commands

Controlling the Multicast Flooding Time After a TCN Event

You can configure the number of general queries by which multicast data traffic is flooded after a topology change notification (TCN) event. If you set the TCN flood query count to 1 the flooding stops after receiving 1 general query. If you set the count to 7, the flooding continues until 7 general queries are received. Groups are relearned based on the general queries received during the TCN event.

Some examples of TCN events are when the client location is changed and the receiver is on same port that was blocked but is now forwarding, and when a port goes down without sending a leave message.

Follow these steps to configure the TCN flood query count:

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ip igmp snooping tcn flood query count [count]`
4. `end`
5. `show ip igmp snooping`
6. `copy running-config startup-config`
Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch> enable</td>
</tr>
<tr>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
</tr>
<tr>
<td>Enters the global configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>ip igmp snooping tcn flood query count <code>count</code></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# ip igmp snooping tcn flood query count 3</td>
</tr>
</tbody>
</table>
| Specifies the number of IGMP general queries for which the multicast traffic is flooded.
The range is 1 to 10. The default, the flooding query count is 2.
Note To return to the default flooding query count, use the `no ip igmp snooping tcn flood query count` global configuration command. |
| **Step 4** | **end** |
| Example: | Switch(config)# end |
| Returns to privileged EXEC mode. |
| **Step 5** | **show ip igmp snooping** |
| Example: | Switch# show ip igmp snooping |
| Verifies the TCN settings. |
| **Step 6** | **copy running-config startup-config** |
| Example: | Switch# copy running-config startup-config |
| (Optional) Saves your entries in the configuration file. |

Recovering from Flood Mode

When a topology change occurs, the spanning-tree root sends a special IGMP leave message (also known as global leave) with the group multicast address 0.0.0.0. However, you can enable the switch to send the global leave message whether it is the spanning-tree root or not. When the router receives this special leave, it
immediately sends general queries, which expedite the process of recovering from the flood mode during the TCN event. Leaves are always sent if the switch is the spanning-tree root regardless of this configuration.

Follow these steps to enable sending of leave messages:

SUMMARY STEPS

1. enable
2. configure terminal
3. ip igmpsnooping tcn query solicit
4. end
5. show ip igmpsnooping
6. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ip igmpsnooping tcn query solicit</td>
<td>Sends an IGMP leave message (global leave) to speed the process of recovering from the flood mode caused during a TCN event. By default, query solicitation is disabled.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# ip igmpsnooping tcn query solicit</td>
<td>Note: To return to the default query solicitation, use the no ip igmpsnooping tcn query solicit global configuration command.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# end</td>
<td></td>
</tr>
<tr>
<td>Step 5 show ip igmpsnooping</td>
<td>Verifies the TCN settings.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# show ip igmpsnooping</td>
<td></td>
</tr>
</tbody>
</table>
Purpose
Command or Action

Step 6
 copy running-config startup-config

(Optional) Saves your entries in the configuration file.

Example:
Switch# copy running-config startup-config

Disabling Multicast Flooding During a TCN Event
When the switch receives a TCN, multicast traffic is flooded to all the ports until 2 general queries are received. If the switch has many ports with attached hosts that are subscribed to different multicast groups, this flooding might exceed the capacity of the link and cause packet loss. Follow these steps to control TCN flooding:

SUMMARY STEPS

1. enable
2. configure terminal
3. interface interface-id
4. no ip igmp snooping tcn flood
5. end
6. show ip igmp snooping
7. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface interface-id</td>
<td>Specifies the interface to be configured, and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# interface gigabitethernet</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td><code>1/0/1</code></td>
<td></td>
</tr>
</tbody>
</table>

Step 4

Command: `no ip igmp snooping tcn flood`

Example:
```
Switch(config-if)# no ip igmp snooping tcn flood
```

Purpose: Disables the flooding of multicast traffic during a spanning-tree TCN event.

By default, multicast flooding is enabled on an interface. To re-enable multicast flooding on an interface, use the `ip igmp snooping tcn flood` interface configuration command.

Step 5

Command: `end`

Example:
```
Switch(config)# end
```

Purpose: Returns to privileged EXEC mode.

Step 6

Command: `show ip igmp snooping`

Example:
```
Switch# show ip igmp snooping
```

Purpose: Verifies the TCN settings.

Step 7

Command: `copy running-config startup-config`

Example:
```
Switch# copy running-config startup-config
```

(Optional) Saves your entries in the configuration file.

Configuring the IGMP Snooping Querier

Follow these steps to enable the IGMP snooping querier feature in a VLAN:
SUMMARY STEPS

1. enable
2. configure terminal
3. ip igmp snooping querier
4. ip igmp snooping querier address ip_address
5. ip igmp snooping querier query-interval interval-count
6. ip igmp snooping querier tcn query [count count | interval interval]
7. ip igmp snooping querier timer expiry timeout
8. ip igmp snooping querier version version
9. end
10. show ip igmp snooping vlan vlan-id
11. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ip igmp snooping querier</td>
<td>Enables the IGMP snooping querier.</td>
</tr>
<tr>
<td>Example: Switch(config)# ip igmp snooping querier</td>
<td></td>
</tr>
<tr>
<td>Step 4 ip igmp snooping querier address ip_address</td>
<td>(Optional) Specifies an IP address for the IGMP snooping querier. If you do not specify an IP address, the querier tries to use the global IP address configured for the IGMP querier.</td>
</tr>
<tr>
<td>Example: Switch(config)# ip igmp snooping querier address 172.16.24.1</td>
<td>Note The IGMP snooping querier does not generate an IGMP general query if it cannot find an IP address on the switch.</td>
</tr>
</tbody>
</table>
Command or Action | Purpose |
--- | --- |
Step 5 | **ip igmp snooping querier query-interval**
interval-count
Example:
Switch(config)# ip igmp snooping querier query-interval 30 | (Optional) Sets the interval between IGMP queriers. The range is 1 to 18000 seconds. |
Step 6 | **ip igmp snooping querier tcn query [count count | interval interval]**
Example:
Switch(config)# ip igmp snooping querier tcn query interval 20 | (Optional) Sets the time between Topology Change Notification (TCN) queries. The count range is 1 to 10. The interval range is 1 to 255 seconds. |
Step 7 | **ip igmp snooping querier timer expiry timeout**
Example:
Switch(config)# ip igmp snooping querier timer expiry 180 | (Optional) Sets the length of time until the IGMP querier expires. The range is 60 to 300 seconds. |
Step 8 | **ip igmp snooping querier version version**
Example:
Switch(config)# ip igmp snooping querier version 2 | (Optional) Selects the IGMP version number that the querier feature uses. Select 1 or 2. |
Step 9 | **end**
Example:
Switch(config)# end | Returns to privileged EXEC mode. |
Step 10 | **show ip igmp snooping vlan vlan-id**
Example:
Switch# show ip igmp snooping vlan 30 | (Optional) Verifies that the IGMP snooping querier is enabled on the VLAN interface. The VLAN ID range is 1 to 1001 and 1006 to 4094. |
Step 11 | **copy running-config startup-config**
Example:
Switch# copy running-config startup-config | (Optional) Saves your entries in the configuration file. |
Related Topics

- IGMP Snooping and Switch Stacks, on page 70
- Example: Setting the IGMP Snooping Querier Source Address, on page 100
- Example: Setting the IGMP Snooping Querier Maximum Response Time, on page 100
- Example: Setting the IGMP Snooping Querier Timeout, on page 101
- Example: Setting the IGMP Snooping Querier Feature, on page 101

Disabling IGMP Report Suppression

Follow these steps to disable IGMP report suppression:

SUMMARY STEPS

1. enable
2. configure terminal
3. no ip igmp snooping report-suppression
4. end
5. show ip igmp snooping
6. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>enable</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Disables IGMP report suppression. When report suppression is disabled, all IGMP reports are forwarded to the multicast routers. IGMP report suppression is enabled by default. When IGMP report supression is enabled, the switch forwards only one IGMP report per multicast router query.</td>
</tr>
<tr>
<td>no ip igmp snooping report-suppression</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# no ip igmp snooping report-suppression</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>To re-enable IGMP report suppression, use the ip igmp snooping report-suppression global configuration command.</td>
</tr>
</tbody>
</table>
How to Configure IGMP Snooping

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show ip igmp snooping</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# show ip igmp snooping</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# copy running-config startup-config</td>
</tr>
</tbody>
</table>

Related Topics

IGMP Report Suppression, on page 70

Configuring IGMP Profiles

Follow these steps to create an IGMP profile:

This task is optional.

SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. **ip igmp profile** *profile number*
4. **permit | deny**
5. **range** *ip multicast address*
6. **end**
7. **show ip igmp profile** *profile number*
8. **show running-config**
9. **copy running-config startup-config**
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>ip igmp profile profile number</td>
<td>Assigns a number to the profile you are configuring, and enters IGMP profile configuration mode. The profile number range is 1 to 4294967295. When you are in IGMP profile configuration mode, you can create the profile by using these commands:</td>
</tr>
<tr>
<td></td>
<td>Example: Switch(config)# ip igmp profile 3</td>
<td>deny—Specifies that matching addresses are denied; this is the default.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>exit—Exits from igmp-profile configuration mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>no—Negates a command or returns to its defaults.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>permit—Specifies that matching addresses are permitted.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>range—Specifies a range of IP addresses for the profile. You can enter a single IP address or a range with a start and an end address.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The default is for the switch to have no IGMP profiles configured.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note To delete a profile, use the <code>no ip igmp profile profile number</code> global configuration command.</td>
</tr>
<tr>
<td>Step 4</td>
<td>permit</td>
<td>(Optional) Sets the action to permit or deny access to the IP multicast address. If no action is configured, the default for the profile is to deny access.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch(config-igmp-profile)# permit</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>range ip multicast address</td>
<td>Enters the IP multicast address or range of IP multicast addresses to which access is being controlled. If entering a range, enter the low IP multicast address, a space, and the high IP multicast address.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch(config-igmp-profile)# range 229.9.9.0</td>
<td>You can use the <code>range</code> command multiple times to enter multiple addresses or ranges of addresses.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note To delete an IP multicast address or range of IP multicast addresses, use the <code>no range ip multicast address</code> IGMP profile configuration command.</td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Purpose</th>
</tr>
</thead>
</table>

| Step 6 | end | Returns to privileged EXEC mode. |

Example:

```
Switch(config)# end
```

| Step 7 | show ip igmp profile *profile number* | Verifies the profile configuration. |

Example:

```
Switch# show ip igmp profile 3
```

| Step 8 | show running-config | Verifies your entries. |

Example:

```
Switch# show running-config
```

| Step 9 | copy running-config startup-config | (Optional) Saves your entries in the configuration file. |

Example:

```
Switch# copy running-config startup-config
```

Related Topics

Example: Configuring IGMP Profiles, on page 101

Applying IGMP Profiles

To control access as defined in an IGMP profile, you have to apply the profile to the appropriate interfaces. You can apply IGMP profiles only to Layer 2 access ports; you cannot apply IGMP profiles to routed ports or SVIs. You cannot apply profiles to ports that belong to an EtherChannel port group. You can apply a profile to multiple interfaces, but each interface can have only one profile applied to it.

Follow these steps to apply an IGMP profile to a switch port:
SUMMARY STEPS

1. enable
2. configure terminal
3. interface interface-id
4. ip igmp filter profile number
5. end
6. show running-config
7. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface interface-id</td>
<td>Specifies the physical interface, and enters interface configuration mode. The interface must be a Layer 2 port that does not belong to an EtherChannel port group.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# interface gigabitethernet1/0/1</td>
<td></td>
</tr>
<tr>
<td>Step 4 ip igmp filter profile number</td>
<td>Applies the specified IGMP profile to the interface. The range is 1 to 4294967295.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config-if)# ip igmp filter 321</td>
<td></td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config-if)# end</td>
<td></td>
</tr>
</tbody>
</table>
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6 show running-config</td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# show running-config</td>
<td></td>
</tr>
<tr>
<td>Step 7 copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

Related Topics

Example: Applying IGMP Profile, on page 101

Setting the Maximum Number of IGMP Groups

You can set the maximum number of IGMP groups that a Layer 2 interface can join by using the `ip igmp max-groups` interface configuration command.

Use the `no` form of this command to set the maximum back to the default, which 208.

This restriction can be applied to Layer 2 ports only; you cannot set a maximum number of IGMP groups on routed ports or SVIs. You also can use this command on a logical EtherChannel interface but cannot use it on ports that belong to an EtherChannel port group.

SUMMARY STEPS

1. configure terminal
2. interface interface-id
3. ip igmp max-groups number
4. end
5. show running-config interface interface-id
6. copy running-config startup-config
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Specifies the interface to be configured, and enters interface configuration mode. The interface can be a Layer 2 port that does not belong to an EtherChannel group or a EtherChannel interface.</td>
</tr>
<tr>
<td>Example: Switch(config)# interface gigabitethernet1/0/2</td>
<td></td>
</tr>
<tr>
<td>Step 3 ip igmp max-groups number</td>
<td>Sets the maximum number of IGMP groups that the interface can join. The range is 0 to 4294967294. The default is 208. Note To remove the maximum group limitation and return to the default of no maximum, use the no ip igmp max-groups interface configuration command.</td>
</tr>
<tr>
<td>Example: Switch(config-if)# ip igmp max-groups 20</td>
<td></td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Switch(config-if)# end</td>
<td></td>
</tr>
<tr>
<td>Step 5 show running-config interface interface-id</td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td>Example: Switch# show running-config interface gigabitethernet1/0/1</td>
<td></td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td>Example: Switch# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

Configuring the IGMP Throttling Action

After you set the maximum number of IGMP groups that a Layer 2 interface can join, you can configure an interface to replace the existing group with the new group for which the IGMP report was received.

Follow these steps to configure the throttling action when the maximum number of entries is in the forwarding table:
SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface interface-id`
4. `ip igmp max-groups action {deny | replace}`
5. `end`
6. `show running-config interface interface-id`
7. `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface interface-id</td>
<td>Specifies the physical interface to be configured, and enters interface configuration mode. The interface can be a Layer 2 port that does not belong to an EtherChannel group or an EtherChannel interface. The interface cannot be a trunk port.</td>
</tr>
<tr>
<td>Example: Switch(config)# interface gigabitethernet 1/0/1</td>
<td></td>
</tr>
<tr>
<td>Step 4 ip igmp max-groups action {deny</td>
<td>replace}</td>
</tr>
<tr>
<td>Example: Switch(config-if)# ip igmp max-groups action replace</td>
<td></td>
</tr>
</tbody>
</table>

- **deny**—Drops the report. If you configure this throttling action, the entries that were previously in the forwarding table are not removed but are aged out. After these entries are aged out and the maximum number of entries is in the forwarding table, the switch drops the next IGMP report received on the interface.

- **replace**—Replaces the existing group with the new group for which the IGMP report was received. If you configure this throttling action, the entries that were previously in the forwarding table are removed. When the maximum number of entries is in the forwarding table, the switch replaces a randomly selected entry with the received IGMP report.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>To prevent the switch from removing the forwarding-table entries, you can configure the IGMP throttling action before an interface adds entries to the forwarding table. Note To return to the default action of dropping the report, use the no ip igmp max-groups action interface configuration command.</td>
</tr>
</tbody>
</table>

Step 5

end

Example:

```
Switch(config)# end
```

Returns to privileged EXEC mode.

Step 6

```
show running-config interface interface-id
```

Example:

```
Switch# show running-config interface gigabitethernet1/0/1
```

Verifies your entries.

Step 7

```
copy running-config startup-config
```

Example:

```
Switch# copy running-config startup-config
```

(Optional) Saves your entries in the configuration file.

Related Topics

IGMP Filtering and Throttling, on page 70

Monitoring IGMP Snooping

Monitoring IGMP Snooping Information

You can display IGMP snooping information for dynamically learned and statically configured router ports and VLAN interfaces. You can also display MAC address multicast entries for a VLAN configured for IGMP snooping.
Table 16: Commands for Displaying IGMP Snooping Information

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ip igmp snooping [vlan vlan-id [detail]]</code></td>
<td>Displays the snooping configuration information for all VLANs on the switch or for a specified VLAN. (Optional) Enter <code>vlan vlan-id</code> to display information for a single VLAN. The VLAN ID range is 1 to 1001 and 1006 to 4094.</td>
</tr>
</tbody>
</table>
| `show ip igmp snooping groups [count [dynamic [count] | user [count]]` | Displays multicast table information for the switch or about a specific parameter:
 - **count**—Displays the total number of entries for the specified command options instead of the actual entries.
 - **dynamic**—Displays entries learned through IGMP snooping.
 - **user**—Displays only the user-configured multicast entries. |
| `show ip igmp snooping groups vlan vlan-id [ip_address | count | dynamic [count] | user[count]]` | Displays multicast table information for a multicast VLAN or about a specific parameter for the VLAN:
 - **vlan-id**—The VLAN ID range is 1 to 1001 and 1006 to 4094.
 - **count**—Displays the total number of entries for the specified command options instead of the actual entries.
 - **dynamic**—Displays entries learned through IGMP snooping.
 - **ip_address**—Displays characteristics of the multicast group with the specified group IP address.
 - **user**—Displays only the user-configured multicast entries. |
| `show ip igmp snooping mrouter [vlan vlan-id]` | Displays information on dynamically learned and manually configured multicast router interfaces.
Note When you enable IGMP snooping, the switch automatically learns the interface to which a multicast router is connected. These are dynamically learned interfaces. (Optional) Enter the `vlan vlan-id` to display information for a particular VLAN. |
| `show ip igmp snooping querier [vlan vlan-id] detail` | Displays information about the IP address and receiving port of the most-recently received IGMP query message in the VLAN and the configuration and operational state of the IGMP snooping querier in the VLAN. |
Monitoring IGMP Filtering and Throttling Configuration

You can display IGMP profile characteristics, and you can display the IGMP profile and maximum group configuration for all interfaces on the switch or for a specified interface. You can also display the IGMP throttling configuration for all interfaces on the switch or for a specified interface.

Table 17: Commands for Displaying IGMP Filtering and Throttling Configuration

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ip igmp profile [profile number]</code></td>
<td>Displays the specified IGMP profile or all the IGMP profiles defined on the switch.</td>
</tr>
<tr>
<td><code>show running-config [interface interface-id]</code></td>
<td>Displays the configuration of the specified interface or the configuration of all interfaces on the switch, including (if configured) the maximum number of IGMP groups to which an interface can belong and the IGMP profile applied to the interface.</td>
</tr>
</tbody>
</table>

Configuration Examples for IGMP Snooping

Example: Configuring IGMP Snooping Using CGMP Packets

This example shows how to configure IGMP snooping to use CGMP packets as the learning method:

```
Switch# configure terminal
Switch(config)# ip igmp snooping vlan 1 mrouter learn cgmp
Switch(config)# end
```

Related Topics

- Setting the Snooping Method, on page 74

Example: Enabling a Static Connection to a Multicast Router

This example shows how to enable a static connection to a multicast router:

```
Switch# configure terminal
Switch(config)# ip igmp snooping vlan 200 mrouter interface gigabitethernet1/0/2
Switch(config)# end
```

Related Topics

- Configuring a Multicast Router Port, on page 76
Example: Statically Configuring a Host on a Port

This example shows how to statically configure a host on a port:

Switch# configure terminal
Switch(config)# ip igmp snooping vlan 105 static 224.2.4.12 interface gigabitethernet1/0/1
Switch(config)# end

Related Topics
- Configuring a Host Statically to Join a Group, on page 78
- Joining a Multicast Group, on page 67

Example: Enable Immediate Leave on a VLAN

This example shows how to enable IGMP Immediate Leave on VLAN 130:

Switch# configure terminal
Switch(config)# ip igmp snooping vlan 130 immediate-leave
Switch(config)# end

Related Topics
- Enabling IGMP Immediate Leave, on page 79
- Immediate Leave, on page 69

Example: Setting the IGMP Snooping Querier Source Address

This example shows how to set the IGMP snooping querier source address to 10.0.0.64:

Switch# configure terminal
Switch(config)# ip igmp snooping querier 10.0.0.64
Switch(config)# end

Related Topics
- Configuring the IGMP Snooping Querier, on page 86
- IGMP Snooping and Switch Stacks, on page 70

Example: Setting the IGMP Snooping Querier Maximum Response Time

This example shows how to set the IGMP snooping querier maximum response time to 25 seconds:

Switch# configure terminal
Switch(config)# ip igmp snooping querier query-interval 25
Switch(config)# end

Related Topics
- Configuring the IGMP Snooping Querier, on page 86
Example: Setting the IGMP Snooping Querier Timeout

This example shows how to set the IGMP snooping querier timeout to 60 seconds:

Switch# configure terminal
Switch(config)# ip igmp snooping querier timeout expiry 60
Switch(config)# end

Example: Setting the IGMP Snooping Querier Feature

This example shows how to set the IGMP snooping querier feature to Version 2:

Switch# configure terminal
Switch(config)# ip igmp snooping querier version 2
Switch(config)# end

Example: Configuring IGMP Profiles

This example shows how to create IGMP profile 4 allowing access to the single IP multicast address and how to verify the configuration. If the action was to deny (the default), it would not appear in the show ip igmp profile output display.

Switch(config)# ip igmp profile 4
Switch(config-igmp-profile)# permit
Switch(config-igmp-profile)# range 229.9.9.0
Switch(config-igmp-profile)# end
Switch# show ip igmp profile 4
IGMP Profile 4
 permit
 range 229.9.9.0 229.9.9.0

Example: Applying IGMP Profile

This example shows how to apply IGMP profile 4 to a port:

Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# ip igmp filter 4
Switch(config-if)# end
Example: Setting the Maximum Number of IGMP Groups

This example shows how to limit to 25 the number of IGMP groups that a port can join:

```
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# ip igmp max-groups 25
Switch(config-if)# end
```

Related Topics

Setting the Maximum Number of IGMP Groups

Where to Go Next for IGMP Snooping

You can configure the following:

- Multicast VLAN Registration

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>For complete syntax and usage information for the commands used in this chapter.</td>
<td>Catalyst 2960-X Switch IGMP Snooping Command Reference</td>
</tr>
</tbody>
</table>

Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 1112</td>
<td>Host Extensions for IP Multicasting</td>
</tr>
<tr>
<td>RFC 2236</td>
<td>Internet Group Management Protocol, Version 2</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>All supported MIBs for this release.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including</td>
<td></td>
</tr>
<tr>
<td>documentation and tools for troubleshooting and resolving technical issues</td>
<td>http://www.cisco.com/support</td>
</tr>
<tr>
<td>with Cisco products and technologies.</td>
<td></td>
</tr>
<tr>
<td>To receive security and technical information about your products, you can</td>
<td></td>
</tr>
<tr>
<td>subscribe to various services, such as the Product Alert Tool (accessed from</td>
<td></td>
</tr>
<tr>
<td>Field Notices), the Cisco Technical Services Newsletter, and Really Simple</td>
<td></td>
</tr>
<tr>
<td>Syndication (RSS) Feeds.</td>
<td></td>
</tr>
<tr>
<td>Access to most tools on the Cisco Support website requires a Cisco.com user ID</td>
<td></td>
</tr>
<tr>
<td>and password.</td>
<td></td>
</tr>
</tbody>
</table>

Feature History and Information for IGMP Snooping

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS 15.0(2)EX</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>
Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for MVR

The following are the prerequisites for Multicast VLAN Registration (MVR):

- To use MVR, the switch must be running the LAN Base image.
Restrictions for MVR

The following are restrictions for MVR:

- Only Layer 2 ports participate in MVR. You must configure ports as MVR receiver ports.
- Only one MVR multicast VLAN per switch or switch stack is supported.
- Receiver ports can only be access ports; they cannot be trunk ports. Receiver ports on a switch can be in different VLANs, but should not belong to the multicast VLAN.
- The maximum number of multicast entries (MVR group addresses) that can be configured on a switch (that is, the maximum number of television channels that can be received) is 256.
- MVR multicast data received in the source VLAN and leaving from receiver ports has its time-to-live (TTL) decremented by 1 in the switch.
- Because MVR on the switch uses IP multicast addresses instead of MAC multicast addresses, alias IP multicast addresses are allowed on the switch. However, if the switch is interoperating with Catalyst 3550 or Catalyst 3500 XL switches, you should not configure IP addresses that alias between themselves or with the reserved IP multicast addresses (in the range 224.0.0.xxx).
- Do not configure MVR on private VLAN ports.
- MVR is not supported when multicast routing is enabled on a switch. If you enable multicast routing and a multicast routing protocol while MVR is enabled, MVR is disabled, and you receive a warning message. If you try to enable MVR while multicast routing and a multicast routing protocol are enabled, the operation to enable MVR is cancelled, and you receive an error message.
- MVR data received on an MVR receiver port is not forwarded to MVR source ports.
- MVR does not support IGMPv3 messages.
- The switch supports homogeneous stacking and mixed stacking. Mixed stacking is supported only with the Catalyst 2960-S switches. A homogenous stack can have up to eight stack members, while a mixed stack can have up to four stack members. All switches in a switch stack must be running the LAN Base image.

Information About Multicast VLAN Registration

Multicast VLAN Registration (MVR) is designed for applications using wide-scale deployment of multicast traffic across an Ethernet ring-based service-provider network (for example, the broadcast of multiple television channels over a service-provider network). MVR allows a subscriber on a port to subscribe and unsubscribe to a multicast stream on the network-wide multicast VLAN. It allows the single multicast VLAN to be shared in the network while subscribers remain in separate VLANs. MVR provides the ability to continuously send multicast streams in the multicast VLAN, but to isolate the streams from the subscriber VLANs for bandwidth and security reasons.
MVR and IGMP

MVR can coexist with IGMP snooping on a switch.

Note

MVR assumes that subscriber ports subscribe and unsubscribe (join and leave) these multicast streams by sending out IGMP join and leave messages. These messages can originate from an IGMP version-2-compatible host with an Ethernet connection. Although MVR operates on the underlying method of IGMP snooping, the two features operate independently of each other. One can be enabled or disabled without affecting the behavior of the other feature. However, if IGMP snooping and MVR are both enabled, MVR reacts only to join and leave messages from multicast groups configured under MVR. Join and leave messages from all other multicast groups are managed by IGMP snooping.

The switch CPU identifies the MVR IP multicast streams and their associated IP multicast group in the switch forwarding table, intercepts the IGMP messages, and modifies the forwarding table to include or remove the subscriber as a receiver of the multicast stream, even though the receivers might be in a different VLAN from the source. This forwarding behavior selectively allows traffic to cross between different VLANs.

Modes of Operation

You can set the switch for compatible or dynamic mode of MVR operation:

- In compatible mode, multicast data received by MVR hosts is forwarded to all MVR data ports, regardless of MVR host membership on those ports. The multicast data is forwarded only to those receiver ports that MVR hosts have joined, either by IGMP reports or by MVR static configuration. IGMP reports received from MVR hosts are never forwarded from MVR data ports that were configured in the switch.

- In dynamic mode, multicast data received by MVR hosts on the switch is forwarded from only those MVR data and client ports that the MVR hosts have joined, either by IGMP reports or by MVR static configuration. Any IGMP reports received from MVR hosts are also forwarded from all the MVR data ports in the host. This eliminates using unnecessary bandwidth on MVR data port links, which occurs when the switch runs in compatible mode.

MVR and Switch Stacks

Only one MVR multicast VLAN per switch or switch stack is supported.

Receiver ports and source ports can be on different switches in a switch stack. Multicast data sent on the multicast VLAN is forwarded to all MVR receiver ports across the stack. When a new switch is added to a stack, by default it has no receiver ports.

If a switch fails or is removed from the stack, only those receiver ports belonging to that switch will not receive the multicast data. All other receiver ports on other switches continue to receive the multicast data.

MVR in a Multicast Television Application

In a multicast television application, a PC or a television with a set-top box can receive the multicast stream. Multiple set-top boxes or PCs can be connected to one subscriber port, which is a switch port configured as an MVR receiver port.
The following is an example configuration.

Figure 6: Multicast VLAN Registration Example

In this example configuration, DHCP assigns an IP address to the set-top box or the PC. When a subscriber selects a channel, the set-top box or PC sends an IGMP report to Switch A to join the appropriate multicast. If the IGMP report matches one of the configured IP multicast group addresses, the switch CPU modifies the hardware address table to include this receiver port and VLAN as a forwarding destination of the specified multicast stream when it is received from the multicast VLAN. Uplink ports that send and receive multicast data to and from the multicast VLAN are called MVR source ports.

When a subscriber changes channels or turns off the television, the set-top box sends an IGMP leave message for the multicast stream. The switch CPU sends a MAC-based general query through the receiver port VLAN. If there is another set-top box in the VLAN still subscribing to this group, that set-top box must respond within the maximum response time specified in the query. If the CPU does not receive a response, it eliminates the receiver port as a forwarding destination for this group.

Without Immediate Leave, when the switch receives an IGMP leave message from a subscriber on a receiver port, it sends out an IGMP query on that port and waits for IGMP group membership reports. If no reports
are received in a configured time period, the receiver port is removed from multicast group membership. With Immediate Leave, an IGMP query is not sent from the receiver port on which the IGMP leave was received. As soon as the leave message is received, the receiver port is removed from multicast group membership, which speeds up leave latency. Enable the Immediate-Leave feature only on receiver ports to which a single receiver device is connected.

MVR eliminates the need to duplicate television-channel multicast traffic for subscribers in each VLAN. Multicast traffic for all channels is only sent around the VLAN trunk once—only on the multicast VLAN. The IGMP leave and join messages are in the VLAN to which the subscriber port is assigned. These messages dynamically register for streams of multicast traffic in the multicast VLAN on the Layer 3 device. The access layer switch, Switch A, modifies the forwarding behavior to allow the traffic to be forwarded from the multicast VLAN to the subscriber port in a different VLAN, selectively allowing traffic to cross between two VLANs.

IGMP reports are sent to the same IP multicast group address as the multicast data. The Switch A CPU must capture all IGMP join and leave messages from receiver ports and forward them to the multicast VLAN of the source (uplink) port, based on the MVR mode.

Default MVR Configuration

Table 18: Default MVR Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVR</td>
<td>Disabled globally and per interface</td>
</tr>
<tr>
<td>Multicast addresses</td>
<td>None configured</td>
</tr>
<tr>
<td>Query response time</td>
<td>0.5 second</td>
</tr>
<tr>
<td>Multicast VLAN</td>
<td>VLAN 1</td>
</tr>
<tr>
<td>Mode</td>
<td>Compatible</td>
</tr>
<tr>
<td>Interface (per port) default</td>
<td>Neither a receiver nor a source port</td>
</tr>
<tr>
<td>Immediate Leave</td>
<td>Disabled on all ports</td>
</tr>
</tbody>
</table>

How to Configure MVR

Configuring MVR Global Parameters

You do not need to set the optional MVR parameters if you choose to use the default settings. If you want to change the default parameters (except for the MVR VLAN), you must first enable MVR.
For complete syntax and usage information for the commands used in this section, see the command reference for this release.

SUMMARY STEPS

1. enable
2. configure terminal
3. mvr
4. mvr group ip-address [count]
5. mvr querytime value
6. mvr vlan vlan-id
7. mvr mode {dynamic | compatible}
8. end
9. Use one of the following:
 • show mvr
 • show mvr members
10. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch> enable</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mvr</td>
<td>Enables MVR on the switch.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch (config)# mvr</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>mvr group ip-address [count]</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# mvr group 228.1.23.4</td>
<td></td>
</tr>
<tr>
<td>Purpose:</td>
<td>Configures an IP multicast address on the switch or use the count parameter to configure a contiguous series of MVR group addresses (the range for count is 1 to 256; the default is 1). Any multicast data sent to this address is sent to all source ports on the switch and all receiver ports that have elected to receive data on that multicast address. Each multicast address would correspond to one television channel.</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>mvr querytime value</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# mvr querytime 10</td>
<td></td>
</tr>
<tr>
<td>Purpose:</td>
<td>(Optional) Defines the maximum time to wait for IGMP report memberships on a receiver port before removing the port from multicast group membership. The value is in units of tenths of a second. The range is 1 to 100, and the default is 5 tenths or one-half second.</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>mvr vlan vlan-id</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# mvr vlan 22</td>
<td></td>
</tr>
<tr>
<td>Purpose:</td>
<td>(Optional) Specifies the VLAN in which multicast data is received; all source ports must belong to this VLAN. The VLAN range is 1 to 1001 and 1006 to 4094. The default is VLAN 1.</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>**mvr mode {dynamic</td>
<td>compatible}**</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# mvr mode dynamic</td>
<td></td>
</tr>
<tr>
<td>Purpose:</td>
<td>(Optional) Specifies the MVR mode of operation:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• dynamic—Allows dynamic MVR membership on source ports.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• compatible—Is compatible with Catalyst 3500 XL and Catalyst 2900 XL switches and does not support IGMP dynamic joins on source ports.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The default is compatible mode.</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>end</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# end</td>
<td></td>
</tr>
<tr>
<td>Purpose:</td>
<td>Returns to privileged EXEC mode.</td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td>Use one of the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• show mvr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• show mvr members</td>
<td></td>
</tr>
<tr>
<td>Purpose:</td>
<td>Verifies the configuration.</td>
<td></td>
</tr>
</tbody>
</table>
Configuring MVR

Follow these steps to configure Layer 2 MVR interfaces:

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `mvr`
4. `interface interface-id`
5. `mvr type {source | receiver}`
6. `mvr vlan vlan-id group [ip-address]`
7. `mvr immediate`
8. `end`
9. Use one of the following:
 - `show mvr`
 - `show mvr interface`
 - `show mvr members`
10. `copy running-config startup-config`

Related Topics

Example: Configuring MVR Global Parameters, on page 115
How to Configure MVR

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch> enable</td>
</tr>
<tr>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
</tr>
<tr>
<td>Enters the global configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>mvr</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch (config)# mvr</td>
</tr>
<tr>
<td>Enables MVR on the switch.</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# interface gigabitethernet1/0/2</td>
</tr>
<tr>
<td>Specifies the Layer 2 port to configure, and enter interface configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>mvr type {source</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-if)# mvr type receiver</td>
</tr>
<tr>
<td>Configures an MVR port as one of these:</td>
<td></td>
</tr>
<tr>
<td>• source—Configures uplink ports that receive and send multicast data as source ports. Subscribers cannot be directly connected to source ports. All source ports on a switch belong to the single multicast VLAN.</td>
<td></td>
</tr>
<tr>
<td>• receiver—Configures a port as a receiver port if it is a subscriber port and should only receive multicast data. It does not receive data unless it becomes a member of the multicast group, either statically or by using IGMP leave and join messages. Receiver ports cannot belong to the multicast VLAN.</td>
<td></td>
</tr>
<tr>
<td>The default configuration is as a non-MVR port. If you attempt to configure a non-MVR port with MVR characteristics, the operation fails.</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>To return the interface to its default settings, use the no mvr [type</td>
</tr>
<tr>
<td>Step 6</td>
<td>mvr vlan vlan-id group [ip-address]</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-if)# mvr vlan 22 group</td>
</tr>
<tr>
<td>(Optional) Statically configures a port to receive multicast traffic sent to the multicast VLAN and the IP multicast address. A port statically configured as a member of a group remains a member of the group until statically removed.</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>228.1.23.4</td>
<td>Note: In compatible mode, this command applies to only receiver ports. In dynamic mode, it applies to receiver ports and source ports. Receiver ports can also dynamically join multicast groups by using IGMP join and leave messages.</td>
</tr>
</tbody>
</table>

Step 7

* mvr immediate

Example:

Switch(config-if)# mvr immediate

(Optional) Enables the Immediate-Leave feature of MVR on the port.

Note: This command applies to only receiver ports and should only be enabled on receiver ports to which a single receiver device is connected.

Step 8

* end

Example:

Switch(config)# end

Returns to privileged EXEC mode.

Step 9

Use one of the following:

* show mvr
* show mvr interface
* show mvr members

Example:

Switch# show mvr interface

<table>
<thead>
<tr>
<th>Port</th>
<th>Type</th>
<th>Status</th>
<th>Immediate Leave</th>
</tr>
</thead>
<tbody>
<tr>
<td>-----</td>
<td>------</td>
<td>--------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Gi1/0/2</td>
<td>RECEIVER</td>
<td>ACTIVE/DOWN</td>
<td>ENABLED</td>
</tr>
</tbody>
</table>

Verifies the configuration.

Step 10

* copy running-config startup-config

Example:

Switch# copy running-config startup-config

(Optional) Saves your entries in the configuration file.

Related Topics

Example: Configuring MVR Interfaces, on page 116
Monitoring MVR

You can monitor MVR for the switch or for a specified interface by displaying the following MVR information.

Table 19: Commands for Displaying MVR Information

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show mvr</code></td>
<td>Displays MVR status and values for the switch—whether MVR is enabled or disabled, the multicast VLAN, the maximum (256) and current (0 through 256) number of multicast groups, the query response time, and the MVR mode.</td>
</tr>
</tbody>
</table>
| `show mvr interface [interface-id] [members [vlan vlan-id]]` | Displays all MVR interfaces and their MVR configurations. When a specific interface is entered, displays this information:
 - Type—Receiver or Source
 - Status—One of these states:
 - Active means the port is part of a VLAN.
 - Up/Down means that the port is forwarding or nonforwarding.
 - Inactive means that the port is not part of any VLAN.
 - Immediate Leave—Enabled or Disabled
 If the `members` keyword is entered, displays all multicast group members on this port or, if a VLAN identification is entered, all multicast group members on the VLAN. The VLAN ID range is 1 to 1001 and 1006 to 4094. |
| `show mvr members [ip-address]` | Displays all receiver and source ports that are members of any IP multicast group or the specified IP multicast group IP address. |

Configuration Examples for MVR

Example: Configuring MVR Global Parameters

This example shows how to enable MVR, configure the group address, set the query time to 1 second (10 tenths), specify the MVR multicast VLAN as VLAN 22, and set the MVR mode as dynamic:

```
Switch(config)# mvr
Switch(config)# mvr group 228.1.23.4
```
Switch(config)# mvr querytime 10
Switch(config)# mvr vlan 22
Switch(config)# mvr mode dynamic
Switch(config)# end

Related Topics
Configuring MVR Global Parameters, on page 109

Example: Configuring MVR Interfaces

This example shows how to configure a port as a receiver port, statically configure the port to receive multicast traffic sent to the multicast group address, configure Immediate Leave on the port, and verify the results:

Switch(config)# mvr
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# mvr type receiver
Switch(config-if)# mvr vlan 22 group 228.1.23.4
Switch(config-if)# mvr immediate
Switch(config)# end
Switch# show mvr interface

Port Type Status Immediate Leave
Gi1/0/2 RECEIVER ACTIVE/DOWN ENABLED

Related Topics
Configuring MVR Interfaces, on page 112

Where to Go Next for MVR

You can configure the following:

• IGMP Snooping

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>For complete syntax and usage information for the commands used in this chapter.</td>
<td>Catalyst 2960-X Switch IGMP Snooping Command Reference</td>
</tr>
</tbody>
</table>

Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>All supported MIBs for this release.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/support</td>
</tr>
</tbody>
</table>

Feature History and Information for MVR

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS 15.0(2)EX</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>
 PART III

Interface and Hardware

- Configuring Interface Characteristics, page 121
- Configuring Auto-MDIX, page 151
- Configuring Ethernet Management Port, page 157
- Configuring LLDP, LLDP-MED, and Wired Location Service, page 163
- Configuring System MTU, page 183
- Configuring PoE, page 187
- Configuring EEE, page 205
Configuring Interface Characteristics

• Finding Feature Information, page 121
• Information About Configuring Interface Characteristics, page 121
• How to Configure Interface Characteristics, page 130
• Monitoring Interface Characteristics, page 144
• Configuration Examples for Interface Characteristics, page 145
• Additional References for the Interface Characteristics Feature, page 148
• Feature History and Information for Configuring Interface Characteristics, page 149

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About Configuring Interface Characteristics

Interface Types

This section describes the different types of interfaces supported by the switch. The rest of the chapter describes configuration procedures for physical interface characteristics.

Note

The stack ports on the rear of the stacking-capable switches are not Ethernet ports and cannot be configured.
Port-Based VLANs

A VLAN is a switched network that is logically segmented by function, team, or application, without regard to the physical location of the users. Packets received on a port are forwarded only to ports that belong to the same VLAN as the receiving port. Network devices in different VLANs cannot communicate with one another without a Layer 3 device to route traffic between the VLANs.

VLAN partitions provide hard firewalls for traffic in the VLAN, and each VLAN has its own MAC address table. A VLAN comes into existence when a local port is configured to be associated with the VLAN, when the VLAN Trunking Protocol (VTP) learns of its existence from a neighbor on a trunk, or when a user creates a VLAN. VLANs can be formed with ports across the stack.

To configure VLANs, use the `vlan vlan-id` global configuration command to enter VLAN configuration mode. VLAN configurations for normal-range VLANs (VLAN IDs 1 to 1005) are saved in the VLAN database. If VTP is version 1 or 2, to configure extended-range VLANs (VLAN IDs 1006 to 4094), you must first set VTP mode to transparent. Extended-range VLANs created in transparent mode are not added to the VLAN database but are saved in the switch running configuration. With VTP version 3, you can create extended-range VLANs in client or server mode. These VLANs are saved in the VLAN database.

In a switch stack, the VLAN database is downloaded to all switches in a stack, and all switches in the stack build the same VLAN database. The running configuration and the saved configuration are the same for all switches in a stack.

Add ports to a VLAN by using the `switchport` interface configuration commands:

- Identify the interface.
- For a trunk port, set trunk characteristics, and, if desired, define the VLANs to which it can belong.
- For an access port, set and define the VLAN to which it belongs.

Switch Ports

Switch ports are Layer 2-only interfaces associated with a physical port. Switch ports belong to one or more VLANs. A switch port can be an access port or a trunk port. You can configure a port as an access port or trunk port or let the Dynamic Trunking Protocol (DTP) operate on a per-port basis to set the switchport mode by negotiating with the port on the other end of the link. switch ports are used for managing the physical interface and associated Layer 2 protocols and do not handle routing or bridging.

Configure switch ports by using the `switchport` interface configuration commands.

Access Ports

An access port belongs to and carries the traffic of only one VLAN (unless it is configured as a voice VLAN port). Traffic is received and sent in native formats with no VLAN tagging. Traffic arriving on an access port is assumed to belong to the VLAN assigned to the port. If an access port receives a tagged packet (Inter-Switch Link [ISL] or IEEE 802.1Q tagged), the packet is dropped, and the source address is not learned.

The types of access ports supported are:

- Static access ports are manually assigned to a VLAN (or through a RADIUS server for use with IEEE 802.1x).
- VLAN membership of dynamic access ports is learned through incoming packets. By default, a dynamic access port is not a member of any VLAN, and forwarding to and from the port is enabled only when the VLAN membership of the port is discovered. Dynamic access ports on the switch are assigned to a
VLAN by a VLAN Membership Policy Server (VMPS). The VMPS can be a Catalyst 6500 series switch; the switch cannot be a VMPS server.

You can also configure an access port with an attached Cisco IP Phone to use one VLAN for voice traffic and another VLAN for data traffic from a device attached to the phone.

Trunk Ports

A trunk port carries the traffic of multiple VLANs and by default is a member of all VLANs in the VLAN database.

The switch supports only IEEE 802.1Q trunk ports. An IEEE 802.1Q trunk port supports simultaneous tagged and untagged traffic. An IEEE 802.1Q trunk port is assigned a default port VLAN ID (PVID), and all untagged traffic travels on the port default PVID. All untagged traffic and tagged traffic with a NULL VLAN ID are assumed to belong to the port default PVID. A packet with a VLAN ID equal to the outgoing port default PVID is sent untagged. All other traffic is sent with a VLAN tag.

Although by default, a trunk port is a member of every VLAN known to the VTP, you can limit VLAN membership by configuring an allowed list of VLANs for each trunk port. The list of allowed VLANs does not affect any other port but the associated trunk port. By default, all possible VLANs (VLAN ID 1 to 4094) are in the allowed list. A trunk port can become a member of a VLAN only if VTP knows of the VLAN and if the VLAN is in the enabled state. If VTP learns of a new, enabled VLAN and the VLAN is in the allowed list for a trunk port, the trunk port automatically becomes a member of that VLAN and traffic is forwarded to and from the trunk port for that VLAN. If VTP learns of a new, enabled VLAN that is not in the allowed list for a trunk port, the port does not become a member of the VLAN, and no traffic for the VLAN is forwarded to or from the port.

Switch Virtual Interfaces

A switch virtual interface (SVI) represents a VLAN of switch ports as one interface to the routing or bridging function in the system. You can associate only one SVI with a VLAN. You configure an SVI for a VLAN only to route between VLANs or to provide IP host connectivity to the switch. By default, an SVI is created for the default VLAN (VLAN 1) to permit remote switch administration. Additional SVIs must be explicitly configured.

Note

You cannot delete interface VLAN 1.

SVIs provide IP host connectivity only to the system. SVIs are created the first time that you enter the `vlan` interface configuration command for a VLAN interface. The VLAN corresponds to the VLAN tag associated with data frames on an ISL or IEEE 802.1Q encapsulated trunk or the VLAN ID configured for an access port. Configure a VLAN interface for each VLAN for which you want to route traffic, and assign it an IP address.

Although the switch stack or switch supports a total of 1005 VLANs and SVIs, the interrelationship between the number of SVIs and routed ports and the number of other features being configured might impact CPU performance because of hardware limitations.

When you create an SVI, it does not become active until it is associated with a physical port.

SVI Autostate Exclude

The line state of an SVI with multiple ports on a VLAN is in the *up* state when it meets these conditions:

- The VLAN exists and is active in the VLAN database on the switch
The VLAN interface exists and is not administratively down.

At least one Layer 2 (access or trunk) port exists, has a link in the *up* state on this VLAN, and is in the spanning-tree forwarding state on the VLAN.

Note

The protocol link state for VLAN interfaces come up when the first switchport belonging to the corresponding VLAN link comes up and is in STP forwarding state.

The default action, when a VLAN has multiple ports, is that the SVI goes down when all ports in the VLAN go down. You can use the SVI autostate exclude feature to configure a port so that it is not included in the SVI line-state up-or-down calculation. For example, if the only active port on the VLAN is a monitoring port, you might configure autostate exclude on that port so that the VLAN goes down when all other ports go down. When enabled on a port, **autostate exclude** applies to all VLANs that are enabled on that port.

The VLAN interface is brought up when one Layer 2 port in the VLAN has had time to converge (transition from STP listening-learning state to forwarding state). This prevents features such as routing protocols from using the VLAN interface as if it were fully operational and minimizes other problems, such as routing black holes.

EtherChannel Port Groups

EtherChannel port groups treat multiple switch ports as one switch port. These port groups act as a single logical port for high-bandwidth connections between switches or between switches and servers. An EtherChannel balances the traffic load across the links in the channel. If a link within the EtherChannel fails, traffic previously carried over the failed link changes to the remaining links. You can group multiple trunk ports into one logical trunk port or multiple access ports into one logical access port. Most protocols operate over either single ports or aggregated switch ports and do not recognize the physical ports within the port group. Exceptions are the DTP, the Cisco Discovery Protocol (CDP), and the Port Aggregation Protocol (PAgP), which operate only on physical ports.

When you configure an EtherChannel, you create a port-channel logical interface and assign an interface to the EtherChannel. For Layer 2 interfaces, use the **channel-group** interface configuration command to dynamically create the port-channel logical interface. This command binds the physical and logical ports together.

Power over Ethernet Ports

A PoE-capable switch port automatically supplies power to one of these connected devices if the switch senses that there is no power on the circuit:

- a Cisco pre-standard powered device (such as a Cisco IP Phone or a Cisco Aironet Access Point)
- an IEEE 802.3af-compliant powered device

A powered device can receive redundant power when it is connected to a PoE switch port and to an AC power source. The device does not receive redundant power when it is only connected to the PoE port.

Using the Switch USB Ports

The switch has three USB ports on the front panel — a USB mini-Type B console port and two USB Type A ports.
USB Mini-Type B Console Port

The switch has the following console ports:

- USB mini-Type B console connection
- RJ-45 console port

Console output appears on devices connected to both ports, but console input is active on only one port at a time. By default, the USB connector takes precedence over the RJ-45 connector.

Note

Windows PCs require a driver for the USB port. See the hardware installation guide for driver installation instructions.

Use the supplied USB Type A-to-USB mini-Type B cable to connect a PC or other device to the switch. The connected device must include a terminal emulation application. When the switch detects a valid USB connection to a powered-on device that supports host functionality (such as a PC), input from the RJ-45 console is immediately disabled, and input from the USB console is enabled. Removing the USB connection immediately reenables input from the RJ-45 console connection. An LED on the switch shows which console connection is in use.

Console Port Change Logs

At software startup, a log shows whether the USB or the RJ-45 console is active. Each switch in a stack issues this log. Every switch always first displays the RJ-45 media type.

In the sample output, Switch 1 has a connected USB console cable. Because the bootloader did not change to the USB console, the first log from Switch 1 shows the RJ-45 console. A short time later, the console changes and the USB console log appears. Switch 2 and Switch 3 have connected RJ-45 console cables.

- switch-stack-1
 *Mar 1 00:01:00.171: %USB_CONSOLE-6-MEDIA_RJ45: Console media-type is RJ45.
 *Mar 1 00:01:00.431: %USB_CONSOLE-6-MEDIA_USB: Console media-type is USB.

- switch-stack-2
 *Mar 1 00:01:09.835: %USB_CONSOLE-6-MEDIA_RJ45: Console media-type is RJ45.

- switch-stack-3
 *Mar 1 00:01:10.523: %USB_CONSOLE-6-MEDIA_RJ45: Console media-type is RJ45.

When the USB cable is removed or the PC de-activates the USB connection, the hardware automatically changes to the RJ-45 console interface:

- switch-stack-1
 Mar 1 00:20:48.635: %USB_CONSOLE-6-MEDIA_RJ45: Console media-type is RJ45.

You can configure the console type to always be RJ-45, and you can configure an inactivity timeout for the USB connector.

USB Type A Ports

The USB Type A ports provide access to external USB flash devices, also known as thumb drives or USB keys. The switch supports Cisco 64 MB, 256 MB, 512 MB, 1 GB, 4 GB, and 8 GB flash drives. You can use standard Cisco IOS command-line interface (CLI) commands to read, write, erase, and copy to or from the flash device. You can also configure the switch to boot from the USB flash drive.
For information about configuring the switch to boot from a USB flash drive, refer to the Catalyst 2960-X Switch System Management Configuration Guide.

For information about reading, writing, erasing, and copying files to or from the flash device, refer to the Catalyst 2960-X Switch Managing Cisco IOS Image Files Configuration Guide.

Interface Connections

Devices within a single VLAN can communicate directly through any switch. Ports in different VLANs cannot exchange data without going through a routing device.

In the following configuration example, when Host A in VLAN 20 sends data to Host B in VLAN 30, the data must go from Host A to the switch, to the router, back to the switch, and then to Host B.

Figure 7: Connecting VLANs with the Switch

![Figure 7: Connecting VLANs with the Switch](image)

With a standard Layer 2 switch, ports in different VLANs have to exchange information through a router.

Interface Configuration Mode

The switch supports these interface types:

- Physical ports—switch ports and routed ports
- VLANs—switch virtual interfaces
- Port channels—EtherChannel interfaces

You can also configure a range of interfaces.

To configure a physical interface (port), specify the interface type, module number, and switch port number, and enter interface configuration mode.

- Type—Gigabit Ethernet (gigabitethernet or gi) for 10/100/1000 Mb/s Ethernet ports, or small form-factor pluggable (SFP) module Gigabit Ethernet interfaces (gigabitethernet or gi).
• Stack member number—The number that identifies the switch within the stack. The range is 1 to 8 for a stack of Catalyst 2960-X switches, and 1 to 4 for a mixed stack of Catalyst 2960-X and Catalyst 2960-S switches. The switch number is assigned the first time the switch initializes. The default switch number, before it is integrated into a switch stack, is 1. When a switch has been assigned a stack member number, it keeps that number until another is assigned to it.

You can use the switch port LEDs in Stack mode to identify the stack member number of a switch.

• Module number—The module or slot number on the switch (always 0).

• Port number—The interface number on the switch. The 10/100/1000 port numbers always begin at 1, starting with the far left port when facing the front of the switch, for example, gigabitethernet1/0/1 or gigabitethernet1/0/8. For a switch with 10/100/1000 ports and SFP module ports, SFP module ports are numbered consecutively following the 10/100/1000 ports.

You can identify physical interfaces by physically checking the interface location on the switch. You can also use the show privileged EXEC commands to display information about a specific interface or all the interfaces on the switch. The remainder of this chapter primarily provides physical interface configuration procedures.

These are examples of how to identify interfaces on a stacking-capable switch:

• To configure 10/100/1000 port 4 on a standalone switch, enter this command:

  ```
  Switch(config)# interface gigabitethernet1/0/4
  ```

• To configure 10/100/1000 port 4 on stack member 3, enter this command:

  ```
  Switch(config)# interface gigabitethernet3/0/4
  ```

Default Ethernet Interface Configuration

This table shows the Ethernet interface default configuration, including some features that apply only to Layer 2 interfaces.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating mode</td>
<td>Layer 2 or switching mode (switchport command).</td>
</tr>
<tr>
<td>Allowed VLAN range</td>
<td>VLANs 1–4094.</td>
</tr>
<tr>
<td>Default VLAN (for access ports)</td>
<td>VLAN 1.</td>
</tr>
<tr>
<td>Native VLAN (for IEEE 802.1Q trunks)</td>
<td>VLAN 1.</td>
</tr>
<tr>
<td>802.1p priority-tagged traffic</td>
<td>Drop all packets tagged with VLAN 0.</td>
</tr>
<tr>
<td>VLAN trunking</td>
<td>Switchport mode dynamic auto (supports DTP).</td>
</tr>
<tr>
<td>Port enable state</td>
<td>All ports are enabled.</td>
</tr>
<tr>
<td>Feature</td>
<td>Default Setting</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Port description</td>
<td>None defined.</td>
</tr>
<tr>
<td>Speed</td>
<td>Autonegotiate. (Not supported on the 10-Gigabit interfaces.)</td>
</tr>
<tr>
<td>Duplex mode</td>
<td>Autonegotiate. (Not supported on the 10-Gigabit interfaces.)</td>
</tr>
<tr>
<td>Flow control</td>
<td>Flow control is set to receive: off. It is always off for sent packets.</td>
</tr>
<tr>
<td>EtherChannel (PAgP)</td>
<td>Disabled on all Ethernet ports.</td>
</tr>
<tr>
<td>Port blocking (unknown multicast and unknown unicast traffic)</td>
<td>Disabled (not blocked).</td>
</tr>
<tr>
<td>Broadcast, multicast, and unicast storm control</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Protected port</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Port security</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Port Fast</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Auto-MDIX</td>
<td>Enabled.</td>
</tr>
<tr>
<td>Power over Ethernet (PoE)</td>
<td>Enabled (auto).</td>
</tr>
<tr>
<td>Keepalive messages</td>
<td>Disabled on SFP module ports; enabled on all other ports.</td>
</tr>
</tbody>
</table>

Interface Speed and Duplex Mode

Ethernet interfaces on the switch operate at 10, 100, or 1000 Mb/s and in either full- or half-duplex mode. In full-duplex mode, two stations can send and receive traffic at the same time. Normally, 10-Mb/s ports operate in half-duplex mode, which means that stations can either receive or send traffic.

Switch models include Gigabit Ethernet (10/100/1000-Mb/s) ports and small form-factor pluggable (SFP) module slots supporting SFP modules.

Note The switch might not support a pre-standard powered device—such as Cisco IP phones and access points that do not fully support IEEE 802.3af—if that powered device is connected to the switch through a crossover cable. This is regardless of whether auto-MIDX is enabled on the switch port.
Speed and Duplex Configuration Guidelines

When configuring an interface speed and duplex mode, note these guidelines:

- Gigabit Ethernet (10/100/1000-Mb/s) ports support all speed options and all duplex options (auto, half, and full). However, Gigabit Ethernet ports operating at 1000 Mb/s do not support half-duplex mode.

- For SFP module ports, the speed and duplex CLI options change depending on the SFP module type:
 - The 1000BASE-x (where -x is -BX, -CWDM, -LX, -SX, and -ZX) SFP module ports support the `nonesgotiate` keyword in the `speed` interface configuration command. Duplex options are not supported.
 - The 1000BASE-T SFP module ports support the same speed and duplex options as the 10/100/1000-Mb/s ports.

- If both ends of the line support autonegotiation, we highly recommend the default setting of `auto` negotiation.

- If one interface supports autonegotiation and the other end does not, configure duplex and speed on both interfaces; do not use the `auto` setting on the supported side.

- When STP is enabled and a port is reconfigured, the switch can take up to 30 seconds to check for loops. The port LED is amber while STP reconfigures.

Caution

Changing the interface speed and duplex mode configuration might shut down and re-enable the interface during the reconfiguration.

IEEE 802.3x Flow Control

Flow control enables connected Ethernet ports to control traffic rates during congestion by allowing congested nodes to pause link operation at the other end. If one port experiences congestion and cannot receive any more traffic, it notifies the other port by sending a pause frame to stop sending until the condition clears. Upon receipt of a pause frame, the sending device stops sending any data packets, which prevents any loss of data packets during the congestion period.

Note

The switch ports can receive, but not send, pause frames.

You use the `flowcontrol` interface configuration command to set the interface’s ability to receive pause frames to `on`, `off`, or `desired`. The default state is `off`.

When set to `desired`, an interface can operate with an attached device that is required to send flow-control packets or with an attached device that is not required to but can send flow-control packets.

These rules apply to flow control settings on the device:

- `receive on` (or `desired`): The port cannot send pause frames but can operate with an attached device that is required to or can send pause frames; the port can receive pause frames.
• **receive off**: Flow control does not operate in either direction. In case of congestion, no indication is given to the link partner, and no pause frames are sent or received by either device.

Note For details on the command settings and the resulting flow control resolution on local and remote ports, see the `flowcontrol` interface configuration command in the command reference for this release.

How to Configure Interface Characteristics

Configuring Interfaces

These general instructions apply to all interface configuration processes.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>interface</td>
<td>Identifies the interface type, the switch number (only on stacking-capable switches), and the number of the connector.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# interface gigabitethernet1/0/1 Switch(config-if)#</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Follow each interface command with the interface configuration commands that the interface requires.</td>
<td>Defines the protocols and applications that will run on the interface. The commands are collected and applied to the interface when you enter another interface command or enter end to return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>interface range or interface range macro</td>
<td>(Optional) Configures a range of interfaces.</td>
</tr>
<tr>
<td>Note</td>
<td>Interfaces configured in a range must be the same type and must be configured with the same feature options.</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Step 6 show interfaces</td>
<td>Displays a list of all interfaces on or configured for the switch. A report is provided for each interface that the device supports or for the specified interface.</td>
<td></td>
</tr>
</tbody>
</table>

Adding a Description for an Interface

SUMMARY STEPS

1. enable
2. configure terminal
3. interface interface-id
4. description string
5. end
6. show interfaces interface-id description
7. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface interface-id</td>
<td>Specifies the interface for which you are adding a description, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Example: Switch(config)# interface gigabitethernet1/0/2</td>
<td></td>
</tr>
<tr>
<td>Step 4 description string</td>
<td>Adds a description (up to 240 characters) for an interface.</td>
</tr>
<tr>
<td>Example: Switch(config-if)# description Connects to</td>
<td></td>
</tr>
</tbody>
</table>
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marketing</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td><code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch(config-if)# end</code></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td></td>
</tr>
<tr>
<td><code>show interfaces interface-id description</code></td>
<td>Verifies your entry.</td>
</tr>
<tr>
<td>Step 7</td>
<td></td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch# copy running-config startup-config</code></td>
<td></td>
</tr>
</tbody>
</table>

Configuring a Range of Interfaces

To configure multiple interfaces with the same configuration parameters, use the `interface range` global configuration command. When you enter the interface-range configuration mode, all command parameters that you enter are attributed to all interfaces within that range until you exit this mode.

SUMMARY STEPS

1. enable
2. configure terminal
3. `interface range {port-range | macro macro_name}`
4. `end`
5. `show interfaces [interface-id]`
6. `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch> enable</code></td>
<td></td>
</tr>
</tbody>
</table>
How to Configure Interface Characteristics

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface range {port-range</td>
<td>macro macro_name}</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# interface range macro</td>
<td></td>
</tr>
<tr>
<td>Note Use the normal configuration commands to apply the configuration parameters to all interfaces in the range. Each command is executed as it is entered.</td>
<td></td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# end</td>
<td></td>
</tr>
<tr>
<td>Step 5 show interfaces [interface-id]</td>
<td>Verifies the configuration of the interfaces in the range.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# show interfaces</td>
<td></td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>
Configuring and Using Interface Range Macros

You can create an interface range macro to automatically select a range of interfaces for configuration. Before you can use the macro keyword in the interface range macro global configuration command string, you must use the define interface-range global configuration command to define the macro.

SUMMARY STEPS

1. enable
2. configure terminal
3. define interface-range macro_name interface-range
4. interface range macro macro_name
5. end
6. show running-config | include define
7. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 define interface-range macro_name interface-range</td>
<td>Defines the interface-range macro, and save it in NVRAM.</td>
</tr>
<tr>
<td>Example: Switch(config)# define interface-range enet_list gigabitethernet1/0/1 - 2</td>
<td></td>
</tr>
<tr>
<td>• The macro_name is a 32-character maximum character string.</td>
<td></td>
</tr>
<tr>
<td>• A macro can contain up to five comma-separated interface ranges.</td>
<td></td>
</tr>
<tr>
<td>• Each interface-range must consist of the same port type.</td>
<td></td>
</tr>
<tr>
<td>Note Before you can use the macro keyword in the interface range macro global configuration command string, you must use the define interface-range global configuration command to define the macro.</td>
<td></td>
</tr>
<tr>
<td>Step 4 interface range macro macro_name</td>
<td>Selects the interface range to be configured using the values saved in the interface-range macro called macro_name.</td>
</tr>
<tr>
<td>Example: Switch(config)# interface range macro</td>
<td></td>
</tr>
<tr>
<td>You can now use the normal configuration commands to apply the configuration to all interfaces in the defined macro.</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>enet_list</td>
<td></td>
</tr>
</tbody>
</table>

Step 5

```
end
```

Example:

```
Switch(config)# end
```

Purpose

Returns to privileged EXEC mode.

Step 6

```
show running-config | include define
```

Example:

```
Switch# show running-config | include define
```

Purpose

Shows the defined interface range macro configuration.

Step 7

```
copy running-config startup-config
```

Example:

```
Switch# copy running-config startup-config
```

(Optional) Saves your entries in the configuration file.

Configuring Ethernet Interfaces

Setting the Interface Speed and Duplex Parameters

SUMMARY STEPS

1. enable
2. configure terminal
3. interface interface-id
4. speed {10 | 100 | 1000 | 2500 | 5000 | 10000 | auto [10 | 100 | 1000 | 2500 | 5000 | 10000] | nonegotiate}
5. duplex {auto | full | half}
6. end
7. show interfaces interface-id
8. copy running-config startup-config
9. copy running-config startup-config

Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>enable</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Specifies the physical interface to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>interface interface-id</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# interface gigabitethernet1/0/3</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Enter the appropriate speed parameter for the interface:</td>
</tr>
<tr>
<td>speed {10</td>
<td>100</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config-if)# speed 10</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>This command is not available on a 10-Gigabit Ethernet interface. Enter the duplex parameter for the interface.</td>
</tr>
<tr>
<td>duplex {auto</td>
<td>full</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config-if)# duplex half</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>end</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config-if)# end</td>
<td></td>
</tr>
</tbody>
</table>
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 7 show interfaces interface-id</td>
<td>Displays the interface speed and duplex mode configuration.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# show interfaces gigabitethernet1/0/3</td>
<td></td>
</tr>
</tbody>
</table>

Step 8 copy running-config startup-config	(Optional) Saves your entries in the configuration file.
Example:	
Switch# copy running-config startup-config	

Step 9 copy running-config startup-config	(Optional) Saves your entries in the configuration file.
Example:	
Switch# copy running-config startup-config	

Configuring IEEE 802.3x Flow Control

SUMMARY STEPS

1. configure terminal
2. interface *interface-id*
3. flowcontrol {receive} {on | off | desired}
4. end
5. show interfaces *interface-id*
6. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters global configuration mode</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>
How to Configure Interface Characteristics

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>interface interface-id</code></td>
<td>Specifies the physical interface to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# interface gigabitethernet1/0/1</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>`flowcontrol {receive} {on</td>
<td>off</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config-if)# flowcontrol receive on</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td><code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config-if)# end</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td><code>show interfaces interface-id</code></td>
<td>Verifies the interface flow control settings.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# show interfaces gigabitethernet1/0/1</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td></td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

Configuring SVI Autostate Exclude

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface interface-id`
4. `switchport autostate exclude`
5. `end`
6. `show running config interface interface-id`
7. `copy running-config startup-config`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Switch></code> <code>enable</code></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td><code>interface interface-id</code></td>
<td>Specifies a Layer 2 interface (physical port or port channel), and enter interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Switch(config)# interface gigabitethernet1/0/2</code></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td><code>switchport autostate exclude</code></td>
<td>Excludes the access or trunk port when defining the status of an SVI line state (up or down)</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Switch(config-if)# switchport autostate exclude</code></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td><code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Switch(config-if)# end</code></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td><code>show running config interface interface-id</code></td>
<td>(Optional) Shows the running configuration. Verifies the configuration.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Switch# show running config interface gigabitethernet1/0/2</code></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Switch# copy running-config startup-config</code></td>
<td></td>
</tr>
</tbody>
</table>
Shutting Down and Restarting the Interface

Shutting down an interface disables all functions on the specified interface and marks the interface as unavailable on all monitoring command displays. This information is communicated to other network servers through all dynamic routing protocols. The interface is not mentioned in any routing updates.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface {vlan vlan-id} | {gigabitethernet interface-id} | {port-channel port-channel-number}
4. shutdown
5. no shutdown
6. end
7. show running-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>enable</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Selects the interface to be configured.</td>
</tr>
<tr>
<td>interface {vlan vlan-id}</td>
<td>{gigabitethernet interface-id}</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# interface gigabitethernet1/0/2</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Shuts down an interface.</td>
</tr>
<tr>
<td>shutdown</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config-if)# shutdown</td>
<td></td>
</tr>
</tbody>
</table>
How to Configure Interface Characteristics

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>no shutdown</code></td>
<td>Restarts an interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Switch(config-if)# no shutdown</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 6</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Switch(config-if)# end</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 7</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>show running-config</code></td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Switch# show running-config</code></td>
<td></td>
</tr>
</tbody>
</table>

Configuring the Console Media Type

Follow these steps to set the console media type to RJ-45. If you configure the console as RJ-45, USB console operation is disabled, and input comes only through the RJ-45 connector.

This configuration applies to all switches in a stack.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `line console 0`
4. `media-type rj45`
5. `end`
6. `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Switch> enable</code></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3 line console 0</td>
<td>Configures the console and enters line configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switch(config)# line console 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4 media-type rj45</td>
<td>Configures the console media type to be only RJ-45 port. If you do not enter this command and both types are connected, the USB port is used by default.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switch(config-line)# media-type rj45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Returns to privileged EXEC mode.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switch(config)# end</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switch# copy running-config startup-config</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuring the USB Inactivity Timeout

The configurable inactivity timeout reactivates the RJ-45 console port if the USB console port is activated but no input activity occurs on it for a specified time period. When the USB console port is deactivated due to a timeout, you can restore its operation by disconnecting and reconnecting the USB cable.

Note

The configured inactivity timeout applies to all switches in a stack. However, a timeout on one switch does not cause a timeout on other switches in the stack.
SUMMARY STEPS

1. enable
2. configure terminal
3. line console 0
4. usb-inactivity-timeout *timeout-minutes*
5. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch> enable</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>line console 0</td>
<td>Configures the console and enters line configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config)# line console 0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>usb-inactivity-timeout timeout-minutes</td>
<td>Specify an inactivity timeout for the console port. The range is 1 to 240 minutes. The default is to have no timeout configured.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config-line)# usb-inactivity-timeout 30</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>
Monitoring Interface Characteristics

Monitoring Interface Status

Commands entered at the privileged EXEC prompt display information about the interface, including the versions of the software and the hardware, the configuration, and statistics about the interfaces.

Table 21: Show Commands for Interfaces

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show interfaces interface-id status [err-disabled]</code></td>
<td>Displays interface status or a list of interfaces in the error-disabled state.</td>
</tr>
<tr>
<td><code>show interfaces [interface-id] switchport</code></td>
<td>Displays administrative and operational status of switching (nonrouting) ports. You can use this command to find out if a port is in routing or in switching mode.</td>
</tr>
<tr>
<td><code>show interfaces [interface-id] description</code></td>
<td>Displays the description configured on an interface or all interfaces and the interface status.</td>
</tr>
<tr>
<td><code>show ip interface [interface-id]</code></td>
<td>Displays the usability status of all interfaces configured for IP routing or the specified interface.</td>
</tr>
<tr>
<td><code>show interface [interface-id] stats</code></td>
<td>Displays the input and output packets by the switching path for the interface.</td>
</tr>
<tr>
<td><code>show interfaces interface-id</code></td>
<td>(Optional) Displays speed and duplex on the interface.</td>
</tr>
<tr>
<td><code>show interfaces transceiver dom-supported-list</code></td>
<td>(Optional) Displays Digital Optical Monitoring (DOM) status on the connect SFP modules.</td>
</tr>
<tr>
<td><code>show interfaces transceiver properties</code></td>
<td>(Optional) Displays temperature, voltage, or amount of current on the interface.</td>
</tr>
<tr>
<td>`show interfaces [interface-id] [[transceiver properties</td>
<td>detail]] module number`</td>
</tr>
<tr>
<td><code>show running-config interface [interface-id]</code></td>
<td>Displays the running configuration in RAM for the interface.</td>
</tr>
<tr>
<td><code>show version</code></td>
<td>Displays the hardware configuration, software version, the names and sources of configuration files, and the boot images.</td>
</tr>
<tr>
<td><code>show controllers ethernet-controller interface-id phy</code></td>
<td>Displays the operational state of the auto-MDIX feature on the interface.</td>
</tr>
</tbody>
</table>
Clearing and Resetting Interfaces and Counters

Table 22: Clear Commands for Interfaces

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>clear counters [interface-id]</code></td>
<td>Clears interface counters.</td>
</tr>
<tr>
<td><code>clear interface interface-id</code></td>
<td>Resets the hardware logic on an interface.</td>
</tr>
<tr>
<td>`clear line [number</td>
<td>console 0</td>
</tr>
</tbody>
</table>

Note: The `clear counters` privileged EXEC command does not clear counters retrieved by using Simple Network Management Protocol (SNMP), but only those seen with the `show interface` privileged EXEC command.

Configuration Examples for Interface Characteristics

Adding a Description to an Interface: Example

Switch# `configure terminal`
Enter configuration commands, one per line. End with CNTRL/Z.
Switch(config)#` interface gigabitethernet1/0/2`
Switch(config-if)# `description Connects to Marketing`
Switch(config-if)# `end`
Switch# `show interfaces gigabitethernet1/0/2 description`

Configuring a Range of Interfaces: Examples

This example shows how to use the `interface range` global configuration command to set the speed to 100 Mb/s on ports 1 to 4 on switch 1:

Switch# `configure terminal`
Switch(config)# `interface range gigabitethernet1/0/1 - 4`
Switch(config-if-range)# `speed 100`

This example shows how to use a comma to add different interface type strings to the range to enable Gigabit Ethernet ports 1 to 3 and 10-Gigabit Ethernet ports 1 and 2 to receive flow-control pause frames:

Switch# `configure terminal`
Switch(config)# `interface range gigabitethernet1/0/1 - 3 , tengigabitethernet1/0/1 - 2`
Switch(config-if-range)# flowcontrol receive on

If you enter multiple configuration commands while you are in interface-range mode, each command is executed as it is entered. The commands are not batched and executed after you exit interface-range mode. If you exit interface-range configuration mode while the commands are being executed, some commands might not be executed on all interfaces in the range. Wait until the command prompt reappears before exiting interface-range configuration mode.

Configuring and Using Interface Range Macros: Examples

This example shows how to define an interface-range named `enet_list` to include ports 1 and 2 on switch 1 and to verify the macro configuration:

```
Switch# configure terminal
Switch(config)# define interface-range enet_list gigabitethernet1/0/1 - 2
Switch(config)# end
Switch# show running-config | include define
define interface-range enet_list GigabitEthernet1/0/1 - 2
```

This example shows how to create a multiple-interface macro named `macro1`:

```
Switch# configure terminal
Switch(config)# define interface-range macro1 gigabitethernet1/0/1 - 2, gigabitethernet1/0/5 - 7, tengigabitethernet1/0/1 -2
Switch(config)# end
```

This example shows how to enter interface-range configuration mode for the interface-range macro `enet_list`:

```
Switch# configure terminal
Switch(config)# interface range macro enet_list
Switch(config-if-range)#
```

This example shows how to delete the interface-range macro `enet_list` and to verify that it was deleted.

```
Switch# configure terminal
Switch(config)# no define interface-range enet_list
Switch(config)# end
Switch# show run | include define
Switch#
```

Setting Interface Speed and Duplex Mode: Example

This example shows how to set the interface speed to 100 Mb/s and the duplex mode to half on a 10/100/1000 Mb/s port:

```
Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/3
Switch(config-if)# speed 10
Switch(config-if)# duplex half
```

This example shows how to set the interface speed to 100 Mb/s on a 10/100/1000 Mb/s port:

```
Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# speed 100
```
Configuring the Console Media Type: Example

This example disables the USB console media type and enables the RJ-45 console media type.

Switch# configure terminal
Switch(config)# line console 0
Switch(config-line)# media-type rj45

This configuration terminates any active USB console media type in the stack. A log shows that this termination has occurred. This example shows that the console on switch 1 reverted to RJ-45.

*Mar 1 00:25:36.860: %USB_CONSOLE-6-CONFIG_DISABLE: Console media-type USB disabled by system configuration, media-type reverted to RJ45.

At this point no switches in the stack allow a USB console to have input. A log entry shows when a console cable is attached. If a USB console cable is connected to switch 2, it is prevented from providing input.

*Mar 1 00:34:27.498: %USB_CONSOLE-6-CONFIG_DISALLOW: Console media-type USB is disallowed by system configuration, media-type remains RJ45. (switch-stk-2)

This example reverses the previous configuration and immediately activates any USB console that is connected.

Switch# configure terminal
Switch(config)# line console 0
Switch(config-line)# no media-type rj45

Configuring the USB Inactivity Timeout: Example

This example configures the inactivity timeout to 30 minutes:

Switch# configure terminal
Switch(config)# line console 0
Switch(config-line)# usb-inactivity-timeout 30

To disable the configuration, use these commands:

Switch# configure terminal
Switch(config)# line console 0
Switch(config-line)# no usb-inactivity-timeout

If there is no (input) activity on a USB console port for the configured number of minutes, the inactivity timeout setting applies to the RJ-45 port, and a log shows this occurrence:

*Mar 1 00:47:25.625: %USB_CONSOLE-6-INACTIVITY_DISABLE: Console media-type USB disabled due to inactivity, media-type reverted to RJ45.

At this point, the only way to reactivate the USB console port is to disconnect and reconnect the cable. When the USB cable on the switch has been disconnected and reconnected, a log similar to this appears:

*Mar 1 00:48:28.640: %USB_CONSOLE-6-MEDIA_USB: Console media-type is USB.
Additional References for the Interface Characteristics Feature

Error Message Decoder

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>To help you research and resolve system error messages in this release, use the Error Message Decoder tool.</td>
<td>https://www.cisco.com/cgi-bin/Support/Errordecoder/index.cgi</td>
</tr>
</tbody>
</table>

Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>--</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>All supported MIBs for this release.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL:</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/support</td>
</tr>
</tbody>
</table>
Feature History and Information for Configuring Interface Characteristics

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS 15.0(2)EX</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>
Configuring Auto-MDIX

• Prerequisites for Auto-MDIX, page 151
• Restrictions for Auto-MDIX, page 151
• Information about Configuring Auto-MDIX, page 151
• How to Configure Auto-MDIX, page 152
• Example for Configuring Auto-MDIX, page 153
• Additional References, page 154
• Feature History and Information for Auto-MDIX, page 154

Prerequisites for Auto-MDIX

Automatic medium-dependent interface crossover (auto-MDIX) is enabled by default. Auto-MDIX is supported on all 10/100/1000-Mb/s and on 10/100/1000BASE-TX small form-factor pluggable (SFP)-module interfaces. It is not supported on 1000BASE-SX or -LX SFP module interfaces.

Restrictions for Auto-MDIX

The switch might not support a pre-standard powered device—such as Cisco IP phones and access points that do not fully support IEEE 802.3af—if that powered device is connected to the switch through a crossover cable. This is regardless of whether auto-MIDX is enabled on the switch port.

Information about Configuring Auto-MDIX

Auto-MDIX on an Interface

When automatic medium-dependent interface crossover (auto-MDIX) is enabled on an interface, the interface automatically detects the required cable connection type (straight through or crossover) and configures the connection appropriately. When connecting switches without the auto-MDIX feature, you must use straight-through cables to connect to devices such as servers, workstations, or routers and crossover cables...
to connect to other switches or repeaters. With auto-MDIX enabled, you can use either type of cable to connect to other devices, and the interface automatically corrects for any incorrect cabling. For more information about cabling requirements, see the hardware installation guide.

This table shows the link states that result from auto-MDIX settings and correct and incorrect cabling.

Table 23: Link Conditions and Auto-MDIX Settings

<table>
<thead>
<tr>
<th>Local Side Auto-MDIX</th>
<th>Remote Side Auto-MDIX</th>
<th>With Correct Cabling</th>
<th>With Incorrect Cabling</th>
</tr>
</thead>
<tbody>
<tr>
<td>On</td>
<td>On</td>
<td>Link up</td>
<td>Link up</td>
</tr>
<tr>
<td>On</td>
<td>Off</td>
<td>Link up</td>
<td>Link up</td>
</tr>
<tr>
<td>Off</td>
<td>On</td>
<td>Link up</td>
<td>Link up</td>
</tr>
<tr>
<td>Off</td>
<td>Off</td>
<td>Link up</td>
<td>Link down</td>
</tr>
</tbody>
</table>

How to Configure Auto-MDIX

Configuring Auto-MDIX on an Interface

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface interface-id`
4. `speed auto`
5. `duplex auto`
6. `end`
7. `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td><code>Switch> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enters global configuration mode</td>
</tr>
<tr>
<td></td>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>interface interface-id</td>
<td>Specifies the physical interface to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch(config)# interface gigabitethernet1/0/1</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>speed auto</td>
<td>Configures the interface to autonegotiate speed with the connected device.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch(config-if)# speed auto</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>duplex auto</td>
<td>Configures the interface to autonegotiate duplex mode with the connected device.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch(config-if)# duplex auto</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch(config-if)# end</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

Example for Configuring Auto-MDIX

This example shows how to enable auto-MDIX on a port:

```
Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# speed auto
Switch(config-if)# duplex auto
Switch(config-if)# mdix auto
Switch(config-if)# end
```
Additional References

Error Message Decoder

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>To help you research and resolve system error messages in this release, use the Error Message Decoder tool.</td>
<td>https://www.cisco.com/cgi-bin/Support/Errordecoder/index.cgi</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>All supported MIBs for this release.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/support</td>
</tr>
</tbody>
</table>

Feature History and Information for Auto-MDIX

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS 15.0(2)EX</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>
Configuring Ethernet Management Port

- Finding Feature Information, page 157
- Prerequisites for Ethernet Management Ports, page 157
- Information about the Ethernet Management Port, page 157
- How to Configure the Ethernet Management Port, page 159
- Additional References, page 160
- Feature Information for Ethernet Management Ports, page 161

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Ethernet Management Ports

When connecting a PC to the Ethernet management port, you must first assign an IP address.

Information about the Ethernet Management Port

The Ethernet management port, also referred to as the Fa0 or fastethernet0 port, is a Layer 3 host port to which you can connect a PC. You can use the Ethernet management port instead of the switch console port for network management. When managing a switch stack, connect the PC to the Ethernet management port on a stack member.
Ethernet Management Port Direct Connection to a Switch

This figure displays how to connect the Ethernet management port to the PC for a switch or a standalone switch.

Figure 8: Connecting a Switch to a PC

Ethernet Management Port Connection to Stack Switches using a Hub

In a stack with only stack switches, all the Ethernet management ports on the stack members are connected to a hub to which the PC is connected. The active link is from the Ethernet management port on the stack master through the hub, to the PC. If the active switch fails and a new active switch is elected, the active link is now from the Ethernet management port on the new active switch to the PC.

This figure displays how a PC uses a hub to connect to a switch stack.

Figure 9: Connecting a Switch Stack to a PC

Supported Features on the Ethernet Management Port

The Ethernet management port supports these features:

- Express Setup (only in switch stacks)
- Network Assistant
- Telnet with passwords
- TFTP
- Secure Shell (SSH)
- DHCP-based autoconfiguration
- SMNP (only the ENTITY-MIB and the IF-MIB)
- IP ping
- Interface features
 - Speed—10 Mb/s, 100 Mb/s, and autonegotiation
 - Duplex mode—Full, half, and autonegotiation
 - Loopback detection
- Cisco Discovery Protocol (CDP)
- DHCP relay agent
- IPv4 access control lists (ACLs)

⚠️ Caution: Before enabling a feature on the Ethernet management port, make sure that the feature is supported. If you try to configure an unsupported feature on the Ethernet Management port, the feature might not work properly, and the switch might fail.

How to Configure the Ethernet Management Port

Disabling and Enabling the Ethernet Management Port

SUMMARY STEPS

1. configure terminal
2. interface fastethernet0
3. shutdown
4. no shutdown
5. exit
6. show interfaces fastethernet0

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>

Example:

Switch# configure terminal
Purpose

Command or Action

Step 2

`interface fastethernet0`

Example:

```
Switch(config)# interface fastethernet0
```

Specifies the Ethernet management port in the CLI.

Step 3

`shutdown`

Example:

```
Switch(config-if)# shutdown
```

Disables the Ethernet management port.

Step 4

`no shutdown`

Example:

```
Switch(config-if)# no shutdown
```

Enables the Ethernet management port.

Step 5

`exit`

Example:

```
Switch(config-if)# exit
```

Exits interface configuration mode.

Step 6

`show interfaces fastethernet0`

Example:

```
Switch# show interfaces fastethernet0
```

Displays the link status.

To find out the link status to the PC, you can monitor the LED for the Ethernet management port. The LED is green (on) when the link is active, and the LED is off when the link is down. The LED is amber when there is a POST failure.

What to Do Next

Proceed to manage or configure your switch using the Ethernet management port. Refer to the *Catalyst 2960-X Switch Network Management Configuration Guide*.

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bootloader configuration</td>
<td>Catalyst 2960-X Switch System Management Configuration Guide</td>
</tr>
<tr>
<td>Bootloader commands</td>
<td>Catalyst 2960-X Switch System Management Configuration Guide</td>
</tr>
</tbody>
</table>
Error Message Decoder

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>To help you research and resolve system error messages in this release, use the Error Message Decoder tool.</td>
<td>https://www.cisco.com/cgi-bin/Support/Errordecoder/index.cgi</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>All supported MIBs for this release.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/support</td>
</tr>
</tbody>
</table>

Feature Information for Ethernet Management Ports

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS 15.0(2)EX</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>
Configuring LLDP, LLDP-MED, and Wired Location Service

• Finding Feature Information, page 163
• LLDP, LLDP-MED, and Wired Location Service Overview, page 163
• How to Configure LLDP, LLDP-MED, and Wired Location Service, page 168
• Configuration Examples for LLDP, LLDP-MED, and Wired Location Service, page 180
• Monitoring and Maintaining LLDP, LLDP-MED, and Wired Location Service, page 180
• Additional References for LLDP, LLDP-MED, and Wired Location Service, page 181
• Feature Information for LLDP, LLDP-MED, and Wired Location Service, page 182

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

LLDP, LLDP-MED, and Wired Location Service Overview

LLDP

The Cisco Discovery Protocol (CDP) is a device discovery protocol that runs over Layer 2 (the data link layer) on all Cisco-manufactured devices (routers, bridges, access servers, switches, and controllers). CDP allows network management applications to automatically discover and learn about other Cisco devices connected to the network.
To support non-Cisco devices and to allow for interoperability between other devices, the switch supports the IEEE 802.1AB Link Layer Discovery Protocol (LLDP). LLDP is a neighbor discovery protocol that is used for network devices to advertise information about themselves to other devices on the network. This protocol runs over the data-link layer, which allows two systems running different network layer protocols to learn about each other.

LLDP Supported TLVs

LLDP supports a set of attributes that it uses to discover neighbor devices. These attributes contain type, length, and value descriptions and are referred to as TLVs. LLDP supported devices can use TLVs to receive and send information to their neighbors. This protocol can advertise details such as configuration information, device capabilities, and device identity.

The switch supports these basic management TLVs. These are mandatory LLDP TLVs.

- Port description TLV
- System name TLV
- System description TLV
- System capabilities TLV
- Management address TLV

These organizationally specific LLDP TLVs are also advertised to support LLDP-MED.

- Port VLAN ID TLV (IEEE 802.1 organizationally specific TLVs)
- MAC/PHY configuration/status TLV (IEEE 802.3 organizationally specific TLVs)

LLDP and Cisco Switch Stacks

A switch stack appears as a single switch in the network. Therefore, LLDP discovers the switch stack, not the individual stack members.

LLDP and Cisco Medianet

LLDP-MED

LLDP for Media Endpoint Devices (LLDP-MED) is an extension to LLDP that operates between endpoint devices such as IP phones and network devices such as switches. It specifically provides support for voice over IP (VoIP) applications and provides additional TLVs for capabilities discovery, network policy, Power over Ethernet, inventory management and location information. By default, all LLDP-MED TLVs are enabled.

LLDP-MED Supported TLVs

LLDP-MED supports these TLVs:
• LLDP-MED capabilities TLV
 Allows LLDP-MED endpoints to determine the capabilities that the connected device supports and has enabled.

• Network policy TLV
 Allows both network connectivity devices and endpoints to advertise VLAN configurations and associated Layer 2 and Layer 3 attributes for the specific application on that port. For example, the switch can notify a phone of the VLAN number that it should use. The phone can connect to any switch, obtain its VLAN number, and then start communicating with the call control.

 By defining a network-policy profile TLV, you can create a profile for voice and voice-signaling by specifying the values for VLAN, class of service (CoS), differentiated services code point (DSCP), and tagging mode. These profile attributes are then maintained centrally on the switch and propagated to the phone.

• Power management TLV
 Enables advanced power management between LLDP-MED endpoint and network connectivity devices. Allows switches and phones to convey power information, such as how the device is powered, power priority, and how much power the device needs.

 LLDP-MED also supports an extended power TLV to advertise fine-grained power requirements, end-point power priority, and end-point and network connectivity-device power status. LLDP is enabled and power is applied to a port, the power TLV determines the actual power requirement of the endpoint device so that the system power budget can be adjusted accordingly. The switch processes the requests and either grants or denies power based on the current power budget. If the request is granted, the switch updates the power budget. If the request is denied, the switch turns off power to the port, generates a syslog message, and updates the power budget. If LLDP-MED is disabled or if the endpoint does not support the LLDP-MED power TLV, the initial allocation value is used throughout the duration of the connection.

 You can change power settings by entering the power inline {auto [max max-wattage] | never | static [max max-wattage]} interface configuration command. By default the PoE interface is in auto mode; if no value is specified, the maximum is allowed (30 W).

• Inventory management TLV
 Allows an endpoint to send detailed inventory information about itself to the switch, including information hardware revision, firmware version, software version, serial number, manufacturer name, model name, and asset ID TLV.

• Location TLV
 Provides location information from the switch to the endpoint device. The location TLV can send this information:

 • Civic location information
 Provides the civic address information and postal information. Examples of civic location information are street address, road name, and postal community name information.

 • ELIN location information
 Provides the location information of a caller. The location is determined by the Emergency location identifier number (ELIN), which is a phone number that routes an emergency call to the local public safety answering point (PSAP) and which the PSAP can use to call back the emergency caller.
Wired Location Service

The switch uses the location service feature to send location and attachment tracking information for its connected devices to a Cisco Mobility Services Engine (MSE). The tracked device can be a wireless endpoint, a wired endpoint, or a wired switch or controller. The switch notifies the MSE of device link up and link down events through the Network Mobility Services Protocol (NMSP) location and attachment notifications.

The MSE starts the NMSP connection to the switch, which opens a server port. When the MSE connects to the switch there are a set of message exchanges to establish version compatibility and service exchange information followed by location information synchronization. After connection, the switch periodically sends location and attachment notifications to the MSE. Any link up or link down events detected during an interval are aggregated and sent at the end of the interval.

When the switch determines the presence or absence of a device on a link-up or link-down event, it obtains the client-specific information such as the MAC address, IP address, and username. If the client is LLDP-MED- or CDP-capable, the switch obtains the serial number and UDI through the LLDP-MED location TLV or CDP.

Depending on the device capabilities, the switch obtains this client information at link up:

- Slot and port specified in port connection
- MAC address specified in the client MAC address
- IP address specified in port connection
- 802.1X username if applicable
- Device category is specified as a wired station
- State is specified as new
- Serial number, UDI
- Model number
- Time in seconds since the switch detected the association

Depending on the device capabilities, the switch obtains this client information at link down:

- Slot and port that was disconnected
- MAC address
- IP address
- 802.1X username if applicable
- Device category is specified as a wired station
- State is specified as delete
- Serial number, UDI
- Time in seconds since the switch detected the disassociation

When the switch shuts down, it sends an attachment notification with the state delete and the IP address before closing the NMSP connection to the MSE. The MSE interprets this notification as disassociation for all the wired clients associated with the switch.
If you change a location address on the switch, the switch sends an NMSP location notification message that identifies the affected ports and the changed address information.

Default LLDP Configuration

Table 24: Default LLDP Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLDP global state</td>
<td>Disabled</td>
</tr>
<tr>
<td>LLDP holdtime (before discarding)</td>
<td>120 seconds</td>
</tr>
<tr>
<td>LLDP timer (packet update frequency)</td>
<td>30 seconds</td>
</tr>
<tr>
<td>LLDP reinitialization delay</td>
<td>2 seconds</td>
</tr>
<tr>
<td>LLDP tlv-select</td>
<td>Disabled to send and receive all TLVs</td>
</tr>
<tr>
<td>LLDP interface state</td>
<td>Disabled</td>
</tr>
<tr>
<td>LLDP receive</td>
<td>Disabled</td>
</tr>
<tr>
<td>LLDP transmit</td>
<td>Disabled</td>
</tr>
<tr>
<td>LLDP med-tlv-select</td>
<td>Disabled to send all LLDP-MED TLVs. When LLDP is globally enabled, LLDP-MED-TLV is also enabled.</td>
</tr>
</tbody>
</table>

Restrictions for LLDP

- If the interface is configured as a tunnel port, LLDP is automatically disabled.
- If you first configure a network-policy profile on an interface, you cannot apply the `switchport voice vlan` command on the interface. If the `switchport voice vlan vlan-id` is already configured on an interface, you can apply a network-policy profile on the interface. This way the interface has the voice or voice-signaling VLAN network-policy profile applied on the interface.
- You cannot configure static secure MAC addresses on an interface that has a network-policy profile.
How to Configure LLDP, LLDP-MED, and Wired Location Service

Enabling LLDP

SUMMARY STEPS

1. enable
2. configure terminal
3. lldp run
4. interface interface-id
5. lldp transmit
6. lldp receive
7. end
8. show lldp
9. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch> enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>lldp run</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch (config)# lldp run</td>
</tr>
<tr>
<td>Step 4</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch (config)# interface gigabitethernet2/0/1</td>
</tr>
</tbody>
</table>
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
<td>lldp transmit</td>
</tr>
<tr>
<td>Example:</td>
<td>Enables the interface to send LLDP packets.</td>
</tr>
<tr>
<td><code>lldp transmit</code></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>lldp receive</td>
</tr>
<tr>
<td>Example:</td>
<td>Enables the interface to receive LLDP packets.</td>
</tr>
<tr>
<td><code>lldp receive</code></td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>end</td>
</tr>
<tr>
<td>Example:</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>end</code></td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>show lldp</td>
</tr>
<tr>
<td>Example:</td>
<td>Verifies the configuration.</td>
</tr>
<tr>
<td><code>show lldp</code></td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td>Example:</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td></td>
</tr>
</tbody>
</table>

Configuring LLDP Characteristics

You can configure the frequency of LLDP updates, the amount of time to hold the information before discarding it, and the initialization delay time. You can also select the LLDP and LLDP-MED TLVs to send and receive.

Note

Steps 2 through 5 are optional and can be performed in any order.
SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `lldp holdtime seconds`
4. `lldp reinit delay`
5. `lldp timer rate`
6. `lldp tlv-select`
7. `interface interface-id`
8. `lldp med-tlv-select`
9. `end`
10. `show lldp`
11. `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable
Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch> enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal
Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>lldp holdtime seconds
(Optional) Specifies the amount of time a receiving device should hold the information from your device before discarding it.
The range is 0 to 65535 seconds; the default is 120 seconds.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# lldp holdtime 120</td>
</tr>
<tr>
<td>Step 4</td>
<td>lldp reinit delay
(Optional) Specifies the delay time in seconds for LLDP to initialize on an interface.
The range is 2 to 5 seconds; the default is 2 seconds.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# lldp reinit 2</td>
</tr>
<tr>
<td>Step 5</td>
<td>lldp timer rate
(Optional) Sets the sending frequency of LLDP updates in seconds.
The range is 5 to 65534 seconds; the default is 30 seconds.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# lldp timer 30</td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>6</td>
<td><code>lldp tlv-select</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Switch(config)# tlv-select</code></td>
</tr>
<tr>
<td>7</td>
<td><code>interface interface-id</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Switch (config)# interface gigabitethernet2/0/1</code></td>
</tr>
<tr>
<td>8</td>
<td><code>lldp med-tlv-select</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Switch (config-if)# lldp med-tlv-select inventory management</code></td>
</tr>
<tr>
<td>9</td>
<td><code>end</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Switch (config-if)# end</code></td>
</tr>
<tr>
<td>10</td>
<td><code>show lldp</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Switch# show lldp</code></td>
</tr>
<tr>
<td>11</td>
<td><code>copy running-config startup-config</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Switch# copy running-config startup-config</code></td>
</tr>
</tbody>
</table>

Configuring LLDP-MED TLVs

By default, the switch only sends LLDP packets until it receives LLDP-MED packets from the end device. It then sends LLDP packets with MED TLVs, as well. When the LLDP-MED entry has been aged out, it again only sends LLDP packets.

By using the `lldp` interface configuration command, you can configure the interface not to send the TLVs listed in the following table.
Table 25: LLDP-MED TLVs

<table>
<thead>
<tr>
<th>LLDP-MED TLV</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>inventory-management</td>
<td>LLDP-MED inventory management TLV</td>
</tr>
<tr>
<td>location</td>
<td>LLDP-MED location TLV</td>
</tr>
<tr>
<td>network-policy</td>
<td>LLDP-MED network policy TLV</td>
</tr>
<tr>
<td>power-management</td>
<td>LLDP-MED power management TLV</td>
</tr>
</tbody>
</table>

Follow these steps to enable a TLV on an interface:

SUMMARY STEPS

1. enable
2. configure terminal
3. interface interface-id
4. lldp med-tlv-select
5. end
6. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>interface interface-id</td>
<td>Specifies the interface on which you are enabling LLDP, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch (config)# interface gigabitethernet2/0/1</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Network-Policy TLV

SUMMARY STEPS

1. enable
2. configure terminal
3. network-policy profile profile number
4. \{voice | voice-signaling\} vlan \[vlan-id \{cos cvalue | dscp dvalue\} | \[dot1p \{cos cvalue | dscp dvalue\}\] | none | untagged\]
5. exit
6. interface interface-id
7. network-policy profile number
8. lldp med-tlv-select network-policy
9. end
10. show network-policy profile
11. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:
Switch> enable</td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>

Step 2

configure terminal

Example:

```
Switch# configure terminal
```

Step 3

network-policy profile profile number

Example:

```
Switch(config)# network-policy profile 1
```

Step 4

```
   {voice | voice-signaling} vlan [vlan-id {cos cvalue | dscp dvalue}] | [dot1p {cos cvalue | dscp dvalue}] | none | untagged]
```

Example:

```
Switch(config-network-policy)# voice vlan 100 cos 4
```

Configures the policy attributes:

- **voice**—Specifies the voice application type.
- **voice-signaling**—Specifies the voice-signaling application type.
- **vlan**—Specifies the native VLAN for voice traffic.
- **vlan-id**—(Optional) Specifies the VLAN for voice traffic. The range is 1 to 4094.
- **cos cvalue**—(Optional) Specifies the Layer 2 priority class of service (CoS) for the configured VLAN. The range is 0 to 7; the default is 5.
- **dscp dvalue**—(Optional) Specifies the differentiated services code point (DSCP) value for the configured VLAN. The range is 0 to 63; the default is 46.
- **dot1p**—(Optional) Configures the telephone to use IEEE 802.1p priority tagging and use VLAN 0 (the native VLAN).
- **none**—(Optional) Do not instruct the IP telephone about the voice VLAN. The telephone uses the configuration from the telephone key pad.
- **untagged**—(Optional) Configures the telephone to send untagged voice traffic. This is the default for the telephone.
- **untagged**—(Optional) Configures the telephone to send untagged voice traffic. This is the default for the telephone.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# exit</td>
</tr>
<tr>
<td>Purpose</td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# interface gigabitethernet2/0/1</td>
</tr>
<tr>
<td>Purpose</td>
<td>Specifies the interface on which you are configuring a network-policy profile, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 7</td>
<td>network-policy profile number</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-if)# network-policy 1</td>
</tr>
<tr>
<td>Purpose</td>
<td>Specifies the network-policy profile number.</td>
</tr>
<tr>
<td>Step 8</td>
<td>lldp-med-tlv-select network-policy</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-if)# lldp med-tlv-select network-policy</td>
</tr>
<tr>
<td>Purpose</td>
<td>Specifies the network-policy TLV.</td>
</tr>
<tr>
<td>Step 9</td>
<td>end</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# end</td>
</tr>
<tr>
<td>Purpose</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 10</td>
<td>show network-policy profile</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# show network-policy profile</td>
</tr>
<tr>
<td>Purpose</td>
<td>Verifies the configuration.</td>
</tr>
<tr>
<td>Step 11</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# copy running-config startup-config</td>
</tr>
<tr>
<td>(Optional) Saves your entries in the configuration file.</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Location TLV and Wired Location Service

Beginning in privileged EXEC mode, follow these steps to configure location information for an endpoint and to apply it to an interface.

SUMMARY STEPS

1. configure terminal
2. location {admin-tag string | civic-location identifier {id | host} | elin-location string identifier id | custom-location identifier {id | host} | geo-location identifier {id | host}}
3. exit
4. interface interface-id
5. location {additional-location-information word | civic-location-id {id | host} | elin-location-id id | custom-location-id {id | host} | geo-location-id {id | host}}
6. end
7. Use one of the following:
 - show location admin-tag string
 - show location civic-location identifier id
 - show location elin-location identifier id
8. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>location {admin-tag string</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# location civic-location identifier 1</td>
</tr>
</tbody>
</table>

Specifies the location information for an endpoint.

- **admin-tag**— Specifies an administrative tag or site information.
- **civic-location**— Specifies civic location information.
- **elin-location**— Specifies emergency location information (ELIN).
- **custom-location**— Specifies custom location information.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Switch(config-civic)# number 3550</code></td>
<td>• geo-location—Specifies geo-spatial location information.</td>
</tr>
<tr>
<td><code>Switch(config-civic)# primary-road-name "Cisco Way"</code></td>
<td></td>
</tr>
<tr>
<td><code>Switch(config-civic)# city "San Jose"</code></td>
<td>• identifier id—Specifies the ID for the civic, ELIN, custom, or geo location.</td>
</tr>
<tr>
<td><code>Switch(config-civic)# state CA</code></td>
<td></td>
</tr>
<tr>
<td><code>Switch(config-civic)# building 19</code></td>
<td>• host—Specifies the host civic, custom, or geo location.</td>
</tr>
<tr>
<td><code>Switch(config-civic)# room C6</code></td>
<td>• string—Specifies the site or location information in alphanumeric format.</td>
</tr>
<tr>
<td><code>Switch(config-civic)# county "Santa Clara"</code></td>
<td></td>
</tr>
<tr>
<td><code>Switch(config-civic)# country US</code></td>
<td></td>
</tr>
</tbody>
</table>

Step 3

exit

Example:

`Switch(config-civic)# exit`

Returns to global configuration mode.

Step 4

interface *interface-id*

Example:

`Switch(config)# interface gigabitethernet2/0/1`

Specifies the interface on which you are configuring the location information, and enter interface configuration mode.

Step 5

location [additional-location-information *word* | civic-location-id { id | host } | elin-location-id *id* | custom-location-id { id | host } | geo-location-id { id | host }]

Example:

`Switch(config-if)# location elin-location-id 1`

Enters location information for an interface:

• **additional-location-information**—Specifies additional information for a location or place.

• **civic-location-id**—Specifies global civic location information for an interface.

• **elin-location-id**—Specifies emergency location information for an interface.

• **custom-location-id**—Specifies custom location information for an interface.

• **geo-location-id**—Specifies geo-spatial location information for an interface.

• **host**—Specifies the host location identifier.

• **word**—Specifies a word or phrase with additional location information.

• **id**—Specifies the ID for the civic, ELIN, custom, or geo location. The ID range is 1 to 4095.

Step 6

dend

Example:

`Switch(config-if)# end`

Returns to privileged EXEC mode.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 7</td>
<td>Use one of the following:</td>
</tr>
<tr>
<td></td>
<td>• <code>show location admin-tag string</code></td>
</tr>
<tr>
<td></td>
<td>• <code>show location civic-location identifier id</code></td>
</tr>
<tr>
<td></td>
<td>• <code>show location elin-location identifier id</code></td>
</tr>
<tr>
<td></td>
<td>Verifies the configuration.</td>
</tr>
</tbody>
</table>

Example:

```
Switch# show location admin-tag
or
Switch# show location civic-location identifier
or
Switch# show location elin-location identifier
```

<table>
<thead>
<tr>
<th>Step 8</th>
<th><code>copy running-config startup-config</code></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Example:

```
Switch# copy running-config startup-config
```

Enabling Wired Location Service on the Switch

Before You Begin

For wired location to function, you must first enter the `ip device tracking` global configuration command.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `nmisp notification interval {attachment | location} interval-seconds`
4. `end`
5. `show network-policy profile`
6. `copy running-config startup-config`
Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch></code> <code>enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Specifies the NMSP notification interval.</td>
</tr>
<tr>
<td>`nmmsp notification interval {attachment</td>
<td>location} interval-seconds`</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch(config)# nmssp notification interval location 10</code></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>end</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch(config)# end</code></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>Verifies the configuration.</td>
</tr>
<tr>
<td><code>show network-policy profile</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch# show network-policy profile</code></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch# copy running-config startup-config</code></td>
<td></td>
</tr>
</tbody>
</table>
Configuration Examples for LLDP, LLDP-MED, and Wired Location Service

Configuring Network-Policy TLV: Examples

This example shows how to configure VLAN 100 for voice application with CoS and to enable the network-policy profile and network-policy TLV on an interface:

Switch# configure terminal
Switch(config)# network-policy 1
Switch(config-network-policy)# voice vlan 100 cos 4
Switch(config-network-policy)# exit
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# network-policy profile 1
Switch(config-if)# lldp med-tlv-select network-policy

This example shows how to configure the voice application type for the native VLAN with priority tagging:

Switch(config-network-policy)# voice vlan dot1p cos 4
Switch(config-network-policy)# voice vlan dot1p dscp 34

Monitoring and Maintaining LLDP, LLDP-MED, and Wired Location Service

Commands for monitoring and maintaining LLDP, LLDP-MED, and wired location service.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear lldp counters</td>
<td>Resets the traffic counters to zero.</td>
</tr>
<tr>
<td>clear lldp table</td>
<td>Deletes the LLDP neighbor information table.</td>
</tr>
<tr>
<td>clear nmsp statistics</td>
<td>Clears the NMSP statistic counters.</td>
</tr>
<tr>
<td>show lldp</td>
<td>Displays global information, such as frequency of transmissions, the holdtime for packets being sent, and the delay time before LLDP initializes on an interface.</td>
</tr>
<tr>
<td>show lldp entry entry-name</td>
<td>Displays information about a specific neighbor. You can enter an asterisk (*) to display all neighbors, or you can enter the neighbor name.</td>
</tr>
<tr>
<td>show lldp interface [interface-id]</td>
<td>Displays information about interfaces with LLDP enabled. You can limit the display to a specific interface.</td>
</tr>
</tbody>
</table>
Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show lldp neighbors <code>[interface-id] [detail]</code></td>
<td>Displays information about neighbors, including device type, interface type and number, holdtime settings, capabilities, and port ID. You can limit the display to neighbors of a specific interface or expand the display for more detailed information.</td>
</tr>
<tr>
<td>show lldp traffic</td>
<td>Displays LLDP counters, including the number of packets sent and received, number of packets discarded, and number of unrecognized TLVs.</td>
</tr>
<tr>
<td>show location admin-tag <code>string</code></td>
<td>Displays the location information for the specified administrative tag or site.</td>
</tr>
<tr>
<td>show location civic-location identifier <code>id</code></td>
<td>Displays the location information for a specific global civic location.</td>
</tr>
<tr>
<td>show location clin-location identifier <code>id</code></td>
<td>Displays the location information for an emergency location</td>
</tr>
<tr>
<td>show network-policy profile</td>
<td>Displays the configured network-policy profiles.</td>
</tr>
<tr>
<td>show nmsp</td>
<td>Displays the NMSP information</td>
</tr>
</tbody>
</table>

Additional References for LLDP, LLDP-MED, and Wired Location Service

Error Message Decoder

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>To help you research and resolve system error messages in this release, use the Error Message Decoder tool.</td>
<td>https://www.cisco.com/cgi-bin/Support/Errordecoder/index.cgi</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>All supported MIBs for this release.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including</td>
<td>http://www.cisco.com/support</td>
</tr>
<tr>
<td>documentation and tools for troubleshooting and resolving technical issues</td>
<td></td>
</tr>
<tr>
<td>with Cisco products and technologies.</td>
<td></td>
</tr>
<tr>
<td>To receive security and technical information about your products, you</td>
<td></td>
</tr>
<tr>
<td>can subscribe to various services, such as the Product Alert Tool (accessed</td>
<td></td>
</tr>
<tr>
<td>from Field Notices), the Cisco Technical Services Newsletter, and Really</td>
<td></td>
</tr>
<tr>
<td>Simple Syndication (RSS) Feeds.</td>
<td></td>
</tr>
<tr>
<td>Access to most tools on the Cisco Support website requires a Cisco.com user</td>
<td></td>
</tr>
<tr>
<td>ID and password.</td>
<td></td>
</tr>
</tbody>
</table>

Feature Information for LLDP, LLDP-MED, and Wired Location Service

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS 15.0(2)EX</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>
Configuring System MTU

- Finding Feature Information, page 183
- Information about the MTU, page 183
- How to Configure MTU Sizes, page 184
- Configuration Examples for System MTU, page 185
- Additional References for System MTU, page 186
- Feature Information for System MTU, page 186

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information about the MTU

The default maximum transmission unit (MTU) size for frames received and transmitted on all interfaces is 1500 bytes. You can increase the MTU size for all interfaces operating at 10 or 100 Mb/s by using the system mtu global configuration command. You can increase the MTU size to support jumbo frames on all Gigabit Ethernet interfaces by using the system mtu jumbo global configuration command.

Note

The switch supports jumbo frames at CPU.
System MTU Guidelines

When configuring the system MTU values, follow these guidelines:

- The default maximum transmission unit (MTU) size for frames received and transmitted on all interfaces is 1500 bytes. You can increase the MTU size for all interfaces operating at 10 or 100 Mb/s by using the `system mtu` global configuration command. You can increase the MTU size to support jumbo frames on all Gigabit Ethernet interfaces by using the `system mtu jumbo` global configuration command.

- Gigabit Ethernet ports are not affected by the `system mtu` command; 10/100 ports are not affected by the `system mtu jumbo` command. If you do not configure the `system mtu jumbo` command, the setting of the `system mtu` command applies to all Gigabit Ethernet interfaces.

How to Configure MTU Sizes

Configuring the System MTU

Beginning in privileged EXEC mode, follow these steps to change the MTU size for all 10/100 or Gigabit Ethernet interfaces:

SUMMARY STEPS

1. `configure terminal`
2. `system mtu` `bytes`
3. `system mtu jumbo` `bytes`
4. `end`
5. `copy running-config startup-config`
6. `reload`
7. `show system mtu`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>system mtu</code> <code>bytes</code></td>
<td>(Optional) Change the MTU size for all interfaces on the switch stack that are operating at 10 or 100 Mb/s. The range is 1500 to 1998 bytes; the default is 1500 bytes.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch(config)# system mtu 2500</code></td>
<td></td>
</tr>
</tbody>
</table>
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td>(Optional) Changes the MTU size for all Gigabit Ethernet interfaces on the switch or the switch stack. The range is 1500 to 9198 bytes; the default is 1500 bytes.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# system mtu jumbo 7500</td>
</tr>
</tbody>
</table>

Example:

Switch(config)# system mtu jumbo 7500

Step 3

The range is 1500 to 9198 bytes; the default is 1500 bytes.

Step 4

Returns to privileged EXEC mode.

Example:

Switch(config)# end

Step 4

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
<td>Saves your entries in the configuration file.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# system mtu jumbo 7500</td>
</tr>
</tbody>
</table>

Example:

Switch(config)# end

Step 5

Step 6

Reloads the operating system.

Example:

Switch(config)# system mtu jumbo 7500

Step 6

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 7</td>
<td>Verifies your settings.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# system mtu</td>
</tr>
</tbody>
</table>

Step 7

Configuration Examples for System MTU

This example shows how to set the maximum packet size for a Gigabit Ethernet port to 7500 bytes:

Switch(config)# system mtu 1900
Switch(config)# system mtu jumbo 7500
Switch(config)# exit

If you enter a value that is outside the allowed range for the specific type of interface, the value is not accepted. This example shows the response when you try to set Gigabit Ethernet interfaces to an out-of-range number:

Switch(config)# system mtu jumbo 25000

% Invalid input detected at '^' marker.

This is an example of output from the `show system mtu` command:

Switch# show system mtu
Global Ethernet MTU is 1500 bytes.
Additional References for System MTU

Error Message Decoder

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>To help you research and resolve system error messages in this release, use the Error Message Decoder tool.</td>
<td>https://www.cisco.com/cgi-bin/Support/Errordecoder/index.cgi</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>All supported MIBs for this release.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/support</td>
</tr>
</tbody>
</table>

Feature Information for System MTU

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS 15.0(2)EX</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>
CHAPTER 10

Configuring PoE

- Finding Feature Information, page 187
- Restrictions for PoE, page 187
- Information about PoE, page 188
- How to Configure PoE, page 193
- Monitoring Power Status, page 202
- Configuration Examples for Configuring PoE, page 202
- Additional References, page 203

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Restrictions for PoE

This feature is supported only on the LAN Base image.
Information about PoE

Power over Ethernet Ports

A PoE-capable switch port automatically supplies power to one of these connected devices if the switch senses that there is no power on the circuit:

- a Cisco pre-standard powered device (such as a Cisco IP Phone or a Cisco Aironet Access Point)
- an IEEE 802.3af-compliant powered device

A powered device can receive redundant power when it is connected to a PoE switch port and to an AC power source. The device does not receive redundant power when it is only connected to the PoE port.

Supported Protocols and Standards

The switch uses these protocols and standards to support PoE:

- CDP with power consumption—The powered device notifies the switch of the amount of power it is consuming. The switch does not reply to the power-consumption messages. The switch can only supply power to or remove power from the PoE port.
- Cisco intelligent power management—The powered device and the switch negotiate through power-negotiation CDP messages for an agreed-upon power-consumption level. The negotiation allows a high-power Cisco powered device, which consumes more than 7 W, to operate at its highest power mode. The powered device first boots up in low-power mode, consumes less than 7 W, and negotiates to obtain enough power to operate in high-power mode. The device changes to high-power mode only when it receives confirmation from the switch.

High-power devices can operate in low-power mode on switches that do not support power-negotiation CDP.

Cisco intelligent power management is backward-compatible with CDP with power consumption; the switch responds according to the CDP message that it receives. CDP is not supported on third-party powered devices; therefore, the switch uses the IEEE classification to determine the power usage of the device.

- IEEE 802.3af—The major features of this standard are powered-device discovery, power administration, disconnect detection, and optional powered-device power classification. For more information, see the standard.

Powered-Device Detection and Initial Power Allocation

The switch detects a Cisco pre-standard or an IEEE-compliant powered device when the PoE-capable port is in the no-shutdown state, PoE is enabled (the default), and the connected device is not being powered by an AC adaptor.

After device detection, the switch determines the device power requirements based on its type:

- The initial power allocation is the maximum amount of power that a powered device requires. The switch initially allocates this amount of power when it detects and powers the powered device. As the switch
receives CDP messages from the powered device and as the powered device negotiates power levels with the switch through CDP power-negotiation messages, the initial power allocation might be adjusted.

- The switch classifies the detected IEEE device within a power consumption class. Based on the available power in the power budget, the switch determines if a port can be powered. Table 26: IEEE Power Classifications, on page 189 lists these levels.

Table 26: IEEE Power Classifications

<table>
<thead>
<tr>
<th>Class</th>
<th>Maximum Power Level Required from the Switch</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (class status unknown)</td>
<td>15.4 W</td>
</tr>
<tr>
<td>1</td>
<td>4 W</td>
</tr>
<tr>
<td>2</td>
<td>7 W</td>
</tr>
<tr>
<td>3</td>
<td>15.4 W</td>
</tr>
<tr>
<td>4</td>
<td>30 W (For IEEE 802.3at Type 2 powered devices)</td>
</tr>
</tbody>
</table>

The switch monitors and tracks requests for power and grants power only when it is available. The switch tracks its power budget (the amount of power available on the switch for PoE). The switch performs power-accounting calculations when a port is granted or denied power to keep the power budget up to date. After power is applied to the port, the switch uses CDP to determine the CDP-specific power consumption requirement of the connected Cisco powered devices, which is the amount of power to allocate based on the CDP messages. The switch adjusts the power budget accordingly. This does not apply to third-party PoE devices. The switch processes a request and either grants or denies power. If the request is granted, the switch updates the power budget. If the request is denied, the switch ensures that power to the port is turned off, generates a syslog message, and updates the LEDs. Powered devices can also negotiate with the switch for more power.

With PoE+, powered devices use IEEE 802.3at and LLDP power with media dependent interface (MDI) type, length, and value descriptions (TLVs), Power-via-MDI TLVs, for negotiating power up to 30 W. Cisco pre-standard devices and Cisco IEEE powered devices can use CDP or the IEEE 802.3at power-via-MDI power negotiation mechanism to request power levels up to 30 W.

Note: The initial allocation for Class 0, Class 3, and Class 4 powered devices is 15.4 W. When a device starts up and uses CDP or LLDP to send a request for more than 15.4 W, it can be allocated up to the maximum of 30 W.

Note: The CDP-specific power consumption requirement is referred to as the actual power consumption requirement in the software configuration guides and command references.

If the switch detects a fault caused by an undervoltage, overvoltage, overtemperature, oscillator-fault, or short-circuit condition, it turns off power to the port, generates a syslog message, and updates the power budget and LEDs.
The PoE feature operates the same whether or not the switch is a stack member. The power budget is per switch and independent of any other switch in the stack. Election of a new active switch does not affect PoE operation. The active switch keeps track of the PoE status for all switches and ports in the stack and includes the status in output displays.

Power Management Modes

The switch supports these PoE modes:

- **auto**—The switch automatically detects if the connected device requires power. If the switch discovers a powered device connected to the port and if the switch has enough power, it grants power, updates the power budget, turns on power to the port on a first-come, first-served basis, and updates the LEDs. For LED information, see the hardware installation guide.

 If the switch has enough power for all the powered devices, they all come up. If enough power is available for all powered devices connected to the switch, power is turned on to all devices. If there is not enough available PoE, or if a device is disconnected and reconnected while other devices are waiting for power, it cannot be determined which devices are granted or are denied power.

 If granting power would exceed the system power budget, the switch denies power, ensures that power to the port is turned off, generates a syslog message, and updates the LEDs. After power has been denied, the switch periodically rechecks the power budget and continues to attempt to grant the request for power.

 If a device being powered by the switch is then connected to wall power, the switch might continue to power the device. The switch might continue to report that it is still powering the device whether the device is being powered by the switch or receiving power from an AC power source.

 If a powered device is removed, the switch automatically detects the disconnect and removes power from the port. You can connect a nonpowered device without damaging it.

 You can specify the maximum wattage that is allowed on the port. If the IEEE class maximum wattage of the powered device is greater than the configured maximum value, the switch does not provide power to the port. If the switch powers a powered device, but the powered device later requests through CDP messages more than the configured maximum value, the switch removes power to the port. The power that was allocated to the powered device is reclaimed into the global power budget. If you do not specify a wattage, the switch delivers the maximum value. Use the **auto** setting on any PoE port. The auto mode is the default setting.

- **static**—The switch pre-allocates power to the port (even when no powered device is connected) and guarantees that power will be available for the port. The switch allocates the port configured maximum wattage, and the amount is never adjusted through the IEEE class or by CDP messages from the powered device. Because power is pre-allocated, any powered device that uses less than or equal to the maximum wattage is guaranteed to be powered when it is connected to the static port. The port no longer participates in the first-come, first-served model.

 However, if the powered-device IEEE class is greater than the maximum wattage, the switch does not supply power to it. If the switch learns through CDP messages that the powered device is consuming more than the maximum wattage, the switch shuts down the powered device.

 If you do not specify a wattage, the switch pre-allocates the maximum value. The switch powers the port only if it discovers a powered device. Use the **static** setting on a high-priority interface.

- **never**—The switch disables powered-device detection and never powers the PoE port even if an unpowered device is connected. Use this mode only when you want to make sure that power is never applied to a PoE-capable port, making the port a data-only port.
For most situations, the default configuration (auto mode) works well, providing plug-and-play operation. No further configuration is required. However, perform this task to configure a PoE port for a higher priority, to make it data only, or to specify a maximum wattage to disallow high-power powered devices on a port.

Power Monitoring and Power Policing

When policing of the real-time power consumption is enabled, the switch takes action when a powered device consumes more power than the maximum amount allocated, also referred to as the **cutoff-power value**.

When PoE is enabled, the switch senses the real-time power consumption of the powered device. The switch monitors the real-time power consumption of the connected powered device; this is called **power monitoring** or **power sensing**. The switch also polices the power usage with the **power policing** feature.

Power monitoring is backward-compatible with Cisco intelligent power management and CDP-based power consumption. It works with these features to ensure that the PoE port can supply power to the powered device.

The switch senses the real-time power consumption of the connected device as follows:

1. The switch monitors the real-time power consumption on individual ports.
2. The switch records the power consumption, including peak power usage. The switch reports the information through the CISCO-POWER-ETHERNET-EXT-MIB.
3. If power policing is enabled, the switch polices power usage by comparing the real-time power consumption to the maximum power allocated to the device. The maximum power consumption is also referred to as the **cutoff power** on a PoE port.

 If the device uses more than the maximum power allocation on the port, the switch can either turn off power to the port, or the switch can generate a syslog message and update the LEDs (the port LED is now blinking amber) while still providing power to the device based on the switch configuration. By default, power-usage policing is disabled on all PoE ports.

 If error recovery from the PoE error-disabled state is enabled, the switch automatically takes the PoE port out of the error-disabled state after the specified amount of time.

 If error recovery is disabled, you can manually re-enable the PoE port by using the `shutdown` and `no shutdown` interface configuration commands.

4. If policing is disabled, no action occurs when the powered device consumes more than the maximum power allocation on the PoE port, which could adversely affect the switch.

Maximum Power Allocation (Cutoff Power) on a PoE Port

When power policing is enabled, the switch determines one of these values as the cutoff power on the PoE port in this order:

1. Manually when you set the user-defined power level that the switch budgets for the port by using the `power inline consumption default wattage` global or interface configuration command.
2. Manually when you set the user-defined power level that limits the power allowed on the port by using the `power inline auto max max-wattage` or the `power inline static max max-wattage` interface configuration command.
3. Automatically when the switch sets the power usage of the device by using CDP power negotiation or by the IEEE classification and LLDP power negotiation.

Use the first or second method in the previous list to manually configure the cutoff-power value by entering the `power inline consumption default wattage` or the `power inline [auto | static max] max-wattage` command.
If you do not manually configure the cutoff-power value, the switch automatically determines it by using CDP power negotiation or the device IEEE classification and LLDP power negotiation. If CDP or LLDP are not enabled, the default value of 30 W is applied. However without CDP or LLDP, the switch does not allow devices to consume more than 15.4 W of power because values from 15400 to 30000 mW are only allocated based on CDP or LLDP requests. If a powered device consumes more than 15.4 W without CDP or LLDP negotiation, the device might be in violation of the maximum current \(I_{\text{max}} \) limitation and might experience an \(I_{\text{cut}} \) fault for drawing more current than the maximum. The port remains in the fault state for a time before attempting to power on again. If the port continuously draws more than 15.4 W, the cycle repeats.

Note

When a powered device connected to a PoE+ port restarts and sends a CDP or LLDP packet with a power TLV, the switch locks to the power-negotiation protocol of that first packet and does not respond to power requests from the other protocol. For example, if the switch is locked to CDP, it does not provide power to devices that send LLDP requests. If CDP is disabled after the switch has locked on it, the switch does not respond to LLDP power requests and can no longer power on any accessories. In this case, you should restart the powered device.

Power Consumption Values

You can configure the initial power allocation and the maximum power allocation on a port. However, these values are only the configured values that determine when the switch should turn on or turn off power on the PoE port. The maximum power allocation is not the same as the actual power consumption of the powered device. The actual cutoff power value that the switch uses for power policing is not equal to the configured power value.

When power policing is enabled, the switch polices the power usage *at the switch port*, which is greater than the power consumption of the device. When you are manually set the maximum power allocation, you must consider the power loss over the cable from the switch port to the powered device. The cutoff power is the sum of the rated power consumption of the powered device and the worst-case power loss over the cable.

We recommend that you enable power policing when PoE is enabled on your switch. For example, if policing is disabled and you set the cutoff-power value by using the `power inline auto max 6300` interface configuration command, the configured maximum power allocation on the PoE port is 6.3 W (6300 mW). The switch provides power to the connected devices on the port if the device needs up to 6.3 W. If the CDP-power negotiated value or the IEEE classification value exceeds the configured cutoff value, the switch does not provide power to the connected device. After the switch turns on power on the PoE port, the switch does not police the real-time power consumption of the device, and the device can consume more power than the maximum allocated amount, which could adversely affect the switch and the devices connected to the other PoE ports.

Because the switch supports internal power supplies and the Cisco Redundant Power System 2300 (also referred to as the RPS 2300), the total amount of power available for the powered devices varies depending on the power supply configuration.
How to Configure PoE

Configuring a Power Management Mode on a PoE Port

When you make PoE configuration changes, the port being configured drops power. Depending on the new configuration, the state of the other PoE ports, and the state of the power budget, the port might not be powered up again. For example, port 1 is in the auto and on state, and you configure it for static mode. The switch removes power from port 1, detects the powered device, and repowers the port. If port 1 is in the auto and on state and you configure it with a maximum wattage of 10 W, the switch removes power from the port and then redetects the powered device. The switch repowers the port only if the powered device is a class 1, class 2, or a Cisco-only powered device.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface interface-id
4. power inline {auto [max max-wattage] | never | static [max max-wattage]}
5. end
6. show power inline [interface-id | module switch-number]
7. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch> enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>Specifies the physical port to be configured, and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# interface gigabitethernet2/0/1</td>
</tr>
<tr>
<td>Step 4</td>
<td>Configures the PoE mode on the port. The keywords have these meanings:</td>
</tr>
<tr>
<td>Example:</td>
<td>power inline {auto [max max-wattage]</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Example: Switch(config-if)# power inline auto</td>
<td>- auto—Enables powered-device detection. If enough power is available, automatically allocates power to the PoE port after device detection. This is the default setting.</td>
</tr>
<tr>
<td></td>
<td>- max max-wattage—Limits the power allowed on the port. If no value is specified, the maximum is allowed.</td>
</tr>
<tr>
<td></td>
<td>- max max-wattage—Limits the power allowed on the port. The range is 4000 to 30000 mW. If no value is specified, the maximum is allowed.</td>
</tr>
<tr>
<td></td>
<td>- never—Disables device detection, and disable power to the port.</td>
</tr>
<tr>
<td>Note If a port has a Cisco powered device connected to it, do not use the power inline never command to configure the port. A false link-up can occur, placing the port into the error-disabled state.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- static—Enables powered-device detection. Pre-allocate (reserve) power for a port before the switch discovers the powered device. The switch reserves power for this port even when no device is connected and guarantees that power will be provided upon device detection.</td>
</tr>
<tr>
<td></td>
<td>The switch allocates power to a port configured in static mode before it allocates power to a port configured in auto mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>end Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Switch(config-if)# end</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>show power inline [interface-id</td>
</tr>
<tr>
<td>Example: Switch# show power inline</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config (Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td>Example: Switch# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

Fast POE

Fast PoE - This feature remembers the last power drawn from a particular PSE port and switches on power the moment AC power is plugged in (within 15 to 20 seconds of switching on power) without waiting for IOS to boot up. When **poe-ha** is enabled on a particular port, the switch on a recovery after power failure, provides power to the connected endpoint devices within short duration before even the IOS forwarding starts up.
This feature can be configured by the command `poe-ha`. If the user replaces the power device connected to a port when the switch is powered off, then this new device will get the power which the previous device was drawing.

Configuring Fast POE

To configure Fast POE, perform the following steps:

- **Note** You will need to configure the `poe-ha` command before connecting the PD, or you will need to manually shut/unshut the port after configuring `poe-ha`.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface interface-id`
4. `power inline port poe-ha`
5. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch> enable</td>
<td></td>
</tr>
</tbody>
</table>

Step 2 configure terminal	Enters global configuration mode.
Example:	
Switch# configure terminal	

Step 3 interface interface-id	Specifies the physical port to be configured, and enters interface configuration mode.
Example:	
Switch(config)# interface gigabitethernet2/0/1	

<p>| Step 4 power inline port poe-ha | Configures POE High Availability. |
| Example: | |
| Switch(config-if)# power inline port poe-ha | |</p>
<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Example:
```
Switch(config-if)# end
```

Budgeting Power for Devices Connected to a PoE Port

When Cisco powered devices are connected to PoE ports, the switch uses Cisco Discovery Protocol (CDP) to determine the **CDP-specific** power consumption of the devices, and the switch adjusts the power budget accordingly. This does not apply to IEEE third-party powered devices. For these devices, when the switch grants a power request, the switch adjusts the power budget according to the powered-device IEEE classification. If the powered device is a class 0 (class status unknown) or a class 3, the switch budgets 15,400 mW for the device, regardless of the CDP-specific amount of power needed. If the powered device reports a higher class than its CDP-specific consumption or does not support power classification (defaults to class 0), the switch can power fewer devices because it uses the IEEE class information to track the global power budget.

By using the `power inline consumption wattage` interface configuration command or the `power inline consumption default wattage` global configuration command, you can override the default power requirement specified by the IEEE classification. The difference between what is mandated by the IEEE classification and what is actually needed by the device is reclaimed into the global power budget for use by additional devices. You can then extend the switch power budget and use it more effectively.

Caution

You should carefully plan your switch power budget, enable the power monitoring feature, and make certain not to oversubscribe the power supply.

Note

When you manually configure the power budget, you must also consider the power loss over the cable between the switch and the powered device.
Budgeting Power to All PoE ports

SUMMARY STEPS

1. enable
2. configure terminal
3. no cdp run
4. power inline consumption default wattage
5. end
6. show power inline consumption default
7. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 no cdp run</td>
<td>(Optional) Disables CDP.</td>
</tr>
<tr>
<td>Example: Switch(config)# no cdp run</td>
<td></td>
</tr>
<tr>
<td>Step 4 power inline consumption default wattage</td>
<td>Configures the power consumption of powered devices connected to each PoE port. The range for each device is 4000 to 30000 mW (PoE+). The default is 30000 mW.</td>
</tr>
<tr>
<td>Example: Switch(config)# power inline consumption default 5000</td>
<td></td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Switch(config)# end</td>
<td></td>
</tr>
<tr>
<td>Step 6 show power inline consumption default</td>
<td>Displays the power consumption status.</td>
</tr>
<tr>
<td>Example: Switch# show power inline consumption default</td>
<td></td>
</tr>
</tbody>
</table>
How to Configure PoE

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 7
copy running-config startup-config | (Optional) Saves your entries in the configuration file. |
| Example:
Switch# copy running-config startup-config | |

Budgeting Power to a Specific PoE Port

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `no cdp run`
4. `interface interface-id`
5. `power inline consumption wattage`
6. `end`
7. `show power inline consumption`
8. `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1
enable | Enables privileged EXEC mode. Enter your password if prompted. |
| Example:
Switch> enable | |
| Step 2
configure terminal | Enters global configuration mode. |
| Example:
Switch# configure terminal | |
| Step 3
no cdp run | (Optional) Disables CDP. |
| Example:
Switch(config)# no cdp run | |
How to Configure PoE

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4 interface interface-id</td>
<td>Specifies the physical port to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# interface gigabitethernet2/0/1</td>
<td></td>
</tr>
<tr>
<td>Step 5 power inline consumption wattage</td>
<td>Configures the power consumption of a powered device connected to a PoE port on the switch.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config-if)# power inline consumption 5000</td>
<td>The range for each device is 4000 to 30000 mW (PoE+). The default is 30000 mW (PoE+).</td>
</tr>
<tr>
<td>Step 6 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config-if)# end</td>
<td></td>
</tr>
<tr>
<td>Step 7 show power inline consumption</td>
<td>Displays the power consumption data.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# show power inline consumption</td>
<td></td>
</tr>
<tr>
<td>Step 8 copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

Configuring Power Policing

By default, the switch monitors the real-time power consumption of connected powered devices. You can configure the switch to police the power usage. By default, policing is disabled.
SUMMARY STEPS

1. enable
2. configure terminal
3. interface interface-id
4. power inline police [action {log | errdisable}]
5. exit
6. Use one of the following:
 • errdisable detect cause inline-power
 • errdisable recovery cause inline-power
 • errdisable recovery interval interval
7. exit
8. Use one of the following:
 • show power inline police
 • show errdisable recovery
9. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface interface-id</td>
<td>Specifies the physical port to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Example: Switch(config)# interface gigabitethernet2/0/1</td>
<td></td>
</tr>
<tr>
<td>Step 4 power inline police [action {log</td>
<td>errdisable}]</td>
</tr>
<tr>
<td>Example: Switch(config-if)# power inline police</td>
<td></td>
</tr>
<tr>
<td>• power inline police—Shuts down the PoE port, turns off power to it, and puts it in the error-disabled state.</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>errdisable detect cause inline-power</td>
<td>You can enable error detection for the PoE error-disabled cause by using the <code>errdisable detect cause inline-power</code> global configuration command. You can also enable the timer to recover from the PoE error-disabled state by using the <code>errdisable recovery cause inline-power interval</code> global configuration command.</td>
</tr>
</tbody>
</table>
| errdisable recovery cause inline-power | **Note**
* power inline police action errdisable—Turns off power to the port if the real-time power consumption exceeds the maximum power allocation on the port.
* power inline police action log—Generates a syslog message while still providing power to the port.
If you do not enter the action log keywords, the default action shuts down the port and puts the port in the error-disabled state. |

Step 5

exit
Returns to global configuration mode.
Example:
```
Switch(config-if)# exit
```

Step 6

Use one of the following:
- errdisable detect cause inline-power
- errdisable recovery cause inline-power
- errdisable recovery interval `interval`
Example:
```
Switch(config)# errdisable detect cause inline-power  
Switch(config)# errdisable recovery cause inline-power  
Switch(config)# errdisable recovery interval 100
```
(Optional) Enables error recovery from the PoE error-disabled state, and configures the PoE recovery mechanism variables.
By default, the recovery interval is 300 seconds.
For `interval`, specifies the time in seconds to recover from the error-disabled state. The range is 30 to 86400.

Step 7

exit
Returns to privileged EXEC mode.
Example:
```
Switch(config)# exit
```

Step 8

Use one of the following:
- show power inline police
- show errdisable recovery
Displays the power monitoring status, and verify the error recovery settings.
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# show power inline police</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td>Switch# show errdisable recovery</td>
<td></td>
</tr>
</tbody>
</table>

Step 9

<table>
<thead>
<tr>
<th>copy running-config startup-config</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

Monitoring Power Status

Table 27: Show Commands for Power Status

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show env power switch [switch-number]</td>
<td>(Optional) Displays the status of the internal power supplies for each switch in the stack or for the specified switch. The range is 1 to , depending on the switch member numbers in the stack. These keywords are available only on stacking-capable switches.</td>
</tr>
<tr>
<td>show power inline [interface-id</td>
<td>module switch-number]</td>
</tr>
<tr>
<td>show power inline police</td>
<td>Displays the power policing data.</td>
</tr>
</tbody>
</table>

Configuration Examples for Configuring PoE

Budgeting Power: Example

When you enter one of the following commands,

- [no] power inline consumption default wattage global configuration command
- [no] power inline consumption wattage
 interface configuration command
this caution message appears:

%CAUTION: Interface Gi1/0/1: Misconfiguring the 'power inline consumption/allocation' command may cause damage to the switch and void your warranty. Take precaution not to oversubscribe the power supply. It is recommended to enable power policing if the switch supports it. Refer to documentation.

Additional References

Error Message Decoder

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>To help you research and resolve system error messages in this release, use the Error Message Decoder tool.</td>
<td>https://www.cisco.com/cgi-bin/Support/Errordecoder/index.cgi</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>All supported MIBs for this release.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/support</td>
</tr>
</tbody>
</table>
Configuring EEE

- Finding Feature Information, page 205
- Information About EEE, page 205
- Restrictions for EEE, page 206
- How to Configure EEE, page 206
- Monitoring EEE, page 207
- Configuration Examples for Configuring EEE, page 208
- Additional References, page 208
- Feature History and Information for Configuring EEE, page 209

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About EEE

EEE Overview

Energy Efficient Ethernet (EEE) is an IEEE 802.3az standard that is designed to reduce power consumption in Ethernet networks during idle periods.

EEE can be enabled on devices that support low power idle (LPI) mode. Such devices can save power by entering LPI mode during periods of low utilization. In LPI mode, systems on both ends of the link can save
power by shutting down certain services. EEE provides the protocol needed to transition into and out of LPI mode in a way that is transparent to upper layer protocols and applications.

Default EEE Configuration

EEE is enabled by default.

Restrictions for EEE

EEE has the following restrictions:

- Changing the EEE configuration resets the interface because the device has to restart Layer 1 autonegotiation.
- You might want to enable the Link Layer Discovery Protocol (LLDP) for devices that require longer wakeup times before they are able to accept data on their receive paths. Doing so enables the device to negotiate for extended system wakeup times from the transmitting link partner.

How to Configure EEE

You can enable or disable EEE on an interface that is connected to an EEE-capable link partner.

Enabling or Disabling EEE

SUMMARY STEPS

1. configure terminal
2. interface interface-id
3. power efficient-ethernet auto
4. no power efficient-ethernet auto
5. end
6. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
 - configure terminal | Enters global configuration mode. |

Example:

Switch# configure terminal
Purpose

Command or Action	Purpose
Step 2
interface interface-id
Example:
Switch(config)# interface gigabitethernet1/0/1
Specifies the interface to be configured, and enter interface configuration mode.

Step 3
power efficient-ethernet auto
Example:
Switch(config-if)# power efficient-ethernet auto
Enables EEE on the specified interface. When EEE is enabled, the device advertises and autonegotiates EEE to its link partner.

Step 4
no power efficient-ethernet auto
Example:
Switch(config-if)# no power efficient-ethernet auto
Disables EEE on the specified interface.

Step 5
end
Example:
Switch(config-if)# end
Returns to privileged EXEC mode.

Step 6
copy running-config startup-config
Example:
Switch# copy running-config startup-config
(Optional) Saves your entries in the configuration file.

Monitoring EEE

Table 28: Commands for Displaying EEE Settings

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show eee capabilities interface interface-id</td>
<td>Displays EEE capabilities for the specified interface.</td>
</tr>
<tr>
<td>show eee status interface interface-id</td>
<td>Displays EEE status information for the specified interface.</td>
</tr>
</tbody>
</table>
Configuration Examples for Configuring EEE

This example shows how to enable EEE for an interface:

Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# power efficient-ethernet auto

This example shows how to disable EEE for an interface:

Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# no power efficient-ethernet auto

Additional References

Error Message Decoder

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>To help you research and resolve system error messages in this release, use the Error Message Decoder tool.</td>
<td>https://www.cisco.com/cgi-bin/Support/Errordecoder/index.cgi</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>All supported MIBs for this release.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/support</td>
</tr>
</tbody>
</table>

Feature History and Information for Configuring EEE

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS 15.0(2)EX</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>
PART IV

IPv6

- Configuring MLD Snooping, page 213
- Configuring IPv6 Unicast Routing, page 229
- Configuring IPv6 ACL, page 243
Chapter 12

Configuring MLD Snooping

This module contains details of configuring MLD snooping

- Finding Feature Information, page 213
- Information About Configuring IPv6 MLD Snooping, page 213
- How to Configure IPv6 MLD Snooping, page 217
- Displaying MLD Snooping Information, page 225
- Configuration Examples for Configuring MLD Snooping, page 226

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About Configuring IPv6 MLD Snooping

You can use Multicast Listener Discovery (MLD) snooping to enable efficient distribution of IP Version 6 (IPv6) multicast data to clients and routers in a switched network on the switch. Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

To use IPv6, you must configure the dual IPv4 and IPv6 Switch Database Management (SDM) template on the switch.
For complete syntax and usage information for the commands used in this chapter, see the command reference for this release or the Cisco IOS documentation referenced in the procedures.

Understanding MLD Snooping

In IP Version 4 (IPv4), Layer 2 switches can use Internet Group Management Protocol (IGMP) snooping to limit the flooding of multicast traffic by dynamically configuring Layer 2 interfaces so that multicast traffic is forwarded to only those interfaces associated with IP multicast devices. In IPv6, MLD snooping performs a similar function. With MLD snooping, IPv6 multicast data is selectively forwarded to a list of ports that want to receive the data, instead of being flooded to all ports in a VLAN. This list is constructed by snooping IPv6 multicast control packets.

MLD is a protocol used by IPv6 multicast routers to discover the presence of multicast listeners (nodes wishing to receive IPv6 multicast packets) on the links that are directly attached to the routers and to discover which multicast packets are of interest to neighboring nodes. MLD is derived from IGMP; MLD Version 1 (MLDv1) is equivalent to IGMPv2, and MLD Version 2 (MLDv2) is equivalent to IGMPv3. MLD is a subprotocol of Internet Control Message Protocol Version 6 (ICMPv6), and MLD messages are a subset of ICMPv6 messages, identified in IPv6 packets by a preceding Next Header value of 58.

The switch supports two versions of MLD snooping:

- **MLDv1 snooping** detects MLDv1 control packets and sets up traffic bridging based on IPv6 destination multicast addresses.
- **MLDv2 basic snooping (MBSS)** uses MLDv2 control packets to set up traffic forwarding based on IPv6 destination multicast addresses.

The switch can snoop on both MLDv1 and MLDv2 protocol packets and bridge IPv6 multicast data based on destination IPv6 multicast addresses.

Note

The switch does not support MLDv2 enhanced snooping, which sets up IPv6 source and destination multicast address-based forwarding.

MLD snooping can be enabled or disabled globally or per VLAN. When MLD snooping is enabled, a per-VLAN IPv6 multicast address table is constructed in software and hardware. The switch then performs IPv6 multicast-address based bridging in hardware.

MLD Messages

MLDv1 supports three types of messages:

- **Listener Queries** are the equivalent of IGMPv2 queries and are either General Queries or Multicast-Address-Specific Queries (MASQs).
- **Multicast Listener Reports** are the equivalent of IGMPv2 reports.
- **Multicast Listener Done messages** are the equivalent of IGMPv2 leave messages.

MLDv2 supports MLDv2 queries and reports, as well as MLDv1 Report and Done messages.
Message timers and state transitions resulting from messages being sent or received are the same as those of IGMPv2 messages. MLD messages that do not have valid link-local IPv6 source addresses are ignored by MLD routers and switches.

MLD Queries

The switch sends out MLD queries, constructs an IPv6 multicast address database, and generates MLD group-specific and MLD group-and-source-specific queries in response to MLD Done messages. The switch also supports report suppression, report proxying, Immediate-Leave functionality, and static IPv6 multicast group address configuration.

When MLD snooping is disabled, all MLD queries are flooded in the ingress VLAN.

When MLD snooping is enabled, received MLD queries are flooded in the ingress VLAN, and a copy of the query is sent to the CPU for processing. From the received query, MLD snooping builds the IPv6 multicast address database. It detects multicast router ports, maintains timers, sets report response time, learns the querier IP source address for the VLAN, learns the querier port in the VLAN, and maintains multicast-address aging.

Note

When the IPv6 multicast router is a Catalyst 6500 switch and you are using extended VLANs (in the range 1006 to 4094), IPv6 MLD snooping must be enabled on the extended VLAN on the Catalyst 6500 switch in order for the Catalyst 2960, 2960-S, 2960-C, 2960-X or 2960-CX switch to receive queries on the VLAN. For normal-range VLANs (1 to 1005), it is not necessary to enable IPv6 MLD snooping on the VLAN on the Catalyst 6500 switch.

When a group exists in the MLD snooping database, the switch responds to a group-specific query by sending an MLDv1 report. When the group is unknown, the group-specific query is flooded to the ingress VLAN.

When a host wants to leave a multicast group, it can send out an MLD Done message (equivalent to IGMP Leave message). When the switch receives an MLDv1 Done message, if Immediate-Leave is not enabled, the switch sends a MASQ to the port from which the message was received to determine if other devices connected to the port should remain in the multicast group.

Multicast Client Aging Robustness

You can configure port membership removal from addresses based on the number of queries. A port is removed from membership to an address only when there are no reports to the address on the port for the configured number of queries. The default number is 2.

Multicast Router Discovery

Like IGMP snooping, MLD snooping performs multicast router discovery, with these characteristics:

- Ports configured by a user never age out.
- Dynamic port learning results from MLDv1 snooping queries and IPv6 PIMv2 packets.
- If there are multiple routers on the same Layer 2 interface, MLD snooping tracks a single multicast router on the port (the router that most recently sent a router control packet).
- Dynamic multicast router port aging is based on a default timer of 5 minutes; the multicast router is deleted from the router port list if no control packet is received on the port for 5 minutes.
- IPv6 multicast router discovery only takes place when MLD snooping is enabled on the switch.
- Received IPv6 multicast router control packets are always flooded to the ingress VLAN, whether or not MLD snooping is enabled on the switch.

- After the discovery of the first IPv6 multicast router port, unknown IPv6 multicast data is forwarded only to the discovered router ports (before that time, all IPv6 multicast data is flooded to the ingress VLAN).

MLD Reports

The processing of MLDv1 join messages is essentially the same as with IGMPv2. When no IPv6 multicast routers are detected in a VLAN, reports are not processed or forwarded from the switch. When IPv6 multicast routers are detected and an MLDv1 report is received, an IPv6 multicast group address is entered in the VLAN MLD database. Then all IPv6 multicast traffic to the group within the VLAN is forwarded using this address. When MLD snooping is disabled, reports are flooded in the ingress VLAN.

When MLD snooping is enabled, MLD report suppression, called listener message suppression, is automatically enabled. With report suppression, the switch forwards the first MLDv1 report received by a group to IPv6 multicast routers; subsequent reports for the group are not sent to the routers. When MLD snooping is disabled, report suppression is disabled, and all MLDv1 reports are flooded to the ingress VLAN.

The switch also supports MLDv1 proxy reporting. When an MLDv1 MASQ is received, the switch responds with MLDv1 reports for the address on which the query arrived if the group exists in the switch on another port and if the port on which the query arrived is not the last member port for the address.

MLD Done Messages and Immediate-Leave

When the Immediate-Leave feature is enabled and a host sends an MLDv1 Done message (equivalent to an IGMP leave message), the port on which the Done message was received is immediately deleted from the group. You enable Immediate-Leave on VLANs and (as with IGMP snooping), you should only use the feature on VLANs where a single host is connected to the port. If the port was the last member of a group, the group is also deleted, and the leave information is forwarded to the detected IPv6 multicast routers.

When Immediate Leave is not enabled in a VLAN (which would be the case when there are multiple clients for a group on the same port) and a Done message is received on a port, an MASQ is generated on that port. The user can control when a port membership is removed for an existing address in terms of the number of MASQs. A port is removed from membership to an address when there are no MLDv1 reports to the address on the port for the configured number of queries.

The number of MASQs generated is configured by using the `ipv6 mld snooping last-listener-query count` global configuration command. The default number is 2.

The MASQ is sent to the IPv6 multicast address for which the Done message was sent. If there are no reports sent to the IPv6 multicast address specified in the MASQ during the switch maximum response time, the port on which the MASQ was sent is deleted from the IPv6 multicast address database. The maximum response time is the time configured by using the `ipv6 mld snooping last-listener-query-interval` global configuration command. If the deleted port is the last member of the multicast address, the multicast address is also deleted, and the switch sends the address leave information to all detected multicast routers.

Topology Change Notification Processing

When topology change notification (TCN) solicitation is enabled by using the `ipv6 mld snooping tcn query solicit` global configuration command, MLDv1 snooping sets the VLAN to flood all IPv6 multicast traffic with a configured number of MLDv1 queries before it begins sending multicast data only to selected ports.
You set this value by using the `ipv6 mld snooping tcn flood query count` global configuration command. The default is to send two queries. The switch also generates MLDv1 global Done messages with valid link-local IPv6 source addresses when the switch becomes the STP root in the VLAN or when it is configured by the user. This is same as done in IGMP snooping.

MLD Snooping in Switch Stacks

The MLD IPv6 group address databases are maintained on all switches in the stack, regardless of which switch learns of an IPv6 multicast group. Report suppression and proxy reporting are done stack-wide. During the maximum response time, only one received report for a group is forwarded to the multicast routers, regardless of which switch the report arrives on.

The election of a new stack master does not affect the learning or bridging of IPv6 multicast data; bridging of IPv6 multicast data does not stop during a stack master re-election. When a new switch is added to the stack, it synchronizes the learned IPv6 multicast information from the stack master. Until the synchronization is complete, data ingress on the newly added switch is treated as unknown multicast data.

How to Configure IPv6 MLD Snooping

Default MLD Snooping Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLD snooping (Global)</td>
<td>Disabled.</td>
</tr>
<tr>
<td>MLD snooping (per VLAN)</td>
<td>Enabled. MLD snooping must be globally enabled for VLAN MLD snooping to take place.</td>
</tr>
<tr>
<td>IPv6 Multicast addresses</td>
<td>None configured.</td>
</tr>
<tr>
<td>IPv6 Multicast router ports</td>
<td>None configured.</td>
</tr>
<tr>
<td>MLD snooping Immediate Leave</td>
<td>Disabled.</td>
</tr>
<tr>
<td>MLD snooping robustness variable</td>
<td>Global: 2; Per VLAN: 0.</td>
</tr>
<tr>
<td>Note</td>
<td>The VLAN value overrides the global setting. When the VLAN value is 0, the VLAN uses the global count.</td>
</tr>
<tr>
<td>Last listener query count</td>
<td>Global: 2; Per VLAN: 0.</td>
</tr>
<tr>
<td>Note</td>
<td>The VLAN value overrides the global setting. When the VLAN value is 0, the VLAN uses the global count.</td>
</tr>
<tr>
<td>Last listener query interval</td>
<td>Global: 1000 (1 second); VLAN: 0.</td>
</tr>
<tr>
<td>Note</td>
<td>The VLAN value overrides the global setting. When the VLAN value is 0, the VLAN uses the global interval.</td>
</tr>
<tr>
<td>TCN query solicit</td>
<td>Disabled.</td>
</tr>
</tbody>
</table>
MLD Snooping Configuration Guidelines

When configuring MLD snooping, consider these guidelines:

- You can configure MLD snooping characteristics at any time, but you must globally enable MLD snooping by using the `ipv6 mld snooping` global configuration command for the configuration to take effect.

- When the IPv6 multicast router is a Catalyst 6500 switch and you are using extended VLANs (in the range 1006 to 4094), IPv6 MLD snooping must be enabled on the extended VLAN on the Catalyst 6500 switch in order for the switch to receive queries on the VLAN. For normal-range VLANs (1 to 1005), it is not necessary to enable IPv6 MLD snooping on the VLAN on the Catalyst 6500 switch.

- MLD snooping and IGMP snooping act independently of each other. You can enable both features at the same time on the switch.

- The maximum number of address entries allowed for the switch or switch stack is 1000.

Enabling or Disabling MLD Snooping on the Switch (CLI)

By default, IPv6 MLD snooping is globally disabled on the switch and enabled on all VLANs. When MLD snooping is globally disabled, it is also disabled on all VLANs. When you globally enable MLD snooping, the VLAN configuration overrides the global configuration. That is, MLD snooping is enabled only on VLAN interfaces in the default state (enabled).

You can enable and disable MLD snooping on a per-VLAN basis or for a range of VLANs, but if you globally disable MLD snooping, it is disabled in all VLANs. If global snooping is enabled, you can enable or disable VLAN snooping.

Beginning in privileged EXEC mode, follow these steps to globally enable MLD snooping on the switch:

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>

Example:

```
Switch# configure terminal
```
Enabling or Disabling MLD Snooping on a VLAN (CLI)

Beginning in privileged EXEC mode, follow these steps to enable MLD snooping on a VLAN.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ipv6 mld snooping</td>
<td>Enables MLD snooping on the switch.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch(config)# ipv6 mld snooping</td>
<td></td>
</tr>
</tbody>
</table>
How to Configure IPv6 MLD Snooping

Command or Action | Purpose |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td>Enables MLD snooping on the VLAN. The VLAN ID range is 1 to 1001 and 1006 to 4094.</td>
</tr>
<tr>
<td><code>ipv6 mld snooping vlan vlan-id</code></td>
<td>Enables MLD snooping on the VLAN. The VLAN ID range is 1 to 1001 and 1006 to 4094.</td>
</tr>
<tr>
<td>Example:</td>
<td>MLD snooping must be globally enabled for VLAN snooping to be enabled.</td>
</tr>
<tr>
<td><code>Switch(config)# ipv6 mld snooping vlan 1</code></td>
<td>MLD snooping must be globally enabled for VLAN snooping to be enabled.</td>
</tr>
</tbody>
</table>

Configuring a Static Multicast Group (CLI)

Hosts or Layer 2 ports normally join multicast groups dynamically, but you can also statically configure an IPv6 multicast address and member ports for a VLAN.

Beginning in privileged EXEC mode, follow these steps to add a Layer 2 port as a member of a multicast group:

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters global configuration mode</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode</td>
</tr>
<tr>
<td>Example:</td>
<td>Configures a multicast group with a Layer 2 port as a member of a multicast group:</td>
</tr>
<tr>
<td><code>Switch# configure terminal</code></td>
<td>Configures a multicast group with a Layer 2 port as a member of a multicast group:</td>
</tr>
<tr>
<td>Step 2</td>
<td>Configures a multicast group with a Layer 2 port as a member of a multicast group:</td>
</tr>
<tr>
<td><code>ipv6 mld snooping vlan vlan-id static</code></td>
<td>Configures a multicast group with a Layer 2 port as a member of a multicast group:</td>
</tr>
<tr>
<td><code>ipv6_multicast_address interface interface-id</code></td>
<td>Configures a multicast group with a Layer 2 port as a member of a multicast group:</td>
</tr>
<tr>
<td>Example:</td>
<td><code>vlan-id</code> is the multicast group VLAN ID. The VLAN ID range is 1 to 1001 and 1006 to 4094.</td>
</tr>
<tr>
<td><code>Switch(config)# ipv6 mld snooping vlan 1 static FF12::3 interface gigabitethernet 0/1</code></td>
<td><code>ipv6_multicast_address</code> is the 128-bit group IPv6 address. The address must be in the form specified in RFC 2373.</td>
</tr>
<tr>
<td></td>
<td><code>interface-id</code> is the member port. It can be a physical interface or a port channel (1 to 48).</td>
</tr>
</tbody>
</table>
How to Configure IPv6 MLD Snooping

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>end</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# end</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4</td>
<td>Verifies the static member port and the IPv6 address.</td>
</tr>
<tr>
<td>Use one of the following:</td>
<td></td>
</tr>
<tr>
<td>• show ipv6 mld snooping address</td>
<td></td>
</tr>
<tr>
<td>• show ipv6 mld snooping address vlan vlan-id</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# show ipv6 mld snooping address</td>
<td>or</td>
</tr>
<tr>
<td>Switch# show ipv6 mld snooping vlan 1</td>
<td></td>
</tr>
</tbody>
</table>

Configuring a Multicast Router Port (CLI)

Note

Static connections to multicast routers are supported only on switch ports.

Beginning in privileged EXEC mode, follow these steps to add a multicast router port to a VLAN:

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>Specifies the multicast router VLAN ID, and specify the interface to the multicast router.</td>
</tr>
<tr>
<td>ipv6 mld snooping vlan vlan-id mrouter interface interface-id</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# ipv6 mld snooping vlan 1 mrouter interface gigabitethernet 0/2</td>
</tr>
</tbody>
</table>

- The VLAN ID range is 1 to 1001 and 1006 to 4094.
- The interface can be a physical interface or a port channel. The port-channel range is 1 to 48.
How to Configure IPv6 MLD Snooping

Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td><code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Example:

Switch(config)# end

Step 4

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ipv6 mld snooping mrouter [vlan vlan-id]</code></td>
<td>Verifies that IPv6 MLD snooping is enabled on the VLAN interface.</td>
</tr>
</tbody>
</table>

Example:

Switch# show ipv6 mld snooping mrouter vlan 1

Enabling MLD Immediate Leave (CLI)

Beginning in privileged EXEC mode, follow these steps to enable MLDv1 Immediate Leave:

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>

Example:

Switch# configure terminal

Step 2

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ipv6 mld snooping vlan vlan-id immediate-leave</code></td>
<td>Enables MLD Immediate Leave on the VLAN interface.</td>
</tr>
</tbody>
</table>

Example:

Switch(config)# ipv6 mld snooping vlan 1 immediate-leave

Step 3

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Example:

Switch(config)# end

Step 4

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ipv6 mld snooping vlan vlan-id</code></td>
<td>Verifies that Immediate Leave is enabled on the VLAN interface.</td>
</tr>
</tbody>
</table>

Example:

Switch# show ipv6 mld snooping vlan 1
Configuring MLD Snooping Queries (CLI)

Beginning in privileged EXEC mode, follow these steps to configure MLD snooping query characteristics for the switch or for a VLAN:

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:
<code>Switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td><code>ipv6 mld snooping robustness-variable value</code></td>
<td>(Optional) Sets the number of queries that are sent before switch will deletes a listener (port) that does not respond to a general query. The range is 1 to 3; the default is 2.</td>
</tr>
<tr>
<td></td>
<td>Example:
<code>Switch(config)# ipv6 mld snooping robustness-variable 3</code></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td><code>ipv6 mld snooping vlan vlan-id robustness-variable value</code></td>
<td>(Optional) Sets the robustness variable on a VLAN basis, which determines the number of general queries that MLD snooping sends before aging out a multicast address when there is no MLD report response. The range is 1 to 3; the default is 0. When set to 0, the number used is the global robustness variable value.</td>
</tr>
<tr>
<td></td>
<td>Example:
<code>Switch(config)# ipv6 mld snooping vlan 1 robustness-variable 3</code></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td><code>ipv6 mld snooping last-listener-query-count count</code></td>
<td>(Optional) Sets the number of MASQs that the switch sends before aging out an MLD client. The range is 1 to 7; the default is 2. The queries are sent 1 second apart.</td>
</tr>
<tr>
<td></td>
<td>Example:
<code>Switch(config)# ipv6 mld snooping last-listener-query-count 7</code></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td><code>ipv6 mld snooping vlan vlan-id last-listener-query-count count</code></td>
<td>(Optional) Sets the last-listener query count on a VLAN basis. This value overrides the value configured globally. The range is 1 to 7; the default is 0. When set to 0, the global count value is used. Queries are sent 1 second apart.</td>
</tr>
<tr>
<td></td>
<td>Example:
<code>Switch(config)# ipv6 mld snooping vlan 1 last-listener-query-count 7</code></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td><code>ipv6 mld snooping last-listener-query-interval interval</code></td>
<td>(Optional) Sets the maximum response time that the switch waits after sending out a MASQ before deleting a port from the multicast group. The range is 100 to 32,768 thousands of a second. The default is 1000 (1 second).</td>
</tr>
<tr>
<td></td>
<td>Example:
<code>Switch(config)# ipv6 mld snooping last-listener-query-interval 2000</code></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td><code>ipv6 mld snooping vlan vlan-id last-listener-query-interval interval</code></td>
<td>(Optional) Sets the last-listener query interval on a VLAN basis. This value overrides the value configured globally. The range is 0</td>
</tr>
</tbody>
</table>
How to Configure IPv6 MLD Snooping

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>to 32,768 thousands of a second. The default is 0. When set to 0, the global last-listener query interval is used.</td>
</tr>
<tr>
<td><code>Switch(config)# ipv6 mld snooping vlan 1 last-listener-query-interval 2000</code></td>
<td></td>
</tr>
</tbody>
</table>

Step 8

`ipv6 mld snooping tcn query solicit`

(Optional) Enables topology change notification (TCN) solicitation, which means that VLANs flood all IPv6 multicast traffic for the configured number of queries before sending multicast data to only those ports requesting to receive it. The default is for TCN to be disabled.

Example:

```
Switch(config)# ipv6 mld snooping tcn query solicit
```

Step 9

`ipv6 mld snooping tcn flood query count count`

(Optional) When TCN is enabled, specifies the number of TCN queries to be sent. The range is from 1 to 10; the default is 2.

Example:

```
Switch(config)# ipv6 mld snooping tcn flood query count 5
```

Step 10

`end`

Returns to privileged EXEC mode.

Step 11

`show ipv6 mld snooping querier [vlan vlan-id]`

(Optional) Verifies that the MLD snooping querier information for the switch or for the VLAN.

Example:

```
Switch(config)# show ipv6 mld snooping querier vlan 1
```

Disabling MLD Listener Message Suppression (CLI)

MLD snooping listener message suppression is enabled by default. When it is enabled, the switch forwards only one MLD report per multicast router query. When message suppression is disabled, multiple MLD reports could be forwarded to the multicast routers.

Beginning in privileged EXEC mode, follow these steps to disable MLD listener message suppression:

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td></td>
</tr>
</tbody>
</table>

Example:

```
Switch# configure terminal
```
Displaying MLD Snooping Information

You can display MLD snooping information for dynamically learned and statically configured router ports and VLAN interfaces. You can also display IPv6 group address multicast entries for a VLAN configured for MLD snooping.

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>Disable MLD message suppression.</td>
</tr>
<tr>
<td>no ipv6 mld snooping listener-message-suppression</td>
<td>Disable MLD message suppression.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# no ipv6 mld snooping</td>
<td></td>
</tr>
<tr>
<td>listener-message-suppression</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>end</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# end</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Verify that IPv6 MLD snooping report suppression is disabled.</td>
</tr>
<tr>
<td>show ipv6 mld snooping</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# show ipv6 mld snooping</td>
<td></td>
</tr>
</tbody>
</table>

Table 30: Commands for Displaying MLD Snooping Information

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ipv6 mld snooping [vlan vlan-id]</td>
<td>Displays the MLD snooping configuration information for all VLANs on the switch or for a specified VLAN. (Optional) Enter vlan vlan-id to display information for a single VLAN. The VLAN ID range is 1 to 1001 and 1006 to 4094.</td>
</tr>
<tr>
<td>show ipv6 mld snooping mrouter [vlan vlan-id]</td>
<td>Displays information on dynamically learned and manually configured multicast router interfaces. When you enable MLD snooping, the switch automatically learns the interface to which a multicast router is connected. These are dynamically learned interfaces. (Optional) Enters vlan vlan-id to display information for a single VLAN. The VLAN ID range is 1 to 1001 and 1006 to 4094.</td>
</tr>
</tbody>
</table>
Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| `show ipv6 mld snooping querier [vlan vlan-id]` | Displays information about the IPv6 address and incoming port for the most-recently received MLD query messages in the VLAN.
(Optional) Enters `vlan vlan-id` to display information for a single VLAN. The VLAN ID range is 1 to 1001 and 1006 to 4094. |
| `show ipv6 mld snooping address [vlan vlan-id] [count | dynamic | user]` | Displays all IPv6 multicast address information or specific IPv6 multicast address information for the switch or a VLAN.
* Enters `count` to show the group count on the switch or in a VLAN.
* Enters `dynamic` to display MLD snooping learned group information for the switch or for a VLAN.
* Enters `user` to display MLD snooping user-configured group information for the switch or for a VLAN. |
| `show ipv6 mld snooping address vlan vlan-id [ipv6-multicast-address]` | Displays MLD snooping for the specified VLAN and IPv6 multicast address. |

Configuration Examples for Configuring MLD Snooping

Configuring a Static Multicast Group: Example

This example shows how to statically configure an IPv6 multicast group:

```
Switch# configure terminal
Switch(config)# ipv6 mld snooping vlan 2 static FF12::3 interface gigabitethernet 1/0/1
Switch(config)# end
```

Configuring a Multicast Router Port: Example

This example shows how to add a multicast router port to VLAN 200:

```
Switch# configure terminal
Switch(config)# ipv6 mld snooping vlan 200 mrouter interface gigabitethernet 0/2
Switch(config)# exit
```
Enabling MLD Immediate Leave: Example

This example shows how to enable MLD Immediate Leave on VLAN 130:

```
Switch# configure terminal
Switch(config)# ipv6 mld snooping vlan 130 immediate-leave
Switch(config)# exit
```

Configuring MLD Snooping Queries: Example

This example shows how to set the MLD snooping global robustness variable to 3:

```
Switch# configure terminal
Switch(config)# ipv6 mld snooping robustness-variable 3
Switch(config)# exit
```

This example shows how to set the MLD snooping last-listener query count for a VLAN to 3:

```
Switch# configure terminal
Switch(config)# ipv6 mld snooping vlan 200 last-listener-query-count 3
Switch(config)# exit
```

This example shows how to set the MLD snooping last-listener query interval (maximum response time) to 2000 (2 seconds):

```
Switch# configure terminal
Switch(config)# ipv6 mld snooping last-listener-query-interval 2000
Switch(config)# exit
```
CHAPTER 13

Configuring IPv6 Unicast Routing

- Finding Feature Information, page 229
- Information About Configuring IPv6 Host Functions, page 229
- Configuration Examples for IPv6 Unicast Routing, page 240

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About Configuring IPv6 Host Functions

This chapter describes how to configure IPv6 host functions on the Catalyst 2960, 2960-S, and 2960-C.

Note

To use IPv6 Host Functions, the switch must be running the LAN Base image.

For information about configuring IPv6 Multicast Listener Discovery (MLD) snooping, see Configuring MLD Snooping.

To enable dual stack environments (supporting both IPv4 and IPv6) on a Catalyst 2960 switch, you must configure the switch to use the a dual IPv4 and IPv6 switch database management (SDM) template. See the "Dual IPv4 and IPv6 Protocol Stacks" section. This template is not required on Catalyst 2960-S switches.

Note

For complete syntax and usage information for the commands used in this chapter, see the Cisco IOS documentation referenced in the procedures.
Understanding IPv6

IPv4 users can move to IPv6 and receive services such as end-to-end security, quality of service (QoS), and globally unique addresses. The IPv6 address space reduces the need for private addresses and Network Address Translation (NAT) processing by border routers at network edges.

For information about how Cisco Systems implements IPv6, go to:

For information about IPv6 and other features in this chapter

- See the Cisco IOS IPv6 Configuration Library.
- Use the Search field on Cisco.com to locate the Cisco IOS software documentation. For example, if you want information about static routes, you can enter Implementing Static Routes for IPv6 in the search field to learn about static routes.

IPv6 Addresses

The switch supports only IPv6 unicast addresses. It does not support site-local unicast addresses, or anycast addresses.

The IPv6 128-bit addresses are represented as a series of eight 16-bit hexadecimal fields separated by colons in the format: n:n:n:n:n:n:n:n. This is an example of an IPv6 address:
2031:0000:130F:0000:0000:09C0:080F:130B

For easier implementation, leading zeros in each field are optional. This is the same address without leading zeros:
2031:0:130F:0:0:9C0:80F:130B

You can also use two colons (::) to represent successive hexadecimal fields of zeros, but you can use this short version only once in each address:
2031:0:130F::09C0:80F:130B

For more information about IPv6 address formats, address types, and the IPv6 packet header, see the "Implementing IPv6 Addressing and Basic Connectivity" chapter of Cisco IOS IPv6 Configuration Library on Cisco.com.

In the "Implementing Addressing and Basic Connectivity" chapter, these sections apply to the Catalyst 2960, 2960-S, 2960-C, 2960-X, 2960-CX and 3560-CX switches:

- IPv6 Address Formats
- IPv6 Address Type: Multicast
- IPv6 Address Output Display
- Simplified IPv6 Packet Header

Supported IPv6 Unicast Routing Features

These sections describe the IPv6 protocol features supported by the switch:
128-Bit Wide Unicast Addresses

The switch supports aggregatable global unicast addresses and link-local unicast addresses. It does not support site-local unicast addresses.

- Aggregatable global unicast addresses are IPv6 addresses from the aggregatable global unicast prefix. The address structure enables strict aggregation of routing prefixes and limits the number of routing table entries in the global routing table. These addresses are used on links that are aggregated through organizations and eventually to the Internet service provider.

These addresses are defined by a global routing prefix, a subnet ID, and an interface ID. Current global unicast address allocation uses the range of addresses that start with binary value 001 (2000::/3). Addresses with a prefix of 2000::/3(001) through E000::/3(111) must have 64-bit interface identifiers in the extended unique identifier (EUI)-64 format.

- Link local unicast addresses can be automatically configured on any interface by using the link-local prefix FE80::/10(1111111010) and the interface identifier in the modified EUI format. Link-local addresses are used in the neighbor discovery protocol (NDP) and the stateless autoconfiguration process. Nodes on a local link use link-local addresses and do not require globally unique addresses to communicate. IPv6 routers do not forward packets with link-local source or destination addresses to other links.

For more information, see the section about IPv6 unicast addresses in the "Implementing IPv6 Addressing and Basic Connectivity" chapter in the Cisco IOS IPv6 Configuration Library on Cisco.com.

DNS for IPv6

IPv6 supports Domain Name System (DNS) record types in the DNS name-to-address and address-to-name lookup processes. The DNS AAAA resource record types support IPv6 addresses and are equivalent to an A address record in IPv4. The switch supports DNS resolution for IPv4 and IPv6.

ICMPv6

The Internet Control Message Protocol (ICMP) in IPv6 generates error messages, such as ICMP destination unreachable messages, to report errors during processing and other diagnostic functions. In IPv6, ICMP packets are also used in the neighbor discovery protocol and path MTU discovery.

Neighbor Discovery

The switch supports NDP for IPv6, a protocol running on top of ICMPv6, and static neighbor entries for IPv6 stations that do not support NDP. The IPv6 neighbor discovery process uses ICMP messages and solicited-node multicast addresses to determine the link-layer address of a neighbor on the same network (local link), to verify the reachability of the neighbor, and to keep track of neighboring routers.

The switch supports ICMPv6 redirect for routes with mask lengths less than 64 bits. ICMP redirect is not supported for host routes or for summarized routes with mask lengths greater than 64 bits.

Neighbor discovery throttling ensures that the switch CPU is not unnecessarily burdened while it is in the process of obtaining the next hop forwarding information to route an IPv6 packet. The switch drops any additional IPv6 packets whose next hop is the same neighbor that the switch is actively trying to resolve. This drop avoids further load on the CPU.

IPv6 Stateless Autoconfiguration and Duplicate Address Detection

The switch uses stateless autoconfiguration to manage link, subnet, and site addressing changes, such as management of host and mobile IP addresses. A host autonomously configures its own link-local address, and booting nodes send router solicitations to request router advertisements for configuring interfaces.

For more information about autoconfiguration and duplicate address detection, see the "Implementing IPv6 Addressing and Basic Connectivity" chapter of Cisco IOS IPv6 Configuration Library on Cisco.com.
IPv6 Applications

The switch has IPv6 support for these applications:

- Ping, traceroute, and Telnet
- Secure Shell (SSH) over an IPv6 transport
- HTTP server access over IPv6 transport
- DNS resolver for AAAA over IPv4 transport
- Cisco Discovery Protocol (CDP) support for IPv6 addresses

For more information about managing these applications, see the *Cisco IOS IPv6 Configuration Library* on Cisco.com.

Dual IPv4 and IPv6 Protocol Stacks

On a Catalyst 2960-X switch, you must use the dual IPv4 and IPv6 template to allocate ternary content addressable memory (TCAM) usage to both IPv4 and IPv6 protocols.

This figure shows a router forwarding both IPv4 and IPv6 traffic through the same interface, based on the IP packet and destination addresses.

Figure 10: Dual IPv4 and IPv6 Support on an Interface

Use the dual IPv4 and IPv6 switch database management (SDM) template to enable IPv6 routing dual stack environments (supporting both IPv4 and IPv6). For more information about the dual IPv4 and IPv6 SDM template, see *Configuring SDM Templates*.

The dual IPv4 and IPv6 templates allow the switch to be used in dual stack environments.

- If you try to configure IPv6 without first selecting a dual IPv4 and IPv6 template, a warning message appears.
- In IPv4-only environments, the switch routes IPv4 packets and applies IPv4 QoS and ACLs in hardware. IPv6 packets are not supported.
- In dual IPv4 and IPv6 environments, the switch applies IPv4 QoS and ACLs in hardware.
- IPv6 QoS and ACLs are not supported.
- If you do not plan to use IPv6, do not use the dual stack template because this template results in less hardware memory capacity for each resource.

For more information about IPv4 and IPv6 protocol stacks, see the “Implementing IPv6 Addressing and Basic Connectivity” chapter of *Cisco IOS IPv6 Configuration Library* on Cisco.com.
SNMP and Syslog Over IPv6
To support both IPv4 and IPv6, IPv6 network management requires both IPv6 and IPv4 transports. Syslog over IPv6 supports address data types for these transports.

SNMP and syslog over IPv6 provide these features:
- Support for both IPv4 and IPv6
- IPv6 transport for SNMP and to modify the SNMP agent to support traps for an IPv6 host
- SNMP- and syslog-related MIBs to support IPv6 addressing
- Configuration of IPv6 hosts as trap receivers

For support over IPv6, SNMP modifies the existing IP transport mapping to simultaneously support IPv4 and IPv6. These SNMP actions support IPv6 transport management:
- Opens User Datagram Protocol (UDP) SNMP socket with default settings
- Provides a new transport mechanism called SR_IPV6_TRANSPORT
- Sends SNMP notifications over IPv6 transport
- Supports SNMP-named access lists for IPv6 transport
- Supports SNMP proxy forwarding using IPv6 transport
- Verifies SNMP Manager feature works with IPv6 transport

For information on SNMP over IPv6, including configuration procedures, see the “Managing Cisco IOS Applications over IPv6” chapter in the Cisco IOS IPv6 Configuration Library on Cisco.com.

For information about syslog over IPv6, including configuration procedures, see the “Implementing IPv6 Addressing and Basic Connectivity” chapter in the Cisco IOS IPv6 Configuration Library on Cisco.com.

HTTP(S) Over IPv6
The HTTP client sends requests to both IPv4 and IPv6 HTTP servers, which respond to requests from both IPv4 and IPv6 HTTP clients. URLs with literal IPv6 addresses must be specified in hexadecimal using 16-bit values between colons.

The accept socket call chooses an IPv4 or IPv6 address family. The accept socket is either an IPv4 or IPv6 socket. The listening socket continues to listen for both IPv4 and IPv6 signals that indicate a connection. The IPv6 listening socket is bound to an IPv6 wildcard address.

The underlying TCP/IP stack supports a dual-stack environment. HTTP relies on the TCP/IP stack and the sockets for processing network-layer interactions.

Basic network connectivity (ping) must exist between the client and the server hosts before HTTP connections can be made.

For more information, see the “Managing Cisco IOS Applications over IPv6” chapter in the Cisco IOS IPv6 Configuration Library on Cisco.com.

IPv6 and Switch Stacks
The switch supports IPv6 forwarding across the stack and IPv6 host functionality on the stack master. The stack master runs IPv6 host functionality and IPv6 applications.

While the new stack master is being elected and is resetting, the switch stack does not forward IPv6 packets. The stack MAC address changes, which also changes the IPv6 address. When you specify the stack IPv6
address with an extended unique identifier (EUI) by using the `ipv6 address ipv6-prefix/prefix length eui-64` interface configuration command, the address is based on the interface MAC address. See the "Configuring IPv6 Addressing and Enabling IPv6 Host" section.

If you configure the persistent MAC address feature on the stack and the stack master changes, the stack MAC address does not change for approximately 4 minutes. For more information, see the "Enabling Persistent MAC Address" section in "Managing Switch Stacks."

Default IPv6 Configuration

Table 31: Default IPv6 Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDM template</td>
<td>Advance desktop. Default is advanced template</td>
</tr>
<tr>
<td>IPv6 addresses</td>
<td>None configured</td>
</tr>
</tbody>
</table>

Configuring IPv6 Addressing and Enabling IPv6 Routing

This section describes how to assign IPv6 addresses to individual Layer 3 interfaces and to globally forward IPv6 traffic on the switch.

Before configuring IPv6 on the switch, consider these guidelines:

- Be sure to select a dual IPv4 and IPv6 SDM template.
- In the `ipv6 address` interface configuration command, you must enter the `ipv6-address` and `ipv6-prefix` variables with the address specified in hexadecimal using 16-bit values between colons. The `prefix-length` variable (preceded by a slash `/`) is a decimal value that shows how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address).

To forward IPv6 traffic on an interface, you must configure a global IPv6 address on that interface. Configuring an IPv6 address on an interface automatically configures a link-local address and activates IPv6 for the interface. The configured interface automatically joins these required multicast groups for that link:

- solicited-node multicast group FF02::1ooting FF00::1:104 for each unicast address assigned to the interface (this address is used in the neighbor discovery process.)
- all-nodes link-local multicast group FF02::1
- all-routers link-local multicast group FF02::2

For more information about configuring IPv6 routing, see the "Implementing Addressing and Basic Connectivity for IPv6" chapter in the *Cisco IOS IPv6 Configuration Library* on Cisco.com.

Beginning in privileged EXEC mode, follow these steps to assign an IPv6 address to a Layer 3 interface and enable IPv6 forwarding:
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch# <code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td><code>sdm prefer dual-ipv4-and-ipv6 {default}</code></td>
<td>Selects an SDM template that supports IPv4 and IPv6.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch(config)# <code>sdm prefer dual-ipv4-and-ipv6 default</code></td>
<td>• default—Sets the switch to the default template to balance system resources.</td>
</tr>
<tr>
<td>3</td>
<td><code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch(config)# <code>end</code></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td><code>reload</code></td>
<td>Reloads the operating system.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch# <code>reload</code></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode after the switch reloads.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch# <code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td><code>interface interface-id</code></td>
<td>Enters interface configuration mode, and specifies the Layer 3 interface to configure.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch(config)# <code>interface gigabitethernet 1/0/1</code></td>
<td></td>
</tr>
</tbody>
</table>
| 7 | Use one of the following: - `ipv6 address ipv6-prefix/prefix length eui-64` - `ipv6 address ipv6-address/prefix length` - `ipv6 address ipv6-address link-local` - `ipv6 enable` | **•** Specifies a global IPv6 address with an extended unique identifier (EUI) in the low-order 64 bits of the IPv6 address. Specify only the network prefix; the last 64 bits are automatically computed from the switch MAC address. This enables IPv6 processing on the interface. **•** Manually configures an IPv6 address on the interface. **•** Specifies a link-local address on the interface to be used instead of the link-local address that is automatically
Information About Configuring IPv6 Host Functions

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Example:**
Switch(config-if)# ipv6 address 2001:0DB8:c18:1::/64 eui 64
Switch(config-if)# ipv6 address 2001:0DB8:c18:1::/64
Switch(config-if)# ipv6 address 2001:0DB8:c18:1:: link-local
Switch(config-if)# ipv6 enable | Configured when IPv6 is enabled on the interface. This command enables IPv6 processing on the interface.
 • Automatically configures an IPv6 link-local address on the interface, and enables the interface for IPv6 processing. The link-local address can only be used to communicate with nodes on the same link. |

Step 8

exit

Example:

Switch(config-if)# exit

Returns to global configuration mode.

Step 9

end

Example:

Switch(config)# end

Returns to privileged EXEC mode.

Step 10

show ipv6 interface interface-id

Example:

Switch# show ipv6 interface gigabitethernet 1/0/1

Verifies your entries.

Step 11

copy running-config startup-config

Example:

Switch# copy running-config startup-config

(Optional) Saves your entries in the configuration file.

Configuring IPv6 ICMP Rate Limiting (CLI)

ICMP rate limiting is enabled by default with a default interval between error messages of 100 milliseconds and a bucket size (maximum number of tokens to be stored in a bucket) of 10.

Beginning in privileged EXEC mode, follow these steps to change the ICMP rate-limiting parameters:
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| | ipv6 icmp error-interval interval [bucketsize] | Configures the interval and bucket size for IPv6 ICMP error messages:
 - interval—The interval (in milliseconds) between tokens being added to the bucket. The range is from 0 to 2147483647 milliseconds.
 - bucketsize—(Optional) The maximum number of tokens stored in the bucket. The range is from 1 to 200. |
| | Example: Switch(config)# ipv6 icmp error-interval 50 20 | |

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch(config)# end</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>show ipv6 interface [interface-id]</td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch# show ipv6 interface gigabitethernet 1/0/1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

Configuring Static Routing for IPv6 (CLI)

Before configuring a static IPv6 route, you must enable routing by using the `ip routing` global configuration command, enable the forwarding of IPv6 packets by using the `ipv6 unicast-routing` global configuration command, and enable IPv6 on at least one Layer 3 interface by configuring an IPv6 address on the interface.

For more information about configuring static IPv6 routing, see the "Implementing Static Routes for IPv6" chapter in the *Cisco IOS IPv6 Configuration Library* on Cisco.com.
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>ipv6 route ipv6-prefix/prefix length</td>
</tr>
<tr>
<td>Example:</td>
<td>Configures a static IPv6 route.</td>
</tr>
<tr>
<td>Switch(config)# ipv6 route 2001:0DB8::/32 gigabitethernet2/0/1 130</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Example:</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Switch(config)# end</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Use one of the following:</td>
</tr>
<tr>
<td>• show ipv6 static [ipv6-address</td>
<td>Verifies your entries by displaying the contents of the IPv6 routing table.</td>
</tr>
<tr>
<td>ipv6-prefix/prefix length]</td>
<td>• interface interface-id—(Optional) Displays only those static routes with the specified interface as an egress interface.</td>
</tr>
</tbody>
</table>
Command or Action | Purpose
--- | ---
`[interface interface-id] [detail] [recursive] [detail]` | **recursive**—(Optional) Displays only recursive static routes. The **recursive** keyword is mutually exclusive with the **interface** keyword, but it can be used with or without the IPv6 prefix included in the command syntax.

detail—(Optional) Displays this additional information:
- For valid recursive routes, the output path set, and maximum resolution depth.
- For invalid routes, the reason why the route is not valid.

Example:
Switch# show ipv6 route static 2001:0DB8::/32 interface gigabitethernet2/0/1
or
Switch# show ipv6 route static

Step 5 | `copy running-config startup-config` (Optional) Saves your entries in the configuration file.

Example:
Switch# copy running-config startup-config

Displaying IPv6

For complete syntax and usage information on these commands, see the Cisco IOS command reference publications.

Table 32: Command for Monitoring IPv6

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ipv6 access-list</td>
<td>Displays a summary of access lists.</td>
</tr>
<tr>
<td>show ipv6 cef</td>
<td>Displays Cisco Express Forwarding for IPv6.</td>
</tr>
<tr>
<td>show ipv6 interface interface-id</td>
<td>Displays IPv6 interface status and configuration.</td>
</tr>
<tr>
<td>show ipv6 mtu</td>
<td>Displays IPv6 MTU per destination cache.</td>
</tr>
<tr>
<td>show ipv6 neighbors</td>
<td>Displays IPv6 neighbor cache entries.</td>
</tr>
<tr>
<td>show ipv6 prefix-list</td>
<td>Displays a list of IPv6 prefix lists.</td>
</tr>
<tr>
<td>show ipv6 protocols</td>
<td>Displays a list of IPv6 routing protocols on the switch.</td>
</tr>
<tr>
<td>show ipv6 rip</td>
<td>Displays IPv6 RIP routing protocol status.</td>
</tr>
</tbody>
</table>
Command Summary

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ipv6 route</td>
<td>Displays IPv6 route table entries.</td>
</tr>
<tr>
<td>show ipv6 static</td>
<td>Displays IPv6 static routes.</td>
</tr>
<tr>
<td>show ipv6 traffic</td>
<td>Displays IPv6 traffic statistics.</td>
</tr>
</tbody>
</table>

Configuration Examples for IPv6 Unicast Routing

Configuring IPv6 Addressing and Enabling IPv6 Routing: Example

This example shows how to enable IPv6 with both a link-local address and a global address based on the IPv6 prefix `2001:0DB8:c18:1::/64`. The EUI-64 interface ID is used in the low-order 64 bits of both addresses. Output from the `show ipv6 interface` EXEC command is included to show how the interface ID (20B:46FF:FE2F:D940) is appended to the link-local prefix FE80::/64 of the interface.

```plaintext
Switch(config)# ipv6 unicast-routing
Switch(config)# interface gigabitethernet1/0/11
Switch(config-if)# ipv6 address 2001:0DB8:c18:1::/64 eui 64
Switch(config-if)# end
Switch# show ipv6 interface gigabitethernet1/0/11
```

```
GigabitEthernet1/0/11 is up, line protocol is up
IPv6 is enabled, link-local address is FE80::20B:46FF:FE2F:D940
Global unicast address(es):
  2001:0DB8:c18:1:20B:46FF:FE2F:D940, subnet is 2001:0DB8:c18:1::/64 [EUI]
Joined group address(es):
  FF02::1
  FF02::2
  FF02::1:FF2F:D940
MTU is 1500 bytes
ICMP error messages limited to one every 100 milliseconds
ICMP redirects are enabled
ND DAD is enabled, number of DAD attempts: 1
ND reachable time is 30000 milliseconds
ND advertised reachable time is 0 milliseconds
ND advertised retransmit interval is 0 milliseconds
ND router advertisements are sent every 200 seconds
ND router advertisements live for 1800 seconds
Hosts use stateless autoconfig for addresses.
```

Configuring IPv6 ICMP Rate Limiting: Example

This example shows how to configure an IPv6 ICMP error message interval of 50 milliseconds and a bucket size of 20 tokens.

```plaintext
Switch(config)# ipv6 icmp error-interval 50 20
```

Cisco 2960-X Switch Series Configuration Guide, Cisco IOS Release 15.0(2)EX

OL-29640-01
Configuring Static Routing for IPv6: Example

This example shows how to configure a floating static route to an interface with an administrative distance of 130:

Switch(config)# ipv6 route 2001:0DB8::/32 gigabitethernet2/0/1 130

Displaying IPv6: Example

This is an example of the output from the `show ipv6 interface` privileged EXEC command:

Switch# show ipv6 interface
Vlan1 is up, line protocol is up
IPv6 is enabled, link-local address is FE80::20B:46FF:FE2F:D940
Global unicast address(es):
 3FFE::C000::1:20B:46FF:FE2F:D940, subnet is 3FFE::C000::1::/64 [EUI]
Joined group address(es):
 FF02::1
 FF02::2
 FF02::1:FF2F:D940
MTU is 1500 bytes
ICMP error messages limited to one every 100 milliseconds
ICMP redirects are enabled
ND DAD is enabled, number of DAD attempts: 1
ND reachable time is 30000 milliseconds
ND advertised reachable time is 0 milliseconds
ND advertised retransmit interval is 0 milliseconds
ND router advertisements are sent every 200 seconds
ND router advertisements live for 1800 seconds
<output truncated>
CHAPTER 14

Configuring IPv6 ACL

- Finding Feature Information, page 243
- Information About Configuring IPv6 ACLs, page 243
- Configuring IPv6 ACLs, page 245
- Configuration Examples for IPv6 ACL, page 251

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About Configuring IPv6 ACLs

You can filter IPv6 traffic by creating IPv6 access control lists (ACLs) and applying them to interfaces similarly to the way that you create and apply IPv4 named ACLs. You can also create and apply input router ACLs to filter Layer 3 management traffic.

Note

To use IPv6, you must configure the dual IPv4 and IPv6 Switch Database Management (SDM) template on the switch. You select the template by entering the `sdm prefer {default | dual-ipv4-and-ipv6}` global configuration command.

Understanding IPv6 ACLs

A switch image supports two types of IPv6 ACLs:
• IPv6 router ACLs - Supported on outbound or inbound traffic on Layer 3 interfaces, which can be routed ports, switch virtual interfaces (SVIs), or Layer 3 EtherChannels. Applied to only IPv6 packets that are routed.

• IPv6 port ACLs - Supported on inbound traffic on Layer 2 interfaces only. Applied to all IPv6 packets entering the interface.

Note If you configure unsupported IPv6 ACLs, an error message appears and the configuration does not take affect.

The switch does not support VLAN ACLs (VLAN maps) for IPv6 traffic.

You can apply both IPv4 and IPv6 ACLs to an interface.

As with IPv4 ACLs, IPv6 port ACLs take precedence over router ACLs:

• When an input router ACL and input port ACL exist in an SVI, packets received on ports to which a port ACL is applied are filtered by the port ACL. Routed IP packets received on other ports are filtered by the router ACL. Other packets are not filtered.

• When an output router ACL and input port ACL exist in an SVI, packets received on the ports to which a port ACL is applied are filtered by the port ACL. Outgoing routed IPv6 packets are filtered by the router ACL. Other packets are not filtered.

Note If any port ACL (IPv4, IPv6, or MAC) is applied to an interface, that port ACL is used to filter packets, and any router ACLs attached to the SVI of the port VLAN are ignored.

Supported ACL Features

IPv6 ACLs on the switch have these characteristics:

• Fragmented frames (the fragments keyword as in IPv4) are supported.

• The same statistics supported in IPv4 are supported for IPv6 ACLs.

• If the switch runs out of TCAM space, packets associated with the ACL label are forwarded to the CPU, and the ACLs are applied in software.

• Routed or bridged packets with hop-by-hop options have IPv6 ACLs applied in software.

• Logging is supported for router ACLs, but not for port ACLs.

IPv6 ACL Limitations

With IPv4, you can configure standard and extended numbered IP ACLs, named IP ACLs, and MAC ACLs. IPv6 supports only named ACLs.

The switch supports most Cisco IOS-supported IPv6 ACLs with some exceptions:
IPv6 source and destination addresses-ACL matching is supported only on prefixes from /0 to /64 and host addresses (/128) that are in the extended universal identifier (EUI)-64 format. The switch supports only these host addresses with no loss of information:

- aggregatable global unicast addresses
- link local addresses

- The switch does not support matching on these keywords: flowlabel, routing header, and undetermined-transport.

- The switch does not support reflexive ACLs (the reflect keyword).

- This release supports only port ACLs and router ACLs for IPv6; it does not support VLAN ACLs (VLAN maps).

- The switch does not apply MAC-based ACLs on IPv6 frames.

- You cannot apply IPv6 port ACLs to Layer 2 EtherChannels.

- The switch does not support output port ACLs.

- Output router ACLs and input port ACLs for IPv6 are supported only on . Switches support only control plane (incoming) IPv6 ACLs.

- When configuring an ACL, there is no restriction on keywords entered in the ACL, regardless of whether or not they are supported on the platform. When you apply the ACL to an interface that requires hardware forwarding (physical ports or SVIs), the switch checks to determine whether or not the ACL can be supported on the interface. If not, attaching the ACL is rejected.

- If an ACL is applied to an interface and you attempt to add an access control entry (ACE) with an unsupported keyword, the switch does not allow the ACE to be added to the ACL that is currently attached to the interface.

Configuring IPv6 ACLs

To filter IPv6 traffic, you perform these steps:

Before You Begin

Before configuring IPv6 ACLs, you must select one of the dual IPv4 and IPv6 SDM templates.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Create an IPv6 ACL, and enter IPv6 access list configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Configure the IPv6 ACL to block (deny) or pass (permit) traffic.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Apply the IPv6 ACL to an interface. For router ACLs, you must also configure an IPv6 address on the Layer 3 interface to which the ACL is applied.</td>
</tr>
</tbody>
</table>
Default IPv6 ACL Configuration

There are no IPv6 ACLs configured or applied.

Interaction with Other Features and Switches

- If an IPv6 router ACL is configured to deny a packet, the packet is not routed. A copy of the packet is sent to the Internet Control Message Protocol (ICMP) queue to generate an ICMP unreachable message for the frame.

- If a bridged frame is to be dropped due to a port ACL, the frame is not bridged.

- You can create both IPv4 and IPv6 ACLs on a switch or switch stack, and you can apply both IPv4 and IPv6 ACLs to the same interface. Each ACL must have a unique name; an error message appears if you try to use a name that is already configured.

You use different commands to create IPv4 and IPv6 ACLs and to attach IPv4 or IPv6 ACLs to the same Layer 2 or Layer 3 interface. If you use the wrong command to attach an ACL (for example, an IPv4 command to attach an IPv6 ACL), you receive an error message.

- You cannot use MAC ACLs to filter IPv6 frames. MAC ACLs can only filter non-IP frames.

- If the hardware memory is full, for any additional configured ACLs, packets are dropped to the CPU, and the ACLs are applied in software. When the hardware is full a message is printed to the console indicating the ACL has been unloaded and the packets will be dropped on the interface.

Note

Only packets of the same type as the ACL that could not be added (ipv4, ipv6, MAC) will be dropped on the interface.

Creating IPv6 ACL

Follow these steps to create an IPv6 ACL:

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 3</td>
<td>Define an IPv6 access list name, and enter IPv6 access-list configuration mode.</td>
</tr>
<tr>
<td><code>ipv6 access-list access-list-name</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td><code>ipv6 access-list access-list-name</code></td>
</tr>
</tbody>
</table>

Step 4	Enter deny or permit to specify whether to deny or permit the packet if conditions are matched. These are the conditions:						
Example:	`(deny	permit) protocol`					
`{deny	permit} protocol`						
`{source-ipv6-prefix/prefix-length	any	host source-ipv6-address}`					
`{destination-ipv6-prefix/prefix-length	any	host destination-ipv6-address}`					
`{operator	port-number}`						
`{dscp value	[fragments]	[log]	[log-input]	[routing]	[sequence value]	[time-range name]`	

- For protocol, enter the name or number of an Internet protocol: ahp, esp, icmp, ipv6, pcp, step, tcp, or udp, or an integer in the range 0 to 255 representing an IPv6 protocol number.
- The `source-ipv6-prefix/prefix-length or destination-ipv6-prefix/prefix-length` is the source or destination IPv6 network or class of networks for which to set deny or permit conditions, specified in hexadecimal and using 16-bit values between colons (see RFC 2373).
- Enter any as an abbreviation for the IPv6 prefix `::/0`.
- For `source-ipv6-address` or `destination-ipv6-address`, enter the source or destination IPv6 host address for which to set deny or permit conditions, specified in hexadecimal using 16-bit values between colons.
- (Optional) For operator, specify an operand that compares the source or destination ports of the specified protocol. Operands are lt (less than), gt (greater than), eq (equal), neq (not equal), and range.

If the operator follows the `source-ipv6-prefix/prefix-length argument`, it must match the source port. If the operator follows the `destination-ipv6-prefix/prefix-length argument`, it must match the destination port.

- (Optional) The `port-number` is a decimal number from 0 to 65535 or the name of a TCP or UDP port. You can use TCP port names only when filtering TCP. You can use UDP port names only when filtering UDP.
- (Optional) Enter `dscp value` to match a differentiated services code point value against the traffic class value in the Traffic Class field of each IPv6 packet header. The acceptable range is from 0 to 63.
- (Optional) Enter `fragments` to check noninitial fragments. This keyword is visible only if the protocol is ipv6.
Configuring IPv6 ACLs

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• (Optional) Enter log to cause an logging message to be sent to the console about the packet that matches the entry. Enter log-input to include the input interface in the log entry. Logging is supported only for router ACLs.</td>
<td></td>
</tr>
<tr>
<td>• (Optional) Enter routing to specify that IPv6 packets be routed.</td>
<td></td>
</tr>
<tr>
<td>• (Optional) Enter sequence value to specify the sequence number for the access list statement. The acceptable range is from 1 to 4294967295</td>
<td></td>
</tr>
<tr>
<td>• (Optional) Enter time-range name to specify the time range that applies to the deny or permit statement.</td>
<td></td>
</tr>
</tbody>
</table>

Step 5: \{deny|permit\} tcp

Example:
```
{deny | permit} tcp {source-ipv6-prefix/prefix-length | any | hostsource-ipv6-address}
[operator [port-number]]{destination-ipv6-prefix/prefix-length | any | hostdestination-ipv6-address}
[operator [port-number]][ack] [dscp value][established] [fin]
[log][log-input] [neq {port | protocol}] [psh] [range{port | protocol}] [rst][routing] [sequence value]
[syn] [time-range name][urg]
```

(Optional) Define a TCP access list and the access conditions. Enter tcp for Transmission Control Protocol. The parameters are the same as those described in Step 3, with these additional optional parameters:

- **ack**—Acknowledgment bit set.
- **established**—An established connection. A match occurs if the TCP datagram has the ACK or RST bits set.
- **fin**—Finished bit set; no more data from sender.
- **neq {port | protocol}**—Matches only packets that are not on a given port number.
- **psh**—Push function bit set.
- **range {port | protocol}**—Matches only packets in the port number range.
- **rst**—Reset bit set.
- **syn**—Synchronize bit set.
- **urg**—Urgent pointer bit set.

Step 6: \{deny|permit\} udp

Example:
```
{deny | permit} udp {source-ipv6-prefix/prefix-length | any | hostsource-ipv6-address}
[operator [port-number]]{destination-ipv6-prefix/prefix-length | any | hostdestination-ipv6-address}
[operator [port-number]][dscp value] [log][log-input]
[neq {port | protocol}] [range {port | protocol}] [routing][sequence value][time-range name]
```

(Optional) Define a UDP access list and the access conditions. Enter udp for the User Datagram Protocol. The UDP parameters are the same as those described for TCP, except that the operator [port] port number or name must be a UDP port number or name, and the established parameter is not valid for UDP.
Command or Action

Step 7	{deny	permit} icmp	Purpose	
Example:	{deny	permit} icmp	(Optional) Define an ICMP access list and the access conditions.	
	{source-ipv6-prefix/prefix-length	any	hostdestination-ipv6-address}	Enter icmp for Internet Control Message Protocol. The ICMP parameters are the same as those described for most IP protocols in Step 3a, with the addition of the ICMP message type and code parameters. These optional keywords have these meanings:
	[operator [port-number]]	• icmp-type—Enter to filter by ICMP message type, a number from 0 to 255.		
	{destination-ipv6-prefix/prefix-length	any	hostdestination-ipv6-address}	• icmp-code—Enter to filter ICMP packets that are filtered by the ICMP message code type, a number from 0 to 255.
	[operator [port-number]][icmp-type [icmp-code]	icmp-message] [dscpvalue] [log] [log-input] [routing] [sequence value][time-range name]	• icmp-message—Enter to filter ICMP packets by the ICMP message type name or the ICMP message type and code name. To see a list of ICMP message type names and code names, use the ? key or see command reference for this release.

| Step 8 | end | Returns to privileged EXEC mode. |
| **Example:** | Switch(config)# end | | |

| Step 9 | show ipv6 access-list | Verify the access list configuration. |
| **Example:** | show ipv6 access-list | | |

| Step 10 | show running-config | Verifies your entries. |
| **Example:** | Switch# show running-config | | |

| Step 11 | copy running-config startup-config | (Optional) Saves your entries in the configuration file. |
| **Example:** | Switch# copy running-config startup-config | | |
Applying an IPv6 ACL to an Interface

This section describes how to apply IPv6 ACLs to network interfaces. You can apply an ACL to outbound or inbound traffic on Layer 3 interfaces, or to inbound traffic on Layer 2 interfaces.

Beginning in privileged EXEC mode, follow these steps to control access to an interface:

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>

Example:
Switch# configure terminal

| **Step 2** | interface interface_id | Identify a Layer 2 interface (for port ACLs) or Layer 3 interface (for router ACLs) on which to apply an access list, and enter interface configuration mode. |

Example:
Switch# interface interface-id

| **Step 3** | no switchport | If applying a router ACL, change the interface from Layer 2 mode (the default) to Layer 3 mode. |

Example:
Switch# no switchport

| **Step 4** | ipv6 address ipv6_address | Configure an IPv6 address on a Layer 3 interface (for router ACLs). This command is not required on Layer 2 interfaces or if the interface has already been configured with an explicit IPv6 address. |

Example:
Switch# ipv6 address ipv6-address

| **Step 5** | ipv6 traffic-filter access-list-name | Apply the access list to incoming or outgoing traffic on the interface. The `out` keyword is not supported for Layer 2 interfaces (port ACLs). |

Example:
Switch# ipv6 traffic-filter access-list-name {in | out}

| **Step 6** | end | Returns to privileged EXEC mode. Alternatively, you can also press Ctrl-Z to exit global configuration mode. |

Example:
Switch(config)# end

| **Step 7** | show running-config | Verify the access list configuration. |

| **Step 8** | copy running-config startup-config | (Optional) Saves your entries in the configuration file. |

Example:
copy running-config startup-config

Displaying IPv6 ACLs

You can display information about all configured access lists, all IPv6 access lists, or a specific access list by using one or more of the privileged EXEC commands.
Configuration Examples for IPv6 ACL

Example: Creating IPv6 ACL

This example configures the IPv6 access list named CISCO. The first deny entry in the list denies all packets that have a destination TCP port number greater than 5000. The second deny entry denies packets that have a source UDP port number less than 5000. The second deny also logs all matches to the console. The first permit entry in the list permits all ICMP packets. The second permit entry in the list permits all other traffic. The second permit entry is necessary because an implicit deny-all condition is at the end of each IPv6 access list.

Note

Logging is supported only on Layer 3 interfaces.

```
Switch(config)# ipv6 access-list CISCO
Switch(config-ipv6-acl)# deny tcp any any gt 5000
Switch (config-ipv6-acl)# deny ::/0 lt 5000 ::/0 log
Switch(config-ipv6-acl)# permit icmp any any
Switch(config-ipv6-acl)# permit any any
```

Example: Applying IPv6 ACLs

This example shows how to apply the access list Cisco to outbound traffic on a Layer 3 interface.

```
Switch(config-if)# no switchport
Switch(config-if)# ipv6 address 2001::/64 eui-64
Switch(config-if)# ipv6 traffic-filter CISCO out
```

Example: Displaying IPv6 ACLs

This is an example of the output from the `show access-lists` privileged EXEC command. The output shows all access lists that are configured on the switch or switch stack.

```
Switch #show access-lists
Extended IP access list hello
10 permit ip any any
```
IPv6 access list ipv6
permit ipv6 any any sequence 10
This is an example of the output from the show ipv6 access-lists privileged EXEC command. The output shows only IPv6 access lists configured on the switch or switch stack.
Switch# show ipv6 access-list
IPv6 access list inbound
permit tcp any any eq bgp (8 matches) sequence 10
permit tcp any any eq telnet (15 matches) sequence 20
permit udp any any sequence 30
IPv6 access list outbound
deny udp any any sequence 10
deny tcp any any eq telnet sequence 20
Layer 2

- Configuring Spanning Tree Protocol, page 255
- Configuring Multiple Spanning-Tree Protocol, page 285
- Configuring Optional Spanning-Tree Features, page 331
- Configuring EtherChannels, page 367
- Configuring Link-State Tracking, page 411
- Configuring Flex Links and the MAC Address-Table Move Update Feature, page 419
- Configuring UniDirectional Link Detection, page 441
CHAPTER 15

Configuring Spanning Tree Protocol

- Finding Feature Information, page 255
- Restrictions for STP, page 255
- Information About Spanning Tree Protocol, page 256
- How to Configure Spanning-Tree Features, page 268
- Monitoring Spanning-Tree Status, page 282
- Feature Information for STP, page 283

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Restrictions for STP

- An attempt to configure a switch as the root switch fails if the value necessary to be the root switch is less than 1.
- If your network consists of switches that support and do not support the extended system ID, it is unlikely that the switch with the extended system ID support will become the root switch. The extended system ID increases the switch priority value every time the VLAN number is greater than the priority of the connected switches running older software.
- The root switch for each spanning-tree instance should be a backbone or distribution switch. Do not configure an access switch as the spanning-tree primary root.
Information About Spanning Tree Protocol

Spanning Tree Protocol

Spanning Tree Protocol (STP) is a Layer 2 link management protocol that provides path redundancy while preventing loops in the network. For a Layer 2 Ethernet network to function properly, only one active path can exist between any two stations. Multiple active paths among end stations cause loops in the network. If a loop exists in the network, end stations might receive duplicate messages. Switches might also learn end-station MAC addresses on multiple Layer 2 interfaces. These conditions result in an unstable network. Spanning-tree operation is transparent to end stations, which cannot detect whether they are connected to a single LAN segment or a switched LAN of multiple segments.

The STP uses a spanning-tree algorithm to select one switch of a redundantly connected network as the root of the spanning tree. The algorithm calculates the best loop-free path through a switched Layer 2 network by assigning a role to each port based on the role of the port in the active topology:

- **Root**—A forwarding port elected for the spanning-tree topology
- **Designated**—A forwarding port elected for every switched LAN segment
- **Alternate**—A blocked port providing an alternate path to the root bridge in the spanning tree
- **Backup**—A blocked port in a loopback configuration

The switch that has all of its ports as the designated role or as the backup role is the root switch. The switch that has at least one of its ports in the designated role is called the designated switch.

Spanning tree forces redundant data paths into a standby (blocked) state. If a network segment in the spanning tree fails and a redundant path exists, the spanning-tree algorithm recalculates the spanning-tree topology and activates the standby path. Switches send and receive spanning-tree frames, called bridge protocol data units (BPDUs), at regular intervals. The switches do not forward these frames but use them to construct a loop-free path. BPDUs contain information about the sending switch and its ports, including switch and MAC addresses, switch priority, port priority, and path cost. Spanning tree uses this information to elect the root switch and root port for the switched network and the root port and designated port for each switched segment.

When two ports on a switch are part of a loop, the spanning-tree and path cost settings control which port is put in the forwarding state and which is put in the blocking state. The spanning-tree port priority value represents the location of a port in the network topology and how well it is located to pass traffic. The path cost value represents the media speed.

Note

By default, the switch sends keepalive messages (to ensure the connection is up) only on interfaces that do not have small form-factor pluggable (SFP) modules. You can change the default for an interface by entering the [no] keepalive interface configuration command with no keywords.
Spanning-Tree Topology and BPDUs

The stable, active spanning-tree topology of a switched network is controlled by these elements:

- The unique bridge ID (switch priority and MAC address) associated with each VLAN on each switch. In a switch stack, all switches use the same bridge ID for a given spanning-tree instance.
- The spanning-tree path cost to the root switch.
- The port identifier (port priority and MAC address) associated with each Layer 2 interface.

When the switches in a network are powered up, each functions as the root switch. Each switch sends a configuration BPDU through all of its ports. The BPDUs communicate and compute the spanning-tree topology. Each configuration BPDU contains this information:

- The unique bridge ID of the switch that the sending switch identifies as the root switch
- The spanning-tree path cost to the root
- The bridge ID of the sending switch
- Message age
- The identifier of the sending interface
- Values for the hello, forward delay, and max-age protocol timers

When a switch receives a configuration BPDU that contains superior information (lower bridge ID, lower path cost, and so forth), it stores the information for that port. If this BPDU is received on the root port of the switch, the switch also forwards it with an updated message to all attached LANs for which it is the designated switch.

If a switch receives a configuration BPDU that contains inferior information to that currently stored for that port, it discards the BPDU. If the switch is a designated switch for the LAN from which the inferior BPDU was received, it sends that LAN a BPDU containing the up-to-date information stored for that port. In this way, inferior information is discarded, and superior information is propagated on the network.

A BPDU exchange results in these actions:

- One switch in the network is elected as the root switch (the logical center of the spanning-tree topology in a switched network). See the figure following the bullets.

For each VLAN, the switch with the highest switch priority (the lowest numerical priority value) is elected as the root switch. If all switches are configured with the default priority (32768), the switch with the lowest MAC address in the VLAN becomes the root switch. The switch priority value occupies the most significant bits of the bridge ID, as shown in the following figure.

- A root port is selected for each switch (except the root switch). This port provides the best path (lowest cost) when the switch forwards packets to the root switch.
- Only one outgoing port on the stack root switch is selected as the root port. The remaining switches in the stack become its designated switches (Switch 2 and Switch 3) as shown in the following figure.
- The shortest distance to the root switch is calculated for each switch based on the path cost.
- A designated switch for each LAN segment is selected. The designated switch incurs the lowest path cost when forwarding packets from that LAN to the root switch. The port through which the designated switch is attached to the LAN is called the designated port.
One stack member is elected as the stack root switch. The stack root switch contains the outgoing root port (Switch 1).

Figure 11: Spanning-Tree Port States in a Switch Stack

All paths that are not needed to reach the root switch from anywhere in the switched network are placed in the spanning-tree blocking mode.

Related Topics
- Configuring the Root Switch, on page 271
- Restrictions for STP, on page 255

Bridge ID, Device Priority, and Extended System ID

The IEEE 802.1D standard requires that each switch has an unique bridge identifier (bridge ID), which controls the selection of the root switch. Because each VLAN is considered as a different logical bridge with PVST+ and Rapid PVST+, the same switch must have a different bridge ID for each configured VLAN. Each VLAN on the switch has a unique 8-byte bridge ID. The 2 most-significant bytes are used for the switch priority, and the remaining 6 bytes are derived from the switch MAC address.

The switch supports the IEEE 802.1t spanning-tree extensions, and some of the bits previously used for the switch priority are now used as the VLAN identifier. The result is that fewer MAC addresses are reserved for the switch, and a larger range of VLAN IDs can be supported, all while maintaining the uniqueness of the bridge ID.

The 2 bytes previously used for the switch priority are reallocated into a 4-bit priority value and a 12-bit extended system ID value equal to the VLAN ID.
Table 33: Device Priority Value and Extended System ID

<table>
<thead>
<tr>
<th>Priority Value</th>
<th>Extended System ID (Set Equal to the VLAN ID)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 16</td>
<td>Bit 15</td>
</tr>
<tr>
<td>32768</td>
<td>16384</td>
</tr>
</tbody>
</table>

Spanning tree uses the extended system ID, the switch priority, and the allocated spanning-tree MAC address to make the bridge ID unique for each VLAN. Because the switch stack appears as a single switch to the rest of the network, all switches in the stack use the same bridge ID for a given spanning tree. If the stack master fails, the stack members recalculate their bridge IDs of all running spanning trees based on the new MAC address of the new stack master.

Support for the extended system ID affects how you manually configure the root switch, the secondary root switch, and the switch priority of a VLAN. For example, when you change the switch priority value, you change the probability that the switch will be elected as the root switch. Configuring a higher value decreases the probability; a lower value increases the probability.

If any root switch for the specified VLAN has a switch priority lower than 24576, the switch sets its own priority for the specified VLAN to 4096 less than the lowest switch priority. 4096 is the value of the least-significant bit of a 4-bit switch priority value as shown in the table.

Related Topics
- Configuring the Root Switch, on page 271
- Restrictions for STP, on page 255
- Configuring the Root Switch, on page 307
- Root Switch, on page 288
- Specifying the MST Region Configuration and Enabling MSTP, on page 305

Port Priority Versus Path Cost

If a loop occurs, spanning tree uses port priority when selecting an interface to put into the forwarding state. You can assign higher priority values (lower numerical values) to interfaces that you want selected first and lower priority values (higher numerical values) that you want selected last. If all interfaces have the same priority value, spanning tree puts the interface with the lowest interface number in the forwarding state and blocks the other interfaces.

The spanning-tree path cost default value is derived from the media speed of an interface. If a loop occurs, spanning tree uses cost when selecting an interface to put in the forwarding state. You can assign lower cost values to interfaces that you want selected first and higher cost values that you want selected last. If all interfaces have the same cost value, spanning tree puts the interface with the lowest interface number in the forwarding state and blocks the other interfaces.

If your switch is a member of a switch stack, you must assign lower cost values to interfaces that you want selected first and higher cost values that you want selected last instead of adjusting its port priority. For details, see Related Topics.

Related Topics
- Configuring Port Priority, on page 274
Spanning-Tree Interface States

Propagation delays can occur when protocol information passes through a switched LAN. As a result, topology changes can take place at different times and at different places in a switched network. When an interface transitions directly from nonparticipation in the spanning-tree topology to the forwarding state, it can create temporary data loops. Interfaces must wait for new topology information to propagate through the switched LAN before starting to forward frames. They must allow the frame lifetime to expire for forwarded frames that have used the old topology.

Each Layer 2 interface on a switch using spanning tree exists in one of these states:

- **Blocking**—The interface does not participate in frame forwarding.
- **Listening**—The first transitional state after the blocking state when the spanning tree decides that the interface should participate in frame forwarding.
- **Learning**—The interface prepares to participate in frame forwarding.
- **Forwarding**—The interface forwards frames.
- **Disabled**—The interface is not participating in spanning tree because of a shutdown port, no link on the port, or no spanning-tree instance running on the port.

An interface moves through these states:

- From initialization to blocking
- From blocking to listening or to disabled
- From listening to learning or to disabled
- From learning to forwarding or to disabled
- From forwarding to disabled
An interface moves through the states.

Figure 12: Spanning-Tree Interface States

When you power up the switch, spanning tree is enabled by default, and every interface in the switch, VLAN, or network goes through the blocking state and the transitory states of listening and learning. Spanning tree stabilizes each interface at the forwarding or blocking state.

When the spanning-tree algorithm places a Layer 2 interface in the forwarding state, this process occurs:

1. The interface is in the listening state while spanning tree waits for protocol information to move the interface to the blocking state.
2. While spanning tree waits for the forward-delay timer to expire, it moves the interface to the learning state and resets the forward-delay timer.
3. In the learning state, the interface continues to block frame forwarding as the switch learns end-station location information for the forwarding database.
4. When the forward-delay timer expires, spanning tree moves the interface to the forwarding state, where both learning and frame forwarding are enabled.

Blocking State

A Layer 2 interface in the blocking state does not participate in frame forwarding. After initialization, a BPDU is sent to each switch interface. A switch initially functions as the root until it exchanges BPDUs with other switches. This exchange establishes which switch in the network is the root or root switch. If there is only one switch in the network, no exchange occurs, the forward-delay timer expires, and the interface moves to the listening state. An interface always enters the blocking state after switch initialization.

An interface in the blocking state performs these functions:

- Discards frames received on the interface
- Discards frames switched from another interface for forwarding
- Does not learn addresses
- Receives BPDUs

Listening State

The listening state is the first state a Layer 2 interface enters after the blocking state. The interface enters this state when the spanning tree decides that the interface should participate in frame forwarding.

An interface in the listening state performs these functions:

- Discards frames received on the interface
- Discards frames switched from another interface for forwarding
- Does not learn addresses
- Receives BPDUs

Learning State

A Layer 2 interface in the learning state prepares to participate in frame forwarding. The interface enters the learning state from the listening state.

An interface in the learning state performs these functions:

- Discards frames received on the interface
- Discards frames switched from another interface for forwarding
- Learns addresses
- Receives BPDUs

Forwarding State

A Layer 2 interface in the forwarding state forwards frames. The interface enters the forwarding state from the learning state.

An interface in the forwarding state performs these functions:

- Receives and forwards frames received on the interface
- Forwards frames switched from another interface
- Learns addresses
- Receives BPDUs

Disabled State

A Layer 2 interface in the disabled state does not participate in frame forwarding or in the spanning tree. An interface in the disabled state is nonoperational.

A disabled interface performs these functions:

- Discards frames received on the interface
- Discards frames switched from another interface for forwarding
- Does not learn addresses
- Does not receive BPDUs
How a Switch or Port Becomes the Root Switch or Root Port

If all switches in a network are enabled with default spanning-tree settings, the switch with the lowest MAC address becomes the root switch.

Switch A is elected as the root switch because the switch priority of all the switches is set to the default (32768) and Switch A has the lowest MAC address. However, because of traffic patterns, number of forwarding interfaces, or link types, Switch A might not be the ideal root switch. By increasing the priority (lowering the numerical value) of the ideal switch so that it becomes the root switch, you force a spanning-tree recalculation to form a new topology with the ideal switch as the root.

Figure 13: Spanning-Tree Topology

When the spanning-tree topology is calculated based on default parameters, the path between source and destination end stations in a switched network might not be ideal. For instance, connecting higher-speed links to an interface that has a higher number than the root port can cause a root-port change. The goal is to make the fastest link the root port.

For example, assume that one port on Switch B is a Gigabit Ethernet link and that another port on Switch B (a 10/100 link) is the root port. Network traffic might be more efficient over the Gigabit Ethernet link. By changing the spanning-tree port priority on the Gigabit Ethernet port to a higher priority (lower numerical value) than the root port, the Gigabit Ethernet port becomes the new root port.

Related Topics

Configuring Port Priority, on page 274

Spanning Tree and Redundant Connectivity

You can create a redundant backbone with spanning tree by connecting two switch interfaces to another device or to two different devices. Spanning tree automatically disables one interface but enables it if the other one fails. If one link is high-speed and the other is low-speed, the low-speed link is always disabled. If the speeds...
are the same, the port priority and port ID are added together, and spanning tree disables the link with the highest value.

Figure 14: Spanning Tree and Redundant Connectivity

You can also create redundant links between switches by using EtherChannel groups.

Spanning-Tree Address Management

IEEE 802.1D specifies 17 multicast addresses, ranging from 0x00180c200000 to 0x0180c2000010, to be used by different bridge protocols. These addresses are static addresses that cannot be removed.

Regardless of the spanning-tree state, each switch in the stack receives but does not forward packets destined for addresses between 0x0180c200000 and 0x0180c20000f.

If spanning tree is enabled, the CPU on the switch or on each switch in the stack receives packets destined for 0x0180c2000000 and 0x0180c2000010. If spanning tree is disabled, the switch or each switch in the stack forwards those packets as unknown multicast addresses.

Accelerated Aging to Retain Connectivity

The default for aging dynamic addresses is 5 minutes, the default setting of the `mac address-table aging-time` global configuration command. However, a spanning-tree reconfiguration can cause many station locations to change. Because these stations could be unreachable for 5 minutes or more during a reconfiguration, the address-aging time is accelerated so that station addresses can be dropped from the address table and then relearned. The accelerated aging is the same as the forward-delay parameter value (`spanning-tree vlan vlan-id forward-time seconds` global configuration command) when the spanning tree reconfigures.

Because each VLAN is a separate spanning-tree instance, the switch accelerates aging on a per-VLAN basis. A spanning-tree reconfiguration on one VLAN can cause the dynamic addresses learned on that VLAN to be subject to accelerated aging. Dynamic addresses on other VLANs can be unaffected and remain subject to the aging interval entered for the switch.

Related Topics

- Configuring the Root Switch, on page 271
- Restrictions for STP, on page 255
Spanning-Tree Modes and Protocols

The switch supports these spanning-tree modes and protocols:

• **PVST+**—This spanning-tree mode is based on the IEEE 802.1D standard and Cisco proprietary extensions. The PVST+ runs on each VLAN on the switch up to the maximum supported, ensuring that each has a loop-free path through the network.

 The PVST+ provides Layer 2 load-balancing for the VLAN on which it runs. You can create different logical topologies by using the VLANs on your network to ensure that all of your links are used but that no one link is oversubscribed. Each instance of PVST+ on a VLAN has a single root switch. This root switch propagates the spanning-tree information associated with that VLAN to all other switches in the network. Because each switch has the same information about the network, this process ensures that the network topology is maintained.

• **Rapid PVST+**—This spanning-tree mode is the same as PVST+ except that is uses a rapid convergence based on the IEEE 802.1w standard. Beginning from 15.2(4)E release, the STP default mode is Rapid PVST+. To provide rapid convergence, the Rapid PVST+ immediately deletes dynamically learned MAC address entries on a per-port basis upon receiving a topology change. By contrast, PVST+ uses a short aging time for dynamically learned MAC address entries.

 Rapid PVST+ uses the same configuration as PVST+ (except where noted), and the switch needs only minimal extra configuration. The benefit of Rapid PVST+ is that you can migrate a large PVST+ install to Rapid PVST+ without having to learn the complexities of the Multiple Spanning Tree Protocol (MSTP) configuration and without having to reprovision your network. In Rapid PVST+ mode, each VLAN runs its own spanning-tree instance up to the maximum supported.

• **MSTP**—This spanning-tree mode is based on the IEEE 802.1s standard. You can map multiple VLANs to the same spanning-tree instance, which reduces the number of spanning-tree instances required to support a large number of VLANs. The MSTP runs on top of the RSTP (based on IEEE 802.1w), which provides for rapid convergence of the spanning tree by eliminating the forward delay and by quickly transitioning root ports and designated ports to the forwarding state. In a switch stack, the cross-stack rapid transition (CSRT) feature performs the same function as RSTP. You cannot run MSTP without RSTP or CSRT.

Related Topics

- **Changing the Spanning-Tree Mode**, on page 268

Supported Spanning-Tree Instances

In PVST+ or Rapid PVST+ mode, the switch or switch stack supports up to 128 spanning-tree instances.

In MSTP mode, the switch or switch stack supports up to 65 MST instances. The number of VLANs that can be mapped to a particular MST instance is unlimited.

Related Topics

- **Disabling Spanning Tree**, on page 270
- **Default Spanning-Tree Configuration**, on page 267
- **Default MSTP Configuration**, on page 301
Spanning-Tree Interoperability and Backward Compatibility

In a mixed MSTP and PVST+ network, the common spanning-tree (CST) root must be inside the MST backbone, and a PVST+ switch cannot connect to multiple MST regions.

When a network contains switches running Rapid PVST+ and switches running PVST+, we recommend that the Rapid PVST+ switches and PVST+ switches be configured for different spanning-tree instances. In the Rapid PVST+ spanning-tree instances, the root switch must be a Rapid PVST+ switch. In the PVST+ instances, the root switch must be a PVST+ switch. The PVST+ switches should be at the edge of the network.

All stack members run the same version of spanning tree (all PVST+, all Rapid PVST+, or all MSTP).

Table 34: PVST+, MSTP, and Rapid-PVST+ Interoperability and Compatibility

<table>
<thead>
<tr>
<th></th>
<th>PVST+</th>
<th>MSTP</th>
<th>Rapid PVST+</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVST+</td>
<td>Yes</td>
<td>Yes (with restrictions)</td>
<td>Yes (reverts to PVST+)</td>
</tr>
<tr>
<td>MSTP</td>
<td>Yes (with restrictions)</td>
<td>Yes</td>
<td>Yes (reverts to PVST+)</td>
</tr>
<tr>
<td>Rapid PVST+</td>
<td>Yes (reverts to PVST+)</td>
<td>Yes (reverts to PVST+)</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Related Topics

- Specifying the MST Region Configuration and Enabling MSTP, on page 305
- MSTP Configuration Guidelines, on page 287
- Multiple Spanning-Tree Regions, on page 289

STP and IEEE 802.1Q Trunks

The IEEE 802.1Q standard for VLAN trunks imposes some limitations on the spanning-tree strategy for a network. The standard requires only one spanning-tree instance for all VLANs allowed on the trunks. However, in a network of Cisco switches connected through IEEE 802.1Q trunks, the switches maintain one spanning-tree instance for each VLAN allowed on the trunks.

When you connect a Cisco switch to a non-Cisco device through an IEEE 802.1Q trunk, the Cisco switch uses PVST+ to provide spanning-tree interoperability. If Rapid PVST+ is enabled, the switch uses it instead of PVST+. The switch combines the spanning-tree instance of the IEEE 802.1Q VLAN of the trunk with the spanning-tree instance of the non-Cisco IEEE 802.1Q switch.

However, all PVST+ or Rapid PVST+ information is maintained by Cisco switches separated by a cloud of non-Cisco IEEE 802.1Q switches. The non-Cisco IEEE 802.1Q cloud separating the Cisco switches is treated as a single trunk link between the switches.

Rapid PVST+ is automatically enabled on IEEE 802.1Q trunks, and no user configuration is required. The external spanning-tree behavior on access ports and Inter-Switch Link (ISL) trunk ports is not affected by PVST+.

VLAN-Bridge Spanning Tree

Cisco VLAN-bridge spanning tree is used with the fallback bridging feature (bridge groups), which forwards non-IP protocols such as DECnet between two or more VLAN bridge domains or routed ports. The
VLAN-bridge spanning tree allows the bridge groups to form a spanning tree on top of the individual VLAN spanning trees to prevent loops from forming if there are multiple connections among VLANs. It also prevents the individual spanning trees from the VLANs being bridged from collapsing into a single spanning tree.

To support VLAN-bridge spanning tree, some of the spanning-tree timers are increased. To use the fallback bridging feature, you must have the IP services feature set enabled on your switch.

Spanning Tree and Switch Stacks

When the switch stack is operating in PVST+ or Rapid PVST+ mode:

- A switch stack appears as a single spanning-tree node to the rest of the network, and all stack members use the same bridge ID for a given spanning tree. The bridge ID is derived from the MAC address of the stack master.

- When a new switch joins the stack, it sets its bridge ID to the stack master bridge ID. If the newly added switch has the lowest ID and if the root path cost is the same among all stack members, the newly added switch becomes the stack root.

- When a stack member leaves the stack, spanning-tree reconvergence occurs within the stack (and possibly outside the stack). The remaining stack member with the lowest stack port ID becomes the stack root.

- If the stack master fails or leaves the stack, the stack members elect a new stack master, and all stack members change their bridge IDs of the spanning trees to the new master bridge ID.

- If the switch stack is the spanning-tree root and the stack master fails or leaves the stack, the stack members elect a new stack master, and a spanning-tree reconvergence occurs.

- If a neighboring switch external to the switch stack fails or is powered down, normal spanning-tree processing occurs. Spanning-tree reconvergence might occur as a result of losing a switch in the active topology.

- If a new switch external to the switch stack is added to the network, normal spanning-tree processing occurs. Spanning-tree reconvergence might occur as a result of adding a switch in the network.

Default Spanning-Tree Configuration

Table 35: Default Spanning-Tree Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable state</td>
<td>Enabled on VLAN 1.</td>
</tr>
<tr>
<td>Spanning-tree mode</td>
<td>Rapid PVST+ (PVST+ and MSTP are disabled.)</td>
</tr>
<tr>
<td>Switch priority</td>
<td>32768</td>
</tr>
<tr>
<td>Spanning-tree port priority (configurable on a per-interface basis)</td>
<td>128</td>
</tr>
</tbody>
</table>
How to Configure Spanning-Tree Features

Changing the Spanning-Tree Mode

The switch supports three spanning-tree modes: per-VLAN spanning tree plus (PVST+), Rapid PVST+, or multiple spanning tree protocol (MSTP). By default, the switch runs the Rapid PVST+ protocol.

If you want to enable a mode that is different from the default mode, this procedure is required.

How to Configure Spanning-Tree Features

Note

Beginning in Cisco IOS Release 15.2(4)E, the default STP mode is Rapid PVST+.

Related Topics

- Disabling Spanning Tree, on page 270
- Supported Spanning-Tree Instances, on page 265

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
</table>
| Spanning-tree port cost (configurable on a per-interface basis) | 1000 Mb/s: 4
 100 Mb/s: 19
 10 Mb/s: 100 |
| Spanning-tree VLAN port priority (configurable on a per-VLAN basis) | 128 |
| Spanning-tree VLAN port cost (configurable on a per-VLAN basis) | 1000 Mb/s: 4
 100 Mb/s: 19
 10 Mb/s: 100 |
| Spanning-tree timers | Hello time: 2 seconds
 Forward-delay time: 15 seconds
 Maximum-aging time: 20 seconds
 Transmit hold count: 6 BPDUs |
SUMMARY STEPS

1. enable
2. configure terminal
3. spanning-tree mode {pvst | mst | rapid-pvst}
4. interface interface-id
5. spanning-tree link-type point-to-point
6. end
7. clear spanning-tree detected-protocols

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 spanning-tree mode {pvst</td>
<td>mst</td>
</tr>
</tbody>
</table>
| Example: Switch(config)# spanning-tree mode pvst | - Select **pvst** to enable PVST+.
- Select **mst** to enable MSTP.
- Select **rapid-pvst** to enable rapid PVST+. |
| **Step 4** interface interface-id | Specifies an interface to configure, and enters interface configuration mode. Valid interfaces include physical ports, VLANs, and port channels. The VLAN ID range is 1 to 4094. The port-channel range is 1 to 48. |
| Example: Switch(config)# interface GigabitEthernet1/0/1 | |
| **Step 5** spanning-tree link-type point-to-point | Specifies that the link type for this port is point-to-point. |
| Example: Switch(config-if)# spanning-tree link-type point-to-point | If you connect this port (local port) to a remote port through a point-to-point link and the local port becomes a designated port, the switch negotiates with the remote port and rapidly changes the local port to the forwarding state. |
Command or Action | Purpose
--- | ---
Step 6 | end
Example:
Switch(config-if)# **end**
Returns to privileged EXEC mode.

### Command or Action	Purpose
Step 7 | clear spanning-tree detected-protocols
Example:
Switch# clear spanning-tree detected-protocols
If any port on the switch is connected to a port on a legacy IEEE 802.1D switch, this command restarts the protocol migration process on the entire switch.
This step is optional if the designated switch detects that this switch is running rapid PVST+.

Related Topics
Spanning-Tree Modes and Protocols, on page 265

Disabling Spanning Tree
Spanning tree is enabled by default on VLAN 1 and on all newly created VLANs up to the spanning-tree limit. Disable spanning tree only if you are sure there are no loops in the network topology.

\[\text{Caution} \]
When spanning tree is disabled and loops are present in the topology, excessive traffic and indefinite packet duplication can drastically reduce network performance.

This procedure is optional.

SUMMARY STEPS
1. enable
2. configure terminal
3. no spanning-tree vlan \(vlan-id \)
4. end

DETAILED STEPS

Command or Action	Purpose
Step 1 | enable
Example:
Switch> **enable**
Enables privileged EXEC mode. Enter your password if prompted.
Purpose

Command or Action	**Purpose**
Step 2 | configure terminal | Enters the global configuration mode.

Example:

Switch# configure terminal

Step 3 | no spanning-tree vlan vlan-id | For vlan-id, the range is 1 to 4094.

Example:

Switch(config)# no spanning-tree vlan 300

Step 4 | end | Returns to privileged EXEC mode.

Example:

Switch(config)# end

Related Topics

- [Supported Spanning-Tree Instances](#), on page 265
- [Default Spanning-Tree Configuration](#), on page 267

Configuring the Root Switch

To configure a switch as the root for the specified VLAN, use the `spanning-tree vlan vlan-id root` global configuration command to modify the switch priority from the default value (32768) to a significantly lower value. When you enter this command, the software checks the switch priority of the root switches for each VLAN. Because of the extended system ID support, the switch sets its own priority for the specified VLAN to 24576 if this value will cause this switch to become the root for the specified VLAN.

Use the `diameter` keyword to specify the Layer 2 network diameter (that is, the maximum number of switch hops between any two end stations in the Layer 2 network). When you specify the network diameter, the switch automatically sets an optimal hello time, forward-delay time, and maximum-age time for a network of that diameter, which can significantly reduce the convergence time. You can use the `hello` keyword to override the automatically calculated hello time.

This procedure is optional.

SUMMARY STEPS

1. enable
2. configure terminal
3. spanning-tree vlan vlan-id root primary [diameter net-diameter]
4. end
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>spanning-tree vlan vlan-id root primary [diameter net-diameter]</td>
<td>Configures a switch to become the root for the specified VLAN.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# spanning-tree vlan 20-24 root primary diameter 4</td>
<td>- For vlan-id, you can specify a single VLAN identified by VLAN ID number, a range of VLANs separated by a hyphen, or a series of VLANs separated by a comma. The range is 1 to 4094.
- (Optional) For diameter net-diameter, specify the maximum number of switches between any two end stations. The range is 2 to 7.</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# end</td>
<td></td>
</tr>
</tbody>
</table>

What to Do Next
After configuring the switch as the root switch, we recommend that you avoid manually configuring the hello time, forward-delay time, and maximum-age time through the `spanning-tree vlan vlan-id hello-time`, `spanning-tree vlan vlan-id forward-time`, and the `spanning-tree vlan vlan-id max-age` global configuration commands.

Related Topics
- Bridge ID, Device Priority, and Extended System ID, on page 258
- Spanning-Tree Topology and BPDUs, on page 257
- Accelerated Aging to Retain Connectivity, on page 264
- Restrictions for STP, on page 255
Configuring a Secondary Root Device

When you configure a switch as the secondary root, the switch priority is modified from the default value (32768) to 28672. With this priority, the switch is likely to become the root switch for the specified VLAN if the primary root switch fails. This is assuming that the other network switches use the default switch priority of 32768, and therefore, are unlikely to become the root switch.

You can execute this command on more than one switch to configure multiple backup root switches. Use the same network diameter and hello-time values that you used when you configured the primary root switch with the `spanning-tree vlan vlan-id root primary` global configuration command.

This procedure is optional.

SUMMARY STEPS

1. enable
2. configure
terminal
3. spanning-tree vlan vlan-id root secondary
4. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch> enable</td>
</tr>
<tr>
<td></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>spanning-tree vlan vlan-id root secondary [diameter net-diameter]</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# spanning-tree vlan 20-24 root secondary diameter 4</td>
</tr>
<tr>
<td></td>
<td>Configures a switch to become the secondary root for the specified VLAN.</td>
</tr>
<tr>
<td></td>
<td>• For <code>vlan-id</code>, you can specify a single VLAN identified by VLAN ID number, a range of VLANs separated by a hyphen, or a series of VLANs separated by a comma. The range is 1 to 4094.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For <code>diameter net-diameter</code>, specify the maximum number of switches between any two end stations. The range is 2 to 7.</td>
</tr>
<tr>
<td></td>
<td>Use the same network diameter value that you used when configuring the primary root switch.</td>
</tr>
</tbody>
</table>
Configuring Port Priority

If your switch is a member of a switch stack, you must use the **spanning-tree [vlan vlan-id] cost cost** interface configuration command instead of the **spanning-tree [vlan vlan-id] port-priority priority** interface configuration command to select an interface to put in the forwarding state. Assign lower cost values to interfaces that you want selected first and higher cost values that you want selected last.

This procedure is optional.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface interface-id`
4. `spanning-tree port-priority priority`
5. `spanning-tree vlan vlan-id port-priority priority`
6. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: <code>Switch> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters the global configuration mode.</td>
</tr>
</tbody>
</table>
| Example: `Switch# configure terminal` | }
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td>interface interface-id
Example:
Switch(config)# interface gigabitethernet1/0/2</td>
</tr>
<tr>
<td>Step 4</td>
<td>spanning-tree port-priority priority
Example:
Switch(config-if)# spanning-tree port-priority 0</td>
</tr>
<tr>
<td>Step 5</td>
<td>spanning-tree vlan vlan-id port-priority priority
Example:
Switch(config-if)# spanning-tree vlan 20-25 port-priority 0</td>
</tr>
<tr>
<td>Step 6</td>
<td>end
Example:
Switch(config-if)# end</td>
</tr>
</tbody>
</table>

Related Topics
- Port Priority Versus Path Cost, on page 259
- How a Switch or Port Becomes the Root Switch or Root Port, on page 263

Configuring Path Cost
This procedure is optional.
SUMMARY STEPS

1. enable
2. configure terminal
3. interface interface-id
4. spanning-tree cost cost
5. spanning-tree vlan vlan-id cost
6. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface interface-id</td>
<td>Specifies an interface to configure, and enters interface configuration mode. Valid interfaces include physical ports and port-channel logical interfaces (port-channel port-channel-number).</td>
</tr>
<tr>
<td>Example: Switch(config)# interface gigabitethernet1/0/1</td>
<td></td>
</tr>
<tr>
<td>Step 4 spanning-tree cost cost</td>
<td>Configures the cost for an interface. If a loop occurs, spanning tree uses the path cost when selecting an interface to place into the forwarding state. A lower path cost represents higher-speed transmission. For cost, the range is 1 to 200000000; the default value is derived from the media speed of the interface.</td>
</tr>
<tr>
<td>Example: Switch(config-if)# spanning-tree cost 250</td>
<td></td>
</tr>
<tr>
<td>Step 5 spanning-tree vlan vlan-id cost</td>
<td>Configures the cost for a VLAN. If a loop occurs, spanning tree uses the path cost when selecting an interface to place into the forwarding state. A lower path cost represents higher-speed transmission.</td>
</tr>
<tr>
<td>Example: Switch(config-if)# spanning-tree vlan 10,12-15,20 cost 300</td>
<td></td>
</tr>
<tr>
<td>• For vlan-id, you can specify a single VLAN identified by VLAN ID number, a range of VLANs separated by a hyphen, or a series of VLANs separated by a comma. The range is 1 to 4094.</td>
<td></td>
</tr>
<tr>
<td>• For cost, the range is 1 to 200000000; the default value is derived from the media speed of the interface.</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action | Purpose
--- | ---
Step 6 | **end**
Example:
Switch(config-if)# end | Returns to privileged EXEC mode.

The **show spanning-tree interface interface-id** privileged EXEC command displays information only for ports that are in a link-up operative state. Otherwise, you can use the **show running-config** privileged EXEC command to confirm the configuration.

Related Topics
- Port Priority Versus Path Cost, on page 259

Configuring the Device Priority of a VLAN
You can configure the switch priority and make it more likely that a standalone switch or a switch in the stack will be chosen as the root switch.

Note
- Exercise care when using this command. For most situations, we recommend that you use the **spanning-tree vlan vlan-id root primary** and the **spanning-tree vlan vlan-id root secondary** global configuration commands to modify the switch priority.

This procedure is optional.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `spanning-tree vlan vlan-id priority priority`
4. `end`

DETAILED STEPS

Command or Action	Purpose
Step 1 | **enable**
Example:
Switch> `enable` | Enables privileged EXEC mode. Enter your password if prompted. |
How to Configure Spanning-Tree Features

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

Step 3 spanning-tree vlan vlan-id priority priority	Configures the switch priority of a VLAN.
Example:	
Switch(config)# spanning-tree vlan 20 priority 8192	

- For **vlan-id**, you can specify a single VLAN identified by VLAN ID number, a range of VLANs separated by a hyphen, or a series of VLANs separated by a comma. The range is 1 to 4094.
- For **priority**, the range is 0 to 61440 in increments of 4096; the default is 32768. The lower the number, the more likely the switch will be chosen as the root switch.

 Valid priority values are 4096, 8192, 12288, 16384, 20480, 24576, 28672, 32768, 36864, 40960, 45056, 49152, 53248, 57344, and 61440. All other values are rejected.

Step 4 end	Returns to privileged EXEC mode.
Example:	
Switch(config-if)# end	

Configuring the Hello Time

The hello time is the time interval between configuration messages generated and sent by the root switch. This procedure is optional.

SUMMARY STEPS

1. enable
2. spanning-tree vlan vlan-id hello-time seconds
3. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
</tbody>
</table>
How to Configure Spanning-Tree Features

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch> enable</code></td>
<td></td>
</tr>
</tbody>
</table>

Step 2

- **Command or Action**: `spanning-tree vlan vlan-id hello-time seconds`
- **Purpose**: Configures the hello time of a VLAN. The hello time is the time interval between configuration messages generated and sent by the root switch. These messages mean that the switch is alive.
- **Example:**
  ```
  Switch(config)# spanning-tree vlan 20-24 hello-time 3
  ```
- **Notes**:
 - For `vlan-id`, you can specify a single VLAN identified by VLAN ID number, a range of VLANs separated by a hyphen, or a series of VLANs separated by a comma. The range is 1 to 4094.
 - For `seconds`, the range is 1 to 10; the default is 2.

Step 3

- **Command or Action**: `end`
- **Purpose**: Returns to privileged EXEC mode.
- **Example**:
  ```
  Switch(config-if)# end
  ```

Configuring the Forwarding-Delay Time for a VLAN

This procedure is optional.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `spanning-tree vlan vlan-id forward-time seconds`
4. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch> enable</code></td>
<td></td>
</tr>
</tbody>
</table>

Enables privileged EXEC mode. Enter your password if prompted.
How to Configure Spanning-Tree Features

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

| **Step 3** spanning-tree vlan vlan-id forward-time seconds | Configures the forward time of a VLAN. The forwarding delay is the number of seconds an interface waits before changing from its spanning-tree learning and listening states to the forwarding state. |
| **Example:** Switch(config)# spanning-tree vlan 20,25 forward-time 18 |

- For `vlan-id`, you can specify a single VLAN identified by VLAN ID number, a range of VLANs separated by a hyphen, or a series of VLANs separated by a comma. The range is 1 to 4094.
- For `seconds`, the range is 4 to 30; the default is 15.

| **Step 4** end | Returns to privileged EXEC mode. |
| **Example:** Switch(config)# end |

Configuring the Maximum-Aging Time for a VLAN

This procedure is optional.

SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. **spanning-tree vlan vlan-id max-age seconds**
4. **end**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: Switch> enable</td>
<td></td>
</tr>
</tbody>
</table>
Purpose

Command or Action

<table>
<thead>
<tr>
<th>Step 2</th>
<th>configure terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
</tr>
</tbody>
</table>

Purpose

Enters the global configuration mode.

<table>
<thead>
<tr>
<th>Step 3</th>
<th>spanning-tree vlan vlan-id max-age seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Switch(config)# spanning-tree vlan 20 max-age 30</td>
</tr>
</tbody>
</table>

Purpose

Configures the maximum-aging time of a VLAN. The maximum-aging time is the number of seconds a switch waits without receiving spanning-tree configuration messages before attempting a reconfiguration.

- For `vlan-id`, you can specify a single VLAN identified by VLAN ID number, a range of VLANs separated by a hyphen, or a series of VLANs separated by a comma. The range is 1 to 4094.
- For `seconds`, the range is 6 to 40; the default is 20.

<table>
<thead>
<tr>
<th>Step 4</th>
<th>end</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Switch(config-if)# end</td>
</tr>
</tbody>
</table>

Purpose

Returns to privileged EXEC mode.

Configuring the Transmit Hold-Count

You can configure the BPDU burst size by changing the transmit hold count value.

Note

Changing this parameter to a higher value can have a significant impact on CPU utilization, especially in Rapid PVST+ mode. Lowering this value can slow down convergence in certain scenarios. We recommend that you maintain the default setting.

This procedure is optional.

SUMMARY STEPS

1. enable
2. configure terminal
3. spanning-tree transmit hold-count `value`
4. end
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td><code>spanning-tree transmit hold-count value</code></td>
<td>Configures the number of BPDUs that can be sent before pausing for 1 second. For value, the range is 1 to 20; the default is 6.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch(config)# spanning-tree transmit hold-count 6</code></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td><code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch(config)# end</code></td>
<td></td>
</tr>
</tbody>
</table>

Monitoring Spanning-Tree Status

Table 36: Commands for Displaying Spanning-Tree Status

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show spanning-tree active</code></td>
<td>Displays spanning-tree information on active interfaces only.</td>
</tr>
<tr>
<td><code>show spanning-tree detail</code></td>
<td>Displays a detailed summary of interface information.</td>
</tr>
<tr>
<td><code>show spanning-tree vlan vlan-id</code></td>
<td>Displays spanning-tree information for the specified VLAN.</td>
</tr>
<tr>
<td><code>show spanning-tree interface interface-id</code></td>
<td>Displays spanning-tree information for the specified interface.</td>
</tr>
<tr>
<td><code>show spanning-tree interface interface-id portfast</code></td>
<td>Displays spanning-tree portfast information for the specified interface.</td>
</tr>
<tr>
<td><code>show spanning-tree summary [totals]</code></td>
<td>Displays a summary of interface states or displays the total lines of the STP state section.</td>
</tr>
</tbody>
</table>
To clear spanning-tree counters, use the `clear spanning-tree [interface interface-id]` privileged EXEC command.

Feature Information for STP

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS 15.0(2)EX</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>
CHAPTER 16

Configuring Multiple Spanning-Tree Protocol

- Finding Feature Information, page 285
- Prerequisites for MSTP, page 285
- Restrictions for MSTP, page 286
- Information About MSTP, page 287
- How to Configure MSTP Features, page 305
- Examples, page 325
- Monitoring MST Configuration and Status, page 328
- Feature Information for MSTP, page 329

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for MSTP

- For two or more switches to be in the same multiple spanning tree (MST) region, they must have the same VLAN-to-instance map, the same configuration revision number, and the same name.

- For two or more stacked switches to be in the same MST region, they must have the same VLAN-to-instance map, the same configuration revision number, and the same name.

- For load-balancing across redundant paths in the network to work, all VLAN-to-instance mapping assignments must match; otherwise, all traffic flows on a single link. You can achieve load-balancing across a switch stack by manually configuring the path cost.
For load-balancing between a per-VLAN spanning tree plus (PVST+) and an MST cloud or between a rapid-PVST+ and an MST cloud to work, all MST boundary ports must be forwarding. MST boundary ports are forwarding when the internal spanning tree (IST) master of the MST cloud is the root of the common spanning tree (CST). If the MST cloud consists of multiple MST regions, one of the MST regions must contain the CST root, and all of the other MST regions must have a better path to the root contained within the MST cloud than a path through the PVST+ or rapid-PVST+ cloud. You might have to manually configure the switches in the clouds.

Related Topics

- Specifying the MST Region Configuration and Enabling MSTP, on page 305
- MSTP Configuration Guidelines, on page 287
- Multiple Spanning-Tree Regions, on page 289

Restrictions for MSTP

- The switch stack supports up to 65 MST instances. The number of VLANs that can be mapped to a particular MST instance is unlimited.
- PVST+, Rapid PVST+, and MSTP are supported, but only one version can be active at any time. (For example, all VLANs run PVST+, all VLANs run Rapid PVST+, or all VLANs run MSTP.)
- All stack members must run the same version of spanning tree (all PVST+, Rapid PVST+, or MSTP).
- VLAN Trunking Protocol (VTP) propagation of the MST configuration is not supported. However, you can manually configure the MST configuration (region name, revision number, and VLAN-to-instance mapping) on each switch within the MST region by using the command-line interface (CLI) or through the Simple Network Management Protocol (SNMP) support.
- Partitioning the network into a large number of regions is not recommended. However, if this situation is unavoidable, we recommend that you partition the switched LAN into smaller LANs interconnected by routers or non-Layer 2 devices.
- A region can have one member or multiple members with the same MST configuration; each member must be capable of processing rapid spanning tree protocol (RSTP) Bridge Protocol Data Units (BPDUs). There is no limit to the number of MST regions in a network, but each region can only support up to 65 spanning-tree instances. You can assign a VLAN to only one spanning-tree instance at a time.
- After configuring a switch as the root switch, we recommend that you avoid manually configuring the hello time, forward-delay time, and maximum-age time through the `spanning-tree mst hello-time`, `spanning-tree mst forward-time`, and the `spanning-tree mst max-age` global configuration commands.

Table 37: PVST+, MSTP, and Rapid PVST+ Interoperability and Compatibility

<table>
<thead>
<tr>
<th></th>
<th>PVST+</th>
<th>MSTP</th>
<th>Rapid PVST+</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVST+</td>
<td>Yes</td>
<td>Yes (with restrictions)</td>
<td>Yes (reverts to PVST+)</td>
</tr>
<tr>
<td>MSTP</td>
<td>Yes (with restrictions)</td>
<td>Yes</td>
<td>Yes (reverts to PVST+)</td>
</tr>
<tr>
<td>Rapid PVST+</td>
<td>Yes (reverts to PVST+)</td>
<td>Yes (reverts to PVST+)</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Information About MSTP

MSTP Configuration

MSTP, which uses RSTP for rapid convergence, enables multiple VLANs to be grouped into and mapped to the same spanning-tree instance, reducing the number of spanning-tree instances needed to support a large number of VLANs. The MSTP provides for multiple forwarding paths for data traffic, enables load balancing, and reduces the number of spanning-tree instances required to support a large number of VLANs. It improves the fault tolerance of the network because a failure in one instance (forwarding path) does not affect other instances (forwarding paths).

Note

The multiple spanning-tree (MST) implementation is based on the IEEE 802.1s standard.

The most common initial deployment of MSTP is in the backbone and distribution layers of a Layer 2 switched network. This deployment provides the highly available network required in a service-provider environment.

When the switch is in the MST mode, the RSTP, which is based on IEEE 802.1w, is automatically enabled. The RSTP provides rapid convergence of the spanning tree through explicit handshaking that eliminates the IEEE 802.1D forwarding delay and quickly transitions root ports and designated ports to the forwarding state. Both MSTP and RSTP improve the spanning-tree operation and maintain backward compatibility with equipment that is based on the (original) IEEE 802.1D spanning tree, with existing Cisco-proprietary Multiple Instance STP (MISTP), and with existing Cisco PVST+ and rapid per-VLAN spanning-tree plus (Rapid PVST+).

A switch stack appears as a single spanning-tree node to the rest of the network, and all stack members use the same switch ID.

MSTP Configuration Guidelines

- When you enable MST by using the `spanning-tree mode mst` global configuration command, RSTP is automatically enabled.

- For configuration guidelines about UplinkFast, BackboneFast, and cross-stack UplinkFast, see the relevant sections in the Related Topics section.

- When the switch is in MST mode, it uses the long path-cost calculation method (32 bits) to compute the path cost values. With the long path-cost calculation method, the following path cost values are supported:
Root Switch

The switch maintains a spanning-tree instance for the group of VLANs mapped to it. A switch ID, consisting of the switch priority and the switch MAC address, is associated with each instance. For a group of VLANs, the switch with the lowest switch ID becomes the root switch.

When you configure a switch as the root, you modify the switch priority from the default value (32768) to a significantly lower value so that the switch becomes the root switch for the specified spanning-tree instance. When you enter this command, the switch checks the switch priorities of the root switches. Because of the extended system ID support, the switch sets its own priority for the specified instance to 24576 if this value will cause this switches to become the root for the specified spanning-tree instance.

If any root switch for the specified instance has a switch priority lower than 24576, the switch sets its own priority to 4096 less than the lowest switch priority. (4096 is the value of the least-significant bit of a 4-bit switch priority value. For more information, select "Bridge ID, Switch Priority, and Extended System ID" link in Related Topics.

If your network consists of switches that support and do not support the extended system ID, it is unlikely that the switch with the extended system ID support will become the root switch. The extended system ID increases the switch priority value every time the VLAN number is greater than the priority of the connected switches running older software.

The root switch for each spanning-tree instance should be a backbone or distribution switch. Do not configure an access switch as the spanning-tree primary root.

Use the `diameter` keyword, which is available only for MST instance 0, to specify the Layer 2 network diameter (that is, the maximum number of switch hops between any two end stations in the Layer 2 network). When you specify the network diameter, the switch automatically sets an optimal hello time, forward-delay

<table>
<thead>
<tr>
<th>Speed</th>
<th>Path Cost Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Mb/s</td>
<td>2,000,000</td>
</tr>
<tr>
<td>100 Mb/s</td>
<td>200,000</td>
</tr>
<tr>
<td>1 Gb/s</td>
<td>20,000</td>
</tr>
<tr>
<td>10 Gb/s</td>
<td>2,000</td>
</tr>
<tr>
<td>100 Gb/s</td>
<td>200</td>
</tr>
</tbody>
</table>

Related Topics

- Specifying the MST Region Configuration and Enabling MSTP, on page 305
- Prerequisites for MSTP, on page 285
- Restrictions for MSTP, on page 286
- Spanning-Tree Interoperability and Backward Compatibility, on page 266
- Optional Spanning-Tree Configuration Guidelines
- BackboneFast, on page 338
- UplinkFast, on page 334
time, and maximum-age time for a network of that diameter, which can significantly reduce the convergence
time. You can use the **hello** keyword to override the automatically calculated hello time.

Related Topics

- Configuring the Root Switch, on page 307
- Restrictions for MSTP, on page 286
- Bridge ID, Device Priority, and Extended System ID, on page 258

Multiple Spanning-Tree Regions

For switches to participate in multiple spanning-tree (MST) instances, you must consistently configure the
switches with the same MST configuration information. A collection of interconnected switches that have the
same MST configuration comprises an MST region.

The MST configuration controls to which MST region each switch belongs. The configuration includes the
name of the region, the revision number, and the MST VLAN-to-instance assignment map. You configure
the switch for a region by specifying the MST region configuration on it. You can map VLANs to an MST
instance, specify the region name, and set the revision number. For instructions and an example, select the
"Specifying the MST Region Configuration and Enabling MSTP" link in Related Topics.

A region can have one or multiple members with the same MST configuration. Each member must be capable
of processing RSTP bridge protocol data units (BPDUs). There is no limit to the number of MST regions in
a network, but each region can support up to 65 spanning-tree instances. Instances can be identified by any
number in the range from 0 to 4094. You can assign a VLAN to only one spanning-tree instance at a time.

Related Topics

- Illustration of MST Regions, on page 292
- Specifying the MST Region Configuration and Enabling MSTP, on page 305
- Prerequisites for MSTP, on page 285
- Restrictions for MSTP, on page 286
- Spanning-Tree Interoperability and Backward Compatibility, on page 266
- Optional Spanning-Tree Configuration Guidelines
- BackboneFast, on page 338
- UplinkFast, on page 334

IST, CIST, and CST

Unlike PVST+ and Rapid PVST+ in which all the spanning-tree instances are independent, the MSTP establishes
and maintains two types of spanning trees:

- An internal spanning tree (IST), which is the spanning tree that runs in an MST region.

 Within each MST region, the MSTP maintains multiple spanning-tree instances. Instance 0 is a special
 instance for a region, known as the internal spanning tree (IST). All other MST instances are numbered
 from 1 to 4094.

 The IST is the only spanning-tree instance that sends and receives BPDUs. All of the other spanning-tree
 instance information is contained in M-records, which are encapsulated within MSTP BPDUs. Because
 the MSTP BPU carries information for all instances, the number of BPDUs that need to be processed
to support multiple spanning-tree instances is significantly reduced.
All MST instances within the same region share the same protocol timers, but each MST instance has its own topology parameters, such as root switch ID, root path cost, and so forth. By default, all VLANs are assigned to the IST.

An MST instance is local to the region; for example, MST instance 1 in region A is independent of MST instance 1 in region B, even if regions A and B are interconnected.

- A common and internal spanning tree (CIST), which is a collection of the ISTs in each MST region, and the common spanning tree (CST) that interconnects the MST regions and single spanning trees.

The spanning tree computed in a region appears as a subtree in the CST that encompasses the entire switched domain. The CIST is formed by the spanning-tree algorithm running among switches that support the IEEE 802.1w, IEEE 802.1s, and IEEE 802.1D standards. The CIST inside an MST region is the same as the CST outside a region.

Operations Within an MST Region

The IST connects all the MSTP switches in a region. When the IST converges, the root of the IST becomes the CIST regional root (called the IST master before the implementation of the IEEE 802.1s standard). It is the switch within the region with the lowest switch ID and path cost to the CIST root. The CIST regional root is also the CIST root if there is only one region in the network. If the CIST root is outside the region, one of the MSTP switches at the boundary of the region is selected as the CIST regional root.

When an MSTP switch initializes, it sends BPDUs claiming itself as the root of the CIST and the CIST regional root, with both of the path costs to the CIST root and to the CIST regional root set to zero. The switch also initializes all of its MST instances and claims to be the root for all of them. If the switch receives superior MST root information (lower switch ID, lower path cost, and so forth) than currently stored for the port, it relinquishes its claim as the CIST regional root.

During initialization, a region might have many subregions, each with its own CIST regional root. As switches receive superior IST information, they leave their old subregions and join the new subregion that contains the true CIST regional root. All subregions shrink except for the one that contains the true CIST regional root.

For correct operation, all switches in the MST region must agree on the same CIST regional root. Therefore, any two switches in the region only synchronize their port roles for an MST instance if they converge to a common CIST regional root.

Related Topics

Illustration of MST Regions, on page 292

Operations Between MST Regions

If there are multiple regions or legacy IEEE 802.1D switches within the network, MSTP establishes and maintains the CST, which includes all MST regions and all legacy STP switches in the network. The MST instances combine with the IST at the boundary of the region to become the CST.

The IST connects all the MSTP switches in the region and appears as a subtree in the CIST that encompasses the entire switched domain. The root of the subtree is the CIST regional root. The MST region appears as a virtual switch to adjacent STP switches and MST regions.

Only the CST instance sends and receives BPDUs, and MST instances add their spanning-tree information into the BPDUs to interact with neighboring switches and compute the final spanning-tree topology. Because of this, the spanning-tree parameters related to BDU transmission (for example, hello time, forward time, max-age, and max-hops) are configured only on the CST instance but affect all MST instances. Parameters
related to the spanning-tree topology (for example, switch priority, port VLAN cost, and port VLAN priority) can be configured on both the CST instance and the MST instance.

MSTP switches use Version 3 RSTP BPDU s or IEEE 802.1D STP BPDU s to communicate with legacy IEEE 802.1D switches. MSTP switches use MSTP BPDU s to communicate with MSTP switches.

Related Topics
Illustration of MST Regions, on page 292

IEEE 802.1s Terminology

Some MST naming conventions used in Cisco’s prestandard implementation have been changed to identify some internal or regional parameters. These parameters are significant only within an MST region, as opposed to external parameters that are relevant to the whole network. Because the CIST is the only spanning-tree instance that spans the whole network, only the CIST parameters require the external rather than the internal or regional qualifiers.

• The CIST root is the root switch for the unique instance that spans the whole network, the CIST.
• The CIST external root path cost is the cost to the CIST root. This cost is left unchanged within an MST region. Remember that an MST region looks like a single switch for the CIST. The CIST external root path cost is the root path cost calculated between these virtual switches and switches that do not belong to any region.
• The CIST regional root was called the IST master in the prestandard implementation. If the CIST root is in the region, the CIST regional root is the CIST root. Otherwise, the CIST regional root is the closest switch to the CIST root in the region. The CIST regional root acts as a root switch for the IST.
• The CIST internal root path cost is the cost to the CIST regional root in a region. This cost is only relevant to the IST, instance 0.

Table 38: Prestandard and Standard Terminology

<table>
<thead>
<tr>
<th>IEEE Standard</th>
<th>Cisco Prestandard</th>
<th>Cisco Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIST regional root</td>
<td>IST master</td>
<td>CIST regional root</td>
</tr>
<tr>
<td>CIST internal root path cost</td>
<td>IST master path cost</td>
<td>CIST internal path cost</td>
</tr>
<tr>
<td>CIST external root path cost</td>
<td>Root path cost</td>
<td>Root path cost</td>
</tr>
<tr>
<td>MSTI regional root</td>
<td>Instance root</td>
<td>Instance root</td>
</tr>
<tr>
<td>MSTI internal root path cost</td>
<td>Root path cost</td>
<td>Root path cost</td>
</tr>
</tbody>
</table>
Illustration of MST Regions

This figure displays three MST regions and a legacy IEEE 802.1D switch (D). The CIST regional root for region 1 (A) is also the CIST root. The CIST regional root for region 2 (B) and the CIST regional root for region 3 (C) are the roots for their respective subtrees within the CIST. The RSTP runs in all regions.

Figure 15: MST Regions, CIST Masters, and CST Root

Related Topics
Multiple Spanning-Tree Regions, on page 289
Operations Within an MST Region, on page 290
Operations Between MST Regions, on page 290

Hop Count

The IST and MST instances do not use the message-age and maximum-age information in the configuration BPDU to compute the spanning-tree topology. Instead, they use the path cost to the root and a hop-count mechanism similar to the IP time-to-live (TTL) mechanism.

By using the spanning-tree mst max-hops global configuration command, you can configure the maximum hops inside the region and apply it to the IST and all MST instances in that region. The hop count achieves the same result as the message-age information (triggers a reconfiguration). The root switch of the instance always sends a BPDU (or M-record) with a cost of 0 and the hop count set to the maximum value. When a
switch receives this BPDU, it decrements the received remaining hop count by one and propagates this value as the remaining hop count in the BPDU it generates. When the count reaches zero, the switch discards the BPDU and ages the information held for the port.

The message-age and maximum-age information in the RSTP portion of the BPDU remain the same throughout the region, and the same values are propagated by the region designated ports at the boundary.

Boundary Ports

In the Cisco prestandard implementation, a boundary port connects an MST region to a single spanning-tree region running RSTP, to a single spanning-tree region running PVST+ or rapid PVST+, or to another MST region with a different MST configuration. A boundary port also connects to a LAN, the designated switch of which is either a single spanning-tree switch or a switch with a different MST configuration.

There is no definition of a boundary port in the IEEE 802.1s standard. The IEEE 802.1Q-2002 standard identifies two kinds of messages that a port can receive:

- internal (coming from the same region)
- external (coming from another region)

When a message is internal, the CIST part is received by the CIST, and each MST instance receives its respective M-record.

When a message is external, it is received only by the CIST. If the CIST role is root or alternate, or if the external BPDU is a topology change, it could have an impact on the MST instances.

An MST region includes both switches and LANs. A segment belongs to the region of its designated port. Therefore, a port in a different region than the designated port for a segment is a boundary port. This definition allows two ports internal to a region to share a segment with a port belonging to a different region, creating the possibility of a port receiving both internal and external messages.

The primary change from the Cisco prestandard implementation is that a designated port is not defined as boundary, unless it is running in an STP-compatible mode.

Note

If there is a legacy STP switch on the segment, messages are always considered external.

The other change from the Cisco prestandard implementation is that the CIST regional root switch ID field is now inserted where an RSTP or legacy IEEE 802.1Q switch has the sender switch ID. The whole region performs like a single virtual switch by sending a consistent sender switch ID to neighboring switches. In this example, switch C would receive a BPDU with the same consistent sender switch ID of root, whether or not A or B is designated for the segment.

IEEE 802.1s Implementation

The Cisco implementation of the IEEE MST standard includes features required to meet the standard, as well as some of the desirable prestandard functionality that is not yet incorporated into the published standard.
Port Role Naming Change

The boundary role is no longer in the final MST standard, but this boundary concept is maintained in Cisco’s implementation. However, an MST instance port at a boundary of the region might not follow the state of the corresponding CIST port. Two boundary roles currently exist:

• The boundary port is the root port of the CIST regional root—When the CIST instance port is proposed and is in sync, it can send back an agreement and move to the forwarding state only after all the corresponding MSTI ports are in sync (and thus forwarding). The MSTI ports now have a special master role.

• The boundary port is not the root port of the CIST regional root—The MSTI ports follow the state and role of the CIST port. The standard provides less information, and it might be difficult to understand why an MSTI port can be alternately blocking when it receives no BPDUs (MRecords). In this case, although the boundary role no longer exists, the `show` commands identify a port as boundary in the `type` column of the output.

Interoperation Between Legacy and Standard Switches

Because automatic detection of prestandard switches can fail, you can use an interface configuration command to identify prestandard ports. A region cannot be formed between a standard and a prestandard switch, but they can interoperate by using the CIST. Only the capability of load-balancing over different instances is lost in that particular case. The CLI displays different flags depending on the port configuration when a port receives prestandard BPDUs. A syslog message also appears the first time a switch receives a prestandard BPDU on a port that has not been configured for prestandard BPDU transmission.

Assume that A is a standard switch and B a prestandard switch, both configured to be in the same region. A is the root switch for the CIST, and B has a root port (BX) on segment X and an alternate port (BY) on segment Y. If segment Y flaps, and the port on BY becomes the alternate before sending out a single prestandard BPDU, AY cannot detect that a prestandard switch is connected to Y and continues to send standard BPDUs. The port BY is fixed in a boundary, and no load balancing is possible between A and B. The same problem exists on segment X, but B might transmit topology changes.

Figure 16: Standard and Prestandard Switch Interoperation

![Figure 16: Standard and Prestandard Switch Interoperation](image-url)
Note

We recommend that you minimize the interaction between standard and prestandard MST implementations.

Detecting Unidirectional Link Failure

This feature is not yet present in the IEEE MST standard, but it is included in this Cisco IOS release. The software checks the consistency of the port role and state in the received BPDUs to detect unidirectional link failures that could cause bridging loops.

When a designated port detects a conflict, it keeps its role, but reverts to the discarding state because disrupting connectivity in case of inconsistency is preferable to opening a bridging loop.

This figure illustrates a unidirectional link failure that typically creates a bridging loop. Switch A is the root switch, and its BPDUs are lost on the link leading to switch B. RSTP and MST BPDUs include the role and state of the sending port. With this information, switch A can detect that switch B does not react to the superior BPDUs it sends and that switch B is the designated, not root switch. As a result, switch A blocks (or keeps blocking) its port, which prevents the bridging loop.

Figure 17: Detecting Unidirectional Link Failure

MSTP and Switch Stacks

A switch stack appears as a single spanning-tree node to the rest of the network, and all stack members use the same bridge ID for a given spanning tree. The bridge ID is derived from the MAC address of the stack master.

If a switch that does not support MSTP is added to a switch stack that does support MSTP or the reverse, the switch is put into a version mismatch state. If possible, the switch is automatically upgraded or downgraded to the same version of software that is running on the switch stack.

When a new switch joins the stack, it sets its switch ID to the switch ID. If the newly added switch has the lowest ID and if the root path cost is the same among all stack members, the newly added switch becomes the stack root. A topology change occurs if the newly added switch contains a better root port for the switch stack or a better designated port for the LAN connected to the stack. The newly added switch causes a topology change in the network if another switch connected to the newly added switch changes its root port or designated ports.

When a stack member leaves the stack, spanning-tree reconvergence occurs within the stack (and possibly outside the stack). The remaining stack member with the lowest stack port ID becomes the stack root.

If the stack master fails or leaves the stack, the stack members elect a new stack master, and all stack members change their switch IDs of the spanning trees to the new master switch ID.
Interoperability with IEEE 802.1D STP

A switch running MSTP supports a built-in protocol migration mechanism that enables it to interoperate with legacy IEEE 802.1D switches. If this switch receives a legacy IEEE 802.1D configuration BPDU (a BPDU with the protocol version set to 0), it sends only IEEE 802.1D BPDUs on that port. An MSTP switch also can detect that a port is at the boundary of a region when it receives a legacy BPDU, an MSTP BPDU (Version 3) associated with a different region, or an RSTP BPDU (Version 2).

However, the switch does not automatically revert to the MSTP mode if it no longer receives IEEE 802.1D BPDUs because it cannot detect whether the legacy switch has been removed from the link unless the legacy switch is the designated switch. A switch might also continue to assign a boundary role to a port when the switch to which this switch is connected has joined the region. To restart the protocol migration process (force the renegotiation with neighboring switches), use the `clear spanning-tree detected-protocols` privileged EXEC command.

If all the legacy switches on the link are RSTP switches, they can process MSTP BPDUs as if they are RSTP BPDUs. Therefore, MSTP switches send either a Version 0 configuration and TCN BPDUs or Version 3 MSTP BPDUs on a boundary port. A boundary port connects to a LAN, the designated switch of which is either a single spanning-tree switch or a switch with a different MST configuration.

RSTP Overview

The RSTP takes advantage of point-to-point wiring and provides rapid convergence of the spanning tree. Reconfiguration of the spanning tree can occur in less than 1 second (in contrast to 50 seconds with the default settings in the IEEE 802.1D spanning tree).

Port Roles and the Active Topology

The RSTP provides rapid convergence of the spanning tree by assigning port roles and by learning the active topology. The RSTP builds upon the IEEE 802.1D STP to select the switch with the highest switch priority (lowest numerical priority value) as the root switch. The RSTP then assigns one of these port roles to individual ports:

- **Root port**—Provides the best path (lowest cost) when the switch forwards packets to the root switch.
- **Designated port**—Connects to the designated switch, which incurs the lowest path cost when forwarding packets from that LAN to the root switch. The port through which the designated switch is attached to the LAN is called the designated port.
- **Alternate port**—Offers an alternate path toward the root switch to that provided by the current root port.
- **Backup port**—Acts as a backup for the path provided by a designated port toward the leaves of the spanning tree. A backup port can exist only when two ports are connected in a loopback by a point-to-point link or when a switch has two or more connections to a shared LAN segment.
- **Disabled port**—Has no role within the operation of the spanning tree.

A port with the root or a designated port role is included in the active topology. A port with the alternate or backup port role is excluded from the active topology.

In a stable topology with consistent port roles throughout the network, the RSTP ensures that every root port and designated port immediately transition to the forwarding state while all alternate and backup ports are always in the discarding state (equivalent to blocking in IEEE 802.1D). The port state controls the operation of the forwarding and learning processes.
Table 39: Port State Comparison

<table>
<thead>
<tr>
<th>Operational Status</th>
<th>STP Port State (IEEE 802.1D)</th>
<th>RSTP Port State</th>
<th>Is Port Included in the Active Topology?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enabled</td>
<td>Blocking</td>
<td>Discarding</td>
<td>No</td>
</tr>
<tr>
<td>Enabled</td>
<td>Listening</td>
<td>Discarding</td>
<td>No</td>
</tr>
<tr>
<td>Enabled</td>
<td>Learning</td>
<td>Learning</td>
<td>Yes</td>
</tr>
<tr>
<td>Enabled</td>
<td>Forwarding</td>
<td>Forwarding</td>
<td>Yes</td>
</tr>
<tr>
<td>Disabled</td>
<td>Disabled</td>
<td>Discarding</td>
<td>No</td>
</tr>
</tbody>
</table>

To be consistent with Cisco STP implementations, this guide defines the port state as *blocking* instead of *discarding*. Designated ports start in the listening state.

Rapid Convergence

The RSTP provides for rapid recovery of connectivity following the failure of a switch, a switch port, or a LAN. It provides rapid convergence for edge ports, new root ports, and ports connected through point-to-point links as follows:

- **Edge ports**—If you configure a port as an edge port on an RSTP switch by using the `spanning-tree portfast` interface configuration command, the edge port immediately transitions to the forwarding state. An edge port is the same as a Port Fast-enabled port, and you should enable it only on ports that connect to a single end station.

- **Root ports**—If the RSTP selects a new root port, it blocks the old root port and immediately transitions the new root port to the forwarding state.

- **Point-to-point links**—If you connect a port to another port through a point-to-point link and the local port becomes a designated port, it negotiates a rapid transition with the other port by using the proposal-agreement handshake to ensure a loop-free topology.

Switch A is connected to Switch B through a point-to-point link, and all of the ports are in the blocking state. Assume that the priority of Switch A is a smaller numerical value than the priority of Switch B. Switch A sends a proposal message (a configuration BPDU with the proposal flag set) to Switch B, proposing itself as the designated switch.

After receiving the proposal message, Switch B selects as its new root port the port from which the proposal message was received, forces all nonedge ports to the blocking state, and sends an agreement message (a BPDU with the agreement flag set) through its new root port.

After receiving Switch B’s agreement message, Switch A also immediately transitions its designated port to the forwarding state. No loops in the network are formed because Switch B blocked all of its nonedge ports and because there is a point-to-point link between Switches A and B.

When Switch C is connected to Switch B, a similar set of handshaking messages are exchanged. Switch C selects the port connected to Switch B as its root port, and both ends immediately transition to the forwarding state. With each iteration of this handshaking process, one more switch joins the active
topology. As the network converges, this proposal-agreement handshaking progresses from the root toward the leaves of the spanning tree.

In a switch stack, the cross-stack rapid transition (CSRT) feature ensures that a stack member receives acknowledgments from all stack members during the proposal-agreement handshaking before moving the port to the forwarding state. CSRT is automatically enabled when the switch is in MST mode.

The switch learns the link type from the port duplex mode: a full-duplex port is considered to have a point-to-point connection; a half-duplex port is considered to have a shared connection. You can override the default setting that is controlled by the duplex setting by using the `spanning-tree link-type` interface configuration command.

Figure 18: Proposal and Agreement Handshaking for Rapid Convergence

```
Switch A          Switch B
   Proposal       
   Root F         Designated switch F
      DP           RP

Switch A          Switch C
   Proposal       
   Root F         Designated switch F
      DP           RP

Switch A
   Proposal       
   Root F         Designated switch F
      DP           RP

DP = designated port
RP = root port
F = forwarding
```

Synchronization of Port Roles

When the switch receives a proposal message on one of its ports and that port is selected as the new root port, the RSTP forces all other ports to synchronize with the new root information.

The switch is synchronized with superior root information received on the root port if all other ports are synchronized. An individual port on the switch is synchronized if:

- That port is in the blocking state.
- It is an edge port (a port configured to be at the edge of the network).

If a designated port is in the forwarding state and is not configured as an edge port, it transitions to the blocking state when the RSTP forces it to synchronize with new root information. In general, when the RSTP forces a port to synchronize with root information and the port does not satisfy any of the above conditions, its port state is set to blocking.
After ensuring that all of the ports are synchronized, the switch sends an agreement message to the designated switch corresponding to its root port. When the switches connected by a point-to-point link are in agreement about their port roles, the RSTP immediately transitions the port states to forwarding.

Figure 19: Sequence of Events During Rapid Convergence

![Diagram of sequence of events during Rapid Convergence]

Bridge Protocol Data Unit Format and Processing

The RSTP BPDU format is the same as the IEEE 802.1D BPDU format except that the protocol version is set to 2. A new 1-byte Version 1 Length field is set to zero, which means that no version 1 protocol information is present.

Table 40: RSTP BPDU Flags

<table>
<thead>
<tr>
<th>Bit</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Topology change (TC)</td>
</tr>
<tr>
<td>1</td>
<td>Proposal</td>
</tr>
<tr>
<td>2–3</td>
<td>Port role:</td>
</tr>
<tr>
<td>00</td>
<td>Unknown</td>
</tr>
<tr>
<td>01</td>
<td>Alternate port</td>
</tr>
<tr>
<td>10</td>
<td>Root port</td>
</tr>
<tr>
<td>11</td>
<td>Designated port</td>
</tr>
<tr>
<td>4</td>
<td>Learning</td>
</tr>
<tr>
<td>5</td>
<td>Forwarding</td>
</tr>
</tbody>
</table>
Processing Superior BPDU Information

If a port receives superior root information (lower switch ID, lower path cost, and so forth) than currently stored for the port, the RSTP triggers a reconfiguration. If the port is proposed and is selected as the new root port, RSTP forces all the other ports to synchronize.

If the BPDU received is an RSTP BPDU with the proposal flag set, the switch sends an agreement message after all of the other ports are synchronized. If the BPDU is an IEEE 802.1D BPDU, the switch does not set the proposal flag and starts the forward-delay timer for the port. The new root port requires twice the forward-delay time to transition to the forwarding state.

If the superior information received on the port causes the port to become a backup or alternate port, RSTP sets the port to the blocking state but does not send the agreement message. The designated port continues sending BPDUs with the proposal flag set until the forward-delay timer expires, at which time the port transitions to the forwarding state.

Processing Inferior BPDU Information

If a designated port receives an inferior BPDU (such as a higher switch ID or a higher path cost than currently stored for the port) with a designated port role, it immediately replies with its own information.

Topology Changes

This section describes the differences between the RSTP and the IEEE 802.1D in handling spanning-tree topology changes.

- Detection—Unlike IEEE 802.1D in which any transition between the blocking and the forwarding state causes a topology change, only transitions from the blocking to the forwarding state cause a topology change with RSTP (only an increase in connectivity is considered a topology change). State changes on an edge port do not cause a topology change. When an RSTP switch detects a topology change, it deletes the learned information on all of its nonedge ports except on those from which it received the TC notification.

- Notification—Unlike IEEE 802.1D, which uses TCN BPDUs, the RSTP does not use them. However, for IEEE 802.1D interoperability, an RSTP switch processes and generates TCN BPDUs.

- Acknowledgement—When an RSTP switch receives a TCN message on a designated port from an IEEE 802.1D switch, it replies with an IEEE 802.1D configuration BPDU with the TCA bit set. However, if

<table>
<thead>
<tr>
<th>Bit</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Agreement</td>
</tr>
<tr>
<td>7</td>
<td>Topology change acknowledgement (TCA)</td>
</tr>
</tbody>
</table>
the TC-while timer (the same as the topology-change timer in IEEE 802.1D) is active on a root port connected to an IEEE 802.1D switch and a configuration BPDU with the TCA bit set is received, the TC-while timer is reset.

This behavior is only required to support IEEE 802.1D switches. The RSTP BPDUs never have the TCA bit set.

• Propagation—When an RSTP switch receives a TC message from another switch through a designated or root port, it propagates the change to all of its nonedge, designated ports and to the root port (excluding the port on which it is received). The switch starts the TC-while timer for all such ports and flushes the information learned on them.

• Protocol migration—For backward compatibility with IEEE 802.1D switches, RSTP selectively sends IEEE 802.1D configuration BPDUs and TCN BPDUs on a per-port basis.

When a port is initialized, the migrate-delay timer is started (specifies the minimum time during which RSTP BPDUs are sent), and RSTP BPDUs are sent. While this timer is active, the switch processes all BPDUs received on that port and ignores the protocol type.

If the switch receives an IEEE 802.1D BPDU after the port migration-delay timer has expired, it assumes that it is connected to an IEEE 802.1D switch and starts using only IEEE 802.1D BPDUs. However, if the RSTP switch is using IEEE 802.1D BPDUs on a port and receives an RSTP BPDU after the timer has expired, it restarts the timer and starts using RSTP BPDUs on that port.

Protocol Migration Process

A switch running MSTP supports a built-in protocol migration mechanism that enables it to interoperate with legacy IEEE 802.1D switches. If this switch receives a legacy IEEE 802.1D configuration BPDU (a BPDU with the protocol version set to 0), it sends only IEEE 802.1D BPDUs on that port. An MSTP switch also can detect that a port is at the boundary of a region when it receives a legacy BPDU, an MST BPDU (Version 3) associated with a different region, or an RST BPDU (Version 2).

However, the switch does not automatically revert to the MSTP mode if it no longer receives IEEE 802.1D BPDUs because it cannot detect whether the legacy switch has been removed from the link unless the legacy switch is the designated switch. A switch also might continue to assign a boundary role to a port when the switch to which it is connected has joined the region.

Related Topics
Restarting the Protocol Migration Process, on page 321

Default MSTP Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanning-tree mode</td>
<td>MSTP</td>
</tr>
<tr>
<td>Switch priority (configurable on a per-CIST port basis)</td>
<td>32768</td>
</tr>
<tr>
<td>Spanning-tree port priority (configurable on a per-CIST port basis)</td>
<td>128</td>
</tr>
</tbody>
</table>
Feature

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanning-tree port cost (configurable on a per-CIST port basis)</td>
<td>1000 Mb/s: 20000</td>
</tr>
<tr>
<td></td>
<td>100 Mb/s: 20000</td>
</tr>
<tr>
<td></td>
<td>10 Mb/s: 20000</td>
</tr>
<tr>
<td></td>
<td>1000 Mb/s: 20000</td>
</tr>
<tr>
<td></td>
<td>100 Mb/s: 20000</td>
</tr>
<tr>
<td></td>
<td>10 Mb/s: 20000</td>
</tr>
<tr>
<td>Hello time</td>
<td>3 seconds</td>
</tr>
<tr>
<td>Forward-delay time</td>
<td>20 seconds</td>
</tr>
<tr>
<td>Maximum-aging time</td>
<td>20 seconds</td>
</tr>
<tr>
<td>Maximum hop count</td>
<td>20 hops</td>
</tr>
</tbody>
</table>

Related Topics

- Supported Spanning-Tree Instances, on page 265
- Specifying the MST Region Configuration and Enabling MSTP, on page 305

About MST-to-PVST+ Interoperability (PVST+ Simulation)

The PVST+ simulation feature enables seamless interoperability between MST and Rapid PVST+. You can enable or disable this per port, or globally. PVST+ simulation is enabled by default.

However, you may want to control the connection between MST and Rapid PVST+ to protect against accidentally connecting an MST-enabled port to a Rapid PVST+-enabled port. Because Rapid PVST+ is the default STP mode, you may encounter many Rapid PVST+-enabled connections.

Disabling this feature causes the switch to stop the MST region from interacting with PVST+ regions. The MST-enabled port moves to a PVST peer inconsistent (blocking) state once it detects it is connected to a Rapid PVST+-enabled port. This port remains in the inconsistent state until the port stops receiving Shared Spanning Tree Protocol (SSTP) BPDUs, and then the port resumes the normal STP transition process.

You can for instance, disable PVST+ simulation, to prevent an incorrectly configured switch from connecting to a network where the STP mode is not MSTP (the default mode is PVST+).

Observe these guidelines when you configure MST switches (in the same region) to interact with PVST+ switches:

- Configure the root for all VLANs inside the MST region as shown in this example:

  ```bash
  Switch# show spanning-tree mst interface gigabitethernet 1/1
  GigabitEthernet1/1 of MST00 is root forwarding
  Edge port: no (trunk) port guard : none (default)
  Link type: point-to-point (auto) bpdu filter: disable (default)
  Boundary : boundary (PVST) bpdu guard : disable (default)
  Bpdus sent 10, received 310
  Instance Role Sts Cost Prio.Nbr Vlans mapped
  ------------- ----- ------ -------- -------------------------------
  ```
The ports that belong to the MST switch at the boundary simulate PVST+ and send PVST+ BPDUs for all the VLANs.

If you enable loop guard on the PVST+ switches, the ports might change to a loop-inconsistent state when the MST switches change their configuration. To correct the loop-inconsistent state, you must disable and re-enable loop guard on that PVST+ switch.

- Do not locate the root for some or all of the VLANs inside the PVST+ side of the MST switch because when the MST switch at the boundary receives PVST+ BPDUs for all or some of the VLANs on its designated ports, root guard sets the port to the blocking state.

- When you connect a PVST+ switch to two different MST regions, the topology change from the PVST+ switch does not pass beyond the first MST region. In such a case, the topology changes are propagated only in the instance to which the VLAN is mapped. The topology change stays local to the first MST region, and the Cisco Access Manager (CAM) entries in the other region are not flushed. To make the topology change visible throughout other MST regions, you can map that VLAN to IST or connect the PVST+ switch to the two regions through access links.

- When you disable the PVST+ simulation, note that the PVST+ peer inconsistency can also occur while the port is already in other states of inconsistency. For example, the root bridge for all STP instances must all be in either the MST region or the Rapid PVST+ side. If the root bridge for all STP instances are not on one side or the other, the software moves the port into a PVST+ simulation-inconsistent state.

Note: We recommend that you put the root bridge for all STP instances in the MST region.

About Detecting Unidirectional Link Failure

The dispute mechanism that detects unidirectional link failures is included in the IEEE 802.1D-2004 RSTP and IEEE 802.1Q-2005 MSTP standard, and requires no user configuration.

The switch checks the consistency of the port role and state in the BPDUs it receives, to detect unidirectional link failures that could cause bridging loops. When a designated port detects a conflict, it keeps its role, but reverts to a discarding (blocking) state because disrupting connectivity in case of inconsistency is preferable to opening a bridging loop.

For example, in the figure below, Switch A is the root bridge and Switch B is the designated port. BPDUs from Switch A are lost on the link leading to switch B.

Figure 20: Detecting Unidirectional Link Failure
Since Rapid PVST+ (802.1w) and MST BPDUs include the role and state of the sending port, Switch A detects (from the inferior BPDU), that switch B does not react to the superior BPDUs it sends, because switch B has the role of a designated port and not the root bridge. As a result, switch A blocks (or keeps blocking) its port, thus preventing the bridging loop.

Note these guidelines and limitations relating to the dispute mechanism:

- It works only on switches running RSTP or MST (the dispute mechanism requires reading the role and state of the port initiating BPDUs).
- It may result in loss of connectivity. For example, in the figure below, Bridge A cannot transmit on the port it elected as a root port. As a result of this situation, there is loss of connectivity (r1 and r2 are designated, a1 is root and a2 is alternate. There is only a one way connectivity between A and R).

Figure 21: Loss of Connectivity

- It may cause permanent bridging loops on shared segments. For example, in the figure below, suppose that bridge R has the best priority, and that port b1 cannot receive any traffic from the shared segment 1 and sends inferior designated information on segment 1. Both r1 and a1 can detect this inconsistency. However, with the current dispute mechanism, only r1 will revert to discarding while the root port a1 opens a permanent loop. However, this problem does not occur in Layer 2 switched networks that are connected by point-to-point links.

Figure 22: Bridging Loops on Shared Segments
How to Configure MSTP Features

Specifying the MST Region Configuration and Enabling MSTP

For two or more switches to be in the same MST region, they must have the same VLAN-to-instance mapping, the same configuration revision number, and the same name.

A region can have one member or multiple members with the same MST configuration; each member must be capable of processing RSTP BPDUs. There is no limit to the number of MST regions in a network, but each region can only support up to 65 spanning-tree instances. You can assign a VLAN to only one spanning-tree instance at a time.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `spanning-tree mst configuration`
4. `instance instance-id vlan vlan-range`
5. `name name`
6. `revision version`
7. `show pending`
8. `exit`
9. `spanning-tree mode mst`
10. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch> enable</td>
<td></td>
</tr>
</tbody>
</table>

Step 2 configure terminal	Enters the global configuration mode.
Example:	
Switch# configure terminal	

Step 3 spanning-tree mst configuration	Enters MST configuration mode.
Example:	
Switch(config)# spanning-tree mst	
configuration	
How to Configure MSTP Features

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 4** | `instance instance-id vlan vlan-range` | Maps VLANs to an MST instance.
• For `instance-id`, the range is 0 to 4094.
• For `vlan vlan-range`, the range is 1 to 4094.
When you map VLANs to an MST instance, the mapping is incremental, and the VLANs specified in the command are added to or removed from the VLANs that were previously mapped.
To specify a VLAN range, use a hyphen; for example, `instance 1 vlan 1-63` maps VLANs 1 through 63 to MST instance 1.
To specify a VLAN series, use a comma; for example, `instance 1 vlan 10,20,30` maps VLANs 10, 20, and 30 to MST instance 1. |
| **Step 5** | `name name` | Specifies the configuration name. The `name` string has a maximum length of 32 characters and is case sensitive. |
| **Step 6** | `revision version` | Specifies the configuration revision number. The range is 0 to 65535. |
| **Step 7** | `show pending` | Verifies your configuration by displaying the pending configuration. |
| **Step 8** | `exit` | Applies all changes, and returns to global configuration mode. |
| **Step 9** | `spanning-tree mode mst` | Enables MSTP. RSTP is also enabled.
Changing spanning-tree modes can disrupt traffic because all spanning-tree instances are stopped for the previous mode and restarted in the new mode.
You cannot run both MSTP and PVST+ or both MSTP and Rapid PVST+ at the same time. |
| **Step 10** | `end` | Returns to privileged EXEC mode. |
Related Topics

- MSTP Configuration Guidelines, on page 287
- Multiple Spanning-Tree Regions, on page 289
- Prerequisites for MSTP, on page 285
- Restrictions for MSTP, on page 286
- Spanning-Tree Interoperability and Backward Compatibility, on page 266
- Optional Spanning-Tree Configuration Guidelines
- BackboneFast, on page 338
- UplinkFast, on page 334
- Default MSTP Configuration, on page 301
- Configuring the Root Switch, on page 307
- Restrictions for MSTP, on page 286
- Bridge ID, Device Priority, and Extended System ID, on page 258
- Configuring a Secondary Root Switch, on page 309
- Configuring Port Priority, on page 310
- Configuring Path Cost, on page 312
- Configuring the Switch Priority, on page 313
- Configuring the Hello Time, on page 315
- Configuring the Forwarding-Delay Time, on page 316
- Configuring the Maximum-Aging Time, on page 317
- Configuring the Maximum-Hop Count, on page 318
- Specifying the Link Type to Ensure Rapid Transitions, on page 319
- Designating the Neighbor Type, on page 320
- Restarting the Protocol Migration Process, on page 321

Configuring the Root Switch

This procedure is optional.

Before You Begin

A multiple spanning tree (MST) must be specified and enabled on the switch. For instructions, see Related Topics.

You must also know the specified MST instance ID. Step 2 in the example uses 0 as the instance ID because that was the instance ID set up by the instructions listed under Related Topics.
SUMMARY STEPS

1. enable
2. configure terminal
3. spanning-tree mst instance-id root primary
4. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 spanning-tree mst instance-id root primary</td>
<td>Configures a switch as the root switch.</td>
</tr>
<tr>
<td>Example: Switch(config)# spanning-tree mst 0 root primary</td>
<td></td>
</tr>
<tr>
<td>• For instance-id, you can specify a single instance, a range of instances separated by a hyphen, or a series of instances separated by a comma. The range is 0 to 4094.</td>
<td></td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Switch(config)# end</td>
<td></td>
</tr>
</tbody>
</table>

Related Topics

- Root Switch, on page 288
- Specifying the MST Region Configuration and Enabling MSTP, on page 305
- Restrictions for MSTP, on page 286
- Bridge ID, Device Priority, and Extended System ID, on page 258
- Configuring a Secondary Root Switch, on page 309
Configuring a Secondary Root Switch

When you configure a switch with the extended system ID support as the secondary root, the switch priority is modified from the default value (32768) to 28672. The switch is then likely to become the root switch for the specified instance if the primary root switch fails. This is assuming that the other network switches use the default switch priority of 32768 and therefore are unlikely to become the root switch.

You can execute this command on more than one switch to configure multiple backup root switches. Use the same network diameter and hello-time values that you used when you configured the primary root switch with the `spanning-tree mst instance-id root primary` global configuration command.

This procedure is optional.

Before You Begin

A multiple spanning tree (MST) must be specified and enabled on the switch. For instructions, see Related Topics.

You must also know the specified MST instance ID. This example uses 0 as the instance ID because that was the instance ID set up by the instructions listed under Related Topics.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `spanning-tree mst instance-id root secondary`
4. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Configures a switch as the secondary root switch.</td>
</tr>
<tr>
<td><code>spanning-tree mst instance-id root secondary</code></td>
<td>Configures a switch as the secondary root switch.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch(config)# spanning-tree mst 0 root secondary</code></td>
<td></td>
</tr>
<tr>
<td>* For <code>instance-id</code>, you can specify a single instance, a range of instances separated by a hyphen, or a series of instances separated by a comma. The range is 0 to 4094.</td>
<td></td>
</tr>
</tbody>
</table>
How to Configure MSTP Features

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# end</td>
</tr>
</tbody>
</table>

Related Topics
- Specifying the MST Region Configuration and Enabling MSTP, on page 305
- Configuring the Root Switch, on page 307

Configuring Port Priority

If a loop occurs, the MSTP uses the port priority when selecting an interface to put into the forwarding state. You can assign higher priority values (lower numerical values) to interfaces that you want selected first and lower priority values (higher numerical values) that you want selected last. If all interfaces have the same priority value, the MSTP puts the interface with the lowest interface number in the forwarding state and blocks the other interfaces.

Note
If the switch is a member of a switch stack, you must use the `spanning-tree mst [instance-id] cost cost` interface configuration command instead of the `spanning-tree mst [instance-id] port-priority priority` interface configuration command to select a port to put in the forwarding state. Assign lower cost values to ports that you want selected first and higher cost values to ports that you want selected last. For more information, see the path costs topic listed under Related Topics.

This procedure is optional.

Before You Begin

A multiple spanning tree (MST) must be specified and enabled on the switch. For instructions, see Related Topics.

You must also know the specified MST instance ID and the interface used. This example uses 0 as the instance ID and GigabitEthernet1/0/1 as the interface because that was the instance ID and interface set up by the instructions listed under Related Topics.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface interface-id`
4. `spanning-tree mst instance-id port-priority priority`
5. `end`
Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface interface-id</td>
<td>Specifies an interface to configure, and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example: Switch(config)# interface GigabitEthernet1/0/1</td>
<td></td>
</tr>
<tr>
<td>Step 4 spanning-tree mst instance-id port-priority priority</td>
<td>Configures port priority.</td>
</tr>
</tbody>
</table>
| Example: Switch(config-if)# spanning-tree mst 0 port-priority 64 | • For `instance-id`, you can specify a single instance, a range of instances separated by a hyphen, or a series of instances separated by a comma. The range is 0 to 4094.
 • For `priority`, the range is 0 to 240 in increments of 16. The default is 128. The lower the number, the higher the priority.
 The priority values are 0, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, and 240. All other values are rejected. |
| **Step 5** end | Returns to privileged EXEC mode. |
| Example: Switch(config-if)# end | |

The `show spanning-tree mst interface interface-id` privileged EXEC command displays information only if the port is in a link-up operative state. Otherwise, you can use the `show running-config interface` privileged EXEC command to confirm the configuration.

Related Topics

- Specifying the MST Region Configuration and Enabling MSTP, on page 305
- Configuring Path Cost, on page 312
Configuring Path Cost

The MSTP path cost default value is derived from the media speed of an interface. If a loop occurs, the MSTP uses cost when selecting an interface to put in the forwarding state. You can assign lower cost values to interfaces that you want selected first and higher cost values that you want selected last. If all interfaces have the same cost value, the MSTP puts the interface with the lowest interface number in the forwarding state and blocks the other interfaces.

This procedure is optional.

Before You Begin

A multiple spanning tree (MST) must be specified and enabled on the switch. For instructions, see Related Topics.

You must also know the specified MST instance ID and the interface used. This example uses 0 as the instance ID and GigabitEthernet1/0/1 as the interface because that was the instance ID and interface set up by the instructions listed under Related Topics.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface interface-id`
4. `spanning-tree mst instance-id cost cost`
5. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface interface-id</td>
<td>Specifies an interface to configure, and enters interface configuration mode. Valid interfaces include physical ports and port-channel logical interfaces. The port-channel range is 1 to 48.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# interface gigabitethernet1/0/1</td>
<td></td>
</tr>
<tr>
<td>Step 4 spanning-tree mst instance-id cost cost</td>
<td>Configures the cost.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config-if)# spanning-tree mst 0 cost 17031970</td>
<td>If a loop occurs, the MSTP uses the path cost when selecting an interface to place into the forwarding state. A lower path cost represents higher-speed transmission.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td>Example:</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Switch(config-if)# end</td>
<td></td>
</tr>
</tbody>
</table>

The `show spanning-tree mst interface interface-id` privileged EXEC command displays information only for ports that are in a link-up operative state. Otherwise, you can use the `show running-config` privileged EXEC command to confirm the configuration.

Related Topics

- Configuring Port Priority, on page 310
- Specifying the MST Region Configuration and Enabling MSTP, on page 305

Configuring the Switch Priority

Changing the priority of a switch makes it more likely to be chosen as the root switch whether it is a standalone switch or a switch in the stack.

Note

Exercise care when using this command. For normal network configurations, we recommend that you use the `spanning-tree mst instance-id root primary` and the `spanning-tree mst instance-id root secondary` global configuration commands to specify a switch as the root or secondary root switch. You should modify the switch priority only in circumstances where these commands do not work.

This procedure is optional.

Before You Begin

A multiple spanning tree (MST) must be specified and enabled on the switch. For instructions, see Related Topics.

You must also know the specified MST instance ID used. This example uses 0 as the instance ID because that was the instance ID set up by the instructions listed under Related Topics.
SUMMARY STEPS

1. enable
2. configure terminal
3. spanning-tree mst instance-id priority priority
4. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>enable</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch> enable</td>
<td></td>
</tr>
</tbody>
</table>

Step 2	Enters the global configuration mode.
configure terminal	
Example:	
Switch# configure terminal	

Step 3	Configures the switch priority.	
spanning-tree mst instance-id priority priority		
Example:		
Switch(config)# spanning-tree mst 0 priority 40960		
• For instance-id, you can specify a single instance, a range of instances separated by a hyphen, or a series of instances separated by a comma. The range is 0 to 4094.		
• For priority, the range is 0 to 61440 in increments of 4096; the default is 32768. The lower the number, the more likely the switch will be chosen as the root switch.		
Priority values are 0, 4096, 8192, 12288, 16384, 20480, 24576, 28672, 32768, 36864, 40960, 45056, 49152, 53248, 57344, and 61440. These are the only acceptable values.		

Step 4	Returns to privileged EXEC mode.	
end		
Example:		
Switch(config-if)# end		

Related Topics

- [Specifying the MST Region Configuration and Enabling MSTP](#), on page 305
Configuring the Hello Time

The hello time is the time interval between configuration messages generated and sent by the root switch.

This procedure is optional.

Before You Begin

A multiple spanning tree (MST) must be specified and enabled on the switch. For instructions, see Related Topics.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `spanning-tree mst hello-time seconds`
4. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td><code>Switch> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Configures the hello time for all MST instances. The hello time is the time interval between configuration messages generated and sent by the root switch. These messages indicate that the switch is alive. For <code>seconds</code>, the range is 1 to 10; the default is 3.</td>
</tr>
<tr>
<td><code>spanning-tree mst hello-time seconds</code></td>
<td>Configures the hello time for all MST instances. The hello time is the time interval between configuration messages generated and sent by the root switch. These messages indicate that the switch is alive. For <code>seconds</code>, the range is 1 to 10; the default is 3.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch(config)# spanning-tree mst hello-time 4</code></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch(config)# end</code></td>
<td></td>
</tr>
</tbody>
</table>

Related Topics

- Specifying the MST Region Configuration and Enabling MSTP, on page 305
Configuring the Forwarding-Delay Time

Before You Begin
A multiple spanning tree (MST) must be specified and enabled on the switch. For instructions, see Related Topics.

SUMMARY STEPS

1. enable
2. configure terminal
3. spanning-tree mst forward-time seconds
4. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch> enable</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
</tr>
<tr>
<td>Step 3 spanning-tree mst forward-time seconds</td>
<td>Configures the forward time for all MST instances. The forwarding delay is the number of seconds a port waits before changing from its spanning-tree learning and listening states to the forwarding state. For seconds, the range is 4 to 30; the default is 20.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# spanning-tree mst forward-time 25</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# end</td>
</tr>
</tbody>
</table>

Related Topics
Specifying the MST Region Configuration and Enabling MSTP, on page 305
Configuring the Maximum-Aging Time

Before You Begin

A multiple spanning tree (MST) must be specified and enabled on the switch. For instructions, see Related Topics.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `spanning-tree mst max-age seconds`
4. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Switch> enable</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>configure terminal</code></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>spanning-tree mst max-age seconds</code></td>
<td>Configures the maximum-aging time for all MST instances. The maximum-aging time is the number of seconds a switch waits without receiving spanning-tree configuration messages before attempting a reconfiguration. For <code>seconds</code>, the range is 6 to 40; the default is 20.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Switch(config)# spanning-tree mst max-age 40</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Switch(config)# end</code></td>
<td></td>
</tr>
</tbody>
</table>

Related Topics

Specifying the MST Region Configuration and Enabling MSTP, on page 305
Configuring the Maximum-Hop Count

This procedure is optional.

Before You Begin

A multiple spanning tree (MST) must be specified and enabled on the switch. For instructions, see Related Topics.

SUMMARY STEPS

1. enable
2. configure terminal
3. spanning-tree mst max-hops hop-count
4. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch> enable</td>
<td></td>
</tr>
</tbody>
</table>

Step 2 configure terminal

Example:

Switch# configure terminal

Step 3 spanning-tree mst max-hops hop-count

Example:

Switch(config)# spanning-tree mst max-hops 25

Specifies the number of hops in a region before the BPDU is discarded, and the information held for a port is aged. For hop-count, the range is 1 to 255; the default is 20.

Step 4 end

Example:

Switch(config)# end

Returns to privileged EXEC mode.

Related Topics

Specifying the MST Region Configuration and Enabling MSTP, on page 305
Specifying the Link Type to Ensure Rapid Transitions

If you connect a port to another port through a point-to-point link and the local port becomes a designated port, the RSTP negotiates a rapid transition with the other port by using the proposal-agreement handshake to ensure a loop-free topology.

By default, the link type is controlled from the duplex mode of the interface: a full-duplex port is considered to have a point-to-point connection; a half-duplex port is considered to have a shared connection. If you have a half-duplex link physically connected point-to-point to a single port on a remote switch running MSTP, you can override the default setting of the link type and enable rapid transitions to the forwarding state.

This procedure is optional.

Before You Begin
A multiple spanning tree (MST) must be specified and enabled on the switch. For instructions, see Related Topics.

You must also know the specified MST instance ID and the interface used. This example uses 0 as the instance ID and GigabitEthernet1/0/1 as the interface because that was the instance ID and interface set up by the instructions listed under Related Topics.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface interface-id
4. spanning-tree link-type point-to-point
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface interface-id</td>
<td>Specifies an interface to configure, and enters interface configuration mode. Valid interfaces include physical ports, VLANs, and port-channel logical interfaces. The VLAN ID range is 1 to 4094. The port-channel range is 1 to 48.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# interface</td>
<td></td>
</tr>
<tr>
<td>GigabitEthernet1/0/1</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4</td>
<td>spanning-tree link-type point-to-point</td>
<td>Specifies that the link type of a port is point-to-point.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config-if)# spanning-tree link-type point-to-point</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config-if)# end</td>
<td></td>
</tr>
</tbody>
</table>

Related Topics

Specifying the MST Region Configuration and Enabling MSTP, on page 305

Designating the Neighbor Type

A topology could contain both prestandard and IEEE 802.1s standard compliant devices. By default, ports can automatically detect prestandard devices, but they can still receive both standard and prestandard BPDUs. When there is a mismatch between a device and its neighbor, only the CIST runs on the interface.

You can choose to set a port to send only prestandard BPDUs. The prestandard flag appears in all the `show` commands, even if the port is in STP compatibility mode.

This procedure is optional.

Before You Begin

A multiple spanning tree (MST) must be specified and enabled on the switch. For instructions, see Related Topics.

SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. **interface interface-id**
4. **spanning-tree mst pre-standard**
5. **end**
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch> enable</td>
</tr>
<tr>
<td></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# interface GigabitEthernet1/0/1</td>
</tr>
<tr>
<td></td>
<td>Specifies an interface to configure, and enters interface configuration mode. Valid interfaces include physical ports.</td>
</tr>
<tr>
<td>Step 4</td>
<td>spanning-tree mst pre-standard</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-if)# spanning-tree mst pre-standard</td>
</tr>
<tr>
<td></td>
<td>Specifies that the port can send only prestandard BPDUs.</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-if)# end</td>
</tr>
<tr>
<td></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Related Topics
- Specifying the MST Region Configuration and Enabling MSTP, on page 305

Restarting the Protocol Migration Process

This procedure restarts the protocol migration process and forces renegotiation with neighboring switches. It reverts the switch to MST mode. It is needed when the switch no longer receives IEEE 802.1D BPDUs after it has been receiving them.

Follow these steps to restart the protocol migration process (force the renegotiation with neighboring switches) on the switch.

Before You Begin

A multiple spanning tree (MST) must be specified and enabled on the switch. For instructions, see Related Topics.
If you want to use the interface version of the command, you must also know the MST interface used. This example uses GigabitEthernet1/0/1 as the interface because that was the interface set up by the instructions listed under Related Topics.

SUMMARY STEPS

1. enable
2. Enter one of the following commands:
 - clear spanning-tree detected-protocols
 - clear spanning-tree detected-protocols interface interface-id

DETAILED STEPS

<table>
<thead>
<tr>
<th></th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enter one of the following commands:</td>
<td>The switch reverts to the MSTP mode, and the protocol migration process restarts.</td>
</tr>
<tr>
<td></td>
<td>• clear spanning-tree detected-protocols</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• clear spanning-tree detected-protocols interface interface-id</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# clear spanning-tree detected-protocols</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# clear spanning-tree detected-protocols interface GigabitEthernet1/0/1</td>
<td></td>
</tr>
</tbody>
</table>

What to Do Next

This procedure may need to be repeated if the switch receives more legacy IEEE 802.1D configuration BPDUs (BPDUs with the protocol version set to 0).

Related Topics

- Specifying the MST Region Configuration and Enabling MSTP, on page 305
- Protocol Migration Process, on page 301
Configuring PVST+ Simulation

PVST+ simulation is enabled by default. This means that all ports automatically interoperate with a connected device that is running in Rapid PVST+ mode. If you disabled the feature and want to re-configure it, refer to the following tasks.

To enable PVST+ simulation globally, perform this task:

SUMMARY STEPS

1. enable
2. configure terminal
3. spanning-tree mst simulate pvst global
4. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch> enable</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>spanning-tree mst simulate pvst global</td>
<td>Enables PVST+ simulation globally. To prevent the switch from automatically interoperating with a connecting switch that is running Rapid PVST+, enter the no version of the command.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config)# spanning-tree mst simulate pvst global</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config)# end</td>
<td></td>
</tr>
</tbody>
</table>

Enabling PVST+ Simulation on a Port

To enable PVST+ simulation on a port, perform this task:
SUMMARY STEPS

1. enable
2. configure terminal
3. interface interface-id
4. spanning-tree mst simulate pvst
5. end
6. show spanning-tree summary

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Example: switch> enable</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>interface interface-id</td>
<td>Selects a port to configure.</td>
</tr>
<tr>
<td></td>
<td>Example: switch(config)# interface gi1/0/1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>spanning-tree mst simulate pvst</td>
<td>Enables PVST+ simulation on the specified interface.</td>
</tr>
<tr>
<td></td>
<td>Example: switch(config-if)# spanning-tree mst simulate pvst</td>
<td>Prevents a specified interface from automatically interoperating with a connecting switch that is not running MST, enter the spanning-tree mst simulate pvst disable command.</td>
</tr>
<tr>
<td>5</td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example: switch(config)# end</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>show spanning-tree summary</td>
<td>Verifies the configuration.</td>
</tr>
<tr>
<td></td>
<td>Example: switch# show spanning-tree summary</td>
<td></td>
</tr>
</tbody>
</table>
Examples

Examples: PVST+ Simulation

This example shows how to prevent the switch from automatically interoperating with a connecting switch that is running Rapid PVST+:

Switch# configure terminal
Switch(config)# no spanning-tree mst simulate pvst global

This example shows how to prevent a port from automatically interoperating with a connecting device that is running Rapid PVST+:

Switch(config)# interface 1/0/1
Switch(config-if)# spanning-tree mst simulate pvst disable

The following sample output shows the system message you receive when a SSTP BPDU is received on a port and PVST+ simulation is disabled:

Message
SPANTREE_PVST_PEER_BLOCK: PVST BPDU detected on port %s [port number].

Severity
Critical

Explanation
A PVST+ peer was detected on the specified interface on the switch. PVST+ simulation feature is disabled, as a result of which the interface was moved to the spanning tree Blocking state.

Action
Identify the PVST+ switch from the network which might be configured incorrectly.

The following sample output shows the system message you receive when peer inconsistency on the interface is cleared:

Message
SPANTREE_PVST_PEER_UNBLOCK: Unblocking port %s [port number].

Severity
Critical

Explanation
The interface specified in the error message has been restored to normal spanning tree state.

Action
None.

This example shows the spanning tree status when port 1/0/1 has been configured to disable PVST+ simulation and is currently in the peer type inconsistent state:

Switch# show spanning-tree
VLAN0010
 Spanning tree enabled protocol mstp
 Root ID Priority 32778
This bridge is the root

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
Bridge ID Priority 32778 (priority 32768 sys-id-ext 10)
Address 0002.172c.f400
Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
Aging Time 300

Interface Role Sts Cost Prio. Nbr Type
---------------- ---- --- --------- -------- -------------------------
Gi 1/0/1 Desg BKN*4 128.270 P2p *PVST_Peer_Inc

This example shows the spanning tree summary when PVST+ simulation is enabled in the MSTP mode:

Switch# show spanning-tree summary
Switch is in mst mode (IEEE Standard)
Root bridge for: MST0
EtherChannel misconfig guard is enabled
Extended system ID is enabled
Portfast Default is disabled
PortFast BPDU Guard Default is disabled
Portfast BPDU Filter Default is disabled
Loopguard Default is disabled
UplinkFast is disabled
BackboneFast is disabled
Pathcost method used is long
PVST Simulation Default is enabled

Name Blocking Listening Learning Forwarding STP Active
---------------- ------ ------- ------- ------- -------
MST0 2 0 0 0 2
1 mst 2 0 0 0 2

This example shows the spanning tree summary when PVST+ simulation is disabled in any STP mode:

Switch# show spanning-tree summary
Switch is in mst mode (IEEE Standard)
Root bridge for: MST0
EtherChannel misconfig guard is enabled
Extended system ID is enabled
Portfast Default is disabled
PortFast BPDU Guard Default is disabled
Portfast BPDU Filter Default is disabled
Loopguard Default is disabled
UplinkFast is disabled
BackboneFast is disabled
Pathcost method used is long
PVST Simulation Default is disabled

Name Blocking Listening Learning Forwarding STP Active
---------------- ------ ------- ------- ------- -------
MST0 2 0 0 0 2
1 mst 2 0 0 0 2

This example shows the spanning tree summary when the switch is not in MSTP mode, that is, the switch is in PVST or Rapid-PVST mode. The output string displays the current STP mode:

Switch# show spanning-tree summary
Switch is in rapid-pvst mode
Root bridge for: VLAN0001, VLAN2001-VLAN2002
EtherChannel misconfig guard is enabled
Extended system ID is enabled
Portfast Default is disabled
PortFast BPDU Guard Default is disabled
Portfast BPDU Filter Default is disabled
Loopguard Default is disabled
UplinkFast is disabled
BackboneFast is disabled
Pathcost method used is short
PVST Simulation Default is enabled but inactive in rapid-pvst mode

<table>
<thead>
<tr>
<th>Name</th>
<th>Blocking</th>
<th>Listening</th>
<th>Learning</th>
<th>Forwarding</th>
<th>STP Active</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN0001</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>VLAN2001</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>VLAN2002</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

This example shows the interface details when PVST+ simulation is globally enabled, or the default configuration:

Switch# show spanning-tree interface1/0/1 detail
Port 269 (GigabitEthernet1/0/1) of VLAN0002 is forwarding
Port path cost 4, Port priority 128, Port Identifier 128.297.
Designated root has priority 32769, address 0013.5f20.01c0
Designated bridge has priority 32769, address 0013.5f20.01c0
Designated port id is 128.297, designated path cost 0
Timers: message age 0, forward delay 0, hold 0
Number of transitions to forwarding state: 1
Link type is point-to-point by default
PVST Simulation is enabled by default
BPDU: sent 132, received 1

This example shows the interface details when PVST+ simulation is globally disabled:

Switch# show spanning-tree interface1/0/1 detail
Port 269 (GigabitEthernet1/0/1) of VLAN0002 is forwarding
Port path cost 4, Port priority 128, Port Identifier 128.297.
Designated root has priority 32769, address 0013.5f20.01c0
Designated bridge has priority 32769, address 0013.5f20.01c0
Designated port id is 128.297, designated path cost 0
Timers: message age 0, forward delay 0, hold 0
Number of transitions to forwarding state: 1
Link type is point-to-point by default
PVST Simulation is disabled by default
BPDU: sent 132, received 1

This example shows the interface details when PVST+ simulation is explicitly enabled on the port:

Switch# show spanning-tree interface1/0/1 detail
Port 269 (GigabitEthernet1/0/1) of VLAN0002 is forwarding
Port path cost 4, Port priority 128, Port Identifier 128.297.
Designated root has priority 32769, address 0013.5f20.01c0
Designated bridge has priority 32769, address 0013.5f20.01c0
Designated port id is 128.297, designated path cost 0
Timers: message age 0, forward delay 0, hold 0
Number of transitions to forwarding state: 1
Link type is point-to-point by default
PVST Simulation is enabled
BPDU: sent 132, received 1

This example shows the interface details when the PVST+ simulation feature is disabled and a PVST Peer inconsistency has been detected on the port:

Switch# show spanning-tree interface1/0/1 detail
Port 269 (GigabitEthernet1/0/1) of VLAN0002 is broken (PVST Peer Inconsistent)
Port path cost 4, Port priority 128, Port Identifier 128.297.
Designated root has priority 32769, address 0013.5f20.01c0
Designated bridge has priority 32769, address 0013.5f20.01c0
Designated port id is 128.297, designated path cost 0
Timers: message age 0, forward delay 0, hold 0
Number of transitions to forwarding state: 1
Link type is point-to-point by default
PVST Simulation is disabled
BPDU: sent 132, received 1

Examples: Detecting Unidirectional Link Failure

This example shows the spanning tree status when port 1/0/1 detail has been configured to disable PVST+ simulation and the port is currently in the peer type inconsistent state:

Switch# show spanning-tree
VLAN0010
 Spanning tree enabled protocol rstp
 Root ID Priority 32778
 Address 0002.172c.f400
 Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
 Bridge ID Priority 32778 (priority 32768 sys-id-ext 10)
 Address 0002.172c.f400
 Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
 Aging Time 300

 Interface Role Sts Cost Prio.Nbr Type
 ---------------- ---- --- --------- -------- -------------------------
 Gi1/0/1 Desg BKN 4 128.270 P2p Dispute

This example shows the interface details when a dispute condition is detected:

Switch# show spanning-tree interface1/0/1 detail
Port 269 (GigabitEthernet1/0/1) of VLAN0002 is designated blocking (dispute)
 Port path cost 4, Port priority 128, Port Identifier 128.297.
 Designated root has priority 32769, address 0013.5f20.01c0
 Designated bridge has priority 32769, address 0013.5f20.01c0
 Designated port id is 128.297, designated path cost 0
 Timers: message age 0, forward delay 0, hold 0
 Number of transitions to forwarding state: 1
 Link type is point-to-point by default
 BPDU: sent 132, received 1

Monitoring MST Configuration and Status

Table 42: Commands for Displaying MST Status

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show spanning-tree mst configuration</code></td>
<td>Displays the MST region configuration.</td>
</tr>
<tr>
<td><code>show spanning-tree mst configuration digest</code></td>
<td>Displays the MD5 digest included in the current MSTCI.</td>
</tr>
<tr>
<td><code>show spanning-tree mst</code></td>
<td>Displays MST information for the all instances.</td>
</tr>
<tr>
<td>Note</td>
<td>This command displays information for ports in a link-up operative state.</td>
</tr>
<tr>
<td><code>show spanning-tree mst instance-id</code></td>
<td>Displays MST information for the specified instance.</td>
</tr>
<tr>
<td>Note</td>
<td>This command displays information only if the port is in a link-up operative state.</td>
</tr>
</tbody>
</table>
Feature Information for MSTP

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
</table>
| Cisco IOS 15.0(2)EX | This feature was introduced.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show spanning-tree mst interface</td>
<td>Displays MST information for the specified interface.</td>
</tr>
<tr>
<td>interface-id</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Optional Spanning-Tree Features

- Finding Feature Information, page 331
- Restriction for Optional Spanning-Tree Features, page 331
- Information About Optional Spanning-Tree Features, page 332
- How to Configure Optional Spanning-Tree Features, page 346
- Examples, page 364
- Monitoring the Spanning-Tree Status, page 366
- Feature Information for Optional Spanning-Tree Features, page 366

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Restriction for Optional Spanning-Tree Features

- PortFast minimizes the time that interfaces must wait for spanning tree to converge, so it is effective only when used on interfaces connected to end stations. If you enable PortFast on an interface connecting to another switch, you risk creating a spanning-tree loop.

Related Topics

- Enabling PortFast, on page 346
- PortFast, on page 332
Information About Optional Spanning-Tree Features

PortFast

PortFast immediately brings an interface configured as an access or trunk port to the forwarding state from a blocking state, bypassing the listening and learning states.

You can use PortFast on interfaces connected to a single workstation or server to allow those devices to immediately connect to the network, rather than waiting for the spanning tree to converge.

Figure 23: PortFast-Enabled Interfaces

Interfaces connected to a single workstation or server should not receive bridge protocol data units (BPDUs). An interface with PortFast enabled goes through the normal cycle of spanning-tree status changes when the switch is restarted.

You can enable this feature by enabling it on either the interface or on all nontrunking ports.

Related Topics

- Enabling PortFast, on page 346
- Restriction for Optional Spanning-Tree Features, on page 331

BPDU Guard

The Bridge Protocol Data Unit (BPDU) guard feature can be globally enabled on the switch or can be enabled per port, but the feature operates with some differences.

When you enable BPDU guard at the global level on PortFast edge-enabled ports, spanning tree shuts down ports that are in a PortFast edge-operational state if any BPDU is received on them. In a valid configuration, PortFast edge-enabled ports do not receive BPDU. Receiving a BPDU on a Port Fast edge-enabled port means an invalid configuration, such as the connection of an unauthorized device, and the BPDU guard feature puts the port in the error-disabled state. When this happens, the switch shuts down the entire port on which the violation occurred.

When you enable BPDU guard at the interface level on any port without also enabling the PortFast edge feature, and the port receives a BPDU, it is put in the error-disabled state.
The BPDU guard feature provides a secure response to invalid configurations because you must manually put the interface back in service. Use the BPDU guard feature in a service-provider network to prevent an access port from participating in the spanning tree.

Related Topics

- Enabling BPDU Guard, on page 348

BPDU Filtering

The BPDU filtering feature can be globally enabled on the switch or can be enabled per interface, but the feature operates with some differences.

Enabling BPDU filtering on PortFast edge-enabled interfaces at the global level keeps those interfaces that are in a PortFast edge-operational state from sending or receiving BPDUs. The interfaces still send a few BPDUs at link-up before the switch begins to filter outbound BPDUs. You should globally enable BPDU filtering on a switch so that hosts connected to these interfaces do not receive BPDUs. If a BPDU is received on a PortFast edge-enabled interface, the interface loses its PortFast edge-operational status, and BPDU filtering is disabled.

Enabling BPDU filtering on an interface without also enabling the PortFast edge feature keeps the interface from sending or receiving BPDUs.

⚠️ **Caution**

Enabling BPDU filtering on an interface is the same as disabling spanning tree on it and can result in spanning-tree loops.

You can enable the BPDU filtering feature for the entire switch or for an interface.

Related Topics

- Enabling BPDU Filtering, on page 349
UplinkFast

Switches in hierarchical networks can be grouped into backbone switches, distribution switches, and access switches. This complex network has distribution switches and access switches that each have at least one redundant link that spanning tree blocks to prevent loops.

Figure 24: Switches in a Hierarchical Network

If a switch loses connectivity, it begins using the alternate paths as soon as the spanning tree selects a new root port. You can accelerate the choice of a new root port when a link or switch fails or when the spanning tree reconfigures itself by enabling UplinkFast. The root port transitions to the forwarding state immediately without going through the listening and learning states, as it would with the normal spanning-tree procedures.

When the spanning tree reconfigures the new root port, other interfaces flood the network with multicast packets, one for each address that was learned on the interface. You can limit these bursts of multicast traffic by reducing the max-update-rate parameter (the default for this parameter is 150 packets per second). However, if you enter zero, station-learning frames are not generated, so the spanning-tree topology converges more slowly after a loss of connectivity.

Note

UplinkFast is most useful in wiring-closet switches at the access or edge of the network. It is not appropriate for backbone devices. This feature might not be useful for other types of applications.

UplinkFast provides fast convergence after a direct link failure and achieves load-balancing between redundant Layer 2 links using uplink groups. An uplink group is a set of Layer 2 interfaces (per VLAN), only one of which is forwarding at any given time. Specifically, an uplink group consists of the root port (which is forwarding) and a set of blocked ports, except for self-looping ports. The uplink group provides an alternate path in case the currently forwarding link fails.
This topology has no link failures. Switch A, the root switch, is connected directly to Switch B over link L1 and to Switch C over link L2. The Layer 2 interface on Switch C that is connected directly to Switch B is in a blocking state.

Figure 25: UplinkFast Example Before Direct Link Failure

If Switch C detects a link failure on the currently active link L2 on the root port (a direct link failure), UplinkFast unblocks the blocked interface on Switch C and transitions it to the forwarding state without going through the listening and learning states. This change takes approximately 1 to 5 seconds.

Figure 26: UplinkFast Example After Direct Link Failure

Related Topics

- Specifying the MST Region Configuration and Enabling MSTP, on page 305
- MSTP Configuration Guidelines, on page 287
- Multiple Spanning-Tree Regions, on page 289
- Enabling UplinkFast for Use with Redundant Links, on page 351
- Events That Cause Fast Convergence, on page 338

Cross-Stack UplinkFast

Cross-Stack UplinkFast (CSUF) provides a fast spanning-tree transition (fast convergence in less than 1 second under normal network conditions) across a switch stack. During the fast transition, an alternate redundant link on the switch stack is placed in the forwarding state without causing temporary spanning-tree loops or loss.
of connectivity to the backbone. With this feature, you can have a redundant and resilient network in some configurations. CSUF is automatically enabled when you enable the UplinkFast feature. CSUF might not provide a fast transition all the time; in these cases, the normal spanning-tree transition occurs, completing in 30 to 40 seconds. For more information, see Related Topics.

Related Topics

- Enabling UplinkFast for Use with Redundant Links, on page 351
- Events That Cause Fast Convergence, on page 338

How Cross-Stack UplinkFast Works

Cross-Stack UplinkFast (CSUF) ensures that one link in the stack is elected as the path to the root.

The stack-root port on Switch 1 provides the path to the root of the spanning tree. The alternate stack-root ports on Switches 2 and 3 can provide an alternate path to the spanning-tree root if the current stack-root switch fails or if its link to the spanning-tree root fails.

Link 1, the root link, is in the spanning-tree forwarding state. Links 2 and 3 are alternate redundant links that are in the spanning-tree blocking state. If Switch 1 fails, if its stack-root port fails, or if Link 1 fails, CSUF selects either the alternate stack-root port on Switch 2 or Switch 3 and puts it into the forwarding state in less than 1 second.
When certain link loss or spanning-tree events occur (described in the following topic), the Fast Uplink Transition Protocol uses the neighbor list to send fast-transition requests to stack members.

The switch sending the fast-transition request needs to do a fast transition to the forwarding state of a port that it has chosen as the root port, and it must obtain an acknowledgment from each stack switch before performing the fast transition.

Each switch in the stack decides if the sending switch is a better choice than itself to be the stack root of this spanning-tree instance by comparing the root, cost, and bridge ID. If the sending switch is the best choice as the stack root, each switch in the stack returns an acknowledgment; otherwise, it sends a fast-transition request. The sending switch then has not received acknowledgments from all stack switches.

When acknowledgments are received from all stack switches, the Fast Uplink Transition Protocol on the sending switch immediately transitions its alternate stack-root port to the forwarding state. If acknowledgments from all stack switches are not obtained by the sending switch, the normal spanning-tree transitions (blocking, listening, learning, and forwarding) take place, and the spanning-tree topology converges at its normal rate (2 * forward-delay time + max-age time).

The Fast Uplink Transition Protocol is implemented on a per-VLAN basis and affects only one spanning-tree instance at a time.

Related Topics

Enabling UplinkFast for Use with Redundant Links, on page 351
Events That Cause Fast Convergence

Depending on the network event or failure, the CSUF fast convergence might or might not occur.

Fast convergence (less than 1 second under normal network conditions) occurs under these circumstances:

• The stack-root port link fails.

If two switches in the stack have alternate paths to the root, only one of the switches performs the fast transition.

• The failed link, which connects the stack root to the spanning-tree root, recovers.

• A network reconfiguration causes a new stack-root switch to be selected.

• A network reconfiguration causes a new port on the current stack-root switch to be chosen as the stack-root port.

The fast transition might not occur if multiple events occur simultaneously. For example, if a stack member is powered off, and at the same time, the link connecting the stack root to the spanning-tree root comes back up, the normal spanning-tree convergence occurs.

Normal spanning-tree convergence (30 to 40 seconds) occurs under these conditions:

• The stack-root switch is powered off, or the software failed.

• The stack-root switch, which was powered off or failed, is powered on.

• A new switch, which might become the stack root, is added to the stack.

Related Topics

- Enabling UplinkFast for Use with Redundant Links, on page 351
- UplinkFast, on page 334
- Cross-Stack UplinkFast, on page 335
- How Cross-Stack UplinkFast Works, on page 336

BackboneFast

BackboneFast detects indirect failures in the core of the backbone. BackboneFast is a complementary technology to the UplinkFast feature, which responds to failures on links directly connected to access switches.

BackboneFast optimizes the maximum-age timer, which controls the amount of time the switch stores protocol information received on an interface. When a switch receives an inferior BPDU from the designated port of another switch, the BPDU is a signal that the other switch might have lost its path to the root, and BackboneFast tries to find an alternate path to the root.

BackboneFast starts when a root port or blocked interface on a switch receives inferior BPDU from its designated switch. An inferior BPDU identifies a switch that declares itself as both the root bridge and the designated switch. When a switch receives an inferior BPDU, it means that a link to which the switch is not directly connected (an indirect link) has failed (that is, the designated switch has lost its connection to the root.
switch). Under spanning-tree rules, the switch ignores inferior BPDUs for the maximum aging time (default is 20 seconds).

The switch tries to find if it has an alternate path to the root switch. If the inferior BPDU arrives on a blocked interface, the root port and other blocked interfaces on the switch become alternate paths to the root switch. (Self-looped ports are not considered alternate paths to the root switch.) If the inferior BPDU arrives on the root port, all blocked interfaces become alternate paths to the root switch. If the inferior BPDU arrives on the root port and there are no blocked interfaces, the switch assumes that it has lost connectivity to the root switch, causes the maximum aging time on the root port to expire, and becomes the root switch according to normal spanning-tree rules.

If the switch has alternate paths to the root switch, it uses these alternate paths to send a root link query (RLQ) request. The switch sends the RLQ request on all alternate paths to learn if any stack member has an alternate root to the root switch and waits for an RLQ reply from other switches in the network and in the stack. The switch sends the RLQ request on all alternate paths and waits for an RLQ reply from other switches in the network.

When a stack member receives an RLQ reply from a nonstack member on a blocked interface and the reply is destined for another nonstacked switch, it forwards the reply packet, regardless of the spanning-tree interface state.

When a stack member receives an RLQ reply from a nonstack member and the response is destined for the stack, the stack member forwards the reply so that all the other stack members receive it.

If the switch discovers that it still has an alternate path to the root, it expires the maximum aging time on the interface that received the inferior BPDU. If all the alternate paths to the root switch indicate that the switch has lost connectivity to the root switch, the switch expires the maximum aging time on the interface that received the RLQ reply. If one or more alternate paths can still connect to the root switch, the switch makes all interfaces on which it received an inferior BPDU its designated ports and moves them from the blocking state (if they were in the blocking state), through the listening and learning states, and into the forwarding state.

This is an example topology with no link failures. Switch A, the root switch, connects directly to Switch B over link L1 and to Switch C over link L2. The Layer 2 interface on Switch C that connects directly to Switch B is in the blocking state.

Figure 28: BackboneFast Example Before Indirect Link Failure

If link L1 fails, Switch C cannot detect this failure because it is not connected directly to link L1. However, because Switch B is directly connected to the root switch over L1, it detects the failure, elects itself the root, and begins sending BPDUs to Switch C, identifying itself as the root. When Switch C receives the inferior BPDUs from Switch B, Switch C assumes that an indirect failure has occurred. At that point, BackboneFast
allows the blocked interface on Switch C to move immediately to the listening state without waiting for the maximum aging time for the interface to expire. BackboneFast then transitions the Layer 2 interface on Switch C to the forwarding state, providing a path from Switch B to Switch A. The root-switch election takes approximately 30 seconds, twice the Forward Delay time if the default Forward Delay time of 15 seconds is set. BackboneFast reconfigures the topology to account for the failure of link L1.

Figure 29: BackboneFast Example After Indirect Link Failure

If a new switch is introduced into a shared-medium topology, BackboneFast is not activated because the inferior BPDUs did not come from the recognized designated switch (Switch B). The new switch begins sending inferior BPDUs that indicate it is the root switch. However, the other switches ignore these inferior BPDUs, and the new switch learns that Switch B is the designated switch to Switch A, the root switch.

Figure 30: Adding a Switch in a Shared-Medium Topology

Related Topics
- Specifying the MST Region Configuration and Enabling MSTP, on page 305
- MSTP Configuration Guidelines, on page 287
- Multiple Spanning-Tree Regions, on page 289
- Enabling BackboneFast, on page 353
 EtherChannel Guard

You can use EtherChannel guard to detect an EtherChannel misconfiguration between the switch and a connected device. A misconfiguration can occur if the switch interfaces are configured in an EtherChannel, but the interfaces on the other device are not. A misconfiguration can also occur if the channel parameters are not the same at both ends of the EtherChannel.

If the switch detects a misconfiguration on the other device, EtherChannel guard places the switch interfaces in the error-disabled state, and displays an error message.

Related Topics

Enabling EtherChannel Guard, on page 354

Root Guard

The Layer 2 network of a service provider (SP) can include many connections to switches that are not owned by the SP. In such a topology, the spanning tree can reconfigure itself and select a customer switch as the root switch. You can avoid this situation by enabling root guard on SP switch interfaces that connect to switches in your customer's network. If spanning-tree calculations cause an interface in the customer network to be selected as the root port, root guard then places the interface in the root-inconsistent (blocked) state to prevent the customer's switch from becoming the root switch or being in the path to the root.

Figure 31: Root Guard in a Service-Provider Network

If a switch outside the SP network becomes the root switch, the interface is blocked (root-inconsistent state), and spanning tree selects a new root switch. The customer's switch does not become the root switch and is not in the path to the root.

If the switch is operating in multiple spanning-tree (MST) mode, root guard forces the interface to be a designated port. If a boundary port is blocked in an internal spanning-tree (IST) instance because of root guard, the interface also is blocked in all MST instances. A boundary port is an interface that connects to a
LAN, the designated switch of which is either an IEEE 802.1D switch or a switch with a different MST region configuration.

Root guard enabled on an interface applies to all the VLANs to which the interface belongs. VLANs can be grouped and mapped to an MST instance.

Caution

Misuse of the root guard feature can cause a loss of connectivity.

Related Topics

Enabling Root Guard, on page 356

Loop Guard

You can use loop guard to prevent alternate or root ports from becoming designated ports because of a failure that leads to a unidirectional link. This feature is most effective when it is enabled on the entire switched network. Loop guard prevents alternate and root ports from becoming designated ports, and spanning tree does not send BPDUs on root or alternate ports.

When the switch is operating in PVST+ or rapid-PVST+ mode, loop guard prevents alternate and root ports from becoming designated ports, and spanning tree does not send BPDUs on root or alternate ports.

When the switch is operating in MST mode, BPDUs are not sent on nonboundary ports only if the interface is blocked by loop guard in all MST instances. On a boundary port, loop guard blocks the interface in all MST instances.

Related Topics

Enabling Loop Guard, on page 357

STP PortFast Port Types

You can configure a spanning tree port as an edge port, a network port, or a normal port. A port can be in only one of these states at a given time. The default spanning tree port type is normal. You can configure the port type either globally or per interface.

Depending on the type of device to which the interface is connected, you can configure a spanning tree port as one of these port types:

- A PortFast edge port—is connected to a Layer 2 host. This can be either an access port or an edge trunk port (portfast edge trunk). This type of port interface immediately transitions to the forwarding state, bypassing the listening and learning states. Use PortFast edge on Layer 2 access ports connected to a single workstation or server to allow those devices to connect to the network immediately, rather than waiting for spanning tree to converge.

 Even if the interface receives a bridge protocol data unit (BPU), spanning tree does not place the port into the blocking state. Spanning tree sets the port’s operating state to non-port fast even if the configured state remains port fast edge and starts participating in the topology change.
If you configure a port connected to a Layer 2 switch or bridge as an edge port, you might create a bridging loop.

- A PortFast network port—is connected only to a Layer 2 switch or bridge. Bridge Assurance is enabled only on PortFast network ports. For more information, refer to Bridge Assurance.

- A PortFast normal port—is the default type of spanning tree port.

Beginning with Cisco IOS Release 15.2(4)E, or IOS XE 3.8.0E, if you enter the `spanning-tree portfast [trunk]` command in the global or interface configuration mode, the system automatically saves it as `spanning-tree portfast edge [trunk].`

Related Topics

Enabling PortFast Port Types, on page 358

Bridge Assurance

You can use Bridge Assurance to help prevent looping conditions that are caused by unidirectional links (one-way traffic on a link or port), or a malfunction in a neighboring switch. Here a malfunction refers to a switch that is not able to run STP any more, while still forwarding traffic (a brain dead switch).

BPDUs are sent out on all operational network ports, including alternate and backup ports, for each hello time period. Bridge Assurance monitors the receipt of BPDUs on point-to-point links on all network ports. When a port does not receive BPDUs within the allotted hello time period, the port is put into a blocked state (the same as a port inconsistent state, which stops forwarding of frames). When the port resumes receipt of BPDUs, the port resumes normal spanning tree operations.

Only Rapid PVST+ and MST spanning tree protocols support Bridge Assurance. PVST+ does not support Bridge Assurance.

The following example shows how Bridge Assurance protects your network from bridging loops.
The following figure shows a network with normal STP topology.

Figure 32: Network with Normal STP Topology

![Normal STP Topology Diagram](image1)

The following figure demonstrates a potential network problem when the device fails (brain dead) and Bridge Assurance is not enabled on the network.

Figure 33: Network Loop Due to a Malfunctioning Switch

![Network Loop Diagram](image2)
The following figure shows the network with Bridge Assurance enabled, and the STP topology progressing normally with bidirectional BDPUs issuing from every STP network port.

Figure 34: Network with STP Topology Running Bridge Assurance

The following figure shows how the potential network problem shown in figure *Network Loop Due to a Malfunctioning Switch* does not occur when you have Bridge Assurance enabled on your network.

Figure 35: Network Problem Averted with Bridge Assurance Enabled

The system generates syslog messages when a port is block and unblocked. The following sample output shows the log that is generated for each of these states:

BRIDGE_ASSURANCE_BLOCK

Sep 17 09:48:16.249 PDT: %SPANTREE-2-BRIDGE_ASSURANCE_BLOCK: Bridge Assurance blocking port GigabitEthernet1/0/1 on VLAN0001.

BRIDGE_ASSURANCE_UNBLOCK

Sep 17 09:48:58.426 PDT: %SPANTREE-2-BRIDGE_ASSURANCE_UNBLOCK: Bridge Assurance unblocking port GigabitEthernet1/0/1 on VLAN0001.

Follow these guidelines when enabling Bridge Assurance:
• It can only be enabled or disabled globally.
• It applies to all operational network ports, including alternate and backup ports.
• Only Rapid PVST+ and MST spanning tree protocols support Bridge Assurance. PVST+ does not support Bridge Assurance.
• For Bridge Assurance to work properly, it must be supported and configured on both ends of a point-to-point link. If the device on one side of the link has Bridge Assurance enabled and the device on the other side does not, the connecting port is blocked and in a Bridge Assurance inconsistent state. We recommend that you enable Bridge Assurance throughout your network.
• To enable Bridge Assurance on a port, BPDU filtering and BPDU Guard must be disabled.
• You can enable Bridge Assurance in conjunction with Loop Guard.
• You can enable Bridge Assurance in conjunction with Root Guard. The latter is designed to provide a way to enforce the root bridge placement in the network.

Related Topics
Enabling Bridge Assurance, on page 362

How to Configure Optional Spanning-Tree Features

Enabling PortFast
An interface with the PortFast feature enabled is moved directly to the spanning-tree forwarding state without waiting for the standard forward-time delay.

If you enable the voice VLAN feature, the PortFast feature is automatically enabled. When you disable voice VLAN, the PortFast feature is not automatically disabled.

You can enable this feature if your switch is running PVST+, Rapid PVST+, or MSTP.

Caution
Use PortFast only when connecting a single end station to an access or trunk port. Enabling this feature on an interface connected to a switch or hub could prevent spanning tree from detecting and disabling loops in your network, which could cause broadcast storms and address-learning problems.

This procedure is optional.

SUMMARY STEPS
1. enable
2. configure terminal
3. interface interface-id
4. spanning-tree portfast [trunk]
5. end
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>enables privileged EXEC mode. Enter your password if prompted.</td>
<td>enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>enters the global configuration mode.</td>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>specifies an interface to configure, and enters interface configuration mode.</td>
<td>interface interface-id</td>
<td>Specifies an interface to configure, and enters interface configuration mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>enables PortFast on an access port connected to a single workstation or server. By specifying the trunk keyword, you can enable PortFast on a trunk port.</td>
<td>spanning-tree portfast [trunk]</td>
<td>Enables PortFast on an access port connected to a single workstation or server. By specifying the trunk keyword, you can enable PortFast on a trunk port.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>returns to privileged EXEC mode.</td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

What to Do Next

You can use the `spanning-tree portfast default` global configuration command to globally enable the PortFast feature on all nontrunking ports.

Related Topics

- PortFast, on page 332
Enabling BPDU Guard

You can enable the BPDU guard feature if your switch is running PVST+, Rapid PVST+, or MSTP.

Caution
Configure PortFast edge only on ports that connect to end stations; otherwise, an accidental topology loop could cause a data packet loop and disrupt switch and network operation.

This procedure is optional.

SUMMARY STEPS

1. enable
2. configure terminal
3. spanning-tree portfast edge bpduguard default
4. interface interface-id
5. spanning-tree portfast edge
6. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch> enable</td>
</tr>
<tr>
<td></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>spanning-tree portfast edge bpduguard default</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# spanning-tree portfast edge bpduguard default</td>
</tr>
<tr>
<td></td>
<td>Globally enables BPDU guard. By default, BPDU guard is disabled.</td>
</tr>
<tr>
<td>Step 4</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# interface gigabitethernet1/0/2</td>
</tr>
<tr>
<td></td>
<td>Specifies the interface connected to an end station, and enters interface configuration mode.</td>
</tr>
</tbody>
</table>
How to Configure Optional Spanning-Tree Features

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td>spanning-tree portfast edge</td>
<td>Enables the PortFast edge feature.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config-if)# spanning-tree portfast edge</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config-if)# end</td>
<td></td>
</tr>
</tbody>
</table>

What to Do Next

To prevent the port from shutting down, you can use the `errdisable detect cause bpduguard shutdown vlan` global configuration command to shut down just the offending VLAN on the port where the violation occurred. You also can use the `spanning-tree bpduguard enable` interface configuration command to enable BPDU guard on any port without also enabling the PortFast edge feature. When the port receives a BPDU, it is put it in the error-disabled state.

Related Topics

BPDU Guard, on page 332

Enabling BPDU Filtering

You can also use the `spanning-tree bpdufilter enable` interface configuration command to enable BPDU filtering on any interface without also enabling the PortFast edge feature. This command prevents the interface from sending or receiving BPDUs.

Caution

Enabling BPDU filtering on an interface is the same as disabling spanning tree on it and can result in spanning-tree loops.

You can enable the BPDU filtering feature if your switch is running PVST+, Rapid PVST+, or MSTP.

Caution

Configure PortFast edge only on interfaces that connect to end stations; otherwise, an accidental topology loop could cause a data packet loop and disrupt switch and network operation.

This procedure is optional.
SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `spanning-tree portfast edge bpdufilter default`
4. `interface interface-id`
5. `spanning-tree portfast edge`
6. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch> <code>enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2 <code>configure terminal</code></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# <code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3 <code>spanning-tree portfast edge bpdufilter default</code></td>
<td>Globally enables BPDU filtering. By default, BPDU filtering is disabled.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# <code>spanning-tree portfast edge bpdufilter default</code></td>
<td></td>
</tr>
<tr>
<td>Step 4 <code>interface interface-id</code></td>
<td>Specifies the interface connected to an end station, and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# <code>interface gigabitethernet1/0/2</code></td>
<td></td>
</tr>
<tr>
<td>Step 5 <code>spanning-tree portfast edge</code></td>
<td>Enables the PortFast edge feature on the specified interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config-if)# <code>spanning-tree portfast edge</code></td>
<td></td>
</tr>
<tr>
<td>Step 6 <code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config-if)# <code>end</code></td>
<td></td>
</tr>
</tbody>
</table>
Enabling UplinkFast for Use with Redundant Links

Note When you enable UplinkFast, it affects all VLANs on the switch or switch stack. You cannot configure UplinkFast on an individual VLAN.

You can configure the UplinkFast or the Cross-Stack UplinkFast (CSUF) feature for Rapid PVST+ or for the MSTP, but the feature remains disabled (inactive) until you change the spanning-tree mode to PVST+.

This procedure is optional. Follow these steps to enable UplinkFast and CSUF.

Before You Begin

UplinkFast cannot be enabled on VLANs that have been configured with a switch priority. To enable UplinkFast on a VLAN with switch priority configured, first restore the switch priority on the VLAN to the default value using the `no spanning-tree vlan vlan-id priority` global configuration command.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `spanning-tree uplinkfast [max-update-rate pkts-per-second]`
4. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Example:</td>
</tr>
<tr>
<td><code>Switch> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Example:</td>
</tr>
<tr>
<td><code>Switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Enables UplinkFast. (Optional) For <code>pkts-per-second</code>, the range is 0 to 32000 packets per second; the default is 150.</td>
</tr>
<tr>
<td><code>spanning-tree uplinkfast [max-update-rate pkts-per-second]</code></td>
<td>Example:</td>
</tr>
<tr>
<td><code>Switch(config)# spanning-tree uplinkfast max-update-rate 200</code></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>If you set the rate to 0, station-learning frames are not generated, and the spanning-tree topology converges more slowly after a loss of connectivity. When you enter this command, CSUF also is enabled on all nonstack port interfaces.</td>
</tr>
</tbody>
</table>

Step 4

```
end
```

Example:

```
Switch(config)# end
```

When UplinkFast is enabled, the switch priority of all VLANs is set to 49152. If you change the path cost to a value less than 3000 and you enable UplinkFast or UplinkFast is already enabled, the path cost of all interfaces and VLAN trunks is increased by 3000 (if you change the path cost to 3000 or above, the path cost is not altered). The changes to the switch priority and the path cost reduce the chance that a switch will become the root switch.

When UplinkFast is disabled, the switch priorities of all VLANs and path costs of all interfaces are set to default values if you did not modify them from their defaults.

When you enable the UplinkFast feature using these instructions, CSUF is automatically globally enabled on nonstack port interfaces.

Related Topics

- UplinkFast, on page 334
- Cross-Stack UplinkFast, on page 335
- How Cross-Stack UplinkFast Works, on page 336
- Events That Cause Fast Convergence, on page 338

Disabling UplinkFast

This procedure is optional.

Follow these steps to disable UplinkFast and Cross-Stack UplinkFast (CSUF).

Before You Begin

UplinkFast must be enabled.

SUMMARY STEPS

1. enable
2. configure terminal
3. no spanning-tree uplinkfast
4. end
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>no spanning-tree uplinkfast</td>
<td>Disables UplinkFast and CSUF on the switch and all of its VLANs.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config)# no spanning-tree uplinkfast</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config)# end</td>
<td></td>
</tr>
</tbody>
</table>

When UplinkFast is disabled, the switch priorities of all VLANs and path costs of all interfaces are set to default values if you did not modify them from their defaults.

When you disable the UplinkFast feature using these instructions, CSUF is automatically globally disabled on nonstack port interfaces.

Enabling BackboneFast

You can enable BackboneFast to detect indirect link failures and to start the spanning-tree reconfiguration sooner.

You can configure the BackboneFast feature for Rapid PVST+ or for the MSTP, but the feature remains disabled (inactive) until you change the spanning-tree mode to PVST+.

This procedure is optional. Follow these steps to enable BackboneFast on the switch.

Before You Begin

If you use BackboneFast, you must enable it on all switches in the network. BackboneFast is not supported on Token Ring VLANs. This feature is supported for use with third-party switches.
SUMMARY STEPS

1. enable
2. configure terminal
3. spanning-tree backbonefast
4. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Enables BackboneFast.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# spanning-tree backbonefast</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# end</td>
<td></td>
</tr>
</tbody>
</table>

Related Topics

BackboneFast, on page 338

Enabling EtherChannel Guard

You can enable EtherChannel guard to detect an EtherChannel misconfiguration if your switch is running PVST+, Rapid PVST+, or MSTP.

This procedure is optional.

Follow these steps to enable EtherChannel Guard on the switch.
SUMMARY STEPS

1. enable
2. configure terminal
3. spanning-tree etherchannel guard misconfig
4. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 spanning-tree etherchannel guard misconfig</td>
<td>Enables EtherChannel guard.</td>
</tr>
<tr>
<td>Example: Switch(config)# spanning-tree etherchannel guard misconfig</td>
<td></td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Switch(config)# end</td>
<td></td>
</tr>
</tbody>
</table>

What to Do Next

You can use the `show interfaces status err-disabled` privileged EXEC command to show which switch ports are disabled because of an EtherChannel misconfiguration. On the remote device, you can enter the `show etherchannel summary` privileged EXEC command to verify the EtherChannel configuration.

After the configuration is corrected, enter the `shutdown` and `no shutdown` interface configuration commands on the port-channel interfaces that were misconfigured.

Related Topics

- EtherChannel Guard, on page 341
Enabling Root Guard

Root guard enabled on an interface applies to all the VLANs to which the interface belongs. Do not enable the root guard on interfaces to be used by the UplinkFast feature. With UplinkFast, the backup interfaces (in the blocked state) replace the root port in the case of a failure. However, if root guard is also enabled, all the backup interfaces used by the UplinkFast feature are placed in the root-inconsistent state (blocked) and are prevented from reaching the forwarding state.

Note
You cannot enable both root guard and loop guard at the same time.

You can enable this feature if your switch is running PVST+, Rapid PVST+, or MSTP.
This procedure is optional.
Follow these steps to enable root guard on the switch.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface interface-id
4. spanning-tree guard root
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface interface-id</td>
<td>Specifies an interface to configure, and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# interface gigabitethernet1/0/2</td>
<td></td>
</tr>
<tr>
<td>Step 4 spanning-tree guard root</td>
<td>Enables root guard on the interface.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Example: Switch(config-if)# spanning-tree guard root</td>
<td>By default, root guard is disabled on all interfaces.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Switch(config-if)# end</td>
<td></td>
</tr>
</tbody>
</table>

Related Topics

Root Guard, on page 341

Enabling Loop Guard

You can use loop guard to prevent alternate or root ports from becoming designated ports because of a failure that leads to a unidirectional link. This feature is most effective when it is configured on the entire switched network. Loop guard operates only on interfaces that are considered point-to-point by the spanning tree.

Note

You cannot enable both loop guard and root guard at the same time.

You can enable this feature if your switch is running PVST+, Rapid PVST+, or MSTP.

This procedure is optional. Follow these steps to enable loop guard on the switch.

SUMMARY STEPS

1. Enter one of the following commands:
 - `show spanning-tree active`
 - `show spanning-tree mst`
2. `configure terminal`
3. `spanning-tree loopguard default`
4. `end`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enter one of the following commands:</td>
<td></td>
<td>Verifies which interfaces are alternate or root ports.</td>
</tr>
<tr>
<td>- show spanning-tree active</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- show spanning-tree mst</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switch# show spanning-tree active</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switch# show spanning-tree mst</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>spanning-tree loopguard default</td>
<td></td>
<td>Enables loop guard.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>By default, loop guard is disabled.</td>
</tr>
<tr>
<td>Switch(config)# spanning-tree loopguard default</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>end</td>
<td></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switch(config)# end</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Related Topics

- Loop Guard, on page 342

Enabling PortFast Port Types

This section describes the different steps to enable Portfast Port types.

Related Topics

- STP PortFast Port Types, on page 342

Configuring the Default Port State Globally

To configure the default PortFast state, perform this task:
SUMMARY STEPS

1. enable
2. configure terminal
3. spanning-tree portfast [edge | network | normal] default
4. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch> enable</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
</tr>
<tr>
<td>Step 3 spanning-tree portfast [edge</td>
<td>network</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# spanning-tree portfast default</td>
</tr>
<tr>
<td>- (Optional) edge—Configures all interfaces as edge ports. This assumes all ports are connected to hosts/servers.</td>
<td></td>
</tr>
<tr>
<td>- (Optional) network—Configures all interfaces as spanning tree network ports. This assumes all ports are connected to switches and bridges. Bridge Assurance is enabled on all network ports by default.</td>
<td></td>
</tr>
<tr>
<td>- (Optional) normal—Configures all interfaces normal spanning tree ports. These ports can be connected to any type of device.</td>
<td></td>
</tr>
<tr>
<td>- default—The default port type is normal.</td>
<td></td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# end</td>
</tr>
</tbody>
</table>

Configuring PortFast Edge on a Specified Interface

Interfaces configured as edge ports immediately transition to the forwarding state, without passing through the blocking or learning states, on linkup.
Because the purpose of this type of port is to minimize the time that access ports must wait for spanning tree to converge, it is most effective when used on access ports. If you enable PortFast edge on a port connecting to another switch, you risk creating a spanning tree loop.

To configure an edge port on a specified interface, perform this task:

SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. **interface interface-id | port-channel port_channel_number**
4. **spanning-tree portfast edge [trunk]**
5. **end**
6. **show running interface interface-id | port-channel port_channel_number**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface interface-id</td>
<td>Specifies an interface to configure.</td>
</tr>
<tr>
<td>port-channel port_channel_number</td>
<td></td>
</tr>
<tr>
<td>Example: Switch(config)# interface gigabitethernet 1/0/1</td>
<td></td>
</tr>
<tr>
<td>port-channel port_channel_number</td>
<td></td>
</tr>
<tr>
<td>Step 4 spanning-tree portfast edge</td>
<td>Enables edge behavior on a Layer 2 access port connected to an end workstation or server.</td>
</tr>
<tr>
<td>[trunk]</td>
<td></td>
</tr>
<tr>
<td>Example: Switch(config-if)# spanning-tree portfast trunk</td>
<td></td>
</tr>
<tr>
<td>(Optional) trunk—Enables edge behavior on a trunk port. Use this keyword if the link is a trunk. Use this command only on ports that are connected to end host devices that terminate VLANs and from which the port should never receive STP BPDUs. Such end host devices include workstations, servers, and ports on routers that are not configured to support bridging.</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>• Use the no version of the command to disable PortFast edge.</td>
<td></td>
</tr>
</tbody>
</table>

Step 5

Example:

Switch(config-if)# end

Step 6

Example:

Switch# show running interface gigabitethernet 1/0/1| port-channel port_channel_number

Configuring a PortFast Network Port on a Specified Interface

Ports that are connected to Layer 2 switches and bridges can be configured as network ports.

Note

Bridge Assurance is enabled only on PortFast network ports. For more information, refer to *Bridge Assurance*.

To configure a port as a network port, perform this task.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface interface-id | port-channel port_channel_number
4. spanning-tree portfast network
5. end
6. show running interface interface-id | port-channel port_channel_number
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface interface-id</td>
<td>Specifies an interface to configure.</td>
</tr>
<tr>
<td>Example: Switch(config)# interface gigabitethernet 1/0/1</td>
<td></td>
</tr>
<tr>
<td>port-channel port_channel_number</td>
<td></td>
</tr>
<tr>
<td>Step 4 spanning-tree portfast network</td>
<td>Enables edge behavior on a Layer 2 access port connected to an end workstation or server.</td>
</tr>
<tr>
<td>Example: Switch(config-if)# spanning-tree portfast network</td>
<td></td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td>Example: Switch(config-if)# end</td>
<td></td>
</tr>
<tr>
<td>Step 6 show running interface interface-id</td>
<td>Verifies the configuration.</td>
</tr>
<tr>
<td>Example: Switch# show running interface gigabitethernet 1/0/1</td>
<td></td>
</tr>
<tr>
<td>port-channel port_channel_number</td>
<td></td>
</tr>
</tbody>
</table>

Enabling Bridge Assurance

To configure the Bridge Assurance, perform the steps given below:
SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `spanning-tree bridge assurance`
4. `end`
5. `show spanning-tree summary`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>enable</code></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2 <code>configure terminal</code></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3 <code>spanning-tree bridge assurance</code></td>
<td>Enables Bridge Assurance on all network ports on the switch. Bridge Assurance is enabled by default. Use the <code>no</code> version of the command to disable the feature. Disabling Bridge Assurance causes all configured network ports to behave as normal spanning tree ports.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch(config)# spanning-tree bridge assurance</code></td>
<td></td>
</tr>
<tr>
<td>Step 4 <code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch(config)# end</code></td>
<td></td>
</tr>
<tr>
<td>Step 5 <code>show spanning-tree summary</code></td>
<td>Displays spanning tree information and shows if Bridge Assurance is enabled.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch# show spanning-tree summary</code></td>
<td></td>
</tr>
</tbody>
</table>

Related Topics

- Bridge Assurance, on page 343
Examples: Configuring PortFast Edge on a Specified Interface

This example shows how to enable edge behavior on GigabitEthernet interface 1/0/1:

```
Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# spanning-tree portfast edge
Switch(config-if)# end
Switch#
```

This example shows how to verify the configuration:

```
Switch# show running-config interface gigabitethernet1/0/1
Building configuration...
Current configuration:
!
interface GigabitEthernet1/0/1
no ip address
switchport
switchport access vlan 200
switchport mode access
spanning-tree portfast edge
end
```

This example shows how you can display that port GigabitEthernet 1/0/1 is currently in the edge state:

```
Switch# show spanning-tree vlan 200
VLAN0200
Spanning tree enabled protocol rstp
Root ID Priority 2
Address 001b.2a68.5fc0
Cost 3
Port 125 (GigabitEthernet5/9)
Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
Bridge ID Priority 2 (priority 0 sys-id-ext 2)
Address 7010.5c9c.5200
Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
Aging Time 0 sec
Interface Role Sts Cost Prio.Nbr Type
------------------- ---- --- --------- -------- --------------------------------
G1/0/1 Desg FWD 4 128.1 P2p Edge
```

Examples: Configuring a PortFast Network Port on a Specified Interface

This example shows how to configure GigabitEthernet interface 1/0/1 as a network port:

```
Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# spanning-tree portfast network
Switch(config-if)# end
Switch#
```

This example shows how to verify the configuration:

```
Switch# show running-config interface gigabitethernet1/0/1
Building configuration...
Current configuration:
!
interface GigabitEthernet1/0/1
no ip address
switchport
switchport access vlan 200
switchport mode access
```
This example shows the output for show spanning-tree vlan

Switch# `show spanning-tree vlan`
Sep 17 09:51:36.370 PDT: %SYS-5-CONFIG_I: Configured from console by console2

VLAN0002
 Spanning tree enabled protocol rstp
 Root ID Priority 2
 Address 7010.5c9c.5200
 This bridge is the root
 Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

 Bridge ID Priority 2 (priority 0 sys-id-ext 2)
 Address 7010.5c9c.5200
 Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
 Aging Time 0 sec

 Interface Role Sts Cost Prio. Nbr Type
 ------------------ ---- --- --------- -------- --------------------------------
 Gi1/0/1 Desg FWD 4 128.1 P2p Edge
 Po4 Desg FWD 3 128.480 P2p Network
 G14/0/1 Desg FWD 4 128.169 P2p Edge
 G14/0/47 Desg FWD 4 128.215 P2p Network

Switch#

Example: Configuring Bridge Assurance

This output shows port GigabitEthernet1/0/1 has been configured as a network port and it is currently in the Bridge Assurance inconsistent state.

Note:
The output shows the port type as network and *BA_Inc, indicating that the port is in an inconsistent state.

Switch# `show spanning-tree`

VLAN0010
Spanning tree enabled protocol rstp
Root ID Priority 32778
Address 0002.172c.f400
This bridge is the root
Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
Bridge ID Priority 32778 (priority 32768 sys-id-ext 10)
Address 0002.172c.f400
Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
Aging Time 300

 Interface Role Sts Cost Prio. Nbr Type
 ------------------ ---- --- --------- -------- --------------------------------
 Gi1/0/1 Desg BKN*4 128.270 Network, P2p *BA_Inc

The example shows the output for show spanning-tree summary.

Switch# `sh spanning-tree summary`

Switch is in rapid-pvst mode
Root bridge for: VLAN0001-VLAN0002, VLAN0128
EtherChannel misconfig guard is enabled
Extended system ID is enabled
Portfast Default is network
Portfast Edge BPDU Guard Default is disabled
Portfast Edge BPDU Filter Default is disabled
Loopguard Default is enabled
PVST Simulation Default is enabled but inactive in rapid-pvst mode
Bridge Assurance is enabled
UplinkFast is disabled
Monitoring the Spanning-Tree Status

Table 43: Commands for Monitoring the Spanning-Tree Status

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show spanning-tree active</td>
<td>Displays spanning-tree information on active interfaces only.</td>
</tr>
<tr>
<td>show spanning-tree detail</td>
<td>Displays a detailed summary of interface information.</td>
</tr>
<tr>
<td>show spanning-tree interface interface-id</td>
<td>Displays spanning-tree information for the specified interface.</td>
</tr>
<tr>
<td>show spanning-tree mst interface interface-id</td>
<td>Displays MST information for the specified interface.</td>
</tr>
<tr>
<td>show spanning-tree summary [totals]</td>
<td>Displays a summary of interface states or displays the total lines of the spanning-tree state section.</td>
</tr>
<tr>
<td>show spanning-tree mst interface interface-id portfast edge</td>
<td>Displays spanning-tree portfast information for the specified interface.</td>
</tr>
</tbody>
</table>

Feature Information for Optional Spanning-Tree Features

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS 15.0(2)EX</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>
CHAPTER 18

Configuring EtherChannels

- Finding Feature Information, page 367
- Restrictions for EtherChannels, page 367
- Information About EtherChannels, page 368
- How to Configure EtherChannels, page 387
- Monitoring EtherChannel, PAgP, and LACP Status, page 403
- Configuration Examples for Configuring EtherChannels, page 404
- Additional References for EtherChannels, page 407
- Feature Information for EtherChannels, page 409

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Restrictions for EtherChannels

- All ports in an EtherChannel must be assigned to the same VLAN or they must be configured as trunk ports.
- When the ports in an EtherChannel are configured as trunk ports, all the ports must be configured with the same mode (either Inter-Switch Link [ISL] or IEEE 802.1Q).
- Port Aggregation Protocol (PAgP) can be enabled only in single-switch EtherChannel configurations; PAgP cannot be enabled on cross-stack EtherChannels.
Information About EtherChannels

EtherChannel Overview

EtherChannel provides fault-tolerant high-speed links between switches, routers, and servers. You can use the EtherChannel to increase the bandwidth between the wiring closets and the data center, and you can deploy it anywhere in the network where bottlenecks are likely to occur. EtherChannel provides automatic recovery for the loss of a link by redistributing the load across the remaining links. If a link fails, EtherChannel redirects traffic from the failed link to the remaining links in the channel without intervention.

An EtherChannel consists of individual Ethernet links bundled into a single logical link.

Figure 36: Typical EtherChannel Configuration

The EtherChannel provides full-duplex bandwidth up to 8 Gb/s (Gigabit EtherChannel) or 80 Gb/s (10-Gigabit EtherChannel) between your switch and another switch or host.

Each EtherChannel can consist of up to eight compatibly configured Ethernet ports.

The LAN Lite feature set supports up to six EtherChannels. The LAN Base feature set supports up to 24 EtherChannels.

Related Topics
- Configuring Layer 2 EtherChannels, on page 387
- EtherChannel Configuration Guidelines, on page 383
- Default EtherChannel Configuration, on page 381
- Layer 2 EtherChannel Configuration Guidelines, on page 384
EtherChannel Modes

You can configure an EtherChannel in one of these modes: Port Aggregation Protocol (PAgP), Link Aggregation Control Protocol (LACP), or On. Configure both ends of the EtherChannel in the same mode:

- When you configure one end of an EtherChannel in either PAgP or LACP mode, the system negotiates with the other end of the channel to determine which ports should become active. If the remote port cannot negotiate an EtherChannel, the local port is put into an independent state and continues to carry data traffic as would any other single link. The port configuration does not change, but the port does not participate in the EtherChannel.

- When you configure an EtherChannel in the **on** mode, no negotiations take place. The switch forces all compatible ports to become active in the EtherChannel. The other end of the channel (on the other switch) must also be configured in the **on** mode; otherwise, packet loss can occur.

Related Topics

- Configuring Layer 2 EtherChannels, on page 387
- EtherChannel Configuration Guidelines, on page 383
- Default EtherChannel Configuration, on page 381
- Layer 2 EtherChannel Configuration Guidelines, on page 384
EtherChannel on Switches

You can create an EtherChannel on a switch, on a single switch in the stack, or on multiple switches in the stack (known as cross-stack EtherChannel).

Figure 37: Single-Switch EtherChannel

Figure 38: Cross-Stack EtherChannel
EtherChannel Link Failover

If a link within an EtherChannel fails, traffic previously carried over that failed link moves to the remaining links within the EtherChannel. If traps are enabled on the switch, a trap is sent for a failure that identifies the switch, the EtherChannel, and the failed link. Inbound broadcast and multicast packets on one link in an EtherChannel are blocked from returning on any other link of the EtherChannel.

Related Topics

Configuring Layer 2 EtherChannels, on page 387
EtherChannel Configuration Guidelines, on page 383
Default EtherChannel Configuration, on page 381
Layer 2 EtherChannel Configuration Guidelines, on page 384

Channel Groups and Port-Channel Interfaces

An EtherChannel comprises a channel group and a port-channel interface. The channel group binds physical ports to the port-channel interface. Configuration changes applied to the port-channel interface apply to all the physical ports bound together in the channel group.
The **channel-group** command binds the physical port and the port-channel interface together. Each EtherChannel has a port-channel logical interface numbered from 1 to 24. This port-channel interface number corresponds to the one specified with the **channel-group** interface configuration command.

Figure 39: Relationship of Physical Ports, Channel Group and Port-Channel Interface

- With Layer 2 ports, use the **channel-group** interface configuration command to dynamically create the port-channel interface.
- You also can use the **interface port-channel port-channel-number** global configuration command to manually create the port-channel interface, but then you must use the **channel-group channel-group-number** command to bind the logical interface to a physical port. The **channel-group-number** can be the same as the **port-channel-number**, or you can use a new number. If you use a new number, the **channel-group** command dynamically creates a new port channel.

Related Topics

- Creating Port-Channel Logical Interfaces
- EtherChannel Configuration Guidelines, on page 383
- Default EtherChannel Configuration, on page 381
- Layer 2 EtherChannel Configuration Guidelines, on page 384
- Configuring the Physical Interfaces
- EtherChannel Configuration Guidelines, on page 383
- Default EtherChannel Configuration, on page 381
- Layer 2 EtherChannel Configuration Guidelines, on page 384

Port Aggregation Protocol

The Port Aggregation Protocol (PAgP) is a Cisco-proprietary protocol that can be run only on Cisco switches and on those switches licensed by vendors to support PAgP. PAgP facilitates the automatic creation of
EtherChannels by exchanging PAgP packets between Ethernet ports. PAgP cannot be enabled on cross-stack EtherChannels.

By using PAgP, the switch or switch stack learns the identity of partners capable of supporting PAgP and the capabilities of each port. It then dynamically groups similarly configured ports (on a single switch in the stack) into a single logical link (channel or aggregate port). Similarly configured ports are grouped based on hardware, administrative, and port parameter constraints. For example, PAgP groups the ports with the same speed, duplex mode, native VLAN, VLAN range, and trunking status and type. After grouping the links into an EtherChannel, PAgP adds the group to the spanning tree as a single switch port.

PAgP Modes

PAgP modes specify whether a port can send PAgP packets, which start PAgP negotiations, or only respond to PAgP packets received.

Table 44: EtherChannel PAgP Modes

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>auto</td>
<td>Places a port into a passive negotiating state, in which the port responds to PAgP packets it receives but does not start PAgP packet negotiation. This setting minimizes the transmission of PAgP packets. This mode is not supported when the EtherChannel members are from different switches in the switch stack (cross-stack EtherChannel).</td>
</tr>
<tr>
<td>desirable</td>
<td>Places a port into an active negotiating state, in which the port starts negotiations with other ports by sending PAgP packets. This mode is not supported when the EtherChannel members are from different switches in the switch stack (cross-stack EtherChannel).</td>
</tr>
</tbody>
</table>

Switch ports exchange PAgP packets only with partner ports configured in the **auto** or **desirable** modes. Ports configured in the **on** mode do not exchange PAgP packets.

Both the **auto** and **desirable** modes enable ports to negotiate with partner ports to form an EtherChannel based on criteria such as port speed, and for Layer 2 EtherChannels, based on trunk state and VLAN numbers. Ports can form an EtherChannel when they are in different PAgP modes as long as the modes are compatible. For example:

- A port in the **desirable** mode can form an EtherChannel with another port that is in the **desirable** or **auto** mode.
- A port in the **auto** mode can form an EtherChannel with another port in the **desirable** mode.

A port in the **auto** mode cannot form an EtherChannel with another port that is also in the **auto** mode because neither port starts PAgP negotiation.

Related Topics

- Configuring Layer 2 EtherChannels, on page 387
- EtherChannel Configuration Guidelines, on page 383
- Default EtherChannel Configuration, on page 381
- Layer 2 EtherChannel Configuration Guidelines, on page 384
Silent Mode

If your switch is connected to a partner that is PAgP-capable, you can configure the switch port for nonsilent operation by using the `non-silent` keyword. If you do not specify `non-silent` with the `auto` or `desirable` mode, silent mode is assumed.

Use the silent mode when the switch is connected to a device that is not PAgP-capable and seldom, if ever, sends packets. An example of a silent partner is a file server or a packet analyzer that is not generating traffic. In this case, running PAgP on a physical port connected to a silent partner prevents that switch port from ever becoming operational. However, the silent setting allows PAgP to operate, to attach the port to a channel group, and to use the port for transmission.

Related Topics

- Configuring Layer 2 EtherChannels, on page 387
- EtherChannel Configuration Guidelines, on page 383
- Default EtherChannel Configuration, on page 381
- Layer 2 EtherChannel Configuration Guidelines, on page 384
- Creating Port-Channel Logical Interfaces
- EtherChannel Configuration Guidelines, on page 383
- Default EtherChannel Configuration, on page 381
- Layer 2 EtherChannel Configuration Guidelines, on page 384
- Configuring the Physical Interfaces
- EtherChannel Configuration Guidelines, on page 383
- Default EtherChannel Configuration, on page 381
- Layer 2 EtherChannel Configuration Guidelines, on page 384

PAgP Learn Method and Priority

Network devices are classified as PAgP physical learners or aggregate-port learners. A device is a physical learner if it learns addresses by physical ports and directs transmissions based on that knowledge. A device is an aggregate-port learner if it learns addresses by aggregate (logical) ports. The learn method must be configured the same at both ends of the link.

When a device and its partner are both aggregate-port learners, they learn the address on the logical port-channel. The device sends packets to the source by using any of the ports in the EtherChannel. With aggregate-port learning, it is not important on which physical port the packet arrives.

PAgP cannot automatically detect when the partner device is a physical learner and when the local device is an aggregate-port learner. Therefore, you must manually set the learning method on the local device to learn addresses by physical ports. You also must set the load-distribution method to source-based distribution, so that any given source MAC address is always sent on the same physical port.
You also can configure a single port within the group for all transmissions and use other ports for hot-standby. The unused ports in the group can be swapped into operation in just a few seconds if the selected single port loses hardware-signal detection. You can configure which port is always selected for packet transmission by changing its priority with the `pagp port-priority` interface configuration command. The higher the priority, the more likely that the port will be selected.

The switch supports address learning only on aggregate ports even though the `physical-port` keyword is provided in the CLI. The `pagp learn-method` command and the `pagp port-priority` command have no effect on the switch hardware, but they are required for PAgP interoperability with devices that only support address learning by physical ports, such as the Catalyst 1900 switch.

When the link partner of the switch is a physical learner, we recommend that you configure the switch as a physical-port learner by using the `pagp learn-method physical-port` interface configuration command. Set the load-distribution method based on the source MAC address by using the `port-channel load-balance src-mac` global configuration command. The switch then sends packets to the physical learner using the same port in the EtherChannel from which it learned the source address. Only use the `pagp learn-method` command in this situation.

Related Topics
- Configuring the PAgP Learn Method and Priority, on page 392
- EtherChannel Configuration Guidelines, on page 383
- Default EtherChannel Configuration, on page 381
- Monitoring EtherChannel, PAgP, and LACP Status, on page 403
- Layer 2 EtherChannel Configuration Guidelines, on page 384

PAgP Interaction with Virtual Switches and Dual-Active Detection

A virtual switch can be two or more core switches connected by virtual switch links (VSLs) that carry control and data traffic between them. One of the switches is in active mode. The others are in standby mode. For redundancy, remote switches are connected to the virtual switch by remote satellite links (RSLs).

If the VSL between two switches fails, one switch does not know the status of the other. Both switches could change to the active mode, causing a dual-active situation in the network with duplicate configurations (including duplicate IP addresses and bridge identifiers). The network might go down.

To prevent a dual-active situation, the core switches send PAgP protocol data units (PDUs) through the RSLs to the remote switches. The PAgP PDUs identify the active switch, and the remote switches forward the PDUs to core switches so that the core switches are in sync. If the active switch fails or resets, the standby switch takes over as the active switch. If the VSL goes down, one core switch knows the status of the other and does not change its state.

PAgP Interaction with Other Features

The Dynamic Trunking Protocol (DTP) and the Cisco Discovery Protocol (CDP) send and receive packets over the physical ports in the EtherChannel. Trunk ports send and receive PAgP protocol data units (PDUs) on the lowest numbered VLAN.
In Layer 2 EtherChannels, the first port in the channel that comes up provides its MAC address to the EtherChannel. If this port is removed from the bundle, one of the remaining ports in the bundle provides its MAC address to the EtherChannel.

PAgP sends and receives PAgP PDUs only from ports that are up and have PAgP enabled for the auto or desirable mode.

Link Aggregation Control Protocol

The LACP is defined in IEEE 802.3ad and enables Cisco switches to manage Ethernet channels between switches that conform to the IEEE 802.3ad protocol. LACP facilitates the automatic creation of EtherChannels by exchanging LACP packets between Ethernet ports.

By using LACP, the switch or switch stack learns the identity of partners capable of supporting LACP and the capabilities of each port. It then dynamically groups similarly configured ports into a single logical link (channel or aggregate port). Similarly configured ports are grouped based on hardware, administrative, and port parameter constraints. For example, LACP groups the ports with the same speed, duplex mode, native VLAN, VLAN range, and trunking status and type. After grouping the links into an EtherChannel, LACP adds the group to the spanning tree as a single switch port.

The independent mode behavior of ports in a port channel is changed. With CSCtn96950, by default, standalone mode is enabled. When no response is received from an LACP peer, ports in the port channel are moved to suspended state.

LACP Modes

LACP modes specify whether a port can send LACP packets or only receive LACP packets.

Table 45: EtherChannel LACP Modes

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>active</td>
<td>Places a port into an active negotiating state in which the port starts negotiations with other ports by sending LACP packets.</td>
</tr>
<tr>
<td>passive</td>
<td>Places a port into a passive negotiating state in which the port responds to LACP packets that it receives, but does not start LACP packet negotiation. This setting minimizes the transmission of LACP packets.</td>
</tr>
</tbody>
</table>

Both the *active* and *passive* LACP modes enable ports to negotiate with partner ports to an EtherChannel based on criteria such as port speed, and for Layer 2 EtherChannels, based on trunk state and VLAN numbers.

Ports can form an EtherChannel when they are in different LACP modes as long as the modes are compatible. For example:

- A port in the *active* mode can form an EtherChannel with another port that is in the *active* or *passive* mode.
- A port in the *passive* mode cannot form an EtherChannel with another port that is also in the *passive* mode because neither port starts LACP negotiation.
Related Topics

Configuring Layer 2 EtherChannels, on page 387
EtherChannel Configuration Guidelines, on page 383
Default EtherChannel Configuration, on page 381
Layer 2 EtherChannel Configuration Guidelines, on page 384

LACP Interaction with Other Features

The DTP and the CDP send and receive packets over the physical ports in the EtherChannel. Trunk ports send and receive LACP PDUs on the lowest numbered VLAN.

In Layer 2 EtherChannels, the first port in the channel that comes up provides its MAC address to the EtherChannel. If this port is removed from the bundle, one of the remaining ports in the bundle provides its MAC address to the EtherChannel.

LACP sends and receives LACP PDUs only from ports that are up and have LACP enabled for the active or passive mode.

EtherChannel On Mode

EtherChannel on mode can be used to manually configure an EtherChannel. The on mode forces a port to join an EtherChannel without negotiations. The on mode can be useful if the remote device does not support PAgP or LACP. In the on mode, a usable EtherChannel exists only when the switches at both ends of the link are configured in the on mode.

Ports that are configured in the on mode in the same channel group must have compatible port characteristics, such as speed and duplex. Ports that are not compatible are suspended, even though they are configured in the on mode.

Caution

You should use care when using the on mode. This is a manual configuration, and ports on both ends of the EtherChannel must have the same configuration. If the group is misconfigured, packet loss or spanning-tree loops can occur.

Load-Balancing and Forwarding Methods

EtherChannel balances the traffic load across the links in a channel by reducing part of the binary pattern formed from the addresses in the frame to a numerical value that selects one of the links in the channel. You can specify one of several different load-balancing modes, including load distribution based on MAC addresses, IP addresses, source addresses, destination addresses, or both source and destination addresses. The selected mode applies to all EtherChannels configured on the switch.

Note

Layer 3 Equal-cost multi path (ECMP) load balancing is based on source IP address, destination IP address, source port, destination port, and layer 4 protocol. Fragmented packets will be treated on two different links based on the algorithm calculated using these parameters. Any changes in one of these parameters will result in load balancing.
You configure the load-balancing and forwarding method by using the `port-channel load-balance` global configuration command.

Related Topics
- Configuring EtherChannel Load-Balancing
- EtherChannel Configuration Guidelines, on page 383
- Layer 2 EtherChannel Configuration Guidelines, on page 384
- Default EtherChannel Configuration, on page 381

MAC Address Forwarding

With source-MAC address forwarding, when packets are forwarded to an EtherChannel, they are distributed across the ports in the channel based on the source-MAC address of the incoming packet. Therefore, to provide load-balancing, packets from different hosts use different ports in the channel, but packets from the same host use the same port in the channel.

With destination-MAC address forwarding, when packets are forwarded to an EtherChannel, they are distributed across the ports in the channel based on the destination host’s MAC address of the incoming packet. Therefore, packets to the same destination are forwarded over the same port, and packets to a different destination are sent on a different port in the channel.

With source-and-destination MAC address forwarding, when packets are forwarded to an EtherChannel, they are distributed across the ports in the channel based on both the source and destination MAC addresses. This forwarding method, a combination source-MAC and destination-MAC address forwarding methods of load distribution, can be used if it is not clear whether source-MAC or destination-MAC address forwarding is better suited on a particular switch. With source-and-destination MAC-address forwarding, packets sent from host A to host B, host A to host C, and host C to host B could all use different ports in the channel.

Related Topics
- Configuring EtherChannel Load-Balancing
- EtherChannel Configuration Guidelines, on page 383
- Layer 2 EtherChannel Configuration Guidelines, on page 384
- Default EtherChannel Configuration, on page 381

IP Address Forwarding

With source-IP address-based forwarding, packets are distributed across the ports in the EtherChannel based on the source-IP address of the incoming packet. To provide load balancing, packets from different IP addresses use different ports in the channel, and packets from the same IP address use the same port in the channel.

With destination-IP address-based forwarding, packets are distributed across the ports in the EtherChannel based on the destination-IP address of the incoming packet. To provide load balancing, packets from the same IP source address sent to different IP destination addresses could be sent on different ports in the channel. Packets sent from different source IP addresses to the same destination IP address are always sent on the same port in the channel.

With source-and-destination IP address-based forwarding, packets are distributed across the ports in the EtherChannel based on both the source and destination IP addresses of the incoming packet. This forwarding method, a combination of source-IP and destination-IP address-based forwarding, can be used if it is not clear whether source-IP or destination-IP address-based forwarding is better suited on a particular switch. In this
method, packets sent from the IP address A to IP address B, from IP address A to IP address C, and from IP address C to IP address B could all use different ports in the channel.

Related Topics

- Configuring EtherChannel Load-Balancing
- EtherChannel Configuration Guidelines, on page 383
- Layer 2 EtherChannel Configuration Guidelines, on page 384
- Default EtherChannel Configuration, on page 381

Load-Balancing Advantages

Different load-balancing methods have different advantages, and the choice of a particular load-balancing method should be based on the position of the switch in the network and the kind of traffic that needs to be load-distributed.

In the following figure, an EtherChannel of four workstations communicates with a router. Because the router is a single MAC-address device, source-based forwarding on the switch EtherChannel ensures that the switch uses all available bandwidth to the router. The router is configured for destination-based forwarding because the large number of workstations ensures that the traffic is evenly distributed from the router EtherChannel.

Figure 40: Load Distribution and Forwarding Methods

Use the option that provides the greatest variety in your configuration. For example, if the traffic on a channel is going only to a single MAC address, using the destination-MAC address always chooses the same link in the channel. Using source addresses or IP addresses might result in better load-balancing.
EtherChannel Load Deferral Overview

In an Instant Access system, the EtherChannel Load Deferral feature allows ports to be bundled into port channels, but prevents the assignment of group mask values to these ports. This prevents the traffic from being forwarded to new instant access stack members and reduce data loss following a stateful switchover (SSO). Cisco Catalyst Instant Access creates a single network touch point and a single point of configuration across distribution and access layer switches. Instant Access enables the merging of physical distribution and access layer switches into a single logical entity with a single point of configuration, management, and troubleshooting. The following illustration represents a sample network where an Instant Access system interacts with a switch (Catalyst 2960-X Series Switches) that is connected via a port channel to stacked clients (Member 1 and Member 2).

When the EtherChannel Load Deferral feature is configured and a new Instant Access client stack member comes up, ports of this newly-joined stack member is bundled into the port channel. In the transition period, the data path is not fully established on the distribution switch (Catalyst 6000 Series Switches), and traffic originating from the access layer switch (Catalyst 2960-X Series Switches) reaches the non-established ports and the traffic gets lost.

When load share deferral is enabled on a port channel, the assignment of a member port's load share is delayed for a period that is configured globally by the `port-channel load-defer` command. During the deferral period, the load share of a deferred member port is set to 0. In this state, the deferred port is capable of receiving data and control traffic, and of sending control traffic, but the port is prevented from sending data traffic to the virtual switching system (VSS). Upon expiration of the global deferral timer, the deferred member port exits the deferral state and the port assumes its normal configured load share.

Load share deferral is applied only if at least one member port of the port channel is currently active with a nonzero load share. If a port enabled for load share deferral is the first member bringing up the EtherChannel, the deferral feature does not apply and the port will forward traffic immediately.

This feature is enabled on a per port-channel basis; however, the load deferral timer is configured globally and not per port-channel. As a result, when a new port is bundled, the timer starts only if it is not already running. If some other ports are already deferred then the new port will be deferred only for the remaining amount of time.

The load deferral is stopped as soon as a member in one of the deferred port channels is unbundled. As a result, all the ports that were deferred is assigned a group-mask in the event of an unbundling during the deferral period.

Note

When you try to enable this feature on a stack member switch, the following message is displayed:

`Load share deferral is supported only on stand-alone stack.`
EtherChannel and Switch Stacks

If a stack member that has ports participating in an EtherChannel fails or leaves the stack, the active switch removes the failed stack member switch ports from the EtherChannel. The remaining ports of the EtherChannel, if any, continue to provide connectivity.

When a switch is added to an existing stack, the new switch receives the running configuration from the active switch and updates itself with the EtherChannel-related stack configuration. The stack member also receives the operational information (the list of ports that are up and are members of a channel).

When two stacks merge that have EtherChannels configured between them, self-looped ports result. Spanning tree detects this condition and acts accordingly. Any PAgP or LACP configuration on a winning switch stack is not affected, but the PAgP or LACP configuration on the losing switch stack is lost after the stack reboots.

For a mixed stack containing one or more Catalyst 2960-S switches, we recommend that you configure no more than six EtherChannels on the stack.

Switch Stack and PAgP

With PAgP, if the active switch fails or leaves the stack, the standby switch becomes the new active switch. The new active switch synchronizes the configuration of the stack members to that of the active switch. The PAgP configuration is not affected after an active switch change unless the EtherChannel has ports residing on the old active switch.

Switch Stacks and LACP

With LACP, the system ID uses the stack MAC address from the active switch, and if the active switch changes, the LACP system ID can change. If the LACP system ID changes, the entire EtherChannel will flap, and there will be an STP reconvergence. Use the `stack-mac persistent timer` command to control whether or not the stack MAC address changes during a active switch failover.

Default EtherChannel Configuration

The default EtherChannel configuration is described in this table.

Table 46: Default EtherChannel Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel groups</td>
<td>None assigned.</td>
</tr>
<tr>
<td>Port-channel logical interface</td>
<td>None defined.</td>
</tr>
<tr>
<td>PAgP mode</td>
<td>No default.</td>
</tr>
<tr>
<td>PAgP learn method</td>
<td>Aggregate-port learning on all ports.</td>
</tr>
<tr>
<td>PAgP priority</td>
<td>128 on all ports.</td>
</tr>
<tr>
<td>LACP mode</td>
<td>No default.</td>
</tr>
</tbody>
</table>
Related Topics

- Configuring Layer 2 EtherChannels, on page 387
- EtherChannel Overview, on page 368
- EtherChannel Modes, on page 369
- EtherChannel on Switches, on page 370
- EtherChannel Link Failover, on page 371
- LACP Modes, on page 376
- PAgP Modes, on page 373
- Silent Mode, on page 374
- Creating Port-Channel Logical Interfaces
 - Channel Groups and Port-Channel Interfaces, on page 371
 - PAgP Modes, on page 373
 - Silent Mode, on page 374
- Configuring the Physical Interfaces
 - Channel Groups and Port-Channel Interfaces, on page 371
 - PAgP Modes, on page 373
 - Silent Mode, on page 374
- Configuring EtherChannel Load-Balancing
 - Load-Balancing and Forwarding Methods, on page 377
 - MAC Address Forwarding, on page 378
 - IP Address Forwarding, on page 378
 - Load-Balancing Advantages, on page 379
- Configuring the PAgP Learn Method and Priority, on page 392
- PAgP Learn Method and Priority, on page 374
- Configuring the LACP System Priority, on page 394
- Configuring the LACP Port Priority, on page 395
EtherChannel Configuration Guidelines

If improperly configured, some EtherChannel ports are automatically disabled to avoid network loops and other problems. Follow these guidelines to avoid configuration problems:

- Do not try to configure more than 128 EtherChannels on the switch or switch stack.
- Do not try to configure more than 24 EtherChannels on the switch or switch stack.
- In a mixed switch stack that contains one or more Catalyst 2960-S switches, do not configure more than six EtherChannels on the switch stack.
- Configure a PAgP EtherChannel with up to eight Ethernet ports of the same type.
- Configure a LACP EtherChannel with up to 16 Ethernet ports of the same type. Up to eight ports can be active, and up to eight ports can be in standby mode.
- Configure all ports in an EtherChannel to operate at the same speeds and duplex modes.
- Enable all ports in an EtherChannel. A port in an EtherChannel that is disabled by using the `shutdown` interface configuration command is treated as a link failure, and its traffic is transferred to one of the remaining ports in the EtherChannel.
- When a group is first created, all ports follow the parameters set for the first port to be added to the group. If you change the configuration of one of these parameters, you must also make the changes to all ports in the group:
 - Allowed-VLAN list
 - Spanning-tree path cost for each VLAN
 - Spanning-tree port priority for each VLAN
 - Spanning-tree Port Fast setting
- Do not configure a port to be a member of more than one EtherChannel group.
- Do not configure an EtherChannel in both the PAgP and LACP modes. EtherChannel groups running PAgP and LACP can coexist on the same switch or on different switches in the stack. Individual EtherChannel groups can run either PAgP or LACP, but they cannot interoperate.
- Do not configure a secure port as part of an EtherChannel or the reverse.
- Do not configure a port that is an active or a not-yet-active member of an EtherChannel as an IEEE 802.1x port. If you try to enable IEEE 802.1x on an EtherChannel port, an error message appears, and IEEE 802.1x is not enabled.
- If EtherChannels are configured on switch interfaces, remove the EtherChannel configuration from the interfaces before globally enabling IEEE 802.1x on a switch by using the `dot1x system-auth-control` global configuration command.
- For cross-stack EtherChannel configurations, ensure that all ports targeted for the EtherChannel are either configured for LACP or are manually configured to be in the channel group using the `channel-group channel-group-number mode on` interface configuration command. The PAgP protocol is not supported on cross-stack EtherChannels.
Related Topics

Configuring Layer 2 EtherChannels, on page 387
EtherChannel Overview, on page 368
EtherChannel Modes, on page 369
EtherChannel on Switches, on page 370
EtherChannel Link Failover, on page 371
LACP Modes, on page 376
PAgP Modes, on page 373
Silent Mode, on page 374
Creating Port-Channel Logical Interfaces
Channel Groups and Port-Channel Interfaces, on page 371
PAgP Modes, on page 373
Silent Mode, on page 374
Configuring the Physical Interfaces
Channel Groups and Port-Channel Interfaces, on page 371
PAgP Modes, on page 373
Silent Mode, on page 374
Configuring EtherChannel Load-Balancing
Load-Balancing and Forwarding Methods, on page 377
MAC Address Forwarding, on page 378
IP Address Forwarding, on page 378
Load-Balancing Advantages, on page 379
Configuring the PAgP Learn Method and Priority, on page 392
PAgP Learn Method and Priority, on page 374
Configuring the LACP System Priority, on page 394
Configuring the LACP Port Priority, on page 395

Layer 2 EtherChannel Configuration Guidelines

When configuring Layer 2 EtherChannels, follow these guidelines:

• Assign all ports in the EtherChannel to the same VLAN, or configure them as trunks. Ports with different
 native VLANs cannot form an EtherChannel.

• An EtherChannel supports the same allowed range of VLANs on all the ports in a trunking Layer 2
 EtherChannel. If the allowed range of VLANs is not the same, the ports do not form an EtherChannel
 even when PAgP is set to the auto or desirable mode.

• Ports with different spanning-tree path costs can form an EtherChannel if they are otherwise compatibly
 configured. Setting different spanning-tree path costs does not, by itself, make ports incompatible for
 the formation of an EtherChannel.

Related Topics

Configuring Layer 2 EtherChannels, on page 387
Auto-LAG

The auto-LAG feature provides the ability to auto create EtherChannels on ports connected to a switch. By default, auto-LAG is disabled globally and is enabled on all port interfaces. The auto-LAG applies to a switch only when it is enabled globally.

On enabling auto-LAG globally, the following scenarios are possible:

- All port interfaces participate in creation of auto EtherChannels provided the partner port interfaces have EtherChannel configured on them. For more information, see the "The supported auto-LAG configurations between the actor and partner devices" table below.
- Ports that are already part of manual EtherChannels cannot participate in creation of auto EtherChannels.
- When auto-LAG is disabled on a port interface that is already a part of an auto created EtherChannel, the port interface will unbundle from the auto EtherChannel.

The following table shows the supported auto-LAG configurations between the actor and partner devices:
Table 47: The supported auto-LAG configurations between the actor and partner devices

<table>
<thead>
<tr>
<th>Actor/Partner</th>
<th>Active</th>
<th>Passive</th>
<th>Auto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Passive</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Auto</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

On disabling auto-LAG globally, all auto created Etherchannels become manual EtherChannels. You cannot add any configurations in an existing auto created EtherChannel. To add, you should first convert it into a manual EtherChannel by executing the `port-channel<channel-number> persistent`.

Auto-LAG uses the LACP protocol to create auto EtherChannel. Only one EtherChannel can be automatically created with the unique partner devices.

Related Topics

- Configuring Auto-LAG Globally, on page 400
- Configuring Auto LAG: Examples, on page 405
- Configuring Auto-LAG on a Port Interface, on page 401
- Configuring Persistence with Auto-LAG, on page 402
- Auto-LAG Configuration Guidelines, on page 386

Auto-LAG Configuration Guidelines

Follow these guidelines when configuring the auto-LAG feature.

- When auto-LAG is enabled globally and on the port interface, and if you do not want the port interface to become a member of the auto EtherChannel, disable the auto-LAG on the port interface.
- A port interface will not bundle to an auto EtherChannel when it is already a member of a manual EtherChannel. To allow it to bundle with the auto EtherChannel, first unbundle the manual EtherChannel on the port interface.
- When auto-LAG is enabled and auto EtherChannel is created, you can create multiple EtherChannels manually with the same partner device. But by default, the port tries to create auto EtherChannel with the partner device.
- The auto-LAG is supported only on Layer 2 EtherChannel. It is not supported on Layer 3 interface and Layer 3 EtherChannel.
- The auto-LAG is supported on cross-stack EtherChannel.

Related Topics

- Configuring Auto-LAG Globally, on page 400
Configuring Layer 2 EtherChannels

You configure Layer 2 EtherChannels by assigning ports to a channel group with the `channel-group` interface configuration command. This command automatically creates the port-channel logical interface.

If you enabled PAgP on a port in the `auto` or `desirable` mode, you must reconfigure it for either the `on` mode or the LACP mode before adding this port to a cross-stack EtherChannel. PAgP does not support cross-stack EtherChannels.

SUMMARY STEPS

1. `configure terminal`
2. `interface interface-id`
3. `switchport mode {access | trunk}`
4. `switchport access vlan vlan-id`
5. `channel-group channel-group-number mode {auto [non-silent] | desirable [non-silent] | on } | { active | passive}`
6. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>configure terminal</code></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Switch# configure terminal</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>interface interface-id</code></td>
<td>Specifies a physical port, and enters interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Switch(config)# interface gigabite ethernet2/0/1</code></td>
<td>Valid interfaces are physical ports. For a PAgP EtherChannel, you can configure up to eight ports of the same type and speed for the same group. For a LACP EtherChannel, you can configure up to 16 Ethernet ports of the same type. Up to eight ports can be active, and up to eight ports can be in standby mode.</td>
</tr>
</tbody>
</table>
How to Configure EtherChannels

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 3** | `switchport mode {access | trunk}` | Assigns all ports as static-access ports in the same VLAN, or configure them as trunks.
If you configure the port as a static-access port, assign it to only one VLAN. The range is 1 to 4094. |
| **Step 4** | `switchport access vlan vlan-id` | (Optional) If you configure the port as a static-access port, assign it to only one VLAN. The range is 1 to 4094. |
| **Step 5** | `channel-group channel-group-number mode {auto [non-silent] | desirable [non-silent] | on } | { active | passive}` | Assigns the port to a channel group, and specifies the PAgP or the LACP mode.
For `channel-group-number`, the range is 1 to 24.
For `mode`, select one of these keywords:
 - **auto** — Enables PAgP only if a PAgP device is detected. It places the port into a passive negotiating state, in which the port responds to PAgP packets it receives but does not start PAgP packet negotiation. This keyword is not supported when EtherChannel members are from different switches in the switch stack.
 - **desirable** — Unconditionally enables PAgP. It places the port into an active negotiating state, in which the port starts negotiations with other ports by sending PAgP packets. This keyword is not supported when EtherChannel members are from different switches in the switch stack.
 - **on** — Forces the port to channel without PAgP or LACP. In the **on** mode, an EtherChannel exists only when a port group in the **on** mode is connected to another port group in the **on** mode.
 - **non-silent** — (Optional) If your switch is connected to a partner that is PAgP-capable, configures the switch port for nonsilent operation when the port is in the **auto** or **desirable** mode. If you do not specify **non-silent**, silent is assumed. The silent setting is for connections to file servers or packet analyzers. This setting allows PAgP to operate, to attach the port to a channel group, and to use the port for transmission.
 - **active** — Enables LACP only if a LACP device is detected. It places the port into an active negotiating state in which the port starts negotiations with other ports by sending LACP packets.
 - **passive** — Enables LACP on the port and places it into a passive negotiating state in which the port responds to LACP packets that it receives, but does not start LACP packet negotiation. |
Configuring EtherChannel Load-Balancing

You can configure EtherChannel load-balancing by using source-based or destination-based forwarding methods.

This task is optional.

SUMMARY STEPS

1. `configure terminal`
2. `port-channel load-balance { dst-ip | dst-mac | src-dst-ip | src-dst-mac | src-ip | src-mac }
3. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>

Related Topics
- EtherChannel Overview, on page 368
- EtherChannel Modes, on page 369
- EtherChannel on Switches, on page 370
- EtherChannel Link Failover, on page 371
- LACP Modes, on page 376
- PAgP Modes, on page 373
- Silent Mode, on page 374
- EtherChannel Configuration Guidelines, on page 383
- Default EtherChannel Configuration, on page 381
- Layer 2 EtherChannel Configuration Guidelines, on page 384
Configuring Port Channel Load Deferral

SUMMARY STEPS

1. enable
2. configure terminal
3. port-channel load-defer *seconds*
4. interface *type number*
5. port-channel load-defer
6. end
7. show etherchannel *channel-group* port-channel
8. show platform pm group-masks
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | enable | Enables privileged EXEC mode.
 - Example: Switch> enable |
| **Step 2** | configure terminal | Enters global configuration mode.
 - Example: Switch# configure terminal |
| **Step 3** | port-channel load-defer *seconds* | Configures the port load share deferral interval for all port channels.
 - *seconds*—The time interval during which load sharing is initially 0 for deferred port channels. The range is 1 to 1800 seconds; the default is 120 seconds
 - Example: Switch(config)# port-channel load-defer 60 |
| **Step 4** | interface *type number* | Configures a port channel interface and enters interface configuration mode.
 - Example: Switch(config)# interface port-channel 10 |
| **Step 5** | port-channel load-defer | Enables port load share deferral on the port channel.
 - Example: Switch(config-if)# port-channel load-defer |
| **Step 6** | end | Exits interface configuration mode and returns to privileged EXEC mode.
 - Example: Switch(config-if)# end |
| **Step 7** | show etherchannel *channel-group port-channel* | Displays port channel information.
 - Example: Switch# show etherchannel 1 port-channel |
| **Step 8** | show platform pm group-masks | Display EtherChannel group masks information.
 - Example: Switch# show platform pm group-masks |

Example

The following is sample output from the `show etherchannel channel-group port-channel` command. If the *channel-group* argument is not specified; the command displays information about all channel groups are displayed.

`Switch# show etherchannel 1 port-channel`
Port-channels in the group:

Port-channel: Po1

Age of the Port-channel = 0d:00h:37m:08s
Logical slot/port = 9/1 Number of ports = 0
GC = 0x00000000 HotStandBy port = null
Port state = Port-channel Ag-Not-Inuse
Protocol = -
Port security = Disabled
Load share deferral = Enabled defer period = 120 sec time left = 0 sec

The following is sample output from the `show platform pm group-masks` command. Deferred ports have the group mask of 0xFFFF, when the defer timer is running.

Switch# show platform pm group-masks

```
Etherchannel members and group masks table
Group #ports group frame-dist slot port mask interface index
1 0 1 src-mac
2 0 2 src-mac
3 0 3 src-mac
4 0 4 src-mac
5 0 5 src-mac
6 0 6 src-mac
7 0 7 src-mac
8 0 8 src-mac
9 0 9 src-mac
10 3 10 src-mac
    1 12 0000 Gi1/0/12 3
    1 10 FFFF Gi1/0/10 6
    1 11 FFFF Gi1/0/11 7
11 0 11 src-mac
12 0 12 src-mac
13 0 13 src-mac
14 0 14 src-mac
15 0 15 src-mac
```

Configuring the PAgP Learn Method and Priority

This task is optional.

SUMMARY STEPS

1. configure terminal
2. interface interface-id
3. pagp learn-method-physical-port
4. pagp port-priority priority
5. end
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>Specifies the port for transmission, and enters interface configuration mode.</td>
</tr>
<tr>
<td>interface interface-id</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# interface gigabitethernet 1/0/2</td>
</tr>
<tr>
<td>Step 3</td>
<td>Selects the PAgP learning method.</td>
</tr>
<tr>
<td>pagp learn-method physical-port</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-if)# pagp learn-method physical port</td>
</tr>
<tr>
<td>Step 4</td>
<td>Assigns a priority so that the selected port is chosen for packet transmission.</td>
</tr>
<tr>
<td>pagp port-priority priority</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-if)# pagp port-priority 200</td>
</tr>
<tr>
<td>Step 5</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>end</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-if)# end</td>
</tr>
</tbody>
</table>

Related Topics

- PAgP Learn Method and Priority, on page 374
- EtherChannel Configuration Guidelines, on page 383
- Default EtherChannel Configuration, on page 381
- Monitoring EtherChannel, PAgP, and LACP Status, on page 403
Configuring LACP Hot-Standby Ports

When enabled, LACP tries to configure the maximum number of LACP-compatible ports in a channel, up to a maximum of 16 ports. Only eight LACP links can be active at one time. The software places any additional links in a hot-standby mode. If one of the active links becomes inactive, a link that is in the hot-standby mode becomes active in its place.

If you configure more than eight links for an EtherChannel group, the software automatically decides which of the hot-standby ports to make active based on the LACP priority. To every link between systems that operate LACP, the software assigns a unique priority made up of these elements (in priority order):

- LACP system priority
- System ID (the switch MAC address)
- LACP port priority
- Port number

In priority comparisons, numerically lower values have higher priority. The priority decides which ports should be put in standby mode when there is a hardware limitation that prevents all compatible ports from aggregating.

Determining which ports are active and which are hot standby is a two-step procedure. First the system with a numerically lower system priority and system ID is placed in charge of the decision. Next, that system decides which ports are active and which are hot standby, based on its values for port priority and port number. The port priority and port number values for the other system are not used.

You can change the default values of the LACP system priority and the LACP port priority to affect how the software selects active and standby links.

Configuring the LACP System Priority

You can configure the system priority for all the EtherChannels that are enabled for LACP by using the `lacp system-priority` global configuration command. You cannot configure a system priority for each LACP-configured channel. By changing this value from the default, you can affect how the software selects active and standby links.

You can use the `show etherchannel summary` privileged EXEC command to see which ports are in the hot-standby mode (denoted with an H port-state flag).

Follow these steps to configure the LACP system priority. This procedure is optional.

SUMMARY STEPS

1. enable
2. configure terminal
3. lacp system-priority `priority`
4. end
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 lACP system-priority priority</td>
<td>Configures the LACP system priority.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# lACP system-priority 32000</td>
<td>The range is 1 to 65535. The default is 32768. The lower the value, the higher the system priority.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# end</td>
<td></td>
</tr>
</tbody>
</table>

Related Topics

- EtherChannel Configuration Guidelines, on page 383
- Default EtherChannel Configuration, on page 381
- Layer 2 EtherChannel Configuration Guidelines, on page 384
- Monitoring EtherChannel, PAgP, and LACP Status, on page 403

Configuring the LACP Port Priority

By default, all ports use the same port priority. If the local system has a lower value for the system priority and the system ID than the remote system, you can affect which of the hot-standby links become active first by changing the port priority of LACP EtherChannel ports to a lower value than the default. The hot-standby ports that have lower port numbers become active in the channel first. You can use the show etherchannel summary privileged EXEC command to see which ports are in the hot-standby mode (denoted with an H port-state flag).
If LACP is not able to aggregate all the ports that are compatible (for example, the remote system might have more restrictive hardware limitations), all the ports that cannot be actively included in the EtherChannel are put in the hot-standby state and are used only if one of the channeled ports fails.

Follow these steps to configure the LACP port priority. This procedure is optional.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface interface-id`
4. `lacp port-priority priority`
5. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Switch> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>interface interface-id</code></td>
<td>Specifies the port to be configured, and enters interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Switch(config)# interface gigabitethernet 1/0/2</code></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>lacp port-priority priority</code></td>
<td>Configures the LACP port priority.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Switch(config-if)# lacp port-priority 32000</code></td>
<td>The range is 1 to 65535. The default is 32768. The lower the value, the more likely that the port will be used for LACP transmission.</td>
</tr>
</tbody>
</table>
Configuring the LACP Port Channel Min-Links Feature

You can specify the minimum number of active ports that must be in the link-up state and bundled in an EtherChannel for the port channel interface to transition to the link-up state. Using EtherChannel min-links, you can prevent low-bandwidth LACP EtherChannels from becoming active. Port channel min-links also cause LACP EtherChannels to become inactive if they have too few active member ports to supply the required minimum bandwidth.

To configure the minimum number of links that are required for a port channel. Perform the following tasks.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface port-channel channel-number`
4. `port-channel min-links min-links-number`
5. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
</tbody>
</table>

Example:

```
Switch> enable
```
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface port-channel channel-number</td>
<td>Enters interface configuration mode for a port-channel. For channel-number, the range is 1 to 63.</td>
</tr>
<tr>
<td>Example: Switch(config)# interface port-channel 2</td>
<td></td>
</tr>
<tr>
<td>Step 4 port-channel min-links min-links-number</td>
<td>Specifies the minimum number of member ports that must be in the link-up state and bundled in the EtherChannel for the port channel interface to transition to the link-up state. For min-links-number, the range is 2 to 8.</td>
</tr>
<tr>
<td>Example: Switch(config-if)# port-channel min-links 3</td>
<td></td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Switch(config)# end</td>
<td></td>
</tr>
</tbody>
</table>

Related Topics

- Configuring LACP Port Channel Min-Links: Examples, on page 406

Configuring LACP Fast Rate Timer

You can change the LACP timer rate to modify the duration of the LACP timeout. Use the `lacp rate` command to set the rate at which LACP control packets are received by an LACP-supported interface. You can change the timeout rate from the default rate (30 seconds) to the fast rate (1 second). This command is supported only on LACP-enabled interfaces.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface {fastethernet | gigabitethernet | tengigabitethernet} *slot/port*
4. lacp rate {normal | fast}
5. end
6. show lacp internal
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch> enable</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>interface {fastethernet</td>
<td>gigabitethernet</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# interface gigabitEthernet 2/1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lacp rate {normal</td>
<td>fast}</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-if)# lacp rate fast</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• To reset the timeout rate to its default, use the no lacp rate command.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# end</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 6</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>show lacp internal</td>
<td>Verifies your configuration.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# show lacp internal Switch# show lacp counters</td>
<td></td>
</tr>
</tbody>
</table>

Related Topics

Example: Configuring LACP Fast Rate Timer, on page 407
Configuring Auto-LAG Globally

SUMMARY STEPS

1. enable
2. configure terminal
3. [no] port-channel auto
4. end
5. show etherchannel auto

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 [no] port-channel auto</td>
<td>Enables the auto-LAG feature on a switch globally. Use the no form of this command to disable the auto-LAG feature on the switch globally.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# port-channel auto</td>
<td></td>
</tr>
<tr>
<td>Note By default, the auto-LAG feature is enabled on the port.</td>
<td></td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# end</td>
<td></td>
</tr>
<tr>
<td>Step 5 show etherchannel auto</td>
<td>Displays that EtherChannel is created automatically.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# show etherchannel auto</td>
<td></td>
</tr>
</tbody>
</table>

Related Topics

- Auto-LAG, on page 385
- Auto-LAG Configuration Guidelines, on page 386
- Configuring Auto LAG: Examples, on page 405
Configuring Auto-LAG on a Port Interface

SUMMARY STEPS

1. enable
2. configure terminal
3. interface interface-id
4. [no] channel-group auto
5. end
6. show etherchannel auto

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface interface-id</td>
<td>Specifies the port interface to be enabled for auto-LAG, and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example: Switch(config)# interface gigabitethernet 1/0/1</td>
<td></td>
</tr>
<tr>
<td>Step 4 [no] channel-group auto</td>
<td>(Optional) Enables auto-LAG feature on individual port interface. Use the no form of this command to disable the auto-LAG feature on individual port interface.</td>
</tr>
<tr>
<td>Example: Switch(config-if)# channel-group auto</td>
<td></td>
</tr>
<tr>
<td>Note By default, the auto-LAG feature is enabled on the port.</td>
<td></td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Switch(config-if)# end</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Persistence with Auto-LAG

You use the persistence command to convert the auto created EtherChannel into a manual one and allow you to add configuration on the existing EtherChannel.

SUMMARY STEPS

1. `enable`
2. `port-channel channel-number persistent`
3. `show etherchannel summary`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
| `enable` | Enables privileged EXEC mode. Enter your password if prompted. |
| **Example:** | `Switch> enable` |
| **Step 2**
| `port-channel channel-number persistent` | Converts the auto created EtherChannel into a manual one and allows you to add configuration on the EtherChannel. |
| **Example:** | `Switch# port-channel 1 persistent` |
Step 3

show etherchannel summary

Example:

```
Switch# show etherchannel summary
```

Related Topics

- Configuring Auto-LAG Globally, on page 400
- Auto-LAG, on page 385
- Auto-LAG Configuration Guidelines, on page 386
- Configuring Auto-LAG on a Port Interface, on page 401
- Configuring Auto LAG: Examples, on page 405

Monitoring EtherChannel, PAgP, and LACP Status

You can display EtherChannel, PAgP, and LACP status using the commands listed in this table.

Table 48: Commands for Monitoring EtherChannel, PAgP, and LACP Status

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>`clear lacp { channel-group-number counters</td>
<td>clears LACP channel-group information and traffic counters.</td>
</tr>
<tr>
<td>counters }</td>
<td></td>
</tr>
<tr>
<td>clear pagp { channel-group-number counters</td>
<td>clears PAgP channel-group information and traffic counters.</td>
</tr>
<tr>
<td>counters }</td>
<td></td>
</tr>
<tr>
<td>show etherchannel { channel-group-number { detail</td>
<td>load-balance</td>
</tr>
<tr>
<td>show pagp [channel-group-number] { counters</td>
<td>displays PAgP information such as traffic information, the internal PAgP configuration, and neighbor information.</td>
</tr>
<tr>
<td>internal</td>
<td>neighbor }</td>
</tr>
<tr>
<td>show pagp [channel-group-number] dual-active</td>
<td>displays the dual-active detection status.</td>
</tr>
<tr>
<td>show lacp [channel-group-number] { counters</td>
<td>displays LACP information such as traffic information, the internal LACP configuration, and neighbor information.</td>
</tr>
<tr>
<td>internal</td>
<td>neighbor</td>
</tr>
<tr>
<td>show running-config</td>
<td>verifies your configuration entries.</td>
</tr>
</tbody>
</table>
Configuration Examples for Configuring EtherChannels

Configuring Layer 2 EtherChannels: Examples

This example shows how to configure an EtherChannel on a single switch in the stack. It assigns two ports as static-access ports in VLAN 10 to channel 5 with the PAgP mode *desirable*:

```]
Switch# configure terminal
Switch(config)# interface range gigabitethernet2/0/1 -2
Switch(config-if-range)# switchport mode access
Switch(config-if-range)# switchport access vlan 10
Switch(config-if-range)# channel-group 5 mode desirable non-silent
Switch(config-if-range)# end
```

This example shows how to configure an EtherChannel on a single switch in the stack. It assigns two ports as static-access ports in VLAN 10 to channel 5 with the LACP mode *active*:

```]
Switch# configure terminal
Switch(config)# interface range gigabitethernet2/0/1 -2
Switch(config-if-range)# switchport mode access
Switch(config-if-range)# switchport access vlan 10
Switch(config-if-range)# channel-group 5 mode active
Switch(config-if-range)# end
```

This example shows how to configure a cross-stack EtherChannel. It uses LACP passive mode and assigns two ports on stack member 1 and one port on stack member 2 as static-access ports in VLAN 10 to channel 5:

```]
Switch# configure terminal
Switch(config)# interface range gigabitethernet2/0/4 -5
Switch(config-if-range)# switchport mode access
Switch(config-if-range)# switchport access vlan 10
Switch(config-if-range)# channel-group 5 mode passive
Switch(config-if-range)# exit
Switch(config)# interface gigabitethernet3/0/3
Switch(config-if)# switchport mode access
Switch(config-if)# switchport access vlan 10
Switch(config-if)# channel-group 5 mode passive
Switch(config-if)# exit
```
PoE or LACP negotiation errors may occur if you configure two ports from switch to the access point (AP). This scenario can be avoided if the port channel configuration is on the switch side. For more details, see the following example:

```
interface Port-channel1
switchport access vlan 20
switchport mode access
switchport nonegotiate
no port-channel standalone-disable  <--this one
spanning-tree portfast
```

Note

If the port reports LACP errors on port flap, you should include the following command as well: `no errdisable detect cause pagp-flap`

Example: Configuring Port Channel Load Deferral

```
Switch# configure terminal
Switch(config)# port-channel load-defer 60
Switch(config)# interface port-channel 10
Switch(config-if)# port-channel load-defer
Switch(config-if)# end
```

Configuring Auto LAG: Examples

This example shows how to configure Auto-LAG on a switch

```
switch> enable
switch# configure terminal
switch (config)# port-channel auto
switch (config-if)# end
```

The following example shows the summary of EtherChannel that was created automatically.

```
switch# show etherchannel auto
Flags:  D - down       P - bundled in port-channel
        I - stand-alone s - suspended
        H - Hot-standby (LACP only)
        R - Layer3       S - Layer2
        U - in use      f - failed to allocate aggregator
        M - not in use, minimum links not met
        w - unsuitable for bundling
        W - waiting to be aggregated
        d - default port
        A - formed by Auto LAG

Number of channel-groups in use: 1
Number of aggregators: 1

Group  Port-channel  Protocol  Ports
-------+---------------+-----------+-----------------------------------------------
1   Po1(SUA)   LACP   Gi1/0/45(P) Gi2/0/21(P) Gi3/0/21(P)
```

The following example shows the summary of auto EtherChannel after executing the `port-channel 1 persistent` command.

```
switch# port-channel 1 persistent
switch# show etherchannel summary
```

Cisco 2960-X Switch Series Configuration Guide, Cisco IOS Release 15.0(2)EX
Related Topics

- Configuring Auto-LAG Globally, on page 400
- Auto-LAG, on page 385
- Auto-LAG Configuration Guidelines, on page 386
- Configuring Persistence with Auto-LAG, on page 402
- Configuring Auto-LAG on a Port Interface, on page 401

Configuring LACP Port Channel Min-Links: Examples

This example shows how to configure LACP port-channel min-links:

switch > enable
switch# configure terminal
switch(config)# interface port-channel 25
switch(config-if)# port-channel min-links 3
switch(config-if)# show etherchannel 25 summary
switch# end

When the minimum links requirement is not met in standalone switches, the port-channel is flagged and assigned SM/SN or RM/RN state.

switch# show etherchannel 25 summary

Flags: D - down P - bundled in port-channel
I - stand-alone S - suspended
H - Hot-standby (LACP only)
R - Layer3 S - Layer2
U - in use N- not in use, no aggregation
f - failed to allocate aggregator
M - not in use, no aggregation due to minimum links not met
m= not in use, port not aggregated due to minimum links not met
u - unsuitable for bundling
w - waiting to be aggregated
d - default port

Number of channel-groups in use: 125
Number of aggregators: 125

Group Port-channel Protocol Ports

25 Po25(RM) LACP Gi1/3/1(D) Gi1/3/2(D) Gi2/2/25(D) Gi2/2/26(W)

Related Topics

- Configuring the LACP Port Channel Min-Links Feature, on page 397
Example: Configuring LACP Fast Rate Timer

This example shows you how to configure the LACP rate:

```
switch> enable
switch# configure terminal
switch(config)# interface gigabitEthernet 2/1
switch(config-if)# lacp rate fast
switch(config-if)# exit
switch(config)# end
```

The following is sample output from the `show lacp internal` command:

```
switch# show lacp internal
Flags: S - Device is requesting Slow LACPDUs
F - Device is requesting Fast LACPDU
A - Device is in Active mode P - Device is in Passive mode
Channel group 25
LACP port Admin Oper Port Port
Port Flags State Priority Key Key Number State
Te1/49 FA bndl 32768 0x19 0x19 0x32 0x3F
Te1/50 FA bndl 32768 0x19 0x19 0x33 0x3F
Te1/51 FA bndl 32768 0x19 0x19 0x34 0x3F
Te1/52 FA bndl 32768 0x19 0x19 0x35 0x3F
```

The following is sample output from the `show lacp counters` command:

```
switch# show lacp counters
LACPDUs Marker Marker Response LACPDU
Port Sent Recv Sent Recv Sent Recv Pkts Err
---------------------------------------------------------------------
Channel group: 24
Te1/1/27 2 2 0 0 0 0 0
Te2/1/25 2 2 0 0 0 0 0
```

Related Topics

Configuring LACP Fast Rate Timer, on page 398

Additional References for EtherChannels

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 2 command reference</td>
<td>Catalyst 2960-X Switch Layer 2 Command Reference</td>
</tr>
</tbody>
</table>
Error Message Decoder

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>To help you research and resolve system error messages in this release, use the Error Message Decoder tool.</td>
<td>https://www.cisco.com/cgi-bin/Support/Errordecoder/index.cgi</td>
</tr>
</tbody>
</table>

Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>All supported MIBs for this release.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/support</td>
</tr>
</tbody>
</table>
Feature Information for EtherChannels

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS 15.0(2)EX</td>
<td>This feature was introduced.</td>
</tr>
<tr>
<td>Cisco IOS 15.2(3)E2, Cisco IOS XE 3.7.2E</td>
<td>Auto-LAG feature was introduced.</td>
</tr>
</tbody>
</table>
CHAPTER 19

Configuring Link-State Tracking

- Finding Feature Information, page 411
- Restrictions for Configuring Link-State Tracking, page 411
- Understanding Link-State Tracking, page 412
- How to Configure Link-State Tracking, page 415
- Monitoring Link-State Tracking, page 416
- Configuring Link-State Tracking: Example, page 416
- Additional References for Link-State Tracking, page 417
- Feature Information for Link-State Tracking, page 418

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Restrictions for Configuring Link-State Tracking

- This feature is supported only on the LAN Base image.
- You can configure only two link-state groups per switch.
- An interface cannot be a member of more than one link-state group.
- An interface that is defined as an upstream interface in a link-state group cannot also be defined as a downstream interface in the link-state group.
• Do not enable link-state tracking on individual interfaces that will part of a downstream EtherChannel interface.

Related Topics

Understanding Link-State Tracking, on page 412
How to Configure Link-State Tracking, on page 415
Monitoring Link-State Tracking Status

Understanding Link-State Tracking

Link-state tracking, also known as trunk failover, binds the link state of multiple interfaces. Link-state tracking can be with server NIC adapter teaming to provide redundancy in the network. When the server NIC adapters are configured in a primary or secondary relationship, and the link is lost on the primary interface, network connectivity is transparently changed to the secondary interface.

Note
An interface can be an aggregation of ports (an EtherChannel) or a single physical port in either access or trunk mode.
The configuration in this figure ensures that the network traffic flow is balanced.

Figure 41: Typical Link-State Tracking Configuration

- For links to switches and other network devices
 - Server 1 and server 2 use switch A for primary links and switch B for secondary links.
 - Server 3 and server 4 use switch B for primary links and switch A for secondary links.

- Link-state group 1 on switch A
 - Switch A provides primary links to server 1 and server 2 through link-state group 1. Port 1 is connected to server 1, and port 2 is connected to server 2. Port 1 and port 2 are the downstream interfaces in link-state group 1.
- Port 5 and port 6 are connected to distribution switch 1 through link-state group 1. Port 5 and port 6 are the upstream interfaces in link-state group 1.

- Link-state group 2 on switch A
 - Switch A provides secondary links to server 3 and server 4 through link-state group 2. Port 3 is connected to server 3, and port 4 is connected to server 4. Port 3 and port 4 are the downstream interfaces in link-state group 2.
 - Port 7 and port 8 are connected to distribution switch 2 through link-state group 2. Port 7 and port 8 are the upstream interfaces in link-state group 2.

- Link-state group 2 on switch B
 - Switch B provides primary links to server 3 and server 4 through link-state group 2. Port 3 is connected to server 3, and port 4 is connected to server 4. Port 3 and port 4 are the downstream interfaces in link-state group 2.
 - Port 5 and port 6 are connected to distribution switch 2 through link-state group 2. Port 5 and port 6 are the upstream interfaces in link-state group 2.

- Link-state group 1 on switch B
 - Switch B provides secondary links to server 1 and server 2 through link-state group 1. Port 1 is connected to server 1, and port 2 is connected to server 2. Port 1 and port 2 are the downstream interfaces in link-state group 1.
 - Port 7 and port 8 are connected to distribution switch 1 through link-state group 1. Port 7 and port 8 are the upstream interfaces in link-state group 1.

In a link-state group, the upstream ports can become unavailable or lose connectivity because the distribution switch or router fails, the cables are disconnected, or the link is lost. These are the interactions between the downstream and upstream interfaces when link-state tracking is enabled:

- If any of the upstream interfaces are in the link-up state, the downstream interfaces can change to or remain in the link-up state.
- If all of the upstream interfaces become unavailable, link-state tracking automatically puts the downstream interfaces in the error-disabled state. Connectivity to and from the servers is automatically changed from the primary server interface to the secondary server interface. For example, in the previous figure, if the upstream link for port 6 is lost, the link states of downstream ports 1 and 2 do not change. However, if the link for upstream port 5 is also lost, the link state of the downstream ports changes to the link-down state. Connectivity to server 1 and server 2 is then changed from link-state group 1 to link-state group 2. The downstream ports 3 and 4 do not change state because they are in link-group 2.
- If the link-state group is configured, link-state tracking is disabled, and the upstream interfaces lose connectivity, the link states of the downstream interfaces remain unchanged. The server does not recognize that upstream connectivity has been lost and does not failover to the secondary interface.

You can recover a downstream interface link-down condition by removing the failed downstream port from the link-state group. To recover multiple downstream interfaces, disable the link-state group.

Related Topics

- How to Configure Link-State Tracking, on page 415
How to Configure Link-State Tracking

To enable link-state tracking, create a link-state group and specify the interfaces that are assigned to the group. This task is optional.

SUMMARY STEPS

1. configure terminal
2. link state track number
3. interface interface-id
4. link state group [number] { upstream | downstream }
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>link state track number</td>
<td>Creates a link-state group and enables link-state tracking. The group number can be 1 or 2; the default is 1.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# link state track 2</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>interface interface-id</td>
<td>Specifies a physical interface or range of interfaces to configure, and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# interface gigabitethernet2/0/1</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>Do not enable link-state tracking on individual interfaces that will be part of an Etherchannel interface.</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>link state group [number] { upstream</td>
<td>downstream }</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-if)# link state group 2 upstream</td>
<td></td>
</tr>
</tbody>
</table>
Monitoring Link-State Tracking

You can display link-state tracking status using the command in this table.

Table 49: Commands for Monitoring Link-State Tracking Status

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show link state group [number] [detail]</code></td>
<td>Displays the link-state group information.</td>
</tr>
</tbody>
</table>

Configuring Link-State Tracking: Example

This example shows how to create the link-state group 1 and configure the interfaces in the link-state group.

```
Switch# configure terminal
Switch(config)# link state track 1
Switch(config-if)# interface range gigabitethernet1/0/21-22
Switch(config-if)# link state group 1 upstream
Switch(config-if)# interface gigabitethernet1/0/1
Switch(config-if)# link state group 1 downstream
Switch(config-if)# interface gigabitethernet1/0/3
Switch(config-if)# link state group 1 downstream
Switch(config-if)# interface gigabitethernet1/0/5
Switch(config-if)# link state group 1 downstream
Switch(config-if)# end
```

Related Topics

- Understanding Link-State Tracking, on page 412
- How to Configure Link-State Tracking, on page 415
- Monitoring Link-State Tracking Status
Additional References for Link-State Tracking

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 2 command reference</td>
<td>Catalyst 2960-X Switch Layer 2 Command Reference</td>
</tr>
</tbody>
</table>

Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>All supported MIBs for this release.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL:</td>
</tr>
<tr>
<td></td>
<td>http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with</td>
</tr>
<tr>
<td>Cisco products and technologies.</td>
</tr>
<tr>
<td>To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from</td>
</tr>
<tr>
<td>Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds.</td>
</tr>
<tr>
<td>Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Link</td>
</tr>
<tr>
<td>http://www.cisco.com/support</td>
</tr>
</tbody>
</table>
Feature Information for Link-State Tracking

<table>
<thead>
<tr>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS Release 15.0(2)EX</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>
CHAPTER 20

Configuring Flex Links and the MAC Address-Table Move Update Feature

• Finding Feature Information, page 419
• Restrictions for Configuring Flex Links and MAC Address-Table Move Update, page 419
• Information About Flex Links and MAC Address-Table Move Update, page 420
• How to Configure Flex Links and the MAC Address-Table Move Update Feature, page 426
• Monitoring Flex Links, Multicast Fast Convergence, and MAC Address-Table Move Update, page 432
• Configuration Examples for Flex Links, page 433
• Additional References for Flex Links and MAC Address-Table Move Update, page 437
• Feature Information for Flex Links and MAC Address-Table Move Update, page 439

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Restrictions for Configuring Flex Links and MAC Address-Table Move Update

• This feature is supported only on the LAN Base image.
• Flex Links are supported only on Layer 2 ports and port channels.
• You can configure up to 16 backup links.
• You can configure only one Flex Links backup link for any active link, and it must be a different interface
 from the active interface.

• An interface can belong to only one Flex Links pair. An interface can be a backup link for only one
 active link. An active link cannot belong to another Flex Links pair.

• Neither of the links can be a port that belongs to an EtherChannel. However, you can configure two port
 channels (EtherChannel logical interfaces) as Flex Links, and you can configure a port channel and a
 physical interface as Flex Links, with either the port channel or the physical interface as the active link.

• A backup link does not have to be the same type (Gigabit Ethernet or port channel) as the active link.
 However, you should configure both Flex Links with similar characteristics so that there are no loops
 or changes in behavior if the standby link begins to forward traffic.

• STP is disabled on Flex Links ports. A Flex Links port does not participate in STP, even if the VLANs
 present on the port are configured for STP. When STP is not enabled, be sure that there are no loops in
 the configured topology.

Related Topics

Configuring a Preemption Scheme for a Pair of Flex Links, on page 427
Configuring Flex Links, on page 426
Configuring Flex Links: Examples, on page 433
Configuring VLAN Load Balancing on Flex Links, on page 429
Configuring VLAN Load Balancing on Flex Links: Examples, on page 433
Configuring a Switch to Obtain and Process MAC Address-Table Move Update Messages, on page 431
Configuring MAC Address-Table Move Update, on page 430
Configuring the MAC Address-Table Move Update: Examples, on page 435

Information About Flex Links and MAC Address-Table Move Update

Flex Links

Flex Links are a pair of a Layer 2 interfaces (switch ports or port channels) where one interface is configured
 to act as a backup to the other. The feature provides an alternative solution to the Spanning Tree Protocol
 (STP). Users can disable STP and still retain basic link redundancy. Flex Links are typically configured in
 service provider or enterprise networks where customers do not want to run STP on the switch. If the switch
 is running STP, Flex Links are not necessary because STP already provides link-level redundancy or backup.

You configure Flex Links on one Layer 2 interface (the active link) by assigning another Layer 2 interface as
 the Flex Links or backup link. On switches, the Flex Links can be on the same switch or on another switch
 in the stack. When one of the links is up and forwarding traffic, the other link is in standby mode, ready to
 begin forwarding traffic if the other link shuts down. At any given time, only one of the interfaces is in the
 linkup state and forwarding traffic. If the primary link shuts down, the standby link starts forwarding traffic.
 When the active link comes back up, it goes into standby mode and does not forward traffic. STP is disabled
 on Flex Links interfaces.

Related Topics

Configuring a Preemption Scheme for a Pair of Flex Links, on page 427
Flex Links Configuration

In the following figure, ports 1 and 2 on switch A are connected to uplink switches B and C. Because they are configured as Flex Links, only one of the interfaces is forwarding traffic; the other is in standby mode. If port 1 is the active link, it begins forwarding traffic between port 1 and switch B; the link between port 2 (the backup link) and switch C is not forwarding traffic. If port 1 goes down, port 2 comes up and starts forwarding traffic to switch C. When port 1 comes back up, it goes into standby mode and does not forward traffic; port 2 continues forwarding traffic.

You can also configure a preemption function, specifying the preferred port for forwarding traffic. For example, you can configure the Flex Links pair with preemption mode. In the scenario shown, when port 1 comes back up and has more bandwidth than port 2, port 1 begins forwarding traffic after 60 seconds. Port 2 becomes the standby port. You do this by entering the `switchport backup interface preemption mode bandwidth` and `switchport backup interface preemption delay` interface configuration commands.

Figure 42: Flex Links Configuration Example

If a primary (forwarding) link goes down, a trap notifies the network management stations. If the standby link goes down, a trap notifies the users.

Flex Links are supported only on Layer 2 ports and port channels, not on VLANs or on Layer 3 ports.

Related Topics

- Configuring a Preemption Scheme for a Pair of Flex Links, on page 427
- Configuring Flex Links, on page 426

VLAN Flex Links Load Balancing and Support

VLAN Flex Links load balancing allows users to configure a Flex Links pair so that both ports simultaneously forward the traffic for some mutually exclusive VLANs. For example, if Flex Links ports are configured for 1 to 100 VLANs, the traffic of the first 50 VLANs can be forwarded on one port and the rest on the other port. If one of the ports fail, the other active port forwards all the traffic. When the failed port comes back up, it resumes forwarding traffic in the preferred VLANs. In addition to providing the redundancy, this Flex Links pair can be used for load balancing. Flex Links VLAN load balancing does not impose any restrictions on uplink switches.
The following figure displays a VLAN Flex Links load-balancing configuration.

Figure 43: VLAN Flex Links Load-Balancing Configuration Example

Multicast Fast Convergence with Flex Links Failover

Multicast fast convergence reduces the multicast traffic convergence time after a Flex Links failure. Multicast fast convergence is implemented by a combination of learning the backup link as an mrouter port, generating IGMP reports, and leaking IGMP reports.

Related Topics

Configuring Multicast Fast Convergence with Flex Links Failover: Examples, on page 435

Learning the Other Flex Links Port as the mrouter Port

In a typical multicast network, there is a querier for each VLAN. A switch deployed at the edge of a network has one of its Flex Links ports receiving queries. Flex Links ports are also always forwarding at any given time.

A port that receives queries is added as an mrouter port on the switch. An mrouter port is part of all the multicast groups learned by the switch. After a changeover, queries are received by the other Flex Links port. The other Flex Links port is then learned as the mrouter port. After changeover, multicast traffic then flows through the other Flex Links port. To achieve faster convergence of traffic, both Flex Links ports are learned as mrouter ports whenever either Flex Links port is learned as the mrouter port. Both Flex Links ports are always part of multicast groups.

Although both Flex Links ports are part of the groups in normal operation mode, all traffic on the backup port is blocked. The normal multicast data flow is not affected by the addition of the backup port as an mrouter port. When the changeover happens, the backup port is unblocked, allowing the traffic to flow. In this case, the upstream multicast data flows as soon as the backup port is unblocked.

Generating IGMP Reports

When the backup link comes up after the changeover, the upstream new distribution switch does not start forwarding multicast data, because the port on the upstream router, which is connected to the blocked Flex Links port, is not part of any multicast group. The reports for the multicast groups were not forwarded by the downstream switch because the backup link is blocked. The data does not flow on this port, until it learns the multicast groups, which occurs only after it receives reports.

The reports are sent by hosts when a general query is received, and a general query is sent within 60 seconds in normal scenarios. When the backup link starts forwarding, to achieve faster convergence of multicast data, the downstream switch immediately sends proxy reports for all the learned groups on this port without waiting for a general query.
Leaking IGMP Reports

To achieve multicast traffic convergence with minimal loss, a redundant data path must be set up before the Flex Links active link goes down. This can be achieved by leaking only IGMP report packets on the Flex Links backup link. These leaked IGMP report messages are processed by upstream distribution routers, so multicast data traffic gets forwarded to the backup interface. Because all incoming traffic on the backup interface is dropped at the ingress of the access switch, no duplicate multicast traffic is received by the host. When the Flex Links active link fails, the access switch starts accepting traffic from the backup link immediately. The only disadvantage of this scheme is that it consumes bandwidth on the link between the distribution switches and on the backup link between the distribution and access switches. This feature is disabled by default and can be configured by using the `switchport backup interface interface-id multicast fast-convergence` command.

When this feature has been enabled at changeover, the switch does not generate the proxy reports on the backup port, which became the forwarding port.

MAC Address-Table Move Update

The MAC address-table move update feature allows the switch to provide rapid bidirectional convergence when a primary (forwarding) link goes down and the standby link begins forwarding traffic.

In the following figure, switch A is an access switch, and ports 1 and 2 on switch A are connected to uplink switches B and D through a Flex Links pair. Port 1 is forwarding traffic, and port 2 is in the backup state.
Traffic from the PC to the server is forwarded from port 1 to port 3. The MAC address of the PC has been learned on port 3 of switch C. Traffic from the server to the PC is forwarded from port 3 to port 1.

Figure 44: MAC Address-Table Move Update Example

If the MAC address-table move update feature is not configured and port 1 goes down, port 2 starts forwarding traffic. However, for a short time, switch C keeps forwarding traffic from the server to the PC through port 3, and the PC does not get the traffic because port 1 is down. If switch C removes the MAC address of the PC on port 3 and relearns it on port 4, traffic can then be forwarded from the server to the PC through port 2.

If the MAC address-table move update feature is configured and enabled on the switches, and port 1 goes down, port 2 starts forwarding traffic from the PC to the server. The switch sends a MAC address-table move update packet from port 2. Switch C gets this packet on port 4 and immediately learns the MAC address of the PC on port 4, which reduces the reconvergence time.

You can configure the access switch, switch A, to send MAC address-table move update messages. You can also configure the uplink switches B, C, and D to get and process the MAC address-table move update messages. When switch C gets a MAC address-table move update message from switch A, switch C learns the MAC address of the PC on port 4. Switch C updates the MAC address table, including the forwarding table entry for the PC.

Switch A does not need to wait for the MAC address-table update. The switch detects a failure on port 1 and immediately starts forwarding server traffic from port 2, the new forwarding port. This change occurs in less
than 100 milliseconds (ms). The PC is directly connected to switch A, and the connection status does not change. Switch A does not need to update the PC entry in the MAC address table.

Related Topics
- Configuring a Switch to Obtain and Process MAC Address-Table Move Update Messages, on page 431
- Configuring MAC Address-Table Move Update, on page 430
- Configuring the MAC Address-Table Move Update: Examples, on page 435

Flex Links VLAN Load Balancing Configuration Guidelines
- For Flex Links VLAN load balancing, you must choose the preferred VLANs on the backup interface.
- You cannot configure a preemption mechanism and VLAN load balancing for the same Flex Links pair.

Related Topics
- Configuring VLAN Load Balancing on Flex Links, on page 429
- Configuring VLAN Load Balancing on Flex Links: Examples, on page 433

MAC Address-Table Move Update Configuration Guidelines
- You can enable and configure this feature on the access switch to send the MAC address-table move updates.
- You can enable and configure this feature on the uplink switches to get the MAC address-table move updates.

Default Flex Links and MAC Address-Table Move Update Configuration
- Flex Links is not configured, and there are no backup interfaces defined.
- The preemption mode is off.
- The preemption delay is 35 seconds.
- The MAC address-table move update feature is not configured on the switch.

Related Topics
- Configuring a Preemption Scheme for a Pair of Flex Links, on page 427
- Configuring Flex Links, on page 426
- Configuring Flex Links: Examples, on page 433
How to Configure Flex Links and the MAC Address-Table Move Update Feature

Configuring Flex Links

SUMMARY STEPS

1. configure terminal
2. interface interface-id
3. switchport backup interface interface-id
4. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>
| Example:
Switch# configure terminal | |
| **Step 2** interface interface-id | Specifies the interface, and enters interface configuration mode. The interface can be a physical Layer 2 interface or a port channel (logical interface). The port-channel range is 1 to 24. |
| Example:
Switch(conf)# interface gigabitethernet1/0/1 | |
| **Step 3** switchport backup interface interface-id | Configures a physical Layer 2 interface (or port channel) as part of a Flex Links pair with the interface. When one link is forwarding traffic, the other interface is in standby mode. |
| Example:
Switch(conf-if)# switchport backup interface gigabitethernet1/0/2 | |
| **Step 4** end | Returns to privileged EXEC mode. |
| Example:
Switch(conf-if)# end | |

Related Topics

- Flex Links, on page 420
- Default Flex Links and MAC Address-Table Move Update Configuration, on page 425
Configuring a Preemption Scheme for a Pair of Flex Links

SUMMARY STEPS

1. `configure terminal`
2. `interface interface-id`
3. `switchport backup interface interface-id`
4. `switchport backup interface interface-id preemption mode [forced | bandwidth | off]`
5. `switchport backup interface interface-id preemption delay delay-time`
6. `end`
7. `show interface [interface-id] switchport backup`
8. `copy running-config startup config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
| `configure terminal` | Enters global configuration mode |
| **Example:**
| Switch# `configure terminal` | |
| **Step 2**
| `interface interface-id` | Specifies the interface, and enters interface configuration mode. The interface can be a physical Layer 2 interface or a port channel (logical interface). The port-channel range is 1 to 24. |
| **Example:**
| Switch(conf)# `interface gigabitethernet1/0/1` | |
| **Step 3**
| `switchport backup interface interface-id` | Configures a physical Layer 2 interface (or port channel) as part of a Flex Links pair with the interface. When one link is forwarding traffic, the other interface is in standby mode. |
| **Example:**
| Switch(conf-if)# `switchport backup interface gigabitethernet1/0/2` | |
| **Step 4**
| `switchport backup interface interface-id preemption mode [forced | bandwidth | off]` | Configures a preemption mechanism and delay for a Flex Links interface pair. You can configure the preemption as: |
Command or Action

Example:

```bash
Switch(conf-if)# switchport backup interface gigabitethernet1/0/2 preemption mode forced
```

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
<td>Configures the time delay until a port preempts another port. Note Setting a delay time only works with forced and bandwidth modes.</td>
</tr>
<tr>
<td><code>switchport backup interface interface-id preemption delay delay-time</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td></td>
</tr>
<tr>
<td><code>end</code></td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>Verifies the configuration.</td>
</tr>
<tr>
<td><code>show interface [interface-id] switchport backup</code></td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>(Optional) Saves your entries in the switch startup configuration file.</td>
</tr>
<tr>
<td><code>copy running-config startup config</code></td>
<td></td>
</tr>
</tbody>
</table>

Related Topics

- Flex Links, on page 420
- Default Flex Links and MAC Address-Table Move Update Configuration, on page 425
- Restrictions for Configuring Flex Links and MAC Address-Table Move Update, on page 419
- Configuring Flex Links: Examples, on page 433
- Flex Links Configuration, on page 421
- Monitoring Flex Links, Multicast Fast Convergence, and MAC Address-Table Move Update, on page 432
- Configuring Flex Links: Examples, on page 433
Configuring VLAN Load Balancing on Flex Links

SUMMARY STEPS

1. configure terminal
2. interface interface-id
3. switchport backup interface interface-id prefer vlan vlan-range
4. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch (config)# interface gigabitethernet2/0/6</td>
</tr>
<tr>
<td>Step 3</td>
<td>switchport backup interface interface-id prefer vlan vlan-range</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch (config-if)# switchport backup interface gigabitethernet2/0/8 prefer vlan 2</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch (config-if)# end</td>
</tr>
</tbody>
</table>

Related Topics

- Flex Links VLAN Load Balancing Configuration Guidelines, on page 425
- Restrictions for Configuring Flex Links and MAC Address-Table Move Update, on page 419
- Configuring VLAN Load Balancing on Flex Links: Examples, on page 433
- Configuring VLAN Load Balancing on Flex Links: Examples, on page 433
Configuring MAC Address-Table Move Update

SUMMARY STEPS

1. configure terminal
2. interface interface-id
3. Use one of the following:
 - switchport backup interface interface-id
 - switchport backup interface interface-id mmu primary vlan vlan-id
4. end
5. mac address-table move update transmit
6. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch#interface gigabitethernet1/0/1</td>
</tr>
<tr>
<td></td>
<td>Specifies the interface, and enters interface configuration mode. The interface can be a physical Layer 2 interface or a port channel (logical interface). The port-channel range is 1 to 24.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Use one of the following:</td>
</tr>
<tr>
<td></td>
<td>• switchport backup interface interface-id</td>
</tr>
<tr>
<td></td>
<td>• switchport backup interface interface-id mmu primary vlan vlan-id</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-if)# switchport backup interface gigabitethernet0/2 mmu primary vlan 2</td>
</tr>
<tr>
<td></td>
<td>Configures a physical Layer 2 interface (or port channel), as part of a Flex Links pair with the interface. The MAC address-table move update VLAN is the lowest VLAN ID on the interface.</td>
</tr>
<tr>
<td></td>
<td>Configure a physical Layer 2 interface (or port channel) and specifies the VLAN ID on the interface, which is used for sending the MAC address-table move update.</td>
</tr>
<tr>
<td></td>
<td>When one link is forwarding traffic, the other interface is in standby mode.</td>
</tr>
</tbody>
</table>
Configuring a Switch to Obtain and Process MAC Address-Table Move Update Messages

SUMMARY STEPS

1. configure terminal
2. mac address-table move update receive
3. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters global configuration mode</td>
</tr>
</tbody>
</table>
Purpose

Command or Action	Purpose

Example:
Switch# configure terminal

Step 2
mac address-table move update receive

Example:
Switch (config)# mac address-table move update receive

Step 3
end

Example:
Switch (config)# end

Related Topics
- Monitoring Flex Links, Multicast Fast Convergence, and MAC Address-Table Move Update, on page 432
- Configuring the MAC Address-Table Move Update: Examples, on page 435
- MAC Address-Table Move Update, on page 423
- Restrictions for Configuring Flex Links and MAC Address-Table Move Update, on page 419
- Configuring the MAC Address-Table Move Update: Examples, on page 435

Monitoring Flex Links, Multicast Fast Convergence, and MAC Address-Table Move Update

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show interface [interface-id] switchport backup</td>
<td>Displays the Flex Links backup interface configured for an interface or all the configured Flex Links and the state of each active and backup interface (up or standby mode).</td>
</tr>
<tr>
<td>show ip igmp profile address-table move update profile-id</td>
<td>Displays the specified IGMP profile or all the IGMP profiles defined on the switch.</td>
</tr>
<tr>
<td>show mac address-table move update</td>
<td>Displays the MAC address-table move update information on the switch.</td>
</tr>
</tbody>
</table>
Configuration Examples for Flex Links

Configuring Flex Links: Examples

This example shows how to verify the configuration after you configure an interface with a backup interface:

Switch# `show interface switchport backup`

Switch Backup Interface Pairs:
Active Interface Backup Interface State
GigabitEthernet1/0/1 GigabitEthernet1/0/2 Active Up/Backup Standby

This example shows how to verify the configuration after you configure the preemption mode as forced for a backup interface pair:

Switch# `show interface switchport backup detail`

Switch Backup Interface Pairs:
Active Interface Backup Interface State
GigabitEthernet1/0/211 GigabitEthernet1/0/2 Active Up/Backup Standby
Interface Pair: Gi1/0/1, Gi1/0/2
Preemption Mode: forced
Preemption Delay: 50 seconds
Bandwidth: 100000 Kbit (Gi1/0/1), 100000 Kbit (Gi1/0/2)
Mac Address Move Update Vlan: auto

Related Topics
- Configuring a Preemption Scheme for a Pair of Flex Links, on page 427
- Configuring Flex Links, on page 426
- Default Flex Links and MAC Address-Table Move Update Configuration, on page 425

Configuring VLAN Load Balancing on Flex Links: Examples

In the following example, VLANs 1 to 50, 60, and 100 to 120 are configured on the switch:

Switch(config)# `interface gigabitethernet 2/0/6`
Switch(config-if)# `switchport backup interface gigabitethernet 2/0/8 prefer vlan 60,100-120`
When both interfaces are up, Gi2/0/8 forwards traffic for VLANs 60 and 100 to 120 and Gi2/0/6 forwards traffic for VLANs 1 to 50.

```
Switch# show interfaces switchport backup
Switch Backup Interface Pairs:
Active Interface  Backup Interface  State
-----------------------------------------------
GigabitEthernet2/0/6    GigabitEthernet2/0/8  Active Up/Backup Standby
Vlans Preferred on Active Interface:  1-50
Vlans Preferred on Backup Interface:  60, 100-120
```

When a Flex Links interface goes down (LINK_DOWN), VLANs preferred on this interface are moved to the peer interface of the Flex Links pair. In this example, if interface Gi2/0/6 goes down, Gi2/0/8 carries all VLANs of the Flex Links pair.

```
Switch# show interfaces switchport backup
Switch Backup Interface Pairs:
Active Interface  Backup Interface  State
-----------------------------------------------
GigabitEthernet2/0/6    GigabitEthernet2/0/8  Active Down/Backup Up
Vlans Preferred on Active Interface:  1-50
Vlans Preferred on Backup Interface:  60, 100-120
```

When a Flex Links interface comes up, VLANs preferred on this interface are blocked on the peer interface and moved to the forwarding state on the interface that has just come up. In this example, if interface Gi2/0/6 comes up, VLANs preferred on this interface are blocked on the peer interface Gi2/0/8 and forwarded on Gi2/0/6.

```
Switch# show interfaces switchport backup
Switch Backup Interface Pairs:
Active Interface  Backup Interface  State
-----------------------------------------------
GigabitEthernet2/0/6    GigabitEthernet2/0/8  Active Up/Backup Standby
Vlans Preferred on Active Interface:  1-50
Vlans Preferred on Backup Interface:  60, 100-120
```

```
Switch# show interfaces switchport backup detail
Switch Backup Interface Pairs:
Active Interface  Backup Interface  State
-----------------------------------------------
FastEthernet1/0/3    FastEthernet1/0/4  Active Down/Backup Up
Vlans Preferred on Active Interface:  1-2, 5-4094
Vlans Preferred on Backup Interface:  3-4
Preemption Mode : off
Bandwidth : 10000 Kbit (Fa1/0/3), 100000 Kbit (Fa1/0/4)
Mac Address Move Update Vlan : auto
```

Related Topics

- Configuring VLAN Load Balancing on Flex Links, on page 429
- Flex Links VLAN Load Balancing Configuration Guidelines, on page 425
- Restrictions for Configuring Flex Links and MAC Address-Table Move Update, on page 419
Configuring the MAC Address-Table Move Update: Examples

This example shows how to verify the configuration after you configure an access switch to send MAC address-table move updates:

```
Switch# show mac address-table move update
```

```
Switch-ID : 010b.4630.1780
Dst mac-address : 0180.c200.0010
Vlans/Macs supported : 1023/8320
Default/Current settings: Rcv Off/On, Xmt Off/On
Max packets per min : Rcv 40, Xmt 60
Rcv packet count : 5
Rcv conforming packet count : 5
Rcv invalid packet count : 0
Rcv packet count this min : 0
Rcv threshold exceed count : 0
Rcv last sequence# this min : 0
Rcv last interface : Po2
Rcv last src-mac-address : 000b.462d.c502
Rcv last switch-ID : 0403.fd6a.8700
Xmt packet count : 0
Xmt packet count this min : 0
Xmt threshold exceed count : 0
Xmt pak buf unavail cnt : 0
Xmt last interface : None
```

Related Topics

- Configuring MAC Address-Table Move Update, on page 430
- Configuring a Switch to Obtain and Process MAC Address-Table Move Update Messages, on page 431
- Configuring a Switch to Obtain and Process MAC Address-Table Move Update Messages, on page 431
- Configuring MAC Address-Table Move Update, on page 430
- MAC Address-Table Move Update, on page 423
- Restrictions for Configuring Flex Links and MAC Address-Table Move Update, on page 419

Configuring Multicast Fast Convergence with Flex Links Failover: Examples

These are configuration examples for learning the other Flex Links port as the mroutert port when Flex Links is configured on GigabitEthernet1/0/11 and GigabitEthernet1/0/12, and output for the `show interfaces switchport backup` command:

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface GigabitEthernet1/0/11
Switch(config-if)# switchport trunk encapsulation dot1q
Switch(config-if)# switchport mode trunk
Switch(config-if)# switchport backup interface GigabitEthernet1/0/12
Switch(config-if)# exit
Switch(config)# interface GigabitEthernet1/0/12
Switch(config-if)# switchport trunk encapsulation dot1q
Switch(config-if)# switchport mode trunk
Switch(config-if)# end
Switch# show interfaces switchport backup detail
Switch Backup Interface Pairs:
Active Interface Backup Interface State
GigabitEthernet1/0/11 GigabitEthernet1/0/12 Active Up/Backup Standby
```

Cisco 2960-X Switch Series Configuration Guide, Cisco IOS Release 15.0(2)EX
This output shows a querier for VLANs 1 and 401, with their queries reaching the switch through GigabitEthernet1/0/11:

Switch

```
Switch# show ip igmp snooping querier
Vlan  IP Address   IGMP Version Port
----------------------------------
   1  1.1.1.1        v2          Gi1/0/11
  401  41.41.41.1    v2          Gi1/0/11
```

This example is output for the **show ip igmp snooping mrouter** command for VLANs 1 and 401:

Switch

```
Switch# show ip igmp snooping mrouter
Vlan  ports
----- -----
   1  Gi1/0/11(dynamic), Gi1/0/12(dynamic)
  401  Gi1/0/11(dynamic), Gi1/0/12(dynamic)
```

Similarly, both Flex Links ports are part of learned groups. In this example, GigabitEthernet2/0/11 is a receiver/host in VLAN 1, which is interested in two multicast groups:

Switch

```
Switch# show ip igmp snooping groups
Vlan  Group Type  Version Port  List
-------------------------------------
   1  igmp          v2      Gi1/0/11, Gi1/0/12, Gi2/0/11
   1  igmp          v2      Gi1/0/11, Gi1/0/12, Gi2/0/11
```

When a host responds to the general query, the switch forwards this report on all the mrouter ports. In this example, when a host sends a report for the group 228.1.5.1, it is forwarded only on GigabitEthernet1/0/11, because the backup port GigabitEthernet1/0/12 is blocked. When the active link, GigabitEthernet1/0/11, goes down, the backup port, GigabitEthernet1/0/12, begins forwarding.

As soon as this port starts forwarding, the switch sends proxy reports for the groups 228.1.5.1 and 228.1.5.2 on behalf of the host. The upstream router learns the groups and starts forwarding multicast data. This is the default behavior of Flex Links. This behavior changes when the user configures fast convergence using the **switchport backup interface gigabitEthernet 1/0/12 multicast fast-convergence** command. This example shows turning on this feature:

Switch

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface gigabitEthernet 1/0/11
Switch(config-if)# switchport backup interface gigabitEthernet 1/0/12 multicast fast-convergence
Switch(config-if)# exit
Switch# show interfaces switchport backup detail
Switch Backup Interface Pairs:
Active Interface       Backup Interface State
---------------------- ---------------------
GigabitEthernet1/0/11 GigabitEthernet1/0/12 Active Up/Backup Standby
Preemption Mode : off
Multicast Fast Convergence : On
Bandwidth : 100000 Kbit (Gi1/0/11), 100000 Kbit (Gi1/0/12)
Mac Address Move Update Vlan : auto
```

Cisco 2960-X Switch Series Configuration Guide, Cisco IOS Release 15.0(2)EX
This output shows a querier for VLAN 1 and 401 with their queries reaching the switch through GigabitEthernet1/0/11:

Switch# `show ip igmp snooping querier`

<table>
<thead>
<tr>
<th>Vlan</th>
<th>IP Address</th>
<th>IGMP Version</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.1.1.1</td>
<td>v2</td>
<td>Gi1/0/11</td>
</tr>
<tr>
<td>401</td>
<td>41.41.41.1</td>
<td>v2</td>
<td>Gi1/0/11</td>
</tr>
</tbody>
</table>

This is output for the `show ip igmp snooping mrouter` command for VLAN 1 and 401:

Switch# `show ip igmp snooping mrouter`

Vlan	ports
1 | Gi1/0/11(dynamic), Gi1/0/12(dynamic)
401 | Gi1/0/11(dynamic), Gi1/0/12(dynamic)

Similarly, both the Flex Links ports are a part of the learned groups. In this example, GigabitEthernet2/0/11 is a receiver/host in VLAN 1, which is interested in two multicast groups:

Switch# `show ip igmp snooping groups`

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Group</th>
<th>Type</th>
<th>Version</th>
<th>Port List</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>228.1.5.1</td>
<td>igmp</td>
<td>v2</td>
<td>Gi1/0/11, Gi1/0/12, Gi2/0/11</td>
</tr>
<tr>
<td>1</td>
<td>228.1.5.2</td>
<td>igmp</td>
<td>v2</td>
<td>Gi1/0/11, Gi1/0/12, Gi2/0/11</td>
</tr>
</tbody>
</table>

Whenever a host responds to the general query, the switch forwards this report on all the mrouter ports. When you turn on this feature through the command-line port, and when a report is forwarded by the switch on GigabitEthernet1/0/11, it is also leaked to the backup port GigabitEthernet1/0/12. The upstream router learns the groups and starts forwarding multicast data, which is dropped at the ingress because GigabitEthernet1/0/12 is blocked. When the active link, GigabitEthernet1/0/11, goes down, the backup port, GigabitEthernet1/0/12, begins forwarding. You do not need to send any proxy reports as the multicast data is already being forwarded by the upstream router. By leaking reports to the backup port, a redundant multicast path has been set up, and the time taken for the multicast traffic convergence is very minimal.

Related Topics

- Multicast Fast Convergence with Flex Links Failover, on page 422

Additional References for Flex Links and MAC Address-Table Move Update

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 2 command reference</td>
<td>Catalyst 2960-X Switch Layer 2 Command Reference</td>
</tr>
<tr>
<td>switchport backup interface command</td>
<td>Catalyst 2960-X Switch Interface and Hardware Component Command Reference</td>
</tr>
</tbody>
</table>
Error Message Decoder

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>To help you research and resolve system error messages in this release, use the Error Message Decoder tool.</td>
<td>https://www.cisco.com/cgi-bin/Support/Errordecoder/index.cgi</td>
</tr>
</tbody>
</table>

Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>All supported MIBs for this release.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/support</td>
</tr>
</tbody>
</table>
Feature Information for Flex Links and MAC Address-Table Move Update

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS 15.0(2)EX</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>
Configuring UniDirectional Link Detection

- Finding Feature Information, page 441
- Restrictions for Configuring UDLD, page 441
- Information About UDLD, page 442
- How to Configure UDLD, page 445
- Monitoring and Maintaining UDLD, page 447
- Additional References for UDLD, page 448
- Feature Information for UDLD, page 449

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Restrictions for Configuring UDLD

The following are restrictions for configuring UniDirectional Link Detection (UDLD):

- A UDLD-capable port cannot detect a unidirectional link if it is connected to a UDLD-incapable port of another switch.

- When configuring the mode (normal or aggressive), make sure that the same mode is configured on both sides of the link.
Information About UDLD

UniDirectional Link Detection (UDLD) is a Layer 2 protocol that enables devices connected through fiber-optic or twisted-pair Ethernet cables to monitor the physical configuration of the cables and detect when a unidirectional link exists. All connected devices must support UDLD for the protocol to successfully identify and disable unidirectional links. When UDLD detects a unidirectional link, it disables the affected port and alerts you. Unidirectional links can cause a variety of problems, including spanning-tree topology loops.

Modes of Operation

UDLD supports two modes of operation: normal (the default) and aggressive. In normal mode, UDLD can detect unidirectional links due to misconnected ports on fiber-optic connections. In aggressive mode, UDLD can also detect unidirectional links due to one-way traffic on fiber-optic and twisted-pair links and to misconnected ports on fiber-optic links.

In normal and aggressive modes, UDLD works with the Layer 1 mechanisms to learn the physical status of a link. At Layer 1, autonegotiation takes care of physical signaling and fault detection. UDLD performs tasks that autonegotiation cannot perform, such as detecting the identities of neighbors and shutting down misconnected ports. When you enable both autonegotiation and UDLD, the Layer 1 and Layer 2 detections work together to prevent physical and logical unidirectional connections and the malfunctioning of other protocols.

A unidirectional link occurs whenever traffic sent by a local device is received by its neighbor but traffic from the neighbor is not received by the local device.

Normal Mode

In normal mode, UDLD detects a unidirectional link when fiber strands in a fiber-optic port are misconnected and the Layer 1 mechanisms do not detect this misconnection. If the ports are connected correctly but the traffic is one way, UDLD does not detect the unidirectional link because the Layer 1 mechanism, which is supposed to detect this condition, does not do so. In this case, the logical link is considered undetermined, and UDLD does not disable the port.

When UDLD is in normal mode, if one of the fiber strands in a pair is disconnected, as long as autonegotiation is active, the link does not stay up because the Layer 1 mechanisms detects a physical problem with the link. In this case, UDLD does not take any action and the logical link is considered undetermined.

Related Topics

- Enabling UDLD Globally, on page 445
- Enabling UDLD on an Interface, on page 446
Aggressive Mode

In aggressive mode, UDLD detects a unidirectional link by using the previous detection methods. UDLD in aggressive mode can also detect a unidirectional link on a point-to-point link on which no failure between the two devices is allowed. It can also detect a unidirectional link when one of these problems exists:

- On fiber-optic or twisted-pair links, one of the ports cannot send or receive traffic.
- On fiber-optic or twisted-pair links, one of the ports is down while the other is up.
- One of the fiber strands in the cable is disconnected.

In these cases, UDLD disables the affected port.

In a point-to-point link, UDLD hello packets can be considered as a heartbeat whose presence guarantees the health of the link. Conversely, the loss of the heartbeat means that the link must be shut down if it is not possible to reestablish a bidirectional link.

If both fiber strands in a cable are working normally from a Layer 1 perspective, UDLD in aggressive mode detects whether those fiber strands are connected correctly and whether traffic is flowing bidirectionally between the correct neighbors. This check cannot be performed by autonegotiation because autonegotiation operates at Layer 1.

Related Topics

- Enabling UDLD Globally, on page 445
- Enabling UDLD on an Interface, on page 446

Methods to Detect Unidirectional Links

UDLD operates by using two methods:

- Neighbor database maintenance
- Event-driven detection and echoing

Related Topics

- Enabling UDLD Globally, on page 445
- Enabling UDLD on an Interface, on page 446

Neighbor Database Maintenance

UDLD learns about other UDLD-capable neighbors by periodically sending a hello packet (also called an advertisement or probe) on every active port to keep each device informed about its neighbors.

When the switch receives a hello message, it caches the information until the age time (hold time or time-to-live) expires. If the switch receives a new hello message before an older cache entry ages, the switch replaces the older entry with the new one.

Whenever a port is disabled and UDLD is running, whenever UDLD is disabled on a port, or whenever the switch is reset, UDLD clears all existing cache entries for the ports affected by the configuration change. UDLD sends at least one message to inform the neighbors to flush the part of their caches affected by the status change. The message is intended to keep the caches synchronized.
Event-Driven Detection and Echoing

UDLD relies on echoing as its detection operation. Whenever a UDLD device learns about a new neighbor or receives a resynchronization request from an out-of-sync neighbor, it restarts the detection window on its side of the connection and sends echo messages in reply. Because this behavior is the same on all UDLD neighbors, the sender of the echoes expects to receive an echo in reply.

If the detection window ends and no valid reply message is received, the link might shut down, depending on the UDLD mode. When UDLD is in normal mode, the link might be considered undetermined and might not be shut down. When UDLD is in aggressive mode, the link is considered unidirectional, and the port is disabled.

Related Topics
Enabling UDLD Globally, on page 445
Enabling UDLD on an Interface, on page 446

UDLD Reset Options

If an interface becomes disabled by UDLD, you can use one of the following options to reset UDLD:

- The `udld reset` interface configuration command.
- The `shutdown` interface configuration command followed by the `no shutdown` interface configuration command restarts the disabled port.
- The `no udld {aggressive | enable}` global configuration command followed by the `udld {aggressive | enable}` global configuration command reenables the disabled ports.
- The `no udld port` interface configuration command followed by the `udld port [aggressive]` interface configuration command reenables the disabled fiber-optic port.
- The `errdisable recovery cause udld` global configuration command enables the timer to automatically recover from the UDLD error-disabled state, and the `errdisable recovery interval interval` global configuration command specifies the time to recover from the UDLD error-disabled state.

Related Topics
Enabling UDLD Globally, on page 445
Enabling UDLD on an Interface, on page 446

Default UDLD Configuration

Table 50: Default UDLD Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDLD global enable state</td>
<td>Globally disabled</td>
</tr>
<tr>
<td>UDLD per-port enable state for fiber-optic media</td>
<td>Disabled on all Ethernet fiber-optic ports</td>
</tr>
<tr>
<td>UDLD per-port enable state for twisted-pair (copper) media</td>
<td>Disabled on all Ethernet 10/100 and 1000BASE-TX ports</td>
</tr>
</tbody>
</table>
How to Configure UDLD

Enabling UDLD Globally

Follow these steps to enable UDLD in the aggressive or normal mode and to set the configurable message timer on all fiber-optic ports on the switch.

SUMMARY STEPS

1. `configure terminal`
2. `udld {aggressive | enable | message time message-timer-interval}`
3. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# <code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>`udld {aggressive</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# <code>udld enable message time 10</code></td>
<td></td>
</tr>
</tbody>
</table>

- **aggressive**—Enables UDLD in aggressive mode on all fiber-optic ports.
- **enable**—Enables UDLD in normal mode on all fiber-optic ports on the switch. UDLD is disabled by default.
- **message time message-timer-interval**—Configures the period of time between UDLD probe messages on ports that are in the advertisement phase and are detected to be bidirectional. The range is from 1 to 90 seconds; the default value is 15.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDLD aggressive mode</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Related Topics

- Enabling UDLD Globally, on page 445
- Enabling UDLD on an Interface, on page 446
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note This command affects fiber-optic ports only. Use the <code>udld</code> interface configuration command to enable UDLD on other port types. Use the no form of this command, to disable UDLD.</td>
<td></td>
</tr>
</tbody>
</table>

Step 3

<table>
<thead>
<tr>
<th>end</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
</tr>
<tr>
<td><code>Switch(config)# end</code></td>
</tr>
<tr>
<td>Returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Related Topics

- Monitoring and Maintaining UDLD
- Aggressive Mode, on page 443
- Normal Mode, on page 442
- Methods to Detect Unidirectional Links, on page 443
- Event-Driven Detection and Echoing, on page 444
- UDLD Reset Options, on page 444
- Default UDLD Configuration, on page 444

Enabling UDLD on an Interface

Follow these steps either to enable UDLD in the aggressive or normal mode or to disable UDLD on a port.

SUMMARY STEPS

1. `configure terminal`
2. `interface interface-id`
3. `udld port [aggressive]`
4. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**

 - `configure terminal`

 Example:

 `Switch# configure terminal` |
| Enters global configuration mode. |
Purpose

Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td><code>interface interface-id</code></td>
<td>Specifies the port to be enabled for UDLD, and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# interface gigabitethernet 1/0/1</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>udld port [aggressive]</code></td>
<td>UDLD is disabled by default.</td>
</tr>
</tbody>
</table>
| **Example:** | Switch(config-if)# udld port aggressive | - `udld port`—Enables UDLD in normal mode on the specified port.
 - `udld port aggressive`—(Optional) Enables UDLD in aggressive mode on the specified port. |
| **Note** | Use the `no udld port` interface configuration command to disable UDLD on a specified fiber-optic port. | |
| Step 4 | `end` | Returns to privileged EXEC mode. |
| **Example:** | Switch(config-if)# end | |

Related Topics
- Monitoring and Maintaining UDLD Aggressive Mode, on page 443
- Normal Mode, on page 442
- Methods to Detect Unidirectional Links, on page 443
- Event-Driven Detection and Echoing, on page 444
- UDLD Reset Options, on page 444
- Default UDLD Configuration, on page 444

Monitoring and Maintaining UDLD

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`show udld [interface-id</td>
<td>neighbors]`</td>
</tr>
</tbody>
</table>
Additional References for UDLD

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 2 command reference</td>
<td>Catalyst 2960-X Switch Layer 2 Command Reference</td>
</tr>
</tbody>
</table>

Error Message Decoder

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>To help you research and resolve system error messages in this release, use the Error Message Decoder tool.</td>
<td>https://www.cisco.com/cgi-bin/Support/Errordecoder/index.cgi</td>
</tr>
</tbody>
</table>

Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>All supported MIBs for this release.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including</td>
<td>http://www.cisco.com/support</td>
</tr>
<tr>
<td>documentation and tools for troubleshooting and resolving technical issues</td>
<td></td>
</tr>
<tr>
<td>with Cisco products and technologies.</td>
<td></td>
</tr>
<tr>
<td>To receive security and technical information about your products, you can</td>
<td></td>
</tr>
<tr>
<td>subscribe to various services, such as the Product Alert Tool (accessed</td>
<td></td>
</tr>
<tr>
<td>from Field Notices), the Cisco Technical Services Newsletter, and Really</td>
<td></td>
</tr>
<tr>
<td>Simple Syndication (RSS) Feeds.</td>
<td></td>
</tr>
<tr>
<td>Access to most tools on the Cisco Support website requires a Cisco.com</td>
<td></td>
</tr>
<tr>
<td>user ID and password.</td>
<td></td>
</tr>
</tbody>
</table>

Feature Information for UDLD

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS 15.0(2)EX</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>
Feature Information for UDLD
PART VI

NetFlow Lite

• Configuring Flexible NetFlow, page 453
Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for NetFlow Lite

The following are prerequisites for your NetFlow Lite configuration:

- NetFlow Lite is only supported on switches running the LAN Base image. Switches running the LAN Lite image do not support NetFlow Lite.
- Two targets for attaching a NetFlow Lite monitor are supported:
Restrictions for NetFlow Lite

The following are restrictions for NetFlow Lite:

• Monitor restrictions:
 • Monitor attachment is only supported in the ingress direction.
 • One monitor per interface is supported, although multiple exporters per interface are supported.
 • Only permanent and normal cache is supported for the monitor; immediate cache is not supported.
 • Changing any monitor parameter will not be supported when it is applied on any of the interfaces or VLANs.
 • When both the port and VLANs have monitors attached, then VLAN monitor will overwrite the port monitor for traffic coming on the port.
 • Flow monitor type and traffic type (type means IPv4, IPv6, and data link) should be same for the flows to be created.
 • You cannot attach an IP and port-based monitor to an interface at the same time on the switch. A 48-port switch supports a maximum of 48 monitors (IP or port-based) and for 256 SVIs, you can configure up to 256 monitors (IP or port-based).
 • When running the `show flow monitor flow_name cache` command, the switch displays cache information from an earlier switch software version (Catalyst 2960-S) with all fields entered as zero. Ignore these fields, as they are inapplicable to the switch.

• Sampler restrictions:
 • Only sampled NetFlow is supported.
 • For both port and VLANS, a total of only 4 samplers (random or deterministic) are supported on the switch.
 • The sampling minimum rate for both modes is 1 out of 32 flows, and the sampling maximum rate for both modes is 1 out of 1022 flows.
 • You must associate a sampler with a monitor while attaching it to an interface. Otherwise, the command will be rejected. Use the `ip flow monitor monitor_name sampler sampler_name input` interface configuration command to perform this task.
 • When you attach a monitor using a deterministic sampler (for example, s1), every attachment with the same sampler s1 uses one new free sampler from the switch (hardware) out of 4 available samplers. You are not allowed to attach a monitor with any sampler, beyond 4 attachments.

When you attach a monitor using a random sampler (for example, s2), only the first attachment uses a new sampler from the switch (hardware). The remainder of all of the attachments using the same sampler s2, share the same sampler.
Because of this behavior, when using a deterministic sampler, you can always make sure that the correct number of flows are sampled by comparing the sampling rate and what the switch sends. If the same random sampler is used with multiple interfaces, flows from any interface can always be sampled, and flows from other interfaces can always be skipped.

- **Stacking Restrictions:**
 - The switch supports homogeneous stacking and mixed stacking. Mixed stacking is supported only with the Catalyst 2960-S switches. A homogenous stack can have up to eight stack members, while a mixed stack can have up to four stack members. All switches in a switch stack must be running the LAN Base image.
 - The switch supports NetFlow Lite running on a mixed stack configuration, where both Catalyst 2960-X and Catalyst 2960-S switches reside in the same stack. But in such a mixed stack configuration, the master switch must always be a Catalyst 2960-X switch. The Catalyst 2960-S switch must never be the master switch in this type of mixed stack configuration.
 - Each switch in a stack (hardware) can support the creation of a maximum of 16,000 flows at any time. But as the flows are periodically pushed to the software cache, the software cache can hold a much larger amount of flows (1048 Kb flows). From the hardware flow cache, every 20 seconds (termed as poll timer), 200 flows (termed as poll entries) are pushed to software.
 - Use the `remote command all show platform hulc-fnf poll` command to report on each switch's current NetFlow polling parameters.
 - Use the `show platform hulc-fnf poll` command to report on the master switch's current NetFlow polling parameters.

 - Network flows and statistics are collected at the line rate.
 - ACL-based NetFlow is not supported.
 - Only NetFlow Version 9 is supported for Flexible NetFlow exporter using the `export-protocol` command option. If you configure NetFlow Version 5, this version will be accepted, but the NetFlow Version 5 export functionality is neither currently available nor supported.

Information About NetFlow Lite

NetFlow Lite Overview

NetFlow Lite uses flows to provide statistics for accounting, network monitoring, and network planning. A flow is a unidirectional stream of packets that arrives on a source interface and has the same values for the keys. A key is an identified value for a field within the packet. You create a flow using a flow record to define the unique keys for your flow.

The switch supports the NetFlow Lite feature that enables enhanced network anomalies and security detection. NetFlow Lite allows you to define an optimal flow record for a particular application by selecting the keys from a large collection of predefined fields.

All key values must match for the packet to count in a given flow. A flow might gather other fields of interest, depending on the export record version that you configure. Flows are stored in the NetFlow Lite cache.
You can export the data that NetFlow Lite gathers for your flow by using an exporter and export this data to a remote system such as a NetFlow Lite collector. The NetFlow Lite collector can use an IPv4 address.

You define the size of the data that you want to collect for a flow using a monitor. The monitor combines the flow record and exporter with the NetFlow Lite cache information.

Flow Records

A flow record defines the keys that NetFlow Lite uses to identify packets in the flow, as well as other fields of interest that NetFlow Lite gathers for the flow. You can define a flow record with any combination of keys and fields of interest.

A flow record also defines the types of counters gathered per flow. You can configure 64-bit packet or byte counters.

Related Topics

- Creating a Flow Record, on page 462
- Example: Configuring a Flow, on page 478

NetFlow Lite Match Parameters

The following table describes NetFlow Lite match parameters. Use these match parameters when creating a NetFlow Lite flow record. You must configure at least one of the following match parameters for the flow records.
Table 51: Match Parameters

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`matchdatalink {ethertype</td>
<td>mac {destination address input</td>
</tr>
<tr>
<td></td>
<td>• <code>ethertype</code>—Matches to the ethertype of the packet.</td>
</tr>
<tr>
<td></td>
<td>• <code>mac</code>—Matches the source or destination MAC address from packets at input.</td>
</tr>
</tbody>
</table>

Note When a datalink flow monitor is assigned to an interface or VLAN record, it only creates flows for non-IPv6 or non-IPv4 traffic. To monitor datalink L2 traffic flows, you would use `datalinkflowmonitor name sampler sampler-name {input} interface` command. This specific command associates a datalink L2 flow monitor and required sampler to the interface for input packets.

To monitor IPv4 traffic flows, you would use the `ipflowmonitor name sampler sampler-name {input} interface` command. This specific command associates an IPv4 flow monitor and required sampler to the interface for input packets.

To monitor IPv6 traffic flows, you would use the `ipv6flowmonitor name sampler sampler-name {input} interface` command. This specific command associates an IPv6 flow monitor and required sampler to the interface for input packets.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`matchipv4 {destination {address}</td>
<td>protocol</td>
</tr>
<tr>
<td></td>
<td>• <code>destination</code>—Matches to the IPv4 destination address-based fields.</td>
</tr>
<tr>
<td></td>
<td>• <code>protocol</code>—Matches to the IPv4 protocols.</td>
</tr>
<tr>
<td></td>
<td>• <code>source</code>—Matches to the IPv4 source address based fields.</td>
</tr>
<tr>
<td></td>
<td>• <code>tos</code>—Matches to the IPv4 Type of Service fields.</td>
</tr>
</tbody>
</table>
Command

match ipv6 {destination \{address\} | flow-label | protocol | source \{address\} | traffic-class}

Purpose
Specifies a match to the IPv6 fields. The following command options are available:

- **destination**—Matches to the IPv6 destination address-based fields.
- **flow-label**—Matches to the IPv6 flow-label fields.
- **protocol**—Matches to the IPv6 payload protocol fields.
- **source**—Matches to the IPv6 source address based fields.
- **traffic-class**—Matches to the IPv6 traffic class.

match transport {destination-port | source-port}

Purpose
Specifies a match to the Transport Layer fields. The following command options are available:

- **destination-port**—Matches to the transport destination port.
- **source-port**—Matches to the transport source port.

NetFlow Lite Collect Parameters

The following table describes the NetFlow Lite collect parameters. Use these collect parameters when creating a NetFlow Lite flow record.

Table 52: Collect Parameters

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>collect counter {bytes {long</td>
<td>permanent }</td>
</tr>
<tr>
<td>collect flow sampler</td>
<td>Collects the ID of the flow sampler to find out the sampling rate.</td>
</tr>
<tr>
<td>collect interface {input}</td>
<td>Collects the fields from the input interface.</td>
</tr>
<tr>
<td>collect timestamp sys-uptime {first</td>
<td>last}</td>
</tr>
</tbody>
</table>
Purpose

Command: `collect transport tcp flags`

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collects the following transport TCP flags:</td>
<td>Sets a command to its default values. You can set the following defaults:</td>
</tr>
<tr>
<td>• <code>ack</code> — TCP acknowledgement flag</td>
<td>• <code>description</code></td>
</tr>
<tr>
<td>• <code>cwr</code> — TCP congestion window reduced flag</td>
<td>• <code>destination</code></td>
</tr>
<tr>
<td>• <code>ece</code> — TCP ECN echo flag</td>
<td>• <code>dscp</code></td>
</tr>
<tr>
<td>• <code>fin</code> — TCP finish flag</td>
<td>• <code>export-protocol</code></td>
</tr>
<tr>
<td>• <code>psh</code> — TCP push flag</td>
<td>• <code>option</code></td>
</tr>
<tr>
<td>• <code>rst</code> — TCP reset flag</td>
<td>• <code>exporter-stats</code> — Exporter statistics option</td>
</tr>
<tr>
<td>• <code>syn</code> — TCP synchronize flag</td>
<td>• <code>interface-table</code> — Interface SNMP-index-to-name table option</td>
</tr>
<tr>
<td>• <code>urg</code> — TCP urgent flag</td>
<td>• <code>sampler-table</code> — Export sampler option</td>
</tr>
<tr>
<td></td>
<td>• <code>source</code></td>
</tr>
<tr>
<td></td>
<td>• <code>template data timeout</code></td>
</tr>
<tr>
<td></td>
<td>• <code>transport</code></td>
</tr>
<tr>
<td></td>
<td>• <code>ttl</code></td>
</tr>
</tbody>
</table>

Exporters

An exporter contains network layer and transport layer details for the NetFlow Lite export packet. The following table lists the configuration options for an exporter.

Table 53: NetFlow Lite Exporter Configuration Options

<table>
<thead>
<tr>
<th>Exporter Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>Sets a command to its default values. You can set the following defaults:</td>
</tr>
<tr>
<td></td>
<td>• <code>description</code></td>
</tr>
<tr>
<td></td>
<td>• <code>destination</code></td>
</tr>
<tr>
<td></td>
<td>• <code>dscp</code></td>
</tr>
<tr>
<td></td>
<td>• <code>export-protocol</code></td>
</tr>
<tr>
<td></td>
<td>• <code>option</code></td>
</tr>
<tr>
<td></td>
<td>• <code>exporter-stats</code> — Exporter statistics option</td>
</tr>
<tr>
<td></td>
<td>• <code>interface-table</code> — Interface SNMP-index-to-name table option</td>
</tr>
<tr>
<td></td>
<td>• <code>sampler-table</code> — Export sampler option</td>
</tr>
<tr>
<td></td>
<td>• <code>source</code></td>
</tr>
<tr>
<td></td>
<td>• <code>template data timeout</code></td>
</tr>
<tr>
<td></td>
<td>• <code>transport</code></td>
</tr>
<tr>
<td></td>
<td>• <code>ttl</code></td>
</tr>
<tr>
<td>Exporter Configuration</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>description</td>
<td>Provides a description for the flow exporter.</td>
</tr>
<tr>
<td>destination</td>
<td>Export destination.</td>
</tr>
<tr>
<td>dscp</td>
<td>Optional DSCP value. Enter a DSCP value from 0 to 63.</td>
</tr>
<tr>
<td>exit</td>
<td>Exits from the flow exporter configuration mode.</td>
</tr>
<tr>
<td>export-protocol</td>
<td>Export protocol version.</td>
</tr>
<tr>
<td>no</td>
<td>Negates the command or its default.</td>
</tr>
<tr>
<td>option</td>
<td>Selects option for exporting:</td>
</tr>
<tr>
<td></td>
<td>• exporter-stats—Exporter statistics option</td>
</tr>
<tr>
<td></td>
<td>• interface-table—Interface SNMP-index-to-name table option</td>
</tr>
<tr>
<td></td>
<td>• sampler-table—Export sampler option</td>
</tr>
<tr>
<td>source</td>
<td>Originating interface for the net flow.</td>
</tr>
<tr>
<td>template</td>
<td>Flow exporter template configuration.</td>
</tr>
<tr>
<td>transport</td>
<td>Transport protocol. Enter the UDP transport protocol and a port value. Enter a port value from 1 to 65535.</td>
</tr>
<tr>
<td>ttl</td>
<td>Optional TTL or hop limit. Enter a TTL value from 1 to 255.</td>
</tr>
</tbody>
</table>

The switch exports data to the collector whenever a timeout occurs, or when the flow is terminated (TCP Fin or Rst received, for example), or when the cache is full. You can configure the following timers in the flow monitor record to force a flow export:

- **Active timeout**—The flow continues to have the packets for the past \(m \) seconds since the flow was created.
- **Inactive timeout**—The flow does not have any packets for the past \(n \) seconds.

Export Formats

The switch supports only NetFlow Version 9 export formats. NetFlow Version 9 export format provides the following features and functionality:
• Variable field specification format
• Support for IPv6 and Layer 2 fields
• More efficient network utilization

Note
For information about the Version 9 export format, see RFC 3954.

Monitors
A monitor references the flow record and flow exporter. You apply a monitor to an interface on the switch.

Related Topics
Creating a Flow Monitor, on page 469
Example: Configuring a Flow, on page 478

Samplers
You use a NetFlow Lite sampler to specify the rate at which packets are being sampled. The switch supports both deterministic and random modes of sampling.

Related Topics
Creating a Sampler, on page 471
Example: Configuring a Flow, on page 478

Stacking
NetFlow Lite is supported on both homogenous and mixed switch stacks.
Each stack member has NetFlow information that operates as if they are a standalone switch. After entering a show CLI EXEC command, the master switch queries stack members to obtain their information. During an export, the member switches send the flow packets to the master switch, since member switches cannot route packets. Therefore, export always occurs from the master switch.
During a switchover, previous monitor configurations are not applied, and the new master switch synchronizes the configuration to all stack members. Member switches reapply the configuration on the respective stack members.

Note
The exported flow record's source ID is different between the master switch and member switch. When a flow export collector receives the exported flow record, the source ID would be switch#, if the switch is a master switch. If the flow is created by the member switch, then the source ID would be 0x0100switch#. For example, if switch#1 is the master switch, then the flow record's source ID would be 0x0001 (1); if switch#2 is a member switch, then the source ID would be 0x0102 (258).

In a mixed stack, the NetFlow Lite CLI is available for a mixed stack NetFlow Lite configuration. But a monitor attachment is not supported on a Catalyst 2960-S switch interface. When a monitor is attached to a
VLAN, an interface belonging to the Catalyst 2960-S switch ignores this and only the Catalyst 2960-X switch programs NetFlow (in hardware).

Default Settings

The following table lists the NetFlow Lite default settings for the switch.

Table 54: Default NetFlow Lite Settings

<table>
<thead>
<tr>
<th>Setting</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow active timeout</td>
<td>1800 seconds</td>
</tr>
<tr>
<td>Note</td>
<td>The default value for this setting may be too high for your specific NetFlow Lite configuration. You may want to consider changing it to a lower value of 180 or 300 seconds.</td>
</tr>
<tr>
<td>Flow timeout inactive</td>
<td>Enabled, 30 seconds</td>
</tr>
<tr>
<td>Flow update timeout</td>
<td>1800 seconds</td>
</tr>
<tr>
<td>Default cache size</td>
<td>16640 bits</td>
</tr>
</tbody>
</table>

How to Configure NetFlow Lite

To configure NetFlow Lite, follow these general steps:

1. Create a flow record by specifying keys and non-key fields to the flow.
2. Create an optional flow exporter by specifying the protocol and transport destination port, destination, and other parameters.
3. Create a flow monitor based on the flow record and flow exporter.
4. Create a sampler (either deterministic or random).
5. Apply the flow monitor to a Layer 2 port or VLAN.

Creating a Flow Record

You can create a flow record and add keys to match on and fields to collect in the flow.
SUMMARY STEPS

1. configure terminal
2. flow record name
3. description string
4. match type
5. collect type
6. end
7. show flow record [name record-name]
8. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

Step 2	Creates a flow record and enters flow record configuration mode.
flow record name	
Example:	
Switch(config)# flow record test Switch(config-flow-record)#	

Step 3	(Optional) Describes this flow record as a maximum 63-character string.
description string	
Example:	
Switch(config-flow-record)# description Ipv4Flow	

Step 4	Specifies a match key.
match type	For information about possible match key values, see NetFlow Lite Match Parameters, on page 456.
Example:	
Switch(config-flow-record)# match ipv4 source address Switch(config-flow-record)# match ipv4 destination address Switch(config-flow-record)# match ipv4 protocol	

Step 5	Specifies the collection field.
collect type	For information about possible collection field values, see NetFlow Lite Collect Parameters, on page 458.
Example:	
Switch(config-flow-record)# collect counter bytes long Switch(config-flow-record)# collect timestamp	
How to Configure NetFlow Lite

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>sys-uptime first</td>
<td></td>
</tr>
<tr>
<td>Switch(config-flow-record)# collect transport tcp flags</td>
<td></td>
</tr>
</tbody>
</table>

Step 6

end

Example:

```markdown
Switch(config-flow-record)# end
```

Step 7

show flow record [name record-name]

Example:

```markdown
Switch show flow record test
```

Step 8

copy running-config startup-config

Example:

```markdown
Switch# copy running-config startup-config
```

What to Do Next

Define an optional flow exporter by specifying the export format, protocol, destination, and other parameters.

Related Topics

- [Flow Records](#), on page 456
 - Example: Configuring a Flow, on page 478

Creating a Flow Exporter

You can create a flow export to define the export parameters for a flow.
SUMMARY STEPS

1. configure terminal
2. flow exporter name
3. description string
4. dscp value
5. destination { ipv4-address }
6. source { source type }
7. transport udp number
8. end
9. show flow exporter [name record-name]
10. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2 flow exporter name</td>
<td>Creates a flow exporter and enters flow exporter</td>
</tr>
<tr>
<td>Example:</td>
<td>configuration mode.</td>
</tr>
<tr>
<td>Switch(config)# flow exporter</td>
<td></td>
</tr>
<tr>
<td>ExportTest</td>
<td></td>
</tr>
<tr>
<td>Switch (config-flow-exporter)#</td>
<td></td>
</tr>
<tr>
<td>Step 3 description string</td>
<td>(Optional) Describes this flow record as a maximum</td>
</tr>
<tr>
<td>Example:</td>
<td>63-character string.</td>
</tr>
<tr>
<td>Switch(config-flow-exporter)#</td>
<td></td>
</tr>
<tr>
<td>description</td>
<td></td>
</tr>
<tr>
<td>ExportV9</td>
<td></td>
</tr>
<tr>
<td>Step 4 dscp value</td>
<td>(Optional) Specifies the differentiated services</td>
</tr>
<tr>
<td>Example:</td>
<td>codepoint value.</td>
</tr>
<tr>
<td>Switch(config-flow-exporter)#</td>
<td></td>
</tr>
<tr>
<td>dscp 0</td>
<td></td>
</tr>
<tr>
<td>Step 5 destination { ipv4-address }</td>
<td>Sets the destination IPv4 address or hostname for</td>
</tr>
<tr>
<td>Example:</td>
<td>this exporter.</td>
</tr>
<tr>
<td>Switch(config-flow-exporter)#</td>
<td></td>
</tr>
<tr>
<td>destination</td>
<td></td>
</tr>
<tr>
<td>192.0.2.1</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 6</td>
<td>Specifies the interface to use to reach the NetFlow collector at the configured destination.</td>
</tr>
<tr>
<td><code>source { source type }</code></td>
<td>Specifies the interface to use to reach the NetFlow collector at the configured destination.</td>
</tr>
<tr>
<td>Example: <code>Switch(config-flow-exporter)# source gigabitEthernet1/0/1</code></td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>(Optional) Specifies the UDP port to use to reach the NetFlow collector. The range is from 0 to 65535.</td>
</tr>
<tr>
<td><code>transport udp number</code></td>
<td>(Optional) Specifies the UDP port to use to reach the NetFlow collector. The range is from 0 to 65535.</td>
</tr>
<tr>
<td>Example: <code>Switch(config-flow-exporter)# transport udp 200</code></td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: <code>Switch(config-flow-record)# end</code></td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td>(Optional) Displays information about NetFlow flow exporters.</td>
</tr>
<tr>
<td><code>show flow exporter [name record-name]</code></td>
<td>(Optional) Displays information about NetFlow flow exporters.</td>
</tr>
<tr>
<td>Example: <code>Switch show flow exporter ExportTest</code></td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td>Example: <code>Switch# copy running-config startup-config</code></td>
<td></td>
</tr>
</tbody>
</table>

What to Do Next
Define a flow monitor based on the flow record and flow exporter.

Related Topics
- Exporters
- Example: Configuring a Flow, on page 478

Creating a Flow Exporter Using a Template
You can create a flow export to define the export parameters for a flow with a template.
SUMMARY STEPS

1. configure terminal
2. flow exporter name
3. description string
4. destination { ipv4-address }
5. source { source type }
6. transport udp number
7. template data timeout timeout_value
8. option interface-table
9. option sampler-table
10. end
11. show flow exporter [name record-name]
12. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>flow exporter name</td>
<td>Creates a flow exporter and enters flow exporter configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config)# flow exporter FE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch (config-flow-exporter)#</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>description string</td>
<td>(Optional) Describes this flow record as a maximum 63-character string.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config-flow-exporter)# description ExportV9</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>destination { ipv4-address }</td>
<td>Sets the destination IPv4 address or hostname for this exporter.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config-flow-exporter)# destination 192.0.2.1</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>source { source type }</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Specifies the VLAN to use to reach the NetFlow collector at the configured destination.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config-flow-exporter)# source Vlan 10</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>transport udp number</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>(Optional) Specifies the UDP port to use to reach the NetFlow collector. The range is from 0 to 65535.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config-flow-exporter)# transport udp 2055</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>template data timeout timeout_value</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Creates a template data timeout (with a value in seconds), so that the collector can interpret the flow record contents based on this template.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config-flow-exporter)# template data timeout 60</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>option interface-table</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Specifies the interface SNMP-index-to-name Table Option.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config-flow-exporter)# option interface-table</td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td>option sampler-table</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Specifies the Export Sampler Option.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config-flow-exporter)# option sampler-table</td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td>end</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Returns to privileged EXEC mode.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config-flow-exporter)# end</td>
<td></td>
</tr>
<tr>
<td>Step 11</td>
<td>show flow exporter [name record-name]</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>(Optional) Displays information about NetFlow flow exporters.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch show flow exporter FE</td>
<td></td>
</tr>
<tr>
<td>Step 12</td>
<td>copy running-config startup-config</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>(Optional) Saves your entries in the configuration file.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# copy running-config</td>
<td></td>
</tr>
</tbody>
</table>
Creating a Flow Monitor

You can create a flow monitor and associate it with a flow record and a flow exporter.

SUMMARY STEPS

1. `configure terminal`
2. `flow monitor name`
3. `description string`
4. `exporter name`
5. `record name`
6. `cache { type { normal | permanent }`
7. `cache { timeout {active | inactive | update} seconds }
8. `cache { entries value }
9. `end`
10. `show flow monitor [name record-name]`
11. `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>configure terminal</code></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td><code>flow monitor name</code></td>
<td>Creates a flow monitor and enters flow monitor configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Switch(config)# flow monitor MonitorTest</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Switch (config-flow-monitor)#</code></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td><code>description string</code></td>
<td>(Optional) Describes this flow record as a maximum 63-character string.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Switch(config-flow-monitor)#</code></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>description Ipv4Monitor</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Step 4

exporter name

Example:

```
Switch(config-flow-monitor)# exporter ExportTest
```

Associates a flow exporter with this flow monitor.

Step 5

record name

Example:

```
Switch(config-flow-monitor)# record test
```

Associates a flow record with the specified flow monitor.

Step 6

```
cache { type { normal | permanent } }
```

Example:

```
Switch(config-flow-monitor)# cache type normal
```

Associates a flow cache type for the specified flow monitor. This command specifies the normal cache type. This is the default cache type. The entries in the cache will be aged out according to the `timeout active seconds` and `timeout inactive seconds` settings. When a cache entry is aged out, it is removed from the cache and exported via any exporters configured for the monitor associated with the cache.

This command can also specify the permanent cache type. This type of cache never ages out any flows. This cache type is useful when the number of flows you expect to see has a limit and there is a need to keep long-term statistics on the switch. For example, if the only key field is tos, a limit of 256 flows can be seen, so to monitor the long-term usage of the field, a permanent cache can be used. Update messages are exported via any exporters configured for the monitor associated with this cache in accordance with the `timeout update seconds` setting.

Step 7

```
cache { timeout { active | inactive | update } seconds }
```

Example:

```
Switch(config-flow-monitor)# cache timeout active 15000
```

Associates a flow cache with an active timeout value (in seconds) for the specified flow monitor.

- **cache timeout active** — Controls the aging behavior of the normal type of cache. If a flow has been active for a long time, it is usually desirable to age it out (starting a new flow for any subsequent packets in the flow). This aging out process allows the monitoring application that is receiving the exports to remain up to date. By default this timeout is 1800 seconds (30 minutes), but it can be adjusted according to system requirements. A larger value ensures that long-lived flows are accounted for in a single flow record; a smaller value results in a shorter delay between starting a new long-lived flow and exporting some data for it.

- **cache timeout inactive** — Controls the aging behavior of the normal type of cache. If a flow has not seen any activity for a specified amount of time, that flow will be aged out. By default, this timeout is 30 seconds, but this value can be adjusted depending on the type of traffic expected. If a large number of short-lived flows is consuming many cache entries, reducing the inactive timeout can reduce this overhead. If a large number of flows frequently get aged out...
What to Do Next

Apply the flow monitor to a Layer 2 interface or VLAN.

Related Topics

- Monitors, on page 461

 Example: Configuring a Flow, on page 478

Creating a Sampler

You can create a sampler to define the NetFlow sampling rate for a flow.

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>before they have finished collecting their data, increasing this timeout can result in better flow correlation</td>
</tr>
<tr>
<td></td>
<td>cache timeout update — Controls the periodic updates sent by the permanent type of cache. This behavior is similar to the active timeout, except that it does not result in the removal of the cache entry from the cache. By default this timer value is 1800 seconds (30 minutes).</td>
</tr>
<tr>
<td>Step 8</td>
<td>cache { entries value }</td>
</tr>
<tr>
<td></td>
<td>Associates a flow cache with a maximum entry value for the specified flow monitor. Enter a value between 16 and 1048576.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-flow-monitor)# cache entries 10000</td>
</tr>
<tr>
<td>Step 9</td>
<td>end</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-flow-monitor)# end</td>
</tr>
<tr>
<td>Step 10</td>
<td>show flow monitor [name record-name]</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch show flow monitor name MonitorTest</td>
</tr>
<tr>
<td>Step 11</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# copy running-config startup-config</td>
</tr>
</tbody>
</table>

Additional Information

- **Creating a Sampler**

 You can create a sampler to define the NetFlow sampling rate for a flow.
SUMMARY STEPS

1. configure terminal
2. sampler name
3. description string
4. mode { deterministic \{ m - n \} | random \{ m - n \} }
5. end
6. show sampler [name]
7. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>sampler name</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# sampler SampleTest</td>
</tr>
<tr>
<td></td>
<td>Switch(config-flow-sampler)#</td>
</tr>
<tr>
<td></td>
<td>Creates a sampler and enters flow sampler configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>description string</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-flow-sampler)# description samples</td>
</tr>
<tr>
<td></td>
<td>(Optional) Describes this flow record as a maximum 63-character string.</td>
</tr>
<tr>
<td>Step 4</td>
<td>mode { deterministic { m - n }</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-flow-sampler)# mode random 1 out-of 1022</td>
</tr>
<tr>
<td></td>
<td>Defines the random sample mode.</td>
</tr>
<tr>
<td></td>
<td>You can configure either a random or deterministic sampler to an interface.</td>
</tr>
<tr>
<td></td>
<td>Select m packets out of an n packet window. The window size to select packets from ranges from 32 to 1022.</td>
</tr>
<tr>
<td></td>
<td>Note the following when configuring a sampler to an interface:</td>
</tr>
<tr>
<td></td>
<td>• When you attach a monitor using deterministic sampler (for example, s1), every attachment with same sampler s1 uses one new free sampler from the switch (hardware) out of 4 available samplers. Therefore, beyond 4 attachments, you are not allowed to attach a monitor with any sampler.</td>
</tr>
<tr>
<td></td>
<td>• In contrast, when you attach a monitor using random sampler (for example-again, s1), only the first attachment uses a new sampler from the switch (hardware). The rest of all attachments using the same sampler s1, share the same sampler.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Due to this behavior, when using a deterministic sampler, you can always make sure the correct number of flows are sampled by comparing the sampling rate and what the switch sends. If the same random sampler is used with multiple interfaces, flows from an interface can always be sampled, and the flows from other interfaces could be always skipped.</td>
</tr>
</tbody>
</table>

Step 5
end
Example:
`Switch(config-flow-sampler)# end`
Purpose: Returns to privileged EXEC mode.

Step 6
show sampler [name]
Example:
`Switch(config-flow-sampler)# show sampler SampleTest`
Purpose: (Optional) Displays information about NetFlow samplers.

Step 7
copy running-config startup-config
Example:
`Switch(config-flow-sampler)# copy running-config startup-config`
Purpose: (Optional) Saves your entries in the configuration file.

What to Do Next
Apply the flow monitor to a source interface or a VLAN.

Related Topics
- Samplers, on page 461
 Example: Configuring a Flow, on page 478

Applying a Flow to an Interface
You can apply a flow monitor and an optional sampler to an interface.

SUMMARY STEPS
1. configure terminal
2. interface type
3. ip flow monitor name sampler sampler-name { input }
4. end
5. show flow monitor [name record-name]
6. copy running-config startup-config
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:
Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>interface type</code></td>
<td>Enters interface configuration mode and configures an interface.</td>
</tr>
<tr>
<td></td>
<td>Example:
Switch(config)# interface GigabitEthernet1/0/1
Switch(config-if)#</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>ip flow monitor name sampler sampler-name { input }</code></td>
<td>To monitor IPv4 traffic flows, you would use the <code>ip flow monitor name sampler sampler-name { input }</code> interface command. This specific command associates an IPv4 flow monitor and required sampler to the interface for input packets. To monitor IPv6 traffic flows, you would use the <code>ipv6 flow monitor name sampler sampler-name { input }</code> interface command. This specific command associates an IPv6 flow monitor and required sampler to the interface for input packets. To monitor datalink L2 traffic flows, you would use the <code>datalink flow monitor name sampler sampler-name { input }</code> interface command. This specific command associates a datalink L2 flow monitor and required sampler to the interface for input packets. When a datalink flow monitor is assigned to an interface or VLAN record, it only creates flows for non-IPv6 or non-IPv4 traffic. Note Whenever you assign a flow monitor to an interface, you must configure a sampler. If the sampler is missing, you will receive an error message.</td>
</tr>
<tr>
<td></td>
<td>Example:
Switch(config-if)# ip flow monitor MonitorTest sampler SampleTest input</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:
Switch(config-flow-monitor)# end</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td><code>show flow monitor [name record-name]</code></td>
<td>(Optional) Displays information about NetFlow flow monitor.</td>
</tr>
<tr>
<td></td>
<td>Example:
Switch show flow monitor name MonitorTest</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Configuring a Bridged NetFlow on a VLAN

You can apply a flow monitor and an optional sampler to a VLAN.

SUMMARY STEPS

1. configure terminal
2. interface {vlan} vlan-id
3. ip flow monitor name sampler sampler-name { input }
4. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>interface {vlan} vlan-id</td>
<td>Specifies the SVI for the configuration.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch(config)# interface vlan 30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config-if)#</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>ip flow monitor name sampler sampler-name { input }</td>
<td>Associates a flow monitor and an optional sampler to the VLAN for input packets.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch(config-if)# ip flow monitor MonitorTest sampler SampleTest input</td>
<td></td>
</tr>
</tbody>
</table>

Note Whenever you assign a flow monitor to an interface, you must configure a sampler. If the sampler is missing, you will receive an error message.
Configuring Layer 2 NetFlow

You can define Layer 2 keys in NetFlow Lite records that you can use to capture flows in Layer 2 interfaces.

SUMMARY STEPS

1. configure terminal
2. flow record name
3. match datalink { ethertype | mac { destination { address input } | source { address input } } }
4. match { ipv4 {destination | protocol | source | tos } | ipv6 {destination | flow-label | protocol | source | traffic-class } | transport {destination-port | source-port} }
5. end
6. show flow record [name]
7. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2 flow record name</td>
<td>Enters flow record configuration mode.</td>
</tr>
<tr>
<td>Example: Switch(config)# flow record L2_record Switch(config-flow-record)#</td>
<td></td>
</tr>
</tbody>
</table>
Purpose

Command or Action

Step 3

match datalink { ethertype | mac { destination { address input } | source { address input } } }

Example:

Switch(config-flow-record)# match datalink mac source address input
Switch(config-flow-record)# match datalink mac destination address input

Purpose

Specifies the Layer 2 attribute as a key. In this example, the keys are the source and destination MAC addresses from the packet at input.

Note

When a datalink flow monitor is assigned to an interface or VLAN record, it only creates flows for non-IPv4 or non-IPv6 traffic.

Step 4

match { ipv4 { destination | protocol | source | tos } | ipv6 { destination | flow-label | protocol | source | traffic-class } | transport { destination-port | source-port } }

Example:

Switch(config-flow-record)# match ipv4 protocol
Switch(config-flow-record)# match ipv4 tos

Purpose

Specifies additional Layer 2 attributes as a key. In this example, the keys are IPv4 protocol and ToS.

Step 5

end

Example:

Switch(config-flow-record)# end

Purpose

Returns to privileged EXEC mode.

Step 6

show flow record [name]

Example:

Switch# show flow record

Purpose

(Optional) Displays information about NetFlow on an interface.

Step 7

copy running-config startup-config

Example:

Switch# copy running-config startup-config

Purpose

(Optional) Saves your entries in the configuration file.

Monitoring NetFlow Lite

The commands in the following table can be used to monitor NetFlow Lite.
Table 55: NetFlow Lite Monitoring Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show flow exporter [name name]</td>
<td>Displays information about NetFlow flow exporters and statistics.</td>
</tr>
<tr>
<td>show flow monitor [name name [cache { format { csv</td>
<td>record</td>
</tr>
<tr>
<td>show flow record [name record-name]</td>
<td>Displays information about NetFlow flow records.</td>
</tr>
<tr>
<td>show sampler [name name]</td>
<td>Displays information about NetFlow samplers.</td>
</tr>
</tbody>
</table>

Configuration Examples for NetFlow Lite

Example: Configuring a Flow

When configuring a flow, you need to have the protocol, source port, destination port, first and last timestamps, and packet and bytes counters defined in the flow record. Otherwise, you will get the following error message: "Warning: Cannot set protocol distribution with this Flow Record. Require protocol, source and destination ports, first and last timestamps and packet and bytes counters."

This example shows how to create a flow and apply it to an interface:

Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.

Switch(config)# flow exporter export1
Switch(config-flow-exporter)# destination 10.0.101.254
Switch(config-flow-exporter)# transport udp 2055
Switch(config-flow-exporter)# template data timeout 60
Switch(config-flow-exporter)# exit
Switch(config)# flow record record1
Switch(config-flow-record)# match ipv4 source address
Switch(config-flow-record)# match ipv4 destination address
Switch(config-flow-record)# match ipv4 protocol
Switch(config-flow-record)# match transport source-port
Switch(config-flow-record)# match transport destination-port
Switch(config-flow-record)# collect counter bytes long
Switch(config-flow-record)# collect counter packets long
Switch(config-flow-record)# collect timestamp sys-uptime first
Switch(config-flow-record)# collect timestamp sys-uptime last
Switch(config-flow-record)# exit
Switch(config)# sampler SampleTest
Switch(config-sampler)# mode random 1 out-of 100
Switch(config-sampler)# exit
Switch(config)# flow monitor monitor1
Switch(config-flow-monitor)# cache timeout active 300
Switch(config-flow-monitor)# cache timeout inactive 120
Switch(config-flow-monitor)# record record1
Switch(config-flow-monitor)# exporter export1
Switch(config-flow-monitor)# exit
Switch(config)# interface GigabitEthernet1/0/1
Switch(config-if)# ip flow monitor monitor1 sampler SampleTest input
Switch(config-if)# end

Related Topics
- Creating a Flow Record, on page 462
- Flow Records, on page 456
- Creating a Flow exporter, on page 464
- Exporters
- Creating a Flow Monitor, on page 469
- Monitors, on page 461
- Creating a Sampler, on page 471
- Samplers, on page 461

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>For complete syntax and usage information for the commands used in this book.</td>
<td>Catalyst 2960-X NetFlow Lite Command Reference</td>
</tr>
</tbody>
</table>

Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 3954</td>
<td>Cisco Systems NetFlow Services Export Version 9</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>All supported MIBs for this release.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/support</td>
</tr>
</tbody>
</table>

Feature History and Information for NetFlow Lite

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS 15.0(2)EX</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>
PART VII

Network Management

- Configuring Cisco IOS Configuration Engine, page 483
- Configuring the Cisco Discovery Protocol, page 507
- Configuring Simple Network Management Protocol, page 521
- Configuring SPAN and RSPAN, page 547
CHAPTER 23

Configuring Cisco IOS Configuration Engine

• Finding Feature Information, page 483
• Prerequisites for Configuring the Configuration Engine, page 483
• Restrictions for Configuring the Configuration Engine, page 484
• Information About Configuring the Configuration Engine, page 484
• How to Configure the Configuration Engine, page 490
• Monitoring CNS Configurations, page 503
• Additional References, page 504
• Feature History and Information for the Configuration Engine, page 505

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Configuring the Configuration Engine

• Obtain the name of the configuration engine instance to which you are connecting.

• Because the CNS uses both the event bus and the configuration server to provide configurations to devices, you must define both ConfigID and Device ID for each configured switch.

• All switches configured with the cns config partial global configuration command must access the event bus. The DeviceID, as originated on the switch, must match the DeviceID of the corresponding switch definition in the Cisco Configuration Engine. You must know the hostname of the event bus to which you are connecting.
Restrictions for Configuring the Configuration Engine

- Within the scope of a single instance of the configuration server, no two configured switches can share the same value for ConfigID.
- Within the scope of a single instance of the event bus, no two configured switches can share the same value for DeviceID.

Information About Configuring the Configuration Engine

Cisco Configuration Engine Software

The Cisco Configuration Engine is network management utility software that acts as a configuration service for automating the deployment and management of network devices and services. Each Cisco Configuration Engine manages a group of Cisco devices (switches and routers) and the services that they deliver, storing their configurations and delivering them as needed. The Cisco Configuration Engine automates initial configurations and configuration updates by generating device-specific configuration changes, sending them to the device, executing the configuration change, and logging the results.

The Cisco Configuration Engine supports standalone and server modes and has these Cisco Networking Services (CNS) components:

- Configuration service:
 - Web server
 - File manager
 - Namespace mapping server

- Event service (event gateway)
- Data service directory (data models and schema)
In standalone mode, the Cisco Configuration Engine supports an embedded directory service. In this mode, no external directory or other data store is required. In server mode, the Cisco Configuration Engine supports the use of a user-defined external directory.

Figure 45: Cisco Configuration Engine Architectural Overview

Configuration Service

The Configuration Service is the core component of the Cisco Configuration Engine. It consists of a Configuration Server that works with Cisco IOS CNS agents on the switch. The Configuration Service delivers device and service configurations to the switch for initial configuration and mass reconfiguration by logical groups. Switches receive their initial configuration from the Configuration Service when they start up on the network for the first time.

The Configuration Service uses the CNS Event Service to send and receive configuration change events and to send success and failure notifications.

The Configuration Server is a web server that uses configuration templates and the device-specific configuration information stored in the embedded (standalone mode) or remote (server mode) directory.

Configuration templates are text files containing static configuration information in the form of CLI commands. In the templates, variables are specified by using Lightweight Directory Access Protocol (LDAP) URLs that reference the device-specific configuration information stored in a directory.

The Cisco IOS agent can perform a syntax check on received configuration files and publish events to show the success or failure of the syntax check. The configuration agent can either apply configurations immediately or delay the application until receipt of a synchronization event from the configuration server.
Event Service

The Cisco Configuration Engine uses the Event Service for receipt and generation of configuration events. The Event Service consists of an event agent and an event gateway. The event agent is on the switch and facilitates the communication between the switch and the event gateway on the Cisco Configuration Engine. The Event Service is a highly capable publish-and-subscribe communication method. The Event Service uses subject-based addressing to send messages to their destinations. Subject-based addressing conventions define a simple, uniform namespace for messages and their destinations.

Related Topics

Enabling the CNS Event Agent, on page 490

NameSpace Mapper

The Cisco Configuration Engine includes the NameSpace Mapper (NSM) that provides a lookup service for managing logical groups of devices based on application, device or group ID, and event. Cisco IOS devices recognize only event subject-names that match those configured in Cisco IOS software; for example, cisco.cns.config.load. You can use the namespace mapping service to designate events by using any desired naming convention. When you have populated your data store with your subject names, NSM changes your event subject-name strings to those known by Cisco IOS.

For a subscriber, when given a unique device ID and event, the namespace mapping service returns a set of events to which to subscribe. Similarly, for a publisher, when given a unique group ID, device ID, and event, the mapping service returns a set of events on which to publish.

Cisco Networking Services IDs and Device Hostnames

The Cisco Configuration Engine assumes that a unique identifier is associated with each configured switch. This unique identifier can take on multiple synonyms, where each synonym is unique within a particular namespace. The event service uses namespace content for subject-based addressing of messages.

The Cisco Configuration Engine intersects two namespaces, one for the event bus and the other for the configuration server. Within the scope of the configuration server namespace, the term ConfigID is the unique identifier for a device. Within the scope of the event bus namespace, the term DeviceID is the CNS unique identifier for a device.

Related Topics

Prerequisites for Configuring the Configuration Engine, on page 483
Restrictions for Configuring the Configuration Engine, on page 484

ConfigID

Each configured switch has a unique ConfigID, which serves as the key into the Cisco Configuration Engine directory for the corresponding set of switch CLI attributes. The ConfigID defined on the switch must match the ConfigID for the corresponding switch definition on the Cisco Configuration Engine.

The ConfigID is fixed at startup time and cannot be changed until the device restarts, even if the switch hostname is reconfigured.
DeviceID

Each configured switch participating on the event bus has a unique DeviceID, which is analogous to the switch source address so that the switch can be targeted as a specific destination on the bus.

The origin of the DeviceID is defined by the Cisco IOS hostname of the switch. However, the DeviceID variable and its usage reside within the event gateway adjacent to the switch.

The logical Cisco IOS termination point on the event bus is embedded in the event gateway, which in turn functions as a proxy on behalf of the switch. The event gateway represents the switch and its corresponding DeviceID to the event bus.

The switch declares its hostname to the event gateway immediately after the successful connection to the event gateway. The event gateway couples the DeviceID value to the Cisco IOS hostname each time this connection is established. The event gateway retains this DeviceID value for the duration of its connection to the switch.

Related Topics

Prerequisites for Configuring the Configuration Engine, on page 483

Hostname and DeviceID

The DeviceID is fixed at the time of the connection to the event gateway and does not change even when the switch hostname is reconfigured.

When changing the switch hostname on the switch, the only way to refresh the DeviceID is to break the connection between the switch and the event gateway. For instructions on refreshing DeviceIDs, see "Related Topics."

When the connection is reestablished, the switch sends its modified hostname to the event gateway. The event gateway redefines the DeviceID to the new value.

⚠️ **Caution**

When using the Cisco Configuration Engine user interface, you must first set the DeviceID field to the hostname value that the switch acquires after, not before, and you must reinitialize the configuration for your Cisco IOS CNS agent. Otherwise, subsequent partial configuration command operations may malfunction.

Related Topics

Refreshing DeviceIDs, on page 499

Hostname, DeviceID, and ConfigID

In standalone mode, when a hostname value is set for a switch, the configuration server uses the hostname as the DeviceID when an event is sent on hostname. If the hostname has not been set, the event is sent on the cn=<value> of the device.

In server mode, the hostname is not used. In this mode, the unique DeviceID attribute is always used for sending an event on the bus. If this attribute is not set, you cannot update the switch.

These and other associated attributes (tag value pairs) are set when you run **Setup** on the Cisco Configuration Engine.
Cisco IOS CNS Agents

The CNS event agent feature allows the switch to publish and subscribe to events on the event bus and works with the Cisco IOS CNS agent. These agents, embedded in the switch Cisco IOS software, allow the switch to be connected and automatically configured.

Related Topics

Enabling the Cisco IOS CNS Agent, on page 492

Initial Configuration

When the switch first comes up, it attempts to get an IP address by broadcasting a Dynamic Host Configuration Protocol (DHCP) request on the network. Assuming there is no DHCP server on the subnet, the distribution switch acts as a DHCP relay agent and forwards the request to the DHCP server. Upon receiving the request, the DHCP server assigns an IP address to the new switch and includes the Trivial File Transfer Protocol (TFTP) server Internet Protocol (IP) address, the path to the bootstrap configuration file, and the default gateway IP address in a unicast reply to the DHCP relay agent. The DHCP relay agent forwards the reply to the switch.

The switch automatically configures the assigned IP address on interface VLAN 1 (the default) and downloads the bootstrap configuration file from the TFTP server. Upon successful download of the bootstrap configuration file, the switch loads the file in its running configuration.

The Cisco IOS CNS agents initiate communication with the Configuration Engine by using the appropriate ConfigID and EventID. The Configuration Engine maps the ConfigID to a template and downloads the full configuration file to the switch.

The following figure shows a sample network configuration for retrieving the initial bootstrap configuration file by using DHCP-based autoconfiguration.

Figure 46: Initial Configuration

Related Topics

Enabling an Initial Configuration for Cisco IOS CNS Agent, on page 494
Monitoring CNS Configurations, on page 503
Incremental (Partial) Configuration

After the network is running, new services can be added by using the Cisco IOS CNS agent. Incremental (partial) configurations can be sent to the switch. The actual configuration can be sent as an event payload by way of the event gateway (push operation) or as a signal event that triggers the switch to initiate a pull operation.

The switch can check the syntax of the configuration before applying it. If the syntax is correct, the switch applies the incremental configuration and publishes an event that signals success to the configuration server. If the switch does not apply the incremental configuration, it publishes an event showing an error status. When the switch has applied the incremental configuration, it can write it to nonvolatile random-access memory (NVRAM) or wait until signaled to do so.

Related Topics

- Enabling a Partial Configuration for Cisco IOS CNS Agent, on page 501
- Monitoring CNS Configurations, on page 503

Synchronized Configuration

When the switch receives a configuration, it can defer application of the configuration upon receipt of a write-signal event. The write-signal event tells the switch not to save the updated configuration into its NVRAM. The switch uses the updated configuration as its running configuration. This ensures that the switch configuration is synchronized with other network activities before saving the configuration in NVRAM for use at the next reboot.

Automated CNS Configuration

To enable automated CNS configuration of the switch, you must first complete the prerequisites listed in this topic. When you complete them, power on the switch. At the `setup` prompt, do nothing; the switch begins the initial configuration. When the full configuration file is loaded on your switch, you do not need to do anything else.

For more information on what happens during initial configuration, see "Related Topics."

Table 56: Prerequisites for Enabling Automatic Configuration

<table>
<thead>
<tr>
<th>Device</th>
<th>Required Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access switch</td>
<td>Factory default (no configuration file)</td>
</tr>
<tr>
<td>Distribution switch</td>
<td>• IP helper address</td>
</tr>
<tr>
<td></td>
<td>• Enable DHCP relay agent²</td>
</tr>
<tr>
<td></td>
<td>• IP routing (if used as default gateway)</td>
</tr>
<tr>
<td>Device</td>
<td>Required Configuration</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>DHCP server</td>
<td>• IP address assignment
• TFTP server IP address
• Path to bootstrap configuration file on the TFTP server
• Default gateway IP address</td>
</tr>
<tr>
<td>TFTP server</td>
<td>• A bootstrap configuration file that includes the CNS configuration commands that enable the switch to communicate with the Configuration Engine
• The switch configured to use either the switch MAC address or the serial number (instead of the default hostname) to generate the ConfigID and EventID
• The CNS event agent configured to push the configuration file to the switch</td>
</tr>
<tr>
<td>CNS Configuration Engine</td>
<td>One or more templates for each type of device, with the ConfigID of the device mapped to the template.</td>
</tr>
</tbody>
</table>

2 A DHCP Relay is needed only when the DHCP Server is on a different subnet from the client.

How to Configure the Configuration Engine

Enabling the CNS Event Agent

Note

You must enable the CNS event agent on the switch before you enable the CNS configuration agent.

Follow these steps to enable the CNS event agent on the switch.

SUMMARY STEPS

1. enable
2. configure terminal
3. cns event \{hostname | ip-address\} [port-number] [keepalive seconds retry-count] [failover-time seconds] [reconnect-time time] | backup
4. end
5. show running-config
6. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 cns event {hostname</td>
<td>ip-address} [port-number] [keepalive seconds retry-count] [failover-time seconds] [reconnect-time time]</td>
</tr>
<tr>
<td>Example: Switch(config)# cns event 10.180.1.27 keepalive 120 10</td>
<td></td>
</tr>
</tbody>
</table>

- For \{hostname | ip-address\}, enter either the hostname or the IP address of the event gateway.
- (Optional) For port number, enter the port number for the event gateway. The default port number is 11011.
- (Optional) For keepalive seconds, enter how often the switch sends keepalive messages. For retry-count, enter the number of unanswered keepalive messages that the switch sends before the connection is terminated. The default for each is 0.
- (Optional) For failover-time seconds, enter how long the switch waits for the primary gateway route after the route to the backup gateway is established.
- (Optional) For reconnect-time time, enter the maximum time interval that the switch waits before trying to reconnect to the event gateway.
- (Optional) Enter backup to show that this is the backup gateway. (If omitted, this is the primary gateway.)

Note Though visible in the command-line help string, the encrypt and the clock-timeout time keywords are not supported.
### Command or Action	Purpose
Step 4 | end | Returns to privileged EXEC mode.

Example:

Switch(config)# end

Step 5 | show running-config | Verifies your entries.

Example:

Switch# show running-config

Step 6 | copy running-config startup-config | (Optional) Saves your entries in the configuration file.

Example:

Switch# copy running-config startup-config

What to Do Next

To verify information about the event agent, use the `show cnsevent connections` command in privileged EXEC mode.

To disable the CNS event agent, use the `no cnsevent {ip-address | hostname}` global configuration command.

Related Topics

Event Service, on page 486

Enabling the Cisco IOS CNS Agent

Follow these steps to enable the Cisco IOS CNS agent on the switch.

Before You Begin

You must enable the CNS event agent on the switch before you enable this agent.
SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `cns config initial {hostname | ip-address} [port-number]`
4. `cns config partial {hostname | ip-address} [port-number]`
5. `end`
6. `show running-config`
7. `copy running-config startup-config`
8. Start the Cisco IOS CNS agent on the switch.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Switch> enable</code></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Switch# configure terminal</code></td>
</tr>
<tr>
<td>Step 3</td>
<td>Enables the Cisco IOS CNS agent, and enters the configuration server parameters.</td>
</tr>
<tr>
<td>`cns config initial {hostname</td>
<td>ip-address} [port-number]`</td>
</tr>
<tr>
<td></td>
<td><code>Switch(config)# cns config initial 10.180.1.27 10</code></td>
</tr>
<tr>
<td>Step 4</td>
<td>Enables the Cisco IOS CNS agent and initiates a partial configuration on the switch.</td>
</tr>
<tr>
<td>`cns config partial {hostname</td>
<td>ip-address} [port-number]`</td>
</tr>
<tr>
<td></td>
<td><code>Switch(config)# cns config partial 10.180.1.27 10</code></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td><code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch(config)# end</code></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td></td>
</tr>
<tr>
<td><code>show running-config</code></td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch# show running-config</code></td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td></td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch# copy running-config startup-config</code></td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td></td>
</tr>
<tr>
<td>Start the Cisco IOS CNS agent on the switch.</td>
<td></td>
</tr>
</tbody>
</table>

What to Do Next

You can now use the Cisco Configuration Engine to remotely send incremental configurations to the switch.

Related Topics

Cisco IOS CNS Agents, on page 488

Enabling an Initial Configuration for Cisco IOS CNS Agent

Follow these steps to enable the CNS configuration agent and initiate an initial configuration on the switch.
SUMMARY STEPS

1. enable
2. configure terminal
3. cns template connect name
4. cli config-text
5. Repeat Steps 3 to 4 to configure another CNS connect template.
6. exit
7. cns connect name [retries number] [retry-interval seconds] [sleep seconds] [timeout seconds]
8. discover {controller controller-type | dli [subinterface subinterface-number] | interface [interface-type] | line line-type}
9. template name [... name]
10. Repeat Steps 8 to 9 to specify more interface parameters and CNS connect templates in the CNS connect profile.
11. exit
12. hostname name
13. ip route network-number
14. cns id interface num {dns-reverse | ipaddress | mac-address} [event] [image]
15. cns id {hardware-serial | hostname | string string | udi} [event] [image]
16. cns config initial {hostname | ip-address} [port-number] [event] [no-persist] [page page] [source ip-address] [syntax-check]
17. end
18. show running-config
19. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>
How to Configure the Configuration Engine

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td>cns template connect name</td>
<td>Enters CNS template connect configuration mode, and specifies the name of the CNS connect template.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# cns template connect template-dhcp</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>cli config-text</td>
<td>Enters a command line for the CNS connect template. Repeat this step for each command line in the template.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-tmpl-conn)# cli ip address dhcp</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>Repeat Steps 3 to 4 to configure another CNS connect template.</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>exit</td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>cns connect name [retries number] [retry-interval seconds] [sleep seconds] [timeout seconds]</td>
<td>Enters CNS connect configuration mode, specifies the name of the CNS connect profile, and defines the profile parameters. The switch uses the CNS connect profile to connect to the Configuration Engine.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# cns connect dhcp</td>
<td>- Enter the name of the CNS connect profile.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- (Optional) For retries number, enter the number of connection retries. The range is 1 to 30. The default is 3.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- (Optional) For retry-interval seconds, enter the interval between successive connection attempts to the Configuration Engine. The range is 1 to 40 seconds. The default is 10 seconds.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- (Optional) For sleep seconds, enter the amount of time before which the first connection attempt occurs. The range is 0 to 250 seconds. The default is 0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- (Optional) For timeout seconds, enter the amount of time after which the connection attempts end. The range is 10 to 2000 seconds. The default is 120.</td>
</tr>
<tr>
<td>Step 8</td>
<td>discover [controller controller-type</td>
<td>Specifies the interface parameters in the CNS connect profile.</td>
</tr>
<tr>
<td></td>
<td>[dlci</td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>[subinterface subinterface-number]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[interface interface-type]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[line line-type]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For controller controller-type, enter the controller type.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For dlci, enter the active data-link connection identifiers (DLCIs). (Optional) For subinterface subinterface-number, specify the point-to-point subinterface number that is used to search for active DLCIs.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For interface interface-type, enter the type of interface.</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>• For line line-type, enter the line type.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Step 9
template **name** [... **name**]
Example:
Switch(config-cns-conn)# **template**
template-dhcp

Specifies the list of CNS connect templates in the CNS connect profile to be applied to the switch configuration. You can specify more than one template.

Step 10
Repeat Steps 8 to 9 to specify more interface parameters and CNS connect templates in the CNS connect profile.

Step 11
exit
Example:
Switch(config-cns-conn)# **exit**

Returns to global configuration mode.

Step 12
hostname **name**
Example:
Switch(config)# **hostname**
device1

Enters the hostname for the switch.

Step 13
ip route **network-number**
Example:
RemoteSwitch(config)# **ip route**
172.28.129.22 255.255.255.255
11.11.11.1

(Optional) Establishes a static route to the Configuration Engine whose IP address is **network-number**.

Step 14
cns id **interface num** {**dns-reverse** | **ipaddress** | **mac-address**} [**event**] [**image**]
Example:
RemoteSwitch(config)# **cns id**
GigabitEthernet1/0/1
ipaddress

(Optional) Sets the unique EventID or ConfigID used by the Configuration Engine. If you enter this command, do not enter the **cns id** {**hardware-serial** | **hostname** | **string** **string** | **udi**} [**event**] [**image**] command.

- For **interface num**, enter the type of interface. For example, ethernet, group-async, loopback, or virtual-template. This setting specifies from which interface the IP or MAC address should be retrieved to define the unique ID.
- For {**dns-reverse** | **ipaddress** | **mac-address**}, enter **dns-reverse** to retrieve the hostname and assign it as the unique ID, enter **ipaddress** to use the IP address, or enter **mac-address** to use the MAC address as the unique ID.
- (Optional) Enter **event** to set the ID to be the event-id value used to identify the switch.
- (Optional) Enter **image** to set the ID to be the image-id value used to identify the switch.

Note
If both the **event** and **image** keywords are omitted, the image-id value is used to identify the switch.
How to Configure the Configuration Engine

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>cns id [hardware-serial</td>
<td>(Optional) Sets the unique EventID or ConfigID used by the Configuration Engine. If you enter this command, do not enter the `cns id interface num {dns-reverse</td>
</tr>
<tr>
<td></td>
<td>hostname</td>
<td></td>
</tr>
<tr>
<td></td>
<td>string string</td>
<td></td>
</tr>
<tr>
<td></td>
<td>udi] [event] [image]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RemoteSwitch(config)# cns id hostname</td>
</tr>
<tr>
<td>16</td>
<td>cns config initial [hostname</td>
<td>Enables the Cisco IOS agent, and initiates an initial configuration.</td>
</tr>
<tr>
<td></td>
<td>ip-address]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[port-number]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[event] [no-persist]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[page page]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[source ip-address] [syntax-check]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RemoteSwitch(config)# cns config initial 10.1.1.1 no-persist</td>
</tr>
<tr>
<td>17</td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Switch(config)# end</td>
</tr>
<tr>
<td>18</td>
<td>show running-config</td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Switch# show running-config</td>
</tr>
</tbody>
</table>

Note: Though visible in the command-line help string, the encrypt, status url, and inventory keywords are not supported.
Step 19

copy running-config startup-config

(Optional) Saves your entries in the configuration file.

Example:

```
Switch# copy running-config startup-config
```

What to Do Next

To verify information about the configuration agent, use the `show cns config connections` command in privileged EXEC mode.

To disable the CNS Cisco IOS agent, use the `no cns config initial { ip-address | hostname }` global configuration command.

Related Topics

- Initial Configuration, on page 488
- Monitoring CNS Configurations, on page 503

Refreshing DeviceIDs

Follow these steps to refresh a DeviceID when changing the hostname on the switch.

SUMMARY STEPS

1. `enable`
2. `show cns config connections`
3. Make sure that the CNS event agent is properly connected to the event gateway.
4. `show cns event connections`
5. Record from the output of Step 4 the information for the currently connected connection listed below. You will be using the IP address and port number in subsequent steps of these instructions.
6. `configure terminal`
7. `no cns event ip-address port-number`
8. `cns event ip-address port-number`
9. `end`
10. Make sure that you have reestablished the connection between the switch and the event connection by examining the output from `show cns event connections`.
11. `show running-config`
12. `copy running-config startup-config`
Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: Switch> enable</td>
<td></td>
</tr>
</tbody>
</table>

| **Step 2** show cns config connections | Displays whether the CNS event agent is connecting to the gateway, connected, or active, and the gateway used by the event agent, its IP address and port number. |
| **Example:** Switch# show cns config connections |

| **Step 3** Make sure that the CNS event agent is properly connected to the event gateway. | Examine the output of **show cns config connections** for the following: |
| - Connection is active. |
| - Connection is using the currently configured switch hostname. The DeviceID will be refreshed to correspond to the new hostname configuration using these instructions. |

| **Step 4** show cns event connections | Displays the event connection information for your switch. |
| **Example:** Switch# show cns event connections |

| **Step 5** Record from the output of Step 4 the information for the currently connected connection listed below. You will be using the IP address and port number in subsequent steps of these instructions. |

| **Step 6** configure terminal | Enters global configuration mode. |
| **Example:** Switch# configure terminal |

| **Step 7** no cns event ip-address port-number | Specifies the IP address and port number that you recorded in Step 5 in this command. |
| **Example:** Switch(config)# no cns event 172.28.129.22 2012 |

This command breaks the connection between the switch and the event gateway. It is necessary to first break, then reestablish, this connection to refresh the DeviceID.

| **Step 8** cns event ip-address port-number | Specifies the IP address and port number that you recorded in Step 5 in this command. |
| **Example:** Switch(config)# cns event 172.28.129.22 2012 |

This command reestablishes the connection between the switch and the event gateway.
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 9</td>
<td>end</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Switch(config)# end</code></td>
</tr>
</tbody>
</table>

Returns to privileged EXEC mode.

Step 10

Make sure that you have reestablished the connection between the switch and the event connection by examining the output from `show cnseventconnections`.

Step 11

`show running-config`

Example:

`Switch# show running-config`

Verifies your entries.

Step 12

`copy running-config startup-config`

Example:

`Switch# copy running-config startup-config`

(Optional) Saves your entries in the configuration file.

Related Topics

- Hostname and DeviceID, on page 487

Enabling a Partial Configuration for Cisco IOS CNS Agent

Follow these steps to enable the Cisco IOS CNS agent and to initiate a partial configuration on the switch.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `cns config partial {ip-address | hostname} [port-number] [source ip-address]`
4. `end`
5. `show running-config`
6. `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>enable</code></td>
</tr>
<tr>
<td></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
</tbody>
</table>
How to Configure the Configuration Engine

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 cns config partial `{ip-address</td>
<td>hostname} [port-number] [source ip-address]`</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# cns config partial 172.28.129.22 2013</td>
<td>• For `{ip-address</td>
</tr>
<tr>
<td>Note:</td>
<td></td>
</tr>
<tr>
<td>Though visible in the command-line help string, the encrypt keyword is not supported.</td>
<td></td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# end</td>
<td></td>
</tr>
<tr>
<td>Step 5 show running-config</td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# show running-config</td>
<td></td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

What to Do Next
To verify information about the configuration agent, use either the `show cns config stats` or the `show cns config outstanding` command in privileged EXEC mode.
To disable the Cisco IOS agent, use the `no cns config partial \{ ip-address | hostname \}` global configuration command. To cancel a partial configuration, use the `cns config cancel` global configuration command.

Related Topics
- Incremental (Partial) Configuration, on page 489
- Monitoring CNS Configurations, on page 503

Monitoring CNS Configurations

Table 57: CNS show Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show cns config connections</code></td>
<td>Displays the status of the CNS Cisco IOS CNS agent connections.</td>
</tr>
<tr>
<td><code>Switch# show cns config connections</code></td>
<td></td>
</tr>
<tr>
<td><code>show cns config outstanding</code></td>
<td>Displays information about incremental (partial) CNS configurations that have started but are not yet completed.</td>
</tr>
<tr>
<td><code>Switch# show cns config outstanding</code></td>
<td></td>
</tr>
<tr>
<td><code>show cns config stats</code></td>
<td>Displays statistics about the Cisco IOS CNS agent.</td>
</tr>
<tr>
<td><code>Switch# show cns config stats</code></td>
<td></td>
</tr>
<tr>
<td><code>show cns event connections</code></td>
<td>Displays the status of the CNS event agent connections.</td>
</tr>
<tr>
<td><code>Switch# show cns event connections</code></td>
<td></td>
</tr>
<tr>
<td><code>show cns event gateway</code></td>
<td>Displays the event gateway information for your switch.</td>
</tr>
<tr>
<td><code>Switch# show cns event gateway</code></td>
<td></td>
</tr>
<tr>
<td><code>show cns event stats</code></td>
<td>Displays statistics about the CNS event agent.</td>
</tr>
<tr>
<td><code>Switch# show cns event stats</code></td>
<td></td>
</tr>
<tr>
<td><code>show cns event subject</code></td>
<td>Displays a list of event agent subjects that are subscribed to by applications.</td>
</tr>
<tr>
<td><code>Switch# show cns event subject</code></td>
<td></td>
</tr>
</tbody>
</table>

Related Topics
- Enabling a Partial Configuration for Cisco IOS CNS Agent, on page 501
- Incremental (Partial) Configuration, on page 489
- Enabling an Initial Configuration for Cisco IOS CNS Agent, on page 494
- Initial Configuration, on page 488
Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
</table>

Error Message Decoder

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>To help you research and resolve system error messages in this release, use the Error Message Decoder tool.</td>
<td>https://www.cisco.com/cgi-bin/Support>Errordecoder/index.cgi</td>
</tr>
</tbody>
</table>

Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>-</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>All supported MIBs for this release.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including</td>
<td>http://www.cisco.com/support</td>
</tr>
<tr>
<td>documentation and tools for troubleshooting and resolving technical issues</td>
<td></td>
</tr>
<tr>
<td>with Cisco products and technologies.</td>
<td></td>
</tr>
<tr>
<td>To receive security and technical information about your products, you can</td>
<td></td>
</tr>
<tr>
<td>subscribe to various services, such as the Product Alert Tool (accessed from</td>
<td></td>
</tr>
<tr>
<td>Field Notices), the Cisco Technical Services Newsletter, and Really Simple</td>
<td></td>
</tr>
<tr>
<td>Syndication (RSS) Feeds.</td>
<td></td>
</tr>
<tr>
<td>Access to most tools on the Cisco Support website requires a Cisco.com</td>
<td></td>
</tr>
<tr>
<td>user ID and password.</td>
<td></td>
</tr>
</tbody>
</table>

Feature History and Information for the Configuration Engine

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS 15.0(2)EX</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>
CHAPTER 24

Configuring the Cisco Discovery Protocol

- Finding Feature Information, page 507
- Information About CDP, page 507
- How to Configure CDP, page 508
- Monitoring and Maintaining CDP, page 517
- Additional References, page 518
- Feature History and Information for Cisco Discovery Protocol, page 519

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About CDP

CDP Overview

CDP is a device discovery protocol that runs over Layer 2 (the data-link layer) on all Cisco-manufactured devices (routers, bridges, access servers, controllers, and switches) and allows network management applications to discover Cisco devices that are neighbors of already known devices. With CDP, network management applications can learn the device type and the Simple Network Management Protocol (SNMP) agent address of neighboring devices running lower-layer, transparent protocols. This feature enables applications to send SNMP queries to neighboring devices.

CDP runs on all media that support Subnetwork Access Protocol (SNAP). Because CDP runs over the data-link layer only, two systems that support different network-layer protocols can learn about each other.
Each CDP-configured device sends periodic messages to a multicast address, advertising at least one address at which it can receive SNMP messages. The advertisements also contain time-to-live, or holdtime information, which is the length of time a receiving device holds CDP information before discarding it. Each device also listens to the messages sent by other devices to learn about neighboring devices.

On the switch, CDP enables Network Assistant to display a graphical view of the network. The switch uses CDP to find cluster candidates and maintain information about cluster members and other devices up to three cluster-enabled devices away from the command switch by default.

Related Topics
- Configuring CDP Characteristics, on page 508
- Monitoring and Maintaining CDP, on page 517

CDP and Stacks
A switch stack appears as a single switch in the network. Therefore, CDP discovers the switch stack, not the individual stack members. The switch stack sends CDP messages to neighboring network devices when there are changes to the switch stack membership, such as stack members being added or removed.

Default CDP Configuration
This table shows the default CDP configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDP global state</td>
<td>Enabled</td>
</tr>
<tr>
<td>CDP interface state</td>
<td>Enabled</td>
</tr>
<tr>
<td>CDP timer (packet update frequency)</td>
<td>60 seconds</td>
</tr>
<tr>
<td>CDP holdtime (before discarding)</td>
<td>180 seconds</td>
</tr>
<tr>
<td>CDP Version-2 advertisements</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

Related Topics
- Enabling CDP, on page 512
- Disabling CDP, on page 510
- Enabling CDP on an Interface, on page 515
- Disabling CDP on an Interface, on page 513

How to Configure CDP

Configuring CDP Characteristics
You can configure these CDP characteristics:

- Frequency of CDP updates
How to Configure CDP

- Amount of time to hold the information before discarding it
- Whether or not to send Version-2 advertisements

Note
Steps 3 through 5 are all optional and can be performed in any order.

Follow these steps to configure the CDP characteristics.

SUMMARY STEPS

1. enable
2. configure terminal
3. cdp timer seconds
4. cdp holdtime seconds
5. cdp advertise-v2
6. end
7. show running-config
8. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Command or Action</td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch> enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>cdp timer seconds</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Switch(config)# cdp timer 20</td>
</tr>
<tr>
<td>Step 4</td>
<td>cdp holdtime seconds</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Switch(config)# cdp holdtime 60</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>cdp advertise-v2</td>
</tr>
</tbody>
</table>
How to Configure CDP

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:
<code>Switch(config)# cdp advertise-v2</code></td>
<td>This is the default state.</td>
</tr>
<tr>
<td>Step 6 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:
<code>Switch(config)# end</code></td>
<td></td>
</tr>
<tr>
<td>Step 7 show running-config</td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td>Example:
<code>Switch# show running-config</code></td>
<td></td>
</tr>
<tr>
<td>Step 8 copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td>Example:
<code>Switch# copy running-config startup-config</code></td>
<td></td>
</tr>
</tbody>
</table>

What to Do Next

Use the `no` form of the CDP commands to return to the default settings.

Related Topics

- [CDP Overview, on page 507](#)
- [Monitoring and Maintaining CDP, on page 517](#)

Disabling CDP

CDP is enabled by default.

Note

Switch clusters and other Cisco devices (such as Cisco IP Phones) regularly exchange CDP messages. Disabling CDP can interrupt cluster discovery and device connectivity.

Follow these steps to disable the CDP device discovery capability.
SUMMARY STEPS

1. enable
2. configure terminal
3. no cdp run
4. end
5. show running-config
6. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>no cdp run</td>
<td>Disables CDP.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# no cdp run</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# end</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td>show running-config</td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# show running-config</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td></td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>
What to Do Next
You must reenable CDP to use it.

Related Topics
Enabling CDP, on page 512
Default CDP Configuration, on page 508

Enabling CDP
CDP is enabled by default.

Note
Switch clusters and other Cisco devices (such as Cisco IP Phones) regularly exchange CDP messages. Disabling CDP can interrupt cluster discovery and device connectivity.

Follow these steps to enable CDP when it has been disabled.

Before You Begin
CDP must be disabled, or it cannot be enabled.

SUMMARY STEPS
1. enable
2. configure terminal
3. cdp run
4. end
5. show running-config
6. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch> enable</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>
How to Configure CDP

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td>cdp run</td>
</tr>
<tr>
<td></td>
<td>Enables CDP if it has been disabled.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Switch(config)# cdp run</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Switch(config)# end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show running-config</td>
</tr>
<tr>
<td></td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Switch# show running-config</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Switch# copy running-config startup-config</td>
</tr>
</tbody>
</table>

What to Do Next

Use the `show run all` command to show that CDP has been enabled. If you enter only `show run`, the enabling of CDP may not be displayed.

Related Topics

- Default CDP Configuration, on page 508
- Disabling CDP, on page 510

Disabling CDP on an Interface

CDP is enabled by default on all supported interfaces to send and to receive CDP information.

Note

Switch clusters and other Cisco devices (such as Cisco IP Phones) regularly exchange CDP messages. Disabling CDP can interrupt cluster discovery and device connectivity.

Follow these steps to disable CDP on a port.
SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface interface-id`
4. `no cdp enable`
5. `end`
6. `show running-config`
7. `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch> enable</td>
</tr>
<tr>
<td></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# interface gigabitethernet1/0/1</td>
</tr>
<tr>
<td></td>
<td>Specifies the interface on which you are disabling CDP, and enters</td>
</tr>
<tr>
<td></td>
<td>interface configuration mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>no cdp enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-if)# no cdp enable</td>
</tr>
<tr>
<td></td>
<td>Disables CDP on the interface specified in Step 3.</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# end</td>
</tr>
<tr>
<td></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>show running-config</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# show running-config</td>
</tr>
<tr>
<td></td>
<td>Verifies your entries.</td>
</tr>
</tbody>
</table>
Purpose

Command or Action

Step 7

| copy running-config startup-config | (Optional) Saves your entries in the configuration file. |

Example:

Switch# copy running-config startup-config

Related Topics

- Enabling CDP on an Interface, on page 515
- Default CDP Configuration, on page 508

Enabling CDP on an Interface

CDP is enabled by default on all supported interfaces to send and to receive CDP information.

Note

Switch clusters and other Cisco devices (such as Cisco IP Phones) regularly exchange CDP messages. Disabling CDP can interrupt cluster discovery and device connectivity.

Follow these steps to enable CDP on a port on which it has been disabled.

Before You Begin

CDP must be disabled on the port that you are trying to CDP enable on, or it cannot be enabled.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface interface-id
4. cdp enable
5. end
6. show running-config
7. copy running-config startup-config
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch> <code>enable</code></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# <code>configure terminal</code></td>
</tr>
<tr>
<td>Step 3</td>
<td>Specifies the interface on which you are enabling CDP, and enters interface configuration mode.</td>
</tr>
<tr>
<td><code>interface interface-id</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# <code>interface gigabitethernet1/0/1</code></td>
</tr>
<tr>
<td>Step 4</td>
<td>Enables CDP on a disabled interface.</td>
</tr>
<tr>
<td><code>cdp enable</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-if)# <code>cdp enable</code></td>
</tr>
<tr>
<td>Step 5</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>end</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# <code>end</code></td>
</tr>
<tr>
<td>Step 6</td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td><code>show running-config</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# <code>show running-config</code></td>
</tr>
<tr>
<td>Step 7</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# <code>copy running-config startup-config</code></td>
</tr>
</tbody>
</table>

Related Topics
- Default CDP Configuration, on page 508
- Disabling CDP on an Interface, on page 513
Monitoring and Maintaining CDP

Table 58: Commands for Displaying CDP Information

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear cdp counters</td>
<td>Resets the traffic counters to zero.</td>
</tr>
<tr>
<td>clear cdp table</td>
<td>Deletes the CDP table of information about neighbors.</td>
</tr>
<tr>
<td>show cdp</td>
<td>Displays global information, such as frequency of transmissions and the holdtime for packets being sent.</td>
</tr>
<tr>
<td>show cdp entry [entry-name]</td>
<td>Displays information about a specific neighbor. You can enter an asterisk (*) to display all CDP neighbors, or you can enter the name of the neighbor about which you want information. You can also limit the display to information about the protocols enabled on the specified neighbor or information about the version of software running on the device.</td>
</tr>
<tr>
<td>[version]</td>
<td></td>
</tr>
<tr>
<td>[protocol]</td>
<td></td>
</tr>
<tr>
<td>show cdp interface [interface-id]</td>
<td>Displays information about interfaces where CDP is enabled. You can limit the display to the interface about which you want information.</td>
</tr>
<tr>
<td>show cdp neighbors [interface-id]</td>
<td>Displays information about neighbors, including device type, interface type and number, holdtime settings, capabilities, platform, and port ID. You can limit the display to neighbors of a specific interface or expand the display to provide more detailed information.</td>
</tr>
<tr>
<td>[detail]</td>
<td></td>
</tr>
<tr>
<td>show cdp traffic</td>
<td>Displays CDP counters, including the number of packets sent and received and checksum errors.</td>
</tr>
</tbody>
</table>

Related Topics

- Configuring CDP Characteristics, on page 508
- CDP Overview, on page 507
Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Management Commands</td>
<td>Network Management Command Reference, Cisco IOS Release 15.2(2)E</td>
</tr>
</tbody>
</table>

Error Message Decoder

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>To help you research and resolve system error messages in this release, use</td>
<td>https://www.cisco.com/cgi-bin/Support/Errordecoder/index.cgi</td>
</tr>
<tr>
<td>the Error Message Decoder tool.</td>
<td></td>
</tr>
</tbody>
</table>

Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>-</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>All supported MIBs for this release.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases,</td>
</tr>
<tr>
<td></td>
<td>and feature sets, use Cisco MIB Locator found at the following URL:</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/support</td>
</tr>
</tbody>
</table>

Feature History and Information for Cisco Discovery Protocol

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS 15.0(2)EX</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>
Configuring Simple Network Management Protocol

- Finding Feature Information, page 521
- Prerequisites for SNMP, page 521
- Restrictions for SNMP, page 524
- Information About SNMP, page 524
- How to Configure SNMP, page 528
- Monitoring SNMP Status, page 543
- SNMP Examples, page 544
- Additional References, page 545
- Feature History and Information for Simple Network Management Protocol, page 546

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for SNMP

Supported SNMP Versions

This software release supports the following SNMP versions:

- SNMPv1—The Simple Network Management Protocol, a Full Internet Standard, defined in RFC 1157.
SNMPv2C replaces the Party-based Administrative and Security Framework of SNMPv2Classic with the community-string-based Administrative Framework of SNMPv2C while retaining the bulk retrieval and improved error handling of SNMPv2Classic. It has these features:

- SNMPv2C—The community-string-based Administrative Framework for SNMPv2, an Experimental Internet Protocol defined in RFC 1901.

SNMPv3—Version 3 of the SNMP is an interoperable standards-based protocol defined in RFCs 2273 to 2275. SNMPv3 provides secure access to devices by authenticating and encrypting packets over the network and includes these security features:

- Message integrity—Ensures that a packet was not tampered with in transit.
- Authentication—Determines that the message is from a valid source.
- Encryption—Mixes the contents of a package to prevent it from being read by an unauthorized source.

Note: To select encryption, enter the `priv` keyword.

Both SNMPv1 and SNMPv2C use a community-based form of security. The community of managers able to access the agent’s MIB is defined by an IP address access control list and password.

SNMPv2C includes a bulk retrieval function and more detailed error message reporting to management stations. The bulk retrieval function retrieves tables and large quantities of information, minimizing the number of round-trips required. The SNMPv2C improved error-handling includes expanded error codes that distinguish different kinds of error conditions; these conditions are reported through a single error code in SNMPv1. Error return codes in SNMPv2C report the error type.

SNMPv3 provides for both security models and security levels. A security model is an authentication strategy set up for a user and the group within which the user resides. A security level is the permitted level of security within a security model. A combination of the security level and the security model determine which security method is used when handling an SNMP packet. Available security models are SNMPv1, SNMPv2C, and SNMPv3.

The following table identifies characteristics and compares different combinations of security models and levels:

<table>
<thead>
<tr>
<th>Model</th>
<th>Level</th>
<th>Authentication</th>
<th>Encryption</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNMPv1</td>
<td>noAuthNoPriv</td>
<td>Community string</td>
<td>No</td>
<td>Uses a community string match for authentication.</td>
</tr>
<tr>
<td>SNMPv2C</td>
<td>noAuthNoPriv</td>
<td>Community string</td>
<td>No</td>
<td>Uses a community string match for authentication.</td>
</tr>
</tbody>
</table>

Table 59: SNMP Security Models and Levels
<table>
<thead>
<tr>
<th>Model</th>
<th>Level</th>
<th>Authentication</th>
<th>Encryption</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNMPv3</td>
<td>noAuthNoPriv</td>
<td>Username</td>
<td>No</td>
<td>Uses a username match for authentication.</td>
</tr>
<tr>
<td>SNMPv3</td>
<td>authNoPriv</td>
<td>Message Digest 5 (MD5) or Secure Hash Algorithm (SHA)</td>
<td>No</td>
<td>Provides authentication based on the HMAC-MD5 or HMAC-SHA algorithms.</td>
</tr>
</tbody>
</table>
| SNMPv3 | authPriv | MD5 or SHA | Data Encryption Standard (DES) or Advanced Encryption Standard (AES) | Provides authentication based on the HMAC-MD5 or HMAC-SHA algorithms. Allows specifying the User-based Security Model (USM) with these encryption algorithms:
 - DES 56-bit encryption in addition to authentication based on the CBC-DES (DES-56) standard.
 - 3DES 168-bit encryption
 - AES 128-bit, 192-bit, or 256-bit encryption |

You must configure the SNMP agent to use the SNMP version supported by the management station. Because an agent can communicate with multiple managers, you can configure the software to support communications using SNMPv1, SNMPv2c, or SNMPv3.
Restrictions for SNMP

Version Restrictions

- SNMPv1 does not support informs.

Information About SNMP

SNMP Overview

SNMP is an application-layer protocol that provides a message format for communication between managers and agents. The SNMP system consists of an SNMP manager, an SNMP agent, and a management information base (MIB). The SNMP manager can be part of a network management system (NMS) such as Cisco Prime Infrastructure. The agent and MIB reside on the switch. To configure SNMP on the switch, you define the relationship between the manager and the agent.

The SNMP agent contains MIB variables whose values the SNMP manager can request or change. A manager can get a value from an agent or store a value into the agent. The agent gathers data from the MIB, the repository for information about device parameters and network data. The agent can also respond to a manager’s requests to get or set data.

An agent can send unsolicited traps to the manager. Traps are messages alerting the SNMP manager to a condition on the network. Traps can mean improper user authentication, restarts, link status (up or down), MAC address tracking, closing of a TCP connection, loss of connection to a neighbor, or other significant events.

SNMP Manager Functions

The SNMP manager uses information in the MIB to perform the operations described in the following table:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>get-request</td>
<td>Retrieves a value from a specific variable.</td>
</tr>
<tr>
<td>get-next-request</td>
<td>Retrieves a value from a variable within a table.</td>
</tr>
<tr>
<td>get-bulk-request</td>
<td>Retrieves large blocks of data, such as multiple rows in a table, that would otherwise require the transmission of many small blocks of data.</td>
</tr>
<tr>
<td>get-response</td>
<td>Replies to a get-request, get-next-request, and set-request sent by an NMS.</td>
</tr>
<tr>
<td>set-request</td>
<td>Stores a value in a specific variable.</td>
</tr>
<tr>
<td>trap</td>
<td>An unsolicited message sent by an SNMP agent to an SNMP manager when some event has occurred.</td>
</tr>
</tbody>
</table>

3 With this operation, an SNMP manager does not need to know the exact variable name. A sequential search is performed to find the needed variable from within a table.
SNMP Agent Functions

The SNMP agent responds to SNMP manager requests as follows:

- Get a MIB variable—The SNMP agent begins this function in response to a request from the NMS. The agent retrieves the value of the requested MIB variable and responds to the NMS with that value.

- Set a MIB variable—The SNMP agent begins this function in response to a message from the NMS. The SNMP agent changes the value of the MIB variable to the value requested by the NMS.

The SNMP agent also sends unsolicited trap messages to notify an NMS that a significant event has occurred on the agent. Examples of trap conditions include, but are not limited to, when a port or module goes up or down, when spanning-tree topology changes occur, and when authentication failures occur.

Related Topics

- Disabling the SNMP Agent, on page 528
- Monitoring SNMP Status, on page 543
- Setting the Agent Contact and Location Information, on page 540

SNMP Community Strings

SNMP community strings authenticate access to MIB objects and function as embedded passwords. In order for the NMS to access the switch, the community string definitions on the NMS must match at least one of the three community string definitions on the switch.

A community string can have one of the following attributes:

- Read-only (RO)—Gives all objects in the MIB except the community strings read access to authorized management stations, but does not allow write access.

- Read-write (RW)—Gives all objects in the MIB read and write access to authorized management stations, but does not allow access to the community strings.

- When a cluster is created, the command switch manages the exchange of messages among member switches and the SNMP application. The Network Assistant software appends the member switch number (@esN, where N is the switch number) to the first configured RW and RO community strings on the command switch and propagates them to the member switches.

Related Topics

- Configuring Community Strings, on page 530

SNMP MIB Variables Access

An example of an NMS is the Cisco Prime Infrastructure network management software. Cisco Prime Infrastructure 2.0 software uses the switch MIB variables to set device variables and to poll devices on the network for specific information. The results of a poll can be displayed as a graph and analyzed to troubleshoot internetworking problems, increase network performance, verify the configuration of devices, monitor traffic loads, and more.
As shown in the figure, the SNMP agent gathers data from the MIB. The agent can send traps, or notification of certain events, to the SNMP manager, which receives and processes the traps. Traps alert the SNMP manager to a condition on the network such as improper user authentication, restarts, link status (up or down), MAC address tracking, and so forth. The SNMP agent also responds to MIB-related queries sent by the SNMP manager in `get-request`, `get-next-request`, and `set-request` format.

Figure 47: SNMP Network

SNMP Notifications

SNMP allows the switch to send notifications to SNMP managers when particular events occur. SNMP notifications can be sent as traps or inform requests. In command syntax, unless there is an option in the command to select either traps or informs, the keyword `traps` refers to either traps or informs, or both. Use the `snmp-server host` command to specify whether to send SNMP notifications as traps or informs.

Note

SNMPv1 does not support informs.

Traps are unreliable because the receiver does not send an acknowledgment when it receives a trap, and the sender cannot determine if the trap was received. When an SNMP manager receives an inform request, it acknowledges the message with an SNMP response protocol data unit (PDU). If the sender does not receive a response, the inform request can be sent again. Because they can be resent, informs are more likely than traps to reach their intended destination.

The characteristics that make informs more reliable than traps also consume more resources in the switch and in the network. Unlike a trap, which is discarded as soon as it is sent, an inform request is held in memory until a response is received or the request times out. Traps are sent only once, but an inform might be resent or retried several times. The retries increase traffic and contribute to a higher overhead on the network.

Therefore, traps and informs require a trade-off between reliability and resources. If it is important that the SNMP manager receive every notification, use inform requests. If traffic on the network or memory in the switch is a concern and notification is not required, use traps.

Related Topics

Configuring SNMP Notifications, on page 535
Monitoring SNMP Status, on page 543

SNMP ifIndex MIB Object Values

In an NMS, the IF-MIB generates and assigns an interface index (ifIndex) object value that is a unique number greater than zero to identify a physical or a logical interface. When the switch reboots or the switch software is upgraded, the switch uses this same value for the interface. For example, if the switch assigns a port 2 an ifIndex value of 10003, this value is the same after the switch reboots.

The switch uses one of the values in the following table to assign an ifIndex value to an interface:
Table 61: ifIndex Values

<table>
<thead>
<tr>
<th>Interface Type</th>
<th>ifIndex Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVI</td>
<td>1–4999</td>
</tr>
<tr>
<td>EtherChannel</td>
<td>5001–5048</td>
</tr>
<tr>
<td>Tunnel</td>
<td>5078–5142</td>
</tr>
<tr>
<td>Physical (such as Gigabit Ethernet or SFP-module interfaces) based on type and port numbers</td>
<td>10000–14500</td>
</tr>
<tr>
<td>Null</td>
<td>14501</td>
</tr>
<tr>
<td>Loopback and Tunnel</td>
<td>24567+</td>
</tr>
</tbody>
</table>

5 SVI = switch virtual interface 6 SFP = small form-factor pluggable

Default SNMP Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNMP agent</td>
<td>Disabled2.</td>
</tr>
<tr>
<td>SNMP trap receiver</td>
<td>None configured.</td>
</tr>
<tr>
<td>SNMP traps</td>
<td>None enabled except the trap for TCP connections (tty).</td>
</tr>
<tr>
<td>SNMP version</td>
<td>If no version keyword is present, the default is Version 1.</td>
</tr>
<tr>
<td>SNMPv3 authentication</td>
<td>If no keyword is entered, the default is the noauth (noAuthNoPriv) security level.</td>
</tr>
<tr>
<td>SNMP notification type</td>
<td>If no type is specified, all notifications are sent.</td>
</tr>
</tbody>
</table>

7 This is the default when the switch starts and the startup configuration does not have any snmp-server global configuration commands.

SNMP Configuration Guidelines

If the switch starts and the switch startup configuration has at least one snmp-server global configuration command, the SNMP agent is enabled.

An SNMP group is a table that maps SNMP users to SNMP views. An SNMP user is a member of an SNMP group. An SNMP host is the recipient of an SNMP trap operation. An SNMP engine ID is a name for the local or remote SNMP engine.

When configuring SNMP, follow these guidelines:

• When configuring an SNMP group, do not specify a notify view. The snmp-server host global configuration command auto-generates a notify view for the user and then adds it to the group associated with that user. Modifying the group's notify view affects all users associated with that group.
To configure a remote user, specify the IP address or port number for the remote SNMP agent of the device where the user resides.

Before you configure remote users for a particular agent, configure the SNMP engine ID, using the `snmp-server engineID` global configuration command with the `remote` option. The remote agent's SNMP engine ID and user password are used to compute the authentication and privacy digests. If you do not configure the remote engine ID first, the configuration command fails.

When configuring SNMP informs, you need to configure the SNMP engine ID for the remote agent in the SNMP database before you can send proxy requests or informs to it.

If a local user is not associated with a remote host, the switch does not send informs for the `auth` (authNoPriv) and the `priv` (authPriv) authentication levels.

Changing the value of the SNMP engine ID has significant results. A user's password (entered on the command line) is converted to an MD5 or SHA security digest based on the password and the local engine ID. The command-line password is then destroyed, as required by RFC 2274. Because of this deletion, if the value of the engine ID changes, the security digests of SNMPv3 users become invalid, and you need to reconfigure SNMP users by using the `snmp-server user` username global configuration command. Similar restrictions require the reconfiguration of community strings when the engine ID changes.

Related Topics

- Configuring SNMP Groups and Users, on page 532
- Monitoring SNMP Status, on page 543

How to Configure SNMP

Disabling the SNMP Agent

The `no snmp-server` global configuration command disables all running versions (Version 1, Version 2C, and Version 3) of the SNMP agent on the device. You reenable all versions of the SNMP agent by the first `snmp-server` global configuration command that you enter. There is no Cisco IOS command specifically designated for enabling SNMP.

Follow these steps to disable the SNMP agent.

Before You Begin

The SNMP Agent must be enabled before it can be disabled. The SNMP agent is enabled by the first `snmp-server` global configuration command entered on the device.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `no snmp-server`
4. `end`
5. `show running-config`
6. `copy running-config startup-config`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Example: <code>Switch> enable</code></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Example: <code>Switch# configure terminal</code></td>
</tr>
<tr>
<td>Step 3</td>
<td>Disables the SNMP agent operation.</td>
</tr>
<tr>
<td><code>no snmp-server</code></td>
<td>Example: <code>Switch(config)# no snmp-server</code></td>
</tr>
<tr>
<td>Step 4</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>end</code></td>
<td>Example: <code>Switch(config)# end</code></td>
</tr>
<tr>
<td>Step 5</td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td><code>show running-config</code></td>
<td>Example: <code>Switch# show running-config</code></td>
</tr>
<tr>
<td>Step 6</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>Example: <code>Switch# copy running-config startup-config</code></td>
</tr>
</tbody>
</table>

Related Topics
- [SNMP Agent Functions](#), on page 525
- [Monitoring SNMP Status](#), on page 543
Configuring Community Strings

You use the SNMP community string to define the relationship between the SNMP manager and the agent. The community string acts like a password to permit access to the agent on the switch. Optionally, you can specify one or more of these characteristics associated with the string:

- An access list of IP addresses of the SNMP managers that are permitted to use the community string to gain access to the agent
- A MIB view, which defines the subset of all MIB objects accessible to the given community
- Read and write or read-only permission for the MIB objects accessible to the community

Follow these steps to configure a community string on the switch.

SUMMARY STEPS

1. enable
2. configure terminal
3. snmp-server community string [view view-name] [ro | rw] [access-list-number]
4. access-list access-list-number {deny | permit} source [source-wildcard]
5. end
6. show running-config
7. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 snmp-server community string [view view-name] [ro</td>
<td>rw] [access-list-number]</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# snmp-server community comaccess ro 4</td>
<td></td>
</tr>
</tbody>
</table>

Note: The @ symbol is used for delimiting the context information. Avoid using the @ symbol as part of the SNMP community string when configuring this command.
- For string, specify a string that acts like a password and permits access to the SNMP protocol. You can configure one or more community strings of any length.
- (Optional) For view, specify the view record accessible to the community.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| | • (Optional) Specify either read-only (ro) if you want authorized management stations to retrieve MIB objects, or specify read-write (rw) if you want authorized management stations to retrieve and modify MIB objects. By default, the community string permits read-only access to all objects.
• (Optional) For access-list-number, enter an IP standard access list numbered from 1 to 99 and 1300 to 1999. |

Step 4

| access-list access-list-number {deny | permit} source [source-wildcard] |

Example:

```
Switch(config)# access-list 4 deny any
```

Optional If you specified an IP standard access list number in Step 3, then create the list, repeating the command as many times as necessary.

• For access-list-number, enter the access list number specified in Step 3.

• The deny keyword denies access if the conditions are matched. The permit keyword permits access if the conditions are matched.

• For source, enter the IP address of the SNMP managers that are permitted to use the community string to gain access to the agent.

• (Optional) For source-wildcard, enter the wildcard bits in dotted decimal notation to be applied to the source. Place ones in the bit positions that you want to ignore.

Recall that the access list is always terminated by an implicit deny statement for everything.

Step 5

| end |

Example:

```
Switch(config)# end
```

Returns to privileged EXEC mode.

Step 6

| show running-config |

Example:

```
Switch# show running-config
```

Verifies your entries.

Step 7

| copy running-config startup-config |

Example:

```
Switch# copy running-config startup-config
```

(Optional) Saves your entries in the configuration file.
What to Do Next

To disable access for an SNMP community, set the community string for that community to the null string (do not enter a value for the community string).

To remove a specific community string, use the `no snmp-server community-string` command.

You can specify an identification name (engine ID) for the local or remote SNMP server engine on the switch. You can configure an SNMP server group that maps SNMP users to SNMP views, and you can add new users to the SNMP group.

Related Topics

 - SNMP Community Strings, on page 525

Configuring SNMP Groups and Users

You can specify an identification name (engine ID) for the local or remote SNMP server engine on the switch. You can configure an SNMP server group that maps SNMP users to SNMP views, and you can add new users to the SNMP group.

Follow these steps to configure SNMP groups and users on the switch.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `snmp-server engineID {local engineid-string | remote ip-address [udp-port port-number] engineid-string}`
4. `snmp-server group group-name {v1 | v2c | v3 {auth | noauth | priv}} [read readview] [write writeview] [notify notifyview] [access access-list]`
5. `snmp-server user username group-name {remote host [udp-port port]} {v1 [access access-list] | v2c [access access-list] | v3 [encrypted] [access access-list] [auth {md5 | sha} auth-password] } [priv {des | 3des | aes {128 | 192 | 256}} priv-password]`
6. `end`
7. `show running-config`
8. `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>enable</code></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
</tbody>
</table>
| **Example:**
 Switch> `enable` | |
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 snmp-server engineID {local engineid-string</td>
<td>remote ip-address [udp-port port-number] engineid-string}</td>
</tr>
<tr>
<td>Example: Switch(config)# snmp-server engineID local 1234</td>
<td>- The engineid-string is a 24-character ID string with the name of the copy of SNMP. You need not specify the entire 24-character engine ID if it has trailing zeros. Specify only the portion of the engine ID up to the point where only zeros remain in the value. The Step Example configures an engine ID of 123400000000000000000000.</td>
</tr>
<tr>
<td></td>
<td>- If you select remote, specify the ip-address of the device that contains the remote copy of SNMP and the optional User Datagram Protocol (UDP) port on the remote device. The default is 162.</td>
</tr>
<tr>
<td>Step 4 snmp-server group group-name {v1</td>
<td>v2c</td>
</tr>
<tr>
<td>Example: Switch(config)# snmp-server group public v2c access lmnop</td>
<td>For group-name, specify the name of the group.</td>
</tr>
<tr>
<td></td>
<td>Specify one of the following security models:</td>
</tr>
<tr>
<td></td>
<td>- v1 is the least secure of the possible security models.</td>
</tr>
<tr>
<td></td>
<td>- v2c is the second least secure model. It allows transmission of informs and integers twice the normal width.</td>
</tr>
<tr>
<td></td>
<td>- v3, the most secure, requires you to select one of the following authentication levels:</td>
</tr>
<tr>
<td></td>
<td>- auth—Enables the Message Digest 5 (MD5) and the Secure Hash Algorithm (SHA) packet authentication.</td>
</tr>
<tr>
<td></td>
<td>- noauth—Enables the noAuthNoPriv security level. This is the default if no keyword is specified.</td>
</tr>
<tr>
<td></td>
<td>- priv—Enables Data Encryption Standard (DES) packet encryption (also called privacy).</td>
</tr>
<tr>
<td></td>
<td>(Optional) Enter read readview with a string (not to exceed 64 characters) that is the name of the view in which you can only view the contents of the agent.</td>
</tr>
<tr>
<td></td>
<td>(Optional) Enter write writeview with a string (not to exceed 64 characters) that is the name of the view in which you enter data and configure the contents of the agent.</td>
</tr>
<tr>
<td></td>
<td>(Optional) Enter notify notifyview with a string (not to exceed 64 characters) that is the name of the view in which you specify a notify, inform, or trap.</td>
</tr>
<tr>
<td></td>
<td>(Optional) Enter access access-list with a string (not to exceed 64 characters) that is the name of the access list.</td>
</tr>
</tbody>
</table>
Command or Action

Step 5
`sntp-server user username group-name [remote host [udp-port port]] [v1 [access access-list] | v2c [access access-list] | v3 [encrypted] [access access-list] [auth {md5 | sha} auth-password] } [priv {des | 3des | aes {128 | 192 | 256}}] priv-password]`

Example:

```
Switch(config)# snmp-server user Pat public v2c
```

Purpose

Adds a new user for an SNMP group.

- The **username** is the name of the user on the host that connects to the agent.
- The **group-name** is the name of the group to which the user is associated.
- Enter `remote` to specify a remote SNMP entity to which the user belongs and the hostname or IP address of that entity with the optional UDP port number. The default is 162.

Enter the SNMP version number (v1, v2c, or v3). If you enter v3, you have these additional options:

- **encrypted** specifies that the password appears in encrypted format. This keyword is available only when the v3 keyword is specified.
- **auth** is an authentication level setting session that can be either the HMAC-MD5-96 (md5) or the HMAC-SHA-96 (sha) authentication level and requires a password string `auth-password` (not to exceed 64 characters).

If you enter v3 you can also configure a private (`priv`) encryption algorithm and password string `priv-password` using the following keywords (not to exceed 64 characters):

- **priv** specifies the User-based Security Model (USM).
- **des** specifies the use of the 56-bit DES algorithm.
- **3des** specifies the use of the 168-bit DES algorithm.
- **aes** specifies the use of the DES algorithm. You must select either 128-bit, 192-bit, or 256-bit encryption.

(Optional) Enter `access access-list` with a string (not to exceed 64 characters) that is the name of the access list.

Step 6
`end`

Example:

```
Switch(config)# end
```

Purpose

Returns to privileged EXEC mode.

Step 7
`show running-config`

Example:

```
Switch# show running-config
```

Purpose

Verifies your entries.

Step 8
`copy running-config startup-config`

Example:

```
Switch# copy running-config startup-config
```

Purpose

(Optional) Saves your entries in the configuration file.
Related Topics

SNMP Configuration Guidelines, on page 527
Monitoring SNMP Status, on page 543

Configuring SNMP Notifications

A trap manager is a management station that receives and processes traps. Traps are system alerts that the switch generates when certain events occur. By default, no trap manager is defined, and no traps are sent. Switches running this Cisco IOS release can have an unlimited number of trap managers.

Note

Many commands use the word **traps** in the command syntax. Unless there is an option in the command to select either traps or informs, the keyword **traps** refers to traps, informs, or both. Use the **snmp-server host** global configuration command to specify whether to send SNMP notifications as traps or informs.

You can use the **snmp-server host** global configuration command for a specific host to receive the notification types listed in the following table. You can enable any or all of these traps and configure a trap manager to receive them.

<table>
<thead>
<tr>
<th>Notification Type Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bridge</td>
<td>Generates STP bridge MIB traps.</td>
</tr>
<tr>
<td>cluster</td>
<td>Generates a trap when the cluster configuration changes.</td>
</tr>
<tr>
<td>config</td>
<td>Generates a trap for SNMP configuration changes.</td>
</tr>
<tr>
<td>copy-config</td>
<td>Generates a trap for SNMP copy configuration changes.</td>
</tr>
<tr>
<td>cpu threshold</td>
<td>Allow CPU-related traps.</td>
</tr>
<tr>
<td>entity</td>
<td>Generates a trap for SNMP entity changes.</td>
</tr>
<tr>
<td>envmon</td>
<td>Generates environmental monitor traps. You can enable any or all of these environmental traps: fan, shutdown, status, supply, temperature.</td>
</tr>
<tr>
<td>errdisable</td>
<td>Generates a trap for a port VLAN errdisabled. You can also set a maximum trap rate per minute. The range is from 0 to 10000; the default is 0, which means there is no rate limit.</td>
</tr>
<tr>
<td>flash</td>
<td>Generates SNMP FLASH notifications. In a switch stack, you can optionally enable notification for flash insertion or removal, which would cause a trap to be issued whenever a switch in the stack is removed or inserted (physical removal, power cycle, or reload).</td>
</tr>
<tr>
<td>Notification Type Keyword</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>fru-ctrl</td>
<td>Generates entity field-replaceable unit (FRU) control traps. In the switch stack, this trap refers to the insertion or removal of a switch in the stack.</td>
</tr>
<tr>
<td>hsrp</td>
<td>Generates a trap for Hot Standby Router Protocol (HSRP) changes.</td>
</tr>
<tr>
<td>ipmulticast</td>
<td>Generates a trap for IP multicast routing changes.</td>
</tr>
<tr>
<td>mac-notification</td>
<td>Generates a trap for MAC address notifications.</td>
</tr>
<tr>
<td>msdp</td>
<td>Generates a trap for Multicast Source Discovery Protocol (MSDP) changes.</td>
</tr>
<tr>
<td>ospf</td>
<td>Generates a trap for Open Shortest Path First (OSPF) changes. You can enable any or all of these traps: Cisco specific, errors, link-state advertisement, rate limit, retransmit, and state changes.</td>
</tr>
<tr>
<td>pim</td>
<td>Generates a trap for Protocol-Independent Multicast (PIM) changes. You can enable any or all of these traps: invalid PIM messages, neighbor changes, and rendezvous point (RP)-mapping changes.</td>
</tr>
</tbody>
</table>
| port-security | Generates SNMP port security traps. You can also set a maximum trap rate per second. The range is from 0 to 1000; the default is 0, which means that there is no rate limit. **Note** When you configure a trap by using the notification type `port-security`, configure the port security trap first, and then configure the port security trap rate:
 1. `snmp-server enable traps port-security`
 2. `snmp-server enable traps port-security trap-rate rate` |
| rtr | Generates a trap for the SNMP Response Time Reporter (RTR). |
| snmp | Generates a trap for SNMP-type notifications for authentication, cold start, warm start, link up or link down. |
| storm-control | Generates a trap for SNMP storm-control. You can also set a maximum trap rate per minute. The range is from 0 to 1000; the default is 0 (no limit is imposed; a trap is sent at every occurrence). |
| stpx | Generates SNMP STP Extended MIB traps. |
| syslog | Generates SNMP syslog traps. |
| tty | Generates a trap for TCP connections. This trap is enabled by default. |
| vlan-membership | Generates a trap for SNMP VLAN membership changes. |
| vlancreate | Generates SNMP VLAN created traps. |
| vlandelete | Generates SNMP VLAN deleted traps. |
| vtp | Generates a trap for VLAN Trunking Protocol (VTP) changes. |
Follow these steps to configure the switch to send traps or informs to a host.

SUMMARY STEPS

1. enable
2. configure terminal
3. snmp-server engineID remote ip-address engineid-string
4. snmp-server user username group-name {remote host [udp-port port]} {v1 [access access-list] | v2c [access access-list] | v3 [encrypted] [access access-list] [auth {md5 | sha} auth-password]}
5. snmp-server group group-name {v1 | v2c | v3} {access access-list} {notify notifyview [access access-list]}
6. snmp-server host host-addr [informs | traps] [version {1 | 2c | 3} {auth | noauth | priv}] [read readview] [write writeview]
7. snmp-server enable traps notification-types
8. snmp-server trap-source interface-id
9. snmp-server queue-length length
10. snmp-server trap-timeout seconds
11. end
12. show running-config
13. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch> enable</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>snmp-server engineID remote ip-address engineid-string</td>
<td>Specifies the engine ID for the remote host.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config)# snmp-server engineID remote 192.180.1.27 00000063000100a1c0b4011b</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>snmp-server user username group-name {remote host [udp-port port]} {v1 [access access-list]</td>
<td>v2c [access access-list]</td>
</tr>
</tbody>
</table>
How to Configure SNMP

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Example:**
Switch(config)# snmp-server user Pat public v2c | **Note** You cannot configure a remote user for an address without first configuring the engine ID for the remote host. Otherwise, you receive an error message, and the command is not executed. |

Step 5

```
snmp-server group group-name {v1 | v2c | v3 {auth | noauth | priv}} {read readview} {write writeview} {notify notifyview} {access access-list}
```

Example:
Switch(config)# snmp-server group public v2c access lmnop

Configures an SNMP group.

Step 6

```
snmp-server host host-addr [informs | traps] [version {1 | 2c | 3 {auth | noauth | priv}}] community-string [notification-type]
```

Example:
Switch(config)# snmp-server host 203.0.113.1 comaccess snmp

Specifies the recipient of an SNMP trap operation. For *host-addr*, specify the name or Internet address of the host (the targeted recipient).

(Optional) Specify traps (the default) to send SNMP traps to the host.

(Optional) Specify informs to send SNMP informs to the host.

(Optional) Specify the SNMP version (1, 2c, or 3). SNMPv1 does not support informs.

(Optional) For Version 3, select authentication level auth, noauth, or priv.

Note The priv keyword is available only when the cryptographic software image is installed.

For *community-string*, when version 1 or version 2c is specified, enter the password-like community string sent with the notification operation. When version 3 is specified, enter the SNMPv3 username.

The @ symbol is used for delimiting the context information. Avoid using the @ symbol as part of the SNMP community string when configuring this command.

(Optional) For *notification-type*, use the keywords listed in the table above. If no type is specified, all notifications are sent.

Step 7

```
snmp-server enable traps notification-types
```

Example:
Switch(config)# snmp-server enable traps snmp

Enables the switch to send traps or informs and specifies the type of notifications to be sent. For a list of notification types, see the table above, or enter `snmp-server enable traps ?`

To enable multiple types of traps, you must enter a separate `snmp-server enable traps` command for each trap type.

Note When you configure a trap by using the notification type *port-security*, configure the port security trap first, and then configure the port security trap rate:

1. `snmp-server enable traps port-security`
2. `snmp-server enable traps port-security trap-rate rate`
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td><code>snmp-server trap-source interface-id</code></td>
<td>(Optional) Specifies the source interface, which provides the IP address for the trap message. This command also sets the source IP address for informs.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch(config)# <code>snmp-server trap-source GigabitEthernet1/0/1</code></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td><code>snmp-server queue-length length</code></td>
<td>(Optional) Establishes the message queue length for each trap host. The range is 1 to 1000; the default is 10.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch(config)# <code>snmp-server queue-length 20</code></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td><code>snmp-server trap-timeout seconds</code></td>
<td>(Optional) Defines how often to resend trap messages. The range is 1 to 1000; the default is 30 seconds.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch(config)# <code>snmp-server trap-timeout 60</code></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td><code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch(config)# <code>end</code></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td><code>show running-config</code></td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch# <code>show running-config</code></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch# <code>copy running-config startup-config</code></td>
<td></td>
</tr>
</tbody>
</table>

What to Do Next

The `snmp-server host` command specifies which hosts receive the notifications. The `snmp-server enable traps` command globally enables the method for the specified notification (for traps and informs). To enable a host to receive an inform, you must configure an `snmp-server host informs` command for the host and globally enable informs by using the `snmp-server enable traps` command.

To remove the specified host from receiving traps, use the `no snmp-server host host` global configuration command. The `no snmp-server host` command with no keywords disables traps, but not informs, to the host. To disable informs, use the `no snmp-server host informs` global configuration command. To disable a specific trap type, use the `no snmp-server enable traps notification-types` global configuration command.
Setting the Agent Contact and Location Information

Follow these steps to set the system contact and location of the SNMP agent so that these descriptions can be accessed through the configuration file.

SUMMARY STEPS

1. enable
2. configure terminal
3. snmp-server contact text
4. snmp-server location text
5. end
6. show running-config
7. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>Switch> enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>Switch# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>snmp-server contact text</td>
<td>Sets the system contact string.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>Switch(config)# snmp-server contact Dial System Operator at beeper 21555</td>
</tr>
<tr>
<td>Step 4</td>
<td>snmp-server location text</td>
<td>Sets the system location string.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>Switch(config)# snmp-server location Building 3/Room 222</td>
</tr>
</tbody>
</table>
How to Configure SNMP

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Switch(config)# end</td>
<td></td>
</tr>
<tr>
<td>Step 6 show running-config</td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td>Example: Switch# show running-config</td>
<td></td>
</tr>
<tr>
<td>Step 7 copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td>Example: Switch# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

Related Topics

SNMP Agent Functions, on page 525

Limiting TFTP Servers Used Through SNMP

Follow these steps to limit the TFTP servers used for saving and loading configuration files through SNMP to the servers specified in an access list.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `snmp-server tftp-server-list access-list-number`
4. `access-list access-list-number {deny | permit} source [source-wildcard]`
5. `end`
6. `show running-config`
7. `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
</tbody>
</table>
How to Configure SNMP

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch> enable</code></td>
<td></td>
</tr>
</tbody>
</table>

Step 2

Command: `configure terminal`
Example:

```
Switch# configure terminal
```

Enters the global configuration mode.

Step 3

Command: `snmp-server tftp-server-list access-list-number`
Example:

```
Switch(config)# snmp-server tftp-server-list 44
```

Limits the TFTP servers used for configuration file copies through SNMP to the servers in the access list.

For `access-list-number`, enter an IP standard access list numbered from 1 to 99 and 1300 to 1999.

Step 4

Command: `access-list access-list-number {deny | permit} source [source-wildcard]`
Example:

```
Switch(config)# access-list 44 permit 10.1.1.2
```

Creates a standard access list, repeating the command as many times as necessary.

For `access-list-number`, enter the access list number specified in Step 3.

The `deny` keyword denies access if the conditions are matched. The `permit` keyword permits access if the conditions are matched.

For `source`, enter the IP address of the TFTP servers that can access the switch.

(Optional) For `source-wildcard`, enter the wildcard bits, in dotted decimal notation, to be applied to the source. Place ones in the bit positions that you want to ignore.

The access list is always terminated by an implicit deny statement for everything.

Step 5

Command: `end`
Example:

```
Switch(config)# end
```

Returns to privileged EXEC mode.

Step 6

Command: `show running-config`
Example:

```
Switch# show running-config
```

Verifies your entries.
Monitoring SNMP Status

To display SNMP input and output statistics, including the number of illegal community string entries, errors, and requested variables, use the `show snmp` privileged EXEC command. You also can use the other privileged EXEC commands listed in the table to display SNMP information.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show snmp</code></td>
<td>Displays SNMP statistics.</td>
</tr>
<tr>
<td><code>show snmp group</code></td>
<td>Displays information on each SNMP group on the network.</td>
</tr>
<tr>
<td><code>show snmp pending</code></td>
<td>Displays information on pending SNMP requests.</td>
</tr>
<tr>
<td><code>show snmp sessions</code></td>
<td>Displays information on the current SNMP sessions.</td>
</tr>
<tr>
<td><code>show snmp user</code></td>
<td>Displays information on each SNMP user name in the SNMP users table. Note You must use this command to display SNMPv3 configuration information for `auth</td>
</tr>
</tbody>
</table>

Related Topics
- Disabling the SNMP Agent, on page 528
- SNMP Agent Functions, on page 525
- Configuring SNMP Groups and Users, on page 532
- SNMP Configuration Guidelines, on page 527
- Configuring SNMP Notifications, on page 535
SNMP Examples

This example shows how to enable all versions of SNMP. The configuration permits any SNMP manager to access all objects with read-only permissions using the community string `public`. This configuration does not cause the switch to send any traps.

```
Switch(config)# snmp-server community public
```

This example shows how to permit any SNMP manager to access all objects with read-only permission using the community string `public`. The switch also sends VTP traps to the hosts 192.180.1.111 and 192.180.1.33 using SNMPv1 and to the host 192.180.1.27 using SNMPv2C. The community string `public` is sent with the traps.

```
Switch(config)# snmp-server community public
Switch(config)# snmp-server enable traps vtp
Switch(config)# snmp-server host 192.180.1.27 version 2c public
Switch(config)# snmp-server host 192.180.1.111 version 1 public
Switch(config)# snmp-server host 192.180.1.33 public
```

This example shows how to allow read-only access for all objects to members of access list 4 that use the `comaccess` community string. No other SNMP managers have access to any objects. SNMP Authentication Failure traps are sent by SNMPv2C to the host `cisco.com` using the community string `public`.

```
Switch(config)# snmp-server community comaccess ro 4
Switch(config)# snmp-server enable traps snmp authentication
Switch(config)# snmp-server host cisco.com version 2c public
```

This example shows how to send Entity MIB traps to the host `cisco.com`. The community string is restricted. The first line enables the switch to send Entity MIB traps in addition to any traps previously enabled. The second line specifies the destination of these traps and overwrites any previous `snmp-server` host commands for the host `cisco.com`.

```
Switch(config)# snmp-server enable traps entity
Switch(config)# snmp-server host cisco.com restricted entity
```

This example shows how to enable the switch to send all traps to the host `myhost.cisco.com` using the community string `public`:

```
Switch(config)# snmp-server enable traps
Switch(config)# snmp-server host myhost.cisco.com public
```

This example shows how to associate a user with a remote host and to send `auth` (authNoPriv) authentication-level informs when the user enters global configuration mode:

```
Switch(config)# snmp-server engineID remote 192.180.1.27 00000630001000a1c0b4011b
Switch(config)# snmp-server group authgroup v3 auth
Switch(config)# snmp-server user authuser authgroup remote 192.180.1.27 v3 auth md5 mypassword
Switch(config)# snmp-server user authuser authgroup v3 auth md5 mypassword
Switch(config)# snmp-server host 192.180.1.27 informs version 3 auth authuser config
Switch(config)# snmp-server enable traps
Switch(config)# snmp-server inform retries 0
# Additional References

## Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNMP Commands</td>
<td><em>Network Management Command Reference, Cisco IOS Release 15.2(2)E</em></td>
</tr>
</tbody>
</table>

## Error Message Decoder

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>To help you research and resolve system error messages in this release, use the Error Message Decoder tool.</td>
<td><a href="https://www.cisco.com/cgi-bin/Support/Errordecoder/index.cgi">https://www.cisco.com/cgi-bin/Support/Errordecoder/index.cgi</a></td>
</tr>
</tbody>
</table>

## Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>-</td>
</tr>
</tbody>
</table>

## MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>All supported MIBs for this release.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including</td>
<td><a href="http://www.cisco.com/support">http://www.cisco.com/support</a></td>
</tr>
<tr>
<td>documentation and tools for troubleshooting and resolving technical issues</td>
<td></td>
</tr>
<tr>
<td>with Cisco products and technologies.</td>
<td></td>
</tr>
<tr>
<td>To receive security and technical information about your products, you can</td>
<td></td>
</tr>
<tr>
<td>subscribe to various services, such as the Product Alert Tool (accessed</td>
<td></td>
</tr>
<tr>
<td>from Field Notices), the Cisco Technical Services Newsletter, and Really</td>
<td></td>
</tr>
<tr>
<td>Simple Syndication (RSS) Feeds.</td>
<td></td>
</tr>
<tr>
<td>Access to most tools on the Cisco Support website requires a Cisco.com</td>
<td></td>
</tr>
<tr>
<td>user ID and password.</td>
<td></td>
</tr>
</tbody>
</table>

Feature History and Information for Simple Network Management Protocol

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS 15.0(2)EX</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>
Configuring SPAN and RSPAN

• Finding Feature Information, page 547
• Prerequisites for SPAN and RSPAN, page 547
• Restrictions for SPAN and RSPAN, page 548
• Information About SPAN and RSPAN, page 549
• How to Configure SPAN and RSPAN, page 560
• Monitoring SPAN and RSPAN Operations, page 577
• SPAN and RSPAN Configuration Examples, page 578
• Additional References, page 580
• Feature History and Information for SPAN and RSPAN, page 581

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for SPAN and RSPAN

SPAN

• You can limit SPAN traffic to specific VLANs by using the filter vlan keyword. If a trunk port is being monitored, only traffic on the VLANs specified with this keyword is monitored. By default, all VLANs are monitored on a trunk port.
RSPAN

- We recommend that you configure an RSPAN VLAN before you configure an RSPAN source or a destination session.

Restrictions for SPAN and RSPAN

SPAN

The restrictions for SPAN are as follows:

- On each switch, you can configure 66 sessions. A maximum of source sessions can be configured and the remaining sessions can be configured as RSPAN destinations sessions. A source session is either a local SPAN session or an RSPAN source session.
- For SPAN sources, you can monitor traffic for a single port or VLAN or a series or range of ports or VLANs for each session. You cannot mix source ports and source VLANs within a single SPAN session.
- The destination port cannot be a source port; a source port cannot be a destination port.
- You cannot have two SPAN sessions using the same destination port.
- When you configure a switch port as a SPAN destination port, it is no longer a normal switch port; only monitored traffic passes through the SPAN destination port.
- Entering SPAN configuration commands does not remove previously configured SPAN parameters. You must enter the `no monitor session {session_number | all | local | remote}` global configuration command to delete configured SPAN parameters.
- For local SPAN, outgoing packets through the SPAN destination port carry the original encapsulation headers—untagged, ISL, or IEEE 802.1Q—if the `encapsulation replicate` keywords are specified. If the keywords are not specified, the packets are sent in native form.
- You can configure a disabled port to be a source or destination port, but the SPAN function does not start until the destination port and at least one source port or source VLAN are enabled.
- You cannot mix source VLANs and filter VLANs within a single SPAN session.

Traffic monitoring in a SPAN session has the following restrictions:

- Sources can be ports or VLANs, but you cannot mix source ports and source VLANs in the same session.
- Wireshark does not capture egress packets when egress span is active.
- The switch supports up to four local SPAN or RSPAN source sessions. However if this switch is stacked with Catalyst 2960-S switches, you are limited to 2 local SPAN or RSPAN source sessions.
- You can run both a local SPAN and an RSPAN source session in the same switch or switch stack. The switch or switch stack supports a total of 66 source and RSPAN destination sessions.
- You can configure two separate SPAN or RSPAN source sessions with separate or overlapping sets of SPAN source ports and VLANs. Both switched and routed ports can be configured as SPAN sources and destinations.
- You can have multiple destination ports in a SPAN session, but no more than 64 destination ports per switch stack.
• SPAN sessions do not interfere with the normal operation of the switch. However, an oversubscribed SPAN destination, for example, a 10-Mb/s port monitoring a 100-Mb/s port, can result in dropped or lost packets.

• When SPAN or RSPAN is enabled, each packet being monitored is sent twice, once as normal traffic and once as a monitored packet. Monitoring a large number of ports or VLANs could potentially generate large amounts of network traffic.

• You can configure SPAN sessions on disabled ports; however, a SPAN session does not become active unless you enable the destination port and at least one source port or VLAN for that session.

• The switch does not support a combination of local SPAN and RSPAN in a single session.
  - An RSPAN source session cannot have a local destination port.
  - An RSPAN destination session cannot have a local source port.
  - An RSPAN destination session and an RSPAN source session that are using the same RSPAN VLAN cannot run on the same switch or switch stack.

**RSPAN**

The restrictions for RSPAN are as follows:

• RSPAN does not support BPDU packet monitoring or other Layer 2 switch protocols.

• The RSPAN VLAN is configured only on trunk ports and not on access ports. To avoid unwanted traffic in RSPAN VLANs, make sure that the VLAN remote-span feature is supported in all the participating switches.

• RSPAN VLANs are included as sources for port-based RSPAN sessions when source trunk ports have active RSPAN VLANs. RSPAN VLANs can also be sources in SPAN sessions. However, since the switch does not monitor spanned traffic, it does not support egress spanning of packets on any RSPAN VLAN identified as the destination of an RSPAN source session on the switch.

• If you enable VTP and VTP pruning, RSPAN traffic is pruned in the trunks to prevent the unwanted flooding of RSPAN traffic across the network for VLAN IDs that are lower than 1005.

• To use RSPAN, the switch must be running the LAN Base image.

**Information About SPAN and RSPAN**

**SPAN and RSPAN**

You can analyze network traffic passing through ports or VLANs by using SPAN or RSPAN to send a copy of the traffic to another port on the switch or on another switch that has been connected to a network analyzer or other monitoring or security device. SPAN copies (or mirrors) traffic received or sent (or both) on source ports or source VLANs to a destination port for analysis. SPAN does not affect the switching of network traffic on the source ports or VLANs. You must dedicate the destination port for SPAN use. Except for traffic that is required for the SPAN or RSPAN session, destination ports do not receive or forward traffic.

Only traffic that enters or leaves source ports or traffic that enters or leaves source VLANs can be monitored by using SPAN; traffic routed to a source VLAN cannot be monitored. For example, if incoming traffic is
being monitored, traffic that gets routed from another VLAN to the source VLAN cannot be monitored; however, traffic that is received on the source VLAN and routed to another VLAN can be monitored.

You can use the SPAN or RSPAN destination port to inject traffic from a network security device. For example, if you connect a Cisco Intrusion Detection System (IDS) sensor appliance to a destination port, the IDS device can send TCP reset packets to close down the TCP session of a suspected attacker.

**Local SPAN**

Local SPAN supports a SPAN session entirely within one switch; all source ports or source VLANs and destination ports are in the same switch or switch stack. Local SPAN copies traffic from one or more source ports in any VLAN or from one or more VLANs to a destination port for analysis.

All traffic on port 5 (the source port) is mirrored to port 10 (the destination port). A network analyzer on port 10 receives all network traffic from port 5 without being physically attached to port 5.

*Figure 48: Example of Local SPAN Configuration on a Single Device*

This is an example of a local SPAN in a switch stack, where the source and destination ports reside on different stack members.
Remote SPAN

RSPAN supports source ports, source VLANs, and destination ports on different switches (or different switch stacks), enabling remote monitoring of multiple switches across your network.

The figure below shows source ports on Switch A and Switch B. The traffic for each RSPAN session is carried over a user-specified RSPAN VLAN that is dedicated for that RSPAN session in all participating switches. The RSPAN traffic from the source ports or VLANs is copied into the RSPAN VLAN and forwarded over trunk ports carrying the RSPAN VLAN to a destination session monitoring the RSPAN VLAN. Each RSPAN
source switch must have either ports or VLANs as RSPAN sources. The destination is always a physical port, as shown on Switch C in the figure.

*Figure 50: Example of RSPAN Configuration*

![RSPAN Configuration Diagram]

**Related Topics**

- Creating an RSPAN Source Session, on page 569
- Creating an RSPAN Destination Session, on page 573
- Creating an RSPAN Destination Session and Configuring Incoming Traffic, on page 575
- Examples: Creating an RSPAN VLAN, on page 579

**SPAN and RSPAN Concepts and Terminology**

- SPAN Sessions
- Monitored Traffic
- Source Ports
- Source VLANs
- VLAN Filtering
- Destination Port
- RSPAN VLAN
SPAN Sessions

SPAN sessions (local or remote) allow you to monitor traffic on one or more ports, or one or more VLANs, and send the monitored traffic to one or more destination ports.

A local SPAN session is an association of a destination port with source ports or source VLANs, all on a single network device. Local SPAN does not have separate source and destination sessions. Local SPAN sessions gather a set of ingress and egress packets specified by the user and form them into a stream of SPAN data, which is directed to the destination port.

RSPAN consists of at least one RSPAN source session, an RSPAN VLAN, and at least one RSPAN destination session. You separately configure RSPAN source sessions and RSPAN destination sessions on different network devices. To configure an RSPAN source session on a device, you associate a set of source ports or source VLANs with an RSPAN VLAN. The output of this session is the stream of SPAN packets that are sent to the RSPAN VLAN. To configure an RSPAN destination session on another device, you associate the destination port with the RSPAN VLAN. The destination session collects all RSPAN VLAN traffic and sends it out the RSPAN destination port.

An RSPAN source session is very similar to a local SPAN session, except for where the packet stream is directed. In an RSPAN source session, SPAN packets are relabeled with the RSPAN VLAN ID and directed over normal trunk ports to the destination switch.

An RSPAN destination session takes all packets received on the RSPAN VLAN, strips off the VLAN tagging, and presents them on the destination port. The session presents a copy of all RSPAN VLAN packets (except Layer 2 control packets) to the user for analysis.

More than one source session and more than one destination session can be active in the same RSPAN VLAN. Intermediate switches also can separate the RSPAN source and destination sessions. These switches are unable to run RSPAN, but they must respond to the requirements of the RSPAN VLAN.

Traffic monitoring in a SPAN session has these restrictions:

- Sources can be ports or VLANs, but you cannot mix source ports and source VLANs in the same session.
- You can run both a local SPAN and an RSPAN source session in the same switch or switch stack. The switch or switch stack supports a total of 66 source and RSPAN destination sessions.
- You can configure two separate SPAN or RSPAN source sessions with separate or overlapping sets of SPAN source ports and VLANs. Both switched and routed ports can be configured as SPAN sources and destinations.
- You can have multiple destination ports in a SPAN session, but no more than 64 destination ports per switch stack.
- SPAN sessions do not interfere with the normal operation of the switch. However, an oversubscribed SPAN destination, for example, a 10-Mb/s port monitoring a 100-Mb/s port, can result in dropped or lost packets.
- When SPAN or RSPAN is enabled, each packet being monitored is sent twice, once as normal traffic and once as a monitored packet. Therefore monitoring a large number of ports or VLANs could potentially generate large amounts of network traffic.
- You can configure SPAN sessions on disabled ports; however, a SPAN session does not become active unless you enable the destination port and at least one source port or VLAN for that session.
- The switch does not support a combination of local SPAN and RSPAN in a single session.
  - An RSPAN source session cannot have a local destination port.
  - An RSPAN destination session cannot have a local source port.
An RSPAN destination session and an RSPAN source session that are using the same RSPAN VLAN cannot run on the same switch or switch stack.

Related Topics

Creating a Local SPAN Session, on page 560
Creating a Local SPAN Session and Configuring Incoming Traffic, on page 563
Example: Configuring Local SPAN, on page 578

Monitored Traffic

SPAN sessions can monitor these traffic types:

• Receive (Rx) SPAN—Receive (or ingress) SPAN monitors as much as possible all of the packets received by the source interface or VLAN before any modification or processing is performed by the switch. A copy of each packet received by the source is sent to the destination port for that SPAN session. Packets that are modified because of routing or Quality of Service (QoS)—for example, modified Differentiated Services Code Point (DSCP)—are copied before modification. Features that can cause a packet to be dropped during receive processing have no effect on ingress SPAN; the destination port receives a copy of the packet even if the actual incoming packet is dropped. These features include IP standard and extended input Access Control Lists (ACLs), ingress QoS policing, VLAN ACLs, and egress QoS policing.

• Transmit (Tx) SPAN—Transmit (or egress) SPAN monitors as much as possible all of the packets sent by the source interface after all modification and processing is performed by the switch. A copy of each packet sent by the source is sent to the destination port for that SPAN session. The copy is provided after the packet is modified. Packets that are modified because of routing (for example, with modified time-to-live (TTL), MAC address, or QoS values) are duplicated (with the modifications) at the destination port. Features that can cause a packet to be dropped during transmit processing also affect the duplicated copy for SPAN. These features include IP standard and extended output ACLs and egress QoS policing.

• Both—in a SPAN session, you can also monitor a port or VLAN for both received and sent packets. This is the default.

The default configuration for local SPAN session ports is to send all packets untagged. SPAN also does not normally monitor bridge protocol data unit (BPDU) packets and Layer 2 protocols, such as Cisco Discovery Protocol (CDP), VLAN Trunk Protocol (VTP), Dynamic Trunking Protocol (DTP), Spanning Tree Protocol (STP), and Port Aggregation Protocol (PAgP). However, when you enter the encapsulation replicate keywords when configuring a destination port, these changes occur:

• Packets are sent on the destination port with the same encapsulation (untagged or IEEE 802.1Q) that they had on the source port.

• Packets of all types, including BPDU and Layer 2 protocol packets, are monitored.

Therefore, a local SPAN session with encapsulation replicate enabled can have a mixture of untagged and IEEE 802.1Q tagged packets appear on the destination port.

Switch congestion can cause packets to be dropped at ingress source ports, egress source ports, or SPAN destination ports. In general, these characteristics are independent of one another. For example:
A packet might be forwarded normally but dropped from monitoring due to an oversubscribed SPAN destination port.

An ingress packet might be dropped from normal forwarding, but still appear on the SPAN destination port.

An egress packet dropped because of switch congestion is also dropped from egress SPAN.

In some SPAN configurations, multiple copies of the same source packet are sent to the SPAN destination port. For example, a bidirectional (both Rx and Tx) SPAN session is configured for the Rx monitor on port A and Tx monitor on port B. If a packet enters the switch through port A and is switched to port B, both incoming and outgoing packets are sent to the destination port. Both packets are the same unless a Layer 3 rewrite occurs, in which case the packets are different because of the packet modification.

**Source Ports**

A source port (also called a monitored port) is a switched or routed port that you monitor for network traffic analysis.

In a local SPAN session or RSPAN source session, you can monitor source ports or VLANs for traffic in one or both directions.

The switch supports any number of source ports (up to the maximum number of available ports on the switch) and any number of source VLANs (up to the maximum number of VLANs supported).

However, the switch supports a maximum of four sessions (two sessions if switch is in a stack with Catalyst 2960-S switches) (local or RSPAN) with source ports or VLANs. You cannot mix ports and VLANs in a single session.

A source port has these characteristics:

- It can be monitored in multiple SPAN sessions.
- Each source port can be configured with a direction (ingress, egress, or both) to monitor.
- It can be any port type (for example, EtherChannel, Gigabit Ethernet, and so forth).
- For EtherChannel sources, you can monitor traffic for the entire EtherChannel or individually on a physical port as it participates in the port channel.
- It can be an access port, trunk port, routed port, or voice VLAN port.
- It cannot be a destination port.
- Source ports can be in the same or different VLANs.
- You can monitor multiple source ports in a single session.

**Source VLANs**

VLAN-based SPAN (VSPAN) is the monitoring of the network traffic in one or more VLANs. The SPAN or RSPAN source interface in VSPAN is a VLAN ID, and traffic is monitored on all the ports for that VLAN.

VSPAN has these characteristics:

- All active ports in the source VLAN are included as source ports and can be monitored in either or both directions.
- On a given port, only traffic on the monitored VLAN is sent to the destination port.
- If a destination port belongs to a source VLAN, it is excluded from the source list and is not monitored.
- If ports are added to or removed from the source VLANs, the traffic on the source VLAN received by those ports is added to or removed from the sources being monitored.
- You cannot use filter VLANs in the same session with VLAN sources.
- You can monitor only Ethernet VLANs.

**VLAN Filtering**

When you monitor a trunk port as a source port, by default, all VLANs active on the trunk are monitored. You can limit SPAN traffic monitoring on trunk source ports to specific VLANs by using VLAN filtering.

- VLAN filtering applies only to trunk ports or to voice VLAN ports.
- VLAN filtering applies only to port-based sessions and is not allowed in sessions with VLAN sources.
- When a VLAN filter list is specified, only those VLANs in the list are monitored on trunk ports or on voice VLAN access ports.
- SPAN traffic coming from other port types is not affected by VLAN filtering; that is, all VLANs are allowed on other ports.
- VLAN filtering affects only traffic forwarded to the destination SPAN port and does not affect the switching of normal traffic.

**Destination Port**

Each local SPAN session or RSPAN destination session must have a destination port (also called a monitoring port) that receives a copy of traffic from the source ports or VLANs and sends the SPAN packets to the user, usually a network analyzer.

A destination port has these characteristics:

- For a local SPAN session, the destination port must reside on the same switch or switch stack as the source port. For an RSPAN session, it is located on the switch containing the RSPAN destination session. There is no destination port on a switch or switch stack running only an RSPAN source session.
- When a port is configured as a SPAN destination port, the configuration overwrites the original port configuration. When the SPAN destination configuration is removed, the port reverts to its previous configuration. If a configuration change is made to the port while it is acting as a SPAN destination port, the change does not take effect until the SPAN destination configuration had been removed.

**Note**

When QoS is configured on the SPAN destination port, QoS takes effect immediately.

- If the port was in an EtherChannel group, it is removed from the group while it is a destination port. If it was a routed port, it is no longer a routed port.
- It can be any Ethernet physical port.
- It cannot be a secure port.
- It cannot be a source port.
- It can participate in only one SPAN session at a time (a destination port in one SPAN session cannot be a destination port for a second SPAN session).
- When it is active, incoming traffic is disabled. The port does not transmit any traffic except that required for the SPAN session. Incoming traffic is never learned or forwarded on a destination port.
If ingress traffic forwarding is enabled for a network security device, the destination port forwards traffic at Layer 2.

It does not participate in any of the Layer 2 protocols (STP, VTP, CDP, DTP, PagP).

A destination port that belongs to a source VLAN of any SPAN session is excluded from the source list and is not monitored.

The maximum number of destination ports in a switch or switch stack is 64.

Local SPAN and RSPAN destination ports function differently with VLAN tagging and encapsulation:

- For local SPAN, if the `encapsulation replicate` keywords are specified for the destination port, these packets appear with the original encapsulation (untagged, ISL, or IEEE 802.1Q). If these keywords are not specified, packets appear in the untagged format. Therefore, the output of a local SPAN session with `encapsulation replicate` enabled can contain a mixture of untagged, ISL, or IEEE 802.1Q-tagged packets.

- For RSPAN, the original VLAN ID is lost because it is overwritten by the RSPAN VLAN identification. Therefore, all packets appear on the destination port as untagged.

**RSPAN VLAN**

The RSPAN VLAN carries SPAN traffic between RSPAN source and destination sessions. RSPAN VLAN has these special characteristics:

- All traffic in the RSPAN VLAN is always flooded.
- No MAC address learning occurs on the RSPAN VLAN.
- RSPAN VLAN traffic only flows on trunk ports.
- RSPAN VLANs must be configured in VLAN configuration mode by using the `remote-span VLAN` configuration mode command.
- STP can run on RSPAN VLAN trunks but not on SPAN destination ports.
- An RSPAN VLAN cannot be a private-VLAN primary or secondary VLAN.

For VLANs 1 to 1005 that are visible to VLAN Trunking Protocol (VTP), the VLAN ID and its associated RSPAN characteristic are propagated by VTP. If you assign an RSPAN VLAN ID in the extended VLAN range (1006 to 4094), you must manually configure all intermediate switches.

It is normal to have multiple RSPAN VLANs in a network at the same time with each RSPAN VLAN defining a network-wide RSPAN session. That is, multiple RSPAN source sessions anywhere in the network can contribute packets to the RSPAN session. It is also possible to have multiple RSPAN destination sessions throughout the network, monitoring the same RSPAN VLAN and presenting traffic to the user. The RSPAN VLAN ID separates the sessions.

**Related Topics**

- Creating an RSPAN Source Session, on page 569
- Creating an RSPAN Destination Session, on page 573
- Creating an RSPAN Destination Session and Configuring Incoming Traffic, on page 575
- Examples: Creating an RSPAN VLAN, on page 579

**SPAN and RSPAN Interaction with Other Features**

SPAN interacts with these features:
• Routing—SPAN does not monitor routed traffic. VSPAN only monitors traffic that enters or exits the switch, not traffic that is routed between VLANs. For example, if a VLAN is being Rx-monitored and the switch routes traffic from another VLAN to the monitored VLAN, that traffic is not monitored and not received on the SPAN destination port.

• STP—A destination port does not participate in STP while its SPAN or RSPAN session is active. The destination port can participate in STP after the SPAN or RSPAN session is disabled. On a source port, SPAN does not affect the STP status. STP can be active on trunk ports carrying an RSPAN VLAN.

• CDP—A SPAN destination port does not participate in CDP while the SPAN session is active. After the SPAN session is disabled, the port again participates in CDP.

• VTP—You can use VTP to prune an RSPAN VLAN between switches.

• VLAN and trunking—You can modify VLAN membership or trunk settings for source or destination ports at any time. However, changes in VLAN membership or trunk settings for a destination port do not take effect until you remove the SPAN destination configuration. Changes in VLAN membership or trunk settings for a source port immediately take effect, and the respective SPAN sessions automatically adjust accordingly.

• EtherChannel—You can configure an EtherChannel group as a source port a SPAN destination port. When a group is configured as a SPAN source, the entire group is monitored.

If a physical port is added to a monitored EtherChannel group, the new port is added to the SPAN source port list. If a port is removed from a monitored EtherChannel group, it is automatically removed from the source port list.

A physical port that belongs to an EtherChannel group can be configured as a SPAN source port and still be a part of the EtherChannel. In this case, data from the physical port is monitored as it participates in the EtherChannel. However, if a physical port that belongs to an EtherChannel group is configured as a SPAN destination, it is removed from the group. After the port is removed from the SPAN session, it rejoins the EtherChannel group. Ports removed from an EtherChannel group remain members of the group, but they are in the inactive or suspended state.

If a physical port that belongs to an EtherChannel group is a destination port and the EtherChannel group is a source, the port is removed from the EtherChannel group and from the list of monitored ports.

• Multicast traffic can be monitored. For egress and ingress port monitoring, only a single unedited packet is sent to the SPAN destination port. It does not reflect the number of times the multicast packet is sent.

• A private-VLAN port cannot be a SPAN destination port.

• A secure port cannot be a SPAN destination port.

For SPAN sessions, do not enable port security on ports with monitored egress when ingress forwarding is enabled on the destination port. For RSPAN source sessions, do not enable port security on any ports with monitored egress.

• An IEEE 802.1x port can be a SPAN source port. You can enable IEEE 802.1x on a port that is a SPAN destination port; however, IEEE 802.1x is disabled until the port is removed as a SPAN destination.

For SPAN sessions, do not enable IEEE 802.1x on ports with monitored egress when ingress forwarding is enabled on the destination port. For RSPAN source sessions, do not enable IEEE 802.1x on any ports that are egress monitored.
SPAN and RSPAN and Device Stacks

Because the stack of switches represents one logical switch, local SPAN source ports and destination ports can be in different switches in the stack. Therefore, the addition or deletion of switches in the stack can affect a local SPAN session, as well as an RSPAN source or destination session. An active session can become inactive when a switch is removed from the stack or an inactive session can become active when a switch is added to the stack.

Default SPAN and RSPAN Configuration

Table 64: Default SPAN and RSPAN Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPAN state (SPAN and RSPAN)</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Source port traffic to monitor</td>
<td>Both received and sent traffic (both).</td>
</tr>
<tr>
<td>Encapsulation type (destination port)</td>
<td>Native form (untagged packets).</td>
</tr>
<tr>
<td>Ingress forwarding (destination port)</td>
<td>Disabled.</td>
</tr>
<tr>
<td>VLAN filtering</td>
<td>On a trunk interface used as a source port, all VLANs are monitored.</td>
</tr>
<tr>
<td>RSPAN VLANs</td>
<td>None configured.</td>
</tr>
</tbody>
</table>

Configuration Guidelines

SPAN Configuration Guidelines

- To remove a source or destination port or VLAN from the SPAN session, use the `no monitor session session_number source {interface interface-id | vlan vlan-id} global configuration command or the `no monitor session session_number destination interface interface-id` global configuration command. For destination interfaces, the encapsulation options are ignored with the no form of the command.
- To monitor all VLANs on the trunk port, use the `no monitor session session_number filter` global configuration command.

Related Topics

- Creating a Local SPAN Session, on page 560
- Creating a Local SPAN Session and Configuring Incoming Traffic, on page 563
- Example: Configuring Local SPAN, on page 578
RSPAN Configuration Guidelines

- All the SPAN configuration guidelines apply to RSPAN.
- As RSPAN VLANs have special properties, you should reserve a few VLANs across your network for use as RSPAN VLANs; do not assign access ports to these VLANs.
- You can apply an output ACL to RSPAN traffic to selectively filter or monitor specific packets. Specify these ACLs on the RSPAN VLAN in the RSPAN source switches.
- For RSPAN configuration, you can distribute the source ports and the destination ports across multiple switches in your network.
- Access ports (including voice VLAN ports) on the RSPAN VLAN are put in the inactive state.
- You can configure any VLAN as an RSPAN VLAN as long as these conditions are met:
  - The same RSPAN VLAN is used for an RSPAN session in all the switches.
  - All participating switches support RSPAN.

Related Topics

- Creating an RSPAN Source Session, on page 569
- Creating an RSPAN Destination Session, on page 573
- Creating an RSPAN Destination Session and Configuring Incoming Traffic, on page 575
- Examples: Creating an RSPAN VLAN, on page 579

How to Configure SPAN and RSPAN

Creating a Local SPAN Session

Follow these steps to create a SPAN session and specify the source (monitored) ports or VLANs and the destination (monitoring) ports.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `no monitor session {session_number | all | local | remote}`
4. `monitor session session_number source {interface interface-id | vlan vlan-id} [+, -] [both | rx | tx]`
5. `monitor session session_number destination {interface interface-id [+, -] [encapsulation replicate]}`
6. `end`
7. `show running-config`
8. `copy running-config startup-config`
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Switch&gt; enable</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Purpose</strong></th>
<th><strong>Command or Action</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Purpose</strong></th>
<th><strong>Command or Action</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 3</strong> no monitor session {session_number</td>
<td>all</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Switch(config)# no monitor session all</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Purpose</strong></th>
<th><strong>Command or Action</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 4</strong> monitor session session_number source {interface interface-id</td>
<td>vlan vlan-id} [s</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Switch(config)# monitor session 1 source interface gigabitethernet1/0/1</td>
<td></td>
</tr>
</tbody>
</table>

Note: A single session can include multiple sources (ports or VLANs) defined in a series of commands, but you cannot combine source ports and source VLANs in one session.

- (Optional) [s | -] Specifies a series or range of interfaces. Enter a space before and after the comma; enter a space before and after the hyphen.
- (Optional) both | rx | tx—Specifies the direction of traffic to monitor. If you do not specify a traffic direction, the source interface sends both sent and received traffic.
  - both—Monitors both received and sent traffic.
  - rx—Monitors received traffic.
  - tx—Monitors sent traffic.
### How to Configure SPAN and RSPAN

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><strong>Note</strong> You can use the <code>monitor session session_number source</code> command multiple times to configure multiple source ports.</td>
</tr>
</tbody>
</table>

**Step 5**

You can use the `monitor session session_number source` command multiple times to configure multiple source ports.

Example:
```
Switch(config)# monitor session 1 destination interface gigabitethernet1/0/2 encapsulation replicate
```

**Note**
- For local SPAN, you must use the same session number for the source and destination interfaces.
- For `interface-id`, specify the destination port. The destination interface must be a physical port; it cannot be an EtherChannel, and it cannot be a VLAN.
- (Optional) `encapsulation replicate` specifies that the destination interface replicates the source interface encapsulation method. If not selected, the default is to send packets in native form (untagged).

### Related Topics
- Local SPAN, on page 550
- SPAN Sessions, on page 553
- SPAN Configuration Guidelines, on page 559
Creating a Local SPAN Session and Configuring Incoming Traffic

Follow these steps to create a SPAN session, to specify the source ports or VLANs and the destination ports, and to enable incoming traffic on the destination port for a network security device (such as a Cisco IDS Sensor Appliance).

**SUMMARY STEPS**

1. enable
2. configure terminal
3. no monitor session {session_number | all | local | remote}
4. monitor session session_number source {interface interface-id | vlan vlan-id} [, | -] [both | rx | tx]
5. monitor session session_number destination {interface interface-id [, | -] [encapsulation replicate] [ingress {dot1q vlan vlan-id | untagged vlan vlan-id | vlan vlan-id} ]}
6. end
7. show running-config
8. copy running-config startup-config

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: Switch&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> no monitor session {session_number</td>
<td>all</td>
</tr>
<tr>
<td>Example: Switch(config)# no monitor session all</td>
<td>• For session_number, the range is 1 to 66.</td>
</tr>
<tr>
<td></td>
<td>• all—Removes all SPAN sessions.</td>
</tr>
<tr>
<td></td>
<td>• local—Removes all local sessions.</td>
</tr>
<tr>
<td></td>
<td>• remote—Removes all remote SPAN sessions.</td>
</tr>
<tr>
<td><strong>Step 4</strong> monitor session session_number source {interface interface-id</td>
<td>vlan vlan-id} [,</td>
</tr>
</tbody>
</table>
### Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
</tbody>
</table>

Switch(config)# monitor session 2 source gigabitethernet1/0/1 rx

---

**Step 5**

**monitor session session_number destination**

*interface interface-id [, -]* [encapsulation replicate] [ingress {dot1q vlan vlan-id | untagged vlan vlan-id | vlan vlan-id}]

- **Purpose:** Specifies the SPAN session, the destination port, the packet encapsulation, and the ingress VLAN and encapsulation.
  - For **session_number**, specify the session number entered in Step 4.
  - For **interface-id**, specify the destination port. The destination interface must be a physical port; it cannot be an EtherChannel, and it cannot be a VLAN.
  - (Optional) [, -]—Specifies a series or range of interfaces. Enter a space before and after the comma or hyphen.
  - (Optional) **encapsulation replicate** specifies that the destination interface replicates the source interface encapsulation method. If not selected, the default is to send packets in native form (untagged).
  - **ingress** enables forwarding of incoming traffic on the destination port and to specify the encapsulation type:
    - **dot1q vlan vlan-id**—Accepts incoming packets with IEEE 802.1Q encapsulation with the specified VLAN as the default VLAN.
    - **untagged vlan vlan-id or vlan vlan-id**—Accepts incoming packets with untagged encapsulation type with the specified VLAN as the default VLAN.

**Example:**

Switch(config)# monitor session 2 destination interface gigabitethernet1/0/2 encapsulation replicate ingress dot1q vlan 6

---

**Step 6**

**end**

- **Purpose:** Returns to privileged EXEC mode.

**Example:**

Switch(config)# end

---

**Step 7**

**show running-config**

- **Purpose:** Verifies your entries.

**Example:**

Switch# show running-config

---

**Step 8**

**copy running-config startup-config**

- **Purpose:** (Optional) Saves your entries in the configuration file.

**Example:**

Switch# copy running-config startup-config
Specifying VLANs to Filter

Follow these steps to limit SPAN source traffic to specific VLANs.

**SUMMARY STEPS**

1. enable
2. configure terminal
3. no monitor session {session_number | all | local | remote}
4. monitor session session_number source interface interface-id
5. monitor session session_number filter vlan vlan-id [, -]
6. monitor session session_number destination {interface interface-id [, -] [encapsulation replicate]}
7. end
8. show running-config
9. copy running-config startup-config

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>
## How to Configure SPAN and RSPAN

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 3</strong></td>
<td>Removes any existing SPAN configuration for the session.</td>
</tr>
<tr>
<td>no monitor session {session_number</td>
<td>all</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# no monitor session all</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Specifies the characteristics of the source port (monitored port) and SPAN session.</td>
</tr>
<tr>
<td>monitor session session_number source interface interface-id</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# monitor session 2 source interface gigabitethernet1/0/2 rx</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>Limits the SPAN source traffic to specific VLANs.</td>
</tr>
<tr>
<td>monitor session session_number filter vlan vlan-id [,</td>
<td>-]</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# monitor session 2 filter vlan 1 - 5 , 9</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>Specifies the SPAN session and the destination port (monitoring port).</td>
</tr>
<tr>
<td>monitor session session_number destination \ {interface interface-id [,</td>
<td>-] [encapsulation replicate]}</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# monitor session 2 destination interface gigabitethernet1/0/1</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>end</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# end</td>
</tr>
</tbody>
</table>
**Command or Action** | **Purpose**
--- | ---
**Step 8** show running-config | Verifies your entries.
Example: `Switch# show running-config`
**Step 9** copy running-config startup-config | (Optional) Saves your entries in the configuration file.
Example: `Switch# copy running-config startup-config`

## Configuring a VLAN as an RSPAN VLAN

Follow these steps to create a new VLAN, then configure it to be the RSPAN VLAN for the RSPAN session.

**SUMMARY STEPS**

1. enable
2. configure terminal
3. vlan vlan-id
4. remote-span
5. end
6. show running-config
7. copy running-config startup-config

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode. Enter your password if prompted.
Example: `Switch> enable`
| **Step 2** configure terminal | Enters the global configuration mode.
Example: `Switch# configure terminal` |
### How to Configure SPAN and RSPAN

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
</tr>
<tr>
<td><code>vlan vlan-id</code></td>
<td>Enters a VLAN ID to create a VLAN, or enters the VLAN ID of an existing VLAN, and enters VLAN configuration mode. The range is 2 to 1001 and 1006 to 4094. The RSPAN VLAN cannot be VLAN 1 (the default VLAN) or VLAN IDs 1002 through 1005 (reserved for Token Ring and FDDI VLANs).</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Switch(config)# vlan 100</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td></td>
</tr>
<tr>
<td><code>remote-span</code></td>
<td>Configures the VLAN as an RSPAN VLAN.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Switch(config-vlan)# remote-span</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td></td>
</tr>
<tr>
<td><code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Switch(config-vlan)# end</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td></td>
</tr>
<tr>
<td><code>show running-config</code></td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Switch# show running-config</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td></td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Switch# copy running-config startup-config</td>
</tr>
</tbody>
</table>

### What to Do Next

You must create the RSPAN VLAN in all switches that will participate in RSPAN. If the RSPAN VLAN-ID is in the normal range (lower than 1005) and VTP is enabled in the network, you can create the RSPAN VLAN in one switch, and VTP propagates it to the other switches in the VTP domain. For extended-range VLANs (greater than 1005), you must configure RSPAN VLAN on both source and destination switches and any intermediate switches.

Use VTP pruning to get an efficient flow of RSPAN traffic, or manually delete the RSPAN VLAN from all trunks that do not need to carry the RSPAN traffic.

To remove the remote SPAN characteristic from a VLAN and convert it back to a normal VLAN, use the `no remote-span` VLAN configuration command.

To remove a source port or VLAN from the SPAN session, use the `no monitor session session_number source {interface interface-id | vlan vlan-id}` global configuration command. To remove the RSPAN VLAN from the session, use the `no monitor session session_number destination remote vlan vlan-id` command.
Creating an RSPAN Source Session

Follow these steps to create and start an RSPAN source session and to specify the monitored source and the destination RSPAN VLAN.

**SUMMARY STEPS**

1. enable
2. configure terminal
3. no monitor session \{session_number | all | local | remote\}
4. monitor session session_number source \{interface interface-id | vlan vlan-id\} [ , | - ] [both | rx | tx]
5. monitor session session_number destination remote vlan vlan-id
6. end
7. show running-config
8. copy running-config startup-config

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Switch&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>no monitor session {session_number</td>
<td>all</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For session_number, the range is 1 to 66.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• all—Removes all SPAN sessions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• local—Removes all local sessions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• remote—Removes all remote SPAN sessions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Switch(config)# no monitor session 1</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>monitor session session_number source {interface interface-id</td>
<td>vlan vlan-id} [ ,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For session_number, the range is 1 to 66.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Enter a source port or source VLAN for the RSPAN session:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For interface-id, specifies the source port to monitor. Valid interfaces include physical interfaces and port-channel logical</td>
</tr>
</tbody>
</table>
### Command or Action

<table>
<thead>
<tr>
<th>source interface gigabitethernet1/0/1 tx</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>interfaces (port-channel port-channel-number). Valid port-channel numbers are 1 to 48.</td>
</tr>
<tr>
<td></td>
<td>* For vlan-id, specifies the source VLAN to monitor. The range is 1 to 4094 (excluding the RSPAN VLAN).</td>
</tr>
<tr>
<td></td>
<td>A single session can include multiple sources (ports or VLANs), defined in a series of commands, but you cannot combine source ports and source VLANs in one session.</td>
</tr>
<tr>
<td></td>
<td>* (Optional) {,</td>
</tr>
<tr>
<td></td>
<td>* (Optional) both</td>
</tr>
<tr>
<td></td>
<td>* both—Monitors both received and sent traffic.</td>
</tr>
<tr>
<td></td>
<td>* rx—Monitors received traffic.</td>
</tr>
<tr>
<td></td>
<td>* tx—Monitors sent traffic.</td>
</tr>
</tbody>
</table>

### Step 5

**monitor session session_number destination remote vlan vlan-id**

Specifies the RSPAN session, the destination RSPAN VLAN, and the destination-port group.

- For session_number, enter the number defined in Step 4.
- For vlan-id, specify the source RSPAN VLAN to monitor.

**Example:**

Switch(config)# monitor session 1 destination remote vlan 100

### Step 6

**end**

Returns to privileged EXEC mode.

**Example:**

Switch(config)# end

### Step 7

**show running-config**

Verifies your entries.

**Example:**

Switch# show running-config

### Step 8

**copy running-config startup-config**

(Optional) Saves your entries in the configuration file.

**Example:**

Switch# copy running-config startup-config
Specifying VLANs to Filter

Follow these steps to configure the RSPAN source session to limit RSPAN source traffic to specific VLANs.

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `no monitor session {session_number | all | local | remote}`
4. `monitor session session_number source interface interface-id`
5. `monitor session session_number filter vlan vlan-id [ , - ]`
6. `monitor session session_number destination remote vlan vlan-id`
7. `end`
8. `show running-config`
9. `copy running-config startup-config`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Example:</strong> <code>Switch&gt;</code> <code>enable</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> <code>Switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> no monitor session {session_number</td>
<td>all</td>
</tr>
<tr>
<td><strong>Example:</strong> <code>Switch(config)# no monitor session 2</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• For <code>session_number</code>, the range is 1 to 66.</td>
</tr>
<tr>
<td></td>
<td>• <code>all</code>—Removes all SPAN sessions.</td>
</tr>
<tr>
<td></td>
<td>• <code>local</code>—Removes all local sessions.</td>
</tr>
<tr>
<td></td>
<td>• <code>remote</code>—Removes all remote SPAN sessions.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><strong>monitor session</strong> <em>session_number</em> <strong>source interface interface-id</strong>&lt;br&gt;&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Switch(config)# monitor session 2 source interface gigabitethernet1/0/2 rx</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><strong>monitor session</strong> <em>session_number</em> **filter vlan vlan-id [ ,</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><strong>monitor session</strong> <em>session_number</em> <strong>destination remote vlan vlan-id</strong>&lt;br&gt;&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Switch(config)# monitor session 2 destination remote vlan 902</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td><strong>end</strong>&lt;br&gt;&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Switch(config)# end</td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td><strong>show running-config</strong>&lt;br&gt;&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Switch# show running-config</td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td><strong>copy running-config startup-config</strong>&lt;br&gt;&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Switch# copy running-config startup-config</td>
</tr>
</tbody>
</table>
Creating an RSPAN Destination Session

You configure an RSPAN destination session on a different switch or switch stack; that is, not the switch or switch stack on which the source session was configured.

Follow these steps to define the RSPAN VLAN on that switch, to create an RSPAN destination session, and to specify the source RSPAN VLAN and the destination port.

SUMMARY STEPS

1. enable
2. configure terminal
3. vlan vlan-id
4. remote-span
5. exit
6. no monitor session {session_number | all | local | remote}
7. monitor session session_number source remote vlan vlan-id
8. monitor session session_number destination interface interface-id
9. end
10. show running-config
11. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>vlan vlan-id</td>
<td>Specifies the VLAN ID of the RSPAN VLAN created from the source switch, and enters VLAN configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch (config)# vlan 901</td>
<td>If both switches are participating in VTP and the RSPAN VLAN ID is from 2 to 1005, Steps 3 through 5 are not required because the RSPAN VLAN ID is propagated through the VTP network.</td>
</tr>
</tbody>
</table>
### How to Configure SPAN and RSPAN

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 4</strong></td>
<td>remote-span</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Switch(config-vlan)# remote-span</td>
</tr>
<tr>
<td></td>
<td>Identifies the VLAN as the RSPAN VLAN.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>exit</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Switch(config-vlan)# exit</td>
</tr>
<tr>
<td></td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>no monitor session {session_number</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Switch(config)# no monitor session 1</td>
</tr>
<tr>
<td></td>
<td>Removes any existing SPAN configuration for the session.</td>
</tr>
<tr>
<td></td>
<td>• For session_number, the range is 1 to 66.</td>
</tr>
<tr>
<td></td>
<td>• all—Removes all SPAN sessions.</td>
</tr>
<tr>
<td></td>
<td>• local—Removes all local sessions.</td>
</tr>
<tr>
<td></td>
<td>• remote—Removes all remote SPAN sessions.</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>monitor session session_number source remote vlan vlan-id</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Switch(config)# monitor session 1 source remote vlan 901</td>
</tr>
<tr>
<td></td>
<td>Specifies the RSPAN session and the source RSPAN VLAN.</td>
</tr>
<tr>
<td></td>
<td>• For session_number, the range is 1 to 66.</td>
</tr>
<tr>
<td></td>
<td>• For vlan-id, specify the source RSPAN VLAN to monitor.</td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>monitor session session_number destination interface interface-id</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Switch(config)# monitor session 1 destination interface gigabitethernet2/0/1</td>
</tr>
<tr>
<td></td>
<td>Specifies the RSPAN session and the destination interface.</td>
</tr>
<tr>
<td></td>
<td>• For session_number, enter the number defined in Step 7.</td>
</tr>
<tr>
<td></td>
<td>In an RSPAN destination session, you must use the same session number for the source RSPAN VLAN and the destination port.</td>
</tr>
<tr>
<td></td>
<td>• For interface-id, specify the destination interface. The destination interface must be a physical interface.</td>
</tr>
<tr>
<td></td>
<td>• Though visible in the command-line help string, encapsulation replicate is not supported for RSPAN. The original VLAN ID is overwritten by the RSPAN VLAN ID, and all packets appear on the destination port as untagged.</td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td>end</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Switch(config)# end</td>
</tr>
<tr>
<td></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 10 show running-config</td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td>Example: Switch# show running-config</td>
<td></td>
</tr>
<tr>
<td>Step 11 copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td>Example: Switch# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

**Related Topics**
- Remote SPAN, on page 551
- RSPAN VLAN, on page 557
- RSPAN Configuration Guidelines, on page 560

**Creating an RSPAN Destination Session and Configuring Incoming Traffic**

Follow these steps to create an RSPAN destination session, to specify the source RSPAN VLAN and the destination port, and to enable incoming traffic on the destination port for a network security device (such as a Cisco IDS Sensor Appliance).

**SUMMARY STEPS**

1. enable
2. configure terminal
3. no monitor session {session_number | all | local | remote}
4. monitor session session_number source remote vlan vlan-id
5. monitor session session_number destination {interface interface-id [ | -] [ingress | dot1q vlan vlan-id | untagged vlan vlan-id | vlan vlan-id]}
6. end
7. show running-config
8. copy running-config startup-config

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------------------------------------------</td>
<td>--------------------------------------------------------------</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> no monitor session {session_number</td>
<td>all</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch(config)# no monitor session 2</td>
<td>• For <code>session_number</code>, the range is 1 to 66.</td>
</tr>
<tr>
<td></td>
<td>• all—Removes all SPAN sessions.</td>
</tr>
<tr>
<td></td>
<td>• local—Removes all local sessions.</td>
</tr>
<tr>
<td></td>
<td>• remote—Removes all remote SPAN sessions.</td>
</tr>
<tr>
<td><strong>Step 4</strong> monitor session session_number source</td>
<td>Specifies the RSPAN session and the source RSPAN VLAN.</td>
</tr>
<tr>
<td>remote vlan vlan-id</td>
<td>• For <code>session_number</code>, the range is 1 to 66.</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch(config)# monitor session 2 source</td>
<td>• For <code>vlan-id</code>, specify the source RSPAN VLAN to monitor.</td>
</tr>
<tr>
<td>remote vlan 901</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> monitor session session_number destination</td>
<td>Specifies the SPAN session, the destination port, the packet</td>
</tr>
<tr>
<td>{interface interface-id [, -] [ingress</td>
<td>dot1q</td>
</tr>
<tr>
<td></td>
<td>• For <code>session_number</code>, enter the number defined in Step 5.</td>
</tr>
<tr>
<td></td>
<td>• In an RSPAN destination session, you must use the same</td>
</tr>
<tr>
<td></td>
<td>session number for the source RSPAN VLAN and the destination</td>
</tr>
<tr>
<td></td>
<td>port.</td>
</tr>
<tr>
<td></td>
<td>• For <code>interface-id</code>, specify the destination interface. The</td>
</tr>
<tr>
<td></td>
<td>destination interface must be a physical interface.</td>
</tr>
<tr>
<td></td>
<td>• Though visible in the command-line help string, <code>encapsulation replicate</code> is not supported for RSPAN. The original VLAN ID is overwritten by the RSPAN VLAN ID, and all packets appear on the destination port as untagged.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) [,</td>
</tr>
<tr>
<td></td>
<td>space before and after the comma; enter a space before and</td>
</tr>
<tr>
<td></td>
<td>after the hyphen.</td>
</tr>
<tr>
<td></td>
<td>• Enter <code>ingress</code> with additional keywords to enable</td>
</tr>
<tr>
<td></td>
<td>forwarding of</td>
</tr>
<tr>
<td></td>
<td>incoming traffic on the destination port and to specify the</td>
</tr>
<tr>
<td></td>
<td>encapsulation type:</td>
</tr>
</tbody>
</table>
### Command or Action

<table>
<thead>
<tr>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forwards incoming packets with IEEE 802.1Q encapsulation with the specified VLAN as the default VLAN.</td>
</tr>
<tr>
<td><strong>dot1q vlan vlan-id</strong>—Forwards incoming packets with untagged encapsulation type with the specified VLAN as the default VLAN.</td>
</tr>
</tbody>
</table>

### Related Topics

- Remote SPAN, on page 551
- RSPAN VLAN, on page 557
- RSPAN Configuration Guidelines, on page 560
- Examples: Creating an RSPAN VLAN, on page 579

### Monitoring SPAN and RSPAN Operations

The following table describes the command used to display SPAN and RSPAN operations configuration and results to monitor operations:

**Table 65: Monitoring SPAN and RSPAN Operations**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show monitor</td>
<td>Displays the current SPAN, RSPAN, FSPAN, or FRSPAN configuration.</td>
</tr>
</tbody>
</table>
SPAN and RSPAN Configuration Examples

Example: Configuring Local SPAN

This example shows how to set up SPAN session 1 for monitoring source port traffic to a destination port. First, any existing SPAN configuration for session 1 is deleted, and then bidirectional traffic is mirrored from source Gigabit Ethernet port 1 to destination Gigabit Ethernet port 2, retaining the encapsulation method.

```
Switch> enable
Switch# configure terminal
Switch(config)# no monitor session 1
Switch(config)# monitor session 1 source interface gigabitethernet1/0/1
Switch(config)# monitor session 1 destination interface gigabitethernet1/0/2
encapsulation replicate
Switch(config)# end
```

This example shows how to remove port 1 as a SPAN source for SPAN session 1:

```
Switch> enable
Switch# configure terminal
Switch(config)# no monitor session 1 source interface gigabitethernet1/0/1
Switch(config)# end
```

This example shows how to disable received traffic monitoring on port 1, which was configured for bidirectional monitoring:

```
Switch> enable
Switch# configure terminal
Switch(config)# no monitor session 1 source interface gigabitethernet1/0/1 rx
```

The monitoring of traffic received on port 1 is disabled, but traffic sent from this port continues to be monitored.

This example shows how to remove any existing configuration on SPAN session 2, configure SPAN session 2 to monitor received traffic on all ports belonging to VLANs 1 through 3, and send it to destination Gigabit Ethernet port 2. The configuration is then modified to also monitor all traffic on all ports belonging to VLAN 10.

```
Switch> enable
Switch# configure terminal
Switch(config)# no monitor session 2
Switch(config)# monitor session 2 source vlan 1 - 3 rx
Switch(config)# monitor session 2 destination interface gigabitethernet1/0/2
Switch(config)# monitor session 2 source vlan 10
Switch(config)# end
```

This example shows how to remove any existing configuration on SPAN session 2, configure SPAN session 2 to monitor received traffic on Gigabit Ethernet source port 1, and send it to destination Gigabit Ethernet port 2 with the same egress encapsulation type as the source port, and to enable ingress forwarding with IEEE 802.1Q encapsulation and VLAN 6 as the default ingress VLAN:

```
Switch> enable
Switch# configure terminal
Switch(config)# no monitor session 2
Switch(config)# monitor session 2 source gigabitethernet1/0/1 rx
Switch(config)# monitor session 2 destination interface gigabitethernet1/0/2 encapsulation replicate ingress dot1q vlan 6
Switch(config)# end
```
This example shows how to remove any existing configuration on SPAN session 2, configure SPAN session 2 to monitor traffic received on Gigabit Ethernet trunk port 2, and send traffic for only VLANs 1 through 5 and VLAN 9 to destination Gigabit Ethernet port 1:

Switch> enable
Switch# configure terminal
Switch(config)# no monitor session 2
Switch(config)# monitor session 2 source interface gigabitethernet1/0/2 rx
Switch(config)# monitor session 2 filter vlan 1 - 5 , 9
Switch(config)# monitor session 2 destination interface gigabitethernet1/0/1
Switch(config)# end

Related Topics
Creating a Local SPAN Session and Configuring Incoming Traffic, on page 563
Local SPAN, on page 550
SPAN Sessions, on page 553
SPAN Configuration Guidelines, on page 559

Examples: Creating an RSPAN VLAN

This example shows how to create the RSPAN VLAN 901:

Switch> enable
Switch# configure terminal
Switch(config)# vlan 901
Switch(config-vlan)# remote span
Switch(config-vlan)# end

This example shows how to remove any existing RSPAN configuration for session 1, configure RSPAN session 1 to monitor multiple source interfaces, and configure the destination as RSPAN VLAN 901:

Switch> enable
Switch# configure terminal
Switch(config)# no monitor session 1
Switch(config)# monitor session 1 source interface gigabitethernet1/0/1 tx
Switch(config)# monitor session 1 source interface gigabitethernet1/0/2 rx
Switch(config)# monitor session 1 source interface port-channel 2
Switch(config)# monitor session 1 destination remote vlan 901
Switch(config)# end

This example shows how to remove any existing configuration on RSPAN session 2, configure RSPAN session 2 to monitor traffic received on trunk port 2, and send traffic for only VLANs 1 through 5 and 9 to destination RSPAN VLAN 902:

Switch> enable
Switch# configure terminal
Switch(config)# no monitor session 2
Switch(config)# monitor session 2 source interface gigabitethernet1/0/2 rx
Switch(config)# monitor session 2 filter vlan 1 - 5 , 9
Switch(config)# monitor session 2 destination remote vlan 902
Switch(config)# end

This example shows how to configure VLAN 901 as the source remote VLAN and port 1 as the destination interface:

Switch> enable
Switch# configure terminal
Switch(config)# monitor session 1 source remote vlan 901
Switch(config)# monitor session 1 destination interface gigabitethernet2/0/1
Switch(config)# end
This example shows how to configure VLAN 901 as the source remote VLAN in RSPAN session 2, to configure Gigabit Ethernet source port 2 as the destination interface, and to enable forwarding of incoming traffic on the interface with VLAN 6 as the default receiving VLAN:

```
Switch> enable
Switch# configure terminal
Switch(config)# monitor session 2 source remote vlan 901
Switch(config)# monitor session 2 destination interface gigabitethernet1/0/2 ingress vlan 6
Switch(config)# end
```

Related Topics

- Creating an RSPAN Destination Session and Configuring Incoming Traffic, on page 575
- Remote SPAN, on page 551
- RSPAN VLAN, on page 557
- RSPAN Configuration Guidelines, on page 560

### Additional References

#### Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Commands</td>
<td>Network Management Command Reference, Cisco IOS Release 15.2(2)E</td>
</tr>
</tbody>
</table>

#### Error Message Decoder

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>To help you research and resolve system error messages in this release, use the Error Message Decoder tool.</td>
<td><a href="https://www.cisco.com/cgi-bin/Support/Errordecoder/index.cgi">https://www.cisco.com/cgi-bin/Support/Errordecoder/index.cgi</a></td>
</tr>
</tbody>
</table>

#### Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>-</td>
</tr>
</tbody>
</table>
MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>All supported MIBs for this release.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/support">http://www.cisco.com/support</a></td>
</tr>
</tbody>
</table>

Feature History and Information for SPAN and RSPAN

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS 15.0(2)EX</td>
<td>Switch Port Analyzer (SPAN): Allows monitoring of switch traffic on a port or VLAN using a sniffer/analysers or RMON probe. This feature was introduced.</td>
</tr>
<tr>
<td>Cisco IOS 15.0(2)EX</td>
<td>SPAN destination port support on EtherChannels: Provides the ability to configure a SPAN destination port on an EtherChannel. This feature was introduced.</td>
</tr>
<tr>
<td>Release</td>
<td>Modification</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Cisco IOS 15.0(2)EX</td>
<td>Switch Port Analyzer (SPAN) - distributed egress SPAN: Provides distributed egress SPAN functionality onto line cards in conjunction with ingress SPAN already been distributed to line cards. By distributing egress SPAN functionalities onto line cards, the performance of the system is improved. This feature was introduced.</td>
</tr>
</tbody>
</table>
PART VIII

QoS

- Configuring QoS, page 585
- Configuring Auto-QoS, page 689
CHAPTER 27

Configuring QoS

- Finding Feature Information, page 585
- Prerequisites for QoS, page 585
- Restrictions for QoS, page 587
- Information About QoS, page 588
- How to Configure QoS, page 614
- Monitoring Standard QoS, page 674
- Configuration Examples for QoS, page 675
- Where to Go Next, page 685
- Additional References, page 686
- Feature History and Information for QoS, page 687

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for QoS

Before configuring standard QoS, you must have a thorough understanding of these items:

- The types of applications used and the traffic patterns on your network.
- Traffic characteristics and needs of your network. For example, is the traffic on your network bursty? Do you need to reserve bandwidth for voice and video streams?
- Bandwidth requirements and speed of the network.
• Location of congestion points in the network.

QoS ACL Guidelines

Follow these guidelines when configuring QoS with access control lists (ACLs):

• It is not possible to match IP fragments against configured IP extended ACLs to enforce QoS. IP fragments are sent as best-effort. IP fragments are denoted by fields in the IP header.

• Only one ACL per class map and only one match class-map configuration command per class map are supported. The ACL can have multiple ACEs, which match fields against the contents of the packet.

• A trust statement in a policy map requires multiple hardware entries per ACL line. If an input service policy map contains a trust statement in an ACL, the access list might be too large to fit into the available QoS hardware memory, and an error can occur when you apply the policy map to a port. Whenever possible, you should minimize the number of lines is a QoS ACL.

Related Topics

Creating an IP Standard ACL for IPv4 Traffic, on page 628
Creating an IP Extended ACL for IPv4 Traffic, on page 630
Creating an IPv6 ACL for IPv6 Traffic, on page 632
Creating a Layer 2 MAC ACL for Non-IP Traffic, on page 634

Policing Guidelines

To use policing, the switch must be running the LAN Base image.

• The port ASIC device, which controls more than one physical port, supports 256 policers (255 user-configurable polcers plus 1 policer reserved for system internal use). The maximum number of user-configurable polcers supported per port is 63. Policers are allocated on demand by the software and are constrained by the hardware and ASIC boundaries.

You cannot reserve policers per port; there is no guarantee that a port will be assigned to any policer.

• Only one policer is applied to a packet on an ingress port. Only the average rate and committed burst parameters are configurable.

• On a port configured for QoS, all traffic received through the port is classified, policed, and marked according to the policy map attached to the port. On a trunk port configured for QoS, traffic in all VLANs received through the port is classified, policed, and marked according to the policy map attached to the port.

• If you have EtherChannel ports configured on your switch, you must configure QoS classification, policing, mapping, and queueing on the individual physical ports that comprise the EtherChannel. You must decide whether the QoS configuration should match on all ports in the EtherChannel.

• If you need to modify a policy map of an existing QoS policy, first remove the policy map from all interfaces, and then modify or copy the policy map. After you finish the modification, apply the modified
policy map to the interfaces. If you do not first remove the policy map from all interfaces, high CPU usage can occur, which, in turn, can cause the console to pause for a very long time.

**General QoS Guidelines**

These are the general QoS guidelines:

- You configure QoS only on physical ports; there is no support for it at the VLAN level.
- Control traffic (such as spanning-tree bridge protocol data units [BPDUs] and routing update packets) received by the switch are subject to all ingress QoS processing.
- You are likely to lose data when you change queue settings; therefore, try to make changes when traffic is at a minimum.
- The switch supports homogeneous stacking and mixed stacking. Mixed stacking is supported only with the Catalyst 2960-S switches. A homogenous stack can have up to eight stack members, while a mixed stack can have up to four stack members. All switches in a switch stack must be running the LAN Base image.

**Restrictions for QoS**

The following are the restrictions for QoS:

- To use these features, the switch must be running the LAN Base image: stacking, DSCP, auto-QoS, trusted boundary, policing, marking, mapping tables, and weighted tail drop.
- Ingress queueing is not supported.
- You can configure QoS only on physical ports. VLAN-based QoS is not supported. You configure the QoS settings, such as classification, queueing, and scheduling, and apply the policy map to a port. When configuring QoS on a physical port, you apply a nonhierarchial policy map to a port.
- If the switch is running the LAN Lite image you can:
  - Configure ACLs, but you cannot attach them to physical interfaces. You can attach them to VLAN interfaces to filter traffic to the CPU.
  - Enable only cos trust at interface level.
  - Enable SRR shaping and sharing at interface level.
  - Enable Priority queueing at interface level.
  - Enable or disable `mls qos rewrite ip dscp`.
- The switch must be running the LAN Base image to use the following QoS features:
  - Policy maps
  - Policing and marking
  - Mapping tables
  - WTD
Information About QoS

QoS Implementation

Typically, networks operate on a best-effort delivery basis, which means that all traffic has equal priority and an equal chance of being delivered in a timely manner. When congestion occurs, all traffic has an equal chance of being dropped.

When you configure the QoS feature, you can select specific network traffic, prioritize it according to its relative importance, and use congestion-management and congestion-avoidance techniques to provide preferential treatment. Implementing QoS in your network makes network performance more predictable and bandwidth utilization more effective.

The QoS implementation is based on the Differentiated Services (Diff-Serv) architecture, a standard from the Internet Engineering Task Force (IETF). This architecture specifies that each packet is classified upon entry into the network.

The classification is carried in the IP packet header, using 6 bits from the deprecated IP type of service (ToS) field to carry the classification (class) information. Classification can also be carried in the Layer 2 frame.
The special bits in the Layer 2 frame or a Layer 3 packet are shown in the following figure:

**Figure 51: QoS Classification Layers in Frames and Packets**

**Encapsulated Packet**

<table>
<thead>
<tr>
<th>Layer 2 header</th>
<th>IP header</th>
<th>Data</th>
</tr>
</thead>
</table>

**Layer 2 ISL Frame**

<table>
<thead>
<tr>
<th>ISL header (26 bytes)</th>
<th>Encapsulated frame 1... (24.5 KB)</th>
<th>FCS (4 bytes)</th>
</tr>
</thead>
</table>

3 bits used for CoS

**Layer 2 802.1Q and 802.1p Frame**

<table>
<thead>
<tr>
<th>Preamble</th>
<th>Start frame delimiter</th>
<th>DA</th>
<th>SA</th>
<th>Tag</th>
<th>PT</th>
<th>Data</th>
<th>FCS</th>
</tr>
</thead>
</table>

3 bits used for CoS (user priority)

**Layer 3 IPv4 Packet**

<table>
<thead>
<tr>
<th>Version length</th>
<th>ToS (1 byte)</th>
<th>Len</th>
<th>ID</th>
<th>Offset</th>
<th>TTL</th>
<th>Proto</th>
<th>FCS</th>
<th>IP-SA</th>
<th>IP-DA</th>
<th>Data</th>
</tr>
</thead>
</table>

IP precedence or DSCP

**Layer 3 IPv6 Packet**

<table>
<thead>
<tr>
<th>Version</th>
<th>Traffic class (1 byte)</th>
<th>Flow label</th>
<th>Payload length</th>
<th>Next header</th>
<th>HOP limit</th>
<th>Source address</th>
<th>Dest. address</th>
</tr>
</thead>
</table>

IP precedence or DSCP

**Layer 2 Frame Prioritization Bits**

Layer 2 Inter-Switch Link (ISL) frame headers have a 1-byte User field that carries an IEEE 802.1p class of service (CoS) value in the three least-significant bits. On ports configured as Layer 2 ISL trunks, all traffic is in ISL frames.

Layer 2 802.1Q frame headers have a 2-byte Tag Control Information field that carries the CoS value in the three most-significant bits, which are called the User Priority bits. On ports configured as Layer 2 802.1Q trunks, all traffic is in 802.1Q frames except for traffic in the native VLAN.

Other frame types cannot carry Layer 2 CoS values.

Layer 2 CoS values range from 0 for low priority to 7 for high priority.

**Layer 3 Packet Prioritization Bits**

Layer 3 IP packets can carry either an IP precedence value or a Differentiated Services Code Point (DSCP) value. QoS supports the use of either value because DSCP values are backward-compatible with IP precedence values.

IP precedence values range from 0 to 7. DSCP values range from 0 to 63.
End-to-End QoS Solution Using Classification

All switches and routers that access the Internet rely on the class information to provide the same forwarding treatment to packets with the same class information and different treatment to packets with different class information. The class information in the packet can be assigned by end hosts or by switches or routers along the way, based on a configured policy, detailed examination of the packet, or both. Detailed examination of the packet is expected to occur closer to the edge of the network, so that the core switches and routers are not overloaded with this task.

Switches and routers along the path can use the class information to limit the amount of resources allocated per traffic class. The behavior of an individual device when handling traffic in the Diff-Serv architecture is called per-hop behavior. If all devices along a path provide a consistent per-hop behavior, you can construct an end-to-end QoS solution.

Implementing QoS in your network can be a simple task or complex task and depends on the QoS features offered by your internetworking devices, the traffic types and patterns in your network, and the granularity of control that you need over incoming and outgoing traffic.

QoS Basic Model

To implement QoS, the switch must distinguish packets or flows from one another (classify), assign a label to indicate the given quality of service as the packets move through the switch, make the packets comply with the configured resource usage limits (police and mark), and provide different treatment (queue and schedule) in all situations where resource contention exists. The switch also needs to ensure that traffic sent from it meets a specific traffic profile (shape).

**Figure 52: QoS Basic Wired Model**

**Actions at Ingress Port**

Actions at the ingress port include classifying traffic, policing, marking, and scheduling:

- Classifying a distinct path for a packet by associating it with a QoS label. The switch maps the CoS or DSCP in the packet to a QoS label to distinguish one kind of traffic from another. The QoS label that is generated identifies all future QoS actions to be performed on this packet.

- Policing determines whether a packet is in or out of profile by comparing the rate of the incoming traffic to the configured policer. The policer limits the bandwidth consumed by a flow of traffic. The result is passed to the marker.
Marking evaluates the policer and configuration information for the action to be taken when a packet is out of profile and determines what to do with the packet (pass through a packet without modification, marking down the QoS label in the packet, or dropping the packet).

**Note**
Queueing and scheduling are only supported at egress and not at ingress on the switch.

**Actions at Egress Port**

Actions at the egress port include queueing and scheduling:

- **Queueing** evaluates the QoS packet label and the corresponding DSCP or CoS value before selecting which of the four egress queues to use. Because congestion can occur when multiple ingress ports simultaneously send data to an egress port, WTD differentiates traffic classes and subjects the packets to different thresholds based on the QoS label. If the threshold is exceeded, the packet is dropped.

- **Scheduling** services the four egress queues based on their configured SRR shared or shaped weights. One of the queues (queue 1) can be the expedited queue, which is serviced until empty before the other queues are serviced.

**Classification Overview**

Classification is the process of distinguishing one kind of traffic from another by examining the fields in the packet. Classification is enabled only if QoS is globally enabled on the switch. By default, QoS is globally disabled, so no classification occurs.

During classification, the switch performs a lookup and assigns a QoS label to the packet. The QoS label identifies all QoS actions to be performed on the packet and from which queue the packet is sent.

The QoS label is based on the DSCP or the CoS value in the packet and decides the queueing and scheduling actions to perform on the packet. The label is mapped according to the trust setting and the packet type as shown in Classification Flowchart, on page 594.

You specify which fields in the frame or packet that you want to use to classify incoming traffic.

**Related Topics**

- Ingress Port Activity
- Egress Port Activity
- Configuring a QoS Policy, on page 628

**Non-IP Traffic Classification**

The following table describes the non-IP traffic classification options for your QoS configuration.
### Table 66: Non-IP Traffic Classifications

<table>
<thead>
<tr>
<th>Non-IP Traffic Classification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trust the CoS value</td>
<td>Trust the CoS value in the incoming frame (configure the port to trust CoS), and then use the configurable CoS-to-DSCP map to generate a DSCP value for the packet. Layer 2 ISL frame headers carry the CoS value in the 3 least-significant bits of the 1-byte User field. Layer 2 802.1Q frame headers carry the CoS value in the 3 most-significant bits of the Tag Control Information field. CoS values range from 0 for low priority to 7 for high priority.</td>
</tr>
<tr>
<td>Trust the DSCP or trust IP precedence value</td>
<td>Trust the DSCP or trust IP precedence value in the incoming frame. These configurations are meaningless for non-IP traffic. If you configure a port with either of these options and non-IP traffic is received, the switch assigns a CoS value and generates an internal DSCP value from the CoS-to-DSCP map. The switch uses the internal DSCP value to generate a CoS value representing the priority of the traffic.</td>
</tr>
<tr>
<td>Perform classification based on configured Layer 2 MAC ACL</td>
<td>Perform the classification based on a configured Layer 2 MAC access control list (ACL), which can examine the MAC source address, the MAC destination address, and other fields. If no ACL is configured, the packet is assigned 0 as the DSCP and CoS values, which means best-effort traffic. Otherwise, the policy-map action specifies a DSCP or CoS value to assign to the incoming frame.</td>
</tr>
</tbody>
</table>

After classification, the packet is sent to the policing and marking stages.

### IP Traffic Classification

The following table describes the IP traffic classification options for your QoS configuration.

### Table 67: IP Traffic Classifications

<table>
<thead>
<tr>
<th>IP Traffic Classification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trust the DSCP value</td>
<td>Trust the DSCP value in the incoming packet (configure the port to trust DSCP), and assign the same DSCP value to the packet. The IETF defines the 6 most-significant bits of the 1-byte ToS field as the DSCP. The priority represented by a particular DSCP value is configurable. DSCP values range from 0 to 63. You can also classify IP traffic based on IPv6 DSCP. For ports that are on the boundary between two QoS administrative domains, you can modify the DSCP to another value by using the configurable DSCP-to-DSCP-mutation map.</td>
</tr>
</tbody>
</table>

Cisco 2960-X Switch Series Configuration Guide, Cisco IOS Release 15.0(2)EX
<table>
<thead>
<tr>
<th><strong>IP Traffic Classification</strong></th>
<th><strong>Description</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Trust the IP precedence value</td>
<td>Trust the IP precedence value in the incoming packet (configure the port to trust IP precedence), and generate a DSCP value for the packet by using the configurable IP-precedence-to-DSCP map. The IP Version 4 specification defines the 3 most-significant bits of the 1-byte ToS field as the IP precedence. IP precedence values range from 0 for low priority to 7 for high priority. You can also classify IP traffic based on IPv6 precedence.</td>
</tr>
<tr>
<td>Trust the CoS value</td>
<td>Trust the CoS value (if present) in the incoming packet, and generate a DSCP value for the packet by using the CoS-to-DSCP map. If the CoS value is not present, use the default port CoS value.</td>
</tr>
<tr>
<td>IP standard or an extended ACL</td>
<td>Perform the classification based on a configured IP standard or an extended ACL, which examines various fields in the IP header. If no ACL is configured, the packet is assigned 0 as the DSCP and CoS values, which means best-effort traffic. Otherwise, the policy-map action specifies a DSCP or CoS value to assign to the incoming frame.</td>
</tr>
<tr>
<td>Override configured CoS</td>
<td>Override the configured CoS of incoming packets, and apply the default port CoS value to them. For IPv6 packets, the DSCP value is rewritten by using the CoS-to-DSCP map and by using the default CoS of the port. You can do this for both IPv4 and IPv6 traffic.</td>
</tr>
</tbody>
</table>

After classification, the packet is sent to the policing and marking stages.
Access Control Lists

You can use IP standard, IP extended, or Layer 2 MAC ACLs to define a group of packets with the same characteristics (class). You can also classify IP traffic based on IPv6 ACLs.

In the QoS context, the permit and deny actions in the access control entries (ACEs) have different meanings from security ACLs:
If a match with a permit action is encountered (first-match principle), the specified QoS-related action is taken.

If a match with a deny action is encountered, the ACL being processed is skipped, and the next ACL is processed.

If no match with a permit action is encountered and all the ACEs have been examined, no QoS processing occurs on the packet, and the switch offers best-effort service to the packet.

If multiple ACLs are configured on a port, the lookup stops after the packet matches the first ACL with a permit action, and QoS processing begins.

After a traffic class has been defined with the ACL, you can attach a policy to it. A policy might contain multiple classes with actions specified for each one of them. A policy might include commands to classify the class as a particular aggregate (for example, assign a DSCP) or rate-limit the class. This policy is then attached to a particular port on which it becomes effective.

You implement IP ACLs to classify IP traffic by using the `access-list` global configuration command; you implement Layer 2 MAC ACLs to classify non-IP traffic by using the `mac access-list extended` global configuration command.

### Related Topics

- Creating an IP Standard ACL for IPv4 Traffic, on page 628
- Creating an IP Extended ACL for IPv4 Traffic, on page 630
- Creating an IPv6 ACL for IPv6 Traffic, on page 632
- Creating a Layer 2 MAC ACL for Non-IP Traffic, on page 634

### Classification Based on Class Maps and Policy Maps

To use policy maps, the switch must be running the LAN Base image.

A class map is a mechanism that you use to name a specific traffic flow (or class) and to isolate it from all other traffic. The class map defines the criteria used to match against a specific traffic flow to further classify it. The criteria can include matching the access group defined by the ACL or matching a specific list of DSCP or IP precedence values. If you have more than one type of traffic that you want to classify, you can create another class map and use a different name. After a packet is matched against the class-map criteria, you further classify it through the use of a policy map.

A policy map specifies which traffic class to act on. Actions can include trusting the CoS, DSCP, or IP precedence values in the traffic class; setting a specific DSCP or IP precedence value in the traffic class; or specifying the traffic bandwidth limitations and the action to take when the traffic is out of profile. Before a policy map can be effective, you must attach it to a port.

You create a class map by using the `class-map` global configuration command or the `class` policy-map configuration command. You should use the `class-map` command when the map is shared among many ports. When you enter the `class-map` command, the switch enters the class-map configuration mode. In this mode, you define the match criterion for the traffic by using the `match` class-map configuration command.
You can configure a default class by using the `class class-default` policy-map configuration command. Unclassified traffic (traffic specified in the other traffic classes configured on the policy-map) is treated as default traffic.

You create and name a policy map by using the `policy-map` global configuration command. When you enter this command, the switch enters the policy-map configuration mode. In this mode, you specify the actions to take on a specific traffic class by using the `class`, `trust`, or `set` policy-map configuration and policy-map class configuration commands.

The policy map can contain the `police` and `police aggregate` policy-map class configuration commands, which define the policer, the bandwidth limitations of the traffic, and the action to take if the limits are exceeded.

To enable the policy map, you attach it to a port by using the `service-policy` interface configuration command.

**Policing and Marking Overview**

After a packet is classified and has a DSCP-based or CoS-based QoS label assigned to it, the policing and marking process can begin.

Policing involves creating a policer that specifies the bandwidth limits for the traffic. Packets that exceed the limits are *out of profile* or *nonconforming*. Each policer decides on a packet-by-packet basis whether the packet is in or out of profile and specifies the actions on the packet. These actions, carried out by the marker, include passing through the packet without modification, dropping the packet, or modifying (marking down) the assigned DSCP of the packet and allowing the packet to pass through. The configurable policed-DSCP map provides the packet with a new DSCP-based QoS label. Marked-down packets use the same queues as the original QoS label to prevent packets in a flow from getting out of order.

---

**Note**

All traffic, regardless of whether it is bridged or routed, is subjected to a policer, if one is configured. As a result, bridged packets might be dropped or might have their DSCP or CoS fields modified when they are policed and marked.

You can configure policing on a physical port. After you configure the policy map and policing actions, attach the policy to a port by using the `service-policy` interface configuration command.

**Related Topics**

- Ingress Port Activity
- Class Maps
- Policy Maps
- Configuring a QoS Policy, on page 628
- Classifying, Policing, and Marking Traffic on Physical Ports by Using Policy Maps, on page 641
- Classifying, Policing, and Marking Traffic on SVIs by Using Hierarchical Policy Maps
- Classifying, Policing, and Marking Traffic by Using Aggregate Policers, on page 645

**Physical Port Policing**

In policy maps on physical ports, you can create the following types of policers:

- Individual—QoS applies the bandwidth limits specified in the policer separately to each matched traffic class. You configure this type of policer within a policy map by using the `police` policy-map class configuration command.

---

596

Cisco 2960-X Switch Series Configuration Guide, Cisco IOS Release 15.0(2)EX

OL-29640-01
• Aggregate—QoS applies the bandwidth limits specified in an aggregate policer cumulatively to all matched traffic flows. You configure this type of policer by specifying the aggregate policer name within a policy map by using the `police aggregate` policy-map class configuration command. You specify the bandwidth limits of the policer by using the `mls qos aggregate-policer` global configuration command. In this way, the aggregate policer is shared by multiple classes of traffic within a policy map.

Policing uses a token-bucket algorithm. As each frame is received by the switch, a token is added to the bucket. The bucket has a hole in it and leaks at a rate that you specify as the average traffic rate in bits per second. Each time a token is added to the bucket, the switch verifies that there is enough room in the bucket. If there is not enough room, the packet is marked as nonconforming, and the specified policer action is taken (dropped or marked down).

How quickly the bucket fills is a function of the bucket depth (burst-byte), the rate at which the tokens are removed (rate-bps), and the duration of the burst above the average rate. The size of the bucket imposes an upper limit on the burst length and limits the number of frames that can be transmitted back-to-back. If the burst is short, the bucket does not overflow, and no action is taken against the traffic flow. However, if a burst is long and at a higher rate, the bucket overflows, and the policing actions are taken against the frames in that burst.

You configure the bucket depth (the maximum burst that is tolerated before the bucket overflows) by using the burst-byte option of the `police` policy-map class configuration command or the `mls qos aggregate-policer` global configuration command. You configure how fast (the average rate) that the tokens are removed from the bucket by using the rate-bps option of the `police` policy-map class configuration command or the `mls qos aggregate-policer` global configuration command.
Mapping Tables Overview

During QoS processing, the switch represents the priority of all traffic (including non-IP traffic) with a QoS label based on the DSCP or CoS value from the classification stage.

The following table describes QoS processing and mapping tables.
Table 68: QoS Processing and Mapping Tables

<table>
<thead>
<tr>
<th>QoS Processing Stage</th>
<th>Mapping Table Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification</td>
<td>During the classification stage, QoS uses configurable mapping tables to derive a corresponding DSCP or CoS value from a received CoS, DSCP, or IP precedence value. These maps include the CoS-to-DSCP map and the IP-precedence-to-DSCP map. You configure these maps by using the <code>mls qos map cos-dscp</code> and the <code>mls qos map ip-prec-dscp</code> global configuration commands. On an ingress port configured in the DSCP-trusted state, if the DSCP values are different between the QoS domains, you can apply the configurable DSCP-to-DSCP-mutation map to the port that is on the boundary between the two QoS domains. You configure this map by using the <code>mls qos map dscp-mutation</code> global configuration command.</td>
</tr>
<tr>
<td>Policing</td>
<td>During policing stage, QoS can assign another DSCP value to an IP or a non-IP packet (if the packet is out of profile and the policer specifies a marked-down value). This configurable map is called the policed-DSCP map. You configure this map by using the <code>mls qos map policed-dscp</code> global configuration command.</td>
</tr>
<tr>
<td>Pre-scheduling</td>
<td>Before the traffic reaches the scheduling stage, QoS stores the packet in an egress queue according to the QoS label. The QoS label is based on the DSCP or the CoS value in the packet and selects the queue through the DSCP output queue threshold maps or through the CoS output queue threshold maps. In addition to an egress queue, the QOS label also identifies the WTD threshold value. You configure these maps by using the <code>mls qos srr-queue {output} dscp-map</code> and the <code>mls qos srr-queue {output} cos-map</code> global configuration commands.</td>
</tr>
</tbody>
</table>

The CoS-to-DSCP, DSCP-to-CoS, and the IP-precedence-to-DSCP maps have default values that might or might not be appropriate for your network.

The default DSCP-to-DSCP-mutation map and the default policed-DSCP map are null maps; they map an incoming DSCP value to the same DSCP value. The DSCP-to-DSCP-mutation map is the only map you apply to a specific port. All other maps apply to the entire switch.

Related Topics

- Configuring DSCP Maps, on page 648
- Queueing and Scheduling on Ingress Queues, on page 602
- Queueing and Scheduling on Egress Queues
Queueing and Scheduling Overview

The switch has queues at specific points to help prevent congestion.

**Figure 55: Egress Queue Location on Switch**

*Weighted Tail Drop*

Egress queues use an enhanced version of the tail-drop congestion-avoidance mechanism called weighted tail drop (WTD). WTD is implemented on queues to manage the queue lengths and to provide drop precedences for different traffic classifications.

As a frame is enqueued to a particular queue, WTD uses the frame’s assigned QoS label to subject it to different thresholds. If the threshold is exceeded for that QoS label (the space available in the destination queue is less than the size of the frame), the switch drops the frame.

Each queue has three threshold values. The QoS label determines which of the three threshold values is subjected to the frame. Of the three thresholds, two are configurable (explicit) and one is not (implicit).

The following figure shows an example of WTD operating on a queue whose size is 1000 frames. Three drop percentages are configured: 40 percent (400 frames), 60 percent (600 frames), and 100 percent (1000 frames). These percentages indicate that up to 400 frames can be queued at the 40-percent threshold, up to 600 frames at the 60-percent threshold, and up to 1000 frames at the 100-percent threshold.

**Figure 56: WTD and Queue Operation**
In the example, CoS values 6 and 7 have a greater importance than the other CoS values, and they are assigned to the 100-percent drop threshold (queue-full state). CoS values 4 and 5 are assigned to the 60-percent threshold, and CoS values 0 to 3 are assigned to the 40-percent threshold.

Suppose the queue is already filled with 600 frames, and a new frame arrives. It contains CoS values 4 and 5 and is subjected to the 60-percent threshold. If this frame is added to the queue, the threshold will be exceeded, so the switch drops it.

Related Topics
- Mapping DSCP or CoS Values to an Ingress Queue and Setting WTD Thresholds, on page 656
- Allocating Buffer Space to and Setting WTD Thresholds for an Egress Queue-Set, on page 662
- Mapping DSCP or CoS Values to an Egress Queue and to a Threshold ID, on page 665
- WTD Thresholds, on page 604
- Queues and WTD Thresholds, on page 608

SRR Shaping and Sharing
Egress queues are serviced by shaped round robin (SRR), which controls the rate at which packets are sent. On the egress queues, SRR sends packets to the egress port.

You can configure SRR on egress queues for sharing or for shaping.

In shaped mode, the egress queues are guaranteed a percentage of the bandwidth, and they are rate-limited to that amount. Shaped traffic does not use more than the allocated bandwidth even if the link is idle. Shaping provides a more even flow of traffic over time and reduces the peaks and valleys of bursty traffic. With shaping, the absolute value of each weight is used to compute the bandwidth available for the queues.

In shared mode, the queues share the bandwidth among them according to the configured weights. The bandwidth is guaranteed at this level but not limited to it. For example, if a queue is empty and no longer requires a share of the link, the remaining queues can expand into the unused bandwidth and share it among them. With sharing, the ratio of the weights controls the frequency of dequeuing; the absolute values are meaningless. Shaping and sharing is configured per interface. Each interface can be uniquely configured.

Related Topics
- Ingress Port Activity
- Allocating Bandwidth Between the Ingress Queues, on page 660
- Configuring SRR Shaped Weights on Egress Queues, on page 667
- Configuring SRR Shared Weights on Egress Queues, on page 669
- Shaped or Shared Mode, on page 608
Queueing and Scheduling on Ingress Queues

The following figure shows queueing and scheduling flowcharts for ingress ports on Catalyst 3750-E and 3750-X switches.

*Figure 57: Queueing and Scheduling Flowchart for Ingress Ports on Catalyst 3750-E and 3750-X Switches*
The following figure shows queueing and scheduling flowcharts for ingress ports on Catalyst 3560-E and 3560-X switches.

**Figure 58: Queueing and Scheduling Flowchart for Ingress Ports on Catalyst 3560-E and 3560-X Switches**

---

**Note**

SRR services the priority queue for its configured share before servicing the other queue.

---

**Related Topics**

- Mapping DSCP or CoS Values to an Ingress Queue and Setting WTD Thresholds, on page 656
- Allocating Buffer Space Between the Ingress Queues, on page 658
- Examples: Configuring Ingress Queue Characteristics, on page 683
- Allocating Bandwidth Between the Ingress Queues, on page 660
- Examples: Configuring Ingress Queue Characteristics, on page 683
- Configuring the Ingress Priority Queue
- Examples: Configuring Ingress Queue Characteristics, on page 683
- Configuring the Ingress Priority Queue
- Mapping Tables Overview, on page 598

**Configurable Ingress Queue Types**

The switch supports two configurable ingress queue types, which are serviced by SRR in shared mode only.
The switch also uses two nonconfigurable queues for traffic that are essential for proper network and stack operation.

The following table describes the two configurable ingress queues.

### Table 69: Configurable Ingress Queue Types

<table>
<thead>
<tr>
<th>Queue Type</th>
<th>Function</th>
</tr>
</thead>
</table>
| Normal     | User traffic that is considered to be normal priority.  
You can configure three different thresholds to differentiate among the flows.  
Use the following global configuration commands:  
- `mls qos srr-queue input threshold`  
- `mls qos srr-queue input dscp-map`  
- `mls qos srr-queue input cos-map` |
| Expedite   | High-priority user traffic such as differentiated services (DF) expedited forwarding or voice traffic.  
You can configure the bandwidth required for this traffic as a percentage of the total traffic or total stack traffic on the switches by using the `mls qos srr-queue input priority-queue` global configuration command.  
The expedite queue has guaranteed bandwidth. |

You assign each packet that flows through the switch to a queue and to a threshold. Specifically, you map DSCP or CoS values to an ingress queue and map DSCP or CoS values to a threshold ID. You use the `mls qos srr-queue input dscp-map queue queue-id {dscp1...dscp8 | threshold threshold-id dscp1...dscp8}` or the `mls qos srr-queue input cos-map queue queue-id {cos1...cos8 | threshold threshold-id cos1...cos8}` global configuration command. You can display the DSCP input queue threshold map and the CoS input queue threshold map by using the `show mls qos maps privileged` EXEC command.

**WTD Thresholds**

The queues use WTD to support distinct drop percentages for different traffic classes. Each queue has three drop thresholds: two configurable (explicit) WTD thresholds and one nonconfigurable (implicit) threshold preset to the queue-full state.

You assign the two explicit WTD threshold percentages for threshold ID 1 and ID 2 to the ingress queues by using the `mls qos srr-queue input threshold queue-id threshold-percentage1 threshold-percentage2` global configuration command. Each threshold value is a percentage of the total number of allocated buffers for the queue. The drop threshold for threshold ID 3 is preset to the queue-full state, and you cannot modify it.

**Related Topics**

- Weighted Tail Drop, on page 600
Buffer and Bandwidth Allocation
You define the ratio (allocate the amount of space) with which to divide the ingress buffers between the two queues (normal and expedite) by using the `mls qos srr-queue input buffers percentage1 percentage2` global configuration command. The buffer allocation together with the bandwidth allocation control how much data can be buffered and sent before packets are dropped. You allocate bandwidth as a percentage by using the `mls qos srr-queue input bandwidth weight1 weight2` global configuration command. The ratio of the weights is the ratio of the frequency in which the SRR scheduler sends packets from each queue.

Priority Queueing
You can configure one ingress queue as the priority queue by using the `mls qos srr-queue input priority-queue queue-id bandwidth weight` global configuration command. The priority queue should be used for traffic (such as voice) that requires guaranteed delivery because this queue is guaranteed part of the bandwidth regardless of the load on the stack or internal ring.

SRR services the priority queue for its configured weight as specified by the `bandwidth` keyword in the `mls qos srr-queue input priority-queue queue-id bandwidth weight` global configuration command. Then, SRR shares the remaining bandwidth with both ingress queues and services them as specified by the weights configured with the `mls qos srr-queue input bandwidth weight1 weight2` global configuration command.

You can combine the above commands to prioritize traffic by placing packets with particular DSCPs or CoSs into certain queues, by allocating a large queue size or by servicing the queue more frequently, and by adjusting queue thresholds so that packets with lower priorities are dropped.

Related Topics
Configuring Ingress Queue Characteristics, on page 656
Queueing and Scheduling on Egress Queues

The following figure shows queueing and scheduling flowcharts for egress ports on the switch.

Figure 59: Queueing and Scheduling Flowchart for Egress Ports on the Switch

Note
If the expedite queue is enabled, SRR services it until it is empty before servicing the other three queues.
**Egress Expedite Queue**

Each port supports four egress queues, one of which (queue 1) can be the egress expedite queue. These queues are assigned to a queue-set. All traffic exiting the switch flows through one of these four queues and is subjected to a threshold based on the QoS label assigned to the packet.

- **Note**
  If the expedite queue is enabled, SRR services it until it is empty before servicing the other three queues.

**Egress Queue Buffer Allocation**

The following figure shows the egress queue buffer.

The buffer space is divided between the common pool and the reserved pool. The switch uses a buffer allocation scheme to reserve a minimum amount of buffers for each egress queue, to prevent any queue or port from consuming all the buffers and depriving other queues, and to control whether to grant buffer space to a requesting queue. The switch detects whether the target queue has not consumed more buffers than its reserved amount (under-limit), whether it has consumed all of its maximum buffers (over limit), and whether the common pool is empty (no free buffers) or not empty (free buffers). If the queue is not over-limit, the switch can allocate buffer space from the reserved pool or from the common pool (if it is not empty). If there are no free buffers in the common pool or if the queue is over-limit, the switch drops the frame.

**Figure 60: Egress Queue Buffer Allocation**

![Diagram of Egress Queue Buffer Allocation]

**Buffer and Memory Allocation**

You guarantee the availability of buffers, set drop thresholds, and configure the maximum memory allocation for a queue-set by using the `mls qos queue-set output qset-id threshold queue-id drop-threshold1 drop-threshold2 reserved-threshold maximum-threshold` global configuration command. Each threshold value is a percentage of the queue’s allocated memory, which you specify by using the `mls qos queue-set output qset-id buffers allocation1 ... allocation4` global configuration command. The sum of all the allocated buffers represents the reserved pool, and the remaining buffers are part of the common pool.

Through buffer allocation, you can ensure that high-priority traffic is buffered. For example, if the buffer space is 400, you can allocate 70 percent of it to queue 1 and 10 percent to queues 2 through 4. Queue 1 then has 280 buffers allocated to it, and queues 2 through 4 each have 40 buffers allocated to them.

You can guarantee that the allocated buffers are reserved for a specific queue in a queue-set. For example, if there are 100 buffers for a queue, you can reserve 50 percent (50 buffers). The switch returns the remaining 50 buffers to the common pool. You also can enable a queue in the full condition to obtain more buffers than
are reserved for it by setting a maximum threshold. The switch can allocate the needed buffers from the common pool if the common pool is not empty.

**Queues and WTD Thresholds**

You can assign each packet that flows through the switch to a queue and to a threshold.

Specifically, you map DSCP or CoS values to an egress queue and map DSCP or CoS values to a threshold ID. You use the `mls qos srr-queue output dscp-map queue {dscp1...dscp8 | threshold threshold-id dscp1...dscp8}` or the `mls qos srr-queue output cos-map queue {cos1...cos8 | threshold threshold-id cos1...cos8}` global configuration command. You can display the DSCP output queue threshold map and the CoS output queue threshold map by using the `show mls qos maps` privileged EXEC command.

The queues use WTD to support distinct drop percentages for different traffic classes. Each queue has three drop thresholds: two configurable (explicit) WTD thresholds and one nonconfigurable (implicit) threshold preset to the queue-full state. You assign the two WTD threshold percentages for threshold ID 1 and ID 2. The drop threshold for threshold ID 3 is preset to the queue-full state, and you cannot modify it. You map a port to queue-set by using the `queue-set qset-id` interface configuration command. Modify the queue-set configuration to change the WTD threshold percentages.

**Related Topics**

- Weighted Tail Drop, on page 600

**Shaped or Shared Mode**

SRR services each queue-set in shared or shaped mode. You map a port to a queue-set by using the `queue-set qset-id` interface configuration command. You assign shared or shaped weights to the port by using the `srr-queue bandwidth share weight1 weight2 weight3 weight4` or the `srr-queue bandwidth shape weight1 weight2 weight3 weight4` interface configuration command.

The buffer allocation together with the SRR weight ratios control how much data can be buffered and sent before packets are dropped. The weight ratio is the ratio of the frequency in which the SRR scheduler sends packets from each queue.

All four queues participate in the SRR unless the expedite queue is enabled, in which case the first bandwidth weight is ignored and is not used in the ratio calculation. The expedite queue is a priority queue, and it is serviced until empty before the other queues are serviced. You enable the expedite queue by using the `priority-queue out` interface configuration command.

You can combine the commands described in this section to prioritize traffic by placing packets with particular DSCPs or CoSs into certain queues, by allocating a large queue size or by servicing the queue more frequently, and by adjusting queue thresholds so that packets with lower priorities are dropped.

---

**Note**

The egress queue default settings are suitable for most situations. You should change them only when you have a thorough understanding of the egress queues and if these settings do not meet your QoS solution.

**Related Topics**

- Configuring Egress Queue Characteristics, on page 662
- SRR Shaping and Sharing, on page 601
Packet Modification

A packet is classified, policed, and queued to provide QoS. The following packet modifications can occur during the process to provide QoS:

- For IP and non-IP packets, classification involves assigning a QoS label to a packet based on the DSCP or CoS of the received packet. However, the packet is not modified at this stage; only an indication of the assigned DSCP or CoS value is carried along. The reason for this is that QoS classification and forwarding look-ups occur in parallel, and it is possible that the packet is forwarded with its original DSCP to the CPU where it is again processed through software.

- During policing, IP and non-IP packets can have another DSCP assigned to them (if they are out of profile and the policer specifies a mark down DSCP). Once again, the DSCP in the packet is not modified, but an indication of the marked-down value is carried along. For IP packets, the packet modification occurs at a later stage; for non-IP packets the DSCP is converted to CoS and used for queueing and scheduling decisions.

- Depending on the QoS label assigned to a frame and the mutation chosen, the DSCP and CoS values of the frame are rewritten. If you do not configure a table map and if you configure the port to trust the DSCP of the incoming frame, the DSCP value in the frame is not changed, but the CoS is rewritten according to the DSCP-to-CoS map. If you configure the port to trust the CoS of the incoming frame and it is an IP packet, the CoS value in the frame is not changed, but the DSCP might be changed according to the CoS-to-DSCP map.

The input mutation causes the DSCP to be rewritten depending on the new value of DSCP chosen. The set action in a policy map also causes the DSCP to be rewritten.

Standard QoS Default Configuration

Standard QoS is disabled by default.

There is no concept of trusted or untrusted ports because the packets are not modified. The CoS, DSCP, and IP precedence values in the packet are not changed.

Traffic is switched in pass-through mode. The packets are switched without any rewrites and classified as best effort without any policing.

When QoS is enabled using the `mls qos` global configuration command and all other QoS settings are at their defaults, traffic is classified as best effort (the DSCP and CoS value is set to 0) without any policing. No policy maps are configured. The default port trust state on all ports is untrusted.

**Related Topics**

Enabling QoS Globally, on page 614
Default Egress Queue Configuration, on page 611
Default Ingress Queue Configuration, on page 609

Default Ingress Queue Configuration

The following tables describe the default ingress queue configurations.

The following table shows the default ingress queue configuration when QoS is enabled. For the bandwidth allocation feature, bandwidth is equally shared between the queues. SRR sends packets in shared mode only.
Queue 2 is the priority queue. SRR services the priority queue for its configured share before servicing the other queue.

**Table 70: Default Ingress Queue Configuration**

<table>
<thead>
<tr>
<th>Feature</th>
<th>Queue 1</th>
<th>Queue 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffer allocation</td>
<td>90 percent</td>
<td>10 percent</td>
</tr>
<tr>
<td>Bandwidth allocation</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Priority queue bandwidth</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>WTD drop threshold 1</td>
<td>100 percent</td>
<td>100 percent</td>
</tr>
<tr>
<td>WTD drop threshold 2</td>
<td>100 percent</td>
<td>100 percent</td>
</tr>
</tbody>
</table>

The following table shows the default CoS input queue threshold map when QoS is enabled.

**Table 71: Default CoS Input Queue Threshold Map**

<table>
<thead>
<tr>
<th>CoS Value</th>
<th>Queue ID–Threshold ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–4</td>
<td>1–1</td>
</tr>
<tr>
<td>5</td>
<td>2–1</td>
</tr>
<tr>
<td>6, 7</td>
<td>1–1</td>
</tr>
</tbody>
</table>

The following table shows the default DSCP input queue threshold map when QoS is enabled.

**Table 72: Default DSCP Input Queue Threshold Map**

<table>
<thead>
<tr>
<th>DSCP Value</th>
<th>Queue ID–Threshold ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–39</td>
<td>1–1</td>
</tr>
<tr>
<td>40–47</td>
<td>2–1</td>
</tr>
<tr>
<td>48–63</td>
<td>1–1</td>
</tr>
</tbody>
</table>

**Related Topics**

- Enabling QoS Globally, on page 614
- Standard QoS Default Configuration, on page 609
Default Egress Queue Configuration

The following tables describe the default egress queue configurations.

The following table shows the default egress queue configuration for each queue-set when QoS is enabled. All ports are mapped to queue-set 1. The port bandwidth limit is set to 100 percent and rate unlimited. Note that for the SRR shaped weights (absolute) feature, a shaped weight of zero indicates that the queue is operating in shared mode. Note that for the SRR shared weights feature, one quarter of the bandwidth is allocated to each queue.

**Table 73: Default Egress Queue Configuration**

<table>
<thead>
<tr>
<th>Feature</th>
<th>Queue 1</th>
<th>Queue 2</th>
<th>Queue 3</th>
<th>Queue 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffer allocation</td>
<td>25 percent</td>
<td>25 percent</td>
<td>25 percent</td>
<td>25 percent</td>
</tr>
<tr>
<td>WTD drop threshold 1</td>
<td>100 percent</td>
<td>200 percent</td>
<td>100 percent</td>
<td>100 percent</td>
</tr>
<tr>
<td>WTD drop threshold 2</td>
<td>100 percent</td>
<td>200 percent</td>
<td>100 percent</td>
<td>100 percent</td>
</tr>
<tr>
<td>Reserved threshold</td>
<td>50 percent</td>
<td>50 percent</td>
<td>50 percent</td>
<td>50 percent</td>
</tr>
<tr>
<td>Maximum threshold</td>
<td>400 percent</td>
<td>400 percent</td>
<td>400 percent</td>
<td>400 percent</td>
</tr>
<tr>
<td>SRR shaped weights (absolute)</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SRR shared weights</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
</tbody>
</table>

The following table shows the default CoS output queue threshold map when QoS is enabled.

**Table 74: Default CoS Output Queue Threshold Map**

<table>
<thead>
<tr>
<th>CoS Value</th>
<th>Queue ID–Threshold ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 1</td>
<td>2–1</td>
</tr>
<tr>
<td>2, 3</td>
<td>3–1</td>
</tr>
<tr>
<td>4</td>
<td>4–1</td>
</tr>
<tr>
<td>5</td>
<td>1–1</td>
</tr>
<tr>
<td>6, 7</td>
<td>4–1</td>
</tr>
</tbody>
</table>

The following table shows the default DSCP output queue threshold map when QoS is enabled.
Table 75: Default DSCP Output Queue Threshold Map

<table>
<thead>
<tr>
<th>DSCP Value</th>
<th>Queue ID–Threshold ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–15</td>
<td>2–1</td>
</tr>
<tr>
<td>16–31</td>
<td>3–1</td>
</tr>
<tr>
<td>32–39</td>
<td>4–1</td>
</tr>
<tr>
<td>40–47</td>
<td>1–1</td>
</tr>
<tr>
<td>48–63</td>
<td>4–1</td>
</tr>
</tbody>
</table>

Related Topics

- Enabling QoS Globally, on page 614
- Standard QoS Default Configuration, on page 609

Default Mapping Table Configuration

The default DSCP-to-DSCP-mutation map is a null map, which maps an incoming DSCP value to the same DSCP value.

The default policed-DSCP map is a null map, which maps an incoming DSCP value to the same DSCP value (no markdown).

Related Topics

- Default CoS-to-DSCP Map, on page 612
- Default IP-Precedence-to-DSCP Map, on page 613
- Default DSCP-to-CoS Map, on page 614

DSCP Maps

Default CoS-to-DSCP Map

You use the CoS-to-DSCP map to map CoS values in incoming packets to a DSCP value that QoS uses internally to represent the priority of the traffic. The following table shows the default CoS-to-DSCP map. If these values are not appropriate for your network, you need to modify them.

Table 76: Default CoS-to-DSCP Map

<table>
<thead>
<tr>
<th>CoS Value</th>
<th>DSCP Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
</tr>
</tbody>
</table>
You use the IP-precedence-to-DSCP map to map IP precedence values in incoming packets to a DSCP value that QoS uses internally to represent the priority of the traffic. The following table shows the default IP-precedence-to-DSCP map. If these values are not appropriate for your network, you need to modify them.

**Table 77: Default IP-Precedence-to-DSCP Map**

<table>
<thead>
<tr>
<th>IP Precedence Value</th>
<th>DSCP Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>32</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>48</td>
</tr>
<tr>
<td>7</td>
<td>56</td>
</tr>
</tbody>
</table>
Related Topics

Default Mapping Table Configuration, on page 612
Configuring the IP-Precedence-to-DSCP Map, on page 650
Configuring the Policed-DSCP Map, on page 651

Default DSCP-to-CoS Map

You use the DSCP-to-CoS map to generate a CoS value, which is used to select one of the four egress queues. The following table shows the default DSCP-to-CoS map. If these values are not appropriate for your network, you need to modify them.

Table 78: Default DSCP-to-CoS Map

<table>
<thead>
<tr>
<th>DSCP Value</th>
<th>CoS Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–7</td>
<td>0</td>
</tr>
<tr>
<td>8–15</td>
<td>1</td>
</tr>
<tr>
<td>16–23</td>
<td>2</td>
</tr>
<tr>
<td>24–31</td>
<td>3</td>
</tr>
<tr>
<td>32–39</td>
<td>4</td>
</tr>
<tr>
<td>40–47</td>
<td>5</td>
</tr>
<tr>
<td>48–55</td>
<td>6</td>
</tr>
<tr>
<td>56–63</td>
<td>7</td>
</tr>
</tbody>
</table>

Related Topics

Default Mapping Table Configuration, on page 612
Configuring the DSCP-to-CoS Map, on page 652
Configuring the Policed-DSCP Map, on page 651

How to Configure QoS

Enabling QoS Globally

By default, QoS is disabled on the switch.

The following procedure to enable QoS globally is required.
SUMMARY STEPS

1. `configure terminal`
2. `mls qos`
3. `end`
4. `show mls qos`
5. `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><strong>configure terminal</strong></td>
</tr>
<tr>
<td></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td><em>Switch# configure terminal</em></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><strong>mls qos</strong></td>
</tr>
<tr>
<td></td>
<td>Enables QoS globally.</td>
</tr>
<tr>
<td></td>
<td>QoS operates with the default settings described in the related topic sections below.</td>
</tr>
<tr>
<td>Note</td>
<td>To disable QoS, use the <code>no mls qos</code> global configuration command.</td>
</tr>
<tr>
<td>Example:</td>
<td><em>Switch(config)# mls qos</em></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><strong>end</strong></td>
</tr>
<tr>
<td></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td><em>Switch(config)# end</em></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><strong>show mls qos</strong></td>
</tr>
<tr>
<td></td>
<td>Verifies the QoS configuration.</td>
</tr>
<tr>
<td>Example:</td>
<td><em>Switch# show mls qos</em></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><strong>copy running-config startup-config</strong></td>
</tr>
<tr>
<td></td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td>Example:</td>
<td><em>Switch# copy running-config startup-config</em></td>
</tr>
</tbody>
</table>

Related Topics

- Standard QoS Default Configuration, on page 609
- Default Egress Queue Configuration, on page 611
Enabling VLAN-Based QoS on Physical Ports

By default, VLAN-based QoS is disabled on all physical switch ports. The switch applies QoS, including class maps and policy maps, only on a physical-port basis. You can enable VLAN-based QoS on a switch port.

The following procedure is required on physical ports that are specified in the interface level of a hierarchical policy map on a Switch Virtual Interface (SVI).

**SUMMARY STEPS**

1. configure terminal
2. interface interface-id
3. mls qos vlan-based
4. end
5. show mls qos interface interface-id
6. copy running-config startup-config

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><strong>configure terminal</strong></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><strong>interface interface-id</strong></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# interface gigabitethernet 1/0/1</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><strong>mls qos vlan-based</strong></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-if)# mls qos vlan-based</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><strong>end</strong></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-if)# end</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><strong>show mls qos interface interface-id</strong></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# show mls qos interface gigabitethernet 1/0/1</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><strong>copy running-config startup-config</strong></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# copy running-config startup-config</td>
</tr>
</tbody>
</table>

**Configuring Classification Using Port Trust States**

These sections describe how to classify incoming traffic by using port trust states.

**Note**

Depending on your network configuration, you must perform one or more of these tasks in this module or one or more of the tasks in the Configuring a QoS Policy.
Configuring the Trust State on Ports Within the QoS Domain

Packets entering a QoS domain are classified at the edge of the QoS domain. When the packets are classified at the edge, the switch port within the QoS domain can be configured to one of the trusted states because there is no need to classify the packets at every switch within the QoS domain.

**Figure 61: Port Trusted States on Ports Within the QoS Domain**

**SUMMARY STEPS**

1. configure terminal
2. interface interface-id
3. mls qos trust [cos | dscp | ip-precedence]
4. end
5. show mls qos interface
6. copy running-config startup-config
### Detailed Steps

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> <code>Switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td><code>interface interface-id</code></td>
<td>Specifies the port to be trusted, and enters interface configuration mode. Valid interfaces are physical ports.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> <code>Switch(config)# interface gigabitethernet 1/0/2</code></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>`mls qos trust [cos</td>
<td>dscp</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> <code>Switch(config-if)# mls qos trust cos</code></td>
<td>The keywords have these meanings:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <strong>cos</strong>—Classifies an ingress packet by using the packet CoS value. For an untagged packet, the port default CoS value is used. The default port CoS value is 0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <strong>dscp</strong>—Classifies an ingress packet by using the packet DSCP value. For a non-IP packet, the packet CoS value is used if the packet is tagged; for an untagged packet, the default port CoS is used. Internally, the switch maps the CoS value to a DSCP value by using the CoS-to-DSCP map.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <strong>ip-precedence</strong>—Classifies an ingress packet by using the packet IP-precedence value. For a non-IP packet, the packet CoS value is used if the packet is tagged; for an untagged packet, the default port CoS is used. Internally, the switch maps the CoS value to a DSCP value by using the CoS-to-DSCP map.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>To return a port to its untrusted state, use the <strong>no mls qos trust</strong> interface configuration command.</td>
</tr>
<tr>
<td>4</td>
<td><code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> <code>Switch(config-if)# end</code></td>
<td></td>
</tr>
</tbody>
</table>
### Configuring the CoS Value for an Interface

QoS assigns the CoS value specified with the `mls qos cos` interface configuration command to untagged frames received on trusted and untrusted ports.

Beginning in privileged EXEC mode, follow these steps to define the default CoS value of a port or to assign the default CoS to all incoming packets on the port.

#### SUMMARY STEPS

1. configure terminal
2. interface interface-id
3. mls qos cos \{default-cos | override\}
4. end
5. show mls qos interface
6. copy running-config startup-config

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Switch# configure terminal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Step 5</strong></th>
<th>Verifies your entries.</th>
</tr>
</thead>
<tbody>
<tr>
<td>show mls qos interface</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# show mls qos interface</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Step 6</strong></th>
<th>(Optional) Saves your entries in the configuration file.</th>
</tr>
</thead>
<tbody>
<tr>
<td>copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

### Related Topics

- Configuring the CoS Value for an Interface, on page 620
- Configuring the CoS-to-DSCP Map, on page 648
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 2</strong></td>
<td>Specifies the port to be configured, and enters interface configuration mode. Valid interfaces include physical ports.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Configures the default CoS value for the port.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>

**Example:**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Example</th>
</tr>
</thead>
</table>
| **Step 2** | interface interface-id  
Switch(config)# interface gigabitethernet 1/1/1 |
| **Step 3** | mls qos cos {default-cos | override}  
Switch(config-if)# mls qos override |
| **Step 4** | end  
Switch(config-if)# end |
| **Step 5** | show mls qos interface  
Switch# show mls qos interface |
| **Step 6** | copy running-config startup-config  
Switch# copy running-config startup-config |

**Note:** To return to the default setting, use the no mls qos cos {default-cos | override} interface configuration command.

**Example:**

Switch(config-if)# end
Configuring a Trusted Boundary to Ensure Port Security

In a typical network, you connect a Cisco IP Phone to a switch port and cascade devices that generate data packets from the back of the telephone. The Cisco IP Phone guarantees the voice quality through a shared data link by marking the CoS level of the voice packets as high priority (CoS = 5) and by marking the data packets as low priority (CoS = 0). Traffic sent from the telephone to the switch is typically marked with a tag that uses the 802.1Q header. The header contains the VLAN information and the class of service (CoS) 3-bit field, which is the priority of the packet.

For most Cisco IP Phone configurations, the traffic sent from the telephone to the switch should be trusted to ensure that voice traffic is properly prioritized over other types of traffic in the network. By using the mls qos trust cos interface configuration command, you configure the switch port to which the telephone is connected to trust the CoS labels of all traffic received on that port. Use the mls qos trust dscp interface configuration command to configure a routed port to which the telephone is connected to trust the DSCP labels of all traffic received on that port.

With the trusted setting, you also can use the trusted boundary feature to prevent misuse of a high-priority queue if a user bypasses the telephone and connects the PC directly to the switch. Without trusted boundary, the CoS labels generated by the PC are trusted by the switch (because of the trusted CoS setting). By contrast, trusted boundary uses CDP to detect the presence of a Cisco IP Phone (such as the Cisco IP Phone 7910, 7935, 7940, and 7960) on a switch port. If the telephone is not detected, the trusted boundary feature disables the trusted setting on the switch port and prevents misuse of a high-priority queue. Note that the trusted boundary feature is not effective if the PC and Cisco IP Phone are connected to a hub that is connected to the switch.

In some situations, you can prevent a PC connected to the Cisco IP Phone from taking advantage of a high-priority data queue. You can use the switchport priority extend cos interface configuration command to configure the telephone through the switch CLI to override the priority of the traffic received from the PC.

SUMMARY STEPS

1. configure terminal
2. cdp run
3. interface interface-id
4. cdp enable
5. Use one of the following:
   • mls qos trust cos
   • mls qos trust dscp
6. mls qos trust device cisco-phone
7. end
8. show mls qos interface
9. copy running-config startup-config
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

| Step 2 | cdp run | Enables CDP globally. By default, CDP is enabled. |
| Example: | Switch(config)# cdp run | |

| Step 3 | interface interface-id | Specifies the port connected to the Cisco IP Phone, and enters interface configuration mode. Valid interfaces include physical ports. |
| Example: | Switch(config)# interface gigabitethernet 2/1/1 | |

| Step 4 | cdp enable | Enables CDP on the port. By default, CDP is enabled. |
| Example: | Switch(config-if)# cdp enable | |

| Step 5 | Use one of the following: | |
|        | • mls qos trust cos |
|        | • mls qos trust dscp |
| Example: | Switch(config-if)# mls qos trust cos | Configures the switch port to trust the CoS value in traffic received from the Cisco IP Phone. |

| Step 6 | mls qos trust device cisco-phone | Specifies that the Cisco IP Phone is a trusted device. |
| Example: | Switch(config-if)# mls qos trust device cisco-phone | You cannot enable both trusted boundary and auto-QoS (auto qos voip interface configuration command) at the same time; they are mutually exclusive. |

Note: To disable the trusted boundary feature, use the no mls qos trust device interface configuration command. |

<p>| Step 7 | end | Returns to privileged EXEC mode. |
| Example: | Switch(config-if)# end | |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 8</strong></td>
<td></td>
</tr>
<tr>
<td><code>show mls qos interface</code></td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Switch# show mls qos interface</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td></td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Switch# copy running-config startup-config</code></td>
<td></td>
</tr>
</tbody>
</table>

**Enabling DSCP Transparency Mode**

The switch supports the DSCP transparency feature. It affects only the DSCP field of a packet at egress. By default, DSCP transparency is disabled. The switch modifies the DSCP field in an incoming packet, and the DSCP field in the outgoing packet is based on the quality of service (QoS) configuration, including the port trust setting, policing and marking, and the DSCP-to-DSCP mutation map.

If DSCP transparency is enabled by using the `no mls qos rewrite ip dscp` command, the switch does not modify the DSCP field in the incoming packet, and the DSCP field in the outgoing packet is the same as that in the incoming packet.

Regardless of the DSCP transparency configuration, the switch modifies the internal DSCP value of the packet, which the switch uses to generate a class of service (CoS) value that represents the priority of the traffic. The switch also uses the internal DSCP value to select an egress queue and threshold.

**SUMMARY STEPS**

1. `configure terminal`
2. `mls qos`
3. `no mls qos rewrite ip dscp`
4. `end`
5. `show mls qos interface [interface-id]`
6. `copy running-config startup-config`
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> Switch(config)# mls qos</td>
<td>Enables QoS globally.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> Switch(config)# no mls qos rewrite ip dscp</td>
<td>Enables DSCP transparency. The switch is configured to not modify the DSCP field of the IP packet.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> Switch(config)# end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> Switch# show mls qos interface gigabitethernet 2/1/1</td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> Switch# copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>

**DSCP Transparency Mode**

To configure the switch to modify the DSCP value based on the trust setting or on an ACL by disabling DSCP transparency, use the `mls qos rewrite ip dscp` global configuration command.

If you disable QoS by using the `no mls qos` global configuration command, the CoS and DSCP values are not changed (the default QoS setting).

If you enter the `no mls qos rewrite ip dscp` global configuration command to enable DSCP transparency and then enter the `mls qos trust [cos | dscp]` interface configuration command, DSCP transparency is still enabled.
Configuring the DSCP Trust State on a Port Bordering Another QoS Domain

If you are administering two separate QoS domains between which you want to implement QoS features for IP traffic, you can configure the switch ports bordering the domains to a DSCP-trusted state. The receiving port accepts the DSCP-trusted value and avoids the classification stage of QoS. If the two domains use different DSCP values, you can configure the DSCP-to-DSCP-mutation map to translate a set of DSCP values to match the definition in the other domain.

**Figure 62: DSCP-Trusted State on a Port Bordering Another QoS Domain**

Beginning in privileged EXEC mode, follow these steps to configure the DSCP-trusted state on a port and modify the DSCP-to-DSCP-mutation map. To ensure a consistent mapping strategy across both QoS domains, you must perform this procedure on the ports in both domains.

**SUMMARY STEPS**

1. `configure terminal`
2. `mls qos map dscp-mutation dscp-mutation-name in-dscp to out-dscp`
3. `interface interface-id`
4. `mls qos trust dscp`
5. `mls qos dscp-mutation dscp-mutation-name`
6. `end`
7. `show mls qos maps dscp-mutation`
8. `copy running-config startup-config`
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>mls qos map dscp-mutation</td>
<td>Modifies the DSCP-DSCP-mutation map.</td>
</tr>
<tr>
<td><code>dscp-mutation-name in-dscp to out-dscp</code></td>
<td>The default DSCP-to-DSCP-mutation map is a null map, which maps an incoming DSCP value to the same DSCP value.</td>
<td></td>
</tr>
</tbody>
</table>
| Example: | Switch(config)# mls qos map dscp-mutation gigabitethernet1/0/2-mutation 10 11 12 13 to 30 | - For `dscp-mutation-name`, enter the mutation map name. You can create more than one map by specifying a new name.  
  - For `in-dscp`, enter up to eight DSCP values separated by spaces. Then enter the `to` keyword.  
  - For `out-dscp`, enter a single DSCP value. The DSCP range is 0 to 63. |
| Step 3 | interface `interface-id` | Specifies the port to be trusted, and enter interface configuration mode. Valid interfaces include physical ports. |
| Example: | Switch(config)# interface gigabitethernet1/0/2 | |
| Step 4 | mls qos trust dscp | Configures the ingress port as a DSCP-trusted port. By default, the port is not trusted.  
  **Note** To return a port to its non-trusted state, use the `no mls qos trust` interface configuration command. |
| Example: | Switch(config-if)# mls qos trust dscp | |
| Step 5 | mls qos dscp-mutation `dscp-mutation-name` | Applies the map to the specified ingress DSCP-trusted port.  
For `dscp-mutation-name`, specify the mutation map name created in Step 2.  
You can configure multiple DSCP-to-DSCP-mutation maps on an ingress port.  
**Note** To return to the default DSCP-to-DSCP-mutation map values, use the `no mls qos map dscp-mutation dscp-mutation-name` global configuration command. |
<p>| Example: | Switch(config-if)# mls qos dscp-mutation gigabitethernet1/0/2-mutation | |
| Step 6 | end | Returns to privileged EXEC mode. |
| Example: | Switch(config-if)# end | |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 7</strong></td>
<td></td>
</tr>
<tr>
<td><code>show mls qos maps dscp-mutation</code></td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Switch# show mls qos maps dscp-mutation</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td></td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Switch# copy-running-config startup-config</code></td>
<td></td>
</tr>
</tbody>
</table>

**Note**

To return a port to its non-trusted state, use the `no mls qos trust interface` configuration command. To return to the default DSCP-to-DSCP-mutation map values, use the `no mls qos map dscp-mutation dscp-mutation-name` global configuration command.

---

**Related Topics**

Example: Configuring Port to the DSCP-Trusted State and Modifying the DSCP-to-DSCP-Mutation Map, on page 675

---

**Configuring a QoS Policy**

Configuring a QoS policy typically requires the following tasks:

- Classifying traffic into classes
- Configuring policies applied to those traffic classes
- Attaching policies to ports

These sections describe how to classify, police, and mark traffic. Depending on your network configuration, you must perform one or more of the modules in this section.

**Related Topics**

Policing and Marking Overview, on page 596  
Classification Overview, on page 591

---

**Classifying Traffic by Using ACLs**

You can classify IP traffic by using IPv4 standard ACLs, IPv4 extended ACLs, or IPv6 ACLs.
You can classify non-IP traffic by using Layer 2 MAC ACLs.

**Creating an IP Standard ACL for IPv4 Traffic**

**Before You Begin**

Before you perform this task, determine which access lists you will be using for your QoS configuration.
SUMMARY STEPS

1. configure terminal
2. access-list access-list-number {deny | permit} source [source-wildcard]
3. end
4. show access-lists
5. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> access-list access-list-number {deny</td>
<td>permit} source [source-wildcard]</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
</tbody>
</table>
| Switch(config)# access-list 1 permit 192.2.255.0 1.1.1.255 | - For access-list-number, enter the access list number. The range is 1 to 99 and 1300 to 1999. 
- Use the permit keyword to permit a certain type of traffic if the conditions are matched. Use the deny keyword to deny a certain type of traffic if conditions are matched. 
- For source, enter the network or host from which the packet is being sent. You can use the any keyword as an abbreviation for 0.0.0.0 to 255.255.255.255. 
- (Optional) For source-wildcard, enter the wildcard bits in dotted decimal notation to be applied to the source. Place ones in the bit positions that you want to ignore. |
| **Step 3** end | Returns to privileged EXEC mode. |
| **Example:** | |
| Switch(config)# end | |

When you create an access list, remember that by default the end of the access list contains an implicit deny statement for everything if it did not find a match before reaching the end.

**Note** To delete an access list, use the no access-list access-list-number global configuration command.
### How to Configure QoS

#### Related Topics
- Access Control Lists, on page 594
- QoS ACL Guidelines, on page 586
- Examples: Classifying Traffic by Using ACLs, on page 675

**Creating an IP Extended ACL for IPv4 Traffic**

**Before You Begin**

Before you perform this task, determine which access lists you will be using for your QoS configuration.

#### SUMMARY STEPS

1. configure terminal
2. access-list access-list-number \{deny | permit\} protocol source source-wildcard destination destination-wildcard
3. end
4. show access-lists
5. copy running-config startup-config

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> access-list access-list-number {deny</td>
<td>permit} protocol source</td>
</tr>
</tbody>
</table>
Purpose

• For access-list-number, enter the access list number. The range is 100 to 199 and 2000 to 2699.
• Use the permit keyword to permit a certain type of traffic if the conditions are matched. Use the deny keyword to deny a certain type of traffic if conditions are matched.
• For protocol, enter the name or number of an IP protocol. Use the question mark (?) to see a list of available protocol keywords.
• For source, enter the network or host from which the packet is being sent. You specify this by using dotted decimal notation, by using the any keyword as an abbreviation for source 0.0.0.0 source-wildcard 255.255.255.255, or by using the host keyword for source 0.0.0.0.
• For source-wildcard, enter the wildcard bits by placing ones in the bit positions that you want to ignore. You specify the wildcard by using dotted decimal notation, by using the any keyword as an abbreviation for source 0.0.0.0 source-wildcard 255.255.255.255, or by using the host keyword for source 0.0.0.0.
• For destination, enter the network or host to which the packet is being sent. You have the same options for specifying the destination and destination-wildcard as those described by source and source-wildcard.

When creating an access list, remember that, by default, the end of the access list contains an implicit deny statement for everything if it did not find a match before reaching the end.

Note To delete an access list, use the no access-list access-list-number global configuration command.

Step 3 end
Returns to privileged EXEC mode.

Example:
Switch(config)# end

Step 4 show access-lists
Verifies your entries.

Example:
Switch# show access-lists

Step 5 copy running-config startup-config
(Optional) Saves your entries in the configuration file.

Example:
Switch# copy running-config startup-config
Creating an IPv6 ACL for IPv6 Traffic

Before You Begin

Before you perform this task, determine which access lists you will be using for your QoS configuration.

SUMMARY STEPS

1. configure terminal
2. ipv6 access-list access-list-name
3. {deny | permit} protocol [source-ipv6-prefix/prefix-length | any | host source-ipv6-address] [operator [port-number]] [destination-ipv6-prefix/ prefix-length | any | host destination-ipv6-address] [operator [port-number]] [dscp value] [fragments] [log] [log-input] [routing] [sequence value] [time-range name]
4. end
5. show ipv6 access-list
6. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> ipv6 access-list access-list-name</td>
<td>Creates an IPv6 ACL and enters IPv6 access-list configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Switch(config)# ipv6 access-list ipv6_Name_ACL</td>
<td>Accesses list names cannot contain a space or quotation mark or begin with a numeric.</td>
</tr>
<tr>
<td><strong>Note</strong> To delete an access list, use the no ipv6 access-list access-list-number global configuration command.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> {deny</td>
<td>permit} protocol [source-ipv6-prefix/prefix-length</td>
</tr>
<tr>
<td></td>
<td>For protocol, enter the name or number of an Internet protocol: ahp, esp, icmp, ipv6, pcp, step, tcp, or udp, or an integer in the range 0 to 255 representing an IPv6 protocol number.</td>
</tr>
<tr>
<td></td>
<td>• The source-ipv6-prefix/prefix-length or destination-ipv6-prefix/ prefix-length is the source or destination IPv6 network or class of networks for which to set deny or permit conditions, specified in hexadecimal and using 16-bit values between colons (see RFC 2373).</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| **Example:**     | - Enter **any** as an abbreviation for the IPv6 prefix ::/0.  
|                  | - For **host source-ipv6-address** or **destination-ipv6-address**, enter the source or destination IPv6 host address for which to set deny or permit conditions, specified in hexadecimal using 16-bit values between colons.  
|                  | - (Optional) For **operator**, specify an operand that compares the source or destination ports of the specified protocol. Operands are **lt** (less than), **gt** (greater than), **eq** (equal), **neq** (not equal), and **range**. If the operator follows the **source-ipv6-prefix/prefix-length** argument, it must match the source port. If the operator follows the **destination-ipv6-prefix/prefix-length** argument, it must match the destination port.  
|                  | - (Optional) The **port-number** is a decimal number from 0 to 65535 or the name of a TCP or UDP port. You can use TCP port names only when filtering TCP. You can use UDP port names only when filtering UDP.  
|                  | - (Optional) Enter **dscp value** to match a differentiated services code point value against the traffic class value in the Traffic Class field of each IPv6 packet header. The acceptable range is from 0 to 63.  
|                  | - (Optional) Enter **fragments** to check noninitial fragments. This keyword is visible only if the protocol is IPv6.  
|                  | - (Optional) Enter **log** to cause a logging message to be sent to the console about the packet that matches the entry. Enter **log-input** to include the input interface in the log entry. Logging is supported only for router ACLs.  
|                  | - (Optional) Enter **routing** to specify that IPv6 packets be routed.  
|                  | - (Optional) Enter **sequence value** to specify the sequence number for the access list statement. The acceptable range is from 1 to 4294967295.  
|                  | - (Optional) Enter **time-range name** to specify the time range that applies to the deny or permit statement. |

**Step 4**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>end</strong></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

**Example:**

```bash
Switch(config-ipv6-acl)# end
```

**Step 5**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>show ipv6 access-list</strong></td>
<td>Verifies the access list configuration.</td>
</tr>
</tbody>
</table>

**Example:**

```bash
Switch# show ipv6 access-list
```
How to Configure QoS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6</td>
<td></td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>

**Example:**

Switch# copy-running-config startup-config

---

**Related Topics**

- Access Control Lists, on page 594
- QoS ACL Guidelines, on page 586
- Examples: Classifying Traffic by Using ACLs, on page 675
- QoS ACL IPv6 Guidelines

**Creating a Layer 2 MAC ACL for Non-IP Traffic**

**Before You Begin**

Before you perform this task, determine that Layer 2 MAC access lists are required for your QoS configuration.

**SUMMARY STEPS**

1. configure terminal
2. mac access-list extended name
3. {permit | deny} {host src-MAC-addr mask | any | host dst-MAC-addr | dst-MAC-addr mask} [type mask]
4. end
5. show access-lists [access-list-number | access-list-name]
6. copy running-config startup-config

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>

**Example:**

Switch# configure terminal

**Step 2**

mac access-list extended name

**Example:**

Switch(config)# mac access-list

**Note**

To delete an access list, use the no mac access-list extended access-list-name global configuration command.
## Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>extended maclist1</strong></td>
<td>Specifies the type of traffic to permit or deny if the conditions are matched, entering the command as many times as necessary.</td>
</tr>
</tbody>
</table>

### Step 3

<table>
<thead>
<tr>
<th>**permit</th>
<th>deny</th>
<th>host src-MAC-addr mask</th>
<th>any</th>
<th>host dst-MAC-addr</th>
<th>dst-MAC-addr mask</th>
<th>[type mask]</th>
</tr>
</thead>
</table>

**Example:**

Switch(config-ext-macl) # permit 0001.0000.0001 0.0.0 0002.0000.0001 0.0.0

Switch(config-ext-macl) # permit 0001.0000.0002 0.0.0 0002.0000.0002 0.0.0 xns-idp

- **For src-MAC-addr**, enter the MAC address of the host from which the packet is being sent. You specify this by using the hexadecimal format (H.H.H), by using the `any` keyword as an abbreviation for `source 0.0.0`, `source-wildcard ff:ff:ff:ff:ff:ff`, or by using the `host` keyword for `source 0.0.0`.

- **For mask**, enter the wildcard bits by placing ones in the bit positions that you want to ignore.

- **For dst-MAC-addr**, enter the MAC address of the host to which the packet is being sent. You specify this by using the hexadecimal format (H.H.H), by using the `any` keyword as an abbreviation for `source 0.0.0`, `source-wildcard ff:ff:ff:ff:ff:ff`, or by using the `host` keyword for `source 0.0.0`.

- **(Optional) For type mask**, specify the Ethertype number of a packet with Ethernet II or SNAP encapsulation to identify the protocol of the packet. For `type`, the range is from 0 to 65535, typically specified in hexadecimal. For `mask`, enter the `don't care` bits applied to the Ethertype before testing for a match.

When creating an access list, remember that, by default, the end of the access list contains an implicit deny statement for everything if it did not find a match before reaching the end.

### Step 4

| **end** | Returns to privileged EXEC mode. |

**Example:**

Switch(config-ext-macl)# end

### Step 5

| **show access-lists [access-list-number | access-list-name]** | Verifies your entries. |

**Example:**

Switch# show access-lists

### Step 6

| **copy running-config startup-config** | (Optional) Saves your entries in the configuration file. |

**Example:**

Switch# copy-running-config startup-config

---

**Cisco 2960-X Switch Series Configuration Guide, Cisco IOS Release 15.0(2)EX 635**
Classifying Traffic by Using Class Maps

You use the `class-map` global configuration command to name and to isolate a specific traffic flow (or class) from all other traffic. The class map defines the criteria to use to match against a specific traffic flow to further classify it. Match statements can include criteria such as an ACL, IP precedence values, or DSCP values. The match criterion is defined with one match statement entered within the class-map configuration mode.

Note

You can also create class maps during policy map creation by using the `class` policy-map configuration command.

SUMMARY STEPS

1. `configure terminal`
2. Use one of the following:
   • `access-list access-list-number {deny | permit} source [source-wildcard]`
   • `access-list access-list-number {deny | permit} protocol source [source-wildcard] destination [destination-wildcard]`
   • `ipv6 access-list access-list-name {deny | permit} protocol {source-ipv6-prefix/prefix-length | any | host source-ipv6-address} [operator [port-number]] {destination-ipv6-prefix/ prefix-length | any | host destination-ipv6-address} [operator [port-number]] [dscp value] [fragments] [log] [log-input] [routing] [sequence value] [time-range name]`
   • `mac access-list extended name {permit | deny} {host src-MAC-addr mask | any | host dst-MAC-addr | dst-MAC-addr mask} [type mask]`
3. `class-map [match-all | match-any] class-map-name`
4. `match {access-group acl-index-or-name | ip dscp dscp-list | ip precedence ip-precedence-list}`
5. `end`
6. `show class-map`
7. `copy running-config startup-config`
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

**Step 2**

Use one of the following:

- **access-list** access-list-number {deny | permit} source [source-wildcard]
- **access-list** access-list-number {deny | permit} protocol source [source-wildcard] destination [destination-wildcard]
- **ipv6 access-list** access-list-name {deny | permit} protocol {source-ipv6-prefix/prefix-length | any | host source-ipv6-address} [operator [port-number]] {destination-ipv6-prefix/prefix-length | any | host destination-ipv6-address} [operator [port-number]] [dscp value] [fragments] [log] [log-input] [routing] [sequence value] [time-range name]
- **mac access-list extended** name {permit | deny} {host src-MAC-addr mask | any | host dst-MAC-addr | dst-MAC-addr mask} [type mask]

**Example:**

Switch(config)# access-list 103 permit ip any any dscp 10

**Step 3**

**class-map** [match-all | match-any] class-map-name

**Example:**

Switch(config)# class-map class1

Creates a class map, and enters class-map configuration mode.

By default, no class maps are defined.

- (Optional) Use the `match-all` keyword to perform a logical-AND of all matching statements under this class map. All match criteria in the class map must be matched.

- (Optional) Use the `match-any` keyword to perform a logical-OR of all matching statements under this class map. One or more match criteria must be matched.

  - For `class-map-name`, specify the name of the class map.
How to Configure QoS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>If neither the <strong>match-all</strong> or <strong>match-any</strong> keyword is specified, the default is <strong>match-all</strong>.</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong> To delete an existing class map, use the **no class-map [match-all</td>
</tr>
</tbody>
</table>

**Step 4**

**match {access-group acl-index-or-name | ip dscp dscp-list | ip precedence ip-precedence-list}**

**Example:**

```
Switch(config-cmap)# match ip dscp 10 11 12
```

Defines the match criterion to classify traffic.

By default, no match criterion is defined.

Only one match criterion per class map is supported, and only one ACL per class map is supported.

- For **access-group acl-index-or-name**, specify the number or name of the ACL created in Step 2.
- To filter IPv6 traffic with the **match access-group** command, create an IPv6 ACL, as described in Step 2.
- For **ip dscp dscp-list**, enter a list of up to eight IP DSCP values to match against incoming packets. Separate each value with a space. The range is 0 to 63.
- For **ip precedence ip-precedence-list**, enter a list of up to eight IP-precedence values to match against incoming packets. Separate each value with a space. The range is 0 to 7.

**Note** To remove a match criterion, use the **no match {access-group acl-index-or-name | ip dscp | ip precedence} class-map configuration command.**

**Step 5**

**end**

**Example:**

```
Switch(config-cmap)# end
```

Returns to privileged EXEC mode.

**Step 6**

**show class-map**

**Example:**

```
Switch# show class-map
```

Verifies your entries.

**Step 7**

**copy running-config startup-config**

**Example:**

```
Switch# copy-running-config startup-config
```

(Optional) Saves your entries in the configuration file.
Related Topics
Classifying, Policing, and Marking Traffic on Physical Ports by Using Policy Maps, on page 641
Classifying, Policing, and Marking Traffic on SVIs by Using Hierarchical Policy Maps
Examples: Classifying Traffic by Using Class Maps, on page 676

Classifying Traffic by Using Class Maps and Filtering IPv6 Traffic

Note
IPv6 QoS is not supported on switches running the LAN base feature set.

To apply the primary match criteria to only IPv4 traffic, use the match protocol command with the ip keyword.
To apply the primary match criteria to only IPv6 traffic, use the match protocol command with the ipv6 keyword.

SUMMARY STEPS

1. configure terminal
2. class-map {match-all} class-map-name
3. match protocol [ip | ipv6]
4. match {ip dscp dscp-list | ip precedence ip-precedence-list}
5. end
6. show class-map
7. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Creates a class map, and enters class-map configuration mode. By default, no class maps are defined. When you use the match protocol command, only the match-all keyword is supported.</th>
</tr>
</thead>
<tbody>
<tr>
<td>class-map [match-all] class-map-name</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Switch(config)# class-map cm-1</td>
<td></td>
</tr>
</tbody>
</table>

Note To delete an existing class map, use the no class-map [match-all | match-any] class-map-name global configuration command.
<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>match protocol [ip</td>
<td>(Optional) Specifies the IP protocol to which the class map applies:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Use the argument <em>ip</em> to specify IPv4 traffic and <em>ipv6</em> to specify IPv6 traffic.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• When you use the match protocol command, only the match-all keyword is supported for the class-map command.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example: Switch(config-cmap)# match protocol ip</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>match {ip dscp dscp-list</td>
<td>Defines the match criterion to classify traffic.</td>
</tr>
<tr>
<td></td>
<td>ip precedence ip-precedence-list}</td>
<td>By default, no match criterion is defined.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For <em>ip dscp dscp-list</em>, enter a list of up to eight IP DSCP values to match against incoming packets. Separate each value with a space. The range is 0 to 63.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For <em>ip precedence ip-precedence-list</em>, enter a list of up to eight IP-precedence values to match against incoming packets. Separate each value with a space. The range is 0 to 7.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Note</strong> To remove a match criterion, use the no match {access-group acl-index-or-name</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example: Switch(config-cmap)# match ip dscp 10</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch(config-cmap)# end</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 6</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>show class-map</td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch# show class-map</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 7</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch# copy-running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

**Related Topics**

Examples: Classifying Traffic by Using Class Maps, on page 676
Classifying, Policing, and Marking Traffic on Physical Ports by Using Policy Maps

You can configure a policy map on a physical port that specifies which traffic class to act on. Actions can include trusting the CoS, DSCP, or IP precedence values in the traffic class; setting a specific DSCP or IP precedence value in the traffic class; and specifying the traffic bandwidth limitations for each matched traffic class (policer) and the action to take when the traffic is out of profile (marking).

A policy map also has these characteristics:

- A policy map can contain multiple class statements, each with different match criteria and policers.
- A policy map can contain a predefined default traffic class explicitly placed at the end of the map.
- A separate policy-map class can exist for each type of traffic received through a port.

Follow these guidelines when configuring policy maps on physical ports:

- You can attach only one policy map per ingress port.
- If you configure the IP-precedence-to-DSCP map by using the `mls qos map ip-prec-dscp dscp1...dscp8` global configuration command, the settings only affect packets on ingress interfaces that are configured to trust the IP precedence value. In a policy map, if you set the packet IP precedence value to a new value by using the `set ip precedence new-precedence` policy-map class configuration command, the egress DSCP value is not affected by the IP-precedence-to-DSCP map. If you want the egress DSCP value to be different than the ingress value, use the `set dscp new-dscp` policy-map class configuration command.
- If you enter or have used the `set ip dscp` command, the switch changes this command to `set dscp` in its configuration.
- You can use the `set ip precedence` or the `set precedence` policy-map class configuration command to change the packet IP precedence value. This setting appears as set ip precedence in the switch configuration.
- A policy-map and a port trust state can both run on a physical interface. The policy-map is applied before the port trust state.
- When you configure a default traffic class by using the `class class-default` policy-map configuration command, unclassified traffic (traffic that does not meet the match criteria specified in the traffic classes) is treated as the default traffic class (class-default).
SUMMARY STEPS

1. configure terminal
2. class-map [match-all | match-any] class-map-name
3. policy-map policy-map-name
4. class [class-map-name | class-default]
5. trust [cos | dscp | ip-precedence]
6. set {dscp new-dscp | ip precedence new-precedence}
7. police rate-bps burst-byte [exceed-action {drop | policed-dscp-transmit}]
8. exit
9. exit
10. interface interface-id
11. service-policy input policy-map-name
12. end
13. show policy-map [policy-map-name [class class-map-name]]
14. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters the global configuration mode.</td>
</tr>
</tbody>
</table>

Class Map Configuration Mode

**Step 2** class-map [match-all | match-any] class-map-name

Example:
Switch(config)# class-map ipclass1

- By default, no class maps are defined.
- (Optional) Use the **match-all** keyword to perform a logical-AND of all matching statements under this class map. All match criteria in the class map must be matched.
- (Optional) Use the **match-any** keyword to perform a logical-OR of all matching statements under this class map. One or more match criteria must be matched.
- For **class-map-name**, specify the name of the class map.

If neither the **match-all** or **match-any** keyword is specified, the default is **match-all**.

Policy Map Configuration Mode

**Step 3** policy-map policy-map-name

Example:
Switch(config-cmap)# policy-map

- Creates a policy map by entering the policy map name, and enters policy-map configuration mode.
- By default, no policy maps are defined.
### How to Configure QoS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>flowit</strong></td>
<td>The default behavior of a policy map is to set the DSCP to 0 if the packet is an IP packet and to set the CoS to 0 if the packet is tagged. No policing is performed. <strong>Note</strong> To delete an existing policy map, use the <code>no policy-map policy-map-name</code> global configuration command.</td>
</tr>
</tbody>
</table>

**Step 4**

**class** `[class-map-name | class-default]`

**Example:**

```
Switch(config-pmap)# class ipclass1
```

Defines a traffic classification, and enters policy-map class configuration mode.

By default, no policy map class-maps are defined.

If a traffic class has already been defined by using the `class-map` global configuration command, specify its name for `class-map-name` in this command.

A **class-default** traffic class is pre-defined and can be added to any policy. It is always placed at the end of a policy map. With an implied **match any** included in the **class-default** class, all packets that have not already matched the other traffic classes will match **class-default**.

**Note** To delete an existing class map, use the `no class class-map-name` policy-map configuration command.

**Step 5**

**trust** `[cos | dscp | ip-precedence]`

**Example:**

```
Switch(config-pmap-c)# trust dscp
```

Configures the trust state, which QoS uses to generate a CoS-based or DSCP-based QoS label.

This command is mutually exclusive with the `set` command within the same policy map. If you enter the `trust` command, go to Step 6.

By default, the port is not trusted. If no keyword is specified when the command is entered, the default is `dscp`.

The keywords have these meanings:

- **cos**—QoS derives the DSCP value by using the received or default port CoS value and the CoS-to-DSCP map.

- **dscp**—QoS derives the DSCP value by using the DSCP value from the ingress packet. For non-IP packets that are tagged, QoS derives the DSCP value by using the received CoS value; for non-IP packets that are untagged, QoS derives the DSCP value by using the default port CoS value. In either case, the DSCP value is derived from the CoS-to-DSCP map.

- **ip-precedence**—QoS derives the DSCP value by using the IP precedence value from the ingress packet and the IP-precedence-to-DSCP map. For non-IP packets that are tagged, QoS derives the DSCP value by using the received CoS value; for non-IP packets that are untagged, QoS derives the DSCP value by using the default port CoS value. In either case, the DSCP value is derived from the CoS-to-DSCP map.

**Note** To return to the untrusted state, use the `no trust` policy-map configuration command.

**Step 6**

```
set {dscp new-dscp | ip precedence new-precedence}
```

Classifies IP traffic by setting a new value in the packet.

- For **dscp new-dscp**, enter a new DSCP value to be assigned to the classified traffic. The range is 0 to 63.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Example:** Switch(config-pmap-c)# set dscp 45 | • For **ip precedence** `new-precedence`, enter a new IP-precedence value to be assigned to the classified traffic. The range is 0 to 7.  
**Note** To remove an assigned DSCP or IP precedence value, use the no set `{dscp new-dscp | ip precedence new-precedence}` policy-map configuration command. |
| **Step 7** police `rate-bps burst-byte` [exceed-action `{drop | policed-dscp-transmit}`] | Defines a policer for the classified traffic.  
By default, no policer is defined.  
• For **rate-bps**, specify average traffic rate in bits per second (b/s). The range is 8000 to 10000000000.  
• For **burst-byte**, specify the normal burst size in bytes. The range is 8000 to 1000000.  
• (Optional) Specifies the action to take when the rates are exceeded. Use the exceed-action drop keywords to drop the packet. Use the exceed-action policed-dscp-transmit keywords to mark down the DSCP value (by using the policed-DSCP map) and to send the packet.  
**Note** To remove an existing policer, use the no police `rate-bps burst-byte` [exceed-action `{drop | policed-dscp-transmit}`] policy-map configuration command. |
| **Step 8** exit | Returns to policy map configuration mode. |
| **Example:** Switch(config-pmap-c)# exit | |
| **Step 9** exit | Returns to global configuration mode. |
| **Example:** Switch(config-pmap)# exit | |
| **Step 10** interface `interface-id` | Specifies the port to attach to the policy map, and enters interface configuration mode.  
Valid interfaces include physical ports. |
| **Example:** Switch(config)# interface gigabitethernet 2/0/1 | |
| **Step 11** service-policy input `policy-map-name` | Specifies the policy-map name, and applies it to an ingress port.  
Only one policy map per ingress port is supported.  
**Note** To remove the policy map and port association, use the no service-policy `input policy-map-name` interface configuration command. |
<p>| <strong>Example:</strong> Switch(config-if)# service-policy | |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>input flowit</td>
<td></td>
</tr>
</tbody>
</table>

**Step 12**  
Example:  
Switch(config-if)# end  
Returns to privileged EXEC mode.

**Step 13**  
Example:  
Switch# show policy-map  
Verifies your entries.

**Step 14**  
Example:  
Switch# copy-running-config startup-config  
(Optional) Saves your entries in the configuration file.

**Related Topics**  
- Policing and Marking Overview, on page 596  
- Physical Port Policing, on page 596  
- Classifying Traffic by Using Class Maps, on page 636  
- Policy Map on Physical Port  
- Examples: Classifying, Policing, and Marking Traffic on Physical Ports Using Policy Maps, on page 678  
- Policy Map on Physical Port Guidelines

**Classifying, Policing, and Marking Traffic by Using Aggregate Policers**  
By using an aggregate policer, you can create a policer that is shared by multiple traffic classes within the same policy map. However, you cannot use the aggregate policer across different policy maps or ports. You can configure aggregate policers only in nonhierarchical policy maps on physical ports.
### SUMMARY STEPS

1. `configure terminal`
2. `mls qos aggregate-policer aggregate-policer-name rate-bps burst-byte exceed-action {drop | policed-dscp-transmit}`
3. `class-map [match-all | match-any] class-map-name`
4. `policy-map policy-map-name`
5. `class [class-map-name | class-default]`
6. `police aggregate aggregate-policer-name`
7. `exit`
8. `interface interface-id`
9. `service-policy input policy-map-name`
10. `end`
11. `show mls qos aggregate-policer [aggregate-policer-name]`
12. `copy running-config startup-config`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>`mls qos aggregate-policer aggregate-policer-name rate-bps burst-byte exceed-action {drop</td>
<td>policed-dscp-transmit}`</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Switch(config)# mls qos aggregate-policer transmit1 48000 8000 exceed-action policed-dscp-transmit</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>`class-map [match-all</td>
<td>match-any] class-map-name`</td>
</tr>
</tbody>
</table>

- For `aggregate-policer-name`, specify the name of the aggregate policer.
- For `rate-bps`, specify average traffic rate in bits per second (b/s). The range is 8000 to 1000000000.
- For `burst-byte`, specify the normal burst size in bytes. The range is 8000 to 1000000.
- Specifies the action to take when the rates are exceeded. Use the `exceed-action drop` keywords to drop the packet. Use the `exceed-action policed-dscp-transmit` keywords to mark down the DSCP value (by using the policed-DSCP map) and to send the packet.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Switch(config)# <code>class-map ipclass1</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td></td>
</tr>
<tr>
<td><code>policy-map</code> <code>policy-map-name</code></td>
<td>Creates a policy map by entering the policy map name, and enters policy-map configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Switch(config-cmap)# <code>policy-map aggflow1</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td></td>
</tr>
<tr>
<td>`class [class-name</td>
<td>class-default]`</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Switch(config-cmap-p)# <code>class ipclass1</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td></td>
</tr>
<tr>
<td><code>police aggregate</code> <code>aggregate-policer-name</code></td>
<td>Applies an aggregate policer to multiple classes in the same policy map. For <code>aggregate-policer-name</code>, enter the name specified in Step 2. To remove the specified aggregate policer from a policy map, use the <code>no police aggregate</code> <code>aggregate-policer-name</code> policy map configuration command. To delete an aggregate policer and its parameters, use the <code>no mis qos aggregate-policer aggregate-policer-name</code> global configuration command.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Switch(configure-cmap-p)# <code>police aggregate transmit1</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td></td>
</tr>
<tr>
<td><code>exit</code></td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Switch(configure-cmap-p)# <code>exit</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td></td>
</tr>
<tr>
<td><code>interface</code> <code>interface-id</code></td>
<td>Specifies the port to attach to the policy map, and enters interface configuration mode. Valid interfaces include physical ports.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Switch(config)# <code>interface gigabitethernet 2/0/1</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td></td>
</tr>
<tr>
<td><code>service-policy input</code> <code>policy-map-name</code></td>
<td>Specifies the policy-map name, and applies it to an ingress port. Only one policy map per ingress port is supported.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Switch(config-if)# <code>service-policy input aggflow1</code></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>Step 10</strong></td>
<td>end</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(configure-if)# end</td>
</tr>
<tr>
<td></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 11</strong></td>
<td>show mls qos aggregate-policer [aggregate-policer-name]</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# show mls qos aggregate-policer transmit1</td>
</tr>
<tr>
<td></td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td><strong>Step 12</strong></td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# copy-running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>

**Related Topics**

- Policing and Marking Overview, on page 596
- Examples: Classifying, Policing, and Marking Traffic by Using Aggregate Policers, on page 681

**Configuring DSCP Maps**

**Related Topics**

- Mapping Tables Overview, on page 598

**Configuring the CoS-to-DSCP Map**

You use the CoS-to-DSCP map to map CoS values in incoming packets to a DSCP value that QoS uses internally to represent the priority of the traffic.

Beginning in privileged EXEC mode, follow these steps to modify the CoS-to-DSCP map. This procedure is optional.
SUMMARY STEPS

1. configure terminal
2. mls qos map cos-dscp dscp1...dscp8
3. end
4. show mls qos maps cos-dscp
5. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> mls qos map cos-dscp dscp1...dscp8</td>
<td>Modifies the CoS-to-DSCP map.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# mls qos map cos-dscp 10 15 20 25 30 35 40 45</td>
<td>For dscp1...dscp8, enter eight DSCP values that correspond to CoS values 0 to 7. Separate each DSCP value with a space. The DSCP range is 0 to 63.</td>
</tr>
<tr>
<td>Note:</td>
<td></td>
</tr>
<tr>
<td>To return to the default map, use the no mls qos cos-dscp global configuration command.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# end</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> show mls qos maps cos-dscp</td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# show mls qos maps cos-dscp</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# copy-running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

Related Topics

Default CoS-to-DSCP Map, on page 612
Configuring the Trust State on Ports Within the QoS Domain, on page 618
Examples: Configuring DSCP Maps, on page 681

Configuring the IP-Precedence-to-DSCP Map

You use the IP-precedence-to-DSCP map to map IP precedence values in incoming packets to a DSCP value that QoS uses internally to represent the priority of the traffic.
Beginning in privileged EXEC mode, follow these steps to modify the IP-precedence-to-DSCP map. This procedure is optional.

**SUMMARY STEPS**

1. configure terminal
2. mls qos map ip-prec-dscp dscp1...dscp8
3. end
4. show mls qos maps ip-prec-dscp
5. copy running-config startup-config

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>mls qos map ip-prec-dscp dscp1...dscp8</td>
<td>Modifies the IP-precedence-to-DSCP map.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>For dscp1...dscp8, enter eight DSCP values that correspond to the IP precedence values 0 to 7. Separate each DSCP value with a space. The DSCP range is 0 to 63.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config)# end</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>show mls qos maps ip-prec-dscp</td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# show mls qos maps ip-prec-dscp</td>
<td></td>
</tr>
</tbody>
</table>
### Configuring the Policed-DSCP Map

You use the policed-DSCP map to mark down a DSCP value to a new value as the result of a policing and marking action.

The default policed-DSCP map is a null map, which maps an incoming DSCP value to the same DSCP value. Beginning in privileged EXEC mode, follow these steps to modify the policed-DSCP map. This procedure is optional.

#### SUMMARY STEPS

1. `configure terminal`
2. `mls qos map policed-dscp dscp-list to mark-down-dscp`
3. `end`
4. `show mls qos maps policed-dscp`
5. `copy running-config startup-config`

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Modifies the policed-DSCP map.</td>
</tr>
<tr>
<td><code>mls qos map policed-dscp dscp-list to mark-down-dscp</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch(config)# mls qos map</code></td>
<td></td>
</tr>
</tbody>
</table>

For `dscp-list`, enter up to eight DSCP values separated by spaces. Then enter the `to` keyword.
### How to Configure QoS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>policed-dscp 50 51 52 53 54 55 56 57 to 0</td>
<td>For <code>mark-down-dscp</code>, enter the corresponding policed (marked down) DSCP value.</td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>To return to the default map, use the <code>no mls qos policed-dscp</code> global configuration command.</td>
</tr>
</tbody>
</table>

**Step 3**

**end**

**Example:**

```
Switch(config)# end
```

**Step 4**

**show mls qos maps policed-dscp**

**Example:**

```
Switch(config)# show mls qos maps policed-dscp
```

**Step 5**

**copy running-config startup-config**

**Example:**

```
Switch# copy-running-config startup-config
```

---

**Related Topics**

- Default CoS-to-DSCP Map, on page 612
- Default IP-Precedence-to-DSCP Map, on page 613
- Default DSCP-to-CoS Map, on page 614
- Examples: Configuring DSCP Maps, on page 681

---

**Configuring the DSCP-to-CoS Map**

You use the DSCP-to-CoS map to generate a CoS value, which is used to select one of the four egress queues. Beginning in privileged EXEC mode, follow these steps to modify the DSCP-to-CoS map. This procedure is optional.
SUMMARY STEPS

1. configure terminal
2. mls qos map dscp-cos dscp-list to cos
3. end
4. show mls qos maps dscp-to-cos
5. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Switch# configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong> mls qos map dscp-cos dscp-list to cos</td>
<td>Modifies the DSCP-to-CoS map.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Switch# mls qos map dscp-cos 0 8 16 24 32 40 48 50 to 0</td>
</tr>
<tr>
<td></td>
<td>• For <em>dscp-list</em>, enter up to eight DSCP values separated by spaces. Then enter the <em>to</em> keyword.</td>
</tr>
<tr>
<td></td>
<td>• For <em>cos</em>, enter the CoS value to which the DSCP values correspond.</td>
</tr>
<tr>
<td></td>
<td>The DSCP range is 0 to 63; the CoS range is 0 to 7.</td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>To return to the default map, use the no mls qos dscp-cos global configuration command.</td>
</tr>
<tr>
<td><strong>Step 3</strong> end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Switch(config)# end</td>
</tr>
<tr>
<td><strong>Step 4</strong> show mls qos maps dscp-to-cos</td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Switch# show mls qos maps dscp-to-cos</td>
</tr>
<tr>
<td><strong>Step 5</strong> copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Switch# copy-running-config startup-config</td>
</tr>
</tbody>
</table>
Configuring the DSCP-to-DSCP-Mutation Map

If two QoS domains have different DSCP definitions, use the DSCP-to-DSCP-mutation map to translate one set of DSCP values to match the definition of another domain. You apply the DSCP-to-DSCP-mutation map to the receiving port (ingress mutation) at the boundary of a QoS administrative domain.

With ingress mutation, the new DSCP value overwrites the one in the packet, and QoS applies the new value to the packet. The switch sends the packet out the port with the new DSCP value.

You can configure multiple DSCP-to-DSCP-mutation maps on an ingress port. The default DSCP-to-DSCP-mutation map is a null map, which maps an incoming DSCP value to the same DSCP value.

Beginning in privileged EXEC mode, follow these steps to modify the DSCP-to-DSCP-mutation map. This procedure is optional.

SUMMARY STEPS

1. configure terminal
2. mls qos map dscp-mutation dscp-mutation-name in-dscp to out-dscp
3. interface interface-id
4. mls qos trust dscp
5. mls qos dscp-mutation dscp-mutation-name
6. end
7. show mls qos maps dscp-mutation
8. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td>mls qos map dscp-mutation dscp-mutation-name in-dscp to out-dscp</td>
<td>Modifies the DSCP-to-DSCP-mutation map.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# mls qos map dscp-mutation mutation1 1 2 3 4 5 6 7 to 0</td>
<td></td>
</tr>
</tbody>
</table>

- For `dscp-mutation-name`, enter the mutation map name. You can create more than one map by specifying a new name.
- For `in-dscp`, enter up to eight DSCP values separated by spaces. Then enter the `to` keyword.
- For `out-dscp`, enter a single DSCP value.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The DSCP range is 0 to 63.</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong> To return to the default map, use the <code>no mls qos dscp-mutation dscp-mutation-name</code> global configuration command.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><strong>interface</strong> interface-id</td>
</tr>
<tr>
<td></td>
<td>Valid interfaces include physical ports.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>Switch(config)# interface gigabitethernet1/0/1</code></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><code>mls qos trust dscp</code></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>Switch(config-if)# mls qos trust dscp</code></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><code>mls qos dscp-mutation dscp-mutation-name</code></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>Switch(config-if)# mls qos dscp-mutation mutation1</code></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><code>end</code></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>Switch(config-if)# end</code></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td><code>show mls qos maps dscp-mutation</code></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>Switch# show mls qos maps dscp-mutation</code></td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td><code>copy running-config startup-config</code></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>Switch# copy-running-config startup-config</code></td>
</tr>
</tbody>
</table>

**Related Topics**

Examples: Configuring DSCP Maps, on page 681
Configuring Ingress Queue Characteristics

Depending on the complexity of your network and your QoS solution, you might need to perform all of the tasks in the next modules. You need to make decisions about these characteristics:

- Which packets are assigned (by DSCP or CoS value) to each queue?
- What drop percentage thresholds apply to each queue, and which CoS or DSCP values map to each threshold?
- How much of the available buffer space is allocated between the queues?
- How much of the available bandwidth is allocated between the queues?
- Is there traffic (such as voice) that should be given high priority?

Related Topics

Priority Queueing, on page 605
Ingress Port Activity

Configuration Guidelines

Follow these guidelines when the expedite queue is enabled or the egress queues are serviced based on their SRR weights:

- If the egress expedite queue is enabled, it overrides the SRR shaped and shared weights for queue 1.
- If the egress expedite queue is disabled and the SRR shaped and shared weights are configured, the shaped mode overrides the shared mode for queue 1, and SRR services this queue in shaped mode.
- If the egress expedite queue is disabled and the SRR shaped weights are not configured, SRR services this queue in shared mode.

Mapping DSCP or CoS Values to an Ingress Queue and Setting WTD Thresholds

You can prioritize traffic by placing packets with particular DSCPs or CoSs into certain queues and adjusting the queue thresholds so that packets with lower priorities are dropped.

Beginning in privileged EXEC mode, follow these steps to map DSCP or CoS values to an ingress queue and to set WTD thresholds. This procedure is optional.
SUMMARY STEPS

1. configure terminal
2. Use one of the following:
   • mls qos srr-queue input dscp-map queue queue-id threshold threshold-id dscp1...dscp8
   • mls qos srr-queue input cos-map queue queue-id threshold threshold-id cos1...cos8
3. mls qos srr-queue input threshold queue-id threshold-percentage1 threshold-percentage2
4. end
5. show mls qos maps
6. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

**Step 2** Use one of the following:	Maps DSCP or CoS values to an ingress queue and to a threshold ID.
• mls qos srr-queue input dscp-map queue queue-id threshold threshold-id dscp1...dscp8	By default, DSCP values 0–39 and 48–63 are mapped to queue 1 and threshold 1. DSCP values 40–47 are mapped to queue 2 and threshold 1. By default, CoS values 0–4, 6, and 7 are mapped to queue 1 and threshold 1. CoS value 5 is mapped to queue 2 and threshold 1.
• mls qos srr-queue input cos-map queue queue-id threshold threshold-id cos1...cos8	• For queue-id, the range is 1 to 2. • For threshold-id, the range is 1 to 3. The drop-threshold percentage for threshold 3 is predefined. It is set to the queue-full state. • For dscp1...dscp8, enter up to eight values, and separate each value with a space. The range is 0 to 63. • For cos1...cos8, enter up to eight values, and separate each value with a space. The range is 0 to 7.
**Example:**	
Switch(config)# mls qos srr-queue input dscp-map queue 1 threshold 2 20 21 22 23 24 25 26	

**Step 3** mls qos srr-queue input threshold queue-id threshold-percentage1 threshold-percentage2	Assigns the two WTD threshold percentages for (threshold 1 and 2) to an ingress queue. The default, both thresholds are set to 100 percent.
**Example:**	
Switch(config)# mls qos srr-queue input threshold 1 50 70	• For queue-id, the range is 1 to 2. • For threshold-percentage1 threshold-percentage2, the range is 1 to 100. Separate each value with a space.
	Each threshold value is a percentage of the total number of queue descriptors allocated for the queue.
Allocating Buffer Space Between the Ingress Queues

You define the ratio (allocate the amount of space) with which to divide the ingress buffers between the two queues. The buffer and the bandwidth allocation control how much data can be buffered before packets are dropped.

Beginning in privileged EXEC mode, follow these steps to allocate the buffers between the ingress queues. This procedure is optional.
### SUMMARY STEPS

1. `configure terminal`  
2. `mls qos srr-queue input buffers percentage1 percentage2`  
3. `end`  
4. Use one of the following:  
   - `show mls qos interface buffer`  
   - `show mls qos input-queue`  
5. `copy running-config startup-config`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td><code>mls qos srr-queue input buffers percentage1 percentage2</code></td>
<td>Allocates the buffers between the ingress queues. By default 90 percent of the buffers are allocated to queue 1, and 10 percent of the buffers are allocated to queue 2. For <code>percentage1 percentage2</code>, the range is 0 to 100. Separate each value with a space. You should allocate the buffers so that the queues can handle any incoming bursty traffic.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Switch(config)# mls qos srr-queue input buffers 60 40</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
</tr>
<tr>
<td><code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Switch(config)# end</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td></td>
</tr>
<tr>
<td>Use one of the following:</td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td>- <code>show mls qos interface buffer</code></td>
<td></td>
</tr>
<tr>
<td>- <code>show mls qos input-queue</code></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Switch# show mls qos interface buffer</code></td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td><code>Switch# show mls qos input-queue</code></td>
<td></td>
</tr>
</tbody>
</table>
### Allocating Bandwidth Between the Ingress Queues

You need to specify how much of the available bandwidth is allocated between the ingress queues. The ratio of the weights is the ratio of the frequency in which the SRR scheduler sends packets from each queue. The bandwidth and the buffer allocation control how much data can be buffered before packets are dropped. On ingress queues, SRR operates only in shared mode.

**Note**

SRR bandwidth limit works in both mls qos enabled and disabled states.

Beginning in privileged EXEC mode, follow these steps to allocate bandwidth between the ingress queues. This procedure is optional.

### SUMMARY STEPS

1. `configure terminal`
2. `mls qos srr-queue input bandwidth weight1 weight2`
3. `end`
4. Use one of the following:
   - `show mls qos interface queueing`
   - `show mls qos input-queue`
5. `copy running-config startup-config`
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><code>configure terminal</code></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><code>mls qos srr-queue input bandwidth weight1 weight2</code></td>
<td>Assigns shared round robin weights to the ingress queues. The default setting for <code>weight1</code> and <code>weight2</code> is 4 (1/2 of the bandwidth is equally shared between the two queues). For <code>weight1</code> and <code>weight2</code>, the range is 1 to 100. Separate each value with a space. SRR services the priority queue for its configured weight as specified by the <code>bandwidth</code> keyword in the <code>mls qos srr-queue input priority-queue queue-id bandwidth weight</code> global configuration command. Then, SRR shares the remaining bandwidth with both ingress queues and services them as specified by the weights configured with the <code>mls qos srr-queue input bandwidth weight1 weight2</code> global configuration command.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Switch(config)# mls qos srr-queue input bandwidth 25 75</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Switch(config)# end</td>
<td></td>
</tr>
</tbody>
</table>
| **Step 4** | Use one of the following:  
  - `show mls qos interface queueing`  
  - `show mls qos input-queue` | Verifies your entries. |
| **Example:** | Switch# show mls qos interface queueing  
  or  
  Switch# show mls qos input-queue | |
| **Step 5** | `copy running-config startup-config` | (Optional) Saves your entries in the configuration file. To return to the default setting, use the `no mls qos srr-queue input bandwidth` global configuration command. |
| **Example:** | Switch# copy running-config startup-config | |
Configuring Egress Queue Characteristics

Depending on the complexity of your network and your QoS solution, you might need to perform all of the tasks in the following modules. You need to make decisions about these characteristics:

- Which packets are mapped by DSCP or CoS value to each queue and threshold ID?
- What drop percentage thresholds apply to the queue-set (four egress queues per port), and how much reserved and maximum memory is needed for the traffic type?
- How much of the fixed buffer space is allocated to the queue-set?
- Does the bandwidth of the port need to be rate limited?
- How often should the egress queues be serviced and which technique (shaped, shared, or both) should be used?

Related Topics

- Shaped or Shared Mode, on page 608

Configuration Guidelines

Follow these guidelines when the expedite queue is enabled or the egress queues are serviced based on their SRR weights:

- If the egress expedite queue is enabled, it overrides the SRR shaped and shared weights for queue 1.
- If the egress expedite queue is disabled and the SRR shaped and shared weights are configured, the shaped mode overrides the shared mode for queue 1, and SRR services this queue in shaped mode.
- If the egress expedite queue is disabled and the SRR shaped weights are not configured, SRR services this queue in shared mode.

Allocating Buffer Space to and Setting WTD Thresholds for an Egress Queue-Set

You can guarantee the availability of buffers, set WTD thresholds, and configure the maximum allocation for a queue-set by using the `mls qos queue-set output qset-id threshold queue-id drop-threshold1 drop-threshold2 reserved-threshold maximum-threshold global configuration command.

Each threshold value is a percentage of the queue’s allocated buffers, which you specify by using the `mls qos queue-set output qset-id buffers allocation1 ... allocation4 global configuration command. The queues use WTD to support distinct drop percentages for different traffic classes.
The egress queue default settings are suitable for most situations. You should change them only when you have a thorough understanding of the egress queues and if these settings do not meet your QoS solution.

Beginning in privileged EXEC mode, follow these steps to configure the memory allocation and to drop thresholds for a queue-set. This procedure is optional.

### SUMMARY STEPS

1. `configure terminal`
2. `mls qos srr-queue output queues 8`
3. `mls qos queue-set output qset-id buffers allocation1 ... allocation8`
4. `mls qos queue-set output qset-id threshold queue-id drop-threshold1 drop-threshold2 reserved-threshold maximum-threshold`
5. `interface interface-id`
6. `queue-set qset-id`
7. `end`
8. `show mls qos interface [interface-id] buffers`
9. `copy running-config startup-config`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> mls qos srr-queue output queues 8</td>
<td>(Optional) The switch supports 4 egress queues by default, although you can enable a total of 8 egress queues. Use the optional <code>mls qos srr-queue output queues 8</code> command to enable the additional 4 egress queues. Once 8 queue support is enabled, you can then proceed to configure the additional 4 queues. Any existing egress queue configuration commands are then modified to support the additional queue parameters.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# mls qos srr-queue output queues 8</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> mls qos queue-set output qset-id buffers allocation1 ... allocation8</td>
<td>Allocates buffers to a queue set. By default, all allocation values are equally mapped among the four queues (25, 25, 25, 25). Each queue has 1/4 of the buffer space. When eight egress queues are configured, then by default 30 percent of the total buffer space is allocated to queue 2 and 10 percent (each) to queues 1,3,4,5,6,7, and 8. If you enabled 8 egress queues as described in Step 2 above, then the following applies:</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# mls qos queue-set output 2 buffers 40 20 20 20 10 10 10 10</td>
<td></td>
</tr>
</tbody>
</table>
### How to Configure QoS

#### Command or Action

<table>
<thead>
<tr>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>For <strong>qset-id</strong>, enter the ID of the queue set. The range is 1 to 2. Each port belongs to a queue set, which defines all the characteristics of the four egress queues per port.</td>
</tr>
<tr>
<td>For <strong>allocation1 ... allocation8</strong>, specify eight percentages, one for each queue in the queue set. For <strong>allocation1, allocation3, and allocation4 to allocation8</strong>, the range is 0 to 99. For <strong>allocation2</strong>, the range is 1 to 100 (including the CPU buffer).</td>
</tr>
</tbody>
</table>

Allocate buffers according to the importance of the traffic; for example, give a large percentage of the buffer to the queue with the highest-priority traffic.

**Note** To return to the default setting, use the **no mls qos queue-set output qset-id buffers** global configuration command.

#### Step 4

| mls qos queue-set output qset-id threshold queue-id drop-threshold1 drop-threshold2 reserved-threshold maximum-threshold |

Configures the WTD thresholds, guarantee the availability of buffers, and configure the maximum memory allocation for the queue-set (four egress queues per port).

By default, the WTD thresholds for queues 1, 3, and 4 are set to 100 percent. The thresholds for queue 2 are set to 200 percent. The reserved thresholds for queues 1, 2, 3, and 4 are set to 50 percent. The maximum thresholds for all queues are set to 400 percent by default.

If you enabled 8 egress queues as described in Step 2 above, then the following applies:

<table>
<thead>
<tr>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>For <strong>qset-id</strong>, enter the ID of the queue-set specified in Step 2. The range is 1 to 2.</td>
</tr>
<tr>
<td>For <strong>queue-id</strong>, enter the specific queue in the queue set on which the command is performed. The queue-id range is 1-4 by default and 1-8 when 8 queues are enabled.</td>
</tr>
<tr>
<td>For <strong>drop-threshold1 drop-threshold2</strong>, specify the two WTD thresholds expressed as a percentage of the queue’s allocated memory. The range is 1 to 3200 percent.</td>
</tr>
<tr>
<td>For <strong>reserved-threshold</strong>, enter the amount of memory to be guaranteed (reserved) for the queue expressed as a percentage of the allocated memory. The range is 1 to 100 percent.</td>
</tr>
<tr>
<td>For <strong>maximum-threshold</strong>, enable a queue in the full condition to obtain more buffers than are reserved for it. This is the maximum memory the queue can have before the packets are dropped if the common pool is not empty. The range is 1 to 3200 percent.</td>
</tr>
</tbody>
</table>

**Note** To return to the default WTD threshold percentages, use the **no mls qos queue-set output qset-id threshold [queue-id]** global configuration command.
### Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td><strong>interface</strong> <code>interface-id</code></td>
<td>Specifies the port of the outbound traffic, and enter interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Switch(config)# interface gigabitethernet1/0/1</code></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td><code>queue-set qset-id</code></td>
<td>Maps the port to a queue-set.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Switch(config-id)# queue-set 2</code></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td><code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Switch(config-id)# end</code></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td><code>show mls qos interface [interface-id] buffers</code></td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Switch# show mls qos interface buffers</code></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Switch# copy-running-config startup-config</code></td>
<td></td>
</tr>
</tbody>
</table>

### Related Topics

- Queueing and Scheduling on Egress Queues
  - Examples: Configuring Egress Queue Characteristics, on page 684
- Weighted Tail Drop, on page 600

### Mapping DSCP or CoS Values to an Egress Queue and to a Threshold ID

You can prioritize traffic by placing packets with particular DSCPs or costs of service into certain queues and adjusting the queue thresholds so that packets with lower priorities are dropped.
### Summary Steps

1. configure terminal
2. Use one of the following:
   - `mls qos srr-queue output dscp-map queue queue-id threshold threshold-id dscp1...dscp8`
   - `mls qos srr-queue output cos-map queue queue-id threshold threshold-id cos1...cos8`
3. end
4. show mls qos maps
5. copy running-config startup-config

### Detailed Steps

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Use one of the following:</td>
<td>Maps DSCP or CoS values to an egress queue and to a threshold ID.</td>
</tr>
<tr>
<td></td>
<td>- <code>mls qos srr-queue output dscp-map queue queue-id threshold threshold-id dscp1...dscp8</code></td>
<td>By default, DSCP values 0–15 are mapped to queue 2 and threshold 1. DSCP values 16–31 are mapped to queue 3 and threshold 1. DSCP values 32–39 and 48–63 are mapped to queue 4 and threshold 1. DSCP values 40–47 are mapped to queue 1 and threshold 1.</td>
</tr>
<tr>
<td></td>
<td>- <code>mls qos srr-queue output cos-map queue queue-id threshold threshold-id cos1...cos8</code></td>
<td>By default, CoS values 0 and 1 are mapped to queue 2 and threshold 1. CoS values 2 and 3 are mapped to queue 3 and threshold 1. CoS values 4, 6, and 7 are mapped to queue 4 and threshold 1. CoS value 5 is mapped to queue 1 and threshold 1.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# mls qos srr-queue output dscp-map queue 1 threshold 2 10 11</td>
<td></td>
</tr>
<tr>
<td>- For <code>queue-id</code>, the range is 1 to 4.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- For <code>threshold-id</code>, the range is 1 to 3. The drop-threshold percentage for threshold 3 is predefined. It is set to the queue-full state.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- For <code>dscp1...dscp8</code>, enter up to eight values, and separate each value with a space. The range is 0 to 63.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- For <code>cos1...cos8</code>, enter up to eight values, and separate each value with a space. The range is 0 to 7.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Command or Action

<table>
<thead>
<tr>
<th>Step 3</th>
<th>end</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Switch(config)# end</td>
</tr>
</tbody>
</table>

### Step 4

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show mls qos maps</td>
<td>Verifies your entries. The DSCP output queue threshold map appears as a matrix. The d1 column specifies the most-significant digit of the DSCP number; the d2 row specifies the least-significant digit in the DSCP number. The intersection of the d1 and the d2 values provides the queue ID and threshold ID; for example, queue 2 and threshold 1 (02-01). The CoS output queue threshold map shows the CoS value in the top row and the corresponding queue ID and threshold ID in the second row; for example, queue 2 and threshold 2 (2-2).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 5</th>
<th>copy running-config startup-config</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Switch# copy-running-config startup-config</td>
</tr>
</tbody>
</table>

### Related Topics

- Queueing and Scheduling on Egress Queues
  - Examples: Configuring Egress Queue Characteristics, on page 684
  - Weighted Tail Drop, on page 600

### Configuring SRR Shaped Weights on Egress Queues

You can specify how much of the available bandwidth is allocated to each queue. The ratio of the weights is the ratio of frequency in which the SRR scheduler sends packets from each queue.

You can configure the egress queues for shaped or shared weights, or both. Use shaping to smooth bursty traffic or to provide a smoother output over time.

Beginning in privileged EXEC mode, follow these steps to assign the shaped weights and to enable bandwidth shaping on the four egress queues mapped to a port. This procedure is optional.
SUMMARY STEPS

1. configure terminal
2. interface interface-id
3. srr-queue bandwidth shape weight1 weight2 weight3 weight4
4. end
5. show mls qos interface interface-id queueing
6. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Specifies the port of the outbound traffic, and enters interface</td>
</tr>
<tr>
<td>Example:</td>
<td>configuration mode.</td>
</tr>
<tr>
<td>Switch(config)# interface gigabitethernet2/0/1</td>
<td></td>
</tr>
<tr>
<td>Step 3 srr-queue bandwidth shape weight1 weight2 weight3 weight4</td>
<td>Assigns SRR weights to the egress queues. By default, weight1 is set to</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config-if)# srr-queue</td>
<td></td>
</tr>
<tr>
<td>bandwidth shape weight0 weight0 weight0 weight0</td>
<td>Assigns SRR weights to the egress queues. By default, weight1 is set to</td>
</tr>
<tr>
<td>weight0 weight0 weight0 weight0</td>
<td>25; weight2, weight3, and weight4 are set to 0, and these queues are in</td>
</tr>
<tr>
<td>weight0 weight0 weight0 weight0</td>
<td>shared mode.</td>
</tr>
<tr>
<td>weight0 weight0 weight0 weight0</td>
<td>For weight1 weight2 weight3 weight4, enter the weights to control the</td>
</tr>
<tr>
<td>weight0 weight0 weight0 weight0</td>
<td>percentage of the port that is shaped. The inverse ratio (1/weight)</td>
</tr>
<tr>
<td>weight0 weight0 weight0 weight0</td>
<td>controls the shaping bandwidth for this queue. Separate each value with</td>
</tr>
<tr>
<td>weight0 weight0 weight0 weight0</td>
<td>a space. The range is 0 to 65535.</td>
</tr>
<tr>
<td>weight0 weight0 weight0 weight0</td>
<td>If you configure a weight of 0, the corresponding queue operates in</td>
</tr>
<tr>
<td>weight0 weight0 weight0 weight0</td>
<td>shared mode. The weight specified with the srr-queue bandwidth shape</td>
</tr>
<tr>
<td>weight0 weight0 weight0 weight0</td>
<td>command is ignored, and the weights specified with the srr-queue</td>
</tr>
<tr>
<td>weight0 weight0 weight0 weight0</td>
<td>bandwidth share interface configuration command for a queue come into</td>
</tr>
<tr>
<td>weight0 weight0 weight0 weight0</td>
<td>effect. When configuring queues in the same queue-set for both shaping</td>
</tr>
<tr>
<td>weight0 weight0 weight0 weight0</td>
<td>and sharing, make sure that you configure the lowest number queue for</td>
</tr>
<tr>
<td>weight0 weight0 weight0 weight0</td>
<td>shaping. The shaped mode overrides the shared mode.</td>
</tr>
<tr>
<td>weight0 weight0 weight0 weight0</td>
<td>To return to the default setting, use the no srr-queue bandwidth shape</td>
</tr>
<tr>
<td>weight0 weight0 weight0 weight0</td>
<td>interface configuration command.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><strong>end</strong></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><strong>Switch(config-if)# end</strong></td>
</tr>
<tr>
<td><strong>Purpose:</strong></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><strong>show mls qos interface interface-id queuing</strong></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><strong>Switch# show mls qos interface interface-id queuing</strong></td>
</tr>
<tr>
<td><strong>Purpose:</strong></td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><strong>copy running-config startup-config</strong></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><strong>Switch# copy running-config startup-config</strong></td>
</tr>
<tr>
<td><strong>Purpose:</strong></td>
<td>(Optional) Saves your entries in the configuration file. To return to the default setting, use the <strong>no srr-queue bandwidth shape</strong> interface configuration command.</td>
</tr>
</tbody>
</table>

**Related Topics**

- Queueing and Scheduling on Egress Queues
- Examples: Configuring Egress Queue Characteristics, on page 684
- SRR Shaping and Sharing, on page 601

**Configuring SRR Shared Weights on Egress Queues**

In shared mode, the queues share the bandwidth among them according to the configured weights. The bandwidth is guaranteed at this level but not limited to it. For example, if a queue empties and does not require a share of the link, the remaining queues can expand into the unused bandwidth and share it among them. With sharing, the ratio of the weights controls the frequency of dequeuing; the absolute values are meaningless.

**Note**

The egress queue default settings are suitable for most situations. You should change them only when you have a thorough understanding of the egress queues and if these settings do not meet your QoS solution.

Beginning in privileged EXEC mode, follow these steps to assign the shared weights and to enable bandwidth sharing on the four egress queues mapped to a port. This procedure is optional.
SUMMARY STEPS

1. configure terminal
2. interface interface-id
3. srr-queue bandwidth share weight1 weight2 weight3 weight4
4. end
5. show mls qos interface interface-id queueing
6. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
</tr>
<tr>
<td>Purpose:</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# interface gigabitethernet2/0/1</td>
</tr>
<tr>
<td>Purpose:</td>
<td>Specifies the port of the outbound traffic, and enters interface configuration mode.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>srr-queue bandwidth share weight1 weight2 weight3 weight4</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-id)# srr-queue bandwidth share 1 2 3 4</td>
</tr>
<tr>
<td>Purpose:</td>
<td>Assigns SRR weights to the egress queues. By default, all four weights are 25 (1/4 of the bandwidth is allocated to each queue). For weight1 weight2 weight3 weight4, enter the weights to control the ratio of the frequency in which the SRR scheduler sends packets. Separate each value with a space. The range is 1 to 255. To return to the default setting, use the no srr-queue bandwidth share interface configuration command.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>end</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-id)# end</td>
</tr>
<tr>
<td>Purpose:</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>show mls qos interface interface-id queueing</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# show mls qos interface interface_id queueing</td>
</tr>
<tr>
<td>Purpose:</td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td>Purpose:</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>
### Command or Action  | Purpose
---|---

Example:
Switch# **copy-running-config**
**startup-config**

To return to the default setting, use the `no srr-queue bandwidth share` interface configuration command.

### Related Topics
- Queueing and Scheduling on Egress Queues
- Examples: Configuring Egress Queue Characteristics, on page 684
- SRR Shaping and Sharing, on page 601

### Configuring the Egress Expedite Queue
You can ensure that certain packets have priority over all others by queuing them in the egress expedite queue. SRR services this queue until it is empty before servicing the other queues.

Beginning in privileged EXEC mode, follow these steps to enable the egress expedite queue. This procedure is optional.

**SUMMARY STEPS**

1. **configure terminal**
2. **mls qos**
3. **interface interface-id**
4. **priority-queue out**
5. **end**
6. **show running-config**
7. **copy running-config startup-config**

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>configure terminal</strong></td>
<td></td>
</tr>
</tbody>
</table>

Example:
Switch# **configure terminal**
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 2</strong></td>
<td>Enables QoS on a switch.</td>
</tr>
<tr>
<td><code>mls qos</code></td>
<td>Enables QoS on a switch.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>Switch(config)# mls qos</code></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Specifies the egress port, and enters interface configuration mode.</td>
</tr>
<tr>
<td><code>interface interface-id</code></td>
<td>Specifies the egress port, and enters interface configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>Switch(config)# interface gigabitethernet1/0/1</code></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Enables the egress expedite queue, which is disabled by default.</td>
</tr>
<tr>
<td><code>priority-queue out</code></td>
<td>Enables the egress expedite queue, which is disabled by default.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>Switch(config-if)# priority-queue out</code></td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>To disable the egress expedite queue, use the <code>no priority-queue out</code> command.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>Switch(config-if)# end</code></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td><code>show running-config</code></td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>Switch# show running-config</code></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>Switch# copy running-config startup-config</code></td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>To disable the egress expedite queue, use the <code>no priority-queue out</code> command.</td>
</tr>
</tbody>
</table>

**Related Topics**

Queueing and Scheduling on Egress Queues
Examples: Configuring Egress Queue Characteristics, on page 684
Limiting the Bandwidth on an Egress Interface

You can limit the bandwidth on an egress port. For example, if a customer pays only for a small percentage of a high-speed link, you can limit the bandwidth to that amount.

Note

The egress queue default settings are suitable for most situations. You should change them only when you have a thorough understanding of the egress queues and if these settings do not meet your QoS solution.

Beginning in privileged EXEC mode, follow these steps to limit the bandwidth on an egress port. This procedure is optional.

SUMMARY STEPS

1. `configure terminal`
2. `interface interface-id`
3. `srr-queue bandwidth limit weight1`
4. `end`
5. `show mls qos interface [interface-id] queueing`
6. `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# <code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>interface interface-id</code></td>
<td>Specifies the port to be rate-limited, and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config)# <code>interface gigabitethernet2/0/1</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>srr-queue bandwidth limit weight1</code></td>
<td>Specifies the percentage of the port speed to which the port should be limited. The range is 10 to 90. By default, the port is not rate-limited and is set to 100 percent.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>Note To return to the default setting, use the <code>no srr-queue bandwidth limit interface configuration command. </code></td>
</tr>
</tbody>
</table>
### Monitoring Standard QoS

#### Related Topics

Queueing and Scheduling on Egress Queues
Examples: Configuring Egress Queue Characteristics, on page 684

#### Table 79: Commands for Monitoring Standard QoS on the Switch

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show class-map [class-map-name]</code></td>
<td>Displays QoS class maps, which define the match criteria to classify traffic.</td>
</tr>
<tr>
<td><code>show mls qos</code></td>
<td>Displays global QoS configuration information.</td>
</tr>
<tr>
<td><code>show mls qos aggregate-policer [aggregate-policer-name]</code></td>
<td>Displays the aggregate policer configuration.</td>
</tr>
<tr>
<td>`show mls qos interface [interface-id] [buffers</td>
<td>policers</td>
</tr>
</tbody>
</table>
### Configuration Examples for QoS

#### Example: Configuring Port to the DSCP- Trusted State and Modifying the DSCP-to-DSCP-Mutation Map

This example shows how to configure a port to the DSCP-trusted state and to modify the DSCP-to-DSCP-mutation map (named gi1/0/2-mutation) so that incoming DSCP values 10 to 13 are mapped to DSCP 30:

```
Switch(config)# mls qos map dscp-mutation gigabitethernet1/0/2-mutation
10 11 12 13 to 30
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# mls qos trust dscp
Switch(config-if)# mls qos dscp-mutation gigabitethernet1/0/2-mutation
Switch(config-if)# end
```

**Related Topics**

- Configuring the DSCP Trust State on a Port Bordering Another QoS Domain, on page 626

#### Examples: Classifying Traffic by Using ACLs

This example shows how to allow access for only those hosts on the three specified networks. The wildcard bits apply to the host portions of the network addresses. Any host with a source address that does not match the access list statements is rejected.

```
Switch(config)# access-list 1 permit 192.5.255.0 0.0.0.255
Switch(config)# access-list 1 permit 128.88.0.0 0.0.255.255
Switch(config)# access-list 1 permit 36.0.0.0 0.0.0.255
! (Note: all other access implicitly denied)
```
This example shows how to create an ACL that permits IP traffic from any source to any destination that has the DSCP value set to 32:

```
Switch(config)# access-list 100 permit ip any any dscp 32
```

This example shows how to create an ACL that permits IP traffic from a source host at 10.1.1.1 to a destination host at 10.1.1.2 with a precedence value of 5:

```
Switch(config)# access-list 100 permit ip host 10.1.1.1 host 10.1.1.2 precedence 5
```

This example shows how to create an ACL that permits PIM traffic from any source to a destination group address of 224.0.0.2 with a DSCP set to 32:

```
Switch(config)# access-list 102 permit pim any 224.0.0.2 dscp 32
```

This example shows how to create an ACL that permits IPv6 traffic from any source to any destination that has the DSCP value set to 32:

```
Switch(config)# ipv6 access-list 100 permit ip any any dscp 32
```

This example shows how to create an ACL that permits IPv6 traffic from a source host at 10.1.1.1 to a destination host at 10.1.1.2 with a precedence value of 5:

```
Switch(config)# ipv6 access-list ipv6_Name_ACL permit ip host 10::1 host 10.1.1.2 precedence 5
```

This example shows how to create a Layer 2 MAC ACL with two permit statements. The first statement allows traffic from the host with MAC address 0001.0000.0001 to the host with MAC address 0002.0000.0001. The second statement allows only Ethertype XNS-IDP traffic from the host with MAC address 0001.0000.0002 to the host with MAC address 0002.0000.0002.

```
Switch(config)# mac access-list extended maclist1
Switch(config-ext-macl)# permit 0001.0000.0001 0.0.0 0002.0000.0001 0.0.0
Switch(config-ext-macl)# permit 0001.0000.0002 0.0.0 0002.0000.0002 0.0.0 xns-idp
! (Note: all other access implicitly denied)
```

**Related Topics**

- Creating an IP Standard ACL for IPv4 Traffic, on page 628
- Creating an IP Extended ACL for IPv4 Traffic, on page 630
- Creating an IPv6 ACL for IPv6 Traffic, on page 632
- Creating a Layer 2 MAC ACL for Non-IP Traffic, on page 634

**Examples: Classifying Traffic by Using Class Maps**

This example shows how to configure the class map called `class1`. The `class1` has one match criterion, which is access list 103. It permits traffic from any host to any destination that matches a DSCP value of 10.

```
Switch(config)# access-list 103 permit ip any any dscp 10
Switch(config)# class-map class1
Switch(config-cmap)# match access-group 103
Switch(config-cmap)# end
```

Switch#
This example shows how to create a class map called `class2`, which matches incoming traffic with DSCP values of 10, 11, and 12.

```
Switch(config)# class-map class2
Switch(config-cmap)# match ip dscp 10 11 12
Switch(config-cmap)# end
Switch#
```

This example shows how to create a class map called `class3`, which matches incoming traffic with IP-precedence values of 5, 6, and 7:

```
Switch(config)# class-map class3
Switch(config-cmap)# match ip precedence 5 6 7
Switch(config-cmap)# end
Switch#
```

This example shows how to configure a class map to match IP DSCP and IPv6:

```
Switch(config)# Class-map cm-1
Switch(config-cmap)# match ip dscp 10
Switch(config-cmap)# match protocol ipv6
Switch(config-cmap)# exit
Switch(config)# Class-map cm-2
Switch(config-cmap)# match ip dscp 20
Switch(config-cmap)# match protocol ip
Switch(config-cmap)# exit
Switch(config)# Policy-map pml
Switch(config-pmap)# class cm-1
Switch(config-pmap-c)# set dscp 4
Switch(config-pmap-c)# exit
Switch(config)# Policy-map pml
Switch(config-pmap)# class cm-2
Switch(config-pmap-c)# set dscp 6
Switch(config-pmap-c)# exit
Switch(config)# interface G1/0/1
Switch(config-if)# service-policy input pml
```

This example shows how to configure a class map that applies to both IPv4 and IPv6 traffic:

```
Switch(config)# ip access-list 101 permit ip any any
Switch(config)# ipv6 access-list ipv6-anything permit ip any any
Switch(config)# Class-map cm-1
Switch(config-cmap)# match access-group 101
Switch(config-cmap)# exit
Switch(config)# Class-map cm-2
Switch(config-cmap)# match access-group name ipv6-anything
Switch(config-cmap)# exit
Switch(config)# Policy-map pml
Switch(config-pmap)# class cm-1
Switch(config-pmap-c)# set dscp 4
Switch(config-pmap-c)# exit
Switch(config)# Policy-map pml
Switch(config-pmap)# class cm-2
Switch(config-pmap-c)# set dscp 6
Switch(config-pmap-c)# exit
Switch(config)# interface G0/1
Switch(config-if)# switch mode access
Switch(config-if)# service-policy input pml
```

**Related Topics**

- Classifying Traffic by Using Class Maps, on page 636
- Classifying Traffic by Using Class Maps and Filtering IPv6 Traffic, on page 639
Examples: Classifying, Policing, and Marking Traffic on Physical Ports Using Policy Maps

This example shows how to create a policy map and attach it to an ingress port. In the configuration, the IP standard ACL permits traffic from network 10.1.0.0. For traffic matching this classification, the DSCP value in the incoming packet is trusted. If the matched traffic exceeds an average traffic rate of 48000 b/s and a normal burst size of 8000 bytes, its DSCP is marked down (based on the policed-DSCP map) and sent:

```
Switch(config)# access-list 1 permit 10.1.0.0 0.0.255.255
Switch(config)# class-map ipclass1
Switch(config-cmap)# match access-group 1
Switch(config-cmap)# exit
Switch(config)# policy-map flow1t
Switch(config-pmap)# class ipclass1
Switch(config-pmap-c)# trust dscp
Switch(config-pmap-c)# police 1000000 8000 exceed-action policed-dscp-transmit
Switch(config-pmap-c)# exit
Switch(config-pmap)# exit
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# service-policy input flow1t
```

This example shows how to create a Layer 2 MAC ACL with two permit statements and attach it to an ingress port. The first permit statement allows traffic from the host with MAC address 0001.0000.0001 destined for the host with MAC address 0002.0000.0001. The second permit statement allows only Ethertype XNS-IDP traffic from the host with MAC address 0001.0000.0002 destined for the host with MAC address 0002.0000.0002.

```
Switch(config)# mac access-list extended maclist1
Switch(config-ext-mac)# permit 0001.0000.0001 0.0.0 0002.0000.0001 0.0.0
Switch(config-ext-mac)# permit 0001.0000.0002 0.0.0 0002.0000.0002 0.0.0 xns-idp
Switch(config-ext-mac)# exit
Switch(config)# mac access-list extended maclist2
Switch(config-ext-mac)# permit 0001.0000.0003 0.0.0 0002.0000.0003 0.0.0
Switch(config-ext-mac)# permit 0001.0000.0004 0.0.0 0002.0000.0004 0.0.0 aarp
Switch(config-ext-mac)# exit
Switch(config)# class-map macclass1
Switch(config-cmap)# match access-group maclist1
Switch(config-cmap)# exit
Switch(config)# policy-map macpolicy1
Switch(config-pmap)# class macclass1
Switch(config-pmap-c)# set dscp 63
Switch(config-pmap-c)# exit
Switch(config)# class macclass2 maclist2
Switch(config-pmap-c)# set dscp 45
Switch(config-pmap-c)# exit
Switch(config-pmap)# exit
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# mls qos trust cos
Switch(config-if)# service-policy input macpolicy1
```

This example shows how to create a class map that applies to both IPv4 and IPv6 traffic with the default class applied to unclassified traffic:

```
Switch(config)# ip access-list 101 permit ip any any
Switch(config)# ipv6 access-list ipv6-any permit ip any any
Switch(config)# class-map cm-1
Switch(config-cmap)# match access-group 101
Switch(config-cmap)# exit
Switch(config)# class-map cm-2
Switch(config-cmap)# match access-group name ipv6-any
Switch(config-cmap)# exit
Switch(config)# policy-map pm1
Switch(config-pmap)# class cm-1
Switch(config-pmap-c)# set dscp 4
```
Switch(config-pmap-c)# exit
Switch(config-pmap)# class cm-2
Switch(config-pmap-c)# set dscp 6
Switch(config-pmap-c)# exit
Switch(config-pmap)# class class-default
Switch(config-pmap-c)# set dscp 10
Switch(config-pmap-c)# exit
Switch(config-pmap)# exit
Switch(config)# interface G0/1
Switch(config-if)# switch mode access
Switch(config-if)# service-policy input pm1

Related Topics
Classifying, Policing, and Marking Traffic on Physical Ports by Using Policy Maps, on page 641
Policy Map on Physical Port

Examples: Classifying, Policing, and Marking Traffic on SVIs by Using Hierarchical Policy Maps

This example shows how to create a hierarchical policy map:

Switch> enable
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# access-list 101 permit ip any any
Switch(config)# class-map cm-1
Switch(config-cmap)# match access 101
Switch(config-cmap)# exit
Switch(config)# exit
Switch#

This example shows how to attach the new map to an SVI:

Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# class-map cm-interface-1
Switch(config-cmap)# match input gigabitethernet3/0/1 - gigabitethernet3/0/2
Switch(config-cmap)# exit
Switch(config)# policy-map port-plcmap
Switch(config-pmap)# class cm-interface-1
Switch(config-pmap-c)# policy 900000 9000 exc policed-dscp-transmit
Switch(config-pmap-c)# exit
Switch(config-pmap)# exit
Switch(config)# policy-map vlan-plcmap
Switch(config-pmap)# class cm-1
Switch(config-pmap-c)# set dscp 7
Switch(config-pmap-c)# service-policy port-plcmap-1
Switch(config-pmap-c)# exit
Switch(config-pmap-c)# class cm-2
Switch(config-pmap-c)# service-policy port-plcmap-1
Switch(config-pmap-c)# set dscp 10
Switch(config-pmap-c)# exit
Switch(config-pmap-c)# class cm-3
Switch(config-pmap-c)# service-policy port-plcmap-2
Switch(config-pmap-c)# set dscp 20
Switch(config-pmap-c)# exit
Switch(config-pmap-c)# class cm-4
Switch(config-pmap-c)# trust dscp
Switch(config-pmap-c)# exit
Switch(config)# interface vlan 10
Switch(config-if)# service-policy input vlan-plcmap
This example shows that when a child-level policy map is attached below a class, an action must be specified for the class:

Switch(config)# policy-map vlan-plcmap
Switch(config-pmap)# class cm-5
Switch(config-pmap-c)# set dscp 7
Switch(config-pmap-c)# service-policy port-plcmap-1

This example shows how to configure a class map to match IP DSCP and IPv6:

Switch(config)# class-map cm-1
Switch(config-cmap)# match ip dscp 10
Switch(config-cmap)# match protocol ipv6
Switch(config-cmap)# exit
Switch(config)# class-map cm-2
Switch(config-cmap)# match ip dscp 20
Switch(config-cmap)# match protocol ip
Switch(config-cmap)# exit
Switch(config)# policy-map pm1
Switch(config-pmap)# class cm-1
Switch(config-pmap-c)# set dscp 4
Switch(config-pmap-c)# exit
Switch(config)# interface G1/0/1
Switch(config-if)# service-policy input pm1

This example shows how to configure default traffic class to a policy map:

Switch(config)# configure terminal
Switch(config)# class-map cm-3
Switch(config-cmap)# match ip dscp 30
Switch(config-cmap)# match protocol ipv6
Switch(config-cmap)# exit
Switch(config)# class-map cm-4
Switch(config-cmap)# match ip dscp 40
Switch(config-cmap)# match protocol ip
Switch(config-cmap)# exit
Switch(config)# policy-map pm3
Switch(config-pmap)# class class-default
Switch(config-pmap)# set dscp 10
Switch(config-pmap-c)# exit
Switch(config)# show policy-map pm3
Policy Map pm3
  Class cm-3
  set dscp 4
  Class cm-4
  trust cos
  Class class-default

This example shows how the default traffic class is automatically placed at the end of policy-map pm3 even though class-default was configured first:
police 8000 80000 exceed-action drop
Switch#

Related Topics
Classifying, Policing, and Marking Traffic on SVIs by Using Hierarchical Policy Maps
Hierarchical Policy Maps on SVI Guidelines

Examples: Classifying, Policing, and Marking Traffic by Using Aggregate Policers

This example shows how to create an aggregate policer and attach it to multiple classes within a policy map. In the configuration, the IP ACLs permit traffic from network 10.1.0.0 and from host 11.3.1.1. For traffic coming from network 10.1.0.0, the DSCP in the incoming packets is trusted. For traffic coming from host 11.3.1.1, the DSCP in the packet is changed to 56. The traffic rate from the 10.1.0.0 network and from host 11.3.1.1 is policed. If the traffic exceeds an average rate of 48000 b/s and a normal burst size of 8000 bytes, its DSCP is marked down (based on the policed-DSCP map) and sent. The policy map is attached to an ingress port.

Switch(config)# access-list 1 permit 10.1.0.0 0.0.255.255
Switch(config)# access-list 2 permit 11.3.1.1
Switch(config)# mls qos aggregate-police transmit1 48000 8000 exceed-action policed-dscp-transmit
Switch(config)# class-map ipclass1
Switch(config-cmap)# match access-group 1
Switch(config-cmap)# exit
Switch(config)# class-map ipclass2
Switch(config-cmap)# match access-group 2
Switch(config-cmap)# exit
Switch(config)# policy-map aggflow1
Switch(config-pmap)# class ipclass1
Switch(config-pmap-c)# trust dscp
Switch(config-pmap-c)# policy aggregate transmit1
Switch(config-pmap-c)# exit
Switch(config-pmap-c)# class ipclass2
Switch(config-pmap-c)# set dscp 56
Switch(config-pmap-c)# policy aggregate transmit1
Switch(config-pmap-c)# exit
Switch(config-pmap-c)# class class-default
Switch(config-pmap-c)# set dscp 10
Switch(config-pmap-c)# exit
Switch(config-pmap-c)# exit
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# service-policy input aggflow1
Switch(config-if)# exit

Related Topics
Classifying, Policing, and Marking Traffic by Using Aggregate Policers, on page 645

Examples: Configuring DSCP Maps

This example shows how to modify and display the CoS-to-DSCP map:

Switch(config)# mls qos map cos-dscp 10 15 20 25 30 35 40 45
Switch(config)# end
Switch# show mls qos maps cos-dscp

Cos-dscp map:
   cos:  0 1 2 3 4 5 6 7
This example shows how to modify and display the IP-precedence-to-DSCP map:

```bash
Switch(config)# mls qos map ip-prec-dscp 10 15 20 25 30 35 40 45
Switch(config)# end
Switch# show mls qos maps ip-prec-dscp
Ip-Precedence-DSCP map:
 ipprec: 0 1 2 3 4 5 6 7

 dscp: 10 15 20 25 30 35 40 45
```

This example shows how to map DSCP 50 to 57 to a marked-down DSCP value of 0:

```bash
Switch(config)# mls qos map policed-dscp 50 51 52 53 54 55 56 57 to 0
Switch(config)# end
Switch# show mls qos maps policed-dscp
Policed-DSCP map:
 d1 : d2 0 1 2 3 4 5 6 7 8 9

 0 : 00 01 02 03 04 05 06 07 08 09
 1 : 10 11 12 13 14 15 16 17 18 19
 2 : 20 21 22 23 24 25 26 27 28 29
 3 : 30 31 32 33 34 35 36 37 38 39
 4 : 40 41 42 43 44 45 46 47 48 49
 5 : 00 00 00 00 00 00 00 00 58 59
 6 : 60 61 62 63
```

In this policed-DSCP map, the marked-down DSCP values are shown in the body of the matrix. The d1 column specifies the most-significant digit of the original DSCP; the d2 row specifies the least-significant digit of the original DSCP. The intersection of the d1 and d2 values provides the marked-down value. For example, an original DSCP value of 53 corresponds to a marked-down DSCP value of 0.

This example shows how to map DSCP values 0, 8, 16, 24, 32, 40, 48, and 50 to CoS value 0 and to display the map:

```bash
Switch(config)# mls qos map dscp-cos 0 8 16 24 32 40 48 50 to 0
Switch(config)# end
Switch# show mls qos maps dscp-cos
DSCP-COS map:
 d1 : d2 0 1 2 3 4 5 6 7 8 9

 0 : 00 00 00 00 00 00 00 00 00 00
 1 : 01 01 01 01 01 01 00 00 00 01
 2 : 02 02 02 02 00 03 03 03 03 03
 3 : 03 03 00 04 04 04 04 04 04 04
 4 : 04 04 04 04 04 04 04 04 04 04
 5 : 00 00 00 00 00 00 00 00 00 00
 6 : 00 00 00 00 00 00 00 00 00 00
```

In the above DSCP-to-CoS map, the CoS values are shown in the body of the matrix. The d1 column specifies the most-significant digit of the DSCP; the d2 row specifies the least-significant digit of the DSCP. The intersection of the d1 and d2 values provides the CoS value. For example, in the DSCP-to-CoS map, a DSCP value of 08 corresponds to a CoS value of 0.
This example shows how to define the DSCP-to-DSCP-mutation map. All the entries that are not explicitly configured are not modified (remains as specified in the null map):

Switch(config)# mls qos map dscp-mutation mutation1 1 2 3 4 5 6 7 to 0
Switch(config)# mls qos map dscp-mutation mutation1 8 9 10 11 12 13 to 10
Switch(config)# mls qos map dscp-mutation mutation1 20 21 22 to 20
Switch(config)# mls qos map dscp-mutation mutation1 30 31 32 33 34 to 30
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# mls qos trust dscp
Switch(config-if)# end
Switch# show mls qos maps dscp-mutation mutation1
Dscp-dscp mutation map:
mutation1:
d1:   d2 0 1 2 3 4 5 6 7 8 9
---------------------------------------
0 : 00 00 00 00 00 00 00 00 10 10
1 : 10 10 10 10 14 15 16 17 18 19
2 : 20 20 20 23 24 25 26 27 28 29
3 : 30 30 30 30 35 36 37 38 39
4 : 40 41 42 43 44 45 46 47 48 49
5 : 50 51 52 53 54 55 56 57 58 59
6 : 60 61 62 63

In the above DSCP-to-DSCP-mutation map, the mutated values are shown in the body of the matrix. The d1 column specifies the most-significant digit of the original DSCP; the d2 row specifies the least-significant digit of the original DSCP. The intersection of the d1 and d2 values provides the mutated value. For example, a DSCP value of 12 corresponds to a mutated value of 10.

---

**Note**

In the above DSCP-to-DSCP-mutation map, the mutated values are shown in the body of the matrix. The d1 column specifies the most-significant digit of the original DSCP; the d2 row specifies the least-significant digit of the original DSCP. The intersection of the d1 and d2 values provides the mutated value. For example, a DSCP value of 12 corresponds to a mutated value of 10.

---

**Related Topics**

- Configuring the CoS-to-DSCP Map, on page 648
- Configuring the IP-Precedence-to-DSCP Map, on page 650
- Configuring the Policed-DSCP Map, on page 651
- Configuring the DSCP-to-CoS Map, on page 652
- Configuring the DSCP-to-DSCP-Mutation Map, on page 654

**Examples: Configuring Ingress Queue Characteristics**

This example shows how to map DSCP values 0 to 6 to ingress queue 1 and to threshold 1 with a drop threshold of 50 percent. It maps DSCP values 20 to 26 to ingress queue 1 and to threshold 2 with a drop threshold of 70 percent:

Switch(config)# mls qos srr-queue input dscp-map queue 1 threshold 1 0 1 2 3 4 5 6
Switch(config)# mls qos srr-queue input dscp-map queue 1 threshold 2 20 21 22 23 24 25 26
Switch(config)# mls qos srr-queue input threshold 1 50 70

In this example, the DSCP values (0 to 6) are assigned the WTD threshold of 50 percent and will be dropped sooner than the DSCP values (20 to 26) assigned to the WTD threshold of 70 percent.
This example shows how to allocate 60 percent of the buffer space to ingress queue 1 and 40 percent of the buffer space to ingress queue 2:

```
Switch(config)# mls qos srr-queue input buffers 60 40
```

This example shows how to assign the ingress bandwidth to the queues. Priority queueing is disabled, and the shared bandwidth ratio allocated to queue 1 is 25/(25+75) and to queue 2 is 75/(25+75):

```
Switch(config)# mls qos srr-queue input priority-queue 2 bandwidth 0
Switch(config)# mls qos srr-queue input bandwidth 25 75
```

This example shows how to assign the ingress bandwidths to the queues. Queue 1 is the priority queue with 10 percent of the bandwidth allocated to it. The bandwidth ratios allocated to queues 1 and 2 is 4/(4+4). SRR services queue 1 (the priority queue) first for its configured 10 percent bandwidth. Then SRR equally shares the remaining 90 percent of the bandwidth between queues 1 and 2 by allocating 45 percent to each queue:

```
Switch(config)# mls qos srr-queue input priority-queue 1 bandwidth 10
Switch(config)# mls qos srr-queue input bandwidth 4 4
```

### Related Topics
- Allocating Buffer Space Between the Ingress Queues, on page 658
- Queueing and Scheduling on Ingress Queues, on page 602
- Allocating Bandwidth Between the Ingress Queues, on page 660
- Queueing and Scheduling on Ingress Queues, on page 602
- Configuring the Ingress Priority Queue
- Queueing and Scheduling on Ingress Queues, on page 602

### Examples: Configuring Egress Queue Characteristics

This example shows how to map a port to queue-set 2. It allocates 40 percent of the buffer space to egress queue 1 and 20 percent to egress queues 2, 3, and 4. It configures the drop thresholds for queue 2 to 40 and 60 percent of the allocated memory, guarantees (reserves) 100 percent of the allocated memory, and configures 200 percent as the maximum memory that this queue can have before packets are dropped:

```
Switch(config)# mls qos queue-set output 2 buffers 40 20 20 20
Switch(config)# mls qos queue-set output 2 threshold 2 40 60 100 200
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# queue-set 2
```

This example shows how to map DSCP values 10 and 11 to egress queue 1 and to threshold 2:

```
Switch(config)# mls qos srr-queue output dscp-map queue 1 threshold 2 10 11
```

This example shows how to configure bandwidth shaping on queue 1. Because the weight ratios for queues 2, 3, and 4 are set to 0, these queues operate in shared mode. The bandwidth weight for queue 1 is 1/8, which is 12.5 percent:

```
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# srr-queue bandwidth shape 8 0 0 0
```

This example shows how to configure the weight ratio of the SRR scheduler running on an egress port. Four queues are used, and the bandwidth ratio allocated for each queue in shared mode is 1/(1+2+3+4), 2/(1+2+3+4),
3/(1+2+3+4), and 4/(1+2+3+4), which is 10 percent, 20 percent, 30 percent, and 40 percent for queues 1, 2, 3, and 4. This means that queue 4 has four times the bandwidth of queue 1, twice the bandwidth of queue 2, and one-and-a-third times the bandwidth of queue 3.

Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# srr-queue bandwidth share 1 2 3 4

This example shows how to enable the egress expedite queue when the SRR weights are configured. The egress expedite queue overrides the configured SRR weights.

Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# srr-queue bandwidth shape 25 0 0 0
Switch(config-if)# srr-queue bandwidth share 30 20 25 25
Switch(config-if)# priority-queue out
Switch(config-if)# end

This example shows how to limit the bandwidth on a port to 80 percent:

Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# srr-queue bandwidth limit 80

When you configure this command to 80 percent, the port is idle 20 percent of the time. The line rate drops to 80 percent of the connected speed, which is 800 Mb/s. These values are not exact because the hardware adjusts the line rate in increments of six.

Related Topics

- Allocating Buffer Space to and Setting WTD Thresholds for an Egress Queue-Set, on page 662
- Queueing and Scheduling on Egress Queues
- Mapping DSCP or CoS Values to an Egress Queue and to a Threshold ID, on page 665
- Queueing and Scheduling on Egress Queues
- Configuring SRR Shaped Weights on Egress Queues, on page 667
- Queueing and Scheduling on Egress Queues
- Configuring SRR Shared Weights on Egress Queues, on page 669
- Queueing and Scheduling on Egress Queues
- Configuring the Egress Expedite Queue, on page 671
- Queueing and Scheduling on Egress Queues
- Limiting the Bandwidth on an Egress Interface, on page 673
- Queueing and Scheduling on Egress Queues
- Queueing and Scheduling on Egress Queues

Where to Go Next

Review the auto-QoS documentation to see if you can use these automated capabilities for your QoS configuration.
# Additional References

## Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco EnergyWise partner documentation</td>
<td>Go to the Cisco Developer Network.</td>
</tr>
<tr>
<td></td>
<td>- Cisco EnergyWise Documentation Roadmap</td>
</tr>
<tr>
<td></td>
<td>- Cisco EnergyWise Partner Development Guide</td>
</tr>
</tbody>
</table>

## MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco EnergyWise domain members support the CISCO-ENERGYWISE-MIB.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco IOS MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/support">http://www.cisco.com/support</a></td>
</tr>
</tbody>
</table>

Feature History and Information for QoS

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS 15.0(2)EX</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>
CHAPTER 28

Configuring Auto-QoS

- Finding Feature Information, page 689
- Prerequisites for Auto-QoS, page 689
- Restrictions for Auto-QoS, page 690
- Information about Configuring Auto-QoS, page 690
- How to Configure Auto-QoS, page 694
- Monitoring Auto-QoS, page 697
- Configuration Examples for Auto-Qos, page 698
- Where to Go Next for Auto-QoS, page 707
- Additional References for Auto-QoS, page 707
- Feature History and Information for Auto-QoS, page 709

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Auto-QoS

Before configuring standard QoS or auto-QoS, you must have a thorough understanding of these items:

- The types of applications used and the traffic patterns on your network.
- Traffic characteristics and needs of your network. Is the traffic bursty? Do you need to reserve bandwidth for voice and video streams?
• Bandwidth requirements and speed of the network.
• Location of congestion points in the network.

Restrictions for Auto-QoS

The following are restrictions for automatic QoS (auto-QoS):
• Auto-QoS (and enhanced auto-QoS) is not supported on switches running the LAN Lite image.

Information about Configuring Auto-QoS

Auto-QoS Overview

You can use the auto-QoS feature to simplify the deployment of QoS features. Auto-QoS determines the network design and enables QoS configurations so that the switch can prioritize different traffic flows. It uses the egress queues instead of using the default (disabled) QoS behavior. The switch offers best-effort service to each packet, regardless of the packet contents or size, and sends it from a single queue.

When you enable auto-QoS, it automatically classifies traffic based on the traffic type and ingress packet label. The switch uses the classification results to choose the appropriate egress queue.

You can use auto-QoS commands to identify ports connected to the following Cisco devices:
• Cisco IP Phones
• Devices running the Cisco SoftPhone application
• Cisco TelePresence
• Cisco IP Camera
• Cisco digital media player

You also use the auto-QoS commands to identify ports that receive trusted traffic through an uplink. Auto-QoS then performs these functions:
• Detects the presence or absence of auto-QoS devices through conditional trusted interfaces.
• Configures QoS classification
• Configures egress queues

Related Topics
QoS Overview

Generated Auto-QoS Configuration

By default, auto-QoS is disabled on all ports. Packets are not modified—the CoS, DSCP and IP precedence values in the packet are not changed.

When you enable the auto-QoS feature on the first port of the interface:
• Ingress packet label is used to categorize traffic, to assign packet labels, and to configure the ingress and egress queues.

• QoS is globally enabled (mls qos global configuration command), and other global configuration commands are automatically generated. (See Examples: Global Auto-QoS Configuration, on page 698).

• Switch enables the trusted boundary feature and uses the Cisco Discovery Protocol (CDP) to detect the presence of a supported device.

• Policing is used to determine whether a packet is in or out of profile and specifies the action on the packet.

VoIP Device Specifics

The following activities occur when you issue these auto-QoS commands on a port:

• When you enter the auto qos voip cisco-phone command on a port at the network edge connected to a Cisco IP Phone, the switch enables the trusted boundary feature. If the packet does not have a DSCP value of 24, 26, or 46 or is out of profile, the switch changes the DSCP value to 0. When there is no Cisco IP Phone, the ingress classification is set to not trust the QoS label in the packet. The policing is applied to the traffic matching the policy-map classification before the switch enables the trust boundary feature.

• When you enter the auto qos voip cisco-softphone interface configuration command on a port at the network edge that is connected to a device running the Cisco SoftPhone, the switch uses policing to determine whether a packet is in or out of profile and to specify the action on the packet. If the packet does not have a DSCP value of 24, 26, or 46 or is out of profile, the switch changes the DSCP value to 0.

• When you enter the auto qos voip trust interface configuration command on a port connected to the network interior, the switch trusts the CoS value for nonrouted ports or the DSCP value for routed ports in ingress packets (the assumption is that traffic has already been classified by other edge devices).

Table 80: Traffic Types, Packet Labels, and Queues

<table>
<thead>
<tr>
<th></th>
<th>VoIP Data Traffic</th>
<th>VoIP Control Traffic</th>
<th>Routing Protocol Traffic</th>
<th>STP BPDU Traffic</th>
<th>Real-Time Video Traffic</th>
<th>All Other Traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSCP value</td>
<td>46</td>
<td>24, 26</td>
<td>48</td>
<td>56</td>
<td>34</td>
<td>–</td>
</tr>
<tr>
<td>CoS value</td>
<td>5</td>
<td>3</td>
<td>6</td>
<td>7</td>
<td>3</td>
<td>–</td>
</tr>
<tr>
<td>CoS-to-Ingress queue map</td>
<td>4, 5 (queue 2)</td>
<td></td>
<td></td>
<td></td>
<td>0, 1, 2, 3, 6, 7(queue 1)</td>
<td></td>
</tr>
<tr>
<td>CoS-to-Egress queue map</td>
<td>4, 5 (queue 1)</td>
<td>2, 3, 6, 7 (queue 2)</td>
<td></td>
<td>0 (queue 3)</td>
<td>2 (queue 3)</td>
<td>0, 1 (queue 4)</td>
</tr>
</tbody>
</table>

The switch configures ingress queues on the port according to the settings in the following table. This table shows the generated auto-QoS configuration for the ingress queues.
Table 81: Auto-QoS Configuration for the Ingress Queues

<table>
<thead>
<tr>
<th>Ingress Queue</th>
<th>Queue Number</th>
<th>CoS-to-Queue Map</th>
<th>Queue Weight (Bandwidth)</th>
<th>Queue (Buffer) Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRR shared</td>
<td>1</td>
<td>0, 1, 2, 3, 6, 7</td>
<td>70 percent</td>
<td>90 percent</td>
</tr>
<tr>
<td>Priority</td>
<td>2</td>
<td>4, 5</td>
<td>30 percent</td>
<td>10 percent</td>
</tr>
</tbody>
</table>

The switch configurations egress queues on the port according to the settings in the following table. This table shows the generated auto-QoS configuration for the egress queues.

Table 82: Auto-QoS Configuration for the Egress Queues

<table>
<thead>
<tr>
<th>Egress Queue</th>
<th>Egress Queue Number</th>
<th>Queue Weight (Bandwidth)</th>
<th>Queue (Buffer) Size for Gigabit-Capable Ports</th>
<th>Queue (Buffer) Size for 10/100 Ethernet Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Priority</td>
<td>1</td>
<td>up to 100 percent</td>
<td>25 percent</td>
<td>15 percent</td>
</tr>
<tr>
<td>SRR shared</td>
<td>2</td>
<td>10 percent</td>
<td>25 percent</td>
<td>25 percent</td>
</tr>
<tr>
<td>SRR shared</td>
<td>3</td>
<td>60 percent</td>
<td>25 percent</td>
<td>40 percent</td>
</tr>
<tr>
<td>SRR shared</td>
<td>4</td>
<td>20 percent</td>
<td>25 percent</td>
<td>20 percent</td>
</tr>
</tbody>
</table>

- When you enable auto-QoS by using the `auto qos voip cisco-phone`, the `auto qos voip cisco-softphone`, or the `auto qos voip trust` interface configuration command, the switch automatically generates a QoS configuration based on the traffic type and ingress packet label and applies the commands listed in Examples: Global Auto-QoS Configuration, on page 698 to the port.

Enhanced Auto-QoS for Video, Trust, and Classification

Auto-QoS is enhanced to support video. Automatic configurations are generated that classify and trust traffic from Cisco TelePresence systems and Cisco IP cameras.

Auto-QoS Configuration Migration

Auto-QoS configuration migration from legacy auto-QoS to enhanced auto-QoS occurs when:

- A switch is booted with a 12.2(55)SE image and QoS is not enabled.

Any video or voice trust configuration on the interface automatically generates enhanced auto-QoS commands.

- A switch is enabled with QoS, these guidelines take effect:
If you configure the interface for conditional trust on a voice device, only the legacy auto-QoS VoIP configuration is generated.

If you configure the interface for conditional trust on a video device, the enhanced auto-QoS configuration is generated.

If you configure the interface with classification or conditional trust based on the new interface auto-QoS commands, enhanced auto-QoS configuration is generated.

- Auto-QoS migration happens after a new device is connected when the `auto qos srnd4` global configuration command is enabled.

If an interface previously configured with legacy auto-QoS migrates to enhanced auto-QoS, voice commands and configuration are updated to match the new global QoS commands.

Auto-QoS configuration migration from enhanced auto-QoS to legacy auto-QoS can occur only when you disable all existing auto-QoS configurations from the interface.

**Auto-QoS Configuration Guidelines**

Before configuring auto-QoS, you should be aware of this information:

- After auto-QoS is enabled, do not modify a policy map or aggregate policer that includes `AutoQoS` in its name. If you need to modify the policy map or aggregate policer, make a copy of it, and change the copied policy map or policer. To use this new policy map instead of the generated one, remove the generated policy map from the interface, and apply the new policy map to the interface.

- To take advantage of the auto-QoS defaults, you should enable auto-QoS before you configure other QoS commands. If necessary, you can fine-tune the QoS configuration, but we recommend that you do so only after the auto-QoS configuration is completed. For more information, see the “Effects of Auto-QoS on the Configuration” section on page 8.

- You can enable auto-QoS on static, dynamic-access, voice VLAN access, and trunk ports.

- By default, the CDP is enabled on all ports. For auto-QoS to function properly, do not disable CDP.

**Auto-QoS VoIP Considerations**

Before configuring auto-QoS for VoIP, you should be aware of this information:

- Auto-QoS configures the switch for VoIP with Cisco IP Phones on nonrouted and routed ports. Auto-QoS also configures the switch for VoIP with devices running the Cisco SoftPhone application.

  When a device running Cisco SoftPhone is connected to a nonrouted or routed port, the switch supports only one Cisco SoftPhone application per port.

- When enabling auto-QoS with a Cisco IP Phone on a routed port, you must assign a static IP address to the IP phone.

- This release supports only Cisco IP SoftPhone Version 1.3(3) or later.
Connected devices must use Cisco Call Manager Version 4 or later.

Auto-QoS Enhanced Considerations

Auto-QoS is enhanced to support video. Automatic configurations are generated that classify and trust traffic from Cisco TelePresence systems and Cisco IP cameras.

Before configuring auto-QoS enhanced, you should be aware of this information:

• The `auto qos srnd4` global configuration command is generated as a result of enhanced auto-QoS configuration.

Effects of Auto-QoS on Running Configuration

When auto-QoS is enabled, the `auto qos` interface configuration commands and the generated global configuration are added to the running configuration.

The switch applies the auto-QoS-generated commands as if the commands were entered from the CLI. An existing user configuration can cause the application of the generated commands to fail or to be overridden by the generated commands. These actions may occur without warning. If all the generated commands are successfully applied, any user-entered configuration that was not overridden remains in the running configuration. Any user-entered configuration that was overridden can be retrieved by reloading the switch without saving the current configuration to memory. If the generated commands are not applied, the previous running configuration is restored.

How to Configure Auto-QoS

Configuring Auto-QoS

Enabling Auto-QoS

For optimum QoS performance, enable auto-QoS on all the devices in your network.
How to Configure Auto-QoS

SUMMARY STEPS

1. `configure terminal`
2. `interface interface-id`
3. Use one of the following:
   - `auto qos voip {cisco-phone | cisco-softphone | trust}`
   - `auto qos video {cts | ip-camera | media-player}`
   - `auto qos classify [police]`
   - `auto qos trust {cos | dscp}`

4. `exit`
5. `interface interface-id`
6. `auto qos trust`
7. `end`
8. `show auto qos interface interface-id`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> interface interface-id</td>
<td>Specifies the port that is connected to a video device or the uplink port that is connected to another trusted switch or router in the network interior, and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# interface gigabitethernet 3/0/1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> Use one of the following:</td>
<td>Enables auto-QoS for VoIP.</td>
</tr>
<tr>
<td>• auto qos voip {cisco-phone</td>
<td>cisco-softphone</td>
</tr>
<tr>
<td>• auto qos video {cts</td>
<td>ip-camera</td>
</tr>
<tr>
<td>• auto qos classify [police]</td>
<td>• trust—The uplink port is connected to a trusted switch or router, and the VoIP traffic classification in the ingress packet is trusted.</td>
</tr>
<tr>
<td>• auto qos trust {cos</td>
<td>dscp}</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Example:</td>
<td>Enables auto-QoS for a video device.</td>
</tr>
<tr>
<td><code>Switch(config-if)# auto qos trust dscp</code></td>
<td>- <code>cts</code>—A port connected to a Cisco Telepresence system.</td>
</tr>
<tr>
<td></td>
<td>- <code>ip-camera</code>—A port connected to a Cisco video surveillance camera.</td>
</tr>
<tr>
<td></td>
<td>- <code>media-player</code>—A port connected to a CDP-capable Cisco digital media player.</td>
</tr>
<tr>
<td></td>
<td>QoS labels of incoming packets are trusted only when the system is detected.</td>
</tr>
<tr>
<td></td>
<td>Enables auto-QoS for classification.</td>
</tr>
<tr>
<td></td>
<td>- <code>police</code>—Policing is set up by defining the QoS policy maps and applying them to ports (port-based QoS).</td>
</tr>
<tr>
<td></td>
<td>Enables auto-QoS for trusted interfaces.</td>
</tr>
<tr>
<td></td>
<td>- <code>cos</code>—Class of service.</td>
</tr>
<tr>
<td></td>
<td>- <code>dscp</code>—Differentiated Services Code Point.</td>
</tr>
<tr>
<td></td>
<td>- <code>&lt;cr&gt;</code>—Trust interface.</td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td><strong>To view a list of commands that are automatically generated by issuing one of the auto-QoS commands listed here, you need to be in debug mode. Refer to the <strong>Catalyst 2960-X Switch QoS Command Reference Guide, Cisco IOS Release 15.0(2)EX</strong> for examples of how to run the appropriate debug command to view a list of these commands.</strong></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><strong>exit</strong></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><strong>Returns to global configuration mode.</strong></td>
</tr>
<tr>
<td><code>Switch(config-if)# exit</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><strong>interface interface-id</strong></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><strong>Specifies the switch port identified as connected to a trusted switch or router, and enters interface configuration mode.</strong></td>
</tr>
<tr>
<td><code>Switch(config)# interface gigabitethernet 2/0/1</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><strong>auto qos trust</strong></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><strong>Enables auto-QoS on the port, and specifies that the port is connected to a trusted router or switch.</strong></td>
</tr>
<tr>
<td><code>Switch(config-if)# auto qos trust</code></td>
<td></td>
</tr>
</tbody>
</table>
### Monitoring Auto-QoS

#### Troubleshooting Auto-QoS

To troubleshoot auto-QoS, use the `debug auto qos` privileged EXEC command. For more information, see the `debug auto qos` command in the command reference for this release.

To disable auto-QoS on a port, use the `no` form of the `auto qos` command interface configuration command, such as `no auto qos voip`. Only the auto-QoS-generated interface configuration commands for this port are removed. If this is the last port on which auto-QoS is enabled and you enter the `no auto qos voip` command, auto-QoS is considered disabled even though the auto-QoS-generated global configuration commands remain (to avoid disrupting traffic on other ports affected by the global configuration).

#### Monitoring Auto-QoS

**Table 83: Commands for Monitoring Auto-QoS**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show auto qos [interface [interface-type]]</code></td>
<td>Displays the initial auto-QoS configuration. You can compare the <code>show auto qos</code> and the <code>show running-config</code> command output to identify the user-defined QoS settings.</td>
</tr>
<tr>
<td>`show mls qos [aggregate policer</td>
<td>interface</td>
</tr>
<tr>
<td><code>show mls qos aggregate policer policer_name</code></td>
<td>Displays information about the QoS aggregate policer configuration that might be affected by auto-QoS.</td>
</tr>
<tr>
<td>`show mls qos interface [interface-type</td>
<td>buffers</td>
</tr>
</tbody>
</table>
Configuration Examples for Auto-Qos

**Examples: Global Auto-QoS Configuration**

The following table describes the automatically generated commands for auto-QoS and enhanced auto-QoS by the switch.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>`show mls qos maps [cos-dscp</td>
<td>cos-output-q</td>
</tr>
<tr>
<td><code>show mls qos queue-set queue-set ID</code></td>
<td>Displays information about the QoS queue-set configuration that might be affected by auto-QoS.</td>
</tr>
<tr>
<td><code>show mls qos stack-port buffers</code></td>
<td>Displays information about the QoS stack port buffer configuration that might be affected by auto-QoS.</td>
</tr>
<tr>
<td><code>show mls qos stack-qset</code></td>
<td>Displays information about the QoS stack queue set configuration that might be affected by auto-QoS.</td>
</tr>
<tr>
<td><code>show running-config</code></td>
<td>Displays information about the QoS configuration that might be affected by auto-QoS. You can compare the <code>show auto qos</code> and the <code>show running-config</code> command output to identify the user-defined QoS settings.</td>
</tr>
</tbody>
</table>
### Table 84: Generated Auto-QoS Configuration

| Description | Automatically Generated Command (voip) | Enhanced Automatically Generated Command (Video|Trust|Classify) |
|-------------|----------------------------------------|-----------------|
| The switch automatically enables standard QoS and configures the CoS-to-DSCP map (maps CoS values in incoming packets to a DSCP value). | Switch(config)# mls qos Switch(config)# mls qos map cos-dscp 0 8 16 26 32 46 48 56 | Switch(config)# mls qos Switch(config)# mls qos map cos-dscp 0 8 16 24 32 46 48 56 |
| The switch automatically maps CoS values to an egress queue and to a threshold ID. | Switch(config)# no mls qos srr-queue output cos-map Switch(config)# mls qos srr-queue output cos-map queue 1 threshold 3 5 Switch(config)# mls qos srr-queue output cos-map queue 2 threshold 3 6 7 Switch(config)# mls qos srr-queue output cos-map queue 3 threshold 3 2 4 Switch(config)# mls qos srr-queue output cos-map queue 4 threshold 3 0 | Switch(config)# no mls qos srr-queue output cos-map Switch(config)# mls qos srr-queue output cos-map queue 1 threshold 3 4 5 Switch(config)# mls qos srr-queue output cos-map queue 2 threshold 3 6 7 Switch(config)# mls qos srr-queue output cos-map queue 2 threshold 1 2 Switch(config)# mls qos srr-queue output cos-map queue 2 threshold 2 3 Switch(config)# mls qos srr-queue output cos-map queue 3 threshold 3 0 Switch(config)# mls qos srr-queue output cos-map queue 4 threshold 3 1 |
| The switch automatically maps DSCP values to an egress queue and to a threshold ID. | | |
## Enhanced Automatically Generated Command (Video|Trust|Classify)

| Description | Automatically Generated Command (voip) | Enhanced Automatically Generated Command (Video|Trust|Classify) |
|-------------|---------------------------------------|----------------------------------------------------------|
| Switch(config)# no mls qos srr-queue output dscp-map | Switch(config)# no mls qos srr-queue output dscp-map queue 1 threshold 3 32 40 41 42 43 44 45 46 47 | |
| Switch(config)# mls qos srr-queue output dscp-map queue 1 threshold 3 40 41 42 43 44 45 46 47 | Switch(config)# mls qos srr-queue output dscp-map queue 2 threshold 1 16 17 18 19 20 21 22 23 | |
| Switch(config)# mls qos srr-queue output dscp-map queue 2 threshold 3 24 25 26 27 28 29 30 31 | Switch(config)# mls qos srr-queue output dscp-map queue 2 threshold 2 24 25 26 27 28 29 30 31 | |
| Switch(config)# mls qos srr-queue output dscp-map queue 2 threshold 3 48 49 50 51 52 53 54 55 | Switch(config)# mls qos srr-queue output dscp-map queue 2 threshold 3 48 49 50 51 52 53 54 55 | |
| Switch(config)# mls qos srr-queue output dscp-map queue 2 threshold 3 56 57 58 59 60 61 62 63 | Switch(config)# mls qos srr-queue output dscp-map queue 3 threshold 3 0 1 2 3 4 5 6 7 | |
| Switch(config)# mls qos srr-queue output dscp-map queue 3 threshold 3 16 17 18 19 20 21 22 23 | Switch(config)# mls qos srr-queue output dscp-map queue 4 threshold 1 8 9 10 11 12 13 14 15 | |
| Switch(config)# mls qos srr-queue output dscp-map queue 3 threshold 3 32 33 34 35 36 37 38 39 | Switch(config)# mls qos srr-queue output dscp-map queue 4 threshold 2 9 10 11 12 13 14 15 16 | |
| Switch(config)# mls qos srr-queue output dscp-map queue 4 threshold 3 0 1 2 3 4 5 6 7 | Switch(config)# mls qos srr-queue output dscp-map queue 4 threshold 3 0 1 2 3 4 5 6 7 | |
The switch automatically configures the egress queue buffer sizes. It configures the bandwidth and the SRR mode (shaped or shared) on the egress queues mapped to the port.

### Examples: Auto-QoS Generated Configuration for VoIP Devices

The following table describes the automatically generated commands for auto-QoS for VoIP devices by the switch.
### Table 85: Generated Auto-QoS Configuration for VoIP Devices

<table>
<thead>
<tr>
<th>Description</th>
<th>Automatically Generated Command (VoIP)</th>
</tr>
</thead>
</table>
| The switch automatically enables standard QoS and configures the CoS-to-DSCP map (maps CoS values in incoming packets to a DSCP value). | Switch(config)#  mls qos  
Switch(config)#  mls qos map cos-dscp 0 8 16 26 32 46 48 56                                                                 |
| The switch automatically maps CoS values to an egress queue and to a threshold ID. | Switch(config)# no mls qos srr-queue output cos-map  
Switch(config)#  mls qos srr-queue output cos-map queue 1  
threshold 3 5  
Switch(config)#  mls qos srr-queue output cos-map queue 2  
threshold 3 3 6 7  
Switch(config)#  mls qos srr-queue output cos-map queue 3  
threshold 3 2 4  
Switch(config)#  mls qos srr-queue output cos-map queue 4  
threshold 2 1  
Switch(config)#  mls qos srr-queue output cos-map queue 4  
threshold 3 0  
Switch(config)#  mls qos srr-queue output cos-map queue 4  
threshold 3 6 7  
Switch(config)#  mls qos srr-queue output cos-map queue 4  
threshold 3 0 1 2 3 4 5 6 7  
Switch(config)#  mls qos srr-queue output dscp-map  
Switch(config)#  mls qos srr-queue output dscp-map queue 1  
threshold 3 40 41 42 43 44 45 46 47  
Switch(config)#  mls qos srr-queue output dscp-map queue 2  
threshold 3 24 25 26 27 28 29 30 31  
Switch(config)#  mls qos srr-queue output dscp-map queue 3  
threshold 3 48 49 50 51 52 53 54 55  
Switch(config)#  mls qos srr-queue output dscp-map queue 2  
threshold 3 56 57 58 59 60 61 62 63  
Switch(config)#  mls qos srr-queue output dscp-map queue 3  
threshold 3 16 17 18 19 20 21 22 23  
Switch(config)#  mls qos srr-queue output dscp-map queue 3  
threshold 3 32 33 34 35 36 37 38 39  
Switch(config)#  mls qos srr-queue output dscp-map queue 4  
threshold 1 8  
Switch(config)#  mls qos srr-queue output dscp-map queue 4  
threshold 2 9 10 11 12 13 14 15  
Switch(config)#  mls qos srr-queue output dscp-map queue 4  
threshold 3 0 1 2 3 4 5 6 7                                                                 |
| The switch automatically maps DSCP values to an egress queue and to a threshold ID. | Switch(config)# no mls qos srr-queue output cos-map  
Switch(config)#  mls qos srr-queue output cos-map queue 1  
threshold 3 5  
Switch(config)#  mls qos srr-queue output cos-map queue 2  
threshold 3 3 6 7  
Switch(config)#  mls qos srr-queue output cos-map queue 3  
threshold 3 2 4  
Switch(config)#  mls qos srr-queue output cos-map queue 4  
threshold 2 1  
Switch(config)#  mls qos srr-queue output cos-map queue 4  
threshold 3 0  
Switch(config)#  mls qos srr-queue output cos-map queue 4  
threshold 3 0 1 2 3 4 5 6 7                                                                 |
| The switch automatically configures the egress queue buffer sizes. It configures the bandwidth and the SRR mode (shaped or shared) on the egress queues mapped to the port. | Switch(config)#  mls qos srr-queue output cos-map queue 1  
threshold 3 5  
Switch(config)#  mls qos srr-queue output cos-map queue 2  
threshold 3 3 6 7  
Switch(config)#  mls qos srr-queue output cos-map queue 3  
threshold 3 2 4  
Switch(config)#  mls qos srr-queue output cos-map queue 4  
threshold 2 1  
Switch(config)#  mls qos srr-queue output cos-map queue 4  
threshold 3 0  
Switch(config)#  mls qos srr-queue output cos-map queue 4  
threshold 3 0 1 2 3 4 5 6 7                                                                 |
<table>
<thead>
<tr>
<th>Description</th>
<th>Automatically Generated Command (VoIP)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Switch(config)# mls qos queue-set output 1 threshold 1 138 138 92 138</td>
</tr>
<tr>
<td></td>
<td>Switch(config)# mls qos queue-set output 1 threshold 2 138 138 92 400</td>
</tr>
<tr>
<td></td>
<td>Switch(config)# mls qos queue-set output 1 threshold 3 36 77 100 318</td>
</tr>
<tr>
<td></td>
<td>Switch(config)# mls qos queue-set output 1 threshold 4 20 50 67 400</td>
</tr>
<tr>
<td></td>
<td>Switch(config)# mls qos queue-set output 2 threshold 1 149 149 100 149</td>
</tr>
<tr>
<td></td>
<td>Switch(config)# mls qos queue-set output 2 threshold 2 118 118 100 235</td>
</tr>
<tr>
<td></td>
<td>Switch(config)# mls qos queue-set output 2 threshold 3 41 68 100 272</td>
</tr>
<tr>
<td></td>
<td>Switch(config)# mls qos queue-set output 2 threshold 4 42 72 100 242</td>
</tr>
<tr>
<td></td>
<td>Switch(config)# mls qos queue-set output 1 buffers 10 10 26 54 61</td>
</tr>
<tr>
<td></td>
<td>Switch(config)# mls qos queue-set output 2 buffers 16 6 17 61</td>
</tr>
<tr>
<td></td>
<td>Switch(config-if)# priority-que out</td>
</tr>
<tr>
<td></td>
<td>Switch(config-if)# srr-queue bandwidth share 10 10 60 20</td>
</tr>
</tbody>
</table>

If you entered the `auto qos voip cisco-phone` command, the switch automatically enables the trusted boundary feature, which uses the CDP to detect the presence or absence of a Cisco IP Phone (as shown below).

```
Switch(config-if)# mls qos trust device cisco-phone
```

If you entered the `auto qos voip cisco-softphone` command, the switch automatically creates class maps and policy maps (as shown below).

```
Switch(config)# mls qos map policed-dscp 24 26 46 to 0
Switch(config-cmap)# class-map match-all AutoQoS-VoIP-RTP-Trust
Switch(config-cmap)# match ip dscp ef
Switch(config-cmap)# class-map match-all AutoQoS-VoIP-Control-Trust
Switch(config-cmap)# match ip dscp cs3 af31
Switch(config)# policy-map AutoQoS-Police-Sofphone
Switch(config-pmap)# class AutoQoS-VoIP-RTP-Trust
Switch(config-pmap-c)# set dscp ef
Switch(config-pmap-c)# police 320000 8000 exceed-action policed-dscp-transmit
Switch(config-pmap)# class AutoQoS-VoIP-Control-Trust
Switch(config-pmap-c)# set dscp cs3
Switch(config-pmap-c)# police 32000 8000 exceed-action policed-dscp-transmit
```

After creating the class maps and policy maps, the switch automatically applies the policy map called `AutoQoS-Police-Sofphone` to an ingress interface on which auto-QoS with the Cisco SoftPhone feature is enabled (as shown below).

```
Switch(config-if)# service-policy input AutoQoS-Police-Sofphone
```
Examples: Auto-QoS Generated Configuration for VoIP Devices

If you entered the `auto qos voip cisco-phone` command, the switch automatically enables the trusted boundary feature, which uses the CDP to detect the presence or absence of a Cisco IP Phone.

```
Switch(config-if)# mls qos trust device cisco-phone
```

If you entered the `auto qos voip cisco-softphone` command, the switch automatically creates class maps and policy maps.

```
Switch(config)# mls qos map policed-dscp 24 26 46 to 0
Switch(config)# class-map match-all AutoQoS-VoIP-RTP-Trust
Switch(config-cmap)# match ip dscp ef
Switch(config)# class-map match-all AutoQoS-VoIP-Control-Trust
Switch(config-cmap)# match ip dscp cs3 af31
Switch(config)# policy-map AutoQoS-Police-SoftPhone
Switch(config-pmap)# class AutoQoS-VoIP-RTP-Trust
Switch(config-pmap-c)# set dscp ef
Switch(config-pmap-c)# police 32000 8000 exceed-action policed-dscp-transmit
Switch(config-pmap-c)# class AutoQoS-VoIP-Control-Trust
Switch(config-pmap-c)# set dscp cs3
Switch(config-pmap-c)# police 32000 8000 exceed-action policed-dscp-transmit
```

After creating the class maps and policy maps, the switch automatically applies the policy map called `AutoQoS-Police-SoftPhone` to an ingress interface on which auto-QoS with the Cisco SoftPhone feature is enabled.

```
Switch(config-if)# service-policy input AutoQoS-Police-SoftPhone
```

If you entered the `auto qos voip cisco-phone` command, the switch automatically creates class maps and policy maps.

```
Switch(config-if)# mls qos trust device cisco-phone
```

If you entered the `auto qos voip cisco-softphone` command, the switch automatically creates class maps and policy maps.

```
Switch(config)# mls qos map policed-dscp 24 26 46 to 0
Switch(config)# class-map match-all AutoQoS-VoIP-RTP-Trust
Switch(config-cmap)# match ip dscp ef
Switch(config)# class-map match-all AutoQoS-VoIP-Control-Trust
Switch(config-cmap)# match ip dscp cs3 af31
Switch(config)# policy-map AutoQoS-Police-CiscoPhone
Switch(config-pmap)# class AutoQoS-VoIP-RTP-Trust
Switch(config-pmap-c)# set dscp ef
Switch(config-pmap-c)# police 32000 8000 exceed-action policed-dscp-transmit
Switch(config-pmap-c)# class AutoQoS-VoIP-Control-Trust
Switch(config-pmap-c)# set dscp cs3
Switch(config-pmap-c)# police 32000 8000 exceed-action policed-dscp-transmit
```

After creating the class maps and policy maps, the switch automatically applies the policy map called `AutoQoS-Police-SoftPhone` to an ingress interface on which auto-QoS with the Cisco SoftPhone feature is enabled.

```
Switch(config-if)# service-policy input AutoQoS-Police-SoftPhone
```
Examples: Auto-QoS Generated Configuration For Enhanced Video, Trust, and Classify Devices

If you entered the following enhanced auto-QoS commands, the switch configures a CoS-to-DSCP map (maps CoS values in incoming packets to a DSCP value):

- auto qos video cts
- auto qos video ip-camera
- auto qos video media-player
- auto qos trust
- auto qos trust cos
- auto qos trust dscp

The following command is initiated after entering one of the above auto-QoS commands:

```
Switch(config)# mls qos map cos-dscp 0 8 16 24 32 46 48 56
```

Note: No class maps and policy maps are configured.

If you entered the `auto qos classify` command, the switch automatically creates class maps and policy maps (as shown below).

```
Switch(config)# mls qos map policed-dscp 0 10 18 24 26 46 to 8
Switch(config)# mls qos map cos-dscp 0 8 16 24 32 46 48 56
Switch(config)# class-map match-all AUTOQOS_MULTIENHANCED_CONF_CLASS
Switch(config-cmap)# match access-group name AUTOQOS-ACL-MULTIENHANCED-CONF
Switch(config-cmap)# class-map match-all AUTOQOS_DEFAULT_CLASS
Switch(config-cmap)# match access-group name AUTOQOS-ACL-DEFAULT
Switch(config)# class-map match-all AUTOQOS_TRANSACTION_CLASS
Switch(config-cmap)# match access-group name AUTOQOS-ACL-TRANSACTIONAL-DATA
Switch(config)# class-map match-all AUTOQOS_SIGNALING_CLASS
Switch(config-cmap)# match access-group name AUTOQOS-ACL-SIGNALING
Switch(config)# class-map match-all AUTOQOS_BULK_DATA_CLASS
Switch(config-cmap)# match access-group name AUTOQOS-ACL-BULK-DATA
Switch(config)# class-map match-all AUTOQOS_SCAVANGER_CLASS
Switch(config-cmap)# match access-group name AUTOQOS-ACL-SCAVANGER
Switch(config)# policy-map AUTOQOS-SRND4-CLASSIFY-POLICY
Switch(config-pmap)# class AUTOQOS_MULTIENHANCED_CONF_CLASS
Switch(config-pmap-c)# set dscp af41
Switch(config-pmap-c)# class AUTOQOS_BULK_DATA_CLASS
Switch(config-pmap-c)# set dscp af11
Switch(config-pmap-c)# class AUTOQOS_TRANSACTION_CLASS
Switch(config-pmap-c)# set dscp af21
Switch(config-pmap-c)# class AUTOQOS_SCAVANGER_CLASS
Switch(config-pmap-c)# set dscp cs1
Switch(config-pmap-c)# class AUTOQOS_SIGNALING_CLASS
Switch(config-pmap-c)# set dscp cs3
Switch(config-pmap-c)# class AUTOQOS_DEFAULT_CLASS
Switch(config-pmap-c)# set dscp default
```

Switch(config-if)# service-policy input AUTOQOS-SRND4-CLASSIFY-POLICY
If you entered the `auto qos classify police` command, the switch automatically creates class maps and policy maps (as shown below).

```
Switch(config)# mls qos map policed-dscp 0 10 18 24 26 46 to 8
Switch(config)# mls qos map cos-dscp 0 8 16 24 32 46 48 56
Switch(config)# class-map match-all AUTOQOS_MULTIENHANCED_CONF_CLASS
Switch(config-cmap)# match access-group name AUTOQOS-ACL-MULTIENHANCED-CONF
Switch(config)# class-map match-all AUTOQOS_DEFAULT_CLASS
Switch(config-cmap)# match access-group name AUTOQOS-ACL-DEFAULT
Switch(config)# class-map match-all AUTOQOS_TRANSACTION_CLASS
Switch(config-cmap)# match access-group name AUTOQOS-ACL-TRANSITIONAL-DATA
Switch(config)# class-map match-all AUTOQOS_SIGNALING_CLASS
Switch(config-cmap)# match access-group name AUTOQOS-ACL-SIGNALING
Switch(config)# class-map match-all AUTOQOS_BULK_DATA_CLASS
Switch(config-cmap)# match access-group name AUTOQOS-ACL-BULK-DATA
Switch(config)# class-map match-all AUTOQOS_SCAVANGER_CLASS
Switch(config-cmap)# match access-group name AUTOQOS-ACL-SCAVANGER
Switch(config)# policy-map AUTOQOS-SRND4-CLASSIFY-POLICE-POLICY
Switch(config-pmap)# class AUTOQOS_MULTIENHANCED_CONF_CLASS
Switch(config-pmap-c)# set dscp af41
Switch(config-pmap-c)# police 5000000 8000 exceed-action drop
Switch(config-pmap-c)# class AUTOQOS_BULK_DATA_CLASS
Switch(config-pmap-c)# set dscp af11
Switch(config-pmap-c)# police 10000000 8000 exceed-action policed-dscp-transmit
Switch(config-pmap-c)# class AUTOQOS_TRANSACTION_CLASS
Switch(config-pmap-c)# set dscp af21
Switch(config-pmap-c)# police 10000000 8000 exceed-action policed-dscp-transmit
Switch(config-pmap-c)# class AUTOQOS_SCAVANGER_CLASS
Switch(config-pmap-c)# set dscp cs1
Switch(config-pmap-c)# police 10000000 8000 exceed-action drop
Switch(config-pmap-c)# class AUTOQOS_SIGNALING_CLASS
Switch(config-pmap-c)# set dscp cs3
Switch(config-pmap-c)# police 32000 8000 exceed-action drop
Switch(config-pmap-c)# class AUTOQOS_DEFAULT_CLASS
Switch(config-pmap-c)# set dscp default
Switch(config-pmap-c)# police 10000000 8000 exceed-action policed-dscp-transmit
;
Switch(config-if)# service-policy input AUTOQOS-SRND4-CLASSIFY-POLICE-POLICY
```

This is the enhanced configuration for the `auto qos voip cisco-phone` command:

```
Switch(config)# mls qos map policed-dscp 0 10 18 24 26 46 to 8
Switch(config)# mls qos map cos-dscp 0 8 16 24 32 46 48 56
Switch(config)# class-map match-all AUTOQOS_VOIP_DATA_CLASS
Switch(config-cmap)# match ip dscp ef
Switch(config)# class-map match-all AUTOQOS_DEFAULT_CLASS
Switch(config-cmap)# match access-group name AUTOQOS-ACL-DEFAULT
Switch(config)# class-map match-all AUTOQOS_VOIP_SIGNAL_CLASS
Switch(config-cmap)# match ip dscp cs3
Switch(config)# policy-map AUTOQOS-SRND4-CISCOPHONE-POLICY
Switch(config-pmap)# class AUTOQOS_VOIP_DATA_CLASS
Switch(config-pmap-c)# set dscp ef
Switch(config-pmap-c)# police 128000 8000 exceed-action policed-dscp-transmit
Switch(config-pmap-c)# class AUTOQOS_VOIP_SIGNAL_CLASS
Switch(config-pmap-c)# set dscp cs3
Switch(config-pmap-c)# police 32000 8000 exceed-action policed-dscp-transmit
Switch(config-pmap-c)# class AUTOQOS_DEFAULT_CLASS
Switch(config-pmap-c)# set dscp default
Switch(config-pmap-c)# police 10000000 8000 exceed-action policed-dscp-transmit
;
Switch(config-if)# service-policy input AUTOQOS-SRND4-CISCOPHONE-POLICY
```

This is the enhanced configuration for the `auto qos voip cisco-softphone` command:

```
Switch(config)# mls qos map policed-dscp 0 10 18 24 26 46 to 8
Switch(config)# mls qos map cos-dscp 0 8 16 24 32 46 48 56
Switch(config)# class-map match-all AUTOQOS_MULTIENHANCED_CONF_CLASS
```
Switch(config-cmap)# match access-group name AUTOQOS-ACL-MULTIENHANCED-CONF
Switch(config-cmap)# class-map match-all AUTOQOS_VOIP_DATA_CLASS
Switch(config-cmap)# match ip dscp ef
Switch(config-cmap)# class-map match-all AUTOQOS_DEFAULT_CLASS
Switch(config-cmap)# class-map match-all AUTOQOS_TRANSACTION_CLASS
Switch(config-cmap)# class-map match-all AUTOQOS_VoIP_SIGNAL_CLASS
Switch(config-cmap)# class-map match-all AUTOQOS_SCAVANGER_CLASS
Switch(config-cmap)# match access-group name AUTOQOS-ACL-DEFAULT
Switch(config-cmap)# class-map match-all AUTOQOS_SCAVANGER_CLASS
Switch(config-cmap)# class-map match-all AUTOQOS_TRANSACTION_CLASS
Switch(config-cmap)# class-map match-all AUTOQOS_VOIP_SIGNAL_CLASS
Switch(config-cmap)# class-map match-all AUTOQOS_VOIP_DATA_CLASS
Switch(config-cmap)# policy-map AUTOQOS-SRND4-SOFTPHONE-POLICY
Switch(config-pmap)# class AUTOQOS_VOIP_DATA_CLASS
Switch(config-pmap-c)# set dscp ef
Switch(config-pmap-c)# police 128000 8000 exceed-action policed-dscp-transmit
Switch(config-pmap)# class AUTOQOS_VOIP_SIGNAL_CLASS
Switch(config-pmap-c)# set dscp cs3
Switch(config-pmap-c)# police 32000 8000 exceed-action policed-dscp-transmit
Switch(config-pmap-c)# class AUTOQOS_MULTIENHANCED_CONF_CLASS
Switch(config-pmap-c)# set dscp af41
Switch(config-pmap-c)# police 5000000 8000 exceed-action drop
Switch(config-pmap-c)# class AUTOQOS_BULK_DATA_CLASS
Switch(config-pmap-c)# set dscp af41
Switch(config-pmap-c)# police 10000000 8000 exceed-action policed-dscp-transmit
Switch(config-pmap-c)# class AUTOQOS_TRANSACTION_CLASS
Switch(config-pmap-c)# set dscp af21
Switch(config-pmap-c)# police 10000000 8000 exceed-action policed-dscp-transmit
Switch(config-pmap-c)# class AUTOQOS_SCAVANGER_CLASS
Switch(config-pmap-c)# set dscp cs1
Switch(config-pmap-c)# police 10000000 8000 exceed-action drop
Switch(config-pmap-c)# class AUTOQOS_SCAVANGER_CLASS
Switch(config-pmap-c)# set dscp cs1
Switch(config-pmap-c)# police 32000 8000 exceed-action drop
Switch(config-pmap-c)# class AUTOQOS_DEFAULT_CLASS
Switch(config-pmap-c)# set dscp default
;
Switch(config-if)# service-policy input AUTOQOS-SRND4-SOFTPHONE-POLICY

Where to Go Next for Auto-QoS

Review the QoS documentation if you require any specific QoS changes to your auto-QoS configuration.

Additional References for Auto-QoS

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>For complete syntax and usage information for the commands used in this chapter.</td>
<td>Cisco IOS Quality of Service Solutions Command Reference</td>
</tr>
<tr>
<td>Platform-independent configuration information</td>
<td>QoS: AutoQoS Configuration Guide, Cisco IOS XE Release 3SE (Catalyst 3650 Switches)</td>
</tr>
</tbody>
</table>
## Error Message Decoder

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>To help you research and resolve system error messages in this release, use the Error Message Decoder tool.</td>
<td><a href="https://www.cisco.com/cgi-bin/Support/Errordecoder/index.cgi">https://www.cisco.com/cgi-bin/Support/Errordecoder/index.cgi</a></td>
</tr>
</tbody>
</table>

## Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>

## MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>All supported MIBs for this release.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL:</td>
</tr>
<tr>
<td>CISCO-CLASS-BASED-QOS-MIB</td>
<td></td>
</tr>
<tr>
<td>CISCO-PORT-QOS-MIB</td>
<td></td>
</tr>
</tbody>
</table>

## Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies.</td>
<td><a href="http://www.cisco.com/support">http://www.cisco.com/support</a></td>
</tr>
<tr>
<td>To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds.</td>
<td></td>
</tr>
<tr>
<td>Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td></td>
</tr>
</tbody>
</table>
# Feature History and Information for Auto-QoS

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS 15.0(2)EX</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>
PART IX

Routing

• Configuring IP Unicast Routing, page 713
Configuring IP Unicast Routing

- Finding Feature Information, page 713
- Information About Configuring IP Unicast Routing, page 713
- Information About IP Routing, page 714
- Configuring IP Unicast Routing, page 715
- Enabling IP Unicast Routing, page 716
- Assigning IP Addresses to SVIs, page 717
- Configuring Static Unicast Routes, page 719
- Monitoring and Maintaining the IP Network, page 720

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About Configuring IP Unicast Routing

This module describes how to configure IP Version 4 (IPv4) unicast routing on the switch.

A switch stack operates and appears as a single router to the rest of the routers in the network.

Note

In addition to IPv4 traffic, you can also enable IP Version 6 (IPv6) unicast routing and configure interfaces to forward IPv6 traffic.
Information About IP Routing

In some network environments, VLANs are associated with individual networks or subnetworks. In an IP network, each subnetwork is mapped to an individual VLAN. Configuring VLANs helps control the size of the broadcast domain and keeps local traffic local. However, network devices in different VLANs cannot communicate with one another without a Layer 3 device (router) to route traffic between the VLAN, referred to as inter-VLAN routing. You configure one or more routers to route traffic to the appropriate destination VLAN.

This figure shows a basic routing topology. Switch A is in VLAN 10, and Switch B is in VLAN 20. The router has an interface in each VLAN.

Figure 63: Routing Topology Example

When Host A in VLAN 10 needs to communicate with Host B in VLAN 10, it sends a packet addressed to that host. Switch A forwards the packet directly to Host B, without sending it to the router.

When Host A sends a packet to Host C in VLAN 20, Switch A forwards the packet to the router, which receives the traffic on the VLAN 10 interface. The router checks the routing table, finds the correct outgoing interface, and forwards the packet on the VLAN 20 interface to Switch B. Switch B receives the packet and forwards it to Host C.

Types of Routing

Routers and Layer 3 switches can route packets in these ways:
- By using default routing
- By using preprogrammed static routes for the traffic

The switch supports static routes and default routes. It does not support routing protocols.

IP Routing and Switch Stacks

A switch stack appears to the network as a single switch, regardless of which switch in the stack is connected to a routing peer.

The active switch performs these functions:
- It generates, maintains, and distributes the distributed Cisco Express Forwarding (dCEF) database to all stack members. The routes are programmed on all switches in the stack bases on this database.
• The MAC address of the active switch is used as the router MAC address for the whole stack, and all outside devices use this address to send IP packets to the stack.

• All IP packets that require software forwarding or processing go through the CPU of the active switch.

Stack members perform these functions:

• They act as routing standby switches, ready to take over in case they are elected as the new active switch if the active switch fails.

• They program the routes into hardware.

If a active switch fails, the stack detects that the active switch is down and elects one of the stack members to be the new active switch. During this period, except for a momentary interruption, the hardware continues to forward packets with no active protocols.

Upon election, the new active switch performs these functions:

• It starts generating, receiving, and processing routing updates.

• It builds routing tables, generates the CEF database, and distributes it to stack members.

• It uses its MAC address as the router MAC address. To notify its network peers of the new MAC address, it periodically (every few seconds for 5 minutes) sends a gratuitous ARP reply with the new router MAC address.

Note
If you configure the persistent MAC address feature on the stack and the active switch changes, the stack MAC address does not change for the configured time period. If the previous active switch rejoins the stack as a member switch during that time period, the stack MAC address remains the MAC address of the previous active switch.

• It attempts to determine the reachability of every proxy ARP entry by sending an ARP request to the proxy ARP IP address and receiving an ARP reply. For each reachable proxy ARP IP address, it generates a gratuitous ARP reply with the new router MAC address. This process is repeated for 5 minutes after a new active switch election.

Caution
Partitioning of the switch stack into two or more stacks might lead to undesirable behavior in the network.

If the switch is reloaded, then all the ports on that switch go down and there is a loss of traffic for the interfaces involved in routing.

Configuring IP Unicast Routing

By default, IP routing is disabled on the switch. For detailed IP routing configuration information, see the Cisco IOS IP Configuration Guide, Release 12.2 from the Cisco.com page under Documentation > Cisco IOS Software Releases > 12.2 Mainline > Configuration Guides.

In these procedures, the specified interface must be a switch virtual interface (SVI)-a VLAN interface created by using the interface vlan vlan_id global configuration command and by default a Layer 3 interface. All
Layer 3 interfaces on which routing will occur must have IP addresses assigned to them. See the Assigning IP Addresses to SVIs section.

**Note**

The switch supports 16 static routes (including user-configured routes and the default route) and any directly connected routes and default routes for the management interface. You can use the "lanbase-default" SDM template to configure the static routes. The switch can have an IP address assigned to each SVI. Before enabling routing, enter the `sdm prefer lanbase-routing` global configuration command and reload the switch.

Procedures for configuring routing:

- To support VLAN interfaces, create and configure VLANs on the switch or switch stack, and assign VLAN membership to Layer 2 interfaces. For more information, see chapter: Configuring VLANs.
- Configure Layer 3 interfaces (SVIs).
- Enable IP routing on the switch.
- Assign IP addresses to the Layer 3 interfaces.
- Configure static routes.

### Enabling IP Unicast Routing

By default, the Switch is in Layer 2 switching mode and IP routing is disabled. To use the Layer 3 capabilities of the Switch, you must enable IP routing.

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Switch&gt; enable</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
</tr>
<tr>
<td><code>ip routing</code></td>
<td>Enables IP routing.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Switch(config)# ip routing</code></td>
<td></td>
</tr>
</tbody>
</table>
### Assigning IP Addresses to SVIs

To configure IP routing, you need to assign IP addresses to Layer 3 network interfaces. This enables communication with the hosts of those interfaces that use IP. IP routing is disabled by default, and no IP addresses are assigned to SVIs.

An IP address identifies a location to which IP packets can be sent. Some IP addresses are reserved for special uses and cannot be used for host, subnet, or network addresses. RFC 1166, “Internet Numbers,” contains the official description of IP addresses.

An interface can have one primary IP address. A mask identifies the bits that denote the network number in an IP address. When you use the mask to subnet a network, the mask is referred to as a subnet mask. To receive an assigned network number, contact your Internet service provider.

Follow these steps to assign an IP address and a network mask to an SVI:

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><strong>enable</strong>&lt;br&gt;Example:&lt;br&gt;Switch&gt; <em>enable</em></td>
</tr>
<tr>
<td></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
</tbody>
</table>

---

### Command or Action

#### Step 4

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>end</strong></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Switch(config)# <em>end</em></td>
</tr>
</tbody>
</table>

#### Step 5

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>show running-config</strong>&lt;br&gt;<strong>Example:</strong></td>
<td>Switch# <em>show running-config</em></td>
</tr>
</tbody>
</table>

#### Step 6

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>copy running-config startup-config</strong>&lt;br&gt;<strong>Example:</strong></td>
<td>Switch# <em>copy running-config startup-config</em></td>
</tr>
</tbody>
</table>

(Optional) Saves your entries in the configuration file.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface vlan vlan-id</td>
<td>Enters interface configuration mode, and specifies the Layer 3 VLAN to configure.</td>
</tr>
<tr>
<td><strong>Step 4</strong> ip address ip-address subnet-mask</td>
<td>Configures the IP address and IP subnet mask.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Switch(config-if)# ip address 10.1.5.1 255.255.255.0</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Switch(config)# end</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> show interfaces [interface-id]</td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Switch# show ip interface gigabitethernet 1/0/1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong> show ip interface [interface-id]</td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Switch# show ip interface gigabitethernet 1/0/1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong> show running-config</td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Switch# show running-config</td>
<td></td>
</tr>
<tr>
<td><strong>Step 9</strong> copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Switch# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Static Unicast Routes

Static unicast routes are user-defined routes that cause packets moving between a source and a destination to take a specified path. Static routes can be important if the router cannot build a route to a particular destination and are useful for specifying a gateway of last resort to which all unroutable packets are sent.

Follow these steps to configure a static route:

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> ip route prefix mask {address</td>
<td>interface} [distance]</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# ip route prefix mask gigabitethernet 1/0/4</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# end</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> show ip route</td>
<td>Displays the current state of the routing table to verify the configuration.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# show ip route</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>
What to Do Next

Use the `no ip route prefix mask {address | interface}` global configuration command to remove a static route. The switch retains static routes until you remove them.

Monitoring and Maintaining the IP Network

You can remove all contents of a particular cache, table, or database. You can also display specific statistics.

**Table 86: Commands to Clear IP Routes or Display Route Status**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>`show ip route [address [mask]</td>
<td>Displays the current state of the routing table.</td>
</tr>
<tr>
<td>[longer-prefixes]]`</td>
<td></td>
</tr>
<tr>
<td><code>show ip route summary</code></td>
<td>Displays the current state of the routing table in summary form.</td>
</tr>
<tr>
<td><code>show platform ip unicast</code></td>
<td>Displays platform-dependent IP unicast information.</td>
</tr>
</tbody>
</table>
PART X

Security

- Managing Switch Stacks, page 723
- Security Features Overview, page 753
- Preventing Unauthorized Access, page 757
- Controlling Switch Access with Passwords and Privilege Levels, page 759
- Configuring TACACS+, page 779
- Configuring RADIUS, page 797
- Configuring Kerberos, page 845
- Configuring Local Authentication and Authorization, page 853
- Configuring Secure Shell (SSH), page 859
- Configuring Secure Socket Layer HTTP, page 869
- Configuring IPv4 ACLs, page 883
- Configuring IPv6 ACLs, page 941
- Configuring DHCP, page 953
- Configuring IP Source Guard, page 977
- Configuring Dynamic ARP Inspection, page 985
- Configuring IEEE 802.1x Port-Based Authentication, page 1005
- Configuring Web-Based Authentication, page 1103
• Configuring Port-Based Traffic Control, page 1133
• Configuring IPv6 First Hop Security, page 1173
• Configuring Cisco TrustSec, page 1203
• Configuring FIPS, page 1205
CHAPTER 30

Managing Switch Stacks

• Finding Feature Information, page 723
• Prerequisites for Switch Stacks, page 723
• Restrictions for Switch Stacks, page 724
• Information About Switch Stacks, page 724
• How to Configure a Switch Stack, page 738
• Troubleshooting the Switch Stack, page 745
• Monitoring the Switch Stack, page 747
• Configuration Examples for Switch Stacks, page 748
• Additional References for Switch Stacks, page 751

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Switch Stacks

All stack members must run the same Cisco IOS software image to ensure compatibility among stack members. For switch stack hardware considerations, see the Catalyst 2960-X Switch Hardware Installation Guide.
Restrictions for Switch Stacks

The following are restrictions for your switch stack configuration:

- Stacking is not supported on switches running the LAN Lite image. All switches in the stack must be running the LAN Base image.
- In a mixed stack of Catalyst 2960-X and Catalyst 2960-S switches, the number of supported stack members is reduced from eight to four.
- In a mixed stack of Catalyst 2960-X and Catalyst 2960-S switches, full stack bandwidth is reduced from 80 Gbps to 40 Gbps.
- In a mixed stack of Catalyst 2960-X and Catalyst 2960-S switches, stack convergence time is increased from milliseconds to 1 to 2 seconds.
- Auto-upgrade of stack cannot be done when one of the switch in stack is with version Cisco IOS 15.2(3)E. This means that whenever any of the switches in the stack goes into a version mismatch, and if either master is running Cisco IOS 15.2(3)E, or if a member is running Cisco 15.2(3)E, the member can not be auto-upgraded to the required version.

Note

In a mixed stack configuration, there is limited support for some features. For more information about a specific feature, see the relevant Catalyst 2960-X configuration guide.

Information About Switch Stacks

Switch Stack Overview

A switch stack is a set of up to eight stacking-capable switches connected through their stack ports. You can connect only one switch type in a stack, or you can connect a mix of Catalyst 2960-X and Catalyst 2960-S switches in the stack. The stack can have one of these configurations:

- Homogeneous stack—A Catalyst 2960-X stack with only Catalyst 2960-X switches as stack members. A homogenous stack can have up to 8 stack members.
- Mixed stack—A stack with a mix of Catalyst 2960-X and Catalyst 2960-S switches. A mixed stack can have up to 4 stack members, with either a Catalyst 2960-X or Catalyst 2960-S switch as the stack master.

The stack master controls the operation of the switch stack, and is the single point of stack-wide management. From the stack master, you configure:

- System-level (global) features that apply to all stack members
- Interface-level features for each stack member

The stack master contains the saved and running configuration files for the switch stack. The configuration files include the system-level settings for the switch stack and the interface-level settings for each stack member. Each stack member has a current copy of these files for back-up purposes.
**Supported Features in a Switch Stack**

The system-level features supported on the stack master are supported on the entire switch stack.

**Encryption Features**

If the stack master is running the cryptographic universal software image (supports encryption), the encryption features are available on the switch stack.

**FlexStack-Plus**

The stack members use the Cisco FlexStack-Plus technology to work together as a unified system. Layer 2 protocols support the entire switch stack as a single entity in the network.

---

**Note**

Switch stacks running the LAN Base image do not support Layer 3 features.

The FlexStack-Plus bandwidth for a single stack port is 20 Gbps. With FlexStack-Plus technology, up to eight members can be joined into a single stack. In a mixed stack of Catalyst 2960-X and Catalyst 2960-S switches, FlexStack-Plus reverts to FlexStack capabilities of 10 Gbps stack port bandwidth and a maximum of four members per stack.

**Fast Stack Convergence**

When a single link in a full ring stack becomes inoperable, there is a disruption in the forwarding of packets, and the stack moves to a half ring. In a homogenous stack of Catalyst 2960-X switches this disruption of traffic (or stack convergence time) takes milliseconds. In a mixed stack configuration, the stack takes 1 to 2 seconds to reconverge.

**Switch Stack Membership**

A switch stack has up to eight stack members connected through their stack ports. A switch stack always has one stack master.

A standalone switch is a switch stack with one stack member that also operates as the stack master. You can connect one standalone switch to another to create a switch stack containing two stack members, with one of
them as the stack master. You can connect standalone switches to an existing switch stack to increase the stack membership.

**Figure 64: Creating a Switch Stack from Two Standalone Switches**

<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>2</th>
</tr>
</thead>
</table>

**Figure 65: Adding a Standalone Switch to a Switch Stack**

<table>
<thead>
<tr>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
</tbody>
</table>

**Mixed Stack Membership**

A mixed stack can have up to four stack members, with either a Catalyst 2960-X or Catalyst 2960-S switch as the stack master.

By default, Catalyst 2960-X switches operate at a port speed of 20 Gbps while Catalyst 2960-S switches have a maximum port speed of 10 Gbps. In a mixed stack of Catalyst 2960-X and Catalyst 2960-S switches, the stack must operate at the port speed of the Catalyst 2960-S switch. Otherwise, the switches will not stack.

To set the port speed of the stack to 10 Gbps, use the `switch stack port-speed 10` global configuration command on a Catalyst 2960-X stack member before you add a Catalyst 2960-S switch to the stack, and then reload the stack.
Changes to Switch Stack Membership

If you replace a stack member with an identical model, the new switch functions with exactly the same configuration as the replaced switch, assuming that the new switch (referred to as the provisioned switch) is using the same member number as the replaced switch.

The operation of the switch stack continues uninterrupted during membership changes unless you remove the stack master or you add powered-on standalone switches or switch stacks.

- Adding powered-on switches (merging) causes the stack masters of the merging switch stacks to elect a stack master from among themselves. The reelected stack master retains its role and configuration as do its stack members. All remaining switches, including the former stack masters, reload and join the switch stack as stack members. They change their stack member numbers to the lowest available numbers and use the stack configuration of the reelected stack master.

- Removing powered-on stack members causes the switch stack to divide (partition) into two or more switch stacks, each with the same configuration. This can cause:
  - An IP address conflict in your network. If you want the switch stacks to remain separate, change the IP address or addresses of the newly created switch stacks.
  - A MAC address conflict between two members in the stack. You can use the stack-mac update force command to resolve the conflict.

Note: Make sure that you power off the switches that you add to or remove from the switch stack. After adding or removing stack members, make sure that the switch stack is operating at full bandwidth (40 Gbps). Press the Mode button on a stack member until the Stack mode LED is on. The last two right port LEDs on all switches in the stack should be green. Depending on the switch model, the last two right ports are 10-Gigabit Ethernet ports or small form-factor pluggable (SFP) module ports (10/100/1000 ports). If one or both of these LEDs are not green on any of the switches, the stack is not operating at full bandwidth.

It may take up to 4 seconds for stack convergence when a new stack member is added to the existing switch stack.

If you remove powered-on members but do not want to partition the stack:

- Power off the switches in the newly created switch stacks.
- Reconnect them to the original switch stack through their stack ports.
- Power on the switches.

For cabling and power considerations that affect switch stacks, see the Catalyst 2960-X Switch Hardware Installation Guide.

Stack Member Numbers

The stack member number (1 to 8) identifies each member in the switch stack. The member number also determines the interface-level configuration that a stack member uses. You can display the stack member number by using the show switch EXEC command.
A new, out-of-the-box Switch (one that has not joined a Switch stack or has not been manually assigned a stack member number) ships with a default stack member number of 1. When it joins a Switch stack, its default stack member number changes to the lowest available member number in the stack.

Stack members in the same Switch stack cannot have the same stack member number. Every stack member, including a standalone Switch, retains its member number until you manually change the number or unless the number is already being used by another member in the stack.

- If you manually change the stack member number by using the switch current-stack-member-number renumber new-stack-member-number global configuration command, the new number goes into effect after that stack member resets (or after you use the reload slot stack-member-number privileged EXEC command) and only if that number is not already assigned to any other members in the stack. Another way to change the stack member number is by changing the Switch_NUMBER environment variable.

  If the number is being used by another member in the stack, the Switch selects the lowest available number in the stack.

  If you manually change the number of a stack member and no interface-level configuration is associated with that new member number, that stack member resets to its default configuration.

  You cannot use the switch current-stack-member-number renumber new-stack-member-number global configuration command on a provisioned Switch. If you do, the command is rejected.

- If you move a stack member to a different Switch stack, the stack member retains its number only if the number is not being used by another member in the stack. If it is being used, the Switch selects the lowest available number in the stack.

- If you merge Switch stacks, the Switch that join the Switch stack of a new stack master select the lowest available numbers in the stack.

As described in the hardware installation guide, you can use the Switch port LEDs in Stack mode to visually determine the stack member number of each stack member.

In the default mode Stack LED will blink in green color only on the stack master. However, when we scroll the Mode button to Stack option - Stack LED will glow green on all the stack members.

When mode button is scrolled to Stack option, the switch number of each stack member will be displayed as LEDs on the first five ports of that switch. The switch number is displayed in binary format for all stack members. On the switch, the amber LED indicates value 0 and green LED indicates value 1.

Example for switch number 5 (Binary - 00101):

First five LEDs will glow in below color combination on stack member with switch number 5.

- Port-1 : Amber
- Port-2 : Amber
- Port-3 : Green
- Port-4 : Amber
- Port-5 : Green

Similarly first five LEDs will glow in amber or green, depending on the switch number on all stack members.
Note

- If we connect a Horizontal stack port to a normal network port on other end, stack port transmission/reception will be disabled within 30 seconds if there are no SDP packet received from the other end.

- Stack port will not go down but only transmission/reception will be disabled. The log message shown below will be displayed on the console. Once the peer end network port is converted to stack port, transmission/reception on this stack port will be enabled.

%STACKMGR-4-HSTACK_LINK_CONFIG: Verify peer stack port setting for hstack StackPort-1 switch 5 (hostname-switchnumber)

Stack Member Priority Values

A higher priority value for a stack member increases the probability of it being elected stack master and retaining its stack member number. The priority value can be 1 to 15. The default priority value is 1. You can display the stack member priority value by using the `show switch` EXEC command.

We recommend assigning the highest priority value to the switch that you prefer to be the stack master. This ensures that the switch is reelected as the stack master if a reelection occurs.

To change the priority value for a stack member, use the `switch stack-member-number priority new priority-value` global configuration command. For more information, see the "Setting the Stack Member Priority Value" section.

The new priority value takes effect immediately but does not affect the current stack master. The new priority value helps determine which stack member is elected as the new stack master when the current stack master or the switch stack resets.

Switch Stack Bridge ID and MAC Address

The MAC address of the stack master determines the stack MAC address.

When the stack initializes, the MAC address of the stack master determines the bridge ID that identifies the stack in the network.

If the stack master changes, the MAC address of the new stack master determines the new bridge ID and stack MAC address.

If the entire switch stack reloads, the switch stack uses the MAC address of the stack master.

Persistent MAC Address on the Switch Stack

You can use the persistent MAC address feature to set a time delay before the stack MAC address changes to the MAC address of the new stack master. When this feature is enabled, the stack MAC address changes in approximately 4 minutes. During this time, if the previous stack master rejoins the stack, the stack continues to use its MAC address as the stack MAC address, even if the switch is now a stack member and not a stack master. If the previous stack master does not rejoin the stack during this period, the switch stack takes the MAC address of the new stack master as the stack MAC address.
You can also configure stack MAC persistency so that the stack MAC address never changes to the new stack master MAC address.

**Stack Master Election and Reelection**

All stack members are eligible stack masters. If the stack master becomes unavailable, the remaining members elect a new stack master from among themselves.

The stack master is elected or reelected based on one of these factors and in the order listed:

1. The switch that is currently the stack master.
2. The switch with the highest stack member priority value.

**Note**

We recommend assigning the highest priority value to the switch that you prefer to be the stack master. This ensures that the switch is reelected as stack master if a reelection occurs.

3. The switch that has the configuration file.
4. The switch with the lowest MAC address.

A stack master retains its role unless one of these events occurs:

- The switch stack is reset.*
- The stack master is removed from the switch stack.
- The stack master is reset or powered off.
- The stack master fails.
- The switch stack membership is increased by adding powered-on standalone switches or switch stacks.*

In the events marked by an asterisk (*), the current stack master *might* be reelected based on the listed factors.

When you power on or reset an entire switch stack, some stack members *might not* participate in the stack master election. Stack members that are powered on within the same 20-second time frame participate in the stack master election and have a chance to become the stack master. Stack members that are powered on after the 20-second time frame do not participate in this initial election and become stack members. All stack members participate in reelections. For all powering considerations that affect stack-master elections, see the "Switch Installation" chapter in the hardware installation guide.

The new stack master becomes available after a few seconds. In the meantime, the switch stack uses the forwarding tables in memory to minimize network disruption. The physical interfaces on the other available stack members are not affected during a new stack master election and reset.

After a new stack master is elected and the previous stack master becomes available, the previous stack master *does not* resume its role as stack master.

For all powering considerations that affect stack-master elections, see the *Catalyst 2960-X Switch Hardware Installation Guide*. 
Switch Stack Configuration Files

The stack master has the saved and running configuration files for the switch stack. All stack members periodically receive synchronized copies of the configuration files from the stack master. If the stack master becomes unavailable, any stack member assuming the role of stack master has the latest configuration files.

The configuration files record these settings:

- System-level (global) configuration settings such as IP, STP, VLAN, and SNMP settings that apply to all stack members
- Stack member interface-specific configuration settings that are specific for each stack member

Note

The interface-specific settings of the stack master are saved if the stack master is replaced without saving the running configuration to the startup configuration.

A new, out-of-box switch joining a switch stack uses the system-level settings of that switch stack. If a switch is moved to a different switch stack before it is powered on, that switch loses its saved configuration file and uses the system-level configuration of the new switch stack. If the switch is powered on as a standalone switch before it joins the new switch stack, the stack will reload. When the stack reloads, the new switch may become the stack master, retain its configuration and overwrite the configuration files of the other stack members.

The interface-specific configuration of each stack member is associated with the stack member number. Stack members retain their numbers unless they are manually changed or they are already used by another member in the same switch stack. If the stack member number changes, the new number goes into effect after that stack member resets.

- If an interface-specific configuration does not exist for that member number, the stack member uses its default interface-specific configuration.
- If an interface-specific configuration exists for that member number, the stack member uses the interface-specific configuration associated with that member number.

If you replace a failed member with an identical model, the replacement member automatically uses the same interface-specific configuration as the failed switch. You do not need to reconfigure the interface settings. The replacement switch (referred to as the provisioned switch) must have the same stack member number as the failed switch.

You back up and restore the stack configuration in the same way as you would for a standalone switch configuration.

Offline Configuration to Provision a Stack Member

You can use the offline configuration feature to provision (to supply a configuration to) a new switch before it joins the switch stack. You can configure the stack member number, the switch type, and the interfaces associated with a switch that is not currently part of the stack. The configuration that you create on the switch stack is called the provisioned configuration. The switch that is added to the switch stack and that receives this configuration is called the provisioned switch.

You manually create the provisioned configuration through the switch stack-member-number provision type global configuration command. You must change the stack-member-number on the provisioned switch before you add it to the stack, and it must match the stack member number that you created for the new switch on
the switch stack. The switch type in the provisioned configuration must match the switch type of the newly added switch. The provisioned configuration is automatically created when a switch is added to a switch stack and when no provisioned configuration exists.

When you configure the interfaces associated with a provisioned switch, the switch stack accepts the configuration, and the information appears in the running configuration. However, as the switch is not active, any configuration on the interface is not operational and the interface associated with the provisioned switch does not appear in the display of the specific feature. For example, VLAN configuration information associated with a provisioned switch does not appear in the `show vlan` user EXEC command output on the switch stack.

The switch stack retains the provisioned configuration in the running configuration whether or not the provisioned switch is part of the stack. You can save the provisioned configuration to the startup configuration file by entering the `copy running-config startup-config` privileged EXEC command. The startup configuration file ensures that the switch stack can reload and can use the saved information whether or not the provisioned switch is part of the switch stack.

**Effects of Adding a Provisioned Switch to a Switch Stack**

When you add a provisioned Switch to the switch stack, the stack applies either the provisioned configuration or the default configuration. This table lists the events that occur when the switch stack compares the provisioned configuration with the provisioned switch.

**Table 87: Results of Comparing the Provisioned Configuration with the Provisioned Switch**

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>The stack member numbers and the Switch types match.</td>
<td>1 If the stack member number of the provisioned switch matches the stack member number in the provisioned configuration on the stack, and</td>
</tr>
<tr>
<td></td>
<td>2 If the Switch type of the provisioned switch matches the Switch type in the provisioned configuration on the stack.</td>
</tr>
<tr>
<td></td>
<td>The switch stack applies the provisioned configuration to the provisioned switch and adds it to the stack.</td>
</tr>
<tr>
<td>The stack member numbers match but the Switch types do not match.</td>
<td>1 If the stack member number of the provisioned switch matches the stack member number in the provisioned configuration on the stack, but</td>
</tr>
<tr>
<td></td>
<td>2 The Switch type of the provisioned switch does not match the Switch type in the provisioned configuration on the stack.</td>
</tr>
<tr>
<td></td>
<td>The switch stack applies the default configuration to the provisioned switch and adds it to the stack.</td>
</tr>
<tr>
<td></td>
<td>The provisioned configuration is changed to reflect the new information.</td>
</tr>
</tbody>
</table>
### Scenario

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>The stack member number is not found in the provisioned configuration.</td>
<td>The switch stack applies the default configuration to the provisioned switch and adds it to the stack. The provisioned configuration is changed to reflect the new information.</td>
</tr>
<tr>
<td>The stack member number of the provisioned switch is not found in the provisioned configuration.</td>
<td>The switch stack applies the default configuration to the provisioned switch and adds it to the stack.</td>
</tr>
</tbody>
</table>

If you add a provisioned switch that is a different type than specified in the provisioned configuration to a powered-down switch stack and then apply power, the switch stack rejects the (now incorrect) `switch stack-member-number provision type` global configuration command in the startup configuration file. However, during stack initialization, the nondefault interface configuration information in the startup configuration file for the provisioned interfaces (potentially of the wrong type) is executed. Depending on the differences between the actual Switch type and the previously provisioned switch type, some commands are rejected, and some commands are accepted.

---

**Note**

If the switch stack does not contain a provisioned configuration for a new Switch, the Switch joins the stack with the default interface configuration. The switch stack then adds to its running configuration with a `switch stack-member-number provision type` global configuration command that matches the new Switch. For configuration information, see the Provisioning a New Member for a Switch Stack section.

---

### Effects of Replacing a Provisioned Switch in a Switch Stack

When a provisioned switch in a switch stack fails, it is removed from the stack, and is replaced with another Switch, the stack applies either the provisioned configuration or the default configuration to it. The events that occur when the switch stack compares the provisioned configuration with the provisioned switch are the same as those when you add a provisioned switch to a stack.

### Effects of Removing a Provisioned Switch from a Switch Stack

If you remove a provisioned switch from the switch stack, the configuration associated with the removed stack member remains in the running configuration as provisioned information. To completely remove the configuration, use the `no switch stack-member-number provision` global configuration command.

### Stack Protocol Version

Each software image includes a stack protocol version. The stack protocol version has a major version number and a minor version number (for example 1.4, where 1 is the major version number and 4 is the minor version number). Both version numbers determine the level of compatibility among the stack members. You can display the stack protocol version by using the `show platform stack manager all` privileged EXEC command.
The switches with the same Cisco IOS software version have the same stack protocol version. Such switches are fully compatible, and all features function properly across the switch stack. A switch with the same Cisco IOS software version as the stack master can immediately join the switch stack.

If an incompatibility exists, the fully functional stack members generate a system message that describes the cause of the incompatibility on the specific stack members. The stack master sends the message to all stack members.

For more information, see the Major Version Number Incompatibility Among Switches procedure and the Minor Version Number Incompatibility Among Switches procedure.

**Major Stack Protocol Version Number Incompatibility Among Stack-Capable Switches**

Switch with different major Cisco IOS software versions usually have different stack protocol versions. Switch with different major version numbers are incompatible and cannot exist in the same switch stack.

**Minor Stack Protocol Version Number Incompatibility Among Stack-Capable Switches**

Switches with the same major version number but with a different minor version number are considered partially compatible. When connected to a switch stack, a partially compatible switch enters version-mismatch (VM) mode and cannot join the stack as a fully functioning member. The software detects the mismatched software and tries to upgrade (or downgrade) the switch in VM mode with the switch stack image or with a tar file image from the switch stack flash memory. The software uses the automatic upgrade (auto-upgrade) and the automatic advise (auto-advice) features.

The port LEDs on switches in version-mismatch mode will also remain off. Pressing the Mode button does not change the LED mode.

**Auto-Upgrade**

The purpose of the auto-upgrade feature is to allow a switch to be upgraded to a compatible software image, so that the switch can join the switch stack.

When a new switch attempts to join a switch stack, each stack member performs compatibility checks with itself and the new switch. Each stack member sends the results of the compatibility checks to the stack master, which uses the results to determine whether the switch can join the switch stack. If the software on the new switch is incompatible with the switch stack, the new switch enters version-mismatch (VM) mode.

If the auto-upgrade feature is enabled on the existing switch stack, the stack master automatically upgrades the new switch with the same software image running on a compatible stack member. Auto-upgrade starts a few minutes after the mismatched software is detected before starting.

By default, auto-upgrade is enabled (the `boot auto-copy-sw` global configuration command is enabled). You can disable auto-upgrade by using the `no boot auto-copy-sw` global configuration command on the stack master. You can check the status of auto-upgrade by using the `show boot` privileged EXEC command and by checking the `Auto upgrade` line in the display.

Auto-upgrade includes an auto-copy process and an auto-extract process.

- Auto-copy automatically copies the software image running on any stack member to the new switch to automatically upgrade it. Auto-copy occurs if auto-upgrade is enabled, if there is enough flash memory in the new switch, and if the software image running on the switch stack is suitable for the new switch.
A switch in VM mode might not run all released software. For example, new switch hardware is not recognized in earlier versions of software.

- Automatic extraction (auto-extract) occurs when the auto-upgrade process cannot find the appropriate software in the stack to copy to the new switch. In that case, the auto-extract process searches all switches in the stack for the tar file needed to upgrade the switch stack or the new switch. The tar file can be in any flash file system in the switch stack or in the new switch. If a tar file suitable for the new switch is found on a switch member, the process extracts the file and automatically upgrades the new switch.

The auto-upgrade (auto-copy and auto-extract) processes start a few minutes after the mismatched software is detected.

When the auto-upgrade process is complete, the new switch reloads and joins the stack as a fully functioning member. If you have both stack cables connected during the reload, network downtime does not occur because the switch stack operates on two rings.

Auto-Advise

Automatic advise (auto-advice) occurs when the auto-upgrade process cannot find appropriate stack member software to copy to the new switch. This process tells you the command (archive copy-sw or archive download-sw privileged EXEC command) and the image name (tar filename) needed to manually upgrade the switch stack or the new switch. The recommended image can be the running switch stack image or a tar file in any flash file system in the switch stack (including the new switch). If an appropriate image is not found in the stack flash file systems, the auto-advises process tells you to install new software on the switch stack. Auto-advises cannot be disabled, and there is no command to check its status.

Examples of Auto-Advise Messages

When you add a switch that has a different minor version number to the switch stack, the software displays messages in sequence (assuming that there are no other system messages generated by the switch).

This example shows that the switch stack detected a new switch that is running a different minor version number than the switch stack. Auto-copy starts, finds suitable software to copy from a stack member to the switch in VM mode, upgrades the switch in VM mode, and then reloads it:

```
*Mar 11 20:31:19.247:%STACKMGR-6-STACK_LINK_CHANGE:Stack Port 2 Switch 2 has changed to state UP
*Mar 11 20:31:23.232:%STACKMGR-6-SWITCH_ADDED_VM:Switch 1 has been ADDED to the stack(VERSION_MISMATCH) (Stack_1-3)
*Mar 11 20:33:23.248:%IMAGEMGR-6-AUTO_COPY_SW_INITIATED:Auto-copy-software process initiated for switch number(s) 1
*Mar 11 20:36:15.038:%IMAGEMGR-6-AUTO_COPY_SW:Searching for stack member to act as software donor...
*Mar 11 20:36:15.038:%IMAGEMGR-6-AUTO-copy_SW:Found donor (system #2) for member(s) 1
*Mar 11 20:36:15.038:%IMAGEMGR-6-AUTO_COPY_SW:System software to be uploaded:
*Mar 11 20:36:15.038:%IMAGEMGR-6-AUTO_COPY_SW:archiving c2960x-universalk9-mz.150-2.EX (directory)
*Mar 11 20:36:15.038:%IMAGEMGR-6-AUTO_COPY_SW:archiving c2960x-universalk9-mz.150-2.EX.bin (4945851 bytes)
```

Information About Switch Stacks
This example shows that the switch stack detected a new switch that is running a different minor version number than the switch stack. Auto-copy starts but cannot find software in the switch stack to copy to the VM-mode switch to make it compatible with the switch stack. The auto-advice process starts and recommends that you download a tar file from the network to the switch in VM mode:

```
*Mar 1 00:01:11.319:%STACKMGR-6-STACK_LINK_CHANGE:Stack Port 2 Switch 2 has changed to state UP
*Mar 1 00:01:15.547:%STACKMGR-6-SWITCH_ADDED_VM:Switch 1 has been ADDED to the stack (VERSION_MISMATCH)
stack_2#
*Mar 1 00:03:15.545:%STACKMGR-6-STACK_LINK_CHANGE:Stack Port 2 Switch 2 has changed to state UP
*Mar 1 00:03:15.545:%STACKMGR-6-STACK_LINK_CHANGE:Stack Port 2 Switch 2 has changed to state UP
```

Information About Switch Stacks

This example shows that the switch stack detected a new switch that is running a different minor version number than the switch stack. Auto-copy starts but cannot find software in the switch stack to copy to the VM-mode switch to make it compatible with the switch stack. The auto-advice process starts and recommends that you download a tar file from the network to the switch in VM mode:

```
*Mar 1 00:01:11.319:%STACKMGR-6-STACK_LINK_CHANGE:Stack Port 2 Switch 2 has changed to state UP
*Mar 1 00:01:15.545:%STACKMGR-6-SWITCH_ADDED_VM:Switch 1 has been ADDED to the stack (VERSION_MISMATCH)
stack_2#
*Mar 1 00:03:15.545:%STACKMGR-6-STACK_LINK_CHANGE:Auto-copy-software process initiated for switch number(s) 1
*Mar 1 00:03:15.545:%STACKMGR-6-STACK_LINK_CHANGE:Auto-copy-software process initiated for switch number(s) 1
*Mar 1 00:03:15.545:%STACKMGR-6-STACK_LINK_CHANGE:Auto-copy-software process initiated for switch number(s) 1
*Mar 1 00:03:15.545:%STACKMGR-6-STACK_LINK_CHANGE:Auto-copy-software process initiated for switch number(s) 1
*Mar 1 00:04:22.537:%STACKMGR-6-STACK_LINK_CHANGE:Auto-copy-software process initiated for switch number(s) 1
*Mar 1 00:04:22.537:%STACKMGR-6-STACK_LINK_CHANGE:Auto-copy-software process initiated for switch number(s) 1
```

Information About Switch Stacks

This example shows that the switch stack detected a new switch that is running a different minor version number than the switch stack. Auto-copy starts but cannot find software in the switch stack to copy to the VM-mode switch to make it compatible with the switch stack. The auto-advice process starts and recommends that you download a tar file from the network to the switch in VM mode:

```
*Mar 1 00:01:11.319:%STACKMGR-6-STACK_LINK_CHANGE:Stack Port 2 Switch 2 has changed to state UP
*Mar 1 00:01:15.545:%STACKMGR-6-SWITCH_ADDED_VM:Switch 1 has been ADDED to the stack (VERSION_MISMATCH)
stack_2#
*Mar 1 00:03:15.545:%STACKMGR-6-STACK_LINK_CHANGE:Auto-copy-software process initiated for switch number(s) 1
*Mar 1 00:03:15.545:%STACKMGR-6-STACK_LINK_CHANGE:Auto-copy-software process initiated for switch number(s) 1
*Mar 1 00:03:15.545:%STACKMGR-6-STACK_LINK_CHANGE:Auto-copy-software process initiated for switch number(s) 1
*Mar 1 00:03:15.545:%STACKMGR-6-STACK_LINK_CHANGE:Auto-copy-software process initiated for switch number(s) 1
*Mar 1 00:04:22.537:%STACKMGR-6-STACK_LINK_CHANGE:Auto-copy-software process initiated for switch number(s) 1
```

Information About Switch Stacks

This example shows that the switch stack detected a new switch that is running a different minor version number than the switch stack. Auto-copy starts but cannot find software in the switch stack to copy to the VM-mode switch to make it compatible with the switch stack. The auto-advice process starts and recommends that you download a tar file from the network to the switch in VM mode:

```
*Mar 1 00:01:11.319:%STACKMGR-6-STACK_LINK_CHANGE:Stack Port 2 Switch 2 has changed to state UP
*Mar 1 00:01:15.545:%STACKMGR-6-SWITCH_ADDED_VM:Switch 1 has been ADDED to the stack (VERSION_MISMATCH)
stack_2#
*Mar 1 00:03:15.545:%STACKMGR-6-STACK_LINK_CHANGE:Auto-copy-software process initiated for switch number(s) 1
*Mar 1 00:03:15.545:%STACKMGR-6-STACK_LINK_CHANGE:Auto-copy-software process initiated for switch number(s) 1
*Mar 1 00:03:15.545:%STACKMGR-6-STACK_LINK_CHANGE:Auto-copy-software process initiated for switch number(s) 1
```
Auto-advise and auto-copy identify which images are running by examining the info file and by searching the directory structure on the switch stack. If you download your image by using the `copy tftp:` bootloader command instead of the `archive download-sw` privileged EXEC command, the proper directory structure is not created. For more information about the info file, see the *Catalyst 2960-X Switch Managing Cisco IOS Image Files Configuration Guide*.

**SDM Template Mismatch in Switch Stacks**

The LAN Base default template is used with switches in a homogeneous stack, and the LAN Base routing template is used with switches in a mixed stack.

All stack members use the Switch Database Management (SDM) template configured on the stack master. When a new switch is added to a stack, the SDM configuration that is stored on the stack master overrides the template configured on an individual switch.

When you add a Catalyst 2960-S switch to a stack of Catalyst 2960-X switches running the LAN Base default template, the Catalyst 2960-S switch will go into SDM-mismatch mode. You must change the template of the switch stack to the LAN Base routing template.

You can use the `show switch` privileged EXEC command to see if any stack members are in SDM-mismatch mode.

Version-mismatch (VM) mode has priority over SDM-mismatch mode. If a VM-mode condition and an SDM-mismatch mode exist, the switch stack first attempts to resolve the VM-mode condition.

For more information about SDM templates, see the *Catalyst 2960-X Switch System Management Configuration Guide*.

**Switch Stack Management Connectivity**

You manage the switch stack and the stack member interfaces through the stack master. You can use the CLI, SNMP, and supported network management applications such as CiscoWorks. You cannot manage stack members on an individual Switch basis.

**Connectivity to Specific Stack Members**

If you want to configure a specific stack member port, you must include the stack member number in the CLI command interface notation.

To debug a specific stack member, you can access it from the stack master by using the `session stack-member-number` privileged EXEC command. The stack member number is appended to the system prompt. For example, Switch-2# is the prompt in privileged EXEC mode for stack member 2, and the system prompt for the stack master is Switch. Only the `show` and `debug` commands are available in a CLI session to a specific stack member.

**Connectivity to the Switch Stack Through an IP Address**

The switch stack is managed through a single IP address. The IP address is a system-level setting and is not specific to the stack master or to any other stack member. You can still manage the stack through the same
IP address even if you remove the stack master or any other stack member from the stack, provided there is IP connectivity.

Note

Stack members retain their IP addresses when you remove them from a switch stack. To avoid a conflict by having two devices with the same IP address in your network, change the IP addresses of any Switch that you remove from the switch stack.

For related information about switch stack configurations, see the Switch Stack Configuration Files section.

Connectivity to the Switch Stack Through Console Ports or Ethernet Management Ports

You can connect to the stack master by using one of these methods:

- You can connect a terminal or a PC to the stack master through the console port of one or more stack members.
- You can connect a PC to the stack master through the Ethernet management ports of one or more stack members. For more information about connecting to the switch stack through Ethernet management ports, see the Using the Ethernet Management Port section.

You can connect to the stack master by connecting a terminal or a PC to the stack master through the console port of one or more stack members.

Be careful when using multiple CLI sessions to the stack master. Commands that you enter in one session are not displayed in the other sessions. Therefore, it is possible that you might not be able to identify the session from which you entered a command.

We recommend using only one CLI session when managing the switch stack.

How to Configure a Switch Stack

Enabling the Persistent MAC Address Feature

Note

When you enter the command to configure this feature, a warning message appears with the consequences of your configuration. You should use this feature cautiously. Using the old stack master MAC address elsewhere in the same domain could result in lost traffic.

Follow these steps to enable persistent MAC address:

SUMMARY STEPS

1. enable
2. configure terminal
3. stack-mac persistent timer [0 | time-value]
4. end
5. copy running-config startup-config
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Switch&gt;</code></td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Enables a time delay after a stack-master change before the stack MAC address changes to that of the new stack master. If the previous stack master rejoins the stack during this period, the stack uses that MAC address as the stack MAC address. You can configure the time period as 0 to 60 minutes.</td>
</tr>
<tr>
<td>`stack-mac persistent timer [0</td>
<td>time-value]`</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Switch(config)# stack-mac persistent timer 7</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>end</code></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Switch(config)# end</code></td>
<td></td>
</tr>
</tbody>
</table>

### Note
If you enter the `no stack-mac persistent timer` command after a new stack master takes over, before the time expires, the switch stack moves to the current stack master MAC address.
### What to Do Next

Use the `no stack-mac persistent timer` global configuration command to disable the persistent MAC address feature.

### Assigning a Stack Member Number

This optional task is available only from the stack master.

Follow these steps to assign a member number to a stack member:

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `switch current-stack-member-number renumber new-stack-member-number`
4. `end`
5. `reload slot stack-member-number`
6. `show switch`
7. `copy running-config startup-config`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: <code>Switch&gt; enable</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Switch# configure terminal</code></td>
<td></td>
</tr>
</tbody>
</table>
### Purpose

**Command or Action**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td><code>switch current-stack-member-number renumber new-stack-member-number</code></td>
<td>Specifies the current stack member number and the new stack member number for the stack member. The range is 1 to 8. You can display the current stack member number by using the <code>show switch</code> user EXEC command.</td>
</tr>
<tr>
<td>4</td>
<td><code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>5</td>
<td><code>reload slot stack-member-number</code></td>
<td>Resets the stack member.</td>
</tr>
<tr>
<td>6</td>
<td><code>show switch</code></td>
<td>Verify the stack member number.</td>
</tr>
<tr>
<td>7</td>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>

### Setting the Stack Member Priority Value

This optional task is available only from the stack master. Follow these steps to assign a priority value to a stack member:

**SUMMARY STEPS**

1. `enable`
2. `switch stack-member-number priority new-priority-number`
3. `show switch stack-member-number`
4. `copy running-config startup-config`
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> switch stack-member-number priority</td>
<td>Specifies the stack member number and the new priority for the stack</td>
</tr>
<tr>
<td>new-priority-number</td>
<td>member. The stack member number range is 1 to 8. The priority value</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch# switch 3 priority 2</td>
<td>range is 1 to 15.</td>
</tr>
<tr>
<td></td>
<td>You can display the current priority value by using the <code>show switch</code></td>
</tr>
<tr>
<td></td>
<td>user EXEC command.</td>
</tr>
<tr>
<td></td>
<td>The new priority value takes effect immediately but does not affect the</td>
</tr>
<tr>
<td></td>
<td>current stack master. The new priority value helps determine which</td>
</tr>
<tr>
<td></td>
<td>stack member is elected as the new stack master when the current stack</td>
</tr>
<tr>
<td></td>
<td>master or switch stack resets.</td>
</tr>
<tr>
<td><strong>Step 3</strong> show switch stack-member-number</td>
<td>Verify the stack member priority value.</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch# show switch</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

### Setting the Stack Port Speed to 10 Gbps

In a mixed stack of Catalyst 2960-X and 2960-S switches, you must set the stack port speed to 10 Gbps. This task is required in a mixed stack configuration and must be run on a Catalyst 2960-X switch in the switch stack before you add a 2960-S switch to the stack. Otherwise, the switches will not stack.

### SUMMARY STEPS

1. configure terminal
2. switch stack port-speed 10
3. end
4. copy running-config startup-config
5. reload
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td>switch stack port-speed 10</td>
<td>Sets the stack port speed to 10 Gbps.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Switch(config)# switch stack port-speed 10</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Switch(config)# end</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td></td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Saves your entries in the</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>configuration file.</td>
</tr>
<tr>
<td>Switch# copy running-config startup-config</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td></td>
</tr>
<tr>
<td>reload</td>
<td>Reloads the switch stack.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Switch# reload</td>
<td></td>
</tr>
</tbody>
</table>

Provisioning a New Member for a Switch Stack

This optional task is available only from the stack master.

SUMMARY STEPS

1. show switch
2. configure terminal
3. switch stack-member-number provision type
4. end
5. copy running-config startup-config
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><strong>show switch</strong></td>
</tr>
<tr>
<td>Example:</td>
<td>Displays summary information about the switch stack.</td>
</tr>
<tr>
<td>Switch# show switch</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><strong>configure terminal</strong></td>
</tr>
<tr>
<td>Example:</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><strong>switch stack-member-number provision type</strong></td>
</tr>
<tr>
<td>Example:</td>
<td>Specifies the stack member number for the preconfigured switch.</td>
</tr>
<tr>
<td>Switch(config)# switch 3 provision WS-xxxx</td>
<td>By default, no switches are provisioned.</td>
</tr>
<tr>
<td></td>
<td>For <em>stack-member-number</em>, the range is 1 to 8. Specify a stack</td>
</tr>
<tr>
<td></td>
<td>member number that is not already used in the switch stack. See Step</td>
</tr>
<tr>
<td></td>
<td>1.</td>
</tr>
<tr>
<td></td>
<td>For <em>type</em>, enter the model number of a supported switch that is</td>
</tr>
<tr>
<td></td>
<td>listed in the command-line help strings.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><strong>end</strong></td>
</tr>
<tr>
<td>Example:</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Switch(config)# end</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><strong>copy running-config startup-config</strong></td>
</tr>
<tr>
<td>Example:</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td>Switch# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

Removing Provisioned Switch Information

Before you begin, you must remove the provisioned switch from the stack. This optional task is available only from the stack master.

SUMMARY STEPS

1. configure terminal
2. no switch stack-member-number provision
3. end
4. copy running-config startup-config
**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>no switch stack-member-number provision</code></td>
<td>Removes the provisioning information for the specified member.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Switch(config)# no switch 3 provision</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Switch(config)# end</code></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Switch# copy running-config startup-config</code></td>
<td></td>
</tr>
</tbody>
</table>

If you are removing a provisioned switch in a stack with this configuration:

- The stack has four members
- Stack member 1 is the stack master
- Stack member 3 is a provisioned switch

and want to remove the provisioned information and to avoid receiving an error message, you can remove power from stack member 3, disconnect the stack cables between the stack member 3 and switches to which it is connected, reconnect the cables between the remaining stack members, and enter the `no switch stack-member-number provision` global configuration command.

**Troubleshooting the Switch Stack**

**Accessing the CLI of a Specific Member**

This optional task is for debugging purposes, and is available only from the stack master.

You can access all or specific members by using the `remote command {all | stack-member-number}` privileged EXEC command. The stack member number range is 1 to 8.

You can access specific members by using the `session stack-member-number` privileged EXEC command. The member number is appended to the system prompt. For example, the prompt for member 2 is `Switch-2#`,...
and system prompt for the stack master is Switch#. Enter exit to return to the CLI session on the stack master. Only the show and debug commands are available on a specific member.

**Temporarily Disabling a Stack Port**

If a stack port is flapping and causing instability in the stack ring, to disable the port, enter the `switch stack-member-number stack port port-number disable` privileged EXEC command. To reenable the port, enter the `switch stack-member-number stack port port-number enable` command.

---

**Note**

Be careful when using the `switch stack-member-number stack port port-number disable` command. When you disable the stack port, the stack operates at half bandwidth.

A stack is in the full-ring state when all members are connected through the stack ports and are in the ready state.

The stack is in the partial-ring state when the following occurs:

- All members are connected through their stack ports but some are not in the ready state.
- Some members are not connected through the stack ports.

**SUMMARY STEPS**

1. `switch stack-member-number stack port port-number disable`
2. `switch stack-member-number stack port port-number enable`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> <code>switch stack-member-number stack port port-number disable</code></td>
<td>Enables the specified stack port.</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch# <code>switch 2 stack port 1 disable</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> <code>switch stack-member-number stack port port-number enable</code></td>
<td>Reenables the stack port.</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch# <code>switch 2 stack port 1 enable</code></td>
<td></td>
</tr>
</tbody>
</table>

When you disable a stack port and the stack is in the full-ring state, you can disable only one stack port. This message appears:

*Enabling/disabling a stack port may cause undesired stack changes. Continue?[confirm]*

When you disable a stack port and the stack is in the partial-ring state, you cannot disable the port. This message appears:

*Disabling stack port not allowed with current stack configuration.*
Reenabling a Stack Port While Another Member Starts

Stack Port 1 on Switch 1 is connected to Port 2 on Switch 4. If Port 1 is flapping, you can disable Port 1 with the `switch 1 stack port 1 disable` privileged EXEC command. While Port 1 on Switch 1 is disabled and Switch 1 is still powered on, follow these steps to reenable a stack port:

**Step 1** Disconnect the stack cable between Port 1 on Switch 1 and Port 2 on Switch 4.
**Step 2** Remove Switch 4 from the stack.
**Step 3** Add a switch to replace Switch 4 and assign it switch-number 4.
**Step 4** Reconnect the cable between Port 1 on Switch 1 and Port 2 on Switch 4 (the replacement switch).
**Step 5** Reenable the link between the switches. Enter the `switch 1 stack port 1 enable` privileged EXEC command to enable Port 1 on Switch 1.
**Step 6** Power on Switch 4.

Caution

Powering on Switch 4 before enabling the Port 1 on Switch 1 might cause one of the switches to reload. If Switch 4 is powered on first, you might need to enter the `switch 1 stack port 1 enable` and the `switch 4 stack port 2 enable` privileged EXEC commands to bring up the link.

Monitoring the Switch Stack

### Table 88: Commands for Displaying Stack Information

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>`show controller ethernet-controller stack port {1</td>
<td>2}`</td>
</tr>
<tr>
<td><code>show controller ethernet-controller fastethernet0</code></td>
<td>Displays information about the Ethernet management port, including the port status and the per-interface send and receive statistics read from the hardware.</td>
</tr>
<tr>
<td><code>show platform stack compatibility</code></td>
<td>Displays information about HULC feature compatibility.</td>
</tr>
<tr>
<td><code>show platform stack manager all</code></td>
<td>Displays all stack manager information, such as the stack protocol version.</td>
</tr>
<tr>
<td><code>show platform stack passive-links</code></td>
<td>Displays information about stack passive links.</td>
</tr>
</tbody>
</table>
Command | Description
--- | ---
**show switch** | Displays summary information about the stack, including the status of provisioned switches and switches in version-mismatch mode.

**show switch stack-member-number** | Displays information about a specific member.

**show switch detail** | Displays detailed information about the stack.

**show switch neighbors** | Displays the stack neighbors.

**show switch stack-ports** | Displays port information for the stack.

---

### Configuration Examples for Switch Stacks

#### Switch Stack Configuration Scenarios

Most of these switch stack configuration scenarios assume that at least two switch are connected through their stack ports.

**Table 89: Configuration Scenarios**

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stack master election specifically determined by existing stack masters</td>
<td>Connect two powered-on switch stacks through the stack ports.</td>
</tr>
<tr>
<td>Only one of the two stack masters becomes the new stack master.</td>
<td></td>
</tr>
<tr>
<td>Stack master election specifically determined by the stack member priority value</td>
<td>Connect two switches through their stack ports.</td>
</tr>
<tr>
<td>The stack member with the higher priority value is elected stack master.</td>
<td></td>
</tr>
<tr>
<td>1 Connect two switches through their stack ports.</td>
<td></td>
</tr>
<tr>
<td>2 Use the <strong>switch stack-member-number priority new-priority-number</strong> global configuration command to set one stack member with a higher member priority value.</td>
<td></td>
</tr>
<tr>
<td>Scenario</td>
<td>Result</td>
</tr>
<tr>
<td>----------------------------------------------</td>
<td>-------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Stack master election specifically determined by the configuration file</td>
<td>The stack member with the saved configuration file is elected stack master.</td>
</tr>
</tbody>
</table>
| Assuming that both stack members have the same priority value:  
1 Make sure that one stack member has a default configuration and that the other stack member has a saved (nondefault) configuration file.  
2 Restart both stack members at the same time. | The stack member with the lower MAC address is elected stack master. |
| Stack master election specifically determined by the MAC address | The stack member with the higher priority value retains its stack member number. The other stack member has a new stack member number. |
| Assuming that both stack members have the same priority value, configuration file, and feature set, restart both stack members at the same time. | The stack member with the higher priority value retains its stack member number. The other stack member has a new stack member number. |
| Stack member number conflict | The stack master is retained. The new switch is added to the switch stack. |
| Assuming that one stack member has a higher priority value than the other stack member:  
1 Ensure that both stack members have the same stack member number. If necessary, use the `switch current-stack-member-number renumber new-stack-member-number` global configuration command.  
2 Restart both stack members at the same time. | The stack master is retained. The new switch is added to the switch stack. |
| Add a stack member | One of the remaining stack members becomes the new stack master. All other stack members in the stack remain as stack members and do not reboot. |
| 1 Power off the new switch.  
2 Through their stack ports, connect the new switch to a powered-on switch stack.  
3 Power on the new switch. | One of the remaining stack members becomes the new stack master. All other stack members in the stack remain as stack members and do not reboot. |
| Stack master failure | Remove (or power off) the stack master. |

Cisco 2960-X Switch Series Configuration Guide, Cisco IOS Release 15.0(2)EX

OL-29640-01
### Scenario

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add more than eight stack members</td>
<td>1  Through their stack ports, connect nine switch.</td>
</tr>
<tr>
<td></td>
<td>2  Power on all switch.</td>
</tr>
<tr>
<td></td>
<td>Two switch become stack masters. One stack master has eight stack</td>
</tr>
<tr>
<td></td>
<td>members. The other stack master remains as a standalone switch.</td>
</tr>
<tr>
<td></td>
<td>Use the Mode button and port LEDs on the switch to identify which</td>
</tr>
<tr>
<td></td>
<td>switch are stack masters and which switch belong to each stack master.</td>
</tr>
</tbody>
</table>

#### Enabling the Persistent MAC Address Feature: Example

This example shows how to configure the persistent MAC address feature for a 7-minute time delay and to verify the configuration:

```
Switch(config)# stack-mac persistent timer 7
WARNING: The stack continues to use the base MAC of the old Master
WARNING: as the stack MAC after a master switchover until the MAC
WARNING: persistency timer expires. During this time the Network
WARNING: Administrators must make sure that the old stack-mac does
WARNING: not appear elsewhere in this network domain. If it does,
WARNING: user traffic may be blackholed.
Switch(config)# end
```

```
Switch# show switch
Switch/Stack Mac Address : 0016.4727.a900
Mac persistency wait time: 7 mins
```

<table>
<thead>
<tr>
<th>Switch</th>
<th>Role</th>
<th>Mac Address</th>
<th>Priority</th>
<th>Version</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>*1</td>
<td>Master</td>
<td>0016.4727.a900</td>
<td>1</td>
<td>P2B</td>
<td>Ready</td>
</tr>
</tbody>
</table>

#### Provisioning a New Member for a Switch Stack: Example

This example shows how to provision a switch with a stack member number of 2 for the switch stack. The `show running-config` command output shows the interfaces associated with the provisioned switch:

```
Switch(config)# switch 2 provision switch_PID
Switch(config)# end
Switch# show running-config | include switch 2
```

```
switch 2 provision switch_PID
```
### Additional References for Switch Stacks

#### Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cabling and powering on a switch stack.</td>
<td><em>Catalyst 2960-X Switch Hardware Installation Guide</em></td>
</tr>
</tbody>
</table>

#### Error Message Decoder

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>To help you research and resolve system error messages in this release, use the Error Message Decoder tool.</td>
<td><a href="https://www.cisco.com/cgi-bin/Support/Errordecoder/index.cgi">https://www.cisco.com/cgi-bin/Support/Errordecoder/index.cgi</a></td>
</tr>
</tbody>
</table>

#### Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>—</td>
</tr>
</tbody>
</table>

#### MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>All supported MIBs for this release.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and software images, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>
## Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/support">http://www.cisco.com/support</a></td>
</tr>
</tbody>
</table>
Security Features Overview

The switch supports a LAN base image or a LAN lite image with a reduced feature set, depending on switch hardware. The security features are as follows:

- IPv6 First Hop Security—A suite of security features to be applied at the first hop switch to protect against vulnerabilities inherent in IPv6 networks. These include, Binding Integrity Guard (Binding Table), Router Advertisement Guard (RA Guard), DHCP Guard, IPv6 Neighbor Discovery Inspection (ND Guard), and IPv6 Source Guard. This feature is not supported on LanLite images on Catalyst 2960-X Series Switches.
- Web Authentication—Allows a supplicant (client) that does not support IEEE 802.1x functionality to be authenticated using a web browser.
- Local Web Authentication Banner—A custom banner or an image file displayed at a web authentication login screen.
- IEEE 802.1x Authentication with ACLs and the RADIUS Filter-Id Attribute
- Password-protected access (read-only and read-write access) to management interfaces (device manager, Network Assistant, and the CLI) for protection against unauthorized configuration changes
- Multilevel security for a choice of security level, notification, and resulting actions
- Static MAC addressing for ensuring security
- Protected port option for restricting the forwarding of traffic to designated ports on the same switch
- Port security option for limiting and identifying MAC addresses of the stations allowed to access the port
- VLAN aware port security option to shut down the VLAN on the port when a violation occurs, instead of shutting down the entire port.
- Port security aging to set the aging time for secure addresses on a port.
- Protocol storm protection to control the rate of incoming protocol traffic to a switch by dropping packets that exceed a specified ingress rate.
• BPDU guard for shutting down a Port Fast-configured port when an invalid configuration occurs.

• Standard and extended IP access control lists (ACLs) for defining inbound security policies on Layer 2 interfaces (port ACLs).

• Extended MAC access control lists for defining security policies in the inbound direction on Layer 2 interfaces.

• Source and destination MAC-based ACLs for filtering non-IP traffic.

• DHCP snooping to filter untrusted DHCP messages between untrusted hosts and DHCP servers.

• IP source guard to restrict traffic on nonrouted interfaces by filtering traffic based on the DHCP snooping database and IP source bindings.

• Dynamic ARP inspection to prevent malicious attacks on the switch by not relaying invalid ARP requests and responses to other ports in the same VLAN.

This feature is not supported on LanLite images on Catalyst 2960-X Series Switches.

• IEEE 802.1x port-based authentication to prevent unauthorized devices (clients) from gaining access to the network. These 802.1x features are supported:

  ◦ Multidomain authentication (MDA) to allow both a data device and a voice device, such as an IP phone (Cisco or non-Cisco), to independently authenticate on the same IEEE 802.1x-enabled switch port.

  ◦ Dynamic voice virtual LAN (VLAN) for MDA to allow a dynamic voice VLAN on an MDA-enabled port.

  ◦ VLAN assignment for restricting 802.1x-authenticated users to a specified VLAN.

  ◦ Support for VLAN assignment on a port configured for multi-auth mode. The RADIUS server assigns a VLAN to the first host to authenticate on the port, and subsequent hosts use the same VLAN. Voice VLAN assignment is supported for one IP phone.

  ◦ Port security for controlling access to 802.1x ports.

  ◦ Voice VLAN to permit a Cisco IP Phone to access the voice VLAN regardless of the authorized or unauthorized state of the port.

  ◦ IP phone detection enhancement to detect and recognize a Cisco IP phone.

  ◦ Guest VLAN to provide limited services to non-802.1x-compliant users.

  ◦ Restricted VLAN to provide limited services to users who are 802.1x compliant, but do not have the credentials to authenticate via the standard 802.1x processes.

  ◦ 802.1x accounting to track network usage.

  ◦ 802.1x with wake-on-LAN to allow dormant PCs to be powered on based on the receipt of a specific Ethernet frame.

  ◦ 802.1x readiness check to determine the readiness of connected end hosts before configuring IEEE 802.1x on the switch.

  ◦ Voice aware 802.1x security to apply traffic violation actions only on the VLAN on which a security violation occurs.

  ◦ MAC authentication bypass (MAB) to authorize clients based on the client MAC address.
• Network Admission Control (NAC) Layer 2 802.1x validation of the antivirus condition or posture of endpoint systems or clients before granting the devices network access.

  Note  
  NAC is not supported on LanLite images.

• Network Edge Access Topology (NEAT) with 802.1X switch supplicant, host authorization with CISP, and auto enablement to authenticate a switch outside a wiring closet as a supplicant to another switch.

  Note  
  NEAT is not supported on LanLite images.

• IEEE 802.1x with open access to allow a host to access the network before being authenticated.

  Note  
  This feature is not supported on LanLite images.

• IEEE 802.1x authentication with downloadable ACLs and redirect URLs to allow per-user ACL downloads from a Cisco Secure ACS server to an authenticated switch.

• Support for dynamic creation or attachment of an auth-default ACL on a port that has no configured static ACLs.

  Note  
  This feature is not supported on LanLite images.

• Flexible-authentication sequencing to configure the order of the authentication methods that a port tries when authenticating a new host.

• Multiple-user authentication to allow more than one host to authenticate on an 802.1x-enabled port.

  • TACACS+, a proprietary feature for managing network security through a TACACS server for both IPv4 and IPv6.
  • RADIUS for verifying the identity of, granting access to, and tracking the actions of remote users through authentication, authorization, and accounting (AAA) services for both IPv4 and IPv6.
  • Enhancements to RADIUS, TACACS+, and SSH to function over IPv6.
  • Secure Socket Layer (SSL) Version 3.0 support for the HTTP 1.1 server authentication, encryption, and message integrity and HTTP client authentication to allow secure HTTP communications (requires the cryptographic version of the software).
  • IEEE 802.1x Authentication with ACLs and the RADIUS Filter-Id Attribute.
  • Support for IP source guard on static hosts.
  • RADIUS Change of Authorization (CoA) to change the attributes of a certain session after it is authenticated. When there is a change in policy for a user or user group in AAA, administrators can send
the RADIUS CoA packets from the AAA server, such as Cisco Identity Services Engine, or Cisco Secure ACS to reinitialize authentication, and apply to the new policies.

- IEEE 802.1x User Distribution to allow deployments with multiple VLANs (for a group of users) to improve scalability of the network by load balancing users across different VLANs. Authorized users are assigned to the least populated VLAN in the group, assigned by RADIUS server.

  Note This feature is not supported on LanLite images.

- Support for critical VLAN with multiple-host authentication so that when a port is configured for multi-auth, and an AAA server becomes unreachable, the port is placed in a critical VLAN in order to still permit access to critical resources.

  Note This feature is not supported on LanLite images.

- Support for Network Edge Access Topology (NEAT) to change the port host mode and to apply a standard port configuration on the authenticator switch port.

- VLAN-ID based MAC authentication to use the combined VLAN and MAC address information for user authentication to prevent network access from unauthorized VLANs.

- MAC move to allow hosts (including the hosts connected behind an IP phone) to move across ports within the same switch without any restrictions to enable mobility. With MAC move, the switch treats the reappearance of the same MAC address on another port in the same way as a completely new MAC address.

- Support for 3DES and AES with version 3 of the Simple Network Management Protocol (SNMPv3). This release adds support for the 168-bit Triple Data Encryption Standard (3DES) and the 128-bit, 192-bit, and 256-bit Advanced Encryption Standard (AES) encryption algorithms to SNMPv3.

- Support for Cisco TrustSec SXP protocol. This feature is not supported on LanLite images.
Preventing Unauthorized Access

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Preventing Unauthorized Access

You can prevent unauthorized users from reconfiguring your switch and viewing configuration information. Typically, you want network administrators to have access to your switch while you restrict access to users who dial from outside the network through an asynchronous port, connect from outside the network through a serial port, or connect through a terminal or workstation from within the local network.

To prevent unauthorized access into your switch, you should configure one or more of these security features:

- At a minimum, you should configure passwords and privileges at each switch port. These passwords are locally stored on the switch. When users attempt to access the switch through a port or line, they must enter the password specified for the port or line before they can access the switch.

- For an additional layer of security, you can also configure username and password pairs, which are locally stored on the switch. These pairs are assigned to lines or ports and authenticate each user before that user can access the switch. If you have defined privilege levels, you can also assign a specific privilege level (with associated rights and privileges) to each username and password pair.

- If you want to use username and password pairs, but you want to store them centrally on a server instead of locally, you can store them in a database on a security server. Multiple networking devices can then use the same database to obtain user authentication (and, if necessary, authorization) information.
• You can also enable the login enhancements feature, which logs both failed and unsuccessful login attempts. Login enhancements can also be configured to block future login attempts after a set number of unsuccessful attempts are made. For more information, see the Cisco IOS Login Enhancements documentation.

Related Topics

Configuring Username and Password Pairs, on page 769
TACACS+ and Switch Access, on page 781
Setting a Telnet Password for a Terminal Line, on page 767
Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Restrictions for Controlling Switch Access with Passwords and Privileges

The following are the restrictions for controlling switch access with passwords and privileges:

- Disabling password recovery will not work if you have set the switch to boot up manually by using the `boot manual` global configuration command. This command produces the boot loader prompt (switch:) after the switch is power cycled.
Information About Passwords and Privilege Levels

Default Password and Privilege Level Configuration

A simple way of providing terminal access control in your network is to use passwords and assign privilege levels. Password protection restricts access to a network or network device. Privilege levels define what commands users can enter after they have logged into a network device.

This table shows the default password and privilege level configuration.

**Table 90: Default Password and Privilege Levels**

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable password and privilege level</td>
<td>No password is defined. The default is level 15 (privileged EXEC level). The password is not encrypted in the configuration file.</td>
</tr>
<tr>
<td>Enable secret password and privilege level</td>
<td>No password is defined. The default is level 15 (privileged EXEC level). The password is encrypted before it is written to the configuration file.</td>
</tr>
<tr>
<td>Line password</td>
<td>No password is defined.</td>
</tr>
</tbody>
</table>

Additional Password Security

To provide an additional layer of security, particularly for passwords that cross the network or that are stored on a Trivial File Transfer Protocol (TFTP) server, you can use either the `enable password` or `enable secret` global configuration commands. Both commands accomplish the same thing; that is, you can establish an encrypted password that users must enter to access privileged EXEC mode (the default) or any privilege level you specify.

We recommend that you use the `enable secret` command because it uses an improved encryption algorithm.

If you configure the `enable secret` command, it takes precedence over the `enable password` command; the two commands cannot be in effect simultaneously.

If you enable password encryption, it applies to all passwords including username passwords, authentication key passwords, the privileged command password, and console and virtual terminal line passwords.

**Related Topics**

- Protecting Enable and Enable Secret Passwords with Encryption, on page 764
- Example: Protecting Enable and Enable Secret Passwords with Encryption, on page 775
Password Recovery

By default, any end user with physical access to the switch can recover from a lost password by interrupting the boot process while the switch is powering on and then by entering a new password.

The password-recovery disable feature protects access to the switch password by disabling part of this functionality. When this feature is enabled, the end user can interrupt the boot process only by agreeing to set the system back to the default configuration. With password recovery disabled, you can still interrupt the boot process and change the password, but the configuration file (config.text) and the VLAN database file (vlan.dat) are deleted.

If you disable password recovery, we recommend that you keep a backup copy of the configuration file on a secure server in case the end user interrupts the boot process and sets the system back to default values. Do not keep a backup copy of the configuration file on the switch. If the switch is operating in VTP transparent mode, we recommend that you also keep a backup copy of the VLAN database file on a secure server. When the switch is returned to the default system configuration, you can download the saved files to the switch by using the Xmodem protocol.

To re-enable password recovery, use the service password-recovery global configuration command.

Related Topics

Disabling Password Recovery, on page 766
Restrictions for Controlling Switch Access with Passwords and Privileges, on page 759

Terminal Line Telnet Configuration

When you power-up your switch for the first time, an automatic setup program runs to assign IP information and to create a default configuration for continued use. The setup program also prompts you to configure your switch for Telnet access through a password. If you did not configure this password during the setup program, you can configure it when you set a Telnet password for a terminal line.

Related Topics

Setting a Telnet Password for a Terminal Line, on page 767
Example: Setting a Telnet Password for a Terminal Line, on page 776

Username and Password Pairs

You can configure username and password pairs, which are locally stored on the switch. These pairs are assigned to lines or ports and authenticate each user before that user can access the switch. If you have defined privilege levels, you can also assign a specific privilege level (with associated rights and privileges) to each username and password pair.

Related Topics

Configuring Username and Password Pairs, on page 769

Privilege Levels

Cisco switches (and other devices) use privilege levels to provide password security for different levels of switch operation. By default, the Cisco IOS software operates in two modes (privilege levels) of password
security: user EXEC (Level 1) and privileged EXEC (Level 15). You can configure up to 16 hierarchical levels of commands for each mode. By configuring multiple passwords, you can allow different sets of users to have access to specified commands.

Privilege Levels on Lines

Users can override the privilege level you set using the `privilege level` line configuration command by logging in to the line and enabling a different privilege level. They can lower the privilege level by using the `disable` command. If users know the password to a higher privilege level, they can use that password to enable the higher privilege level. You might specify a high level or privilege level for your console line to restrict line usage.

For example, if you want many users to have access to the `clear line` command, you can assign it level 2 security and distribute the level 2 password fairly widely. But if you want more restricted access to the `configure` command, you can assign it level 3 security and distribute that password to a more restricted group of users.

Command Privilege Levels

When you set a command to a privilege level, all commands whose syntax is a subset of that command are also set to that level. For example, if you set the `show ip traffic` command to level 15, the `show` commands and `show ip` commands are automatically set to privilege level 15 unless you set them individually to different levels.

Related Topics
- Setting the Privilege Level for a Command, on page 771
- Example: Setting the Privilege Level for a Command, on page 776
- Changing the Default Privilege Level for Lines, on page 773
- Logging into and Exiting a Privilege Level, on page 774

How to Control Switch Access with Passwords and Privilege Levels

Setting or Changing a Static Enable Password

The enable password controls access to the privileged EXEC mode. Follow these steps to set or change a static enable password:

SUMMARY STEPS
1. `enable`
2. `configure terminal`
3. `enable password password`
4. `end`
5. `show running-config`
6. `copy running-config startup-config`

How to Control Switch Access with Passwords and Privilege Levels

Setting or Changing a Static Enable Password

The enable password controls access to the privileged EXEC mode. Follow these steps to set or change a static enable password:

SUMMARY STEPS
1. `enable`
2. `configure terminal`
3. `enable password password`
4. `end`
5. `show running-config`
6. `copy running-config startup-config`
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | enable | Enables privileged EXEC mode. Enter your password if prompted.  
Example:  
Switch> enable |
| Step 2 | configure terminal | Enters the global configuration mode.  
Example:  
Switch# configure terminal |
| Step 3 | enable password password | Defines a new password or changes an existing password for access to privileged EXEC mode.  
By default, no password is defined.  
For `password`, specify a string from 1 to 25 alphanumeric characters. The string cannot start with a number, is case sensitive, and allows spaces but ignores leading spaces. It can contain the question mark (?) character if you precede the question mark with the key combination Ctrl-v when you create the password; for example, to create the password abc?123, do this:  
1 Enter `abc`.  
2 Enter Ctrl-v.  
3 Enter `?123`.  
When the system prompts you to enter the enable password, you need not precede the question mark with the Ctrl-v; you can simply enter abc?123 at the password prompt.  
Example:  
Switch(config)# enable password secret321 |
| Step 4 | end | Returns to privileged EXEC mode.  
Example:  
Switch(config)# end |
| Step 5 | show running-config | Verifies your entries.  
Example:  
Switch# show running-config |
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Example:

Switch# copy running-config startup-config

### Related Topics

Example: Setting or Changing a Static Enable Password, on page 775

### Protecting Enable and Enable Secret Passwords with Encryption

Follow these steps to establish an encrypted password that users must enter to access privileged EXEC mode (the default) or any privilege level you specify:

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. Use one of the following:
   - `enable password [level level] {password | encryption-type encrypted-password}`
   - `enable secret [level level] {password | encryption-type encrypted-password}`
4. `service password-encryption`
5. `end`
6. `show running-config`
7. `copy running-config startup-config`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
</tbody>
</table>

Example:

Switch> enable
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
</tr>
<tr>
<td>Use one of the following:</td>
<td></td>
</tr>
<tr>
<td>• enable password [level level] {password</td>
<td>encryption-type encrypted-password}</td>
</tr>
<tr>
<td></td>
<td>• enable secret [level level] {password</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Switch(config)# enable password example102</td>
<td>(Optional) For level, the range is from 0 to 15. Level 1 is normal user EXEC mode privileges. The default level is 15 (privileged EXEC mode privileges).</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# enable secret level 1 password secret123sample</td>
<td>For password, specify a string from 1 to 25 alphanumeric characters. The string cannot start with a number, is case sensitive, and allows spaces but ignores leading spaces. By default, no password is defined.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td></td>
</tr>
<tr>
<td>service password-encryption</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Switch(config)# service password-encryption</td>
<td>Encryption prevents the password from being readable in the configuration file.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Switch(config)# end</td>
<td></td>
</tr>
</tbody>
</table>

**Note**  
If you specify an encryption type and then enter a clear text password, you can not re-enter privileged EXEC mode. You cannot recover a lost encrypted password by any method.
### How to Control Switch Access with Passwords and Privilege Levels

#### Command or Action	Purpose
**Step 6** show running-config | Verifies your entries.  
Example:  
Switch# show running-config

**Step 7** copy running-config startup-config | (Optional) Saves your entries in the configuration file.  
Example:  
Switch# copy running-config startup-config

#### Related Topics
- Additional Password Security, on page 760
- Example: Protecting Enable and Enable Secret Passwords with Encryption, on page 775

### Disabling Password Recovery

Follow these steps to disable password recovery to protect the security of your switch:

**Before You Begin**

If you disable password recovery, we recommend that you keep a backup copy of the configuration file on a secure server in case the end user interrupts the boot process and sets the system back to default values. Do not keep a backup copy of the configuration file on the switch. If the switch is operating in VTP transparent mode, we recommend that you also keep a backup copy of the VLAN database file on a secure server. When the switch is returned to the default system configuration, you can download the saved files to the switch by using the Xmodem protocol.

**SUMMARY STEPS**

1. **enable**
2. **configure terminal**
3. **system disable password recovery switch** `{all | <1-9>}`
4. **end**

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
</tbody>
</table>
### How to Control Switch Access with Passwords and Privilege Levels

#### Command or Action

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Switch&gt; enable</td>
</tr>
</tbody>
</table>

#### Step 2

**configure terminal**

**Example:**

Switch# configure terminal

**Purpose:** Enters the global configuration mode.

#### Step 3

**system disable password recovery switch** `{all | <1-9>}`

**Example:**

Switch(config)# system disable password recovery switch all

**Purpose:** Disables password recovery.

- `all` - Sets the configuration on switches in stack.
- `<1-9>` - Sets the configuration on the Switch Number selected.

This setting is saved in an area of the flash memory that is accessible by the boot loader and the Cisco IOS image, but it is not part of the file system and is not accessible by any user.

#### Step 4

**end**

**Example:**

Switch(config)# end

**Purpose:** Returns to privileged EXEC mode.

---

**What to Do Next**

To remove `disable password recovery`, use the `no system disable password recovery switch all` global configuration command.

**Related Topics**

- Password Recovery, on page 761
- Restrictions for Controlling Switch Access with Passwords and Privileges, on page 759

### Setting a Telnet Password for a Terminal Line

Beginning in user EXEC mode, follow these steps to set a Telnet password for the connected terminal line:

#### Before You Begin

- Attach a PC or workstation with emulation software to the switch console port, or attach a PC to the Ethernet management port.
- The default data characteristics of the console port are 9600, 8, 1, no parity. You might need to press the Return key several times to see the command-line prompt.
SUMMARY STEPS

1. enable
2. configure terminal
3. line vty 0 15
4. password password
5. end
6. show running-config
7. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>enable</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Switch&gt; enable</td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>If a password is required for access to privileged EXEC mode, you will be prompted for it. Enters privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Switch# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>line vty 0 15</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Switch(config)# line vty 0 15</td>
</tr>
<tr>
<td></td>
<td>Configures the number of Telnet sessions (lines), and enters line configuration mode. There are 16 possible sessions on a command-capable Switch. The 0 and 15 mean that you are configuring all 16 possible Telnet sessions.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>password password</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Switch(config-line)# password abcxyz543</td>
</tr>
<tr>
<td></td>
<td>Sets a Telnet password for the line or lines. For <em>password</em>, specify a string from 1 to 25 alphanumeric characters. The string cannot start with a number, is case sensitive, and allows spaces but ignores leading spaces. By default, no password is defined.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>end</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Switch(config-line)# end</td>
</tr>
<tr>
<td></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
### Related Topics
- Preventing Unauthorized Access, on page 757
- Terminal Line Telnet Configuration, on page 761
- Example: Setting a Telnet Password for a Terminal Line, on page 776

### Configuring Username and Password Pairs

Follow these steps to configure username and password pairs:

#### SUMMARY STEPS

1. enable
2. configure terminal
3. username name [privilege level] [password encryption-type password]
4. Use one of the following:
   - line console 0
   - line vty 0 15
5. login local
6. end
7. show running-config
8. copy running-config startup-config

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
</tbody>
</table>
### Command or Action

<table>
<thead>
<tr>
<th>Example:</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch&gt; enable</td>
<td>Enters the global configuration mode.</td>
</tr>
</tbody>
</table>

#### Step 2

<table>
<thead>
<tr>
<th>configure terminal</th>
<th>Sets the user name, privilege level, and password for each user.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

#### Step 3

<table>
<thead>
<tr>
<th>username name [privilege level] {password encryption-type password}</th>
<th>Sets the user name, privilege level, and password for each user.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# username adamsample privilege 1 password secret456</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# username 111111111111 mac attribute</td>
<td></td>
</tr>
</tbody>
</table>

#### Step 4

<table>
<thead>
<tr>
<th>Use one of the following:</th>
<th>Enables local password checking at login time. Authentication is based on the username specified in Step 3.</th>
</tr>
</thead>
<tbody>
<tr>
<td>• line console 0</td>
<td></td>
</tr>
<tr>
<td>• line vty 0 15</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# line console 0</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# line vty 15</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><strong>end</strong>&lt;br&gt;Example: &lt;br&gt;<code>Switch(config)# end</code>&lt;br&gt;Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td><strong>show running-config</strong>&lt;br&gt;Example: &lt;br&gt;<code>Switch# show running-config</code>&lt;br&gt;Verifies your entries.</td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td><strong>copy running-config startup-config</strong>&lt;br&gt;Example: &lt;br&gt;<code>Switch# copy running-config startup-config</code>&lt;br&gt;(Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>

**Related Topics**
- Preventing Unauthorized Access, on page 757
- Username and Password Pairs, on page 761

**Setting the Privilege Level for a Command**

Follow these steps to set the privilege level for a command:

**SUMMARY STEPS**

1. enable<br>2. configure terminal<br>3. privilege mode level level command<br>4. enable password level level password<br>5. end<br>6. copy running-config startup-config

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><strong>enable</strong>&lt;br&gt;Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
</tbody>
</table>
### How to Control Switch Access with Passwords and Privilege Levels

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Example:</strong> Switch&gt; enable</td>
<td><strong>Purpose</strong></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch# configure terminal</td>
<td><strong>Step 3</strong> privilege mode level level command</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch(config)# privilege exec level 14 configure</td>
<td>• For <strong>mode</strong>, enter <strong>configure</strong> for global configuration mode, <strong>exec</strong> for EXEC mode, <strong>interface</strong> for interface configuration mode, or <strong>line</strong> for line configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch(config)# privilege exec level 14 configure</td>
<td>• For <strong>level</strong>, the range is from 0 to 15. Level 1 is for normal user EXEC mode privileges. Level 15 is the level of access permitted by the enable password.</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch(config)# privilege exec level 14 configure</td>
<td>• For <strong>command</strong>, specify the command to which you want to restrict access.</td>
</tr>
<tr>
<td><strong>Step 4</strong> enable password level level password</td>
<td>Specifies the password to enable the privilege level.</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch(config)# enable password level 14 SecretPswd14</td>
<td>• For <strong>level</strong>, the range is from 0 to 15. Level 1 is for normal user EXEC mode privileges.</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch(config)# enable password level 14 SecretPswd14</td>
<td>• For <strong>password</strong>, specify a string from 1 to 25 alphanumeric characters. The string cannot start with a number, is case sensitive, and allows spaces but ignores leading spaces. By default, no password is defined.</td>
</tr>
<tr>
<td><strong>Step 5</strong> end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch(config)# end</td>
<td><strong>Step 6</strong> copy running-config startup-config</td>
</tr>
<tr>
<td><strong>Step 6</strong> copy running-config startup-config</td>
<td><strong>Example:</strong> Switch# copy running-config startup-config</td>
</tr>
</tbody>
</table>
### Changing the Default Privilege Level for Lines

Follow these steps to change the default privilege level for the specified line:

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `line vty line`
4. `privilege level level`
5. `end`
6. `copy running-config startup-config`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Example: <code>Switch&gt; enable</code></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Example: <code>Switch# configure terminal</code></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Selects the virtual terminal line on which to restrict access.</td>
</tr>
<tr>
<td><code>line vty line</code></td>
<td>Example: <code>Switch(config)# line vty 10</code></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Changes the default privilege level for the line. For <code>level</code>, the range is from 0 to 15. Level 1 is for normal user EXEC mode privileges. Level 15 is the level of access permitted by the <code>enable</code> password.</td>
</tr>
<tr>
<td><code>privilege level level</code></td>
<td>Example: <code>Switch(config)# privilege level 15</code></td>
</tr>
</tbody>
</table>
### Purpose

#### Command or Action

<table>
<thead>
<tr>
<th>Step 5</th>
<th>end</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Example:</strong></td>
<td>Switch(config)# end</td>
</tr>
</tbody>
</table>

**Purpose**: Returns to privileged EXEC mode.

<table>
<thead>
<tr>
<th>Step 6</th>
<th>copy running-config startup-config</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Example:</strong></td>
<td>Switch# copy running-config startup-config</td>
</tr>
</tbody>
</table>

**Purpose**: (Optional) Saves your entries in the configuration file.

### What to Do Next

Users can override the privilege level you set using the `privilege level` line configuration command by logging in to the line and enabling a different privilege level. They can lower the privilege level by using the `disable` command. If users know the password to a higher privilege level, they can use that password to enable the higher privilege level. You might specify a high level or privilege level for your console line to restrict line usage.

### Related Topics

- [Privilege Levels](#), on page 761

### Logging into and Exiting a Privilege Level

Beginning in user EXEC mode, follow these steps to log into a specified privilege level and exit a specified privilege level.

#### SUMMARY STEPS

1. `enable level`
2. `disable level`

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>enable level</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Switch&gt; enable 15</td>
</tr>
<tr>
<td><strong>Purpose</strong>:</td>
<td>Logs in to a specified privilege level. Following the example, Level 15 is privileged EXEC mode. For level, the range is 0 to 15.</td>
</tr>
</tbody>
</table>

| **Step 2** | disable level |
| **Purpose**: | Exits to a specified privilege level. |
### Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Switch# disable 1</td>
<td>Following the example, Level 1 is user EXEC mode. For <code>level</code>, the range is 0 to 15.</td>
</tr>
</tbody>
</table>

---

#### Related Topics

- Privilege Levels, on page 761

---

### Monitoring Switch Access

**Table 91: Commands for Displaying DHCP Information**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show privilege</code></td>
<td>Displays the privilege level configuration.</td>
</tr>
</tbody>
</table>

---

### Configuration Examples for Setting Passwords and Privilege Levels

**Example: Setting or Changing a Static Enable Password**

This example shows how to change the enable password to `1lu2c3k4y5`. The password is not encrypted and provides access to level 15 (traditional privileged EXEC mode access):

```
Switch(config)# enable password 1lu2c3k4y5
```

**Related Topics**

- Setting or Changing a Static Enable Password, on page 762

**Example: Protecting Enable and Enable Secret Passwords with Encryption**

This example shows how to configure the encrypted password `$1$FaD0$Xyti5Rkls3LoyxzS8` for privilege level 2:

```
Switch(config)# enable secret level 2 5 1FaD0$Xyti5Rkls3LoyxzS8
```

**Related Topics**

- Protecting Enable and Enable Secret Passwords with Encryption, on page 764
- Additional Password Security, on page 760
### Example: Setting a Telnet Password for a Terminal Line

This example shows how to set the Telnet password to `let45me67in89`:

```
Switch(config)# line vty 10
Switch(config-line)# password let45me67in89
```

**Related Topics**
- Setting a Telnet Password for a Terminal Line, on page 767
- Terminal Line Telnet Configuration, on page 761

### Example: Setting the Privilege Level for a Command

This example shows how to set the `configure` command to privilege level 14 and define `SecretPswd14` as the password users must enter to use level 14 commands:

```
Switch(config)# privilege exec level 14 configure
Switch(config)# enable password level 14 SecretPswd14
```

**Related Topics**
- Setting the Privilege Level for a Command, on page 771
- Privilege Levels, on page 761

### Additional References

#### Error Message Decoder

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>To help you research and resolve system error messages in this release, use the Error Message Decoder tool.</td>
<td><a href="https://www.cisco.com/cgi-bin/Support/Errordecoder/index.cgi">https://www.cisco.com/cgi-bin/Support/Errordecoder/index.cgi</a></td>
</tr>
</tbody>
</table>
**Technical Assistance**

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/support">http://www.cisco.com/support</a></td>
</tr>
</tbody>
</table>
Configuring TACACS+

• Finding Feature Information, page 779
• Prerequisites for TACACS+, page 779
• Information About TACACS+, page 781
• How to Configure TACACS+, page 785
• Monitoring TACACS+, page 793
• Additional References, page 794

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for TACACS+

The following are the prerequisites for set up and configuration of switch access with TACACS+ (must be performed in the order presented):

1. Configure the switches with the TACACS+ server addresses.
2. Set an authentication key.
3. Configure the key from Step 2 on the TACACS+ servers.
4. Enable authentication, authorization, and accounting (AAA).
5. Create a login authentication method list.
6. Apply the list to the terminal lines.
7. Create an authorization and accounting method list.

The following are the prerequisites for controlling switch access with TACACS+:

- You must have access to a configured TACACS+ server to configure TACACS+ features on your switch. Also, you must have access to TACACS+ services maintained in a database on a TACACS+ daemon typically running on a LINUX or Windows workstation.

- We recommend a redundant connection between a switch stack and the TACACS+ server. This is to help ensure that the TACACS+ server remains accessible in case one of the connected stack members is removed from the switch stack.

- You need a system running the TACACS+ daemon software to use TACACS+ on your switch.

- To use TACACS+, it must be enabled.

- Authorization must be enabled on the switch to be used.

- Users must first successfully complete TACACS+ authentication before proceeding to TACACS+ authorization.

- To use any of the AAA commands listed in this section or elsewhere, you must first enable AAA with the `aaa new-model` command.

- At a minimum, you must identify the host or hosts maintaining the TACACS+ daemon and define the method lists for TACACS+ authentication. You can optionally define method lists for TACACS+ authorization and accounting.

- The method list defines the types of authentication to be performed and the sequence in which they are performed; it must be applied to a specific port before any of the defined authentication methods are performed. The only exception is the default method list (which, by coincidence, is named `default`). The default method list is automatically applied to all ports except those that have a named method list explicitly defined. A defined method list overrides the default method list.

- Use TACACS+ for privileged EXEC access authorization if authentication was performed by using TACACS+.

- Use the local database if authentication was not performed by using TACACS+.

Related Topics

- TACACS+ Overview, on page 781
- TACACS+ Operation, on page 783
- How to Configure TACACS+, on page 785
- Method List, on page 784
- Configuring TACACS+ Login Authentication, on page 787
- TACACS+ Login Authentication, on page 784
- Configuring TACACS+ Authorization for Privileged EXEC Access and Network Services, on page 790
- TACACS+ Authorization for Privileged EXEC Access and Network Services, on page 784
Information About TACACS+

TACACS+ and Switch Access

This section describes TACACS+. TACACS+ provides detailed accounting information and flexible administrative control over the authentication and authorization processes. It is facilitated through authentication, authorization, accounting (AAA) and can be enabled only through AAA commands.

Related Topics

- Preventing Unauthorized Access, on page 757
- Configuring the Switch for Local Authentication and Authorization, on page 853
- SSH Servers, Integrated Clients, and Supported Versions, on page 861

TACACS+ Overview

TACACS+ is a security application that provides centralized validation of users attempting to gain access to your switch.

TACACS+ provides for separate and modular authentication, authorization, and accounting facilities. TACACS+ allows for a single access control server (the TACACS+ daemon) to provide each service—authentication, authorization, and accounting—independently. Each service can be tied into its own database to take advantage of other services available on that server or on the network, depending on the capabilities of the daemon.
The goal of TACACS+ is to provide a method for managing multiple network access points from a single management service. Your switch can be a network access server along with other Cisco routers and access servers.

Figure 66: Typical TACACS+ Network Configuration

TACACS+, administered through the AAA security services, can provide these services:

- **Authentication**—Provides complete control of authentication through login and password dialog, challenge and response, and messaging support.

  The authentication facility can conduct a dialog with the user (for example, after a username and password are provided, to challenge a user with several questions, such as home address, mother’s maiden name, service type, and social security number). The TACACS+ authentication service can also send messages to user screens. For example, a message could notify users that their passwords must be changed because of the company’s password aging policy.

- **Authorization**—Provides fine-grained control over user capabilities for the duration of the user’s session, including but not limited to setting autocommands, access control, session duration, or protocol support. You can also enforce restrictions on what commands a user can execute with the TACACS+ authorization feature.

- **Accounting**—Collects and sends information used for billing, auditing, and reporting to the TACACS+ daemon. Network managers can use the accounting facility to track user activity for a security audit or to provide information for user billing. Accounting records include user identities, start and stop times, executed commands (such as PPP), number of packets, and number of bytes.
The TACACS+ protocol provides authentication between the switch and the TACACS+ daemon, and it ensures confidentiality because all protocol exchanges between the switch and the TACACS+ daemon are encrypted.

Related Topics

Prerequisites for TACACS+, on page 779

TACACS+ Operation

When a user attempts a simple ASCII login by authenticating to a switch using TACACS+, this process occurs:

1  When the connection is established, the switch contacts the TACACS+ daemon to obtain a username prompt to show to the user. The user enters a username, and the switch then contacts the TACACS+ daemon to obtain a password prompt. The switch displays the password prompt to the user, the user enters a password, and the password is then sent to the TACACS+ daemon.

   TACACS+ allows a dialog between the daemon and the user until the daemon receives enough information to authenticate the user. The daemon prompts for a username and password combination, but can include other items, such as the user’s mother’s maiden name.

2  The switch eventually receives one of these responses from the TACACS+ daemon:

   • ACCEPT—The user is authenticated and service can begin. If the switch is configured to require authorization, authorization begins at this time.

   • REJECT—The user is not authenticated. The user can be denied access or is prompted to retry the login sequence, depending on the TACACS+ daemon.

   • ERROR—An error occurred at some time during authentication with the daemon or in the network connection between the daemon and the switch. If an ERROR response is received, the switch typically tries to use an alternative method for authenticating the user.

   • CONTINUE—The user is prompted for additional authentication information.

After authentication, the user undergoes an additional authorization phase if authorization has been enabled on the switch. Users must first successfully complete TACACS+ authentication before proceeding to TACACS+ authorization.

3  If TACACS+ authorization is required, the TACACS+ daemon is again contacted, and it returns an ACCEPT or REJECT authorization response. If an ACCEPT response is returned, the response contains data in the form of attributes that direct the EXEC or NETWORK session for that user and the services that the user can access:

   • Telnet, Secure Shell (SSH), rlogin, or privileged EXEC services

   • Connection parameters, including the host or client IP address, access list, and user timeouts

Related Topics

Prerequisites for TACACS+, on page 779
Method List

A method list defines the sequence and methods to be used to authenticate, to authorize, or to keep accounts on a user. You can use method lists to designate one or more security protocols to be used, thus ensuring a backup system if the initial method fails. The software uses the first method listed to authenticate, to authorize, or to keep accounts on users; if that method does not respond, the software selects the next method in the list. This process continues until there is successful communication with a listed method or the method list is exhausted.

Related Topics
- How to Configure TACACS+, on page 785
- Prerequisites for TACACS+, on page 779

TACACS+ Configuration Options

You can configure the switch to use a single server or AAA server groups to group existing server hosts for authentication. You can group servers to select a subset of the configured server hosts and use them for a particular service. The server group is used with a global server-host list and contains the list of IP addresses of the selected server hosts.

Related Topics
- Identifying the TACACS+ Server Host and Setting the Authentication Key, on page 785

TACACS+ Login Authentication

A method list describes the sequence and authentication methods to be queried to authenticate a user. You can designate one or more security protocols to be used for authentication, thus ensuring a backup system for authentication in case the initial method fails. The software uses the first method listed to authenticate users; if that method fails to respond, the software selects the next authentication method in the method list. This process continues until there is successful communication with a listed authentication method or until all defined methods are exhausted. If authentication fails at any point in this cycle—meaning that the security server or local username database responds by denying the user access—the authentication process stops, and no other authentication methods are attempted.

Related Topics
- Configuring TACACS+ Login Authentication, on page 787
- Prerequisites for TACACS+, on page 779

TACACS+ Authorization for Privileged EXEC Access and Network Services

AAA authorization limits the services available to a user. When AAA authorization is enabled, the switch uses information retrieved from the user’s profile, which is located either in the local user database or on the security server, to configure the user’s session. The user is granted access to a requested service only if the information in the user profile allows it.

Related Topics
- Configuring TACACS+ Authorization for Privileged EXEC Access and Network Services, on page 790
TACACS+ Accounting

The AAA accounting feature tracks the services that users are accessing and the amount of network resources that they are consuming. When AAA accounting is enabled, the switch reports user activity to the TACACS+ security server in the form of accounting records. Each accounting record contains accounting attribute-value (AV) pairs and is stored on the security server. This data can then be analyzed for network management, client billing, or auditing.

Related Topics
- Starting TACACS+ Accounting, on page 791

Default TACACS+ Configuration

TACACS+ and AAA are disabled by default.

To prevent a lapse in security, you cannot configure TACACS+ through a network management application. When enabled, TACACS+ can authenticate users accessing the switch through the CLI.

Note
Although TACACS+ configuration is performed through the CLI, the TACACS+ server authenticates HTTP connections that have been configured with a privilege level of 15.

How to Configure TACACS+

This section describes how to configure your switch to support TACACS+.

Related Topics
- Method List, on page 784
- Prerequisites for TACACS+, on page 779

Identifying the TACACS+ Server Host and Setting the Authentication Key

Follow these steps to identify the TACACS+ server host and set the authentication key:
SUMMARY STEPS

1. enable
2. configure terminal
3. tacacs-server host hostname
4. aaa new-model
5. aaa group server tacacs+ group-name
6. server ip-address
7. end
8. show running-config
9. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Switch&gt; enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Switch# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>tacacs-server host hostname</td>
<td>Identifies the IP host or hosts maintaining a TACACS+ server. Enter this command multiple times to create a list of preferred hosts. The software searches for hosts in the order in which you specify them. For hostname, specify the name or IP address of the host.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Switch(config)# tacacs-server host yourserver</td>
</tr>
<tr>
<td>Step 4</td>
<td>aaa new-model</td>
<td>Enables AAA.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Switch(config)# aaa new-model</td>
</tr>
<tr>
<td>Step 5</td>
<td>aaa group server tacacs+ group-name</td>
<td>(Optional) Defines the AAA server-group with a group name. This command puts the Switch in a server group subconfiguration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Switch(config)# aaa group server tacacs+ your_server_group</td>
</tr>
</tbody>
</table>
### Command or Action | Purpose
--- | ---
**Step 6**  
server ip-address  
*Example:*  
Switch(config)# server 10.1.2.3  
(Optional) Associates a particular TACACS+ server with the defined server group. Repeat this step for each TACACS+ server in the AAA server group. Each server in the group must be previously defined in Step 3.

**Step 7**  
end  
*Example:*  
Switch(config)# end  
Returns to privileged EXEC mode.

**Step 8**  
show running-config  
*Example:*  
Switch# show running-config  
Verifies your entries.

**Step 9**  
copy running-config startup-config  
*Example:*  
Switch# copy running-config startup-config  
(Optional) Saves your entries in the configuration file.

### Related Topics
- TACACS+ Configuration Options, on page 784

### Configuring TACACS+ Login Authentication

Follow these steps to configure TACACS+ login authentication:

**Before You Begin**

To configure AAA authentication, you define a named list of authentication methods and then apply that list to various ports.

**Note**

To secure the switch for HTTP access by using AAA methods, you must configure the switch with the `ip http authentication aaa` global configuration command. Configuring AAA authentication does not secure the switch for HTTP access by using AAA methods.

For more information about the `ip http authentication` command, see the *Cisco IOS Security Command Reference, Release 12.4*. 

---

Cisco 2960-X Switch Series Configuration Guide, Cisco IOS Release 15.0(2)EX

OL-29640-01
### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `aaa new-model`
4. `aaa authentication login {default | list-name} method1 [method2...]`
5. `line [console | tty | vty] line-number [ending-line-number]`
6. `login authentication {default | list-name}`
7. `end`
8. `show running-config`
9. `copy running-config startup-config`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> <code>enable</code></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: <code>Switch&gt; enable</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> <code>configure terminal</code></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> <code>aaa new-model</code></td>
<td>Enables AAA.</td>
</tr>
<tr>
<td>Example: <code>Switch(config)# aaa new-model</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> `aaa authentication login {default</td>
<td>list-name} method1 [method2...]`</td>
</tr>
<tr>
<td>Example: <code>Switch(config)# aaa authentication login default tacacs+ local</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- To create a default list that is used when a named list is not specified in the <code>login authentication</code> command, use the <code>default</code> keyword followed by the methods that are to be used in default situations. The default method list is automatically applied to all ports.</td>
</tr>
<tr>
<td></td>
<td>- For <code>list-name</code>, specify a character string to name the list you are creating.</td>
</tr>
<tr>
<td></td>
<td>- For <code>method1...</code>, specify the actual method the authentication algorithm tries. The additional methods of authentication are used only if the previous method returns an error, not if it fails.</td>
</tr>
<tr>
<td></td>
<td>Select one of these methods:</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>enable</strong></td>
<td>Use the enable password for authentication. Before you can use this authentication method, you must define an enable password by using the <code>enable password</code> global configuration command.</td>
</tr>
<tr>
<td><strong>group tacacs+</strong></td>
<td>Uses TACACS+ authentication. Before you can use this authentication method, you must configure the TACACS+ server. For more information, see the Identifying the TACACS+ Server Host and Setting the Authentication Key, on page 785.</td>
</tr>
<tr>
<td><strong>line</strong></td>
<td>Use the line password for authentication. Before you can use this authentication method, you must define a line password. Use the <code>password</code> line configuration command.</td>
</tr>
<tr>
<td><strong>local</strong></td>
<td>Use the local username database for authentication. You must enter username information in the database. Use the <code>username password</code> global configuration command.</td>
</tr>
<tr>
<td><strong>local-case</strong></td>
<td>Use a case-sensitive local username database for authentication. You must enter username information in the database by using the <code>username name password</code> global configuration command.</td>
</tr>
<tr>
<td><strong>none</strong></td>
<td>Do not use any authentication for login.</td>
</tr>
</tbody>
</table>

**Step 5**

```
line [console | tty | vty] line-number [ending-line-number]
```

Enters line configuration mode, and configures the lines to which you want to apply the authentication list.

*Example:*

```
Switch(config)# line 2 4
```

**Step 6**

```
login authentication {default | list-name}
```

Applies the authentication list to a line or set of lines.

*Example:*

```
Switch(config-line)# login authentication default
```

- If you specify `default`, use the default list created with the `aaa authentication login` command.
- For `list-name`, specify the list created with the `aaa authentication login` command.

**Step 7**

```
end
```

Returns to privileged EXEC mode.

*Example:*

```
Switch(config-line)# end
```

**Step 8**

```
show running-config
```

Verifies your entries.

*Example:*

```
Switch# show running-config
```
### Configuring TACACS+ Authorization for Privileged EXEC Access and Network Services

You can use the `aaa authorization` global configuration command with the `tacacs+` keyword to set parameters that restrict a user’s network access to privileged EXEC mode.

**Note**

Authorization is bypassed for authenticated users who log in through the CLI even if authorization has been configured.

Follow these steps to specify TACACS+ authorization for privileged EXEC access and network services:

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `aaa authorization network tacacs+`
4. `aaa authorization exec tacacs+`
5. `end`
6. `show running-config`
7. `copy running-config startup-config`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td><code>Example:</code></td>
<td></td>
</tr>
<tr>
<td><code>Switch&gt; enable</code></td>
<td></td>
</tr>
</tbody>
</table>
### How to Configure TACACS+

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td><code>configure terminal</code></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>aaa authorization network tacacs+</code></td>
<td>Configures the switch for user TACACS+ authorization for all network-related service requests.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Switch(config)# aaa authorization network tacacs+</code></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>aaa authorization exec tacacs+</code></td>
<td>Configures the switch for user TACACS+ authorization if the user has privileged EXEC access. The <code>exec</code> keyword might return user profile information (such as <code>autocommand</code> information).</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Switch(config)# aaa authorization exec tacacs+</code></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td><code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Switch(config)# end</code></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td><code>show running-config</code></td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Switch# show running-config</code></td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Switch# copy running-config startup-config</code></td>
<td></td>
</tr>
</tbody>
</table>

**Related Topics**

- TACACS+ Authorization for Privileged EXEC Access and Network Services, on page 784
- Prerequisites for TACACS+, on page 779

**Starting TACACS+ Accounting**

Follow these steps to start TACACS+ Accounting:
SUMMARY STEPS

1. enable
2. configure terminal
3. aaa accounting network start-stop tacacs+
4. aaa accounting exec start-stop tacacs+
5. end
6. show running-config
7. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch&gt; enable</td>
<td></td>
</tr>
</tbody>
</table>

**Step 2**	
configure terminal	Enters the global configuration mode.
Example:	
Switch# configure terminal	

**Step 3**	
aaa accounting network start-stop tacacs+	Enables TACACS+ accounting for all network-related service requests.
Example:	
Switch(config)# aaa accounting network start-stop tacacs+	

**Step 4**	
aaa accounting exec start-stop tacacs+	Enables TACACS+ accounting to send a start-record accounting notice at the beginning of a privileged EXEC process and a stop-record at the end.
Example:	
Switch(config)# aaa accounting exec start-stop tacacs+	

**Step 5**	
end	Returns to privileged EXEC mode.
Example:	
Switch(config)# end	
### What to Do Next

To establish a session with a router if the AAA server is unreachable, use the `aaa accounting system guarantee-first` command. It guarantees system accounting as the first record, which is the default condition. In some situations, users might be prevented from starting a session on the console or terminal connection until after the system reloads, which can take more than 3 minutes.

To establish a console or Telnet session with the router if the AAA server is unreachable when the router reloads, use the `no aaa accounting system guarantee-first` command.

### Related Topics

- TACACS+ Accounting, on page 785

### Establishing a Session with a Router if the AAA Server is Unreachable

To establish a session with a router if the AAA server is unreachable, use the `aaa accounting system guarantee-first` command. It guarantees system accounting as the first record, which is the default condition. In some situations, users might be prevented from starting a session on the console or terminal connection until after the system reloads, which can take more than 3 minutes.

To establish a console or Telnet session with the router if the AAA server is unreachable when the router reloads, use the `no aaa accounting system guarantee-first` command.

### Monitoring TACACS+

**Table 92: Commands for Displaying TACACS+ Information**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show tacacs</td>
<td>Displays TACACS+ server statistics.</td>
</tr>
</tbody>
</table>
Additional References

### Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring Identity Control policies and Identity Service templates for Session Aware networking.</td>
<td>Session Aware Networking Configuration Guide, Cisco IOS XE Release 3SE (Catalyst 3850 Switches)</td>
</tr>
<tr>
<td>Configuring RADIUS, TACACS+, Secure Shell, 802.1X and AAA.</td>
<td>Securing User Services Configuration Guide Library, Cisco IOS XE Release 3SE (Catalyst 3850 Switches)</td>
</tr>
<tr>
<td></td>
<td>secuser-xe-3se-3850-library.html</td>
</tr>
</tbody>
</table>

### Error Message Decoder

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>To help you research and resolve system error messages in this release, use the Error Message Decoder tool.</td>
<td><a href="https://www.cisco.com/cgi-bin/Support/Errordecoder/index.cgi">https://www.cisco.com/cgi-bin/Support/Errordecoder/index.cgi</a></td>
</tr>
</tbody>
</table>

### MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>All supported MIBs for this release.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL:</td>
</tr>
<tr>
<td></td>
<td><a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/support">http://www.cisco.com/support</a></td>
</tr>
</tbody>
</table>
CHAPTER 35

Configuring RADIUS

• Finding Feature Information, page 797
• Prerequisites for Configuring RADIUS, page 797
• Restrictions for Configuring RADIUS, page 798
• Information about RADIUS, page 799
• How to Configure RADIUS, page 822
• Monitoring CoA Functionality, page 840
• Configuration Examples for Controlling Switch Access with RADIUS, page 841
• Additional References, page 842

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Configuring RADIUS

This section lists the prerequisites for controlling Switch access with RADIUS.

General:

• RADIUS and Authentication, Authorization, and Accounting (AAA) must be enabled to use any of the configuration commands in this chapter.
• RADIUS is facilitated through AAA and can be enabled only through AAA commands.
• Use the aaa new-model global configuration command to enable AAA.
• Use the **aaa authentication** global configuration command to define method lists for RADIUS authentication.

• Use **line** and **interface** commands to enable the defined method lists to be used.

• At a minimum, you must identify the host or hosts that run the RADIUS server software and define the method lists for RADIUS authentication. You can optionally define method lists for RADIUS authorization and accounting.

• You should have access to and should configure a RADIUS server before configuring RADIUS features on your Switch.

• The RADIUS host is normally a multiuser system running RADIUS server software from Cisco (Cisco Secure Access Control Server Version 3.0), Livingston, Merit, Microsoft, or another software provider. For more information, see the RADIUS server documentation.

• To use the Change-of-Authorization (CoA) interface, a session must already exist on the switch. CoA can be used to identify a session and enforce a disconnect request. The update affects only the specified session.

For RADIUS operation:

• Users must first successfully complete RADIUS authentication before proceeding to RADIUS authorization, if it is enabled.

**Related Topics**

* RADIUS and Switch Access, on page 799
* RADIUS Operation, on page 800

### Restrictions for Configuring RADIUS

This topic covers restrictions for controlling Switch access with RADIUS.

**General:**

• To prevent a lapse in security, you cannot configure RADIUS through a network management application.

RADIUS is not suitable in the following network security situations:

• Multiprotocol access environments. RADIUS does not support AppleTalk Remote Access (ARA), NetBIOS Frame Control Protocol (NBFCP), NetWare Asynchronous Services Interface (NASI), or X.25 PAD connections.

• Switch-to-switch or router-to-router situations. RADIUS does not provide two-way authentication. RADIUS can be used to authenticate from one device to a non-Cisco device if the non-Cisco device requires authentication.

• Networks using a variety of services. RADIUS generally binds a user to one service model.

**Related Topics**

* RADIUS Overview, on page 799
Information about RADIUS

RADIUS and Switch Access

This section describes how to enable and configure RADIUS. RADIUS provides detailed accounting information and flexible administrative control over the authentication and authorization processes.

Related Topics

Prerequisites for Configuring RADIUS, on page 797
Configuring the Switch for Local Authentication and Authorization, on page 853
SSH Servers, Integrated Clients, and Supported Versions, on page 861

RADIUS Overview

RADIUS is a distributed client/server system that secures networks against unauthorized access. RADIUS clients run on supported Cisco routers and switches. Clients send authentication requests to a central RADIUS server, which contains all user authentication and network service access information.

Use RADIUS in these network environments that require access security:

• Networks with multiple-vendor access servers, each supporting RADIUS. For example, access servers from several vendors use a single RADIUS server-based security database. In an IP-based network with multiple vendors’ access servers, dial-in users are authenticated through a RADIUS server that has been customized to work with the Kerberos security system.

• Turnkey network security environments in which applications support the RADIUS protocol, such as in an access environment that uses a smart card access control system. In one case, RADIUS has been used with Enigma’s security cards to validate users and to grant access to network resources.

• Networks already using RADIUS. You can add a Cisco Switch containing a RADIUS client to the network. This might be the first step when you make a transition to a TACACS+ server. See Figure 2: Transitioning from RADIUS to TACACS+ Services below.

• Network in which the user must only access a single service. Using RADIUS, you can control user access to a single host, to a single utility such as Telnet, or to the network through a protocol such as IEEE 802.1x. For more information about this protocol, see Chapter 11, "Configuring IEEE 802.1x Port-Based Authentication."

• Networks that require resource accounting. You can use RADIUS accounting independently of RADIUS authentication or authorization. The RADIUS accounting functions allow data to be sent at the start and end of services, showing the amount of resources (such as time, packets, bytes, and so forth) used during
the session. An Internet service provider might use a freeware-based version of RADIUS access control and accounting software to meet special security and billing needs.

**Figure 67: Transitioning from RADIUS to TACACS+ Services**

![Diagram showing transition from RADIUS to TACACS+ services]

**Related Topics**

Restrictions for Configuring RADIUS, on page 798

**RADIUS Operation**

When a user attempts to log in and authenticate to a Switch that is access controlled by a RADIUS server, these events occur:

1. The user is prompted to enter a username and password.
2. The username and encrypted password are sent over the network to the RADIUS server.
3. The user receives one of the following responses from the RADIUS server:
   - ACCEPT—The user is authenticated.
   - REJECT—The user is either not authenticated and is prompted to re-enter the username and password, or access is denied.
   - CHALLENGE—A challenge requires additional data from the user.
   - CHALLENGE PASSWORD—A response requests the user to select a new password.

The ACCEPT or REJECT response is bundled with additional data that is used for privileged EXEC or network authorization. The additional data included with the ACCEPT or REJECT packets includes these items:

- Telnet, SSH, rlogin, or privileged EXEC services
- Connection parameters, including the host or client IP address, access list, and user timeouts
RADIUS Change of Authorization

The RADIUS Change of Authorization (CoA) provides a mechanism to change the attributes of an authentication, authorization, and accounting (AAA) session after it is authenticated. When a policy changes for a user or user group in AAA, administrators can send RADIUS CoA packets from the AAA server such as a Cisco Secure Access Control Server (ACS) to reinitialize authentication and apply the new policy. This section provides an overview of the RADIUS interface including available primitives and how they are used during a CoA.

- Change-of-Authorization Requests
- CoA Request Response Code
- CoA Request Commands
- Session Reauthentication
- Stacking Guidelines for Session Termination

A standard RADIUS interface is typically used in a pulled model where the request originates from a network attached device and the response come from the queried servers. Catalyst switches support the RADIUS CoA extensions defined in RFC 5176 that are typically used in a pushed model and allow for the dynamic reconfiguring of sessions from external AAA or policy servers.

The switch supports these per-session CoA requests:

- Session reauthentication
- Session termination
- Session termination with port shutdown
- Session termination with port bounce

This feature is integrated with Cisco Secure Access Control Server (ACS) 5.1.

The RADIUS interface is enabled by default on Catalyst switches. However, some basic configuration is required for the following attributes:

- Security and Password—refer to the “Preventing Unauthorized Access to Your Switch” section in this guide.
- Accounting—refer to the “Starting RADIUS Accounting” section in the Configuring Switch-Based Authentication chapter in this guide.

Cisco IOS software supports the RADIUS CoA extensions defined in RFC 5176 that are typically used in a push model to allow the dynamic reconfiguring of sessions from external AAA or policy servers. Per-session CoA requests are supported for session identification, session termination, host reauthentication, port shutdown, and port bounce. This model comprises one request (CoA-Request) and two possible response codes:

- CoA acknowledgement (ACK) [CoA-ACK]
- CoA nonacknowledgement (NAK) [CoA-NAK]
The request is initiated from a CoA client (typically a AAA or policy server) and directed to the device that acts as a listener.

The table below shows the RADIUS CoA commands and vendor-specific attributes (VSAs) supported by Identity-Based Networking Services. All CoA commands must include the session identifier between the device and the CoA client.

**Table 93: RADIUS CoA Commands Supported by Identity-Based Networking Services**

<table>
<thead>
<tr>
<th>CoA Command</th>
<th>Cisco VSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activate service</td>
<td>Cisco:Avpair=&quot;subscriber:command=activate-service&quot;</td>
</tr>
<tr>
<td></td>
<td>Cisco:Avpair=&quot;subscriber:service-name=&lt;service-name&gt;&quot;</td>
</tr>
<tr>
<td></td>
<td>Cisco:Avpair=&quot;subscriber:precedence=&lt;precedence-number&gt;&quot;</td>
</tr>
<tr>
<td></td>
<td>Cisco:Avpair=&quot;subscriber:activation-mode=replace-all&quot;</td>
</tr>
<tr>
<td>Deactivate service</td>
<td>Cisco:Avpair=&quot;subscriber:command=deactivate-service&quot;</td>
</tr>
<tr>
<td></td>
<td>Cisco:Avpair=&quot;subscriber:service-name=&lt;service-name&gt;&quot;</td>
</tr>
<tr>
<td>Bounce host port</td>
<td>Cisco:Avpair=&quot;subscriber:command=bounce-host-port&quot;</td>
</tr>
<tr>
<td>Disable host port</td>
<td>Cisco:Avpair=&quot;subscriber:command=disable-host-port&quot;</td>
</tr>
<tr>
<td>Session query</td>
<td>Cisco:Avpair=&quot;subscriber:command=session-query&quot;</td>
</tr>
<tr>
<td>Session reauthenticate</td>
<td>Cisco:Avpair=&quot;subscriber:command=reauthenticate&quot;</td>
</tr>
<tr>
<td></td>
<td>Cisco:Avpair=&quot;subscriber:reauthenticate-type=last&quot; or</td>
</tr>
<tr>
<td></td>
<td>Cisco:Avpair=&quot;subscriber:reauthenticate-type=rerun&quot;</td>
</tr>
<tr>
<td>Session terminate</td>
<td>This is a standard disconnect request and does not require a VSA.</td>
</tr>
<tr>
<td>Interface template</td>
<td>Cisco:AVpair=&quot;interface-template-name=&lt;interfacetemplate&gt;&quot;</td>
</tr>
</tbody>
</table>

**Change-of-Authorization Requests**

Change of Authorization (CoA) requests, as described in RFC 5176, are used in a push model to allow for session identification, host reauthentication, and session termination. The model is comprised of one request (CoA-Request) and two possible response codes:

- CoA acknowledgment (ACK) [CoA-ACK]
- CoA non-acknowledgment (NAK) [CoA-NAK]

The request is initiated from a CoA client (typically a RADIUS or policy server) and directed to the switch that acts as a listener.
RFC 5176 Compliance
The Disconnect Request message, which is also referred to as Packet of Disconnect (POD), is supported by
the switch for session termination.
This table shows the IETF attributes are supported for this feature.

Table 94: Supported IETF Attributes

<table>
<thead>
<tr>
<th>Attribute Number</th>
<th>Attribute Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>State</td>
</tr>
<tr>
<td>31</td>
<td>Calling-Station-ID</td>
</tr>
<tr>
<td>44</td>
<td>Acct-Session-ID</td>
</tr>
<tr>
<td>80</td>
<td>Message-Authenticator</td>
</tr>
<tr>
<td>101</td>
<td>Error-Cause</td>
</tr>
</tbody>
</table>

This table shows the possible values for the Error-Cause attribute.

Table 95: Error-Cause Values

<table>
<thead>
<tr>
<th>Value</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>201</td>
<td>Residual Session Context Removed</td>
</tr>
<tr>
<td>202</td>
<td>Invalid EAP Packet (Ignored)</td>
</tr>
<tr>
<td>401</td>
<td>Unsupported Attribute</td>
</tr>
<tr>
<td>402</td>
<td>Missing Attribute</td>
</tr>
<tr>
<td>403</td>
<td>NAS Identification Mismatch</td>
</tr>
<tr>
<td>404</td>
<td>Invalid Request</td>
</tr>
<tr>
<td>405</td>
<td>Unsupported Service</td>
</tr>
<tr>
<td>406</td>
<td>Unsupported Extension</td>
</tr>
<tr>
<td>407</td>
<td>Invalid Attribute Value</td>
</tr>
<tr>
<td>501</td>
<td>Administratively Prohibited</td>
</tr>
<tr>
<td>502</td>
<td>Request Not Routable (Proxy)</td>
</tr>
<tr>
<td>503</td>
<td>Session Context Not Found</td>
</tr>
<tr>
<td>504</td>
<td>Session Context Not Removable</td>
</tr>
</tbody>
</table>
CoA Request Response Code

The CoA Request response code can be used to convey a command to the switch.

The packet format for a CoA Request Response code as defined in RFC 5176 consists of the following fields: Code, Identifier, Length, Authenticator, and Attributes in the Type:Length:Value (TLV) format. The Attributes field is used to carry Cisco vendor-specific attributes (VSAs).

Related Topics

CoA Request Commands, on page 805

Session Identification

For disconnect and CoA requests targeted at a particular session, the switch locates the session based on one or more of the following attributes:

- Acct-Session-Id (IETF attribute #44)
- Audit-Session-Id (Cisco VSA)
- Calling-Station-Id (IETF attribute #31 which contains the host MAC address)
- IPv6 Attributes, which can be one of the following:
  - Framed-IPv6-Prefix (IETF attribute #97) and Framed-Interface-Id (IETF attribute #96), which together create a full IPv6 address per RFC 3162
  - Framed-IPv6-Address
- Plain IP Address (IETF attribute #8)

Unless all session identification attributes included in the CoA message match the session, the switch returns a Disconnect-NAK or CoA-NAK with the "Invalid Attribute Value" error-code attribute.

If more than one session identification attribute is included in the message, all the attributes must match the session or the switch returns a Disconnect- negative acknowledgment (NAK) or CoA-NAK with the error code "Invalid Attribute Value."

The packet format for a CoA Request code as defined in RFC 5176 consists of the fields: Code, Identifier, Length, Authenticator, and Attributes in Type:Length:Value (TLV) format.

<table>
<thead>
<tr>
<th>Value</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>505</td>
<td>Other Proxy Processing Error</td>
</tr>
<tr>
<td>506</td>
<td>Resources Unavailable</td>
</tr>
<tr>
<td>507</td>
<td>Request Initiated</td>
</tr>
<tr>
<td>508</td>
<td>Multiple Session Selection Unsupported</td>
</tr>
</tbody>
</table>
The attributes field is used to carry Cisco vendor-specific attributes (VSAs).

For CoA requests targeted at a particular enforcement policy, the device returns a CoA-NAK with the error code “Invalid Attribute Value” if any of the above session identification attributes are included in the message.

**Related Topics**
- CoA Disconnect-Request, on page 806
- CoA Request: Disable Host Port, on page 807
- CoA Request: Bounce-Port, on page 807

**CoA ACK Response Code**

If the authorization state is changed successfully, a positive acknowledgment (ACK) is sent. The attributes returned within CoA ACK will vary based on the CoA Request and are discussed in individual CoA Commands.

**CoA NAK Response Code**

A negative acknowledgment (NAK) indicates a failure to change the authorization state and can include attributes that indicate the reason for the failure. Use **show** commands to verify a successful CoA.

**CoA Request Commands**

**Table 96: CoA Commands Supported on the switch**

<table>
<thead>
<tr>
<th>Command</th>
<th>Cisco VSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reauthenticate host</td>
<td>Cisco:Avpair=&quot;subscriber:command=reauthenticate&quot;</td>
</tr>
<tr>
<td>Terminate session</td>
<td>This is a standard disconnect request that does not require a VSA.</td>
</tr>
<tr>
<td>Bounce host port</td>
<td>Cisco:Avpair=&quot;subscriber:command=bounce-host-port&quot;</td>
</tr>
<tr>
<td>Disable host port</td>
<td>Cisco:Avpair=&quot;subscriber:command=disable-host-port&quot;</td>
</tr>
</tbody>
</table>

8 All CoA commands must include the session identifier between the switch and the CoA client.

**Related Topics**
- CoA Request Response Code, on page 804

**Session Reauthentication**

The AAA server typically generates a session reauthentication request when a host with an unknown identity or posture joins the network and is associated with a restricted access authorization profile (such as a guest...
VLAN). A reauthentication request allows the host to be placed in the appropriate authorization group when its credentials are known.

To initiate session authentication, the AAA server sends a standard CoA-Request message which contains a Cisco VSA in this form: Cisco:Avpair="subscriber:command=reauthenticate" and one or more session identification attributes.

The current session state determines the switch response to the message. If the session is currently authenticated by IEEE 802.1x, the switch responds by sending an EAPoL (Extensible Authentication Protocol over Lan) -RequestId message to the server.

If the session is currently authenticated by MAC authentication bypass (MAB), the switch sends an access-request to the server, passing the same identity attributes used for the initial successful authentication.

If session authentication is in progress when the switch receives the command, the switch terminates the process, and restarts the authentication sequence, starting with the method configured to be attempted first. If the session is not yet authorized, or is authorized via guest VLAN, or critical VLAN, or similar policies, the reauthentication message restarts the access control methods, beginning with the method configured to be attempted first. The current authorization of the session is maintained until the reauthentication leads to a different authorization result.

**Session Reauthentication in a Switch Stack**

When a switch stack receives a session reauthentication message:

- It checkpoints the need for a re-authentication before returning an acknowledgment (ACK).
- It initiates reauthentication for the appropriate session.
- If authentication completes with either success or failure, the signal that triggered the reauthentication is removed from the stack member.
- If the stack master fails before authentication completes, reauthentication is initiated after stack master switch-over based on the original command (which is subsequently removed).
- If the stack master fails before sending an ACK, the new stack master treats the re-transmitted command as a new command.

**Session Termination**

There are three types of CoA requests that can trigger session termination. A CoA Disconnect-Request terminates the session, without disabling the host port. This command causes re-initialization of the authenticator state machine for the specified host, but does not restrict that host access to the network.

To restrict a host’s access to the network, use a CoA Request with the Cisco:Avpair="subscriber:command=disable-host-port" VSA. This command is useful when a host is known to be causing problems on the network, and you need to immediately block network access for the host. When you want to restore network access on the port, re-enable it using a non-RADIUS mechanism.

When a device with no supplicant, such as a printer, needs to acquire a new IP address (for example, after a VLAN change), terminate the session on the host port with port-bounce (temporarily disable and then re-enable the port).

**CoA Disconnect-Request**

This command is a standard Disconnect-Request. If the session cannot be located, the switch returns a Disconnect-NAK message with the "Session Context Not Found" error-code attribute. If the session is located, the switch terminates the session. After the session has been completely removed, the switch returns a Disconnect-ACK.
If the switch fails over to a standby switch before returning a Disconnect-ACK to the client, the process is repeated on the new active switch when the request is re-sent from the client. If the session is not found following re-sending, a Disconnect-ACK is sent with the "Session Context Not Found" error-code attribute.

**Related Topics**

*Session Identification, on page 804*

**CoA Request: Disable Host Port**

The RADIUS server CoA disable port command administratively shuts down the authentication port that is hosting a session, resulting in session termination. This command is useful when a host is known to cause problems on the network and network access needs to be immediately blocked for the host. To restore network access on the port, re-enable it using a non-RADIUS mechanism. This command is carried in a standard CoA-Request message that has this new vendor-specific attribute (VSA):

Cisco:Avpair="subscriber:command=disable-host-port"

Because this command is session-oriented, it must be accompanied by one or more of the session identification attributes described in the "Session Identification" section. If the session cannot be located, the switch returns a CoA-NAK message with the "Session Context Not Found" error-code attribute. If the session is located, the switch disables the hosting port and returns a CoA-ACK message.

If the switch fails before returning a CoA-ACK to the client, the process is repeated on the new active switch when the request is re-sent from the client. If the switch fails after returning a CoA-ACK message to the client but before the operation has completed, the operation is re-started on the new active switch.

---

**Note**

A Disconnect-Request failure following command re-sending could be the result of either a successful session termination before change-over (if the Disconnect-ACK was not sent) or a session termination by other means (for example, a link failure) that occurred after the original command was issued and before the standby switch became active.

---

**Related Topics**

*Session Identification, on page 804*

**CoA Request: Bounce-Port**

A RADIUS server CoA bounce port sent from a RADIUS server can cause a link flap on an authentication port, which triggers DHCP renegotiation from one or more hosts connected to this port. This incident can occur when there is a VLAN change and the endpoint is a device (such as a printer) that does not have a mechanism to detect a change on this authentication port. The CoA bounce port is carried in a standard CoA-Request message that contains the following VSA:

Cisco:Avpair="subscriber:command=bounce-host-port"

Because this command is session-oriented, it must be accompanied by one or more of the session identification attributes. If the session cannot be located, the switch returns a CoA-NAK message with the "Session Context Not Found" error-code attribute. If the session is located, the switch disables the hosting port for a period of 10 seconds, re-enables it (port-bounce), and returns a CoA-ACK.

If the switch fails before returning a CoA-ACK to the client, the process is repeated on the new active switch when the request is re-sent from the client. If the switch fails after returning a CoA-ACK message to the client but before the operation has completed, the operation is re-started on the new active switch.
Related Topics

Session Identification, on page 804

Stacking Guidelines for Session Termination

No special handling is required for CoA Disconnect-Request messages in a switch stack.

Stacking Guidelines for CoA-Request Bounce-Port

Because the `bounce-port` command is targeted at a session, not a port, if the session is not found, the command cannot be executed.

When the Auth Manager command handler on the stack master receives a valid `bounce-port` command, it checkpoints the following information before returning a CoA-ACK message:

- the need for a port-bounce
- the port-id (found in the local session context)

The switch initiates a port-bounce (disables the port for 10 seconds, then re-enables it). If the port-bounce is successful, the signal that triggered the port-bounce is removed from the standby stack master.

If the stack master fails before the port-bounce completes, a port-bounce is initiated after stack master change-over based on the original command (which is subsequently removed).

If the stack master fails before sending a CoA-ACK message, the new stack master treats the re-sent command as a new command.

Stacking Guidelines for CoA-Request Disable-Port

Because the `disable-port` command is targeted at a session, not a port, if the session is not found, the command cannot be executed.

When the Auth Manager command handler on the stack master receives a valid `disable-port` command, it verifies this information before returning a CoA-ACK message:

- the need for a port-disable
- the port-id (found in the local session context)

The switch attempts to disable the port. If the port-disable operation is successful, the signal that triggered the port-disable is removed from the standby stack master.

If the stack master fails before the port-disable operation completes, the port is disabled after stack master change-over based on the original command (which is subsequently removed).

If the stack master fails before sending a CoA-ACK message, the new stack master treats the re-sent command as a new command.

Default RADIUS Configuration

RADIUS and AAA are disabled by default.

To prevent a lapse in security, you cannot configure RADIUS through a network management application. When enabled, RADIUS can authenticate users accessing the switch through the CLI.
RADIUS Server Host

Switch-to-RADIUS-server communication involves several components:

- Hostname or IP address
- Authentication destination port
- Accounting destination port
- Key string
- Timeout period
- Retransmission value

You identify RADIUS security servers by their hostname or IP address, hostname and specific UDP port numbers, or their IP address and specific UDP port numbers. The combination of the IP address and the UDP port number creates a unique identifier, allowing different ports to be individually defined as RADIUS hosts providing a specific AAA service. This unique identifier enables RADIUS requests to be sent to multiple UDP ports on a server at the same IP address.

If two different host entries on the same RADIUS server are configured for the same service—for example, accounting—the second host entry configured acts as a fail-over backup to the first one. Using this example, if the first host entry fails to provide accounting services, the %RADIUS-4-RADIUS_DEAD message appears, and then the switch tries the second host entry configured on the same device for accounting services. (The RADIUS host entries are tried in the order that they are configured.)

A RADIUS server and the switch use a shared secret text string to encrypt passwords and exchange responses. To configure RADIUS to use the AAA security commands, you must specify the host running the RADIUS server daemon and a secret text (key) string that it shares with the switch.

The timeout, retransmission, and encryption key values can be configured globally for all RADIUS servers, on a per-server basis, or in some combination of global and per-server settings.

Related Topics

- Identifying the RADIUS Server Host, on page 822
- Defining AAA Server Groups, on page 827
- Configuring Settings for All RADIUS Servers, on page 832
- Configuring RADIUS Login Authentication, on page 825

RADIUS Login Authentication

To configure AAA authentication, you define a named list of authentication methods and then apply that list to various ports. The method list defines the types of authentication to be performed and the sequence in which they are performed; it must be applied to a specific port before any of the defined authentication methods are performed. The only exception is the default method list. The default method list is automatically applied to all ports except those that have a named method list explicitly defined.

A method list describes the sequence and authentication methods to be queried to authenticate a user. You can designate one or more security protocols to be used for authentication, thus ensuring a backup system for authentication in case the initial method fails. The software uses the first method listed to authenticate users; if that method fails to respond, the software selects the next authentication method in the method list. This process continues until there is successful communication with a listed authentication method or until all
defined methods are exhausted. If authentication fails at any point in this cycle—meaning that the security server or local username database responds by denying the user access—the authentication process stops, and no other authentication methods are attempted.

Related Topics

Configuring RADIUS Login Authentication, on page 825

AAA Server Groups

You can configure the switch to use AAA server groups to group existing server hosts for authentication. You select a subset of the configured server hosts and use them for a particular service. The server group is used with a global server-host list, which lists the IP addresses of the selected server hosts.

Server groups also can include multiple host entries for the same server if each entry has a unique identifier (the combination of the IP address and UDP port number), allowing different ports to be individually defined as RADIUS hosts providing a specific AAA service. This unique identifier enables RADIUS requests to be sent to different UDP ports on a server at the same IP address. If you configure two different host entries on the same RADIUS server for the same service, (for example, accounting), the second configured host entry acts as a fail-over backup to the first one. If the first host entry fails to provide accounting services, the network access server tries the second host entry configured on the same device for accounting services. (The RADIUS host entries are tried in the order in which they are configured.)

Related Topics

Defining AAA Server Groups, on page 827

AAA Authorization

AAA authorization limits the services available to a user. When AAA authorization is enabled, the switch uses information retrieved from the user’s profile, which is in the local user database or on the security server, to configure the user’s session. The user is granted access to a requested service only if the information in the user profile allows it.

Related Topics

Configuring RADIUS Authorization for User Privileged Access and Network Services, on page 829

RADIUS Accounting

The AAA accounting feature tracks the services that users are using and the amount of network resources that they are consuming. When you enable AAA accounting, the switch reports user activity to the RADIUS security server in the form of accounting records. Each accounting record contains accounting attribute-value (AV) pairs and is stored on the security server. You can then analyze the data for network management, client billing, or auditing.

Related Topics

Starting RADIUS Accounting, on page 831
Vendor-Specific RADIUS Attributes

The Internet Engineering Task Force (IETF) draft standard specifies a method for communicating vendor-specific information between the switch and the RADIUS server by using the vendor-specific attribute (attribute 26). Vendor-specific attributes (VSAs) allow vendors to support their own extended attributes not suitable for general use. The Cisco RADIUS implementation supports one vendor-specific option by using the format recommended in the specification. Cisco’s vendor-ID is 9, and the supported option has vendor-type 1, which is named `cisco-avpair`. The value is a string with this format:

```
protocol : attribute sep value *
```

*Protocol* is a value of the Cisco protocol attribute for a particular type of authorization. *Attribute* and *value* are an appropriate attribute value (AV) pair defined in the Cisco TACACS+ specification, and *sep* is = for mandatory attributes and is * for optional attributes. The full set of features available for TACACS+ authorization can then be used for RADIUS.

For example, the following AV pair causes Cisco’s “multiple named IP address pools” feature to be activated during IP authorization (during PPP’s Internet Protocol Control Protocol (IPCP) address assignment):

```
cisco-avpair= "ip:addr-pool-first"
```

If you insert an “*”, the AV pair “ip:addr-pool=first” becomes optional. Note that any AV pair can be made optional:

```
cisco-avpair= "ip:addr-pool*first"
```

The following example shows how to cause a user logging in from a network access server to have immediate access to EXEC commands:

```
cisco-avpair= "shell:priv-lvl=15"
```

Other vendors have their own unique vendor-IDs, options, and associated VSAs. For more information about vendor-IDs and VSAs, see RFC 2138, “Remote Authentication Dial-In User Service (RADIUS).”

Attribute 26 contains the following three elements:

- Type
- Length
- String (also known as data)
  - Vendor-Id
  - Vendor-Type
  - Vendor-Length
  - Vendor-Data
The figure below shows the packet format for a VSA encapsulated "behind" attribute 26.

**Figure 68: VSA Encapsulated Behind Attribute 26**

<table>
<thead>
<tr>
<th>0</th>
<th>8</th>
<th>16</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Length</td>
<td>Vendor-Id</td>
<td></td>
</tr>
<tr>
<td>Vendor-Id (cont.)</td>
<td>Vendor-type</td>
<td>Vendor-length</td>
<td></td>
</tr>
<tr>
<td>Attributes-specific... (vendor-data)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Note**

It is up to the vendor to specify the format of their VSA. The Attribute-Specific field (also known as Vendor-Data) is dependent on the vendor's definition of that attribute.

The table below describes significant fields listed in the Vendor-Specific RADIUS IETF Attributes table (second table below), which lists supported vendor-specific RADIUS attributes (IETF attribute 26).

**Table 97: Vendor-Specific Attributes Table Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>All attributes listed in the following table are extensions of IETF attribute 26.</td>
</tr>
<tr>
<td>Vendor-Specific Command Codes</td>
<td>A defined code used to identify a particular vendor. Code 9 defines Cisco VSAs, 311 defines Microsoft VSAs, and 529 defines Ascend VSAs.</td>
</tr>
<tr>
<td>Sub-Type Number</td>
<td>The attribute ID number. This number is much like the ID numbers of IETF attributes, except it is a &quot;second layer&quot; ID number encapsulated behind attribute 26.</td>
</tr>
<tr>
<td>Attribute</td>
<td>The ASCII string name of the attribute.</td>
</tr>
<tr>
<td>Description</td>
<td>Description of the attribute.</td>
</tr>
</tbody>
</table>

**Table 98: Vendor-Specific RADIUS IETF Attributes**

<table>
<thead>
<tr>
<th>Number</th>
<th>Vendor-Specific Company Code</th>
<th>Sub-Type Number</th>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-CHAP Attributes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>Vendor-Specific Company Code</td>
<td>Sub-Type Number</td>
<td>Attribute</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------</td>
<td>-----------------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>26</td>
<td>311</td>
<td>1</td>
<td>MSCHAP-Response</td>
<td>Contains the response value provided by a PPP MS-CHAP user in response to the challenge. It is only used in Access-Request packets. This attribute is identical to the PPP CHAP Identifier. (RFC 2548)</td>
</tr>
<tr>
<td>26</td>
<td>311</td>
<td>11</td>
<td>MSCHAP-Challenge</td>
<td>Contains the challenge sent by a network access server to an MS-CHAP user. It can be used in both Access-Request and Access-Challenge packets. (RFC 2548)</td>
</tr>
</tbody>
</table>

**VPDN Attributes**

<table>
<thead>
<tr>
<th>Number</th>
<th>Vendor-Specific Company Code</th>
<th>Sub-Type Number</th>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>9</td>
<td>1</td>
<td>l2tp-cm-local-window-size</td>
<td>Specifies the maximum receive window size for L2TP control messages. This value is advertised to the peer during tunnel establishment.</td>
</tr>
<tr>
<td>26</td>
<td>9</td>
<td>1</td>
<td>l2tp-drop-out-of-order</td>
<td>Respects sequence numbers on data packets by dropping those that are received out of order. This does not ensure that sequence numbers will be sent on data packets, just how to handle them if they are received.</td>
</tr>
<tr>
<td>26</td>
<td>9</td>
<td>1</td>
<td>l2tp-hello-interval</td>
<td>Specifies the number of seconds for the hello keepalive interval. Hello packets are sent when no data has been sent on a tunnel for the number of seconds configured here.</td>
</tr>
<tr>
<td>Number</td>
<td>Vendor-Specific Company Code</td>
<td>Sub-Type Number</td>
<td>Attribute</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>26</td>
<td>9</td>
<td>1</td>
<td>l2tp-hidden-avp</td>
<td>When enabled, sensitive AVPs in L2TP control messages are scrambled or hidden.</td>
</tr>
<tr>
<td>26</td>
<td>9</td>
<td>1</td>
<td>l2tp-nosession-timeout</td>
<td>Specifies the number of seconds that a tunnel will stay active with no sessions before timing out and shutting down.</td>
</tr>
<tr>
<td>26</td>
<td>9</td>
<td>1</td>
<td>tunnel-tos-reflect</td>
<td>Copies the IP ToS field from the IP header of each payload packet to the IP header of the tunnel packet for packets entering the tunnel at the LNS.</td>
</tr>
<tr>
<td>26</td>
<td>9</td>
<td>1</td>
<td>l2tp-tunnel-authen</td>
<td>If this attribute is set, it performs L2TP tunnel authentication.</td>
</tr>
<tr>
<td>26</td>
<td>9</td>
<td>1</td>
<td>l2tp-tunnel-password</td>
<td>Shared secret used for L2TP tunnel authentication and AVP hiding.</td>
</tr>
<tr>
<td>26</td>
<td>9</td>
<td>1</td>
<td>l2tp-udp-checksum</td>
<td>This is an authorization attribute and defines whether L2TP should perform UDP checksums for data packets. Valid values are &quot;yes&quot; and &quot;no.&quot; The default is no.</td>
</tr>
</tbody>
</table>

**Store and Forward Fax Attributes**

<table>
<thead>
<tr>
<th>Number</th>
<th>Vendor-Specific Company Code</th>
<th>Sub-Type Number</th>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>9</td>
<td>3</td>
<td>Fax-Account-Id-Origin</td>
<td>Indicates the account ID origin as defined by system administrator for the mnoip aaa receive-id or the mnoip aaa send-id commands.</td>
</tr>
<tr>
<td>26</td>
<td>9</td>
<td>4</td>
<td>Fax-Msg-Id=</td>
<td>Indicates a unique fax message identification number assigned by Store and Forward Fax.</td>
</tr>
<tr>
<td>Number</td>
<td>Vendor-Specific Company Code</td>
<td>Sub-Type Number</td>
<td>Attribute</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>26</td>
<td>9</td>
<td>5</td>
<td>Fax-Pages</td>
<td>Indicates the number of pages transmitted or received during this fax session. This page count includes cover pages.</td>
</tr>
<tr>
<td>26</td>
<td>9</td>
<td>6</td>
<td>Fax-Coverpage-Flag</td>
<td>Indicates whether or not a cover page was generated by the off-ramp gateway for this fax session. True indicates that a cover page was generated; false means that a cover page was not generated.</td>
</tr>
<tr>
<td>26</td>
<td>9</td>
<td>7</td>
<td>Fax-Modem-Time</td>
<td>Indicates the amount of time in seconds the modem sent fax data (x) and the amount of time in seconds of the total fax session (y), which includes both fax-mail and PSTN time, in the form x/y. For example, 10/15 means that the transfer time took 10 seconds, and the total fax session took 15 seconds.</td>
</tr>
<tr>
<td>26</td>
<td>9</td>
<td>8</td>
<td>Fax-Connect-Speed</td>
<td>Indicates the modem speed at which this fax-mail was initially transmitted or received. Possible values are 1200, 4800, 9600, and 14400.</td>
</tr>
<tr>
<td>26</td>
<td>9</td>
<td>9</td>
<td>Fax-Recipient-Count</td>
<td>Indicates the number of recipients for this fax transmission. Until e-mail servers support Session mode, the number should be 1.</td>
</tr>
<tr>
<td>26</td>
<td>9</td>
<td>10</td>
<td>Fax-Process-Abort-Flag</td>
<td>Indicates that the fax session was aborted or successful. True means that the session was aborted; false means that the session was successful.</td>
</tr>
<tr>
<td>Number</td>
<td>Vendor-Specific Company Code</td>
<td>Sub-Type Number</td>
<td>Attribute</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>26</td>
<td>9</td>
<td>11</td>
<td>Fax-Dsn-Address</td>
<td>Indicates the address to which DSNs will be sent.</td>
</tr>
<tr>
<td>26</td>
<td>9</td>
<td>12</td>
<td>Fax-Dsn-Flag</td>
<td>Indicates whether or not DSN has been enabled. True indicates that DSN has been enabled; false means that DSN has not been enabled.</td>
</tr>
<tr>
<td>26</td>
<td>9</td>
<td>13</td>
<td>Fax-Mdn-Address</td>
<td>Indicates the address to which MDNs will be sent.</td>
</tr>
<tr>
<td>26</td>
<td>9</td>
<td>14</td>
<td>Fax-Mdn-Flag</td>
<td>Indicates whether or not message delivery notification (MDN) has been enabled. True indicates that MDN had been enabled; false means that MDN had not been enabled.</td>
</tr>
<tr>
<td>26</td>
<td>9</td>
<td>15</td>
<td>Fax-Auth-Status</td>
<td>Indicates whether or not authentication for this fax session was successful. Possible values for this field are success, failed, bypassed, or unknown.</td>
</tr>
<tr>
<td>26</td>
<td>9</td>
<td>16</td>
<td>Email-Server-Address</td>
<td>Indicates the IP address of the e-mail server handling the on-ramp fax-mail message.</td>
</tr>
<tr>
<td>26</td>
<td>9</td>
<td>17</td>
<td>Email-Server-Ack-Flag</td>
<td>Indicates that the on-ramp gateway has received a positive acknowledgment from the e-mail server accepting the fax-mail message.</td>
</tr>
<tr>
<td>26</td>
<td>9</td>
<td>18</td>
<td>Gateway-Id</td>
<td>Indicates the name of the gateway that processed the fax session. The name appears in the following format: hostname.domain-name.</td>
</tr>
<tr>
<td>Number</td>
<td>Vendor-Specific Company Code</td>
<td>Sub-Type Number</td>
<td>Attribute</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------</td>
<td>-----------------</td>
<td>---------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>26</td>
<td>9</td>
<td>19</td>
<td>Call-Type</td>
<td>Describes the type of fax activity: fax receive or fax send.</td>
</tr>
<tr>
<td>26</td>
<td>9</td>
<td>20</td>
<td>Port-Used</td>
<td>Indicates the slot/port number of the Cisco AS5300 used to either transmit or receive this fax-mail.</td>
</tr>
<tr>
<td>26</td>
<td>9</td>
<td>21</td>
<td>Abort-Cause</td>
<td>If the fax session aborts, indicates the system component that signaled the abort. Examples of system components that could trigger an abort are FAP (Fax Application Process), TIFF (the TIFF reader or the TIFF writer), fax-mail client, fax-mail server, ESMTP client, or ESMTP server.</td>
</tr>
</tbody>
</table>

**H323 Attributes**

<table>
<thead>
<tr>
<th>Number</th>
<th>Vendor-Specific Company Code</th>
<th>Sub-Type Number</th>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>9</td>
<td>23</td>
<td>Remote-Gateway-ID</td>
<td>Indicates the IP address of the remote gateway.</td>
</tr>
<tr>
<td></td>
<td>(h323-remote-address)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>9</td>
<td>24</td>
<td>Connection-ID</td>
<td>Identifies the conference ID.</td>
</tr>
<tr>
<td></td>
<td>(h323-conf-id)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>9</td>
<td>25</td>
<td>Setup-Time</td>
<td>Indicates the setup time for this connection in Coordinated Universal Time (UTC) formerly known as Greenwich Mean Time (GMT) and Zulu time.</td>
</tr>
<tr>
<td></td>
<td>(h323-setup-time)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>9</td>
<td>26</td>
<td>Call-Origin</td>
<td>Indicates the origin of the call relative to the gateway. Possible values are originating and terminating (answer).</td>
</tr>
<tr>
<td></td>
<td>(h323-call-origin)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>Vendor-Specific Company Code</td>
<td>Sub-Type Number</td>
<td>Attribute</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------</td>
<td>-----------------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>26</td>
<td>9</td>
<td>27</td>
<td>Call-Type (h323-call-type)</td>
<td>Indicates call leg type. Possible values are <strong>telephony</strong> and <strong>VoIP</strong>.</td>
</tr>
<tr>
<td>26</td>
<td>9</td>
<td>28</td>
<td>Connect-Time (h323-connect-time)</td>
<td>Indicates the connection time for this call leg in UTC.</td>
</tr>
<tr>
<td>26</td>
<td>9</td>
<td>29</td>
<td>Disconnect-Time (h323-disconnect-time)</td>
<td>Indicates the time this call leg was disconnected in UTC.</td>
</tr>
<tr>
<td>26</td>
<td>9</td>
<td>30</td>
<td>Disconnect-Cause (h323-disconnect-cause)</td>
<td>Specifies the reason a connection was taken offline per Q.931 specification.</td>
</tr>
<tr>
<td>26</td>
<td>9</td>
<td>31</td>
<td>Voice-Quality (h323-voice-quality)</td>
<td>Specifies the impairment factor (ICPIF) affecting voice quality for a call.</td>
</tr>
<tr>
<td>26</td>
<td>9</td>
<td>33</td>
<td>Gateway-ID (h323-gw-id)</td>
<td>Indicates the name of the underlying gateway.</td>
</tr>
</tbody>
</table>

**Large Scale Dialout Attributes**

<table>
<thead>
<tr>
<th>Number</th>
<th>Vendor-Specific Company Code</th>
<th>Sub-Type Number</th>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>9</td>
<td>1</td>
<td>callback-dialstring</td>
<td>Defines a dialing string to be used for callback.</td>
</tr>
<tr>
<td>26</td>
<td>9</td>
<td>1</td>
<td>data-service</td>
<td>No description available.</td>
</tr>
<tr>
<td>26</td>
<td>9</td>
<td>1</td>
<td>dial-number</td>
<td>Defines the number to dial.</td>
</tr>
<tr>
<td>26</td>
<td>9</td>
<td>1</td>
<td>force-56</td>
<td>Determines whether the network access server uses only the 56 K portion of a channel, even when all 64 K appear to be available.</td>
</tr>
<tr>
<td>26</td>
<td>9</td>
<td>1</td>
<td>map-class</td>
<td>Allows the user profile to reference information configured in a map class of the same name on the network access server that dials out.</td>
</tr>
<tr>
<td>Number</td>
<td>Vendor-Specific Company Code</td>
<td>Sub-Type Number</td>
<td>Attribute</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>------------------------------</td>
<td>-----------------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>26</td>
<td>9</td>
<td>1</td>
<td>send-auth</td>
<td>Defines the protocol to use (PAP or CHAP) for username-password authentication following CLID authentication.</td>
</tr>
<tr>
<td>26</td>
<td>9</td>
<td>1</td>
<td>send-name</td>
<td>PPP name authentication. To apply for PAP, do not configure the <strong>ppp pap sent-name password</strong> command on the interface. For PAP, “preauth:send-name” and “preauth:send-secret” will be used as the PAP username and PAP password for outbound authentication. For CHAP, “preauth:send-name” will be used not only for outbound authentication, but also for inbound authentication. For a CHAP inbound case, the NAS will use the name defined in “preauth:send-name” in the challenge packet to the caller box. <strong>Note</strong> The send-name attribute has changed over time: Initially, it performed the functions now provided by both the send-name and remote-name attributes. Because the remote-name attribute has been added, the send-name attribute is restricted to its current behavior.</td>
</tr>
</tbody>
</table>
PPP password authentication. The vendor-specific attributes (VSAs) "preauth:send-name" and "preauth:send-secret" will be used as the PAP username and PAP password for outbound authentication. For a CHAP outbound case, both "preauth:send-name" and "preauth:send-secret" will be used in the response packet.

<table>
<thead>
<tr>
<th>Number</th>
<th>Vendor-Specific Company Code</th>
<th>Sub-Type Number</th>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>9</td>
<td>1</td>
<td>send-secret</td>
<td>PPP password authentication. The vendor-specific attributes (VSAs) &quot;preauth:send-name&quot; and &quot;preauth:send-secret&quot; will be used as the PAP username and PAP password for outbound authentication. For a CHAP outbound case, both &quot;preauth:send-name&quot; and &quot;preauth:send-secret&quot; will be used in the response packet.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Vendor-Specific Company Code</th>
<th>Sub-Type Number</th>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>9</td>
<td>1</td>
<td>remote-name</td>
<td>Provides the name of the remote host for use in large-scale dial-out. Dialer checks that the large-scale dial-out remote name matches the authenticated name, to protect against accidental user RADIUS misconfiguration. (For example, dialing a valid phone number but connecting to the wrong device.)</td>
</tr>
</tbody>
</table>

Miscellaneous Attributes
<table>
<thead>
<tr>
<th>Number</th>
<th>Vendor-Specific Company Code</th>
<th>Sub-Type Number</th>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>9</td>
<td>2</td>
<td>Cisco-NAS-Port</td>
<td>Specifies additional vendor specific attribute (VSA) information for NAS-Port accounting. To specify additional NAS-Port information in the form an Attribute-Value Pair (AVPair) string, use the <code>radius-server vsa send</code> global configuration command. <strong>Note</strong> This VSA is typically used in Accounting, but may also be used in Authentication (Access-Request) packets.</td>
</tr>
<tr>
<td>26</td>
<td>9</td>
<td>1</td>
<td>min-links</td>
<td>Sets the minimum number of links for MLP.</td>
</tr>
<tr>
<td>26</td>
<td>9</td>
<td>1</td>
<td>proxyacl#&lt;n&gt;</td>
<td>Allows users to configure the downloadable user profiles (dynamic ACLs) by using the authentication proxy feature so that users can have the configured authorization to permit traffic going through the configured interfaces.</td>
</tr>
</tbody>
</table>
### Vendor-Proprietary RADIUS Server Communication

Although an IETF draft standard for RADIUS specifies a method for communicating vendor-proprietary information between the switch and the RADIUS server, some vendors have extended the RADIUS attribute set in a unique way. Cisco IOS software supports a subset of vendor-proprietary RADIUS attributes.

As mentioned earlier, to configure RADIUS (whether vendor-proprietary or IETF draft-compliant), you must specify the host running the RADIUS server daemon and the secret text string it shares with the switch. You specify the RADIUS host and secret text string by using the `radius server` global configuration commands.

**Related Topics**

Configuring the Switch for Vendor-Proprietary RADIUS Server Communication, on page 836

### How to Configure RADIUS

#### Identifying the RADIUS Server Host

To apply these settings globally to all RADIUS servers communicating with the Switch, use the three unique global configuration commands: `radius-server timeout`, `radius-server retransmit`, and `radius-server key`. 

---

<table>
<thead>
<tr>
<th>Number</th>
<th>Vendor-Specific Company Code</th>
<th>Sub-Type Number</th>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>9</td>
<td>1</td>
<td>spi</td>
<td>Carries the authentication information needed by the home agent to authenticate a mobile node during registration. The information is in the same syntax as the <code>ip mobile secure host &lt;addr&gt;</code> configuration command. Basically it contains the rest of the configuration command that follows that string, verbatim. It provides the Security Parameter Index (SPI), key, authentication algorithm, authentication mode, and replay protection timestamp range.</td>
</tr>
</tbody>
</table>
You can configure the Switch to use AAA server groups to group existing server hosts for authentication. For more information, see Related Topics below.

You also need to configure some settings on the RADIUS server. These settings include the IP address of the Switch and the key string to be shared by both the server and the Switch. For more information, see the RADIUS server documentation.

Follow these steps to configure per-server RADIUS server communication.

**Before You Begin**

If you configure both global and per-server functions (timeout, retransmission, and key commands) on the switch, the per-server timer, retransmission, and key value commands override global timer, retransmission, and key value commands. For information on configuring these settings on all RADIUS servers, see Related Topics below.

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `radius-server host {hostname | ip-address} [auth-port port-number] [acct-port port-number] [timeout seconds] [retransmit retries] [key string]`
4. `end`
5. `show running-config`
6. `copy running-config startup-config`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Switch&gt; enable</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> radius-server host {hostname</td>
<td>ip-address} [auth-port port-number] [acct-port port-number] [timeout seconds] [retransmit retries] [key string]</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Switch(config)# radius-server host 172.29.36.49 auth-port 1612</code></td>
<td></td>
</tr>
</tbody>
</table>
### How to Configure RADIUS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>key rad1</td>
<td>command setting. If no timeout is set with the <code>radius-server host</code> command, the setting of the <code>radius-server timeout</code> command is used.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For <strong>retransmit retries</strong>, specify the number of times a RADIUS request is resent to a server if that server is not responding or responding slowly. The range is 1 to 1000. If no retransmit value is set with the <code>radius-server host</code> command, the setting of the <code>radius-server retransmit</code> global configuration command is used.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For <strong>key string</strong>, specify the authentication and encryption key used between the Switch and the RADIUS daemon running on the RADIUS server.</td>
</tr>
</tbody>
</table>

**Note** The key is a text string that must match the encryption key used on the RADIUS server. Always configure the key as the last item in the `radius-server host` command. Leading spaces are ignored, but spaces within and at the end of the key are used. If you use spaces in your key, do not enclose the key in quotation marks unless the quotation marks are part of the key.

To configure the Switch to recognize more than one host entry associated with a single IP address, enter this command as many times as necessary, making sure that each UDP port number is different. The Switch software searches for hosts in the order in which you specify them. Set the timeout, retransmit, and encryption key values to use with the specific RADIUS host.

### Step 4

**end**

**Example:**

Switch(config)# end

**Step 5**

**show running-config**

**Example:**

Switch# show running-config

**Step 6**

**copy running-config startup-config**

**Example:**

Switch# copy running-config startup-config

(Optional) Saves your entries in the configuration file.

### Related Topics

- [RADIUS Server Host](#)
- [Defining AAA Server Groups](#)
Configuring RADIUS Login Authentication

Follow these steps to configure RADIUS login authentication:

Before You Begin

To secure the switch for HTTP access by using AAA methods, you must configure the switch with the `ip http authentication aaa` global configuration command. Configuring AAA authentication does not secure the switch for HTTP access by using AAA methods.

SUMMARY STEPS

1. enable
2. configure terminal
3. aaa new-model
4. aaa authentication login \{default | list-name\} method1 [method2...]
5. line \{console | tty | vty\} line-number [ending-line-number]
6. login authentication \{default | list-name\}
7. end
8. show running-config
9. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch&gt; enable</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>aaa new-model</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# aaa new-model</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>aaa authentication login {default</td>
</tr>
<tr>
<td>Creates a login authentication method list.</td>
<td></td>
</tr>
<tr>
<td>• To create a default list that is used when a named list is not specified in the login authentication command, use the default keyword followed</td>
<td></td>
</tr>
</tbody>
</table>
Example:

Switch(config)# aaa authentication login default local

Purpose: by the methods that are to be used in default situations. The default method list is automatically applied to all ports.

- For list-name, specify a character string to name the list you are creating.
- For method1..., specify the actual method the authentication algorithm tries. The additional methods of authentication are used only if the previous method returns an error, not if it fails.

Select one of these methods:

* enable—Use the enable password for authentication. Before you can use this authentication method, you must define an enable password by using the enable password global configuration command.

* group radius—Use RADIUS authentication. Before you can use this authentication method, you must configure the RADIUS server.

* line—Use the line password for authentication. Before you can use this authentication method, you must define a line password. Use the password password line configuration command.

* local—Use the local username database for authentication. You must enter username information in the database. Use the username name password global configuration command.

* local-case—Use a case-sensitive local username database for authentication. You must enter username information in the database by using the username password global configuration command.

* none—Do not use any authentication for login.

Step 5

```plaintext
line [console | tty | vty] line-number [ending-line-number]
```

Example:

Switch(config)# line 1 4

Enters line configuration mode, and configure the lines to which you want to apply the authentication list.

Step 6

```plaintext
login authentication {default | list-name}
```

Example:

Switch(config)# login authentication default

Applies the authentication list to a line or set of lines.

- If you specify default, use the default list created with the aaa authentication login command.

- For list-name, specify the list created with the aaa authentication login command.
### Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 7</td>
<td><code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Switch(config)# end</code></td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td><code>show running-config</code></td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Switch# show running-config</code></td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Switch# copy running-config startup-config</code></td>
<td></td>
</tr>
</tbody>
</table>

### Related Topics

- RADIUS Login Authentication, on page 809
- RADIUS Server Host, on page 809

### Defining AAA Server Groups

You use the `server` group server configuration command to associate a particular server with a defined group server. You can either identify the server by its IP address or identify multiple host instances or entries by using the optional `auth-port` and `acct-port` keywords.

Follow these steps to define AAA server groups:

### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `radius server name`
4. `address {ipv4 | ipv6} {ip-address | hostname} auth-port port-number acct-port port-number`
5. `key string`
6. `end`
7. `show running-config`
8. `copy running-config startup-config`
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><strong>enable</strong>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Switch&gt; enable</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><strong>configure terminal</strong>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Switch# configure terminal</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><strong>radius server name</strong>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Switch(config)# radius server ISE</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>**address {ipv4</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><strong>key string</strong>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Switch(config-radius-server)# key cisco123</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><strong>end</strong>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Switch(config-radius-server)# end</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td><strong>show running-config</strong>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Switch# show running-config</td>
</tr>
</tbody>
</table>
### Configuring RADIUS Authorization for User Privileged Access and Network Services

**Related Topics**
- Identifying the RADIUS Server Host, on page 822
- RADIUS Server Host, on page 809
- AAA Server Groups, on page 810

**Configuring RADIUS Authorization for User Privileged Access and Network Services**

**Step 8**
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>

**Example:**

```
Switch# copy running-config startup-config
```

**DETAILED STEPS**

**Note**

Authorization is bypassed for authenticated users who log in through the CLI even if authorization has been configured.

Follow these steps to configure RADIUS authorization for user privileged access and network services:

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `aaa authorization network radius`
4. `aaa authorization exec radius`
5. `end`
6. `show running-config`
7. `copy running-config startup-config`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
</tbody>
</table>

**Example:**

```
Switch> enable
```
### Purpose

**Command or Action**	**Purpose**
**Step 2**	configure terminal
Example:	
Switch# configure terminal	
Enters the global configuration mode.	

**Step 3** | aaa authorization network radius
Example:
Switch(config)# aaa authorization network radius
| Configures the switch for user RADIUS authorization for all network-related service requests.

**Step 4** | aaa authorization exec radius
Example:
Switch(config)# aaa authorization exec radius
| Configures the switch for user RADIUS authorization if the user has privileged EXEC access.
The exec keyword might return user profile information (such as autocall command information).

**Step 5** | end
Example:
Switch(config)# end
| Returns to privileged EXEC mode.

**Step 6** | show running-config
Example:
Switch# show running-config
| Verifies your entries.

**Step 7** | copy running-config startup-config
Example:
Switch# copy running-config startup-config
| (Optional) Saves your entries in the configuration file.

---

**What to Do Next**

You can use the **aaa authorization** global configuration command with the **radius** keyword to set parameters that restrict a user’s network access to privileged EXEC mode.

The **aaa authorization exec radius local** command sets these authorization parameters:

- Use RADIUS for privileged EXEC access authorization if authentication was performed by using RADIUS.
- Use the local database if authentication was not performed by using RADIUS.
Starting RADIUS Accounting

Follow these steps to start RADIUS accounting:

**SUMMARY STEPS**

1. enable
2. configure terminal
3. aaa accounting network start-stop radius
4. aaa accounting exec start-stop radius
5. end
6. show running-config
7. copy running-config startup-config

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: Switch&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> aaa accounting network start-stop radius</td>
<td>Enables RADIUS accounting for all network-related service requests.</td>
</tr>
<tr>
<td>Example: Switch(config)# aaa accounting network start-stop radius</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> aaa accounting exec start-stop radius</td>
<td>Enables RADIUS accounting to send a start-record accounting notice at the beginning of a privileged EXEC process and a stop-record at the end.</td>
</tr>
<tr>
<td>Example: Switch(config)# aaa accounting exec start-stop radius</td>
<td></td>
</tr>
</tbody>
</table>
### How to Configure RADIUS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 5</strong> end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# end</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> show running-config</td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# show running-config</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong> copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

### What to Do Next
To establishing a session with a router if the AAA server is unreachable, use the `aaa accounting system guarantee-first` command. This command guarantees system accounting as the first record, which is the default condition. In some situations, users might be prevented from starting a session on the console or terminal connection until after the system reloaded, which can take more than 3 minutes.

To establish a console or Telnet session with the router if the AAA server is unreachable when the router reloads, use the `no aaa accounting system guarantee-first` command.

### Related Topics
- RADIUS Accounting, on page 810

### Configuring Settings for All RADIUS Servers
Beginning in privileged EXEC mode, follow these steps to configure settings for all RADIUS servers:
SUMMARY STEPS

1. configure terminal
2. radius-server key string
3. radius-server retransmit retries
4. radius-server timeout seconds
5. radius-server deadtime minutes
6. end
7. show running-config
8. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> radius-server key string</td>
<td>Specifies the shared secret text string used between the switch and all RADIUS servers.</td>
</tr>
<tr>
<td>Example:</td>
<td>Note: The key is a text string that must match the encryption key used on the RADIUS server. Leading spaces are ignored, but spaces within and at the end of the key are used. If you use spaces in your key, do not enclose the key in quotation marks unless the quotation marks are part of the key.</td>
</tr>
<tr>
<td>Switch(config)# radius-server key</td>
<td></td>
</tr>
<tr>
<td>your_server_key</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# key your_server_key</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> radius-server retransmit retries</td>
<td>Specifies the number of times the switch sends each RADIUS request to the server before giving up. The default is 3; the range 1 to 1000.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# radius-server retransmit 5</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> radius-server timeout seconds</td>
<td>Specifies the number of seconds a switch waits for a reply to a RADIUS request before resending the request. The default is 5 seconds; the range is 1 to 1000.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# radius-server timeout 3</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> radius-server deadtime minutes</td>
<td>When a RADIUS server is not responding to authentication requests, this command specifies a time to stop the request on that server. This avoids the wait for the request to timeout before trying the next configured server. The default is 0; the range is 1 to 1440 minutes.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# radius-server deadtime 0</td>
<td></td>
</tr>
</tbody>
</table>
### How to Configure RADIUS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 6</strong> end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# end</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong> show running-config</td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# show running-config</td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong> copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

**Related Topics**
- Identifying the RADIUS Server Host, on page 822
- RADIUS Server Host, on page 809

**Configuring the Switch to Use Vendor-Specific RADIUS Attributes**

Follow these steps to configure the switch to use vendor-specific RADIUS attributes:

**SUMMARY STEPS**

1. enable
2. configure terminal
3. radius-server vsa send [accounting | authentication]
4. end
5. show running-config
6. copy running-config startup-config

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Switch&gt; <code>enable</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><strong>configure terminal</strong></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# <code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>`radius-server vsa send [accounting</td>
</tr>
<tr>
<td></td>
<td>authentication]`</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# <code>radius-server vsa send accounting</code></td>
<td>• (Optional) Use the <strong>accounting</strong> keyword to limit the set of recognized vendor-specific attributes to only accounting attributes.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• (Optional) Use the <strong>authentication</strong> keyword to limit the set of recognized vendor-specific attributes to only authentication attributes.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If you enter this command without keywords, both accounting and authentication vendor-specific attributes are used.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><code>end</code></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# <code>end</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><code>show running-config</code></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# <code>show running-config</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><code>copy running-config startup-config</code></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# <code>copy running-config startup-config</code></td>
<td></td>
</tr>
</tbody>
</table>

**Related Topics**

Vendor-Specific RADIUS Attributes, on page 811
Configuring the Switch for Vendor-Proprietary RADIUS Server Communication

Follow these steps to configure the switch to use vendor-proprietary RADIUS server communication:

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `radius-server host {hostname | ip-address} non-standard`
4. `radius-server key string`
5. `end`
6. `show running-config`
7. `copy running-config startup-config`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>enable</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Switch&gt; enable</td>
</tr>
<tr>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
<td></td>
</tr>
</tbody>
</table>

| **Step 2** | configure terminal |
| **Example:** | Switch# configure terminal |
| Enters the global configuration mode. |

| **Step 3** | radius-server host {hostname | ip-address} non-standard |
| **Example:** | Switch(config)# radius-server host 172.20.30.15 non-standard |
| Specifies the IP address or hostname of the remote RADIUS server host and identifies that it is using a vendor-proprietary implementation of RADIUS. |

| **Step 4** | radius-server key string |
| **Example:** | Switch(config)# radius-server key rad124 |
| Specifies the shared secret text string used between the switch and the vendor-proprietary RADIUS server. The switch and the RADIUS server use this text string to encrypt passwords and exchange responses. |

**Note** The key is a text string that must match the encryption key used on the RADIUS server. Leading spaces are ignored, but spaces within and at the end of the key are used. If you use spaces in your key, do not enclose the key in quotation marks unless the quotation marks are part of the key.
### How to Configure RADIUS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 5</strong></td>
<td></td>
</tr>
<tr>
<td><code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Switch(config)# end</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td></td>
</tr>
<tr>
<td><code>show running-config</code></td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Switch# show running-config</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td></td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Switch# copy running-config startup-config</code></td>
<td></td>
</tr>
</tbody>
</table>

**Related Topics**

- [Vendor-Proprietary RADIUS Server Communication, on page 822](#)

**Configuring CoA on the Switch**

Follow these steps to configure CoA on a switch. This procedure is required.
### SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. **aaa new-model**
4. **aaa server radius dynamic-author**
5. **client \{ip-address \| name\} \[vrf vrfname\] \[server-key string\]**
6. **server-key \[0 \| 7\] string**
7. **port port-number**
8. **auth-type \{any \| all \| session-key\}**
9. **ignore session-key**
10. **ignore server-key**
11. **authentication command bounce-port ignore**
12. **authentication command disable-port ignore**
13. **end**
14. **show running-config**
15. **copy running-config startup-config**

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><strong>enable</strong></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td><strong>configure terminal</strong></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><strong>aaa new-model</strong></td>
<td>Enables AAA.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config)# aaa new-model</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td><strong>aaa server radius dynamic-author</strong></td>
<td>Configures the switch as an authentication, authorization, and accounting (AAA) server to facilitate interaction with an external policy server.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config)# aaa server radius dynamic-author</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>Enters dynamic authorization local server configuration mode and specifies a RADIUS client from which a device will accept CoA and disconnect requests.</td>
<td></td>
</tr>
<tr>
<td>client [ip-address</td>
<td>name] [vrf vrfname] [server-key string]</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>Configures the RADIUS key to be shared between a device and RADIUS clients.</td>
<td></td>
</tr>
<tr>
<td>server-key [0</td>
<td>7] string</td>
<td>Example:</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>Specifies the port on which a device listens for RADIUS requests from configured RADIUS clients.</td>
<td></td>
</tr>
<tr>
<td>port port-number</td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>Specifies the type of authorization the switch uses for RADIUS clients. The client must match all the configured attributes for authorization.</td>
<td></td>
</tr>
<tr>
<td>auth-type {any</td>
<td>all</td>
<td>session-key}</td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td>(Optional) Configures the switch to ignore the session-key. For more information about the ignore command, see the Cisco IOS Intelligent Services Gateway Command Reference on Cisco.com.</td>
<td></td>
</tr>
<tr>
<td>ignore session-key</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 10</strong></td>
<td>(Optional) Configures the switch to ignore the server-key. For more information about the ignore command, see the Cisco IOS Intelligent Services Gateway Command Reference on Cisco.com.</td>
<td></td>
</tr>
<tr>
<td>ignore server-key</td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><strong>Step 11</strong></td>
<td>(Optional) Configures the switch to ignore a CoA request to temporarily disable the port hosting a session. The purpose of temporarily disabling the port is to trigger a DHCP renegotiation from the host when a VLAN change occurs and there is no supplicant on the endpoint to detect the change.</td>
<td></td>
</tr>
<tr>
<td>authentication command bounce-port ignore</td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><strong>Step 12</strong></td>
<td>(Optional) Configures the switch to ignore a nonstandard command requesting that the port hosting a session be administratively shut down. Shutting down the port results in termination of the session. Use standard CLI or SNMP commands to re-enable the port.</td>
<td></td>
</tr>
<tr>
<td>authentication command disable-port ignore</td>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
### Step 13

Verifies your entries.

#### Example:

```
Switch(config-sg-radius)# end
```

### Step 14

Verifies your entries.

#### Example:

```
Switch# show running-config
```

### Step 15

(Optional) Saves your entries in the configuration file.

#### Example:

```
Switch# copy running-config startup-config
```

## Monitoring CoA Functionality

### Table 99: Privileged EXEC show Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show aaa attributes protocol radius</td>
<td>Displays AAA attributes of RADIUS commands.</td>
</tr>
</tbody>
</table>

### Table 100: Global Troubleshooting Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>debug radius</td>
<td>Displays information for troubleshooting RADIUS.</td>
</tr>
<tr>
<td>debug aaa coa</td>
<td>Displays information for troubleshooting CoA processing.</td>
</tr>
<tr>
<td>debug aaa pod</td>
<td>Displays information for troubleshooting POD packets.</td>
</tr>
<tr>
<td>debug aaa subsys</td>
<td>Displays information for troubleshooting POD packets.</td>
</tr>
</tbody>
</table>
### Purpose Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>debug cmdhd [detail</td>
<td>error</td>
</tr>
</tbody>
</table>

For detailed information about the fields in these displays, see the command reference for this release.

## Configuration Examples for Controlling Switch Access with RADIUS

### Examples: Identifying the RADIUS Server Host

This example shows how to configure one RADIUS server to be used for authentication and another to be used for accounting:

```
Switch(config)# radius-server host 172.29.36.49 auth-port 1612 key rad1
Switch(config)# radius-server host 172.20.36.50 acct-port 1618 key rad2
```

This example shows how to configure host1 as the RADIUS server and to use the default ports for both authentication and accounting:

```
Switch(config)# radius-server host host1
```

### Example: Using Two Different RADIUS Group Servers

In this example, the switch is configured to recognize two different RADIUS group servers (group1 and group2). Group1 has two different host entries on the same RADIUS server configured for the same services. The second host entry acts as a fail-over backup to the first entry.

```
Switch(config)# radius-server host 172.20.0.1 auth-port 1000 acct-port 1001
Switch(config)# radius-server host 172.10.0.1 auth-port 1645 acct-port 1646
Switch(config)# aaa new-model
Switch(config)# aaa group server radius group1
Switch(config-sg-radius)# server 172.20.0.1 auth-port 1000 acct-port 1001
Switch(config-sg-radius)# exit
Switch(config)# aaa group server radius group2
Switch(config-sg-radius)# server 172.20.0.1 auth-port 2000 acct-port 2001
Switch(config-sg-radius)# exit
```

### Examples: Configuring the Switch to Use Vendor-Specific RADIUS Attributes

For example, this AV pair activates Cisco’s `multiple named ip address pools` feature during IP authorization (during PPP IPCP address assignment):

```
cisco-avpair= "ip:addr-pool=first"
```
This example shows how to provide a user logging in from a switch with immediate access to privileged EXEC commands:

cisco-avpair= "shell:priv-lvl=15"

This example shows how to specify an authorized VLAN in the RADIUS server database:

cisco-avpair= "tunnel-type(#64)=VLAN(13)"
cisco-avpair= "tunnel-medium-type(#65)=802 media(6)"
cisco-avpair= "tunnel-private-group-id(#81)=vlanid"

This example shows how to apply an input ACL in ASCII format to an interface for the duration of this connection:

cisco-avpair= "ip:inacl#1=deny ip 10.10.10.10 0.0.255.255 20.20.20.20 255.255.0.0"
cisco-avpair= "ip:inacl#2=deny ip 10.10.10.10 0.0.255.255 any"
cisco-avpair= "mac:inacl#3=deny any any decnet-iv"

This example shows how to apply an output ACL in ASCII format to an interface for the duration of this connection:

cisco-avpair= "ip:outacl#2=deny ip 10.10.10.10 0.0.255.255 any"

**Example: Configuring the Switch for Vendor-Proprietary RADIUS Server Communication**

This example shows how to specify a vendor-proprietary RADIUS host and to use a secret key of `rad124` between the switch and the server:

```
Switch(config)# radius-server host 172.20.30.15 nonstandard
Switch(config)# radius-server key rad124
```

### Additional References

#### Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
</table>
Error Message Decoder

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>To help you research and resolve system error messages in this release, use the Error Message Decoder tool.</td>
<td><a href="https://www.cisco.com/cgi-bin/Support/Errordecoder/index.cgi">https://www.cisco.com/cgi-bin/Support/Errordecoder/index.cgi</a></td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>All supported MIBs for this release.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/support">http://www.cisco.com/support</a></td>
</tr>
</tbody>
</table>
Configuring Kerberos

- Finding Feature Information, page 845
- Prerequisites for Controlling Switch Access with Kerberos, page 845
- Information about Kerberos, page 846
- How to Configure Kerberos, page 850
- Monitoring the Kerberos Configuration, page 850
- Additional References, page 850

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Controlling Switch Access with Kerberos

The following are the prerequisites for controlling switch access with Kerberos.

- So that remote users can authenticate to network services, you must configure the hosts and the KDC in the Kerberos realm to communicate and mutually authenticate users and network services. To do this, you must identify them to each other. You add entries for the hosts to the Kerberos database on the KDC and add KEYTAB files generated by the KDC to all hosts in the Kerberos realm. You also create entries for the users in the KDC database.

- A Kerberos server can be a switch that is configured as a network security server and that can authenticate users by using the Kerberos protocol.

When you add or create entries for the hosts and users, follow these guidelines:
The Kerberos principal name must be in all lowercase characters.

The Kerberos instance name must be in all lowercase characters.

The Kerberos realm name must be in all uppercase characters.

**Information about Kerberos**

This section provides Kerberos information.

**Kerberos and Switch Access**

This section describes how to enable and configure the Kerberos security system, which authenticates requests for network resources by using a trusted third party.

---

**Note**

In the Kerberos configuration examples, the trusted third party can be any switch that supports Kerberos, that is configured as a network security server, and that can authenticate users by using the Kerberos protocol.

---

**Kerberos Overview**

Kerberos is a secret-key network authentication protocol, which was developed at the Massachusetts Institute of Technology (MIT). It uses the Data Encryption Standard (DES) cryptographic algorithm for encryption and authentication and authenticates requests for network resources. Kerberos uses the concept of a trusted third party to perform secure verification of users and services. This trusted third party is called the key distribution center (KDC).

Kerberos verifies that users are who they claim to be and the network services that they use are what the services claim to be. To do this, a KDC or trusted Kerberos server issues tickets to users. These tickets, which have a limited life span, are stored in user credential caches. The Kerberos server uses the tickets instead of user names and passwords to authenticate users and network services.

---

**Note**

A Kerberos server can be any switch that is configured as a network security server and that can authenticate users by using the Kerberos protocol.

The Kerberos credential scheme uses a process called single logon. This process authenticates a user once and then allows secure authentication (without encrypting another password) wherever that user credential is accepted.

This software release supports Kerberos 5, which allows organizations that are already using Kerberos 5 to use the same Kerberos authentication database on the KDC that they are already using on their other network hosts (such as UNIX servers and PCs).

Kerberos supports these network services:

- Telnet
- rlogin
- rsh

This table lists the common Kerberos-related terms and definitions.

**Table 101: Kerberos Terms**

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication</td>
<td>A process by which a user or service identifies itself to another service. For example, a client can authenticate to a switch or a switch can authenticate to another switch.</td>
</tr>
<tr>
<td>Authorization</td>
<td>A means by which the switch identifies what privileges the user has in a network or on the switch and what actions the user can perform.</td>
</tr>
<tr>
<td>Credential</td>
<td>A general term that refers to authentication tickets, such as TGTs and service credentials. Kerberos credentials verify the identity of a user or service. If a network service decides to trust the Kerberos server that issued a ticket, it can be used in place of re-entering a username and password. Credentials have a default life span of eight hours.</td>
</tr>
<tr>
<td>Instance</td>
<td>An authorization level label for Kerberos principals. Most Kerberos principals are of the form user@REALM (for example, <a href="mailto:smith@example.com">smith@example.com</a>). A Kerberos principal with a Kerberos instance has the form user/instance@REALM (for example, smith/admin@example.com). The Kerberos instance can be used to specify the authorization level for the user if authentication is successful. The server of each network service might implement and enforce the authorization mappings of Kerberos instances but is not required to do so.</td>
</tr>
<tr>
<td>KDC</td>
<td>Key distribution center that consists of a Kerberos server and database program that is running on a network host.</td>
</tr>
<tr>
<td>Kerberized</td>
<td>A term that describes applications and services that have been modified to support the Kerberos credential infrastructure.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
</tbody>
</table>
| Kerberos realm       | A domain consisting of users, hosts, and network services that are registered to a Kerberos server. The Kerberos server is trusted to verify the identity of a user or network service to another user or network service.  
  **Note** The Kerberos realm name *must* be in all uppercase characters. |
| Kerberos server      | A daemon that is running on a network host. Users and network services register their identity with the Kerberos server. Network services query the Kerberos server to authenticate to other network services. |
| KEYTAB\(^{11}\)      | A password that a network service shares with the KDC. In Kerberos 5 and later Kerberos versions, the network service authenticates an encrypted service credential by using the KEYTAB to decrypt it. In Kerberos versions earlier than Kerberos 5, KEYTAB is referred to as SRVTAB\(^{12}\). |
| Principal            | Also known as a Kerberos identity, this is who you are or what a service is according to the Kerberos server.  
  **Note** The Kerberos principal name *must* be in all lowercase characters. |
| Service credential   | A credential for a network service. When issued from the KDC, this credential is encrypted with the password shared by the network service and the KDC. The password is also shared with the user TGT. |
| SRVTAB               | A password that a network service shares with the KDC. In Kerberos 5 or later Kerberos versions, SRVTAB is referred to as KEYTAB. |
| TGT                  | Ticket granting ticket that is a credential that the KDC issues to authenticated users. When users receive a TGT, they can authenticate to network services within the Kerberos realm represented by the KDC. |

---

\(^9\) ticket granting ticket  
\(^{10}\) key distribution center  
\(^{11}\) key table  
\(^{12}\) server table
Kerberos Operation

A Kerberos server can be a switch that is configured as a network security server and that can authenticate remote users by using the Kerberos protocol. Although you can customize Kerberos in a number of ways, remote users attempting to access network services must pass through three layers of security before they can access network services.

To authenticate to network services by using a switch as a Kerberos server, remote users must follow these steps:

Authenticating to a Boundary Switch

This section describes the first layer of security through which a remote user must pass. The user must first authenticate to the boundary switch. This process then occurs:

1. The user opens an un-Kerberized Telnet connection to the boundary switch.
2. The switch prompts the user for a username and password.
3. The switch requests a TGT from the KDC for this user.
4. The KDC sends an encrypted TGT that includes the user identity to the switch.
5. The switch attempts to decrypt the TGT by using the password that the user entered.
   - If the decryption is successful, the user is authenticated to the switch.
   - If the decryption is not successful, the user repeats Step 2 either by re-entering the username and password (noting if Caps Lock or Num Lock is on or off) or by entering a different username and password.

A remote user who initiates a un-Kerberized Telnet session and authenticates to a boundary switch is inside the firewall, but the user must still authenticate directly to the KDC before getting access to the network services. The user must authenticate to the KDC because the TGT that the KDC issues is stored on the switch and cannot be used for additional authentication until the user logs on to the switch.

Obtaining a TGT from a KDC

This section describes the second layer of security through which a remote user must pass. The user must now authenticate to a KDC and obtain a TGT from the KDC to access network services.

For instructions about how to authenticate to a KDC, see the "Obtaining a TGT from a KDC" section in the "Security Server Protocols" chapter of the Cisco IOS Security Configuration Guide, Release 12.4.

Authenticating to Network Services

This section describes the third layer of security through which a remote user must pass. The user with a TGT must now authenticate to the network services in a Kerberos realm.

How to Configure Kerberos

To set up a Kerberos-authenticated server-client system, follow these steps:

• Configure the KDC by using Kerberos commands.
• Configure the switch to use the Kerberos protocol.

Monitoring the Kerberos Configuration

To display the Kerberos configuration, use the following commands:

• `show running-config`
• `show kerberos creds`: Lists the credentials in a current user’s credentials cache.
• `clear kerberos creds`: Destroys all credentials in a current user’s credentials cache, including those forwarded.

Additional References

<table>
<thead>
<tr>
<th>Related Documents</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Related Topic</strong></td>
</tr>
<tr>
<td>Kerberos Commands</td>
</tr>
</tbody>
</table>

Error Message Decoder

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>To help you research and resolve system error messages in this release, use the Error Message Decoder tool.</td>
<td><a href="https://www.cisco.com/cgi-bin/Support/Errordecoder/index.cgi">https://www.cisco.com/cgi-bin/Support/Errordecoder/index.cgi</a></td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>All supported MIBs for this release.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>
## Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/support">http://www.cisco.com/support</a></td>
</tr>
</tbody>
</table>
Configuring Local Authentication and Authorization

- Finding Feature Information, page 853
- How to Configure Local Authentication and Authorization, page 853
- Monitoring Local Authentication and Authorization, page 856
- Additional References, page 856

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

How to Configure Local Authentication and Authorization

Configuring the Switch for Local Authentication and Authorization

You can configure AAA to operate without a server by setting the switch to implement AAA in local mode. The switch then handles authentication and authorization. No accounting is available in this configuration.

Note

To secure the switch for HTTP access by using AAA methods, you must configure the switch with the `ip http authentication aaa` global configuration command. Configuring AAA authentication does not secure the switch for HTTP access by using AAA methods.
Follow these steps to configure AAA to operate without a server by setting the switch to implement AAA in local mode:

**SUMMARY STEPS**

1. enable  
2. configure terminal  
3. aaa new-model  
4. aaa authentication login default local  
5. aaa authorization exec local  
6. aaa authorization network local  
7. username name [privilege level] {password encryption-type password}  
8. end  
9. show running-config  
10. copy running-config startup-config

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>aaa new-model</td>
<td>Enables AAA.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# aaa new-model</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>aaa authentication login default local</td>
<td>Sets the login authentication to use the local username database. The default keyword applies the local user database authentication to all ports.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# aaa authentication login default local</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>aaa authorization exec local</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# aaa authorization exec local</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Configures user AAA authorization, check the local database, and allow the user to run an EXEC shell.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>aaa authorization network local</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# aaa authorization network local</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Configures user AAA authorization for all network-related service requests.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>username name [privilege level] {password encryption-type password}</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# username your_user_name privilege 1 password 7 secret567</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enters the local database, and establishes a username-based authentication system.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Repeat this command for each user.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• For name, specify the user ID as one word. Spaces and quotation marks are not allowed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• (Optional) For level, specify the privilege level the user has after gaining access. The range is 0 to 15. Level 15 gives privileged EXEC mode access. Level 0 gives user EXEC mode access.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• For encryption-type, enter 0 to specify that an unencrypted password follows. Enter 7 to specify that a hidden password follows.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• For password, specify the password the user must enter to gain access to the switch. The password must be from 1 to 25 characters, can contain embedded spaces, and must be the last option specified in the <strong>username</strong> command.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>end</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# end</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Returns to privileged EXEC mode.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td>show running-config</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# show running-config</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Verifies your entries.</td>
<td></td>
</tr>
</tbody>
</table>
### Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>

**Example:**

```
Switch# copy running-config startup-config
```

**Related Topics**

- SSH Servers, Integrated Clients, and Supported Versions, on page 861
- TACACS+ and Switch Access, on page 781
- RADIUS and Switch Access, on page 799
- Setting Up the Switch to Run SSH, on page 863
- SSH Configuration Guidelines, on page 861

### Monitoring Local Authentication and Authorization

To display Local Authentication and Authorization configuration, use the `show running-config` privileged EXEC command.

### Additional References

**Error Message Decoder**

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>To help you research and resolve system error messages in this release, use the Error Message Decoder tool.</td>
<td><a href="https://www.cisco.com/cgi-bin/Support/Errordecoder/index.cgi">https://www.cisco.com/cgi-bin/Support/Errordecoder/index.cgi</a></td>
</tr>
</tbody>
</table>

**MIBs**

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>All supported MIBs for this release.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>
## Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including</td>
<td><a href="http://www.cisco.com/support">http://www.cisco.com/support</a></td>
</tr>
<tr>
<td>documentation and tools for troubleshooting and resolving technical issues</td>
<td></td>
</tr>
<tr>
<td>with Cisco products and technologies.</td>
<td></td>
</tr>
<tr>
<td>To receive security and technical information about your products, you can</td>
<td></td>
</tr>
<tr>
<td>subscribe to various services, such as the Product Alert Tool (accessed from</td>
<td></td>
</tr>
<tr>
<td>Field Notices), the Cisco Technical Services Newsletter, and Really Simple</td>
<td></td>
</tr>
<tr>
<td>Syndication (RSS) Feeds.</td>
<td></td>
</tr>
<tr>
<td>Access to most tools on the Cisco Support website requires a Cisco.com user</td>
<td></td>
</tr>
<tr>
<td>ID and password.</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 38

Configuring Secure Shell (SSH)

- Finding Feature Information, page 859
- Prerequisites for Configuring Secure Shell, page 859
- Restrictions for Configuring Secure Shell, page 860
- Information about SSH, page 860
- How to Configure SSH, page 863
- Monitoring the SSH Configuration and Status, page 867
- Additional References, page 867

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Configuring Secure Shell

The following are the prerequisites for configuring the switch for secure shell (SSH):

- For SSH to work, the switch needs an Rivest, Shamir, and Adleman (RSA) public/private key pair. This is the same with Secure Copy Protocol (SCP), which relies on SSH for its secure transport.
- Before enabling SCP, you must correctly configure SSH, authentication, and authorization on the switch.
- Because SCP relies on SSH for its secure transport, the router must have an Rivest, Shamir, and Adleman (RSA) key pair.
- SCP relies on SSH for security.
• SCP requires that authentication, authorization, and accounting (AAA) authorization be configured so the router can determine whether the user has the correct privilege level.

• A user must have appropriate authorization to use SCP.

• A user who has appropriate authorization can use SCP to copy any file in the Cisco IOS File System (IFS) to and from a switch by using the copy command. An authorized administrator can also do this from a workstation.

• The Secure Shell (SSH) server requires an IPsec (Data Encryption Standard [DES] or 3DES) encryption software image; the SSH client requires an IPsec (DES or 3DES) encryption software image.

• Configure a hostname and host domain for your device by using the hostname and ip domain-name commands in global configuration mode.

Related Topics

Secure Copy Protocol, on page 862

Restrictions for Configuring Secure Shell

The following are restrictions for configuring the Switch for secure shell.

• The switch supports Rivest, Shamir, and Adelman (RSA) authentication.

• SSH supports only the execution-shell application.

• The SSH server and the SSH client are supported only on Data Encryption Standard (DES) (56-bit) and 3DES (168-bit) data encryption software. In DES software images, DES is the only encryption algorithm available. In 3DES software images, both DES and 3DES encryption algorithms are available.

• The Switch supports the Advanced Encryption Standard (AES) encryption algorithm with a 128-bit key, 192-bit key, or 256-bit key. However, symmetric cipher AES to encrypt the keys is not supported.

• This software release does not support IP Security (IPSec).

• When using SCP, you cannot enter the password into the copy command. You must enter the password when prompted.

• The login banner is not supported in Secure Shell Version 1. It is supported in Secure Shell Version 2.

• The -l keyword and userid : {number} {ip-address} delimiter and arguments are mandatory when configuring the alternative method of Reverse SSH for console access.

Related Topics

Secure Copy Protocol, on page 862

Information about SSH

Secure Shell (SSH) is a protocol that provides a secure, remote connection to a device. SSH provides more security for remote connections than Telnet does by providing strong encryption when a device is authenticated. This software release supports SSH Version 1 (SSHv1) and SSH Version 2 (SSHv2).
**SSH and Switch Access**

Secure Shell (SSH) is a protocol that provides a secure, remote connection to a device. SSH provides more security for remote connections than Telnet does by providing strong encryption when a device is authenticated. This software release supports SSH Version 1 (SSHv1) and SSH Version 2 (SSHv2).

SSH functions the same in IPv6 as in IPv4. For IPv6, SSH supports IPv6 addresses and enables secure, encrypted connections with remote IPv6 nodes over an IPv6 transport.

**SSH Servers, Integrated Clients, and Supported Versions**

The Secure Shell (SSH) Integrated Client feature is an application that runs over the SSH protocol to provide device authentication and encryption. The SSH client enables a Cisco device to make a secure, encrypted connection to another Cisco device or to any other device running the SSH server. This connection provides functionality similar to that of an outbound Telnet connection except that the connection is encrypted. With authentication and encryption, the SSH client allows for secure communication over an unsecured network.

The SSH server and SSH integrated client are applications that run on the switch. The SSH server works with the SSH client supported in this release and with non-Cisco SSH clients. The SSH client works with publicly and commercially available SSH servers. The SSH client supports the ciphers of Data Encryption Standard (DES), 3DES, and password authentication.

The switch supports an SSHv1 or an SSHv2 server.

The switch supports an SSHv1 client.

---

**Note**

The SSH client functionality is available only when the SSH server is enabled.

User authentication is performed like that in the Telnet session to the device. SSH also supports the following user authentication methods:

- TACACS+
- RADIUS
- Local authentication and authorization

**Related Topics**

- Configuring the Switch for Local Authentication and Authorization, on page 853
- TACACS+ and Switch Access, on page 781
- RADIUS and Switch Access, on page 799

**SSH Configuration Guidelines**

Follow these guidelines when configuring the switch as an SSH server or SSH client:

- An RSA key pair generated by a SSHv1 server can be used by an SSHv2 server, and the reverse.
- If the SSH server is running on a stack master and the stack master fails, the new stack master uses the RSA key pair generated by the previous stack master.
• If you get CLI error messages after entering the `crypto key generate rsa` global configuration command, an RSA key pair has not been generated. Reconfigure the hostname and domain, and then enter the `crypto key generate rsa` command. For more information, see Related Topics below.

• When generating the RSA key pair, the message No host name specified might appear. If it does, you must configure a hostname by using the `hostname` global configuration command.

• When generating the RSA key pair, the message No domain specified might appear. If it does, you must configure an IP domain name by using the `ip domain-name` global configuration command.

• When configuring the local authentication and authorization authentication method, make sure that AAA is disabled on the console.

**Related Topics**

- Setting Up the Switch to Run SSH, on page 863
- Configuring the Switch for Local Authentication and Authorization, on page 853

**Secure Copy Protocol Overview**

The Secure Copy Protocol (SCP) feature provides a secure and authenticated method for copying switch configurations or switch image files. SCP relies on Secure Shell (SSH), an application and a protocol that provides a secure replacement for the Berkeley r-tools.

For SSH to work, the switch needs an RSA public/private key pair. This is the same with SCP, which relies on SSH for its secure transport.

Because SSH also relies on AAA authentication, and SCP relies further on AAA authorization, correct configuration is necessary.

• Before enabling SCP, you must correctly configure SSH, authentication, and authorization on the switch.

• Because SCP relies on SSH for its secure transport, the router must have an Rivest, Shamir, and Adelman (RSA) key pair.

**Note**

When using SCP, you cannot enter the password into the copy command. You must enter the password when prompted.

**Secure Copy Protocol**

The Secure Copy Protocol (SCP) feature provides a secure and authenticated method for copying switch configurations or switch image files. The behavior of SCP is similar to that of remote copy (rcp), which comes from the Berkeley r-tools suite, except that SCP relies on SSH for security. SCP also requires that authentication, authorization, and accounting (AAA) authorization be configured so the switch can determine whether the user has the correct privilege level. To configure the Secure Copy feature, you should understand the SCP concepts.

**Related Topics**

- Prerequisites for Configuring Secure Shell, on page 859
- Restrictions for Configuring Secure Shell, on page 860
How to Configure SSH

Setting Up the Switch to Run SSH

Follow these steps to set up your Switch to run SSH:

Before You Begin

Configure user authentication for local or remote access. This step is required. For more information, see Related Topics below.

SUMMARY STEPS

1. enable
2. configure terminal
3. hostname hostname
4. ip domain-name domain_name
5. crypto key generate rsa
6. end
7. show running-config
8. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch&gt; enable</td>
<td></td>
</tr>
</tbody>
</table>

**Step 2** configure terminal	Enters the global configuration mode.
Example:	
Switch# configure terminal	

**Step 3** hostname hostname	Configures a hostname and IP domain name for your Switch.
Example:	
Switch(config)# hostname your_hostname	Follow this procedure only if you are configuring the Switch as an SSH server.
How to Configure SSH

---

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 4</strong></td>
<td><strong>ip domain-name domain_name</strong>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Switch(config)# ip domain-name your_domain</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><strong>crypto key generate rsa</strong>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Switch(config)# crypto key generate rsa</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><strong>end</strong>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Switch(config)# end</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td><strong>show running-config</strong>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Switch# show running-config</td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td><strong>copy running-config startup-config</strong>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Switch# copy running-config startup-config</td>
</tr>
</tbody>
</table>

---

**Related Topics**

- SSH Configuration Guidelines, on page 861
- Configuring the Switch for Local Authentication and Authorization, on page 853

---

**Configuring the SSH Server**

Follow these steps to configure the SSH server:
This procedure is only required if you are configuring the Switch as an SSH server.

SUMMARY STEPS

1. enable
2. configure terminal
3. ip ssh version [1 | 2]
4. ip ssh {timeout seconds | authentication-retries number}
5. Use one or both of the following:
   • line vty line_number[ ending_line_number ]
   • transport input ssh
6. end
7. show running-config
8. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: Switch&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ip ssh version [1</td>
<td>2]</td>
</tr>
<tr>
<td>Example: Switch(config)# ip ssh version 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1—Configure the Switch to run SSH Version 1.</td>
</tr>
<tr>
<td></td>
<td>• 2—Configure the Switch to run SSH Version 2.</td>
</tr>
<tr>
<td></td>
<td>If you do not enter this command or do not specify a keyword, the SSH server selects the latest SSH version supported by the SSH client. For example, if the SSH client supports SSHv1 and SSHv2, the SSH server selects SSHv2.</td>
</tr>
<tr>
<td>Step 4 ip ssh {timeout seconds</td>
<td>authentication-retries number}</td>
</tr>
</tbody>
</table>
How to Configure SSH

### Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# ip ssh timeout 90 authentication-retries 2</td>
<td>• Specify the time-out value in seconds; the default is 120 seconds. The range is 0 to 120 seconds. This parameter applies to the SSH negotiation phase. After the connection is established, the Switch uses the default time-out values of the CLI-based sessions. By default, up to five simultaneous, encrypted SSH connections for multiple CLI-based sessions over the network are available (session 0 to session 4). After the execution shell starts, the CLI-based session time-out value returns to the default of 10 minutes. • Specify the number of times that a client can re-authenticate to the server. The default is 3; the range is 0 to 5. Repeat this step when configuring both parameters.</td>
</tr>
</tbody>
</table>

### Step 5

Use one or both of the following:

- **line**
  
  `vty line_number [ ending_line_number ]`

- **transport input ssh**

**Example:**

Switch(config)# line vty 1 10

or

Switch(config-line)# transport input ssh

(Optional) Configures the virtual terminal line settings.

- Enters line configuration mode to configure the virtual terminal line settings. For `line_number` and `ending_line_number`, specify a pair of lines. The range is 0 to 15.
- Specifies that the Switch prevent non-SSH Telnet connections. This limits the router to only SSH connections.

### Step 6

**Step 6**

**end**

**Example:**

Switch(config-line)# end

Returns to privileged EXEC mode.

### Step 7

**Step 7**

**show running-config**

**Example:**

Switch# show running-config

Verifies your entries.

### Step 8

**Step 8**

**copy running-config startup-config**

**Example:**

Switch# copy running-config startup-config

(Optional) Saves your entries in the configuration file.
Monitoring the SSH Configuration and Status

This table displays the SSH server configuration and status.

Table 102: Commands for Displaying the SSH Server Configuration and Status

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip ssh</td>
<td>Shows the version and configuration information for the SSH server.</td>
</tr>
<tr>
<td>show ssh</td>
<td>Shows the status of the SSH server.</td>
</tr>
</tbody>
</table>

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
</table>

Error Message Decoder

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>To help you research and resolve system error messages in this release, use the Error Message Decoder tool.</td>
<td><a href="https://www.cisco.com/cgi-bin/Support/Errordecoder/index.cgi">https://www.cisco.com/cgi-bin/Support/Errordecoder/index.cgi</a></td>
</tr>
</tbody>
</table>
### MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>All supported MIBs for this release.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>

### Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/support">http://www.cisco.com/support</a></td>
</tr>
</tbody>
</table>
Configuring Secure Socket Layer HTTP

- Finding Feature Information, page 869
- Information about Secure Sockets Layer (SSL) HTTP, page 869
- How to Configure Secure HTTP Servers and Clients, page 872
- Monitoring Secure HTTP Server and Client Status, page 879
- Additional References, page 880

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information about Secure Sockets Layer (SSL) HTTP

Secure HTTP Servers and Clients Overview

On a secure HTTP connection, data to and from an HTTP server is encrypted before being sent over the Internet. HTTP with SSL encryption provides a secure connection to allow such functions as configuring a switch from a Web browser. Cisco's implementation of the secure HTTP server and secure HTTP client uses an implementation of SSL Version 3.0 with application-layer encryption. HTTP over SSL is abbreviated as HTTPS; the URL of a secure connection begins with https:// instead of http://.

Note
SSL evolved into Transport Layer Security (TLS) in 1999, but is still used in this particular context.
The primary role of the HTTP secure server (the switch) is to listen for HTTPS requests on a designated port (the default HTTPS port is 443) and pass the request to the HTTP 1.1 Web server. The HTTP 1.1 server processes requests and passes responses (pages) back to the HTTP secure server, which, in turn, responds to the original request.

The primary role of the HTTP secure client (the web browser) is to respond to Cisco IOS application requests for HTTPS User Agent services, perform HTTPS User Agent services for the application, and pass the response back to the application.

**Certificate Authority Trustpoints**

Certificate authorities (CAs) manage certificate requests and issue certificates to participating network devices. These services provide centralized security key and certificate management for the participating devices. Specific CA servers are referred to as trustpoints.

When a connection attempt is made, the HTTPS server provides a secure connection by issuing a certified X.509v3 certificate, obtained from a specified CA trustpoint, to the client. The client (usually a Web browser), in turn, has a public key that allows it to authenticate the certificate.

For secure HTTP connections, we highly recommend that you configure a CA trustpoint. If a CA trustpoint is not configured for the device running the HTTPS server, the server certifies itself and generates the needed RSA key pair. Because a self-certified (self-signed) certificate does not provide adequate security, the connecting client generates a notification that the certificate is self-certified, and the user has the opportunity to accept or reject the connection. This option is useful for internal network topologies (such as testing).

If you do not configure a CA trustpoint, when you enable a secure HTTP connection, either a temporary or a persistent self-signed certificate for the secure HTTP server (or client) is automatically generated.

- If the switch is not configured with a hostname and a domain name, a temporary self-signed certificate is generated. If the switch reboots, any temporary self-signed certificate is lost, and a new temporary new self-signed certificate is assigned.
- If the switch has been configured with a host and domain name, a persistent self-signed certificate is generated. This certificate remains active if you reboot the switch or if you disable the secure HTTP server so that it will be there the next time you re-enable a secure HTTP connection.

---

**Note**

The certificate authorities and trustpoints must be configured on each device individually. Copying them from other devices makes them invalid on the switch.

When a new certificate is enrolled, the new configuration change is not applied to the HTTPS server until the server is restarted. You can restart the server using either the CLI or by physical reboot. On restarting the server, the switch starts using the new certificate.

If a self-signed certificate has been generated, this information is included in the output of the `show running-config` privileged EXEC command. This is a partial sample output from that command displaying a self-signed certificate.

```
Switch# show running-config
Building configuration...
<output truncated>
crypto pki trustpoint TP-self-signed-3080755072
enrollment selfsigned
subject-name cn=IOS-Self-Signed-Certificate-3080755072
```
You can remove this self-signed certificate by disabling the secure HTTP server and entering the `no crypto pki trustpoint TP-self-signed-30890755072` global configuration command. If you later re-enable a secure HTTP server, a new self-signed certificate is generated.

The values that follow `TP self-signed` depend on the serial number of the device.

You can use an optional command (`ip http secure-client-auth`) to allow the HTTPS server to request an X.509v3 certificate from the client. Authenticating the client provides more security than server authentication by itself.

For additional information on Certificate Authorities, see the "Configuring Certification Authority Interoperability" chapter in the *Cisco IOS Security Configuration Guide, Release 12.4*.

**CipherSuites**

A CipherSuite specifies the encryption algorithm and the digest algorithm to use on a SSL connection. When connecting to the HTTPS server, the client Web browser offers a list of supported CipherSuites, and the client and server negotiate the best encryption algorithm to use from those on the list that are supported by both. For example, Netscape Communicator 4.76 supports U.S. security with RSA Public Key Cryptography, MD2, MD5, RC2-CBC, RC4, DES-CBC, and DES-EDE3-CBC.

For the best possible encryption, you should use a client browser that supports 128-bit encryption, such as Microsoft Internet Explorer Version 5.5 (or later) or Netscape Communicator Version 4.76 (or later). The `SSL_RSA_WITH_DES_CBC_SHA` CipherSuite provides less security than the other CipherSuites, as it does not offer 128-bit encryption.

The more secure and more complex CipherSuites require slightly more processing time. This list defines the CipherSuites supported by the switch and ranks them from fastest to slowest in terms of router processing load (speed):

1. `SSL_RSA__WITH_DES_CBC_SHA`—RSA key exchange (RSA Public Key Cryptography) with DES-CBC for message encryption and SHA for message digest
2. `SSL_RSA__WITH_NULL_SHA` key exchange with NULL for message encryption and SHA for message digest (only for SSL 3.0).
3. `SSL_RSA__WITH_NULL_MD5` key exchange with NULL for message encryption and MD5 for message digest (only for SSL 3.0).
4. `SSL_RSA__WITH_RC4_128_MD5`—RSA key exchange with RC4 128-bit encryption and MD5 for message digest
5. `SSL_RSA__WITH_RC4_128_SHA`—RSA key exchange with RC4 128-bit encryption and SHA for message digest
6 SSL_RSA_WITH_3DES_EDE_CBC_SHA—RSA key exchange with 3DES and DES-EDE3-CBC for message encryption and SHA for message digest

7 SSL_RSA_WITH_AES_128_CBC_SHA—RSA key exchange with AES 128-bit encryption and SHA for message digest (only for SSL 3.0).

8 SSL_RSA_WITH_AES_256_CBC_SHA—RSA key exchange with AES 256-bit encryption and SHA for message digest (only for SSL 3.0).

9 SSL_RSA_WITH_DHE_AES_128_CBC_SHA—RSA key exchange with AES 128-bit encryption and SHA for message digest (only for SSL 3.0).

10 SSL_RSA_WITH_DHE_AES_256_CBC_SHA—RSA key exchange with AES 256-bit encryption and SHA for message digest (only for SSL 3.0).

---

**Note**
The latest versions of Chrome do not support the four original cipher suites, thus disallowing access to both web GUI and guest portals.

RSA (in conjunction with the specified encryption and digest algorithm combinations) is used for both key generation and authentication on SSL connections. This usage is independent of whether or not a CA trustpoint is configured.

---

**Default SSL Configuration**

The standard HTTP server is enabled.

SSL is enabled.

No CA trustpoints are configured.

No self-signed certificates are generated.

---

**SSL Configuration Guidelines**

When SSL is used in a switch cluster, the SSL session terminates at the cluster commander. Cluster member switches must run standard HTTP.

Before you configure a CA trustpoint, you should ensure that the system clock is set. If the clock is not set, the certificate is rejected due to an incorrect date.

In a switch stack, the SSL session terminates at the stack master.

---

**How to Configure Secure HTTP Servers and Clients**

**Configuring a CA Trustpoint**

For secure HTTP connections, we recommend that you configure an official CA trustpoint. A CA trustpoint is more secure than a self-signed certificate.

Beginning in privileged EXEC mode, follow these steps to configure a CA Trustpoint:
**SUMMARY STEPS**

1. configure terminal
2. hostname hostname
3. ip domain-name domain-name
4. crypto key generate rsa
5. crypto ca trustpoint name
6. enrollment url url
7. enrollment http-proxy host-name port-number
8. crl query url
9. primary name
10. exit
11. crypto ca authentication name
12. crypto ca enroll name
13. end

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> hostname hostname</td>
<td>Specifies the hostname of the switch (required only if you have not previously configured a hostname). The hostname is required for security keys and certificates.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Switch(config)# hostname your_hostname</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> ip domain-name domain-name</td>
<td>Specifies the IP domain name of the switch (required only if you have not previously configured an IP domain name). The domain name is required for security keys and certificates.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Switch(config)# ip domain-name your_domain</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> crypto key generate rsa</td>
<td>(Optional) Generates an RSA key pair. RSA key pairs are required before you can obtain a certificate for the switch. RSA key pairs are generated automatically. You can use this command to regenerate the keys, if needed.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Switch(config)# crypto key generate rsa</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------------------------</td>
</tr>
<tr>
<td>5</td>
<td><code>crypto ca trustpoint name</code></td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
</tr>
<tr>
<td></td>
<td><code>Switch(config)# crypto ca trustpoint</code></td>
</tr>
<tr>
<td></td>
<td><code>your_trustpoint</code></td>
</tr>
<tr>
<td>6</td>
<td><code>enrollment url url</code></td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
</tr>
<tr>
<td></td>
<td><code>Switch(ca-trustpoint)# enrollment url</code></td>
</tr>
<tr>
<td></td>
<td><code>http://your_server:80</code></td>
</tr>
<tr>
<td>7</td>
<td><code>enrollment http-proxy host-name port-number</code></td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
</tr>
<tr>
<td></td>
<td><code>Switch(ca-trustpoint)# enrollment</code></td>
</tr>
<tr>
<td></td>
<td><code>http-proxy your_host 49</code></td>
</tr>
<tr>
<td>8</td>
<td><code>crl query url</code></td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
</tr>
<tr>
<td></td>
<td><code>Switch(ca-trustpoint)# crl query</code></td>
</tr>
<tr>
<td></td>
<td><code>ldap://your_host:49</code></td>
</tr>
<tr>
<td>9</td>
<td><code>primary name</code></td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
</tr>
<tr>
<td></td>
<td><code>Switch(ca-trustpoint)# primary</code></td>
</tr>
<tr>
<td></td>
<td><code>your_trustpoint</code></td>
</tr>
<tr>
<td>10</td>
<td><code>exit</code></td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
</tr>
<tr>
<td></td>
<td><code>Switch(ca-trustpoint)# exit</code></td>
</tr>
<tr>
<td>11</td>
<td><code>crypto ca authentication name</code></td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
</tr>
<tr>
<td></td>
<td><code>Switch(config)# crypto ca authentication</code></td>
</tr>
<tr>
<td></td>
<td><code>your_trustpoint</code></td>
</tr>
</tbody>
</table>
### Step 12

**Command or Action:**

```
crypto ca enroll name
```

**Purpose:**
Obtains the certificate from the specified CA trustpoint. This command requests a signed certificate for each RSA key pair.

**Example:**

```
Switch(config)# crypto ca enroll your_trustpoint
```

### Step 13

**Command or Action:**

```
end
```

**Purpose:**
Returns to privileged EXEC mode.

**Example:**

```
Switch(config)# end
```

---

### Configuring the Secure HTTP Server

Beginning in privileged EXEC mode, follow these steps to configure a secure HTTP server:

#### Before You Begin

If you are using a certificate authority for certification, you should use the previous procedure to configure the CA trustpoint on the switch before enabling the HTTP server. If you have not configured a CA trustpoint, a self-signed certificate is generated the first time that you enable the secure HTTP server. After you have configured the server, you can configure options (path, access list to apply, maximum number of connections, or timeout policy) that apply to both standard and secure HTTP servers.

To verify the secure HTTP connection by using a Web browser, enter https://URL, where the URL is the IP address or hostname of the server switch. If you configure a port other than the default port, you must also specify the port number after the URL. For example:

```
https://209.165.129:1026
```

or

```
https://host.domain.com:1026
```

---

**Note:**
AES256_SHA2 is not supported.
SUMMARY STEPS

1. show ip http server status
2. configure terminal
3. ip http secure-server
4. ip http secure-port \textit{port-number}
5. ip http secure-ciphersuite \{[3des-ede-cbc-sha] [rc4-128-md5] [rc4-128-sha] [des-cbc-sha]\}
6. ip http secure-client-auth
7. ip http secure-trustpoint \textit{name}
8. ip http path \textit{path-name}
9. ip http access-class \textit{access-list-number}
10. ip http max-connections \textit{value}
11. ip http timeout-policy idle \textit{seconds} life \textit{seconds} requests \textit{value}
12. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>show ip http server status</td>
<td>(Optional) Displays the status of the HTTP server to determine if the secure HTTP server feature is supported in the software. You should see one of these lines in the output: HTTP secure server capability: Present or HTTP secure server capability: Not present</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# show ip http server status</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>ip http secure-server</td>
<td>Enables the HTTPS server if it has been disabled. The HTTPS server is enabled by default.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# ip http secure-server</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>ip http secure-port \textit{port-number}</td>
<td>(Optional) Specifies the port number to be used for the HTTPS server. The default port number is 443. Valid options are 443 or any number in the range 1025 to 65535.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# ip http secure-port 443</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>(Optional) Specifies the CipherSuites (encryption algorithms) to be used for encryption over the HTTPS connection. If you do not have a reason to specify a particularly CipherSuite, you should allow the server and client to negotiate a CipherSuite that they both support. This is the default.</td>
<td></td>
</tr>
<tr>
<td>ip http secure-ciphersuite</td>
<td>{ [3des-ede-cbc-sha]</td>
<td>[rc4-128-md5]</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# ip http secure-ciphersuite rc4-128-md5</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>(Optional) Configures the HTTP server to request an X.509v3 certificate from the client for authentication during the connection process. The default is for the client to request a certificate from the server, but the server does not attempt to authenticate the client.</td>
<td></td>
</tr>
<tr>
<td>ip http secure-client-auth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# ip http secure-client-auth</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>Specifies the CA trustpoint to use to get an X.509v3 security certificate and to authenticate the client certificate connection.</td>
<td></td>
</tr>
<tr>
<td>ip http secure-trustpoint name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# ip http secure-trustpoint your_trustpoint</td>
<td></td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>Use of this command assumes you have already configured a CA trustpoint according to the previous procedure.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>(Optional) Sets a base HTTP path for HTML files. The path specifies the location of the HTTP server files on the local system (usually located in system flash memory).</td>
<td></td>
</tr>
<tr>
<td>ip http path path-name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# ip http path /your_server:80</td>
<td></td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td>(Optional) Specifies an access list to use to allow access to the HTTP server.</td>
<td></td>
</tr>
<tr>
<td>ip http access-class access-list-number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# ip http access-class 2</td>
<td></td>
</tr>
<tr>
<td><strong>Step 10</strong></td>
<td>(Optional) Sets the maximum number of concurrent connections that are allowed to the HTTP server. We recommend that the value be at least 10 and not less. This is required for the UI to function as expected.</td>
<td></td>
</tr>
<tr>
<td>ip http max-connections value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# ip http max-connections 4</td>
<td></td>
</tr>
<tr>
<td><strong>Step 11</strong></td>
<td>(Optional) Specifies how long a connection to the HTTP server can remain open under the defined circumstances:</td>
<td></td>
</tr>
<tr>
<td>ip http timeout-policy idle seconds life seconds requests value</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Purpose

Command or Action	Purpose
Example: Switch(config)# ip http timeout-policy idle 120 life 240 requests 1 | - **idle**—the maximum time period when no data is received or response data cannot be sent. The range is 1 to 600 seconds. The default is 180 seconds (3 minutes).
- **life**—the maximum time period from the time that the connection is established. The range is 1 to 86400 seconds (24 hours). The default is 180 seconds.
- **requests**—the maximum number of requests processed on a persistent connection. The maximum value is 86400. The default is 1.

### Step 12

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>end</strong></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

### Configuring the Secure HTTP Client

Beginning in privileged EXEC mode, follow these steps to configure a secure HTTP client:

#### Before You Begin

The standard HTTP client and secure HTTP client are always enabled. A certificate authority is required for secure HTTP client certification. This procedure assumes that you have previously configured a CA trustpoint on the switch. If a CA trustpoint is not configured and the remote HTTPS server requires client authentication, connections to the secure HTTP client fail.

#### SUMMARY STEPS

1. `configure terminal`
2. `ip http client secure-trustpoint name`
3. `ip http client secure-ciphersuite {3des-ede-cbc-sha | rc4-128-md5 | rc4-128-sha | des-cbc-sha}`
4. `end`

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> <code>configure terminal</code></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>
### Monitoring Secure HTTP Server and Client Status

To monitor the SSL secure server and client status, use the privileged EXEC commands in the following table.

**Table 103: Commands for Displaying the SSL Secure Server and Client Status**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ip http client secure status</code></td>
<td>Shows the HTTP secure client configuration.</td>
</tr>
<tr>
<td><code>show ip http server secure status</code></td>
<td>Shows the HTTP secure server configuration.</td>
</tr>
<tr>
<td><code>show running-config</code></td>
<td>Shows the generated self-signed certificate for secure HTTP connections.</td>
</tr>
</tbody>
</table>
Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
</table>
| Configuring Identity Control policies and Identity Service templates for Session Aware networking. | Session Aware Networking Configuration Guide, Cisco IOS XE Release 3SE (Catalyst 3850 Switches)  
| Configuring RADIUS, TACACS+, Secure Shell, 802.1X and AAA.                  | Securing User Services Configuration Guide Library, Cisco IOS XE Release 3SE (Catalyst 3850 Switches)  
secuser-xe-3se-3850-library.html |

Error Message Decoder

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>To help you research and resolve system error messages in this release, use the Error Message Decoder tool.</td>
<td><a href="https://www.cisco.com/cgi-bin/Support/Errordecoder/index.cgi">https://www.cisco.com/cgi-bin/Support/Errordecoder/index.cgi</a></td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
</table>
| All supported MIBs for this release.                                                    | To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL:  
http://www.cisco.com/go/mibs |
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including</td>
<td><a href="http://www.cisco.com/support">http://www.cisco.com/support</a></td>
</tr>
<tr>
<td>documentation and tools for troubleshooting and resolving technical issues</td>
<td></td>
</tr>
<tr>
<td>with Cisco products and technologies.</td>
<td></td>
</tr>
<tr>
<td>To receive security and technical information about your products, you</td>
<td></td>
</tr>
<tr>
<td>can subscribe to various services, such as the Product Alert Tool (accessed</td>
<td></td>
</tr>
<tr>
<td>from Field Notices), the Cisco Technical Services Newsletter, and Really</td>
<td></td>
</tr>
<tr>
<td>Simple Syndication (RSS) Feeds.</td>
<td></td>
</tr>
<tr>
<td>Access to most tools on the Cisco Support website requires a Cisco.com user</td>
<td></td>
</tr>
<tr>
<td>ID and password.</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 40

Configuring IPv4 ACLs

• Finding Feature Information, page 883
• Prerequisites for Configuring IPv4 Access Control Lists, page 883
• Restrictions for Configuring IPv4 Access Control Lists, page 884
• Information about Network Security with ACLs, page 885
• How to Configure ACLs, page 898
• Monitoring IPv4 ACLs, page 923
• Configuration Examples for ACLs, page 924
• Additional References, page 938
• Feature Information for IPv4 Access Control Lists, page 939

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Configuring IPv4 Access Control Lists

This section lists the prerequisites for configuring network security with access control lists (ACLs).

• On switches running the LAN base feature set, VLAN maps are not supported.
Restrictions for Configuring IPv4 Access Control Lists

General Network Security

The following are restrictions for configuring network security with ACLs:

- Not all commands that accept a numbered ACL accept a named ACL. ACLs for packet filters and route filters on interfaces can use a name. VLAN maps also accept a name.
- A standard ACL and an extended ACL cannot have the same name.
- Though visible in the command-line help strings, `appletalk` is not supported as a matching condition for the `deny` and `permit` MAC access-list configuration mode commands.
- ACL wildcard is not supported in downstream client policy.

IPv4 ACL Network Interfaces

The following restrictions apply to IPv4 ACLs to network interfaces:

- When controlling access to an interface, you can use a named or numbered ACL.
- If you apply an ACL to a Layer 2 interface that is a member of a VLAN, the Layer 2 (port) ACL takes precedence over an input Layer 3 ACL applied to the VLAN interface or a VLAN map applied to the VLAN.
- If you apply an ACL to a Layer 3 interface and routing is not enabled on the switch, the ACL only filters packets that are intended for the CPU, such as SNMP, Telnet, or web traffic.
- You do not have to enable routing to apply ACLs to Layer 2 interfaces.

By default, the router sends Internet Control Message Protocol (ICMP) unreachable messages when a packet is denied by an access group on a Layer 3 interface. These access-group denied packets are not dropped in hardware but are bridged to the switch CPU so that it can generate the ICMP-unreachable message. They do not generate ICMP unreachable messages. ICMP unreachable messages can be disabled on router ACLs with the `no ip unreachable` interface command.

Note

MAC ACLs on a Layer 2 Interface

After you create a MAC ACL, you can apply it to a Layer 2 interface to filter non-IP traffic coming in that interface. When you apply the MAC ACL, consider these guidelines:

- You can apply no more than one IP access list and one MAC access list to the same Layer 2 interface. The IP access list filters only IP packets, and the MAC access list filters non-IP packets.
- A Layer 2 interface can have only one MAC access list. If you apply a MAC access list to a Layer 2 interface that has a MAC ACL configured, the new ACL replaces the previously configured one.
The **mac access-group** interface configuration command is only valid when applied to a physical Layer 2 interface. You cannot use the command on EtherChannel port channels.

### IP Access List Entry Sequence Numbering

- This feature does not support dynamic, reflexive, or firewall access lists.

### Related Topics

- Applying an IPv4 ACL to an Interface, on page 911
- IPv4 ACL Interface Considerations, on page 898
- Creating Named MAC Extended ACLs, on page 912
- Applying a MAC ACL to a Layer 2 Interface, on page 914

## Information about Network Security with ACLs

This chapter describes how to configure network security on the switch by using access control lists (ACLs), which in commands and tables are also referred to as access lists.

### Cisco TrustSec and ACLs

Catalyst 3850 switches running the IP base or IP services feature set also support Cisco TrustSec Security Group Tag (SCT) Exchange Protocol (SXP). This feature supports security group access control lists (SGACLs), which define ACL policies for a group of devices instead of an IP address. The SXP control protocol allows tagging packets with SCTs without a hardware upgrade, and runs between access layer devices at the Cisco TrustSec domain edge and distribution layer devices within the Cisco TrustSec domain. Catalyst 3850 switches operate as access layer switches in the Cisco TrustSec network.

The sections on SXP define the capabilities supported on the Catalyst 3850 switches.

### ACL Overview

Packet filtering can help limit network traffic and restrict network use by certain users or devices. ACLs filter traffic as it passes through a router or switch and permit or deny packets crossing specified interfaces or VLANs. An ACL is a sequential collection of permit and deny conditions that apply to packets. When a packet is received on an interface, the switch compares the fields in the packet against any applied ACLs to verify that the packet has the required permissions to be forwarded, based on the criteria specified in the access lists. One by one, it tests packets against the conditions in an access list. The first match decides whether the switch accepts or rejects the packets. Because the switch stops testing after the first match, the order of conditions in the list is critical. If no conditions match, the switch rejects the packet. If there are no restrictions, the switch forwards the packet; otherwise, the switch drops the packet. The switch can use ACLs on all packets it forwards, including packets bridged within a VLAN.

You configure access lists on a router or Layer 3 switch to provide basic security for your network. If you do not configure ACLs, all packets passing through the switch could be allowed onto all parts of the network. You can use ACLs to control which hosts can access different parts of a network or to decide which types of...
traffic are forwarded or blocked at router interfaces. For example, you can allow e-mail traffic to be forwarded but not Telnet traffic. ACLs can be configured to block inbound traffic, outbound traffic, or both.

Access Control Entries

An ACL contains an ordered list of access control entries (ACEs). Each ACE specifies permit or deny and a set of conditions the packet must satisfy in order to match the ACE. The meaning of permit or deny depends on the context in which the ACL is used.

ACL Supported Types

The switch supports IP ACLs and Ethernet (MAC) ACLs:

- IP ACLs filter IPv4 traffic, including TCP, User Datagram Protocol (UDP), Internet Group Management Protocol (IGMP), and Internet Control Message Protocol (ICMP).
- Ethernet ACLs filter non-IP traffic.

This switch also supports quality of service (QoS) classification ACLs.

Supported ACLs

The switch supports three types of ACLs to filter traffic:

- Port ACLs access-control traffic entering a Layer 2 interface. You can apply only one IP access list and one MAC access list to a Layer 2 interface.
- Router ACLs access-control routed traffic between VLANs and are applied to Layer 3 interfaces in a specific direction (inbound or outbound).
- VLAN ACLs or VLAN maps access-control all packets (bridged and routed). You can use VLAN maps to filter traffic between devices in the same VLAN. VLAN maps are configured to provide access control based on Layer 3 addresses for IPv4. Unsupported protocols are access-controlled through MAC addresses using Ethernet ACEs. After a VLAN map is applied to a VLAN, all packets (routed or bridged) entering the VLAN are checked against the VLAN map. Packets can either enter the VLAN through a switch port or through a routed port after being routed.

ACL Precedence

When VLAN maps, Port ACLs, and router ACLs are configured on the same switch, the filtering precedence, from greatest to least for ingress traffic is port ACL, VLAN map, and then router ACL. For egress traffic, the filtering precedence is router ACL, VLAN map, and then port ACL.

The following examples describe simple use cases:

- When both an input port ACL and a VLAN map are applied, incoming packets received on ports with a port ACL applied are filtered by the port ACL. Other packets are filtered by the VLAN map.
- When an input router ACL and input port ACL exist in a switch virtual interface (SVI), incoming packets received on ports to which a port ACL is applied are filtered by the port ACL. Incoming routed IP packets received on other ports are filtered by the router ACL. Other packets are not filtered.
• When an output router ACL and input port ACL exist in an SVI, incoming packets received on the ports to which a port ACL is applied are filtered by the port ACL. Outgoing routed IP packets are filtered by the router ACL. Other packets are not filtered.

• When a VLAN map, input router ACL, and input port ACL exist in an SVI, incoming packets received on the ports to which a port ACL is applied are only filtered by the port ACL. Incoming routed IP packets received on other ports are filtered by both the VLAN map and the router ACL. Other packets are filtered only by the VLAN map.

• When a VLAN map, output router ACL, and input port ACL exist in an SVI, incoming packets received on the ports to which a port ACL is applied are only filtered by the port ACL. Outgoing routed IP packets are filtered by both the VLAN map and the router ACL. Other packets are filtered only by the VLAN map.

Related Topics

Restrictions for Configuring IPv4 Access Control Lists, on page 884

Port ACLs

Port ACLs are ACLs that are applied to Layer 2 interfaces on a switch. Port ACLs are supported only on physical interfaces and not on EtherChannel interfaces. Port ACLs can be applied to the interface only in inbound direction. The following access lists are supported:

• Standard IP access lists using source addresses
• Extended IP access lists using source and destination addresses and optional protocol type information
• MAC extended access lists using source and destination MAC addresses and optional protocol type information

The switch examines ACLs on an interface and permits or denies packet forwarding based on how the packet matches the entries in the ACL. In this way, ACLs control access to a network or to part of a network.

This is an example of using port ACLs to control access to a network when all workstations are in the same VLAN. ACLs applied at the Layer 2 input would allow Host A to access the Human Resources network, but
prevent Host B from accessing the same network. Port ACLs can only be applied to Layer 2 interfaces in the inbound direction.

Figure 69: Using ACLs to Control Traffic in a Network

When you apply a port ACL to a trunk port, the ACL filters traffic on all VLANs present on the trunk port. When you apply a port ACL to a port with voice VLAN, the ACL filters traffic on both data and voice VLANs.

With port ACLs, you can filter IP traffic by using IP access lists and non-IP traffic by using MAC addresses. You can filter both IP and non-IP traffic on the same Layer 2 interface by applying both an IP access list and a MAC access list to the interface.

Note

You cannot apply more than one IP access list and one MAC access list to a Layer 2 interface. If an IP access list or MAC access list is already configured on a Layer 2 interface and you apply a new IP access list or MAC access list to the interface, the new ACL replaces the previously configured one.

Router ACLs

You can apply router ACLs on switch virtual interfaces (SVIs), which are Layer 3 interfaces to VLANs; on physical Layer 3 interfaces; and on Layer 3 EtherChannel interfaces. You apply router ACLs on interfaces for specific directions (inbound or outbound). You can apply one router ACL in each direction on an interface.

The switch supports these access lists for IPv4 traffic:

- Standard IP access lists use source addresses for matching operations.
- Extended IP access lists use source and destination addresses and optional protocol type information for matching operations.
As with port ACLs, the switch examines ACLs associated with features configured on a given interface. As packets enter the switch on an interface, ACLs associated with all inbound features configured on that interface are examined. After packets are routed and before they are forwarded to the next hop, all ACLs associated with outbound features configured on the egress interface are examined.

ACLs permit or deny packet forwarding based on how the packet matches the entries in the ACL, and can be used to control access to a network or to part of a network.

VLAN Maps

VLAN ACLs or VLAN maps are used to control network traffic within a VLAN. You can apply VLAN maps to all packets that are bridged within a VLAN in the switch or switch stack. VACLs are strictly for security packet filtering and for redirecting traffic to specific physical interfaces. VACLs are not defined by direction (ingress or egress).

All non-IP protocols are access-controlled through MAC addresses and Ethertype using MAC VLAN maps. (IP traffic is not access controlled by MAC VLAN maps.) You can enforce VLAN maps only on packets going through the switch; you cannot enforce VLAN maps on traffic between hosts on a hub or on another switch connected to this switch.

With VLAN maps, forwarding of packets is permitted or denied, based on the action specified in the map.

This shows how a VLAN map is applied to prevent a specific type of traffic from Host A in VLAN 10 from being forwarded. You can apply only one VLAN map to a VLAN.

Figure 70: Using VLAN Maps to Control Traffic

ACEs and Fragmented and Unfragmented Traffic

IP packets can be fragmented as they cross the network. When this happens, only the fragment containing the beginning of the packet contains the Layer 4 information, such as TCP or UDP port numbers, ICMP type and code, and so on. All other fragments are missing this information.

Some access control entries (ACEs) do not check Layer 4 information and therefore can be applied to all packet fragments. ACEs that do test Layer 4 information cannot be applied in the standard manner to most of the fragments in a fragmented IP packet. When the fragment contains no Layer 4 information and the ACE tests some Layer 4 information, the matching rules are modified:

- Permit ACEs that check the Layer 3 information in the fragment (including protocol type, such as TCP, UDP, and so on) are considered to match the fragment regardless of what the missing Layer 4 information might have been.
- Deny ACEs that check Layer 4 information never match a fragment unless the fragment contains Layer 4 information.
ACEs and Fragmented and Unfragmented Traffic Examples

Consider access list 102, configured with these commands, applied to three fragmented packets:

```
Switch(config)# access-list 102 permit tcp any host 10.1.1.1 eq smtp
Switch(config)# access-list 102 deny tcp any host 10.1.1.2 eq telnet
Switch(config)# access-list 102 permit tcp any host 10.1.1.2
Switch(config)# access-list 102 deny tcp any any
```

Note In the first and second ACEs in the examples, the `eq` keyword after the destination address means to test for the TCP-destination-port well-known numbers equaling Simple Mail Transfer Protocol (SMTP) and Telnet, respectively.

- Packet A is a TCP packet from host 10.2.2.2., port 65000, going to host 10.1.1.1 on the SMTP port. If this packet is fragmented, the first fragment matches the first ACE (a permit) as if it were a complete packet because all Layer 4 information is present. The remaining fragments also match the first ACE, even though they do not contain the SMTP port information, because the first ACE only checks Layer 3 information when applied to fragments. The information in this example is that the packet is TCP and that the destination is 10.1.1.1.

- Packet B is from host 10.2.2.2, port 65001, going to host 10.1.1.2 on the Telnet port. If this packet is fragmented, the first fragment matches the second ACE (a deny) because all Layer 3 and Layer 4 information is present. The remaining fragments in the packet do not match the second ACE because they are missing Layer 4 information. Instead, they match the third ACE (a permit). Because the first fragment was denied, host 10.1.1.2 cannot reassemble a complete packet, so packet B is effectively denied. However, the later fragments that are permitted will consume bandwidth on the network and resources of host 10.1.1.2 as it tries to reassemble the packet.

- Fragmented packet C is from host 10.2.2.2, port 65001, going to host 10.1.1.3, port ftp. If this packet is fragmented, the first fragment matches the fourth ACE (a deny). All other fragments also match the fourth ACE because that ACE does not check any Layer 4 information and because Layer 3 information in all fragments shows that they are being sent to host 10.1.1.3, and the earlier permit ACEs were checking different hosts.

ACLs and Switch Stacks

ACL support is the same for a switch stack as for a standalone switch. ACL configuration information is propagated to all switches in the stack. All switches in the stack, including the active switch, process the information and program their hardware.

Active Switch and ACL Functions

The active switch performs these ACL functions:

- It processes the ACL configuration and propagates the information to all stack members.
- It distributes the ACL information to any switch that joins the stack.
- If packets must be forwarded by software for any reason (for example, not enough hardware resources), the active switch forwards the packets only after applying ACLs on the packets.
Stack Member and ACL Functions

Stack members perform these ACL functions:

• They receive the ACL information from the active switch and program their hardware.
• A stack member configured as a standby switch, performs the functions of the active switch in the event the active switch fails.

Active Switch Failure and ACLs

Both the active and standby switches have the ACL information. When the active switch fails, the standby takes over. The new active switch distributes the ACL information to all stack members.

Standard and Extended IPv4 ACLs

This section describes IP ACLs.

An ACL is a sequential collection of permit and deny conditions. One by one, the switch tests packets against the conditions in an access list. The first match determines whether the switch accepts or rejects the packet. Because the switch stops testing after the first match, the order of the conditions is critical. If no conditions match, the switch denies the packet.

The software supports these types of ACLs or access lists for IPv4:

• Standard IP access lists use source addresses for matching operations.
• Extended IP access lists use source and destination addresses for matching operations and optional protocol-type information for finer granularity of control.

IPv4 ACL Switch Unsupported Features

Configuring IPv4 ACLs on the switch is the same as configuring IPv4 ACLs on other Cisco switches and routers.

The following ACL-related features are not supported:

• Non-IP protocol ACLs
• IP accounting
• Reflexive ACLs and dynamic ACLs are not supported.
• ACL logging for port ACLs and VLAN maps

Access List Numbers

The number you use to denote your ACL shows the type of access list that you are creating.

This lists the access-list number and corresponding access list type and shows whether or not they are supported in the switch. The switch supports IPv4 standard and extended access lists, numbers 1 to 199 and 1300 to 2699.
Table 104: Access List Numbers

<table>
<thead>
<tr>
<th>Access List Number</th>
<th>Type</th>
<th>Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–99</td>
<td>IP standard access list</td>
<td>Yes</td>
</tr>
<tr>
<td>100–199</td>
<td>IP extended access list</td>
<td>Yes</td>
</tr>
<tr>
<td>200–299</td>
<td>Protocol type-code access list</td>
<td>No</td>
</tr>
<tr>
<td>300–399</td>
<td>DECnet access list</td>
<td>No</td>
</tr>
<tr>
<td>400–499</td>
<td>XNS standard access list</td>
<td>No</td>
</tr>
<tr>
<td>500–599</td>
<td>XNS extended access list</td>
<td>No</td>
</tr>
<tr>
<td>600–699</td>
<td>AppleTalk access list</td>
<td>No</td>
</tr>
<tr>
<td>700–799</td>
<td>48-bit MAC address access list</td>
<td>No</td>
</tr>
<tr>
<td>800–899</td>
<td>IPX standard access list</td>
<td>No</td>
</tr>
<tr>
<td>900–999</td>
<td>IPX extended access list</td>
<td>No</td>
</tr>
<tr>
<td>1000–1099</td>
<td>IPX SAP access list</td>
<td>No</td>
</tr>
<tr>
<td>1100–1199</td>
<td>Extended 48-bit MAC address access list</td>
<td>No</td>
</tr>
<tr>
<td>1200–1299</td>
<td>IPX summary address access list</td>
<td>No</td>
</tr>
<tr>
<td>1300–1999</td>
<td>IP标准 access list (expanded range)</td>
<td>Yes</td>
</tr>
<tr>
<td>2000–2699</td>
<td>IP extended access list (expanded range)</td>
<td>Yes</td>
</tr>
</tbody>
</table>

In addition to numbered standard and extended ACLs, you can also create standard and extended named IP ACLs by using the supported numbers. That is, the name of a standard IP ACL can be 1 to 99; the name of an extended IP ACL can be 100 to 199. The advantage of using named ACLs instead of numbered lists is that you can delete individual entries from a named list.

**Numbered Standard IPv4 ACLs**

When creating an ACL, remember that, by default, the end of the ACL contains an implicit deny statement for all packets that it did not find a match for before reaching the end. With standard access lists, if you omit the mask from an associated IP host address ACL specification, 0.0.0.0 is assumed to be the mask.

The switch always rewrites the order of standard access lists so that entries with host matches and entries with matches having a don’t care mask of 0.0.0.0 are moved to the top of the list, above any entries with non-zero don’t care masks. Therefore, in show command output and in the configuration file, the ACEs do not necessarily appear in the order in which they were entered.
After creating a numbered standard IPv4 ACL, you can apply it to VLANs, to terminal lines, or to interfaces.

**Numbered Extended IPv4 ACLs**

Although standard ACLs use only source addresses for matching, you can use extended ACL source and destination addresses for matching operations and optional protocol type information for finer granularity of control. When you are creating ACEs in numbered extended access lists, remember that after you create the ACL, any additions are placed at the end of the list. You cannot reorder the list or selectively add or remove ACEs from a numbered list.

The switch does not support dynamic or reflexive access lists. It also does not support filtering based on the type of service (ToS) minimize-monetary-cost bit.

Some protocols also have specific parameters and keywords that apply to that protocol.

You can define an extended TCP, UDP, ICMP, IGMP, or other IP ACL. The switch also supports these IP protocols:

- **ICMP echo-reply cannot be filtered. All other ICMP codes or types can be filtered.**

These IP protocols are supported:

- Authentication Header Protocol (ahp)
- Encapsulation Security Payload (esp)
- Enhanced Interior Gateway Routing Protocol (eigrp)
- generic routing encapsulation (gre)
- Internet Control Message Protocol (icmp)
- Internet Group Management Protocol (igmp)
- any Interior Protocol (ip)
- IP in IP tunneling (ipinip)
- KA9Q NOS-compatible IP over IP tunneling (nos)
- Open Shortest Path First routing (ospf)
- Payload Compression Protocol (pcp)
- Protocol-Independent Multicast (pim)
- Transmission Control Protocol (tcp)
- User Datagram Protocol (udp)

**Named IPv4 ACLs**

You can identify IPv4 ACLs with an alphanumeric string (a name) rather than a number. You can use named ACLs to configure more IPv4 access lists in a router than if you were to use numbered access lists. If you identify your access list with a name rather than a number, the mode and command syntax are slightly different. However, not all commands that use IP access lists accept a named access list.
The name you give to a standard or extended ACL can also be a number in the supported range of access list numbers. That is, the name of a standard IP ACL can be 1 to 99 and . The advantage of using named ACLs instead of numbered lists is that you can delete individual entries from a named list.

Consider these guidelines before configuring named ACLs:

- Numbered ACLs are also available.
- A standard ACL and an extended ACL cannot have the same name.
- You can use standard or extended ACLs (named or numbered) in VLAN maps.

**ACL Logging**

The switch software can provide logging messages about packets permitted or denied by a standard IP access list. That is, any packet that matches the ACL causes an informational logging message about the packet to be sent to the console. The level of messages logged to the console is controlled by the `logging console` commands controlling the syslog messages.

Because routing is done in hardware and logging is done in software, if a large number of packets match a `permit` or `deny` ACE containing a `log` keyword, the software might not be able to match the hardware processing rate, and not all packets will be logged.

The first packet that triggers the ACL causes a logging message right away, and subsequent packets are collected over 5-minute intervals before they appear or logged. The logging message includes the access list number, whether the packet was permitted or denied, the source IP address of the packet, and the number of packets from that source permitted or denied in the prior 5-minute interval.

The logging facility might drop some logging message packets if there are too many to be handled or if there is more than one logging message to be handled in 1 second. This behavior prevents the router from crashing due to too many logging packets. Therefore, the logging facility should not be used as a billing tool or an accurate source of the number of matches to an access list.

**Smart Logging**

When smart logging is enabled on the switch and an ACL configured with smart logging is attached to a Layer 2 interface (port ACL), the contents of packets denied or permitted because of the ACL are also sent to a specified NetFlow collector.

**Hardware and Software Treatment of IP ACLs**

ACL processing is performed in hardware. If the hardware reaches its capacity to store ACL configurations, all packets on that interface are dropped.
If an ACL configuration cannot be implemented in hardware due to an out-of-resource condition on a switch or stack member, then only the traffic in that VLAN arriving on that switch is affected.

For router ACLs, other factors can cause packets to be sent to the CPU:

- Using the **log** keyword
- Generating ICMP unreachable messages

When traffic flows are both logged and forwarded, forwarding is done by hardware, but logging must be done by software. Because of the difference in packet handling capacity between hardware and software, if the sum of all flows being logged (both permitted flows and denied flows) is of great enough bandwidth, not all of the packets that are forwarded can be logged.

When you enter the **show ip access-lists** privileged EXEC command, the match count displayed does not account for packets that are access controlled in hardware. Use the **show platform acl counters hardware** privileged EXEC command to obtain some basic hardware ACL statistics for switched and routed packets.

Router ACLs function as follows:

- The hardware controls permit and deny actions of standard and extended ACLs (input and output) for security access control.
- If **log** has not been specified, the flows that match a **deny** statement in a security ACL are dropped by the hardware if **ip unreachables** is disabled. The flows matching a **permit** statement are switched in hardware.
- Adding the **log** keyword to an ACE in a router ACL causes a copy of the packet to be sent to the CPU for logging only. If the ACE is a **permit** statement, the packet is still switched and routed in hardware.

**VLAN Map Configuration Guidelines**

VLAN maps are the only way to control filtering within a VLAN. VLAN maps have no direction. To filter traffic in a specific direction by using a VLAN map, you need to include an ACL with specific source or destination addresses. If there is a match clause for that type of packet (IP or MAC) in the VLAN map, the default action is to drop the packet if the packet does not match any of the entries within the map. If there is no match clause for that type of packet, the default is to forward the packet.

The following are the VLAN map configuration guidelines:

- If there is no ACL configured to deny traffic on an interface and no VLAN map is configured, all traffic is permitted.
- Each VLAN map consists of a series of entries. The order of entries in an VLAN map is important. A packet that comes into the switch is tested against the first entry in the VLAN map. If it matches, the action specified for that part of the VLAN map is taken. If there is no match, the packet is tested against the next entry in the map.
- If the VLAN map has at least one match clause for the type of packet (IP or MAC) and the packet does not match any of these match clauses, the default is to drop the packet. If there is no match clause for that type of packet in the VLAN map, the default is to forward the packet.
- Logging is not supported for VLAN maps.
• When a switch has an IP access list or MAC access list applied to a Layer 2 interface, and you apply a VLAN map to a VLAN that the port belongs to, the port ACL takes precedence over the VLAN map.
• If a VLAN map configuration cannot be applied in hardware, all packets in that VLAN are dropped.

VLAN Maps with Router ACLs

To access control both bridged and routed traffic, you can use VLAN maps only or a combination of router ACLs and VLAN maps. You can define router ACLs on both input and output routed VLAN interfaces, and you can define a VLAN map to access control the bridged traffic.

If a packet flow matches a VLAN-map deny clause in the ACL, regardless of the router ACL configuration, the packet flow is denied.

**Note**

When you use router ACLs with VLAN maps, packets that require logging on the router ACLs are not logged if they are denied by a VLAN map.

If the VLAN map has a match clause for the type of packet (IP or MAC) and the packet does not match the type, the default is to drop the packet. If there is no match clause in the VLAN map, and no action specified, the packet is forwarded if it does not match any VLAN map entry.

VLAN Maps and Router ACL Configuration Guidelines

These guidelines are for configurations where you need to have an router ACL and a VLAN map on the same VLAN. These guidelines do not apply to configurations where you are mapping router ACLs and VLAN maps on different VLANs.

If you must configure a router ACL and a VLAN map on the same VLAN, use these guidelines for both router ACL and VLAN map configuration:

• You can configure only one VLAN map and one router ACL in each direction (input/output) on a VLAN interface.

• Whenever possible, try to write the ACL with all entries having a single action except for the final, default action of the other type. That is, write the ACL using one of these two forms:
  - permit... permit... permit... deny ip any any
  - deny... deny... deny... permit ip any any

• To define multiple actions in an ACL (permit, deny), group each action type together to reduce the number of entries.

• Avoid including Layer 4 information in an ACL; adding this information complicates the merging process. The best merge results are obtained if the ACLs are filtered based on IP addresses (source and destination) and not on the full flow (source IP address, destination IP address, protocol, and protocol ports). It is also helpful to use don’t care bits in the IP address, whenever possible.

If you need to specify the full-flow mode and the ACL contains both IP ACEs and TCP/UDP/ICMP ACEs with Layer 4 information, put the Layer 4 ACEs at the end of the list. This gives priority to the filtering of traffic based on IP addresses.
**VAACL Logging**

When you configure VACL logging, syslog messages are generated for denied IP packets under these circumstances:

- When the first matching packet is received.
- For any matching packets received within the last 5 minutes.
- If the threshold is reached before the 5-minute interval.

Log messages are generated on a per-flow basis. A flow is defined as packets with the same IP addresses and Layer 4 (UDP or TCP) port numbers. If a flow does not receive any packets in the 5-minute interval, that flow is removed from the cache. When a syslog message is generated, the timer and packet counter are reset.

VAACL logging restrictions:

- Only denied IP packets are logged.
- Packets that require logging on the outbound port ACLs are not logged if they are denied by a VACL.

**Time Ranges for ACLs**

You can selectively apply extended ACLs based on the time of day and the week by using the `time-range` global configuration command. First, define a time-range name and set the times and the dates or the days of the week in the time range. Then enter the time-range name when applying an ACL to set restrictions to the access list. You can use the time range to define when the permit or deny statements in the ACL are in effect, for example, during a specified time period or on specified days of the week. The `time-range` keyword and argument are referenced in the named and numbered extended ACL task tables.

These are some benefits of using time ranges:

- You have more control over permitting or denying a user access to resources, such as an application (identified by an IP address/mask pair and a port number).
- You can control logging messages. ACL entries can be set to log traffic only at certain times of the day. Therefore, you can simply deny access without needing to analyze many logs generated during peak hours.

Time-based access lists trigger CPU activity because the new configuration of the access list must be merged with other features and the combined configuration loaded into the hardware memory. For this reason, you should be careful not to have several access lists configured to take affect in close succession (within a small number of minutes of each other.)

---

**Note**

The time range relies on the switch system clock; therefore, you need a reliable clock source. We recommend that you use Network Time Protocol (NTP) to synchronize the switch clock.

---

**Related Topics**

- Configuring Time Ranges for ACLs, on page 907
**IPv4 ACL Interface Considerations**

When you apply the `ip access-group` interface configuration command to a Layer 3 interface (an SVI, a Layer 3 EtherChannel, or a routed port), the interface must have been configured with an IP address. Layer 3 access groups filter packets that are routed or are received by Layer 3 processes on the CPU. They do not affect packets bridged within a VLAN.

For inbound ACLs, after receiving a packet, the switch checks the packet against the ACL. If the ACL permits the packet, the switch continues to process the packet. If the ACL rejects the packet, the switch discards the packet.

For outbound ACLs, after receiving and routing a packet to a controlled interface, the switch checks the packet against the ACL. If the ACL permits the packet, the switch sends the packet. If the ACL rejects the packet, the switch discards the packet.

By default, the input interface sends ICMP Unreachable messages whenever a packet is discarded, regardless of whether the packet was discarded because of an ACL on the input interface or because of an ACL on the output interface. ICMP Unreachables are normally limited to no more than one every one-half second per input interface, but this can be changed by using the `ip icmp rate-limit unreachable` global configuration command.

When you apply an undefined ACL to an interface, the switch acts as if the ACL has not been applied to the interface and permits all packets. Remember this behavior if you use undefined ACLs for network security.

**Related Topics**

- Applying an IPv4 ACL to an Interface, on page 911
- Restrictions for Configuring IPv4 Access Control Lists, on page 884

---

**How to Configure ACLs**

**Configuring IPv4 ACLs**

These are the steps to use IP ACLs on the switch:

**SUMMARY STEPS**

1. Create an ACL by specifying an access list number or name and the access conditions.
2. Apply the ACL to interfaces or terminal lines. You can also apply standard and extended IP ACLs to VLAN maps.

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Create an ACL by specifying an access list number or name and the access conditions.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Apply the ACL to interfaces or terminal lines. You can also apply standard and extended IP ACLs to VLAN maps.</td>
</tr>
</tbody>
</table>
Creating a Numbered Standard ACL

Follow these steps to create a numbered standard ACL:

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `access-list access-list-number {deny | permit} source source-wildcard [log]`
4. `end`
5. `show running-config`
6. `copy running-config startup-config`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>
| **Step 3** access-list access-list-number {deny | permit} source source-wildcard [log] | Defines a standard IPv4 access list by using a source address and wildcard. The `access-list-number` is a decimal number from 1 to 99 or 1300 to 1999. Enter `deny` or `permit` to specify whether to deny or permit access if conditions are matched. The `source` is the source address of the network or host from which the packet is being sent specified as:

  - The 32-bit quantity in dotted-decimal format.
  - The keyword any as an abbreviation for `source` and `source-wildcard` of 0.0.0.0 255.255.255.255. You do not need to enter a source-wildcard.
  - The keyword host as an abbreviation for `source` and `source-wildcard` of source 0.0.0.0.

(Optional) The `source-wildcard` applies wildcard bits to the source.
(Optional) Enter log to cause an informational logging message about the packet that matches the entry to be sent to the console. |
| **Example:** Switch(config)# access-list 2 deny your_host |
How to Configure ACLs

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note</td>
<td>Logging is supported only on ACLs attached to Layer 3 interfaces.</td>
</tr>
</tbody>
</table>

**Step 4**

end

Example:
Switch(config)# end

Returns to privileged EXEC mode.

**Step 5**

show running-config

Example:
Switch# show running-config

Verifies your entries.

**Step 6**

copy running-config startup-config

Example:
Switch# copy running-config startup-config

(Optional) Saves your entries in the configuration file.

**Related Topics**

Configuring VLAN Maps, on page 916

**Creating a Numbered Extended ACL**

Follow these steps to create a numbered extended ACL:
SUMMARY STEPS

1. configure terminal
2. access-list access-list-number {deny | permit} protocol source source-wildcard destination destination-wildcard [precedence precedence] [tos tos] [fragments] [log [log-input] [time-range time-range-name] [dscp dscp]
3. access-list access-list-number {deny | permit} tcp source source-wildcard [operator port] destination destination-wildcard [operator port] [established] [precedence precedence] [tos tos] [fragments] [log [log-input] [time-range time-range-name] [dscp dscp] [flag]
4. access-list access-list-number {deny | permit} udp source source-wildcard [operator port] destination destination-wildcard [operator port] [precedence precedence] [tos tos] [fragments] [log [log-input] [time-range time-range-name] [dscp dscp]
5. access-list access-list-number {deny | permit} icmp source source-wildcard destination destination-wildcard [icmp-type] [icmp-type icmp-code] [icmp-message] [precedence precedence] [tos tos] [fragments] [log [log-input] [time-range time-range-name] [dscp dscp]
6. access-list access-list-number {deny | permit} igmp source source-wildcard destination destination-wildcard [igmp-type] [precedence precedence] [tos tos] [fragments] [log [log-input] [time-range time-range-name] [dscp dscp]
7. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> access-list access-list-number {deny</td>
<td>permit} protocol source source-wildcard destination destination-wildcard [precedence precedence] [tos tos] [fragments] [log [log-input] [time-range time-range-name] [dscp dscp]</td>
</tr>
<tr>
<td>Example: Switch(config)# access-list 101 permit ip host 10.1.1.2 any precedence 0 tos 0 log</td>
<td>The access-list-number is a decimal number from 100 to 199 or 2000 to 2699. Enter deny or permit to specify whether to deny or permit the packet if conditions are matched. For protocol, enter the name or number of an P protocol: ahp, eigrp, esp, gre, icmp, igmp, igrp, ip, ipinip, nos, ospf, pc, pim, tcp, or udp, or an integer in the range 0 to 255 representing an IP protocol number. To match any Internet protocol (including ICMP, TCP, and UDP), use the keyword ip.</td>
</tr>
<tr>
<td><strong>Note</strong> This step includes options for most IP protocols. For additional specific parameters for TCP, UDP, ICMP, and IGMP, see the following steps. The source is the number of the network or host from which the packet is sent. The source-wildcard applies wildcard bits to the source. The destination is the network or host number to which the packet is sent. The destination-wildcard applies wildcard bits to the destination.</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| **Step 3** access-list access-list-number {deny | permit} tcp source source-wildcard [operator port] destination destination-wildcard [operator port] [established] [precedence precedence] [tos tos] [flags] [log [log-input] [time-range time-range-name] [dscp dscp] [flag] | Source, source-wildcard, destination, and destination-wildcard can be specified as:  
- The 32-bit quantity in dotted-decimal format.  
- The keyword **any** for 0.0.0.0 255.255.255.255 (any host).  
- The keyword **host** for a single host 0.0.0.0.  
The other keywords are optional and have these meanings:  
- **precedence**—Enter to match packets with a precedence level specified as a number from 0 to 7 or by name: **routine** (0), **priority** (1), **immediate** (2), **flash** (3), **flash-override** (4), **critical** (5), **internet** (6), **network** (7).  
- **fragments**—Enter to check non-initial fragments.  
- **tos**—Enter to match by type of service level, specified by a number from 0 to 15 or a name: **normal** (0), **max-reliability** (2), **max-throughput** (4), **min-delay** (8).  
- **log**—Enter to create an informational logging message to be sent to the console about the packet that matches the entry or **log-input** to include the input interface in the log entry.  
- **time-range**—Specify the time-range name.  
- **dscp**—Enter to match packets with the DSCP value specified by a number from 0 to 63, or use the question mark (?) to see a list of available values.  

**Note** If you enter a **dscp** value, you cannot enter **tos** or **precedence**. You can enter both a **tos** and a **precedence** value with no **dscp**.  

Defines an extended TCP access list and the access conditions.  
The parameters are the same as those described for an extended IPv4 ACL, with these exceptions:  
(Optional) Enter an **operator** and **port** to compare source (if positioned after **source source-wildcard**) or destination (if positioned after **destination destination-wildcard**) port. Possible operators include **eq** (equal), **gt** (greater than), **lt** (less than), **neq** (not equal), and **range** (inclusive range). Operators require a port number (range requires two port numbers separated by a space).  
Enter the **port** number as a decimal number (from 0 to 65535) or the name of a TCP port. Use only TCP port numbers or names when filtering TCP.  
The other optional keywords have these meanings:  
- **established**—Enter to match an established connection. This has the same function as matching on the **ack** or **rst** flag.  
- **flag**—Enter one of these flags to match by the specified TCP header bits: **ack** (acknowledge), **fin** (finish), **psh** (push), **rst** (reset), **syn** (synchronize), or **urg** (urgent).  

Example:  
Switch(config)# access-list 101 permit tcp any any eq 500
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 4</strong> access-list access-list-number {deny</td>
<td>permit} udp source source-wildcard [operator port] destination destination-wildcard [operator port] [precedence precedence] [tos tos] [fragments] [log [log-input] [time-range time-range-name] [dscp dscp]</td>
</tr>
<tr>
<td><strong>Step 5</strong> access-list access-list-number {deny</td>
<td>permit} icmp source source-wildcard destination destination-wildcard [icmp-type] [[icmp-type icmp-code]</td>
</tr>
<tr>
<td><strong>Step 6</strong> access-list access-list-number {deny</td>
<td>permit} igmp source source-wildcard destination destination-wildcard [igmp-type] [precedence precedence] [tos tos] [fragments] [log [log-input] [time-range time-range-name] [dscp dscp]</td>
</tr>
<tr>
<td><strong>Step 7</strong> end</td>
<td>Returns to privileged EXEC mode. Example: Switch(config)# end</td>
</tr>
</tbody>
</table>
Creating Named Standard ACLs

Follow these steps to create a standard ACL using names:

**SUMMARY STEPS**

1. enable
2. configure terminal
3. ip access-list standard name
4. Use one of the following:
   - deny {source [source-wildcard] | host source | any} [log]
   - permit {source [source-wildcard] | host source | any} [log]
5. end
6. show running-config
7. copy running-config startup-config

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: Switch&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> ip access-list standard name</td>
<td>Defines a standard IPv4 access list using a name, and enter access-list configuration mode. The name can be a number from 1 to 99.</td>
</tr>
<tr>
<td>Example: Switch(config)# ip access-list standard 20</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> Use one of the following:</td>
<td>In access-list configuration mode, specify one or more conditions denied or permitted to decide if the packet is forwarded or dropped.</td>
</tr>
<tr>
<td>- deny {source [source-wildcard]</td>
<td>host source</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| • permit {source [source-wildcard] | host source | any} [log] | • host source—A source and source wildcard of source 0.0.0.0.  
• any—A source and source wildcard of 0.0.0.0 255.255.255.255. |

Example:
Switch(config-std-nacl)# deny 192.168.0.0 0.0.255.255 255.255.0.0 0.0.255.255  
Switch(config-std-nacl)# permit 10.108.0.0 0.0.0.0 255.255.255.0 0.0.0.0 |

Step 5  
end  
Example:  
Switch(config-std-nacl)# end  
Returns to privileged EXEC mode. |

Step 6  
show running-config  
Example:  
Switch# show running-config  
Verifies your entries. |

Step 7  
copy running-config startup-config  
(Optional) Saves your entries in the configuration file.  
Example:  
Switch# copy running-config startup-config |

**Creating Extended Named ACLs**

Follow these steps to create an extended ACL using names:
SUMMARY STEPS

1. enable
2. configure terminal
3. ip access-list extended name
4. {deny | permit} protocol {source [source-wildcard] | host source | any} {destination [destination-wildcard] | host destination | any} [precedence precedence] [tos tos] [established] [log] [time-range time-range-name]
5. end
6. show running-config
7. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: Switch&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Defines an extended IPv4 access list using a name, and enter access-list configuration mode. The name can be a number from 100 to 199.</td>
</tr>
<tr>
<td>ip access-list extended name</td>
<td>Defines an extended IPv4 access list using a name, and enter access-list configuration mode. The name can be a number from 100 to 199.</td>
</tr>
<tr>
<td>Example: Switch(config)# ip access-list extended 150</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>In access-list configuration mode, specify the conditions allowed or denied. Use the log keyword to get access list logging messages, including violations.</td>
</tr>
<tr>
<td>{deny</td>
<td>permit} protocol {source [source-wildcard]</td>
</tr>
<tr>
<td>Example: Switch(config-ext-nacl)# permit 0 any any</td>
<td>• host source—A source and source wildcard of source 0.0.0.0.</td>
</tr>
<tr>
<td></td>
<td>• host destination—A destination and destination wildcard of destination 0.0.0.0.</td>
</tr>
<tr>
<td></td>
<td>• any—A source and source wildcard or destination and destination wildcard of 0.0.0.0 255.255.255.255.</td>
</tr>
</tbody>
</table>
### Command or Action

<table>
<thead>
<tr>
<th>Step 5</th>
<th>end</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Switch(config-ext-nacl)# end</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 6</th>
<th>show running-config</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Switch# show running-config</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verifies your entries.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 7</th>
<th>copy running-config startup-config</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Switch# copy running-config startup-config</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>

When you are creating extended ACLs, remember that, by default, the end of the ACL contains an implicit deny statement for everything if it did not find a match before reaching the end. For standard ACLs, if you omit the mask from an associated IP host address access list specification, 0.0.0.0 is assumed to be the mask.

After you create an ACL, any additions are placed at the end of the list. You cannot selectively add ACL entries to a specific ACL. However, you can use `no permit` and `no deny` access-list configuration mode commands to remove entries from a named ACL.

Being able to selectively remove lines from a named ACL is one reason you might use named ACLs instead of numbered ACLs.

#### What to Do Next

After creating a named ACL, you can apply it to interfaces or to VLANs.

### Configuring Time Ranges for ACLs

Follow these steps to configure a time-range parameter for an ACL:
SUMMARY STEPS

1. enable
2. configure terminal
3. time-range time-range-name
4. Use one of the following:
   - absolute [start time date] [end time date]
   - periodic day-of-the-week hh:mm to [day-of-the-week] hh:mm
   - periodic {weekdays | weekend | daily} hh:mm to hh:mm
5. end
6. show running-config
7. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: Switch(config)# enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> time-range time-range-name</td>
<td>Assigns a meaningful name (for example, workhours) to the time range to be created, and enter time-range configuration mode. The name cannot contain a space or quotation mark and must begin with a letter.</td>
</tr>
<tr>
<td>Example: Switch(config)# time-range workhours</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> Use one of the following:</td>
<td>Specifies when the function it will be applied to is operational.</td>
</tr>
<tr>
<td>• absolute [start time date] [end time date]</td>
<td>• You can use only one absolute statement in the time range. If you configure more than one absolute statement, only the one configured last is executed.</td>
</tr>
<tr>
<td>• periodic day-of-the-week hh:mm to [day-of-the-week] hh:mm</td>
<td>• You can enter multiple periodic statements. For example, you could configure different hours for weekdays and weekends.</td>
</tr>
<tr>
<td>• periodic {weekdays</td>
<td>weekend</td>
</tr>
</tbody>
</table>
### How to Configure ACLs

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Example:</strong></td>
<td>See the example configurations.</td>
</tr>
<tr>
<td><code>Switch(config-time-range)# absolute start 00:00 1 Jan 2006 end 23:59 1 Jan 2006</code></td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td><code>Switch(config-time-range)# periodic weekdays 8:00 to 12:00</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>end</code></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Switch(config)# end</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td><code>show running-config</code></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Switch# show running-config</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Switch# copy running-config startup-config</code></td>
<td></td>
</tr>
</tbody>
</table>

**What to Do Next**
Repeat the steps if you have multiple items that you want in effect at different times.

**Related Topics**
- Time Ranges for ACLs, on page 897

### Applying an IPv4 ACL to a Terminal Line
You can use numbered ACLs to control access to one or more terminal lines. You cannot apply named ACLs to lines. You must set identical restrictions on all the virtual terminal lines because a user can attempt to connect to any of them.

Follow these steps to restrict incoming and outgoing connections between a virtual terminal line and the addresses in an ACL:
### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `line [console | vty] line-number`
4. `access-class access-list-number {in | out}`
5. `end`
6. `show running-config`
7. `copy running-config startup-config`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# <code>enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>configure terminal</code></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# <code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>`line [console</td>
<td>vty] line-number`</td>
</tr>
</tbody>
</table>
| Example: | Switch(config)# `line console 0` | • `console`—Specifies the console terminal line. The console port is DCE.  
• `vty`—Specifies a virtual terminal for remote console access.  
The `line-number` is the first line number in a contiguous group that you want to configure when the line type is specified. The range is from 0 to 16. |
| Step 4 | `access-class access-list-number {in | out}` | Restricts incoming and outgoing connections between a particular virtual terminal line (into a device) and the addresses in an access list. |
| Example: | Switch(config-line)# `access-class 10 in` | |
| Step 5 | `end` | Returns to privileged EXEC mode. |
| Example: | Switch(config-line)# `end` | |
### Step 6
**Command or Action**: show running-config  
**Purpose**: Verifies your entries.

**Example**:  
Switch# show running-config

### Step 7
**Command or Action**: copy running-config startup-config  
**Purpose**: (Optional) Saves your entries in the configuration file.

**Example**:  
Switch# copy running-config startup-config

---

**Applying an IPv4 ACL to an Interface**

This section describes how to apply IPv4 ACLs to network interfaces.

Beginning in privileged EXEC mode, follow these steps to control access to an interface:

#### SUMMARY STEPS

1. `configure terminal`
2. `interface interface-id`
3. `ip access-group {access-list-number | name} {in | out}`
4. `end`
5. `show running-config`
6. `copy running-config startup-config`

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> interface interface-id</td>
<td>Identifies a specific interface for configuration, and enter</td>
</tr>
<tr>
<td>Example:</td>
<td>interface configuration mode.</td>
</tr>
<tr>
<td>Switch(config)# interface gigabitethernet1/0/1</td>
<td>The interface can be a Layer 2 interface (port ACL), or a Layer 3 interface (router ACL).</td>
</tr>
</tbody>
</table>
**How to Configure ACLs**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 3</strong></td>
<td>`ip access-group {access-list-number</td>
<td>name} {in</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Switch(config-if)# ip access-group 2 in</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Switch(config-if)# end</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><code>show running-config</code></td>
<td>Displays the access list configuration.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Switch# show running-config</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Switch# copy running-config startup-config</code></td>
<td></td>
</tr>
</tbody>
</table>

**Related Topics**
- IPv4 ACL Interface Considerations, on page 898
- Restrictions for Configuring IPv4 Access Control Lists, on page 884

**Creating Named MAC Extended ACLs**
You can filter non-IPv4 traffic on a VLAN or on a Layer 2 interface by using MAC addresses and named MAC extended ACLs. The procedure is similar to that of configuring other extended named ACLs.

Follow these steps to create a named MAC extended ACL:
SUMMARY STEPS

1. enable
2. configure terminal
3. mac access-list extended name
4. \{deny | permit\} \{any | host source MAC address | source MAC address mask\} \{any | host destination MAC address | destination MAC address mask\} \{type mask | lsap lsap mask | aarp | amber | dec-spanning | decnet-iv | diagnostic | dsm | etype-6000 | etype-8042 | lat | lave-sca | mop-console | mop-dump | msdos | mumps | netbios | vines-echo | vines-ip | xns-idp | 0-65535\} \{cos cos\}
5. end
6. show running-config
7. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: Switch&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> mac access-list extended name</td>
<td>Defines an extended MAC access list using a name.</td>
</tr>
<tr>
<td>Example: Switch(config)# mac access-list extended mac1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> {deny</td>
<td>permit} {any</td>
</tr>
<tr>
<td>Example: Switch(config-ext-macl)# deny any any</td>
<td>* type mask—An arbitrary EtherType number of a packet with Ethernet II or SNAP encapsulation in decimal, hexadecimal, or octal with optional mask of don’t care bits applied to the EtherType before testing for a match.</td>
</tr>
</tbody>
</table>
### How to Configure ACLs

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>decnet-iv</td>
<td>• lsap  <em>lsap mask</em>—An LSAP number of a packet with IEEE 802.2 encapsulation in decimal, hexadecimal, or octal with optional mask of <em>don’t care</em> bits.</td>
</tr>
<tr>
<td>or</td>
<td>• aarp</td>
</tr>
<tr>
<td></td>
<td>• <em>cos</em>—An IEEE 802.1Q cost of service number from 0 to 7 used to set priority.</td>
</tr>
<tr>
<td>Switch(config-ext-macl)# permit any any</td>
<td></td>
</tr>
</tbody>
</table>

**Step 5**

**end**

Example:

```
Switch(config-ext-macl)# end
```

Returns to privileged EXEC mode.

**Step 6**

**show running-config**

Example:

```
Switch# show running-config
```

Verifies your entries.

**Step 7**

**copy running-config startup-config**

(Optional) Saves your entries in the configuration file.

Example:

```
Switch# copy running-config startup-config
```

### Related Topics

- Restrictions for Configuring IPv4 Access Control Lists, on page 884
- Configuring VLAN Maps, on page 916

### Applying a MAC ACL to a Layer 2 Interface

Follow these steps to apply a MAC access list to control access to a Layer 2 interface:
SUMMARY STEPS

1. enable
2. configure terminal
3. interface interface-id
4. mac access-group {name} {in | out }
5. end
6. show mac access-group [interface interface-id]
7. show running-config
8. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: Switch&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface interface-id</td>
<td>Identifies a specific interface, and enter interface configuration mode. The interface must be a physical Layer 2 interface (port ACL).</td>
</tr>
<tr>
<td>Example: Switch(config)# interface gigabitethernet1/0/2</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> mac access-group {name} {in</td>
<td>out }</td>
</tr>
<tr>
<td>Example: Switch(config-if)# mac access-group mac1 in</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Switch(config-if)# end</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>show mac access-group [interface interface-id]</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# show mac access-group interface gigabitethernet1/0/2</td>
</tr>
<tr>
<td></td>
<td>Displays the MAC access list applied to the interface or all Layer 2 interfaces.</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>show running-config</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# show running-config</td>
</tr>
<tr>
<td></td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>

After receiving a packet, the switch checks it against the inbound ACL. If the ACL permits it, the switch continues to process the packet. If the ACL rejects the packet, the switch discards it. When you apply an undefined ACL to an interface, the switch acts as if the ACL has not been applied and permits all packets. Remember this behavior if you use undefined ACLs for network security.

**Related Topics**

- Restrictions for Configuring IPv4 Access Control Lists, on page 884

**Configuring VLAN Maps**

To create a VLAN map and apply it to one or more VLANs, perform these steps:

**Before You Begin**

Create the standard or extended IPv4 ACLs or named MAC extended ACLs that you want to apply to the VLAN.
**SUMMARY STEPS**

1. `vlan access-map name [number]`
2. `match {ip | mac} address {name | number} [name | number]`
3. Enter one of the following commands to specify an IP packet or a non-IP packet (with only a known MAC address) and to match the packet against one or more ACLs (standard or extended):
   - `action { forward }`
     
     Switch(config-access-map)# action forward
   
   - `action { drop }`
     
     Switch(config-access-map)# action drop

4. `vlan filter mapname vlan-list list`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Creates a VLAN map, and give it a name and (optionally) a number. The number is the sequence number of the entry within the map.</td>
</tr>
<tr>
<td><code>vlan access-map name [number]</code></td>
<td>When you create VLAN maps with the same name, numbers are assigned sequentially in increments of 10. When modifying or deleting maps, you can enter the number of the map entry that you want to modify or delete. VLAN maps do not use the specific permit or deny keywords. To deny a packet by using VLAN maps, create an ACL that would match the packet, and set the action to drop. A permit in the ACL counts as a match. A deny in the ACL means no match.</td>
</tr>
<tr>
<td><em>Example:</em></td>
<td>Entering this command changes to access-map configuration mode.</td>
</tr>
<tr>
<td><code>Switch(config)# vlan access-map map_1 20</code></td>
<td></td>
</tr>
</tbody>
</table>

**Step 2**	Match the packet (using either the IP or MAC address) against one or more standard or extended access lists. Note that packets are only matched against access lists of the correct protocol type. IP packets are only matched against standard or extended IP access lists. Non-IP packets are only matched against named MAC extended access lists.			
`match {ip	mac} address {name	number} [name	number]`	*Note* If the VLAN map is configured with a match clause for a type of packet (IP or MAC) and the map action is drop, all packets that match the type are dropped. If the VLAN map has no match clause, and the configured action is drop, all IP and Layer 2 packets are dropped.
*Example:*				
`Switch(config-access-map)# match ip address ip2`				

| **Step 3** | Sets the action for the map entry. |
| Enter one of the following commands to specify an IP packet or a non-IP packet (with only a known MAC address) and to match the packet against one or more ACLs (standard or extended): |
How to Configure ACLs

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• action { forward}</td>
<td>Applies the VLAN map to one or more VLAN IDs. The list can be a single VLAN ID (22), a consecutive list (10-22), or a string of VLAN IDs (12, 22, 30). Spaces around the comma and hyphen are optional.</td>
</tr>
<tr>
<td>Switch(config-access-map)# action forward</td>
<td></td>
</tr>
<tr>
<td>• action { drop}</td>
<td></td>
</tr>
<tr>
<td>Switch(config-access-map)# action drop</td>
<td></td>
</tr>
</tbody>
</table>

Step 4

**vlan filter mapname vlan-list list**

Example:

```
Switch(config)# vlan filter map 1 vlan-list 20-22
```

Related Topics

- Creating a Numbered Standard ACL, on page 899
- Creating a Numbered Extended ACL, on page 900
- Creating Named MAC Extended ACLs, on page 912
- Creating a VLAN Map, on page 918
- Applying a VLAN Map to a VLAN, on page 920

Creating a VLAN Map

Each VLAN map consists of an ordered series of entries. Beginning in privileged EXEC mode, follow these steps to create, add to, or delete a VLAN map entry:

**SUMMARY STEPS**

1. configure terminal
2. vlan access-map name [number]
3. match {ip | mac} address {name | number} [name | number]
4. action {drop | forward}
5. end
6. show running-config
7. copy running-config startup-config
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
</tr>
<tr>
<td>Purpose:</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>vlan access-map name [number]</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# vlan access-map map_1 20</td>
</tr>
<tr>
<td>Purpose:</td>
<td>Creates a VLAN map, and give it a name and (optionally) a number. The number is the sequence number of the entry within the map. When you create VLAN maps with the same name, numbers are assigned sequentially in increments of 10. When modifying or deleting maps, you can enter the number of the map entry that you want to modify or delete. VLAN maps do not use the specific permit or deny keywords. To deny a packet by using VLAN maps, create an ACL that would match the packet, and set the action to drop. A permit in the ACL counts as a match. A deny in the ACL means no match. Entering this command changes to access-map configuration mode.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>match {ip</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-access-map)# match ip address ip2</td>
</tr>
<tr>
<td>Purpose:</td>
<td>Match the packet (using either the IP or MAC address) against one or more standard or extended access lists. Note that packets are only matched against access lists of the correct protocol type. IP packets are matched against standard or extended IP access lists. Non-IP packets are only matched against named MAC extended access lists.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>action {drop</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-access-map)# action forward</td>
</tr>
<tr>
<td>Purpose:</td>
<td>(Optional) Sets the action for the map entry. The default is to forward.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>end</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-access-map)# end</td>
</tr>
<tr>
<td>Purpose:</td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>show running-config</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# show running-config</td>
</tr>
<tr>
<td>Purpose:</td>
<td>Displays the access list configuration.</td>
</tr>
</tbody>
</table>
Applying a VLAN Map to a VLAN

Beginning in privileged EXEC mode, follow these steps to apply a VLAN map to one or more VLANs:

**SUMMARY STEPS**

1. enable
2. configure terminal
3. vlan filter mapname vlan-list list
4. end
5. show running-config
6. copy running-config startup-config

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: Switch&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> vlan filter mapname vlan-list list</td>
<td>Applies the VLAN map to one or more VLAN IDs.</td>
</tr>
</tbody>
</table>
### Command or Action

<table>
<thead>
<tr>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>The list can be a single VLAN ID (22), a consecutive list (10-22), or a string of VLAN IDs (12, 22, 30). Spaces around the comma and hyphen are optional.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch(config)# vlan filter map 1 vlan-list 20-22</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>end</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch(config)# end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 5</th>
<th>show running-config</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch# show running-config</code></td>
<td>Displays the access list configuration.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 6</th>
<th>copy running-config startup-config</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch# copy running-config startup-config</code></td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>

### Related Topics
- Configuring VLAN Maps, on page 916

### Configuring VACL Logging

Beginning in privileged EXEC mode:

### SUMMARY STEPS

1. `configure terminal`
2. `vlan access-map name [number]`
3. `action drop log`
4. `exit`
5. `vlan access-log {maxflow max_number | threshold pkt_count}`
6. `end`
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>vlan access-map name [number]</td>
<td>Creates a VLAN map. Give it a name and optionally a number. The number is the sequence number of the entry within the map. The sequence number range is from 0 to 65535. When you create VLAN maps with the same name, numbers are assigned sequentially in increments of 10. When modifying or deleting maps, you can enter the number of the map entry that you want to modify or delete. Specifying the map name and optionally a number enters the access-map configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# vlan access-map gandymede 10</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>action drop log</td>
<td>Sets the VLAN access map to drop and log IP packets.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-access-map)# action drop log</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>exit</td>
<td>Exits the VLAN access map configuration mode and return to the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-access-map)# exit</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>vlan access-log {maxflow max_number</td>
<td>Configures the VACL logging parameters.</td>
</tr>
<tr>
<td></td>
<td>[threshold pkt_count]}</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# vlan access-log threshold 4000</td>
<td></td>
</tr>
</tbody>
</table>

- **maxflow max_number**—Sets the log table size. The content of the log table can be deleted by setting the `maxflow` to 0. When the log table is full, the software drops logged packets from new flows. The range is from 0 to 2048. The default is 500.

- **threshold pkt_count**—Sets the logging threshold. A logging message is generated if the threshold for a flow is reached before the 5-minute interval. The threshold range is from 0 to 2147483647. The default threshold is 0, which means that a syslog message is generated every 5 minutes.
Monitoring IPv4 ACLs

You can monitor IPv4 ACLs by displaying the ACLs that are configured on the switch, and displaying the ACLs that have been applied to interfaces and VLANs.

When you use the `ip access-group` interface configuration command to apply ACLs to a Layer 2 or 3 interface, you can display the access groups on the interface. You can also display the MAC ACLs applied to a Layer 2 interface. You can use the privileged EXEC commands as described in this table to display this information.

### Table 105: Commands for Displaying Access Lists and Access Groups

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`show access-lists [number</td>
<td>name]`</td>
</tr>
<tr>
<td>`show ip access-lists [number</td>
<td>name]`</td>
</tr>
<tr>
<td><code>show ip interface interface-id</code></td>
<td>Displays detailed configuration and status of an interface. If IP is enabled on the interface and ACLs have been applied by using the <code>ip access-group</code> interface configuration command, the access groups are included in the display.</td>
</tr>
<tr>
<td><code>show running-config [interface interface-id]</code></td>
<td>Displays the contents of the configuration file for the switch or the specified interface, including all configured MAC and IP access lists and which access groups are applied to an interface.</td>
</tr>
<tr>
<td><code>show mac access-group [interface interface-id]</code></td>
<td>Displays MAC access lists applied to all Layer 2 interfaces or the specified Layer 2 interface.</td>
</tr>
</tbody>
</table>
Configuration Examples for ACLs

Examples: Using Time Ranges with ACLs

This example shows how to verify after you configure time ranges for `workhours` and to configure January 1, 2006, as a company holiday.

```
Switch# show time-range
 time-range entry: new_year_day_2003 (inactive)
 absolute start 00:00 01 January 2006 end 23:59 01 January 2006
 time-range entry: workhours (inactive)
 periodic weekdays 8:00 to 12:00
 periodic weekdays 13:00 to 17:00
```

To apply a time range, enter the time-range name in an extended ACL that can implement time ranges. This example shows how to create and verify extended access list 188 that denies TCP traffic from any source to any destination during the defined holiday times and permits all TCP traffic during work hours.

```
Switch(config)# access-list 188 deny tcp any any time-range new_year_day_2006
Switch(config)# access-list 188 permit tcp any any time-range workhours
Switch(config)# end
```

```
Switch# show access-lists
 Extended IP access list 188
 10 deny tcp any any time-range new_year_day_2006 (inactive)
 20 permit tcp any any time-range workhours (inactive)
```

This example uses named ACLs to permit and deny the same traffic.

```
Switch(config)# ip access-list extended deny_access
Switch(config-ext-nacl)# deny tcp any any time-range new_year_day_2006
Switch(config-ext-nacl)# exit
Switch(config)# ip access-list extended may_access
Switch(config-ext-nacl)# permit tcp any any time-range workhours
Switch(config-ext-nacl)# end
```

```
Switch# show ip access-lists
 Extended IP access list deny_access
 10 permit ip any any
 Extended IP access list may_access
 10 deny tcp any any time-range new_year_day_2006 (inactive)
 10 permit tcp any any time-range workhours (inactive)
```

Examples: Including Comments in ACLs

You can use the `remark` keyword to include comments (remarks) about entries in any IP standard or extended ACL. The remarks make the ACL easier for you to understand and scan. Each remark line is limited to 100 characters.

The remark can go before or after a permit or deny statement. You should be consistent about where you put the remark so that it is clear which remark describes which permit or deny statement. For example, it would be confusing to have some remarks before the associated permit or deny statements and some remarks after the associated statements.

To include a comment for IP numbered standard or extended ACLs, use the `access-list access-list number remark remark` global configuration command. To remove the remark, use the `no` form of this command.
In this example, the workstation that belongs to Jones is allowed access, and the workstation that belongs to Smith is not allowed access:

```plaintext
Switch(config)# access-list 1 remark Permit only Jones workstation through
Switch(config)# access-list 1 permit 171.69.2.88
Switch(config)# access-list 1 remark Do not allow Smith through
Switch(config)# access-list 1 deny 171.69.3.13
```

For an entry in a named IP ACL, use the `remark` access-list configuration command. To remove the remark, use the `no` form of this command.

In this example, the Jones subnet is not allowed to use outbound Telnet:

```plaintext
Switch(config)# ip access-list extended telnetting
Switch(config-ext-nacl)# remark Do not allow Jones subnet to telnet out
Switch(config-ext-nacl)# deny tcp host 171.69.2.88 any eq telnet
```

### Examples: Troubleshooting ACLs

If this ACL manager message appears and `[chars]` is the access-list name,

```
ACLMGR-2-NOVMR: Cannot generate hardware representation of access list [chars]
```

The switch has insufficient resources to create a hardware representation of the ACL. The resources include hardware memory and label space but not CPU memory. A lack of available logical operation units or specialized hardware resources causes this problem. Logical operation units are needed for a TCP flag match or a test other than `eq` (`ne`, `gt`, `lt`, or `range`) on TCP, UDP, or SCTP port numbers.

Use one of these workarounds:

- Modify the ACL configuration to use fewer resources.
- Rename the ACL with a name or number that alphanumerically precedes the ACL names or numbers.

To determine the specialized hardware resources, enter the `show platform layer4 acl` map privileged EXEC command. If the switch does not have available resources, the output shows that index 0 to index 15 are not available.

For more information about configuring ACLs with insufficient resources, see CSCsq63926 in the Bug Toolkit.

For example, if you apply this ACL to an interface:

```plaintext
permit tcp source source-wildcard destination destination-wildcard range 5 60
permit tcp source source-wildcard destination destination-wildcard range 15 160
permit tcp source source-wildcard destination destination-wildcard range 115 1660
permit tcp source source-wildcard destination destination-wildcard
```

And if this message appears:

```
ACLMGR-2-NOVMR: Cannot generate hardware representation of access list [chars]
```

The flag-related operators are not available. To avoid this issue,

- Move the fourth ACE before the first ACE by using `ip access-list resequence` global configuration command:

```plaintext
permit tcp source source-wildcard destination destination-wildcard
permit tcp source source-wildcard destination destination-wildcard range 5 60
permit tcp source source-wildcard destination destination-wildcard range 15 160
```
permit tcp source source-wildcard destination destination-wildcard range 115 1660

or

- Rename the ACL with a name or number that alphanumerically precedes the other ACLs (for example, rename ACL 79 to ACL 1).

You can now apply the first ACE in the ACL to the interface. The switch allocates the ACE to available mapping bits in the Opselect index and then allocates flag-related operators to use the same bits in the hardware memory.

**IPv4 ACL Configuration Examples**

This section provides examples of configuring and applying IPv4 ACLs. For detailed information about compiling ACLs, see the *Cisco IOS Security Configuration Guide, Release 12.4* and to the Configuring IP Services’ section in the “IP Addressing and Services” chapter of the *Cisco IOS IP Configuration Guide, Release 12.4*.

**ACLs in a Small Networked Office**

This shows a small networked office environment with routed Port 2 connected to Server A, containing benefits and other information that all employees can access, and routed Port 1 connected to Server B, containing confidential payroll data. All users can access Server A, but Server B has restricted access.

*Figure 71: Using Router ACLs to Control Traffic*

Use router ACLs to do this in one of two ways:

- Create a standard ACL, and filter traffic coming to the server from Port 1.
• Create an extended ACL, and filter traffic coming from the server into Port 1.

Examples: ACLs in a Small Networked Office

This example uses a standard ACL to filter traffic coming into Server B from a port, permitting traffic only from Accounting’s source addresses 172.20.128.64 to 172.20.128.95. The ACL is applied to traffic coming out of routed Port 1 from the specified source address.

Switch(config)# access-list 6 permit 172.20.128.64 0.0.0.31
Switch(config)# end
Switch(config)# show access-lists
Standard IP access list 6
  10 permit 172.20.128.64, wildcard bits 0.0.0.31
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# ip access-group 6 out

This example uses an extended ACL to filter traffic coming from Server B into a port, permitting traffic from any source address (in this case Server B) to only the Accounting destination addresses 172.20.128.64 to 172.20.128.95. The ACL is applied to traffic going into routed Port 1, permitting it to go only to the specified destination addresses. Note that with extended ACLs, you must enter the protocol (IP) before the source and destination information.

Switch(config)# access-list 106 permit ip any 172.20.128.64 0.0.0.31
Switch(config)# end
Switch(config)# show access-lists
Extended IP access list 106
  10 permit ip any 172.20.128.64 0.0.0.31
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# ip access-group 106 in

Example: Numbered ACLs

In this example, network 36.0.0.0 is a Class A network whose second octet specifies a subnet; that is, its subnet mask is 255.255.0.0. The third and fourth octets of a network 36.0.0.0 address specify a particular host. Using access list 2, the switch accepts one address on subnet 48 and reject all others on that subnet. The last line of the list shows that the switch accepts addresses on all other network 36.0.0.0 subnets. The ACL is applied to packets entering a port.

Switch(config)# access-list 2 permit 36.48.0.3
Switch(config)# access-list 2 deny 36.48.0.0 0.0.255.255
Switch(config)# access-list 2 permit 36.0.0.0 0.255.255.255
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# ip access-group 2 in

Examples: Extended ACLs

In this example, the first line permits any incoming TCP connections with destination ports greater than 1023. The second line permits incoming TCP connections to the Simple Mail Transfer Protocol (SMTP) port of host 128.88.1.2. The third line permits incoming ICMP messages for error feedback.

Switch(config)# access-list 102 permit tcp any 128.88.0.0 0.0.255.255 gt 1023
Switch(config)# access-list 102 permit tcp any host 128.88.1.2 eq 25
Switch(config)# access-list 102 permit icmp any any
Switch(config)# interface gigabitethernet2/0/1
In this example, suppose that you have a network connected to the Internet, and you want any host on the network to be able to form TCP connections to any host on the Internet. However, you do not want IP hosts to be able to form TCP connections to hosts on your network, except to the mail (SMTP) port of a dedicated mail host.

SMTP uses TCP port 25 on one end of the connection and a random port number on the other end. The same port numbers are used throughout the life of the connection. Mail packets coming in from the Internet have a destination port of 25. Outbound packets have the port numbers reversed. Because the secure system of the network always accepts mail connections on port 25, the incoming and outgoing services are separately controlled. The ACL must be configured as an input ACL on the outbound interface and an output ACL on the inbound interface.

In this example, the network is a Class B network with the address 128.88.0.0, and the mail host address is 128.88.1.2. The established keyword is used only for the TCP to show an established connection. A match occurs if the TCP datagram has the ACK or RST bits set, which show that the packet belongs to an existing connection. Gigabit Ethernet interface 1 on stack member 1 is the interface that connects the router to the Internet.

Examples: Named ACLs

Creating named standard and extended ACLs

This example creates a standard ACL named internet_filter and an extended ACL named marketing_group. The internet_filter ACL allows all traffic from the source address 1.2.3.4.

The marketing_group ACL allows any TCP Telnet traffic to the destination address and wildcard 171.69.0.0 0.0.255.255 and denies any other TCP traffic. It permits ICMP traffic, denies UDP traffic from any source to the destination address range 171.69.0.0 through 179.69.255.255 with a destination port less than 1024, denies any other IP traffic, and provides a log of the result.
The Internet_filter ACL is applied to outgoing traffic and the marketing_group ACL is applied to incoming traffic on a Layer 3 port.

```
Switch(config)# interface gigabitethernet3/0/2
Switch(config-if)# no switchport
Switch(config-if)# ip address 2.0.5.1 255.255.255.0
Switch(config-if)# ip access-group Internet_filter out
Switch(config-if)# ip access-group marketing_group in
```

**Deleting individual ACEs from named ACLs**

This example shows how you can delete individual ACEs from the named access list `border-list`:

```
Switch(config)# ip access-list extended border-list
Switch(config-ext-nacl)# no permit ip host 10.1.1.3 any
```

**Examples: Time Range Applied to an IP ACL**

This example denies HTTP traffic on IP on Monday through Friday between the hours of 8:00 a.m. and 6:00 p.m (18:00). The example allows UDP traffic only on Saturday and Sunday from noon to 8:00 p.m. (20:00).

```
Switch(config)# time-range no-http
Switch(config)# periodic weekdays 8:00 to 18:00
Switch(config)# time-range udp-yes
Switch(config)# periodic weekend 12:00 to 20:00
Switch(config)# ip access-list extended strict
Switch(config-ext-nacl)# deny tcp any any eq www time-range no-http
Switch(config-ext-nacl)# permit udp any any time-range udp-yes
Switch(config-ext-nacl)# exit
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# ip access-group strict in
```

**Examples: Configuring Commented IP ACL Entries**

In this example of a numbered ACL, the workstation that belongs to Jones is allowed access, and the workstation that belongs to Smith is not allowed access:

```
Switch(config)# access-list 1 remark Permit only Jones workstation through
Switch(config)# access-list 1 permit 171.69.2.88
Switch(config)# access-list 1 remark Do not allow Smith workstation through
Switch(config)# access-list 1 deny 171.69.3.13
```

In this example of a numbered ACL, the Winter and Smith workstations are not allowed to browse the web:

```
Switch(config)# access-list 100 remark Do not allow Winter to browse the web
Switch(config)# access-list 100 deny host 171.69.3.85 any eq www
Switch(config)# access-list 100 remark Do not allow Smith to browse the web
Switch(config)# access-list 100 deny host 171.69.3.13 any eq www
```

In this example of a named ACL, the Jones subnet is not allowed access:

```
Switch(config)# ip access-list standard prevention
Switch(config-std-nacl)# remark Do not allow Jones subnet through
```
Switch(config-standard-nacl)# deny 171.69.0.0 0.0.255.255

In this example of a named ACL, the Jones subnet is not allowed to use outbound Telnet:

Switch(config)# ip access-list extended telnetting
Switch(config-ext-nacl)# remark Do not allow Jones subnet to telnet out
Switch(config-ext-nacl)# deny tcp 171.69.0.0 0.0.255.255 any eq telnet

Examples: ACL Logging

Two variations of logging are supported on router ACLs. The log keyword sends an informational logging message to the console about the packet that matches the entry; the log-input keyword includes the input interface in the log entry.

In this example, standard named access list *stan1* denies traffic from 10.1.1.0 0.0.0.255, allows traffic from all other sources, and includes the log keyword.

Switch(config)# ip access-list standard stan1
Switch(config-standard-nacl)# deny 10.1.1.0 0.0.0.255 log
Switch(config-standard-nacl)# exit
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# ip access-group stan1 in
Switch(config-if)# end
Switch# show logging
Syslog logging: enabled (0 messages dropped, 0 flushes, 0 overruns)
  Console logging: level debugging, 37 messages logged
  Monitor logging: level debugging, 0 messages logged
  Buffer logging: level debugging, 37 messages logged
  File logging: disabled
  Trap logging: level debugging, 39 messages logged

Log Buffer (4096 bytes):
00:00:48: NTP: authentication delay calculation problems
<output truncated>
00:09:34:%SEC-6-IPACCESSLOGS:list stan1 permitted 0.0.0.0 1 packet
00:09:59:%SEC-6-IPACCESSLOGS:list stan1 denied 10.1.1.15 1 packet
00:10:11:%SEC-6-IPACCESSLOGS:list stan1 permitted 0.0.0.0 1 packet

This example is a named extended access list *extl* that permits ICMP packets from any source to 10.1.1.0 0.0.0.255 and denies all UDP packets.

Switch(config)# ip access-list extended extl
Switch(config-ext-nacl)# permit icmp any 10.1.1.0 0.0.0.255 log
Switch(config-ext-nacl)# deny udp any any log
Switch(config-ext-nacl)# exit
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# ip access-group ext1 in

This is an example of a log for an extended ACL:

01:24:23:%SEC-6-IPACCESSLOGDP:list ext1 permitted icmp 10.1.1.15 -> 10.1.1.61 (0/0), 1 packet
01:25:14:%SEC-6-IPACCESSLOGDP:list ext1 permitted icmp 10.1.1.15 -> 10.1.1.61 (0/0), 7 packets
01:26:12:%SEC-6-IPACCESSLOGDP:list ext1 denied udp 0.0.0.0(0) -> 255.255.255.255(0), 1 packet
01:31:33:%SEC-6-IPACCESSLOGDP:list ext1 denied udp 0.0.0.0(0) -> 255.255.255.255(0), 8 packets

Note that all logging entries for IP ACLs start with %SEC-6-IPACCESSLOG with minor variations in format depending on the kind of ACL and the access entry that has been matched.
This is an example of an output message when the **log-input** keyword is entered:

```
00:04:21:%SEC-6-IPACCESSLOGDP:list inputlog permitted icmp 10.1.1.10 (Vlan1 0001.42ef.a400) -> 10.1.1.61 (0/0), 1 packet
```

A log message for the same sort of packet using the **log** keyword does not include the input interface information:

```
00:05:47:%SEC-6-IPACCESSLOGDP:list inputlog permitted icmp 10.1.1.10 -> 10.1.1.61 (0/0), 1 packet
```

## Configuration Examples for ACLs and VLAN Maps

### Example: Creating an ACL and a VLAN Map to Deny a Packet

This example shows how to create an ACL and a VLAN map to deny a packet. In the first map, any packets that match the **ip1** ACL (TCP packets) would be dropped. You first create the **ip1** ACL to permit any TCP packet and no other packets. Because there is a match clause for IP packets in the VLAN map, the default action is to drop any IP packet that does not match any of the match clauses.

```
Switch(config)# ip access-list extended ip1
Switch(config-ext-nacl)# permit tcp any any
Switch(config-ext-nacl)# exit
Switch(config)# vlan access-map map_1 10
Switch(config-access-map)# match ip address ip1
Switch(config-access-map)# action drop
```

### Example: Creating an ACL and a VLAN Map to Permit a Packet

This example shows how to create a VLAN map to permit a packet. ACL **ip2** permits UDP packets and any packets that match the **ip2** ACL are forwarded. In this map, any IP packets that did not match any of the previous ACLs (that is, packets that are not TCP packets or UDP packets) would get dropped.

```
Switch(config)# ip access-list extended ip2
Switch(config-ext-nacl)# permit udp any any
Switch(config-ext-nacl)# exit
Switch(config)# vlan access-map map_1 20
Switch(config-access-map)# match ip address ip2
Switch(config-access-map)# action forward
```

### Example: Default Action of Dropping IP Packets and Forwarding MAC Packets

In this example, the VLAN map has a default action of drop for IP packets and a default action of forward for MAC packets. Used with standard ACL 101 and extended named access lists **igmp-match** and **tcp-match**, the map will have the following results:

- Forward all UDP packets
- Drop all IGMP packets
- Forward all TCP packets
- Drop all other IP packets
• Forward all non-IP packets

Switch(config)# access-list 101 permit udp any any
Switch(config)# ip access-list extended igmp-match
Switch(config-ext-nacl)# permit igmp any any

Switch(config-ext-nacl)# permit tcp any any
Switch(config-ext-nacl)# exit
Switch(config)# vlan access-map drop-ip-default 10
Switch(config-access-map)# match ip address 101
Switch(config-access-map)# action forward
Switch(config-access-map)# exit
Switch(config)# vlan access-map drop-ip-default 20
Switch(config-access-map)# match ip address igmp-match
Switch(config-access-map)# action drop
Switch(config-access-map)# exit
Switch(config)# vlan access-map drop-ip-default 30
Switch(config-access-map)# match ip address tcp-match
Switch(config-access-map)# action forward

Example: Default Action of Dropping MAC Packets and Forwarding IP Packets

In this example, the VLAN map has a default action of drop for MAC packets and a default action of forward for IP packets. Used with MAC extended access lists good-hosts and good-protocols, the map will have the following results:

• Forward MAC packets from hosts 0000.0c00.0111 and 0000.0c00.0211

• Forward MAC packets with decnet-iv or vines-ip protocols

• Drop all other non-IP packets

• Forward all IP packets

Switch(config)# mac access-list extended good-hosts
Switch(config-ext-nacl)# permit host 000.0c00.0111 any
Switch(config-ext-nacl)# permit host 000.0c00.0211 any
Switch(config-ext-nacl)# exit
Switch(config)# action forward
Switch(config-ext-nacl)# exit
Switch(config)# vlan access-map drop-mac-default 10
Switch(config-access-map)# match mac address good-hosts
Switch(config-access-map)# action forward
Switch(config-access-map)# exit
Switch(config)# vlan access-map drop-mac-default 20
Switch(config-access-map)# match mac address good-protocols
Switch(config-access-map)# action forward

Example: Default Action of Dropping All Packets

In this example, the VLAN map has a default action of drop for all packets (IP and non-IP). Used with access lists tcp-match and good-hosts from Examples 2 and 3, the map will have the following results:

• Forward all TCP packets

• Forward MAC packets from hosts 0000.0c00.0111 and 0000.0c00.0211

• Drop all other IP packets

Switch(config)# mac access-list extended good-hosts
Switch(config-ext-nacl)# permit host 000.0c00.0111 any
Switch(config-ext-nacl)# permit host 000.0c00.0211 any
Switch(config-ext-nacl)# exit
Switch(config)# action forward
Switch(config-ext-nacl)# exit
Switch(config)# vlan access-map drop-mac-default 10
Switch(config-access-map)# match mac address good-hosts
Switch(config-access-map)# action forward
Switch(config-access-map)# exit
Switch(config)# vlan access-map drop-mac-default 20
Switch(config-access-map)# match mac address good-protocols
Switch(config-access-map)# action forward
• Drop all other MAC packets

Switch(config)# vlan access-map drop-all-default 10
Switch(config-access-map)# match ip address tcp-match
Switch(config-access-map)# action forward
Switch(config-access-map)# exit
Switch(config)# vlan access-map drop-all-default 20
Switch(config-access-map)# match mac address good-hosts
Switch(config-access-map)# action forward

Configuration Examples for Using VLAN Maps in Your Network

Example: Wiring Closet Configuration

In a wiring closet configuration, routing might not be enabled on the switch. In this configuration, the switch can still support a VLAN map and a QoS classification ACL. Assume that Host X and Host Y are in different VLANs and are connected to wiring closet switches A and C. Traffic from Host X to Host Y is eventually being routed by Switch B, a Layer 3 switch with routing enabled. Traffic from Host X to Host Y can be access-controlled at the traffic entry point, Switch A.

Figure 72: Wiring Closet Configuration

If you do not want HTTP traffic switched from Host X to Host Y, you can configure a VLAN map on Switch A to drop all HTTP traffic from Host X (IP address 10.1.1.32) to Host Y (IP address 10.1.1.34) at Switch A and not bridge it to Switch B.

First, define the IP access list http that permits (matches) any TCP traffic on the HTTP port.

Switch(config)# ip access-list extended http
Switch(config-ext-nacl)# permit tcp host 10.1.1.32 host 10.1.1.34 eq www
Switch(config-ext-nacl)# exit
Next, create VLAN access map `map2` so that traffic that matches the `http` access list is dropped and all other IP traffic is forwarded.

```bash
Switch(config)# vlan access-map map2 10
Switch(config-access-map)# match ip address http
Switch(config-access-map)# action drop
Switch(config-access-map)# exit
Switch(config)# ip access-list extended match_all
Switch(config-ext-nacl)# permit ip any any
Switch(config-ext-nacl)# exit
Switch(config)# vlan access-map map2 20
Switch(config-access-map)# match ip address match_all
Switch(config-access-map)# action forward
```

Then, apply VLAN access map `map2` to VLAN 1.

```bash
Switch(config)# vlan filter map2 vlan 1
```

**Example: Restricting Access to a Server on Another VLAN**

You can restrict access to a server on another VLAN. For example, server 10.1.1.100 in VLAN 10 needs to have access denied to these hosts:

- Hosts in subnet 10.1.2.0/8 in VLAN 20 should not have access.
- Hosts 10.1.1.4 and 10.1.1.8 in VLAN 10 should not have access.

*Figure 73: Restricting Access to a Server on Another VLAN*

**Example: Denying Access to a Server on Another VLAN**

This example shows how to deny access to a server on another VLAN by creating the VLAN map `SERVER1` that denies access to hosts in subnet 10.1.2.0.8, host 10.1.1.4, and host 10.1.1.8 and permits other IP traffic. The final step is to apply the map `SERVER1` to VLAN 10.

Define the IP ACL that will match the correct packets.

```bash
Switch(config)# ip access-list extended SERVER1_ACL
Switch(config-ext-nacl)# permit ip 10.1.2.0 0.0.0.255 host 10.1.1.100
```
Switch(config-ext-nacl)# permit ip host 10.1.1.4 host 10.1.1.100
Switch(config-ext-nacl)# permit ip host 10.1.1.8 host 10.1.1.100
Switch(config-ext-nacl)# exit

Define a VLAN map using this ACL that will drop IP packets that match SERVER1_ACL and forward IP packets that do not match the ACL.

Switch(config)# vlan access-map SERVER1_MAP
Switch(config-access-map)# match ip address SERVER1_ACL
Switch(config-access-map)# action drop
Switch(config)# vlan access-map SERVER1_MAP 20
Switch(config-access-map)# action forward
Switch(config-access-map)# exit

Apply the VLAN map to VLAN 10.

Switch(config)# vlan filter SERVER1_MAP vlan-list 10

Configuration Examples of Router ACLs and VLAN Maps Applied to VLANs

This section gives examples of applying router ACLs and VLAN maps to a VLAN for switched, bridged, routed, and multicast packets. Although the following illustrations show packets being forwarded to their destination, each time the packet’s path crosses a line indicating a VLAN map or an ACL, it is also possible that the packet might be dropped, rather than forwarded.

Example: ACLs and Switched Packets

This example shows how an ACL is applied on packets that are switched within a VLAN. Packets switched within the VLAN without being routed or forwarded by fallback bridging are only subject to the VLAN map of the input VLAN.

*Figure 74: Applying ACLs on Switched Packets*
Example: ACLs and Bridged Packets

This example shows how an ACL is applied on fallback-bridged packets. For bridged packets, only Layer 2 ACLs are applied to the input VLAN. Only non-IP, non-ARP packets can be fallback-bridged.

Figure 75: Applying ACLs on Bridged Packets

Example: ACLs and Routed Packets

This example shows how ACLs are applied on routed packets. The ACLs are applied in this order:

1. VLAN map for input VLAN
2. Input router ACL
3. Output router ACL
4. VLAN map for output VLAN
Example: ACLs and Multicast Packets

This example shows how ACLs are applied on packets that are replicated for IP multicasting. A multicast packet being routed has two different kinds of filters applied: one for destinations that are other ports in the input VLAN and another for each of the destinations that are in other VLANs to which the packet has been routed. The packet might be routed to more than one output VLAN, in which case a different router output ACL and VLAN map would apply for each destination VLAN. The final result is that the packet might be permitted in some of the output VLANs and not in others. A copy of the packet is forwarded to those destinations where it is permitted. However, if the input VLAN map drops the packet, no destination receives a copy of the packet.
Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
</table>

Error Message Decoder

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>To help you research and resolve system error messages in this release, use the Error Message Decoder tool.</td>
<td><a href="https://www.cisco.com/cgi-bin/Support/ErrorHandler/index.cgi">https://www.cisco.com/cgi-bin/Support/ErrorHandler/index.cgi</a></td>
</tr>
</tbody>
</table>

Figure 77: Applying ACLs on Multicast Packets
MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>All supported MIBs for this release.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/support">http://www.cisco.com/support</a></td>
</tr>
</tbody>
</table>

Feature Information for IPv4 Access Control Lists

<table>
<thead>
<tr>
<th>Release</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS 15.0(2)EX</td>
<td>IPv4 Access Control Lists perform packet filtering to control which packets move through the network and where. Such control provides security by helping to limit network traffic, restrict the access of users and devices to the network, and prevent traffic from leaving a network. This feature was introduced.</td>
</tr>
<tr>
<td>Cisco IOS 15.2(2)E</td>
<td>The Named ACL Support for Noncontiguous Ports on an Access Control Entry feature allows you to specify noncontiguous ports in a single access control entry, which greatly reduces the number of entries required in an access control list when several entries have the same source address, destination address, and protocol, but differ only in the ports.</td>
</tr>
</tbody>
</table>
The IP Access List Entry Sequence Numbering feature helps users to apply sequence numbers to permit or deny statements and also reorder, add, or remove such statements from a named IP access list. This feature makes revising IP access lists much easier. Prior to this feature, users could add access list entries to the end of an access list only; therefore needing to add statements anywhere except the end required reconfiguring the access list entirely.

The following commands were introduced or modified: `deny (IP)`, `ip access-list resequence deny (IP)`, `permit (IP)`.

<table>
<thead>
<tr>
<th>Release</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS 15.2(2)E</td>
<td>The IP Access List Entry Sequence Numbering feature helps users to apply sequence numbers to permit or deny statements and also reorder, add, or remove such statements from a named IP access list. Prior to this feature, users could add access list entries to the end of an access list only; therefore needing to add statements anywhere except the end required reconfiguring the access list entirely. The following commands were introduced or modified: <code>deny (IP)</code>, <code>ip access-list resequence deny (IP)</code>, <code>permit (IP)</code></td>
</tr>
</tbody>
</table>
CHAPTER 41

Configuring IPv6 ACLs

- Finding Feature Information, page 941
- IPv6 ACLs Overview, page 941
- Restrictions for IPv6 ACLs, page 942
- Default Configuration for IPv6 ACLs, page 943
- Configuring IPv6 ACLs, page 944
- Attaching an IPv6 ACL to an Interface, page 947
- Monitoring IPv6 ACLs, page 949
- Additional References, page 950

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

IPv6 ACLs Overview

You can filter IP Version 6 (IPv6) traffic by creating IPv6 access control lists (ACLs) and applying them to interfaces similar to how you create and apply IP Version 4 (IPv4) named ACLs. You can also create and apply input router ACLs to filter Layer 3 management traffic when the switch is running IP base and LAN base feature sets.

A switch supports three types of IPv6 ACLs:
• IPv6 router ACLs are supported on outbound or inbound traffic on Layer 3 interfaces, which can be routed ports, switch virtual interfaces (SVIs), or Layer 3 EtherChannels. IPv6 router ACLs apply only to IPv6 packets that are routed.

• IPv6 port ACLs are supported on inbound Layer 2 interfaces. IPv6 port ACLs are applied to all IPv6 packets entering the interface.

• VLAN ACLs or VLAN maps access-control all packets in a VLAN. You can use VLAN maps to filter traffic between devices in the same VLAN. ACL VLAN maps are applied on L2 VLANs. VLAN maps are configured to provide access control based on Layer 3 addresses for IPv6. Unsupported protocols are access-controlled through MAC addresses using Ethernet ACEs. After a VLAN map is applied to a VLAN, all packets entering the VLAN are checked against the VLAN map.

The switch does not support VLAN ACLs (VLAN maps) for IPv6 traffic.

You can apply both IPv4 and IPv6 ACLs to an interface. As with IPv4 ACLs, IPv6 port ACLs take precedence over router ACLs.

Switch Stacks and IPv6 ACLs

The active switch supports IPv6 ACLs in hardware and distributes the IPv6 ACLs to the stack members. If a standby switch takes over as the active switch, it distributes the ACL configuration to all stack members. The member switches sync up the configuration distributed by the new active switch and flush out entries that are not required.

When an ACL is modified, attached to, or detached from an interface, the active switch distributes the change to all stack members.

Interactions with Other Features and Switches

• If an IPv6 router ACL is configured to deny a packet, the packet is not routed. A copy of the packet is sent to the Internet Control Message Protocol (ICMP) queue to generate an ICMP unreachable message for the frame.

• If a bridged frame is to be dropped due to a port ACL, the frame is not bridged.

• You can create both IPv4 and IPv6 ACLs on a switch or switch stack, and you can apply both IPv4 and IPv6 ACLs to the same interface. Each ACL must have a unique name; an error message appears if you try to use a name that is already configured.

You use different commands to create IPv4 and IPv6 ACLs and to attach IPv4 or IPv6 ACLs to the same Layer 2 or Layer 3 interface. If you use the wrong command to attach an ACL (for example, an IPv4 command to attach an IPv6 ACL), you receive an error message.

• You cannot use MAC ACLs to filter IPv6 frames. MAC ACLs can only filter non-IP frames.

• If the hardware memory is full, packets are dropped on the interface and an unload error message is logged.

Restrictions for IPv6 ACLs

With IPv4, you can configure standard and extended numbered IP ACLs, named IP ACLs, and MAC ACLs. IPv6 supports only named ACLs.
The switch supports most Cisco IOS-supported IPv6 ACLs with some exceptions:

- The switch does not support matching on these keywords: **flowlabel**, **routing header**, and **undetermined-transport**.
- The switch does not support reflexive ACLs (the **reflect** keyword).
- This release supports only port ACLs and router ACLs for IPv6; it does not support VLAN ACLs (VLAN maps).
- Output router ACLs and input port ACLs for IPv6 are supported only on switch stacks. Switches support only control plane (incoming) IPv6 ACLs.
- The switch does not apply MAC-based ACLs on IPv6 frames.
- You cannot apply IPv6 port ACLs to Layer 2 EtherChannels.
- When configuring an ACL, there is no restriction on keywords entered in the ACL, regardless of whether or not they are supported on the platform. When you apply the ACL to an interface that requires hardware forwarding (physical ports or SVIs), the switch checks to determine whether or not the ACL can be supported on the interface. If not, attaching the ACL is rejected.
- If an ACL is applied to an interface and you attempt to add an access control entry (ACE) with an unsupported keyword, the switch does not allow the ACE to be added to the ACL that is currently attached to the interface.

IPv6 ACLs on the switch have these characteristics:

- Fragmented frames (the **fragments** keyword as in IPv4) are supported
- The same statistics supported in IPv4 are supported for IPv6 ACLs.
- If the switch runs out of hardware space, the packets associated with the ACL are dropped on the interface.
- Routed or bridged packets with hop-by-hop options have IPv6 ACLs applied in software.
- Logging is supported for router ACLs, but not for port ACLs.
- The switch supports IPv6 address-matching for a full range of prefix-lengths.

### Default Configuration for IPv6 ACLs

The default IPv6 ACL configuration is as follows:

```
Switch# show access-lists preauth_ipv6_acl
IPv6 access list preauth_ipv6_acl (per-user)
permit udp any any eq domain sequence 10
permit tcp any any eq domain sequence 20
permit icmp any any nd-ns sequence 30
permit icmp any any router-solicitation sequence 50
permit icmp any any router-advertisement sequence 60
permit icmp any any redirect sequence 70
permit udp any eq 547 any eq 546 sequence 80
permit udp any eq 546 any eq 547 sequence 90
deny ipv6 any any sequence 100
```
Configuring IPv6 ACLs

To filter IPv6 traffic, you perform these steps:

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `ipv6 access-list list-name`
4. `{deny | permit} protocol {source-ipv6-prefix/prefix-length|any} host source-ipv6-address} [operator [port-number]] [destination-ipv6-prefix/prefix-length | any] host destination-ipv6-address} [operator [port-number]] [dscp value] [fragments] [log] [log-input] [routing] [sequence value] [time-range name]
5. `{deny | permit} tcp {source-ipv6-prefix/prefix-length | any} host source-ipv6-address} [operator [port-number]] [dscp value] [established] [ack] [log] [log-input] [neq [port | protocol]] [pssh] [range [port | protocol]] [rst] [rseq] [time-range name] [urg]
6. `{deny | permit} udp {source-ipv6-prefix/prefix-length | any} host source-ipv6-address} [operator [port-number]] [tcp-ipv6-prefix/prefix-length | any] host destination-ipv6-address} [operator [port-number]] [dscp value] [log] [log-input] [neq [port | protocol]] [range [port | protocol]] [routing] [sequence value] [time-range name]
7. `{deny | permit} icmp {source-ipv6-prefix/prefix-length | any} host source-ipv6-address} [operator [port-number]] [tcp-ipv6-prefix/prefix-length | any] host destination-ipv6-address} [operator [port-number]] [icmp-type [icmp-code] [icmp-message] [dscp value] [log] [log-input] [routing] [sequence value] [time-range name]
8. `end`
9. `show ipv6 access-list`
10. `show running-config`
11. `copy running-config startup-config`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> <code>enable</code></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch&gt; enable</td>
</tr>
<tr>
<td><strong>Step 2</strong> <code>configure terminal</code></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
</tr>
</tbody>
</table>
### Command or Action

**Step 3**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6 access-list list-name</td>
<td>Defines an IPv6 ACL name, and enters IPv6 access list configuration mode.</td>
</tr>
</tbody>
</table>

**Example:**

Switch(config)# ipv6 access-list example_acl_list

**Step 4**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| {deny | permit} protocol {source-ipv6-prefix/prefix-length| any| host source-ipv6-address} [ operator [ port-number ]] { destination-ipv6-prefix/prefix-length | any | host destination-ipv6-address} [ operator [ port-number ]] [dscp value] [fragments] [log] [log-input] [routing] [sequence value] [time-range name] | Enter deny or permit to specify whether to deny or permit the packet if conditions are matched. These are the conditions:  
- For protocol, enter the name or number of an Internet protocol: ahp, esp, icmp, ipv6, pcp, step, tcp, or udp, or an integer in the range 0 to 255 representing an IPv6 protocol number.  
- The source-ipv6-prefix/prefix-length or destination-ipv6-prefix/prefix-length is the source or destination IPv6 network or class of networks for which to set deny or permit conditions, specified in hexadecimal and using 16-bit values between colons (see RFC 2373).  
- Enter any as an abbreviation for the IPv6 prefix ::/0.  
- For host source-ipv6-address or destination-ipv6-address, enter the source or destination IPv6 host address for which to set deny or permit conditions, specified in hexadecimal using 16-bit values between colons.  
- (Optional) For operator, specify an operand that compares the source or destination ports of the specified protocol. Operands are lt (less than), gt (greater than), eq (equal), neq (not equal), and range. If the operator follows the source-ipv6-prefix/prefix-length argument, it must match the source port. If the operator follows the destination-ipv6-prefix/prefix-length argument, it must match the destination port.  
- (Optional) The port-number is a decimal number from 0 to 65535 or the name of a TCP or UDP port. You can use TCP port names only when filtering TCP. You can use UDP port names only when filtering UDP.  
- (Optional) Enter dscp value to match a differentiated services code point value against the traffic class value in the Traffic Class field of each IPv6 packet header. The acceptable range is from 0 to 63.  
- (Optional) Enter fragments to check noninitial fragments. This keyword is visible only if the protocol is ipv6.  
- (Optional) Enter log to cause an logging message to be sent to the console about the packet that matches the entry. Enter log-input to include the input interface in the log entry. Logging is supported only for router ACLs.  
- (Optional) Enter routing to specify that IPv6 packets be routed. |
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• (Optional) Enter sequence value to specify the sequence number for the access list statement. The acceptable range is from 1 to 4,294,967,295.</td>
<td></td>
</tr>
<tr>
<td>• (Optional) Enter time-range name to specify the time range that applies to the deny or permit statement.</td>
<td></td>
</tr>
</tbody>
</table>

**Step 5**

<table>
<thead>
<tr>
<th>deny</th>
<th>permit</th>
<th>tcp</th>
</tr>
</thead>
<tbody>
<tr>
<td>source-ipv6-prefix/prefix-length</td>
<td>any</td>
<td>host source-ipv6-address</td>
</tr>
</tbody>
</table>

(Optional) Define a TCP access list and the access conditions. Enter tcp for Transmission Control Protocol. The parameters are the same as those described in Step 3a, with these additional optional parameters:

- **ack**—Acknowledgment bit set.
- **established**—An established connection. A match occurs if the TCP datagram has the ACK or RST bits set.
- **fin**—Finished bit set; no more data from sender.
- **neq** [port | protocol]—Matches only packets that are not on a given port number.
- **psh**—Push function bit set.
- **range** [port | protocol]—Matches only packets in the port number range.
- **rst**—Reset bit set.
- **syn**—Synchronize bit set.
- **urg**—Urgent pointer bit set.

**Step 6**

<table>
<thead>
<tr>
<th>deny</th>
<th>permit</th>
<th>udp</th>
</tr>
</thead>
<tbody>
<tr>
<td>source-ipv6-prefix/prefix-length</td>
<td>any</td>
<td>host source-ipv6-address</td>
</tr>
</tbody>
</table>

(Optional) Define a UDP access list and the access conditions. Enter udp for the User Datagram Protocol. The UDP parameters are the same as those described for TCP, except that the [operator [port]] port number or name must be a UDP port number or name, and the established parameter is not valid for UDP.

**Step 7**

<table>
<thead>
<tr>
<th>deny</th>
<th>permit</th>
<th>icmp</th>
</tr>
</thead>
<tbody>
<tr>
<td>source-ipv6-prefix/prefix-length</td>
<td>any</td>
<td>host source-ipv6-address</td>
</tr>
</tbody>
</table>

(Optional) Define an ICMP access list and the access conditions. Enter icmp for Internet Control Message Protocol. The ICMP parameters are the same as those described for most IP protocols in Step 1, with the addition of the ICMP message type and code parameters. These optional keywords have these meanings:

- **icmp-type**—Enter to filter by ICMP message type, a number from 0 to 255.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• icmp-code — Enter to filter ICMP packets that are filtered by the ICMP message code type, a number from 0 to 255.</td>
<td></td>
</tr>
<tr>
<td>• icmp-message — Enter to filter ICMP packets by the ICMP message type name or the ICMP message type and code name. To see a list of ICMP message type names and code names, use the ? key or see command reference for this release.</td>
<td></td>
</tr>
</tbody>
</table>

**Step 8**  
end  
Return to privileged EXEC mode.

**Step 9**  
show ipv6 access-list  
Verify the access list configuration.

**Step 10**  
show running-config  
Verifies your entries.

**Example:**  
Switch# show running-config

**Step 11**  
copy running-config startup-config  
(Optional) Saves your entries in the configuration file.

**Example:**  
Switch# copy running-config startup-config

---

**What to Do Next**  
Attach the IPv6 ACL to an Interface

---

**Attaching an IPv6 ACL to an Interface**

You can apply an ACL to outbound or inbound traffic on Layer 3 interfaces, or to inbound traffic on Layer 2 interfaces. You can also apply ACLs only to inbound management traffic on Layer 3 interfaces.

Follow these steps to control access to an interface:
### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface interface-id`
4. `no switchport`
5. `ipv6 address ipv6-address`
6. `ipv6 traffic-filter access-list-name {in | out}`
7. `end`
8. `show running-config`
9. `copy running-config startup-config`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> <code>enable</code></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Switch&gt;</code> <code>enable</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> <code>configure terminal</code></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> <code>interface interface-id</code></td>
<td>Identify a Layer 2 interface (for port ACLs) or Layer 3 interface (for router ACLs) on which to apply an access list, and enter interface configuration mode.</td>
</tr>
<tr>
<td><strong>Step 4</strong> <code>no switchport</code></td>
<td>If applying a router ACL, this changes the interface from Layer 2 mode (the default) to Layer 3 mode.</td>
</tr>
<tr>
<td><strong>Step 5</strong> <code>ipv6 address ipv6-address</code></td>
<td>Configure an IPv6 address on a Layer 3 interface (for router ACLs).</td>
</tr>
<tr>
<td><strong>Step 6</strong> `ipv6 traffic-filter access-list-name {in</td>
<td>out}`</td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>The <code>out</code> keyword is not supported for Layer 2 interfaces (port ACLs).</td>
</tr>
<tr>
<td><strong>Step 7</strong> <code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Switch(config)# end</code></td>
<td></td>
</tr>
</tbody>
</table>
Purpose
Command or Action | Purpose |
--- | --- |
**Step 8** | show running-config | Verifies your entries. |
Example: | Switch# show running-config |
**Step 9** | copy running-config startup-config | (Optional) Saves your entries in the configuration file. |
Example: | Switch# copy running-config startup-config |

**Monitoring IPv6 ACLs**

You can display information about all configured access lists, all IPv6 access lists, or a specific access list by using one or more of the privileged EXEC commands shown in the table below:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show access-lists</td>
<td>Displays all access lists configured on the switch.</td>
</tr>
<tr>
<td>show ipv6 access-list [access-list-name]</td>
<td>Displays all configured IPv6 access lists or the access list specified by name.</td>
</tr>
<tr>
<td>show vlan access-map [map-name]</td>
<td>Displays VLAN access map configuration.</td>
</tr>
<tr>
<td>show vlan filter [access-map access-map</td>
<td>vlan vlan-id]</td>
</tr>
</tbody>
</table>

This is an example of the output from the show access-lists privileged EXEC command. The output shows all access lists that are configured on the switch or switch stack.

Switch # show access-lists
Extended IP access list hello
  10 permit ip any any
IPv6 access list ipv6
  permit ipv6 any any sequence 10

This is an example of the output from the show ipv6 access-list privileged EXEC command. The output shows only IPv6 access lists configured on the switch or switch stack.

Switch# show ipv6 access-list
IPv6 access list inbound
  permit tcp any any eq bgp (8 matches) sequence 10
  permit tcp any any eq telnet (15 matches) sequence 20
  permit udp any any sequence 30
IPv6 access list outbound
  deny udp any any sequence 10
  deny tcp any any eq telnet sequence 20
This is an example of the output from the show vlan access-map privileged EXEC command. The output shows VLAN access map information.

```
Switch# show vlan access-map
Vlan access-map "m1" 10
 Match clauses:
 ipv6 address: ip2
 Action: drop
```

## Additional References

### Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 security configuration topics</td>
<td>IPv6 Configuration Guide, Cisco IOS XE Release 3SE (Catalyst 3850 Switches)</td>
</tr>
<tr>
<td>IPv6 command reference</td>
<td>IPv6 Command Reference, Cisco IOS XE Release 3SE (Catalyst 3850 Switches)</td>
</tr>
</tbody>
</table>

### Error Message Decoder

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>To help you research and resolve system error messages in this release, use the Error Message Decoder tool.</td>
<td><a href="https://www.cisco.com/cgi-bin/Support/Errordecoder/index.cgi">https://www.cisco.com/cgi-bin/Support/Errordecoder/index.cgi</a></td>
</tr>
</tbody>
</table>

### MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>All supported MIBs for this release.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>
## Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/support">http://www.cisco.com/support</a></td>
</tr>
</tbody>
</table>
Configuring DHCP

- Finding Feature Information, page 953
- Information About DHCP, page 953
- How to Configure DHCP Features, page 960
- Configuring DHCP Server Port-Based Address Allocation, page 970

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About DHCP

**DHCP Server**

The DHCP server assigns IP addresses from specified address pools on a switch or router to DHCP clients and manages them. If the DHCP server cannot give the DHCP client the requested configuration parameters from its database, it forwards the request to one or more secondary DHCP servers defined by the network administrator. The switch can act as a DHCP server.

**DHCP Relay Agent**

A DHCP relay agent is a Layer 3 device that forwards DHCP packets between clients and servers. Relay agents forward requests and replies between clients and servers when they are not on the same physical subnet. Relay agent forwarding is different from the normal Layer 2 forwarding, in which IP datagrams are switched...
DHCP Snooping

DHCP snooping is a DHCP security feature that provides network security by filtering untrusted DHCP messages and by building and maintaining a DHCP snooping binding database, also referred to as a DHCP snooping binding table.

DHCP snooping acts like a firewall between untrusted hosts and DHCP servers. You use DHCP snooping to differentiate between untrusted interfaces connected to the end user and trusted interfaces connected to the DHCP server or another switch.

Note

For DHCP snooping to function properly, all DHCP servers must be connected to the switch through trusted interfaces.

An untrusted DHCP message is a message that is received through an untrusted interface. By default, the switch considers all interfaces untrusted. So, the switch must be configured to trust some interfaces to use DHCP Snooping. When you use DHCP snooping in a service-provider environment, an untrusted message is sent from a device that is not in the service-provider network, such as a customer’s switch. Messages from unknown devices are untrusted because they can be sources of traffic attacks.

The DHCP snooping binding database has the MAC address, the IP address, the lease time, the binding type, the VLAN number, and the interface information that corresponds to the local untrusted interfaces of a switch. It does not have information regarding hosts interconnected with a trusted interface.

In a service-provider network, an example of an interface you might configure as trusted is one connected to a port on a device in the same network. An example of an untrusted interface is one that is connected to an untrusted interface in the network or to an interface on a device that is not in the network.

When a switch receives a packet on an untrusted interface and the interface belongs to a VLAN in which DHCP snooping is enabled, the switch compares the source MAC address and the DHCP client hardware address. If the addresses match (the default), the switch forwards the packet. If the addresses do not match, the switch drops the packet.

The switch drops a DHCP packet when one of these situations occurs:

- A packet from a DHCP server, such as a DHCPOFFER, DHCPACK, DHCPNAK, or DHCPREQUEST packet, is received from outside the network or firewall.
- A packet is received on an untrusted interface, and the source MAC address and the DHCP client hardware address do not match.
- The switch receives a DHCPRELEASE or DHCPDECLINE broadcast message that has a MAC address in the DHCP snooping binding database, but the interface information in the binding database does not match the interface on which the message was received.
- A DHCP relay agent forwards a DHCP packet that includes a relay-agent IP address that is not 0.0.0.0, or the relay agent forwards a packet that includes option-82 information to an untrusted port.

If the switch is an aggregation switch supporting DHCP snooping and is connected to an edge switch that is inserting DHCP option-82 information, the switch drops packets with option-82 information when packets are received on an untrusted interface. If DHCP snooping is enabled and packets are received on a trusted
port, the aggregation switch does not learn the DHCP snooping bindings for connected devices and cannot build a complete DHCP snooping binding database.

When an aggregation switch can be connected to an edge switch through an untrusted interface and you enter the `ip dhcp snooping information option allow-untrusted` global configuration command, the aggregation switch accepts packets with option-82 information from the edge switch. The aggregation switch learns the bindings for hosts connected through an untrusted switch interface. The DHCP security features, such as dynamic ARP inspection or IP source guard, can still be enabled on the aggregation switch while the switch receives packets with option-82 information on untrusted input interfaces to which hosts are connected. The port on the edge switch that connects to the aggregation switch must be configured as a trusted interface.

Normally, it is not desirable to broadcast packets to wireless clients. So, DHCP snooping replaces destination broadcast MAC address (ffff.ffff.ffff) with unicast MAC address for DHCP packets that are going from server to wireless clients. The unicast MAC address is retrieved from CHADDR field in the DHCP payload. This processing is applied for server to client packets such as DHCP OFFER, DHCP ACK, and DHCP NACK messages. The `ip dhcp snooping wireless bootp-broadcast enable` can be used to revert this behavior. When the wireless BOOTP broadcast is enabled, the broadcast DHCP packets from server are forwarded to wireless clients without changing the destination MAC address.

**Related Topics**

Prerequisites for Configuring DHCP Snooping and Option 82, on page 965

### Option-82 Data Insertion

In residential, metropolitan Ethernet-access environments, DHCP can centrally manage the IP address assignments for a large number of subscribers. When the DHCP option-82 feature is enabled on the switch, a subscriber device is identified by the switch port through which it connects to the network (in addition to its MAC address). Multiple hosts on the subscriber LAN can be connected to the same port on the access switch and are uniquely identified.

**Note**

The DHCP option-82 feature is supported only when DHCP snooping is globally enabled on the VLANs to which subscriber devices using option-82 are assigned.

The following illustration shows a metropolitan Ethernet network in which a centralized DHCP server assigns IP addresses to subscribers connected to the switch at the access layer. Because the DHCP clients and their associated DHCP server do not reside on the same IP network or subnet, a DHCP relay agent (the Catalyst...
switch) is configured with a helper address to enable broadcast forwarding and to transfer DHCP messages between the clients and the server.

**Figure 78: DHCP Relay Agent in a Metropolitan Ethernet Network**

When you enable the DHCP snooping information option 82 on the switch, the following sequence of events occurs:

- The host (DHCP client) generates a DHCP request and broadcasts it on the network.
- When the switch receives the DHCP request, it adds the option-82 information in the packet. By default, the remote-ID suboption is the switch MAC address, and the circuit-ID suboption is the port identifier, `vlan-mod-port`, from which the packet is received. You can configure the remote ID and circuit ID.
- If the IP address of the relay agent is configured, the switch adds this IP address in the DHCP packet.
- The switch forwards the DHCP request that includes the option-82 field to the DHCP server.
- The DHCP server receives the packet. If the server is option-82-capable, it can use the remote ID, the circuit ID, or both to assign IP addresses and implement policies, such as restricting the number of IP addresses that can be assigned to a single remote ID or circuit ID. Then the DHCP server echoes the option-82 field in the DHCP reply.
- The DHCP server unicasts the reply to the switch if the request was relayed to the server by the switch. The switch verifies that it originally inserted the option-82 data by inspecting the remote ID and possibly the circuit ID fields. The switch removes the option-82 field and forwards the packet to the switch port that connects to the DHCP client that sent the DHCP request.

In the default suboption configuration, when the described sequence of events occurs, the values in these fields do not change (see the illustration, *Suboption Packet Formats*):

- Circuit-ID suboption fields
  - Suboption type
  - Length of the suboption type
  - Circuit-ID type
  - Length of the circuit-ID type
• Remote-ID suboption fields
  ◦ Suboption type
  ◦ Length of the suboption type
  ◦ Remote-ID type
  ◦ Length of the remote-ID type

In the port field of the circuit ID suboption, the port numbers start at 3. For example, on a switch with 24 10/100/1000 ports and four small form-factor pluggable (SFP) module slots, port 3 is the Gigabit Ethernet 1/0/1 port, port 4 is the Gigabit Ethernet 1/0/2 port, and so forth. Port 27 is the SFP module slot Gigabit Ethernet1/0/25, and so forth.

The illustration, Suboption Packet Formats, shows the packet formats for the remote-ID suboption and the circuit-ID suboption when the default suboption configuration is used. For the circuit-ID suboption, the module number corresponds to the switch number in the stack. The switch uses the packet formats when you globally enable DHCP snooping and enter the `ip dhcp snooping information option format remote-id` global configuration command.

The values for these fields in the packets change from the default values when you configure the remote-ID and circuit-ID suboptions:

• Circuit-ID suboption fields
  ◦ The circuit-ID type is 1.
• The length values are variable, depending on the length of the string that you configure.

• Remote-ID suboption fields
  • The remote-ID type is 1.
  • The length values are variable, depending on the length of the string that you configure.

**Figure 80: User-Configured Suboption Packet Formats**

**Circuit ID Suboption Frame Format (for user-configured string):**

<table>
<thead>
<tr>
<th>Suboption type</th>
<th>Length</th>
<th>Circuit ID type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N+2</td>
<td>1</td>
<td>N</td>
</tr>
</tbody>
</table>

1 byte 1 byte 1 byte 1 byte N bytes (N = 3-63)

**Remote ID Suboption Frame Format (for user-configured string):**

<table>
<thead>
<tr>
<th>Suboption type</th>
<th>Remote ID type</th>
<th>Length</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>N+2</td>
<td>1</td>
<td>N</td>
</tr>
</tbody>
</table>

1 byte 1 byte 1 byte 1 byte N bytes (N = 1-63)

**Cisco IOS DHCP Server Database**

During the DHCP-based autoconfiguration process, the designated DHCP server uses the Cisco IOS DHCP server database. It has IP addresses, address bindings, and configuration parameters, such as the boot file.

An address binding is a mapping between an IP address and a MAC address of a host in the Cisco IOS DHCP server database. You can manually assign the client IP address, or the DHCP server can allocate an IP address from a DHCP address pool. For more information about manual and automatic address bindings, see the “Configuring DHCP” chapter of the *Cisco IOS IP Configuration Guide, Release 12.4*.

For procedures to enable and configure the Cisco IOS DHCP server database, see the “DHCP Configuration Task List” section in the “Configuring DHCP” chapter of the *Cisco IOS IP Configuration Guide, Release 12.4*.

**DHCP Snooping Binding Database**

When DHCP snooping is enabled, the switch uses the DHCP snooping binding database to store information about untrusted interfaces. The database can have up to 64,000 bindings.

Each database entry (binding) has an IP address, an associated MAC address, the lease time (in hexadecimal format), the interface to which the binding applies, and the VLAN to which the interface belongs. The database
agent stores the bindings in a file at a configured location. At the end of each entry is a checksum that accounts for all the bytes from the start of the file through all the bytes associated with the entry. Each entry is 72 bytes, followed by a space and then the checksum value.

To keep the bindings when the switch reloads, you must use the DHCP snooping database agent. If the agent is disabled, dynamic ARP inspection or IP source guard is enabled, and the DHCP snooping binding database has dynamic bindings, the switch loses its connectivity. If the agent is disabled and only DHCP snooping is enabled, the switch does not lose its connectivity, but DHCP snooping might not prevent DHCP spoofing attacks.

When reloading, the switch reads the binding file to build the DHCP snooping binding database. The switch updates the file when the database changes.

When a switch learns of new bindings or when it loses bindings, the switch immediately updates the entries in the database. The switch also updates the entries in the binding file. The frequency at which the file is updated is based on a configurable delay, and the updates are batched. If the file is not updated in a specified time (set by the write-delay and abort-timeout values), the update stops.

This is the format of the file with bindings:

```
<initial-checksum>
TYPE DHCP-SNOOPING
VERSION 1
BEGIN
<entry-1> <checksum-1>
<entry-2> <checksum-2>
...
<entry-n> <checksum-n>
END
```

Each entry in the file is tagged with a checksum value that the switch uses to verify the entries when it reads the file. The initial-checksum entry on the first line distinguishes entries associated with the latest file update from entries associated with a previous file update.

This is an example of a binding file:

```
2bb4c2a1
TYPE DHCP-SNOOPING
VERSION 1
BEGIN
192.1.168.1 3 0003.47d8.c91f 2BB6488E Gi1/0/4 21ae5fbb
192.1.168.3 3 0003.44d6.c52f 2BB648EB Gi1/0/4 1bdb223f
192.1.168.2 3 0003.47d9.c8f1 2BB648AB Gi1/0/4 584a38f0
END
```

When the switch starts and the calculated checksum value equals the stored checksum value, the switch reads entries from the binding file and adds the bindings to its DHCP snooping binding database. The switch ignores an entry when one of these situations occurs:

- The switch reads the entry and the calculated checksum value does not equal the stored checksum value. The entry and the ones following it are ignored.
- An entry has an expired lease time (the switch might not remove a binding entry when the lease time expires).
- The interface in the entry no longer exists on the system.
- The interface is a routed interface or a DHCP snooping-trusted interface.
DHCP Snooping and Switch Stacks

DHCP snooping is managed on the stack master. When a new switch joins the stack, the switch receives the DHCP snooping configuration from the stack master. When a member leaves the stack, all DHCP snooping address bindings associated with the switch age out.

All snooping statistics are generated on the stack master. If a new stack master is elected, the statistics counters reset.

When a stack merge occurs, all DHCP snooping bindings in the stack master are lost if it is no longer the stack master. With a stack partition, the existing stack master is unchanged, and the bindings belonging to the partitioned switches age out. The new master of the partitioned stack begins processing the new incoming DHCP packets.

How to Configure DHCP Features

Default DHCP Snooping Configuration

Table 106: Default DHCP Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCP server</td>
<td>Enabled in Cisco IOS software, requires configuration¹³</td>
</tr>
<tr>
<td>DHCP relay agent</td>
<td>Enabled¹⁴</td>
</tr>
<tr>
<td>DHCP packet forwarding address</td>
<td>None configured</td>
</tr>
<tr>
<td>Checking the relay agent information</td>
<td>Enabled (invalid messages are dropped)</td>
</tr>
<tr>
<td>DHCP relay agent forwarding policy</td>
<td>Replace the existing relay agent information</td>
</tr>
<tr>
<td>DHCP snooping enabled globally</td>
<td>Disabled</td>
</tr>
<tr>
<td>DHCP snooping information option</td>
<td>Enabled</td>
</tr>
<tr>
<td>DHCP snooping option to accept packets on untrusted input interfaces¹³</td>
<td>Disabled</td>
</tr>
<tr>
<td>DHCP snooping limit rate</td>
<td>None configured</td>
</tr>
<tr>
<td>DHCP snooping trust</td>
<td>Untrusted</td>
</tr>
<tr>
<td>DHCP snooping VLAN</td>
<td>Disabled</td>
</tr>
<tr>
<td>DHCP snooping MAC address verification</td>
<td>Enabled</td>
</tr>
<tr>
<td>Feature</td>
<td>Default Setting</td>
</tr>
<tr>
<td>----------------------------------------------</td>
<td>---------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Cisco IOS DHCP server binding database</td>
<td>Enabled in Cisco IOS software, requires configuration.</td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>The switch gets network addresses and configuration parameters only from a device configured as a DHCP server.</td>
</tr>
<tr>
<td>DHCP snooping binding database agent</td>
<td>Enabled in Cisco IOS software, requires configuration.</td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>This feature is operational only when a destination is configured.</td>
</tr>
</tbody>
</table>

13 The switch responds to DHCP requests only if it is configured as a DHCP server.
14 The switch relays DHCP packets only if the IP address of the DHCP server is configured on the SVI of the DHCP client.
15 Use this feature when the switch is an aggregation switch that receives packets with option-82 information from an edge switch.

**DHCP Snooping Configuration Guidelines**

- If a switch port is connected to a DHCP server, configure a port as trusted by entering the `ip dhcp snooping trust interface` configuration command.
- If a switch port is connected to a DHCP client, configure a port as untrusted by entering the `no ip dhcp snooping trust` interface configuration command.
- You can display DHCP snooping statistics by entering the `show ip dhcp snooping statistics` user EXEC command, and you can clear the snooping statistics counters by entering the `clear ip dhcp snooping statistics` privileged EXEC command.

**Configuring the DHCP Server**

The switch can act as a DHCP server.

For procedures to configure the switch as a DHCP server, see the “Configuring DHCP” section of the "IP addressing and Services" section of the *Cisco IOS IP Configuration Guide, Release 12.4.*

**DHCP Server and Switch Stacks**

The DHCP binding database is managed on the stack master. When a new stack master is assigned, the new master downloads the saved binding database from the TFTP server. If the stack master fails, all unsaved bindings are lost. The IP addresses associated with the lost bindings are released. You should configure an automatic backup by using the `ip dhcp database url [timeout seconds] [write-delay seconds]` global configuration command.

When a stack merge occurs, the stack master that becomes a stack member loses all of the DHCP lease bindings. With a stack partition, the new master in the partition acts as a new DHCP server without any of the existing DHCP lease bindings.

**Configuring the DHCP Relay Agent**

Follow these steps to enable the DHCP relay agent on the switch:
### SUMMARY STEPS

1. enable
2. configure terminal
3. service dhcp
4. end
5. show running-config
6. copy running-config startup-config

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: Switch&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> service dhcp</td>
<td>Enables the DHCP server and relay agent on your switch. By default, this feature is enabled.</td>
</tr>
<tr>
<td>Example: Switch(config)# service dhcp</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Switch(config)# end</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> show running-config</td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td>Example: Switch# show running-config</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td>Example: Switch# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>
What to Do Next

See the "Configuring DHCP" section of the "IP Addressing and Services" section of the *Cisco IOS IP Configuration Guide, Release 12.4* for these procedures:

- Checking (validating) the relay agent information
- Configuring the relay agent forwarding policy

Specifying the Packet Forwarding Address

If the DHCP server and the DHCP clients are on different networks or subnets, you must configure the switch with the `ip helper-address address` interface configuration command. The general rule is to configure the command on the Layer 3 interface closest to the client. The address used in the `ip helper-address` command can be a specific DHCP server IP address, or it can be the network address if other DHCP servers are on the destination network segment. Using the network address enables any DHCP server to respond to requests.

Beginning in privileged EXEC mode, follow these steps to specify the packet forwarding address:

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `interface vlan vlan-id`
4. `ip address ip-address subnet-mask`
5. `ip helper-address address`
6. `end`
7. Use one of the following:
   - `interface range port-range`
   - `interface interface-id`
8. `switchport mode access`
9. `switchport access vlan vlan-id`
10. `end`
11. `show running-config`
12. `copy running-config startup-config`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Switch&gt; enable</code></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>---------------------------</td>
<td>----------------------------------------------------------------</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface vlan vlan-id</td>
<td>Creates a switch virtual interface by entering a VLAN ID, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# interface vlan 1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> ip address ip-address subnet-mask</td>
<td>Configures the interface with an IP address and an IP subnet.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config-if)# ip address 192.108.1.27 255.255.255.0</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> ip helper-address address</td>
<td>Specifies the DHCP packet forwarding address.</td>
</tr>
<tr>
<td>Example:</td>
<td>The helper address can be a specific DHCP server address, or it can be the network address if other DHCP servers are on the destination network segment. Using the network address enables other servers to respond to DHCP requests.</td>
</tr>
<tr>
<td></td>
<td>If you have multiple servers, you can configure one helper address for each server.</td>
</tr>
<tr>
<td>Switch(config-if)# ip helper-address 172.16.1.2</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> end</td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config-if)# end</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong> Use one of the following:</td>
<td>Configures multiple physical ports that are connected to the DHCP clients, and enter interface range configuration mode.</td>
</tr>
<tr>
<td>• interface range port-range</td>
<td>or</td>
</tr>
<tr>
<td>• interface interface-id</td>
<td>Configures a single physical port that is connected to the DHCP client, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# interface gigabitethernet1/0/2</td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong> switchport mode access</td>
<td>Defines the VLAN membership mode for the port.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config-if)# switchport mode access</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td>Step 9</td>
<td><code>switchport access vlan vlan-id</code></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-if)# switchport access vlan 1</td>
</tr>
<tr>
<td>Step 10</td>
<td><code>end</code></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-if)# end</td>
</tr>
<tr>
<td>Step 11</td>
<td><code>show running-config</code></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# show running-config</td>
</tr>
<tr>
<td>Step 12</td>
<td><code>copy running-config startup-config</code></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# copy running-config startup-config</td>
</tr>
</tbody>
</table>

**Prerequisites for Configuring DHCP Snooping and Option 82**

The prerequisites for DHCP Snooping and Option 82 are as follows:

- You must globally enable DHCP snooping on the switch.
- Before globally enabling DHCP snooping on the switch, make sure that the devices acting as the DHCP server and the DHCP relay agent are configured and enabled.
- If you want the switch to respond to DHCP requests, it must be configured as a DHCP server.
- Before configuring the DHCP snooping information option on your switch, be sure to configure the device that is acting as the DHCP server. You must specify the IP addresses that the DHCP server can assign or exclude, or you must configure DHCP options for these devices.
- For DHCP snooping to function properly, all DHCP servers must be connected to the switch through trusted interfaces. In a service-provider network, a trusted interface is connected to a port on a device in the same network.
- You must configure the switch to use the Cisco IOS DHCP server binding database to use it for DHCP snooping.
- To use the DHCP snooping option of accepting packets on untrusted inputs, the switch must be an aggregation switch that receives packets with option-82 information from an edge switch.
• The following prerequisites apply to DHCP snooping binding database configuration:
  ◦ You must configure a destination on the DHCP snooping binding database to use the switch for DHCP snooping.
  ◦ Because both NVRAM and the flash memory have limited storage capacity, we recommend that you store the binding file on a TFTP server.
  ◦ For network-based URLs (such as TFTP and FTP), you must create an empty file at the configured URL before the switch can write bindings to the binding file at that URL. See the documentation for your TFTP server to determine whether you must first create an empty file on the server; some TFTP servers cannot be configured this way.
  ◦ To ensure that the lease time in the database is accurate, we recommend that you enable and configure Network Time Protocol (NTP).
  ◦ If NTP is configured, the switch writes binding changes to the binding file only when the switch system clock is synchronized with NTP.

• Before configuring the DHCP relay agent on your switch, make sure to configure the device that is acting as the DHCP server. You must specify the IP addresses that the DHCP server can assign or exclude, configure DHCP options for devices, or set up the DHCP database agent.

• If you want the switch to relay DHCP packets, the IP address of the DHCP server must be configured on the switch virtual interface (SVI) of the DHCP client.

• If a switch port is connected to a DHCP server, configure a port as trusted by entering the `ip dhcp snooping trust interface` configuration command.

• If a switch port is connected to a DHCP client, configure a port as untrusted by entering the `no ip dhcp snooping trust` interface configuration command.

**Related Topics**

- [DHCP Snooping](http://example.com/dhcp-snooping), on page 954

**Enabling DHCP Snooping and Option 82**

Follow these steps to enable DHCP snooping on the switch:
SUMMARY STEPS

1. enable
2. configure terminal
3. ip dhcp snooping
4. ip dhcp snooping vlan vlan-range
5. ip dhcp snooping information option
6. ip dhcp snooping information option format remote-id [string ASCII-string | hostname]
7. ip dhcp snooping information option allow-untrusted
8. interface interface-id
9. ip dhcp snooping vlan vlan information option format-type circuit-id [override] string ASCII-string
10. ip dhcp snooping trust
11. ip dhcp snooping limit rate rate
12. exit
13. ip dhcp snooping verify mac-address
14. end
15. show running-config
16. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: Switch&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> ip dhcp snooping</td>
<td>Enables DHCP snooping globally.</td>
</tr>
<tr>
<td>Example: Switch(config)# ip dhcp snooping</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> ip dhcp snooping vlan vlan-range</td>
<td>Enables DHCP snooping on a VLAN or range of VLANs. The range is 1 to 4094. You can enter a single VLAN ID identified by VLAN ID number, a series of VLAN IDs separated by commas, a range of VLAN IDs separated by hyphens, or a range of VLAN IDs separated by entering the starting and ending VLAN IDs separated by a space.</td>
</tr>
<tr>
<td>Example: Switch(config)# ip dhcp snooping vlan 10</td>
<td></td>
</tr>
</tbody>
</table>
How to Configure DHCP Features

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• You can enter a single VLAN ID identified by VLAN ID number, a series of VLAN IDs separated by commas, a range of VLAN IDs separated by hyphens, or a range of VLAN IDs separated by entering the starting and ending VLAN IDs separated by a space.</td>
<td></td>
</tr>
</tbody>
</table>

**Step 5**

ip dhcp snooping information option

**Example:**

Switch(config)# ip dhcp snooping information option

Enables the switch to insert and remove DHCP relay information (option-82 field) in forwarded DHCP request messages to the DHCP server. This is the default setting.

**Step 6**

ip dhcp snooping information option format remote-id [string ASCII-string | hostname]

**Example:**

Switch(config)# ip dhcp snooping information option format remote-id string asciiistring2

(Optional) Configures the remote-ID suboption.

You can configure the remote ID as:

- String of up to 63 ASCII characters (no spaces)
- Configured hostname for the switch

**Note** If the hostname is longer than 63 characters, it is truncated to 63 characters in the remote-ID configuration.

The default remote ID is the switch MAC address.

**Step 7**

ip dhcp snooping information option allow-untrusted

**Example:**

Switch(config)# ip dhcp snooping information option allow-untrusted

(Optional) If the switch is an aggregation switch connected to an edge switch, this command enables the switch to accept incoming DHCP snooping packets with option-82 information from the edge switch.

The default setting is disabled.

**Note** Enter this command only on aggregation switches that are connected to trusted devices.

**Step 8**

interface interface-id

**Example:**

Switch(config)# interface gigabitethernet2/0/1

Specifies the interface to be configured, and enter interface configuration mode.

**Step 9**

ip dhcp snooping vlan vlan information option format-type circuit-id [override] string ASCII-string

**Example:**

Switch(config-if)# ip dhcp snooping vlan 1 information option format-type circuit-id override string override2

(Optional) Configures the circuit-ID suboption for the specified interface.

Specify the VLAN and port identifier, using a VLAN ID in the range of 1 to 4094. The default circuit ID is the port identifier, in the format vlan-mod-port.

You can configure the circuit ID to be a string of 3 to 63 ASCII characters (no spaces).

(OPTIONAL) Use the override keyword when you do not want the circuit-ID suboption inserted in TLV format to define subscriber information.
<table>
<thead>
<tr>
<th>Step 10</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ip dhcp snooping trust</td>
<td>(Optional) Configures the interface as trusted or untrusted. Use the no key word to configure an interface to receive messages from an untrusted client. The default setting is untrusted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-if)# ip dhcp snooping trust</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 11</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ip dhcp snooping limit rate rate</td>
<td>(Optional) Configures the number of DHCP packets per second that an interface can receive. The range is 1 to 2048. By default, no rate limit is configured.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-if)# ip dhcp snooping limit rate 100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Note</td>
<td>We recommend an untrusted rate limit of not more than 100 packets per second. If you configure rate limiting for trusted interfaces, you might need to increase the rate limit if the port is a trunk port assigned to more than one VLAN with DHCP snooping.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 12</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>exit</td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-if)# exit</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 13</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ip dhcp snooping verify mac-address</td>
<td>(Optional) Configures the switch to verify that the source MAC address in a DHCP packet received on untrusted ports matches the client hardware address in the packet. The default is to verify that the source MAC address matches the client hardware address in the packet.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# ip dhcp snooping verify mac-address</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 14</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# end</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 15</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>show running-config</td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# show running-config</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 16</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>
Enabling the Cisco IOS DHCP Server Database

For procedures to enable and configure the Cisco IOS DHCP server database, see the "DHCP Configuration Task List" section in the "Configuring DHCP" chapter of the Cisco IOS IP Configuration Guide, Release 12.4.

Monitoring DHCP Snooping Information

Table 107: Commands for Displaying DHCP Information

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip dhcp snooping</td>
<td>Displays the DHCP snooping configuration for a switch</td>
</tr>
<tr>
<td>show ip dhcp snooping binding</td>
<td>Displays only the dynamically configured bindings in the DHCP snooping binding database, also referred to as a binding table.</td>
</tr>
<tr>
<td>show ip dhcp snooping database</td>
<td>Displays the DHCP snooping binding database status and statistics.</td>
</tr>
<tr>
<td>show ip dhcp snooping statistics</td>
<td>Displays the DHCP snooping statistics in summary or detail form.</td>
</tr>
<tr>
<td>show ip source binding</td>
<td>Display the dynamically and statically configured bindings.</td>
</tr>
</tbody>
</table>

Note

If DHCP snooping is enabled and an interface changes to the down state, the switch does not delete the statically configured bindings.

Configuring DHCP Server Port-Based Address Allocation

Information About Configuring DHCP Server Port-Based Address Allocation

DHCP server port-based address allocation is a feature that enables DHCP to maintain the same IP address on an Ethernet switch port regardless of the attached device client identifier or client hardware address.

When Ethernet switches are deployed in the network, they offer connectivity to the directly connected devices. In some environments, such as on a factory floor, if a device fails, the replacement device must be working immediately in the existing network. With the current DHCP implementation, there is no guarantee that DHCP would offer the same IP address to the replacement device. Control, monitoring, and other software expect a stable IP address associated with each device. If a device is replaced, the address assignment should remain stable even though the DHCP client has changed.

When configured, the DHCP server port-based address allocation feature ensures that the same IP address is always offered to the same connected port even as the client identifier or client hardware address changes in the DHCP messages received on that port. The DHCP protocol recognizes DHCP clients by the client identifier option in the DHCP packet. Clients that do not include the client identifier option are identified by the client...
hardware address. When you configure this feature, the port name of the interface overrides the client identifier or hardware address and the actual point of connection, the switch port, becomes the client identifier.

In all cases, by connecting the Ethernet cable to the same port, the same IP address is allocated through DHCP to the attached device.

The DHCP server port-based address allocation feature is only supported on a Cisco IOS DHCP server and not a third-party server.

**Default Port-Based Address Allocation Configuration**

By default, DHCP server port-based address allocation is disabled.

**Port-Based Address Allocation Configuration Guidelines**

- By default, DHCP server port-based address allocation is disabled.
- To restrict assignments from the DHCP pool to preconfigured reservations (unreserved addresses are not offered to the client and other clients are not served by the pool), you can enter the `reserved-only` DHCP pool configuration command.

**Enabling the DHCP Snooping Binding Database Agent**

Beginning in privileged EXEC mode, follow these steps to enable and configure the DHCP snooping binding database agent on the switch:

**SUMMARY STEPS**

1. enable
2. configure terminal
3. ip dhcp snooping database {flash[number]://filename | ftp://user:password@host/filename | http://[[username:password[@]@]hostname | host-ip]@[directory] /image-name.tar | rcp://user@host/filename} | tftp://host/filename
4. ip dhcp snooping database timeout seconds
5. ip dhcp snooping database write-delay seconds
6. end
7. ip dhcp snooping binding mac-address vlan vlan-id ip-address interface interface-id expiry seconds
8. show ip dhcp snooping database [detail]
9. show running-config
10. copy running-config startup-config
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: Switch&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> ip dhcp snooping database {flash[number]:/filename</td>
<td>ftp://user:password@host/filename</td>
</tr>
<tr>
<td>Example: Switch(config)# ip dhcp snooping database tftp://10.90.90.90/snooping-rp2</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> ip dhcp snooping database timeout seconds</td>
<td>Specifies (in seconds) how long to wait for the database transfer process to finish before stopping the process.</td>
</tr>
<tr>
<td>Example: Switch(config)# ip dhcp snooping database timeout 300</td>
<td></td>
</tr>
<tr>
<td>The default is 300 seconds. The range is 0 to 86400. Use 0 to define an infinite duration, which means to continue trying the transfer indefinitely.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> ip dhcp snooping database write-delay seconds</td>
<td>Specifies the duration for which the transfer should be delayed after the binding database changes. The range is from 15 to 86400 seconds. The default is 300 seconds (5 minutes).</td>
</tr>
<tr>
<td>Example: Switch(config)# ip dhcp snooping database write-delay 15</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Switch(config)# end</td>
<td></td>
</tr>
</tbody>
</table>
### Command or Action

**Step 7**  
`ip dhcp snooping binding mac-address vlan vlan-id ip-address interface interface-id expiry seconds`

**Example:**

```
Switch# ip dhcp snooping binding 0001.1234.1234 vlan 1 172.20.50.5 interface gi1/1 expiry 1000
```

**Purpose**  
(Optional) Adds binding entries to the DHCP snooping binding database. The `vlan-id` range is from 1 to 4904. The `seconds` range is from 1 to 4294967295. Enter this command for each entry that you add. Use this command when you are testing or debugging the switch.

**Step 8**  
`show ip dhcp snooping database [detail]`

**Example:**

```
Switch# show ip dhcp snooping database detail
```

**Purpose**  
Displays the status and statistics of the DHCP snooping binding database agent.

**Step 9**  
`show running-config`

**Example:**

```
Switch# show running-config
```

**Purpose**  
Verifies your entries.

**Step 10**  
`copy running-config startup-config`

**Example:**

```
Switch# copy running-config startup-config
```

**Purpose**  
(Optional) Saves your entries in the configuration file.

---

### Enabling DHCP Server Port-Based Address Allocation

Follow these steps to globally enable port-based address allocation and to automatically generate a subscriber identifier on an interface.

**SUMMARY STEPS**

1. enable
2. configure terminal
3. ip dhcp use subscriber-id client-id
4. ip dhcp subscriber-id interface-name
5. interface interface-id
6. ip dhcp server use subscriber-id client-id
7. end
8. show running-config
9. copy running-config startup-config
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><strong>enable</strong></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td><strong>configure terminal</strong></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><strong>ip dhcp use subscriber-id client-id</strong></td>
<td>Configures the DHCP server to globally use the subscriber identifier as the client identifier on all incoming DHCP messages.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# ip dhcp use subscriber-id client-id</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td><strong>ip dhcp subscriber-id interface-name</strong></td>
<td>Automatically generates a subscriber identifier based on the short name of the interface. A subscriber identifier configured on a specific interface takes precedence over this command.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# ip dhcp subscriber-id interface-name</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td><strong>interface interface-id</strong></td>
<td>Specifies the interface to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# interface gigabitethernet1/0/1</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td><strong>ip dhcp server use subscriber-id client-id</strong></td>
<td>Configures the DHCP server to use the subscriber identifier as the client identifier on all incoming DHCP messages on the interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-if)# ip dhcp server use subscriber-id client-id</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td><strong>end</strong></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# end</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td><strong>show running-config</strong></td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# show running-config</td>
<td></td>
</tr>
</tbody>
</table>
Step 9

**copy running-config startup-config**

Example:

```
Switch# copy running-config startup-config
```

(Optional) Saves your entries in the configuration file.

**What to Do Next**

After enabling DHCP port-based address allocation on the switch, use the `ip dhcp pool` global configuration command to preassign IP addresses and to associate them to clients.

**Monitoring DHCP Server Port-Based Address Allocation**

*Table 108: Commands for Displaying DHCP Port-Based Address Allocation Information*

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show interface interface id</code></td>
<td>Displays the status and configuration of a specific interface.</td>
</tr>
<tr>
<td><code>show ip dhcp pool</code></td>
<td>Displays the DHCP address pools.</td>
</tr>
<tr>
<td><code>show ip dhcp binding</code></td>
<td>Displays address bindings on the Cisco IOS DHCP server.</td>
</tr>
</tbody>
</table>

**Additional References**

**Related Documents**

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
</table>
| DHCP Configuration Information and Procedures | IP Addressing: DHCP Configuration Guide, Cisco IOS XE Release 3S  
## Error Message Decoder

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>To help you research and resolve system error messages in this release, use the Error Message Decoder tool.</td>
<td><a href="https://www.cisco.com/cgi-bin/Support/Errordecoder/index.cgi">https://www.cisco.com/cgi-bin/Support/Errordecoder/index.cgi</a></td>
</tr>
</tbody>
</table>

## MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>All supported MIBs for this release.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>

## Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/support">http://www.cisco.com/support</a></td>
</tr>
</tbody>
</table>
CHAPTER 43

Configuring IP Source Guard

IP Source Guard (IPSG) is a security feature that restricts IP traffic on nonrouted, Layer 2 interfaces by filtering traffic based on the DHCP snooping binding database and on manually configured IP source bindings.

This chapter contains the following topics:

- Finding Feature Information, page 977
- Information About IP Source Guard, page 977
- How to Configure IP Source Guard, page 980
- Monitoring IP Source Guard, page 983
- Additional References, page 984

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About IP Source Guard

IP Source Guard

You can use IP source guard to prevent traffic attacks if a host tries to use the IP address of its neighbor and you can enable IP source guard when DHCP snooping is enabled on an untrusted interface.

After IPSG is enabled on an interface, the switch blocks all IP traffic received on the interface except for DHCP packets allowed by DHCP snooping.
The switch uses a source IP lookup table in hardware to bind IP addresses to ports. For IP and MAC filtering, a combination of source IP and source MAC lookups are used. IP traffic with a source IP address is the binding table is allowed, all other traffic is denied.

The IP source binding table has bindings that are learned by DHCP snooping or are manually configured (static IP source bindings). An entry in this table has an IP address, its associated MAC address, and its associated VLAN number. The switch uses the IP source binding table only when IP source guard is enabled.

IPSG is supported only on Layer 2 ports, including access and trunk ports. You can configure IPSG with source IP address filtering or with source IP and MAC address filtering.

**IP Source Guard for Static Hosts**

**Note**

Do not use IPSG (IP source guard) for static hosts on uplink ports or trunk ports.

IPSG for static hosts extends the IPSG capability to non-DHCP and static environments. The previous IPSG used the entries created by DHCP snooping to validate the hosts connected to a switch. Any traffic received from a host without a valid DHCP binding entry is dropped. This security feature restricts IP traffic on nonrouted Layer 2 interfaces. It filters traffic based on the DHCP snooping binding database and on manually configured IP source bindings. The previous version of IPSG required a DHCP environment for IPSG to work.

IPSG for static hosts allows IPSG to work without DHCP. IPSG for static hosts relies on IP device tracking-table entries to install port ACLs. The switch creates static entries based on ARP requests or other IP packets to maintain the list of valid hosts for a given port. You can also specify the number of hosts allowed to send traffic to a given port. This is equivalent to port security at Layer 3.

IPSG for static hosts also supports dynamic hosts. If a dynamic host receives a DHCP-assigned IP address that is available in the IP DHCP snooping table, the same entry is learned by the IP device tracking table. In a stacked environment, when the master failover occurs, the IP source guard entries for static hosts attached to member ports are retained. When you enter the `show ip device tracking all` EXEC command, the IP device tracking table displays the entries as ACTIVE.

**Note**

Some IP hosts with multiple network interfaces can inject some invalid packets into a network interface. The invalid packets contain the IP or MAC address for another network interface of the host as the source address. The invalid packets can cause IPSG for static hosts to connect to the host, to learn the invalid IP or MAC address bindings, and to reject the valid bindings. Consult the vendor of the corresponding operating system and the network interface to prevent the host from injecting invalid packets.

IPSG for static hosts initially learns IP or MAC bindings dynamically through an ACL-based snooping mechanism. IP or MAC bindings are learned from static hosts by ARP and IP packets. They are stored in the device tracking database. When the number of IP addresses that have been dynamically learned or statically configured on a given port reaches a maximum, the hardware drops any packet with a new IP address. To resolve hosts that have moved or gone away for any reason, IPSG for static hosts leverages IP device tracking to age out dynamically learned IP address bindings. This feature can be used with DHCP snooping. Multiple bindings are established on a port that is connected to both DHCP and static hosts. For example, bindings are stored in both the device tracking database as well as in the DHCP snooping binding database.
IP Source Guard Configuration Guidelines

- You can configure static IP bindings only on nonrouted ports. If you enter the `ip source binding mac-address vlan vlan-id ip-address interface interface-id` global configuration command on a routed interface, this error message appears:

  Static IP source binding can only be configured on switch port.

- When IP source guard with source IP filtering is enabled on an interface, DHCP snooping must be enabled on the access VLAN for that interface.

- If you are enabling IP source guard on a trunk interface with multiple VLANs and DHCP snooping is enabled on all the VLANs, the source IP address filter is applied on all the VLANs.

  Note: If IP source guard is enabled and you enable or disable DHCP snooping on a VLAN on the trunk interface, the switch might not properly filter traffic.

- You can enable this feature when 802.1x port-based authentication is enabled.

- When you configure IP source guard smart logging, packets with a source address other than the specified address or an address learned by DHCP are denied, and the packet contents are sent to a NetFlow collector. If you configure this feature, make sure that smart logging is globally enabled.

- In a switch stack, if IP source guard is configured on a stack member interface and you remove the the configuration of that switch by entering the `no switch stack-member-number provision` global configuration command, the interface static bindings are removed from the binding table, but they are not removed from the running configuration. If you again provision the switch by entering the `switch stack-member-number provision` command, the binding is restored.

To remove the binding from the running configuration, you must disable IP source guard before entering the `no switch provision` command. The configuration is also removed if the switch reloads while the interface is removed from the binding table.
How to Configure IP Source Guard

Enabling IP Source Guard

SUMMARY STEPS

1. enable
2. configure terminal
3. interface interface-id
4. ip verify source [mac-check ]
5. exit
6. ip source binding mac-address vlan vlan-id ip-address interface interface-id
7. end
8. show running-config
9. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface interface-id</td>
<td>Specifies the interface to be configured, and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# interface gigabitethernet 1/0/1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> ip verify source [mac-check ]</td>
<td>Enables IP source guard with source IP address filtering. (Optional) mac-check—Enables IP Source Guard with source IP address and MAC address filtering.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config-if)# ip verify source</td>
<td></td>
</tr>
</tbody>
</table>
### How to Configure IP Source Guard

You must configure the **ip device tracking maximum limit-number interface configuration command globally for IPSG for static hosts to work. If you only configure this command on a port without enabling IP device tracking globally or by setting an IP device tracking maximum on that interface, IPSG with static hosts rejects all the IP traffic from that interface.**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 5</strong></td>
<td><em>exit</em></td>
</tr>
<tr>
<td>Example:</td>
<td><em>Switch(config-if)# exit</em></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>ip source binding <em>mac-address vlan vlan-id ip-address interface interface-id</em></td>
</tr>
<tr>
<td>Example:</td>
<td><em>Switch(config)# ip source binding 0100.0230.0002 vlan 11 10.0.0.4 interface gigabitethernet1/0/1</em></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td><em>end</em></td>
</tr>
<tr>
<td>Example:</td>
<td><em>Switch(config)# end</em></td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>show running-config</td>
</tr>
<tr>
<td>Example:</td>
<td><em>Switch# show running-config</em></td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td>Example:</td>
<td><em>Switch# copy running-config startup-config</em></td>
</tr>
</tbody>
</table>

### Configuring IP Source Guard for Static Hosts on a Layer 2 Access Port

You must configure the **ip device tracking maximum limit-number interface configuration command globally for IPSG for static hosts to work. If you only configure this command on a port without enabling IP device tracking globally or by setting an IP device tracking maximum on that interface, IPSG with static hosts rejects all the IP traffic from that interface.**
SUMMARY STEPS

1. enable
2. configure terminal
3. ip device tracking
4. interface interface-id
5. switchport mode access
6. switchport access vlan vlan-id
7. ip verify source[tracking] [mac-check]
8. ip device tracking maximum number
9. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enterstheglobalconfigurationmode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> ip device tracking</td>
<td>Turns on the IP host table, and globally enables IP device tracking.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# ip device tracking</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> interface interface-id</td>
<td>Enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# interface gigabitethernet 1/0/1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> switchport mode access</td>
<td>Configures a port as access.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config-if)# switchport mode access</td>
<td></td>
</tr>
</tbody>
</table>
### Purpose

**Configure the VLAN for this port.**

**Command or Action: switchport access vlan vlan-id**

**Example:**

```
Switch(config-if)# switchport access vlan 10
```

**Purpose:**

Configures the VLAN for this port.

---

**Step 6**

**Command or Action: ip verify source[tracking] [mac-check ]**

**Example:**

```
Switch(config-if)# ip verify source tracking mac-check
```

**Purpose:**

Enables IP source guard with source IP address filtering.

(Optional) **tracking**—Enables IP source guard for static hosts.

(Optional) **mac-check**—Enables MAC address filtering.

The command **ip verify source tracking mac-check** enables IP source guard for static hosts with MAC address filtering.

---

**Step 7**

**Command or Action: ip device tracking maximum number**

**Example:**

```
Switch(config-if)# ip device tracking maximum 8
```

**Purpose:**

Establishes a maximum limit for the number of static IPs that the IP device tracking table allows on the port. The range is 1 to 10. The maximum number is 10.

The **maximum** limit-number **interface configuration command.**

---

**Step 8**

**Command or Action: end**

**Example:**

```
Switch(config-if)# end
```

**Purpose:**

Returns to privileged EXEC mode.

---

**Monitoring IP Source Guard**

**Table 108: Privileged EXEC show Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip verify source [ interface interface-id ]</td>
<td>Displays the IP source guard configuration on the switch or on a specific interface.</td>
</tr>
<tr>
<td>show ip device tracking { all</td>
<td>interface interface-id</td>
</tr>
</tbody>
</table>

**Table 110: Interface Configuration Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip verify source tracking</td>
<td>Verifies the data source.</td>
</tr>
</tbody>
</table>
For detailed information about the fields in these displays, see the command reference for this release.

**Additional References**

**Error Message Decoder**

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>To help you research and resolve system error messages in this release, use the Error Message Decoder tool.</td>
<td><a href="https://www.cisco.com/cgi-bin/Support/Errordecoder/index.cgi">https://www.cisco.com/cgi-bin/Support/Errordecoder/index.cgi</a></td>
</tr>
</tbody>
</table>

**MIBs**

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>All supported MIBs for this release.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>

**Technical Assistance**

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/support">http://www.cisco.com/support</a></td>
</tr>
</tbody>
</table>
CHAPTER 44

Configuring Dynamic ARP Inspection

- Finding Feature Information, page 985
- Restrictions for Dynamic ARP Inspection, page 985
- Understanding Dynamic ARP Inspection, page 987
- Default Dynamic ARP Inspection Configuration, page 990
- Relative Priority of ARP ACLs and DHCP Snooping Entries, page 991
- Configuring ARP ACLs for Non-DHCP Environments, page 991
- Configuring Dynamic ARP Inspection in DHCP Environments, page 994
- Limiting the Rate of Incoming ARP Packets, page 997
- Performing Dynamic ARP Inspection Validation Checks, page 999
- Monitoring DAI, page 1001
- Verifying the DAI Configuration, page 1002
- Additional References, page 1002

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Restrictions for Dynamic ARP Inspection

This section lists the restrictions and guidelines for configuring Dynamic ARP Inspection on the switch.

- Dynamic ARP inspection is an ingress security feature; it does not perform any egress checking.
• Dynamic ARP inspection is not effective for hosts connected to switches that do not support dynamic ARP inspection or that do not have this feature enabled. Because man-in-the-middle attacks are limited to a single Layer 2 broadcast domain, separate the domain with dynamic ARP inspection checks from the one with no checking. This action secures the ARP caches of hosts in the domain enabled for dynamic ARP inspection.

• Dynamic ARP inspection depends on the entries in the DHCP snooping binding database to verify IP-to-MAC address bindings in incoming ARP requests and ARP responses. Make sure to enable DHCP snooping to permit ARP packets that have dynamically assigned IP addresses.

When DHCP snooping is disabled or in non-DHCP environments, use ARP ACLs to permit or to deny packets.

• Dynamic ARP inspection is supported on access ports, trunk ports, and EtherChannel ports.

\[\text{Note}\]

Do not enable Dynamic ARP inspection on RSPAN VLANs. If Dynamic ARP inspection is enabled on RSPAN VLANs, Dynamic ARP inspection packets might not reach the RSPAN destination port.

• A physical port can join an EtherChannel port channel only when the trust state of the physical port and the channel port match. Otherwise, the physical port remains suspended in the port channel. A port channel inherits its trust state from the first physical port that joins the channel. Consequently, the trust state of the first physical port need not match the trust state of the channel.

Conversely, when you change the trust state on the port channel, the switch configures a new trust state on all the physical ports that comprise the channel.

• The rate limit is calculated separately on each switch in a switch stack. For a cross-stack EtherChannel, this means that the actual rate limit might be higher than the configured value. For example, if you set the rate limit to 30 pps on an EtherChannel that has one port on switch 1 and one port on switch 2, each port can receive packets at 29 pps without causing the EtherChannel to become error-disabled.

• The operating rate for the port channel is cumulative across all the physical ports within the channel. For example, if you configure the port channel with an ARP rate-limit of 400 pps, all the interfaces combined on the channel receive an aggregate 400 pps. The rate of incoming ARP packets on EtherChannel ports is equal to the sum of the incoming rate of packets from all the channel members. Configure the rate limit for EtherChannel ports only after examining the rate of incoming ARP packets on the channel-port members.

The rate of incoming packets on a physical port is checked against the port-channel configuration rather than the physical-ports configuration. The rate-limit configuration on a port channel is independent of the configuration on its physical ports.

If the EtherChannel receives more ARP packets than the configured rate, the channel (including all physical ports) is placed in the error-disabled state.

• Make sure to limit the rate of ARP packets on incoming trunk ports. Configure trunk ports with higher rates to reflect their aggregation and to handle packets across multiple dynamic ARP inspection-enabled VLANs. You also can use the ip arp inspection limit none interface configuration command to make the rate unlimited. A high rate-limit on one VLAN can cause a denial-of-service attack to other VLANs when the software places the port in the error-disabled state.

• When you enable dynamic ARP inspection on the switch, policers that were configured to police ARP traffic are no longer effective. The result is that all ARP traffic is sent to the CPU.
In the presence of vlan-bridging & IP device tracking, the cross-stack ARP packet forwarding will not work.

**Understanding Dynamic ARP Inspection**

ARP provides IP communication within a Layer 2 broadcast domain by mapping an IP address to a MAC address. For example, Host B wants to send information to Host A but does not have the MAC address of Host A in its ARP cache. Host B generates a broadcast message for all hosts within the broadcast domain to obtain the MAC address associated with the IP address of Host A. All hosts within the broadcast domain receive the ARP request, and Host A responds with its MAC address. However, because ARP allows a gratuitous reply from a host even if an ARP request was not received, an ARP spoofing attack and the poisoning of ARP caches can occur. After the attack, all traffic from the device under attack flows through the attacker’s computer and then to the router, switch, or host.

A malicious user can attack hosts, switches, and routers connected to your Layer 2 network by poisoning the ARP caches of systems connected to the subnet and by intercepting traffic intended for other hosts on the subnet. Figure 26-1 shows an example of ARP cache poisoning.

![Figure 26-1: ARP Cache Poisoning](image)

Hosts A, B, and C are connected to the switch on interfaces A, B and C, all of which are on the same subnet. Their IP and MAC addresses are shown in parentheses; for example, Host A uses IP address IA and MAC address MA. When Host A needs to communicate to Host B at the IP layer, it broadcasts an ARP request for the MAC address associated with IP address IB. When the switch and Host B receive the ARP request, they populate their ARP caches with an ARP binding for a host with the IP address IA and a MAC address MA; for example, IP address IA is bound to MAC address MA. When Host B responds, the switch and Host A populate their ARP caches with a binding for a host with the IP address IB and the MAC address MB.

Host C can poison the ARP caches of the switch, Host A, and Host B by broadcasting forged ARP responses with bindings for a host with an IP address of IA (or IB) and a MAC address of MC. Hosts with poisoned ARP caches use the MAC address MC as the destination MAC address for traffic intended for IA or IB. This means that Host C intercepts that traffic. Because Host C knows the true MAC addresses associated with IA and IB, it can forward the intercepted traffic to those hosts by using the correct MAC address as the destination. Host C has inserted itself into the traffic stream from Host A to Host B, the classic *man-in-the-middle* attack.

Dynamic ARP inspection is a security feature that validates ARP packets in a network. It intercepts, logs, and discards ARP packets with invalid IP-to-MAC address bindings. This capability protects the network from certain man-in-the-middle attacks.

Dynamic ARP inspection ensures that only valid ARP requests and responses are relayed. The switch performs these activities:

- Intercepts all ARP requests and responses on untrusted ports
Verifies that each of these intercepted packets has a valid IP-to-MAC address binding before updating the local ARP cache or before forwarding the packet to the appropriate destination

• Drops invalid ARP packets

Dynamic ARP inspection determines the validity of an ARP packet based on valid IP-to-MAC address bindings stored in a trusted database, the DHCP snooping binding database. This database is built by DHCP snooping if DHCP snooping is enabled on the VLANs and on the switch. If the ARP packet is received on a trusted interface, the switch forwards the packet without any checks. On untrusted interfaces, the switch forwards the packet only if it is valid.

You enable dynamic ARP inspection on a per-VLAN basis by using the `ip arp inspection vlan vlan-range` global configuration command.

In non-DHCP environments, dynamic ARP inspection can validate ARP packets against user-configured ARP access control lists (ACLs) for hosts with statically configured IP addresses. You define an ARP ACL by using the `arp access-list acl-name` global configuration command.

You can configure dynamic ARP inspection to drop ARP packets when the IP addresses in the packets are invalid or when the MAC addresses in the body of the ARP packets do not match the addresses specified in the Ethernet header. Use the `ip arp inspection validate {[src-mac] [dst-mac] [ip]}` global configuration command.

**Interface Trust States and Network Security**

Dynamic ARP inspection associates a trust state with each interface on the switch. Packets arriving on trusted interfaces bypass all dynamic ARP inspection validation checks, and those arriving on untrusted interfaces undergo the dynamic ARP inspection validation process.

In a typical network configuration, you configure all switch ports connected to host ports as untrusted and configure all switch ports connected to switches as trusted. With this configuration, all ARP packets entering the network from a given switch bypass the security check. No other validation is needed at any other place in the VLAN or in the network. You configure the trust setting by using the `ip arp inspection trust interface` configuration command.

⚠️ **Caution**

Use the trust state configuration carefully. Configuring interfaces as untrusted when they should be trusted can result in a loss of connectivity.

In the following figure, assume that both Switch A and Switch B are running dynamic ARP inspection on the VLAN that includes Host 1 and Host 2. If Host 1 and Host 2 acquire their IP addresses from the DHCP server connected to Switch A, only Switch A binds the IP-to-MAC address of Host 1. Therefore, if the interface
between Switch A and Switch B is untrusted, the ARP packets from Host 1 are dropped by Switch B. Connectivity between Host 1 and Host 2 is lost.

Figure 82: ARP Packet Validation on a VLAN Enabled for Dynamic ARP Inspection

Configuring interfaces to be trusted when they are actually untrusted leaves a security hole in the network. If Switch A is not running dynamic ARP inspection, Host 1 can easily poison the ARP cache of Switch B (and Host 2, if the link between the switches is configured as trusted). This condition can occur even though Switch B is running dynamic ARP inspection.

Dynamic ARP inspection ensures that hosts (on untrusted interfaces) connected to a switch running dynamic ARP inspection do not poison the ARP caches of other hosts in the network. However, dynamic ARP inspection does not prevent hosts in other portions of the network from poisoning the caches of the hosts that are connected to a switch running dynamic ARP inspection.

In cases in which some switches in a VLAN run dynamic ARP inspection and other switches do not, configure the interfaces connecting such switches as untrusted. However, to validate the bindings of packets from nondynamic ARP inspection switches, configure the switch running dynamic ARP inspection with ARP ACLs. When you cannot determine such bindings, at Layer 3, isolate switches running dynamic ARP inspection from switches not running dynamic ARP inspection switches.

Note

Depending on the setup of the DHCP server and the network, it might not be possible to validate a given ARP packet on all switches in the VLAN.

Rate Limiting of ARP Packets

The switch CPU performs dynamic ARP inspection validation checks; therefore, the number of incoming ARP packets is rate-limited to prevent a denial-of-service attack. By default, the rate for untrusted interfaces is 15 packets per second (pps). Trusted interfaces are not rate-limited. You can change this setting by using the `ip arp inspection limit` interface configuration command.

When the rate of incoming ARP packets exceeds the configured limit, the switch places the port in the error-disabled state. The port remains in that state until you intervene. You can use the `errdisable recovery` global configuration command to enable error disable recovery so that ports automatically emerge from this state after a specified timeout period.
Relative Priority of ARP ACLs and DHCP Snooping Entries

Dynamic ARP inspection uses the DHCP snooping binding database for the list of valid IP-to-MAC address bindings.

ARP ACLs take precedence over entries in the DHCP snooping binding database. The switch uses ACLs only if you configure them by using the `ip arp inspection filter vlan` global configuration command. The switch first compares ARP packets to user-configured ARP ACLs. If the ARP ACL denies the ARP packet, the switch also denies the packet even if a valid binding exists in the database populated by DHCP snooping.

Logging of Dropped Packets

When the switch drops a packet, it places an entry in the log buffer and then generates system messages on a rate-controlled basis. After the message is generated, the switch clears the entry from the log buffer. Each log entry contains flow information, such as the receiving VLAN, the port number, the source and destination IP addresses, and the source and destination MAC addresses.

You use the `ip arp inspection log-buffer` global configuration command to configure the number of entries in the buffer and the number of entries needed in the specified interval to generate system messages. You specify the type of packets that are logged by using the `ip arp inspection vlan logging` global configuration command.

Default Dynamic ARP Inspection Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic ARP inspection</td>
<td>Disabled on all VLANs.</td>
</tr>
<tr>
<td>Interface trust state</td>
<td>All interfaces are untrusted.</td>
</tr>
<tr>
<td>Rate limit of incoming ARP packets</td>
<td>The rate is 15 pps on untrusted interfaces, assuming that the network is a switched network with a host connecting to as many as 15 new hosts per second. The rate is unlimited on all trusted interfaces. The burst interval is 1 second.</td>
</tr>
<tr>
<td>ARP ACLs for non-DHCP environments</td>
<td>No ARP ACLs are defined.</td>
</tr>
<tr>
<td>Validation checks</td>
<td>No checks are performed.</td>
</tr>
</tbody>
</table>
Relative Priority of ARP ACLs and DHCP Snooping Entries

Dynamic ARP inspection uses the DHCP snooping binding database for the list of valid IP-to-MAC address bindings.

ARP ACLs take precedence over entries in the DHCP snooping binding database. The switch uses ACLs only if you configure them by using the `ip arp inspection filter vlan` global configuration command. The switch first compares ARP packets to user-configured ARP ACLs. If the ARP ACL denies the ARP packet, the switch also denies the packet even if a valid binding exists in the database populated by DHCP snooping.

Configuring ARP ACLs for Non-DHCP Environments

This procedure shows how to configure dynamic ARP inspection when Switch B shown in Figure 2 does not support dynamic ARP inspection or DHCP snooping.

If you configure port 1 on Switch A as trusted, a security hole is created because both Switch A and Host 1 could be attacked by either Switch B or Host 2. To prevent this possibility, you must configure port 1 on Switch A as untrusted. To permit ARP packets from Host 2, you must set up an ARP ACL and apply it to VLAN 1. If the IP address of Host 2 is not static (it is impossible to apply the ACL configuration on Switch A) you must separate Switch A from Switch B at Layer 3 and use a router to route packets between them.

Follow these steps to configure an ARP ACL on Switch A. This procedure is required in non-DHCP environments.

### Table: Default Settings for Dynamic ARP Inspection

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log buffer</td>
<td>When dynamic ARP inspection is enabled, all denied or dropped ARP packets are logged. The number of entries in the log is 32. The number of system messages is limited to 5 per second. The logging-rate interval is 1 second.</td>
</tr>
<tr>
<td>Per-VLAN logging</td>
<td>All denied or dropped ARP packets are logged.</td>
</tr>
</tbody>
</table>
SUMMARY STEPS

1. enable
2. configure terminal
3. arp access-list acl-name
4. permit ip host sender-ip mac host sender-mac
5. exit
6. ip arp inspection filter arp-acl-name vlan vlan-range [static]
7. interface interface-id
8. no ip arp inspection trust
9. end
10. Use the following show commands:
    • show arp access-list acl-name
    • show ip arp inspection vlan vlan-range
    • show ip arp inspection interfaces
11. show running-config
12. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch&gt; enable</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>arp access-list acl-name</td>
<td>Defines an ARP ACL, and enters ARP access-list configuration mode. By default, no ARP access lists are defined.</td>
</tr>
<tr>
<td></td>
<td>Note</td>
<td>At the end of the ARP access list, there is an implicit deny ip any mac any command.</td>
</tr>
<tr>
<td>4</td>
<td>permit ip host sender-ip mac host sender-mac</td>
<td>Permits ARP packets from the specified host (Host 2).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For sender-ip, enter the IP address of Host 2.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For sender-mac, enter the MAC address of Host 2.</td>
</tr>
<tr>
<td><strong>Command or Action</strong></td>
<td><strong>Purpose</strong></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>exit</td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>ip arp inspection filter arp-acl-name</td>
<td>Applies ARP ACL to the VLAN. By default, no defined ARP ACLs are applied to any VLAN.</td>
</tr>
<tr>
<td>    vlan vlan-range [static]</td>
<td><strong>Purpose</strong></td>
<td><strong>Purpose</strong></td>
</tr>
<tr>
<td></td>
<td>• For <em>arp-acl-name</em>, specify the name of the ACL created in Step 2.</td>
<td><strong>Purpose</strong></td>
</tr>
<tr>
<td></td>
<td>• For <em>vlan-range</em>, specify the VLAN that the switches and hosts are in. You can specify a single VLAN identified by VLAN ID number, a range of VLANs separated by a hyphen, or a series of VLANs separated by a comma. The range is 1 to 4094.</td>
<td><strong>Purpose</strong></td>
</tr>
<tr>
<td></td>
<td>• (Optional) Specify <em>static</em> to treat implicit denies in the ARP ACL as explicit denies and to drop packets that do not match any previous clauses in the ACL. DHCP bindings are not used.</td>
<td><strong>Purpose</strong></td>
</tr>
<tr>
<td></td>
<td>If you do not specify this keyword, it means that there is no explicit deny in the ACL that denies the packet, and DHCP bindings determine whether a packet is permitted or denied if the packet does not match any clauses in the ACL.</td>
<td><strong>Purpose</strong></td>
</tr>
<tr>
<td></td>
<td>ARP packets containing only IP-to-MAC address bindings are compared against the ACL. Packets are permitted only if the access list permits them.</td>
<td><strong>Purpose</strong></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>interface interface-id</td>
<td>Specifies Switch A interface that is connected to Switch B, and enters the interface configuration mode.</td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>no ip arp inspection trust</td>
<td>Configures Switch A interface that is connected to Switch B as untrusted. By default, all interfaces are untrusted.</td>
</tr>
<tr>
<td></td>
<td>For untrusted interfaces, the switch intercepts all ARP requests and responses. It verifies that the intercepted packets have valid IP-to-MAC address bindings before updating the local cache and before forwarding the packet to the appropriate destination. The switch drops invalid packets and logs them in the log buffer according to the logging configuration specified with the <strong>ip arp inspection vlan logging</strong> global configuration command.</td>
<td><strong>Purpose</strong></td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 10</strong></td>
<td>Use the following show commands:</td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td>    • show arp access-list acl-name</td>
<td></td>
<td><strong>Purpose</strong></td>
</tr>
<tr>
<td>    • show ip arp inspection vlan vlan-range</td>
<td></td>
<td><strong>Purpose</strong></td>
</tr>
<tr>
<td>    • show ip arp inspection interfaces</td>
<td></td>
<td><strong>Purpose</strong></td>
</tr>
</tbody>
</table>
### Configuring Dynamic ARP Inspection in DHCP Environments

#### Before You Begin

This procedure shows how to configure dynamic ARP inspection when two switches support this feature. Host 1 is connected to Switch A, and Host 2 is connected to Switch B. Both switches are running dynamic ARP inspection on VLAN 1 where the hosts are located. A DHCP server is connected to Switch A. Both hosts acquire their IP addresses from the same DHCP server. Therefore, Switch A has the bindings for Host 1 and Host 2, and Switch B has the binding for Host 2.

#### Note

Dynamic ARP inspection depends on the entries in the DHCP snooping binding database to verify IP-to-MAC address bindings in incoming ARP requests and ARP responses. Make sure to enable DHCP snooping to permit ARP packets that have dynamically assigned IP addresses.

Follow these steps to configure dynamic ARP inspection. You must perform this procedure on both switches. This procedure is required.
SUMMARY STEPS

1. enable
2. show cdp neighbors
3. configure terminal
4. ip arp inspection vlan vlan-range
5. Interface interface-id
6. ip arp inspection trust
7. end
8. show ip arp inspection interfaces
9. show ip arp inspection vlan vlan-range
10. show ip dhcp snooping binding
11. show ip arp inspection statistics vlan vlan-range
12. configure terminal
13. configure terminal

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>enable</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Verify the connection between the switches.</td>
</tr>
<tr>
<td>show cdp neighbors</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config-if)#show cdp neighbors</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Enable dynamic ARP inspection on a per-VLAN basis. By default, dynamic ARP inspection is disabled on all VLANs. For vlan-range, specify a single VLAN identified by VLAN ID number, a range of VLANs separated by a hyphen, or a series of VLANs separated by a comma. The range is 1 to 4094. Specify the same VLAN ID for both switches.</td>
</tr>
<tr>
<td>ip arp inspection vlan vlan-range</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# ip arp inspection vlan 1</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>Step 5</strong> Interface interface-id</td>
<td>Specifies the interface connected to the other switch, and enter interface configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch(config)# interface gigabitethernet1/0/1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> ip arp inspection trust</td>
<td>Configures the connection between the switches as trusted. By default, all interfaces are untrusted. The switch does not check ARP packets that it receives from the other switch on the trusted interface. It simply forwards the packets. For untrusted interfaces, the switch intercepts all ARP requests and responses. It verifies that the intercepted packets have valid IP-to-MAC address bindings before updating the local cache and before forwarding the packet to the appropriate destination. The switch drops invalid packets and logs them in the log buffer according to the logging configuration specified with the ip arp inspection vlan logging global configuration command.</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch(config-if)#ip arp inspection trust</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong> end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch(config-if)#end</td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong> show ip arp inspection interfaces</td>
<td>Verifies the dynamic ARP inspection configuration on interfaces.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Step 9</strong> show ip arp inspection vlan vlan-range</td>
<td>Verifies the dynamic ARP inspection configuration on VLAN.</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch(config-if)#show ip arp inspection vlan 1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 10</strong> show ip dhcp snooping binding</td>
<td>Verifies the DHCP bindings.</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch(config-if)#show ip dhcp snooping binding</td>
<td></td>
</tr>
<tr>
<td><strong>Step 11</strong> show ip arp inspection statistics vlan vlan-range</td>
<td>Checks the dynamic ARP inspection statistics on VLAN.</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch(config-if)#show ip arp inspection statistics vlan 1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 12</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>
Limiting the Rate of Incoming ARP Packets

The switch CPU performs dynamic ARP inspection validation checks; therefore, the number of incoming ARP packets is rate-limited to prevent a denial-of-service attack.

When the rate of incoming ARP packets exceeds the configured limit, the switch places the port in the error-disabled state. The port remains in that state until you enable error-disabled recovery so that ports automatically emerge from this state after a specified timeout period.

Note

Unless you configure a rate limit on an interface, changing the trust state of the interface also changes its rate limit to the default value for that trust state. After you configure the rate limit, the interface retains the rate limit even when its trust state is changed. If you enter the `no ip arp inspection limit` interface configuration command, the interface reverts to its default rate limit.

Follow these steps to limit the rate of incoming ARP packets. This procedure is optional.
SUMMARY STEPS

1. enable
2. configure terminal
3. interface interface-id
4. ip arp inspection limit {rate pps [burst interval seconds] | none}
5. exit
6. Use the following commands:
   • errdisable detect cause arp-inspection
   • errdisable recovery cause arp-inspection
   • errdisable recovery interval interval
7. exit
8. Use the following show commands:
   • show ip arp inspection interfaces
   • show errdisable recovery
9. show running-config
10. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: Switch&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface interface-id</td>
<td>Specifies the interface to be rate-limited, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 4 ip arp inspection limit {rate pps [burst interval seconds]</td>
<td>none}</td>
</tr>
<tr>
<td></td>
<td>• For ratepps, specify an upper limit for the number of incoming packets processed per second. The range is 0 to 2048 pps.</td>
</tr>
</tbody>
</table>
Performing Dynamic ARP Inspection Validation Checks

Dynamic ARP inspection intercepts, logs, and discards ARP packets with invalid IP-to-MAC address bindings. You can configure the switch to perform additional checks on the destination MAC address, the sender and target IP addresses, and the source MAC address.

Follow these steps to perform specific checks on incoming ARP packets. This procedure is optional.
SUMMARY STEPS

1. enable
2. configure terminal
3. ip arp inspection validate {[src-mac] [dst-mac] [ip]}
4. exit
5. show ip arp inspection vlan vlan-range
6. show running-config
7. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>ip arp inspection validate {[src-mac] [dst-mac] [ip]}</td>
<td>Performs a specific check on incoming ARP packets. By default, no checks are performed.</td>
</tr>
</tbody>
</table>

The keywords have these meanings:

- For **src-mac**, check the source MAC address in the Ethernet header against the sender MAC address in the ARP body. This check is performed on both ARP requests and responses. When enabled, packets with different MAC addresses are classified as invalid and are dropped.
- For **dst-mac**, check the destination MAC address in the Ethernet header against the target MAC address in ARP body. This check is performed for ARP responses. When enabled, packets with different MAC addresses are classified as invalid and are dropped.
- For **ip**, check the ARP body for invalid and unexpected IP addresses. Addresses include 0.0.0.0, 255.255.255.255, and all IP multicast addresses. Sender IP addresses are checked in all ARP requests and responses, and target IP addresses are checked only in ARP responses.

You must specify at least one of the keywords. Each command overrides the configuration of the previous command; that is, if a command enables src and dst mac validations, and a second command enables IP validation only, the src and dst mac validations are disabled as a result of the second command.
### Purpose

**Command or Action**	**Purpose**
Step 4 | `exit` Returns to privileged EXEC mode.  
Step 5 | `show ip arp inspection vlan vlan-range` Verifies your settings.  
Step 6 | `show running-config` Verifies your entries.  
**Example:**  
`Switch# show running-config`  
Step 7 | `copy running-config startup-config` *(Optional)* Saves your entries in the configuration file.  
**Example:**  
`Switch# copy running-config startup-config`  

---

### Monitoring DAI

To monitor DAI, use the following commands:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
</table>
| `clear ip arp inspection statistics` | Clears dynamic ARP inspection statistics.  
| `show ip arp inspection statistics [vlan vlan-range]` | Displays statistics for forwarded, dropped, MAC validation failure, IP validation failure, ACL permitted and denied, and DHCP permitted and denied packets for the specified VLAN. If no VLANs are specified or if a range is specified, displays information only for VLANs with dynamic ARP inspection enabled (active).  
| `clear ip arp inspection log` | Clears the dynamic ARP inspection log buffer.  
| `show ip arp inspection log` | Displays the configuration and contents of the dynamic ARP inspection log buffer.  

For the **show ip arp inspection statistics** command, the switch increments the number of forwarded packets for each ARP request and response packet on a trusted dynamic ARP inspection port. The switch increments the number of ACL or DHCP permitted packets for each packet that is denied by source MAC, destination MAC, or IP validation checks, and the switch increments the appropriate.
Verifying the DAI Configuration

To display and verify the DAI configuration, use the following commands:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>show arp access-list</strong> [acl-name]</td>
<td>Displays detailed information about ARP ACLs.</td>
</tr>
<tr>
<td><strong>show ip arp inspection interfaces</strong> [interface-id]</td>
<td>Displays the trust state and the rate limit of ARP packets for the specified interface or all interfaces.</td>
</tr>
<tr>
<td><strong>show ip arp inspection vlan</strong> vlan-range</td>
<td>Displays the configuration and the operating state of dynamic ARP inspection for the specified VLAN. If no VLANs are specified or if a range is specified, displays information only for VLANs with dynamic ARP inspection enabled (active).</td>
</tr>
</tbody>
</table>

Additional References

**Error Message Decoder**

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>To help you research and resolve system error messages in this release, use the Error Message Decoder tool.</td>
<td><a href="https://www.cisco.com/cgi-bin/Support/Errordecoder/index.cgi">https://www.cisco.com/cgi-bin/Support/Errordecoder/index.cgi</a></td>
</tr>
</tbody>
</table>

**MIBs**

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>All supported MIBs for this release.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>
## Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/support">http://www.cisco.com/support</a></td>
</tr>
</tbody>
</table>
CHAPTER 45

Configuring IEEE 802.1x Port-Based Authentication

This chapter describes how to configure IEEE 802.1x port-based authentication. IEEE 802.1x authentication prevents unauthorized devices (clients) from gaining access to the network. Unless otherwise noted, the term switch refers to a standalone switch or a switch stack.

- Finding Feature Information, page 1005
- Information About 802.1x Port-Based Authentication, page 1005
- How to Configure 802.1x Port-Based Authentication, page 1039
- Monitoring 802.1x Statistics and Status, page 1099
- Additional References, page 1100

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About 802.1x Port-Based Authentication

The 802.1x standard defines a client-server-based access control and authentication protocol that prevents unauthorized clients from connecting to a LAN through publicly accessible ports unless they are properly authenticated. The authentication server authenticates each client connected to a switch port before making available any services offered by the switch or the LAN.
TACACS is not supported with 802.1x authentication.

Until the client is authenticated, 802.1x access control allows only Extensible Authentication Protocol over LAN (EAPOL), Cisco Discovery Protocol (CDP), and Spanning Tree Protocol (STP) traffic through the port to which the client is connected. After authentication is successful, normal traffic can pass through the port.

For complete syntax and usage information for the commands used in this chapter, see the “RADIUS Commands” section in the Cisco IOS Security Command Reference, Release 3SE.

Port-Based Authentication Process

To configure IEEE 802.1X port-based authentication, you must enable authentication, authorization, and accounting (AAA) and specify the authentication method list. A method list describes the sequence and authentication method to be queried to authenticate a user.

The AAA process begins with authentication. When 802.1x port-based authentication is enabled and the client supports 802.1x-compliant client software, these events occur:

- If the client identity is valid and the 802.1x authentication succeeds, the switch grants the client access to the network.
- If 802.1x authentication times out while waiting for an EAPOL message exchange and MAC authentication bypass is enabled, the switch can use the client MAC address for authorization. If the client MAC address is valid and the authorization succeeds, the switch grants the client access to the network. If the client MAC address is invalid and the authorization fails, the switch assigns the client to a guest VLAN that provides limited services if a guest VLAN is configured.
- If the switch gets an invalid identity from an 802.1x-capable client and a restricted VLAN is specified, the switch can assign the client to a restricted VLAN that provides limited services.
- If the RADIUS authentication server is unavailable (down) and inaccessible authentication bypass is enabled, the switch grants the client access to the network by putting the port in the critical-authentication state in the RADIUS-configured or the user-specified access VLAN.

Inaccessible authentication bypass is also referred to as critical authentication or the AAA fail policy.

If Multi Domain Authentication (MDA) is enabled on a port, this flow can be used with some exceptions that are applicable to voice authorization.
This figure shows the authentication process.

**Figure 83: Authentication Flowchart**

The switch re-authenticates a client when one of these situations occurs:

- Periodic re-authentication is enabled, and the re-authentication timer expires.

You can configure the re-authentication timer to use a switch-specific value or to be based on values from the RADIUS server.

After 802.1x authentication using a RADIUS server is configured, the switch uses timers based on the Session-Timeout RADIUS attribute (Attribute[27]) and the Termination-Action RADIUS attribute (Attribute[29]).

The Session-Timeout RADIUS attribute (Attribute[27]) specifies the time after which re-authentication occurs.

The Termination-Action RADIUS attribute (Attribute[29]) specifies the action to take during re-authentication. The actions are *Initialize* and *ReAuthenticate*. When the *Initialize* action is set (the attribute value is *DEFAULT*), the 802.1x session ends, and connectivity is lost during re-authentication. When the *ReAuthenticate* action is set (the attribute value is RADIUS-Request), the session is not affected during re-authentication.

- You manually re-authenticate the client by entering the `dot1x re-authenticate interface interface-id` privileged EXEC command.
Port-Based Authentication Initiation and Message Exchange

During 802.1x authentication, the switch or the client can initiate authentication. If you enable authentication on a port by using the `authentication port-control auto` interface configuration command, the switch initiates authentication when the link state changes from down to up or periodically as long as the port remains up and unauthenticated. The switch sends an EAP-request/identity frame to the client to request its identity. Upon receipt of the frame, the client responds with an EAP-response/identity frame.

However, if during bootup, the client does not receive an EAP-request/identity frame from the switch, the client can initiate authentication by sending an EAPOL-start frame, which prompts the switch to request the client’s identity.

Note
If 802.1x authentication is not enabled or supported on the network access device, any EAPOL frames from the client are dropped. If the client does not receive an EAP-request/identity frame after three attempts to start authentication, the client sends frames as if the port is in the authorized state. A port in the authorized state effectively means that the client has been successfully authenticated.

When the client supplies its identity, the switch begins its role as the intermediary, passing EAP frames between the client and the authentication server until authentication succeeds or fails. If the authentication succeeds, the switch port becomes authorized. If the authentication fails, authentication can be retried, the port might be assigned to a VLAN that provides limited services, or network access is not granted.

The specific exchange of EAP frames depends on the authentication method being used.

Note
EAP pass-through is supported on Catalyst switches that have 802.1x enabled. When EAP pass-through mode is active, the authenticator relays the EAP packets to and from the 802.1x frames and the RADIUS packets.
This figure shows a message exchange initiated by the client when the client uses the One-Time-Password (OTP) authentication method with a RADIUS server.

**Figure 84: Message Exchange**

If 802.1x authentication times out while waiting for an EAPOL message exchange and MAC authentication bypass is enabled, the switch can authorize the client when the switch detects an Ethernet packet from the client. The switch uses the MAC address of the client as its identity and includes this information in the RADIUS-access/request frame that is sent to the RADIUS server. After the server sends the switch the RADIUS-access/accept frame (authorization is successful), the port becomes authorized. If authorization fails and a guest VLAN is specified, the switch assigns the port to the guest VLAN. If the switch detects an EAPOL packet while waiting for an Ethernet packet, the switch stops the MAC authentication bypass process and starts 802.1x authentication.
This figure shows the message exchange during MAC authentication bypass.

**Figure 85: Message Exchange During MAC Authentication Bypass**

---

**Authentication Manager for Port-Based Authentication**

**Port-Based Authentication Methods**

**Table 111: 802.1x Features**

<table>
<thead>
<tr>
<th>Authentication method</th>
<th>Mode</th>
<th>Single host</th>
<th>Multiple host</th>
<th>MDA</th>
<th>Multiple Authentication</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.1x</td>
<td>VLAN assignment</td>
<td></td>
<td></td>
<td>VLAN assignment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Per-user ACL</td>
<td></td>
<td></td>
<td>Per-user ACL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Filter-ID attribute</td>
<td></td>
<td></td>
<td>Filter-ID attribute</td>
<td></td>
</tr>
<tr>
<td></td>
<td>downloadable ACL</td>
<td></td>
<td></td>
<td>downloadable ACL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Redirect URL</td>
<td></td>
<td></td>
<td>Redirect URL</td>
<td></td>
</tr>
</tbody>
</table>

---
### Authentication method

<table>
<thead>
<tr>
<th>Mode</th>
<th>Single host</th>
<th>Multiple host</th>
<th>MDA</th>
<th>Multiple Authentication</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC authentication bypass</td>
<td>VLAN assignment</td>
<td>VLAN assignment</td>
<td>VLAN assignment</td>
<td>VLAN assignment</td>
</tr>
<tr>
<td></td>
<td>Per-user ACL</td>
<td>Per-user ACL</td>
<td>Per-user ACL</td>
<td>Per-user ACL</td>
</tr>
<tr>
<td></td>
<td>Filter-ID attribute</td>
<td>Filter-ID attribute</td>
<td>Filter-ID attribute</td>
<td>Filter-ID attribute</td>
</tr>
<tr>
<td></td>
<td>Downloadable ACL</td>
<td>Downloadable ACL</td>
<td>Downloadable ACL</td>
<td>Downloadable ACL</td>
</tr>
<tr>
<td></td>
<td>Redirect URL</td>
<td>Redirect URL</td>
<td>Redirect URL</td>
<td>Redirect URL</td>
</tr>
<tr>
<td>Standalone web authentication</td>
<td>Proxy ACL, Filter-ID attribute, downloadable ACL</td>
</tr>
<tr>
<td>NAC Layer 2 IP validation</td>
<td>Filter-ID attribute</td>
<td>Filter-ID attribute</td>
<td>Filter-ID attribute</td>
<td>Filter-ID attribute</td>
</tr>
<tr>
<td></td>
<td>Downloadable ACL</td>
<td>Downloadable ACL</td>
<td>Downloadable ACL</td>
<td>Downloadable ACL</td>
</tr>
<tr>
<td></td>
<td>Redirect URL</td>
<td>Redirect URL</td>
<td>Redirect URL</td>
<td>Redirect URL</td>
</tr>
<tr>
<td>Web authentication as fallback method(^{12})</td>
<td>Proxy ACL, Filter-ID attribute, downloadable ACL</td>
</tr>
</tbody>
</table>

\(^{16}\) Supported in Cisco IOS Release 12.2(50)SE and later.

\(^{17}\) For clients that do not support 802.1x authentication.

### Per-User ACLs and Filter-Ids

**Note**

You can only set any as the source in the ACL.

---

**Note**

For any ACL configured for multiple-host mode, the source portion of statement must be any. (For example, permit icmp any host 10.10.1.1.)

You must specify any in the source ports of any defined ACL. Otherwise, the ACL cannot be applied and authorization fails. Single host is the only exception to support backward compatibility.

More than one host can be authenticated on MDA-enabled and multiauth ports. The ACL policy applied for one host does not affect the traffic of another host. If only one host is authenticated on a multi-host port, and the other hosts gain network access without authentication, the ACL policy for the first host can be applied to the other connected hosts by specifying any in the source address.
Port-Based Authentication Manager CLI Commands

The authentication-manager interface-configuration commands control all the authentication methods, such as 802.1x, MAC authentication bypass, and web authentication. The authentication manager commands determine the priority and order of authentication methods applied to a connected host.

The authentication manager commands control generic authentication features, such as host-mode, violation mode, and the authentication timer. Generic authentication commands include the `authentication host-mode`, `authentication violation`, and `authentication timer` interface configuration commands.

802.1x-specific commands begin with the `dot1x` keyword. For example, the `authentication port-control auto` interface configuration command enables authentication on an interface. However, the `dot1x system-authentication control` global configuration command only globally enables or disables 802.1x authentication.

Note

If 802.1x authentication is globally disabled, other authentication methods are still enabled on that port, such as web authentication.

The `authentication manager` commands provide the same functionality as earlier 802.1x commands.

When filtering out verbose system messages generated by the authentication manager, the filtered content typically relates to authentication success. You can also filter verbose messages for 802.1x authentication and MAB authentication. There is a separate command for each authentication method:

- The `no authentication logging verbose` global configuration command filters verbose messages from the authentication manager.
- The `no dot1x logging verbose` global configuration command filters 802.1x authentication verbose messages.
- The `no mab logging verbose` global configuration command filters MAC authentication bypass (MAB) verbose messages

<table>
<thead>
<tr>
<th>Table 112: Authentication Manager Commands and Earlier 802.1x Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>The authentication manager commands in Cisco IOS Release 12.2(50)SE or later</strong></td>
</tr>
<tr>
<td>authentication control-direction {both</td>
</tr>
<tr>
<td>authentication event</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>The authentication manager commands in Cisco IOS Release 12.2(50)SE or later</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>authentication fallback</td>
</tr>
<tr>
<td>fallback-profile</td>
</tr>
<tr>
<td>authentication host-mode</td>
</tr>
<tr>
<td>[multi-auth</td>
</tr>
<tr>
<td>multi-domain</td>
</tr>
<tr>
<td>multi-host</td>
</tr>
<tr>
<td>single-host</td>
</tr>
<tr>
<td>authentication order</td>
</tr>
<tr>
<td>authentication periodic</td>
</tr>
<tr>
<td>authentication port-control</td>
</tr>
<tr>
<td>{auto</td>
</tr>
<tr>
<td>force-unauthorized}</td>
</tr>
<tr>
<td>authentication timer</td>
</tr>
<tr>
<td>authentication violation</td>
</tr>
<tr>
<td>{protect</td>
</tr>
</tbody>
</table>

**Ports in Authorized and Unauthorized States**

During 802.1x authentication, depending on the switch port state, the switch can grant a client access to the network. The port starts in the **unauthorized** state. While in this state, the port that is not configured as a voice VLAN port disallows all ingress and egress traffic except for 802.1x authentication, CDP, and STP packets. When a client is successfully authenticated, the port changes to the **authorized** state, allowing all traffic for the client to flow normally. If the port is configured as a voice VLAN port, the port allows VoIP traffic and 802.1x protocol packets before the client is successfully authenticated.

---

**Note**

CDP bypass is not supported and may cause a port to go into err-disabled state.

If a client that does not support 802.1x authentication connects to an unauthorized 802.1x port, the switch requests the client’s identity. In this situation, the client does not respond to the request, the port remains in the unauthorized state, and the client is not granted access to the network.

In contrast, when an 802.1x-enabled client connects to a port that is not running the 802.1x standard, the client initiates the authentication process by sending the EAPOL-start frame. When no response is received, the
client sends the request for a fixed number of times. Because no response is received, the client begins sending frames as if the port is in the authorized state.

You control the port authorization state by using the `authentication port-control` interface configuration command and these keywords:

- **force-authorized**—disables 802.1x authentication and causes the port to change to the authorized state without any authentication exchange required. The port sends and receives normal traffic without 802.1x-based authentication of the client. This is the default setting.

- **force-unauthorized**—causes the port to remain in the unauthorized state, ignoring all attempts by the client to authenticate. The switch cannot provide authentication services to the client through the port.

- **auto**—enables 802.1x authentication and causes the port to begin in the unauthorized state, allowing only EAPOL frames to be sent and received through the port. The authentication process begins when the link state of the port changes from down to up or when an EAPOL-start frame is received. The switch requests the identity of the client and begins relaying authentication messages between the client and the authentication server. Each client attempting to access the network is uniquely identified by the switch by using the client MAC address.

If the client is successfully authenticated (receives an Accept frame from the authentication server), the port state changes to authorized, and all frames from the authenticated client are allowed through the port. If the authentication fails, the port remains in the unauthorized state, but authentication can be retried. If the authentication server cannot be reached, the switch can resend the request. If no response is received from the server after the specified number of attempts, authentication fails, and network access is not granted.

When a client logs off, it sends an EAPOL-logoff message, causing the switch port to change to the unauthorized state.

If the link state of a port changes from up to down, or if an EAPOL-logoff frame is received, the port returns to the unauthorized state.

### Port-Based Authentication and Switch Stacks

If a switch is added to or removed from a switch stack, 802.1x authentication is not affected as long as the IP connectivity between the RADIUS server and the stack remains intact. This statement also applies if the stack master is removed from the switch stack. Note that if the stack master fails, a stack member becomes the new stack master by using the election process, and the 802.1x authentication process continues as usual.

If IP connectivity to the RADIUS server is interrupted because the switch that was connected to the server is removed or fails, these events occur:

- Ports that are already authenticated and that do not have periodic re-authentication enabled remain in the authenticated state. Communication with the RADIUS server is not required.

- Ports that are already authenticated and that have periodic re-authentication enabled (with the `dot1x re-authentication` global configuration command) fail the authentication process when the re-authentication occurs. Ports return to the unauthenticated state during the re-authentication process. Communication with the RADIUS server is required.

  For an ongoing authentication, the authentication fails immediately because there is no server connectivity.

If the switch that failed comes up and rejoins the switch stack, the authentications might or might not fail depending on the boot-up time and whether the connectivity to the RADIUS server is re-established by the time the authentication is attempted.
To avoid loss of connectivity to the RADIUS server, you should ensure that there is a redundant connection to it. For example, you can have a redundant connection to the stack master and another to a stack member, and if the stack master fails, the switch stack still has connectivity to the RADIUS server.

**802.1x Host Mode**

You can configure an 802.1x port for single-host or for multiple-hosts mode. In single-host mode, only one client can be connected to the 802.1x-enabled switch port. The switch detects the client by sending an EAPOL frame when the port link state changes to the up state. If a client leaves or is replaced with another client, the switch changes the port link state to down, and the port returns to the unauthorized state.

In multiple-hosts mode, you can attach multiple hosts to a single 802.1x-enabled port. In this mode, only one of the attached clients must be authorized for all clients to be granted network access. If the port becomes unauthorized (re-authentication fails or an EAPOL-logoff message is received), the switch denies network access to all of the attached clients. In this topology, the wireless access point is responsible for authenticating the clients attached to it, and it also acts as a client to the switch.

**Figure 86: Multiple Host Mode Example**

For all host modes, the line protocol stays up before authorization when port-based authentication is configured.

The switch supports multidomain authentication (MDA), which allows both a data device and a voice device, such as an IP Phone (Cisco or non-Cisco), to connect to the same switch port.

**802.1x Multiple Authentication Mode**

Multiple-authentication (multiauth) mode allows multiple authenticated clients on the data VLAN. Each host is individually authenticated. If a voice VLAN is configured, this mode also allows one client on the VLAN. (If the port detects any additional voice clients, they are discarded from the port, but no violation errors occur.)

If a hub or access point is connected to an 802.1x-enabled port, each connected client must be authenticated. For non-802.1x devices, you can use MAC authentication bypass or web authentication as the per-host authentication fallback method to authenticate different hosts with different methods on a single port.

There is no limit to the number of data hosts can authenticate on a multiauthport. However, only one voice device is allowed if the voice VLAN is configured. Since there is no host limit defined violation will not be trigger, if a second voice is seen we silently discard it but do not trigger violation. For MDA functionality on the voice VLAN, multiple-authentication mode assigns authenticated devices to either a data or a voice VLAN, depending on the VSAs received from the authentication server.
When a port is in multiple-authentication mode, the guest VLAN and the authentication-failed VLAN features do not activate.

You can assign a RADIUS-server-supplied VLAN in multi-auth mode, under the following conditions:

- The host is the first host authorized on the port, and the RADIUS server supplies VLAN information.
- Subsequent hosts are authorized with a VLAN that matches the operational VLAN.
- A host is authorized on the port with no VLAN assignment, and subsequent hosts either have no VLAN assignment, or their VLAN information matches the operational VLAN.
- The first host authorized on the port has a group VLAN assignment, and subsequent hosts either have no VLAN assignment, or their group VLAN matches the group VLAN on the port. Subsequent hosts must use the same VLAN from the VLAN group as the first host. If a VLAN list is used, all hosts are subject to the conditions specified in the VLAN list.
- Only one voice VLAN assignment is supported on a multi-auth port.
- After a VLAN is assigned to a host on the port, subsequent hosts must have matching VLAN information or be denied access to the port.
- You cannot configure a guest VLAN or an auth-fail VLAN in multi-auth mode.
- The behavior of the critical-auth VLAN is not changed for multi-auth mode. When a host tries to authenticate and the server is not reachable, all authorized hosts are reinitialized in the configured VLAN.

**Multi-auth Per User VLAN assignment**

Note: This feature is supported only on Catalyst 2960X switches running the LAN base image.

The Multi-auth Per User VLAN assignment feature allows you to create multiple operational access VLANs based on VLANs assigned to the clients on the port that has a single configured access VLAN. The port configured as an access port where the traffic for all the VLANs associated with data domain is not dot1q tagged, and these VLANs are treated as native VLANs.

The number of hosts per multi-auth port is 8, however there can be more hosts.

Note: The Multi-auth Per User VLAN assignment feature is not supported for Voice domain. All clients in Voice domain on a port must use the same VLAN.

The following scenarios are associated with the multi-auth Per User VLAN assignments:

**Scenario one**

When a hub is connected to an access port, and the port is configured with an access VLAN (V0). The host (H1) is assigned to VLAN (V1) through the hub. The operational VLAN of the port is changed to V1. This behaviour is similar on a single-host or multi-domain-auth port.
When a second host (H2) is connected and gets assigned to VLAN (V2), the port will have two operational VLANs (V1 and V2). If H1 and H2 sends untagged ingress traffic, H1 traffic is mapped to VLAN (V1) and H2 traffic to VLAN (V2), all egress traffic going out of the port on VLAN (V1) and VLAN (V2) are untagged.

If both the hosts, H1 and H2 are logged out or the sessions are removed due to some reason then VLAN (V1) and VLAN (V2) are removed from the port, and the configured VLAN (V0) is restored on the port.

**Scenario two**

When a hub is connected to an access port, and the port is configured with an access VLAN (V0). The host (H1) is assigned to VLAN (V1) through the hub. The operational VLAN of the port is changed to V1.

When a second host (H2) is connected and gets authorized without explicit vlan policy, H2 is expected to use the configured VLAN (V0) that is restored on the port. All egress traffic going out of two operational VLANs, VLAN (V0) and VLAN (V1) are untagged.

If host (H2) is logged out or the session is removed due to some reason then the configured VLAN (V0) is removed from the port, and VLAN (V1) becomes the only operational VLAN on the port.

**Scenario three**

When a hub is connected to an access port in open mode, and the port is configured with an access VLAN (V0).

The host (H1) is assigned to VLAN (V1) through the hub. The operational VLAN of the port is changed to V1. When a second host (H2) is connected and remains unauthorized, it still has access to operational VLAN (V1) due to open mode.

If host H1 is logged out or the session is removed due to some reason, VLAN (V1) is removed from the port and host (H2) gets assigned to VLAN (V0).

---

**Note**

The combination of Open mode and VLAN assignment has an adverse affect on host (H2) because it has an IP address in the subnet that corresponds to VLAN (V1).

---

**Limitation in Multi-auth Per User VLAN assignment**

In the Multi-auth Per User VLAN assignment feature, egress traffic from multiple vlans are untagged on a port where the hosts receive traffic that is not meant for them. This can be a problem with broadcast and multicast traffic.

- **IPv4 ARPs**: Hosts receive ARP packets from other subnets. This is a problem if two subnets in different Virtual Routing and Forwarding (VRF) tables with overlapping IP address range are active on the port. The host ARP cache may get invalid entries.

- **IPv6 control packets**: In IPv6 deployments, Router Advertisements (RA) are processed by hosts that are not supposed to receive them. When a host from one VLAN receives RA from a different VLAN, the host assign incorrect IPv6 address to itself. Such a host is unable to get access to the network. The workaround is to enable the IPv6 first hop security so that the broadcast ICMPv6 packets are converted to unicast and sent out from multi-auth enabled ports. The packet is replicated for each client in multi-auth port belonging to the VLAN and the destination MAC is set to an individual client. Ports having one VLAN, ICMPv6 packets broadcast normally.

- **IP multicast**: Multicast traffic destined to a multicast group gets replicated for different VLANs if the hosts on those VLANs join the multicast group. When two hosts in different VLANs join a multicast group (on the same mutli-auth port), two copies of each multicast packet are sent out from that port.
## MAC Move

When a MAC address is authenticated on one switch port, that address is not allowed on another authentication manager-enabled port of the switch. If the switch detects that same MAC address on another authentication manager-enabled port, the address is not allowed.

There are situations where a MAC address might need to move from one port to another on the same switch. For example, when there is another device (for example a hub or an IP phone) between an authenticated host and a switch port, you might want to disconnect the host from the device and connect it directly to another port on the same switch.

You can globally enable MAC move so the device is reauthenticated on the new port. When a host moves to a second port, the session on the first port is deleted, and the host is reauthenticated on the new port. MAC move is supported on all host modes. (The authenticated host can move to any port on the switch, no matter which host mode is enabled on the that port.) When a MAC address moves from one port to another, the switch terminates the authenticated session on the original port and initiates a new authentication sequence on the new port. The MAC move feature applies to both voice and data hosts.

---

**Note**

In open authentication mode, a MAC address is immediately moved from the original port to the new port, with no requirement for authorization on the new port.

## MAC Replace

The MAC replace feature can be configured to address the violation that occurs when a host attempts to connect to a port where another host was previously authenticated.

---

**Note**

This feature does not apply to ports in multi-auth mode, because violations are not triggered in that mode. It does not apply to ports in multiple host mode, because in that mode, only the first host requires authentication.

If you configure the `authentication violation` interface configuration command with the `replace` keyword, the authentication process on a port in multi-domain mode is:

- A new MAC address is received on a port with an existing authenticated MAC address.
- The authentication manager replaces the MAC address of the current data host on the port with the new MAC address.
- The authentication manager initiates the authentication process for the new MAC address.
- If the authentication manager determines that the new host is a voice host, the original voice host is removed.

If a port is in open authentication mode, any new MAC address is immediately added to the MAC address table.
802.1x Accounting

The 802.1x standard defines how users are authorized and authenticated for network access but does not keep track of network usage. 802.1x accounting is disabled by default. You can enable 802.1x accounting to monitor this activity on 802.1x-enabled ports:

- User successfully authenticates.
- User logs off.
- Link-down occurs.
- Re-authentication successfully occurs.
- Re-authentication fails.

The switch does not log 802.1x accounting information. Instead, it sends this information to the RADIUS server, which must be configured to log accounting messages.

802.1x Accounting Attribute-Value Pairs

The information sent to the RADIUS server is represented in the form of Attribute-Value (AV) pairs. These AV pairs provide data for different applications. (For example, a billing application might require information that is in the Acct-Input-Octets or the Acct-Output-Octets attributes of a RADIUS packet.)

AV pairs are automatically sent by a switch that is configured for 802.1x accounting. Three types of RADIUS accounting packets are sent by a switch:

- START—sent when a new user session starts
- INTERIM—sent during an existing session for updates
- STOP—sent when a session terminates

You can view the AV pairs that are being sent by the switch by entering the `debug radius accounting` privileged EXEC command. For more information about this command, see the Cisco IOS Debug Command Reference, Release 12.4.

This table lists the AV pairs and when they are sent are sent by the switch.

<table>
<thead>
<tr>
<th>Attribute Number</th>
<th>AV Pair Name</th>
<th>START</th>
<th>INTERIM</th>
<th>STOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attribute[1]</td>
<td>User-Name</td>
<td>Always</td>
<td>Always</td>
<td>Always</td>
</tr>
<tr>
<td>Attribute[4]</td>
<td>NAS-IP-Address</td>
<td>Always</td>
<td>Always</td>
<td>Always</td>
</tr>
<tr>
<td>Attribute[5]</td>
<td>NAS-Port</td>
<td>Always</td>
<td>Always</td>
<td>Always</td>
</tr>
<tr>
<td>Attribute[8]</td>
<td>Framed-IP-Address</td>
<td>Never</td>
<td>Sometimes</td>
<td>Sometimes</td>
</tr>
<tr>
<td>Attribute[25]</td>
<td>Class</td>
<td>Always</td>
<td>Always</td>
<td>Always</td>
</tr>
</tbody>
</table>
The Framed-IP-Address AV pair is sent when a valid static IP address is configured or when a Dynamic Host Control Protocol (DHCP) binding exists for the host in the DHCP snooping bindings table.

### 802.1x Readiness Check

The 802.1x readiness check monitors 802.1x activity on all the switch ports and displays information about the devices connected to the ports that support 802.1x. You can use this feature to determine if the devices connected to the switch ports are 802.1x-capable. You use an alternate authentication such as MAC authentication bypass or web authentication for the devices that do not support 802.1x functionality.

This feature only works if the supplicant on the client supports a query with the NOTIFY EAP notification packet. The client must respond within the 802.1x timeout value.

**Related Topics**

- Configuring 802.1x Readiness Check, on page 1043

### Switch-to-RADIUS-Server Communication

RADIUS security servers are identified by their hostname or IP address, hostname and specific UDP port numbers, or IP address and specific UDP port numbers. The combination of the IP address and UDP port number creates a unique identifier, which enables RADIUS requests to be sent to multiple UDP ports on a
server at the same IP address. If two different host entries on the same RADIUS server are configured for the same service—for example, authentication—the second host entry configured acts as the fail-over backup to the first one. The RADIUS host entries are tried in the order that they were configured.

Related Topics
Configuring the Switch-to-RADIUS-Server Communication, on page 1052

802.1x Authentication with VLAN Assignment

The switch supports 802.1x authentication with VLAN assignment. After successful 802.1x authentication of a port, the RADIUS server sends the VLAN assignment to configure the switch port. The RADIUS server database maintains the username-to-VLAN mappings, assigning the VLAN based on the username of the client connected to the switch port. You can use this feature to limit network access for certain users.

Voice device authentication is supported with multidomain host mode in Cisco IOS Release 12.2(37)SE. In Cisco IOS Release 12.2(40)SE and later, when a voice device is authorized and the RADIUS server returned an authorized VLAN, the voice VLAN on the port is configured to send and receive packets on the assigned voice VLAN. Voice VLAN assignment behaves the same as data VLAN assignment on multidomain authentication (MDA)-enabled ports.

When configured on the switch and the RADIUS server, 802.1x authentication with VLAN assignment has these characteristics:

- If no VLAN is supplied by the RADIUS server or if 802.1x authentication is disabled, the port is configured in its access VLAN after successful authentication. Recall that an access VLAN is a VLAN assigned to an access port. All packets sent from or received on this port belong to this VLAN.
- If 802.1x authentication is enabled but the VLAN information from the RADIUS server is not valid, authorization fails and configured VLAN remains in use. This prevents ports from appearing unexpectedly in an inappropriate VLAN because of a configuration error.
  
  Configuration errors could include specifying a VLAN for a routed port, a malformed VLAN ID, a nonexistent or internal (routed port) VLAN ID, an RSPAN VLAN, a shut down or suspended VLAN. In the case of a multidomain host port, configuration errors can also be due to an attempted assignment of a data VLAN that matches the configured or assigned voice VLAN ID (or the reverse).
- If 802.1x authentication is enabled and all information from the RADIUS server is valid, the authorized device is placed in the specified VLAN after authentication.
- If the multiple-hosts mode is enabled on an 802.1x port, all hosts are placed in the same VLAN (specified by the RADIUS server) as the first authenticated host.
- Enabling port security does not impact the RADIUS server-assigned VLAN behavior.
- If 802.1x authentication is disabled on the port, it is returned to the configured access VLAN and configured voice VLAN.
- If an 802.1x port is authenticated and put in the RADIUS server-assigned VLAN, any change to the port access VLAN configuration does not take effect. In the case of a multidomain host, the same applies to voice devices when the port is fully authorized with these exceptions:
  - If the VLAN configuration change of one device results in matching the other device configured or assigned VLAN, then authorization of all devices on the port is terminated and multidomain host mode is disabled until a valid configuration is restored where data and voice device configured VLANs no longer match.
• If a voice device is authorized and is using a downloaded voice VLAN, the removal of the voice VLAN configuration, or modifying the configuration value to dot1p or untagged results in voice device un-authorization and the disablement of multi-domain host mode.

When the port is in the force authorized, force unauthorized, unauthorized, or shutdown state, it is put into the configured access VLAN.

If an 802.1x port is authenticated and put in the RADIUS server-assigned VLAN, any change to the port access VLAN configuration does not take effect. In the case of a multidomain host, the same applies to voice devices when the port is fully authorized with these exceptions:

• If the VLAN configuration change of one device results in matching the other device configured or assigned VLAN, authorization of all devices on the port is terminated and multidomain host mode is disabled until a valid configuration is restored where data and voice device configured VLANs no longer match.

• If a voice device is authorized and is using a downloaded voice VLAN, the removal of the voice VLAN configuration, or modifying the configuration value to dot1p or untagged results in voice device un-authorization and the disablement of multi-domain host mode.

When the port is in the force authorized, force unauthorized, unauthorized, or shutdown state, it is put into the configured access VLAN.

The 802.1x authentication with VLAN assignment feature is not supported on trunk ports, dynamic ports, or with dynamic-access port assignment through a VLAN Membership Policy Server (VMPS).

To configure VLAN assignment you need to perform these tasks:

• Enable AAA authorization by using the `network` keyword to allow interface configuration from the RADIUS server.

• Enable 802.1x authentication. (The VLAN assignment feature is automatically enabled when you configure 802.1x authentication on an access port).

• Assign vendor-specific tunnel attributes in the RADIUS server. The RADIUS server must return these attributes to the switch:

  • [64] Tunnel-Type = VLAN
  • [65] Tunnel-Medium-Type = 802
  • [81] Tunnel-Private-Group-ID = VLAN name or VLAN ID
  • [83] Tunnel-Preference

Attribute [64] must contain the value `VLAN` (type 13). Attribute [65] must contain the value `802` (type 6). Attribute [81] specifies the `VLAN name or VLAN ID` assigned to the IEEE 802.1x-authenticated user.

### 802.1x Authentication with Per-User ACLs

You can enable per-user access control lists (ACLs) to provide different levels of network access and service to an 802.1x-authenticated user. When the RADIUS server authenticates a user connected to an 802.1x port, it retrieves the ACL attributes based on the user identity and sends them to the switch. The switch applies the attributes to the 802.1x port for the duration of the user session. The switch removes the per-user ACL configuration when the session is over, if authentication fails, or if a link-down condition occurs. The switch
does not save RADIUS-specified ACLs in the running configuration. When the port is unauthorized, the switch removes the ACL from the port.

You can configure router ACLs and input port ACLs on the same switch. However, a port ACL takes precedence over a router ACL. If you apply input port ACL to an interface that belongs to a VLAN, the port ACL takes precedence over an input router ACL applied to the VLAN interface. Incoming packets received on the port to which a port ACL is applied are filtered by the port ACL. Incoming routed packets received on other ports are filtered by the router ACL. Outgoing routed packets are filtered by the router ACL. To avoid configuration conflicts, you should carefully plan the user profiles stored on the RADIUS server.

RADIUS supports per-user attributes, including vendor-specific attributes. These vendor-specific attributes (VSAs) are in octet-string format and are passed to the switch during the authentication process. The VSAs used for per-user ACLs are inacli#<n> for the ingress direction and outacli#<n> for the egress direction. MAC ACLs are supported only in the ingress direction. The switch supports VSAs only in the ingress direction. It does not support port ACLs in the egress direction on Layer 2 ports.

Use only the extended ACL syntax style to define the per-user configuration stored on the RADIUS server. When the definitions are passed from the RADIUS server, they are created by using the extended naming convention. However, if you use the Filter-Id attribute, it can point to a standard ACL.

You can use the Filter-Id attribute to specify an inbound or outbound ACL that is already configured on the switch. The attribute contains the ACL number followed by .in for ingress filtering or .out for egress filtering. If the RADIUS server does not allow the .in or .out syntax, the access list is applied to the outbound ACL by default. Because of limited support of Cisco IOS access lists on the switch, the Filter-Id attribute is supported only for IP ACLs numbered 1 to 199 and 1300 to 2699 (IP standard and IP extended ACLs).

The maximum size of the per-user ACL is 4000 ASCII characters but is limited by the maximum size of RADIUS-server per-user ACLs.

To configure per-user ACLs:

- Enable AAA authentication.
- Enable AAA authorization by using the network keyword to allow interface configuration from the RADIUS server.
- Enable 802.1x authentication.
- Configure the user profile and VSAs on the RADIUS server.
- Configure the 802.1x port for single-host mode.

Note

Per-user ACLs are supported only in single-host mode.

---

### 802.1x Authentication with Downloadable ACLs and Redirect URLs

You can download ACLs and redirect URLs from a RADIUS server to the switch during 802.1x authentication or MAC authentication bypass of the host. You can also download ACLs during web authentication.

Note

A downloadable ACL is also referred to as a dACL.
If more than one host is authenticated and the host is in single-host, MDA, or multiple-authentication mode, the switch changes the source address of the ACL to the host IP address.

You can apply the ACLs and redirect URLs to all the devices connected to the 802.1x-enabled port.

If no ACLs are downloaded during 802.1x authentication, the switch applies the static default ACL on the port to the host. On a voice VLAN port configured in multi-auth or MDA mode, the switch applies the ACL only to the phone as part of the authorization policies.

Beginning with Cisco IOS Release 12.2(55)SE, if there is no static ACL on a port, a dynamic auth-default ACL is created, and policies are enforced before dACLs are downloaded and applied.

**Note**
The auth-default-ACL does not appear in the running configuration.

The auth-default ACL is created when at least one host with an authorization policy is detected on the port. The auth-default ACL is removed from the port when the last authenticated session ends. You can configure the auth-default ACL by using the `ip access-list extended auth-default-acl` global configuration command.

**Note**
The auth-default-ACL does not support Cisco Discovery Protocol (CDP) bypass in the single host mode. You must configure a static ACL on the interface to support CDP bypass.

The 802.1x and MAB authentication methods support two authentication modes, open and closed. If there is no static ACL on a port in closed authentication mode:

- An auth-default-ACL is created.

- The auth-default-ACL allows only DHCP traffic until policies are enforced.

- When the first host authenticates, the authorization policy is applied without IP address insertion.

- When a second host is detected, the policies for the first host are refreshed, and policies for the first and subsequent sessions are enforced with IP address insertion.

If there is no static ACL on a port in open authentication mode:

- An auth-default-ACL-OPEN is created and allows all traffic.

- Policies are enforced with IP address insertion to prevent security breaches.

- Web authentication is subject to the auth-default-ACL-OPEN.

To control access for hosts with no authorization policy, you can configure a directive. The supported values for the directive are open and default. When you configure the open directive, all traffic is allowed. The default directive subjects traffic to the access provided by the port. You can configure the directive either in the user profile on the AAA server or on the switch. To configure the directive on the AAA server, use the `authz-directive __<open/default>__` global command. To configure the directive on the switch, use the `epm access-control open` global configuration command.

**Note**
The default value of the directive is default.

If a host falls back to web authentication on a port without a configured ACL:

- If the port is in open authentication mode, the auth-default-ACL-OPEN is created.
If the port is in closed authentication mode, the auth-default-ACL is created.

The access control entries (ACEs) in the fallback ACL are converted to per-user entries. If the configured fallback profile does not include a fallback ACL, the host is subject to the auth-default-ACL associated with the port.

Note
If you use a custom logo with web authentication and it is stored on an external server, the port ACL must allow access to the external server before authentication. You must either configure a static port ACL or change the auth-default-ACL to provide appropriate access to the external server.

Cisco Secure ACS and Attribute-Value Pairs for the Redirect URL
The switch uses these cisco-av-pair VSAs:

- url-redirect is the HTTP or HTTPS URL.
- url-redirect-acl is the switch ACL name or number.

The switch uses the CiscoSecure-defined-ACL attribute value pair to intercept an HTTP or HTTPS request from the end point. The switch then forwards the client web browser to the specified redirect address. The url-redirect AV pair on the Cisco Secure ACS contains the URL to which the web browser is redirected. The url-redirect-acl attribute value pair contains the name or number of an ACL that specifies the HTTP or HTTPS traffic to redirect.

Note
- Traffic that matches a permit ACE in the ACL is redirected.
- Define the URL redirect ACL and the default port ACL on the switch.

If a redirect URL is configured for a client on the authentication server, a default port ACL on the connected client switch port must also be configured.

Cisco Secure ACS and Attribute-Value Pairs for Downloadable ACLs
You can set the CiscoSecure-Defined-ACL Attribute-Value (AV) pair on the Cisco Secure ACS with the RADIUS cisco-av-pair vendor-specific attributes (VSAs). This pair specifies the names of the downloadable ACLs on the Cisco Secure ACS with the #ACL#-IP-name-number attribute.

- The name is the ACL name.
- The number is the version number (for example, 3f783768).

If a downloadable ACL is configured for a client on the authentication server, a default port ACL on the connected client switch port must also be configured.

If the default ACL is configured on the switch and the Cisco Secure ACS sends a host-access-policy to the switch, it applies the policy to traffic from the host connected to a switch port. If the policy does not apply, the switch applies the default ACL. If the Cisco Secure ACS sends the switch a downloadable ACL, this ACL takes precedence over the default ACL that is configured on the switch port. However, if the switch receives
an host access policy from the Cisco Secure ACS but the default ACL is not configured, the authorization failure is declared.

**VLAN ID-based MAC Authentication**

You can use VLAN ID-based MAC authentication if you wish to authenticate hosts based on a static VLAN ID instead of a downloadable VLAN. When you have a static VLAN policy configured on your switch, VLAN information is sent to an IAS (Microsoft) RADIUS server along with the MAC address of each host for authentication. The VLAN ID configured on the connected port is used for MAC authentication. By using VLAN ID-based MAC authentication with an IAS server, you can have a fixed number of VLANs in the network.

The feature also limits the number of VLANs monitored and handled by STP. The network can be managed as a fixed VLAN.

---

**Note**

This feature is not supported on Cisco ACS Server. (The ACS server ignores the sent VLAN-IDs for new hosts and only authenticates based on the MAC address.)

---

**802.1x Authentication with Guest VLAN**

You can configure a guest VLAN for each 802.1x port on the switch to provide limited services to clients, such as downloading the 802.1x client. These clients might be upgrading their system for 802.1x authentication, and some hosts, such as Windows 98 systems, might not be IEEE 802.1x-capable.

When you enable a guest VLAN on an 802.1x port, the switch assigns clients to a guest VLAN when the switch does not receive a response to its EAP request/identity frame or when EAPOL packets are not sent by the client.

The switch maintains the EAPOL packet history. If an EAPOL packet is detected on the interface during the lifetime of the link, the switch determines that the device connected to that interface is an IEEE 802.1x-capable supplicant, and the interface does not change to the guest VLAN state. EAPOL history is cleared if the interface link status goes down. If no EAPOL packet is detected on the interface, the interface changes to the guest VLAN state.

If the switch is trying to authorize an 802.1x-capable voice device and the AAA server is unavailable, the authorization attempt fails, but the detection of the EAPOL packet is saved in the EAPOL history. When the AAA server becomes available, the switch authorizes the voice device. However, the switch no longer allows other devices access to the guest VLAN. To prevent this situation, use one of these command sequences:

- Enter the `authentication event no-response action authorize vlan vlan-id` interface configuration command to allow access to the guest VLAN.

- Enter the `shutdown` interface configuration command followed by the `no shutdown` interface configuration command to restart the port.

If devices send EAPOL packets to the switch during the lifetime of the link, the switch no longer allows clients that fail authentication access to the guest VLAN.
If an EAPOL packet is detected after the interface has changed to the guest VLAN, the interface reverts to an unauthorized state, and 802.1x authentication restarts.

Any number of 802.1x-incapable clients are allowed access when the switch port is moved to the guest VLAN. If an 802.1x-capable client joins the same port on which the guest VLAN is configured, the port is put into the unauthorized state in the user-configured access VLAN, and authentication is restarted.

Guest VLANs are supported on 802.1x ports in single host, multiple host, multi-auth and multi-domain modes.

You can configure any active VLAN except an RSPAN VLAN, a private VLAN, or a voice VLAN as an 802.1x guest VLAN. The guest VLAN feature is not supported on internal VLANs (routed ports) or trunk ports; it is supported only on access ports.

The switch supports MAC authentication bypass. When MAC authentication bypass is enabled on an 802.1x port, the switch can authorize clients based on the client MAC address when IEEE 802.1x authentication times out while waiting for an EAPOL message exchange. After detecting a client on an 802.1x port, the switch waits for an Ethernet packet from the client. The switch sends the authentication server a RADIUS-access/request frame with a username and password based on the MAC address. If authorization succeeds, the switch grants the client access to the network. If authorization fails, the switch assigns the port to the guest VLAN if one is specified.

**802.1x Authentication with Restricted VLAN**

You can configure a restricted VLAN (also referred to as an authentication failed VLAN) for each IEEE 802.1x port on a switch stack or a switch to provide limited services to clients that cannot access the guest VLAN. These clients are 802.1x-compliant and cannot access another VLAN because they fail the authentication process. A restricted VLAN allows users without valid credentials in an authentication server (typically, visitors to an enterprise) to access a limited set of services. The administrator can control the services available to the restricted VLAN.

You can configure a VLAN to be both the guest VLAN and the restricted VLAN if you want to provide the same services to both types of users.

Without this feature, the client attempts and fails authentication indefinitely, and the switch port remains in the spanning-tree blocking state. With this feature, you can configure the switch port to be in the restricted VLAN after a specified number of authentication attempts (the default value is 3 attempts).

The authenticator counts the failed authentication attempts for the client. When this count exceeds the configured maximum number of authentication attempts, the port moves to the restricted VLAN. The failed attempt count increments when the RADIUS server replies with either an EAP failure or an empty response without an EAP packet. When the port moves into the restricted VLAN, the failed attempt counter resets.

Users who fail authentication remain in the restricted VLAN until the next re-authentication attempt. A port in the restricted VLAN tries to re-authenticate at configured intervals (the default is 60 seconds). If re-authentication fails, the port remains in the restricted VLAN. If re-authentication is successful, the port moves either to the configured VLAN or to a VLAN sent by the RADIUS server. You can disable re-authentication. If you do this, the only way to restart the authentication process is for the port to receive a link down or EAP logoff event. We recommend that you keep re-authentication enabled if a client might connect through a hub. When a client disconnects from the hub, the port might not receive the link down or EAP logoff event.
After a port moves to the restricted VLAN, a simulated EAP success message is sent to the client. This prevents clients from indefinitely attempting authentication. Some clients (for example, devices running Windows XP) cannot implement DHCP without EAP success.

Restricted VLANs are supported on 802.1x ports in all host modes and on Layer 2 ports.

You can configure any active VLAN except an RSPAN VLAN, a private primary VLAN, or a voice VLAN as an 802.1x restricted VLAN. The restricted VLAN feature is not supported on internal VLANs (routed ports) or trunk ports; it is supported only on access ports.

Other security port features such as dynamic ARP Inspection, DHCP snooping, and IP source guard can be configured independently on a restricted VLAN.

### 802.1x Authentication with Inaccessible Authentication Bypass

Use the inaccessible authentication bypass feature, also referred to as critical authentication or the AAA fail policy, when the switch cannot reach the configured RADIUS servers and new hosts cannot be authenticated. You can configure the switch to connect those hosts to critical ports.

When a new host tries to connect to the critical port, that host is moved to a user-specified access VLAN, the critical VLAN. The administrator gives limited authentication to the hosts.

When the switch tries to authenticate a host connected to a critical port, the switch checks the status of the configured RADIUS server. If a server is available, the switch can authenticate the host. However, if all the RADIUS servers are unavailable, the switch grants network access to the host and puts the port in the critical-authentication state, which is a special case of the authentication state.

**Note**

If critical authentication is configured on interface, then vlan used for critical authorization (critical vlan) should be active on the switch. If the critical vlan is inactive (or) down, critical authentication session will keep trying to enable inactive vlan and fail repeatedly. This can lead to large amount of memory holding.

### Inaccessible Authentication Bypass Support on Multiple-Authentication Ports

When a port is configured on any host mode and the AAA server is unavailable, the port is then configured to multi-host mode and moved to the critical VLAN. To support this inaccessible bypass on multiple-authentication (multiath) ports, use the authentication event server dead action reinitialize vlan vlan-id command. When a new host tries to connect to the critical port, that port is reinitialized and all the connected hosts are moved to the user-specified access VLAN.

This command is supported on all host modes.

### Inaccessible Authentication Bypass Authentication Results

The behavior of the inaccessible authentication bypass feature depends on the authorization state of the port:

- If the port is unauthorized when a host connected to a critical port tries to authenticate and all servers are unavailable, the switch puts the port in the critical-authentication state in the RADIUS-configured or user-specified access VLAN.
• If the port is already authorized and reauthentication occurs, the switch puts the critical port in the critical-authentication state in the current VLAN, which might be the one previously assigned by the RADIUS server.

• If the RADIUS server becomes unavailable during an authentication exchange, the current exchange times out, and the switch puts the critical port in the critical-authentication state during the next authentication attempt.

You can configure the critical port to reinitialize hosts and move them out of the critical VLAN when the RADIUS server is again available. When this is configured, all critical ports in the critical-authentication state are automatically re-authenticated.

**Inaccessible Authentication Bypass Feature Interactions**

Inaccessible authentication bypass interacts with these features:

• Guest VLAN—Inaccessible authentication bypass is compatible with guest VLAN. When a guest VLAN is enabled on 8021.x port, the features interact as follows:
  - If at least one RADIUS server is available, the switch assigns a client to a guest VLAN when the switch does not receive a response to its EAP request/identity frame or when EAPOL packets are not sent by the client.
  - If all the RADIUS servers are not available and the client is connected to a critical port, the switch authenticates the client and puts the critical port in the critical-authentication state in the RADIUS-configured or user-specified access VLAN.
  - If all the RADIUS servers are not available and the client is not connected to a critical port, the switch might not assign clients to the guest VLAN if one is configured.
  - If all the RADIUS servers are not available and if a client is connected to a critical port and was previously assigned to a guest VLAN, the switch keeps the port in the guest VLAN.

• Restricted VLAN—If the port is already authorized in a restricted VLAN and the RADIUS servers are unavailable, the switch puts the critical port in the critical-authentication state in the restricted VLAN.

• 802.1x accounting—Accounting is not affected if the RADIUS servers are unavailable.

• Private VLAN—You can configure inaccessible authentication bypass on a private VLAN host port. The access VLAN must be a secondary private VLAN.

• Voice VLAN—Inaccessible authentication bypass is compatible with voice VLAN, but the RADIUS-configured or user-specified access VLAN and the voice VLAN must be different.

• Remote Switched Port Analyzer (RSPAN)—Do not configure an RSPAN VLAN as the RADIUS-configured or user-specified access VLAN for inaccessible authentication bypass.

In a switch stack:

• The stack master checks the status of the RADIUS servers by sending keepalive packets. When the status of a RADIUS server changes, the stack master sends the information to the stack members. The stack members can then check the status of RADIUS servers when re-authenticating critical ports.

• If the new stack master is elected, the link between the switch stack and RADIUS server might change, and the new stack immediately sends keepalive packets to update the status of the RADIUS servers. If
the server status changes from dead to alive, the switch re-authenticates all switch ports in the critical-authentication state.

When a member is added to the stack, the stack master sends the member the server status.

Note
Switch stacks are supported only on Catalyst 2960-S switches running the LAN base image.

802.1x Critical Voice VLAN

When an IP phone connected to a port is authenticated by the access control server (ACS), the phone is put into the voice domain. If the ACS is not reachable, the switch cannot determine if the device is a voice device. If the server is unavailable, the phone cannot access the voice network and therefore cannot operate.

For data traffic, you can configure inaccessible authentication bypass, or critical authentication, to allow traffic to pass through on the native VLAN when the server is not available. If the RADIUS authentication server is unavailable (down) and inaccessible authentication bypass is enabled, the switch grants the client access to the network and puts the port in the critical-authentication state in the RADIUS-configured or the user-specified access VLAN. When the switch cannot reach the configured RADIUS servers and new hosts cannot be authenticated, the switch connects those hosts to critical ports. A new host trying to connect to the critical port is moved to a user-specified access VLAN, the critical VLAN, and granted limited authentication.

You can enter the authentication event server dead action authorize voice interface configuration command to configure the critical voice VLAN feature. When the ACS does not respond, the port goes into critical authentication mode. When traffic coming from the host is tagged with the voice VLAN, the connected device (the phone) is put in the configured voice VLAN for the port. The IP phones learn the voice VLAN identification through CDP (Cisco devices) or through LLDP or DHCP.

You can configure the voice VLAN for a port by entering the switchport voice vlan vlan-id interface configuration command.

This feature is supported in multidomain and multi-auth host modes. Although you can enter the command when the switch in single-host or multi-host mode, the command has no effect unless the device changes to multidomain or multi-auth host mode.

802.1x User Distribution

You can configure 802.1x user distribution to load-balance users with the same group name across multiple different VLANs.

The VLANs are either supplied by the RADIUS server or configured through the switch CLI under a VLAN group name.

- Configure the RADIUS server to send more than one VLAN name for a user. The multiple VLAN names can be sent as part of the response to the user. The 802.1x user distribution tracks all the users in a particular VLAN and achieves load balancing by moving the authorized user to the least populated VLAN.

- Configure the RADIUS server to send a VLAN group name for a user. The VLAN group name can be sent as part of the response to the user. You can search for the selected VLAN group name among the VLAN group names that you configured by using the switch CLI. If the VLAN group name is found, the corresponding VLANs under this VLAN group name are searched to find the least populated VLAN. Load balancing is achieved by moving the corresponding authorized user to that VLAN.
The RADIUS server can send the VLAN information in any combination of VLAN-IDs, VLAN names, or VLAN groups.

802.1x User Distribution Configuration Guidelines

- Confirm that at least one VLAN is mapped to the VLAN group.
- You can map more than one VLAN to a VLAN group.
- You can modify the VLAN group by adding or deleting a VLAN.
- When you clear an existing VLAN from the VLAN group name, none of the authenticated ports in the VLAN are cleared, but the mappings are removed from the existing VLAN group.
- If you clear the last VLAN from the VLAN group name, the VLAN group is cleared.
- You can clear a VLAN group even when the active VLANs are mapped to the group. When you clear a VLAN group, none of the ports or users that are in the authenticated state in any VLAN within the group are cleared, but the VLAN mappings to the VLAN group are cleared.

IEEE 802.1x Authentication with Voice VLAN Ports

A voice VLAN port is a special access port associated with two VLAN identifiers:

- VVID to carry voice traffic to and from the IP phone. The VVID is used to configure the IP phone connected to the port.
- PVID to carry the data traffic to and from the workstation connected to the switch through the IP phone. The PVID is the native VLAN of the port.

The IP phone uses the VVID for its voice traffic, regardless of the authorization state of the port. This allows the phone to work independently of IEEE 802.1x authentication.

In single-host mode, only the IP phone is allowed on the voice VLAN. In multiple-hosts mode, additional clients can send traffic on the voice VLAN after a supplicant is authenticated on the PVID. When multiple-hosts mode is enabled, the supplicant authentication affects both the PVID and the VVID.

A voice VLAN port becomes active when there is a link, and the device MAC address appears after the first CDP message from the IP phone. Cisco IP phones do not relay CDP messages from other devices. As a result, if several IP phones are connected in series, the switch recognizes only the one directly connected to it. When IEEE 802.1x authentication is enabled on a voice VLAN port, the switch drops packets from unrecognized IP phones more than one hop away.

When IEEE 802.1x authentication is enabled on a switch port, you can configure an access port VLAN that is also a voice VLAN.

When IP phones are connected to an 802.1x-enabled switch port that is in single host mode, the switch grants the phones network access without authenticating them. We recommend that you use multidomain authentication (MDA) on the port to authenticate both a data device and a voice device, such as an IP phone.
If you enable IEEE 802.1x authentication on an access port on which a voice VLAN is configured and to which a Cisco IP Phone is connected, the Cisco IP phone loses connectivity to the switch for up to 30 seconds.

### IEEE 802.1x Authentication with Port Security

In general, Cisco does not recommend enabling port security when IEEE 802.1x is enabled. Since IEEE 802.1x enforces a single MAC address per port (or per VLAN when MDA is configured for IP telephony), port security is redundant and in some cases may interfere with expected IEEE 802.1x operations.

### IEEE 802.1x Authentication with Wake-on-LAN

The IEEE 802.1x authentication with wake-on-LAN (WoL) feature allows dormant PCs to be powered when the switch receives a specific Ethernet frame, known as the magic packet. You can use this feature in environments where administrators need to connect to systems that have been powered down.

When a host that uses WoL is attached through an IEEE 802.1x port and the host powers off, the IEEE 802.1x port becomes unauthorized. The port can only receive and send EAPOL packets, and WoL magic packets cannot reach the host. When the PC is powered off, it is not authorized, and the switch port is not opened.

When the switch uses IEEE 802.1x authentication with WoL, the switch forwards traffic to unauthorized IEEE 802.1x ports, including magic packets. While the port is unauthorized, the switch continues to block ingress traffic other than EAPOL packets. The host can receive packets but cannot send packets to other devices in the network.

If PortFast is not enabled on the port, the port is forced to the bidirectional state.

When you configure a port as unidirectional by using the `authentication control-direction in` interface configuration command, the port changes to the spanning-tree forwarding state. The port can send packets to the host but cannot receive packets from the host.

When you configure a port as bidirectional by using the `authentication control-direction both` interface configuration command, the port is access-controlled in both directions. The port does not receive packets from or send packets to the host.

### IEEE 802.1x Authentication with MAC Authentication Bypass

You can configure the switch to authorize clients based on the client MAC address by using the MAC authentication bypass feature. For example, you can enable this feature on IEEE 802.1x ports connected to devices such as printers.

If IEEE 802.1x authentication times out while waiting for an EAPOL response from the client, the switch tries to authorize the client by using MAC authentication bypass.

When the MAC authentication bypass feature is enabled on an IEEE 802.1x port, the switch uses the MAC address as the client identity. The authentication server has a database of client MAC addresses that are allowed network access. After detecting a client on an IEEE 802.1x port, the switch waits for an Ethernet packet from the client. The switch sends the authentication server a RADIUS-access/request frame with a username and
password based on the MAC address. If authorization succeeds, the switch grants the client access to the network. If authorization fails, the switch assigns the port to the guest VLAN if one is configured. This process works for most client devices; however, it does not work for clients that use an alternate MAC address format. You can configure how MAB authentication is performed for clients with MAC addresses that deviate from the standard format or where the RADIUS configuration requires the user name and password to differ.

If an EAPOL packet is detected on the interface during the lifetime of the link, the switch determines that the device connected to that interface is an 802.1x-capable supplicant and uses 802.1x authentication (not MAC authentication bypass) to authorize the interface. EAPOL history is cleared if the interface link status goes down.

If the switch already authorized a port by using MAC authentication bypass and detects an IEEE 802.1x supplicant, the switch does not unauthorize the client connected to the port. When re-authentication occurs, the switch uses the authentication or re-authentication methods configured on the port, if the previous session ended because the Termination-Action RADIUS attribute value is DEFAULT.

Clients that were authorized with MAC authentication bypass can be re-authenticated. The re-authentication process is the same as that for clients that were authenticated with IEEE 802.1x. During re-authentication, the port remains in the previously assigned VLAN. If re-authentication is successful, the switch keeps the port in the same VLAN. If re-authentication fails, the switch assigns the port to the guest VLAN, if one is configured.

If re-authentication is based on the Session-Timeout RADIUS attribute (Attribute[27]) and the Termination-Action RADIUS attribute (Attribute [29]) and if the Termination-Action RADIUS attribute (Attribute [29]) action is Initialize (the attribute value is DEFAULT), the MAC authentication bypass session ends, and connectivity is lost during re-authentication. If MAC authentication bypass is enabled and the IEEE 802.1x authentication times out, the switch uses the MAC authentication bypass feature to initiate re-authentication. For more information about these AV pairs, see RFC 3580, "IEEE 802.1X Remote Authentication Dial In User Service (RADIUS) Usage Guidelines."

MAC authentication bypass interacts with the features:

- IEEE 802.1x authentication—You can enable MAC authentication bypass only if 802.1x authentication is enabled on the port.
- Guest VLAN—If a client has an invalid MAC address identity, the switch assigns the client to a guest VLAN if one is configured.
- Restricted VLAN—This feature is not supported when the client connected to an IEEE 802.1x port is authenticated with MAC authentication bypass.
- Port security
- Voice VLAN
- Private VLAN—You can assign a client to a private VLAN.
- Network Edge Access Topology (NEAT)—MAB and NEAT are mutually exclusive. You cannot enable MAB when NEAT is enabled on an interface, and you should not enable NEAT when MAB is enabled on an interface.

Cisco IOS Release 12.2(55)SE and later supports filtering of verbose MAB system messages

**Network Admission Control Layer 2 IEEE 802.1x Validation**

The switch supports the Network Admission Control (NAC) Layer 2 IEEE 802.1x validation, which checks the antivirus condition or posture of endpoint systems or clients before granting the devices network access. With NAC Layer 2 IEEE 802.1x validation, you can do these tasks:
• Download the Session-Timeout RADIUS attribute (Attribute[27]) and the Termination-Action RADIUS attribute (Attribute[29]) from the authentication server.

• Set the number of seconds between re-authentication attempts as the value of the Session-Timeout RADIUS attribute (Attribute[27]) and get an access policy against the client from the RADIUS server.

• Set the action to be taken when the switch tries to re-authenticate the client by using the Termination-Action RADIUS attribute (Attribute[29]). If the value is the DEFAULT or is not set, the session ends. If the value is RADIUS-Request, the re-authentication process starts.

• Set the list of VLAN number or name or VLAN group name as the value of the Tunnel Group Private ID (Attribute[81]) and the preference for the VLAN number or name or VLAN group name as the value of the Tunnel Preference (Attribute[83]). If you do not configure the Tunnel Preference, the first Tunnel Group Private ID (Attribute[81]) attribute is picked up from the list.

• View the NAC posture token, which shows the posture of the client, by using the show authentication privileged EXEC command.

• Configure secondary private VLANs as guest VLANs.

Configuring NAC Layer 2 IEEE 802.1x validation is similar to configuring IEEE 802.1x port-based authentication except that you must configure a posture token on the RADIUS server.

Flexible Authentication Ordering

You can use flexible authentication ordering to configure the order of methods that a port uses to authenticate a new host. The IEEE 802.1X Flexible Authentication feature supports three authentication methods:

• dot1X—IEEE 802.1X authentication is a Layer 2 authentication method.

• mab—MAC-Authentication Bypass is a Layer 2 authentication method.

• webauth—Web authentication is a Layer 3 authentication method.

Using this feature, you can control which ports use which authentication methods, and you can control the failover sequencing of methods on those ports. For example, MAC authentication bypass and 802.1x can be the primary or secondary authentication methods, and web authentication can be the fallback method if either or both of those authentication attempts fail.

The IEEE 802.1X Flexible Authentication feature supports the following host modes:

• multi-auth—Multiauthentication allows one authentication on a voice VLAN and multiple authentications on the data VLAN.

• multi-domain—Multidomain authentication allows two authentications: one on the voice VLAN and one on the data VLAN.

Related Topics

Configuring Flexible Authentication Ordering, on page 1093

Open1x Authentication

Open1x authentication allows a device access to a port before that device is authenticated. When open authentication is configured, a new host can pass traffic according to the access control list (ACL) defined on
the port. After the host is authenticated, the policies configured on the RADIUS server are applied to that host.

You can configure open authentication with these scenarios:

- Single-host mode with open authentication—Only one user is allowed network access before and after authentication.
- MDA mode with open authentication—Only one user in the voice domain and one user in the data domain are allowed.
- Multiple-hosts mode with open authentication—Any host can access the network.
- Multiple-authentication mode with open authentication—Similar to MDA, except multiple hosts can be authenticated.

Note
If open authentication is configured, it takes precedence over other authentication controls. This means that if you use the `authentication open` interface configuration command, the port will grant access to the host irrespective of the `authentication port-control` interface configuration command.

Related Topics
Configuring Open 802.1x, on page 1095

Multidomain Authentication
The switch supports multidomain authentication (MDA), which allows both a data device and voice device, such as an IP phone (Cisco or non-Cisco), to authenticate on the same switch port. The port is divided into a data domain and a voice domain.

Note
For all host modes, the line protocol stays up before authorization when port-based authentication is configured.

MDA does not enforce the order of device authentication. However, for best results, we recommend that a voice device is authenticated before a data device on an MDA-enabled port.

Follow these guidelines for configuring MDA:

- You must configure a switch port for MDA.
- You must configure the voice VLAN for the IP phone when the host mode is set to multidomain.
- Voice VLAN assignment on an MDA-enabled port is supported Cisco IOS Release 12.2(40)SE and later.
- To authorize a voice device, the AAA server must be configured to send a Cisco Attribute-Value (AV) pair attribute with a value of `device-traffic-class=voice`. Without this value, the switch treats the voice device as a data device.
- The guest VLAN and restricted VLAN features only apply to the data devices on an MDA-enabled port. The switch treats a voice device that fails authorization as a data device.
If more than one device attempts authorization on either the voice or the data domain of a port, it is error disabled.

Until a device is authorized, the port drops its traffic. Non-Cisco IP phones or voice devices are allowed into both the data and voice VLANs. The data VLAN allows the voice device to contact a DHCP server to obtain an IP address and acquire the voice VLAN information. After the voice device starts sending on the voice VLAN, its access to the data VLAN is blocked.

A voice device MAC address that is binding on the data VLAN is not counted towards the port security MAC address limit.

MDA can use MAC authentication bypass as a fallback mechanism to allow the switch port to connect to devices that do not support IEEE 802.1x authentication.

When a data or a voice device is detected on a port, its MAC address is blocked until authorization succeeds. If the authorization fails, the MAC address remains blocked for 5 minutes.

If more than five devices are detected on the data VLAN or more than one voice device is detected on the voice VLAN while a port is unauthorized, the port is error disabled.

When a port host mode is changed from single- or multihost to multidomain mode, an authorized data device remains authorized on the port. However, a Cisco IP phone that has been allowed on the port voice VLAN is automatically removed and must be reauthenticated on that port.

Active fallback mechanisms such as guest VLAN and restricted VLAN remain configured after a port changes from single- or multihost mode to multidomain mode.

Switching a port host mode from multidomain to single- or multihost mode removes all authorized devices from the port.

If a data domain is authorized first and placed in the guest VLAN, non-IEEE 802.1x-capable voice devices need to tag their packets on the voice VLAN to trigger authentication.

We do not recommend per-user ACLs with an MDA-enabled port. An authorized device with a per-user ACL policy might impact traffic on both the voice and data VLANs of the port. If used, only one device on the port should enforce per-user ACLs.

**Limiting Login for Users**

The Limiting Login feature helps Network administrators to limit the login attempt of users to a network. When a user fails to successfully login to a network within a configurable number of attempts within a configurable time limit, the user can be blocked. This feature is enabled only for local users and not for remote users. You need to configure the `aaa authentication rejected` command in global configuration mode to enable this feature.

**802.1x Supplicant and Authenticator Switches with Network Edge Access Topology (NEAT)**

The Network Edge Access Topology (NEAT) feature extends identity to areas outside the wiring closet (such as conference rooms). This allows any type of device to authenticate on the port.

- 802.1x switch supplicant: You can configure a switch to act as a supplicant to another switch by using the 802.1x supplicant feature. This configuration is helpful in a scenario, where, for example, a switch is outside a wiring closet and is connected to an upstream switch through a trunk port. A switch configured with the 802.1x switch supplicant feature authenticates with the upstream switch for secure connectivity.
Once the supplicant switch authenticates successfully the port mode changes from access to trunk in an authenticator switch. In a supplicant switch you must manually configure trunk when enabling CISP.

**Note**
NEAT configuration is the only supported and qualified method to authenticate switches using 802.1x. Any other method to authenticate a network switch can result in an undefined behavior.

- If the access VLAN is configured on the authenticator switch, it becomes the native VLAN for the trunk port after successful authentication.

In the default state, when you connect a supplicant switch to an authenticator switch that has BPDU guard enabled, the authenticator port could be error-disabled if it receives a Spanning Tree Protocol (STP) bridge protocol data unit (BPDU) packets before the supplicant switch has authenticated. Beginning with Cisco IOS Release 15.0(1)SE, you can control traffic exiting the supplicant port during the authentication period. Entering the `dot1x supplicant controlled transient` global configuration command temporarily blocks the supplicant port during authentication to ensure that the authenticator port does not shut down before authentication completes. If authentication fails, the supplicant port opens. Entering the `no dot1x supplicant controlled transient` global configuration command opens the supplicant port during the authentication period. This is the default behavior.

We strongly recommend using the `dot1x supplicant controlled transient` command on a supplicant switch when BPDU guard is enabled on the authenticator switch port with the `spanning-tree bpduguard enable` interface configuration command.

**Note**
If you globally enable BPDU guard on the authenticator switch by using the `spanning-tree portfast bpduguard default` global configuration command, entering the `dot1x supplicant controlled transient` command does not prevent the BPDU violation.

You can enable MDA or multiauth mode on the authenticator switch interface that connects to one more supplicant switches. Multihost mode is not supported on the authenticator switch interface.

When you reboot an authenticator switch with single-host mode enabled on the interface, the interface may move to err-disabled state before authentication. To recover from err-disabled state, flap the authenticator port to activate the interface again and initiate authentication.

Use the `dot1x supplicant force-multicast` global configuration command on the supplicant switch for Network Edge Access Topology (NEAT) to work in all host modes.

- Host Authorization: Ensures that only traffic from authorized hosts (connecting to the switch with supplicant) is allowed on the network. The switches use Client Information Signalling Protocol (CISP) to send the MAC addresses connecting to the supplicant switch to the authenticator switch.
• Auto enablement: Automatically enables trunk configuration on the authenticator switch, allowing user traffic from multiple VLANs coming from supplicant switches. Configure the cisco-av-pair as `device-traffic-class=switch` at the ACS. (You can configure this under the `group` or the `user` settings.)

**Figure 87: Authenticator and Supplicant Switch using CISP**

<table>
<thead>
<tr>
<th></th>
<th>Workstations (clients)</th>
<th>2</th>
<th>Supplicant switch (outside wiring closet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Authenticator switch</td>
<td>4</td>
<td>Access control server (ACS)</td>
</tr>
<tr>
<td>5</td>
<td>Trunk port</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Note**
The `switchport nonegotiate` command is not supported on supplicant and authenticator switches with NEAT. This command should not be configured at the supplicant side of the topology. If configured on the authenticator side, the internal macros will automatically remove this command from the port.

**Voice Aware 802.1x Security**

**Note**
To use voice aware IEEE 802.1x authentication, the switch must be running the LAN base image.

You use the voice aware 802.1x security feature to configure the switch to disable only the VLAN on which a security violation occurs, whether it is a data or voice VLAN. In previous releases, when an attempt to authenticate the data client caused a security violation, the entire port shut down, resulting in a complete loss of connectivity.

You can use this feature in IP phone deployments where a PC is connected to the IP phone. A security violation found on the data VLAN results in the shutdown of only the data VLAN. The traffic on the voice VLAN flows through the switch without interruption.

**Related Topics**
- Configuring Voice Aware 802.1x Security, on page 1045
Common Session ID

Authentication manager uses a single session ID (referred to as a common session ID) for a client no matter which authentication method is used. This ID is used for all reporting purposes, such as the show commands and MIBs. The session ID appears with all per-session syslog messages.

The session ID includes:

- The IP address of the Network Access Device (NAD)
- A monotonically increasing unique 32 bit integer
- The session start time stamp (a 32 bit integer)

This example shows how the session ID appears in the output of the show authentication command. The session ID in this example is 16000005000000B288508E5:

```
Switch# show authentication sessions
Interface MAC Address Method Domain Status Session ID
Fa4/0/4 0000.0000.0203 mab DATA Authz Success 16000005000000B288508E5
```

This is an example of how the session ID appears in the syslog output. The session ID in this example is also 16000005000000B288508E5:

```
1w0d: %AUTHMGR-5-START: Starting 'mab' for client (0000.0000.0203) on Interface Fa4/0/4
AuditSessionID 16000005000000B288508E5
1w0d: %MAB-5-SUCCESS: Authentication successful for client (0000.0000.0203) on Interface Fa4/0/4 AuditSessionID 16000005000000B288508E5
1w0d: %AUTHMGR-7-RESULT: Authentication result 'success' from 'mab' for client (0000.0000.0203) on Interface Fa4/0/4 AuditSessionID 16000005000000B288508E5
```

The session ID is used by the NAD, the AAA server, and other report-analyzing applications to identify the client. The ID appears automatically. No configuration is required.

How to Configure 802.1x Port-Based Authentication

Default 802.1x Authentication Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch 802.1x enable state</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Per-port 802.1x enable state</td>
<td>Disabled (force-authorized). The port sends and receives normal traffic without 802.1x-based authentication of the client.</td>
</tr>
<tr>
<td>AAA</td>
<td>Disabled.</td>
</tr>
</tbody>
</table>
## How to Configure 802.1x Port-Based Authentication

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>RADIUS server</td>
<td>None specified.</td>
</tr>
<tr>
<td>• IP address</td>
<td>1645.</td>
</tr>
<tr>
<td>• UDP authentication port</td>
<td>1646.</td>
</tr>
<tr>
<td>• Default accounting port</td>
<td>None specified.</td>
</tr>
<tr>
<td>• Key</td>
<td></td>
</tr>
<tr>
<td>Host mode</td>
<td>Single-host mode.</td>
</tr>
<tr>
<td>Control direction</td>
<td>Bidirectional control.</td>
</tr>
<tr>
<td>Periodic re-authentication</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Number of seconds between re-authentication attempts</td>
<td>3600 seconds.</td>
</tr>
<tr>
<td>Re-authentication number</td>
<td>2 times (number of times that the switch restarts the authentication process before the port changes to the unauthorized state).</td>
</tr>
<tr>
<td>Quiet period</td>
<td>60 seconds (number of seconds that the switch remains in the quiet state following a failed authentication exchange with the client).</td>
</tr>
<tr>
<td>Retransmission time</td>
<td>30 seconds (number of seconds that the switch should wait for a response to an EAP request/identity frame from the client before resending the request).</td>
</tr>
<tr>
<td>Maximum retransmission number</td>
<td>2 times (number of times that the switch will send an EAP-request/identity frame before restarting the authentication process).</td>
</tr>
<tr>
<td>Client timeout period</td>
<td>30 seconds (when relaying a request from the authentication server to the client, the amount of time the switch waits for a response before resending the request to the client.)</td>
</tr>
<tr>
<td>Authentication server timeout period</td>
<td>30 seconds (when relaying a response from the client to the authentication server, the amount of time the switch waits for a reply before resending the response to the server.) You can change this timeout period by using the dot1x timeout server-timeout interface configuration command.</td>
</tr>
<tr>
<td>Inactivity timeout</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Guest VLAN</td>
<td>None specified.</td>
</tr>
<tr>
<td>Inaccessible authentication bypass</td>
<td>Disabled.</td>
</tr>
</tbody>
</table>
### 802.1x Authentication Configuration Guidelines

#### 802.1x Authentication

These are the 802.1x authentication configuration guidelines:

- When 802.1x authentication is enabled, ports are authenticated before any other Layer 2 or Layer 3 features are enabled.

- If the VLAN to which an 802.1x-enabled port is assigned changes, this change is transparent and does not affect the switch. For example, this change occurs if a port is assigned to a RADIUS server-assigned VLAN and is then assigned to a different VLAN after re-authentication.

If the VLAN to which an 802.1x port is assigned to shut down, disabled, or removed, the port becomes unauthorized. For example, the port is unauthorized after the access VLAN to which a port is assigned shuts down or is removed.

- The 802.1x protocol is supported on Layer 2 static-access ports, voice VLAN ports, and Layer 3 routed ports, but it is not supported on these port types:
  - Dynamic ports—A port in dynamic mode can negotiate with its neighbor to become a trunk port. If you try to enable 802.1x authentication on a dynamic port, an error message appears, and 802.1x authentication is not enabled. If you try to change the mode of an 802.1x-enabled port to dynamic, an error message appears, and the port mode is not changed.
  - EtherChannel port—Do not configure a port that is an active or a not-yet-active member of an EtherChannel as an 802.1x port. If you try to enable 802.1x authentication on an EtherChannel port, an error message appears, and 802.1x authentication is not enabled.
  - Switched Port Analyzer (SPAN) and Remote SPAN (RSPAN) destination ports—You can enable 802.1x authentication on a port that is a SPAN or RSPAN destination port. However, 802.1x authentication is disabled until the port is removed as a SPAN or RSPAN destination port. You can enable 802.1x authentication on a SPAN or RSPAN source port.

- Before globally enabling 802.1x authentication on a switch by entering the `dot1x system-auth-control` global configuration command, remove the EtherChannel configuration from the interfaces on which 802.1x authentication and EtherChannel are configured.

- Cisco IOS Release 12.2(55)SE and later supports filtering of system messages related to 802.1x authentication.

---

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restricted VLAN</td>
<td>None specified.</td>
</tr>
<tr>
<td>Authenticator (switch) mode</td>
<td>None specified.</td>
</tr>
<tr>
<td>MAC authentication bypass</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Voice-aware security</td>
<td>Disabled.</td>
</tr>
</tbody>
</table>
VLAN Assignment, Guest VLAN, Restricted VLAN, and Inaccessible Authentication Bypass

These are the configuration guidelines for VLAN assignment, guest VLAN, restricted VLAN, and inaccessible authentication bypass:

- When 802.1x authentication is enabled on a port, you cannot configure a port VLAN that is equal to a voice VLAN.
- The 802.1x authentication with VLAN assignment feature is not supported on trunk ports, dynamic ports, or with dynamic-access port assignment through a VMPS.
- You can configure any VLAN except an RSPAN VLAN or a voice VLAN as an 802.1x guest VLAN. The guest VLAN feature is not supported on internal VLANs (routed ports) or trunk ports; it is supported only on access ports.
- After you configure a guest VLAN for an 802.1x port to which a DHCP client is connected, you might need to get a host IP address from a DHCP server. You can change the settings for restarting the 802.1x authentication process on the switch before the DHCP process on the client times out and tries to get a host IP address from the DHCP server. Decrease the settings for the 802.1x authentication process (authentication timer inactivity and authentication timer reauthentication interface configuration commands). The amount to decrease the settings depends on the connected 802.1x client type.
- When configuring the inaccessible authentication bypass feature, follow these guidelines:
  - The feature is supported on 802.1x port in single-host mode and multihosts mode.
  - If the client is running Windows XP and the port to which the client is connected is in the critical-authentication state, Windows XP might report that the interface is not authenticated.
  - If the Windows XP client is configured for DHCP and has an IP address from the DHCP server, receiving an EAP-Success message on a critical port might not re-initiate the DHCP configuration process.
  - You can configure the inaccessible authentication bypass feature and the restricted VLAN on an 802.1x port. If the switch tries to re-authenticate a critical port in a restricted VLAN and all the RADIUS servers are unavailable, switch changes the port state to the critical authentication state and remains in the restricted VLAN.
  - If the CTS links are in Critical Authentication mode and the master reloads, the policy where SGT was configured on a device will not be available on the new master. This is because the internal bindings will not be synced to the standby switch in a 3750-X switch stack.
- You can configure any VLAN except an RSPAN VLAN or a voice VLAN as an 802.1x restricted VLAN. The restricted VLAN feature is not supported on internal VLANs (routed ports) or trunk ports; it is supported only on access ports.
- When wireless guest clients obtains IP from foreign client VLAN instead of anchor client VLAN, you should use the `ip dhcp required` command under the WLAN configuration to force clients to issue a new DHCP request. This prevents the clients from getting an incorrect IP at anchor.

MAC Authentication Bypass

These are the MAC authentication bypass configuration guidelines:
• Unless otherwise stated, the MAC authentication bypass guidelines are the same as the 802.1x authentication guidelines.

• If you disable MAC authentication bypass from a port after the port has been authorized with its MAC address, the port state is not affected.

• If the port is in the unauthorized state and the client MAC address is not the authentication-server database, the port remains in the unauthorized state. However, if the client MAC address is added to the database, the switch can use MAC authentication bypass to re-authorize the port.

• If the port is in the authorized state, the port remains in this state until re-authorization occurs.

• You can configure a timeout period for hosts that are connected by MAC authentication bypass but are inactive. The range is 1 to 65535 seconds.

**Maximum Number of Allowed Devices Per Port**

This is the maximum number of devices allowed on an 802.1x-enabled port:

• In single-host mode, only one device is allowed on the access VLAN. If the port is also configured with a voice VLAN, an unlimited number of Cisco IP phones can send and receive traffic through the voice VLAN.

• In multidomain authentication (MDA) mode, one device is allowed for the access VLAN, and one IP phone is allowed for the voice VLAN.

• In multihost mode, only one 802.1x supplicant is allowed on the port, but an unlimited number of non-802.1x hosts are allowed on the access VLAN. An unlimited number of devices are allowed on the voice VLAN.

**Configuring 802.1x Readiness Check**

The 802.1x readiness check monitors 802.1x activity on all the switch ports and displays information about the devices connected to the ports that support 802.1x. You can use this feature to determine if the devices connected to the switch ports are 802.1x-capable.

The 802.1x readiness check is allowed on all ports that can be configured for 802.1x. The readiness check is not available on a port that is configured as `dot1x force-unauthorized`.

Follow these steps to enable the 802.1x readiness check on the switch:

**Before You Begin**

Follow these guidelines to enable the readiness check on the switch:

• The readiness check is typically used before 802.1x is enabled on the switch.

• If you use the `dot1x test eapol-capable` privileged EXEC command without specifying an interface, all the ports on the switch stack are tested.

• When you configure the `dot1x test eapol-capable` command on an 802.1x-enabled port, and the link comes up, the port queries the connected client about its 802.1x capability. When the client responds with a notification packet, it is 802.1x-capable. A syslog message is generated if the client responds within the timeout period. If the client does not respond to the query, the client is not 802.1x-capable. No syslog message is generated.
When you configure the `dot1x test eapol-capable` command on an 802.1x-enabled port, and the link comes up, the port queries the connected client about its 802.1x capability. When the client responds with a notification packet, it is 802.1x-capable. A syslog message is generated if the client responds within the timeout period. If the client does not respond to the query, the client is not 802.1x-capable. No syslog message is generated.

The readiness check can be sent on a port that handles multiple hosts (for example, a PC that is connected to an IP phone). A syslog message is generated for each of the clients that respond to the readiness check within the timer period.

### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `dot1x test eapol-capable [interface interface-id]`
4. `dot1x test timeout timeout`
5. `end`
6. `show running-config`
7. `copy running-config startup-config`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>enable</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Switch&gt; enable</td>
</tr>
<tr>
<td></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Switch# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><code>dot1x test eapol-capable [interface interface-id]</code></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Switch# dot1x test eapol-capable interface gigabitethernet1/0/13</td>
</tr>
<tr>
<td></td>
<td>DOT1X_PORT_EAPOL_CAPABLE:DOT1X: MAC 00-01-02-4b-f1-a3 on gigabitethernet1/0/13 is EAPOL capable</td>
</tr>
<tr>
<td></td>
<td>Enables the 802.1x readiness check on the switch. (Optional) For <code>interface-id</code> specify the port on which to check for IEEE 802.1x readiness. <strong>Note</strong> If you omit the optional <code>interface</code> keyword, all interfaces on the switch are tested.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><code>dot1x test timeout timeout</code></td>
</tr>
<tr>
<td></td>
<td>(Optional) Configures the timeout used to wait for EAPOL response. The range is from 1 to 65535 seconds. The default is 10 seconds.</td>
</tr>
</tbody>
</table>
### How to Configure 802.1x Port-Based Authentication

#### Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# end</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>show running-config</td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# show running-config</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

**Related Topics**

802.1x Readiness Check, on page 1020

**Configuring Voice Aware 802.1x Security**

To use voice aware IEEE 802.1x authentication, the switch must be running the LAN base image.

You use the voice aware 802.1x security feature on the switch to disable only the VLAN on which a security violation occurs, whether it is a data or voice VLAN. You can use this feature in IP phone deployments where a PC is connected to the IP phone. A security violation found on the data VLAN results in the shutdown of only the data VLAN. The traffic on the voice VLAN flows through the switch without interruption.

Follow these guidelines to configure voice aware 802.1x voice security on the switch:

- You enable voice aware 802.1x security by entering the **errdisable detect cause security-violation shutdown vlan** global configuration command. You disable voice aware 802.1x security by entering the **no** version of this command. This command applies to all 802.1x-configured ports in the switch.

  **Note** If you do not include the **shutdown vlan** keywords, the entire port is shut down when it enters the error-disabled state.

- If you use the **errdisable recovery cause security-violation** global configuration command to configure error-disabled recovery, the port is automatically re-enabled. If error-disabled recovery is not configured for the port, you re-enable it by using the **shutdown** and **no shutdown** interface configuration commands.
• You can re-enable individual VLANs by using the `clear errdisablen interface interface-id vlan [vlan-list]` privileged EXEC command. If you do not specify a range, all VLANs on the port are enabled.

Beginning in privileged EXEC mode, follow these steps to enable voice aware 802.1x security:

**SUMMARY STEPS**

1. `configure terminal`
2. `errdisablen detect cause security-violation shutdown vlan`
3. `errdisablen recovery cause security-violation`
4. `clear errdisablen interface interface-id vlan [vlan-list]`
5. Enter the following:
   - `shutdown`
   - `no shutdown`
6. `end`
7. `show errdisablen detect`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>errdisablen detect cause security-violation shutdown vlan</code></td>
<td>Shut down any VLAN on which a security violation error occurs. <em>Note</em> If the <code>shutdown vlan</code> keywords are not included, the entire port enters the error-disabled state and shuts down.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>errdisablen recovery cause security-violation</code></td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| Step 4 | `clear errdisablen interface interface-id vlan [vlan-list]` | (Optional) Reenable individual VLANs that have been error disabled.  
   - For interface-id specify the port on which to reenable individual VLANs.  
   - (Optional) For vlan-list specify a list of VLANs to be re-enabled. If vlan-list is not specified, all VLANs are re-enabled. |
| Step 5 | Enter the following:  
   - `shutdown`
   - `no shutdown` | (Optional) Re-enable an error-disabled VLAN, and clear all error-disable indications. |
| Step 6 | `end` | Return to privileged EXEC mode. |
| Step 7 | `show errdisablen detect` | Verify your entries. |
This example shows how to configure the switch to shut down any VLAN on which a security violation error occurs:

```
Switch(config)# errdisable detect cause security-violation shutdown vlan
```

This example shows how to re-enable all VLANs that were error disabled on port Gigabit Ethernet 40/2.

```
Switch# clear errdisable interface gigabitethernet4/0/2 vlan
```

You can verify your settings by entering the `show errdisable detect` privileged EXEC command.

**Related Topics**

- Voice Aware 802.1x Security, on page 1038

## Configuring 802.1x Violation Modes

You can configure an 802.1x port so that it shuts down, generates a syslog error, or discards packets from a new device when:

- a device connects to an 802.1x-enabled port
- the maximum number of allowed about devices have been authenticated on the port

Beginning in privileged EXEC mode, follow these steps to configure the security violation actions on the switch:

### SUMMARY STEPS

1. configure terminal
2. aaa new-model
3. aaa authentication dot1x {default} method1
4. interface interface-id
5. switchport mode access
6. authentication violation {shutdown | restrict | protect | replace}
7. end

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> aaa new-model</td>
<td>Enables AAA.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# aaa new-model</td>
<td></td>
</tr>
</tbody>
</table>
### Command or Action | Purpose
--- | ---
**Step 3** | aaa authentication dot1x {default} method1
**Example:**
Switch(config)# aaa authentication dot1x
default group radius
| Creates an 802.1x authentication method list.
To create a default list that is used when a named list is not specified in the authentication command, use the default keyword followed by the method that is to be used in default situations. The default method list is automatically applied to all ports.
For method1, enter the group radius keywords to use the list of all RADIUS servers for authentication.

**Step 4** | interface interface-id
**Example:**
Switch(config)# interface
gigabitethernet1/0/4
| Specifies the port connected to the client that is to be enabled for IEEE 802.1x authentication, and enter interface configuration mode.

**Step 5** | switchport mode access
**Example:**
Switch(config-if)# switchport mode access
| Sets the port to access mode.

**Step 6** | authentication violation {shutdown | restrict | protect | replace}
**Example:**
Switch(config-if)# authentication violation restrict
| Configures the violation mode. The keywords have these meanings:
- shutdown—Error disable the port.
- restrict—Generate a syslog error.
- protect—Drop packets from any new device that sends traffic to the port.
- replace—Removes the current session and authenticates with the new host.

**Step 7** | end
**Example:**
Switch(config-if)# end
| Returns to privileged EXEC mode.

### Configuring 802.1x Authentication
To allow per-user ACLs or VLAN assignment, you must enable AAA authorization to configure the switch for all network-related service requests.

This is the 802.1x AAA process:
Before You Begin

To configure 802.1x port-based authentication, you must enable authentication, authorization, and accounting (AAA) and specify the authentication method list. A method list describes the sequence and authentication method to be queried to authenticate a user.

SUMMARY STEPS

1. A user connects to a port on the switch.
2. Authentication is performed.
3. VLAN assignment is enabled, as appropriate, based on the RADIUS server configuration.
4. The switch sends a start message to an accounting server.
5. Re-authentication is performed, as necessary.
6. The switch sends an interim accounting update to the accounting server that is based on the result of re-authentication.
7. The user disconnects from the port.
8. The switch sends a stop message to the accounting server.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>A user connects to a port on the switch.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Authentication is performed.</td>
</tr>
<tr>
<td>Step 3</td>
<td>VLAN assignment is enabled, as appropriate, based on the RADIUS server configuration.</td>
</tr>
<tr>
<td>Step 4</td>
<td>The switch sends a start message to an accounting server.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Re-authentication is performed, as necessary.</td>
</tr>
<tr>
<td>Step 6</td>
<td>The switch sends an interim accounting update to the accounting server that is based on the result of re-authentication.</td>
</tr>
<tr>
<td>Step 7</td>
<td>The user disconnects from the port.</td>
</tr>
<tr>
<td>Step 8</td>
<td>The switch sends a stop message to the accounting server.</td>
</tr>
</tbody>
</table>

Configuring 802.1x Port-Based Authentication

Beginning in privileged EXEC mode, follow these steps to configure 802.1x port-based authentication:
### SUMMARY STEPS

1. configure terminal
2. aaa new-model
3. aaa authentication dot1x \{default\} method1
4. dot1x system-auth-control
5. aaa authorization network \{default\} group radius
6. radius-server host ip-address
7. radius-server key string
8. interface interface-id
9. switchport mode access
10. authentication port-control auto
11. dot1x pae authenticator
12. end

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>aaa new-model</td>
<td>Enables AAA.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config)# aaa new-model</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>aaa authentication dot1x {default} method1</td>
<td>Creates an 802.1x authentication method list.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config)# aaa authentication dot1x default group radius</td>
<td></td>
</tr>
</tbody>
</table>

To create a default list that is used when a named list is not specified in the authentication command, use the default keyword followed by the method that is to be used in default situations. The default method list is automatically applied to all ports.

For method1, enter the group radius keywords to use the list of all RADIUS servers for authentication.

**Note** Though other keywords are visible in the command-line help string, only the group radius keywords are supported.
### How to Configure 802.1x Port-Based Authentication

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4</td>
<td><code>dot1x system-auth-control</code></td>
<td>Enables 802.1x authentication globally on the switch.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Switch(config)# dot1x system-auth-control</code></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td><code>aaa authorization network {default} group radius</code></td>
<td>(Optional) Configures the switch to use user-RADIUS authorization for all network-related service requests, such as per-user ACLs or VLAN assignment.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Switch(config)# aaa authorization network default group radius</code></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td><code>radius-server host ip-address</code></td>
<td>(Optional) Specifies the IP address of the RADIUS server.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Switch(config)# radius-server host 124.2.2.12</code></td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td><code>radius-server key string</code></td>
<td>(Optional) Specifies the authentication and encryption key used between the switch and the RADIUS daemon running on the RADIUS server.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Switch(config)# radius-server key abcd1234</code></td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td><code>interface interface-id</code></td>
<td>Specifies the port connected to the client that is to be enabled for IEEE 802.1x authentication, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Switch(config)# interface gigabitethernet1/0/2</code></td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td><code>switchport mode access</code></td>
<td>(Optional) Sets the port to access mode only if you configured the RADIUS server in Step 6 and Step 7.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Switch(config-if)# switchport mode access</code></td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td><code>authentication port-control auto</code></td>
<td>Enables 802.1x authentication on the port.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Switch(config-if)# authentication port-control auto</code></td>
<td></td>
</tr>
</tbody>
</table>
Purpose
Command or Action | Purpose
--- | ---
Step 11 | Set the interface Port Access Entity to act only as an authenticator and ignore messages meant for a supplicant.
dot1x pae authenticator | Example:
Switch(config-if)# dot1x pae authenticator

Step 12 | Return to privileged EXEC mode.
end | Example:
Switch(config-if)# end

Configuring the Switch-to-RADIUS-Server Communication

You can globally configure the timeout, retransmission, and encryption key values for all RADIUS servers by using the `radius-server host` global configuration command. If you want to configure these options on a per-server basis, use the `radius-server timeout`, the `radius-server retransmit`, and the `radius-server key` global configuration commands.

You also need to configure some settings on the RADIUS server. These settings include the IP address of the switch and the key string to be shared by both the server and the switch. For more information, see the RADIUS server documentation.

Follow these steps to configure the RADIUS server parameters on the switch. This procedure is required.

**Before You Begin**

You must enable authentication, authorization, and accounting (AAA) and specify the authentication method list. A method list describes the sequence and authentication method to be queried to authenticate a user.

**SUMMARY STEPS**

1. enable
2. configure terminal
3. radius-server host `{hostname | ip-address} auth-port port-number key string`
4. end

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
</tbody>
</table>
### Command or Action | Purpose
--- | ---
Example:  
Switch> `enable` |  

**Step 2**  
**configure terminal**  
Example:  
Switch# `configure terminal` | Enters the global configuration mode.

**Step 3**  
**radius-server host** `{hostname | ip-address} auth-port port-number key string`  
Example:  
Switch(config)# `radius-server host 125.5.5.43 auth-port 1645 key rad123` | Configures the RADIUS server parameters.

For `hostname | ip-address`, specify the server name or IP address of the remote RADIUS server.

For `auth-port port-number`, specify the UDP destination port for authentication requests. The default is 1645. The range is 0 to 65536.

For `key string`, specify the authentication and encryption key used between the switch and the RADIUS daemon running on the RADIUS server. The key is a text string that must match the encryption key used on the RADIUS server.

**Note**  
Always configure the key as the last item in the `radius-server host` command syntax because leading spaces are ignored, but spaces within and at the end of the key are used. If you use spaces in the key, do not enclose the key in quotation marks unless the quotation marks are part of the key. This key must match the encryption used on the RADIUS daemon.

If you want to use multiple RADIUS servers, re-enter this command.

**Step 4**  
**end**  
Example:  
Switch(config)# `end` | Returns to privileged EXEC mode.

### Related Topics

**Switch-to-RADIUS-Server Communication,** on page 1020

### Configuring the Host Mode

Beginning in privileged EXEC mode, follow these steps to allow multiple hosts (clients) on an IEEE 802.1x-authorized port that has the `authentication port-control` interface configuration command set to `auto`. Use the `multi-domain` keyword to configure and enable multidomain authentication (MDA), which allows both a host and a voice device, such as an IP phone (Cisco or non-Cisco), on the same switch port. This procedure is optional.
### SUMMARY STEPS

1. `configure terminal`
2. `interface interface-id`
3. `authentication host-mode [multi-auth | multi-domain | multi-host | single-host]`
4. `end`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><strong>configure terminal</strong>&lt;br&gt;Enters the global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong>&lt;br&gt;Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><strong>interface interface-id</strong>&lt;br&gt;Specifies the port to which multiple hosts are indirectly attached, and enter interface configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong>&lt;br&gt;Switch(config)# interface gigabitethernet2/0/1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>**authentication host-mode [multi-auth</td>
</tr>
<tr>
<td><strong>Example:</strong>&lt;br&gt;Switch(config-if)# authentication host-mode multi-host</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><strong>end</strong>&lt;br&gt;Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong>&lt;br&gt;Switch(config-if)# end</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Periodic Re-Authentication

You can enable periodic 802.1x client re-authentication and specify how often it occurs. If you do not specify a time period before enabling re-authentication, the number of seconds between attempts is 3600.

Beginning in privileged EXEC mode, follow these steps to enable periodic re-authentication of the client and to configure the number of seconds between re-authentication attempts. This procedure is optional.

SUMMARY STEPS

1. configure terminal
2. interface interface-id
3. authentication periodic
4. authentication timer {[[inactivity | reauthenticate | restart | unauthorized]} {value}}
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Switch# configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>interface interface-id</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Switch(config)# interface gigabitethernet2/0/1</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>authentication periodic</td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>The default value is 3600 seconds. To change the value of the reauthentication timer or to have the switch use a RADIUS-provided session timeout, enter the authentication timer reauthenticate command.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Switch(config-if)# authentication periodic</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>authentication timer {[[inactivity</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Switch(config-if)# authentication timer inactivity value</td>
</tr>
</tbody>
</table>

The authentication timer keywords have these meanings:

- **inactivity**—Interval in seconds after which if there is no activity from the client then it is unauthorized.
### Command or Action	Purpose
`timer reauthenticate 180` | • **reauthenticate** — Time in seconds after which an automatic re-authentication attempt is initiated  
• **restart value** — Interval in seconds after which an attempt is made to authenticate an unauthorized port  
• **unauthorized value** — Interval in seconds after which an unauthorized session will get deleted

This command affects the behavior of the switch only if periodic re-authentication is enabled.

### Step 5

**end**

Returns to privileged EXEC mode.

**Example:**

```
Switch(config-if)# end
```

### Changing the Quiet Period

When the switch cannot authenticate the client, the switch remains idle for a set period of time and then tries again. The **authentication timer inactivity** interface configuration command controls the idle period. A failed authentication of the client might occur because the client provided an invalid password. You can provide a faster response time to the user by entering a number smaller than the default.

Beginning in privileged EXEC mode, follow these steps to change the quiet period. This procedure is optional.

#### SUMMARY STEPS

1. configure terminal
2. interface `interface-id`
3. authentication timer inactivity `seconds`
4. end
5. show authentication sessions interface `interface-id`
6. copy running-config startup-config
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> interface interface-id</td>
<td>Specifies the port to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch(config)# interface gigabitethernet2/0/1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> authentication timer inactivity seconds</td>
<td>Sets the number of seconds that the switch remains in the quiet state following a failed authentication exchange with the client. The range is 1 to 65535 seconds; the default is 60.</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch(config-if)# authentication timer inactivity 30</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch(config-if)# end</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> show authentication sessions interface interface-id</td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch# show authentication sessions interface gigabitethernet2/0/1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

### Changing the Switch-to-Client Retransmission Time

The client responds to the EAP-request/identity frame from the switch with an EAP-response/identity frame. If the switch does not receive this response, it waits a set period of time (known as the retransmission time) and then resends the frame.
You should change the default value of this command only to adjust for unusual circumstances such as unreliable links or specific behavioral problems with certain clients and authentication servers.

Beginning in privileged EXEC mode, follow these steps to change the amount of time that the switch waits for client notification. This procedure is optional.

**SUMMARY STEPS**

1. `configure terminal`
2. `interface interface-id`
3. `authentication timer reauthenticate seconds`
4. `end`
5. `show authentication sessions interface interface-id`
6. `copy running-config startup-config`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# <code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td><code>interface interface-id</code></td>
<td>Specifies the port to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# <code>interface gigabitethernet2/0/1</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
</tr>
<tr>
<td><code>authentication timer reauthenticate seconds</code></td>
<td>Sets the number of seconds that the switch waits for a response to an EAP-request/identity frame from the client before resending the request. The range is 1 to 65535 seconds; the default is 5.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config-if)# <code>authentication timer reauthenticate 60</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td></td>
</tr>
<tr>
<td><code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config-if)# <code>end</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td></td>
</tr>
<tr>
<td><code>show authentication sessions interface interface-id</code></td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# <code>show authentication sessions interface</code></td>
<td></td>
</tr>
</tbody>
</table>
Setting the Switch-to-Client Frame-Retransmission Number

In addition to changing the switch-to-client retransmission time, you can change the number of times that the switch sends an EAP-request/identity frame (assuming no response is received) to the client before restarting the authentication process.

Note
You should change the default value of this command only to adjust for unusual circumstances such as unreliable links or specific behavioral problems with certain clients and authentication servers.

Beginning in privileged EXEC mode, follow these steps to set the switch-to-client frame-retransmission number. This procedure is optional.

SUMMARY STEPS

1. configure terminal
2. interface interface-id
3. dot1x max-reauth-req count
4. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Specifies the port to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# interface</td>
<td></td>
</tr>
</tbody>
</table>
### Purpose

**Command or Action**

```
gigabitethernet2/0/1
```

#### Step 3

**`dot1x max-reauth-req count`**

*Example:

```
Switch(config-if)# dot1x max-reauth-req 5
```

Sets the number of times that the switch sends an EAP-request/identity frame to the client before restarting the authentication process. The range is 1 to 10; the default is 2.

#### Step 4

**`end`**

*Example:

```
Switch(config-if)# end
```

Returns to privileged EXEC mode.

---

### Setting the Re-Authentication Number

You can also change the number of times that the switch restarts the authentication process before the port changes to the unauthorized state.

**Note**

You should change the default value of this command only to adjust for unusual circumstances such as unreliable links or specific behavioral problems with certain clients and authentication servers.

Beginning in privileged EXEC mode, follow these steps to set the re-authentication number. This procedure is optional.

### SUMMARY STEPS

1. `configure terminal`
2. `interface interface-id`
3. `switchport mode access`
4. `dot1x max-reauth-req count`
5. `end`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Switch# configure terminal</code></td>
<td></td>
</tr>
</tbody>
</table>
### How to Configure 802.1x Port-Based Authentication

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 2</strong></td>
<td><strong>interface interface-id</strong>&lt;br&gt;Example: <code>Switch# interface gigabitethernet2/0/1</code>&lt;br&gt;Specifies the port to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><strong>switchport mode access</strong>&lt;br&gt;Example: <code>Switch(config-if)# switchport mode access</code>&lt;br&gt;Sets the port to access mode only if you previously configured the RADIUS server.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><strong>dot1x max-req count</strong>&lt;br&gt;Example: <code>Switch(config-if)# dot1x max-req 4</code>&lt;br&gt;Sets the number of times that the switch restarts the authentication process before the port changes to the unauthorized state. The range is 0 to 10; the default is 2.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><strong>end</strong>&lt;br&gt;Example: <code>Switch(config-if)# end</code>&lt;br&gt;Returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

### Enabling MAC Move

MAC move allows an authenticated host to move from one port on the switch to another.<br>Beginning in privileged EXEC mode, follow these steps to globally enable MAC move on the switch. This procedure is optional.

### SUMMARY STEPS

1. `configure terminal`
2. `authentication mac-move permit`
3. `end`
4. `show running-config`
5. `copy running-config startup-config`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> authentication mac-move permit</td>
<td>Enables MAC move on the switch. Default is deny.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# authentication mac-move permit</td>
<td>In Session Aware Networking mode, the default CLI is access-session mac-move deny. To enable Mac Move in Session Aware Networking, use the no access-session mac-move global configuration command.</td>
</tr>
<tr>
<td><strong>Step 3</strong> end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# end</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> show running-config</td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# show running-config</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

Enabling MAC Replace

MAC replace allows a host to replace an authenticated host on a port.

Beginning in privileged EXEC mode, follow these steps to enable MAC replace on an interface. This procedure is optional.
### SUMMARY STEPS

1. `configure terminal`
2. `interface interface-id`
3. `authentication violation {protect | replace | restrict | shutdown}`
4. `end`
5. `show running-config`
6. `copy running-config startup-config`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong>&lt;br&gt;Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> <code>interface interface-id</code></td>
<td>Specifies the port to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong>&lt;br&gt;Switch(config)# interface gigabitethernet2/0/2</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> `authentication violation {protect</td>
<td>replace</td>
</tr>
<tr>
<td><strong>Example:</strong>&lt;br&gt;Switch(config-if)# authentication violation replace</td>
<td>- <strong>protect</strong>: the port drops packets with unexpected MAC addresses without generating a system message.</td>
</tr>
<tr>
<td></td>
<td>- <strong>restrict</strong>: violating packets are dropped by the CPU and a system message is generated.</td>
</tr>
<tr>
<td></td>
<td>- <strong>shutdown</strong>: the port is error disabled when it receives an unexpected MAC address.</td>
</tr>
<tr>
<td><strong>Step 4</strong> <code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong>&lt;br&gt;Switch(config-if)# end</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 5 show running-config</td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td>Example: Switch# show running-config</td>
<td></td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td>Example: Switch# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

**Configuring 802.1x Accounting**

Enabling AAA system accounting with 802.1x accounting allows system reload events to be sent to the accounting RADIUS server for logging. The server can then infer that all active 802.1x sessions are closed. Because RADIUS uses the unreliable UDP transport protocol, accounting messages might be lost due to poor network conditions. If the switch does not receive the accounting response message from the RADIUS server after a configurable number of retransmissions of an accounting request, this system message appears:

**Accounting message %s for session %s failed to receive Accounting Response.**

When the stop message is not sent successfully, this message appears:

00:09:55: %RADIUS-4-RADIUS_DEAD: RADIUS server 172.20.246.201:1645,1646 is not responding.

**Note**

You must configure the RADIUS server to perform accounting tasks, such as logging start, stop, and interim-update messages and time stamps. To turn on these functions, enable logging of "Update/Watchdog packets from this AAA client" in your RADIUS server Network Configuration tab. Next, enable "CVS RADIUS Accounting" in your RADIUS server System Configuration tab.

Beginning in privileged EXEC mode, follow these steps to configure 802.1x accounting after AAA is enabled on your switch. This procedure is optional.
**SUMMARY STEPS**

1. configure terminal
2. interface interface-id
3. aaa accounting dot1x default start-stop group radius
4. aaa accounting system default start-stop group radius
5. end
6. show running-config
7. copy running-config startup-config

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> interface interface-id</td>
<td>Specifies the port to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Example: Switch(config)# interface gigabitethernet1/0/3</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> aaa accounting dot1x default start-stop group radius</td>
<td>Enables 802.1x accounting using the list of all RADIUS servers.</td>
</tr>
<tr>
<td>Example: Switch(config-if)# aaa accounting dot1x default start-stop group radius</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> aaa accounting system default start-stop group radius</td>
<td>(Optional) Enables system accounting (using the list of all RADIUS servers) and generates system accounting reload event messages when the switch reloads.</td>
</tr>
<tr>
<td>Example: Switch(config-if)# aaa accounting system default start-stop group radius</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> end</td>
<td>Returns to privileged EXEc mode.</td>
</tr>
<tr>
<td>Example: Switch(config-if)# end</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>Command or Action</td>
</tr>
<tr>
<td>-------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>show running-config</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
</tr>
<tr>
<td></td>
<td>Switch# show running-config</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 7</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

### Configuring a Guest VLAN

When you configure a guest VLAN, clients that are not 802.1x-capable are put into the guest VLAN when the server does not receive a response to its EAP request/identity frame. Clients that are 802.1x-capable but that fail authentication are not granted network access. The switch supports guest VLANs in single-host or multiple-hosts mode.

Beginning in privileged EXEC mode, follow these steps to configure a guest VLAN. This procedure is optional.

#### SUMMARY STEPS

1. configure terminal
2. interface interface-id
3. Use one of the following:
   - switchport mode access
   - switchport mode private-vlan host
4. authentication event no-response action authorize vlan vlan-id
5. end

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>
### Purpose

Command or Action	Purpose
**Step 2** | **interface interface-id**<br>Example: <br>Switch(config)# interface gigabitethernet2/0/2 | Specifies the port to be configured, and enter interface configuration mode. |
**Step 3** | Use one of the following:<br>- **switchport mode access**<br>- **switchport mode private-vlan host**<br>Example: <br>Switch(config-if)# switchport mode private-vlan host | - Sets the port to access mode.<br>- Configures the Layer 2 port as a private-VLAN host port. |
**Step 4** | **authentication event no-response action authorize vlan vlan-id**<br>Example: <br>Switch(config-if)# authentication event no-response action authorize vlan 2 | Specifies an active VLAN as an 802.1x guest VLAN. The range is 1 to 4094. <br>You can configure any active VLAN except an internal VLAN (routed port), an RSPAN VLAN or a voice VLAN as an 802.1x guest VLAN. |
**Step 5** | **end**<br>Example: <br>Switch(config-if)# end | Returns to privileged EXEC mode. |

### Configuring a Restricted VLAN

When you configure a restricted VLAN on a switch stack or a switch, clients that are IEEE 802.1x-compliant are moved into the restricted VLAN when the authentication server does not receive a valid username and password. The switch supports restricted VLANs only in single-host mode. 

Beginning in privileged EXEC mode, follow these steps to configure a restricted VLAN. This procedure is optional.
SUMMARY STEPS

1. configure terminal
2. interface interface-id
3. Use one of the following:
   • switchport mode access
   • switchport mode private-vlan host
4. authentication port-control auto
5. authentication event fail action authorize vlan vlan-id
6. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Switch# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>interface interface-id</td>
<td>Specifies the port to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Switch(config)# interface gigabitethernet2/0/2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Use one of the following:</td>
<td>• Sets the port to access mode.</td>
</tr>
<tr>
<td></td>
<td>• switchport mode access</td>
<td>• Configures the Layer 2 port as a private-VLAN host port.</td>
</tr>
<tr>
<td></td>
<td>• switchport mode private-vlan host</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>authentication port-control auto</td>
<td>Enables 802.1x authentication on the port.</td>
</tr>
<tr>
<td></td>
<td>Switch(config-if)# authentication port-control auto</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><strong>authentication event fail action authorize vlan vlan-id</strong></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Specifies an active VLAN as an 802.1x restricted VLAN. The range is 1 to 4094.</td>
<td></td>
</tr>
<tr>
<td>Switch(config-if)# authentication event fail action authorize vlan 2</td>
<td>You can configure any active VLAN except an internal VLAN (routed port), an RSPAN VLAN or a voice VLAN as an 802.1x restricted VLAN.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><strong>end</strong></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Returns to privileged EXEC mode.</td>
<td></td>
</tr>
</tbody>
</table>

### Configuring Number of Authentication Attempts on a Restricted VLAN

You can configure the maximum number of authentication attempts allowed before a user is assigned to the restricted VLAN by using the `authentication event retry retry count` interface configuration command. The range of allowable authentication attempts is 1 to 3. The default is 3 attempts.

Beginning in privileged EXEC mode, follow these steps to configure the maximum number of allowed authentication attempts. This procedure is optional.

### SUMMARY STEPS

1. `configure terminal`
2. `interface interface-id`
3. Use one of the following:
   - switchport mode access
   - switchport mode private-vlan host
4. `authentication port-control auto`
5. `authentication event fail action authorize vlan vlan-id`
6. `authentication event retry retry count`
7. `end`
# DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>interface interface-id</td>
<td>Specifies the port to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config)# interface gigabitethernet2/0/3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Use one of the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• switchport mode access</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• switchport mode private-vlan host</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config-if)# switchport mode access</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>authentication port-control auto</td>
<td>Enables 802.1x authentication on the port.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config-if)# authentication port-control auto</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>authentication event fail action authorize vlan vlan-id</td>
<td>Specifies an active VLAN as an 802.1x restricted VLAN. The range is 1 to 4094. You can configure any active VLAN except an internal VLAN (routed port), an RSPAN VLAN or a voice VLAN as an 802.1x restricted VLAN.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config-if)# authentication event fail action authorize vlan 8</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>authentication event retry retry count</td>
<td>Specifies a number of authentication attempts to allow before a port moves to the restricted VLAN. The range is 1 to 3, and the default is 3.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config-if)# authentication event retry 2</td>
<td></td>
</tr>
</tbody>
</table>
### Configuring 802.1x Inaccessible Authentication Bypass with Critical Voice VLAN

Beginning in privileged EXEC mode, follow these steps to configure critical voice VLAN on a port and enable the inaccessible authentication bypass feature.

**SUMMARY STEPS**

1. configure terminal
2. aaa new-model
3. radius-server dead-criteria {time seconds} [tries number]
4. radius-serverdeadtime minutes
5. radius-server host ip-address address [acct-port udp-port] [auth-port udp-port] [testusername name [idle-time time] [ignore-acct-port] [ignore auth-port]] [key string]
6. dot1x critical {eapol | recovery delay milliseconds}
7. interface interface-id
8. authentication event server dead action {authorize | reinitialize} vlan vlan-id
9. switchport voice vlan vlan-id
10. authentication event server dead action authorize voice
11. show authentication interface interface-id
12. copy running-config startup-config

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 7</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>end</strong></td>
<td></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch(config-if)# end</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Example:**

Switch(config-if)# end
### How to Configure 802.1x Port-Based Authentication

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 2</strong></td>
<td>Enables AAA.</td>
</tr>
<tr>
<td><code>aaa new-model</code></td>
<td>Enables AAA.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>Switch(config)# aaa new-model</code></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Sets the conditions that determine when a RADIUS server is considered un-available or down (dead).</td>
</tr>
<tr>
<td><code>radius-server dead-criteria\{time seconds } [tries number]</code></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>Switch(config)# radius-server dead-criteria time 20 tries 10</code></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>(Optional) Sets the number of minutes during which a RADIUS server is not sent requests. The range is from 0 to 1440 minutes (24 hours). The default is 0 minutes.</td>
</tr>
<tr>
<td><code>radius-serverdeadtime</code> minutes</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>Switch(config)# radius-server deadtime 60</code></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>(Optional) Configure the RADIUS server parameters by using these keywords:</td>
</tr>
<tr>
<td><code>radius-server host ip-address address[acct-port udp-port][auth-port udp-port][testusername name][idle-time time][ignore-acct-port][ignore auth-port] [key string]</code></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>Switch(config)# radius-server host 1.1.1.2 acct-port 1550 auth-port 1560 test username user1 idle-time 30 key abc1234</code></td>
</tr>
</tbody>
</table>

- **time**—1 to 120 seconds. The switch dynamically determines a default `seconds` value between 10 and 60.
- **number**—1 to 100 tries. The switch dynamically determines a default `number` between 10 and 100.
- **acct-port**—Specify the UDP port for the RADIUS accounting server. The range for the UDP port number is from 0 to 65536. The default is 1646.
- **auth-port**—Specify the UDP port for the RADIUS authentication server. The range for the UDP port number is from 0 to 65536. The default is 1645.
- **Note** You should configure the UDP port for the RADIUS accounting server and the UDP port for the RADIUS authentication server to nondefault values.
- **test username**—Enable automated testing of the RADIUS server status, and specify the username to be used.
- **idle-time**—Set the interval of time in minutes after which the switch sends test packets to the server. The range is from 1 to 35791 minutes. The default is 60 minutes (1 hour).
- **ignore-acct-port**—Disable testing on the RADIUS-server accounting port.
- **ignore-auth-port**—Disable testing on the RADIUS-server authentication port.
- **key string**—Specify the authentication and encryption key used between the switch and the RADIUS daemon running on the
### How to Configure 802.1x Port-Based Authentication

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>RADIUS server. The key is a text string that must match the encryption key used on the RADIUS server.</td>
<td><strong>Note</strong>: Always configure the key as the last item in the <code>radius-server host</code> command syntax because leading spaces are ignored, but spaces within and at the end of the key are used. If you use spaces in the key, do not enclose the key in quotation marks unless the quotation marks are part of the key. This key must match the encryption used on the RADIUS daemon. You can also configure the authentication and encryption key by using the `radius-server key {0string</td>
</tr>
</tbody>
</table>

**Step 6**  
*dot1x critical {eapol | recovery delay milliseconds}*  

**Example:**  
```
Switch(config)# dot1x critical eapol
Switch(config)# dot1x critical recovery delay 2000
```

(Optional) Configure the parameters for inaccessible authentication bypass:  
- **eapol**—Specify that the switch sends an EAPOL-Success message when the switch successfully authenticates the critical port.  
- **recovery delay milliseconds**—Set the recovery delay period during which the switch waits to re-initialize a critical port when a RADIUS server that was unavailable becomes available. The range is from 1 to 10000 milliseconds. The default is 1000 milliseconds (a port can be re-initialized every second).

**Step 7**  
*interface interface-id*  

**Example:**  
```
Switch(config)# interface gigabitethernet 1/0/1
```

Specify the port to be configured, and enter interface configuration mode.

**Step 8**  
*authentication event server dead action {authorize | reinitialize} vlan vlan-id*  

**Example:**  
```
Switch(config-if)# authentication event server dead action authorize vlan 20
```

Use these keywords to move hosts on the port if the RADIUS server is unreachable:  
- **authorize**—Move any new hosts trying to authenticate to the user-specified critical VLAN.  
- **reinitialize**—Move all authorized hosts on the port to the user-specified critical VLAN.

**Step 9**  
*switchport voice vlan vlan-id*  

**Example:**  
```
Switch(config-if)# switchport voice vlan
```

Specifies the voice VLAN for the port. The voice VLAN cannot be the same as the critical data VLAN configured in Step 6.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 10</strong></td>
<td>Configures critical voice VLAN to move data traffic on the port to the voice VLAN if the RADIUS server is unreachable.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Switch(config-if)# authentication event server dead action authorize voice</td>
<td></td>
</tr>
</tbody>
</table>

**Step 11**	(Optional) Verify your entries.
**Example:**	
Switch(config-if)# do show authentication interface interface-id	

**Step 12**	(Optional) Verify your entries.
**Example:**	
Switch(config-if)# do copy running-config startup-config	

To return to the RADIUS server default settings, use the `no radius-server dead-criteria`, the `no radius-server deadtime`, and the `no radius-server host` global configuration commands. To disable inaccessible authentication bypass, use the `no authentication event server dead action` interface configuration command. To disable critical voice VLAN, use the `no authentication event server dead action authorize voice` interface configuration command.

**Example of Configuring Inaccessible Authentication Bypass**

This example shows how to configure the inaccessible authentication bypass feature:

```
Switch(config)# radius-server dead-criteria time 30 tries 20
Switch(config)# radius-server deadtime 60
Switch(config)# radius-server host 1.1.1.2 acct-port 1550 auth-port 1560 test username user1 idle-time 30 key abcd1234
Switch(config)# dot1x critical eapol
Switch(config)# dot1x critical recovery delay 2000
Switch(config)# interface gigabitethernet 1/0/1
Switch(config-if)# dot1x critical
Switch(config-if)# dot1x critical recovery action reinitialize
Switch(config-if)# dot1x critical vlan 20
Switch(config-if)# end
```
Configuring 802.1x Authentication with WoL

Beginning in privileged EXEC mode, follow these steps to enable 802.1x authentication with WoL. This procedure is optional.

SUMMARY STEPS

1. configure terminal
2. interface interface-id
3. authentication control-direction {both | in}
4. end
5. show authentication sessions interface interface-id
6. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Switch# configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>interface interface-id</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Switch(config)# interface gigabitethernet2/0/3</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>authentication control-direction {both</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Switch(config-if)# authentication control-direction both</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>end</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Switch(config-if)# end</td>
</tr>
<tr>
<td>Step 5</td>
<td>Command or Action</td>
</tr>
<tr>
<td>--------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>show authentication sessions interface interface-id</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# show authentication sessions interface gigabitethernet2/0/3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 6</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

### Configuring MAC Authentication Bypass

Beginning in privileged EXEC mode, follow these steps to enable MAC authentication bypass. This procedure is optional.

#### SUMMARY STEPS

1. configure terminal
2. interface interface-id
3. authentication port-control auto
4. mab [eap]
5. end

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>interface interface-id</td>
<td>Specifies the port to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# interface gigabitethernet2/0/1</td>
<td></td>
</tr>
</tbody>
</table>
How to Configure 802.1x Port-Based Authentication

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td><code>authentication port-control auto</code></td>
<td>Enables 802.1x authentication on the port.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Switch(config-if)# authentication port-control auto</code></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>mab [eap]</code></td>
<td>Enables MAC authentication bypass. (Optional) Use the <code>eap</code> keyword to configure the switch to use EAP for authorization.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Switch(config-if)# mab</code></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td><code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Switch(config-if)# end</code></td>
<td></td>
</tr>
</tbody>
</table>

**Formatting a MAC Authentication Bypass Username and Password**

Use the optional `mab request format` command to format the MAB username and password in a style accepted by the authentication server. The username and password are usually the MAC address of the client. Some authentication server configurations require the password to be different from the username.

Beginning in privileged EXEC mode, follow these steps to format MAC authentication bypass username and passwords.

**SUMMARY STEPS**

1. configure terminal
2. mab request format attribute 1 groupsize \{1 | 2 | 4 | 12\} \{separator \{- | : | .\} \{lowercase | uppercase\}\}
3. mab request format attribute2 \{0 | 7\} `text`
4. end

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Switch# configure terminal</code></td>
<td></td>
</tr>
</tbody>
</table>
### Command or Action

| Step 2 | mab request format attribute 1 groupsize {1 | 2 | 4 | 12} separator { - | : | .} {lowercase | uppercase} |
| --- | --- |
| **Example:** | Switch(config)# mab request format attribute 1 groupsize 12 |

### Purpose

Specifies the format of the MAC address in the User-Name attribute of MAB-generated Access-Request packets.

1—Sets the username format of the 12 hex digits of the MAC address.

group size—The number of hex nibbles to concatenate before insertion of a separator. A valid group size must be either 1, 2, 4, or 12.

separator—The character that separates the hex nibbles according to group size. A valid separator must be either a hyphen, colon, or period. No separator is used for a group size of 12.

{lowercase | uppercase}—Specifies if nonnumeric hex nibbles should be in lowercase or uppercase.

<table>
<thead>
<tr>
<th>Step 3</th>
<th>mab request format attribute 2 0</th>
<th>7 text</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Example:</strong></td>
<td>Switch(config)# mab request format attribute 2 7 A02f44E18B12</td>
<td></td>
</tr>
</tbody>
</table>

### Purpose

2—Specifies a custom (nondefault) value for the User-Password attribute in MAB-generated Access-Request packets.

0—Specifies a cleartext password to follow.

7—Specifies an encrypted password to follow.

text—Specifies the password to be used in the User-Password attribute.

**Note** When you send configuration information in e-mail, remove type 7 password information. The `show tech-support` command removes this information from its output by default.

<table>
<thead>
<tr>
<th>Step 4</th>
<th>end</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Example:</strong></td>
<td>Switch(config)# end</td>
</tr>
</tbody>
</table>

### Purpose

Returns to privileged EXEC mode.

---

### Configuring 802.1x User Distribution

Beginning in privileged EXEC mode, follow these steps to configure a VLAN group and to map a VLAN to it:

#### SUMMARY STEPS

1. `configure terminal`
2. `vlan group vlan-group-name vlan-list vlan-list`
3. `end`
4. `no vlan group vlan-group-name vlan-list vlan-list`
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> vlan group vlan-group-name vlan-list vlan-list</td>
<td>Configures a VLAN group, and maps a single VLAN or a range of VLANs to it.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# vlan group eng-dept vlan-list 10</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# end</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> no vlan group vlan-group-name vlan-list vlan-list</td>
<td>Clears the VLAN group configuration or elements of the VLAN group configuration.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# no vlan group eng-dept vlan-list 10</td>
<td></td>
</tr>
</tbody>
</table>

### Example of Configuring VLAN Groups

This example shows how to configure the VLAN groups, to map the VLANs to the groups, to and verify the VLAN group configurations and mapping to the specified VLANs:

```
Switch(config)# vlan group eng-dept vlan-list 10
Switch(config)# show vlan group group-name eng-dept
Group Name | Vlans Mapped
---------------|------------
eng-dept | 10
Switch(config)# show dot1x vlan-group all
Group Name | Vlans Mapped
---------------|------------
eng-dept | 10
hr-dept | 20
```

This example shows how to add a VLAN to an existing VLAN group and to verify that the VLAN was added:

```
Switch(config)# vlan group eng-dept vlan-list 30
Switch(config)# show vlan group eng-dept
Group Name | Vlans Mapped
---------------|------------
eng-dept | 30
```
This example shows how to remove a VLAN from a VLAN group:

```
Switch# no vlan group eng-dept vlan-list 10
```

This example shows that when all the VLANs are cleared from a VLAN group, the VLAN group is cleared:

```
Switch(config)# no vlan group eng-dept vlan-list 30
Vlan 30 is successfully cleared from vlan group eng-dept.
Switch(config)# show vlan group group-name eng-dept
```

This example shows how to clear all the VLAN groups:

```
Switch(config)# no vlan group end-dept vlan-list all
Switch(config)# show vlan-group all
```

For more information about these commands, see the *Cisco IOS Security Command Reference*.

**Configuring NAC Layer 2 802.1x Validation**

You can configure NAC Layer 2 802.1x validation, which is also referred to as 802.1x authentication with a RADIUS server. Beginning in privileged EXEC mode, follow these steps to configure NAC Layer 2 802.1x validation. The procedure is optional.

**SUMMARY STEPS**

1. configure terminal
2. interface interface-id
3. switchport mode access
4. authentication event no-response action authorize vlan vlan-id
5. authentication periodic
6. authentication timer reauthenticate
7. end
8. show authentication sessions interface interface-id
9. copy running-config startup-config

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>
### How to Configure 802.1x Port-Based Authentication

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><strong>interface</strong> <em>interface-id</em></td>
<td>Specifies the port to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch(config)# <strong>interface gigabitethernet2/0/3</strong></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><strong>switchport mode access</strong></td>
<td>Sets the port to access mode only if you configured the RADIUS server.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch(config-if)# <strong>switchport mode access</strong></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><strong>authentication event no-response action authorize vlan</strong> <em>vlan-id</em></td>
<td>Specifies an active VLAN as an 802.1x guest VLAN. The range is 1 to 4094. You can configure any active VLAN except an internal VLAN (routed port), an RSPAN VLAN, or a voice VLAN as an 802.1x guest VLAN.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch(config-if)# <strong>authentication event no-response action authorize vlan 8</strong></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><strong>authentication periodic</strong></td>
<td>Enables periodic re-authentication of the client, which is disabled by default.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch(config-if)# <strong>authentication periodic</strong></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 6</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><strong>authentication timer reauthenticate</strong></td>
<td>Sets re-authentication attempt for the client (set to one hour). This command affects the behavior of the switch only if periodic re-authentication is enabled.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch(config-if)# <strong>authentication timer reauthenticate</strong></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 7</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><strong>end</strong></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch(config-if)# <strong>end</strong></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 8</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><strong>show authentication sessions interface</strong> <em>interface-id</em></td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch# <strong>show authentication sessions interface gigabitethernet2/0/3</strong></td>
<td></td>
</tr>
</tbody>
</table>
Configuring Limiting Login for Users

**SUMMARY STEPS**

1. enable  
2. configure terminal  
3. aaa new-model  
4. aaa authentication login default local  
5. aaa authentication rejected \text{n in m} \text{ban x}  
6. end  
7. show aaa local user blocked  
8. clear aaa local user blocked \text{username username}

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | enable | Enables privileged EXEC mode.  
   | Example: Device> enable | · Enter your password if prompted. |
| Step 2 | configure terminal | Enters global configuration mode.  
   | Example: Device# configure terminal | |
| Step 3 | aaa new-model | Enables the authentication, authorization, and accounting (AAA) access control model.  
   | Example: Device(config)# aaa new-model | |
| Step 4 | aaa authentication login default local | Sets the authentication, authorization, and accounting (AAA) authentication by using the default authentication methods.  
<p>| Example: Device(config)# aaa authentication login default local | |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 5</strong></td>
<td><strong>aaa authentication rejected n in m ban x</strong>&lt;br&gt;Example:&lt;br&gt;Device(config)# aaa authentication rejected 3 in 20 ban 300</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><strong>end</strong>&lt;br&gt;Example:&lt;br&gt;Device(config)# end</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td><strong>show aaa local user blocked</strong>&lt;br&gt;Example:&lt;br&gt;Device# show aaa local user blocked</td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td><strong>clear aaa local user blocked username username</strong>&lt;br&gt;Example:&lt;br&gt;Device# clear aaa local user blocked username user1</td>
</tr>
</tbody>
</table>

The following is sample output from the **show aaa local user blocked** command:<br><br>**Device# show aaa local user blocked**<br>Local-user | State<br>user1 | Watched (till 11:34:42 IST Feb 5 2015)

**Configuring an Authenticator Switch with NEAT**

Configuring this feature requires that one switch outside a wiring closet is configured as a supplicant and is connected to an authenticator switch.

**Note**<br>The **cisco-av-pairs** must be configured as **device-traffic-class=switch** on the ACS, which sets the interface as a trunk after the supplicant is successfully authenticated.

Beginning in privileged EXEC mode, follow these steps to configure a switch as an authenticator:
SUMMARY STEPS

1. configure terminal
2. cisp enable
3. interface interface-id
4. switchport mode access
5. authentication port-control auto
6. dot1x pae authenticator
7. spanning-tree portfast
8. end
9. show running-config interface interface-id
10. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>cisp enable</td>
<td>Enables CISP.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config)# cisp enable</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>interface interface-id</td>
<td>Specifies the port to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config)# interface gigabitethernet2/0/1</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>switchport mode access</td>
<td>Sets the port mode to access.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config-if)# switchport mode access</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>authentication port-control auto</td>
<td>Sets the port-authentication mode to auto.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config-if)# authentication port-control auto</td>
<td></td>
</tr>
</tbody>
</table>
### Purpose

**Command or Action**

<table>
<thead>
<tr>
<th>Step 6</th>
<th><strong>dot1x pae authenticator</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Example:</strong></td>
<td><code>Switch(config-if)# dot1x pae authenticator</code></td>
</tr>
<tr>
<td><strong>Purpose:</strong></td>
<td>Configures the interface as a port access entity (PAE) authenticator.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 7</th>
<th><strong>spanning-tree portfast</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Example:</strong></td>
<td><code>Switch(config-if)# spanning-tree portfast trunk</code></td>
</tr>
<tr>
<td><strong>Purpose:</strong></td>
<td>Enables Port Fast on an access port connected to a single workstation or server.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 8</th>
<th><strong>end</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Example:</strong></td>
<td><code>Switch(config-if)# end</code></td>
</tr>
<tr>
<td><strong>Purpose:</strong></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 9</th>
<th><strong>show running-config interface interface-id</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Example:</strong></td>
<td><code>Switch# show running-config interface gigabitethernet2/0/1</code></td>
</tr>
<tr>
<td><strong>Purpose:</strong></td>
<td>Verifies your configuration.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 10</th>
<th><strong>copy running-config startup-config</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Example:</strong></td>
<td><code>Switch# copy running-config startup-config</code></td>
</tr>
<tr>
<td><strong>Purpose:</strong></td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>

---

**Configuring a Supplicant Switch with NEAT**

Beginning in privileged EXEC mode, follow these steps to configure a switch as a supplicant:
SUMMARY STEPS

1. configure terminal
2. cispenable
3. dot1x credentials profile
4. username suppswitch
5. password password
6. dot1x supplicant force-multicast
7. interface interface-id
8. switchport trunk encapsulation dot1q
9. switchport mode trunk
10. dot1x pae supplicant
11. dot1x credentials profile-name
12. end
13. show running-config interface interface-id
14. copy running-config startup-config
15. Configuring NEAT with Auto Smartports Macros

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>cispenable</td>
<td>Enables CISP.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch(config)# cispenable</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>dot1x credentials profile</td>
<td>Creates 802.1x credentials profile. This must be attached to the port that is configured as supplicant.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch(config)# dot1x credentials test</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>username suppswitch</td>
<td>Creates a username.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch(config)# username suppswitch</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>password <em>password</em></td>
<td>Creates a password for the new username.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# password myswitch</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>dot1x supplicant force-multicast</td>
<td>Forces the switch to send only multicast EAPOL packets when it receives either unicast or multicast packets. This also allows NEAT to work on the supplicant switch in all host modes.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# dot1x supplicant force-multicast</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>interface interface-id</td>
<td>Specifies the port to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# interface gigabitethernet1/0/1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>switchport trunk encapsulation dot1q</td>
<td>Sets the port to trunk mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-if)# switchport trunk encapsulation dot1q</td>
<td></td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td>switchport mode trunk</td>
<td>Configures the interface as a VLAN trunk port.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-if)# switchport mode trunk</td>
<td></td>
</tr>
<tr>
<td><strong>Step 10</strong></td>
<td>dot1x pae supplicant</td>
<td>Configures the interface as a port access entity (PAE) supplicant.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-if)# dot1x pae supplicant</td>
<td></td>
</tr>
<tr>
<td><strong>Step 11</strong></td>
<td>dot1x credentials <em>profile-name</em></td>
<td>Attaches the 802.1x credentials profile to the interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-if)# dot1x credentials test</td>
<td></td>
</tr>
<tr>
<td><strong>Step 12</strong></td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-if)# end</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-----------------------------------------</td>
<td>----------------------------------------------</td>
<td></td>
</tr>
<tr>
<td><strong>Step 13</strong> show running-config interface *interface-id</td>
<td>Verifies your configuration.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switch# show running-config interface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gigabitethernet1/0/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 14</strong> copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switch# copy running-config startup-config</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 15</strong> Configuring NEAT with Auto Smartports Macros</td>
<td>You can also use an Auto Smartports user-defined macro instead of the switch VSA to configure the authenticator switch. For more information, see the <em>Auto Smartports Configuration Guide</em> for this release.</td>
<td></td>
</tr>
</tbody>
</table>

**Configuring 802.1x Authentication with Downloadable ACLs and Redirect URLs**

In addition to configuring 802.1x authentication on the switch, you need to configure the ACS. For more information, see the *Configuration Guide for Cisco Secure ACS 4.2*: http://www.cisco.com/en/US/docs/net_mgmt/cisco_secure_access_control_server_for_windows/4.2/configuration/guide/acs_config.pdf

**Note**
You must configure a downloadable ACL on the ACS before downloading it to the switch.

After authentication on the port, you can use the `show ip access-list` privileged EXEC command to display the downloaded ACLs on the port.

**Configuring Downloadable ACLs**

The policies take effect after client authentication and the client IP address addition to the IP device tracking table. The switch then applies the downloadable ACL to the port.

Beginning in privileged EXEC mode:
SUMMARY STEPS

1. configure terminal
2. ip device tracking
3. aaa new-model
4. aaa authorization network default local group radius
5. radius-server vsa send authentication
6. interface interface-id
7. ip access-group acl-id in
8. show running-config interface interface-id
9. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Sets the ip device tracking table.</td>
</tr>
<tr>
<td>ip device tracking</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# ip device tracking</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Enables AAA.</td>
</tr>
<tr>
<td>aaa new-model</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# aaa new-model</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Sets the authorization method to local. To remove the authorization method, use the no aaa authorization network default local group radius command.</td>
</tr>
<tr>
<td>aaa authorization network default local group radius</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# aaa authorization network default local group radius</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>Configures the radius vsa send authentication.</td>
</tr>
<tr>
<td>radius-server vsa send authentication</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# radius-server vsa send authentication</td>
<td></td>
</tr>
</tbody>
</table>
How to Configure 802.1x Port-Based Authentication

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6</td>
<td></td>
</tr>
<tr>
<td>interface interface-id</td>
<td>Specifies the port to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# interface gigabitethernet2/0/4</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td></td>
</tr>
<tr>
<td>ip access-group acl-id in</td>
<td>Configures the default ACL on the port in the input direction.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config-if)# ip access-group default_acl in</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td></td>
</tr>
<tr>
<td>show running-config interface interface-id</td>
<td>Verifies your configuration.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config-if)# show running-config interface gigabitethernet2/0/4</td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td></td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

**Configuring a Downloadable Policy**

Beginning in privileged EXEC mode:

**SUMMARY STEPS**

1. configure terminal
2. access-list access-list-number { deny | permit } { hostname | any | host } log
3. interface interface-id
4. ip access-group acl-id in
5. exit
6. aaa new-model
7. aaa authorization network default group radius
8. ip device tracking
9. ip device tracking probe [count | interval | use-svi]
10. radius-server vsa send authentication
11. end
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>`access-list access-list-number { deny</td>
<td>permit } { hostname</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td>The access-list-number is a decimal number from 1 to 99 or 1300 to 1999.</td>
</tr>
<tr>
<td></td>
<td><code>Switch(config)# access-list 1 deny any log</code></td>
<td>Enter <code>deny</code> or <code>permit</code> to specify whether to deny or permit access if conditions are matched.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The source is the source address of the network or host that sends a packet, such as this:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <code>hostname</code>: The 32-bit quantity in dotted-decimal format.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <code>any</code>: The keyword <code>any</code> as an abbreviation for source and source-wildcard value of 0.0.0.0 255.255.255.255. You do not need to enter a source-wildcard value.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <code>host</code>: The keyword <code>host</code> as an abbreviation for source and source-wildcard of source 0.0.0.0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Optional) Applies the source-wildcard wildcard bits to the source.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Optional) Enters <code>log</code> to cause an informational logging message about the packet that matches the entry to be sent to the console.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>interface interface-id</code></td>
<td>Enters interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Switch(config)# interface gigabitethernet2/0/2</code></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>ip access-group acl-id in</code></td>
<td>Configures the default ACL on the port in the input direction.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td><strong>Note</strong> The acl-id is an access list name or number.</td>
</tr>
<tr>
<td></td>
<td><code>Switch(config-if)# ip access-group default_acl in</code></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td><code>exit</code></td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Switch(config-if)# exit</code></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> aaa new-model</td>
<td>Enables AAA.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switch(config)# aaa new-model</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong> aaa authorization network default group radius</td>
<td>Sets the authorization method to local. To remove the authorization method, use the <code>no aaa authorization network default group radius</code> command.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switch(config)# aaa authorization network default group radius</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong> ip device tracking</td>
<td>Enables the IP device tracking table.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switch(config)# ip device tracking</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 9</strong> ip device tracking probe [count</td>
<td>interval</td>
<td>use-svi]</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switch(config)# ip device tracking probe count</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 10</strong> radius-server vsa send authentication</td>
<td>Configures the network access server to recognize and use vendor-specific attributes.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switch(config)# radius-server vsa send authentication</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 11</strong> end</td>
<td>Returns to privileged EXEC mode.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switch(config)# end</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Configuring VLAN ID-based MAC Authentication

Beginning in privileged EXEC mode, follow these steps:

SUMMARY STEPS

1. configure terminal
2. mab request format attribute 32 vlan access-vlan
3. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configured terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> mab request format attribute 32 vlan access-vlan</td>
<td>Enables VLAN ID-based MAC authentication.</td>
</tr>
<tr>
<td>Example: Switch(config)# mab request format attribute 32 vlan access-vlan</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td>Example: Switch# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

Configuring Flexible Authentication Ordering

The examples used in the instructions below change the order of Flexible Authentication Ordering so that MAB is attempted before IEEE 802.1X authentication (dot1x). MAB is configured as the first authentication method, so MAB will have priority over all other authentication methods.


Beginning in privileged EXEC mode, follow these steps:
**SUMMARY STEPS**

1. `configure terminal`  
2. `interface interface-id`  
3. `switchport mode access`  
4. `authentication order [ dot1x | mab ] | {webauth}`  
5. `authentication priority [ dot1x | mab ] | {webauth}`  
6. `end`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
<td>Switch# configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong> interface interface-id</td>
<td>Specifies the port to be configured, and enter interface configuration mode.</td>
<td>Switch(config)# interface gigabitethernet 1/0/1</td>
</tr>
<tr>
<td><strong>Step 3</strong> switchport mode access</td>
<td>Sets the port to access mode only if you previously configured the RADIUS server.</td>
<td>Switch(config-if)# switchport mode access</td>
</tr>
<tr>
<td><strong>Step 4</strong> authentication order [ dot1x</td>
<td>mab ]</td>
<td>(Optional) Sets the order of authentication methods used on a port.</td>
</tr>
<tr>
<td><strong>Step 5</strong> authentication priority [ dot1x</td>
<td>mab ]</td>
<td>(Optional) Adds an authentication method to the port-priority list.</td>
</tr>
<tr>
<td><strong>Step 6</strong> end</td>
<td>Returns to privileged EXEC mode.</td>
<td>Switch(config-if)# end</td>
</tr>
</tbody>
</table>
Configuring Open1x

Beginning in privileged EXEC mode, follow these steps to enable manual control of the port authorization state:

SUMMARY STEPS

1. `configure terminal`
2. `interface interface-id`
3. `switchport mode access`
4. `authentication control-direction {both | in}`
5. `authentication fallback name`
6. `authentication host-mode [multi-auth | multi-domain | multi-host | single-host]`
7. `authentication open`
8. `authentication order [ dot1x | mab ] | {webauth}`
9. `authentication periodic`
10. `authentication port-control {auto | force-authorized | force-unauthorized}`
11. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td><code>interface interface-id</code></td>
<td>Specifies the port to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Switch(config)# interface gigabitethernet 1/0/1</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
</tr>
<tr>
<td><code>switchport mode access</code></td>
<td>Sets the port to access mode only if you configured the RADIUS server.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Switch(config-if)# switchport mode access</code></td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------</td>
</tr>
<tr>
<td>4</td>
<td>`authentication control-direction {both</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
</tr>
<tr>
<td></td>
<td><code>Switch(config-if)# authentication control-direction both</code></td>
</tr>
<tr>
<td>5</td>
<td><code>authentication fallback name</code></td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
</tr>
<tr>
<td></td>
<td><code>Switch(config-if)# authentication fallback profile1</code></td>
</tr>
<tr>
<td>6</td>
<td>`authentication host-mode [multi-auth</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
</tr>
<tr>
<td></td>
<td><code>Switch(config-if)# authentication host-mode multi-auth</code></td>
</tr>
<tr>
<td>7</td>
<td><code>authentication open</code></td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
</tr>
<tr>
<td></td>
<td><code>Switch(config-if)# authentication open</code></td>
</tr>
<tr>
<td>8</td>
<td>`authentication order [ dot1x</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
</tr>
<tr>
<td></td>
<td><code>Switch(config-if)# authentication order dot1x webauth</code></td>
</tr>
<tr>
<td>9</td>
<td><code>authentication periodic</code></td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
</tr>
<tr>
<td></td>
<td><code>Switch(config-if)# authentication periodic</code></td>
</tr>
<tr>
<td>10</td>
<td>`authentication port-control {auto</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
</tr>
<tr>
<td></td>
<td><code>Switch(config-if)# authentication port-control auto</code></td>
</tr>
</tbody>
</table>
Disabling 802.1x Authentication on the Port

You can disable 802.1x authentication on the port by using the `no dot1x pae` interface configuration command.

Beginning in privileged EXEC mode, follow these steps to disable 802.1x authentication on the port. This procedure is optional.

**SUMMARY STEPS**

1. `configure terminal`
2. `interface interface-id`
3. `switchport mode access`
4. `no dot1x pae authenticator`
5. `end`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><strong>configure terminal</strong></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><strong>Switch# configure terminal</strong></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><strong>interface interface-id</strong></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><strong>Switch(config)# interface gigabitethernet2/0/1</strong></td>
</tr>
</tbody>
</table>
### Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
</tr>
<tr>
<td>switchport mode access</td>
<td>(Optional) Sets the port to access mode only if you configured the RADIUS server.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch(config-if)# switchport mode access</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td></td>
</tr>
<tr>
<td>no dot1x pae authenticator</td>
<td>Disables 802.1x authentication on the port.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch(config-if)# no dot1x pae authenticator</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch(config-if)# end</td>
<td></td>
</tr>
</tbody>
</table>

### Resetting the 802.1x Authentication Configuration to the Default Values

Beginning in privileged EXEC mode, follow these steps to reset the 802.1x authentication configuration to the default values. This procedure is optional.

**SUMMARY STEPS**

1. configure terminal
2. interface interface-id
3. dot1x default
4. end

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>
**Purpose**

**Command or Action**

**Step 2**

Enters interface configuration mode, and specify the port to be configured.

**Example:**

```
Switch(config)# interface gigabitethernet1/0/2
```

**Step 3**

Reset 802.1x parameters to the default values.

**Example:**

```
Switch(config-if)# dot1x default
```

**Step 4**

Returns to privileged EXEC mode.

**Example:**

```
Switch(config-if)# end
```

---

**Monitoring 802.1x Statistics and Status**

**Table 115: Privileged EXEC show Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show dot1x all statistics</code></td>
<td>Displays 802.1x statistics for all ports</td>
</tr>
<tr>
<td><code>show dot1x interface interface-id statistics</code></td>
<td>Displays 802.1x statistics for a specific port</td>
</tr>
<tr>
<td>`show dot1x all [count</td>
<td>details</td>
</tr>
<tr>
<td><code>show dot1x interface interface-id</code></td>
<td>Displays the 802.1x administrative and operational status for a specific port</td>
</tr>
</tbody>
</table>

**Table 116: Global Configuration Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>no dot1x logging verbose</code></td>
<td>Filters verbose 802.1x authentication messages (beginning with Cisco IOS Release 12.2(55)SE)</td>
</tr>
</tbody>
</table>

For detailed information about the fields in these displays, see the command reference for this release.
## Additional References

### Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring Identity Control policies and Identity Service templates for Session Aware networking.</td>
<td>Session Aware Networking Configuration Guide, Cisco IOS XE Release 3SE (Catalyst 3850 Switches)</td>
</tr>
<tr>
<td>Configuring RADIUS, TACACS+, Secure Shell, 802.1X and AAA.</td>
<td>Securing User Services Configuration Guide Library, Cisco IOS XE Release 3SE (Catalyst 3850 Switches)</td>
</tr>
<tr>
<td></td>
<td>secuser-xe-3se-3850-library.html</td>
</tr>
</tbody>
</table>

### Error Message Decoder

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>To help you research and resolve system error messages in this release, use the Error Message Decoder tool.</td>
<td><a href="https://www.cisco.com/cgi-bin/Support/Errordecoder/index.cgi">https://www.cisco.com/cgi-bin/Support/Errordecoder/index.cgi</a></td>
</tr>
</tbody>
</table>

### MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>All supported MIBs for this release.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>
## Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies.</td>
<td><a href="http://www.cisco.com/support">http://www.cisco.com/support</a></td>
</tr>
<tr>
<td>To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds.</td>
<td></td>
</tr>
<tr>
<td>Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 46

Configuring Web-Based Authentication

This chapter describes how to configure web-based authentication on the switch. It contains these sections:

- Finding Feature Information, page 1103
- Web-Based Authentication Overview, page 1103
- How to Configure Web-Based Authentication, page 1113
- Monitoring Web-Based Authentication Status, page 1130

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Web-Based Authentication Overview

Use the web-based authentication feature, known as web authentication proxy, to authenticate end users on host systems that do not run the IEEE 802.1x supplicant.

Note

You can configure web-based authentication on Layer 2 and Layer 3 interfaces.

When you initiate an HTTP session, web-based authentication intercepts ingress HTTP packets from the host and sends an HTML login page to the users. The users enter their credentials, which the web-based authentication feature sends to the authentication, authorization, and accounting (AAA) server for authentication.

If authentication succeeds, web-based authentication sends a Login-Successful HTML page to the host and applies the access policies returned by the AAA server.
If authentication fails, web-based authentication forwards a Login-Fail HTML page to the user, prompting the user to retry the login. If the user exceeds the maximum number of attempts, web-based authentication forwards a Login-Expired HTML page to the host, and the user is placed on a watch list for a waiting period.

**Note**

HTTPS traffic interception for central web authentication redirect is not supported.

**Note**

You should use global parameter-map (for method-type, custom, and redirect) only for using the same web authentication methods like consent, web consent, and webauth, for all the clients and SSIDs. This ensures that all the clients have the same web-authentication method.

If the requirement is to use Consent for one SSID and Web-authentication for another SSID, then you should use two named parameter-maps. You should configure Consent in first parameter-map and configure webauth in second parameter-map.

**Note**

The traceback that you receive when webauth client tries to do authentication does not have any performance or behavioral impact. It happens rarely when the context for which FFM replied back to EPM for ACL application is already dequeued (possibly due to timer expiry) and the session becomes 'unauthorized'.

### Device Roles

With web-based authentication, the devices in the network have these specific roles:

- **Client**—The device (workstation) that requests access to the LAN and the services and responds to requests from the switch. The workstation must be running an HTML browser with Java Script enabled.

- **Authentication server**—Authenticates the client. The authentication server validates the identity of the client and notifies the switch that the client is authorized to access the LAN and the switch services or that the client is denied.

- **Switch**—Controls the physical access to the network based on the authentication status of the client. The switch acts as an intermediary (proxy) between the client and the authentication server, requesting identity information from the client, verifying that information with the authentication server, and relaying a response to the client.
This figure shows the roles of these devices in a network.

**Figure 88: Web-Based Authentication Device Roles**

- **Host Detection**
  - The switch maintains an IP device tracking table to store information about detected hosts.

  **Note**
  - By default, the IP device tracking feature is disabled on a switch. You must enable the IP device tracking feature to use web-based authentication.

  For Layer 2 interfaces, web-based authentication detects IP hosts by using these mechanisms:
  - ARP based trigger—ARP redirect ACL allows web-based authentication to detect hosts with a static IP address or a dynamic IP address.
  - Dynamic ARP inspection
  - DHCP snooping—Web-based authentication is notified when the switch creates a DHCP-binding entry for the host.

- **Session Creation**
  - When web-based authentication detects a new host, it creates a session as follows:
    - Reviews the exception list.
      - If the host IP is included in the exception list, the policy from the exception list entry is applied, and the session is established.
    - Reviews for authorization bypass
      - If the host IP is not on the exception list, web-based authentication sends a nonresponsive-host (NRH) request to the server.
        - If the server response is access accepted, authorization is bypassed for this host. The session is established.
    - Sets up the HTTP intercept ACL
      - If the server response to the NRH request is access rejected, the HTTP intercept ACL is activated, and the session waits for HTTP traffic from the host.
Authentication Process

When you enable web-based authentication, these events occur:

- The user initiates an HTTP session.
- The HTTP traffic is intercepted, and authorization is initiated. The switch sends the login page to the user. The user enters a username and password, and the switch sends the entries to the authentication server.
- If the authentication succeeds, the switch downloads and activates the user’s access policy from the authentication server. The login success page is sent to the user.
- If the authentication fails, the switch sends the login fail page. The user retries the login. If the maximum number of attempts fails, the switch sends the login expired page, and the host is placed in a watch list. After the watch list times out, the user can retry the authentication process.
- If the authentication server does not respond to the switch, and if an AAA fail policy is configured, the switch applies the failure access policy to the host. The login success page is sent to the user.
- The switch reauthenticates a client when the host does not respond to an ARP probe on a Layer 2 interface, or when the host does not send any traffic within the idle timeout on a Layer 3 interface.
- The feature applies the downloaded timeout or the locally configured session timeout.

Note
Beginning with Cisco IOS XE Denali 16.1.1 and later, the default session timeout value for web-based authentication on WLC is 1800 seconds. The default session timeout value was infinite seconds, prior to Cisco IOS XE Denali 16.1.1.

- If the terminate action is RADIUS, the feature sends a nonresponsive host (NRH) request to the server. The terminate action is included in the response from the server.
- If the terminate action is default, the session is dismantled, and the applied policy is removed.

Local Web Authentication Banner

With Web Authentication, you can create a default and customized web-browser banners that appears when you log in to a switch.

The banner appears on both the login page and the authentication-result pop-up pages. The default banner messages are as follows:

- Authentication Successful
- Authentication Failed
- Authentication Expired

The Local Web Authentication Banner can be configured in legacy and new-style (Session-aware) CLIs as follows:

- Legacy mode—Use the ip admission auth-proxy-banner http global configuration command.
- New-style mode—Use the parameter-map type webauth global banner global configuration command.
The default banner *Cisco Systems* and *Switch host-name Authentication* appear on the Login Page. *Cisco Systems* appears on the authentication result pop-up page.

**Figure 89: Authentication Successful Banner**

The banner can be customized as follows:

- Add a message, such as switch, router, or company name to the banner:
  - Legacy mode—Use the `ip admission auth-proxy-banner http banner-text` global configuration command.
  - New-style mode—Use the `parameter-map type webauth global banner` global configuration command

- Add a logo or text file to the banner:
  - Legacy mode—Use the `ip admission auth-proxy-banner http file-path` global configuration command.
- New-style mode—Use the **parameter-map type webauth global banner** global configuration command

*Figure 90: Customized Web Banner*
If you do not enable a banner, only the username and password dialog boxes appear in the web authentication login screen, and no banner appears when you log into the switch.

**Figure 91: Login Screen With No Banner**

For more information, see the *Session Aware Networking Configuration Guide, Cisco IOS XE Release 3SE (Catalyst 3850 Switches)* Session Aware Networking Configuration Guide, Cisco IOS XE Release 3SE (Catalyst 3850 Switches) and the *Web Authentication Enhancements - Customizing Authentication Proxy Web Pages*.

**Web Authentication Customizable Web Pages**

During the web-based authentication process, the switch internal HTTP server hosts four HTML pages to deliver to an authenticating client. The server uses these pages to notify you of these four-authentication process states:

- **Login**—Your credentials are requested.
- **Success**—The login was successful.
- **Fail**—The login failed.
- **Expire**—The login session has expired because of excessive login failures.

**Guidelines**

- You can substitute your own HTML pages for the default internal HTML pages.
- You can use a logo or specify text in the *login, success, failure*, and *expire* web pages.
- On the banner page, you can specify text in the login page.
• The pages are in HTML.

• You must include an HTML redirect command in the success page to access a specific URL.

• The URL string must be a valid URL (for example, http://www.cisco.com). An incomplete URL might cause page not found or similar errors on a web browser.

• If you configure web pages for HTTP authentication, they must include the appropriate HTML commands (for example, to set the page time out, to set a hidden password, or to confirm that the same page is not submitted twice).

• The CLI command to redirect users to a specific URL is not available when the configured login form is enabled. The administrator should ensure that the redirection is configured in the web page.

• If the CLI command redirecting users to specific URL after authentication occurs is entered and then the command configuring web pages is entered, the CLI command redirecting users to a specific URL does not take effect.

• Configured web pages can be copied to the switch boot flash or flash.

• On stackable switches, configured pages can be accessed from the flash on the stack master or members.

• The login page can be on one flash, and the success and failure pages can be another flash (for example, the flash on the stack master or a member).

• You must configure all four pages.

• The banner page has no effect if it is configured with the web page.

• All of the logo files (image, flash, audio, video, and so on) that are stored in the system directory (for example, flash, disk0, or disk) and that must be displayed on the login page must use web_auth_<filename> as the file name.

• The configured authentication proxy feature supports both HTTP and SSL.
You can substitute your HTML pages for the default internal HTML pages. You can also specify a URL to which users are redirected after authentication occurs, which replaces the internal Success page.

Figure 92: Customizable Authentication Page

Authentication Proxy Web Page Guidelines

When configuring customized authentication proxy web pages, follow these guidelines:

- To enable the custom web pages feature, specify all four custom HTML files. If you specify fewer than four files, the internal default HTML pages are used.
- The four custom HTML files must be present on the flash memory of the switch. The maximum size of each HTML file is 8 KB.
- Any images on the custom pages must be on an accessible HTTP server. Configure an intercept ACL within the admission rule.
- Any external link from a custom page requires configuration of an intercept ACL within the admission rule.
- To access a valid DNS server, any name resolution required for external links or images requires configuration of an intercept ACL within the admission rule.
- If the custom web pages feature is enabled, a configured auth-proxy-banner is not used.
- If the custom web pages feature is enabled, the redirection URL for successful login feature is not available.
- To remove the specification of a custom file, use the `no` form of the command.

Because the custom login page is a public web form, consider these guidelines for the page:
• The login form must accept user entries for the username and password and must show them as **uname** and **pwd**.

• The custom login page should follow best practices for a web form, such as page timeout, hidden password, and prevention of redundant submissions.

**Related Topics**

*Customizing the Authentication Proxy Web Pages,* on page 1122

**Redirection URL for Successful Login Guidelines**

When configuring a redirection URL for successful login, consider these guidelines:

• If the custom authentication proxy web pages feature is enabled, the redirection URL feature is disabled and is not available in the CLI. You can perform redirection in the custom-login success page.

• If the redirection URL feature is enabled, a configured auth-proxy-banner is not used.

• To remove the specification of a redirection URL, use the **no** form of the command.

• If the redirection URL is required after the web-based authentication client is successfully authenticated, then the URL string must start with a valid URL (for example, `http://`) followed by the URL information. If only the URL is given without `http://`, then the redirection URL on successful authentication might cause page not found or similar errors on a web browser.

**Related Topics**

*Specifying a Redirection URL for Successful Login,* on page 1123

**Web-based Authentication Interactions with Other Features**

**Port Security**

You can configure web-based authentication and port security on the same port. Web-based authentication authenticates the port, and port security manages network access for all MAC addresses, including that of the client. You can then limit the number or group of clients that can access the network through the port.

**Related Topics**

*Enabling and Configuring Port Security,* on page 1151

**LAN Port IP**

You can configure LAN port IP (LPIP) and Layer 2 web-based authentication on the same port. The host is authenticated by using web-based authentication first, followed by LPIP posture validation. The LPIP host policy overrides the web-based authentication host policy.

If the web-based authentication idle timer expires, the NAC policy is removed. The host is authenticated, and posture is validated again.
Gateway IP

You cannot configure Gateway IP (GWIP) on a Layer 3 VLAN interface if web-based authentication is configured on any of the switch ports in the VLAN.

You can configure web-based authentication on the same Layer 3 interface as Gateway IP. The host policies for both features are applied in software. The GWIP policy overrides the web-based authentication host policy.

ACLs

If you configure a VLAN ACL or a Cisco IOS ACL on an interface, the ACL is applied to the host traffic only after the web-based authentication host policy is applied.

For Layer 2 web-based authentication, it is more secure, though not required, to configure a port ACL (PACL) as the default access policy for ingress traffic from hosts connected to the port. After authentication, the web-based authentication host policy overrides the PACL. The Policy ACL is applied to the session even if there is no ACL configured on the port.

You cannot configure a MAC ACL and web-based authentication on the same interface.

You cannot configure web-based authentication on a port whose access VLAN is configured for VACL capture.

Context-Based Access Control

Web-based authentication cannot be configured on a Layer 2 port if context-based access control (CBAC) is configured on the Layer 3 VLAN interface of the port VLAN.

EtherChannel

You can configure web-based authentication on a Layer 2 EtherChannel interface. The web-based authentication configuration applies to all member channels.

How to Configure Web-Based Authentication

Default Web-Based Authentication Configuration

The following table shows the default web-based authentication configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA</td>
<td>Disabled</td>
</tr>
<tr>
<td>RADIUS server</td>
<td></td>
</tr>
<tr>
<td>• IP address</td>
<td>• None specified</td>
</tr>
<tr>
<td>• UDP authentication port</td>
<td>• 1645</td>
</tr>
<tr>
<td>• Key</td>
<td>• None specified</td>
</tr>
</tbody>
</table>
Web-Based Authentication Configuration Guidelines and Restrictions

- Web-based authentication is an ingress-only feature.
- You can configure web-based authentication only on access ports. Web-based authentication is not supported on trunk ports, EtherChannel member ports, or dynamic trunk ports.
- You must configure the default ACL on the interface before configuring web-based authentication. Configure a port ACL for a Layer 2 interface or a Cisco IOS ACL for a Layer 3 interface.
- You cannot authenticate hosts on Layer 2 interfaces with static ARP cache assignment. These hosts are not detected by the web-based authentication feature because they do not send ARP messages.
- By default, the IP device tracking feature is disabled on a switch. You must enable the IP device tracking feature to use web-based authentication.
- You must configure at least one IP address to run the switch HTTP server. You must also configure routes to reach each host IP address. The HTTP server sends the HTTP login page to the host.
- Hosts that are more than one hop away might experience traffic disruption if an STP topology change results in the host traffic arriving on a different port. This occurs because the ARP and DHCP updates might not be sent after a Layer 2 (STP) topology change.
- Web-based authentication does not support VLAN assignment as a downloadable-host policy.
- Web-based authentication supports IPv6 in Session-aware policy mode. IPv6 Web-authentication requires at least one IPv6 address configured on the switch and IPv6 Snooping configured on the switchport.
- Web-based authentication and Network Edge Access Topology (NEAT) are mutually exclusive. You cannot use web-based authentication when NEAT is enabled on an interface, and you cannot use NEAT when web-based authentication is running on an interface.
- Only the Password Authentication Protocol (PAP) is supported for web-based RADIUS authentication on controllers. The Challenge Handshake Authentication Protocol (CHAP) is not supported for web-based RADIUS authentication on controllers.
- Identify the following RADIUS security server settings that will be used while configuring switch-to-RADIUS-server communication:
  - Host name
  - Host IP address
  - Host name and specific UDP port numbers
  - IP address and specific UDP port numbers

The combination of the IP address and UDP port number creates a unique identifier, that enables RADIUS requests to be sent to multiple UDP ports on a server at the same IP address. If two different host entries on the same RADIUS server are configured for the same service (for example, authentication) the second

### Default Setting Feature Table

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value of inactivity timeout</td>
<td>3600 seconds</td>
</tr>
<tr>
<td>Inactivity timeout</td>
<td>Enabled</td>
</tr>
</tbody>
</table>
host entry that is configured functions as the failover backup to the first one. The RADIUS host entries are chosen in the order that they were configured.

• When you configure the RADIUS server parameters:
  ◦ Specify the key string on a separate command line.
  ◦ For key string, specify the authentication and encryption key used between the switch and the RADIUS daemon running on the RADIUS server. The key is a text string that must match the encryption key used on the RADIUS server.
  ◦ When you specify the key string, use spaces within and at the end of the key. If you use spaces in the key, do not enclose the key in quotation marks unless the quotation marks are part of the key. This key must match the encryption used on the RADIUS daemon.
  ◦ You can globally configure the timeout, retransmission, and encryption key values for all RADIUS servers by using with the radius-server host global configuration command. If you want to configure these options on a per-server basis, use the radius-server timeout, radius-server transmit, and the radius-server key global configuration commands. For more information, see the Cisco IOS Security Configuration Guide, Release 12.4 and the Cisco IOS Security Command Reference, Release 12.4.

Note You need to configure some settings on the RADIUS server, including: the switch IP address, the key string to be shared by both the server and the switch, and the downloadable ACL (DACL). For more information, see the RADIUS server documentation.

Configuring the Authentication Rule and Interfaces
Examples in this section are legacy-style configurations. For new-style configurations, see the Session Aware Networking Configuration Guide, Cisco IOS XE Release 3SE (Catalyst 3850 Switches)

Follow these steps to configure the authentication rule and interfaces:

**SUMMARY STEPS**

1. enable
2. configure terminal
3. ip admission name name proxy http
4. interface type slot/port
5. ip access-group name
6. exit
7. ip device tracking
8. end
9. show ip admission status
10. copy running-config startup-config
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Sample: Switch&gt; enable</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Sample: Switch# configure terminal</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Configures an authentication rule for web-based authorization.</td>
</tr>
<tr>
<td><code>ip admission name name proxy http</code></td>
<td>Sample: Switch(config)# ip admission name webauth1 proxy http</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Enters interface configuration mode and specifies the ingress Layer 2 or Layer 3 interface to be enabled for web-based authentication. <code>type</code> can be fastethernet, gigabit ethernet, or tengigabitethernet.</td>
</tr>
<tr>
<td><code>interface type slot/port</code></td>
<td>Sample: Switch(config)# interface gigabitEthernet1/0/1</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>Applies the default ACL.</td>
</tr>
<tr>
<td><code>ip access-group name</code></td>
<td>Sample: Switch(config-if)# ip access-group webauthag</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>Returns to configuration mode.</td>
</tr>
<tr>
<td><code>exit</code></td>
<td>Sample: Switch(config-if)# exit</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>Enables the IP device tracking table.</td>
</tr>
<tr>
<td><code>ip device tracking</code></td>
<td>Sample: Switch(config)# ip device tracking</td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td>8</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Switch(config)# end</td>
</tr>
<tr>
<td>9</td>
<td>show ip admission status</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Switch# show ip admission status</td>
</tr>
<tr>
<td>10</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Switch# copy running-config startup-config</td>
</tr>
</tbody>
</table>

### Configuring AAA Authentication

Follow these steps to configure AAA authentication:

> **Note**
>
> Use default list for AAA authorization, if you are planning to use features such as dACL.

#### SUMMARY STEPS

1. enable
2. configure terminal
3. aaa new-model
4. aaa authentication login default group {tacacs+ | radius}
5. aaa authorization auth-proxy default group {tacacs+ | radius}
6. tacacs-server host {hostname | ip_address}
7. tacacs-server key {key-data}
8. end
9. show running-config
10. copy running-config startup-config
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**  
enable  
Example:  
Switch> enable | Enables privileged EXEC mode. Enter your password if prompted. |
| **Step 2**  
disable terminal  
Example:  
Switch> configure terminal | Enters the global configuration mode. |
| **Step 3**  
`aaa authentication login default group {tacacs+ | radius}`  
Example:  
Switch(config)# aaa authentication login default group tacacs+ | Enables AAA functionality. |
| **Step 4**  
`aaa authorization auth-proxy default group {tacacs+ | radius}`  
Example:  
Switch(config)# aaa authorization auth-proxy default group tacacs+ | Defines the list of authentication methods at login. |
| **Step 5**  
`tacacs-server host {hostname | ip_address}`  
Example:  
Switch(config)# tacacs-server host 10.1.1.1 | Specifies an AAA server. |
| **Step 6**  
tacacs-server key {key-data}  
Example:  
Switch(config)# tacacs-server key | Configures the authorization and encryption key used between the switch and the TACACS server. |
### Command or Action

<table>
<thead>
<tr>
<th>Step 8</th>
<th>end</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Example:</strong></td>
<td>Switch(config)# end</td>
</tr>
<tr>
<td><strong>Purpose:</strong></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

### Step 9

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show running-config</td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Switch# show running-config</td>
</tr>
</tbody>
</table>

### Step 10

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Switch# copy running-config startup-config</td>
</tr>
</tbody>
</table>

### Configuring Switch-to-RADIUS-Server Communication

Follow these steps to configure the RADIUS server parameters:

#### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ip radius source-interface vlan vlan interface number`
4. `radius-server host {hostname | ip-address} test username username`
5. `radius-server key string`
6. `radius-server dead-criteria tries num-tries`
7. `end`

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Switch&gt; enable</td>
</tr>
</tbody>
</table>
### How to Configure Web-Based Authentication

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> ip radius source-interface vlan vlan interface number</td>
<td>Specifies that the RADIUS packets have the IP address of the indicated interface.</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch(config)# ip radius source-interface vlan 80</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> radius-server host [hostname</td>
<td>ip-address] test username username</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch(config)# radius-server host 172.120.39.46 test username user1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> radius-server key string</td>
<td>Configures the authorization and encryption key used between the switch and the RADIUS daemon running on the RADIUS server.</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch(config)# radius-server key rad123</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> radius-server dead-criteria tries num-tries</td>
<td>Specifies the number of unanswered sent messages to a RADIUS server before considering the server to be inactive. The range of num-tries is 1 to 100.</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch(config)# radius-server dead-criteria tries 30</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong> end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch(config)# end</td>
<td></td>
</tr>
</tbody>
</table>

### Configuring the HTTP Server

To use web-based authentication, you must enable the HTTP server within the Switch. You can enable the server for either HTTP or HTTPS.
The Apple pseudo-browser will not open if you configure only the `ip http secure-server` command. You should also configure the `ip http server` command.

Follow these steps to enable the server for either HTTP or HTTPS:

**SUMMARY STEPS**

1. enable
2. configure terminal
3. ip http server
4. ip http secure-server
5. end

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> ip http server</td>
<td>Enables the HTTP server. The web-based authentication feature uses the HTTP server to communicate with the hosts for user authentication.</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch(config)# ip http server</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> ip http secure-server</td>
<td>Enables HTTPS. You can configure custom authentication proxy web pages or specify a redirection URL for successful login.</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch(config)# ip http secure-server</td>
<td><strong>Note</strong> To ensure secure authentication when you enter the <code>ip http secure-server</code> command, the login page is always in HTTPS (secure HTTP) even if the user sends an HTTP request.</td>
</tr>
<tr>
<td><strong>Step 5</strong> end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch(config)# end</td>
<td></td>
</tr>
</tbody>
</table>
Customizing the Authentication Proxy Web Pages

You can configure web authentication to display four substitute HTML pages to the user in place of the Switch default HTML pages during web-based authentication.

For the equivalent Session Aware Networking configuration example for this feature, see the section "Configuring a Parameter Map for Web-Based Authentication" in the chapter, "Configuring Identity Control Policies." of the book, "Session Aware Networking Configuration Guide, Cisco IOS XE Release 3SE (Catalyst 3850 Switches)."

Follow these steps to specify the use of your custom authentication proxy web pages:

**Before You Begin**

Store your custom HTML files on the Switch flash memory.

**SUMMARY STEPS**

1. **enable**
2. **configure terminal**
3. **ip admission proxy http login page file** device:login-filename
4. **ip admission proxy http success page file** device:success-filename
5. **ip admission proxy http failure page file** device:fail-filename
6. **ip admission proxy http login expired page file** device:expired-filename
7. **end**

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>ip admission proxy http login page file device:login-filename</td>
<td>Specifies the location in the Switch memory file system of the custom HTML file to use in place of the default login page. The device: is flash memory.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# ip admission proxy http login page</td>
<td></td>
</tr>
</tbody>
</table>
### Command or Action | Purpose
--- | ---
file disk1:login.htm | **Step 4**

**ip admission proxy http success page file**
device:success-filename | Specifies the location of the custom HTML file to use in place of the default login success page.

**Example:**

Switch(config)# ip admission proxy http success page file disk1:success.htm

**Step 5**

**ip admission proxy http failure page file**
device:fail-filename | Specifies the location of the custom HTML file to use in place of the default login failure page.

**Example:**

Switch(config)# ip admission proxy http fail page file disk1:fail.htm

**Step 6**

**ip admission proxy http login expired page file**
device:expired-filename | Specifies the location of the custom HTML file to use in place of the default login expired page.

**Example:**

Switch(config)# ip admission proxy http login expired page file disk1:expired.htm

**Step 7**

end | Returns to privileged EXEC mode.

**Example:**

Switch(config)# end

---

**Related Topics**

Authentication Proxy Web Page Guidelines, on page 1111

**Specifying a Redirection URL for Successful Login**

Follow these steps to specify a URL to which the user is redirected after authentication, effectively replacing the internal Success HTML page:

**SUMMARY STEPS**

1. enable
2. configure terminal
3. ip admission proxy http success redirect *url-string*
4. end
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
</tr>
<tr>
<td>ip admission proxy http success redirect <em>url-string</em></td>
<td>Specifies a URL for redirection of the user in place of the default login success page.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# ip admission proxy http success redirect <a href="http://www.example.com">www.example.com</a></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# end</td>
<td></td>
</tr>
</tbody>
</table>

**Related Topics**

Redirection URL for Successful Login Guidelines, on page 1112

### Configuring the Web-Based Authentication Parameters

Follow these steps to configure the maximum number of failed login attempts before the client is placed in a watch list for a waiting period:

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `ip admission max-login-attempts number`
4. `end`
5. `show running-config`
6. `copy running-config startup-config`
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: Switch&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> ip admission max-login-attempts number</td>
<td>Sets the maximum number of failed login attempts. The range is 1 to 2147483647 attempts. The default is 5.</td>
</tr>
<tr>
<td>Example: Switch(config)# ip admission max-login-attempts 10</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Switch(config)# end</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> show running-config</td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td>Example: Switch# show running-config</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td>Example: Switch# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

### Configuring a Web-Based Authentication Local Banner

Follow these steps to configure a local banner on a switch that has web authentication configured.
### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ip admission auth-proxy-banner http [banner-text | file-path]`
4. `end`
5. `show running-config`
6. `copy running-config startup-config`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: Switch&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> ip admission auth-proxy-banner http [banner-text</td>
<td>file-path]</td>
</tr>
<tr>
<td>Example: Switch(config)# ip admission auth-proxy-banner http C My Switch C</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Switch(config)# end</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> show running-config</td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td>Example: Switch# show running-config</td>
<td></td>
</tr>
</tbody>
</table>
**Configuring Web-Based Authentication without SVI**

You configure the web-based authentication without SVI feature to redirect the HTML login page to the client without creating an IP address in the routing table. These steps are optional.

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `parameter-map type webauth global`
4. `l2-webauth-enabled`
5. `end`
6. `show running-config`
7. `copy running-config startup-config`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>enable</code></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: <code>Switch&gt; enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2 <code>configure terminal</code></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Switch(config)# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3 <code>parameter-map type webauth global</code></td>
<td>Creates a parameter map and enters parameter-map webauth configuration mode. The specific configuration commands supported for a global parameter map defined with the global keyword differ from the commands supported for a named parameter map defined with the parameter-map-name argument.</td>
</tr>
<tr>
<td>Example: <code>Switch(config)# parameter-map type webauth global</code></td>
<td></td>
</tr>
</tbody>
</table>
### Configuring Web-Based Authentication with VRF Aware

You configure the web-based authentication with VRF aware to redirect the HTML login page to the client. These steps are optional.

**SUMMARY STEPS**

1. enable
2. configure terminal
3. parameter-map type webauth global
4. webauth-vrf-aware
5. end
6. show running-config
7. copy running-config startup-config
# Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: Switch&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 parameter-map type webauth global</td>
<td>Creates a parameter map and enters parameter-map webauth configuration mode. The specific configuration commands supported for a global parameter map defined with the global keyword differ from the commands supported for a named parameter map defined with the parameter-map-name argument.</td>
</tr>
<tr>
<td>Example: Switch (config)# parameter-map type webauth global</td>
<td></td>
</tr>
<tr>
<td>Step 4 webauth-vrf-aware</td>
<td>Enables the web-based authentication VRF aware feature on SVI.</td>
</tr>
<tr>
<td>Example: Switch (config-params-parameter-map)# webauth-vrf-aware</td>
<td></td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Switch(config)# end</td>
<td></td>
</tr>
<tr>
<td>Step 6 show running-config</td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td>Example: Switch# show running-config</td>
<td></td>
</tr>
<tr>
<td>Step 7 copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td>Example: Switch# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

## Removing Web-Based Authentication Cache Entries

Follow these steps to remove web-based authentication cache entries:
SUMMARY STEPS

1. enable
2. clear ip auth-proxy cache {* | host ip address}
3. clear ip admission cache {* | host ip address}

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>enable</td>
<td>Example: Switch&gt; enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>Delete authentication proxy entries. Use an asterisk to delete all cache entries. Enter a specific IP address to delete the entry for a single host.</td>
</tr>
<tr>
<td>clear ip auth-proxy cache {*</td>
<td>host ip address}</td>
</tr>
<tr>
<td>Step 3</td>
<td>Delete authentication proxy entries. Use an asterisk to delete all cache entries. Enter a specific IP address to delete the entry for a single host.</td>
</tr>
<tr>
<td>clear ip admission cache {*</td>
<td>host ip address}</td>
</tr>
</tbody>
</table>

Monitoring Web-Based Authentication Status

Use the commands in this topic to display the web-based authentication settings for all interfaces or for specific ports.

Table 118: Privileged EXEC show Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show authentication sessions method webauth</td>
<td>Displays the web-based authentication settings for all interfaces for fastethernet, gigabitethernet, or tengigabitethernet</td>
</tr>
</tbody>
</table>
### Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| `show authentication sessions interface type slot/port[details]` | Displays the web-based authentication settings for the specified interface for fastethernet, gigabitethernet, or tengigabitethernet.  
In Session Aware Networking mode, use the `show access-session interface` command. |
Monitoring Web-Based Authentication Status
Overview of Port-Based Traffic Control

Port-based traffic control is a set of Layer 2 features on the Cisco Catalyst switches used to filter or block packets at the port level in response to specific traffic conditions. The following port-based traffic control features are supported in the Cisco IOS Release for which this guide is written:
Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About Storm Control

Storm Control

Storm control prevents traffic on a LAN from being disrupted by a broadcast, multicast, or unicast storm on one of the physical interfaces. A LAN storm occurs when packets flood the LAN, creating excessive traffic and degrading network performance. Errors in the protocol-stack implementation, mistakes in network configurations, or users issuing a denial-of-service attack can cause a storm.

Storm control (or traffic suppression) monitors packets passing from an interface to the switching bus and determines if the packet is unicast, multicast, or broadcast. The switch counts the number of packets of a specified type received within the 1-second time interval and compares the measurement with a predefined suppression-level threshold.

How Traffic Activity is Measured

Storm control uses one of these methods to measure traffic activity:

- Bandwidth as a percentage of the total available bandwidth of the port that can be used by the broadcast, multicast, or unicast traffic
- Traffic rate in packets per second at which broadcast, multicast, or unicast packets are received
- Traffic rate in bits per second at which broadcast, multicast, or unicast packets are received
- Traffic rate in packets per second and for small frames. This feature is enabled globally. The threshold for small frames is configured for each interface.

With each method, the port blocks traffic when the rising threshold is reached. The port remains blocked until the traffic rate drops below the falling threshold (if one is specified) and then resumes normal forwarding. If the falling suppression level is not specified, the switch blocks all traffic until the traffic rate drops below the
risingsuppression level. In general, the higher the level, the less effective the protection against broadcast storms.

---

**Note**  
When the storm control threshold for multicast traffic is reached, all multicast traffic except control traffic, such as bridge protocol data unit (BDPU) and Cisco Discovery Protocol (CDP) frames, are blocked. However, the switch does not differentiate between routing updates, such as OSPF, and regular multicast data traffic, so both types of traffic are blocked.

---

**Traffic Patterns**

This example shows broadcast traffic patterns on an interface over a given period of time.

**Figure 93: Broadcast Storm Control Example**

![Diagram showing broadcast traffic patterns over time]

Broadcast traffic being forwarded exceeded the configured threshold between time intervals T1 and T2 and between T4 and T5. When the amount of specified traffic exceeds the threshold, all traffic of that kind is dropped for the next time period. Therefore, broadcast traffic is blocked during the intervals following T2 and T5. At the next time interval (for example, T3), if broadcast traffic does not exceed the threshold, it is again forwarded.

The combination of the storm-control suppression level and the 1-second time interval controls the way the storm control algorithm works. A higher threshold allows more packets to pass through. A threshold value of 100 percent means that no limit is placed on the traffic. A value of 0.0 means that all broadcast, multicast, or unicast traffic on that port is blocked.

---

**Note**  
Because packets do not arrive at uniform intervals, the 1-second time interval during which traffic activity is measured can affect the behavior of storm control.

You use the `storm-control` interface configuration commands to set the threshold value for each traffic type.
How to Configure Storm Control

Configuring Storm Control and Threshold Levels

You configure storm control on a port and enter the threshold level that you want to be used for a particular type of traffic.

However, because of hardware limitations and the way in which packets of different sizes are counted, threshold percentages are approximations. Depending on the sizes of the packets making up the incoming traffic, the actual enforced threshold might differ from the configured level by several percentage points.

Note

Storm control is supported on physical interfaces. You can also configure storm control on an EtherChannel. When storm control is configured on an EtherChannel, the storm control settings propagate to the EtherChannel physical interfaces.

Follow these steps to storm control and threshold levels:

Before You Begin

Storm control is supported on physical interfaces. You can also configure storm control on an EtherChannel. When storm control is configured on an EtherChannel, the storm control settings propagate to the EtherChannel physical interfaces.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface interface-id
4. storm-control {broadcast | multicast | unicast} level {level | level-low} bps bps [bps-low] | pps pps [pps-low]
5. storm-control action {shutdown | trap}
6. end
7. show storm-control [interface-id] [broadcast | multicast | unicast]
8. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface interface-id</td>
<td>Specifies the interface to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Example: Switch(config)# interface gigabitethernet1/0/1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> storm-control {broadcast</td>
<td>multicast</td>
</tr>
<tr>
<td>Example: Switch(config-if)# storm-control unicast level 87 65</td>
<td>The keywords have these meanings:</td>
</tr>
</tbody>
</table>

- For **level**, specifies the rising threshold level for broadcast, multicast, or unicast traffic as a percentage (up to two decimal places) of the bandwidth. The port blocks traffic when the rising threshold is reached. The range is 0.00 to 100.00.

- (Optional) For **level-low**, specifies the falling threshold level as a percentage (up to two decimal places) of the bandwidth. This value must be less than or equal to the rising suppression value. The port forwards traffic when traffic drops below this level. If you do not configure a falling suppression level, it is set to the rising suppression level. The range is 0.00 to 100.00. If you set the threshold to the maximum value (100 percent), no limit is placed on the traffic. If you set the threshold to 0.0, all broadcast, multicast, and unicast traffic on that port is blocked.

- For **bps bps**, specifies the rising threshold level for broadcast, multicast, or unicast traffic in bits per second (up to one decimal place). The port blocks traffic when the rising threshold is reached. The range is 0.0 to 10000000000.0.

- (Optional) For **bps-low**, specifies the falling threshold level in bits per second (up to one decimal place). It can be less than or equal to the rising threshold level. The port forwards traffic when traffic drops below this level. The range is 0.0 to 10000000000.0.

- For **pps pps**, specifies the rising threshold level for broadcast, multicast, or unicast traffic in packets per second (up to one decimal place). The port blocks traffic when the rising threshold is reached. The range is 0.0 to 10000000000.0.

- (Optional) For **pps-low**, specifies the falling threshold level in packets per second (up to one decimal place). It can be less than or equal to the rising threshold level. The port forwards traffic when traffic drops below this level. The range is **0.0 to 10000000000.0**.
### How to Configure Storm Control

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>For BPS and PPS settings, you can use metric suffixes such as k, m, and g for large number thresholds.</strong></td>
<td></td>
</tr>
</tbody>
</table>

**Step 5**

| storm-control action {shutdown | trap} |
| Example: |
| Switch(config-if)# storm-control action trap |

- Specifies the action to be taken when a storm is detected. The default is to filter out the traffic and not to send traps.
- Select the **shutdown** keyword to error-disable the port during a storm.
- Select the **trap** keyword to generate an SNMP trap when a storm is detected.

**Step 6**

| end |
| Example: |
| Switch(config-if)# end |

- Returns to privileged EXEC mode.

**Step 7**

| show storm-control [interface-id] [broadcast | multicast | unicast] |
| Example: |
| Switch# show storm-control gigabitethernet1/0/1 unicast |

- Verifies the storm control suppression levels set on the interface for the specified traffic type. If you do not enter a traffic type, broadcast storm control settings are displayed.

**Step 8**

| copy running-config startup-config |
| Example: |
| Switch# copy running-config startup-config |

- (Optional) Saves your entries in the configuration file.

### Configuring Small-Frame Arrival Rate

Incoming VLAN-tagged packets smaller than 67 bytes are considered small frames. They are forwarded by the switch, but they do not cause the switch storm-control counters to increment.

You globally enable the small-frame arrival feature on the switch and then configure the small-frame threshold for packets on each interface. Packets smaller than the minimum size and arriving at a specified rate (the threshold) are dropped since the port is error disabled.
### SUMMARY STEPS

1. enable
2. configure terminal
3. errdisable detect cause small-frame
4. errdisable recovery interval \textit{interval}
5. errdisable recovery cause small-frame
6. interface \textit{interface-id}
7. small-frame violation-rate \textit{pps}
8. end
9. show interfaces \textit{interface-id}
10. show running-config
11. copy running-config startup-config

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: Switch&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> errdisable detect cause small-frame</td>
<td>Enables the small-frame rate-arrival feature on the switch.</td>
</tr>
<tr>
<td>Example: Switch(config)# errdisable detect cause small-frame</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> errdisable recovery interval \textit{interval}</td>
<td>(Optional) Specifies the time to recover from the specified error-disabled state.</td>
</tr>
<tr>
<td>Example: Switch(config)# errdisable recovery interval 60</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> errdisable recovery cause small-frame</td>
<td>(Optional) Configures the recovery time for error-disabled ports to be automatically re-enabled after they are error disabled by the arrival of small frames</td>
</tr>
<tr>
<td>Example: Switch(config)# errdisable recovery cause</td>
<td></td>
</tr>
</tbody>
</table>
### How to Configure Storm Control

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>small-frame</strong></td>
<td>Storm control is supported on physical interfaces. You can also configure storm control on an EtherChannel. When storm control is configured on an EtherChannel, the storm control settings propagate to the EtherChannel physical interfaces.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><strong>interface interface-id</strong></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Enter interface configuration mode, and specify the interface to be configured.</td>
</tr>
<tr>
<td></td>
<td><strong>interface gigabitethernet1/0/2</strong></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td><strong>small-frame violation-rate pps</strong></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Configures the threshold rate for the interface to drop incoming packets and error disable the port. The range is 1 to 10,000 packets per second (pps)</td>
</tr>
<tr>
<td></td>
<td><strong>small-frame violation rate 10000</strong></td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td><strong>end</strong></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td><strong>end</strong></td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td><strong>show interfaces interface-id</strong></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Verifies the configuration.</td>
</tr>
<tr>
<td></td>
<td><strong>show interfaces gigabitethernet1/0/2</strong></td>
</tr>
<tr>
<td><strong>Step 10</strong></td>
<td><strong>show running-config</strong></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td></td>
<td><strong>show running-config</strong></td>
</tr>
<tr>
<td><strong>Step 11</strong></td>
<td><strong>copy running-config startup-config</strong></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td></td>
<td><strong>copy running-config startup-config</strong></td>
</tr>
</tbody>
</table>
Information About Protected Ports

Protected Ports

Some applications require that no traffic be forwarded at Layer 2 between ports on the same switch so that one neighbor does not see the traffic generated by another neighbor. In such an environment, the use of protected ports ensures that there is no exchange of unicast, broadcast, or multicast traffic between these ports on the switch.

Protected ports have these features:

- A protected port does not forward any traffic (unicast, multicast, or broadcast) to any other port that is also a protected port. Data traffic cannot be forwarded between protected ports at Layer 2; only control traffic, such as PIM packets, is forwarded because these packets are processed by the CPU and forwarded in software. All data traffic passing between protected ports must be forwarded through a Layer 3 device.

- Forwarding behavior between a protected port and a nonprotected port proceeds as usual.

Because a switch stack represents a single logical switch, Layer 2 traffic is not forwarded between any protected ports in the switch stack, whether they are on the same or different switches in the stack.

Default Protected Port Configuration

The default is to have no protected ports defined.

Protected Ports Guidelines

You can configure protected ports on a physical interface (for example, Gigabit Ethernet port 1) or an EtherChannel group (for example, port-channel 5). When you enable protected ports for a port channel, it is enabled for all ports in the port-channel group.

How to Configure Protected Ports

Configuring a Protected Port

Before You Begin

Protected ports are not pre-defined. This is the task to configure one.
SUMMARY STEPS

1. enable
2. configure terminal
3. interface interface-id
4. switchport protected
5. end
6. show interfaces interface-id switchport
7. show running-config
8. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface interface-id</td>
<td>Specifies the interface to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# interface gigabitethernet1/0/1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> switchport protected</td>
<td>Configures the interface to be a protected port.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config-if)# switchport protected</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# end</td>
<td></td>
</tr>
</tbody>
</table>
### Monitoring Protected Ports

**Table 119: Commands for Displaying Protected Port Settings**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show interfaces [interface-id] switchport</code></td>
<td>Displays the administrative and operational status of all switching (nonrouting) ports or the specified port, including port blocking and port protection settings.</td>
</tr>
</tbody>
</table>

### Where to Go Next

- Information About Port Blocking

### Information About Port Blocking

#### Port Blocking

By default, the switch floods packets with unknown destination MAC addresses out of all ports. If unknown unicast and multicast traffic is forwarded to a protected port, there could be security issues. To prevent unknown
unicast or multicast traffic from being forwarded from one port to another, you can block a port (protected or nonprotected) from flooding unknown unicast or multicast packets to other ports.

**Note**  
With multicast traffic, the port blocking feature blocks only pure Layer 2 packets. Multicast packets that contain IPv4 or IPv6 information in the header are not blocked.

# How to Configure Port Blocking

## Blocking Flooded Traffic on an Interface

**Before You Begin**

The interface can be a physical interface or an EtherChannel group. When you block multicast or unicast traffic for a port channel, it is blocked on all ports in the port-channel group.

### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface interface-id`
4. `switchport block multicast`
5. `switchport block unicast`
6. `end`
7. `show interfaces interface-id switchport`
8. `show running-config`
9. `copy running-config startup-config`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Switch&gt; enable</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td>3</td>
<td><code>interface interface-id</code></td>
</tr>
<tr>
<td></td>
<td>Example: <code>Switch(config)# interface gigabitethernet1/0/1</code></td>
</tr>
<tr>
<td>4</td>
<td><code>switchport block multicast</code></td>
</tr>
<tr>
<td></td>
<td>Example: <code>Switch(config-if)# switchport block multicast</code></td>
</tr>
<tr>
<td>5</td>
<td><code>switchport block unicast</code></td>
</tr>
<tr>
<td></td>
<td>Example: <code>Switch(config-if)# switchport block unicast</code></td>
</tr>
<tr>
<td>6</td>
<td><code>end</code></td>
</tr>
<tr>
<td></td>
<td>Example: <code>Switch(config)# end</code></td>
</tr>
<tr>
<td>7</td>
<td><code>show interfaces interface-id switchport</code></td>
</tr>
<tr>
<td></td>
<td>Example: <code>Switch# show interfaces gigabitethernet1/0/1 switchport</code></td>
</tr>
<tr>
<td>8</td>
<td><code>show running-config</code></td>
</tr>
<tr>
<td></td>
<td>Example: <code>Switch# show running-config</code></td>
</tr>
<tr>
<td>9</td>
<td><code>copy running-config startup-config</code></td>
</tr>
<tr>
<td></td>
<td>Example: <code>Switch# copy running-config startup-config</code></td>
</tr>
</tbody>
</table>
Monitoring Port Blocking

Table 120: Commands for Displaying Port Blocking Settings

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show interfaces [interface-id] switchport</code></td>
<td>Displays the administrative and operational status of all switching (nonrouting) ports or the specified port, including port blocking and port protection settings.</td>
</tr>
</tbody>
</table>

Prerequisites for Port Security

Note: If you try to set the maximum value to a number less than the number of secure addresses already configured on an interface, the command is rejected.

Restrictions for Port Security

The maximum number of secure MAC addresses that you can configure on a switch or switch stack is set by the maximum number of available MAC addresses allowed in the system. This number is determined by the active Switch Database Management (SDM) template. This number is the total of available MAC addresses, including those used for other Layer 2 functions and any other secure MAC addresses configured on interfaces.

Information About Port Security

Port Security

You can use the port security feature to restrict input to an interface by limiting and identifying MAC addresses of the stations allowed to access the port. When you assign secure MAC addresses to a secure port, the port does not forward packets with source addresses outside the group of defined addresses. If you limit the number of secure MAC addresses to one and assign a single secure MAC address, the workstation attached to that port is assured the full bandwidth of the port.

If a port is configured as a secure port and the maximum number of secure MAC addresses is reached, when the MAC address of a station attempting to access the port is different from any of the identified secure MAC addresses, a security violation occurs. Also, if a station with a secure MAC address configured or learned on one secure port attempts to access another secure port, a violation is flagged.

Related Topics

Enabling and Configuring Port Security, on page 1151
Types of Secure MAC Addresses

The switch supports these types of secure MAC addresses:

- Static secure MAC addresses—These are manually configured by using the `switchport port-security mac-address mac-address` interface configuration command, stored in the address table, and added to the switch running configuration.

- Dynamic secure MAC addresses—These are dynamically configured, stored only in the address table, and removed when the switch restarts.

- Sticky secure MAC addresses—These can be dynamically learned or manually configured, stored in the address table, and added to the running configuration. If these addresses are saved in the configuration file, when the switch restarts, the interface does not need to dynamically reconfigure them.

Sticky Secure MAC Addresses

You can configure an interface to convert the dynamic MAC addresses to sticky secure MAC addresses and to add them to the running configuration by enabling sticky learning. The interface converts all the dynamic secure MAC addresses, including those that were dynamically learned before sticky learning was enabled, to sticky secure MAC addresses. All sticky secure MAC addresses are added to the running configuration.

The sticky secure MAC addresses do not automatically become part of the configuration file, which is the startup configuration used each time the switch restarts. If you save the sticky secure MAC addresses in the configuration file, when the switch restarts, the interface does not need to relearn these addresses. If you do not save the sticky secure addresses, they are lost.

If sticky learning is disabled, the sticky secure MAC addresses are converted to dynamic secure addresses and are removed from the running configuration.

Security Violations

It is a security violation when one of these situations occurs:

- The maximum number of secure MAC addresses have been added to the address table, and a station whose MAC address is not in the address table attempts to access the interface.

- An address learned or configured on one secure interface is seen on another secure interface in the same VLAN.

You can configure the interface for one of three violation modes, based on the action to be taken if a violation occurs:

- protect—when the number of secure MAC addresses reaches the maximum limit allowed on the port, packets with unknown source addresses are dropped until you remove a sufficient number of secure MAC addresses to drop below the maximum value or increase the number of maximum allowable addresses. You are not notified that a security violation has occurred.
We do not recommend configuring the protect violation mode on a trunk port. The protect mode disables learning when any VLAN reaches its maximum limit, even if the port has not reached its maximum limit.

- **restrict**—when the number of secure MAC addresses reaches the maximum limit allowed on the port, packets with unknown source addresses are dropped until you remove a sufficient number of secure MAC addresses to drop below the maximum value or increase the number of maximum allowable addresses. In this mode, you are notified that a security violation has occurred. An SNMP trap is sent, a syslog message is logged, and the violation counter increments.

- **shutdown**—a port security violation causes the interface to become error-disabled and to shut down immediately, and the port LED turns off. When a secure port is in the error-disabled state, you can bring it out of this state by entering the `errdisable recovery cause psecure-violation` global configuration command, or you can manually re-enable it by entering the `shutdown` and `no shut down` interface configuration commands. This is the default mode.

- **shutdown vlan**—Use to set the security violation mode per-VLAN. In this mode, the VLAN is error disabled instead of the entire port when a violation occurs.

This table shows the violation mode and the actions taken when you configure an interface for port security.

**Table 121: Security Violation Mode Actions**

<table>
<thead>
<tr>
<th>Violation Mode</th>
<th>Traffic is forwarded</th>
<th>Sends SNMP trap</th>
<th>Sends syslog message</th>
<th>Displays error message</th>
<th>Violation counter increments</th>
<th>Shuts down port</th>
</tr>
</thead>
<tbody>
<tr>
<td>protect</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>restrict</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>shutdown</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>shutdown vlan</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

19 Packets with unknown source addresses are dropped until you remove a sufficient number of secure MAC addresses.

20 The switch returns an error message if you manually configure an address that would cause a security violation.

21 Shuts down only the VLAN on which the violation occurred.

**Port Security Aging**

You can use port security aging to set the aging time for all secure addresses on a port. Two types of aging are supported per port:

- **Absolute**—The secure addresses on the port are deleted after the specified aging time.
• Inactivity—The secure addresses on the port are deleted only if the secure addresses are inactive for the specified aging time.

**Related Topics**

Enabling and Configuring Port Security Aging, on page 1156

**Port Security and Switch Stacks**

When a switch joins a stack, the new switch will get the configured secure addresses. All dynamic secure addresses are downloaded by the new stack member from the other stack members.

When a switch (either the active switch or a stack member) leaves the stack, the remaining stack members are notified, and the secure MAC addresses configured or learned by that switch are deleted from the secure MAC address table.

**Default Port Security Configuration**

*Table 122: Default Port Security Configuration*

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port security</td>
<td>Disabled on a port.</td>
</tr>
<tr>
<td>Sticky address learning</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Maximum number of secure MAC addresses per port</td>
<td>1.</td>
</tr>
<tr>
<td>Violation mode</td>
<td>Shutdown. The port shuts down when the maximum number of secure MAC addresses is exceeded.</td>
</tr>
<tr>
<td>Port security aging</td>
<td>Disabled. Aging time is 0.</td>
</tr>
<tr>
<td></td>
<td>Static aging is disabled.</td>
</tr>
<tr>
<td></td>
<td>Type is absolute.</td>
</tr>
</tbody>
</table>

**Port Security Configuration Guidelines**

• Port security can only be configured on static access ports or trunk ports. A secure port cannot be a dynamic access port.

• A secure port cannot be a destination port for Switched Port Analyzer (SPAN).

• Voice VLAN is only supported on access ports and not on trunk ports, even though the configuration is allowed.
• When you enable port security on an interface that is also configured with a voice VLAN, set the maximum allowed secure addresses on the port to two. When the port is connected to a Cisco IP phone, the IP phone requires one MAC address. The Cisco IP phone address is learned on the voice VLAN, but is not learned on the access VLAN. If you connect a single PC to the Cisco IP phone, no additional MAC addresses are required. If you connect more than one PC to the Cisco IP phone, you must configure enough secure addresses to allow one for each PC and one for the phone.

• When a trunk port configured with port security and assigned to an access VLAN for data traffic and to a voice VLAN for voice traffic, entering the `switchport voice` and `switchport priority extend` interface configuration commands has no effect.

When a connected device uses the same MAC address to request an IP address for the access VLAN and then an IP address for the voice VLAN, only the access VLAN is assigned an IP address.

• When you enter a maximum secure address value for an interface, and the new value is greater than the previous value, the new value overwrites the previously configured value. If the new value is less than the previous value and the number of configured secure addresses on the interface exceeds the new value, the command is rejected.

• The switch does not support port security aging of sticky secure MAC addresses.

This table summarizes port security compatibility with other port-based features.

**Table 123: Port Security Compatibility with Other Switch Features**

<table>
<thead>
<tr>
<th>Type of Port or Feature on Port</th>
<th>Compatible with Port Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTP 22 port 23</td>
<td>No</td>
</tr>
<tr>
<td>Trunk port</td>
<td>Yes</td>
</tr>
<tr>
<td>Dynamic-access port 24</td>
<td>No</td>
</tr>
<tr>
<td>Routed port</td>
<td>No</td>
</tr>
<tr>
<td>SPAN source port</td>
<td>Yes</td>
</tr>
<tr>
<td>SPAN destination port</td>
<td>No</td>
</tr>
<tr>
<td>EtherChannel</td>
<td>Yes</td>
</tr>
<tr>
<td>Tunneling port</td>
<td>Yes</td>
</tr>
<tr>
<td>Protected port</td>
<td>Yes</td>
</tr>
<tr>
<td>IEEE 802.1x port</td>
<td>Yes</td>
</tr>
<tr>
<td>Voice VLAN port 25</td>
<td>Yes</td>
</tr>
<tr>
<td>IP source guard</td>
<td>Yes</td>
</tr>
<tr>
<td>Dynamic Address Resolution Protocol (ARP) inspection</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Overview of Port-Based Traffic Control

Port-based traffic control is a set of Layer 2 features on the Cisco Catalyst switches used to filter or block packets at the port level in response to specific traffic conditions. The following port-based traffic control features are supported in the Cisco IOS Release for which this guide is written:

- Storm Control
- Protected Ports
- Port Blocking
- Port Security
- Protocol Storm Protection

How to Configure Port Security

Enabling and Configuring Port Security

Before You Begin

This task restricts input to an interface by limiting and identifying MAC addresses of the stations allowed to access the port:

<table>
<thead>
<tr>
<th>Type of Port or Feature on Port</th>
<th>Compatible with Port Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flex Links</td>
<td>Yes</td>
</tr>
</tbody>
</table>

22 DTP=Dynamic Trunking Protocol
23 A port configured with the `switchport mode dynamic` interface configuration command.
24 A VLAN Query Protocol (VQP) port configured with the `switchport access vlan dynamic` interface configuration command.
25 You must set the maximum allowed secure addresses on the port to two plus the maximum number of secure addresses allowed on the access VLAN.
SUMMARY STEPS

1. enable
2. configure terminal
3. interface interface-id
4. switchport mode {access | trunk}
5. switchport voice vlan vlan-id
6. switchport port-security
7. switchport port-security [maximum value [vlan {vlan-list | {access | voice}]}]
8. switchport port-security violation {protect | restrict | shutdown | shutdown vlan}
9. switchport port-security [mac-address mac-address [vlan {vlan-id | {access | voice}]}]
10. switchport port-security mac-address sticky
11. switchport port-security mac-address sticky [mac-address | vlan {vlan-id | {access | voice}]}]
12. end
13. show port-security
14. show running-config
15. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface interface-id</td>
<td>Specifies the interface to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch(config)# interface gigabitethernet1/0/1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> switchport mode {access</td>
<td>trunk}</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch(config-if)# switchport mode access</td>
<td></td>
</tr>
</tbody>
</table>
How to Configure Port Security

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 5</strong> switchport voice vlan vlan-id</td>
<td>Enables voice VLAN on a port. vlan-id—Specifies the VLAN to be used for voice traffic.</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch(config-if)# switchport voice vlan 22</td>
<td></td>
</tr>
</tbody>
</table>

| **Step 6** switchport port-security | Enable port security on the interface. |
| **Example:** Switch(config-if)# switchport port-security |

**Note** Under certain conditions, when port security is enabled on the member ports in a switch stack, the DHCP and ARP packets would be dropped. To resolve this, configure a shut and no shut on the interface.

| **Step 7** switchport port-security [maximum value [vlan {vlan-list | {access | voice}] |]] | (Optional) Sets the maximum number of secure MAC addresses for the interface. The maximum number of secure MAC addresses that you can configure on a switch or switch stack is set by the maximum number of available MAC addresses allowed in the system. This number is set by the active Switch Database Management (SDM) template. This number is the total of available MAC addresses, including those used for other Layer 2 functions and any other secure MAC addresses configured on interfaces. (Optional) vlan—sets a per-VLAN maximum value |
| **Example:** Switch(config-if)# switchport port-security maximum 20 |

Enter one of these options after you enter the vlan keyword:

- **vlan-list**—On a trunk port, you can set a per-VLAN maximum value on a range of VLANs separated by a hyphen or a series of VLANs separated by commas. For nonspecified VLANs, the per-VLAN maximum value is used.
- **access**—On an access port, specifies the VLAN as an access VLAN.
- **voice**—On an access port, specifies the VLAN as a voice VLAN.

**Note** The voice keyword is available only if a voice VLAN is configured on a port and if that port is not the access VLAN. If an interface is configured for voice VLAN, configure a maximum of two secure MAC addresses.

| **Step 8** switchport port-security violation {protect | restrict | shutdown | shutdown vlan} | (Optional) Sets the violation mode, the action to be taken when a security violation is detected, as one of these: |
| **Example:** Switch(config-if)# switchport port-security violation restrict |

- **protect**—When the number of port secure MAC addresses reaches the maximum limit allowed on the port, packets with unknown source addresses are dropped until you remove a sufficient number of secure MAC addresses to drop below the maximum value or increase the number of maximum allowable addresses. You are not notified that a security violation has occurred.

**Note** We do not recommend configuring the protect mode on a trunk port. The protect mode disables learning when any VLAN reaches its maximum limit, even if the port has not reached its maximum limit.
### Command or Action	Purpose
• **restrict**—When the number of secure MAC addresses reaches the limit allowed on the port, packets with unknown source addresses are dropped until you remove a sufficient number of secure MAC addresses or increase the number of maximum allowable addresses. An SNMP trap is sent, a syslog message is logged, and the violation counter increments.	
• **shutdown**—The interface is error-disabled when a violation occurs, and the port LED turns off. An SNMP trap is sent, a syslog message is logged, and the violation counter increments.  
• **shutdown vlan**—Use to set the security violation mode per VLAN. In this mode, the VLAN is error disabled instead of the entire port when a violation occurs.  
**Note** When a secure port is in the error-disabled state, you can bring it out of this state by entering the `errdisable recovery cause secure-violation` global configuration command. You can manually re-enable it by entering the `shutdown` and `no shutdown` interface configuration commands or by using the `clear errdisable interface vlan` privileged EXEC command. |

### Step 9

```bash
switchport port-security [mac-address mac-address [vlan {vlan-id | {access | voice}}]]
```

**Example:**

```bash
Switch(config-if)# switchport port-security mac-address 00:A0:C7:12:C9:25 vlan 3 voice
```

(Optional) Enters a secure MAC address for the interface. You can use this command to enter the maximum number of secure MAC addresses. If you configure fewer secure MAC addresses than the maximum, the remaining MAC addresses are dynamically learned.

**Note** If you enable sticky learning after you enter this command, the secure addresses that were dynamically learned are converted to sticky secure MAC addresses and are added to the running configuration.

(Optional) `vlan`—sets a per-VLAN maximum value.

Enter one of these options after you enter the `vlan` keyword:

• **vlan-id**—On a trunk port, you can specify the VLAN ID and the MAC address. If you do not specify a VLAN ID, the native VLAN is used.
• **access**—On an access port, specifies the VLAN as an access VLAN.
• **voice**—On an access port, specifies the VLAN as a voice VLAN.

**Note** The `voice` keyword is available only if a voice VLAN is configured on a port and if that port is not the access VLAN. If an interface is configured for voice VLAN, configure a maximum of two secure MAC addresses.

### Step 10

```bash
switchport port-security mac-address sticky
```

**Example:**

```bash
Switch(config-if)# switchport port-security mac-address sticky
```

(Optional) Enables sticky learning on the interface.
### Command or Action	Purpose
**Step 11**  
switchport port-security mac-address sticky [mac-address | vlan {vlan-id | {access | voice}}]  
**Example:**  
Switch(config-if)# switchport port-security mac-address sticky 00:A0:C7:12:C9:25 vlan voice  
(Optional) Enters a sticky secure MAC address, repeating the command as many times as necessary. If you configure fewer secure MAC addresses than the maximum, the remaining MAC addresses are dynamically learned, are converted to sticky secure MAC addresses, and are added to the running configuration.  
**Note** If you do not enable sticky learning before this command is entered, an error message appears, and you cannot enter a sticky secure MAC address.  
(Optional) **vlan**—sets a per-VLAN maximum value.
If you enter the `vlan` keyword:  
• **vlan-id**—On a trunk port, you can specify the VLAN ID and the MAC address. If you do not specify a VLAN ID, the native VLAN is used.  
• **access**—On an access port, specifies the VLAN as an access VLAN.  
• **voice**—On an access port, specifies the VLAN as a voice VLAN.  
**Note** The `voice` keyword is available only if a voice VLAN is configured on a port and if that port is not the access VLAN.

**Step 12**  
end  
**Example:**  
Switch(config)# end  
Returns to privileged EXEC mode.

**Step 13**  
show port-security  
**Example:**  
Switch# show port-security  
Verifies your entries.

**Step 14**  
show running-config  
**Example:**  
Switch# show running-config  
Verifies your entries.

**Step 15**  
copy running-config startup-config  
**Example:**  
Switch# copy running-config startup-config  
(Optional) Saves your entries in the configuration file.

**Related Topics**  
Port Security, on page 1112  
Port Security, on page 1146
Enabling and Configuring Port Security Aging

Use this feature to remove and add devices on a secure port without manually deleting the existing secure MAC addresses and to still limit the number of secure addresses on a port. You can enable or disable the aging of secure addresses on a per-port basis.

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `interface interface-id`
4. `switchport port-security aging {static | time time | type {absolute | inactivity}}`
5. `end`
6. `show port-security [interface interface-id] [address]`
7. `show running-config`
8. `copy running-config startup-config`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>enable</code></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: <code>Switch&gt; enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2 <code>configure terminal</code></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3 <code>interface interface-id</code></td>
<td>Specifies the interface to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Switch(config)# interface gigabitethernet1/0/1</code></td>
<td></td>
</tr>
<tr>
<td>Step 4 `switchport port-security aging {static</td>
<td>time time</td>
</tr>
<tr>
<td>Example: <code>Switch(config-if)# switchport port-security aging time 120</code></td>
<td><strong>Note</strong> The switch does not support port security aging of sticky secure addresses. Enter <strong>static</strong> to enable aging for statically configured secure addresses on this port.</td>
</tr>
</tbody>
</table>
### Command or Action | Purpose
--- | ---
|  | For *time*, specifies the aging time for this port. The valid range is from 0 to 1440 minutes.
|  | For *type*, select one of these keywords:
|  | • **absolute**—Sets the aging type as absolute aging. All the secure addresses on this port age out exactly after the time (minutes) specified lapses and are removed from the secure address list.
|  | • **inactivity**—Sets the aging type as inactivity aging. The secure addresses on this port age out only if there is no data traffic from the secure source addresses for the specified time period.

#### Step 5
**end**  
Returns to privileged EXEC mode.

**Example:**  
Switch(config)# end

#### Step 6
**show port-security [interface *interface-id*] [address]**  
Verifies your entries.

**Example:**  
Switch# show port-security interface gigabitethernet1/0/1

#### Step 7
**show running-config**  
Verifies your entries.

**Example:**  
Switch# show running-config

#### Step 8
**copy running-config startup-config**  
(Optional) Saves your entries in the configuration file.

**Example:**  
Switch# copy running-config startup-config

### Related Topics
- **Port Security Aging**, on page 1148

### Finding Feature Information
Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To
find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About Storm Control

Storm Control

Storm control prevents traffic on a LAN from being disrupted by a broadcast, multicast, or unicast storm on one of the physical interfaces. A LAN storm occurs when packets flood the LAN, creating excessive traffic and degrading network performance. Errors in the protocol-stack implementation, mistakes in network configurations, or users issuing a denial-of-service attack can cause a storm.

Storm control (or traffic suppression) monitors packets passing from an interface to the switching bus and determines if the packet is unicast, multicast, or broadcast. The switch counts the number of packets of a specified type received within the 1-second time interval and compares the measurement with a predefined suppression-level threshold.

How Traffic Activity is Measured

Storm control uses one of these methods to measure traffic activity:

- Bandwidth as a percentage of the total available bandwidth of the port that can be used by the broadcast, multicast, or unicast traffic
- Traffic rate in packets per second at which broadcast, multicast, or unicast packets are received
- Traffic rate in bits per second at which broadcast, multicast, or unicast packets are received
- Traffic rate in packets per second and for small frames. This feature is enabled globally. The threshold for small frames is configured for each interface.

With each method, the port blocks traffic when the rising threshold is reached. The port remains blocked until the traffic rate drops below the falling threshold (if one is specified) and then resumes normal forwarding. If the falling suppression level is not specified, the switch blocks all traffic until the traffic rate drops below the rising suppression level. In general, the higher the level, the less effective the protection against broadcast storms.

Note

When the storm control threshold for multicast traffic is reached, all multicast traffic except control traffic, such as bridge protocol data unit (BDPU) and Cisco Discovery Protocol (CDP) frames, are blocked. However, the switch does not differentiate between routing updates, such as OSPF, and regular multicast data traffic, so both types of traffic are blocked.
Traffic Patterns

This example shows broadcast traffic patterns on an interface over a given period of time.

*Figure 94: Broadcast Storm Control Example*

Broadcast traffic being forwarded exceeded the configured threshold between time intervals T1 and T2 and between T4 and T5. When the amount of specified traffic exceeds the threshold, all traffic of that kind is dropped for the next time period. Therefore, broadcast traffic is blocked during the intervals following T2 and T5. At the next time interval (for example, T3), if broadcast traffic does not exceed the threshold, it is again forwarded.

The combination of the storm-control suppression level and the 1-second time interval controls the way the storm control algorithm works. A higher threshold allows more packets to pass through. A threshold value of 100 percent means that no limit is placed on the traffic. A value of 0.0 means that all broadcast, multicast, or unicast traffic on that port is blocked.

**Note**

Because packets do not arrive at uniform intervals, the 1-second time interval during which traffic activity is measured can affect the behavior of storm control.

You use the `storm-control` interface configuration commands to set the threshold value for each traffic type.

### How to Configure Storm Control

#### Configuring Storm Control and Threshold Levels

You configure storm control on a port and enter the threshold level that you want to be used for a particular type of traffic.

However, because of hardware limitations and the way in which packets of different sizes are counted, threshold percentages are approximations. Depending on the sizes of the packets making up the incoming traffic, the actual enforced threshold might differ from the configured level by several percentage points.
Storm control is supported on physical interfaces. You can also configure storm control on an EtherChannel. When storm control is configured on an EtherChannel, the storm control settings propagate to the EtherChannel physical interfaces.

Follow these steps to storm control and threshold levels:

**Before You Begin**

Storm control is supported on physical interfaces. You can also configure storm control on an EtherChannel. When storm control is configured on an EtherChannel, the storm control settings propagate to the EtherChannel physical interfaces.

**SUMMARY STEPS**

1. enable
2. configure terminal
3. interface interface-id
4. storm-control {broadcast | multicast | unicast} level {level [level-low] | bps bps [bps-low] | pps pps [pps-low]}
5. storm-control action {shutdown | trap}
6. end
7. show storm-control [interface-id] [broadcast | multicast | unicast]
8. copy running-config startup-config

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>enable</td>
<td></td>
</tr>
<tr>
<td>Example: Switch&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Specifies the interface to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>interface interface-id</td>
<td></td>
</tr>
<tr>
<td>Example: Switch(config)# interface gigabitethernet1/0/1</td>
<td></td>
</tr>
</tbody>
</table>
## How to Configure Port Security

### Step 4

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`storm-control {broadcast</td>
<td>multicast</td>
</tr>
</tbody>
</table>

- **For level**, specifies the rising threshold level for broadcast, multicast, or unicast traffic as a percentage (up to two decimal places) of the bandwidth. The port blocks traffic when the rising threshold is reached. The range is 0.00 to 100.00.
- **(Optional) For level-low**, specifies the falling threshold level as a percentage (up to two decimal places) of the bandwidth. This value must be less than or equal to the rising suppression value. The port forwards traffic when traffic drops below this level. If you do not configure a falling suppression level, it is set to the rising suppression level. The range is 0.00 to 100.00. If you set the threshold to the maximum value (100 percent), no limit is placed on the traffic. If you set the threshold to 0.0, all broadcast, multicast, and unicast traffic on that port is blocked.
- **For bps bps**, specifies the rising threshold level for broadcast, multicast, or unicast traffic in bits per second (up to one decimal place). The port blocks traffic when the rising threshold is reached. The range is 0.0 to 10000000000.0.
- **(Optional) For bps-low**, specifies the falling threshold level in bits per second (up to one decimal place). It can be less than or equal to the rising threshold level. The port forwards traffic when traffic drops below this level. The range is 0.0 to 10000000000.0.
- **For pps pps**, specifies the rising threshold level for broadcast, multicast, or unicast traffic in packets per second (up to one decimal place). The port blocks traffic when the rising threshold is reached. The range is 0.0 to 10000000000.0.
- **(Optional) For pps-low**, specifies the falling threshold level in packets per second (up to one decimal place). It can be less than or equal to the rising threshold level. The port forwards traffic when traffic drops below this level. The range is 0.0 to 10000000000.0.

For BPS and PPS settings, you can use metric suffixes such as k, m, and g for large number thresholds.

### Step 5

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`storm-control action {shutdown</td>
<td>trap}`</td>
</tr>
</tbody>
</table>

- **Select the shutdown keyword** to error-disable the port during a storm.
- **Select the trap keyword** to generate an SNMP trap when a storm is detected.
### Configuring Small-Frame Arrival Rate

Incoming VLAN-tagged packets smaller than 67 bytes are considered small frames. They are forwarded by the switch, but they do not cause the switch storm-control counters to increment.

You globally enable the small-frame arrival feature on the switch and then configure the small-frame threshold for packets on each interface. Packets smaller than the minimum size and arriving at a specified rate (the threshold) are dropped since the port is error disabled.

### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `errdisable detect cause small-frame`
4. `errdisable recovery interval interval`
5. `errdisable recovery cause small-frame`
6. `interface interface-id`
7. `small-frame violation-rate pps`
8. `end`
9. `show interfaces interface-id`
10. `show running-config`
11. `copy running-config startup-config`
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**  
enable  
**Example:**  
Switch> enable | Enables privileged EXEC mode. Enter your password if prompted. |
| **Step 2**  
configure terminal  
**Example:**  
Switch# configure terminal | Enters the global configuration mode. |
| **Step 3**  
errdisable detect cause small-frame  
**Example:**  
Switch(config)# errdisable detect cause small-frame | Enables the small-frame rate-arrival feature on the switch. |
| **Step 4**  
errdisable recovery interval *interval*  
**Example:**  
Switch(config)# errdisable recovery interval 60 | (Optional) Specifies the time to recover from the specified error-disabled state. |
| **Step 5**  
errdisable recovery cause small-frame  
**Example:**  
Switch(config)# errdisable recovery cause small-frame | (Optional) Configures the recovery time for error-disabled ports to be automatically re-enabled after they are error disabled by the arrival of small frames. |
| **Step 6**  
interface *interface-id*  
**Example:**  
Switch(config)# interface gigabitethernet1/0/2 | Enters interface configuration mode, and specify the interface to be configured. |
| **Step 7**  
small-frame violation-rate *pps*  
**Example:**  
Switch(config-if)# small-frame violation rate 10000 | Configures the threshold rate for the interface to drop incoming packets and error disable the port. The range is 1 to 10,000 packets per second (pps). |
### How to Configure Port Security

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 8</strong></td>
<td>end</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# end</td>
</tr>
<tr>
<td></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td>show interfaces interface-id</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# show interfaces gigabitethernet1/0/2</td>
</tr>
<tr>
<td></td>
<td>Verifies the configuration.</td>
</tr>
<tr>
<td><strong>Step 10</strong></td>
<td>show running-config</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# show running-config</td>
</tr>
<tr>
<td></td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td><strong>Step 11</strong></td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>

### Information About Protected Ports

#### Protected Ports

Some applications require that no traffic be forwarded at Layer 2 between ports on the same switch so that one neighbor does not see the traffic generated by another neighbor. In such an environment, the use of protected ports ensures that there is no exchange of unicast, broadcast, or multicast traffic between these ports on the switch.

Protected ports have these features:

- A protected port does not forward any traffic (unicast, multicast, or broadcast) to any other port that is also a protected port. Data traffic cannot be forwarded between protected ports at Layer 2; only control traffic, such as PIM packets, is forwarded because these packets are processed by the CPU and forwarded in software. All data traffic passing between protected ports must be forwarded through a Layer 3 device.
- Forwarding behavior between a protected port and a nonprotected port proceeds as usual.

Because a switch stack represents a single logical switch, Layer 2 traffic is not forwarded between any protected ports in the switch stack, whether they are on the same or different switches in the stack.
Default Protected Port Configuration

The default is to have no protected ports defined.

Protected Ports Guidelines

You can configure protected ports on a physical interface (for example, Gigabit Ethernet port 1) or an EtherChannel group (for example, port-channel 5). When you enable protected ports for a port channel, it is enabled for all ports in the port-channel group.

How to Configure Protected Ports

Configuring a Protected Port

Before You Begin

Protected ports are not pre-defined. This is the task to configure one.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface interface-id
4. switchport protected
5. end
6. show interfaces interface-id switchport
7. show running-config
8. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>enable</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>
How to Configure Port Security

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 3

**interface interface-id**

Example:

Switch(config)# interface gigabitethernet1/0/1

Specifies the interface to be configured, and enter interface configuration mode.

| Step 4

**switchport protected**

Example:

Switch(config-if)# switchport protected

Configures the interface to be a protected port.

| Step 5

**end**

Example:

Switch(config)# end

Returns to privileged EXEC mode.

| Step 6

**show interfaces interface-id switchport**

Example:

Switch# show interfaces gigabitethernet1/0/1 switchport

Verifies your entries.

| Step 7

**show running-config**

Example:

Switch# show running-config

Verifies your entries.

| Step 8

**copy running-config startup-config**

Example:

Switch# copy running-config startup-config

(Optional) Saves your entries in the configuration file.

---

Monitoring Protected Ports

**Table 124: Commands for Displaying Protected Port Settings**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show interfaces [interface-id] switchport</td>
<td>Displays the administrative and operational status of all switching (nonrouting) ports or the specified port, including port blocking and port protection settings.</td>
</tr>
</tbody>
</table>
Where to Go Next

Information About Port Blocking

Port Blocking
By default, the switch floods packets with unknown destination MAC addresses out of all ports. If unknown unicast and multicast traffic is forwarded to a protected port, there could be security issues. To prevent unknown unicast or multicast traffic from being forwarded from one port to another, you can block a port (protected or nonprotected) from flooding unknown unicast or multicast packets to other ports.

Note
With multicast traffic, the port blocking feature blocks only pure Layer 2 packets. Multicast packets that contain IPv4 or IPv6 information in the header are not blocked.

How to Configure Port Blocking

Blocking Flooded Traffic on an Interface

Before You Begin
The interface can be a physical interface or an EtherChannel group. When you block multicast or unicast traffic for a port channel, it is blocked on all ports in the port-channel group.

SUMMARY STEPS
1. enable
2. configure terminal
3. interface interface-id
4. switchport block multicast
5. switchport block unicast
6. end
7. show interfaces interface-id switchport
8. show running-config
9. copy running-config startup-config
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface interface-id</td>
<td>Specifies the interface to be configured, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# interface gigabitethernet1/0/1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> switchport block multicast</td>
<td>Blocks unknown multicast forwarding out of the port.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config-if)# switchport block multicast</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> switchport block unicast</td>
<td>Blocks unknown unicast forwarding out of the port.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config-if)# switchport block unicast</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# end</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong> show interfaces interface-id switchport</td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# show interfaces gigabitethernet1/0/1 switchport</td>
<td></td>
</tr>
</tbody>
</table>
### Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 8</strong></td>
<td></td>
</tr>
<tr>
<td>show running-config</td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# show running-config</td>
<td></td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td></td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

### Monitoring Port Blocking

**Table 125: Commands for Displaying Port Blocking Settings**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show interfaces [interface-id] switchport</td>
<td>Displays the administrative and operational status of all switching (nonrouting) ports or the specified port, including port blocking and port protection settings.</td>
</tr>
</tbody>
</table>

### Configuration Examples for Port Security

This example shows how to enable port security on a port and to set the maximum number of secure addresses to 50. The violation mode is the default, no static secure MAC addresses are configured, and sticky learning is enabled.

```
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# switchport mode access
Switch(config-if)# switchport port-security
Switch(config-if)# switchport port-security maximum 50
Switch(config-if)# switchport port-security mac-address sticky
```

This example shows how to configure a static secure MAC address on VLAN 3 on a port:

```
Switch(config)# interface gigabitethernet1/0/2
Switch(config-if)# switchport mode trunk
Switch(config-if)# switchport port-security
Switch(config-if)# switchport port-security mac-address 0000.0200.0004 vlan 3
```
This example shows how to enable sticky port security on a port, to manually configure MAC addresses for data VLAN and voice VLAN, and to set the total maximum number of secure addresses to 20 (10 for data VLAN and 10 for voice VLAN).

```
Switch(config)# interface tengigabitethernet1/0/1
Switch(config-if)# switchport access vlan 21
Switch(config-if)# switchport mode access
Switch(config-if)# switchport voice vlan 22
Switch(config-if)# switchport port-security
Switch(config-if)# switchport port-security maximum 20
Switch(config-if)# switchport port-security violation restrict
Switch(config-if)# switchport port-security mac-address sticky
Switch(config-if)# switchport port-security mac-address sticky 0000.0000.0002
Switch(config-if)# switchport port-security mac-address 0000.0000.0003
Switch(config-if)# switchport port-security mac-address sticky 0000.0000.0001 vlan voice
Switch(config-if)# switchport port-security mac-address 0000.0000.0004 vlan voice
Switch(config-if)# switchport port-security maximum 10 vlan access
Switch(config-if)# switchport port-security maximum 10 vlan voice
```

**Related Topics**

- Port Security, on page 1146
- Enabling and Configuring Port Security, on page 1151

**Information About Protocol Storm Protection**

**Protocol Storm Protection**

When a switch is flooded with Address Resolution Protocol (ARP) or control packets, high CPU utilization can cause the CPU to overload. These issues can occur:

- Routing protocol can flap because the protocol control packets are not received, and neighboring adjacencies are dropped.
- Spanning Tree Protocol (STP) reconverges because the STP bridge protocol data unit (BPDU) cannot be sent or received.
- CLI is slow or unresponsive.

Using protocol storm protection, you can control the rate at which control packets are sent to the switch by specifying the upper threshold for the packet flow rate. The supported protocols are ARP, ARP snooping, Dynamic Host Configuration Protocol (DHCP) v4, DHCP snooping, Internet Group Management Protocol (IGMP), and IGMP snooping.

When the packet rate exceeds the defined threshold, the switch drops all traffic arriving on the specified virtual port for 30 seconds. The packet rate is measured again, and protocol storm protection is again applied if necessary.

For further protection, you can manually error disable the virtual port, blocking all incoming traffic on the virtual port. You can manually enable the virtual port or set a time interval for automatic re-enabling of the virtual port.
Defect packets are dropped on no more than two virtual ports.
Virtual port error disabling is not supported for EtherChannel and Flexlink interfaces

Default Protocol Storm Protection Configuration

Protocol storm protection is disabled by default. When it is enabled, auto-recovery of the virtual port is disabled by default.

How to Configure Protocol Storm Protection

Enabling Protocol Storm Protection

SUMMARY STEPS

1. enable
2. configure terminal
3. psp {arp | dhcp | igmp} pps value
4. errdisable detect cause psp
5. errdisable recovery interval time
6. end
7. show psp config {arp | dhcp | igmp}

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Switch&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> psp {arp</td>
<td>dhcp</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Switch(config)# psp dhcp pps 35</td>
<td></td>
</tr>
</tbody>
</table>
### Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 4</strong> errdisable detect cause psp</td>
<td>(Optional) Enables error-disable detection for protocol storm protection. If this feature is enabled, the virtual port is error disabled. If this feature is disabled, the port drops excess packets without error disabling the port.</td>
</tr>
<tr>
<td><strong>Step 5</strong> errdisable recovery interval (time)</td>
<td>(Optional) Configures an auto-recovery time (in seconds) for error-disabled virtual ports. When a virtual port is error-disabled, the switch auto-recover after this time. The range is from 30 to 86400 seconds.</td>
</tr>
<tr>
<td><strong>Step 6</strong> end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 7</strong> show psp config {arp</td>
<td>dhcp</td>
</tr>
</tbody>
</table>

### Monitoring Protocol Storm Protection

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show psp config {arp</td>
<td>dhcp</td>
</tr>
</tbody>
</table>
Configuring IPv6 First Hop Security

- Finding Feature Information, page 1173
- Prerequisites for First Hop Security in IPv6, page 1173
- Restrictions for First Hop Security in IPv6, page 1174
- Information about First Hop Security in IPv6, page 1174
- How to Configure an IPv6 Snooping Policy, page 1176
- How to Configure the IPv6 Binding Table Content, page 1181
- How to Configure an IPv6 Neighbor Discovery Inspection Policy, page 1183
- How to Configure an IPv6 Router Advertisement Guard Policy, page 1188
- How to Configure an IPv6 DHCP Guard Policy, page 1193
- How to Configure IPv6 Source Guard, page 1198
- Additional References, page 1200

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for First Hop Security in IPv6

- You have configured the necessary IPv6 enabled SDM template.
- You should be familiar with the IPv6 neighbor discovery feature.
Restrictions for First Hop Security in IPv6

- The following restrictions apply when applying FHS policies to EtherChannel interfaces (Port Channels):
  - A physical port with an FHS policy attached cannot join an EtherChannel group.
  - An FHS policy cannot be attached to a physical port when it is a member of an EtherChannel group.

- By default, a snooping policy has a security-level of guard. When such a snooping policy is configured on an access switch, external IPv6 Router Advertisement (RA) or Dynamic Host Configuration Protocol for IPv6 (DHCPv6) server packets are blocked, even though the uplink port facing the router or DHCP server/relay is configured as a trusted port. To allow IPv6 RA or DHCPv6 server messages, do the following:
  - Apply an IPv6 RA-guard policy (for RA) or IPv6 DHCP-guard policy (for DHCP server messages) on the uplink port.
  - Configure a snooping policy with a lower security-level, for example glean or inspect. However, configuring a lower security level is not recommended with such a snooping policy, because benefits of First Hop security features are not effective.

Information about First Hop Security in IPv6

First Hop Security in IPv6 (FHS IPv6) is a set of IPv6 security features, the policies of which can be attached to a physical interface, or a VLAN. An IPv6 software policy database service stores and accesses these policies. When a policy is configured or modified, the attributes of the policy are stored or updated in the software policy database, then applied as was specified. The following IPv6 policies are currently supported:


- IPv6 FHS Binding Table Content—A database table of IPv6 neighbors connected to the switch is created from information sources such as Neighbor Discovery (ND) protocol snooping. This database, or binding, table is used by various IPv6 guard features (such as IPv6 ND Inspection) to validate the link-layer address (LLA), the IPv4 or IPv6 address, and prefix binding of the neighbors to prevent spoofing and redirect attacks.

- IPv6 Neighbor Discovery Inspection—IPv6 ND inspection learns and secures bindings for stateless autoconfiguration addresses in Layer 2 neighbor tables. IPv6 ND inspection analyzes neighbor discovery messages in order to build a trusted binding table database and IPv6 neighbor discovery messages that do not conform are dropped. An ND message is considered trustworthy if its IPv6-to-Media Access Control (MAC) mapping is verifiable. This feature mitigates some of the inherent vulnerabilities of the ND mechanism, such as attacks on DAD, address resolution, router discovery, and the neighbor cache.

- IPv6 Router Advertisement Guard—The IPv6 Router Advertisement (RA) guard feature enables the network administrator to block or reject unwanted or rogue RA guard messages that arrive at the network switch platform. RAs are used by routers to announce themselves on the link. The RA Guard feature analyzes the RAs and filters out bogus RAs sent by unauthorized routers. In host mode, all router advertisement and router redirect messages are disallowed on the port. The RA guard feature compares
configuration information on the Layer 2 device with the information found in the received RA frame. Once the Layer 2 device has validated the content of the RA frame and router redirect frame against the configuration, it forwards the RA to its unicast or multicast destination. If the RA frame content is not validated, the RA is dropped.

- IPv6 DHCP Guard—The IPv6 DHCP Guard feature blocks reply and advertisement messages that come from unauthorized DHCPv6 servers and relay agents. IPv6 DHCP guard can prevent forged messages from being entered in the binding table and block DHCPv6 server messages when they are received on ports that are not explicitly configured as facing a DHCPv6 server or DHCP relay. To use this feature, configure a policy and attach it to an interface or a VLAN. To debug DHCP guard packets, use the `debug ipv6 snooping dhcp-guard` privileged EXEC command.

- IPv6 Source Guard—Like IPv4 Source Guard, IPv6 Source Guard validates the source address or prefix to prevent source address spoofing.

A source guard programs the hardware to allow or deny traffic based on source or destination addresses. It deals exclusively with data packet traffic.

The IPv6 source guard feature provides the ability to use the IPv6 binding table to install PACLS to prevent a host from sending packets with an invalid IPv6 source address.

To debug source-guard packets, use the `debug ipv6 snooping source-guard` privileged EXEC command.

![Note](image)

The IPv6 PACL feature is supported only in the ingress direction; it is not supported in the egress direction.

The following restrictions apply:

* An FHS policy cannot be attached to a physical port when it is a member of an EtherChannel group.

* When IPv6 source guard is enabled on a switch port, NDP or DHCP snooping must be enabled on the interface to which the switch port belongs. Otherwise, all data traffic from this port will be blocked.

* An IPv6 source guard policy cannot be attached to a VLAN. It is supported only at the interface level.

* You cannot use IPv6 Source Guard and Prefix Guard together. When you attach the policy to an interface, it should be "validate address" or "validate prefix" but not both.

* PVLAN and Source/Prefix Guard cannot be applied together.

For more information on IPv6 Source Guard, see the IPv6 Source Guard chapter of the Cisco IOS IPv6 Configuration Guide Library on Cisco.com.

- IPv6 Prefix Guard—The IPv6 prefix guard feature works within the IPv6 source guard feature, to enable the device to deny traffic originated from non-topologically correct addresses. IPv6 prefix guard is often used when IPv6 prefixes are delegated to devices (for example, home gateways) using DHCP prefix delegation. The feature discovers ranges of addresses assigned to the link and blocks any traffic sourced with an address outside this range.

For more information on IPv6 Prefix Guard, see the IPv6 Prefix Guard chapter of the Cisco IOS IPv6 Configuration Guide Library on Cisco.com.
• IPv6 Destination Guard—The IPv6 destination guard feature works with IPv6 neighbor discovery to ensure that the device performs address resolution only for those addresses that are known to be active on the link. It relies on the address glean functionality to populate all destinations active on the link into the binding table and then blocks resolutions before they happen when the destination is not found in the binding table.

  Note IPv6 Destination Guard is recommended only on Layer 3. It is not recommended on Layer 2.

For more information about IPv6 Destination Guard, see the IPv6 Destination Guard chapter of the Cisco IOS IPv6 Configuration Guide Library on Cisco.com.

• IPv6 Neighbor Discovery Multicast Suppress—The IPv6 Neighbor Discovery multicast suppress feature is an IPv6 snooping feature that runs on a switch or a wireless controller and is used to reduce the amount of control traffic necessary for proper link operations.

• DHCPv6 Relay—Lightweight DHCPv6 Relay Agent—The DHCPv6 Relay—Lightweight DHCPv6 Relay Agent feature allows relay agent information to be inserted by an access node that performs a link-layer bridging (non-routing) function. Lightweight DHCPv6 Relay Agent (LDRA) functionality can be implemented in existing access nodes, such as DSL access multiplexers (DSLAMs) and Ethernet switches, that do not support IPv6 control or routing functions. LDRA is used to insert relay-agent options in DHCP version 6 (DHCPv6) message exchanges primarily to identify client-facing interfaces. LDRA functionality can be enabled on an interface and on a VLAN.

For more information about DHCPv6 Relay, See the DHCPv6 Relay—Lightweight DHCPv6 Relay Agent section of the IP Addressing: DHCP Configuration Guide, Cisco IOS Release 15.1SG.

**How to Configure an IPv6 Snooping Policy**

Beginning in privileged EXEC mode, follow these steps to configure IPv6 Snooping Policy:

**SUMMARY STEPS**

1. configure terminal
2. ipv6 snooping policy *policy-name*
3. { [default] | [device-role { node | switch }] | [limit address-count value] | [no] | [protocol { dhcp | ndp }] | [security-level { glean | guard | inspect }] | [tracking {disble | stale-lifetime [seconds | infinite] | enable | reachable-lifetime [seconds | infinite] } | [trusted-port ] }
4. end
5. show ipv6 snooping policy *policy-name*
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> ipv6 snooping policy policy-name</td>
<td>Creates a snooping policy and enters IPv6 Snooping Policy Configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch(config)# ipv6 snooping policy example_policy</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> {[default ]</td>
<td>[device-role {node</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch(config-ipv6-snooping)# security-level inspect</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong> Switch(config-ipv6-snooping)# trusted-port</td>
<td></td>
</tr>
</tbody>
</table>

- (Optional) **default**—Sets all to default options.
- (Optional) **device-role {node | switch}**—Specifies the role of the device attached to the port. Default is **node**.
- (Optional) **limit address-count value**—Limits the number of addresses allowed per target.
- (Optional) **no**—Negates a command or sets it to defaults.
- (Optional) **protocol {dhcp | ndp}**—Specifies which protocol should be redirected to the snooping feature for analysis. The default is **dhcp** and **ndp**. To change the default, use the **no protocol** command.
- (Optional) **security-level {glean | guard | inspect}**—Specifies the level of security enforced by the feature. Default is **guard**.
  - **glean**—Gleans addresses from messages and populates the binding table without any verification.
  - **guard**—Gleans addresses and inspects messages. In addition, it rejects RA and DHCP server messages. This is the default option.
  - **inspect**—Gleans addresses, validates messages for consistency and conformance, and enforces address ownership.
- (Optional) **tracking {disable | enable}**—Oversides the default tracking behavior and specifies a tracking option.
- (Optional) **trusted-port**—Sets up a trusted port. It disables the guard on applicable targets. Bindings learned through a trusted port have preference over bindings learned through any other port. A trusted port is given preference in case of a collision while making an entry in the table.
### Purpose
Command or Action	Purpose
**Step 4** end | Exits configuration modes to Privileged EXEC mode.
   Example: Switch(config-ipv6-snooping)# exit

**Step 5** show ipv6 snooping policy **policy-name** | Displays the snooping policy configuration.
   Example: Switch#show ipv6 snooping policy example_policy

---

**What to Do Next**
Attach an IPv6 Snooping policy to interfaces or VLANs.

### How to Attach an IPv6 Snooping Policy to an Interface
Beginning in privileged EXEC mode, follow these steps to attach an IPv6 Snooping policy on an interface or VLAN:

**SUMMARY STEPS**
1. configure terminal
2. interface **Interface_type** stack/module/port
3. switchport
4. ipv6 snooping [attach-policy **policy_name** [ vlan {vlan_id | add vlan_ids | except vlan_ids | none | remove vlan_ids} | add vlan_ids | except vlan_ids | none | remove vlan_ids | all} ]
5. do show running-config

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> interface <strong>Interface_type</strong> stack/module/port</td>
<td>Specifies an interface type and identifier; enters the interface configuration mode.</td>
</tr>
<tr>
<td>Example: Switch(config)# interface gigabitethernet 1/1/4</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> switchport</td>
<td>Enters the Switchport mode.</td>
</tr>
</tbody>
</table>
### How to Configure an IPv6 Snooping Policy

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Switch(config-if)# switchport</td>
<td></td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td></td>
</tr>
<tr>
<td>To configure Layer 2 parameters, if the interface is in Layer 3 mode, you must enter the switchport interface configuration command without any parameters to put the interface into Layer 2 mode. This shuts down the interface and then re-enables it, which might generate messages on the device to which the interface is connected. When you put an interface that is in Layer 3 mode into Layer 2 mode, the previous configuration information related to the affected interface might be lost, and the interface is returned to its default configuration. The command prompt displays as (config-if)# in Switchport configuration mode.</td>
<td></td>
</tr>
</tbody>
</table>

| Step 4 | ipv6 snooping [attach-policy policy_name [ vlan {vlan_id | add vlan_ids | except vlan_ids | none | remove vlan_ids }] | vlan {vlan_id | add vlan_ids | except vlan_ids | none | remove vlan_ids | all ] ] |         |
|--------|-------------------------------------------------|---------|
| **Example:**                      |         |
| Switch(config-if)# ipv6 snooping   |         |
| or                                             |         |
| Switch(config-if)# ipv6 snooping       |         |
| attach-policy example_policy         |         |
| or                                         |         |
| Switch(config-if)# ipv6 snooping       |         |
| vlan 111,112                          |         |
| or                                         |         |
| Switch(config-if)# ipv6 snooping       |         |
| attach-policy example_policy vlan 111,112|         |

<table>
<thead>
<tr>
<th>Step 5</th>
<th>do show running-config</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switch(config-if)# do show running-config</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### How to Attach an IPv6 Snooping Policy to a Layer 2 EtherChannel Interface

Beginning in privileged EXEC mode, follow these steps to attach an IPv6 Snooping policy on an EtherChannel interface or VLAN:

Attaches a custom ipv6 snooping policy to the interface or the specified VLANs on the interface. To attach the default policy to the interface, use the `ipv6 snooping` command without the `attach-policy` keyword. To attach the default policy to VLANs on the interface, use the `ipv6 snooping vlan` command. The default policy is, security-level `guard`, device-role `node`, protocol `ndp` and `dhcp`.

Verifies that the policy is attached to the specified interface without exiting the interface configuration mode.
### SUMMARY STEPS

1. `configure terminal`
2. `interface range Interface_name`
3. `ipv6 snooping [attach-policy policy_name [vlan {vlan_ids | add vlan_ids | except vlan_ids | none | remove vlan_ids | all}] | vlan {vlan_ids | add vlan_ids | except vlan_ids | none | remove vlan_ids | all}]`
4. `do show running-config interface portchannel_interface_name`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>interface range Interface_name</code></td>
<td>Specify the port-channel interface name assigned when the EtherChannel was created. Enters the interface range configuration mode.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> Switch(config)# interface Po11</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>`ipv6 snooping [attach-policy policy_name [vlan {vlan_ids</td>
<td>add vlan_ids</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> Switch(config-if-range)# ipv6 snooping attach-policy example_policy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or Switch(config-if-range)# ipv6 snooping attach-policy example_policy vlan 222,223,224</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or Switch(config-if-range)#ipv6 snooping vlan 222,223,224</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>do show running-config interface portchannel_interface_name</code></td>
<td>Confirms that the policy is attached to the specified interface without exiting the configuration mode.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> Switch#(config-if-range)# do show running-config int Po11</td>
<td></td>
</tr>
</tbody>
</table>
How to Attach an IPv6 Snooping Policy to VLANs Globally

Beginning in privileged EXEC mode, follow these steps to attach an IPv6 Snooping Policy to VLANs across multiple interfaces:

**SUMMARY STEPS**

1. configure terminal
2. vlan configuration vlan_list
3. ipv6 snooping [attach-policy policy_name]
4. do show running-config

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1  configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2  vlan configuration vlan_list</td>
<td>Specifies the VLANs to which the IPv6 Snooping policy will be attached ; enters the VLAN interface configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> vlan configuration 333</td>
<td></td>
</tr>
<tr>
<td>Step 3  ipv6 snooping [attach-policy policy_name]</td>
<td>Attaches the IPv6 Snooping policy to the specified VLANs across all switch and stack interfaces. The default policy is attached if the attach-policy option is not used. The default policy is, security-level guard, device-role node, protocol ndp and dhcp.</td>
</tr>
<tr>
<td><strong>Example:</strong> ipv6 snooping attach-policy example_policy</td>
<td></td>
</tr>
<tr>
<td>Step 4  do show running-config</td>
<td>Verifies that the policy is attached to the specified VLANs without exiting the interface configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> do show running-config</td>
<td></td>
</tr>
</tbody>
</table>

How to Configure the IPv6 Binding Table Content

Beginning in privileged EXEC mode, follow these steps to configure IPv6 Binding Table Content:
### SUMMARY STEPS

1. configure terminal
2. `[no] ipv6 neighbor binding [vlan vlan-id |ipv6-address interface interface_type stack/module/port hw_address [reachable-lifetimevalue [seconds | default | infinite] | [tracking} [default | disable] [reachable-lifetimevalue [seconds | default | infinite] | [enable [reachable-lifetimevalue [seconds | default | infinite]] [reachable-lifetimevalue [seconds | default | infinite] | [retry-interval [seconds | default | infinite] ] ] ]
4. ipv6 neighbor binding logging
5. exit
6. show ipv6 neighbor binding

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>`ipv6 neighbor binding [vlan vlan-id</td>
<td>ipv6-address interface interface_type stack/module/port hw_address [reachable-lifetimevalue [seconds</td>
</tr>
<tr>
<td>Step 3</td>
<td>`[no] ipv6 neighbor binding max-entries number [mac-limit number]</td>
<td>port-limit number [mac-limit number]</td>
</tr>
<tr>
<td>Step 4</td>
<td>ipv6 neighbor binding logging</td>
<td>Enables the logging of binding table main events.</td>
</tr>
<tr>
<td>Step 5</td>
<td>exit</td>
<td>Exits global configuration mode, and places the router in privileged EXEC mode.</td>
</tr>
</tbody>
</table>
How to Configure an IPv6 Neighbor Discovery Inspection Policy

Beginning in privileged EXEC mode, follow these steps to configure an IPv6 ND Inspection Policy:

**SUMMARY STEPS**

1. configure terminal
2. [no]ipv6 nd inspection policy policy-name
3. device-role {host | monitor | router | switch}
4. drop-unsecure
5. limit address-count value
6. sec-level minimum value
7. tracking {enable [reachable-lifetime {value | infinite}] | disable [stale-lifetime {value | infinite}]}
8. trusted-port
9. validate source-mac
10. no {device-role | drop-unsecure | limit address-count | sec-level minimum | tracking | trusted-port | validate source-mac}
11. default {device-role | drop-unsecure | limit address-count | sec-level minimum | tracking | trusted-port | validate source-mac}
12. do show ipv6 nd inspection policy policy_name

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>[no]ipv6 nd inspection policy policy-name</td>
<td>Specifies the ND inspection policy name and enters ND Inspection Policy configuration mode.</td>
</tr>
</tbody>
</table>

**Example:**

**Step 1**

```bash
Switch# configure terminal
```

**Step 2**

```bash
Switch(config)# ipv6 nd inspection policy example_policy
```
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td><strong>device-role</strong> {host</td>
<td>monitor</td>
</tr>
<tr>
<td></td>
<td>Example: Switch(config-nd-inspection)# <strong>device-role switch</strong></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td><strong>drop-unsecure</strong></td>
<td>Drops messages with no or invalid options or an invalid signature.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch(config-nd-inspection)# <strong>drop-unsecure</strong></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td><strong>limit address-count</strong> <strong>value</strong></td>
<td>Enter 1–10,000.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch(config-nd-inspection)# <strong>limit address-count 1000</strong></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td><strong>sec-level minimum</strong> <strong>value</strong></td>
<td>Specifies the minimum security level parameter value when Cryptographically Generated Address (CGA) options are used.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch(config-nd-inspection)# <strong>limit address-count 1000</strong></td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td><strong>tracking</strong> {enable [reachable-lifetime <strong>value</strong></td>
<td>infinite]</td>
</tr>
<tr>
<td></td>
<td>Example: Switch(config-nd-inspection)# <strong>tracking disable stale-lifetime infinite</strong></td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td><strong>trusted-port</strong></td>
<td>Configures a port to become a trusted port.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch(config-nd-inspection)# <strong>trusted-port</strong></td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td><strong>validate source-mac</strong></td>
<td>Checks the source media access control (MAC) address against the link-layer address.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch(config-nd-inspection)# <strong>validate source-mac</strong></td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td><strong>no</strong> {device-role</td>
<td>drop-unsecure</td>
</tr>
<tr>
<td></td>
<td>Example: Switch(config-nd-inspection)# <strong>no validate source-mac</strong></td>
<td></td>
</tr>
<tr>
<td>Step 11</td>
<td><strong>default</strong> {device-role</td>
<td>drop-unsecure</td>
</tr>
<tr>
<td></td>
<td>Example: Switch(config-nd-inspection)# <strong>default limit address-count</strong></td>
<td></td>
</tr>
</tbody>
</table>
How to Configure an IPv6 Neighbor Discovery Inspection Policy

### Step 12

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>do show ipv6 nd inspection policy policy_name</code></td>
<td>Verifies the ND Inspection Configuration without exiting ND inspection configuration mode.</td>
</tr>
</tbody>
</table>

**Example:**

```
Switch(config-nd-inspection)# do show ipv6 nd inspection policy example_policy
```

---

**How to Attach an IPv6 Neighbor Discovery Inspection Policy to an Interface**

Beginning in privileged EXEC mode, follow these steps to attach an IPv6 ND Inspection policy to an interface or VLANs on an interface:

**SUMMARY STEPS**

1. `configure terminal`
2. `interface Interface_type stack/module/port`
3. `ipv6 nd inspection [attach-policy policy_name [ vlan {vlan_ids | add vlan_ids | except vlan_ids | none | remove vlan_ids | all }] | vlan [ {vlan_ids | add vlan_ids | except vlan_ids | none | remove vlan_ids | all } ]]
```

4. `do show running-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>configure terminal</code></td>
<td>Enters the global configuration mode.</td>
</tr>
</tbody>
</table>

Example:

```
Switch# configure terminal
```

<table>
<thead>
<tr>
<th>Step 2 <code>interface Interface_type stack/module/port</code></th>
<th>Specifies an interface type and identifier; enters the interface configuration mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example: <code>Switch(config)# interface gigabitethernet 1/1/4</code></td>
<td></td>
</tr>
</tbody>
</table>

| **Step 3** `ipv6 nd inspection [attach-policy policy_name [vlan {vlan_ids | add vlan_ids | except vlan_ids | none | remove vlan_ids | all }] | vlan [{vlan_ids | add vlan_ids | except vlan_ids | none | remove vlan_ids | all }]]
```

**Example:**

```
Switch(config-if)# ipv6 nd inspection attach-policy example_policy
```

or

```
Switch(config-if)# ipv6 nd inspection attach-policy example_policy vlan 222,223,224
```

Attaches the Neighbor Discovery Inspection policy to the interface or the specified VLANs on that interface. The default policy is attached if the `attach-policy` option is not used.

---

Cisco 2960-X Switch Series Configuration Guide, Cisco IOS Release 15.0(2)EX
### How to Configure an IPv6 Neighbor Discovery Inspection Policy

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch(config-if)# ipv6 nd inspection vlan 222, 223,224</td>
<td>Verifies that the policy is attached to the specified interface without exiting the interface configuration mode.</td>
</tr>
</tbody>
</table>

**Step 4**

**Example:**

Switch(config-if)# do show running-config

---

### How to Attach an IPv6 Neighbor Discovery Inspection Policy to a Layer 2 EtherChannel Interface

Beginning in privileged EXEC mode, follow these steps to attach an IPv6 Neighbor Discovery Inspection policy on an EtherChannel interface or VLAN:

**SUMMARY STEPS**

1. configure terminal
2. interface range Interface_name
3. ipv6 nd inspection [attach-policy policy_name [ vlan {vlan_ids | add vlan_ids | except vlan_ids | none | remove vlan_ids | all} ] | vlan [ {vlan_ids | add vlan_ids | except vlan_ids | none | remove vlan_ids | all} ]
4. do show running-config interface portchannel_interface_name

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface range Interface_name</td>
<td>Specify the port-channel interface name assigned when the EtherChannel was created. Enters the interface range configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# interface Poll</td>
<td></td>
</tr>
</tbody>
</table>

**Tip**

Enter the `do show interfaces summary` command for quick reference to interface names and types.
### How to Attach an IPv6 Neighbor Discovery Inspection Policy to VLANS Globally

Beginning in privileged EXEC mode, follow these steps to attach an IPv6 ND Inspection policy to VLANS across multiple interfaces:

**SUMMARY STEPS**

1. configure terminal
2. vlan configuration vlan_list
3. ipv6 nd inspection [attach-policy policy_name]
4. do show running-config

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters the global configuration mode.</td>
</tr>
</tbody>
</table>
How to Configure an IPv6 Router Advertisement Guard Policy

Beginning in privileged EXEC mode, follow these steps to configure an IPv6 Router Advertisement policy:

**SUMMARY STEPS**

1. configure terminal
2. [no]ipv6 nd raguard policy *policy-name*
3. [no]device-role {host | monitor | router | switch}
4. [no]hop-limit {maximum | minimum} *value*
5. [no]managed-config-flag {off | on}
6. [no]match {ipv6 access-list *list* | ra prefix-list *list*}
7. [no]other-config-flag {on | off}
8. [no]router-preference maximum {high | medium | low}
9. [no]trusted-port
10. default {device-role | hop-limit {maximum | minimum} | managed-config-flag | match {ipv6 access-list | ra prefix-list} | other-config-flag | router-preference maximum | trusted-port}
11. do show ipv6 nd raguard policy *policy_name*
## Detailed Steps

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><code>configure terminal</code></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><code>[no]ipv6 nd raguard policy policy-name</code></td>
<td>Specifies the RA Guard policy name and enters RA Guard Policy configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Switch(config)# ipv6 nd raguard policy example_policy</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>`[no]device-role {host</td>
<td>monitor</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Switch(config-nd-raguard)# device-role switch</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>`[no]hop-limit {maximum</td>
<td>minimum} value`</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Switch(config-nd-raguard)# hop-limit maximum 33</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>`[no]managed-config-flag {off</td>
<td>on}`</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Switch(config-nd-raguard)# managed-config-flag on</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>`[no]match {ipv6 access-list list</td>
<td>ra prefix-list list}`</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Switch(config-nd-raguard)# match ipv6 access-list example_list</code></td>
<td></td>
</tr>
</tbody>
</table>
### Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 7</strong></td>
<td>Enables filtering of Router Advertisement messages by the Other Configuration, or &quot;O&quot; flag field. A rouge RA message with an O field of 1 can cause a host to use a rogue DHCPv6 server. If not configured, this filter is disabled.</td>
</tr>
<tr>
<td>`[no]other-config-flag {on</td>
<td>off}`</td>
</tr>
<tr>
<td>Example: Switch(config-nd-raguard)# other-config-flag on</td>
<td><strong>On</strong>—Accepts and forwards RA messages with an O value of 1, blocks those with 0.</td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>Enables filtering of Router Advertisement messages by the Router Preference flag. If not configured, this filter is disabled.</td>
</tr>
<tr>
<td>`[no]router-preference maximum {high</td>
<td>medium</td>
</tr>
<tr>
<td>Example: Switch(config-nd-raguard)# router-preference maximum high</td>
<td>• <strong>high</strong>—Accepts RA messages with the Router Preference set to high, medium, or low.</td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td>When configured as a trusted port, all attached devices are trusted, and no further message verification is performed.</td>
</tr>
<tr>
<td><code>[no]trusted-port</code></td>
<td><strong>Step 9</strong></td>
</tr>
<tr>
<td>Example: Switch(config-nd-raguard)# trusted-port</td>
<td><strong>Step 9</strong></td>
</tr>
<tr>
<td><strong>Step 10</strong></td>
<td>Restores a command to its default value.</td>
</tr>
<tr>
<td>default {device-role</td>
<td>hop-limit {maximum</td>
</tr>
<tr>
<td>Example: Switch(config-nd-raguard)# default hop-limit</td>
<td><strong>Step 10</strong></td>
</tr>
<tr>
<td><strong>Step 11</strong></td>
<td>(Optional)—Displays the ND Guard Policy configuration without exiting the RA Guard policy configuration mode.</td>
</tr>
<tr>
<td>do show ipv6 nd raguard policy <code>policy_name</code></td>
<td><strong>Step 11</strong></td>
</tr>
<tr>
<td>Example: Switch(config-nd-raguard)# do show ipv6 nd raguard policy example_policy</td>
<td><strong>Step 11</strong></td>
</tr>
</tbody>
</table>

### How to Attach an IPv6 Router Advertisement Guard Policy to an Interface

Beginning in privileged EXEC mode, follow these steps to attach an IPv6 Router Advertisement policy to an interface or to VLANs on the interface:
SUMMARY STEPS

1. `configure terminal`
2. `interface Interface_type stack/module/port`
3. `ipv6 nd raguard [attach-policy policy_name [ vlan {vlan_ids | add vlan_ids | except vlan_ids | none | remove vlan_ids | all} ] | vlan [{vlan_ids | add vlan_ids | except vlan_ids | none | remove vlan_ids | all} ] ]`
4. `do show running-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><code>configure terminal</code></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>`Switch# configure terminal`</td>
</tr>
<tr>
<td><strong>Purpose:</strong></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><code>interface Interface_type stack/module/port</code></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>`Switch(config)# interface gigabitethernet 1/1/4`</td>
</tr>
<tr>
<td><strong>Purpose:</strong></td>
<td>Specifies an interface type and identifier; enters the interface configuration mode.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>`ipv6 nd raguard [attach-policy policy_name [ vlan {vlan_ids</td>
</tr>
</tbody>
</table>
| **Example:** | \`Switch(config-if)\# ipv6 nd raguard attach-policy example_policy\`
| | or \`Switch(config-if)\# ipv6 nd raguard attach-policy example_policy vlan 222,223,224\`
| | or \`Switch(config-if)\# ipv6 nd raguard vlan 222, 223,224\` |
| **Purpose:** | Attaches the Neighbor Discovery Inspection policy to the interface or the specified VLANs on that interface. The default policy is attached if the `attach-policy` option is not used. |
| **Step 4** | `do show running-config` |
| **Example:** | \`Switch(config-if)\# do show running-config\` |
| **Purpose:** | Confirms that the policy is attached to the specified interface without exiting the configuration mode. |

How to Attach an IPv6 Router Advertisement Guard Policy to a Layer 2 EtherChannel Interface

Beginning in privileged EXEC mode, follow these steps to attach an IPv6 Router Advertisement Guard Policy on an EtherChannel interface or VLAN:

How to Configure an IPv6 Router Advertisement Guard Policy
SUMMARY STEPS

1. configure terminal
2. interface range Interface_name
3. ipv6 nd raguard [attach-policy policy_name [ vlan {vlan_ids | add vlan_ids | except vlan_ids | none | remove vlan_ids | all} ] | vlan [ {vlan_ids | add vlan_ids | except vlan_ids | none | remove vlan_ids | all}] ]
4. do show running-config interface portchannel_interface_name

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> interface range Interface_name</td>
<td>Specify the port-channel interface name assigned when the EtherChannel was created. Enters the interface range configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch(config)# interface Po11</td>
<td>Tip: Enter the do show interfaces summary command for quick reference to interface names and types.</td>
</tr>
<tr>
<td><strong>Step 3</strong> ipv6 nd raguard [attach-policy policy_name [ vlan {vlan_ids</td>
<td>add vlan_ids</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch(config-if-range)# ipv6 nd raguard attach-policy example_policy</td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>Switch(config-if-range)# ipv6 nd raguard attach-policy example_policy vlan 222,223,224</td>
</tr>
<tr>
<td></td>
<td>Switch(config-if-range)#ipv6 nd raguard vlan 222,223,224</td>
</tr>
<tr>
<td><strong>Step 4</strong> do show running-config interface portchannel_interface_name</td>
<td>Confirms that the policy is attached to the specified interface without exiting the configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Switch#(config-if-range)# do show running-config int poll</td>
<td></td>
</tr>
</tbody>
</table>
How to Configure an IPv6 DHCP Guard Policy

Beginning in privileged EXEC mode, follow these steps to configure an IPv6 DHCP (DHCPv6) Guard policy:

SUMMARY STEPS

1. configure terminal
2. [no]ipv6 dhcp guard policy policy-name
3. [no]device-role {client | server}
4. [no] match server access-list ipv6-access-list-name
5. [no] match reply prefix-list ipv6-prefix-list-name
6. [no] preference { max limit | min limit }
7. [no] trusted-port
8. default {device-role | trusted-port}
9. do show ipv6 dhcp guard policy policy_name

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>Specifies the DHCPv6 Guard policy name and enters DHCPv6 Guard Policy configuration mode.</td>
</tr>
<tr>
<td>[no]ipv6 dhcp guard policy policy-name</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# ipv6 dhcp guard policy example_policy</td>
</tr>
<tr>
<td>Step 3</td>
<td>(Optional) Filters out DHCPv6 replies and DHCPv6 advertisements on the port that are not from a device of the specified role. Default is client.</td>
</tr>
<tr>
<td>[no]device-role {client</td>
<td>server}</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-dhcp-guard)# device-role server</td>
</tr>
<tr>
<td></td>
<td>• client—Default value, specifies that the attached device is a client. Server messages are dropped on this port.</td>
</tr>
<tr>
<td></td>
<td>• server—Specifies that the attached device is a DHCPv6 server. Server messages are allowed on this port.</td>
</tr>
<tr>
<td>Step 4</td>
<td>(Optional). Enables verification that the advertised DHCPv6 server or relay address is from an authorized server access list (The destination address in the access list is 'any'). If not configured, this check will be bypassed. An empty access list is treated as a permit all.</td>
</tr>
<tr>
<td>[no] match server access-list ipv6-access-list-name</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>;;Assume a preconfigured IPv6 Access List as follows: Switch(config)# ipv6 access-list my_acls Switch(config-ipv6-acl)# permit host FE80::A8BB:CCFF:FE01:F700 any</td>
</tr>
</tbody>
</table>
### How to Configure an IPv6 DHCP Guard Policy

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| `;configure DHCPv6 Guard to match approved access list.  
Switch(config-dhcp-guard)# match server access-list my_acls`                  | (Optional) Enables verification of the advertised prefixes in DHCPv6 reply messages from the configured authorized prefix list. If not configured, this check will be bypassed. An empty prefix list is treated as a permit. |
| **Step 5** `[no] match reply prefix-list ipv6-prefix-list-name`                  |                                                                                                   |
| **Example:**                                                                    |                                                                                                   |
| `;;Assume a preconfigured IPv6 prefix list as follows:  
Switch(config)# ipv6 prefix-list my_prefix permit 2001:0DB8::/64 le 128  
;;; Configure DHCPv6 Guard to match prefix  
Switch(config-dhcp-guard)# match reply prefix-list my_prefix`                  |                                                                                                   |
| **Step 6** `[no] preference { max limit | min limit }`                           | Configure `max` and `min` when `device-role` is `server` to filter DHCPv6 server advertisements by the server preference value. The defaults permit all advertisements. 'max limit'—(0 to 255) (Optional) Enables verification that the advertised preference (in preference option) is less than the specified limit. Default is 255. If not specified, this check will be bypassed. 'min limit'—(0 to 255) (Optional) Enables verification that the advertised preference (in preference option) is greater than the specified limit. Default is 0. If not specified, this check will be bypassed. |
| **Example:**                                                                    |                                                                                                   |
| `Switch(config-dhcp-guard)# preference max 250  
Switch(config-dhcp-guard)# preference min 150`                                |                                                                                                   |
| **Step 7** `[no] trusted-port`                                                   | (Optional) `trusted-port`—Sets the port to a trusted mode. No further policing takes place on the port. 'Note' If you configure a trusted port then the device-role option is not available. | |
| **Example:**                                                                    |                                                                                                   |
| `Switch(config-dhcp-guard)# trusted-port`                                       |                                                                                                   |
| **Step 8** `default {device-role | trusted-port}`                               | (Optional) `default`—Sets a command to its defaults.                                              |
| **Example:**                                                                    |                                                                                                   |
| `Switch(config-dhcp-guard)# default device-role`                                |                                                                                                   |
| **Step 9** `do show ipv6 dhcp guard policy policy_name`                         | (Optional) Displays the configuration of the IPv6 DHCP guard policy without leaving the configuration submode. Omitting the `policy_name` variable displays all DHCPv6 policies. |
| **Example:**                                                                    |                                                                                                   |
| `Switch(config-dhcp-guard)# do show ipv6 dhcp guard policy example_policy`      |                                                                                                   |

### Example of DHCPv6 Guard Configuration

```bash
enable
configure terminal
ipv6 access-list acl1
 permit host FE80::A88B:CCFF:FE01:F700 any
ipv6 prefix-list abc permit 2001:0DB8::/64 le 128```
ipv6 dhcp guard policy poll
device-role server
match server access-list acl1
match reply prefix-list abc
preference min 0
preference max 255
trusted-port
interface GigabitEthernet 0/2/0
switchport
ipv6 dhcp guard attach-policy poll vlan add 1
ipv6 dhcp guard attach-policy poll
show ipv6 dhcp guard policy poll

How to Attach an IPv6 DHCP Guard Policy to an Interface or a VLAN on an Interface

Beginning in privileged EXEC mode, follow these steps to configure IPv6 Binding Table Content:

SUMMARY STEPS

1. configure terminal
2. interface Interface_type stack/module/port
3. ipv6 dhcp guard [attach-policy policy_name [vlan {vlan_ids | add vlan_ids | except vlan_ids | none | remove vlan_ids | all } | vlan [{vlan_ids | add vlan_ids | except vlan_ids | none | remove vlan_ids | all }]]
4. do show running-config interface Interface_type stack/module/port

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: configure terminal</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>interface Interface_type stack/module/port</td>
<td>Specifies an interface type and identifier; enters the interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: interface gigabitethernet 1/1/4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ipv6 dhcp guard [attach-policy policy_name [vlan {vlan_ids</td>
<td>add vlan_ids</td>
</tr>
<tr>
<td></td>
<td>Example: ipv6 dhcp guard attach-policy example_policy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example: ipv6 dhcp guard attach-policy example_policy vlan 222,223,224</td>
<td></td>
</tr>
</tbody>
</table>
How to Configure an IPv6 DHCP Guard Policy

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch(config-if)# ipv6 dhcp guard vlan 222, 223,224</td>
<td></td>
</tr>
</tbody>
</table>

Step 4

do show running-config interface Interface_type stack/module/port

Example:

Switch#(config-if)# do show running-config gig 1/1/4

How to Attach an IPv6 DHCP Guard Policy to a Layer 2 EtherChannel Interface

Beginning in privileged EXEC mode, follow these steps to attach an IPv6 DHCP Guard policy on an EtherChannel interface or VLAN:

SUMMARY STEPS

1. **configure terminal**
2. **interface range** *Interface_name*
3. **ipv6 dhcp guard** [attach-policy *policy_name* [vlan {vlan_ids | add vlan_ids | except vlan_ids | none | remove vlan_ids | all}] | vlan {vlan_ids | add vlan_ids | except vlan_ids | none | remove vlan_ids | all}]

4. **do show running-config interface portchannel_interface_name**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
</tr>
</tbody>
</table>

Specify the port-channel interface name assigned when the EtherChannel was created. Enters the interface range configuration mode.

Tip

Enter the **do show interfaces summary** command for quick reference to interface names and types.

| **Step 3** | ipv6 dhcp guard [attach-policy *policy_name* [vlan {vlan_ids | add vlan_ids | except vlan_ids | none | remove vlan_ids | all}] | vlan {vlan_ids | add vlan_ids | except vlan_ids | none | remove vlan_ids | all}] |

Attaches the DHCP Guard policy to the interface or the specified VLANs on that interface. The default policy is attached if the **attach-policy** option is not used.
Purpose Command or Action | Purpose
--- | ---
Example:
Switch(config-if-range)# ipv6 dhcp guard attach-policy example_policy
or
Switch(config-if-range)# ipv6 dhcp guard attach-policy example_policy vlan 222,223,224
or
Switch(config-if-range)#ipv6 dhcp guard vlan 222,223,224

Step 4
do show running-config interface portchannel_interface_name

Example:
Switch(config-if-range)# do show running-config
int po11

Confirms that the policy is attached to the specified interface without exiting the configuration mode.

How to Attach an IPv6 DHCP Guard Policy to VLANs Globally

Beginning in privileged EXEC mode, follow these steps to attach an IPv6 DHCP Guard policy to VLANs across multiple interfaces:

SUMMARY STEPS

1. **configure terminal**
2. **vlan configuration vlan_list**
3. **ipv6 dhcp guard [attach-policy policy_name]**
4. **do show running-config**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>vlan configuration vlan_list</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# vlan configuration 334</td>
</tr>
</tbody>
</table>

Enters the global configuration mode.

Specifies the VLANs to which the IPv6 Snooping policy will be attached; enters the VLAN interface configuration mode.
Summary Steps

1. `enable`
2. `configure terminal`
3. `[no] ipv6 source-guard policy policy_name`
4. `[deny global-autoconf] [permit link-local] [default{...}] [exit] [no{...}]`
5. `end`
6. `show ipv6 source-guard policy policy_name`

Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch></code> <code>enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Specifies the IPv6 Source Guard policy name and enters IPv6 Source Guard policy configuration mode.</td>
</tr>
<tr>
<td><code>[no] ipv6 source-guard policy policy_name</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch(config)# ipv6 source-guard policy example_policy</code></td>
<td></td>
</tr>
</tbody>
</table>
How to Configure IPv6 Source Guard

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4</td>
<td>(Optional) Defines the IPv6 Source Guard policy.</td>
</tr>
</tbody>
</table>
| [deny global-autoconf] [permit link-local] [default{...}] [exit] [no{...}] | - deny global-autoconf—Denies data traffic from auto-configured global addresses. This is useful when all global addresses on a link are DHCP-assigned and the administrator wants to block hosts with self-configured addresses to send traffic.
- permit link-local—Allows all data traffic that is sourced by a link-local address.

Note Trusted option under source guard policy is not supported. |
| **Example:** | Switch(config-sisf-sourceguard)# deny global-autoconf |

<table>
<thead>
<tr>
<th>Step 5</th>
<th>end</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Switch(config-sisf-sourceguard)# end</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 6</th>
<th>show ipv6 source-guard policy policy_name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Switch# show ipv6 source-guard policy example_policy</td>
</tr>
</tbody>
</table>

What to Do Next

Apply the IPv6 Source Guard policy to an interface.

How to Attach an IPv6 Source Guard Policy to an Interface

SUMMARY STEPS

1. enable
2. configure terminal
3. interface Interface_type stack/module/port
4. ipv6 source-guard [attach-policy <policy_name>]
5. show ipv6 source-guard policy *policy_name*
Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface Interface_type stack/module/port</td>
<td>Specifies an interface type and identifier; enters the interface configuration mode.</td>
</tr>
<tr>
<td>Example: Switch(config)# interface gigabitethernet 1/1/4</td>
<td></td>
</tr>
<tr>
<td>Step 4 ipv6 source-guard [attach-policy <policy_name>]</td>
<td>Attaches the IPv6 Source Guard policy to the interface. The default policy is attached if the attach-policy option is not used.</td>
</tr>
<tr>
<td>Example: Switch(config-if)# ipv6 source-guard attach-policy example_policy</td>
<td></td>
</tr>
<tr>
<td>Step 5 show ipv6 source-guard policy policy_name</td>
<td>Shows the policy configuration and all the interfaces where the policy is applied.</td>
</tr>
<tr>
<td>Example: Switch(config-if)# show ipv6 source-guard policy example_policy</td>
<td></td>
</tr>
</tbody>
</table>

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
</table>
Related Topic

<table>
<thead>
<tr>
<th>IPv6 network management and security topics</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>IPv6 Command Reference</th>
</tr>
</thead>
</table>

Document Title

IPv6 Configuration Library, Cisco IOS XE Release 3SE (Catalyst 3850 Switches)

IPv6 Command Reference, Cisco IOS XE Release 3SE (Catalyst 3850 Switches)

Error Message Decoder

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>To help you research and resolve system error messages in this release, use the Error Message Decoder tool.</td>
<td>https://www.cisco.com/cgi-bin/Support/Errordecoder/index.cgi</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/support</td>
</tr>
</tbody>
</table>
Configuring Cisco TrustSec

- Information about Cisco TrustSec, page 1203
- Finding Feature Information, page 1203
- Cisco TrustSec Features, page 1204
- Feature Information for Cisco TrustSec, page 1204

Information about Cisco TrustSec

Cisco TrustSec provides security improvements to Cisco network devices based on the capability to strongly identify users, hosts, and network devices within a network. TrustSec provides topology-independent and scalable access controls by uniquely classifying data traffic for a particular role. TrustSec ensures data confidentiality and integrity by establishing trust among authenticated peers and encrypting links with those peers.

The key component of Cisco TrustSec is the Cisco Identity Services Engine (ISE). Cisco ISE can provision switches with TrustSec Identities and Security Group ACLs (SGACLs), though these may be configured manually on the switch.

Finding Feature Information

To configure Cisco Trustsec on the switch, see the Cisco TrustSec Switch Configuration Guide at the following URL:

Release notes for Cisco TrustSec General Availability releases are at the following URL:

For restrictions and limitations on Catalyst 3850 and 3650, see the notes available at the following URL:

Additional information about the Cisco TrustSec solution, including overviews, datasheets, features by platform matrix, and case studies, is available at the following URL:

Cisco TrustSec Features

The table below lists the Cisco TrustSec features implemented on Cisco TrustSec-enabled Catalyst 2960-X and 2960-XR Series Switches:

<table>
<thead>
<tr>
<th>Cisco TrustSec Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endpoint Admission Control (EAC)</td>
<td>EAC is an authentication process for an endpoint user or a device connecting to the TrustSec domain. Usually EAC takes place at the access level switch. Successful authentication and authorization in the EAC process results in Security Group Tag assignment for the user or device. Currently EAC can be 802.1X, MAC Authentication Bypass (MAB), and Web Authentication Proxy (WebAuth).</td>
</tr>
<tr>
<td>SGT Exchange Protocol (SXP)</td>
<td>Security Group Tag Exchange Protocol (SXP). With SXP, devices that are not TrustSec-hardware-capable can receive SGT attributes for authenticated users and devices from the Cisco Identity Services Engine (ISE) or the Cisco Secure Access Control System (ACS). The devices can then forward a sourceIP-to-SGT binding to a TrustSec-hardware-capable device will tag the source traffic for SGACL enforcement.</td>
</tr>
</tbody>
</table>

Feature Information for Cisco TrustSec

Table 126: Feature Information for Cisco TrustSec

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Release</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>SXPv1 and SXPv2</td>
<td>Cisco IOS XE 15.0(2)EX</td>
<td>SXP is introduced on the Catalyst 2960-X switch.</td>
</tr>
<tr>
<td>SXPv1 and SXPv2</td>
<td>Cisco IOS XE 15.0(2)EX1</td>
<td>SXP is introduced on the Catalyst 2960-XR switch.</td>
</tr>
</tbody>
</table>
Configuring FIPS

Information About FIPS and Common Criteria

- Information About FIPS and Common Criteria, page 1205

Information About FIPS and Common Criteria

The Federal Information Processing Standard (FIPS) certification documents for Cisco Catalyst series switches are posted on the following website:

Click the link in the Certification column to view the Consolidated Validation Certificate and the Security Policy document. The Security Policy document describes the FIPS implementation, hardware installation, firmware initialization, and software configuration procedures for FIPS operation.

Common Criteria is an international standard (ISO/IEC 15408) for computer security certification. This standard is a set of requirements, tests, and evaluation methods that ensures that the Target of Evaluation complies with a specific Protection Profile or custom Security Target. For more information, see the security target document for specific Cisco Catalyst switch models and Cisco IOS Releases at:

http://www.niap-ccevs.org/CCEVS_Products/pcl.cfm?tech_name=Network+Switch
PART XI

Stack Manager

- Managing Switch Stacks, page 1209
CHAPTER 51

Managing Switch Stacks

• Finding Feature Information, page 1209
• Prerequisites for Switch Stacks, page 1209
• Restrictions for Switch Stacks, page 1210
• Information About Switch Stacks, page 1210
• How to Configure a Switch Stack, page 1224
• Troubleshooting the Switch Stack, page 1231
• Monitoring the Switch Stack, page 1233
• Configuration Examples for Switch Stacks, page 1234
• Additional References for Switch Stacks, page 1237

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Switch Stacks

All stack members must run the same Cisco IOS software image to ensure compatibility among stack members. For switch stack hardware considerations, see the Catalyst 2960-X Switch Hardware Installation Guide.
Restrictions for Switch Stacks

The following are restrictions for your switch stack configuration:

• Stacking is not supported on switches running the LAN Lite image. All switches in the stack must be running the LAN Base image.

• In a mixed stack of Catalyst 2960-X and Catalyst 2960-S switches, the number of supported stack members is reduced from eight to four.

• In a mixed stack of Catalyst 2960-X and Catalyst 2960-S switches, full stack bandwidth is reduced from 80 Gbps to 40 Gbps.

• In a mixed stack of Catalyst 2960-X and Catalyst 2960-S switches, stack convergence time is increased from milliseconds to 1 to 2 seconds.

• Auto-upgrade of stack cannot be done when one of the switch in stack is with version Cisco IOS 15.2(3)E. This means that whenever any of the switches in the stack goes into a version mismatch, and if either master is running Cisco IOS 15.2(3)E, or if a member is running Cisco 15.2(3)E, the member can not be auto-upgraded to the required version.

Note

In a mixed stack configuration, there is limited support for some features. For more information about a specific feature, see the relevant Catalyst 2960-X configuration guide.

Information About Switch Stacks

Switch Stack Overview

A switch stack is a set of up to eight stacking-capable switches connected through their stack ports. You can connect only one switch type in a stack, or you can connect a mix of Catalyst 2960-X and Catalyst 2960-S switches in the stack. The stack can have one of these configurations:

• Homogeneous stack—A Catalyst 2960-X stack with only Catalyst 2960-X switches as stack members. A homogenous stack can have up to 8 stack members.

• Mixed stack—A stack with a mix of Catalyst 2960-X and Catalyst 2960-S switches. A mixed stack can have up to 4 stack members, with either a Catalyst 2960-X or Catalyst 2960-S switch as the stack master.

The stack master controls the operation of the switch stack, and is the single point of stack-wide management. From the stack master, you configure:

• System-level (global) features that apply to all stack members

• Interface-level features for each stack member

The stack master contains the saved and running configuration files for the switch stack. The configuration files include the system-level settings for the switch stack and the interface-level settings for each stack member. Each stack member has a current copy of these files for back-up purposes.
Supported Features in a Switch Stack

The system-level features supported on the stack master are supported on the entire switch stack.

Encryption Features

If the stack master is running the cryptographic universal software image (supports encryption), the encryption features are available on the switch stack.

FlexStack-Plus

The stack members use the Cisco FlexStack-Plus technology to work together as a unified system. Layer 2 protocols support the entire switch stack as a single entity in the network.

Note

Switch stacks running the LAN Base image do not support Layer 3 features.

The FlexStack-Plus bandwidth for a single stack port is 20 Gbps. With FlexStack-Plus technology, up to eight members can be joined into a single stack. In a mixed stack of Catalyst 2960-X and Catalyst 2960-S switches, FlexStack-Plus reverts to FlexStack capabilities of 10 Gbps stack port bandwidth and a maximum of four members per stack.

Fast Stack Convergence

When a single link in a full ring stack becomes inoperable, there is a disruption in the forwarding of packets, and the stack moves to a half ring. In a homogenous stack of Catalyst 2960-X switches this disruption of traffic (or stack convergence time) takes milliseconds. In a mixed stack configuration, the stack takes 1 to 2 seconds to reconverge.

Switch Stack Membership

A switch stack has up to eight stack members connected through their stack ports. A switch stack always has one stack master.

A standalone switch is a switch stack with one stack member that also operates as the stack master. You can connect one standalone switch to another to create a switch stack containing two stack members, with one of
them as the stack master. You can connect standalone switches to an existing switch stack to increase the stack membership.

Figure 95: Creating a Switch Stack from Two Standalone Switches

![Image](image1)

Figure 96: Adding a Standalone Switch to a Switch Stack

![Image](image2)

Mixed Stack Membership

A mixed stack can have up to four stack members, with either a Catalyst 2960-X or Catalyst 2960-S switch as the stack master.

By default, Catalyst 2960-X switches operate at a port speed of 20 Gbps while Catalyst 2960-S switches have a maximum port speed of 10 Gbps. In a mixed stack of Catalyst 2960-X and Catalyst 2960-S switches, the stack must operate at the port speed of the Catalyst 2960-S switch. Otherwise, the switches will not stack.

To set the port speed of the stack to 10 Gbps, use the `switch stack port-speed 10` global configuration command on a Catalyst 2960-X stack member before you add a Catalyst 2960-S switch to the stack, and then reload the stack.
Changes to Switch Stack Membership

If you replace a stack member with an identical model, the new switch functions with exactly the same configuration as the replaced switch, assuming that the new switch (referred to as the provisioned switch) is using the same member number as the replaced switch.

The operation of the switch stack continues uninterrupted during membership changes unless you remove the stack master or you add powered-on standalone switches or switch stacks.

- Adding powered-on switches (merging) causes the stack masters of the merging switch stacks to elect a stack master from among themselves. The reelected stack master retains its role and configuration as do its stack members. All remaining switches, including the former stack masters, reload and join the switch stack as stack members. They change their stack member numbers to the lowest available numbers and use the stack configuration of the reelected stack master.

- Removing powered-on stack members causes the switch stack to divide (partition) into two or more switch stacks, each with the same configuration. This can cause:
 - An IP address conflict in your network. If you want the switch stacks to remain separate, change the IP address or addresses of the newly created switch stacks.
 - A MAC address conflict between two members in the stack. You can use the stack-mac update force command to resolve the conflict.

Note
Make sure that you power off the switches that you add to or remove from the switch stack.

After adding or removing stack members, make sure that the switch stack is operating at full bandwidth (40 Gbps). Press the Mode button on a stack member until the Stack mode LED is on. The last two right port LEDs on all switches in the stack should be green. Depending on the switch model, the last two right ports are 10-Gigabit Ethernet ports or small form-factor pluggable (SFP) module ports (10/100/1000 ports). If one or both of these LEDs are not green on any of the switches, the stack is not operating at full bandwidth.

It may take up to 4 seconds for stack convergence when a new stack member is added to the existing switch stack.

If you remove powered-on members but do not want to partition the stack:

- Power off the switches in the newly created switch stacks.
- Reconnect them to the original switch stack through their stack ports.
- Power on the switches.

For cabling and power considerations that affect switch stacks, see the Catalyst 2960-X Switch Hardware Installation Guide.

Stack Member Numbers

The stack member number (1 to 8) identifies each member in the switch stack. The member number also determines the interface-level configuration that a stack member uses. You can display the stack member number by using the show switch EXEC command.
A new, out-of-the-box Switch (one that has not joined a Switch stack or has not been manually assigned a stack member number) ships with a default stack member number of 1. When it joins a Switch stack, its default stack member number changes to the lowest available member number in the stack.

Stack members in the same Switch stack cannot have the same stack member number. Every stack member, including a standalone Switch, retains its member number until you manually change the number or unless the number is already being used by another member in the stack.

- If you manually change the stack member number by using the `switch current-stack-member-number renumber new-stack-member-number` global configuration command, the new number goes into effect after that stack member resets (or after you use the `reload slot stack-member-number` privileged EXEC command) and only if that number is not already assigned to any other members in the stack. Another way to change the stack member number is by changing the Switch_NUMBER environment variable.

 If the number is being used by another member in the stack, the Switch selects the lowest available number in the stack.

 If you manually change the number of a stack member and no interface-level configuration is associated with that new member number, that stack member resets to its default configuration.

 You cannot use the `switch current-stack-member-number renumber new-stack-member-number` global configuration command on a provisioned Switch. If you do, the command is rejected.

- If you move a stack member to a different Switch stack, the stack member retains its number only if the number is not being used by another member in the stack. If it is being used, the Switch selects the lowest available number in the stack.

- If you merge Switch stacks, the Switch that join the Switch stack of a new stack master select the lowest available numbers in the stack.

As described in the hardware installation guide, you can use the Switch port LEDs in Stack mode to visually determine the stack member number of each stack member.

In the default mode Stack LED will blink in green color only on the stack master. However, when we scroll the Mode button to Stack option - Stack LED will glow green on all the stack members.

When mode button is scrolled to Stack option, the switch number of each stack member will be displayed as LEDs on the first five ports of that switch. The switch number is displayed in binary format for all stack members. On the switch, the amber LED indicates value 0 and green LED indicates value 1.

Example for switch number 5 (Binary - 00101):

First five LEDs will glow in below color combination on stack member with switch number 5.

- Port-1 : Amber
- Port-2 : Amber
- Port-3 : Green
- Port-4 : Amber
- Port-5 : Green

Similarly first five LEDs will glow in amber or green, depending on the switch number on all stack members.
Note

- If we connect a Horizontal stack port to a normal network port on other end, stack port transmission/reception will be disabled within 30 seconds if there are no SDP packet received from the other end.

- Stack port will not go down but only transmission/reception will be disabled. The log message shown below will be displayed on the console. Once the peer end network port is converted to stack port, transmission/reception on this stack port will be enabled.

%STACKMGR-4-HSTACK_LINK_CONFIG: Verify peer stack port setting for hstack StackPort-1 switch 5 (hostname=switchnumber)

Stack Member Priority Values

A higher priority value for a stack member increases the probability of it being elected stack master and retaining its stack member number. The priority value can be 1 to 15. The default priority value is 1. You can display the stack member priority value by using the `show switch` EXEC command.

Note

We recommend assigning the highest priority value to the switch that you prefer to be the stack master. This ensures that the switch is reelected as the stack master if a reelection occurs.

To change the priority value for a stack member, use the `switch stack-member-number priority new priority-value` global configuration command. For more information, see the "Setting the Stack Member Priority Value" section.

The new priority value takes effect immediately but does not affect the current stack master. The new priority value helps determine which stack member is elected as the new stack master when the current stack master or the switch stack resets.

Switch Stack Bridge ID and MAC Address

The MAC address of the stack master determines the stack MAC address.

When the stack initializes, the MAC address of the stack master determines the bridge ID that identifies the stack in the network.

If the stack master changes, the MAC address of the new stack master determines the new bridge ID and stack MAC address.

If the entire switch stack reloads, the switch stack uses the MAC address of the stack master.

Persistent MAC Address on the Switch Stack

You can use the persistent MAC address feature to set a time delay before the stack MAC address changes to the MAC address of the new stack master. When this feature is enabled, the stack MAC address changes in approximately 4 minutes. During this time, if the previous stack master rejoins the stack, the stack continues to use its MAC address as the stack MAC address, even if the switch is now a stack member and not a stack master. If the previous stack master does not rejoin the stack during this period, the switch stack takes the MAC address of the new stack master as the stack MAC address.
You can also configure stack MAC persistency so that the stack MAC address never changes to the new stack master MAC address.

Stack Master Election and Reelection

All stack members are eligible stack masters. If the stack master becomes unavailable, the remaining members elect a new stack master from among themselves.

The stack master is elected or reelected based on one of these factors and in the order listed:

1. The switch that is currently the stack master.
2. The switch with the highest stack member priority value.

Note

We recommend assigning the highest priority value to the switch that you prefer to be the stack master. This ensures that the switch is reelected as stack master if a re-election occurs.

3. The switch that has the configuration file.
4. The switch with the lowest MAC address.

A stack master retains its role unless one of these events occurs:

- The switch stack is reset.*
- The stack master is removed from the switch stack.
- The stack master is reset or powered off.
- The stack master fails.
- The switch stack membership is increased by adding powered-on standalone switches or switch stacks.*

In the events marked by an asterisk (*), the current stack master *might* be reelected based on the listed factors.

When you power on or reset an entire switch stack, some stack members *might not* participate in the stack master election. Stack members that are powered on within the same 20-second time frame participate in the stack master election and have a chance to become the stack master. Stack members that are powered on after the 20-second time frame do not participate in this initial election and become stack members. All stack members participate in reelectons. For all powering considerations that affect stack-master elections, see the "Switch Installation" chapter in the hardware installation guide.

The new stack master becomes available after a few seconds. In the meantime, the switch stack uses the forwarding tables in memory to minimize network disruption. The physical interfaces on the other available stack members are not affected during a new stack master election and reset.

After a new stack master is elected and the previous stack master becomes available, the previous stack master *does not* resume its role as stack master.

For all powering considerations that affect stack-master elections, see the *Catalyst 2960-X Switch Hardware Installation Guide.*
Switch Stack Configuration Files

The stack master has the saved and running configuration files for the switch stack. All stack members periodically receive synchronized copies of the configuration files from the stack master. If the stack master becomes unavailable, any stack member assuming the role of stack master has the latest configuration files.

The configuration files record these settings:

- System-level (global) configuration settings such as IP, STP, VLAN, and SNMP settings that apply to all stack members
- Stack member interface-specific configuration settings that are specific for each stack member

Note

The interface-specific settings of the stack master are saved if the stack master is replaced without saving the running configuration to the startup configuration.

A new, out-of-box switch joining a switch stack uses the system-level settings of that switch stack. If a switch is moved to a different switch stack before it is powered on, that switch loses its saved configuration file and uses the system-level configuration of the new switch stack. If the switch is powered on as a standalone switch before it joins the new switch stack, the stack will reload. When the stack reloads, the new switch may become the stack master, retain its configuration and overwrite the configuration files of the other stack members.

The interface-specific configuration of each stack member is associated with the stack member number. Stack members retain their numbers unless they are manually changed or they are already used by another member in the same switch stack. If the stack member number changes, the new number goes into effect after that stack member resets.

- If an interface-specific configuration does not exist for that member number, the stack member uses its default interface-specific configuration.
- If an interface-specific configuration exists for that member number, the stack member uses the interface-specific configuration associated with that member number.

If you replace a failed member with an identical model, the replacement member automatically uses the same interface-specific configuration as the failed switch. You do not need to reconfigure the interface settings. The replacement switch (referred to as the provisioned switch) must have the same stack member number as the failed switch.

You back up and restore the stack configuration in the same way as you would for a standalone switch configuration.

Offline Configuration to Provision a Stack Member

You can use the offline configuration feature to provision (to supply a configuration to) a new switch before it joins the switch stack. You can configure the stack member number, the switch type, and the interfaces associated with a switch that is not currently part of the stack. The configuration that you create on the switch stack is called the provisioned configuration. The switch that is added to the switch stack and that receives this configuration is called the provisioned switch.

You manually create the provisioned configuration through the switch stack-member-number provision type global configuration command. You must change the stack-member-number on the provisioned switch before you add it to the stack, and it must match the stack member number that you created for the new switch on
the switch stack. The switch type in the provisioned configuration must match the switch type of the newly added switch. The provisioned configuration is automatically created when a switch is added to a switch stack and when no provisioned configuration exists.

When you configure the interfaces associated with a provisioned switch, the switch stack accepts the configuration, and the information appears in the running configuration. However, as the switch is not active, any configuration on the interface is not operational and the interface associated with the provisioned switch does not appear in the display of the specific feature. For example, VLAN configuration information associated with a provisioned switch does not appear in the `show vlan` user EXEC command output on the switch stack.

The switch stack retains the provisioned configuration in the running configuration whether or not the provisioned switch is part of the stack. You can save the provisioned configuration to the startup configuration file by entering the `copy running-config startup-config` privileged EXEC command. The startup configuration file ensures that the switch stack can reload and can use the saved information whether or not the provisioned switch is part of the switch stack.

Effects of Adding a Provisioned Switch to a Switch Stack

When you add a provisioned Switch to the switch stack, the stack applies either the provisioned configuration or the default configuration. This table lists the events that occur when the switch stack compares the provisioned configuration with the provisioned switch.

Table 127: Results of Comparing the Provisioned Configuration with the Provisioned Switch

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>The stack member numbers and the Switch types match.</td>
<td>1 If the stack member number of the provisioned switch matches the stack member number in the provisioned configuration on the stack, and 2 If the Switch type of the provisioned switch matches the Switch type in the provisioned configuration on the stack.</td>
</tr>
<tr>
<td>The stack member numbers match but the Switch types do not match.</td>
<td>1 If the stack member number of the provisioned switch matches the stack member number in the provisioned configuration on the stack, but 2 The Switch type of the provisioned switch does not match the Switch type in the provisioned configuration on the stack.</td>
</tr>
</tbody>
</table>
Scenario

The stack member number is not found in the provisioned configuration.

<table>
<thead>
<tr>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>The switch stack applies the default configuration to the provisioned switch and adds it to the stack. The provisioned configuration is changed to reflect the new information.</td>
</tr>
</tbody>
</table>

The stack member number of the provisioned switch is not found in the provisioned configuration.

<table>
<thead>
<tr>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>The switch stack applies the default configuration to the provisioned switch and adds it to the stack.</td>
</tr>
</tbody>
</table>

If you add a provisioned switch that is a different type than specified in the provisioned configuration to a powered-down switch stack and then apply power, the switch stack rejects the (now incorrect) `switch stack-member-number provision type globalconfiguration` command in the startup configuration file. However, during stack initialization, the nondefault interface configuration information in the startup configuration file for the provisioned interfaces (potentially of the wrong type) is executed. Depending on the differences between the actual Switch type and the previously provisioned switch type, some commands are rejected, and some commands are accepted.

Note

If the switch stack does not contain a provisioned configuration for a new Switch, the Switch joins the stack with the default interface configuration. The switch stack then adds to its running configuration with a `switch stack-member-number provision type globalconfiguration` command that matches the new Switch. For configuration information, see the Provisioning a New Member for a Switch Stack section.

Effects of Replacing a Provisioned Switch in a Switch Stack

When a provisioned switch in a switch stack fails, it is removed from the stack, and is replaced with another Switch, the stack applies either the provisioned configuration or the default configuration to it. The events that occur when the switch stack compares the provisioned configuration with the provisioned switch are the same as those when you add a provisioned switch to a stack.

Effects of Removing a Provisioned Switch from a Switch Stack

If you remove a provisioned switch from the switch stack, the configuration associated with the removed stack member remains in the running configuration as provisioned information. To completely remove the configuration, use the `no switch stack-member-number provision` global configuration command.

Stack Protocol Version

Each software image includes a *stack protocol version*. The stack protocol version has a *major* version number and a *minor* version number (for example 1.4, where 1 is the major version number and 4 is the minor version number). Both version numbers determine the level of compatibility among the stack members. You can display the stack protocol version by using the `show platform stack manager all` privileged EXEC command.
The switches with the same Cisco IOS software version have the same stack protocol version. Such switches are fully compatible, and all features function properly across the switch stack. A switch with the same Cisco IOS software version as the stack master can immediately join the switch stack.

If an incompatibility exists, the fully functional stack members generate a system message that describes the cause of the incompatibility on the specific stack members. The stack master sends the message to all stack members.

For more information, see the Major Version Number Incompatibility Among Switches procedure and the Minor Version Number Incompatibility Among Switches procedure.

Major Stack Protocol Version Number Incompatibility Among Stack-Capable Switches

Switch with different major Cisco IOS software versions usually have different stack protocol versions. Switch with different major version numbers are incompatible and cannot exist in the same switch stack.

Minor Stack Protocol Version Number Incompatibility Among Stack-Capable Switches

Switches with the same major version number but with a different minor version number are considered partially compatible. When connected to a switch stack, a partially compatible switch enters version-mismatch (VM) mode and cannot join the stack as a fully functioning member. The software detects the mismatched software and tries to upgrade (or downgrade) the switch in VM mode with the switch stack image or with a tar file image from the switch stack flash memory. The software uses the automatic upgrade (auto-upgrade) and the automatic advise (auto-advice) features.

The port LEDs on switches in version-mismatch mode will also remain off. Pressing the Mode button does not change the LED mode.

Auto-Upgrade

The purpose of the auto-upgrade feature is to allow a switch to be upgraded to a compatible software image, so that the switch can join the switch stack.

When a new switch attempts to join a switch stack, each stack member performs compatibility checks with itself and the new switch. Each stack member sends the results of the compatibility checks to the stack master, which uses the results to determine whether the switch can join the switch stack. If the software on the new switch is incompatible with the switch stack, the new switch enters version-mismatch (VM) mode.

If the auto-upgrade feature is enabled on the existing switch stack, the stack master automatically upgrades the new switch with the same software image running on a compatible stack member. Auto-upgrade starts a few minutes after the mismatched software is detected before starting.

By default, auto-upgrade is enabled (the boot auto-copy-sw global configuration command is enabled). You can disable auto-upgrade by using the no boot auto-copy-sw global configuration command on the stack master. You can check the status of auto-upgrade by using the show boot privileged EXEC command and by checking the Auto upgrade line in the display.

Auto-upgrade includes an auto-copy process and an auto-extract process.

- Auto-copy automatically copies the software image running on any stack member to the new switch to automatically upgrade it. Auto-copy occurs if auto-upgrade is enabled, if there is enough flash memory in the new switch, and if the software image running on the switch stack is suitable for the new switch.
As a switch in VM mode might not run all released software. For example, new switch hardware is not recognized in earlier versions of software.

- Automatic extraction (auto-extract) occurs when the auto-upgrade process cannot find the appropriate software in the stack to copy to the new switch. In that case, the auto-extract process searches all switches in the stack for the tar file needed to upgrade the switch stack or the new switch. The tar file can be in any flash file system in the switch stack or in the new switch. If a tar file suitable for the new switch is found on a stack member, the process extracts the file and automatically upgrades the new switch.

The auto-upgrade (auto-copy and auto-extract) processes start a few minutes after the mismatched software is detected.

When the auto-upgrade process is complete, the new switch reloads and joins the stack as a fully functioning member. If you have both stack cables connected during the reload, network downtime does not occur because the switch stack operates on two rings.

Auto-Advise

Automatic advise (auto-advise) occurs when the auto-upgrade process cannot find appropriate stack member software to copy to the new switch. This process tells you the command (archive copy-sw or archive download-sw privileged EXEC command) and the image name (tar filename) needed to manually upgrade the switch stack or the new switch. The recommended image can be the running switch stack image or a tar file in any flash file system in the switch stack (including the new switch). If an appropriate image is not found in the stack flash file systems, the auto-advise process tells you to install new software on the switch stack. Auto-advise cannot be disabled, and there is no command to check its status.

Examples of Auto-Advise Messages

When you add a switch that has a different minor version number to the switch stack, the software displays messages in sequence (assuming that there are no other system messages generated by the switch).

This example shows that the switch stack detected a new switch that is running a different minor version number than the switch stack. Auto-copy starts, finds suitable software to copy from a stack member to the switch in VM mode, upgrades the switch in VM mode, and then reloads it:

```
*Mar 11 20:31:19.247:%STACKMGR-6-STACK_LINK_CHANGE:Stack Port 2 Switch 2 has changed to state UP
*Mar 11 20:31:23.232:%STACKMGR-6-SWITCH_ADDED_VM:Switch 1 has been ADDED to the stack(VERSION_MISMATCH) (Stack_1-3)
*Mar 11 20:33:23.248:%IMAGEMGR-6-AUTO_COPY_SW_INITIATED:Auto-copy-software process initiated for switch number(s) 1
*Mar 11 20:36:15.038:%IMAGEMGR-6-AUTO_COPY_SW:Searching for stack member to act as software donor... 
*Mar 11 20:36:15.038:%IMAGEMGR-6-AUTO_COPY_SW:Found donor (system #2) for member(s) 1
*Mar 11 20:36:15.038:%IMAGEMGR-6-AUTO_COPY_SW:System software to be uploaded: c2960x-universalk9-mz.150-2.EX (directory)
*Mar 11 20:36:15.038:%IMAGEMGR-6-AUTO_COPY_SW:archiving c2960x-universalk9-mz.150-2.EX.bin (4945851 bytes)
*Mar 11 20:36:15.038:%IMAGEMGR-6-AUTO_COPY_SW:extracting info (104 bytes)
```
This example shows that the switch stack detected a new switch that is running a different minor version number than the switch stack. Auto-copy starts but cannot find software in the switch stack to copy to the VM-mode switch to make it compatible with the switch stack. The auto-adviser process starts and recommends that you download a tar file from the network to the switch in VM mode:

*Mar 1 00:01:11.319:STACKMGR-6-STACK_LINK_CHANGE:Stack Port 2 Switch 2 has changed to state UP
*Mar 1 00:01:15.547:STACKMGR-6-SWITCH_ADDED_VM:Switch 1 has been ADDED to the stack (VERSION_MISMATCH)

stack_2#
Auto-advise and auto-copy identify which images are running by examining the info file and by searching the directory structure on the switch stack. If you download your image by using the `copy tftp:` bootloader command instead of the `archive download-sw` privileged EXEC command, the proper directory structure is not created. For more information about the info file, see the *Catalyst 2960-X Switch Managing Cisco IOS Image Files Configuration Guide*.

SDM Template Mismatch in Switch Stacks

The LAN Base default template is used with switches in a homogeneous stack, and the LAN Base routing template is used with switches in a mixed stack. All stack members use the Switch Database Management (SDM) template configured on the stack master. When a new switch is added to a stack, the SDM configuration that is stored on the stack master overrides the template configured on an individual switch.

When you add a Catalyst 2960-S switch to a stack of Catalyst 2960-X switches running the LAN Base default template, the Catalyst 2960-S switch will go into SDM-mismatch mode. You must change the template of the switch stack to the LAN Base routing template.

You can use the `show switch` privileged EXEC command to see if any stack members are in SDM-mismatch mode.

Version-mismatch (VM) mode has priority over SDM-mismatch mode. If a VM-mode condition and an SDM-mismatch mode exist, the switch stack first attempts to resolve the VM-mode condition.

For more information about SDM templates, see the *Catalyst 2960-X Switch System Management Configuration Guide*.

Switch Stack Management Connectivity

You manage the switch stack and the stack member interfaces through the stack master. You can use the CLI, SNMP, and supported network management applications such as CiscoWorks. You cannot manage stack members on an individual Switch basis.

Connectivity to Specific Stack Members

If you want to configure a specific stack member port, you must include the stack member number in the CLI command interface notation.

To debug a specific stack member, you can access it from the stack master by using the `session stack-member-number` privileged EXEC command. The stack member number is appended to the system prompt. For example, `Switch-2#` is the prompt in privileged EXEC mode for stack member 2, and the system prompt for the stack master is `Switch`. Only the `show` and `debug` commands are available in a CLI session to a specific stack member.

Connectivity to the Switch Stack Through an IP Address

The switch stack is managed through a single IP address. The IP address is a system-level setting and is not specific to the stack master or to any other stack member. You can still manage the stack through the same
IP address even if you remove the stack master or any other stack member from the stack, provided there is IP connectivity.

Note Stack members retain their IP addresses when you remove them from a switch stack. To avoid a conflict by having two devices with the same IP address in your network, change the IP addresses of any Switch that you remove from the switch stack.

For related information about switch stack configurations, see the *Switch Stack Configuration Files* section.

Connectivity to the Switch Stack Through Console Ports or Ethernet Management Ports

You can connect to the stack master by using one of these methods:

- You can connect a terminal or a PC to the stack master through the console port of one or more stack members.
- You can connect a PC to the stack master through the Ethernet management ports of one or more stack members. For more information about connecting to the switch stack through Ethernet management ports, see the *Using the Ethernet Management Port* section.

You can connect to the stack master by connecting a terminal or a PC to the stack master through the console port of one or more stack members.

Be careful when using multiple CLI sessions to the stack master. Commands that you enter in one session are not displayed in the other sessions. Therefore, it is possible that you might not be able to identify the session from which you entered a command.

We recommend using only one CLI session when managing the switch stack.

How to Configure a Switch Stack

Enabling the Persistent MAC Address Feature

Note When you enter the command to configure this feature, a warning message appears with the consequences of your configuration. You should use this feature cautiously. Using the old stack master MAC address elsewhere in the same domain could result in lost traffic.

Follow these steps to enable persistent MAC address:

SUMMARY STEPS

1. enable
2. configure terminal
3. stack-mac persistent timer [0 | time-value]
4. end
5. copy running-config startup-config
Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Example: Switch> enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Example: Switch# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>Enables a time delay after a stack-master change before the stack MAC address changes to that of the new stack master. If the previous stack master rejoins the stack during this period, the stack uses that MAC address as the stack MAC address. You can configure the time period as 0 to 60 minutes.</td>
</tr>
<tr>
<td>`stack-mac persistent timer [0</td>
<td>*time-value]`</td>
</tr>
<tr>
<td></td>
<td>• Enter the command with no value to set the default delay of approximately 4 minutes. We recommend that you always enter a value. If the command is entered without a value, the time delay appears in the running-config file with an explicit timer value of 4 minutes.</td>
</tr>
<tr>
<td></td>
<td>• Enter 0 to continue using the MAC address of the current stack master indefinitely. The stack MAC address of the previous stack master is used until you enter the <code>no stack-mac persistent timer</code> command, which immediately changes the stack MAC address to that of the current stack master.</td>
</tr>
<tr>
<td></td>
<td>• Enter a time-value from 1 to 60 minutes to configure the time period before the stack MAC address changes to the new stack master. The stack MAC address of the previous stack master is used until the configured time period expires or until you enter the <code>no stack-mac persistent timer</code> command.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>end</code></td>
<td>Example: Switch(config)# end</td>
</tr>
</tbody>
</table>

Note: If you enter the `no stack-mac persistent timer` command after a new stack master takes over, before the time expires, the switch stack moves to the current stack master MAC address.
What to Do Next

Use the **no stack-mac persistent timer** global configuration command to disable the persistent MAC address feature.

Assigning a Stack Member Number

This optional task is available only from the stack master.

Follow these steps to assign a member number to a stack member:

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `switch current-stack-member-number renumber new-stack-member-number`
4. `end`
5. `reload slot stack-member-number`
6. `show switch`
7. `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: <code>Switch> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 3</td>
<td>Specifies the current stack member number and the new stack member number for the stack member. The range is 1 to 8. You can display the current stack member number by using the <code>show switch</code> user EXEC command.</td>
</tr>
<tr>
<td><code>switch current-stack-member-number renumber new-stack-member-number</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# <code>switch 3 renumber 4</code></td>
</tr>
<tr>
<td>Step 4</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>end</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# <code>end</code></td>
</tr>
<tr>
<td>Step 5</td>
<td>Resets the stack member.</td>
</tr>
<tr>
<td><code>reload slot stack-member-number</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# <code>reload slot 4</code></td>
</tr>
<tr>
<td>Step 6</td>
<td>Verify the stack member number.</td>
</tr>
<tr>
<td><code>show switch</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>showSwitch</td>
</tr>
<tr>
<td>Step 7</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# <code>copy running-config startup-config</code></td>
</tr>
</tbody>
</table>

Setting the Stack Member Priority Value

This optional task is available only from the stack master.

Follow these steps to assign a priority value to a stack member:

SUMMARY STEPS

1. `enable`
2. `switch stack-member-number priority new-priority-number`
3. `show switch stack-member-number`
4. `copy running-config startup-config`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch enable</td>
<td></td>
</tr>
</tbody>
</table>

Step 2

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch stack-member-number priority new-priority-number</td>
<td>Specifies the stack member number and the new priority for the stack member. The stack member number range is 1 to 8. The priority value range is 1 to 15. You can display the current priority value by using the <code>show switch</code> user EXEC command. The new priority value takes effect immediately but does not affect the current stack master. The new priority value helps determine which stack member is elected as the new stack master when the current stack master or switch stack resets.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# switch 3 priority 2</td>
<td></td>
</tr>
</tbody>
</table>

Step 3

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show switch stack-member-number</td>
<td>Verify the stack member priority value.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# show switch</td>
<td></td>
</tr>
</tbody>
</table>

Step 4

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

Setting the Stack Port Speed to 10 Gbps

In a mixed stack of Catalyst 2960-X and 2960-S switches, you must set the stack port speed to 10 Gbps. This task is required in a mixed stack configuration and must be run on a Catalyst 2960-X switch in the switch stack before you add a 2960-S switch to the stack. Otherwise, the switches will not stack.

SUMMARY STEPS

1. configure terminal
2. switch stack port-speed 10
3. end
4. copy running-config startup-config
5. reload
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch# <code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td><code>switch stack port-speed 10</code></td>
<td>Sets the stack port speed to 10 Gbps.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch(config)# <code>switch stack port-speed 10</code></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td><code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch(config)# <code>end</code></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch# <code>copy running-config startup-config</code></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td><code>reload</code></td>
<td>Reloads the switch stack.</td>
</tr>
<tr>
<td></td>
<td>Example: Switch# <code>reload</code></td>
<td></td>
</tr>
</tbody>
</table>

Provisioning a New Member for a Switch Stack

This optional task is available only from the stack master.

SUMMARY STEPS

1. show switch
2. configure terminal
3. switch stack-member-number provision type
4. end
5. copy running-config startup-config
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>show switch
Example:
Switch# show switch</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal
Example:
Switch# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch stack-member-number provision type
Example:
Switch(config)# switch 3 provision WS-xxxx</td>
</tr>
<tr>
<td>Step 4</td>
<td>end
Example:
Switch(config)# end</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config
Example:
Switch# copy running-config startup-config</td>
</tr>
</tbody>
</table>

Removing Provisioned Switch Information

Before you begin, you must remove the provisioned switch from the stack. This optional task is available only from the stack master.

SUMMARY STEPS

1. configure terminal
2. no switch stack-member-number provision
3. end
4. copy running-config startup-config
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>no switch stack-member-number provision</td>
<td>Removes the provisioning information for the specified member.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config)# no switch 3 provision</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config)# end</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

If you are removing a provisioned switch in a stack with this configuration:

- The stack has four members
- Stack member 1 is the stack master
- Stack member 3 is a provisioned switch

and want to remove the provisioned information and to avoid receiving an error message, you can remove power from stack member 3, disconnect the stack cables between the stack member 3 and switches to which it is connected, reconnect the cables between the remaining stack members, and enter the `no switch stack-member-number provision` global configuration command.

Troubleshooting the Switch Stack

Accessing the CLI of a Specific Member

This optional task is for debugging purposes, and is available only from the stack master.

You can access all or specific members by using the `remote command {all | stack-member-number}` privileged EXEC command. The stack member number range is 1 to 8.

You can access specific members by using the `session stack-member-number` privileged EXEC command. The member number is appended to the system prompt. For example, the prompt for member 2 is `Switch-2#`,...
and system prompt for the stack master is Switch#. Enter exit to return to the CLI session on the stack master. Only the show and debug commands are available on a specific member.

Temporarily Disabling a Stack Port

If a stack port is flapping and causing instability in the stack ring, to disable the port, enter the `switch stack-member-number stack port port-number disable` privileged EXEC command. To reenable the port, enter the `switch stack-member-number stack port port-number enable` command.

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>switch stack-member-number stack port port-number disable</code></td>
<td>Disables the specified stack port.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch# switch 2 stack port 1 disable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>switch stack-member-number stack port port-number enable</code></td>
<td>Reenables the stack port.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch# switch 2 stack port 1 enable</code></td>
<td></td>
</tr>
</tbody>
</table>

When you disable a stack port and the stack is in the full-ring state, you can disable only one stack port. This message appears:

```
Enabling/disabling a stack port may cause undesired stack changes. Continue?[confirm]
```

When you disable a stack port and the stack is in the partial-ring state, you cannot disable the port. This message appears:

```
Disabling stack port not allowed with current stack configuration.
```
Reenabling a Stack Port While Another Member Starts

Stack Port 1 on Switch 1 is connected to Port 2 on Switch 4. If Port 1 is flapping, you can disable Port 1 with the `switch 1 stack port 1 disable` privileged EXEC command. While Port 1 on Switch 1 is disabled and Switch 1 is still powered on, follow these steps to reenable a stack port:

Step 1 Disconnect the stack cable between Port 1 on Switch 1 and Port 2 on Switch 4.

Step 2 Remove Switch 4 from the stack.

Step 3 Add a switch to replace Switch 4 and assign it switch-number 4.

Step 4 Reconnect the cable between Port 1 on Switch 1 and Port 2 on Switch 4 (the replacement switch).

Step 5 Reenable the link between the switches. Enter the `switch 1 stack port 1 enable` privileged EXEC command to enable Port 1 on Switch 1.

Step 6 Power on Switch 4.

Caution

Powering on Switch 4 before enabling the Port 1 on Switch 1 might cause one of the switches to reload. If Switch 4 is powered on first, you might need to enter the `switch 1 stack port 1 enable` and the `switch 4 stack port 2 enable` privileged EXEC commands to bring up the link.

Monitoring the Switch Stack

Table 128: Commands for Displaying Stack Information

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>`show controller ethernet-controller stack port {1</td>
<td>2}`</td>
</tr>
<tr>
<td><code>show controller ethernet-controller fastethernet0</code></td>
<td>Displays information about the Ethernet management port, including the port status and the per-interface send and receive statistics read from the hardware.</td>
</tr>
<tr>
<td><code>show platform stack compatibility</code></td>
<td>Displays information about HULC feature compatibility.</td>
</tr>
<tr>
<td><code>show platform stack manager all</code></td>
<td>Displays all stack manager information, such as the stack protocol version.</td>
</tr>
<tr>
<td><code>show platform stack passive-links</code></td>
<td>Displays information about stack passive links.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>show switch</td>
<td>Displays summary information about the stack, including the status of provisioned switches and switches in version-mismatch mode.</td>
</tr>
<tr>
<td>show switch stack-member-number</td>
<td>Displays information about a specific member.</td>
</tr>
<tr>
<td>show switch detail</td>
<td>Displays detailed information about the stack.</td>
</tr>
<tr>
<td>show switch neighbors</td>
<td>Displays the stack neighbors.</td>
</tr>
<tr>
<td>show switch stack-ports</td>
<td>Displays port information for the stack.</td>
</tr>
</tbody>
</table>

Configuration Examples for Switch Stacks

Switch Stack Configuration Scenarios

Most of these switch stack configuration scenarios assume that at least two switch are connected through their stack ports.

Table 129: Configuration Scenarios

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stack master election specifically determined by existing stack masters</td>
<td>Connect two powered-on switch stacks through the stack ports. Only one of the two stack masters becomes the new stack master.</td>
</tr>
<tr>
<td>Stack master election specifically determined by the stack member priority value</td>
<td>1 Connect two switches through their stack ports. The stack member with the higher priority value is elected stack master.</td>
</tr>
<tr>
<td></td>
<td>2 Use the switch stack-member-number priority new-priority-number global configuration command to set one stack member with a higher member priority value.</td>
</tr>
<tr>
<td></td>
<td>3 Restart both stack members at the same time.</td>
</tr>
<tr>
<td>Scenario</td>
<td>Result</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Stack master election specifically determined by the configuration file</td>
<td>The stack member with the saved configuration file is elected stack master.</td>
</tr>
<tr>
<td></td>
<td>Assumption: Both stack members have the same priority value:</td>
</tr>
<tr>
<td></td>
<td>1 Make sure that one stack member has a default configuration and the other stack member has a saved (nondefault) configuration file.</td>
</tr>
<tr>
<td></td>
<td>2 Restart both stack members at the same time.</td>
</tr>
<tr>
<td>Stack master election specifically determined by the MAC address</td>
<td>The stack member with the lower MAC address is elected stack master.</td>
</tr>
<tr>
<td></td>
<td>Assumption: Both stack members have the same priority value,</td>
</tr>
<tr>
<td></td>
<td>configuration file, and feature set, restart both stack members at the same time.</td>
</tr>
<tr>
<td>Stack member number conflict</td>
<td>The stack member with the higher priority value retains its stack member number. The other stack member has a new stack member number.</td>
</tr>
<tr>
<td></td>
<td>Assumption: One stack member has a higher priority value than the other stack member:</td>
</tr>
<tr>
<td></td>
<td>1 Ensure that both stack members have the same stack member number. If necessary, use the switch command:</td>
</tr>
<tr>
<td></td>
<td>- current-stack-member-number</td>
</tr>
<tr>
<td></td>
<td>- renumber</td>
</tr>
<tr>
<td></td>
<td>- new-stack-member-number</td>
</tr>
<tr>
<td></td>
<td>2 Restart both stack members at the same time.</td>
</tr>
<tr>
<td>Add a stack member</td>
<td>The stack master is retained. The new switch is added to the switch stack.</td>
</tr>
<tr>
<td></td>
<td>1 Power off the new switch.</td>
</tr>
<tr>
<td></td>
<td>2 Through their stack ports, connect the new switch to a powered-on switch stack.</td>
</tr>
<tr>
<td></td>
<td>3 Power on the new switch.</td>
</tr>
<tr>
<td>Stack master failure</td>
<td>One of the remaining stack members becomes the new stack master. All other stack members in the stack remain as stack members and do not reboot.</td>
</tr>
<tr>
<td></td>
<td>Remove (or power off) the stack master.</td>
</tr>
</tbody>
</table>
Enabling the Persistent MAC Address Feature: Example

This example shows how to configure the persistent MAC address feature for a 7-minute time delay and to verify the configuration:

```
Switch(config)# stack-mac persistent timer 7
WARNING: The stack continues to use the base MAC of the old Master
WARNING: as the stack MAC after a master switchover until the MAC
WARNING: persistency timer expires. During this time the Network
WARNING: Administrators must make sure that the old stack-mac does
WARNING: not appear elsewhere in this network domain. If it does,
WARNING: user traffic may be blackholed.
Switch(config)# end
Switch# show switch
Switch/Stack Mac Address : 0016.4727.a900
Mac persistency wait time: 7 mins
Switch# Role  Mac Address Priority Version State
*1 Master 0016.4727.a900 1 P2B Ready
```

Provisioning a New Member for a Switch Stack: Example

This example shows how to provision a switch with a stack member number of 2 for the switch stack. The `show running-config` command output shows the interfaces associated with the provisioned switch:

```
Switch(config)# switch 2 provision switch_PID
Switch(config)# end
Switch# show running-config | include switch 2
switch 2 provision switch_PID
```
Additional References for Switch Stacks

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
</table>

Error Message Decoder

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>To help you research and resolve system error messages in this release, use the Error Message Decoder tool.</td>
<td>https://www.cisco.com/cgi-bin/Support/Errordecoder/index.cgi</td>
</tr>
</tbody>
</table>

Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>All supported MIBs for this release.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and software images, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/support</td>
</tr>
</tbody>
</table>
PART XII

System Management

- Administering the System, page 1241
- Performing Switch Setup Configuration, page 1277
- Configuring SDM Templates, page 1307
- Configuring System Message Logs, page 1315
- Configuring Online Diagnostics, page 1331
- Troubleshooting the Software Configuration, page 1343
Administering the System

- Finding Feature Information, page 1241
- Information About Administering the Switch, page 1241
- How to Administer the Switch, page 1250
- Monitoring and Maintaining Administration of the Switch, page 1272
- Configuration Examples for Switch Administration, page 1273
- Additional References for Switch Administration, page 1275
- Feature History and Information for Switch Administration, page 1276

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About Administering the Switch

System Time and Date Management

You can manage the system time and date on your switch using automatic configuration methods (RTC and NTP), or manual configuration methods.
System Clock

The basis of the timeservice is the system clock. This clock runs from the moment the system starts up and keeps track of the date and time.

The system clock can then be set from these sources:

- RTC
- NTP
- Manual configuration

The system clock can provide time to these services:

- User `show` commands
- Logging and debugging messages

The system clock keeps track of time internally based on Coordinated Universal Time (UTC), also known as Greenwich Mean Time (GMT). You can configure information about the local time zone and summer time (daylight saving time) so that the time appears correctly for the local time zone.

The system clock keeps track of whether the time is authoritative or not (that is, whether it has been set by a time source considered to be authoritative). If it is not authoritative, the time is available only for display purposes and is not redistributed.

Real Time Clock

A real-time clock (RTC) keeps track of the current time on the switch. The switch is shipped to you with RTC set to GMT time until you reconfigure clocking parameters.

The benefits of an RTC are:

- RTC is battery-powered.
- System time is retained during power outage and at system reboot.

The RTC and NTP clocks are integrated on the switch. When NTP is enabled, the RTC time is periodically synchronized to the NTP clock to maintain accuracy.

Network Time Protocol

The NTP is designed to time-synchronize a network of devices. NTP runs over User Datagram Protocol (UDP), which runs over IP. NTP is documented in RFC 1305.

An NTP network usually gets its time from an authoritative time source, such as a radio clock or an atomic clock attached to a time server. NTP then distributes this time across the network. NTP is extremely efficient;
no more than one packet per minute is necessary to synchronize two devices to within a millisecond of one another.

NTP uses the concept of a stratum to describe how many NTP hops away a device is from an authoritative time source. A stratum 1 time server has a radio or atomic clock directly attached, a stratum 2 time server receives its time through NTP from a stratum 1 time server, and so on. A device running NTP automatically chooses as its time source the device with the lowest stratum number with which it communicates through NTP. This strategy effectively builds a self-organizing tree of NTP speakers.

NTP avoids synchronizing to a device whose time might not be accurate by never synchronizing to a device that is not synchronized. NTP also compares the time reported by several devices and does not synchronize to a device whose time is significantly different than the others, even if its stratum is lower.

The communications between devices running NTP (known as associations) are usually statically configured; each device is given the IP address of all devices with which it should form associations. Accurate timekeeping is possible by exchanging NTP messages between each pair of devices with an association. However, in a LAN environment, NTP can be configured to use IP broadcast messages instead. This alternative reduces configuration complexity because each device can simply be configured to send or receive broadcast messages. However, in that case, information flow is one-way only.

The time kept on a device is a critical resource; you should use the security features of NTP to avoid the accidental or malicious setting of an incorrect time. Two mechanisms are available: an access list-based restriction scheme and an encrypted authentication mechanism.

Cisco’s implementation of NTP does not support stratum 1 service; it is not possible to connect to a radio or atomic clock. We recommend that the time service for your network be derived from the public NTP servers available on the IP Internet.
The Figure shows a typical network example using NTP. Switch A is the NTP master, with the Switch B, C, and D configured in NTP server mode, in server association with Switch A. Switch E is configured as an NTP peer to the upstream and downstream Switch, Switch B and Switch F, respectively.

Figure 97: Typical NTP Network Configuration

If the network is isolated from the Internet, Cisco’s implementation of NTP allows a device to act as if it is synchronized through NTP, when in fact it has learned the time by using other means. Other devices then synchronize to that device through NTP.

When multiple sources of time are available, NTP is always considered to be more authoritative. NTP time overrides the time set by any other method.

Several manufacturers include NTP software for their host systems, and a publicly available version for systems running UNIX and its various derivatives is also available. This software allows host systems to be time-synchronized as well.

NTP Stratum

NTP uses the concept of a *stratum* to describe how many NTP hops away a device is from an authoritative time source. A stratum 1 time server has a radio or atomic clock directly attached, a stratum 2 time server receives its time through NTP from a stratum 1 time server, and so on. A device running NTP automatically chooses as its time source the device with the lowest stratum number with which it communicates through NTP. This strategy effectively builds a self-organizing tree of NTP speakers.
NTP avoids synchronizing to a device whose time might not be accurate by never synchronizing to a device that is not synchronized. NTP also compares the time reported by several devices and does not synchronize to a device whose time is significantly different than the others, even if its stratum is lower.

NTP Associations

The communications between devices running NTP (known as associations) are usually statically configured; each device is given the IP address of all devices with which it should form associations. Accurate timekeeping is possible by exchanging NTP messages between each pair of devices with an association. However, in a LAN environment, NTP can be configured to use IP broadcast messages instead. This alternative reduces configuration complexity because each device can simply be configured to send or receive broadcast messages. However, in that case, information flow is one-way only.

NTP Security

The time kept on a device is a critical resource; you should use the security features of NTP to avoid the accidental or malicious setting of an incorrect time. Two mechanisms are available: an access list-based restriction scheme and an encrypted authentication mechanism.

NTP Implementation

Implementation of NTP does not support stratum 1 service; it is not possible to connect to a radio or atomic clock. We recommend that the time service for your network be derived from the public NTP servers available on the IP Internet.
The following figure shows a typical network example using NTP. Switch A is the NTP master, with the Switch B, C, and D configured in NTP server mode, in server association with Switch A. Switch E is configured as an NTP peer to the upstream and downstream switches, Switch B and Switch F, respectively.

Figure 98: Typical NTP Network Configuration

If the network is isolated from the Internet, NTP allows a device to act as if it is synchronized through NTP, when in fact it has learned the time by using other means. Other devices then synchronize to that device through NTP.

When multiple sources of time are available, NTP is always considered to be more authoritative. NTP time overrides the time set by any other method.

Several manufacturers include NTP software for their host systems, and a publicly available version for systems running UNIX and its various derivatives is also available. This software allows host systems to be time-synchronized as well.

NTP Version 4

NTP version 4 is implemented on the switch. NTPv4 is an extension of NTP version 3. NTPv4 supports both IPv4 and IPv6 and is backward-compatible with NTPv3.

NTPv4 provides these capabilities:

- Support for IPv6.
• Improved security compared to NTPv3. The NTPv4 protocol provides a security framework based on public key cryptography and standard X509 certificates.

• Automatic calculation of the time-distribution hierarchy for a network. Using specific multicast groups, NTPv4 automatically configures the hierarchy of the servers to achieve the best time accuracy for the lowest bandwidth cost. This feature leverages site-local IPv6 multicast addresses.

For details about configuring NTPv4, see the Implementing NTPv4 in IPv6 chapter of the Cisco IOS IPv6 Configuration Guide, Release 12.4T.

System Name and Prompt

You configure the system name on the Switch to identify it. By default, the system name and prompt are Switch.

If you have not configured a system prompt, the first 20 characters of the system name are used as the system prompt. A greater-than symbol [>] is appended. The prompt is updated whenever the system name changes.

For complete syntax and usage information for the commands used in this section, see the Cisco IOS Configuration Fundamentals Command Reference, Release 12.4 and the Cisco IOS IP Command Reference, Volume 2 of 3: Routing Protocols, Release 12.4.

Stack System Name and Prompt

If you are accessing a stack member through the stack master, you must use the `session stack-member-number` privileged EXEC command. The stack member number range is from 1 through 8. When you use this command, the stack member number is appended to the system prompt. For example, Switch-2# is the prompt in privileged EXEC mode for stack member 2, and the system prompt for the switch stack is Switch.

Default System Name and Prompt Configuration

The default switch system name and prompt is Switch.

DNS

The DNS protocol controls the Domain Name System (DNS), a distributed database with which you can map hostnames to IP addresses. When you configure DNS on your switch, you can substitute the hostname for the IP address with all IP commands, such as `ping`, `telnet`, `connect`, and related Telnet support operations.

IP defines a hierarchical naming scheme that allows a device to be identified by its location or domain. Domain names are pieced together with periods (.) as the delimiting characters. For example, Cisco Systems is a commercial organization that IP identifies by a com domain name, so its domain name is cisco.com. A specific device in this domain, for example, the File Transfer Protocol (FTP) system is identified as ftp.cisco.com.

To keep track of domain names, IP has defined the concept of a domain name server, which holds a cache (or database) of names mapped to IP addresses. To map domain names to IP addresses, you must first identify the hostnames, specify the name server that is present on your network, and enable the DNS.
Default DNS Settings

Table 130: Default DNS Settings

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS enable state</td>
<td>Enabled.</td>
</tr>
<tr>
<td>DNS default domain name</td>
<td>None configured.</td>
</tr>
<tr>
<td>DNS servers</td>
<td>No name server addresses are configured.</td>
</tr>
</tbody>
</table>

Login Banners

You can configure a message-of-the-day (MOTD) and a login banner. The MOTD banner is displayed on all connected terminals at login and is useful for sending messages that affect all network users (such as impending system shutdowns).

The login banner is also displayed on all connected terminals. It appears after the MOTD banner and before the login prompts.

Note

For complete syntax and usage information for the commands used in this section, see the Cisco IOS Configuration Fundamentals Command Reference, Release 12.4.

Default Banner Configuration

The MOTD and login banners are not configured.

MAC Address Table

The MAC address table contains address information that the switch uses to forward traffic between ports. All MAC addresses in the address table are associated with one or more ports. The address table includes these types of addresses:

- Dynamic address—A source MAC address that the switch learns and then ages when it is not in use.
- Static address—A manually entered unicast address that does not age and that is not lost when the switch resets.

The address table lists the destination MAC address, the associated VLAN ID, and port number associated with the address and the type (static or dynamic).

Note

For complete syntax and usage information for the commands used in this section, see the command reference for this release.
MAC Address Table Creation

With multiple MAC addresses supported on all ports, you can connect any port on the switch to other network devices. The switch provides dynamic addressing by learning the source address of packets it receives on each port and adding the address and its associated port number to the address table. As devices are added or removed from the network, the switch updates the address table, adding new dynamic addresses and aging out those that are not in use.

The aging interval is globally configured. However, the switch maintains an address table for each VLAN, and STP can accelerate the aging interval on a per-VLAN basis.

The switch sends packets between any combination of ports, based on the destination address of the received packet. Using the MAC address table, the switch forwards the packet only to the port associated with the destination address. If the destination address is on the port that sent the packet, the packet is filtered and not forwarded. The switch always uses the store-and-forward method: complete packets are stored and checked for errors before transmission.

MAC Addresses and VLANs

All addresses are associated with a VLAN. An address can exist in more than one VLAN and have different destinations in each. Unicast addresses, for example, could be forwarded to port 1 in VLAN 1 and ports 9, 10, and 1 in VLAN 5.

Each VLAN maintains its own logical address table. A known address in one VLAN is unknown in another until it is learned or statically associated with a port in the other VLAN.

Default MAC Address Table Settings

The following table shows the default settings for the MAC address table.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aging time</td>
<td>300 seconds</td>
</tr>
<tr>
<td>Dynamic addresses</td>
<td>Automatically learned</td>
</tr>
<tr>
<td>Static addresses</td>
<td>None configured</td>
</tr>
</tbody>
</table>

ARP Table Management

To communicate with a device (over Ethernet, for example), the software first must learn the 48-bit MAC address or the local data link address of that device. The process of learning the local data link address from an IP address is called *address resolution*.

The Address Resolution Protocol (ARP) associates a host IP address with the corresponding media or MAC addresses and the VLAN ID. Using an IP address, ARP finds the associated MAC address. When a MAC address is found, the IP-MAC address association is stored in an ARP cache for rapid retrieval. Then the IP datagram is encapsulated in a link-layer frame and sent over the network. Encapsulation of IP datagrams and ARP requests and replies on IEEE 802 networks other than Ethernet is specified by the Subnetwork Access
Protocol (SNAP). By default, standard Ethernet-style ARP encapsulation (represented by the **arpa** keyword) is enabled on the IP interface.

ARP entries added manually to the table do not age and must be manually removed.

For CLI procedures, see the Cisco IOS Release 12.4 documentation on Cisco.com.

How to Administer the Switch

Configuring the Time and Date Manually

System time remains accurate through restarts and reboot, however, you can manually configure the time and date after the system is restarted.

We recommend that you use manual configuration only when necessary. If you have an outside source to which the switch can synchronize, you do not need to manually set the system clock.

Note

You must reconfigure this setting if you have manually configured the system clock before the stack master fails and a different stack member assumes the role of stack master.

Setting the System Clock

If you have an outside source on the network that provides time services, such as an NTP server, you do not need to manually set the system clock.

Follow these steps to set the system clock:

SUMMARY STEPS

1. **enable**
2. Use one of the following:
 - **clock set** `hh:mm:ss day month year`
 - **clock set** `hh:mm:ss month day year`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch> enable</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Manually set the system clock using one of these formats:</th>
</tr>
</thead>
</table>
Purpose

Command or Action

- clock set *hh:mm:ss day month year*
- clock set *hh:mm:ss month day year*

Example:

```
Switch# clock set 13:32:00 23 March 2013
```

Purpose

- *hh:mm:ss*—Specifies the time in hours (24-hour format), minutes, and seconds. The time specified is relative to the configured time zone.
- *day*—Specifies the day by date in the month.
- *month*—Specifies the month by name.
- *year*—Specifies the year (no abbreviation).

Configuring the Time Zone

Follow these steps to manually configure the time zone:

SUMMARY STEPS

1. enable
2. configure terminal
3. clock timezone *zone hours-offset* [minutes-offset]
4. end
5. show running-config
6. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Switch> enable</td>
</tr>
<tr>
<td>2</td>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Switch# configure terminal</td>
</tr>
<tr>
<td>3</td>
<td>clock timezone zone hours-offset [minutes-offset]</td>
<td>Sets the time zone. Internal time is kept in Coordinated Universal Time (UTC), so this command is used only for display purposes and when the time is manually set.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Switch(config)# clock timezone AST -3 30</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>• zone — Enters the name of the time zone to be displayed when standard time is in effect. The default is UTC.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• hours-offset — Enters the hours offset from UTC.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• (Optional) minutes-offset — Enters the minutes offset from UTC. This available where the local time zone is a percentage of an hour different from UTC.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Step 4

end

Example:

Switch(config)# end

Returns to privileged EXEC mode.

Step 5

show running-config

Example:

Switch# show running-config

Verifies your entries.

Step 6

copy running-config startup-config

(Optional) Saves your entries in the configuration file.

Example:

Switch# copy running-config startup-config

Configuring Summer Time (Daylight Saving Time)

To configure summer time (daylight saving time) in areas where it starts and ends on a particular day of the week each year, perform this task:

SUMMARY STEPS

1. enable
2. configure terminal
3. clock summer-time zone date date month year hh:mm date month year hh:mm [offset]]
4. clock summer-time zone recurring [week day month hh:mm week day month hh:mm [offset]]
5. end
6. show running-config
7. copy running-config startup-config
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch> enable</td>
</tr>
</tbody>
</table>

| **Step 2** | Enters the global configuration mode. |
| `configure terminal` | |
| **Example:** | Switch# configure terminal |

| **Step 3** | Configures summer time to start and end on specified days every year. |
| `clock summer-time zone date date month year hh:mm date month year hh:mm [offset]]` | |
| **Example:** | Switch(config)# clock summer-time PDT date 10 March 2013 2:00 3 November 2013 2:00 |

| **Step 4** | Configures summer time to start and end on the specified days every year. All times are relative to the local time zone. The start time is relative to standard time. |
| `clock summer-time zone recurring [week day month hh:mm week day month hh:mm [offset]]` | The end time is relative to summer time. Summer time is disabled by default. If you specify `clock summer-time zone recurring` without parameters, the summer time rules default to the United States rules. If the starting month is after the ending month, the system assumes that you are in the southern hemisphere. |
| **Example:** | Switch(config)# clock summer-time PDT recurring 10 March 2013 2:00 3 November 2013 2:00 |

- **`zone`**—Specifies the name of the time zone (for example, PDT) to be displayed when summer time is in effect.
- **(Optional) `week`**— Specifies the week of the month (1 to 4, `first`, or `last`).
- **(Optional) `day`**—Specifies the day of the week (Sunday, Monday...).
- **(Optional) `month`**—Specifies the month (January, February...).
- **(Optional) `hh:mm`**—Specifies the time (24-hour format) in hours and minutes.
- **(Optional) `offset`**—Specifies the number of minutes to add during summer time. The default is 60.
Purpose

Command or Action

<table>
<thead>
<tr>
<th>Step 5</th>
<th>end</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Switch(config)# end</td>
</tr>
</tbody>
</table>

Step 6

Command or Action

<table>
<thead>
<tr>
<th>Step 6</th>
<th>show running-config</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Switch# show running-config</td>
</tr>
</tbody>
</table>

Step 7

Command or Action

<table>
<thead>
<tr>
<th>Step 7</th>
<th>copy running-config startup-config</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Switch# copy running-config startup-config</td>
</tr>
</tbody>
</table>

Follow these steps if summer time in your area does not follow a recurring pattern (configure the exact date and time of the next summer time events):

SUMMARY STEPS

1. enable
2. configure terminal
3. clock summer-time zone date [month date year hh:mm month date year hh:mm [offset]] or clock summer-time zone date [date month year hh:mm month date year hh:mm [offset]]
4. end
5. show running-config
6. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch> enable</td>
</tr>
</tbody>
</table>

Enables privileged EXEC mode. Enter your password if prompted.
How to Administer the Switch

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 2** configure terminal | Enters the global configuration mode.
Example:
Switch# configure terminal |
| **Step 3** clock summer-time zone date [month date year hh:mm month date year hh:mm [offset]] | Configures summer time to start on the first date and end on the second date.
Example:
Switch# configure terminal
Switch(config)# clock summer-time zone date [month date year hh:mm month date year hh:mm [offset]] |
| **Step 4** end | Returns to privileged EXEC mode.
Example:
Switch(config)# end |
| **Step 5** show running-config | Verifies your entries.
Example:
Switch# show running-config |
| **Step 6** copy running-config startup-config | (Optional) Saves your entries in the configuration file.
Example:
Switch# copy running-config startup-config |
Configuring a System Name

Follow these steps to manually configure a system name:

SUMMARY STEPS

1. enable
2. configure terminal
3. hostname name
4. end
5. show running-config
6. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>hostname name</td>
<td>Configures a system name. When you set the system name, it is also used as the system prompt. The default setting is Switch. The name must follow the rules for ARPANET hostnames. They must start with a letter, end with a letter or digit, and have as interior characters only letters, digits, and hyphens. Names can be up to 63 characters.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# hostname</td>
<td></td>
</tr>
<tr>
<td>remote-users</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# end</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td>show running-config</td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# show running-config</td>
<td></td>
</tr>
</tbody>
</table>
Setting Up DNS

If you use the switch IP address as its hostname, the IP address is used and no DNS query occurs. If you configure a hostname that contains no periods (.), a period followed by the default domain name is appended to the hostname before the DNS query is made to map the name to an IP address. The default domain name is the value set by the `ip domain-name` global configuration command. If there is a period (.) in the hostname, the Cisco IOS software looks up the IP address without appending any default domain name to the hostname.

Follow these steps to set up your switch to use the DNS:

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ip domain-name name`
4. `ip name-server server-address1 [server-address2 ... server-address6]`
5. `ip domain-lookup [nsap | source-interface interface]`
6. `end`
7. `show running-config`
8. `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Switch> enable</code></td>
</tr>
<tr>
<td></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Switch# configure terminal</code></td>
</tr>
<tr>
<td></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 3</td>
<td>ip domain-name name
Example:
Switch(config)# ip domain-name Cisco.com</td>
</tr>
<tr>
<td>Step 4</td>
<td>ip name-server server-address1 [server-address2 ... server-address6]
Example:
Switch(config)# ip name-server 192.168.1.100 192.168.1.200 192.168.1.300</td>
</tr>
<tr>
<td>Step 5</td>
<td>**ip domain-lookup [nsap</td>
</tr>
<tr>
<td>Step 6</td>
<td>end
Example:
Switch(config)# end</td>
</tr>
<tr>
<td>Step 7</td>
<td>show running-config
Example:
Switch# show running-config</td>
</tr>
<tr>
<td>Step 8</td>
<td>copy running-config startup-config
Example:
Switch# copy running-config startup-config</td>
</tr>
</tbody>
</table>
What to Do Next

Configuring a Message-of-the-Day Login Banner

You can create a single or multiline message banner that appears on the screen when someone logs in to the switch.

Follow these steps to configure a MOTD login banner:

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `banner motd c message c`
4. `end`
5. `show running-config`
6. `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Switch> enable</code></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td><code>configure terminal</code></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td><code>banner motd c message c</code></td>
<td>Specifies the message of the day.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Switch(config)# banner motd #</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This is a secure site. Only authorized users are allowed. For access, contact technical support.</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>#</code></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td><code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Switch(config)# end</code></td>
<td></td>
</tr>
</tbody>
</table>
Configuring a Login Banner

You can configure a login banner to be displayed on all connected terminals. This banner appears after the MOTD banner and before the login prompt.

Follow these steps to configure a login banner:

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `banner login c message c`
4. `end`
5. `show running-config`
6. `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 3</td>
<td>Banner login c message c
Example:
<code>Switch(config)# banner login $
Access for authorized users only.
Please enter your username and password.
$</code>
Purpose: Specifies the login message.
<code>c</code>—Enters the delimiting character of your choice, for example, a pound sign (#), and press the Return key. The delimiting character signifies the beginning and end of the banner text. Characters after the ending delimiter are discarded.
<code>message</code>—Enters a login message up to 255 characters. You cannot use the delimiting character in the message.</td>
</tr>
<tr>
<td>Step 4</td>
<td>End
Example:
<code>Switch(config)# end</code>
Purpose: Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Show running-config
Example:
<code>Switch# show running-config</code>
Purpose: Verifies your entries.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Copy running-config startup-config
Example:
<code>Switch# copy running-config startup-config</code>
Purpose: (Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Managing the MAC Address Table

Changing the Address Aging Time

Follow these steps to configure the dynamic address table aging time:

SUMMARY STEPS

1. enable
2. configure terminal
3. mac address-table aging-time [0 | 10-1000000] [routed-mac | vlan vlan-id]
4. end
5. show running-config
6. copy running-config startup-config
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch> enable</td>
</tr>
<tr>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
<td></td>
</tr>
</tbody>
</table>

| **Step 2** | configure terminal |
| Example: | Switch# configure terminal |
| Enters the global configuration mode. |

| **Step 3** | mac address-table aging-time \([0 \mid 10-1000000]\) [routed-mac | vlan vlan-id] |
| Example: | Switch(config)# mac address-table aging-time 500 vlan 2 |
| The range is 10 to 1000000 seconds. The default is 300. You can also enter 0, which disables aging. Static address entries are never aged or removed from the table. |

| **Step 4** | end |
| Example: | Switch(config)# end |
| Returns to privileged EXEC mode. |

| **Step 5** | show running-config |
| Example: | Switch# show running-config |
| Verifies your entries. |

| **Step 6** | copy running-config startup-config |
| Example: | Switch# copy running-config startup-config |
| (Optional) Saves your entries in the configuration file. |

Configuring MAC Address Change Notification Traps

Follow these steps to configure the switch to send MAC address change notification traps to an NMS host:
SUMMARY STEPS

1. enable
2. configure terminal
3. snmp-server host host-addr community-string notification-type \{ informs \| traps \} \{ version \{ 1 \| 2c \| 3 \} \}
 \{ vrf vrf instance name \}
4. snmp-server enable traps mac-notification change
5. mac address-table notification change
6. mac address-table notification change \{ interval value \} \{ history-size value \}
7. interface interface-id
8. snmp trap mac-notification change \{ added \| removed \}
9. end
10. show running-config
11. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>
| **Step 3** snmp-server host host-addr community-string notification-type \{ informs \| traps \} \{ version \{ 1 \| 2c \| 3 \} \}
 \{ vrf vrf instance name \} | Specifies the recipient of the trap message. |
<p>| Example: Switch(config)# snmp-server host 172.20.10.10 traps private mac-notification | • host-addr—Specifies the name or address of the NMS. |
| | • traps (the default)—Sends SNMP traps to the host. |
| | • informs—Sends SNMP informs to the host. |
| | • version—Specifies the SNMP version to support. Version 1, the default, is not available with informs. |
| | • community-string—Specifies the string to send with the notification operation. Though you can set this string by using the snmp-server host command, we recommend that you define this string by using the snmp-server community command before using the snmp-server host command. |
| | • notification-type—Uses the mac-notification keyword. |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>snmp-server enable traps mac-notification change</td>
<td>Enables the switch to send MAC address change notification traps to the NMS.</td>
</tr>
<tr>
<td>Example: Switch(config)# snmp-server enable traps mac-notification change</td>
<td></td>
</tr>
<tr>
<td>mac address-table notification change</td>
<td>Enables the MAC address change notification feature.</td>
</tr>
<tr>
<td>Example: Switch(config)# mac address-table notification change</td>
<td></td>
</tr>
<tr>
<td>mac address-table notification change [interval value] [history-size value]</td>
<td>Enters the trap interval time and the history table size.</td>
</tr>
<tr>
<td>Example: Switch(config)# mac address-table notification change interval 123 Switch(config)#mac address-table notification change history-size 100</td>
<td></td>
</tr>
<tr>
<td>interface interface-id</td>
<td>Enters interface configuration mode, and specifies the Layer 2 interface on which to enable the SNMP MAC address notification trap.</td>
</tr>
<tr>
<td>Example: Switch(config)# interface gigabitethernet1/0/2</td>
<td></td>
</tr>
<tr>
<td>snmp trap mac-notification change {added</td>
<td>removed}</td>
</tr>
<tr>
<td>Example: Switch(config-if)# snmp trap mac-notification change added</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Switch(config)# end</td>
<td></td>
</tr>
</tbody>
</table>

- **vrf vrf instance name**—Specifies the VPN routing/forwarding instance for this host.
- (Optional) **interval value**—Specifies the notification trap interval in seconds between each set of traps that are generated to the NMS. The range is 0 to 2147483647 seconds; the default is 1 second.
- (Optional) **history-size value**—Specifies the maximum number of entries in the MAC notification history table. The range is 0 to 500; the default is 1.
Configuring MAC Address Move Notification Traps

When you configure MAC-move notification, an SNMP notification is generated and sent to the network management system whenever a MAC address moves from one port to another within the same VLAN.

Follow these steps to configure the switch to send MAC address-move notification traps to an NMS host:

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `snmp-server host host-addr traps | informs | {version | 1 | 2c | 3} } community-string notification-type`
4. `snmp-server enable traps mac-notification move`
5. `mac address-table notification mac-move`
6. `end`
7. `show running-config`
8. `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Switch> enable</code></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 snmp-server host host-addr {traps</td>
<td>informs}</td>
</tr>
<tr>
<td>{version {1</td>
<td>2c</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# snmp-server host 172.20.10.10 traps private mac-notification</td>
<td></td>
</tr>
<tr>
<td>Step 4 snmp-server enable traps mac-notification move</td>
<td>Enables the switch to send MAC address move notification traps to the NMS.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# snmp-server enable traps mac-notification move</td>
<td></td>
</tr>
<tr>
<td>Step 5 mac address-table notification mac-move</td>
<td>Enables the MAC address move notification feature.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# mac address-table notification mac-move</td>
<td></td>
</tr>
<tr>
<td>Step 6 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# end</td>
<td></td>
</tr>
<tr>
<td>Step 7 show running-config</td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# show running-config</td>
<td></td>
</tr>
</tbody>
</table>
Configuring MAC Threshold Notification Traps

When you configure MAC threshold notification, an SNMP notification is generated and sent to the network management system when a MAC address table threshold limit is reached or exceeded.

Follow these steps to configure the switch to send MAC address table threshold notification traps to an NMS host:

SUMMARY STEPS

1. enable
2. configure terminal
3. snmp-server host *host-addr* {traps | informs} {version {1 | 2c | 3}} community-string notification-type
4. snmp-server enable traps mac-notification threshold
5. mac address-table notification threshold
6. mac address-table notification threshold [limit *percentage*] [interval *time*]
7. end
8. show running-config
9. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
</tbody>
</table>

What to Do Next

To disable MAC address-move notification traps, use the `no snmp-server enable traps mac-notification move` global configuration command. To disable the MAC address-move notification feature, use the `no mac address-table notification mac-move` global configuration command.

You can verify your settings by entering the `show mac address-table notification mac-move` privileged EXEC commands.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:
Switch> enable</td>
<td>Step 2 configure terminal Enters the global configuration mode.</td>
</tr>
</tbody>
</table>
| **Example:**
Switch# configure terminal | **Step 3** `snmp-server host host-addr {traps | informs} {version {1 | 2c | 3}} community-string notification-type` Specifies the recipient of the trap message.
- `host-addr`—Specifies the name or address of the NMS.
- `traps` (the default)—Sends SNMP traps to the host.
- `informs`—Sends SNMP informs to the host.
- `version`—Specifies the SNMP version to support. Version 1, the default, is not available with informs.
- `community-string`—Specifies the string to send with the notification operation. You can set this string by using the `snmp-server host` command, but we recommend that you define this string by using the `snmp-server community` command before using the `snmp-server host` command.
- `notification-type`—Uses the `mac-notification` keyword. |
| **Example:**
Switch(config)# snmp-server host 172.20.10.10 traps private mac-notification | **Step 4** `snmp-server enable traps mac-notification threshold` Enables MAC threshold notification traps to the NMS. |
| **Example:**
Switch(config)# `snmp-server enable traps mac-notification threshold` | **Step 5** `mac address-table notification threshold` Enables the MAC address threshold notification feature. |
| **Example:**
Switch(config)# `mac address-table notification threshold` | **Step 6** `mac address-table notification threshold [limit percentage] | [interval time]` Enters the threshold value for the MAC address threshold usage monitoring.
- (Optional) `limit percentage`—Specifies the percentage of the MAC address table use; valid values are from 1 to 100 percent. The default is 50 percent. |
| **Example:**
Switch(config)# `mac address-table notification threshold interval 123` |
Purpose

Command or Action

Switch(config)# mac address-table notification threshold limit 78

<table>
<thead>
<tr>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• (Optional) interval time—Specifies the time between notifications; valid values are greater than or equal to 120 seconds. The default is 120 seconds.</td>
</tr>
</tbody>
</table>

Step 7

end

Example:

Switch(config)# end

Step 8

show running-config

Example:

Switch# show running-config

Step 9

copy running-config startup-config

Example:

Switch# copy running-config startup-config

What to Do Next

Adding and Removing Static Address Entries

Follow these steps to add a static address:

SUMMARY STEPS

1. enable
2. configure terminal
3. mac address-table static mac-addr vlan vlan-id interface interface-id
4. end
5. show running-config
6. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
</tbody>
</table>
Command or Action | Purpose
---|---
Example:
Switch> enable |

Step 2 configure terminal | Enters the global configuration mode.
Example:
Switch# configure terminal |

Step 3 mac address-table static mac-addr vlan vlan-id interface interface-id | Adds a static address to the MAC address table.
Example:
Switch(config)# mac address-table static c2f3.220a.12f4 vlan 4 interface gigabitethernet 1/0/1 |
- **mac-addr**—Specifies the destination MAC unicast address to add to the address table. Packets with this destination address received in the specified VLAN are forwarded to the specified interface.
- **vlan-id**—Specifies the VLAN for which the packet with the specified MAC address is received. Valid VLAN IDs are 1 to 4094.
- **interface-id**—Specifies the interface to which the received packet is forwarded. Valid interfaces include physical ports or port channels. For static multicast addresses, you can enter multiple interface IDs. For static unicast addresses, you can enter only one interface at a time, but you can enter the command multiple times with the same MAC address and VLAN ID. |

Step 4 end | Returns to privileged EXEC mode. Alternatively, you can also press **Ctrl-Z** to exit global configuration mode.
Example:
Switch(config)# end |

Step 5 show running-config | Verifies your entries.
Example:
Switch# show running-config |

Step 6 copy running-config startup-config | (Optional) Saves your entries in the configuration file.
Example:
Switch# copy running-config startup-config |

Configuring Unicast MAC Address Filtering
Follow these steps to configure the Switch to drop a source or destination unicast static address:
SUMMARY STEPS

1. enable
2. configure terminal
3. `mac address-table static mac-addr vlan vlan-id drop`
4. end
5. show running-config
6. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted. Example: <code>Switch> enable</code></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode. Example: <code>Switch# configure terminal</code></td>
</tr>
<tr>
<td>Step 3 <code>mac address-table static mac-addr vlan vlan-id drop</code></td>
<td>Enables unicast MAC address filtering and configure the switch to drop a packet with the specified source or destination unicast static address. Example: <code>Switch(config)# mac address-table static c2f3.220a.12f4 vlan 4 drop</code></td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Returns to privileged EXEC mode. Example: <code>Switch(config)# end</code></td>
</tr>
<tr>
<td>Step 5 show running-config</td>
<td>Verifies your entries. Example: <code>Switch# show running-config</code></td>
</tr>
</tbody>
</table>
Monitoring and Maintaining Administration of the Switch

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>clear mac address-table dynamic</code></td>
<td>Removes all dynamic entries.</td>
</tr>
<tr>
<td><code>clear mac address-table dynamic address mac-address</code></td>
<td>Removes a specific MAC address.</td>
</tr>
<tr>
<td><code>clear mac address-table dynamic interface interface-id</code></td>
<td>Removes all addresses on the specified physical port or port channel.</td>
</tr>
<tr>
<td><code>clear mac address-table dynamic vlan vlan-id</code></td>
<td>Removes all addresses on a specified VLAN.</td>
</tr>
<tr>
<td><code>show clock [detail]</code></td>
<td>Displays the time and date configuration.</td>
</tr>
<tr>
<td><code>show ip igmp snooping groups</code></td>
<td>Displays the Layer 2 multicast entries for all VLANs or the specified VLAN.</td>
</tr>
<tr>
<td><code>show mac address-table address mac-address</code></td>
<td>Displays MAC address table information for the specified MAC address.</td>
</tr>
<tr>
<td><code>show mac address-table aging-time</code></td>
<td>Displays the aging time in all VLANs or the specified VLAN.</td>
</tr>
<tr>
<td><code>show mac address-table count</code></td>
<td>Displays the number of addresses present in all VLANs or the specified VLAN.</td>
</tr>
<tr>
<td><code>show mac address-table dynamic</code></td>
<td>Displays only dynamic MAC address table entries.</td>
</tr>
<tr>
<td><code>show mac address-table interface interface-name</code></td>
<td>Displays the MAC address table information for the specified interface.</td>
</tr>
<tr>
<td><code>show mac address-table move update</code></td>
<td>Displays the MAC address table move update information.</td>
</tr>
<tr>
<td><code>show mac address-table multicast</code></td>
<td>Displays a list of multicast MAC addresses.</td>
</tr>
</tbody>
</table>
Purpose

Command | Purpose
--- | ---
`show mac address-table notification {change | mac-move | threshold} | Displays the MAC notification parameters and history table.
`show mac address-table secure | Displays the secure MAC addresses.
`show mac address-table static | Displays only static MAC address table entries.
`show mac address-table vlan vlan-id | Displays the MAC address table information for the specified VLAN.

Configuration Examples for Switch Administration

Example: Setting the System Clock

This example shows how to manually set the system clock:

```
Switch# clock set 13:32:00 23 July 2013
```

Examples: Configuring Summer Time

This example (for daylight savings time) shows how to specify that summer time starts on March 10 at 02:00 and ends on November 3 at 02:00:

```
Switch(config)# clock summer-time PDT recurring PST date
10 March 2013 2:00 3 November 2013 2:00
```

This example shows how to set summer time start and end dates:

```
Switch(config)# clock summer-time PST date
20 March 2013 2:00 20 November 2013 2:00
```

Example: Configuring a MOTD Banner

This example shows how to configure a MOTD banner by using the pound sign (#) symbol as the beginning and ending delimiter:

```
Switch(config)# banner motd #
This is a secure site. Only authorized users are allowed.
For access, contact technical support.
#
Switch(config)#
```
This example shows the banner that appears from the previous configuration:

```
Unix> telnet 192.0.2.15
Trying 192.0.2.15...
Connected to 192.0.2.15.
Escape character is '^]'.
This is a secure site. Only authorized users are allowed.
For access, contact technical support.
User Access Verification
Password:
```

Example: Configuring a Login Banner

This example shows how to configure a login banner by using the dollar sign ($) symbol as the beginning and ending delimiter:

```
Switch(config)# banner login $
Access for authorized users only. Please enter your username and password.
$
Switch(config)#
```

Example: Configuring MAC Address Change Notification Traps

This example shows how to specify 172.20.10.10 as the NMS, enable MAC address notification traps to the NMS, enable the MAC address-change notification feature, set the interval time to 123 seconds, set the history-size to 100 entries, and enable traps whenever a MAC address is added on the specified port:

```
Switch(config)# snmp-server host 172.20.10.10 traps private mac-notification
Switch(config)# snmp-server enable traps mac-notification change
Switch(config)# mac address-table notification change
Switch(config)# mac address-table notification change interval 123
Switch(config)# mac address-table notification change history-size 100
Switch(config)# interface gigabitethernet1/2/1
Switch(config-if)# snmp trap mac-notification change added
```

Example: Configuring MAC Threshold Notification Traps

This example shows how to specify 172.20.10.10 as the NMS, enable the MAC address threshold notification feature, set the interval time to 123 seconds, and set the limit to 78 per cent:

```
Switch(config)# snmp-server host 172.20.10.10 traps private mac-notification
Switch(config)# snmp-server enable traps mac-notification threshold
Switch(config)# mac address-table notification threshold
Switch(config)# mac address-table notification threshold interval 123
Switch(config)# mac address-table notification threshold limit 78
```
Example: Adding the Static Address to the MAC Address Table

This example shows how to add the static address c2f3.220a.12f4 to the MAC address table. When a packet is received in VLAN 4 with this MAC address as its destination address, the packet is forwarded to the specified port:

```
Switch(config)# mac address-table static c2f3.220a.12f4 vlan 4 interface gigabitethernet1/1
```

Example: Configuring Unicast MAC Address Filtering

This example shows how to enable unicast MAC address filtering and how to configure drop packets that have a source or destination address of c2f3.220a.12f4. When a packet is received in VLAN 4 with this MAC address as its source or destination, the packet is dropped:

```
Switch(config)# mac address-table static c2f3.220a.12f4 vlan 4 drop
```

Additional References for Switch Administration

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch administration commands</td>
<td>Catalyst 2960-X Switch System Management Command Reference</td>
</tr>
<tr>
<td>Network management configuration</td>
<td>Catalyst 2960-X Switch Network Management Configuration Guide</td>
</tr>
<tr>
<td>Layer 2 configuration</td>
<td>Catalyst 2960-X Switch Layer 2 Configuration Guide</td>
</tr>
<tr>
<td>VLAN configuration</td>
<td>Catalyst 2960-X Switch VLAN Management Configuration Guide</td>
</tr>
<tr>
<td>Platform-independent command references</td>
<td>Cisco IOS 15.3M&T Command References</td>
</tr>
<tr>
<td>Platform-independent configuration information</td>
<td>Cisco IOS 15.3M&T Configuration Guides</td>
</tr>
</tbody>
</table>

Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>—</td>
</tr>
</tbody>
</table>
MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>All supported MIBs for this release.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/support</td>
</tr>
</tbody>
</table>

Feature History and Information for Switch Administration

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS 15.0(2)EX</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>
Performing Switch Setup Configuration

- Finding Feature Information, page 1277
- Information About Performing Switch Setup Configuration, page 1277
- How to Perform Switch Setup Configuration, page 1288
- Monitoring Switch Setup Configuration, page 1301
- Configuration Examples for Performing Switch Setup, page 1302
- Additional References for Performing Switch Setup, page 1304
- Feature History and Information For Performing Switch Setup Configuration, page 1305

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About Performing Switch Setup Configuration

Review the sections in this module before performing your initial switch configuration tasks that include IP address assignments and DHCP autoconfiguration.

Boot Process

To start your switch, you need to follow the procedures in the getting started guide or the hardware installation guide for installing and powering on the switch and setting up the initial switch configuration (IP address, subnet mask, default gateway, secret and Telnet passwords, and so forth).

The boot loader software performs the normal boot process and includes these activities:
• Locates the bootable (base) package in the bundle or installed package set.
• Performs low-level CPU initialization. It initializes the CPU registers, which control where physical memory is mapped, its quantity, its speed, and so forth.
• Performs power-on self-test (POST) for the CPU subsystem and tests the system DRAM.
• Initializes the file systems on the system board.
• Loads a default operating system software image into memory and boots up the switch.

The boot loader provides access to the flash file systems before the operating system is loaded. Normally, the boot loader is used only to load, decompress, and start the operating system. After the boot loader gives the operating system control of the CPU, the boot loader is not active until the next system reset or power-on.

The boot loader also provides trap-door access into the system if the operating system has problems serious enough that it cannot be used. The trap-door operation provides enough access to the system so that if it is necessary, you can format the flash file system, reinstall the operating system software image by using the Xmodem Protocol, recover from a lost or forgotten password, and finally restart the operating system.

Before you can assign switch information, make sure that you have connected a PC or terminal to the console port or a PC to the Ethernet management port, and make sure you have configured the PC or terminal-emulation software baud rate and character format to match that of the switch console port settings:

• Baud rate default is 9600.
• Data bits default is 8.

Note

If the data bits option is set to 8, set the parity option to none.

• Stop bits default is 2 (minor).
• Parity settings default is none.

Switches Information Assignment

You can assign IP information through the switch setup program, through a DHCP server, or manually.

Use the switch setup program if you want to be prompted for specific IP information. With this program, you can also configure a hostname and an enable secret password.

It gives you the option of assigning a Telnet password (to provide security during remote management) and configuring your switch as a command or member switch of a cluster or as a standalone switch.

Use a DHCP server for centralized control and automatic assignment of IP information after the server is configured.

Note

If you are using DHCP, do not respond to any of the questions in the setup program until the switch receives the dynamically assigned IP address and reads the configuration file.

If you are an experienced user familiar with the switch configuration steps, manually configure the switch. Otherwise, use the setup program described in the Boot Process section.
Default Switch Information

Table 132: Default Switch Information

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address and subnet mask</td>
<td>No IP address or subnet mask are defined.</td>
</tr>
<tr>
<td>Default gateway</td>
<td>No default gateway is defined.</td>
</tr>
<tr>
<td>Enable secret password</td>
<td>No password is defined.</td>
</tr>
<tr>
<td>Hostname</td>
<td>The factory-assigned default hostname is Switch.</td>
</tr>
<tr>
<td>Telnet password</td>
<td>No password is defined.</td>
</tr>
<tr>
<td>Cluster command switch functionalty</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Cluster name</td>
<td>No cluster name is defined.</td>
</tr>
</tbody>
</table>

DHCP-Based Autoconfiguration Overview

DHCP provides configuration information to Internet hosts and internetworking devices. This protocol consists of two components: one for delivering configuration parameters from a DHCP server to a device and an operation for allocating network addresses to devices. DHCP is built on a client-server model, in which designated DHCP servers allocate network addresses and deliver configuration parameters to dynamically configured devices. The switch can act as both a DHCP client and a DHCP server.

During DHCP-based autoconfiguration, your switch (DHCP client) is automatically configured at startup with IP address information and a configuration file.

With DHCP-based autoconfiguration, no DHCP client-side configuration is needed on your switch. However, you need to configure the DHCP server for various lease options associated with IP addresses.

If you want to use DHCP to relay the configuration file location on the network, you might also need to configure a Trivial File Transfer Protocol (TFTP) server and a Domain Name System (DNS) server.

The DHCP server for your switch can be on the same LAN or on a different LAN than the switch. If the DHCP server is running on a different LAN, you should configure a DHCP relay device between your switch and the DHCP server. A relay device forwards broadcast traffic between two directly connected LANs. A router does not forward broadcast packets, but it forwards packets based on the destination IP address in the received packet.

DHCP-based autoconfiguration replaces the BOOTP client functionality on your switch.

DHCP Client Request Process

When you boot up your switch, the DHCP client is invoked and requests configuration information from a DHCP server when the configuration file is not present on the switch. If the configuration file is present and the configuration includes the ip address dhcp interface configuration command on specific routed interfaces, the DHCP client is invoked and requests the IP address information for those interfaces.
This is the sequence of messages that are exchanged between the DHCP client and the DHCP server.

Figure 99: DHCP Client and Server Message Exchange

The client, Switch A, broadcasts a DHCPDISCOVER message to locate a DHCP server. The DHCP server offers configuration parameters (such as an IP address, subnet mask, gateway IP address, DNS IP address, a lease for the IP address, and so forth) to the client in a DHCPOFFER unicast message.

In a DHCPREQUEST broadcast message, the client returns a formal request for the offered configuration information to the DHCP server. The formal request is broadcast so that all other DHCP servers that received the DHCPDISCOVER broadcast message from the client can reclaim the IP addresses that they offered to the client.

The DHCP server confirms that the IP address has been allocated to the client by returning a DHCPACK unicast message to the client. With this message, the client and server are bound, and the client uses configuration information received from the server. The amount of information the switch receives depends on how you configure the DHCP server.

If the configuration parameters sent to the client in the DHCPOFFER unicast message are invalid (a configuration error exists), the client returns a DHCPDECLINE broadcast message to the DHCP server.

The DHCP server sends the client a DHCPNAK denial broadcast message, which means that the offered configuration parameters have not been assigned, that an error has occurred during the negotiation of the parameters, or that the client has been slow in responding to the DHCPOFFER message (the DHCP server assigned the parameters to another client).

A DHCP client might receive offers from multiple DHCP or BOOTP servers and can accept any of the offers; however, the client usually accepts the first offer it receives. The offer from the DHCP server is not a guarantee that the IP address is allocated to the client; however, the server usually reserves the address until the client has had a chance to formally request the address. If the switch accepts replies from a BOOTP server and configures itself, the switch broadcasts, instead of unicasts, TFTP requests to obtain the switch configuration file.

The DHCP hostname option allows a group of switches to obtain hostnames and a standard configuration from the central management DHCP server. A client (switch) includes in its DCHPDISCOVER message an option 12 field used to request a hostname and other configuration parameters from the DHCP server. The configuration files on all clients are identical except for their DHCP-obtained hostnames.

If a client has a default hostname (the `hostname name` global configuration command is not configured or the `no hostname` global configuration command is entered to remove the hostname), the DHCP hostname option is not included in the packet when you enter the `ip address dhcp` interface configuration command. In this case, if the client receives the DCHP hostname option from the DHCP interaction while acquiring an IP address for an interface, the client accepts the DHCP hostname option and sets the flag to show that the system now has a hostname configured.
DHCP-based Autoconfiguration and Image Update

You can use the DHCP image upgrade features to configure a DHCP server to download both a new image and a new configuration file to one or more switches in a network. Simultaneous image and configuration upgrade for all switches in the network helps ensure that each new switch added to a network receives the same image and configuration.

There are two types of DHCP image upgrades: DHCP autoconfiguration and DHCP auto-image update.

Restrictions for DHCP-based Autoconfiguration

- The DHCP-based autoconfiguration with a saved configuration process stops if there is not at least one Layer 3 interface in an up state without an assigned IP address in the network.
- Unless you configure a timeout, the DHCP-based autoconfiguration with a saved configuration feature tries indefinitely to download an IP address.
- The auto-install process stops if a configuration file cannot be downloaded or if the configuration file is corrupted.
- The configuration file that is downloaded from TFTP is merged with the existing configuration in the running configuration but is not saved in the NVRAM unless you enter the write memory or copy running-configuration startup-configuration privileged EXEC command. If the downloaded configuration is saved to the startup configuration, the feature is not triggered during subsequent system restarts.

DHCP Autoconfiguration

DHCP autoconfiguration downloads a configuration file to one or more switches in your network from a DHCP server. The downloaded configuration file becomes the running configuration of the switch. It does not overwrite the bootstrap configuration saved in the flash, until you reload the switch.

DHCP Auto-Image Update

You can use DHCP auto-image upgrade with DHCP autoconfiguration to download both a configuration and a new image to one or more switches in your network. The switch (or switches) downloading the new configuration and the new image can be blank (or only have a default factory configuration loaded).

If the new configuration is downloaded to a switch that already has a configuration, the downloaded configuration is appended to the configuration file stored on the switch. (Any existing configuration is not overwritten by the downloaded one.)

To enable a DHCP auto-image update on the switch, the TFTP server where the image and configuration files are located must be configured with the correct option 67 (the configuration filename), option 66 (the DHCP server hostname) option 150 (the TFTP server address), and option 125 (description of the Cisco IOS image file) settings.

After you install the switch in your network, the auto-image update feature starts. The downloaded configuration file is saved in the running configuration of the switch, and the new image is downloaded and installed on the switch. When you reboot the switch, the configuration is stored in the saved configuration on the switch.
DHCP Server Configuration Guidelines

Follow these guidelines if you are configuring a device as a DHCP server:

- You should configure the DHCP server with reserved leases that are bound to each switch by the switch hardware address.

- If you want the switch to receive IP address information, you must configure the DHCP server with these lease options:
 - IP address of the client (required)
 - Subnet mask of the client (required)
 - DNS server IP address (optional)
 - Router IP address (default gateway address to be used by the switch) (required)

- If you want the switch to receive the configuration file from a TFTP server, you must configure the DHCP server with these lease options:
 - TFTP server name (required)
 - Boot filename (the name of the configuration file that the client needs) (recommended)
 - Hostname (optional)

- Depending on the settings of the DHCP server, the switch can receive IP address information, the configuration file, or both.

- If you do not configure the DHCP server with the lease options described previously, it replies to client requests with only those parameters that are configured. If the IP address and the subnet mask are not in the reply, the switch is not configured. If the router IP address or the TFTP server name are not found, the switch might send broadcast, instead of unicast, TFTP requests. Unavailability of other lease options does not affect autoconfiguration.

- The switch can act as a DHCP server. By default, the Cisco IOS DHCP server and relay agent features are enabled on your switch but are not configured. (These features are not operational.)

Purpose of the TFTP Server

Based on the DHCP server configuration, the switch attempts to download one or more configuration files from the TFTP server. If you configured the DHCP server to respond to the switch with all the options required for IP connectivity to the TFTP server, and if you configured the DHCP server with a TFTP server name, address, and configuration filename, the switch attempts to download the specified configuration file from the specified TFTP server.

If you did not specify the configuration filename, the TFTP server, or if the configuration file could not be downloaded, the switch attempts to download a configuration file by using various combinations of filenames and TFTP server addresses. The files include the specified configuration filename (if any) and these files: network-config, cisconet.cfg, hostname.config, or hostname.cfg, where hostname is the switch’s current hostname. The TFTP server addresses used include the specified TFTP server address (if any) and the broadcast address (255.255.255.255).

For the switch to successfully download a configuration file, the TFTP server must contain one or more configuration files in its base directory. The files can include these files:
• The configuration file named in the DHCP reply (the actual switch configuration file).
• The network-config or the cisconet.cfg file (known as the default configuration files).
• The router-config or the ciscort.cfg file (These files contain commands common to all switches. Normally, if the DHCP and TFTP servers are properly configured, these files are not accessed.)

If you specify the TFTP server name in the DHCP server-lease database, you must also configure the TFTP server name-to-IP-address mapping in the DNS-server database.

If the TFTP server to be used is on a different LAN from the switch, or if it is to be accessed by the switch through the broadcast address (which occurs if the DHCP server response does not contain all the required information described previously), a relay must be configured to forward the TFTP packets to the TFTP server. The preferred solution is to configure the DHCP server with all the required information.

Purpose of the DNS Server

The DHCP server uses the DNS server to resolve the TFTP server name to an IP address. You must configure the TFTP server name-to-IP address map on the DNS server. The TFTP server contains the configuration files for the switch.

You can configure the IP addresses of the DNS servers in the lease database of the DHCP server from where the DHCP replies will retrieve them. You can enter up to two DNS server IP addresses in the lease database. The DNS server can be on the same LAN or on a different LAN from the switch. If it is on a different LAN, the switch must be able to access it through a router.

How to Obtain Configuration Files

Depending on the availability of the IP address and the configuration filename in the DHCP reserved lease, the switch obtains its configuration information in these ways:

• The IP address and the configuration filename is reserved for the switch and provided in the DHCP reply (one-file read method).
 The switch receives its IP address, subnet mask, TFTP server address, and the configuration filename from the DHCP server. The switch sends a unicast message to the TFTP server to retrieve the named configuration file from the base directory of the server and upon receipt, it completes its boot up process.

• The IP address and the configuration filename is reserved for the switch, but the TFTP server address is not provided in the DHCP reply (one-file read method).
 The switch receives its IP address, subnet mask, and the configuration filename from the DHCP server. The switch sends a broadcast message to a TFTP server to retrieve the named configuration file from the base directory of the server, and upon receipt, it completes its boot-up process.

• Only the IP address is reserved for the switch and provided in the DHCP reply. The configuration filename is not provided (two-file read method).
 The switch receives its IP address, subnet mask, and the TFTP server address from the DHCP server. The switch sends a unicast message to the TFTP server to retrieve the network-config or cisconet.cfg default configuration file. (If the network-config file cannot be read, the switch reads the cisconet.cfg file.)
 The default configuration file contains the hostnames-to-IP-address mapping for the switch. The switch fills its host table with the information in the file and obtains its hostname. If the hostname is not found
in the file, the switch uses the hostname in the DHCP reply. If the hostname is not specified in the DHCP reply, the switch uses the default *Switch* as its hostname.

After obtaining its hostname from the default configuration file or the DHCP reply, the switch reads the configuration file that has the same name as its hostname (hostname-config or hostname.cfg, depending on whether network-config or cisconet.cfg was read earlier) from the TFTP server. If the cisconet.cfg file is read, the filename of the host is truncated to eight characters.

If the switch cannot read the network-config, cisconet.cfg, or the hostname file, it reads the router-config file. If the switch cannot read the router-config file, it reads the ciscotr.cfg file.

Note

The switch broadcasts TFTP server requests if the TFTP server is not obtained from the DHCP replies, if all attempts to read the configuration file through unicast transmissions fail, or if the TFTP server name cannot be resolved to an IP address.

How to Control Environment Variables

With a normally operating switch, you enter the boot loader mode only through the console connection. Unplug the switch power cord, then reconnect the power cord. Hold down the **MODE** button until you see the boot loader switch prompt.

The switch boot loader software provides support for nonvolatile environment variables, which can be used to control how the boot loader or any other software running on the system, functions. Boot loader environment variables are similar to environment variables that can be set on UNIX or DOS systems.

Environment variables that have values are stored in flash memory outside of the flash file system.

Each line in these files contains an environment variable name and an equal sign followed by the value of the variable. A variable has no value if it is not present; it has a value if it is listed even if the value is a null string. A variable that is set to a null string (for example, " ") is a variable with a value. Many environment variables are predefined and have default values.

Environment variables store two kinds of data:

- Data that controls code, which does not read the Cisco IOS configuration file. For example, the name of a boot loader helper file, which extends or patches the functionality of the boot loader can be stored as an environment variable.

- Data that controls code, which is responsible for reading the Cisco IOS configuration file. For example, the name of the Cisco IOS configuration file can be stored as an environment variable.

You can change the settings of the environment variables by accessing the boot loader or by using Cisco IOS commands. Under normal circumstances, it is not necessary to alter the setting of the environment variables.

Common Environment Variables

This table describes the function of the most common environment variables.
Table 133: Common Environment Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Boot Loader Command</th>
<th>Cisco IOS Global Configuration Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOOT</td>
<td>set BOOT filesystem :/ file-url ...</td>
<td>boot system {filesystem : /file-url ...</td>
</tr>
</tbody>
</table>

A semicolon-separated list of executable files to try to load and execute when automatically booting. If the BOOT environment variable is not set, the system attempts to load and execute the first executable image it can find by using a recursive, depth-first search through the flash file system. If the BOOT variable is set but the specified images cannot be loaded, the system attempts to boot the first bootable file that it can find in the flash file system.

| MANUAL_BOOT | set MANUAL_BOOT yes | boot manual |

Decides whether the switch automatically or manually boots. Valid values are 1, yes, 0, and no. If it is set to no or 0, the boot loader attempts to automatically boot up the system. If it is set to anything else, you must manually boot up the switch from the boot loader mode.

Specifies the Cisco IOS image to load during the next boot cycle and the stack members on which the image is loaded. This command changes the setting of the BOOT environment variable.

Enables manually booting the switch during the next boot cycle and changes the setting of the MANUAL_BOOT environment variable. The next time you reboot the system, the switch is in boot loader mode. To boot up the system, use the boot flash: filesystem : /file-url boot loader command, and specify the name of the bootable image.
Environment Variables for TFTP

When the switch is connected to a PC through the Ethernet management port, you can download or upload a configuration file to the boot loader by using TFTP. Make sure the environment variables in this table are configured.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Boot Loader Command</th>
<th>Cisco IOS Global Configuration Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONFIG_FILE</td>
<td>set CONFIG_FILE flash:/ file-url</td>
<td>boot config-file flash:/ file-url</td>
</tr>
<tr>
<td></td>
<td>Changes the filename that Cisco IOS</td>
<td>Specifies the filename that Cisco IOS uses to read and write</td>
</tr>
<tr>
<td></td>
<td>uses to read and write a</td>
<td>a nonvolatile copy of the system configuration. This command</td>
</tr>
<tr>
<td></td>
<td>nonvolatile copy of the system</td>
<td>changes the CONFIG_FILE environment variable.</td>
</tr>
<tr>
<td></td>
<td>configuration.</td>
<td></td>
</tr>
<tr>
<td>SWITCH_NUMBER</td>
<td>set SWITCH_NUMBER stack-member-number</td>
<td>switch current-stack-member-number renumber new-stack-member-number</td>
</tr>
<tr>
<td></td>
<td>Changes the member number of a stack</td>
<td>Changes the member number of a stack member.</td>
</tr>
<tr>
<td></td>
<td>member.</td>
<td></td>
</tr>
<tr>
<td>SWITCH_PRIORITY</td>
<td>set SWITCH_PRIORITY stack-member-number</td>
<td>switch stack-member-number priority priority-number</td>
</tr>
<tr>
<td></td>
<td>Changes the priority value of a stack</td>
<td>Changes the priority value of a stack member.</td>
</tr>
<tr>
<td></td>
<td>member.</td>
<td></td>
</tr>
<tr>
<td>BAUD</td>
<td>set BAUD baud-rate</td>
<td>line console 0 speed speed-value</td>
</tr>
<tr>
<td></td>
<td>Configures the baud rate.</td>
<td>Configures the baud rate.</td>
</tr>
<tr>
<td>ENABLE_BREAK</td>
<td>set ENABLE_BREAK yes/no</td>
<td>boot enable-break switch yes/no</td>
</tr>
<tr>
<td></td>
<td>This command can be issued when the</td>
<td>This command can be issued when the flash filesystem is</td>
</tr>
<tr>
<td></td>
<td>flash filesystem is initialized when</td>
<td>initialized when ENABLE_BREAK is set to yes.</td>
</tr>
<tr>
<td></td>
<td>ENABLE_BREAK is set to yes.</td>
<td></td>
</tr>
</tbody>
</table>
Table 134: Environment Variables for TFTP

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC_ADDR</td>
<td>Specifies the MAC address of the switch.</td>
</tr>
<tr>
<td></td>
<td>Note We recommend that you do not modify this variable.</td>
</tr>
<tr>
<td></td>
<td>However, if you modify this variable after the boot loader is up or the</td>
</tr>
<tr>
<td></td>
<td>value is different from the saved value, enter this command before using</td>
</tr>
<tr>
<td></td>
<td>TFTP.</td>
</tr>
<tr>
<td>IP_ADDR</td>
<td>Specifies the IP address and the subnet mask for the associated IP subnet</td>
</tr>
<tr>
<td></td>
<td>of the switch.</td>
</tr>
<tr>
<td>DEFAULT_ROUTER</td>
<td>Specifies the IP address and subnet mask of the default gateway.</td>
</tr>
</tbody>
</table>

Scheduled Reload of the Software Image

You can schedule a reload of the software image to occur on the switch at a later time (for example, late at night or during the weekend when the switch is used less), or you can synchronize a reload network-wide (for example, to perform a software upgrade on all switches in the network).

Note A scheduled reload must take place within approximately 24 days.

You have these reload options:

- Reload of the software to take affect in the specified minutes or hours and minutes. The reload must take place within approximately 24 hours. You can specify the reason for the reload in a string up to 255 characters in length.

- Reload of the software to take place at the specified time (using a 24-hour clock). If you specify the month and day, the reload is scheduled to take place at the specified time and date. If you do not specify the month and day, the reload takes place at the specified time on the current day (if the specified time is later than the current time) or on the next day (if the specified time is earlier than the current time). Specifying 00:00 schedules the reload for midnight.

The **reload** command halts the system. If the system is not set to manually boot up, it reboots itself.

If your switch is configured for manual booting, do not reload it from a virtual terminal. This restriction prevents the switch from entering the boot loader mode and then taking it from the remote user’s control.

If you modify your configuration file, the switch prompts you to save the configuration before reloading. During the save operation, the system requests whether you want to proceed with the save if the CONFIG_FILE environment variable points to a startup configuration file that no longer exists. If you proceed in this situation, the system enters setup mode upon reload.

To cancel a previously scheduled reload, use the **reload cancel** privileged EXEC command.
How to Perform Switch Setup Configuration

Using DHCP to download a new image and a new configuration to a switch requires that you configure at least two switches. One switch acts as a DHCP and TFTP server and the second switch (client) is configured to download either a new configuration file or a new configuration file and a new image file.

Configuring DHCP Autoconfiguration (Only Configuration File)

This task describes how to configure DHCP autoconfiguration of the TFTP and DHCP settings on an existing switch in the network so that it can support the autoconfiguration of a new switch.

SUMMARY STEPS

1. configure terminal
2. ip dhcp pool poolname
3. boot filename
4. network network-number mask prefix-length
5. default-router address
6. option 150 address
7. exit
8. tftp-server flash:filename.text
9. interface interface-id
10. no switchport
11. ip address address mask
12. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Creates a name for the DHCP server address pool, and enters DHCP pool configuration mode.</td>
</tr>
<tr>
<td>ip dhcp pool poolname</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# ip dhcp pool pool</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>3</td>
<td>boot filename</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td>4</td>
<td>network network-number mask prefix-length</td>
</tr>
<tr>
<td></td>
<td>Note</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td>5</td>
<td>default-router address</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td>6</td>
<td>option 150 address</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td>7</td>
<td>exit</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td>8</td>
<td>tftp-server flash:filename.text</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td>9</td>
<td>interface interface-id</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 10</td>
<td>no switchport</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-if)# no switchport</td>
</tr>
<tr>
<td>Step 11</td>
<td>ip address address mask</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-if)# ip address 10.10.10.1 255.255.255.0</td>
</tr>
<tr>
<td>Step 12</td>
<td>end</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-if)# end</td>
</tr>
</tbody>
</table>

Related Topics

Example: Configuring a Switch as a DHCP Server, on page 1302

Configuring DHCP Auto-Image Update (Configuration File and Image)

This task describes DHCP autoconfiguration to configure TFTP and DHCP settings on an existing switch to support the installation of a new switch.

Before You Begin

You must first create a text file (for example, autostall_dhcp) that will be uploaded to the switch. In the text file, put the name of the image that you want to download (for example, c3750e-ipservices-mz.122-44.3.SE.tarc3750x-ipservices-mz.122-53.3.SE2.tar). This image must be a tar and not a bin file.
SUMMARY STEPS

1. `configure terminal`
2. `ip dhcp pool poolname`
3. `boot filename`
4. `network network-number mask prefix-length`
5. `default-router address`
6. `option 150 address`
7. `option 125 hex`
8. `copy tftp flash filename.txt`
9. `copy tftp flash imagename.bin`
10. `exit`
11. `tftp-server flash: config.text`
12. `tftp-server flash: imagename.bin`
13. `tftp-server flash: filename.txt`
14. `interface interface-id`
15. `no switchport`
16. `ip address address mask`
17. `end`
18. `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>ip dhcp pool poolname</code></td>
<td>Creates a name for the DHCP server address pool and enter DHCP pool configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch(config)# ip dhcp pool pool1</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td><code>boot filename</code></td>
<td>Specifies the name of the file that is used as a boot image.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch(dhcp-config)# boot config-boot.text</code></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 4</td>
<td>network network-number mask prefix-length
Example:
Switch(dhcp-config)# network 10.10.0 255.255.255.0</td>
</tr>
<tr>
<td>Step 5</td>
<td>default-router address
Example:
Switch(dhcp-config)# default-router 10.10.10.1</td>
</tr>
<tr>
<td>Step 6</td>
<td>option 150 address
Example:
Switch(dhcp-config)# option 150 10.10.10.1</td>
</tr>
<tr>
<td>Step 7</td>
<td>option 125 hex
Example:
Switch(dhcp-config)# option 125 hex 0000.0009.0a05.08661.7574.6f69.6e73.7461.6c6c.5f686370</td>
</tr>
<tr>
<td>Step 8</td>
<td>copy tftp flash filename.txt
Example:
Switch(config)# copy tftp flash image.bin</td>
</tr>
<tr>
<td>Step 9</td>
<td>copy tftp flash imagename.bin
Example:
Switch(config)# copy tftp flash image.bin</td>
</tr>
<tr>
<td>Step 10</td>
<td>exit
Example:
Switch(dhcp-config)# exit</td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------</td>
</tr>
<tr>
<td>11</td>
<td><code>tftp-server flash: config.text</code></td>
</tr>
<tr>
<td></td>
<td>Example: <code>Switch(config)# tftp-server flash:config-boot.text</code></td>
</tr>
<tr>
<td>12</td>
<td><code>tftp-server flash: imagename.bin</code></td>
</tr>
<tr>
<td></td>
<td>Example: <code>Switch(config)# tftp-server flash:image.bin</code></td>
</tr>
<tr>
<td>13</td>
<td><code>tftp-server flash: filename.txt</code></td>
</tr>
<tr>
<td></td>
<td>Example: <code>Switch(config)# tftp-server flash:boot-config.text</code></td>
</tr>
<tr>
<td>14</td>
<td><code>interface interface-id</code></td>
</tr>
<tr>
<td></td>
<td>Example: <code>Switch(config)# interface gigabitEthernet1/0/4</code></td>
</tr>
<tr>
<td>15</td>
<td><code>no switchport</code></td>
</tr>
<tr>
<td></td>
<td>Example: <code>Switch(config-if)# no switchport</code></td>
</tr>
<tr>
<td>16</td>
<td><code>ip address address mask</code></td>
</tr>
<tr>
<td></td>
<td>Example: <code>Switch(config-if)# ip address 10.10.10.1 255.255.255.0</code></td>
</tr>
<tr>
<td>17</td>
<td><code>end</code></td>
</tr>
<tr>
<td></td>
<td>Example: <code>Switch(config-if)# end</code></td>
</tr>
<tr>
<td>18</td>
<td><code>copy running-config startup-config</code></td>
</tr>
<tr>
<td></td>
<td>Example: <code>Switch(config-if)# end</code></td>
</tr>
</tbody>
</table>
Configuring the Client to Download Files from DHCP Server

Note
You should only configure and enable the Layer 3 interface. Do not assign an IP address or DHCP-based autoconfiguration with a saved configuration.

SUMMARY STEPS

1. `configure terminal`
2. `boot host dhcp`
3. `boot host retry timeout timeout-value`
4. `banner config-save ^C warning-message ^C`
5. `end`
6. `show boot`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2 boot host dhcp</td>
<td>Enables autoconfiguration with a saved configuration.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(conf)# boot host dhcp</td>
<td></td>
</tr>
<tr>
<td>Step 3 boot host retry timeout timeout-value</td>
<td>(Optional) Sets the amount of time the system tries to download a configuration file.</td>
</tr>
<tr>
<td>Example:</td>
<td>Note: If you do not set a timeout, the system will try indefinitely to obtain an IP address from the DHCP server.</td>
</tr>
<tr>
<td>Switch(conf)# boot host retry timeout 300</td>
<td></td>
</tr>
<tr>
<td>Step 4 banner config-save ^C warning-message ^C</td>
<td>(Optional) Creates warning messages to be displayed when you try to save the configuration file to NVRAM.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(conf)# banner config-save ^C Caution - Saving Configuration File to NVRAM May Cause You to No longer Automatically</td>
<td></td>
</tr>
</tbody>
</table>
How to Perform Switch Setup Configuration

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Download Configuration Files at Reboot^C</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Step 5

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Example:
```
Switch(config-if)# end
```

Step 6

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show boot</td>
<td>Verifies the configuration.</td>
</tr>
</tbody>
</table>

Example:
```
Switch# show boot
```

Related Topics

Example: Configuring a Switch to Download Configurations from a DHCP Server, on page 1303

Manually Assigning IP Information to Multiple SVIs

This task describes how to manually assign IP information to multiple switched virtual interfaces (SVIs):

SUMMARY STEPS

1. configure terminal
2. interface vlan vlan-id
3. ip address ip-address subnet-mask
4. exit
5. ip default-gateway ip-address
6. end
7. show interfaces vlan vlan-id
8. show ip redirects

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>

Example:
```
Switch# configure terminal
```
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>Enters interface configuration mode, and enter the VLAN to which the IP information is assigned. The range is 1 to 4094.</td>
</tr>
<tr>
<td><code>interface vlan vlan-id</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# <code>interface vlan 99</code></td>
</tr>
<tr>
<td>Step 3</td>
<td>Enters the IP address and subnet mask.</td>
</tr>
<tr>
<td><code>ip address ip-address subnet-mask</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-vlan)# <code>ip address 10.10.10.2 255.255.255.0</code></td>
</tr>
<tr>
<td>Step 4</td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td><code>exit</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-vlan)# <code>exit</code></td>
</tr>
<tr>
<td>Step 5</td>
<td>Enters the IP address of the next-hop router interface that is directly connected to the switch where a default gateway is being configured. The default gateway receives IP packets with unresolved destination IP addresses from the switch. Once the default gateway is configured, the switch has connectivity to the remote networks with which a host needs to communicate. Note When your switch is configured to route with IP, it does not need to have a default gateway set.</td>
</tr>
<tr>
<td><code>ip default-gateway ip-address</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# <code>ip default-gateway 10.10.10.1</code></td>
</tr>
<tr>
<td>Step 6</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>end</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# <code>end</code></td>
</tr>
<tr>
<td>Step 7</td>
<td>Verifies the configured IP address.</td>
</tr>
<tr>
<td><code>show interfaces vlan vlan-id</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# <code>show interfaces vlan 99</code></td>
</tr>
<tr>
<td>Step 8</td>
<td>Verifies the configured default gateway.</td>
</tr>
<tr>
<td><code>show ip redirects</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# <code>show ip redirects</code></td>
</tr>
</tbody>
</table>

Cisco 2960-X Switch Series Configuration Guide, Cisco IOS Release 15.0(2)EX
Configuring the NVRAM Buffer Size

The default NVRAM buffer size is 512 KB. In some cases, the configuration file might be too large to save to NVRAM. Typically, this occurs when you have many switches in a switch stack. You can configure the size of the NVRAM buffer to support larger configuration files. The new NVRAM buffer size is synced to all current and new member switches.

Note

After you configure the NVRAM buffer size, reload the switch or switch stack.

When you add a switch to a stack and the NVRAM size differs, the new switch syncs with the stack and reloads automatically.

SUMMARY STEPS

1. configure terminal
2. boot buffersize size
3. end
4. show boot

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
</tr>
</tbody>
</table>

| **Step 2** | Configures the NVRAM buffersize in KB. The valid range for size is from 4096 to 1048576. |
| boot buffersize size | Configures the NVRAM buffersize in KB. The valid range for size is from 4096 to 1048576. |
| **Example:** | Switch(config)# boot buffersize 524288 |

| **Step 3** | Returns to privileged EXEC mode. |
| end | Returns to privileged EXEC mode. |
| **Example:** | Switch(config)# end |

| **Step 4** | Verifies the configuration. |
| show boot | Verifies the configuration. |
| **Example:** | Switch# show boot |
Modifying the Switch Startup Configuration

Specifying the Filename to Read and Write the System Configuration

By default, the Cisco IOS software uses the config.text file to read and write a nonvolatile copy of the system configuration. However, you can specify a different filename, which will be loaded during the next boot cycle.

Before You Begin

Use a standalone switch for this task.

SUMMARY STEPS

1. configure terminal
2. boot flash:/file-url
3. end
4. show boot
5. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Specifies the configuration file to load during the next boot cycle.</td>
</tr>
<tr>
<td>boot flash:/file-url</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>file-url—The path (directory) and the configuration filename. Filenames and directory names are case-sensitive.</td>
</tr>
<tr>
<td>Switch(config)# boot flash:config.text</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>end</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# end</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td>show boot</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Example: Switch# show boot</td>
<td>The <code>boot</code> global configuration command changes the setting of the CONFIG_FILE environment variable.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Manually Booting the Switch

By default, the switch automatically boots up; however, you can configure it to manually boot up.

Before You Begin

Use a standalone switch for this task.

SUMMARY STEPS

1. `configure terminal`
2. `boot manual`
3. `end`
4. `show boot`
5. `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# <code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 2 <code>boot manual</code></td>
<td>Enables the switch to manually boot up during the next boot cycle.</td>
</tr>
<tr>
<td>Example: Switch(config)# <code>boot manual</code></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# end</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>show boot</td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# show boot</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

Configuring a Scheduled Software Image Reload

This task describes how to configure your switch to reload the software image at a later time.

SUMMARY STEPS

1. configure terminal
2. copy running-config startup-config
3. reload in [hh:]mm [text]
4. reload at hh: mm [month day | day month] [text]
5. reload cancel
6. show reload
Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>Saves your switch configuration information to the startup configuration before you use the <code>reload</code> command.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td>Step 3</td>
<td>Schedules a reload of the software to take effect in the specified minutes or hours and minutes. The reload must take place within approximately 24 days. You can specify the reason for the reload in a string up to 255 characters in length.</td>
</tr>
<tr>
<td>reload in [hh]:mm [text]</td>
<td></td>
</tr>
</tbody>
</table>
| Example: | Switch(config)# reload in 12
System configuration has been modified. Save? [yes/no]: y |
| **Step 4** | Specifies the time in hours and minutes for the reload to occur. | |
| reload at hh:mm [month day | day month] [text] | Note: Use the `at` keyword only if the switch system clock has been set (through Network Time Protocol (NTP), the hardware calendar, or manually). The time is relative to the configured time zone on the switch. To schedule reboots across several switches to occur simultaneously, the time on each switch must be synchronized with NTP. |
| Example: | Switch(config)# reload at 14:00 |
| **Step 5** | Cancels a previously scheduled reload. |
| reload cancel | |
| Example: | Switch(config)# reload cancel |
| **Step 6** | Displays information about a previously scheduled reload or identifies if a reload has been scheduled on the switch. |
| show reload | |
| Example: | show reload |

Monitoring Switch Setup Configuration

Example: Verifying the Switch Running Configuration

Switch# show running-config
Building configuration...
Current configuration: 1363 bytes
!
version 12.4
no service pad
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname Stack1
!
enable secret 5 1ej9.$DMUvAUnZ0AmvqBEzIxgE
!
<output truncated>
!
interface gigabitethernet6/0/2
mvr type source
<output truncated>

Example: Configuring a Switch as a DHCP Server

Switch# configure terminal
Switch(config)# ip dhcp pool pool1
Switch(dhcp-config)# network 10.10.10.0 255.255.255.0
Switch(dhcp-config)# boot config-boot.text
Switch(dhcp-config)# default-router 10.10.10.1
Switch(dhcp-config)# option 150 10.10.10.1
Switch(dhcp-config)# exit
Switch(config)# tftp-server flash:config-boot.text
Switch(config)# interface gigabitethernet1/0/4
Switch(config-if)# no switchport
Switch(config-if)# ip address 10.10.10.1 255.255.255.0
Switch(config-if)# end
Example: Configuring DHCP Auto-Image Update

Switch# configure terminal
Switch(config)# ip dhcp pool pool1
Switch(dhcp-config)# network 10.10.10.0 255.255.255.0
Switch(dhcp-config)# boot config-boot.text
Switch(dhcp-config)# default-router 10.10.10.1
Switch(dhcp-config)# option 150 10.10.10.1
Switch(dhcp-config)# option 125 hex 0000.0009.0a05.08661.7574.6f69.6e73.7461.6c6c.5f64.686370
Switch(dhcp-config)# exit
Switch(config)# tftp-server flash:config-boot.text
Switch(config)# tftp-server flash:image_name
Switch(config)# tftp-server flash:boot-config.text
Switch(config)# tftp-server flash: autoinstall_dhcp
Switch(config-if)# interface gigabitethernet1/0/4
Switch(config-if)# ip address 10.10.10.1 255.255.255.0
Switch(config-if)# end

Example: Configuring a Switch to Download Configurations from a DHCP Server

This example uses a Layer 3 SVI interface on VLAN 99 to enable DHCP-based autoconfiguration with a saved configuration:

Switch# configure terminal
Switch(config)# boot host dhcp
Switch(config)# boot host retry timeout 300
Switch(config)# banner config-save ^C Caution - Saving Configuration File to NVRAM May Cause You to No longer Automatically Download Configuration Files at Reboot^C
Switch(config)# vlan 99
Switch(config-vlan)# interface vlan 99
Switch(config-if)# no shutdown
Switch(config-if)# end
Switch# show boot
BOOT path-list:
Config file: flash:/config.text
Private Config file: flash:/private-config.text
Enable Break: no
Manual Boot: no
HELPER path-list:
NVRAM/Config file
buffer size: 32768
Timeout for Config Download: 300 seconds
Config Download via DHCP: enabled (next boot: enabled)
Switch#
Example: Configuring NVRAM Buffer Size

Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# boot buffersize 600000
Switch(config)# end
Switch# show boot
BOOT path-list :
Config file : flash:/config.text
Private Config file : flash:/private-config.text
Enable Break : no
Manual Boot : no
HELPER path-list :
Auto upgrade : yes
Auto upgrade path : NVRAM/Config file
 buffer size: 600000
Timeout for Config Download: 300 seconds
Config Download via DHCP: enabled (next boot: enabled)
Switch#

Related Topics
Configuring the NVRAM Buffer Size, on page 1297

Additional References for Performing Switch Setup

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch setup commands</td>
<td>Catalyst 2960-X Switch System Management Command Reference</td>
</tr>
<tr>
<td>Boot loader commands</td>
<td></td>
</tr>
<tr>
<td>USB flash devices</td>
<td>Catalyst 2960-X Switch Interface and Hardware Component Configuration Guide</td>
</tr>
<tr>
<td></td>
<td>Catalyst 2960-X Switch Managing Cisco IOS Image Files Configuration Guide</td>
</tr>
<tr>
<td>Hardware installation</td>
<td>Catalyst 2960-X Switch Hardware Installation Guide</td>
</tr>
<tr>
<td>Platform-independent command references</td>
<td>Cisco IOS 15.3M&T Command References</td>
</tr>
<tr>
<td>Platform-independent configuration information</td>
<td>Cisco IOS 15.3M&T Configuration Guides</td>
</tr>
</tbody>
</table>
Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>All supported MIBs for this release.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/support</td>
</tr>
</tbody>
</table>

Feature History and Information For Performing Switch Setup Configuration

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cisco IOS 15.0(2)EX</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>
Configuring SDM Templates

- Finding Feature Information, page 1307
- Information About Configuring SDM Templates, page 1307
- How to Configure SDM Templates, page 1310
- Configuration Examples for SDM Templates, page 1311
- Additional References for SDM Templates, page 1313
- Feature History and Information for Configuring SDM Templates, page 1314

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About Configuring SDM Templates

Restrictions for SDM Templates

The following are restrictions when using SDM templates:

- The default template is the only template supported on switches running the LAN Lite image.
- The LAN Base default template is used with switches in a homogeneous stack.
- The LAN Base routing template is supported only on switches running the LAN Base image.
- The LAN Base routing template is used with switches in a mixed stack.
The switch supports homogeneous stacking and mixed stacking. Mixed stacking is supported only with the Catalyst 2960-S switches. A homogenous stack can have up to eight stack members, while a mixed stack can have up to four stack members. All switches in a switch stack must be running the LAN Base image.

The default template is the only template supported on switches running the LAN Base image.

SDM Templates

You can use Switch Database Management (SDM) templates to configure system resources to optimize support for specific features, depending on how your device is used in the network. You can select a template to provide maximum system usage for some functions.

To allocate ternary content addressable memory (TCAM) resources for different usages, the switch SDM templates prioritize system resources to optimize support for certain features. The templates supported on your device:

- **Default**—The default template gives balance to all functions.
- **LAN Base default**—The LAN Base default template is to be used with switches in a homogeneous stack.
- **LAN Base routing**—The LAN Base routing template supports IPv4 unicast routes for static routing SVI configuration.

The LAN Base routing template prevents other features from using the memory allocated to unicast routing. Routing must be enabled on your switch before you can use the routing template.

For more information about homogeneous and mixed stacks, see the *Catalyst 2960-X Switch Stacking Configuration Guide*.

After you change the template and the system reboots, you can use the `show sdm prefer` privileged EXEC command to verify the new template configuration. If you enter the `show sdm prefer` command before you enter the `reload` privileged EXEC command, the `show sdm prefer` command shows the template currently in use and the template that becomes active after a reload.

Default and LAN Base Templates

- **Default and LAN Base routing templates**—Optimizes the resources in the switch to support feature level for no routed interfaces and 255 VLANs.
- **LAN Base default**—Optimizes the resources in the switch to support feature level for no routed interfaces and 1024 VLANs.

Table 135: Approximate Number of Feature Resources Allowed by Templates

<table>
<thead>
<tr>
<th>Resource</th>
<th>Default</th>
<th>LAN Base Default</th>
<th>LAN Base Routing</th>
<th>LAN Lite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unicast MAC addresses</td>
<td>8 K</td>
<td>16 k</td>
<td>4 K</td>
<td>16 k</td>
</tr>
<tr>
<td>Active VLANs/VLAN IDs</td>
<td>255/4096</td>
<td>255/1024</td>
<td>255/4096</td>
<td>64/4096</td>
</tr>
<tr>
<td>Resource</td>
<td>Default</td>
<td>LAN Base Default</td>
<td>LAN Base Routing</td>
<td>LAN Lite</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------</td>
<td>------------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>NetFlow Entries</td>
<td>16 K</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>IPv4 IGMP groups</td>
<td>.375 K</td>
<td>1 K</td>
<td>.375 K</td>
<td>1 K</td>
</tr>
<tr>
<td>IPv4 unicast routes</td>
<td>0</td>
<td>3 K</td>
<td>.875 K</td>
<td>0</td>
</tr>
<tr>
<td>• Directly connected hosts</td>
<td>0</td>
<td>2 K</td>
<td>.875 K</td>
<td>0</td>
</tr>
<tr>
<td>• Indirect routes</td>
<td>0</td>
<td>1 K</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>IPv4 policy based routing ACEs</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IPv6 multicast groups:</td>
<td>.25 K</td>
<td>1 K</td>
<td>.25 K</td>
<td>0</td>
</tr>
<tr>
<td>• Directly connected IPv6 addresses</td>
<td>.25 K</td>
<td>2 K</td>
<td>.75 K</td>
<td>0</td>
</tr>
<tr>
<td>• Indirect IPv6 unicast routes</td>
<td>32</td>
<td>1 K</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>IPv6 policy based routing ACEs</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IPv4 MAC QoS ACEs</td>
<td>.375 K</td>
<td>.5 K</td>
<td>.375 K</td>
<td>.256 K</td>
</tr>
<tr>
<td>IPv4 MAC security ACEs</td>
<td>.375 K</td>
<td>.625 K</td>
<td>.375 K</td>
<td>.256 K</td>
</tr>
<tr>
<td>IPv6 policy based routing ACEs</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IPv6 QoS ACEs</td>
<td>60</td>
<td>.5 K</td>
<td>.125 K</td>
<td>0</td>
</tr>
</tbody>
</table>
How to Configure SDM Templates

Setting the SDM Template

Follow these steps to use the SDM template to maximize feature usage:

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `sdm prefer { default | lanbase-default | lanbase-routing }`
4. `end`
5. `reload`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>enable</code></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
</tbody>
</table>

SDM Templates and Switch Stacks

All stack members use the same SDM template that is stored on the stack master. When a new switch is added to a stack, as with the switch configuration and VLAN database files, the SDM configuration that is stored on the stack master overrides the template configured on an individual switch.

Version-mismatch (VM) mode has priority over SDM-mismatch mode. If a VM mode condition and an SDM-mismatch mode exist, the switch stack first attempts to resolve the VM-mode condition. You can use the `show switch` privileged EXEC command to see if any stack members are in SDM-mismatch mode.

<table>
<thead>
<tr>
<th>Resource</th>
<th>Default</th>
<th>LAN Base Default</th>
<th>LAN Base Routing</th>
<th>LAN Lite</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 security ACEs</td>
<td>.125 K</td>
<td>.625 K</td>
<td>.25</td>
<td>0</td>
</tr>
</tbody>
</table>

Related Topics

- Examples: Displaying SDM Templates, on page 1311
- Setting the SDM Template, on page 1310
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 sdm prefer { default</td>
<td>lanbase-default</td>
</tr>
<tr>
<td>Example: Switch(config)# sdm prefer lanbase-routing</td>
<td>• default — The default template provides balance for all Layer 2, IPv4 and IPv6 functionality.</td>
</tr>
<tr>
<td></td>
<td>• lanbase-routing — The LAN Base routing templates provides both IPv4 and IPv6 static routing functionality.</td>
</tr>
<tr>
<td></td>
<td>Use the no sdm prefer command to set the switch to the default template, The default template balances the use of system resources.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Switch(config)# end</td>
<td></td>
</tr>
<tr>
<td>Step 5 reload</td>
<td>Reloads the operating system.</td>
</tr>
<tr>
<td>Example: Switch# reload</td>
<td></td>
</tr>
</tbody>
</table>

Configuration Examples for SDM Templates

Examples: Displaying SDM Templates

This is an example output showing the default template information.

Switch# show sdm prefer default

"default" template:
The selected template optimizes the resources in the switch to support this level of features for 0 routed interfaces and 255 VLANs.

- number of unicast mac addresses: 8K
- number of IPv4 IGMP groups + multicast routes: 0.375k
- number of IPv4 unicast routes: 0
- number of IPv6 multicast groups: 0.25K
- number of directly-connected IPv6 addresses: 0.25K
- number of indirect IPv6 unicast routes: 32
Examples: Configuring SDM Templates

This example shows how to configure the VLAN template:

```
Switch(config)# sdm prefer lanbase-routing
```
Switch(config)# exit
Switch# reload
Proceed with reload? [confirm]

Additional References for SDM Templates

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDM commands</td>
<td>Catalyst 2960-X Switch System Management Command Reference</td>
</tr>
</tbody>
</table>

Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>All supported MIBs for this release.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/support</td>
</tr>
</tbody>
</table>
Feature History and Information for Configuring SDM Templates

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS 15.0(2)EX</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>

Cisco 2960-X Switch Series Configuration Guide, Cisco IOS Release 15.0(2)EX
Configuring System Message Logs

- Finding Feature Information, page 1315
- Restrictions for Configuring System Message Logs, page 1315
- Information About Configuring System Message Logs, page 1316
- How to Configure System Message Logs, page 1318
- Monitoring and Maintaining System Message Logs, page 1327
- Configuration Examples for System Message Logs, page 1328
- Additional References for System Message Logs, page 1328
- Feature History and Information For System Message Logs, page 1329

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Restrictions for Configuring System Message Logs

When the logging discriminator command is configured, the device may experience memory leak or crash. This usually happens during heavy syslog or debug output. The rate of the memory leak is dependent on the number of logs being produced. In extreme cases, the device may also crash. As a workaround, use the no logging discriminator command to disable the logging discriminator.
Information About Configuring System Message Logs

System Message Logging

By default, a switch sends the output from system messages and debug privileged EXEC commands to a logging process. Stack members can trigger system messages. A stack member that generates a system message appends its hostname in the form of hostname-n, where n is a switch range from 1 to 8, and redirects the output to the logging process on the stack master. Though the stack master is a stack member, it does not append its hostname to system messages. The logging process controls the distribution of logging messages to various destinations, such as the logging buffer, terminal lines, or a UNIX syslog server, depending on your configuration. The process also sends messages to the console.

When the logging process is disabled, messages are sent only to the console. The messages are sent as they are generated, so message and debug output are interspersed with prompts or output from other commands. Messages appear on the active consoles after the process that generated them has finished.

You can set the severity level of the messages to control the type of messages displayed on the consoles and each of the destinations. You can time-stamp log messages or set the syslog source address to enhance real-time debugging and management. For information on possible messages, see the system message guide for this release.

You can access logged system messages by using the switch command-line interface (CLI) or by saving them to a properly configured syslog server. The switch software saves syslog messages in an internal buffer on a standalone switch, and in the case of a switch stack, on the stack master. If a standalone switch or the stack master fails, the log is lost unless you had saved it to flash memory.

You can remotely monitor system messages by viewing the logs on a syslog server or by accessing the switch through Telnet, through the console port, or through the Ethernet management port. In a switch stack, all stack member consoles provide the same console output.

Note

The syslog format is compatible with 4.3 BSD UNIX.

System Log Message Format

System log messages can contain up to 80 characters and a percent sign (%), which follows the optional sequence number or time-stamp information, if configured. Depending on the switch, messages appear in one of these formats:

- seq no:timestamp: %facility-severity-MNEMONIC:description (hostname-n)
- seq no:timestamp: %facility-severity-MNEMONIC:description

The part of the message preceding the percent sign depends on the setting of these global configuration commands:

- service sequence-numbers
- service timestamps log datetime
- service timestamps log datetime [localtime] [msec] [show-timezone]
- service timestamps log uptime

Table 136: System Log Message Elements

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>seq no:</td>
<td>Stamps log messages with a sequence number only if the <code>service sequence-numbers</code> global configuration command is configured.</td>
</tr>
<tr>
<td>timestamp formats:</td>
<td>Date and time of the message or event. This information appears only if the `service timestamps log [datetime</td>
</tr>
<tr>
<td><code>mm/dd h:mm:ss</code></td>
<td></td>
</tr>
<tr>
<td><code>hh:mm:ss</code> (short uptime)</td>
<td></td>
</tr>
<tr>
<td><code>d h</code> (long uptime)</td>
<td></td>
</tr>
<tr>
<td>facility</td>
<td>The facility to which the message refers (for example, SNMP, SYS, and so forth).</td>
</tr>
<tr>
<td>severity</td>
<td>Single-digit code from 0 to 7 that is the severity of the message.</td>
</tr>
<tr>
<td>MNEMONIC</td>
<td>Text string that uniquely describes the message.</td>
</tr>
<tr>
<td>description</td>
<td>Text string containing detailed information about the event being reported.</td>
</tr>
<tr>
<td>hostname-n</td>
<td>Hostname of a stack member and its switch number in the stack. Though the stack master is a stack member, it does not append its hostname to system messages.</td>
</tr>
</tbody>
</table>

Default System Message Logging Settings

Table 137: Default System Message Logging Settings

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>System message logging to the console</td>
<td>Enabled.</td>
</tr>
<tr>
<td>Console severity</td>
<td>Debugging.</td>
</tr>
<tr>
<td>Logging file configuration</td>
<td>No filename specified.</td>
</tr>
<tr>
<td>Logging buffer size</td>
<td>4096 bytes.</td>
</tr>
<tr>
<td>Feature</td>
<td>Default Setting</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Logging history size</td>
<td>1 message.</td>
</tr>
<tr>
<td>Time stamps</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Synchronous logging</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Logging server</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Syslog server IP address</td>
<td>None configured.</td>
</tr>
<tr>
<td>Server facility</td>
<td>Local7</td>
</tr>
<tr>
<td>Server severity</td>
<td>Informational.</td>
</tr>
</tbody>
</table>

Syslog Message Limits

If you enabled syslog message traps to be sent to an SNMP network management station by using the `snmp-server enable trap` global configuration command, you can change the level of messages sent and stored in the switch history table. You also can change the number of messages that are stored in the history table.

Messages are stored in the history table because SNMP traps are not guaranteed to reach their destination. By default, one message of the level `warning` and numerically lower levels are stored in the history table even if syslog traps are not enabled.

When the history table is full (it contains the maximum number of message entries specified with the `logging history size` global configuration command), the oldest message entry is deleted from the table to allow the new message entry to be stored.

The history table lists the level keywords and severity level. For SNMP usage, the severity level values increase by 1. For example, `emergencies` equal 1, not 0, and `critical` equals 3, not 2.

How to Configure System Message Logs

Setting the Message Display Destination Device

If message logging is enabled, you can send messages to specific locations in addition to the console.

This task is optional.
SUMMARY STEPS

1. configure terminal
2. logging buffered [size]
3. logging host
4. logging file flash: filename [max-file-size [min-file-size]] [severity-level-number | type]
5. end
6. terminal monitor

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2 logging buffered [size]</td>
<td>Logs messages to an internal buffer on the switch or on a standalone switch or, in the case of a switch stack, on the stack master. The range is 4096 to 2147483647 bytes. The default buffer size is 4096 bytes.</td>
</tr>
<tr>
<td>Example: Switch(config)# logging buffered 8192</td>
<td>If a standalone switch or the stack master fails, the log file is lost unless you previously saved it to flash memory. See Step 4.</td>
</tr>
<tr>
<td>Note</td>
<td>Do not make the buffer size too large because the switch could run out of memory for other tasks. Use the show memory privileged EXEC command to view the free processor memory on the switch. However, this value is the maximum available, and the buffer size should not be set to this amount.</td>
</tr>
<tr>
<td>Step 3 logging host</td>
<td>Logs messages to a UNIX syslog server host.</td>
</tr>
<tr>
<td>Example: Switch(config)# logging host 125.1.1.100</td>
<td>host specifies the name or IP address of the host to be used as the syslog server.</td>
</tr>
<tr>
<td>To build a list of syslog servers that receive logging messages, enter this command more than once.</td>
<td></td>
</tr>
<tr>
<td>Step 4 logging file flash: filename [max-file-size [min-file-size]] [severity-level-number</td>
<td>type]</td>
</tr>
<tr>
<td>Example: Switch(config)# logging file flash:log_msg.txt 40960 4096 3</td>
<td></td>
</tr>
<tr>
<td>• filename—Enters the log message filename.</td>
<td></td>
</tr>
<tr>
<td>• (Optional) max-file-size —Specifies the maximum logging file size. The range is 4096 to 2147483647. The default is 4096 bytes.</td>
<td></td>
</tr>
<tr>
<td>• (Optional) min-file-size—Specifies the minimum logging file size. The range is 1024 to 2147483647. The default is 2048 bytes.</td>
<td></td>
</tr>
<tr>
<td>• (Optional) severity-level-number</td>
<td>type—Specifies either the logging severity level or the logging type. The severity range is 0 to 7.</td>
</tr>
</tbody>
</table>
How to Configure System Message Logs

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# end</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 6</th>
<th>terminal monitor</th>
<th>Logs messages to a nonconsole terminal during the current session.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switch# terminal monitor</td>
<td>Terminal parameter-setting commands are set locally and do not remain in effect after the session has ended. You must perform this step for each session to see the debugging messages.</td>
<td></td>
</tr>
</tbody>
</table>

Synchronizing Log Messages

You can synchronize unsolicited messages and **debug** privileged EXEC command output with solicited device output and prompts for a specific console port line or virtual terminal line. You can identify the types of messages to be output asynchronously based on the level of severity. You can also configure the maximum number of buffers for storing asynchronous messages for the terminal after which messages are dropped.

When synchronous logging of unsolicited messages and **debug** command output is enabled, unsolicited device output appears on the console or printed after solicited device output appears or is printed. Unsolicited messages and **debug** command output appears on the console after the prompt for user input is returned. Therefore, unsolicited messages and **debug** command output are not interspersed with solicited device output and prompts. After the unsolicited messages appear, the console again displays the user prompt.

This task is optional.

SUMMARY STEPS

1. configure terminal
2. line [console | vty] line-number [ending-line-number]
3. logging synchronous [level [severity-level | all] | limit number-of-buffers]
4. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

| Step 2 | **line [console | vty] line-number [ending-line-number]** |
| --- | --- |
| **Example:** | Switch(config)# line console |

Purpose: Specifies the line to be configured for synchronous logging of messages.

- **console**—Specifies configurations that occur through the switch console port or the Ethernet management port.
- **line vty line-number**—Specifies which vty lines are to have synchronous logging enabled. You use a vty connection for configurations that occur through a Telnet session. The range of line numbers is from 0 to 15.

You can change the setting of all 16 vty lines at once by entering:

```
line vty 0 15
```

You can also change the setting of the single vty line being used for your current connection. For example, to change the setting for vty line 2, enter:

```
line vty 2
```

When you enter this command, the mode changes to line configuration.

| Step 3 | **logging synchronous [level[severity-level] | all] | limit number-of-buffers]** |
| --- | --- |
| **Example:** | Switch(config)# logging synchronous level 3 limit 1000 |

Purpose: Enables synchronous logging of messages.

- (Optional) **level severity-level**—Specifies the message severity level. Messages with a severity level equal to or higher than this value are printed asynchronously. Low numbers mean greater severity and high numbers mean lesser severity. The default is 2.
- (Optional) **level all**—Specifies that all messages are printed asynchronously regardless of the severity level.
- (Optional) **limit number-of-buffers**—Specifies the number of buffers to be queued for the terminal after which new messages are dropped. The range is 0 to 2147483647. The default is 20.

<table>
<thead>
<tr>
<th>Step 4</th>
<th>end</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Switch(config)# end</td>
</tr>
</tbody>
</table>

Purpose: Returns to privileged EXEC mode.

Disabling Message Logging

Message logging is enabled by default. It must be enabled to send messages to any destination other than the console. When enabled, log messages are sent to a logging process, which logs messages to designated locations asynchronously to the processes that generated the messages.

Disabling the logging process can slow down the switch because a process must wait until the messages are written to the console before continuing. When the logging process is disabled, messages appear on the console as soon as they are produced, often appearing in the middle of command output.
The `logging synchronous` global configuration command also affects the display of messages to the console. When this command is enabled, messages appear only after you press `Return`.

To reenable message logging after it has been disabled, use the `logging on` global configuration command. This task is optional.

SUMMARY STEPS

1. `configure terminal`
2. `no logging console`
3. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Example:</td>
</tr>
<tr>
<td>Switch# <code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Disables message logging.</td>
</tr>
<tr>
<td><code>no logging console</code></td>
<td>Example:</td>
</tr>
<tr>
<td>Switch(config)# <code>no logging console</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>end</code></td>
<td>Example:</td>
</tr>
<tr>
<td>Switch(config)# <code>end</code></td>
<td></td>
</tr>
</tbody>
</table>

Enabling and Disabling Time Stamps on Log Messages

By default, log messages are not time-stamped.

This task is optional.
SUMMARY STEPS

1. configure terminal
2. Use one of these commands:
 • service timestamps log uptime
 • service timestamps log datetime[msec | localtime | show-timezone]
3. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2 Use one of these commands:</th>
<th>Enables log time stamps.</th>
</tr>
</thead>
<tbody>
<tr>
<td>• service timestamps log uptime</td>
<td>• log uptime—Enables time stamps on log messages, showing the time since the system was rebooted.</td>
</tr>
<tr>
<td>• service timestamps log datetime[msec</td>
<td>• log datetime—Enables time stamps on log messages. Depending on the options selected, the time stamp can include the date, time in milliseconds relative to the local time zone, and the time zone name.</td>
</tr>
<tr>
<td>localtime</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# service timestamps log uptime</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# service timestamps log datetime</td>
<td></td>
</tr>
</tbody>
</table>

| Step 3 end | Returns to privileged EXEC mode. |
| Example: | |
| Switch(config)# end | |

Enabling and Disabling Sequence Numbers in Log Messages

If there is more than one log message with the same time stamp, you can display messages with sequence numbers to view these messages. By default, sequence numbers in log messages are not displayed. This task is optional.
SUMMARY STEPS

1. configure terminal
2. service sequence-numbers
3. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2 service sequence-numbers</td>
<td>Enables sequence numbers.</td>
</tr>
<tr>
<td>Example: Switch(config)# service sequence-numbers</td>
<td></td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Switch(config)# end</td>
<td></td>
</tr>
</tbody>
</table>

Defining the Message Severity Level

Limit messages displayed to the selected device by specifying the severity level of the message. This task is optional.

SUMMARY STEPS

1. configure terminal
2. logging console level
3. logging monitor level
4. logging trap level
5. end
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>logging console level</td>
<td>Limits messages logged to the console.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config)# logging console 3</td>
<td>By default, the console receives debugging messages and numerically lower levels.</td>
</tr>
<tr>
<td>Step 3</td>
<td>logging monitor level</td>
<td>Limits messages logged to the terminal lines.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config)# logging monitor 3</td>
<td>By default, the terminal receives debugging messages and numerically lower levels.</td>
</tr>
<tr>
<td>Step 4</td>
<td>logging trap level</td>
<td>Limits messages logged to the syslog servers.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config)# logging trap 3</td>
<td>By default, syslog servers receive informational messages and numerically lower levels.</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config)# end</td>
<td></td>
</tr>
</tbody>
</table>

Limiting Syslog Messages Sent to the History Table and to SNMP

This task explains how to limit syslog messages that are sent to the history table and to SNMP.

This task is optional.

SUMMARY STEPS

1. configure terminal
2. logging history level
3. logging history size number
4. end
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2 logging history level</td>
<td>Changes the default level of syslog messages stored in the history file and sent to the SNMP server.</td>
</tr>
<tr>
<td>Example: Switch(config)# logging history 3</td>
<td>By default, warnings, errors, critical, alerts, and emergencies messages are sent.</td>
</tr>
<tr>
<td>Step 3 logging history size number</td>
<td>Specifies the number of syslog messages that can be stored in the history table.</td>
</tr>
<tr>
<td>Example: Switch(config)# logging history size 200</td>
<td>The default is to store one message. The range is 0 to 500 messages.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Switch(config)# end</td>
<td></td>
</tr>
</tbody>
</table>

Logging Messages to a UNIX Syslog Daemon

This task is optional.

Note

Some recent versions of UNIX syslog daemons no longer accept by default syslog packets from the network. If this is the case with your system, use the UNIX **man syslogd** command to decide what options must be added to or removed from the syslog command line to enable logging of remote syslog messages.

Before You Begin

- Log in as root.
- Before you can send system log messages to a UNIX syslog server, you must configure the syslog daemon on a UNIX server.
SUMMARY STEPS

1. Add a line to the file /etc/syslog.conf.
2. Enter these commands at the UNIX shell prompt.
3. Make sure the syslog daemon reads the new changes.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
</tbody>
</table>
| Add a line to the file /etc/syslog.conf. | • local7—Specifies the logging facility.
| Example: | • debug—Specifies the syslog level. The file must already exist, and the syslog daemon must have permission to write to it. |
| local7.debug /usr/adm/logs/cisco.log | |
| **Step 2** | |
| Enter these commands at the UNIX shell prompt. | Creates the log file. The syslog daemon sends messages at this level or at a more severe level to this file. |
| Example: | |
| $ touch /var/log/cisco.log | |
| $ chmod 666 /var/log/cisco.log | |
| **Step 3** | |
| Make sure the syslog daemon reads the new changes. | For more information, see the man syslog.conf and man syslogd commands on your UNIX system. |
| Example: | |
| $ kill -HUP `cat /etc/syslog.pid` | |

Monitoring and Maintaining System Message Logs

Monitoring Configuration Archive Logs

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show archive log config</td>
<td>Displays the entire configuration log or the log for specified parameters.</td>
</tr>
<tr>
<td>[all</td>
<td>number [end-number]</td>
</tr>
</tbody>
</table>
Configuration Examples for System Message Logs

Example: Switch System Message

This example shows a partial switch system message on a switch:

<table>
<thead>
<tr>
<th>Time</th>
<th>Event Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:00:46</td>
<td>%LINK-3-UPDOWN: Interface Port-channel1, changed state to up</td>
</tr>
<tr>
<td>00:00:47</td>
<td>%LINK-3-UPDOWN: Interface GigabitEthernet0/1, changed state to up</td>
</tr>
<tr>
<td>00:00:47</td>
<td>%LINK-3-UPDOWN: Interface GigabitEthernet0/2, changed state to up</td>
</tr>
<tr>
<td>00:00:48</td>
<td>%LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan1, changed state to down</td>
</tr>
<tr>
<td>00:00:48</td>
<td>%LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/1, changed state to down 2</td>
</tr>
</tbody>
</table>

Examples: Displaying Service Timestamps Log

This example shows part of a logging display with the `service timestamps log datetime` global configuration command enabled:

*Mar 1 18:46:11: %SYS-5-CONFIG_I: Configured from console by vty2 (10.34.195.36)

This example shows part of a logging display with the `service timestamps log uptime` global configuration command enabled:

<table>
<thead>
<tr>
<th>Time</th>
<th>Event Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:00:46</td>
<td>%LINK-3-UPDOWN: Interface Port-channel1, changed state to up</td>
</tr>
</tbody>
</table>

This example shows part of a logging display with the sequence numbers enabled:

<table>
<thead>
<tr>
<th>Time</th>
<th>Event Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:00:46</td>
<td>%LINK-3-UPDOWN: Interface Port-channel1, changed state to up</td>
</tr>
</tbody>
</table>

Additional References for System Message Logs

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>System message log commands</td>
<td>Catalyst 2960-X Switch System Management Command Reference</td>
</tr>
</tbody>
</table>
Feature History and Information For System Message Logs

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS 15.0(2)EX</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>

Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>All supported MIBs for this release.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/support</td>
</tr>
</tbody>
</table>

Related Topic

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform-independent command references</td>
<td>Cisco IOS 15.3M&T Command References</td>
</tr>
<tr>
<td>Platform-independent configuration information</td>
<td>Cisco IOS 15.3M&T Configuration Guides</td>
</tr>
</tbody>
</table>

MIBs Link

To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs
Configuring Online Diagnostics

- Finding Feature Information, page 1331
- Information About Configuring Online Diagnostics, page 1331
- How to Configure Online Diagnostics, page 1332
- Monitoring and Maintaining Online Diagnostics, page 1337
- Configuration Examples for Online Diagnostic Tests, page 1337
- Additional References for Online Diagnostics, page 1341
- Feature History and Information for Configuring Online Diagnostics, page 1342

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About Configuring Online Diagnostics

Online Diagnostics

With online diagnostics, you can test and verify the hardware functionality of the Switch while the Switch is connected to a live network.

The online diagnostics contain packet switching tests that check different hardware components and verify the data path and the control signals.

The online diagnostics detect problems in these areas:
• Hardware components
• Interfaces (Ethernet ports and so forth)
• Solder joints

Online diagnostics are categorized as on-demand, scheduled, or health-monitoring diagnostics. On-demand diagnostics run from the CLI; scheduled diagnostics run at user-designated intervals or at specified times when the Switch is connected to a live network; and health-monitoring runs in the background with user-defined intervals. By default, the health-monitoring test runs for every 30 seconds.

After you configure online diagnostics, you can manually start diagnostic tests or display the test results. You can also see which tests are configured for the Switch or switch stack and the diagnostic tests that have already run.

How to Configure Online Diagnostics

Starting Online Diagnostic Tests

After you configure diagnostic tests to run on the switch, use the `diagnostic start` privileged EXEC command to begin diagnostic testing.

After starting the tests, you cannot stop the testing process.

Use this privileged EXEC command to manually start online diagnostic testing.

SUMMARY STEPS

1. `diagnostic start switch number test {name | test-id | test-id-range | all | basic | non-disruptive }`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Starts the diagnostic tests.</td>
</tr>
<tr>
<td>`diagnostic start switch number test {name</td>
<td>test-id</td>
</tr>
<tr>
<td></td>
<td>• <code>name</code>—Enters the name of the test.</td>
</tr>
<tr>
<td></td>
<td>• <code>test-id</code>—Enters the ID number of the test.</td>
</tr>
<tr>
<td></td>
<td>• <code>test-id-range</code>—Enters the range of test IDs by using integers separated by a comma and a hyphen.</td>
</tr>
<tr>
<td></td>
<td>• <code>all</code>—Starts all of the tests.</td>
</tr>
<tr>
<td></td>
<td>• <code>basic</code>— Starts the basic test suite.</td>
</tr>
<tr>
<td></td>
<td>• <code>non-disruptive</code>—Starts the non-disruptive test suite.</td>
</tr>
</tbody>
</table>

Example:

```
Switch# diagnostic start switch 2 test basic
```
Configuring Online Diagnostics

You must configure the failure threshold and the interval between tests before enabling diagnostic monitoring.

Scheduling Online Diagnostics

You can schedule online diagnostics to run at a designated time of day or on a daily, weekly, or monthly basis for a switch. Use the no form of this command to remove the scheduling.

SUMMARY STEPS

1. configure terminal
2. diagnostic schedule switch number test {name | test-id | test-id-range | all | basic | non-disruptive |} {daily | on mm dd yyyy hh:mm | weekly day-of-week hh:mm}

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2 diagnostic schedule switch number test {name</td>
<td>test-id</td>
</tr>
<tr>
<td>Example: Switch(config)# diagnostic schedule switch 1 test 1-5 on July 3 2013 23:10</td>
<td></td>
</tr>
</tbody>
</table>

When specifying the tests to be scheduled, use these options:

- **name**—Name of the test that appears in the show diagnostic content command output.
- **test-id**—ID number of the test that appears in the show diagnostic content command output.
- **test-id-range**—ID numbers of the tests that appear in the show diagnostic content command output.
- **all**—All test IDs.
- **basic**—Starts the basic on-demand diagnostic tests.
- **non-disruptive**—Starts the non-disruptive test suite.

You can schedule the tests as follows:

- Daily—Use the daily hh:mm parameter.
Configuring Health-Monitoring Diagnostics

You can configure health-monitoring diagnostic testing on a Switch while it is connected to a live network. You can configure the execution interval for each health-monitoring test, enable the Switch to generate a syslog message because of a test failure, and enable a specific test. Use the `no` form of this command to disable testing.

By default, health monitoring is disabled, but the Switch generates a syslog message when a test fails.

Follow these steps to configure and enable the health-monitoring diagnostic tests:

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `diagnostic monitor interval switch number test {name | test-id | test-id-range | all} hh:mm:ss milliseconds day`
4. `diagnostic monitor syslog`
5. `diagnostic monitor threshold switch number number test {name | test-id | test-id-range | all} failure count count`
6. `diagnostic monitor switch number test {name | test-id | test-id-range | all}`
7. `end`
8. `show running-config`
9. `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
- `enable`

- **Example:**

  ```
  Switch> enable
  ```

<p>| Step 1 | <code>enable</code> | Enables privileged EXEC mode. Enter your password if prompted. |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 diagnostic monitor interval switch number test {name</td>
<td>test-id</td>
</tr>
<tr>
<td>Example: Switch(config)# diagnostic monitor interval switch 2 test 1 12:30:00 750 5</td>
<td>The <code>switch number</code> keyword is supported only on stacking switches.</td>
</tr>
<tr>
<td>When specifying the tests, use one of these parameters:</td>
<td></td>
</tr>
<tr>
<td>• <code>name</code>—Name of the test that appears in the <code>show diagnostic content</code> command output.</td>
<td></td>
</tr>
<tr>
<td>• <code>test-id</code>—ID number of the test that appears in the <code>show diagnostic content</code> command output.</td>
<td></td>
</tr>
<tr>
<td>• <code>test-id-range</code>—ID numbers of the tests that appear in the <code>show diagnostic content</code> command output.</td>
<td></td>
</tr>
<tr>
<td>• <code>all</code>—All of the diagnostic tests.</td>
<td>When specifying the interval, set these parameters:</td>
</tr>
<tr>
<td>• <code>hh:mm:ss</code>—Monitoring interval in hours, minutes, and seconds. The range for <code>hh</code> is 0 to 24, and the range for <code>mm</code> and <code>ss</code> is 0 to 60.</td>
<td></td>
</tr>
<tr>
<td>• <code>milliseconds</code>—Monitoring interval in milliseconds (ms). The range is from 0 to 999.</td>
<td></td>
</tr>
<tr>
<td>• <code>day</code>—Monitoring interval in the number of days. The range is from 0 to 20.</td>
<td></td>
</tr>
<tr>
<td>Step 4 diagnostic monitor syslog</td>
<td>(Optional) Configures the switch to generate a syslog message when a health-monitoring test fails.</td>
</tr>
<tr>
<td>Example: Switch(config)# diagnostic monitor syslog</td>
<td></td>
</tr>
<tr>
<td>Step 5 diagnostic monitor threshold switch number number test {name</td>
<td>test-id</td>
</tr>
<tr>
<td>Example: Switch(config)# diagnostic monitor threshold switch 2 test 1 failure count 20</td>
<td>The <code>switch number</code> keyword is supported only on stacking switches. The range is from 1 to 8.</td>
</tr>
<tr>
<td>When specifying the tests, use one of these parameters:</td>
<td></td>
</tr>
<tr>
<td>• <code>name</code>—Name of the test that appears in the <code>show diagnostic content</code> command output.</td>
<td></td>
</tr>
<tr>
<td>• <code>test-id</code>—ID number of the test that appears in the <code>show diagnostic content</code> command output.</td>
<td></td>
</tr>
<tr>
<td>• <code>test-id-range</code>—ID numbers of the tests that appear in the <code>show diagnostic content</code> command output.</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action | Purpose
---|---
| | • **all**—All of the diagnostic tests. The range for the failure threshold *count* is 0 to 99.

Step 6
diagnostic monitor switch number test
{**name** | **test-id** | **test-id-range** | **all**}

Example:
Switch(config)# diagnostic monitor switch 2 test 1

Enables the specified health-monitoring tests. The *switch number* keyword is supported only on stacking switches. The range is from 1 to 9. When specifying the tests, use one of these parameters:

- **name**—Name of the test that appears in the `show diagnostic content` command output.
- **test-id**—ID number of the test that appears in the `show diagnostic content` command output.
- **test-id-range**—ID numbers of the tests that appear in the `show diagnostic content` command output.
- **all**—All of the diagnostic tests.

Step 7
end

Example:
Switch(config)# end

Returns to privileged EXEC mode.

Step 8
show running-config

Example:
Switch# show running-config

Verifies your entries.

Step 9
copy running-config startup-config

Example:
Switch# copy running-config startup-config

(Optional) Saves your entries in the configuration file.

What to Do Next
Use the `no diagnostic monitor interval test test-id | test-id-range` global configuration command to change the interval to the default value or to zero. Use the `no diagnostic monitor syslog` command to disable generation of syslog messages when a health-monitoring test fails. Use the `diagnostic monitor threshold test test-id | test-id-range failure count` command to remove the failure threshold.
Monitoring and Maintaining Online Diagnostics

Displaying Online Diagnostic Tests and Test Results

You can display the online diagnostic tests that are configured for the Switch or Switch stack and check the test results by using the privileged EXEC `show` commands in this table:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`show diagnostic content switch [number</td>
<td>Displays the online diagnostics configured for a switche.</td>
</tr>
<tr>
<td>all]</td>
<td>The `switch [number</td>
</tr>
<tr>
<td><code>show diagnostic status</code></td>
<td>Displays the currently running diagnostic tests.</td>
</tr>
<tr>
<td>`show diagnostic result switch [number</td>
<td>Displays the online diagnostics test results.</td>
</tr>
<tr>
<td>all] [detail</td>
<td>test {name</td>
</tr>
<tr>
<td>`show diagnostic switch [number</td>
<td>all] [detail]</td>
</tr>
<tr>
<td>The `switch [number</td>
<td>all] parameter is supported only on stacking switches.</td>
</tr>
<tr>
<td>`show diagnostic schedule switch [number</td>
<td>Displays the online diagnostics test schedule.</td>
</tr>
<tr>
<td>all]</td>
<td>The `switch [number</td>
</tr>
<tr>
<td><code>show diagnostic post</code></td>
<td>Displays the POST results. (The output is the same as the <code>show post</code> command output.)</td>
</tr>
</tbody>
</table>

Configuration Examples for Online Diagnostic Tests

Starting Online Diagnostic Tests

After you configure diagnostic tests to run on the switch, use the `diagnostic start` privileged EXEC command to begin diagnostic testing.

After starting the tests, you cannot stop the testing process.

Use this privileged EXEC command to manually start online diagnostic testing.
SUMMARY STEPS

1. diagnostic start switch number test {name | test-id | test-id-range | all | basic | non-disruptive }

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 diagnostic start switch number test {name</td>
<td>test-id</td>
</tr>
</tbody>
</table>

Example:

Switch# diagnostic start switch 2 test basic

Example: Configure a Health Monitoring Test

This example shows how to configure a health-monitoring test:

Switch(config)# diagnostic monitor threshold switch 1 test 1 failure count 50
Switch(config)# diagnostic monitor interval switch 1 test TestPortAsicStackPortLoopback

Examples: Schedule Diagnostic Test

This example shows how to schedule diagnostic testing for a specific day and time on a specific switch:

Switch(config)# diagnostic schedule test DiagThermalTest on June 3 2013 22:25

This example shows how to schedule diagnostic testing to occur weekly at a certain time on a specific switch:

Switch(config)# diagnostic schedule switch 1 test 1,2,4-6 weekly saturday 10:30
Displaying Online Diagnostics: Examples

This example shows how to display the online diagnostic detailed information on a specific switch:

Switch# show diagnostic switch 1 detail

Switch 1: SerialNo :

Overall Diagnostic Result for Switch 1 : UNTESTED

Test results: (. = Pass, F = Fail, U = Untested)

1) TestPortAsicStackPortLoopback ---> U

Error code ------------------> 3 (DIAG_SKIPPED)
Total run count --------------> 0
Last test testing type -------> n/a
Last test execution time -----> n/a
First test failure time -------> n/a
Last test failure time -------> n/a
Last test pass time ------> n/a
Total failure count ---------> 0
Consecutive failure count ---> 0

2) TestPortAsicLoopback ------------> U

Error code ------------------> 3 (DIAG_SKIPPED)
Total run count --------------> 0
Last test testing type -------> n/a
Last test execution time -----> n/a
First test failure time -------> n/a
Last test failure time -------> n/a
Last test pass time ------> n/a
Total failure count ---------> 0
Consecutive failure count ---> 0

3) TestPortAsicCam -----------------> U

Error code ------------------> 3 (DIAG_SKIPPED)
Total run count --------------> 0
Last test testing type -------> n/a
Last test execution time -----> n/a
First test failure time -------> n/a
Last test failure time -------> n/a
Last test pass time ------> n/a
Total failure count ---------> 0
Consecutive failure count ---> 0

4) TestPortAsicMem -----------------> U

Error code ------------------> 3 (DIAG_SKIPPED)
Total run count --------------> 0
Last test testing type -------> n/a
Last test execution time -----> n/a
First test failure time -------> n/a
Last test failure time -------> n/a
Last test pass time ------> n/a
Total failure count ---------> 0
Consecutive failure count ---> 0

5) TestInlinePwrCtlr ---------------> U

Error code ------------------> 3 (DIAG_SKIPPED)
Total run count --------------> 0
Last test testing type -------> n/a
This example shows how to display the online diagnostics that are configured on a specific switch:

Switch# `show diagnostic content switch 3`

Switch 1:
Diagnostics test suite attributes:
- B/* - Basic ondemand test / NA
- P/V/* - Per port test / Per device test / NA
- D/N/* - Disruptive test / Non-disruptive test / NA
- S/* - Only applicable to standby unit / NA
- X/* - Not a health monitoring test / NA
- F/* - Fixed monitoring interval test / NA
- E/* - Always enabled monitoring test / NA
- A/I - Monitoring is active / Monitoring is inactive
- R/* - Switch will reload after test list completion / NA
- P/* - will partition stack / NA

<table>
<thead>
<tr>
<th>ID</th>
<th>Test Name</th>
<th>Attributes</th>
<th>Test Interval</th>
<th>Thre-</th>
<th>day hh:mm:ss.ms shold</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TestPortAsicStackPortLoopback</td>
<td>BM*I</td>
<td>not configured</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>TestPortAsicLoopback</td>
<td>BDX**IR*</td>
<td>not configured</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>TestPortAsicCam</td>
<td>BDX**IR*</td>
<td>not configured</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>TestPortAsicRingLoopback</td>
<td>BDX**IR*</td>
<td>not configured</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>TestMicRingLoopback</td>
<td>BDX**IR*</td>
<td>not configured</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>TestPortAsicMem</td>
<td>BDX**IR*</td>
<td>not configured</td>
<td>n/a</td>
<td></td>
</tr>
</tbody>
</table>

This example shows how to display the online diagnostic results for a switch:

Switch# `show diagnostic result`

Switch 1: SerialNo :
Overall diagnostic result: PASS
Test results: (= Pass, F = Fail, U = Untested)
1) TestPortAsicStackPortLoopback ---->.
2) TestPortAsicLoopback ------------>.
3) TestPortAsicCam ---------------->.
4) TestPortAsicRingLoopback -------->.
5) TestMicRingLoopback ------------->.
6) TestPortAsicMem ----------------->.

This example shows how to display the online diagnostic test status:

Switch# `show diagnostic status`

<table>
<thead>
<tr>
<th>Card</th>
<th>Description</th>
<th>Current Running Test</th>
<th>Run by</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N/A</td>
<td>TestPortAsicStackPortLoopback</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>TestPortAsicLoopback</td>
<td><OD></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>TestPortAsicCam</td>
<td><OD></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>TestPortAsicMem</td>
<td><OD></td>
<td></td>
</tr>
</tbody>
</table>
Switch#

This example shows how to display the online diagnostic test schedule for a switch:

```
Switch# show diagnostic schedule switch 1
```

Current Time = 14:39:49 PST Tue May 5 2013
Diagnostic for Switch 1:
Schedule #1:
To be run daily 12:00
Test ID(s) to be executed: 1.

Additional References for Online Diagnostics

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Online diagnostics commands</td>
<td>Catalyst 2960-X Switch System Management Command Reference</td>
</tr>
<tr>
<td>Platform-independent command references</td>
<td>Cisco IOS 15.3M&T Command References</td>
</tr>
<tr>
<td>Platform-independent configuration information</td>
<td>Cisco IOS 15.3M&T Configuration Guides</td>
</tr>
</tbody>
</table>

Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>All supported MIBs for this release.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/support</td>
</tr>
</tbody>
</table>

Feature History and Information for Configuring Online Diagnostics

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS 15.0(2)EX</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>
Troubleshooting the Software Configuration

This chapter describes how to identify and resolve software problems related to the Cisco IOS software on the switch. Depending on the nature of the problem, you can use the command-line interface (CLI), Device Manager, or Network Assistant to identify and solve problems.

Additional troubleshooting information, such as LED descriptions, is provided in the hardware installation guide.

- Finding Feature Information, page 1343
- Information About Troubleshooting the Software Configuration, page 1344
- How to Troubleshoot the Software Configuration, page 1350
- Verifying Troubleshooting of the Software Configuration, page 1365
- Scenarios for Troubleshooting the Software Configuration, page 1368
- Configuration Examples for Troubleshooting Software, page 1370
- Additional References for Troubleshooting Software Configuration, page 1373
- Feature History and Information for Troubleshooting Software Configuration, page 1374

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.
Information About Troubleshooting the Software Configuration

Software Failure on a Switch

Switch software can be corrupted during an upgrade by downloading the incorrect file to the switch, and by deleting the image file. In all of these cases, the switch does not pass the power-on self-test (POST), and there is no connectivity.

Related Topics

Recovering from a Software Failure

Lost or Forgotten Password on a Switch

The default configuration for the switch allows an end user with physical access to the switch to recover from a lost password by interrupting the boot process during power-on and by entering a new password. These recovery procedures require that you have physical access to the switch.

Note

On these switches, a system administrator can disable some of the functionality of this feature by allowing an end user to reset a password only by agreeing to return to the default configuration. If you are an end user trying to reset a password when password recovery has been disabled, a status message reminds you to return to the default configuration during the recovery process.

Note

You cannot recover encryption password key, when Cisco WLC configuration is copied from one Cisco WLC to another (in case of an RMA).

Related Topics

Recovering from a Lost or Forgotten Password

Power over Ethernet Ports

A Power over Ethernet (PoE) switch port automatically supplies power to one of these connected devices if the switch detects that there is no power on the circuit:

- a Cisco pre-standard powered device (such as a Cisco IP Phone or a Cisco Aironet Access Point)
- an IEEE 802.3af-compliant powered device
- an IEEE 802.3at-compliant powered device

A powered device can receive redundant power when it is connected to a PoE switch port and to an AC power source. The device does not receive redundant power when it is only connected to the PoE port.

After the switch detects a powered device, the switch determines the device power requirements and then grants or denies power to the device. The switch can also detect the real-time power consumption of the device by monitoring and policing the power usage.
For more information, see the "Configuring PoE" chapter in the Catalyst 2960-X Switch Interface and Hardware Component Configuration Guide.

Related Topics

[Scenarios to Troubleshoot Power over Ethernet (PoE), on page 1368](#)

Disabled Port Caused by Power Loss

If a powered device (such as a Cisco IP Phone 7910) that is connected to a PoE Switch port and powered by an AC power source loses power from the AC power source, the device might enter an error-disabled state. To recover from an error-disabled state, enter the `shutdown` interface configuration command, and then enter the `no shutdown` interface command. You can also configure automatic recovery on the Switch to recover from the error-disabled state.

On a Switch, the `errdisable recovery cause loopback` and the `errdisable recovery interval seconds` global configuration commands automatically take the interface out of the error-disabled state after the specified period of time.

Monitoring PoE Port Status

- `show controllers power inline` privileged EXEC command
- `show power inline` EXEC command
- `debug ilpower` privileged EXEC command

Disabled Port Caused by False Link-Up

If a Cisco powered device is connected to a port and you configure the port by using the `power inline never` interface configuration command, a false link-up can occur, placing the port into an error-disabled state. To take the port out of the error-disabled state, enter the `shutdown` and the `no shutdown` interface configuration commands.

You should not connect a Cisco powered device to a port that has been configured with the `power inline never` command.

Ping

The Switch supports IP ping, which you can use to test connectivity to remote hosts. Ping sends an echo request packet to an address and waits for a reply. Ping returns one of these responses:

- **Normal response**—The normal response (`hostname is alive`) occurs in 1 to 10 seconds, depending on network traffic.
- **Destination does not respond**—If the host does not respond, a `no-answer` message is returned.
- **Unknown host**—If the host does not exist, an `unknown host` message is returned.
- **Destination unreachable**—If the default gateway cannot reach the specified network, a `destination-unreachable` message is returned.
- **Network or host unreachable**—If there is no entry in the route table for the host or network, a `network or host unreachable` message is returned.
Layer 2 Traceroute

The Layer 2 traceroute feature allows the switch to identify the physical path that a packet takes from a source device to a destination device. Layer 2 traceroute supports only unicast source and destination MAC addresses. Traceroute finds the path by using the MAC address tables of the Switch in the path. When the Switch detects a device in the path that does not support Layer 2 traceroute, the Switch continues to send Layer 2 trace queries and lets them time out.

The Switch can only identify the path from the source device to the destination device. It cannot identify the path that a packet takes from source host to the source device or from the destination device to the destination host.

Layer 2 Traceroute Guidelines

- Cisco Discovery Protocol (CDP) must be enabled on all the devices in the network. For Layer 2 traceroute to function properly, do not disable CDP.

 If any devices in the physical path are transparent to CDP, the switch cannot identify the path through these devices.

- A Switch is reachable from another Switch when you can test connectivity by using the ping privileged EXEC command. All Switch in the physical path must be reachable from each other.

- The maximum number of hops identified in the path is ten.

- You can enter the traceroute mac or the traceroute mac ip privileged EXEC command on a Switch that is not in the physical path from the source device to the destination device. All Switch in the path must be reachable from this switch.

- The traceroute mac command output shows the Layer 2 path only when the specified source and destination MAC addresses belong to the same VLAN. If you specify source and destination MAC addresses that belong to different VLANs, the Layer 2 path is not identified, and an error message appears.

- If you specify a multicast source or destination MAC address, the path is not identified, and an error message appears.

- If the source or destination MAC address belongs to multiple VLANs, you must specify the VLAN to which both the source and destination MAC addresses belong. If the VLAN is not specified, the path is not identified, and an error message appears.

- The traceroute mac ip command output shows the Layer 2 path when the specified source and destination IP addresses belong to the same subnet. When you specify the IP addresses, the Switch uses the Address Resolution Protocol (ARP) to associate the IP addresses with the corresponding MAC addresses and the VLAN IDs.

 - If an ARP entry exists for the specified IP address, the Switch uses the associated MAC address and identifies the physical path.
• If an ARP entry does not exist, the Switch sends an ARP query and tries to resolve the IP address. If the IP address is not resolved, the path is not identified, and an error message appears.

• When multiple devices are attached to one port through hubs (for example, multiple CDP neighbors are detected on a port), the Layer 2 traceroute feature is not supported. When more than one CDP neighbor is detected on a port, the Layer 2 path is not identified, and an error message appears.

• This feature is not supported in Token Ring VLANs.

IP Traceroute

You can use IP traceroute to identify the path that packets take through the network on a hop-by-hop basis. The command output displays all network layer (Layer 3) devices, such as routers, that the traffic passes through on the way to the destination.

Your Switch can participate as the source or destination of the **traceroute** privileged EXEC command and might or might not appear as a hop in the **traceroute** command output. If the Switch is the destination of the traceroute, it is displayed as the final destination in the traceroute output. Intermediate Switch do not show up in the traceroute output if they are only bridging the packet from one port to another within the same VLAN. However, if the intermediate Switch is a multilayer Switch that is routing a particular packet, this Switch shows up as a hop in the traceroute output.

The **traceroute** privileged EXEC command uses the Time To Live (TTL) field in the IP header to cause routers and servers to generate specific return messages. Traceroute starts by sending a User Datagram Protocol (UDP) datagram to the destination host with the TTL field set to 1. If a router finds a TTL value of 1 or 0, it drops the datagram and sends an Internet Control Message Protocol (ICMP) time-to-live-exceeded message to the sender. Traceroute finds the address of the first hop by examining the source address field of the ICMP time-to-live-exceeded message.

To identify the next hop, traceroute sends a UDP packet with a TTL value of 2. The first router decrements the TTL field by 1 and sends the datagram to the next router. The second router sees a TTL value of 1, discards the datagram, and returns the time-to-live-exceeded message to the source. This process continues until the TTL is incremented to a value large enough for the datagram to reach the destination host (or until the maximum TTL is reached).

To learn when a datagram reaches its destination, traceroute sets the UDP destination port number in the datagram to a very large value that the destination host is unlikely to be using. When a host receives a datagram destined to itself containing a destination port number that is unused locally, it sends an ICMP port-unreachable error to the source. Because all errors except port-unreachable errors come from intermediate hops, the receipt of a port-unreachable error means that this message was sent by the destination port.

Related Topics

- Executing IP Traceroute, on page 1363
- Example: Performing a Traceroute to an IP Host, on page 1371

Time Domain Reflector Guidelines

You can use the Time Domain Reflector (TDR) feature to diagnose and resolve cabling problems. When running TDR, a local device sends a signal through a cable and compares the reflected signal to the initial signal.
TDR is supported only on 10/100/1000 copper Ethernet ports. It is not supported on 10-Gigabit Ethernet ports and on SFP module ports.

TDR can detect these cabling problems:

• Open, broken, or cut twisted-pair wires—The wires are not connected to the wires from the remote device.

• Shorted twisted-pair wires—The wires are touching each other or the wires from the remote device. For example, a shorted twisted pair can occur if one wire of the twisted pair is soldered to the other wire.

If one of the twisted-pair wires is open, TDR can find the length at which the wire is open.

Use TDR to diagnose and resolve cabling problems in these situations:

• Replacing a Switch

• Setting up a wiring closet

• Troubleshooting a connection between two devices when a link cannot be established or when it is not operating properly

When you run TDR, the Switch reports accurate information in these situations:

• The cable for the gigabit link is a solid-core cable.

• The open-ended cable is not terminated.

When you run TDR, the Switch does not report accurate information in these situations:

• The cable for the gigabit link is a twisted-pair cable or is in series with a solid-core cable.

• The link is a 10-megabit or a 100-megabit link.

• The cable is a stranded cable.

• The link partner is a Cisco IP Phone.

• The link partner is not IEEE 802.3 compliant.

Debug Commands

⚠️ **Caution**

Because debugging output is assigned high priority in the CPU process, it can render the system unusable. For this reason, use `debug` commands only to troubleshoot specific problems or during troubleshooting sessions with Cisco technical support staff. It is best to use `debug` commands during periods of lower network traffic and fewer users. Debugging during these periods decreases the likelihood that increased `debug` command processing overhead will affect system use.

All `debug` commands are entered in privileged EXEC mode, and most `debug` commands take no arguments.

Related Topics

- Redirecting Debug and Error Message Output, on page 1363
- Example: Enabling All System Diagnostics, on page 1372
Onboard Failure Logging on the Switch

You can use the onboard failure logging (OBFL) feature to collect information about the Switch. The information includes uptime, temperature, and voltage information and helps Cisco technical support representatives to troubleshoot Switch problems. We recommend that you keep OBFL enabled and do not erase the data stored in the flash memory.

By default, OBFL is enabled. It collects information about the Switch and small form-factor pluggable (SFP) modules. The Switch stores this information in the flash memory:

- **CLI commands**—Record of the OBFL CLI commands that are entered on a standalone Switch or a switch stack member.
- **Environment data**—Unique device identifier (UDI) information for a standalone Switch or a switch stack member and for all the connected FRU devices: the product identification (PID), the version identification (VID), and the serial number.
- **Message**—Record of the hardware-related system messages generated by a standalone Switch or a switch stack member.
- **Power over Ethernet (PoE)**—Record of the power consumption of PoE ports on a standalone Switch or a switch stack member.
- **Temperature**—Temperature of a standalone Switch or a switch stack member.
- **Uptime data**—Time when a standalone Switch or a switch stack member starts, the reason the Switch restarts, and the length of time the Switch has been running since it last restarted.
- **Voltage**—System voltages of a standalone Switch or a switch stack member.

You should manually set the system clock or configure it by using Network Time Protocol (NTP).

When the Switch is running, you can retrieve the OBFL data by using the `show logging onboard` privileged EXEC commands. If the Switch fails, contact your Cisco technical support representative to find out how to retrieve the data.

When an OBFL-enabled Switch is restarted, there is a 10-minute delay before logging of new data begins.

Related Topics

- Configuring OBFL, on page 1364
- Displaying OBFL Information

Possible Symptoms of High CPU Utilization

Excessive CPU utilization might result in these symptoms, but the symptoms might also result from other causes:

Note

You may see increased system memory usage when Cisco Catalyst 4500E Supervisor Engine 8-E is used in wireless mode.

- Spanning tree topology changes
• EtherChannel links brought down due to loss of communication
• Failure to respond to management requests (ICMP ping, SNMP timeouts, slow Telnet or SSH sessions)
• UDLD flapping
• IP SLAs failures because of SLAs responses beyond an acceptable threshold
• DHCP or IEEE 802.1x failures if the switch does not forward or respond to requests

Layer 3 switches:
• Dropped packets or increased latency for packets routed in software
• BGP or OSPF routing topology changes
• HSRP flapping

How to Troubleshoot the Software Configuration

Recovering from a Software Failure

Switch software can be corrupted during an upgrade by downloading the wrong file to the switch, and by deleting the image file. In all of these cases, the switch does not pass the power-on self-test (POST), and there is no connectivity.

This procedure uses the Xmodem Protocol to recover from a corrupt or wrong image file. There are many software packages that support the Xmodem Protocol, and this procedure is largely dependent on the emulation software that you are using.

This recovery procedure requires that you have physical access to the switch.

Step 1 From your PC, download the software image tar file (*image_filename.tar*) from Cisco.com. The Cisco IOS image is stored as a bin file in a directory in the tar file. For information about locating the software image files on Cisco.com, see the release notes.

Step 2 Extract the bin file from the tar file. If you are using Windows, use a zip program that can read a tar file. Use the zip program to navigate. If you are using Windows, use a zip program that can read a tar file. Use the zip program to navigate.

If you are using UNIX, follow these steps:

a) Display the contents of the tar file by using the `tar -tvf <image_filename.tar>` UNIX command.

Example:

```
unix-1% tar -tvf image_filename.tar
```

b) Locate the bin file, and extract it by using the `tar -xvf <image_filename.tar> <image_filename.bin>` UNIX command.
Example:
```bash
unix-1% tar -xvf image_filename.tar image_filename.bin
x c2960x-universalk9-mz-150-2.EX1/c2960x-universalk9-mz-150-2.EX1.bin, 2928176 bytes, 5720 tape blocks
```
c) Verify that the bin file was extracted by using the `ls -l <image_filename.bin>` UNIX command.

Example:
```bash
unix-1% ls -l image_filename.bin
-rw-r--r-- 1 boba 2928176 Apr 21 12:01 c2960x-universalk9-mz.150-2.0.66.UCP/c2960x-universalk9-mz.150-2.0.66.UCP.bin
```

Step 3
Connect your PC with terminal-emulation software supporting the Xmodem Protocol to the switch console port.

Step 4
Set the line speed on the emulation software to 9600 baud.

Step 5
Unplug the switch power cord.

Step 6
Press the **Mode** button, and at the same time reconnect the power cord to the switch. You can release the Mode button a second or two after the LED above port 1 goes off. Several lines of information about the software appear along with instructions.

Example:
The system has been interrupted prior to initializing the flash file system. The following commands will initialize the flash file system, and finish loading the operating system software:
```
# flash_init
load_helper
boot
```

Step 7
Initialize the flash file system.

Example:
```bash
switch: flash_init
```

Step 8
If you had set the console port speed to any speed other than 9600, it has been reset to that particular speed. Change the emulation software line speed to match that of the switch console port.

Step 9
Load any helper files.

Example:
```bash
switch: load_helper
```

Step 10
Start the file transfer by using the Xmodem Protocol.

Example:
```bash
switch: copy xmodem: flash:image_filename.bin
```

Step 11
After the Xmodem request appears, use the appropriate command on the terminal-emulation software to start the transfer and to copy the software image into flash memory.

Step 12
Boot the newly downloaded Cisco IOS image.
Example:

```bash
switch: boot flash:image_filename.bin
```

Step 13 Use the `archive download-sw` privileged EXEC command to download the software image to the switch or to the switch stack.

Step 14 Use the `reload` privileged EXEC command to restart the switch and to verify that the new software image is operating properly.

Step 15 Delete the `flash:image_filename.bin` file from the switch.

Recovering from a Lost or Forgotten Password

The default configuration for the switch allows an end user with physical access to the switch to recover from a lost password by interrupting the boot process during power-on and by entering a new password. These recovery procedures require that you have physical access to the switch.

Note

On these switches, a system administrator can disable some of the functionality of this feature by allowing an end user to reset a password only by agreeing to return to the default configuration. If you are an end user trying to reset a password when password recovery has been disabled, a status message shows this during the recovery process.

You enable or disable password recovery by using the `service password-recovery` global configuration command.

The switch supports homogeneous stacking and mixed stacking. Mixed stacking is supported only with the Catalyst 2960-S switches. A homogenous stack can have up to eight stack members, while a mixed stack can have up to four stack members. All switches in a switch stack must be running the LAN Base image.

Step 1 Connect a terminal or PC to the switch.

- Connect a terminal or a PC with terminal-emulation software to the switch console port.

 Or

- Connect a PC to the Ethernet management port.

Step 2 Set the line speed on the emulation software to 9600 baud.

Step 3 On a switch, power off the switch.

Step 4 Reconnect the power cord to the switch. Within 15 seconds, press the **Mode** button while the System LED is still flashing green. Continue pressing the **Mode** button until all the system LEDs turn on and remain solid, then release the **Mode** button.

Several lines of information about the software appear with instructions, informing you if the password recovery procedure has been disabled or not.
• If you see a message that begins with this statement:

The system has been interrupted prior to initializing the flash file system. The following commands will initialize the flash file system

proceed to the "Procedure with Password Recovery Enabled" section, and follow the steps.

• If you see a message that begins with this statement:

The password-recovery mechanism has been triggered, but is currently disabled.

proceed to the "Procedure with Password Recovery Disabled" section, and follow the steps.

Step 5 After recovering the password, reload the switch.
On a switch:

Switch> reload
Proceed with reload? [confirm] y

Procedure with Password Recovery Enabled

If the password-recovery operation is enabled, this message appears:

The system has been interrupted prior to initializing the flash file system. The following commands will initialize the flash file system, and finish loading the operating system software:

 flash_init
 load_helper
 boot

Step 1 Initialize the flash file system.
Switch: flash_init

Step 2 If you had set the console port speed to any number other than 9600, it has been reset to that particular speed. Change the emulation software line speed to match that of the switch console port.

Step 3 Load any helper files.
Switch: load_helper

Step 4 Display the contents of flash memory.
Switch: dir: flash:
Directory of flash:
 11 -rwx 5825 Mar 01 2013 22:31:59 config.text

16128000 bytes total (10003456 bytes free)
Step 5 Rename the configuration file to config.text.old
This file contains the password definition.
Switch: `rename flash: config.text flash: config.text.old`

Step 6 Boot up the system.
Switch: `boot`

You are prompted to start the setup program. Enter N at the prompt.
Continue with the configuration dialog?? [yes/no]: No

Step 7 At the switch prompt, enter privileged EXEC mode.
Switch> `enable`
Switch#

Step 8 Rename the configuration file to its original name.
Switch# `rename flash: config.text.old flash: config.text`

Note Before continuing to Step 9, power on any connected stack members and wait until they have completely initialized. Failure to follow this step can result in a lost configuration depending on how your switch is set up.

Step 9 Copy the configuration file into memory
Switch# `copy flash: config.text system: running-config`
Source filename [config.text]? Destination filename [running-config]? Press Return in response to the confirmation prompts. The configuration file is now reloaded, and you can change the password.

Step 10 Enter global configuration mode.
Switch# `configure terminal`

Step 11 Change the password.
Switch(config)# `enable secret password`

The secret password can be from 1 to 25 alphanumeric characters, can start with a number, is case sensitive, and allows spaces but ignores leading spaces.

Step 12 Return to privileged EXEC mode.
Switch(config)# `exit`
Switch#

Step 13 Write the running configuration to the startup configuration file.
Switch# `copy running-config startup-config`

The new password is now in the startup configuration.

Note This procedure is likely to leave your switch virtual interface in a shutdown state. You can see which interface is in this state by entering the show running-config privileged EXEC command. To reenable the interface, enter the interface vlan vlan-id global configuration command, and specify the VLAN ID of the shutdown interface. With the switch in interface configuration mode, enter the no shutdown command.
Step 14 Boot the switch with the `packages.conf` file from flash.

Switch: `boot flash:packages.conf`

Step 15 Reload the switch stack.

Switch# `reload`

Procedure with Password Recovery Disabled

If the password-recovery mechanism is disabled, this message appears:

The password-recovery mechanism has been triggered, but is currently disabled. Access to the boot loader prompt through the password-recovery mechanism is disallowed at this point. However, if you agree to let the system be reset back to the default system configuration, access to the boot loader prompt can still be allowed.

Would you like to reset the system back to the default configuration (y/n)?

Caution

Returning the Switch to the default configuration results in the loss of all existing configurations. We recommend that you contact your system administrator to verify if there are backup Switch and VLAN configuration files.

- If you enter `n` (no), the normal boot process continues as if the Mode button had not been pressed; you cannot access the boot loader prompt, and you cannot enter a new password. You see the message:

 Press Enter to continue........

- If you enter `y` (yes), the configuration file in flash memory and the VLAN database file are deleted. When the default configuration loads, you can reset the password.

Step 1 Choose to continue with password recovery and delete the existing configuration:

Would you like to reset the system back to the default configuration (y/n)? `y`

Step 2 Display the contents of flash memory:

Switch: `dir flash`

The Switch file system appears.
Directory of flash:

13 drwx 192 Mar 01 2013 22:30:48 c2960x-universalk9-mz.150-2.0.63.UCF.bin
16128000 bytes total (10003456 bytes free)

Step 3 Boot up the system:
Switch: boot

You are prompted to start the setup program. To continue with password recovery, enter N at the prompt:

Continue with the configuration dialog? [yes/no]: N

Step 4 At the Switch prompt, enter privileged EXEC mode:
Switch> enable

Step 5 Enter global configuration mode:
Switch# configure terminal

Step 6 Change the password:
Switch(config)# enable secret password

The secret password can be from 1 to 25 alphanumeric characters, can start with a number, is case sensitive, and allows spaces but ignores leading spaces.

Step 7 Return to privileged EXEC mode:
Switch(config)# exit
Switch#

Note Before continuing to Step 9, power on any connected stack members and wait until they have completely initialized. The stacking feature is supported on Switch running the LAN Base image.

Step 8 Write the running configuration to the startup configuration file:
Switch# copy running-config startup-config

The new password is now in the startup configuration.

Step 9 You must now reconfigure the Switch. If the system administrator has the backup Switch and VLAN configuration files available, you should use those.

Recovering from a Command Switch Failure

This section describes how to recover from a failed command switch. You can configure a redundant command switch group by using the Hot Standby Router Protocol (HSRP).

If you have not configured a standby command switch, and your command switch loses power or fails in some other way, management contact with the member switches is lost, and you must install a new command switch. However, connectivity between switches that are still connected is not affected, and the member
switches forward packets as usual. You can manage the members as standalone switches through the console port, or, if they have IP addresses, through the other management interfaces.

You can prepare for a command switch failure by assigning an IP address to a member switch or another switch that is command-capable, making a note of the command-switch password, and cabling your cluster to provide redundant connectivity between the member switches and the replacement command switch. These sections describe two solutions for replacing a failed command switch:

- Replacing a Failed Command Switch with a Cluster Member
- Replacing a Failed Command Switch with Another Switch

These recovery procedures require that you have physical access to the switch. For information on command-capable switches, see the release notes.

Replacing a Failed Command Switch with a Cluster Member

To replace a failed command switch with a command-capable member in the same cluster, follow these steps:

Step 1 Disconnect the command switch from the member switches, and physically remove it from the cluster.

Step 2 Insert the member switch in place of the failed command switch, and duplicate its connections to the cluster members.

Step 3 Start a CLI session on the new command switch.

You can access the CLI by using the console port or, if an IP address has been assigned to the switch, by using Telnet. For details about using the console port, see *Catalyst 2960-X Switch Hardware Installation Guide*.

Step 4 At the switch prompt, enter privileged EXEC mode.

Example:

```
Switch> enable
Switch#
```

Step 5 Enter the password of the failed command switch.

Step 6 Enter global configuration mode.

Example:

```
Switch# configure terminal
```

Enter configuration commands, one per line. End with CNTL/Z.

Step 7 Remove the member switch from the cluster.

Example:

```
Switch(config)# no cluster commander-address
```

Step 8 Return to privileged EXEC mode.

Example:

```
Switch(config)# end
Switch#
```

Step 9 Use the setup program to configure the switch IP information. This program prompts you for IP address information and passwords. From privileged EXEC mode, enter EXEC mode, enter `setup`, and press Return.
Example:
Switch# setup

--- System Configuration Dialog ---
Continue with configuration dialog? [yes/no]: y
At any point you may enter a question mark '?' for help.
Use ctrl-c to abort configuration dialog at any prompt.
Default settings are in square brackets '{}'.
Basic management setup configures only enough connectivity
for management of the system, extended setup will ask you
to configure each interface on the system
Would you like to enter basic management setup? [yes/no]:

Step 10 Enter Y at the first prompt.

Example:
The prompts in the setup program vary depending on the member switch that you selected to be the
command switch:
Continue with configuration dialog? [yes/no]: y

or
Configuring global parameters:

If this prompt does not appear, enter enable, and press Return. Enter setup, and press Return to start the setup program.

Step 11 Respond to the questions in the setup program.
When prompted for the hostname, it is limited to 28 characters and 31 characters on a member switch. Do not use \-n, where \n is a number, as the last characters in a hostname for any switch. When prompted for the Telnet (virtual terminal)
password, it is 1 to 25 alphanumeric characters, is case sensitive, allows spaces, but ignores leading spaces.

Step 12 When prompted for the enable secret and enable passwords, enter the passwords of the failed command switch again.

Step 13 When prompted, make sure to enable the switch as the cluster command switch, and press Return.

Step 14 When prompted, assign a name to the cluster, and press Return.
The cluster name can be 1 to 31 alphanumeric characters, dashes, or underscores.

Step 15 After the initial configuration displays, verify that the addresses are correct.

Step 16 If the displayed information is correct, enter Y, and press Return.
If this information is not correct, enter N, press Return, and begin again at Step 9.

Step 17 Start your browser, and enter the IP address of the new command switch.

Step 18 From the Cluster menu, select Add to Cluster to display a list of candidate switches to add to the cluster.
Replacing a Failed Command Switch with Another Switch

To replace a failed command switch with a switch that is command-capable but not part of the cluster, follow these steps:

Step 1
Insert the new switch in place of the failed command switch, and duplicate its connections to the cluster members.

Step 2
You can access the CLI by using the console port or, if an IP address has been assigned to the switch, by using Telnet. For details about using the console port, see the switch hardware installation guide.

Step 3
At the switch prompt, enter privileged EXEC mode.

Example:
Switch> enable
Switch#

Step 4
Enter the password of the failed command switch.

Step 5
Use the setup program to configure the switch IP information. This program prompts you for IP address information and passwords. From privileged EXEC mode, enter EXEC mode, enter `setup`, and press Return.

Example:
Switch# setup

--- System Configuration Dialog ---
Continue with configuration dialog? [yes/no]: y
At any point you may enter a question mark '?' for help.
Use ctrl-c to abort configuration dialog at any prompt.
Basic management setup configures only enough connectivity
for management of the system, extended setup will ask you
to configure each interface on the system
Would you like to enter basic management setup? [yes/no]:

Step 6
Enter Y at the first prompt.

Example:
The prompts in the setup program vary depending on the member switch that you selected to be the command switch:
Continue with configuration dialog? [yes/no]: y

or

Configuring global parameters:

If this prompt does not appear, enter `enable`, and press Return. Enter `setup`, and press Return to start the setup program.

Step 7
Respond to the questions in the setup program.
When prompted for the hostname, it is limited to 28 characters and 31 characters on a member switch. Do not use -n, where n is a number, as the last characters in a hostname for any switch. When prompted for the Telnet (virtual terminal) password, it is 1 to 25 alphanumeric characters, is case sensitive, allows spaces, but ignores leading spaces.

Step 8
When prompted for the `enable secret` and `enable` passwords, enter the passwords of the failed command switch again.

Step 9
When prompted, make sure to enable the switch as the cluster command switch, and press Return.

Step 10
When prompted, assign a name to the cluster, and press Return.
The cluster name can be 1 to 31 alphanumeric characters, dashes, or underscores.
Step 11
After the initial configuration displays, verify that the addresses are correct.

Step 12
If the displayed information is correct, enter **Y**, and press **Return**.
If this information is not correct, enter **N**, press **Return**, and begin again at Step 9.

Step 13
Start your browser, and enter the IP address of the new command switch.

Step 14
From the Cluster menu, select **Add to Cluster** to display a list of candidate switches to add to the cluster.

Preventing Switch Stack Problems

To prevent switch stack problems, you should do the following:

- Make sure that the Switch that you add to or remove from the switch stack are powered off. For all powering considerations in switch stacks, see the “Switch Installation” chapter in the hardware installation guide.

- Press the Mode button on a stack member until the Stack mode LED is on. The last two port LEDs on the Switch should be green. Depending on the Switch model, the last two ports are either 10/100/1000 ports or small form-factor pluggable (SFP) module. If one or both of the last two port LEDs are not green, the stack is not operating at full bandwidth.

- We recommend using only one CLI session when managing the switch stack. Be careful when using multiple CLI sessions to the stack master. Commands that you enter in one session are not displayed in the other sessions. Therefore, it is possible that you might not be able to identify the session from which you entered a command.

- Manually assigning stack member numbers according to the placement of the Switch in the stack can make it easier to remotely troubleshoot the switch stack. However, you need to remember that the Switch have manually assigned numbers if you add, remove, or rearrange Switch later. Use the switch `current-stack-member-number renumber new-stack-member-number` global configuration command to manually assign a stack member number.

If you replace a stack member with an identical model, the new Switch functions with the exact same configuration as the replaced Switch. This is also assuming the new Switch is using the same member number as the replaced Switch.

Removing powered-on stack members causes the switch stack to divide (partition) into two or more switch stacks, each with the same configuration. If you want the switch stacks to remain separate, change the IP address or addresses of the newly created switch stacks. To recover from a partitioned switch stack, follow these steps:

1. Power off the newly created switch stacks.
2. Reconnect them to the original switch stack through their StackWise Plus ports.
3. Power on the Switch.

For the commands that you can use to monitor the switch stack and its members, see the *Displaying Switch Stack Information* section.
Preventing Autonegotiation Mismatches

The IEEE 802.3ab autonegotiation protocol manages the Switch settings for speed (10 Mb/s, 100 Mb/s, and 1000 Mb/s, excluding SFP module ports) and duplex (half or full). There are situations when this protocol can incorrectly align these settings, reducing performance. A mismatch occurs under these circumstances:

- A manually set speed or duplex parameter is different from the manually set speed or duplex parameter on the connected port.
- A port is set to autonegotiate, and the connected port is set to full duplex with no autonegotiation.

To maximize Switch performance and ensure a link, follow one of these guidelines when changing the settings for duplex and speed:

- Let both ports autonegotiate both speed and duplex.
- Manually set the speed and duplex parameters for the ports on both ends of the connection.

Note

If a remote device does not autonegotiate, configure the duplex settings on the two ports to match. The speed parameter can adjust itself even if the connected port does not autonegotiate.

Troubleshooting SFP Module Security and Identification

Cisco small form-factor pluggable (SFP) modules have a serial EEPROM that contains the module serial number, the vendor name and ID, a unique security code, and cyclic redundancy check (CRC). When an SFP module is inserted into the Switch, the Switch software reads the EEPROM to verify the serial number, vendor name and vendor ID, and recomputes the security code and CRC. If the serial number, the vendor name or vendor ID, the security code, or CRC is invalid, the software generates a security error message and places the interface in an error-disabled state.

The security error message references the GBIC_SECURITY facility. The Switch supports SFP modules and does not support GBIC modules. Although the error message text refers to GBIC interfaces and modules, the security messages actually refer to the SFP modules and module interfaces.

If you are using a non-Cisco SFP module, remove the SFP module from the Switch, and replace it with a Cisco module. After inserting a Cisco SFP module, use the `errdisable recovery cause gbic-invalid` global configuration command to verify the port status, and enter a time interval for recovering from the error-disabled state. After the elapsed interval, the Switch brings the interface out of the error-disabled state and retries the operation. For more information about the `errdisable recovery` command, see the command reference for this release.

If the module is identified as a Cisco SFP module, but the system is unable to read vendor-data information to verify its accuracy, an SFP module error message is generated. In this case, you should remove and reinstall the SFP module. If it continues to fail, the SFP module might be defective.
Monitoring SFP Module Status

You can check the physical or operational status of an SFP module by using the `show interfaces transceiver` privileged EXEC command. This command shows the operational status, such as the temperature and the current for an SFP module on a specific interface and the alarm status. You can also use the command to check the speed and the duplex settings on an SFP module. For more information, see the `show interfaces transceiver` command in the command reference for this release.

Executing Ping

If you attempt to ping a host in a different IP subnetwork, you must define a static route to the network or have IP routing configured to route between those subnets.

IP routing is disabled by default on all Switch.

Note

Though other protocol keywords are available with the `ping` command, they are not supported in this release.

Use this command to ping another device on the network from the Switch:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>ping ip host</td>
<td>address</td>
</tr>
<tr>
<td>Switch# ping 172.20.52.3</td>
<td></td>
</tr>
</tbody>
</table>

Related Topics

- Ping, on page 1345
- Example: Pinging an IP Host, on page 1370

Monitoring Temperature

The Switch monitors the temperature conditions and uses the temperature information to control the fans.

Use the `show env temperature status` privileged EXEC command to display the temperature value, state, and thresholds. The temperature value is the temperature in the Switch (not the external temperature). You can configure only the yellow threshold level (in Celsius) by using the `system env temperature threshold yellow value` global configuration command to set the difference between the yellow and red thresholds. You cannot configure the green or red thresholds. For more information, see the command reference for this release.

Monitoring the Physical Path

You can monitor the physical path that a packet takes from a source device to a destination device by using one of these privileged EXEC commands:
Executing IP Traceroute

Table 139: Monitoring the Physical Path

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>tracert os mac [interface interface-id] {source-mac-address} [interface interface-id] {destination-mac-address} [vlan vlan-id] [detail]</td>
<td>Displays the Layer 2 path taken by the packets from the specified source MAC address to the specified destination MAC address.</td>
</tr>
<tr>
<td>tracert os ip {source-ip-address</td>
<td>source-hostname} {destination-ip-address</td>
</tr>
</tbody>
</table>

Executing IP Traceroute

Executing IP Traceroute

Though other protocol keywords are available with the *tracert os* privileged EXEC command, they are not supported in this release.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>traceroute ip host</td>
<td>Traces the path that packets take through the network.</td>
</tr>
</tbody>
</table>

Switch# traceroute ip 192.51.100.1

Related Topics

- [IP Traceroute](#), on page 1347
- [Example: Performing a Traceroute to an IP Host](#), on page 1371

Running TDR and Displaying the Results

To run TDR, enter the `test cable-diagnostics tdr interface interface-id` privileged EXEC command.

To display the results, enter the `show cable-diagnostics tdr interface interface-id` privileged EXEC command.

Redirecting Debug and Error Message Output

By default, the network server sends the output from `debug` commands and system error messages to the console. If you use this default, you can use a virtual terminal connection to monitor debug output instead of connecting to the console port or the Ethernet management port.

Possible destinations include the console, virtual terminals, internal buffer, and UNIX hosts running a syslog server. The syslog format is compatible with 4.3 Berkeley Standard Distribution (BSD) UNIX and its derivatives.
Be aware that the debugging destination you use affects system overhead. When you log messages to the console, very high overhead occurs. When you log messages to a virtual terminal, less overhead occurs. Logging messages to a syslog server produces even less, and logging to an internal buffer produces the least overhead of any method.

For more information about system message logging, see Configuring System Message Logging.

Related Topics

Debug Commands, on page 1348

Using the show platform forward Command

The output from the show platform forward privileged EXEC command provides some useful information about the forwarding results if a packet entering an interface is sent through the system. Depending upon the parameters entered about the packet, the output provides lookup table results and port maps used to calculate forwarding destinations, bitmaps, and egress information.

Most of the information in the output from the command is useful mainly for technical support personnel, who have access to detailed information about the Switch application-specific integrated circuits (ASICs). However, packet forwarding information can also be helpful in troubleshooting.

Configuring OBFL

Caution

We recommend that you do not disable OBFL and that you do not remove the data stored in the flash memory.

- To enable OBFL, use the hw-switch switch [switch-number] logging onboard [message level level] global configuration command. On switches, the range for switch-number is from 1 to 9. Use the message level level parameter to specify the severity of the hardware-related messages that the switch generates and stores in the flash memory.

- To copy the OBFL data to the local network or a specific file system, use the copy onboard switch switch-number url url-destination privileged EXEC command.

- To disable OBFL, use the no hw-switch switch [switch-number] logging onboard [message level level] global configuration command.

- To clear all the OBFL data in the flash memory except for the uptime and CLI command information, use the clear onboard switch switch-number privileged EXEC command.

- In a switch stack, you can enable OBFL on a standalone switch or on all stack members by using the hw-switch switch [switch-number] logging onboard [message level level] global configuration command.

- You can enable or disable OBFL on a member switch from the stack master.

For more information about the commands in this section, see the command reference for this release.
Verifying Troubleshooting of the Software Configuration

Displaying OBFL Information

Table 140: Commands for Displaying OBFL Information

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show logging onboard [module[switch-number]]clilog</code></td>
<td>Displays the OBFL CLI commands that were entered on a standalone switch or the specified stack members.</td>
</tr>
<tr>
<td><code>Switch# show logging onboard 1 clilog</code></td>
<td></td>
</tr>
<tr>
<td><code>show logging onboard [module[switch-number]] environment</code></td>
<td>Displays the UDI information for a standalone switch or the specified stack members and for all the connected FRU devices: the PID, the VID, and the serial number.</td>
</tr>
<tr>
<td><code>Switch# show logging onboard 1 environment</code></td>
<td></td>
</tr>
<tr>
<td><code>show logging onboard [module[switch-number]] message</code></td>
<td>Displays the hardware-related messages generated by a standalone switch or the specified stack members.</td>
</tr>
<tr>
<td><code>Switch# show logging onboard 1 message</code></td>
<td></td>
</tr>
<tr>
<td><code>show logging onboard [module[switch-number]] poe</code></td>
<td>Displays the power consumption of PoE ports on a standalone switch or the specified stack members.</td>
</tr>
<tr>
<td><code>Switch# show logging onboard 1 poe</code></td>
<td></td>
</tr>
<tr>
<td><code>show logging onboard [module[switch-number]] temperature</code></td>
<td>Displays the temperature of a standalone switch or the specified stack members.</td>
</tr>
<tr>
<td><code>Switch# show logging onboard 1 temperature</code></td>
<td></td>
</tr>
<tr>
<td>Command</td>
<td>Purpose</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>show logging onboard [module]switch-number]] uptime</td>
<td>Displays the time when a standalone switch or the specified stack members start, the reason the standalone switch or specified stack members restart, and the length of time that the standalone switch or the specified stack members have been running since they last restarted.</td>
</tr>
<tr>
<td>Switch# show logging onboard 1 uptime</td>
<td></td>
</tr>
<tr>
<td>show logging onboard [module]switch-number]] voltage</td>
<td>Displays the system voltages of a standalone switch or the specified stack members.</td>
</tr>
<tr>
<td>Switch# show logging onboard 1 voltage</td>
<td></td>
</tr>
<tr>
<td>show logging onboard [module]switch-number]] continuous</td>
<td>Displays the data in the continuous file.</td>
</tr>
<tr>
<td>Switch# show logging onboard 1 continuous</td>
<td></td>
</tr>
<tr>
<td>show logging onboard [module]switch-number]] detail</td>
<td>Displays both the continuous and summary data.</td>
</tr>
<tr>
<td>Switch# show logging onboard 1 detail</td>
<td></td>
</tr>
<tr>
<td>show logging onboard [module]switch-number]] end hh:mm:ss</td>
<td>Displays end time and date on a standalone switch or the specified stack members.</td>
</tr>
<tr>
<td>Switch# show logging onboard 1 end 13:00:15 jul 2013</td>
<td></td>
</tr>
<tr>
<td>show logging onboard [module]switch-number]]</td>
<td>Displays OBFL information about the specified switches in the system.</td>
</tr>
<tr>
<td>Switch# show logging onboard 1</td>
<td></td>
</tr>
<tr>
<td>show logging onboard [module]switch-number]] raw</td>
<td>Displays the raw information on a standalone switch or the specified stack members.</td>
</tr>
<tr>
<td>Switch# show logging onboard 1 raw</td>
<td></td>
</tr>
<tr>
<td>show logging onboard [module]switch-number]] start</td>
<td>Displays the start time and date on a standalone switch or the specified stack members.</td>
</tr>
<tr>
<td>Switch# show logging onboard 1 start 13:00:10 jul 2013</td>
<td></td>
</tr>
<tr>
<td>show logging onboard [module]switch-number]] status</td>
<td>Displays status information on a standalone switch or the specified stack members.</td>
</tr>
<tr>
<td>Switch# show logging onboard 1 status</td>
<td></td>
</tr>
<tr>
<td>show logging onboard [module]switch-number]] summary</td>
<td>Displays both the data in the summary file.</td>
</tr>
<tr>
<td>Switch# show logging onboard 1 summary</td>
<td></td>
</tr>
</tbody>
</table>

For more information, see the *Catalyst 2960-X Switch System Management Command Reference*.
Example: Verifying the Problem and Cause for High CPU Utilization

To determine if high CPU utilization is a problem, enter the `show processes cpu sorted` privileged EXEC command. Note the underlined information in the first line of the output example.

```
Switch# show processes cpu sorted
CPU utilization for five seconds: 8%/0%; one minute: 7%; five minutes: 8%
PID Runtime(ms) Invoked uSecs 5Sec 1Min 5Min TTY Process
309 42289103 752750 56180 1.75% 1.20% 1.22% 0 RIP Timers
140 8820183 4942081 1784 0.63% 0.37% 0.30% 0 HRPC qos request
100 3427318 16150534 212 0.47% 0.14% 0.11% 0 HRPC pm-counters
192 3093252 14081112 219 0.31% 0.14% 0.11% 0 Spanning Tree
143 8 37 216 0.15% 0.01% 0.00% 0 Exec
...
```

This example shows normal CPU utilization. The output shows that utilization for the last 5 seconds is 8%/0%, which has this meaning:

- The total CPU utilization is 8 percent, including both time running Cisco IOS processes and time spent handling interrupts.
- The time spent handling interrupts is zero percent.

Table 141: Troubleshooting CPU Utilization Problems

<table>
<thead>
<tr>
<th>Type of Problem</th>
<th>Cause</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interrupt percentage value is almost as high as total CPU utilization value.</td>
<td>The CPU is receiving too many packets from the network.</td>
<td>Determine the source of the network packet. Stop the flow, or change the switch configuration. See the section on “Analyzing Network Traffic.”</td>
</tr>
<tr>
<td>Total CPU utilization is greater than 50% with minimal time spent on interrupts.</td>
<td>One or more Cisco IOS process is consuming too much CPU time. This is usually triggered by an event that activated the process.</td>
<td>Identify the unusual event, and troubleshoot the root cause. See the section on “Debugging Active Processes.”</td>
</tr>
</tbody>
</table>
Scenarios for Troubleshooting the Software Configuration

Scenarios to Troubleshoot Power over Ethernet (PoE)

Table 142: Power over Ethernet Troubleshooting Scenarios

<table>
<thead>
<tr>
<th>Symptom or Problem</th>
<th>Possible Cause and Solution</th>
</tr>
</thead>
</table>
| Only one port does not have PoE. Trouble is on only one switch port. PoE and non-PoE devices do not work on this port, but do on other ports. | Verify that the powered device works on another PoE port. Use the `show run`, or `show interface status` user EXEC commands to verify that the port is not shut down or error-disabled.
`Note` Most switches turn off port power when the port is shut down, even though the IEEE specifications make this optional.
Verify that the Ethernet cable from the powered device to the switch port is good: Connect a known good non-PoE Ethernet device to the Ethernet cable, and make sure that the powered device establishes a link and exchanges traffic with another host.
Verify that the total cable length from the switch front panel to the powered device is not more than 100 meters.
Disconnect the Ethernet cable from the switch port. Use a short Ethernet cable to connect a known good Ethernet device directly to this port on the switch front panel (not on a patch panel). Verify that it can establish an Ethernet link and exchange traffic with another host, or ping the port VLAN SVI. Next, connect a powered device to this port, and verify that it powers on.
If a powered device does not power on when connected with a patch cord to the switch port, compare the total number of connected powered devices to the switch power budget (available PoE). Use the `show inline power` command to verify the amount of available power. |
Symptom or Problem

No PoE on all ports or a group of ports.

Trouble is on all switch ports.

Nonpowered Ethernet devices cannot establish an Ethernet link on any port, and PoE devices do not power on.

Possible Cause and Solution

If there is a continuous, intermittent, or reoccurring alarm related to power, replace the power supply if possible it is a field-replaceable unit. Otherwise, replace the switch.

If the problem is on a consecutive group of ports but not all ports, the power supply is probably not defective, and the problem could be related to PoE regulators in the switch.

Use the `show log` privileged EXEC command to review alarms or system messages that previously reported PoE conditions or status changes.

If there are no alarms, use the `show interface status` command to verify that the ports are not shut down or error-disabled. If ports are error-disabled, use the `shut` and `no shut` interface configuration commands to reenable the ports.

Use the `show env power` and `show power inline` privileged EXEC commands to review the PoE status and power budget (available PoE).

Review the running configuration to verify that `power inline never` is not configured on the ports.

Connect a nonpowered Ethernet device directly to a switch port.

Use only a short patch cord. Do not use the existing distribution cables. Enter the `shut` and `no shut` interface configuration commands, and verify that an Ethernet link is established. If this connection is good, use a short patch cord to connect a powered device to this port and verify that it powers on. If the device powers on, verify that all intermediate patch panels are correctly connected.

Disconnect all but one of the Ethernet cables from switch ports.

Using a short patch cord, connect a powered device to only one PoE port. Verify the powered device does not require more power than can be delivered by the switch port.

Use the `show power inline` privileged EXEC command to verify that the powered device can receive power when the port is not shut down. Alternatively, watch the powered device to verify that it powers on.

If a powered device can power on when only one powered device is connected to the switch, enter the `shut` and `no shut` interface configuration commands on the remaining ports, and then reconnect the Ethernet cables one at a time to the switch PoE ports. Use the `show interface status` and `show power inline` privileged EXEC commands to monitor inline power statistics and port status.

If there is still no PoE at any port, a fuse might be open in the PoE section of the power supply. This normally produces an alarm. Check the log again for alarms reported earlier by system messages.
Symptom or Problem	Possible Cause and Solution
Cisco IP Phone disconnects or resets. After working normally, a Cisco phone or wireless access point intermittently reloads or disconnects from PoE. | Verify all electrical connections from the switch to the powered device. Any unreliable connection results in power interruptions and irregular powered device functioning such as erratic powered device disconnects and reloads.
Verify that the cable length is not more than 100 meters from the switch port to the powered device.
Notice what changes in the electrical environment at the switch location or what happens at the powered device when the disconnect occurs.
Notice whether any error messages appear at the same time a disconnect occurs. Use the `show log` privileged EXEC command to review error messages.
Verify that an IP phone is not losing access to the Call Manager immediately before the reload occurs. (It might be a network problem and not a PoE problem.)
Replace the powered device with a non-PoE device, and verify that the device works correctly. If a non-PoE device has link problems or a high error rate, the problem might be an unreliable cable connection between the switch port and the powered device.

Non-Cisco powered device does not work on Cisco PoE switch. A non-Cisco powered device is connected to a Cisco PoE switch, but never powers on or powers on and then quickly powers off. Non-PoE devices work normally. | Use the `show power inline` command to verify that the switch power budget (available PoE) is not depleted before or after the powered device is connected. Verify that sufficient power is available for the powered device type before you connect it.
Use the `show interface status` command to verify that the switch detects the connected powered device.
Use the `show log` command to review system messages that reported an overcurrent condition on the port. Identify the symptom precisely: Does the powered device initially power on, but then disconnect? If so, the problem might be an initial surge-in (or `inrush`) current that exceeds a current-limit threshold for the port.

Related Topics
Power over Ethernet Ports, on page 1344

Configuration Examples for Troubleshooting Software

Example: Pinging an IP Host
This example shows how to ping an IP host:

```
Switch# ping 172.20.52.3
```
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echoes to 172.20.52.3, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/2/4 ms
Switch#

Table 143: Ping Output Display Characters

<table>
<thead>
<tr>
<th>Character</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>Each exclamation point means receipt of a reply.</td>
</tr>
<tr>
<td>.</td>
<td>Each period means the network server timed out while waiting for a reply.</td>
</tr>
<tr>
<td>U</td>
<td>A destination unreachable error PDU was received.</td>
</tr>
<tr>
<td>C</td>
<td>A congestion experienced packet was received.</td>
</tr>
<tr>
<td>I</td>
<td>User interrupted test.</td>
</tr>
<tr>
<td>?</td>
<td>Unknown packet type.</td>
</tr>
<tr>
<td>&</td>
<td>Packet lifetime exceeded.</td>
</tr>
</tbody>
</table>

To end a ping session, enter the escape sequence (Ctrl-^ X by default). Simultaneously press and release the Ctrl, Shift, and 6 keys and then press the X key.

Related Topics
- Ping, on page 1345
- Executing Ping, on page 1362

Example: Performing a Traceroute to an IP Host

This example shows how to perform a traceroute to an IP host:

Switch# traceroute ip 192.0.2.10

Type escape sequence to abort.
Tracing the route to 192.0.2.10

1 192.0.2.1 0 msec 0 msec 4 msec
2 192.0.2.203 12 msec 8 msec 0 msec
3 192.0.2.100 4 msec 0 msec 0 msec
4 192.0.2.10 0 msec 4 msec 0 msec

The display shows the hop count, the IP address of the router, and the round-trip time in milliseconds for each of the three probes that are sent.
Table 144: Traceroute Output Display Characters

<table>
<thead>
<tr>
<th>Character</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>The probe timed out.</td>
</tr>
<tr>
<td>?</td>
<td>Unknown packet type.</td>
</tr>
<tr>
<td>A</td>
<td>Administratively unreachable. Usually, this output means that an access list is blocking traffic.</td>
</tr>
<tr>
<td>H</td>
<td>Host unreachable.</td>
</tr>
<tr>
<td>N</td>
<td>Network unreachable.</td>
</tr>
<tr>
<td>P</td>
<td>Protocol unreachable.</td>
</tr>
<tr>
<td>Q</td>
<td>Source quench.</td>
</tr>
<tr>
<td>U</td>
<td>Port unreachable.</td>
</tr>
</tbody>
</table>

To end a trace in progress, enter the escape sequence (Ctrl-^ X by default). Simultaneously press and release the Ctrl, Shift, and 6 keys and then press the X key.

Related Topics

- IP Traceroute, on page 1347
- Executing IP Traceroute, on page 1363

Example: Enabling All System Diagnostics

Caution

Because debugging output takes priority over other network traffic, and because the `debug all` privileged EXEC command generates more output than any other `debug` command, it can severely diminish switch performance or even render it unusable. In virtually all cases, it is best to use more specific `debug` commands.

This command disables all-system diagnostics:

```
Switch# debug all
```

The `no debug all` privileged EXEC command disables all diagnostic output. Using the `no debug all` command is a convenient way to ensure that you have not accidentally left any `debug` commands enabled.

Related Topics

- Debug Commands, on page 1348
Additional References for Troubleshooting Software Configuration

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Troubleshooting commands</td>
<td>Catalyst 2960-X Switch System Management Command Reference</td>
</tr>
<tr>
<td>Interface and hardware component configuration</td>
<td>Catalyst 2960-X Switch Interface and Hardware Component Configuration Guide</td>
</tr>
<tr>
<td>Platform-independent command references</td>
<td>Cisco IOS 15.3M&T Command References</td>
</tr>
<tr>
<td>Platform-independent configuration information</td>
<td>Cisco IOS 15.3M&T Configuration Guides</td>
</tr>
</tbody>
</table>

Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>All supported MIBs for this release.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/support</td>
</tr>
</tbody>
</table>

Feature History and Information for Troubleshooting Software Configuration

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS 15.0(2)EX</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>

Related Topics

Finding Feature Information, on page 15
PART XIII

VLAN

• Configuring VTP, page 1377
• Configuring VLANs, page 1403
• Configuring VLAN Trunks, page 1425
• Configuring VMPS, page 1447
• Configuring Voice VLANs, page 1463
Configuring VTP

- Finding Feature Information, page 1377
- Prerequisites for VTP, page 1377
- Restrictions for VTP, page 1378
- Information About VTP, page 1378
- How to Configure VTP, page 1387
- Monitoring VTP, page 1398
- Configuration Examples for VTP, page 1399
- Where to Go Next, page 1400
- Additional References, page 1401
- Feature History and Information for VTP, page 1401

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for VTP

Before you create VLANs, you must decide whether to use the VLAN Trunking Protocol (VTP) in your network. Using VTP, you can make configuration changes centrally on one or more switches and have those changes automatically communicated to all the other switches in the network. Without VTP, you cannot send information about VLANs to other switches.
VTP is designed to work in an environment where updates are made on a single switch and are sent through VTP to other switches in the domain. It does not work well in a situation where multiple updates to the VLAN database occur simultaneously on switches in the same domain, which would result in an inconsistency in the VLAN database.

The switch supports a total of 1000 VLANs. However, the number of routed ports, SVIs, and other configured features affects the usage of the switch hardware. If the switch is notified by VTP of a new VLAN and the switch is already using the maximum available hardware resources, it sends a message that there are not enough hardware resources available and shuts down the VLAN. The output of the `show vlan` user EXEC command shows the VLAN in a suspended state.

Because trunk ports send and receive VTP advertisements, you must ensure that at least one trunk port is configured on the switch or switch stack and that this trunk port is connected to the trunk port of another switch. Otherwise, the switch cannot receive any VTP advertisements.

Restrictions for VTP

Note

Before adding a VTP client switch to a VTP domain, always verify that its VTP configuration revision number is lower than the configuration revision number of the other switches in the VTP domain. Switches in a VTP domain always use the VLAN configuration of the switch with the highest VTP configuration revision number. If you add a switch that has a revision number higher than the revision number in the VTP domain, it can erase all VLAN information from the VTP server and VTP domain.

The following are restrictions for configuring VTPs:

- 1K VLAN is supported only on switches running the LAN Base image with the lanbase-default template set.

- To avoid warning messages of high CPU utilization with a normal-range VLAN configuration, we recommended to have no more than 256 VLANs.

In such cases, approximately 10 access interfaces or 5 trunk interfaces can flap simultaneously with negligible impact to CPU utilization (if there are more interfaces that flap simultaneously, then CPU usage may be excessively high.)

Information About VTP

VTP

VTP is a Layer 2 messaging protocol that maintains VLAN configuration consistency by managing the addition, deletion, and renaming of VLANs on a network-wide basis. VTP minimizes misconfigurations and configuration inconsistencies that can cause several problems, such as duplicate VLAN names, incorrect VLAN-type specifications, and security violations.

VTP functionality is supported across the stack, and all switches in the stack maintain the same VLAN and VTP configuration inherited from the active switch. When a switch learns of a new VLAN through VTP messages or when a new VLAN is configured by the user, the new VLAN information is communicated to all switches in the stack.
When a switch joins the stack or when stacks merge, the new switches get VTP information from the active switch.

VTP version 1 and version 2 support only normal-range VLANs (VLAN IDs 1 to 1005). VTP version 3 supports the entire VLAN range (VLANs 1 to 4094). Extended range VLANs (VLANs 1006 to 4094) are supported only in VTP version 3.

You cannot convert from VTP version 3 to VTP version 2 if extended VLANs are configured in the domain.

VTP Domain

A VTP domain (also called a VLAN management domain) consists of one switch or several interconnected switches or switch stacks under the same administrative responsibility sharing the same VTP domain name. A switch can be in only one VTP domain. You make global VLAN configuration changes for the domain.

By default, the switch is in the VTP no-management-domain state until it receives an advertisement for a domain over a trunk link (a link that carries the traffic of multiple VLANs) or until you configure a domain name. Until the management domain name is specified or learned, you cannot create or modify VLANs on a VTP server, and VLAN information is not propagated over the network.

If the switch receives a VTP advertisement over a trunk link, it inherits the management domain name and the VTP configuration revision number. The switch then ignores advertisements with a different domain name or an earlier configuration revision number.

When you make a change to the VLAN configuration on a VTP server, the change is propagated to all switches in the VTP domain. VTP advertisements are sent over all IEEE trunk connections, including IEEE 802.1Q. VTP dynamically maps VLANs with unique names and internal index associates across multiple LAN types. Mapping eliminates excessive device administration required from network administrators.

If you configure a switch for VTP transparent mode, you can create and modify VLANs, but the changes are not sent to other switches in the domain, and they affect only the individual switch. However, configuration changes made when the switch is in this mode are saved in the switch running configuration and can be saved to the switch startup configuration file.

Related Topics

- Adding a VTP Client Switch to a VTP Domain, on page 1396
- Prerequisites for VTP
VTP Modes

Table 145: VTP Modes

<table>
<thead>
<tr>
<th>VTP Mode</th>
<th>Description</th>
</tr>
</thead>
</table>
| VTP server | In VTP server mode, you can create, modify, and delete VLANs, and specify other configuration parameters (such as the VTP version) for the entire VTP domain. VTP servers advertise their VLAN configurations to other switches in the same VTP domain and synchronize their VLAN configurations with other switches based on advertisements received over trunk links.
VTP server is the default mode.
In VTP server mode, VLAN configurations are saved in NVRAM. If the switch detects a failure while writing a configuration to NVRAM, VTP mode automatically changes from server mode to client mode. If this happens, the switch cannot be returned to VTP server mode until the NVRAM is functioning. |
| VTP client | A VTP client functions like a VTP server and transmits and receives VTP updates on its trunks, but you cannot create, change, or delete VLANs on a VTP client. VLANs are configured on another switch in the domain that is in server mode.
In VTP versions 1 and 2 in VTP client mode, VLAN configurations are not saved in NVRAM. In VTP version 3, VLAN configurations are saved in NVRAM in client mode. |
| VTP transparent| VTP transparent switches do not participate in VTP. A VTP transparent switch does not advertise its VLAN configuration and does not synchronize its VLAN configuration based on received advertisements. However, in VTP version 2 or version 3, transparent switches do forward VTP advertisements that they receive from other switches through their trunk interfaces. You can create, modify, and delete VLANs on a switch in VTP transparent mode.
In VTP versions 1 and 2, the switch must be in VTP transparent mode when you create extended-range VLANs. VTP version 3 also supports creating extended-range VLANs in client or server mode.
When the switch is in VTP transparent mode, the VTP and VLAN configurations are saved in NVRAM, but they are not advertised to other switches. In this mode, VTP mode and domain name are saved in the switch running configuration, and you can save this information in the switch startup configuration file by using the `copy running-config startup-config` privileged EXEC command.
In a switch stack, the running configuration and the saved configuration are the same for all switches in a stack. |
| VTP off | A switch in VTP off mode functions in the same manner as a VTP transparent switch, except that it does not forward VTP advertisements on trunks. |

Related Topics
- Prerequisites for VTP
- Configuring VTP Mode, on page 1387
VTP Advertisements

Each switch in the VTP domain sends periodic global configuration advertisements from each trunk port to a reserved multicast address. Neighboring switches receive these advertisements and update their VTP and VLAN configurations as necessary.

Because trunk ports send and receive VTP advertisements, you must ensure that at least one trunk port is configured on the switch stack and that this trunk port is connected to the trunk port of another switch. Otherwise, the switch cannot receive any VTP advertisements.

VTP advertisements distribute this global domain information:

- VTP domain name
- VTP configuration revision number
- Update identity and update timestamp
- MD5 digest VLAN configuration, including maximum transmission unit (MTU) size for each VLAN
- Frame format

VTP advertisements distribute this VLAN information for each configured VLAN:

- VLAN IDs (including IEEE 802.1Q)
- VLAN name
- VLAN type
- VLAN state
- Additional VLAN configuration information specific to the VLAN type

In VTP version 3, VTP advertisements also include the primary server ID, an instance number, and a start index.

Related Topics

Prerequisites for VTP

VTP Version 2

If you use VTP in your network, you must decide which version of VTP to use. By default, VTP operates in version 1.

VTP version 2 supports these features that are not supported in version 1:

- Token Ring support—VTP version 2 supports Token Ring Bridge Relay Function (TrBRF) and Token Ring Concentrator Relay Function (TrCRF) VLANs.
- Unrecognized Type-Length-Value (TLV) support—A VTP server or client propagates configuration changes to its other trunks, even for TLVs it is not able to parse. The unrecognized TLV is saved in NVRAM when the switch is operating in VTP server mode.
• Version-Dependent Transparent Mode—In VTP version 1, a VTP transparent switch inspects VTP messages for the domain name and version and forwards a message only if the version and domain name match. Although VTP version 2 supports only one domain, a VTP version 2 transparent switch forwards a message only when the domain name matches.

• Consistency Checks—In VTP version 2, VLAN consistency checks (such as VLAN names and values) are performed only when you enter new information through the CLI or SNMP. Consistency checks are not performed when new information is obtained from a VTP message or when information is read from NVRAM. If the MD5 digest on a received VTP message is correct, its information is accepted.

Related Topics

Enabling the VTP Version, on page 1392

VTP Version 3

VTP version 3 supports these features that are not supported in version 1 or version 2:

• Enhanced authentication—You can configure the authentication as hidden or secret. When hidden, the secret key from the password string is saved in the VLAN database file, but it does not appear in plain text in the configuration. Instead, the key associated with the password is saved in hexadecimal format in the running configuration. You must reenter the password if you enter a takeover command in the domain. When you enter the secret keyword, you can directly configure the password secret key.

• Support for extended range VLAN (VLANs 1006 to 4094) database propagation—VTP versions 1 and 2 propagate only VLANs 1 to 1005. If extended VLANs are configured, you cannot convert from VTP version 3 to version 1 or 2.

Note VTP pruning still applies only to VLANs 1 to 1005, and VLANs 1002 to 1005 are still reserved and cannot be modified.

• Support for any database in a domain—In addition to propagating VTP information, version 3 can propagate Multiple Spanning Tree (MST) protocol database information. A separate instance of the VTP protocol runs for each application that uses VTP.

• VTP primary server and VTP secondary servers—A VTP primary server updates the database information and sends updates that are honored by all devices in the system. A VTP secondary server can only back up the updated VTP configurations received from the primary server to its NVRAM.

By default, all devices come up as secondary servers. You can enter the vtp primary privileged EXEC command to specify a primary server. Primary server status is only needed for database updates when the administrator issues a takeover message in the domain. You can have a working VTP domain without any primary servers. Primary server status is lost if the device reloads or domain parameters change, even when a password is configured on the switch.

• The option to turn VTP on or off on a per-trunk (per-port) basis—You can enable or disable VTP per port by entering the [no] vtp interface configuration command. When you disable VTP on trunking ports, all VTP instances for that port are disabled. You cannot set VTP to off for the MST database and on for the VLAN database on the same port.
When you globally set VTP mode to off, it applies to all the trunking ports in the system. However, you can specify on or off on a per-VTP instance basis. For example, you can configure the switch as a VTP server for the VLAN database but with VTP off for the MST database.

Related Topics

- Enabling the VTP Version, on page 1392

VTP Pruning

VTP pruning increases network available bandwidth by restricting flooded traffic to those trunk links that the traffic must use to reach the destination devices. Without VTP pruning, a switch floods broadcast, multicast, and unknown unicast traffic across all trunk links within a VTP domain even though receiving switches might discard them. VTP pruning is disabled by default.

VTP pruning blocks unneeded flooded traffic to VLANs on trunk ports that are included in the pruning-eligible list. Only VLANs included in the pruning-eligible list can be pruned. By default, VLANs 2 through 1001 are pruning eligible switch trunk ports. If the VLANs are configured as pruning-ineligible, the flooding continues. VTP pruning is supported in all VTP versions.

With VTP versions 1 and 2, when you enable pruning on the VTP server, it is enabled for the entire VTP domain. In VTP version 3, you must manually enable pruning on each switch in the domain. Making VLANs pruning-eligible or pruning-ineligible affects pruning eligibility for those VLANs on that trunk only (not on all switches in the VTP domain).

VTP pruning takes effect several seconds after you enable it. VTP pruning does not prune traffic from VLANs that are pruning-ineligible. VLAN 1 and VLANs 1002 to 1005 are always pruning-ineligible; traffic from these VLANs cannot be pruned. Extended-range VLANs (VLAN IDs higher than 1005) are also pruning-ineligible.

Related Topics

- Enabling VTP Pruning, on page 1393

VTP and Switch Stacks

Note

The switch supports homogeneous stacking and mixed stacking. Mixed stacking is supported only with the Catalyst 2960-S switches. A homogenous stack can have up to eight stack members, while a mixed stack can have up to four stack members. All switches in a switch stack must be running the LAN Base image.

VTP configuration is the same in all members of a switch stack. When the switch stack is in VTP server or client mode, all switches in the stack carry the same VTP configuration. When VTP mode is transparent, the stack is not taking part in VTP.

- When a switch joins the stack, it inherits the VTP and VLAN properties of the active switch.
- All VTP updates are carried across the stack.
- When VTP mode is changed in a switch in the stack, the other switches in the stack also change VTP mode, and the switch VLAN database remains consistent.
VTP version 3 functions the same on a standalone switch or a stack except when the switch stack is the primary server for the VTP database. In this case, the MAC address of the active switch is used as the primary server ID. If the active switch reloads or is powered off, a new active switch is elected.

- If you do not configure the persistent MAC address feature, when the new active switch is elected, it sends a takeover message with the new active MAC address as the primary server.
- If a persistent MAC address is configured, the new active switch waits for the configured timer value. If the previous active switch does not rejoin the stack during this time, then the new active switch issues the takeover message.

VTP Configuration Guidelines

VTP Configuration Requirements

When you configure VTP, you must configure a trunk port so that the switch can send and receive VTP advertisements to and from other switches in the domain.

In VTP versions 1 and 2, when you configure extended-range VLANs on the switch, the switch must be in VTP transparent mode. VTP version 3 also supports creating extended-range VLANs in client or server mode.

VTP versions 1 and 2 do not support private VLANs. VTP version 3 does support private VLANs. If you configure private VLANs, the switch must be in VTP transparent mode. When private VLANs are configured on the switch, do not change the VTP mode from transparent to client or server mode.

VTP Settings

The VTP information is saved in the VTP VLAN database. When VTP mode is transparent, the VTP domain name and mode are also saved in the switch running configuration file, and you can save it in the switch startup configuration file by entering the `copy running-config startup-config` privileged EXEC command. You must use this command if you want to save VTP mode as transparent, even if the switch resets.

When you save VTP information in the switch startup configuration file and reboot the switch, the switch configuration is selected as follows:

- If the VTP mode is transparent in the startup configuration and the VLAN database and the VTP domain name from the VLAN database matches that in the startup configuration file, the VLAN database is ignored (cleared), and the VTP and VLAN configurations in the startup configuration file are used. The VLAN database revision number remains unchanged in the VLAN database.

- If the VTP mode or domain name in the startup configuration do not match the VLAN database, the domain name and VTP mode and configuration for VLAN IDs 1 to 1005 use the VLAN database information.

Related Topics

- Configuring VTP on a Per-Port Basis, on page 1395
- Configuring a VTP Version 3 Primary Server, on page 1391
Domain Names for Configuring VTP

When configuring VTP for the first time, you must always assign a domain name. You must configure all switches in the VTP domain with the same domain name. Switches in VTP transparent mode do not exchange VTP messages with other switches, and you do not need to configure a VTP domain name for them.

Note

If the NVRAM and DRAM storage is sufficient, all switches in a VTP domain should be in VTP server mode.

Caution

Do not configure a VTP domain if all switches are operating in VTP client mode. If you configure the domain, it is impossible to make changes to the VLAN configuration of that domain. Make sure that you configure at least one switch in the VTP domain for VTP server mode.

Related Topics

Adding a VTP Client Switch to a VTP Domain, on page 1396

Passwords for the VTP Domain

You can configure a password for the VTP domain, but it is not required. If you do configure a domain password, all domain switches must share the same password and you must configure the password on each switch in the management domain. Switches without a password or with the wrong password reject VTP advertisements.

If you configure a VTP password for a domain, a switch that is booted without a VTP configuration does not accept VTP advertisements until you configure it with the correct password. After the configuration, the switch accepts the next VTP advertisement that uses the same password and domain name in the advertisement.

If you are adding a new switch to an existing network with VTP capability, the new switch learns the domain name only after the applicable password has been configured on it.

Caution

When you configure a VTP domain password, the management domain does not function properly if you do not assign a management domain password to each switch in the domain.

Related Topics

Configuring a VTP Version 3 Password, on page 1389
Example: Configuring a Switch as the Primary Server, on page 1399

VTP Version

Follow these guidelines when deciding which VTP version to implement:

• All switches in a VTP domain must have the same domain name, but they do not need to run the same VTP version.
• A VTP version 2-capable switch can operate in the same VTP domain as a switch running VTP version 1 if version 2 is disabled on the version 2-capable switch (version 2 is disabled by default).

• If a switch running VTP version 1, but capable of running VTP version 2, receives VTP version 3 advertisements, it automatically moves to VTP version 2.

• If a switch running VTP version 3 is connected to a switch running VTP version 1, the VTP version 1 switch moves to VTP version 2, and the VTP version 3 switch sends scaled-down versions of the VTP packets so that the VTP version 2 switch can update its database.

• A switch running VTP version 3 cannot move to version 1 or 2 if it has extended VLANs.

• Do not enable VTP version 2 on a switch unless all of the switches in the same VTP domain are version-2-capable. When you enable version 2 on a switch, all of the version-2-capable switches in the domain enable version 2. If there is a version 1-only switch, it does not exchange VTP information with switches that have version 2 enabled.

• Cisco recommends placing VTP version 1 and 2 switches at the edge of the network because they do not forward VTP version 3 advertisements.

• If there are TrBRF and TrCRF Token Ring networks in your environment, you must enable VTP version 2 or version 3 for Token Ring VLAN switching to function properly. To run Token Ring and Token Ring-Net, disable VTP version 2.

• VTP version 1 and version 2 do not propagate configuration information for extended range VLANs (VLANs 1006 to 4094). You must configure these VLANs manually on each device. VTP version 3 supports extended-range VLANs and support for extended range VLAN database propagation.

• When a VTP version 3 device trunk port receives messages from a VTP version 2 device, it sends a scaled-down version of the VLAN database on that particular trunk in VTP version 2 format. A VTP version 3 device does not send VTP version 2-formatted packets on a trunk unless it first receives VTP version 2 packets on that trunk port.

• When a VTP version 3 device detects a VTP version 2 device on a trunk port, it continues to send VTP version 3 packets, in addition to VTP version 2 packets, to allow both kinds of neighbors to coexist on the same trunk.

• A VTP version 3 device does not accept configuration information from a VTP version 2 or version 1 device.

• Two VTP version 3 regions can only communicate in transparent mode over a VTP version 1 or version 2 region.

• Devices that are only VTP version 1 capable cannot interoperate with VTP version 3 devices.

• For VTP version 1 and version 2, if extended-range VLANs are configured on the switch stack, you cannot change VTP mode to client or server. You receive an error message, and the configuration is not allowed. VTP version 1 and version 2 do not propagate configuration information for extended range VLANs (VLANs 1006 to 4094). You must manually configure these VLANs on each device.

Note

For VTP version 1 and 2, before you create extended-range VLANs (VLAN IDs 1006 to 4094), you must set VTP mode to transparent by using the `vtp mode transparent` global configuration command. Save this configuration to the startup configuration so that the switch starts in VTP transparent mode. Otherwise, you lose the extended-range VLAN configuration if the switch resets and boots up in VTP server mode (the default).
• VTP version 3 supports extended-range VLANs. If extended VLANs are configured, you cannot convert from VTP version 3 to VTP version 2.

Related Topics

 Enabling the VTP Version, on page 1392

Default VTP Configuration

The following table shows the default VTP configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTP domain name</td>
<td>Null</td>
</tr>
<tr>
<td>VTP mode (VTP version 1 and version 2)</td>
<td>Server</td>
</tr>
<tr>
<td>VTP mode (VTP version 3)</td>
<td>The mode is the same as the mode in VTP version 1 or 2 before conversion to version 3.</td>
</tr>
<tr>
<td>VTP version</td>
<td>Version 1</td>
</tr>
<tr>
<td>MST database mode</td>
<td>Transparent</td>
</tr>
<tr>
<td>VTP version 3 server type</td>
<td>Secondary</td>
</tr>
<tr>
<td>VTP password</td>
<td>None</td>
</tr>
<tr>
<td>VTP pruning</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

How to Configure VTP

Configuring VTP Mode

You can configure VTP mode as one of these:

• VTP server mode—In VTP server mode, you can change the VLAN configuration and have it propagated throughout the network.

• VTP client mode—In VTP client mode, you cannot change its VLAN configuration. The client switch receives VTP updates from a VTP server in the VTP domain and then modifies its configuration accordingly.

• VTP transparent mode—In VTP transparent mode, VTP is disabled on the switch. The switch does not send VTP updates and does not act on VTP updates received from other switch. However, a VTP transparent switch running VTP version 2 does forward received VTP advertisements on its trunk links.
VTP off mode—VTP off mode is the same as VTP transparent mode except that VTP advertisements are not forwarded.

When you configure a domain name, it cannot be removed; you can only reassign a switch to a different domain.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `vtp domain domain-name`
4. `vtp mode {client | server | transparent | off} {vlan | mst | unknown}`
5. `vtp password password`
6. `end`
7. `show vtp status`
8. `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 vtp domain domain-name</td>
<td>Configures the VTP administrative-domain name. The name can be 1 to 32 characters. All switches operating in VTP server or client mode under the same administrative responsibility must be configured with the same domain name.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# vtp domain eng_group</td>
<td></td>
</tr>
<tr>
<td>Step 4 vtp mode {client</td>
<td>server</td>
</tr>
<tr>
<td>• vlan—The VLAN database is the default if none are configured.</td>
<td></td>
</tr>
</tbody>
</table>
How to Configure VTP

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch(config)# vtp mode server</code></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>vtp password password</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch(config)# vtp password mypassword</code></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>end</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch(config)# end</code></td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>show vtp status</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch# show vtp status</code></td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch# copy running-config startup-config</code></td>
<td></td>
</tr>
</tbody>
</table>

Related Topics

- VTP Modes, on page 1380
- Example: Configuring Switch as VTP Server, on page 1400

Configuring a VTP Version 3 Password

You can configure a VTP version 3 password on the switch.
SUMMARY STEPS

1. enable
2. configure terminal
3. vtp password password [hidden | secret]
4. end
5. show vtp password
6. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 vtp password password [hidden</td>
<td>secret]</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# vtp password mypassword hidden</td>
<td></td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# end</td>
<td></td>
</tr>
<tr>
<td>Step 5 show vtp password</td>
<td>Verifies your entries. The output appears like this:</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# show vtp password</td>
<td>VTP password: 89914640C8D90868B6A0D8103847A733</td>
</tr>
</tbody>
</table>
Purpose

Command or Action	Purpose
Step 6 | copy running-config startup-config
Example: Switch# copy running-config startup-config |
(Optional) Saves your entries in the configuration file.

Configuring a VTP Version 3 Primary Server

When you configure a VTP server as a VTP primary server, the takeover operation starts.

SUMMARY STEPS

1. vtp primary [vlan | mst] [force]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>vtp primary [vlan</td>
</tr>
</tbody>
</table>

- (Optional) vlan—Selects the VLAN database as the takeover feature. This is the default.
- (Optional) mst—Selects the multiple spanning tree (MST) database as the takeover feature.
- (Optional) force—Overwrites the configuration of any conflicting servers. If you do not enter force, you are prompted for confirmation before the takeover.

Related Topics

- Passwords for the VTP Domain, on page 1385
- Example: Configuring a Switch as the Primary Server, on page 1399
- VTP Settings, on page 1384
Enabling the VTP Version

VTP version 2 and version 3 are disabled by default.

- When you enable VTP version 2 on a switch, every VTP version 2-capable switch in the VTP domain enables version 2. To enable VTP version 3, you must manually configure it on each switch.

- With VTP versions 1 and 2, you can configure the version only on switches in VTP server or transparent mode. If a switch is running VTP version 3, you can change to version 2 when the switch is in client mode if no extended VLANs exist, and no hidden password was configured.

Caution

VTP version 1 and VTP version 2 are not interoperable on switches in the same VTP domain. Do not enable VTP version 2 unless every switch in the VTP domain supports version 2.

- In TrCRF and TrBRF Token Ring environments, you must enable VTP version 2 or VTP version 3 for Token Ring VLAN switching to function properly. For Token Ring and Token Ring-Net media, disable VTP version 2.

Caution

In VTP version 3, both the primary and secondary servers can exist on an instance in the domain.

SUMMARY STEPS

1. enable
2. configure terminal
3. vtp version {1 | 2 | 3}
4. end
5. show vtp status
6. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 vtp version {1</td>
<td>2</td>
</tr>
<tr>
<td>Example: Switch(config)# vtp version 2</td>
<td></td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Switch(config)# end</td>
<td></td>
</tr>
<tr>
<td>Step 5 show vtp status</td>
<td>Verifies that the configured VTP version is enabled.</td>
</tr>
<tr>
<td>Example: Switch# show vtp status</td>
<td></td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td>Example: Switch# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

Related Topics
- VTP Version, on page 1385
- VTP Version 2, on page 1381
- VTP Version 3, on page 1382

Enabling VTP Pruning

Before You Begin
VTP pruning is not designed to function in VTP transparent mode. If one or more switches in the network are in VTP transparent mode, you should do one of these actions:

- Turn off VTP pruning in the entire network.
- Turn off VTP pruning by making all VLANs on the trunk of the switch upstream to the VTP transparent switch pruning ineligible.
To configure VTP pruning on an interface, use the `switchport trunk pruning vlan` interface configuration command. VTP pruning operates when an interface is trunking. You can set VLAN pruning-eligibility, whether or not VTP pruning is enabled for the VTP domain, whether or not any given VLAN exists, and whether or not the interface is currently trunking.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `vtp pruning`
4. `end`
5. `show vtp status`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable

Example:

Switch> enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal

Example:

Switch# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>vtp pruning

Example:

Switch(config)# vtp pruning</td>
</tr>
<tr>
<td>Step 4</td>
<td>end

Example:

Switch(config)# end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show vtp status

Example:

Switch# show vtp status</td>
</tr>
</tbody>
</table>
Related Topics
VTP Pruning, on page 1383

Configuring VTP on a Per-Port Basis
With VTP version 3, you can enable or disable VTP on a per-port basis. You can enable VTP only on ports that are in trunk mode. Incoming and outgoing VTP traffic are blocked, not forwarded.

SUMMARY STEPS
1. enable
2. configure terminal
3. interface interface-id
4. vtp
5. end
6. show running-config interface interface-id
7. show vtp status

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable
Example:
Switch> enable</td>
</tr>
<tr>
<td></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal
Example:
Switch# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>interface interface-id
Example:
Switch(config)# interface gigabitethernet1/0/1</td>
</tr>
<tr>
<td></td>
<td>Identifies an interface, and enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>vtp
Example:
Switch(config)# vtp</td>
</tr>
<tr>
<td></td>
<td>Enables VTP on the specified port.</td>
</tr>
</tbody>
</table>
Command or Action

Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Switch(config)# end</code></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td><code>show running-config interface interface-id</code></td>
<td>Verifies the change to the port.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Switch# show running-config interface gigabitethernet1/0/1</code></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td><code>show vtp status</code></td>
<td>Verifies the configuration.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Switch# show vtp status</code></td>
<td></td>
</tr>
</tbody>
</table>

Related Topics

VTP Settings, on page 1384

Adding a VTP Client Switch to a VTP Domain

Follow these steps to verify and reset the VTP configuration revision number on a switch before adding it to a VTP domain.

Before You Begin

Before adding a VTP client to a VTP domain, always verify that its VTP configuration revision number is lower than the configuration revision number of the other switches in the VTP domain. Switches in a VTP domain always use the VLAN configuration of the switch with the highest VTP configuration revision number. With VTP versions 1 and 2, adding a switch that has a revision number higher than the revision number in the VTP domain can erase all VLAN information from the VTP server and VTP domain. With VTP version 3, the VLAN information is not erased.

You can use the vtp mode transparent global configuration command to disable VTP on the switch and then to change its VLAN information without affecting the other switches in the VTP domain.
SUMMARY STEPS

1. `enable`
2. `show vtp status`
3. `configure terminal`
4. `vtp domain domain-name`
5. `end`
6. `show vtp status`
7. `configure terminal`
8. `vtp domain domain-name`
9. `end`
10. `show vtp status`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch></code> <code>enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2 show vtp status</td>
<td>Checks the VTP configuration revision number.</td>
</tr>
<tr>
<td>Example:</td>
<td>If the number is 0, add the switch to the VTP domain.</td>
</tr>
<tr>
<td><code>Switch></code> <code>show vtp status</code></td>
<td>If the number is greater than 0, follow these substeps:</td>
</tr>
<tr>
<td></td>
<td>• Write down the domain name.</td>
</tr>
<tr>
<td></td>
<td>• Write down the configuration revision number.</td>
</tr>
<tr>
<td></td>
<td>• Continue with the next steps to reset the switch configuration revision number.</td>
</tr>
<tr>
<td>Step 3 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch></code> <code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 4 vtp domain <code>domain-name</code></td>
<td>Changes the domain name from the original one displayed in Step 1 to a new name.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch(config)</code>><code>vtp domain</code> <code>domain123</code></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 5</td>
<td>end Returns to privileged EXEC mode. The VLAN information on the switch is updated and the configuration revision number is reset to 0.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# end</td>
</tr>
<tr>
<td>Step 6</td>
<td>show vtp status Verifies that the configuration revision number has been reset to 0.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# show vtp status</td>
</tr>
<tr>
<td>Step 7</td>
<td>configure terminal Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
</tr>
<tr>
<td>Step 8</td>
<td>vtp domain domain-name Enters the original domain name on the switch</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# vtp domain domain012</td>
</tr>
<tr>
<td>Step 9</td>
<td>end Returns to privileged EXEC mode. The VLAN information on the switch is updated.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# end</td>
</tr>
<tr>
<td>Step 10</td>
<td>show vtp status (Optional) Verifies that the domain name is the same as in Step 1 and that the configuration revision number is 0.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# show vtp status</td>
</tr>
</tbody>
</table>

Related Topics
- VTP Domain, on page 1379
- Prerequisites for VTP
- Domain Names for Configuring VTP, on page 1385

Monitoring VTP

This section describes commands used to display and monitor the VTP configuration.
You monitor VTP by displaying VTP configuration information: the domain name, the current VTP revision, and the number of VLANs. You can also display statistics about the advertisements sent and received by the switch.

Table 147: VTP Monitoring Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show vtp counters</code></td>
<td>Displays counters about VTP messages that have been sent and received.</td>
</tr>
<tr>
<td><code>show vtp devices [conflict]</code></td>
<td>Displays information about all VTP version 3 devices in the domain. Conflicts are VTP version 3 devices with conflicting primary servers. The <code>show vtp devices</code> command does not display information when the switch is in transparent or off mode.</td>
</tr>
<tr>
<td><code>show vtp interface [interface-id]</code></td>
<td>Displays VTP status and configuration for all interfaces or the specified interface.</td>
</tr>
<tr>
<td><code>show vtp password</code></td>
<td>Displays the VTP password. The form of the password displayed depends on whether or not the <code>hidden</code> keyword was entered and if encryption is enabled on the switch.</td>
</tr>
<tr>
<td><code>show vtp status</code></td>
<td>Displays the VTP switch configuration information.</td>
</tr>
</tbody>
</table>

Configuration Examples for VTP

Example: Configuring a Switch as the Primary Server

This example shows how to configure a switch as the primary server for the VLAN database (the default) when a hidden or secret password was configured:

```
Switch# vtp primary vlan
Enter VTP password: mypassword
This switch is becoming Primary server for vlan feature in the VTP domain
VTP Database Conf Switch ID Primary Server Revision System Name
------------- ---- -------------- -------------- -------- ----------------------
VLANDB Yes 00d0.00b8.1400-00d0.00b8.1400 1 stp7
Do you want to continue (y/n) [n]? y
```

Related Topics

- Configuring a VTP Version 3 Password, on page 1389
- Passwords for the VTP Domain, on page 1385
Example: Configuring Switch as VTP Server

This example shows how to configure the switch as a VTP server with the domain name *eng_group* and the password *mypassword*:

```
Switch(config)# vtp domain eng_group
Setting VTP domain name to eng_group.

Switch(config)# vtp mode server
Setting device to VTP Server mode for VLANS.

Switch(config)# vtp password mypassword
Setting device VLAN database password to mypassword.
Switch(config)# end
```

Related Topics

- Configuring VTP Mode, on page 1387
- VTP Modes, on page 1380

Example: Enabling VTP on the Interface

To enable VTP on the interface, use the *vtp* interface configuration command. To disable VTP on the interface, use the *no vtp* interface configuration command.

```
Switch(config)# interface gigabitethernet 1/0/1
Switch(config-if)# vtp
Switch(config-if)# end
```

Example: Creating the VTP Password

The follow is an example of creating the VTP password.

```
Switch(config)# vtp password mypassword hidden
Generating the secret associated to the password.
Switch(config)# end
Switch# show vtp password
VTP password: 89914640C8D90868B6A0D8103847A733
```

Where to Go Next

After configuring VTP, you can configure the following:

- VLANS
- VLAN Trunking
- VLAN Membership Policy Server (VMPS)
- Voice VLANs
Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>For complete syntax and usage information for the commands used in this chapter.</td>
<td>Catalyst 2960-X Switch VLAN Management Command Reference</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>All supported MIBs for this release.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/support</td>
</tr>
</tbody>
</table>

Feature History and Information for VTP

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS 15.0(2)EX</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>
CHAPTER 59

Configuring VLANs

• Finding Feature Information, page 1403
• Prerequisites for VLANs, page 1403
• Restrictions for VLANs, page 1404
• Information About VLANs, page 1404
• How to Configure VLANs, page 1411
• Monitoring VLANs, page 1419
• Configuration Examples, page 1421
• Where to Go Next, page 1422
• Additional References, page 1422
• Feature History and Information for VLAN, page 1423

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for VLANs

The following are prerequisites and considerations for configuring VLANs:

• Before you create VLANs, you must decide whether to use VLAN Trunking Protocol (VTP) to maintain global VLAN configuration for your network.

• The switch supports 1000 VLANs in VTP client, server, and transparent modes.
Restrictions for VLANs

The following are restrictions for configuring VLANs:

• 1K VLAN is supported only on switches running the LAN Base image with the lanbase-default template set.

• To avoid warning messages of high CPU utilization with a normal-range VLAN configuration, we recommend that you have no more than 256 VLANs. In such cases, approximately 10 access interfaces or 5 trunk interfaces can flap simultaneously with negligible impact to CPU utilization (if there are more interfaces that flap simultaneously, then CPU usage may be excessively high.)

Information About VLANs

Logical Networks

A VLAN is a switched network that is logically segmented by function, project team, or application, without regard to the physical locations of the users. VLANs have the same attributes as physical LANs, but you can group end stations even if they are not physically located on the same LAN segment. Any switch port can belong to a VLAN, and unicast, broadcast, and multicast packets are forwarded and flooded only to end stations in the VLAN. Each VLAN is considered a logical network, and packets destined for stations that do not belong to the VLAN must be forwarded through a router or a switch supporting fallback bridging. In a switch stack, VLANs can be formed with ports across the stack. Because a VLAN is considered a separate
logical network, it contains its own bridge Management Information Base (MIB) information and can support its own implementation of spanning tree.

Figure 100: VLANs as Logically Defined Networks

VLANs are often associated with IP subnetworks. For example, all the end stations in a particular IP subnet belong to the same VLAN. Interface VLAN membership on the switch is assigned manually on an interface-by-interface basis. When you assign switch interfaces to VLANs by using this method, it is known as interface-based, or static, VLAN membership.

Traffic between VLANs must be routed.

The switch can route traffic between VLANs by using switch virtual interfaces (SVIs). An SVI must be explicitly configured and assigned an IP address to route traffic between VLANs.

Supported VLANs

The switch supports VLANs in VTP client, server, and transparent modes. VLANs are identified by a number from 1 to 4094. VLAN IDs 1002 through 1005 are reserved for Token Ring and FDDI VLANs.

VTP version 1 and version 2 support only normal-range VLANs (VLAN IDs 1 to 1005). In these versions, the switch must be in VTP transparent mode when you create VLAN IDs from 1006 to 4094. Cisco IOS Release 12.2(52)SE and later support VTP version 3. VTP version 3 supports the entire VLAN range (VLANs 1 to 4094). Extended range VLANs (VLANs 1006 to 4094) are supported only in VTP version 3. You cannot convert from VTP version 3 to VTP version 2 if extended VLANs are configured in the domain.

Although the switch stack supports a total of 1,000 (normal range and extended range) VLANs, the number of configured features affects the use of the switch hardware.
On using the LAN Base image, only the lanbase-default template supports 1000 VLANs. The remaining templates (default and lanbase-routing) only supports 255 VLANs. Up to 64 VLANs are supported when the switch is running the LAN Lite image.

The switch supports per-VLAN spanning-tree plus (PVST+) or rapid PVST+ with a maximum of 128 spanning-tree instances. One spanning-tree instance is allowed per VLAN. The switch supports only IEEE 802.1Q trunking methods for sending VLAN traffic over Ethernet ports.

Up to 64 spanning-tree instances are supported when the switch is running the LAN Lite image.

VLAN Port Membership Modes

You configure a port to belong to a VLAN by assigning a membership mode that specifies the kind of traffic the port carries and the number of VLANs to which it can belong.

When a port belongs to a VLAN, the switch learns and manages the addresses associated with the port on a per-VLAN basis.

Table 148: Port Membership Modes and Characteristics

<table>
<thead>
<tr>
<th>Membership Mode</th>
<th>VLAN Membership Characteristics</th>
<th>VTP Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static-access</td>
<td>A static-access port can belong to one VLAN and is manually assigned to that VLAN.</td>
<td>VTP is not required. If you do not want VTP to globally propagate information, set the VTP mode to transparent. To participate in VTP, there must be at least one trunk port on the switch or the switch stack connected to a trunk port of a second switch or switch stack.</td>
</tr>
<tr>
<td>Trunk (IEEE 802.1Q)</td>
<td>A trunk port is a member of all VLANs by default, including extended-range VLANs, but membership can be limited by configuring the allowed-VLAN list. You can also modify the pruning-eligible list to block flooded traffic to VLANs on trunk ports that are included in the list.</td>
<td>VTP is recommended but not required. VTP maintains VLAN configuration consistency by managing the addition, deletion, and renaming of VLANs on a network-wide basis. VTP exchanges VLAN configuration messages with other switches over trunk links.</td>
</tr>
<tr>
<td>• IEEE 802.1Q—</td>
<td>Industry-standard trunking encapsulation.</td>
<td></td>
</tr>
</tbody>
</table>
VTP Characteristics

VLAN Membership Characteristics

Membership Mode

<table>
<thead>
<tr>
<th>Membership Mode</th>
<th>VLAN Membership Characteristics</th>
<th>VTP Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic access</td>
<td>A dynamic-access port can belong to one VLAN (VLAN ID 1 to 4094) and is dynamically assigned by a VLAN Member Policy Server (VMPS). The VMPS can be a Catalyst 6500 series switch, for example, but never a Catalyst switch. The Catalyst switch is a VMPS client. You can have dynamic-access ports and trunk ports on the same switch, but you must connect the dynamic-access port to an end station or hub and not to another switch.</td>
<td>VTP is required. Configure the VMPS and the client with the same VTP domain name. To participate in VTP, at least one trunk port on the switch or a switch stack must be connected to a trunk port of a second switch or switch stack.</td>
</tr>
<tr>
<td>Voice VLAN</td>
<td>A voice VLAN port is an access port attached to a Cisco IP Phone, configured to use one VLAN for voice traffic and another VLAN for data traffic from a device attached to the phone.</td>
<td>VTP is not required; it has no effect on a voice VLAN.</td>
</tr>
</tbody>
</table>

VLAN Configuration Files

Configurations for VLAN IDs 1 to 1005 are written to the vlan.dat file (VLAN database), and you can display them by entering the `show vlan` privileged EXEC command. The vlan.dat file is stored in flash memory. If the VTP mode is transparent, they are also saved in the switch running configuration file.

In a switch stack, the whole stack uses the same vlan.dat file and running configuration. On some switches, the vlan.dat file is stored in flash memory on the active switch.

You use the interface configuration mode to define the port membership mode and to add and remove ports from VLANs. The results of these commands are written to the running-configuration file, and you can display the file by entering the `show running-config` privileged EXEC command.

When you save VLAN and VTP information (including extended-range VLAN configuration information) in the startup configuration file and reboot the switch, the switch configuration is selected as follows:

- If the VTP mode is transparent in the startup configuration, and the VLAN database and the VTP domain name from the VLAN database matches that in the startup configuration file, the VLAN database is ignored (cleared), and the VTP and VLAN configurations in the startup configuration file are used. The VLAN database revision number remains unchanged in the VLAN database.
- If the VTP mode or domain name in the startup configuration does not match the VLAN database, the domain name and VTP mode and configuration for the VLAN IDs 1 to 1005 use the VLAN database information.
In VTP versions 1 and 2, if VTP mode is server, the domain name and VLAN configuration for VLAN IDs 1 to 1005 use the VLAN database information. VTP version 3 also supports VLANs 1006 to 4094.

From image 15.0(02)SE6, on vtp transparent and off modes, vlans get created from startup-config even if they are not applied to the interface.

Normal-Range VLAN Configuration Guidelines

Normal-range VLANs are VLANs with IDs from 1 to 1005. VTP 1 and 2 only support normal-range VLANs.

Follow these guidelines when creating and modifying normal-range VLANs in your network:

- Normal-range VLANs are identified with a number between 1 and 1001. VLAN numbers 1002 through 1005 are reserved for Token Ring and FDDI VLANs.
- VLAN configurations for VLANs 1 to 1005 are always saved in the VLAN database. If the VTP mode is transparent, VTP and VLAN configurations are also saved in the switch running configuration file.
- If the switch is in VTP server or VTP transparent mode, you can add, modify or remove configurations for VLANs 2 to 1001 in the VLAN database. (VLAN IDs 1 and 1002 to 1005 are automatically created and cannot be removed.)
- With VTP versions 1 and 2, the switch supports VLAN IDs 1006 through 4094 only in VTP transparent mode (VTP disabled). These are extended-range VLANs and configuration options are limited. Extended-range VLANs created in VTP transparent mode are not saved in the VLAN database and are not propagated. VTP version 3 supports extended range VLAN (VLANs 1006 to 4094) database propagation in VTP server mode. If extended VLANs are configured, you cannot convert from VTP version 3 to version 1 or 2.
- Before you can create a VLAN, the switch must be in VTP server mode or VTP transparent mode. If the switch is a VTP server, you must define a VTP domain or VTP will not function.
- The switch does not support Token Ring or FDDI media. The switch does not forward FDDI, FDDI-Net, TrCRF, or TrBRF traffic, but it does propagate the VLAN configuration through VTP.
- The switch supports 128 spanning tree instances. If a switch has more active VLANs than supported spanning-tree instances, spanning tree can be enabled on 128 VLANs and is disabled on the remaining VLANs. If you have already used all available spanning-tree instances on a switch, adding another VLAN anywhere in the VTP domain creates a VLAN on that switch that is not running spanning-tree. If you have the default allowed list on the trunk ports of that switch (which is to allow all VLANs), the new VLAN is carried on all trunk ports. Depending on the topology of the network, this could create a loop in the new VLAN that would not be broken, particularly if there are several adjacent switches that all have run out of spanning-tree instances. You can prevent this possibility by setting allowed lists on the trunk ports of switches that have used up their allocation of spanning-tree instances.

If the number of VLANs on the switch exceeds the number of supported spanning-tree instances, we recommend that you configure the IEEE 802.1s Multiple STP (MSTP) on your switch to map multiple VLANs to a single spanning-tree instance.

- When a switch in a stack learns a new VLAN or deletes or modifies an existing VLAN (either through VTP over network ports or through the CLI), the VLAN information is communicated to all stack members.
- When a switch joins a stack or when stacks merge, VTP information (the vlan.dat file) on the new switches will be consistent with the active switch.
Related Topics
- Creating or Modifying an Ethernet VLAN
- Deleting a VLAN, on page 1414
- Assigning Static-Access Ports to a VLAN
- Monitoring VLANs
- Creating or Modifying an Ethernet VLAN
- Deleting a VLAN, on page 1414
- Assigning Static-Access Ports to a VLAN
- Monitoring VLANs
- Creating or Modifying an Ethernet VLAN
- Deleting a VLAN, on page 1414
- Assigning Static-Access Ports to a VLAN
- Monitoring VLANs
- Creating or Modifying an Ethernet VLAN
- Deleting a VLAN, on page 1414
- Assigning Static-Access Ports to a VLAN
- Monitoring VLANs
- Creating or Modifying an Ethernet VLAN
- Example: Creating a VLAN Name, on page 1421

Extended-Range VLAN Configuration Guidelines

Extended-range VLANs are VLANs with IDs from 1006 to 4094. VTP 3 only supports extended-range VLANs.

Follow these guidelines when creating extended-range VLANs:

- VLAN IDs in the extended range are not saved in the VLAN database and are not recognized by VTP unless the switch is running VTP version 3.
- You cannot include extended-range VLANs in the pruning eligible range.
- In VTP version 1 and 2, a switch must be in VTP transparent mode when you create extended-range VLANs. If VTP mode is server or client, an error message is generated, and the extended-range VLAN is rejected. VTP version 3 supports extended VLANs in server and transparent modes.
- For VTP version 1 or 2, you can set the VTP mode to transparent in global configuration mode. You should save this configuration to the startup configuration so that the switch boots up in VTP transparent mode. Otherwise, you lose the extended-range VLAN configuration if the switch resets. If you create extended-range VLANs in VTP version 3, you cannot convert to VTP version 1 or 2.
- Although the switch stack supports a total of 1000 (normal-range and extended-range) VLANs, the number of configured features affects the use of the switch hardware. If you try to create an extended-range
VLAN and there are not enough hardware resources available, an error message is generated, and the extended-range VLAN is rejected.

- In a switch stack, the whole stack uses the same running configuration and saved configuration, and extended-range VLAN information is shared across the stack.

Related Topics
- Creating an Extended-Range VLAN
- Creating an Extended-Range VLAN with an Internal VLAN ID
- Monitoring VLANs
- Creating an Extended-Range VLAN
- Creating an Extended-Range VLAN with an Internal VLAN ID
- Monitoring VLANs
- Creating an Extended-Range VLAN
- Creating an Extended-Range VLAN with an Internal VLAN ID
- Monitoring VLANs
- Creating an Extended-Range VLAN
- Creating an Extended-Range VLAN with an Internal VLAN ID
- Monitoring VLANs
- Creating an Extended-Range VLAN, on page 1417
- Example: Creating an Extended-Range VLAN, on page 1422

Default VLAN Configurations

Default Ethernet VLAN Configuration

The following table displays the default configuration for Ethernet VLANs.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN ID</td>
<td>1</td>
<td>1 to 4094.</td>
</tr>
</tbody>
</table>

Note

The switch supports Ethernet interfaces exclusively. Because FDDI and Token Ring VLANs are not locally supported, you only configure FDDI and Token Ring media-specific characteristics for VTP global advertisements to other switches.

<table>
<thead>
<tr>
<th>Table 149: Ethernet VLAN Defaults and Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>VLAN ID</td>
</tr>
</tbody>
</table>
How to Configure VLANs

Default VLAN Configuration

You can change only the MTU size and the remote SPAN configuration state on extended-range VLANs; all other characteristics must remain at the default state.

Note

The switch must be running the LAN Base image to support remote SPAN.

How to Configure VLANs

How to Configure Normal-Range VLANs

You can set these parameters when you create a new normal-range VLAN or modify an existing VLAN in the VLAN database:

- VLAN ID
- VLAN name
- VLAN type
 - Ethernet
 - Fiber Distributed Data Interface [FDDI]
 - FDDI network entity title [NET]
 - TrBRF or TrCRF
 - Token Ring
 - Token Ring-Net
- VLAN state (active or suspended)
- Maximum transmission unit (MTU) for the VLAN
- Security Association Identifier (SAID)
- Bridge identification number for TrBRF VLANs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN name</td>
<td>VLANxxxx, where xxxx represents four numeric digits (including leading zeros) equal to the VLAN ID number</td>
<td>No range</td>
</tr>
<tr>
<td>IEEE 802.10 SAID</td>
<td>100001 (100000 plus the VLAN ID)</td>
<td>1 to 4294967294</td>
</tr>
<tr>
<td>IEEE 802.10 SAID</td>
<td>1500</td>
<td>576-18190</td>
</tr>
</tbody>
</table>
• Ring number for FDDI and TrCRF VLANs
• Parent VLAN number for TrCRF VLANs
• Spanning Tree Protocol (STP) type for TrCRF VLANs
• VLAN number to use when translating from one VLAN type to another

You can cause inconsistency in the VLAN database if you attempt to manually delete the vlan.dat file. If you want to modify the VLAN configuration, follow the procedures in this section.

Creating or Modifying an Ethernet VLAN

Each Ethernet VLAN in the VLAN database has a unique, 4-digit ID that can be a number from 1 to 1001. VLAN IDs 1002 to 1005 are reserved for Token Ring and FDDI VLANs. To create a normal-range VLAN to be added to the VLAN database, assign a number and name to the VLAN.

Note
With VTP version 1 and 2, if the switch is in VTP transparent mode, you can assign VLAN IDs greater than 1006, but they are not added to the VLAN database.

SUMMARY STEPS

1. enable
2. configure terminal
3. vlan vlan-id
4. name vlan-name
5. mtu mtu-size
6. remote-span
7. end
8. show vlan {name vlan-name | id vlan-id}
9. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>enable</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch> enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Step 3</td>
<td>Enters a VLAN ID, and enters VLAN configuration mode. Enter a new VLAN ID to create a VLAN, or enter an existing VLAN ID to modify that VLAN. Note: The available VLAN ID range for this command is 1 to 4094.</td>
</tr>
<tr>
<td><code>vlan vlan-id</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch(config)# vlan 20</code></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>(Optional) Enters a name for the VLAN. If no name is entered for the VLAN, the default is to append the <code>vlan-id</code> value with leading zeros to the word VLAN. For example, VLAN0004 is a default VLAN name for VLAN 4.</td>
</tr>
<tr>
<td><code>name vlan-name</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch(config-vlan)# name test20</code></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>(Optional) Changes the MTU size (or other VLAN characteristic).</td>
</tr>
<tr>
<td><code>mtu mtu-size</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch(config-vlan)# mtu 256</code></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>(Optional) Configures the VLAN as the RSPAN VLAN for a remote SPAN session.</td>
</tr>
<tr>
<td><code>remote-span</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch(config-vlan)# remote-span</code></td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>end</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch(config)# end</code></td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td>`show vlan {name vlan-name</td>
<td>id vlan-id}`</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch# show vlan name test20 id 20</code></td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch# copy running-config startup-config</code></td>
<td></td>
</tr>
</tbody>
</table>
Deleting a VLAN

When you delete a VLAN from a switch that is in VTP server mode, the VLAN is removed from the VLAN database for all switches in the VTP domain. When you delete a VLAN from a switch that is in VTP transparent mode, the VLAN is deleted only on that specific switch or a switch stack.

You cannot delete the default VLANs for the different media types: Ethernet VLAN 1 and FDDI or Token Ring VLANs 1002 to 1005.

Caution

When you delete a VLAN, any ports assigned to that VLAN become inactive. They remain associated with the VLAN (and thus inactive) until you assign them to a new VLAN.

SUMMARY STEPS

1. enable
2. configure terminal
3. no vlan vlan-id
4. end
5. show vlan brief
6. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 no vlan vlan-id</td>
<td>Removes the VLAN by entering the VLAN ID.</td>
</tr>
<tr>
<td>Example: Switch(config)# no vlan 4</td>
<td></td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Switch(config)# end</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td><code>show vlan brief</code></td>
<td>Verifies the VLAN removal.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch# show vlan brief</code></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch# copy running-config startup-config</code></td>
<td></td>
</tr>
</tbody>
</table>

Related Topics
- Supported VLANs
- Normal-Range VLAN Configuration Guidelines, on page 1408
- Monitoring VLANs
- Supported VLANs
- Normal-Range VLAN Configuration Guidelines, on page 1408
- Monitoring VLANs
- Supported VLANs
- Normal-Range VLAN Configuration Guidelines, on page 1408
- Monitoring VLANs
- Supported VLANs
- Normal-Range VLAN Configuration Guidelines, on page 1408
- Monitoring VLANs

Assigning Static-Access Ports to a VLAN

You can assign a static-access port to a VLAN without having VTP globally propagate VLAN configuration information by disabling VTP (VTP transparent mode).

If you assign an interface to a VLAN that does not exist, the new VLAN is created.
SUMMARY STEPS

1. configure terminal
2. interface interface-id
3. switchport mode access
4. switchport access vlan vlan-id
5. end
6. show running-config interface interface-id
7. show interfaces interface-id switchport

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
<td>Enters the interface to be added to the VLAN.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# interface gigabitethernet2/0/1</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>switchport mode access</td>
<td>Defines the VLAN membership mode for the port (Layer 2 access port).</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-if)# switchport mode access</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>switchport access vlan vlan-id</td>
<td>Assigns the port to a VLAN. Valid VLAN IDs are 1 to 4094.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-if)# switchport access vlan 2</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# end</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>show running-config interface interface-id</td>
<td>Verifies the VLAN membership mode of the interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# show running-config interface</td>
<td></td>
</tr>
</tbody>
</table>
How to Configure Extended-Range VLANs

With VTP version 1 and version 2, when the switch is in VTP transparent mode (VTP disabled), you can create extended-range VLANs (in the range 1006 to 4094). VTP version supports extended-range VLANs in server or transparent move. Extended-range VLANs enable service providers to extend their infrastructure to a greater number of customers. The extended-range VLAN IDs are allowed for any switchport commands that allow VLAN IDs.

With VTP version 1 or 2, extended-range VLAN configurations are not stored in the VLAN database, but because VTP mode is transparent, they are stored in the switch running configuration file, and you can save the configuration in the startup configuration file by using the `copy running-config startup-config` privileged EXEC command. Extended-range VLANs created in VTP version 3 are stored in the VLAN database.

Creating an Extended-Range VLAN

You create an extended-range VLAN in global configuration mode by entering the `vlan` global configuration command with a VLAN ID from 1006 to 4094. The extended-range VLAN has the default Ethernet VLAN characteristics and the MTU size, and RSPAN configuration are the only parameters you can change. See the description of the `vlan` global configuration command in the command reference for the default settings of all parameters. In VTP version 1 or 2, if you enter an extended-range VLAN ID when the switch is not in VTP transparent mode, an error message is generated when you exit VLAN configuration mode, and the extended-range VLAN is not created.

In VTP version 1 and 2, extended-range VLANs are not saved in the VLAN database; they are saved in the switch running configuration file. You can save the extended-range VLAN configuration in the switch startup configuration file by using the `copy running-config startup-config` privileged EXEC command. VTP version 3 saves extended-range VLANs in the VLAN database.
SUMMARY STEPS

1. configure terminal
2. vtp mode transparent
3. vlan vlan-id
4. mtu mtu size
5. remote-span
6. end
7. show vlan id vlan-id
8. copy running-config startup config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: configure terminal</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2 vtp mode transparent</td>
<td>Configures the switch for VTP transparent mode, disabling VTP.</td>
</tr>
<tr>
<td>Example: vtp mode transparent</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# vtp mode transparent</td>
<td></td>
</tr>
<tr>
<td>Step 3 vlan vlan-id</td>
<td>Enters an extended-range VLAN ID and enters VLAN configuration mode. The range is 1006 to 4094.</td>
</tr>
<tr>
<td>Example: vlan 2000</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# vlan 2000</td>
<td></td>
</tr>
<tr>
<td>Step 4 mtu mtu size</td>
<td>Modifies the VLAN by changing the MTU size.</td>
</tr>
<tr>
<td>Example: mtu 1024</td>
<td></td>
</tr>
<tr>
<td>Switch(config-vlan)# mtu 1024</td>
<td></td>
</tr>
<tr>
<td>Step 5 remote-span</td>
<td>(Optional) Configures the VLAN as the RSPAN VLAN.</td>
</tr>
<tr>
<td>Example: remote-span</td>
<td></td>
</tr>
<tr>
<td>Switch(config-vlan)# remote-span</td>
<td></td>
</tr>
</tbody>
</table>
Step 6

Command or Action: `end`

Purpose: Returns to privileged EXEC mode.

Example: `Switch(config)# end`

Step 7

Command or Action: `show vlan id vlan-id`

Purpose: Verifies that the VLAN has been created.

Example: `Switch# show vlan id 2000`

Step 8

Command or Action: `copy running-config startup-config`

Purpose: Saves your entries in the switch startup configuration file.

Example: `Switch# copy running-config startup-config`

To save an extended-range VLAN configuration, you need to save the VTP transparent mode configuration and the extended-range VLAN configuration in the switch startup configuration file. Otherwise, if the switch resets, it will default to VTP server mode, and the extended-range VLAN IDs will not be saved.

Note: This step is not required for VTP version 3 because VLANs are saved in the VLAN database.

Related Topics

- Extended-Range VLAN Configuration Guidelines, on page 1409
- Example: Creating an Extended-Range VLAN, on page 1422

Monitoring VLANs

Table 150: Privileged EXEC show Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show interfaces [vlan vlan-id]</code></td>
<td>Displays characteristics for all interfaces or for the specified VLAN configured on the switch.</td>
</tr>
</tbody>
</table>
Command

```
show vlan [brief | group [group-name name] | id vlan-id | ifindex | internal | mtu | name name [remote-span | summary]]
```

Purpose

Displays parameters for all VLANs or the specified VLAN on the switch. The following command options are available:

- **brief**—Displays VTP VLAN status in brief.
- **group**—Displays the VLAN group with its name and the connected VLANs that are available.
- **id**—Displays VTP VLAN status by identification number.
- **ifindex**—Displays SNMP ifIndex.
- **mtu**—Displays VLAN MTU information.
- **name**—Display the VTP VLAN information by specified name.
- **remote-span**—Displays the remote SPAN VLANs.
- **summary**—Displays a summary of VLAN information.
Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`show vlan [access-log {config</td>
<td>flow</td>
</tr>
<tr>
<td>Display parameters for all VLANs or the specified VLAN on the switch. The following command options are available:</td>
<td></td>
</tr>
<tr>
<td>• <code>access-log</code>—Displays the VACL logging.</td>
<td></td>
</tr>
<tr>
<td>• <code>access-map</code>—Displays the VLAN access-maps.</td>
<td></td>
</tr>
<tr>
<td>• <code>brief</code>—Displays VTP VLAN status in brief.</td>
<td></td>
</tr>
<tr>
<td>• <code>dot1q</code>—Displays the dot1q parameters.</td>
<td></td>
</tr>
<tr>
<td>• <code>filter</code>—Displays VLAN filter information.</td>
<td></td>
</tr>
<tr>
<td>• <code>group</code>—Displays the VLAN group with its name and the connected VLANs that are available.</td>
<td></td>
</tr>
<tr>
<td>• <code>id</code>—Displays VTP VLAN status by identification number.</td>
<td></td>
</tr>
<tr>
<td>• <code>ifindex</code>—Displays SNMP ifIndex.</td>
<td></td>
</tr>
<tr>
<td>• <code>mtu</code>—Displays VLAN MTU information.</td>
<td></td>
</tr>
<tr>
<td>• <code>name</code>—Display the VTP VLAN information by specified name.</td>
<td></td>
</tr>
<tr>
<td>• <code>private-vlan</code>—Displays private VLAN information.</td>
<td></td>
</tr>
<tr>
<td>• <code>remote-span</code>—Displays the remote SPAN VLANs.</td>
<td></td>
</tr>
<tr>
<td>• <code>summary</code>—Displays a summary of VLAN information.</td>
<td></td>
</tr>
</tbody>
</table>

Configuration Examples

Example: Creating a VLAN Name

This example shows how to create Ethernet VLAN 20, name it test20, and add it to the VLAN database:

```
Switch# configure terminal
Switch(config)# vlan 20
Switch(config-vlan)# name test20
Switch(config-vlan)# end
```

Related Topics

- Creating or Modifying an Ethernet VLAN
Example: Configuring a Port as Access Port

This example shows how to configure a port as an access port in VLAN 2:

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface gigabitethernet2/0/1
Switch(config-if)# switchport mode access
Switch(config-if)# switchport access vlan 2
Switch(config-if)# end
```

Related Topics
Assigning Static-Access Ports to a VLAN, on page 1415

Example: Creating an Extended-Range VLAN

This example shows how to create a new extended-range VLAN with all default characteristics, enter VLAN configuration mode, and save the new VLAN in the switch startup configuration file:

```
Switch(config)# vtp mode transparent
Switch(config)# vlan 2000
Switch(config-vlan)# end
Switch# copy running-config startup config
```

Related Topics
Creating an Extended-Range VLAN, on page 1417
Extended-Range VLAN Configuration Guidelines, on page 1409

Where to Go Next

After configuring VLANs, you can configure the following:

- VLAN Trunking Protocol (VTP)
- VLAN trunks
- Voice VLANs

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>For complete syntax and usage information for the commands used in this chapter.</td>
<td>Catalyst 2960-X Switch VLAN Management Command Reference</td>
</tr>
</tbody>
</table>
Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>All supported MIBs for this release.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/support</td>
</tr>
</tbody>
</table>

Feature History and Information for VLAN

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS 15.0(2)EX</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>
CHAPTER 60

Configuring VLAN Trunks

• Finding Feature Information, page 1425
• Prerequisites for VLAN Trunks, page 1425
• Information About VLAN Trunks, page 1426
• How to Configure VLAN Trunks, page 1429
• Configuration Examples for VLAN Trunking, page 1444
• Where to Go Next, page 1445
• Additional References, page 1445
• Feature History and Information for VLAN Trunks, page 1446

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for VLAN Trunks

The IEEE 802.1Q trunks impose these limitations on the trunking strategy for a network:

• In a network of Cisco switches connected through IEEE 802.1Q trunks, the switches maintain one spanning-tree instance for each VLAN allowed on the trunks. Non-Cisco devices might support one spanning-tree instance for all VLANs.

When you connect a Cisco switch to a non-Cisco device through an IEEE 802.1Q trunk, the Cisco switch combines the spanning-tree instance of the VLAN of the trunk with the spanning-tree instance of the non-Cisco IEEE 802.1Q switch. However, spanning-tree information for each VLAN is maintained by
Cisco switches separated by a cloud of non-Cisco IEEE 802.1Q switches. The non-Cisco IEEE 802.1Q cloud separating the Cisco switches is treated as a single trunk link between the switches.

- Make sure the native VLAN for an IEEE 802.1Q trunk is the same on both ends of the trunk link. If the native VLAN on one end of the trunk is different from the native VLAN on the other end, spanning-tree loops might result.

- Disabling spanning tree on the native VLAN of an IEEE 802.1Q trunk without disabling spanning tree on every VLAN in the network can potentially cause spanning-tree loops. We recommend that you leave spanning tree enabled on the native VLAN of an IEEE 802.1Q trunk or disable spanning tree on every VLAN in the network. Make sure your network is loop-free before disabling spanning tree.

Information About VLAN Trunks

Trunking Overview

A trunk is a point-to-point link between one or more Ethernet switch interfaces and another networking device such as a router or a switch. Ethernet trunks carry the traffic of multiple VLANs over a single link, and you can extend the VLANs across an entire network.

Note

You can configure a trunk on a single Ethernet interface or on an EtherChannel bundle.

Trunking Modes

Ethernet trunk interfaces support different trunking modes. You can set an interface as trunking or nontrunking or to negotiate trunking with the neighboring interface. To autonegotiate trunking, the interfaces must be in the same VTP domain.

Trunk negotiation is managed by the Dynamic Trunking Protocol (DTP), which is a Point-to-Point Protocol (PPP). However, some internetworking devices might forward DTP frames improperly, which could cause misconfigurations.

Related Topics

- Configuring a Trunk Port, on page 1430
- Layer 2 Interface Modes, on page 1427
Layer 2 Interface Modes

Table 151: Layer 2 Interface Modes

<table>
<thead>
<tr>
<th>Mode</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>switchport mode access</td>
<td>Puts the interface (access port) into permanent nontrunking mode and negotiates to convert the link into a nontrunk link. The interface becomes a nontrunk interface regardless of whether or not the neighboring interface is a trunk interface.</td>
</tr>
<tr>
<td>switchport mode dynamic auto</td>
<td>Makes the interface able to convert the link to a trunk link. The interface becomes a trunk interface if the neighboring interface is set to trunk or desirable mode. The default switchport mode for all Ethernet interfaces is dynamic auto.</td>
</tr>
<tr>
<td>switchport mode dynamic desirable</td>
<td>Makes the interface actively attempt to convert the link to a trunk link. The interface becomes a trunk interface if the neighboring interface is set to trunk, desirable, or auto mode.</td>
</tr>
<tr>
<td>switchport mode trunk</td>
<td>Puts the interface into permanent trunking mode and negotiates to convert the neighboring link into a trunk link. The interface becomes a trunk interface even if the neighboring interface is not a trunk interface.</td>
</tr>
<tr>
<td>switchport nonegotiate</td>
<td>Prevents the interface from generating DTP frames. You can use this command only when the interface switchport mode is access or trunk. You must manually configure the neighboring interface as a trunk interface to establish a trunk link.</td>
</tr>
</tbody>
</table>

Related Topics

- Configuring a Trunk Port, on page 1430
- Trunking Modes, on page 1426

Allowed VLANs on a Trunk

By default, a trunk port sends traffic to and receives traffic from all VLANs. All VLAN IDs, 1 to 4094, are allowed on each trunk. However, you can remove VLANs from the allowed list, preventing traffic from those VLANs from passing over the trunk.

To reduce the risk of spanning-tree loops or storms, you can disable VLAN 1 on any individual VLAN trunk port by removing VLAN 1 from the allowed list. When you remove VLAN 1 from a trunk port, the interface...
continues to send and receive management traffic, for example, Cisco Discovery Protocol (CDP), Port Aggregation Protocol (PAgP), Link Aggregation Control Protocol (LACP), DTP, and VTP in VLAN 1.

If a trunk port with VLAN 1 disabled is converted to a nontrunk port, it is added to the access VLAN. If the access VLAN is set to 1, the port will be added to VLAN 1, regardless of the switchport trunk allowed setting. The same is true for any VLAN that has been disabled on the port.

A trunk port can become a member of a VLAN if the VLAN is enabled, if VTP knows of the VLAN, and if the VLAN is in the allowed list for the port. When VTP detects a newly enabled VLAN and the VLAN is in the allowed list for a trunk port, the trunk port automatically becomes a member of the enabled VLAN. When VTP detects a new VLAN and the VLAN is not in the allowed list for a trunk port, the trunk port does not become a member of the new VLAN.

Related Topics
Defining the Allowed VLANs on a Trunk, on page 1432

Load Sharing on Trunk Ports

Load sharing divides the bandwidth supplied by parallel trunks connecting switches. To avoid loops, STP normally blocks all but one parallel link between switches. Using load sharing, you divide the traffic between the links according to which VLAN the traffic belongs.

You configure load sharing on trunk ports by using STP port priorities or STP path costs. For load sharing using STP port priorities, both load-sharing links must be connected to the same switch. For load sharing using STP path costs, each load-sharing link can be connected to the same switch or to two different switches.

Network Load Sharing Using STP Priorities

When two ports on the same switch form a loop, the switch uses the STP port priority to decide which port is enabled and which port is in a blocking state. You can set the priorities on a parallel trunk port so that the port carries all the traffic for a given VLAN. The trunk port with the higher priority (lower values) for a VLAN is forwarding traffic for that VLAN. The trunk port with the lower priority (higher values) for the same VLAN remains in a blocking state for that VLAN. One trunk port sends or receives all traffic for the VLAN.

Related Topics
Configuring Load Sharing Using STP Port Priorities, on page 1437

Network Load Sharing Using STP Path Cost

You can configure parallel trunks to share VLAN traffic by setting different path costs on a trunk and associating the path costs with different sets of VLANs, blocking different ports for different VLANs. The VLANs keep the traffic separate and maintain redundancy in the event of a lost link.

Related Topics
Configuring Load Sharing Using STP Path Cost, on page 1441

Feature Interactions

Trunking interacts with other features in these ways:

• A trunk port cannot be a secure port.
• Trunk ports can be grouped into EtherChannel port groups, but all trunks in the group must have the same configuration. When a group is first created, all ports follow the parameters set for the first port to be added to the group. If you change the configuration of one of these parameters, the switch propagates the setting that you entered to all ports in the group:
 ◦ Allowed-VLAN list.
 ◦ STP port priority for each VLAN.
 ◦ STP Port Fast setting.
 ◦ Trunk status:
 If one port in a port group ceases to be a trunk, all ports cease to be trunks.

• We recommend that you configure no more than 24 trunk ports in Per VLAN Spanning Tree (PVST) mode and no more than 40 trunk ports in Multiple Spanning Tree (MST) mode.

• If you try to enable IEEE 802.1x on a trunk port, an error message appears, and IEEE 802.1x is not enabled. If you try to change the mode of an IEEE 802.1x-enabled port to trunk, the port mode is not changed.

• A port in dynamic mode can negotiate with its neighbor to become a trunk port. If you try to enable IEEE 802.1x on a dynamic port, an error message appears, and IEEE 802.1x is not enabled. If you try to change the mode of an IEEE 802.1x-enabled port to dynamic, the port mode is not changed.

Default Layer 2 Ethernet Interface VLAN Configuration

The following table shows the default Layer 2 Ethernet interface VLAN configuration.

Table 152: Default Layer 2 Ethernet Interface VLAN Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface mode</td>
<td><code>switchport mode dynamic auto</code></td>
</tr>
<tr>
<td>Allowed VLAN range</td>
<td>VLANs 1 to 4094</td>
</tr>
<tr>
<td>VLAN range eligible for pruning</td>
<td>VLANs 2 to 1001</td>
</tr>
<tr>
<td>Default VLAN (for access ports)</td>
<td>VLAN 1</td>
</tr>
<tr>
<td>Native VLAN (for IEEE 802.1Q trunks)</td>
<td>VLAN 1</td>
</tr>
</tbody>
</table>

How to Configure VLAN Trunks

To avoid trunking misconfigurations, configure interfaces connected to devices that do not support DTP to not forward DTP frames, that is, to turn off DTP.

• If you do not intend to trunk across those links, use the `switchport mode access` interface configuration command to disable trunking.
To enable trunking to a device that does not support DTP, use the `switchport mode trunk` and `switchport nonegotiate` interface configuration commands to cause the interface to become a trunk but to not generate DTP frames.

Configuring an Ethernet Interface as a Trunk Port

Configuring a Trunk Port

Because trunk ports send and receive VTP advertisements, to use VTP you must ensure that at least one trunk port is configured on the switch and that this trunk port is connected to the trunk port of a second switch. Otherwise, the switch cannot receive any VTP advertisements.

Before You Begin

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface interface-id`
4. `switchport mode {dynamic {auto | desirable} | trunk}`
5. `switchport access vlan vlan-id`
6. `switchport trunk native vlan vlan-id`
7. `end`
8. `show interfaces interface-id switchport`
9. `show interfaces interface-id trunk`
10. `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>enable</code></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: <code>Switch> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2 <code>configure terminal</code></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td>3</td>
<td><code>interface interface-id</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Switch(config)# interface gigabitethernet1/0/2</code></td>
</tr>
<tr>
<td>4</td>
<td>`switchport mode {dynamic {auto</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Switch(config-if)# switchport mode dynamic desirable</code></td>
</tr>
<tr>
<td></td>
<td>• <code>dynamic auto</code>—Sets the interface to a trunk link if the neighboring interface is set to trunk or desirable mode. This is the default.</td>
</tr>
<tr>
<td></td>
<td>• <code>dynamic desirable</code>—Sets the interface to a trunk link if the neighboring interface is set to trunk, desirable, or auto mode.</td>
</tr>
<tr>
<td></td>
<td>• <code>trunk</code>—Sets the interface in permanent trunking mode and negotiate to convert the link to a trunk link even if the neighboring interface is not a trunk interface.</td>
</tr>
<tr>
<td>5</td>
<td><code>switchport access vlan vlan-id</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Switch(config-if)# switchport access vlan 200</code></td>
</tr>
<tr>
<td>6</td>
<td><code>switchport trunk native vlan vlan-id</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Switch(config-if)# switchport trunk native vlan 200</code></td>
</tr>
<tr>
<td>7</td>
<td><code>end</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Switch(config)# end</code></td>
</tr>
<tr>
<td>8</td>
<td><code>show interfaces interface-id switchport</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Switch# show interfaces gigabitethernet1/0/2 switchport</code></td>
</tr>
</tbody>
</table>
How to Configure VLAN Trunks

### Command or Action	Purpose
Step 9
show interfaces *interface-id* trunk
Example:
Switch# show interfaces gigabitethernet1/0/2 trunk | Displays the trunk configuration of the interface.

Step 10
copy running-config startup-config
Example:
Switch# copy running-config startup-config | (Optional) Saves your entries in the configuration file.

Related Topics
- Trunking Modes, on page 1426
- Layer 2 Interface Modes, on page 1427

Defining the Allowed VLANs on a Trunk

VLAN 1 is the default VLAN on all trunk ports in all Cisco switches, and it has previously been a requirement that VLAN 1 always be enabled on every trunk link. You can use the VLAN 1 minimization feature to disable VLAN 1 on any individual VLAN trunk link so that no user traffic (including spanning-tree advertisements) is sent or received on VLAN 1.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface *interface-id*
4. switchport mode trunk
5. switchport trunk allowed vlan {add | all | except | remove} *vlan-list*
6. end
7. show interfaces *interface-id* switchport
8. copy running-config startup-config
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch> <code>enable</code></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td><code>configure terminal</code></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# <code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td><code>interface interface-id</code></td>
<td>Specifies the port to be configured, and enters interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config)# <code>interface gigabitethernet1/0/1</code></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td><code>switchport mode trunk</code></td>
<td>Configures the interface as a VLAN trunk port.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config-if)# <code>switchport mode trunk</code></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>`switchport trunk allowed vlan {add</td>
<td>all</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config-if)# <code>switchport trunk allowed vlan remove 2</code></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td><code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config)# <code>end</code></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td><code>show interfaces interface-id switchport</code></td>
<td>Verifies your entries in the Trunking VLANs Enabled field of the display.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# <code>show interfaces gigabitethernet1/0/1 switchport</code></td>
<td></td>
</tr>
</tbody>
</table>
Step 8

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Example:

```
Switch# copy running-config startup-config
```

Related Topics

- **Allowed VLANs on a Trunk**, on page 1427

Changing the Pruning-Eligible List

The pruning-eligible list applies only to trunk ports. Each trunk port has its own eligibility list. VTP pruning must be enabled for this procedure to take effect.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface interface-id`
4. `switchport trunk pruning vlan {add | except | none | remove} vlan-list [vlan vlan [,...]]`
5. `end`
6. `show interfaces interface-id switchport`
7. `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
| `enable` | Enables privileged EXEC mode. Enter your password if prompted. |
| **Example:**
| `Switch> enable` |
| **Step 2**
| `configure terminal` | Enters the global configuration mode. |
| **Example:**
| `Switch# configure terminal` |
How to Configure VLAN Trunks

### Command or Action	Purpose
Step 3 | **interface** interface-id

Example:
```
Switch(config)# interface gigabitethernet2/0/1
```

Selects the trunk port for which VLANs should be pruned, and enters interface configuration mode.

Step 4 | switchport trunk pruning vlan {add | except | none | remove} vlan-list [vlan [vlan [...]]]

Example:
```
Switch(config)# interface gigabitethernet2/0/1
```

Configures the list of VLANs allowed to be pruned from the trunk.

For explanations about using the `add`, `except`, `none`, and `remove` keywords, see the command reference for this release.

Separate non-consecutive VLAN IDs with a comma and no spaces; use a hyphen to designate a range of IDs. Valid IDs are 2 to 1001. Extended-range VLANs (VLAN IDs 1006 to 4094) cannot be pruned.

VLANs that are pruning-ineligible receive flooded traffic.

The default list of VLANs allowed to be pruned contains VLANs 2 to 1001.

Step 5 | **end**

Example:
```
Switch(config)# end
```

Returns to privileged EXEC mode.

Step 6 | show interfaces interface-id switchport

Example:
```
Switch# show interfaces gigabitethernet2/0/1 switchport
```

Verifies your entries in the *Pruning VLANs Enabled* field of the display.

Step 7 | copy running-config startup-config

Example:
```
Switch# copy running-config startup-config
```

(Optional) Saves your entries in the configuration file.

Configuring the Native VLAN for Untagged Traffic

A trunk port configured with IEEE 802.1Q tagging can receive both tagged and untagged traffic. By default, the switch forwards untagged traffic in the native VLAN configured for the port. The native VLAN is VLAN 1 by default.

The native VLAN can be assigned any VLAN ID.
If a packet has a VLAN ID that is the same as the outgoing port native VLAN ID, the packet is sent untagged; otherwise, the switch sends the packet with a tag.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface interface-id`
4. `switchport trunk native vlan vlan-id`
5. `end`
6. `show interfaces interface-id switchport`
7. `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable
Example:
<code>Switch> enable</code></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal
Example:
<code>Switch# configure terminal</code></td>
</tr>
<tr>
<td>Step 3</td>
<td>interface interface-id
Example:
<code>Switch(config)# interface gigabitethernet1/0/2</code></td>
</tr>
<tr>
<td>Step 4</td>
<td>switchport trunk native vlan vlan-id
Example:
<code>Switch(config-if)# switchport trunk native vlan 12</code></td>
</tr>
<tr>
<td>Step 5</td>
<td>end
Example:
<code>Switch(config-if)# end</code></td>
</tr>
</tbody>
</table>
Configuring Trunk Port for Load Sharing

Configuring Load Sharing Using STP Port Priorities

If your switch is a member of a switch stack, you must use the `spanning-tree [vlan vlan-id] cost cost` interface configuration command instead of the `spanning-tree [vlan vlan-id] port-priority priority` interface configuration command to select an interface to put in the forwarding state. Assign lower cost values to interfaces that you want selected first and higher cost values that you want selected last.

These steps describe how to configure a network with load sharing using STP port priorities.

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6</td>
<td>show interfaces interface-id switchport</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# <code>show interfaces gigabitethernet1/0/2 switchport</code></td>
</tr>
<tr>
<td></td>
<td>Verifies your entries in the Trunking Native Mode VLAN field.</td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# <code>copy running-config startup-config</code></td>
</tr>
<tr>
<td></td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>
SUMMARY STEPS

1. enable
2. configure terminal
3. vtp domain domain-name
4. vtp mode server
5. end
6. show vtp status
7. show vlan
8. configure terminal
9. interface interface-id
10. switchport mode trunk
11. end
12. show interfaces interface-id switchport
13. Repeat the above steps on Switch A for a second port in the switch or switch stack.
14. Repeat the above steps on Switch B to configure the trunk ports that connect to the trunk ports configured on Switch A.
15. show vlan
16. configure terminal
17. interface interface-id
18. spanning-tree vlan vlan-range port-priority priority-value
19. exit
20. interface interface-id
21. spanning-tree vlan vlan-range port-priority priority-value
22. end
23. show running-config
24. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>enable</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode on Switch A.</td>
</tr>
<tr>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td>3</td>
<td>vtp domain domain-name</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Switch(config)# vtp domain workdomain</td>
</tr>
<tr>
<td>4</td>
<td>vtp mode server</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Switch(config)# vtp mode server</td>
</tr>
<tr>
<td>5</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Switch(config)# end</td>
</tr>
<tr>
<td>6</td>
<td>show vtp status</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Switch# show vtp status</td>
</tr>
<tr>
<td>7</td>
<td>show vlan</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Switch# show vlan</td>
</tr>
<tr>
<td>8</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Switch# configure terminal</td>
</tr>
<tr>
<td>9</td>
<td>interface interface-id</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Switch(config)# interface gigabitethernet1/0/1</td>
</tr>
<tr>
<td>10</td>
<td>switchport mode trunk</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Switch(config-if)# switchport mode trunk</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 11</td>
<td>end</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-if)# end</td>
</tr>
<tr>
<td>Step 12</td>
<td>show interfaces interface-id switchport</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# show interfaces gigabitethernet1/0/1 switchport</td>
</tr>
<tr>
<td>Step 13</td>
<td>Repeat the above steps on Switch A for a second port in the switch or switch stack.</td>
</tr>
<tr>
<td>Step 14</td>
<td>Repeat the above steps on Switch B to configure the trunk ports that connect to the trunk ports configured on Switch A.</td>
</tr>
<tr>
<td>Step 15</td>
<td>show vlan</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# show vlan</td>
</tr>
<tr>
<td>Step 16</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
</tr>
<tr>
<td>Step 17</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# interface gigabitethernet1/0/1</td>
</tr>
<tr>
<td>Step 18</td>
<td>spanning-tree vlan vlan-range port-priority priority-value</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-if)# spanning-tree vlan 8-10 port-priority 16</td>
</tr>
</tbody>
</table>

When the trunk links come up, VTP passes the VTP and VLAN information to Switch B. This command verifies that Switch B has learned the VLAN configuration.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 19</td>
<td></td>
</tr>
</tbody>
</table>
exit | Returns to global configuration mode. |
| **Example:** |
Switch(config-if)# exit |
| **Step 20** |
interface interface-id | Defines the interface to set the STP port priority, and enters interface configuration mode. |
| **Example:** |
Switch(config)# interface gigabitethernet1/0/2 |
| **Step 21** |
spanning-tree vlan vlan-range port-priority priority-value | Assigns the port priority for the VLAN range specified. Enter a port priority value from 0 to 240. Port priority values increment by 16. |
| **Example:** |
Switch(config-if)# spanning-tree vlan 3-6 port-priority 16 |
| **Step 22** |
end | Returns to privileged EXEC mode. |
| **Example:** |
Switch(config-if)# end |
| **Step 23** |
show running-config | Verifies your entries. |
| **Example:** |
Switch# show running-config |
| **Step 24** |
copy running-config startup-config | (Optional) Saves your entries in the configuration file. |
| **Example:** |
Switch# copy running-config startup-config |

Related Topics

Network Load Sharing Using STP Priorities, on page 1428

Configuring Load Sharing Using STP Path Cost

These steps describe how to configure a network with load sharing using STP path costs.
SUMMARY STEPS

1. enable
2. configure terminal
3. interface interface-id
4. switchport mode trunk
5. exit
6. Repeat Steps 2 through 4 on a second interface in Switch A or in Switch A stack.
7. end
8. show running-config
9. show vlan
10. configure terminal
11. interface interface-id
12. spanning-tree vlan vlan-range cost cost-value
13. end
14. Repeat Steps 9 through 13 on the other configured trunk interface on Switch A, and set the spanning-tree path cost to 30 for VLANs 8, 9, and 10.
15. exit
16. show running-config
17. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch> enable</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enters global configuration mode on Switch A.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>interface interface-id</td>
<td>Defines the interface to be configured as a trunk, and enters interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config)# interface gigabitethernet1/0/1</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Step 4 switchport mode trunk</td>
<td>Configures the port as a trunk port.</td>
<td></td>
</tr>
<tr>
<td>Example: Switch(config-if)# switchport mode trunk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 5 exit</td>
<td>Returns to global configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example: Switch(config-if)# exit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 6 Repeat Steps 2 through 4 on a second interface in Switch A or in Switch A stack.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 7 end</td>
<td>Returns to privileged EXEC mode.</td>
<td></td>
</tr>
<tr>
<td>Example: Switch(config)# end</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 8 show running-config</td>
<td>Verifies your entries. In the display, make sure that the interfaces are configured as trunk ports.</td>
<td></td>
</tr>
<tr>
<td>Example: Switch# show running-config</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 9 show vlan</td>
<td>When the trunk links come up, Switch A receives the VTP information from the other switches. This command verifies that Switch A has learned the VLAN configuration.</td>
<td></td>
</tr>
<tr>
<td>Example: Switch# show vlan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 10 configure terminal</td>
<td>Enters global configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 11 interface interface-id</td>
<td>Defines the interface on which to set the STP cost, and enters interface configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example: Switch(config)# interface gigabitethernet1/0/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 12 spanning-tree vlan vlan-range cost cost-value</td>
<td>Sets the spanning-tree path cost to 30 for VLANs 2 through 4.</td>
<td></td>
</tr>
<tr>
<td>Example: Switch(config-if)# spanning-tree vlan 2-4 cost</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Command or Action | Purpose |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

Step 13
end
Example:
Switch(config-if)# end

Step 14
Repeat Steps 9 through 13 on the other configured trunk interface on Switch A, and set the spanning-tree path cost to 30 for VLANs 8, 9, and 10.

Step 15
exit
Example:
Switch(config)# exit

Step 16
show running-config
Example:
Switch# show running-config

Step 17
copy running-config startup-config
(Optional) Saves your entries in the configuration file.
Example:
Switch# copy running-config startup-config

Related Topics

Network Load Sharing Using STP Path Cost, on page 1428

Configuration Examples for VLAN Trunking

Example: Configuring a Trunk Port

The following example shows how to configure a port as an IEEE 802.1Q trunk. The example assumes that the neighbor interface is configured to support IEEE 802.1Q trunking.

```
Switch# configure terminal  
Enter configuration commands, one per line. End with CNTL/Z.  
Switch(config)# interface gigabitethernet1/0/2  
Switch(config-if)# switchport mode dynamic desirable  
Switch(config-if)# end
```
Example: Removing a VLAN from a Port

This example shows how to remove VLAN 2 from the allowed VLAN list on a port:

```plaintext
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# switchport trunk allowed vlan remove 2
Switch(config-if)# end
```

Where to Go Next

After configuring VLAN trunks, you can configure the following:

- VLANs
- VLAN Membership Policy Server (VMPS)
- Voice VLANs

Additional References

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>For complete syntax and usage information for the commands used in this chapter.</td>
<td>Catalyst 2960-X Switch VLAN Management Command Reference</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>——</td>
<td>——</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>All supported MIBs for this release.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/support</td>
</tr>
</tbody>
</table>

Feature History and Information for VLAN Trunks

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS 15.0(2)EX</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>
Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for VMPS

You should configure the VLAN Membership Policy Server (VMPS) before you configure ports as dynamic-access ports.

When you configure a port as a dynamic-access port, the spanning-tree Port Fast feature is automatically enabled for that port. The Port Fast mode accelerates the process of bringing the port into the forwarding state.
The VTP management domain of the VMPS client and the VMPS server must be the same.

Restrictions for VMPS

The following are restrictions for configuring VMPS:

- IEEE 802.1x ports cannot be configured as dynamic-access ports. If you try to enable IEEE 802.1x on a dynamic-access (VQP) port, an error message appears, and IEEE 802.1x is not enabled. If you try to change an IEEE 802.1x-enabled port to dynamic VLAN assignment, an error message appears, and the VLAN configuration is not changed.

- Trunk ports cannot be dynamic-access ports, but you can enter the `switchport access vlan dynamic` interface configuration command for a trunk port. In this case, the switch retains the setting and applies it if the port is later configured as an access port. You must turn off trunking on the port before the dynamic-access setting takes effect.

- Dynamic-access ports cannot be monitor ports.

- Secure ports cannot be dynamic-access ports. You must disable port security on a port before it becomes dynamic.

- Dynamic-access ports cannot be members of an EtherChannel group.

- Port channels cannot be configured as dynamic-access ports.

- The VLAN configured on the VMPS server should not be a voice VLAN.

- 1K VLAN is supported only on switches running the LAN Base image with the lanbase-default template set.

Information About VMPS

Dynamic VLAN Assignments

The VLAN Query Protocol (VQP) is used to support dynamic-access ports, which are not permanently assigned to a VLAN, but give VLAN assignments based on the MAC source addresses seen on the port. Each time an unknown MAC address is seen, the switch sends a VQP query to a remote VLAN Membership Policy Server (VMPS); the query includes the newly seen MAC address and the port on which it was seen. The VMPS responds with a VLAN assignment for the port. The switch cannot be a VMPS server but can act as a client to the VMPS and communicate with it through VQP.

Each time the client switch receives the MAC address of a new host, it sends a VQP query to the VMPS. When the VMPS receives this query, it searches its database for a MAC-address-to-VLAN mapping. The server response is based on this mapping and whether or not the server is in open or secure mode. In secure mode, the server shuts down the port when an illegal host is detected. In open mode, the server denies the host access to the port.

If the port is currently unassigned (that is, it does not yet have a VLAN assignment), the VMPS provides one of these responses:

- If the host is allowed on the port, the VMPS sends the client a vlan-assignment response containing the assigned VLAN name and allowing access to the host.
• If the host is not allowed on the port and the VMPS is in open mode, the VMPS sends an access-denied response.

• If the VLAN is not allowed on the port and the VMPS is in secure mode, the VMPS sends a port-shutdown response.

If the port already has a VLAN assignment, the VMPS provides one of these responses:

• If the VLAN in the database matches the current VLAN on the port, the VMPS sends an access-denied response, allowing access to the host.

• If the VLAN in the database does not match the current VLAN on the port and active hosts exist on the port, the VMPS sends an access-denied or a port-shutdown response, depending on the secure mode of the VMPS.

If the switch receives an access-denied response from the VMPS, it continues to block traffic to and from the host MAC address. The switch continues to monitor the packets directed to the port and sends a query to the VMPS when it identifies a new host address. If the switch receives a port-shutdown response from the VMPS, it disables the port. The port must be manually reenabled by using Network Assistant, the CLI, or SNMP.

Related Topics

- Configuring Dynamic-Access Ports on VMPS Clients, on page 1452
- Example: VMPS Configuration, on page 1458

Dynamic-Access Port VLAN Membership

A dynamic-access port can belong to only one VLAN with an ID from 1 to 4094. When the link comes up, the switch does not forward traffic to or from this port until the VMPS provides the VLAN assignment. The VMPS receives the source MAC address from the first packet of a new host connected to the dynamic-access port and attempts to match the MAC address to a VLAN in the VMPS database.

If there is a match, the VMPS sends the VLAN number for that port. If the client switch was not previously configured, it uses the domain name from the first VTP packet it receives on its trunk port from the VMPS. If the client switch was previously configured, it includes its domain name in the query packet to the VMPS to obtain its VLAN number. The VMPS verifies that the domain name in the packet matches its own domain name before accepting the request and responds to the client with the assigned VLAN number for the client. If there is no match, the VMPS either denies the request or shuts down the port (depending on the VMPS secure mode setting).

Multiple hosts (MAC addresses) can be active on a dynamic-access port if they are all in the same VLAN; however, the VMPS shuts down a dynamic-access port if more than 20 hosts are active on the port.

If the link goes down on a dynamic-access port, the port returns to an isolated state and does not belong to a VLAN. Any hosts that come online through the port are checked again through the VQP with the VMPS before the port is assigned to a VLAN.

Dynamic-access ports can be used for direct host connections, or they can connect to a network. A maximum of 20 MAC addresses are allowed per port on the switch. A dynamic-access port can belong to only one VLAN at a time, but the VLAN can change over time, depending on the MAC addresses seen.

Related Topics

- Configuring Dynamic-Access Ports on VMPS Clients, on page 1452
- Example: VMPS Configuration, on page 1458
Default VMPS Client Configuration

The following table shows the default VMPS and dynamic-access port configuration on client switches.

Table 153: Default VMPS Client and Dynamic-Access Port Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMPS domain server</td>
<td>None</td>
</tr>
<tr>
<td>VMPS reconfirm interval</td>
<td>60 minutes</td>
</tr>
<tr>
<td>VMPS server retry count</td>
<td>3</td>
</tr>
<tr>
<td>Dynamic-access ports</td>
<td>None configured</td>
</tr>
</tbody>
</table>

How to Configure VMPS

Entering the IP Address of the VMPS

- **Note**

 If the VMPS is being defined for a cluster of switches, enter the address on the command switch.

 Before You Begin

 You must first enter the IP address of the server to configure the switch as a client.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `vmpsserver ipaddress primary`
4. `vmpsserver ipaddress`
5. `end`
6. `show vmps`
7. `copy running-config startup-config`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Enters the IP address of the switch acting as the primary VMPS server.</td>
</tr>
<tr>
<td>vmps server ipaddress primary</td>
<td>Enters the IP address of the switch acting as the primary VMPS server.</td>
</tr>
<tr>
<td>Example: Switch(config)# vmps server 10.1.2.3 primary</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>(Optional) Enters the IP address of the switch acting as a secondary VMPS server. You can enter up to three secondary server addresses.</td>
</tr>
<tr>
<td>vmps server ipaddress</td>
<td>(Optional) Enters the IP address of the switch acting as a secondary VMPS server. You can enter up to three secondary server addresses.</td>
</tr>
<tr>
<td>Example: Switch(config)# vmps server 10.3.4.5</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Switch(config)# end</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>Verifies your entries in the VMPS Domain Server field of the display.</td>
</tr>
<tr>
<td>show vmps</td>
<td>Verifies your entries in the VMPS Domain Server field of the display.</td>
</tr>
<tr>
<td>Example: Switch# show vmps</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td>Example: Switch# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Dynamic-Access Ports on VMPS Clients

Caution
Dynamic-access port VLAN membership is for end stations or hubs connected to end stations. Connecting dynamic-access ports to other switches can cause a loss of connectivity.

If you are configuring a port on a cluster member switch as a dynamic-access port, first use the `rcommand` privileged EXEC command to log in to the cluster member switch.

Before You Begin
You must have IP connectivity to the VMPS for dynamic-access ports to work. You can test for IP connectivity by pinging the IP address of the VMPS and verifying that you get a response.

Note
To return an interface to its default configuration, use the `default interface interface-id` interface configuration command. To return an interface to its default switchport mode (dynamic auto), use the `no switchport mode` interface configuration command. To reset the access mode to the default VLAN for the switch, use the `no switchport access vlan` interface configuration command.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface interface-id`
4. `switchport mode access`
5. `switchport access vlan dynamic`
6. `end`
7. `show interfaces interface-id switchport`
8. `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch# configure terminal</code></td>
<td></td>
</tr>
</tbody>
</table>
How to Configure VMPS

#### Command or Action	Purpose
Step 3 | interface interface-id

Example:
`Switch(config)# interface gigabitethernet 1/0/1`

Sets the port to access mode.

Step 4 | switchport mode access

Example:
`Switch(config-if)# switchport mode access`

Specifies the switch port that is connected to the end station, and enters interface configuration mode.

Step 5 | switchport access vlan dynamic

Example:
`Switch(config-if)# switchport access vlan dynamic`

Sets the port to access mode.

Step 6 | end

Example:
`Switch(config)# end`

Confirms the port as eligible for dynamic VLAN membership.

Step 7 | show interfaces interface-id switchport

Example:
`Switch# show interfaces gigabitethernet 1/0/1 switchport`

Returns to privileged EXEC mode.

Step 8 | copy running-config startup-config

Example:
`Switch# copy running-config startup-config`

Verifies your entries in the Operational Mode field of the display.

(Optional) Saves your entries in the configuration file.

Related Topics
- Dynamic VLAN Assignments, on page 1448
- Dynamic-Access Port VLAN Membership, on page 1449
- Example: VMPS Configuration, on page 1458
Reconfirming VLAN Memberships

This task confirms the dynamic-access port VLAN membership assignments that the switch has received from the VMPS.

SUMMARY STEPS

1. enable
2. vmps reconfirm
3. show vmps

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch> enable</code></td>
<td></td>
</tr>
</tbody>
</table>

Step 2	
`vmps reconfirm`	Reconfirms dynamic-access port VLAN membership.
Example:	
`Switch# vmps reconfirm`	

Step 3	
`show vmps`	Verifies the dynamic VLAN reconfirmation status.
Example:	
`Switch# show vmps`	

Changing the Reconfirmation Interval

VMPS clients periodically reconfirm the VLAN membership information received from the VMPS. You can set the number of minutes after which reconfirmation occurs.

Note

If you are configuring a member switch in a cluster, this parameter must be equal to or greater than the reconfirmation setting on the command switch. You also must first use the `rcommand` privileged EXEC command to log in to the member switch.
SUMMARY STEPS

1. enable
2. configure terminal
3. `vmps reconfirm minutes`
4. end
5. show vmps
6. `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 <code>vmps reconfirm minutes</code></td>
<td>Sets the number of minutes between reconfirmations of the dynamic VLAN membership. The range is 1 to 120. The default is 60 minutes.</td>
</tr>
<tr>
<td>Example: Switch(config)# vmps reconfirm 90</td>
<td></td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Switch(config)# end</td>
<td></td>
</tr>
<tr>
<td>Step 5 show vmps</td>
<td>Verifies the dynamic VLAN reconfirmation status in the Reconfirm Interval field of the display.</td>
</tr>
<tr>
<td>Example: Switch# show vmps</td>
<td></td>
</tr>
<tr>
<td>Step 6 <code>copy running-config startup-config</code></td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td>Example: Switch# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>
Changing the Retry Count

Follow these steps to change the number of times that the switch attempts to contact the VMPS before querying the next server.

SUMMARY STEPS

1. enable
2. configure terminal
3. vmps retry count
4. end
5. show vmps
6. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 vmps retry count</td>
<td>Changes the retry count. The retry range is 1 to 10; the default is 3.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# vmps retry</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# end</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Step 5 show vmps</td>
<td>Verifies your entry in the Server Retry Count field of the display.</td>
</tr>
<tr>
<td>Example: Switch# show vmps</td>
<td></td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td>Example: Switch# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

Troubleshooting Dynamic-Access Port VLAN Membership

Problem The VMPS shuts down a dynamic-access port under these conditions:

- Problem The VMPS is in secure mode, and it does not allow the host to connect to the port. The VMPS shuts down the port to prevent the host from connecting to the network.
- Problem More than 20 active hosts reside on a dynamic-access port.

Solution To reenable a disabled dynamic-access port, enter the `shutdown` interface configuration command followed by the `no shutdown` interface configuration command.

Monitoring the VMPS

You can display information about the VMPS by using the `show vmps` privileged EXEC command. The switch displays this information about the VMPS:

- **VMPS VQP Version**—The version of VQP used to communicate with the VMPS. The switch queries the VMPS that is using VQP Version 1.
- **Reconfirm Interval**—The number of minutes the switch waits before reconfirming the VLAN-to-MAC-address assignments.
- **Server Retry Count**—The number of times VQP resends a query to the VMPS. If no response is received after this many tries, the switch starts to query the secondary VMPS.
- **VMPS domain server**—The IP address of the configured VLAN membership policy servers. The switch sends queries to the one marked `current`. The one marked `primary` is the primary server.
- **VMPS Action**—The result of the most recent reconfirmation attempt. A reconfirmation attempt can occur automatically when the reconfirmation interval expires, or you can force it by entering the `vmps reconfirm` privileged EXEC command or its Network Assistant or SNMP equivalent.
This is an example of output for the `show vmps` privileged EXEC command:

```
Switch# show vmps
VQP Client Status:
-------------------
VMPS VQP Version: 1
Reconfirm Interval: 60 min
Server Retry Count: 3
VMPS domain server: 172.20.128.86 (primary, current)
             172.20.128.87

Reconfirmation status
---------------------
VMPS Action:        other
```

Configuration Example for VMPS

Example: VMPS Configuration

This network has a VMPS server switch and VMPS client switches with dynamic-access ports with this configuration:

- The VMPS server and the VMPS client are separate switches.
- The Catalyst 6500 series Switch A is the primary VMPS server.
- The Catalyst 6500 series Switch C and Switch J are secondary VMPS servers.
- End stations are connected to the clients, Switch B and Switch I.
- The database configuration file is stored on the TFTP server with the IP address 172.20.22.7.
Figure 101: Dynamic Port VLAN Membership Configuration

Where to Go Next

You can configure the following:

- VTP
- VLANs
- VLAN Trunking
- Voice VLANs

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>For complete syntax and usage information for the commands used in this chapter.</td>
<td>Catalyst 2960-X Switch VLAN Management Command Reference</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>All supported MIBs for this release.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/support</td>
</tr>
</tbody>
</table>
Feature History and Information for VMPS

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS 15.0(2)EX</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>
Configuring Voice VLANs

- Finding Feature Information, page 1463
- Prerequisites for Voice VLANs, page 1463
- Restrictions for Voice VLANs, page 1464
- Information About Voice VLAN, page 1464
- How to Configure Voice VLAN, page 1467
- Monitoring Voice VLAN, page 1470
- Configuration Examples, page 1471
- Where to Go Next, page 1471
- Additional References, page 1472
- Feature History and Information for Voice VLAN, page 1473

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Voice VLANs

The following are the prerequisites for voice VLANs:

- Voice VLAN configuration is only supported on switch access ports; voice VLAN configuration is not supported on trunk ports.
Trunk ports can carry any number of voice VLANs, similar to regular VLANs. The configuration of voice VLANs is not supported on trunk ports.

- Before you enable voice VLAN, we recommend that you enable QoS on the switch by entering the `mls qos` global configuration command and configure the port trust state to trust by entering the `mls qos trust cos` interface configuration command. If you use the auto-QoS feature, these settings are automatically configured.
- You must enable CDP on the switch port connected to the Cisco IP Phone to send the configuration to the phone. (CDP is globally enabled by default on all switch interfaces.)

Restrictions for Voice VLANs

You cannot configure static secure MAC addresses in the voice VLAN.

Information About Voice VLAN

Voice VLANs

The voice VLAN feature enables access ports to carry IP voice traffic from an IP phone. When the switch is connected to a Cisco 7960 IP Phone, the phone sends voice traffic with Layer 3 IP precedence and Layer 2 class of service (CoS) values, which are both set to 5 by default. Because the sound quality of an IP phone call can deteriorate if the data is unevenly sent, the switch supports quality of service (QoS) based on IEEE 802.1p CoS. QoS uses classification and scheduling to send network traffic from the switch in a predictable manner.

The Cisco 7960 IP Phone is a configurable device, and you can configure it to forward traffic with an IEEE 802.1p priority. You can configure the switch to trust or override the traffic priority assigned by a Cisco IP Phone.

Cisco IP Phone Voice Traffic

You can configure an access port with an attached Cisco IP Phone to use one VLAN for voice traffic and another VLAN for data traffic from a device attached to the phone. You can configure access ports on the switch to send Cisco Discovery Protocol (CDP) packets that instruct an attached phone to send voice traffic to the switch in any of these ways:

- In the voice VLAN tagged with a Layer 2 CoS priority value
- In the access VLAN tagged with a Layer 2 CoS priority value
- In the access VLAN, untagged (no Layer 2 CoS priority value)
In all configurations, the voice traffic carries a Layer 3 IP precedence value (the default is 5 for voice traffic and 3 for voice control traffic).

Note

Cisco IP Phone Data Traffic

The switch can also process tagged data traffic (traffic in IEEE 802.1Q or IEEE 802.1p frame types) from the device attached to the access port on the Cisco IP Phone. You can configure Layer 2 access ports on the switch to send CDP packets that instruct the attached phone to configure the phone access port in one of these modes:

- In trusted mode, all traffic received through the access port on the Cisco IP Phone passes through the phone unchanged.
- In untrusted mode, all traffic in IEEE 802.1Q or IEEE 802.1p frames received through the access port on the Cisco IP Phone receive a configured Layer 2 CoS value. The default Layer 2 CoS value is 0. Untrusted mode is the default.

Note

Untagged traffic from the device attached to the Cisco IP Phone passes through the phone unchanged, regardless of the trust state of the access port on the phone.

Related Topics

- Configuring Cisco IP Phone Voice Traffic
- Example: Configuring Cisco IP Phone Voice Traffic, on page 1471

Voice VLAN Configuration Guidelines

- Because a Cisco 7960 IP Phone also supports a connection to a PC or other device, a port connecting the switch to a Cisco IP Phone can carry mixed traffic. You can configure a port to decide how the Cisco IP Phone carries voice traffic and data traffic.
- The voice VLAN should be present and active on the switch for the IP phone to correctly communicate on the voice VLAN. Use the `show vlan` privileged EXEC command to see if the VLAN is present (listed in the display). If the VLAN is not listed, create the voice VLAN.
- The Power over Ethernet (PoE) switches are capable of automatically providing power to Cisco pre-standard and IEEE 802.3af-compliant powered devices if they are not being powered by an AC power source.
- The Port Fast feature is automatically enabled when voice VLAN is configured. When you disable voice VLAN, the Port Fast feature is not automatically disabled.
- If the Cisco IP Phone and a device attached to the phone are in the same VLAN, they must be in the same IP subnet. These conditions indicate that they are in the same VLAN:
They both use IEEE 802.1p or untagged frames.

• The Cisco IP Phone uses IEEE 802.1p frames, and the device uses untagged frames.
• The Cisco IP Phone uses untagged frames, and the device uses IEEE 802.1p frames.
• The Cisco IP Phone uses IEEE 802.1Q frames, and the voice VLAN is the same as the access VLAN.

• The Cisco IP Phone and a device attached to the phone cannot communicate if they are in the same VLAN and subnet but use different frame types because traffic in the same subnet is not routed (routing would eliminate the frame type difference).

• Voice VLAN ports can also be these port types:
 • Dynamic access port.
 • IEEE 802.1x authenticated port.

 \[\text{Note}\]
 If you enable IEEE 802.1x on an access port on which a voice VLAN is configured and to which a Cisco IP Phone is connected, the phone loses connectivity to the switch for up to 30 seconds.

• Protected port.
• A source or destination port for a SPAN or RSPAN session.
• Secure port.

 \[\text{Note}\]
 When you enable port security on an interface that is also configured with a voice VLAN, you must set the maximum allowed secure addresses on the port to two plus the maximum number of secure addresses allowed on the access VLAN. When the port is connected to a Cisco IP Phone, the phone requires up to two MAC addresses. The phone address is learned on the voice VLAN and might also be learned on the access VLAN. Connecting a PC to the phone requires additional MAC addresses.

Default Voice VLAN Configuration

The voice VLAN feature is disabled by default.

When the voice VLAN feature is enabled, all untagged traffic is sent according to the default CoS priority of the port.

The CoS value is not trusted for IEEE 802.1p or IEEE 802.1Q tagged traffic.
How to Configure Voice VLAN

Configuring Cisco IP Phone Voice Traffic

You can configure a port connected to the Cisco IP Phone to send CDP packets to the phone to configure the way in which the phone sends voice traffic. The phone can carry voice traffic in IEEE 802.1Q frames for a specified voice VLAN with a Layer 2 CoS value. It can use IEEE 802.1p priority tagging to give voice traffic a higher priority and forward all voice traffic through the native (access) VLAN. The Cisco IP Phone can also send untagged voice traffic or use its own configuration to send voice traffic in the access VLAN. In all configurations, the voice traffic carries a Layer 3 IP precedence value (the default is 5).

SUMMARY STEPS

1. enable
2. configure terminal
3. interface interface-id
4. mls qos trust cos
5. switchport voice {vlan {vlan-id | dot1p | none | untagged}}
6. end
7. Use one of the following:
 - show interfaces interface-id switchport
 - show running-config interface interface-id
8. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: Switch> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface interface-id</td>
<td>Specifies the interface connected to the phone, and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example: Switch(config)# interface</td>
<td></td>
</tr>
</tbody>
</table>
How to Configure Voice VLAN

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>gigabitethernet1/0/1</td>
<td>Configures the interface to classify incoming traffic packets by using the packet CoS value. For untagged packets, the port default CoS value is used.</td>
</tr>
</tbody>
</table>

Step 4

mls qos trust cos

Example:

```
Switch(config-if)# mls qos trust cos
```

Note Before configuring the port trust state, you must first globally enable QoS by using the `mls qos` global configuration command.

Step 5

switchport voice {vlan|dot1p|none|untagged}

Example:

```
Switch(config-if)# switchport voice vlan dot1p
```

Configures the voice VLAN.

- **vlan-id**—Configures the phone to forward all voice traffic through the specified VLAN. By default, the Cisco IP Phone forwards the voice traffic with an IEEE 802.1Q priority of 5. Valid VLAN IDs are 1 to 4094.
- **dot1p**—Configures the switch to accept voice and data IEEE 802.1p priority frames tagged with VLAN ID 0 (the native VLAN). By default, the switch drops all voice and data traffic tagged with VLAN 0. If configured for 802.1p the Cisco IP Phone forwards the traffic with an IEEE 802.1p priority of 5.
- **none**—Allows the phone to use its own configuration to send untagged voice traffic.
- **untagged**—Configures the phone to send untagged voice traffic.

Step 6

end

Example:

```
Switch(config-if)# end
```

Returns to privileged EXEC mode.

Step 7

Use one of the following:
- **show interfaces interface-id switchport**
- **show running-config interface interface-id**

Example:

```
Switch# show interfaces gigabitethernet1/0/1 switchport

or

Switch# show running-config interface gigabitethernet1/0/1
```

Verifies your voice VLAN entries or your QoS and voice VLAN entries.
Configuring the Priority of Incoming Data Frames

You can connect a PC or other data device to a Cisco IP Phone port. To process tagged data traffic (in IEEE 802.1Q or IEEE 802.1p frames), you can configure the switch to send CDP packets to instruct the phone how to send data packets from the device attached to the access port on the Cisco IP Phone. The PC can generate packets with an assigned CoS value. You can configure the phone to not change (trust) or to override (not trust) the priority of frames arriving on the phone port from connected devices.

Follow these steps to set the priority of data traffic received from the non-voice port on the Cisco IP Phone:

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface interface-id`
4. `switchport priority extend {cos value | trust}`
5. `end`
6. `show interfaces interface-id switchport`
7. `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 3</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# interface gigabitethernet1/0/1</td>
</tr>
<tr>
<td></td>
<td>Specifies the interface connected to the Cisco IP Phone, and enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>switchport priority extend {cos value</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-if)# switchport priority extend trust</td>
</tr>
<tr>
<td></td>
<td>Sets the priority of data traffic received from the Cisco IP Phone access port:</td>
</tr>
<tr>
<td></td>
<td>• cos value—Configures the phone to override the priority received from the PC or the attached device with the specified CoS value. The value is a number from 0 to 7, with 7 as the highest priority. The default priority is cos 0.</td>
</tr>
<tr>
<td></td>
<td>• trust—Configures the phone access port to trust the priority received from the PC or the attached device.</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config-if)# end</td>
</tr>
<tr>
<td></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>show interfaces interface-id switchport</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# show interfaces gigabitethernet1/0/1 switchport</td>
</tr>
<tr>
<td></td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Related Topics
- Cisco IP Phone Data Traffic, on page 1465
- Example: Configuring the Priority of Incoming Data Frames, on page 1471

Monitoring Voice VLAN

To display voice VLAN configuration for an interface, use the **show interfaces interface-id switchport** privileged EXEC command.
Configuration Examples

Example: Configuring Cisco IP Phone Voice Traffic

This example shows how to configure a port connected to a Cisco IP Phone to use the CoS value to classify incoming traffic and to accept voice and data priority traffic tagged with VLAN ID 0:

Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.

Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# mls qos trust cos
Switch(config-if)# switchport voice vlan dot1p
Switch(config-if)# end

To return the port to its default setting, use the no switchport voice vlan interface configuration command.

Related Topics
- Configuring Cisco IP Phone Voice Traffic
- Cisco IP Phone Voice Traffic, on page 1464

Example: Configuring the Priority of Incoming Data Frames

This example shows how to configure a port connected to a Cisco IP Phone to not change the priority of frames received from the PC or the attached device:

Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# switchport priority extend trust
Switch(config-if)# end

To return the port to its default setting, use the no switchport priority extend interface configuration command.

Related Topics
- Configuring the Priority of Incoming Data Frames, on page 1469
- Cisco IP Phone Data Traffic, on page 1465

Where to Go Next

After configuring voice VLANs, you can configure the following:

- VLANs
- VLAN Trunking
- VLAN Membership Policy Server (VMPS)
- VTP
Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>For complete syntax and usage information for the commands used in this chapter.</td>
<td>Catalyst 2960-X Switch VLAN Management Command Reference</td>
</tr>
</tbody>
</table>

Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>All supported MIBs for this release.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/support</td>
</tr>
</tbody>
</table>
Feature History and Information for Voice VLAN

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS 15.0(2)EX</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>
XML Schema for SNMP Endpoint Proxy

- XML Schema, page 1475
- Sample XML, page 1477

XML Schema

Use the rules of the schema to create an XML file. The XML file that you create maps MIB Object Identifiers (MIB OIDs) to the EnergyWise attributes. We recommend that you have one XML file for each MIB.

To use SNMP Endpoint proxy, you have to implement the following schema:

```xml
<?xml version="1.0" encoding="ISO-8859-1" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
  <!-- Definition of Simple Elements -->
  <xs:element name="description" type="xs:string" />
  <!-- Definition of Attributes -->
  <xs:attribute name="name" type="xs:string" />
  <xs:attribute name="datatype" type="xs:string" />
  <xs:attribute name="value" type="xs:string" />
  <xs:attribute name="default" type="xs:string" />
  <xs:attribute name="invalue" type="xs:integer" />
  <xs:attribute name="outvalue" type="xs:integer" />
  <xs:attribute name="lowerrange" type="xs:integer" />
  <xs:attribute name="upperrange" type="xs:integer" />
  <!-- Definition of Complex Elements -->
  <xs:element name="mapping">
    <xs:complexType>
      <xs:attribute ref="invalue" />
      <xs:attribute ref="outvalue" />
      <xs:attribute ref="lowerrange" />
      <xs:attribute ref="upperrange" />
    </xs:complexType>
  </xs:element>
  <xs:element name="oid">
    <xs:complexType>
      <xs:sequence>
        <xs:element ref="mapping" maxOccurs="unbounded" minOccurs="0" />
      </xs:sequence>
    </xs:complexType>
  </xs:element>
</xs:schema>
```
The following sample XML code uses the EnergyWise MIB:

```xml
<?xml version="1.0" ?>
<CiscoEnergyWise version="1.0">
  <interface protocol="snmp" version="v2c">
    <method name="fn_get_usage" action="oid">
      <oid name="cewEntEnergyUsage" action="get" value="1.3.6.1.4.1.9.9.683.1.6.1.8.1001" />
    </method>
    <method name="fn_get_units" action="oid">
      <oid name="cewEntEnergyUnits" action="get" value="1.3.6.1.4.1.9.9.683.1.6.1.7.1001" />
    </method>
    <method name="fn_set_keywords" action="oid">
      <oid name="cewEntKeyword" action="set" datatype="string" value="1.3.6.1.4.1.9.9.683.1.6.1.3.1001" />
    </method>
    <method name="fn_get_keywords" action="oid">
      <oid name="cewEntKeyword" action="get" value="1.3.6.1.4.1.9.9.683.1.6.1.3.1001" />
    </method>
    <method name="fn_set_importance" action="oid">
      <oid name="cewEntImportanceInt" action="set" datatype="unsigned32" value="1.3.6.1.4.1.9.9.683.1.6.1.12.1001" />
    </method>
    <method name="fn_get_importance" action="oid">
      <oid name="cewEntImportanceInt" action="get" value="1.3.6.1.4.1.9.9.683.1.6.1.12.1001" />
    </method>
    <method name="fn_set_name" action="oid">
      <oid name="cewEntName" action="set" datatype="string" value="1.3.6.1.4.1.9.9.683.1.6.1.4.1001" />
    </method>
    <method name="fn_get_name" action="oid">
      <oid name="cewEntName" action="get" value="1.3.6.1.4.1.9.9.683.1.6.1.4.1001" />
    </method>
    <method name="fn_set_role" action="oid">
      <oid name="cewEntRoleDescription" action="set" datatype="string" value="1.3.6.1.4.1.9.9.683.1.6.1.5.1001" />
    </method>
    <method name="fn_get_role" action="oid">
      <oid name="cewEntRoleDescription" action="get" value="1.3.6.1.4.1.9.9.683.1.6.1.5.1001" />
    </method>
    <method name="fn_set_level" action="oid">
      <oid name="cewEntEnergyLevel" action="set" datatype="integer" value="1.3.6.1.4.1.9.9.683.1.6.1.10.1001">
        <mapping invalue="0" outvalue="1" />
        <mapping invalue="1" outvalue="2" />
        <mapping invalue="2" outvalue="3" />
        <mapping invalue="3" outvalue="4" />
        <mapping invalue="4" outvalue="5" />
        <mapping invalue="5" outvalue="6" />
        <mapping invalue="6" outvalue="7" />
      </mapping>
    </method>
  </interface>
</CiscoEnergyWise>
```
<method name="fn_get_energyLevel" action="oid">
 <oid name="cewEntEnergyLevel" action="oid" value="1.3.6.1.4.1.9.683.1.6.10.1001"/>
</method>

<method name="fn_get_usageCaliber" action="oid">
 <oid name="cewEntEnergyUsageCaliber" action="oid" value="1.3.6.1.4.1.9.683.1.6.1.9.1001"/>
</method>

<method name="fn_get_entityCategory" action="cache">
 <description>Let the switch return cache the consumer category for this device.</description>
</method>

<method name="fn_get_deviceType" action="constant">
 <constant type="string" value="Printer"/>
</method>
Important Notice

- Disclaimer, page 1479
- Statement 361—VoIP and Emergency Calling Services do not Function if Power Fails, page 1479
- Statement 1071—Warning Definition, page 1481

Disclaimer

Cisco EnergyWise enables you to reduce energy consumption in your network by turning off the power to devices when they are not in use. If IP phones are part of your network, they can also be turned off through EnergyWise, in which case calls cannot be made or received, and the phones cannot be turned on except by the network administrator or according to rules established in EnergyWise by the network administrator. Laws in the location of your network might require phones to remain available for emergencies. It is your responsibility to identify the laws that apply and to comply with them. Even in the absence of a law, we strongly recommend that you designate certain phones that will always be on and available to make and receive emergency calls. These phones should be clearly identified, and all employees or others who might require emergency access to make or receive calls should be informed of the availability of these phones.

Statement 361—VoIP and Emergency Calling Services do not Function if Power Fails

<p>| Warning | Voice over IP (VoIP) service and the emergency calling service do not function if power fails or is disrupted. After power is restored, you might have to reset or reconfigure equipment to regain access to VoIP and the emergency calling service. In the USA, this emergency number is 911. You need to be aware of the emergency number in your country. |</p>
<table>
<thead>
<tr>
<th>Language</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waarschuwing</td>
<td>Voice over IP (VoIP)-service en de service voor noodoproepen werken niet indien er een stroomstoring is. Nadat de stroomtoevoer is hersteld, dient u wellicht de configuratie van uw apparatuur opnieuw in te stellen om opnieuw toegang te krijgen tot VoIP en de noodoproepen. In de VS is het nummer voor noodoproepen 911. U dient u zelf op de hoogte te stellen van het nummer voor noodoproepen in uw land.</td>
</tr>
<tr>
<td>Attention</td>
<td>Le service Voice over IP (VoIP) et le service d'appels d'urgence ne fonctionnent pas en cas de panne de courant. Une fois que le courant est rétabli, vous devrez peut-être réinitialiser ou reconfigurer le système pour accéder de nouveau au service VoIP et à celui des appels d'urgence. Aux États-Unis, le numéro des services d'urgence est le 911. Vous devez connaître le numéro d'appel d'urgence en vigueur dans votre pays.</td>
</tr>
<tr>
<td>Avvertenza</td>
<td>I servizio Voice over IP (VoIP) e il servizio per le chiamate di emergenza non funzionano in caso di interruzione dell'alimentazione. Ristabilita l'alimentazione, potrebbe essere necessario reimpostare o riconfigurare l'attrezzatura per ottenere nuovamente l'accesso al servizio VoIP e al servizio per le chiamate di emergenza. Negli Stati Uniti, il numero di emergenza è 911. Si consiglia di individuare il numero di emergenza del proprio Paese.</td>
</tr>
<tr>
<td>Aviso</td>
<td>O serviço Voice over IP (VoIP) e o serviço de chamadas de emergência não funcionam se houver um corte de energia. Depois do fornecimento de energia ser restabelecido, poderá ser necessário reiniciar ou reconfigurar o equipamento para voltar a utilizar os serviços VoIP ou chamadas de emergência. Nos EUA, o número de emergência é o 911. É importante que saiba qual o número de emergência no seu país.</td>
</tr>
</tbody>
</table>
Statement 1071—Warning Definition

Warning

IMPORTANT SAFETY INSTRUCTIONS

This warning symbol means danger. You are in a situation that could cause bodily injury. Before you work on any equipment, be aware of the hazards involved with electrical circuitry and be familiar with standard practices for preventing accidents. Use the statement number provided at the end of each warning to locate its translation in the translated safety warnings that accompanied this device. Statement 1071

SAVE THESE INSTRUCTIONS
Waarschuwing

BELANGRIJKE VEILIGHEIDSINSTRUCTIES

Dit waarschuwingssymbool betekent gevaar. U verkeert in een situatie die lichamelijk letsel kan veroorzaken. Voordat u aan enige apparatuur gaat werken, dient u zich bewust te zijn van de bij elektrische schakelingen betrokken risico's en dient u op de hoogte te zijn van de standaard praktijken om ongelukken te voorkomen. Gebruik het nummer van de verklaring onderaan de waarschuwing als u een vertaling van de waarschuwing die bij het apparaat wordt geleverd, wilt raadplegen.

BEWAAR DEZE INSTRUCTIES

Varoitus

TÄRKEITÄ TURVALLISUUSOHJEITA

SÄILYTÄ NÄMÄ OHJEET

Attention

IMPORTANTES INFORMATIONS DES SÉCURITÉ

CONSERVEZ CES INFORMATIONS

Warnung

WICHTIGE SICHERHEITSHINWEISE

BEWAHREN SIE DIESE HINWEISE GUT AUF.

Avvertenza

IMPORTANTI ISTRUZIONI SULLA SICUREZZA

Questo simbolo di avvertenza indica un pericolo. La situazione potrebbe causare infortuni alle persone. Prima di intervenire su qualsiasi apparecchiatura, occorre essere al corrente dei pericoli relativi ai circuiti elettrici e conoscere le procedure standard per la prevenzione di incidenti. Utilizzare il numero di istruzione presente alla fine di ciascuna avvertenza per individuare le traduzioni delle avvertenze riportate in questo documento.

CONSERVARE QUESTE ISTRUZIONI
Advarsel

VIKTIGE SIKKERHETSINSTRUKSJONER

Dette advarselssymbolet betyr fare. Du er i en situasjon som kan føre til skade på person. For du begynner å arbeide med noe av utstyret, må du være oppmerksom på farene forbundet med elektriske kretser, og kjenne til standardprosedyrer for å forhindre ulykker. Bruk nummeret i slutten av hver advarsel for å finne oversettelsen i de oversatte sikkerhetsadvarslene som fulgte med denne enheten.

TA VARE PÅ DISSE INSTRUKSJONENE

Aviso

INSTRUÇÕES IMPORTANTES DE SEGURANÇA.

Este símbolo de aviso significa perigo. Você está em uma situação que poderá ser causadora de lesões corporais. Antes de iniciar a utilização de qualquer equipamento, tenha conhecimento dos perigos envolvidos no manuseio de circuitos elétricos e familiarize-se com as práticas habituais de prevenção de acidentes. Utilize o número da instrução fornecido ao final de cada aviso para localizar sua tradução nos avisos de segurança traduzidos que acompanham este dispositivo.

GUARDE ESTAS INSTRUÇÕES

¡Advertencia!

INSTRUCCIONES IMPORTANTES DE SEGURIDAD

Este símbolo de aviso indica peligro. Existe riesgo para su integridad física. Antes de manipular cualquier equipo, considere los riesgos de la corriente eléctrica y familiarícese con los procedimientos estándar de prevención de accidentes. Al final de cada advertencia encontrará el número que le ayudará a encontrar el texto traducido en el apartado de traducciones que acompaña a este dispositivo.

GUARDE ESTAS INSTRUCCIONES

Warning!

VIKTIGA SÄKERHETSANVISNINGAR

SPARA DESSA ANVISNINGAR

Figyelem

FONTS BIZTONSÁGI ELOÍRÁSOK

Ez a figyelmezeto jel veszélyre utal. Sérülésveszélyt rejtó helyzetben van. Mielőtt bármely berendezésen munkát végeztet, legyen figyelemmel az elektromos áramkörök okozta kockázatokra, és ismerkedjen meg a szokásos balesetvédelmi eljárásokkal. A kiadványban szereplő figyelmeztetések fordítása a készülékhez mellékelt biztonsági figyelmeztetések között található; a fordítás az egyes figyelmeztetések végén látható szám alapján kereshető meg.

ORIZZE MEG EZEKET AZ UTASÍTÁSOKAT!

Предупреждение Для обеспечения соответствия требованиям по предельным значениям облучения радиочастотами (ПЧ) антенны данного устройства должны располагаться на расстоянии не ближе 2 м от пользователей.
Statement 1071—Warning Definition

<table>
<thead>
<tr>
<th>警告</th>
</tr>
</thead>
<tbody>
<tr>
<td>如果电源出现故障或中断，您将无法使用 Voice over IP (VoIP) 服务与紧急呼叫服务。电源恢复之后，您可能需要重新设置或重新配置设备，以便重新获得进入 VoIP 与紧急呼叫服务的权限。在美国，此紧急呼号号码是 911。您必须知道本国的紧急呼号号码。</td>
</tr>
<tr>
<td>警告</td>
</tr>
<tr>
<td>電源障害や停電の場合、ボイス オーバー アイピー (VoIP) サービスと緊急呼出しサービスは機能しません。電源の回復後、VoIP と緊急呼出しサービスにアクセスするには機器をリセットまたは再設定する必要があります。米国内の緊急呼出し番号は 911 です。お住まいの地域の緊急呼出し番号をおあかじめ調べておいてください。</td>
</tr>
</tbody>
</table>
INDEX

128-bit 230
802.1x 979

A
access control entries 886
See ACEs 886
access groups 898
Layer 3 898
access groups, applying IPv4 ACLs to interfaces 911
access lists 891
See ACLs 891
accounting 781, 791, 831
with RADIUS 831
with TACACS+ 781, 791
accounting, defined 781
ACEs 886
Ethernet 886
IP 886
ACL 628, 630, 632, 634
ACL 628
IPv4 628
IP extended 630
IP standard 628
IPv4 630
IPv6 632
Layer 2 MAC 634
ACLs 243, 586, 594, 628, 886, 891, 892, 894, 895, 896, 897, 898, 899, 900, 907, 909, 911, 916, 923, 924, 926, 935, 936, 937
applying 594, 907, 911, 935, 936, 937
on routed packets 936
on bridged packets 936
on multicast packets 937
on switched packets 935
time ranges to 907
to an interface 911
to QoS 594
classifying traffic for QoS 628
comments in 924
compiling 926
defined 891
ACLs (continued)
examples of 628, 926
extended IPv4 891, 900
creating 900
matching criteria 891
guidelines 586
interface 898
IP 586, 891, 892, 898, 907
fragments and QoS guidelines 586
implicit deny 907
implicit masks 892
matching criteria 891
undefined 898
IPv4 891, 898, 909, 911
applying to interfaces 911
creating 891
interfaces 898
matching criteria 891
numbers 891
terminal lines, setting on 909
unsupported features 891
Layer 4 information in 896
logging messages 894
matching 898
monitoring 923
number per QoS class map 586
port 886
precedence of 886
QoS 594, 628
router 886
router ACLs and VLAN map configuration guidelines 896
standard IPv4 891, 899
creating 899
matching criteria 891
support in hardware 894
time ranges to 897
types supported 886
unsupported features 891
IPv4 891
using router ACLs with VLAN maps 896
VLAN maps 895, 916
configuration guidelines 895
ACLs (continued)
 VLAN maps (continued)
 configuring 916
active link 157, 423, 437
active links 420
activity check 25, 48, 58
 examples 58
 testing 48
activity checks 15
adding 980, 981
additional references 59, 479, 686
address aliasing 66
address formats 230
address resolution 1249
addresses 230, 264, 1248, 1249, 1269
 dynamic 264, 1248, 1249
 accelerated aging 264
 default aging 264
 defined 1248
 learning 1249
IPv6 230
MAC, discovering 1249
multicast 264
 STP address management 264
static 1269
 adding and removing 1269
aggregatable global unicast addresses 231
aggregate policers 645, 681
aggregate-port learners 392
aging time 279, 316, 1261
 accelerated 279, 316
 for MSTP 316
 for STP 279
MAC address table 1261
alternate 256
 port 256
and ARP 1346
and CDP 1346
and IPv6 230
and routing 157
and routing protocols 157
and SSH 862
and switch stacks 233
applications 232
ARP 1249
 defined 1249
 table 1249
 address resolution 1249
assigning address 234
assigning information 740, 741, 743, 1226, 1227, 1229
 member number 740, 1226
 priority value 741, 1227
 provisioning a new member 743, 1229
assigning IPv6 addresses to 234
attributes 21, 834, 836
 vendor-proprietary 836
 vendor-specific 834
attributes, RADIUS 834, 836, 842
 vendor-proprietary 836, 842
 vendor-specific 834
authenticating to 849
 boundary switch 849
 KDC 849
 network services 849
authentication 781, 785, 787, 822, 825, 853
 local mode with AAA 853
 RADIUS 822, 825
 key 822
 login 825
 TACACS+ 781, 785, 787
 defined 781
 key 785
 login 787
authentication key 785
authentication, defined 781
authoritative time source, described 1242
authorization 781, 790, 829
 with RADIUS 829
 with TACACS+ 781, 790
authorization, defined 781
auto mode 190
auto-advice 734, 1220
auto-copy 734, 1220
auto-extract 734, 1220
auto-MDIX 152
 configuring 152
 described 152
 auto-MDIX, configuring 152
auto-QoS 694
Auto-Qos 697
 monitoring 697
Auto-QoS 692, 698, 704, 705
 configuration migration 692
 enhanced 692
 Generated Configuration For Enhanced Video, Trust, and Classify Devices 705
 Generated configuration for VoIP devices 704
 Global Configuration 698
auto-upgrade 734, 1220
autoconfiguration 231
automatic 977
automatic advise (auto-advice) in switch stacks 734, 1220
automatic copy (auto-copy) in switch stacks 734, 1220
automatic creation of 372, 376
automatic extraction (auto-extract) in switch stacks 734, 1220
automatic QoS 690
 See QoS 690
automatic upgrades (auto-upgrade) in switch stacks 734, 1220
automatic upgrades with auto-upgrade 734, 1220
autonegotiation 1361
mismatches 1361

B
BackboneFast 338, 353
described 338
enabling 353
backup 256
port 256
backup interfaces 420
See Flex Links 420
banners 1248, 1259, 1260
configuring 1259, 1260
login 1260
message-of-the-day login 1259
default configuration 1248
Berkeley r-tools replacement 862
binding configuration 977
automatic 977
manual 977
binding database 958
address, DHCP server 958
See DHCP, Cisco IOS server database 958
binding physical and logical interfaces 371
binding table 977
bindings 958, 977
address, Cisco IOS DHCP server 958
IP source guard 977
blocking 261
state 261
boundary switch 849
BPDU 256, 257, 299, 333
contents 257
filtering 333
RSTP format 299
bridge identifier (bridge ID) 258
bridge protocol data units 256
bridged NetFlow 475
bridged packets, ACLs on 936
broadcast traffic 1346
Budgeting Power 202
Example command 202
buffer allocation 607

C
CA trustpoint 870, 872
configuring 872
defined 870
CDP 163, 188, 622
and trusted boundary 622
defined with LLDP 163
power negotiation extensions 188
CDP with power consumption, described 188
CDP with power negotiation, described 188
changing the default for lines 773
channel groups 371
binding physical and logical interfaces 371
numbering of 371
CipherSuites 871
Cisco 7960 IP Phone 1464
Cisco Discovery Protocol (CDP) 507
Cisco intelligent power management 188
Cisco IOS DHCP server 958
See DHCP, Cisco IOS DHCP server 958
Cisco IP Phone Data Traffic 1465
Cisco IP Phone Voice Traffic 1464
Cisco Networking Services 486
CIST regional root 290, 291
See MSTP 290, 291
CIST root 291
See MSTP 291
civic location 165
class maps for QoS 636, 639
configuring 636, 639
classification overview 591
CLI compatibility 28
clock 1242
See system clock 1242
CNS 486
CoA Request Commands 805
collect parameters 458
commands, setting privilege levels 771
communication, global 822, 832
communication, per-server 822
compatible mode 107
configurable leave timer, IGMP 69
Configuration Engine 484
restrictions 484
configuration examples 846
Configuration Examples command 240
Configuration Examples for Configuring EtherChannels command 404
Configuration Examples for Configuring MLD Snooping Queries command 226
Configuration Examples for Configuring PoE command 202
Configuration Examples for Configuring SDM Templates command 1311
Configuration Examples for Setting Passwords and Privilege Levels command 775
configuration files 766, 1407
password recovery disable considerations 766
configuration guidelines 872, 979
configuring 31, 34, 35, 38, 47, 152, 387, 740, 741, 785, 787, 790, 791, 822, 825, 829, 831, 832, 850, 862, 872, 875, 878, 1226, 1227, 1310, 1452

a PoE port 34
accounting 791, 831
activity check 47
authentication 825
authentication key 785
authorization 790, 829
communication, global 822, 832
communication, per-server 822
domain member or endpoint attributes 31
Layer 2 interfaces 387
login authentication 787
member number 740, 1226
multiple UDP ports 822
on Layer 2 interfaces 387
port attributes 35
priority value 741, 1227
Configuring a Multicast Router Port 226
Example command 226
configuring a secure HTTP client 878
configuring a secure HTTP server 875
Configuring a Static Multicast Group 226
Example command 226
Configuring IPv6 Addressing and Enabling IPv6 Routing 240
Example command 240
Configuring IPv6 ICMP Rate Limiting 240
Example command 240
Configuring Layer 2 EtherChannels 404
Example command 404
Configuring Link-State Tracking 416
Example 416
Configuring MLD Snooping Queries 227
Example command 227
configuring ports for voice traffic in 1467
802.1p priority tagged frames 1467
Configuring SDM templates 1312
Examples 1312
command 1312
Configuring Static Routing for IPv6 241
Example command 241
Configuring the Switch for Vendor-Proprietary RADIUS Server Communication 842
Example command 842
Configuring the Switch to Use Vendor-Specific RADIUS Attributes 841
Examples command 841
Configuring VACL Logging 921
confirming 1454
CoS 589, 1469
in Layer 2 frames 589
override priority 1469
CoS input queue threshold map for QoS 604
CoS output queue threshold map for QoS 608
CoS-to-DSCP map for QoS 612, 648
credentials 846
cross-stack EtherChannel 368, 370, 383, 387
configuring 387
on Layer 2 interfaces 387
described 368
illustration 368
cross-stack UplinkFast, STP 337, 338
Fast Uplink Transition Protocol 337
normal-convergence events 338
cross-stack UplinkFast, STP 335, 338
described 335
fast-convergence events 338
customizeable web pages, web-based authentication 1109

daylight saving time 1252
debugging 1348, 1363, 1372
 enabling all system diagnostics 1372
 redirecting error message output 1363
 using commands 1348
default configuration 71, 72, 109, 167, 217, 218, 234, 267, 301, 381, 425, 444, 559, 611, 690, 760, 785, 808, 872, 1248, 1249
auto-QoS 690
banners 1248
DNS 1248
EtherChannel 381
Flex Links 425
IGMP filtering 72
IGMP snooping 71, 217, 218
IGMP throttling 72
IPv6 234
LLDP 167
MAC address table 1249
MAC address-table move update 425
MSTP 301
MVR 109
password and privilege level 760
RADIUS 808
RSPAN 559
SPAN 559
SSL 872
STP 267
TACACS+ 785
UDLD 444
default Ethernet VLAN configuration 1410
default setting 157
default settings 462
default VLAN configuration 1411
default web-based authentication configuration 1113
802.1X 1113
defined 230, 486, 507, 781, 870
 Event Service 486
 NameSpace Mapper 486
defining AAA server groups 827
definition 1404
 VLAN 1404
deletion 1414
 VLAN 1414
described 152, 157, 368, 372, 734, 846, 869, 977, 1220, 1331, 1346, 1349, 1449
designated 256
 port 256
 switch 256
desktop template 737, 1223
destination-IP address-based forwarding 378
destination-IP address-based forwarding, EtherChannel 377
destination-MAC address forwarding 378
destination-MAC address forwarding, EtherChannel 377
detecting communication failure 50
detecting indirect link failures, STP 338
device 263
 root 263
device priority 277, 313
 MSTP 313
 STP 277
device stack 508
devices supported 124, 188
DHCP 953, 961
 enabling 953, 961
 relay agent 961
 server 953
 DHCP option 82 955, 963, 970
 displaying 970
 forwarding address, specifying 963
 helper address 963
 overview 955
 DHCP server port-based address allocation 971, 973
 default configuration 971
 enabling 973
 DHCP snooping 954, 955, 977
 accepting untrusted packets form edge switch 954
 option 82 data insertion 955
 trusted interface 954
 untrusted messages 954
 DHCP snooping binding database 958, 959, 966, 971
 adding bindings 971
 binding file 958, 959
 format 959
 location 958
 configuration guidelines 966
 configuring 971
 described 958
 enabling 971
 Differentiated Services (Diff-Serv) architecture 588
 Differentiated Services Code Point 589
disabled 262
 state 262
 disabling 224
 disabling EnergyWise 51
 disabling recovery of 766
 disclaimer 1479
 displaying 734, 879, 1220, 1365
 Displaying IPv6 241
 Example command 241
 DNS 231, 1247, 1248, 1257
 default configuration 1248
 in IPv6 231
 overview 1247
 setting up 1257
domain 19
 Domain Name System 1247
 See DNS 1247
domain names 1247, 1385
 DNS 1247
 DSCP 589
 DSCP maps 612
 DSCP-to-CoS map for QoS 614
 DSCP-to-DSCP-mutation map for QoS 654
dual IPv4 and IPv6 templates 232
dual protocol stacks 232
 IPv4 and IPv6 232
 SDM templates supporting 232
dual-action detection 375
dynamic access ports 1452
 configuring 1452
dynamic addresses 264
 See addresses 264
dynamic mode 107
dynamic port membership 1449, 1454, 1457
 described 1449
 reconfirming 1454
 troubleshooting 1457
dynamic port VLAN membership 1449, 1452, 1454, 1457
 described 1449
 reconfirming 1454
 troubleshooting 1457
types of connections 1452
dynamic VLAN assignments 1448

E
effects on 233
 IPv6 routing 233
egress expedite queue 607
egress queue 607, 611
egress queues 606, 608
EtherChannel failover 371
EtherChannel guard 341, 354
described 341
enabling 354
EtherChannels 368, 387, 979
Ethernet management port 157, 158
active link 157
and routing 157
and routing protocols 157
default setting 157
described 157
for network management 157
supported features 158
unsupported features 158
Ethernet management port configuration 159
Ethernet management port, internal 157, 158
and routing 157
and routing protocols 157
unsupported features 158
Ethernet VLAN 1412
EUI 231
Event Service 486
equivalent 675, 676, 678, 679, 683, 684
ACLs 675
class maps 676
classifying, policing, marking traffic on physical ports 678
classifying, policing, marking traffic on SVI 679
configuring egress queue 684
configuring ingress queue 683
configuring port to DSCP-trusted state 675
modifying DSCP-DSCP mutation map 675
Example for Configuring Auto-MDIIX command 153
Example for Performing a Traceroute to an IP Host command 1371
Example for Pinging an IP Host command 1370
Example of Configuring NVRAM Buffer Size command 1304
Examples for Configuring the System MTU command 185
Examples for controlling switch access with RADIUS 841
executing 1362, 1363
exit 774
expedite queue 656, 662
egress queues 656, 662
SRR weights 656, 662
guidelines 656, 662
expedite queue for QoS 671
export formats 460
exporters 459
extended system ID 258, 271, 288
MSTP 288
STP 258, 271
extended universal identifier 231
See EUI 231
extended-range VLAN 1417
extended-range VLAN configuration guidelines 1409
F
Fa0 port 157
 See Ethernet management port 157
fallback bridging 256, 256
 STP 256
 keepalive messages 256
VLAN-bridge STP 256
Fast Uplink Transition Protocol 337
fastethernet0 port 157
 See Ethernet management port 157
feature history 60, 709
 auto-QoS 709
feature information 103, 1423
 IGMP snooping 103
VLANs 1423
fiber-optic, detecting unidirectional links 442
 filtering 912
 non-IP traffic 912
filters, IP 885
 See ACLs, IP [filters 885
 IP 885
 zzz] 885
flash memory 1349
Flex Links 420, 421, 425, 426, 427, 429, 432, 433, 434
 configuring 426, 427
 configuring VLAN load balancing 429
 default configuration 425
 description 420
 link load balancing 421
 monitoring 432
 preemption scheme 427
 preferred VLAN example 434
 switchport backup example 433
 forced preemption mode example 433
 VLAN load balancing examples 433
Flex Links failover 422
flow exporter 464, 466
 template 466
flow monitor 469
flow record 462
flow records 456
 collectors 456
 keys 456
for network management 157
forward-delay time 279, 316
 MSTP 316
 STP 279
forwarding 234, 262
 state 262
forwarding methods 377, 389

G
general query 436
 Generating IGMP Reports 422
global leave, IGMP 83

H
hello time 278, 315
 MSTP 315
 STP 278
hibernating immediately, hibernation 43
 hibernation 16, 20
 See also power level
high-power devices operating in low-power mode 188
hosts, limit on dynamic ports 1457
hot-standby ports 394
HTTP over SSL 869
 see HTTPS 869
HTTP secure server 869
HTTP(S) Over IPv6 233
HTTPS 869, 870, 875
 configuring 875
 described 869
 self-signed certificate 870
hub 158

I
ICMP 231, 884, 895, 1347
 IPv6 231
 time-exceeded messages 1347
 traceroute and 1347
 unreachable messages 884
 unreachable and ACLs 895
ICMP ping 1345, 1362
 executing 1362
 overview 1345
ICMPv6 231
Identifying the RADIUS Server Host 841
 Examples command 841
identifying the server 785, 822
IEEE 802.1Q tagging 1435
IEEE 802.1s 287
 See MSTP 287
IEEE 802.3ad 376
 See EtherChannel 376
IEEE 802.3ad, described 376
IEEE power classification levels 188
IGMP 67, 69, 70, 81, 82, 83, 85, 89, 107, 222, 224, 225
 configurable leave timer 69, 81
 described 69
 configurable leave timer 69, 81
 enabling 81
 flooded multicast traffic 82, 83, 85
 controlling the length of time 82
 disabling on an interface 85
 global leave 83
 recovering from flood mode 83
join messages 67
leave processing, enabling 222
leaving multicast group 69
queries 67
report suppression 70, 89, 224
 described 70
 disabling 89, 224
snooping 225
IGMP filtering 70, 72
 default configuration 72
 described 70
IGMP groups 94, 95
 configuring filtering 95
 setting the maximum number 94
IGMP Immediate Leave 79
 enabling 79
IGMP profile 90, 92
 applying 92
 configuration mode 90
IGMP snooping 66, 69, 70, 71, 72, 73, 86, 217, 218, 225
 and address aliasing 66
 and stack changes 70
 default configuration 71, 217, 218
 definition 66
 enabling and disabling 72, 218
 global configuration 72
 Immediate Leave 69
 in the switch stack 70
 monitoring 225
 querier 86
 configuring 86
 VLAN configuration 73
IGMP throttling 70, 72, 95, 99
 configuring 95
 default configuration 72
 described 70
 displaying action 99
Immediate Leave, IGMP 69, 222
 described 69
 enabling 222
in IPv6 231
ingress queue 609
 default configuration 609
 types 603
 expedite 603
 normal 603
ingress queues 602
Inter-Switch Link 548
 See ISL 548
inter-VLAN routing 714
interaction with other features 375, 377
interaction with virtual switches 375
interface 202
interface configuration 473
interfaces 152
 auto-MDI, configuring 152
Internet Protocol version 6 230
 See IPv6 230
Intrusion Detection System 550
 See IDS appliances 550
inventory management TLV 165
IP ACLs 594, 893
 for QoS classification 594
 named 893
IP addresses 230, 717, 1249
 128-bit 230
 classes of 717
 discovering 1249
 IPv6 230
IP addresses and subnets 1346
IP phones 622
 trusted boundary for QoS 622
IP precedence 589
IP routing 716
 enabling 716
IP source guard 977, 979, 980, 981
 802.1x 979
 binding configuration 977
 automatic 977
 manual 977
 binding table 977
 configuration guidelines 979
 described 977
 DHCP snooping 977
 enabling 980, 981
 EtherChannels 979
 port security 979
 routed ports 979
 static bindings 980, 981
 adding 980, 981
 static hosts 981
 TCAM entries 979
 trunk interfaces 979
 VRF 979
IP traceroute 1347, 1363
 executing 1363
 overview 1347
IP unicast routing 230, 714, 716, 717
 enabling 716
 inter-VLAN 714
 IP addressing 717
 classes 717
 IPv6 230
 subnet mask 717
IP-precedence-to-DSCP map for QoS 613, 650
IPv4 ACLs 898, 899, 900, 904, 911
 applying to interfaces 911
 extended, creating 900
 interfaces 898
 named 904
 standard, creating 899
IPv4 and IPv6 232
IPv6 213, 230, 231, 232, 233, 234, 239, 243
 ACL 243
 address formats 230
 addresses 230
 and switch stacks 233
 applications 232
 assigning address 234
 autoconfiguration 231
 default configuration 234
 defined 230
 forwarding 234
 ICMP 231
 monitoring 239
 neighbor discovery 231
 SDM templates 213
 stack master functions 233
 Stateless Autoconfiguration 231
 supported features 230
IPv6 on 233
IPv6 routing 233
ISL 230
 and IPv6 230

J
join messages, IGMP 67

K
KDC 846, 849
 described 846
 See also Kerberos[KDC 846
 zzz] 846
keepalive messages 256
Kerberos 846, 849, 850
 authenticating to 849
 boundary switch 849
 KDC 849
 network services 849
 configuration examples 846
 configuring 850
 credentials 846
 described 846
 KDC 846
 operation 849
 realm 846
 server 846
 switch as trusted third party 846
 terms 846
 TGT 846
 tickets 846
key 785, 822
key distribution center 846
 See KDC 846

L
LACP 369, 376, 377, 387, 394, 395, 397
 hot-standby ports 394
 interaction with other features 377
 min links 397
 modes 376
 port priority 395
 system priority 394
Layer 2 EtherChannel configuration guidelines 384
Layer 2 interface modes 1427
Layer 2 interfaces 387
Layer 2 NetFlow 476
Layer 2 traceroute 1346
 and ARP 1346
 and CDP 1346
 broadcast traffic 1346
 described 1346
 IP addresses and subnets 1346
 MAC addresses and VLANs 1346
 multicast traffic 1346
 multiple devices on a port 1346
 unicast traffic 1346
 usage guidelines 1346
Layer 3 interfaces 234
 assigning IPv6 addresses to 234
Layer 3 packets, classification methods 589
Leaking IGMP Reports 423
learn method and priority configuration 392
leave processing, enabling 222
limiting the services to the user 790, 829
Link Failure, detecting unidirectional 295
link local unicast addresses 231
link redundancy 420
See Flex Links 420
link-state tracking 412
description 412
listening 262
state 262
LLDP 163, 167, 168, 169
transmission timer and holdtime, setting 169
configuring 167
default configuration 167
enabling 168
overview 163
switch stack considerations 163
LLDP-MED 164, 171
configuring 171
TLVs 171
overview 164
supported TLVs 164
load balancing 377, 389
load balancing advantages 379
load sharing 1428, 1437, 1441
trunk ports 1428
local mode with AAA 853
local SPAN 550
location TLV 165
logging into 774
logging messages, ACL 894
logical interfaces, described 371
login 787, 825
login authentication 787, 825
with RADIUS 825
with TACACS+ 787
login banners 1248

M

MAC address of 738, 1224
MAC address-table move update 423, 425, 430, 431
configuration guidelines 425
calendar 430
default configuration 425
description 423
obtain and process messages 431
MAC addresses 1249, 1261, 1269
aging time 1261
and VLAN association 1249
building the address table 1249
default configuration 1249
discovering 1249

MAC addresses (continued)
dynamic 1249
learning 1249
static 1269
characteristics of 1269
MAC addresses and VLANs 1346
MAC extended access lists 884, 914
applying to Layer 2 interfaces 884, 914
MAC/PHY configuration status TLV 163
management address TLV 163
managing switch stacks 737, 1223
manual 977
manual upgrades with auto-advise 734, 1220
mapping table 612
default configuration 612
mapping tables for QoS 598, 612, 613, 614, 648, 650, 651, 654
configuring 612, 613, 614, 648, 650, 651, 654
CoS-to-DSCP 612, 648
DSCP 648
DSCP-to-CoS 614
DSCP-to-DSCP-mutation 654
IP-precedence-to-DSCP 613, 650
policed-DSCP 651

described 598
marking 641, 645, 681
action in policy map 641
action with aggregate policers 645, 681
match parameters 456
maximum aging time 280, 317
MSTP 317
STP 280
maximum hop count, MSTP 318
member number 740, 1226
memory allocation 607
merged 725, 1211
messages, to users through banners 1248
MIB support 59, 686
min links 397
mirroring traffic for analysis 549
mismatches 1361
mismatches, autonegotiation 1361
MLD Messages 214
MLD Queries 215
MLD Reports 216
MLD Snooping 214
MLDv1 Done message 216
modes 373, 376
monitoring 98, 191, 225, 239, 432, 477, 550, 674, 879, 923, 1362, 1398, 1470
multicast router interfaces 98
access groups 923
Flex Links 432
IGMP 225
snooping 225
monitoring (continued)
 IPv4 ACL configuration 923
 IPv6 239
 network traffic for analysis with probe 550
 SFP status 1362
 voice VLAN 1470
 VTP 1398
monitoring commands 49
monitoring power 199
monitoring status of 1362
mrouter Port 422
MST mode 1428
configuring 305, 307, 309, 310, 312, 313, 315, 316, 317, 318, 319, 320
 neighbor type 320
boundary ports 286, 293
 configuration guidelines 286
described 293
BPDU filtering 333, 349
described 333
enabling 349
BPDU guard 332, 348
described 332
enabling 348
CIST regional root 290, 291
CIST root 291
CIST, described 290
configuration guidelines 287
configuring 305, 307, 309, 310, 312, 313, 315, 316, 317, 318, 319, 320
 device priority 313
 forward-delay time 316
 hello time 315
 link type for rapid convergence 319
 maximum aging time 317
 maximum hop count 318
MST region 305
 path cost 312
 port priority 310
 root device 307
 secondary root device 309
CST 290
 operations between regions 290
default configuration 301
displaying status 328
enabling the mode 305
EtherChannel guard 341, 354
described 341
enabling 354
extended system ID 288, 309
 effects on root device 288
 effects on secondary root device 309
 unexpected behavior 288
MSTP (continued)
 IEEE 802.1s 291, 293, 294
 port role naming change 294
 implementation 293
ten terminology 291
 instances supported 265
 interoperability, blocking to forwarding 332
 interoperability and compatibility among modes 266, 286
 interoperability with IEEE 802.1D 296, 321
described 296
 restarting migration process 321
IST 290
 operations within a region 290
loop guard 342, 357
described 342
enabling 357
mapping VLANs to MST instance 306
MST region 289, 290, 292, 305
CIST 290
configuring 305
described 289
hop-count mechanism 292
IST 289
 supported spanning-tree instances 289
PortFast 332, 346
described 332
enabling 346
preventing root switch selection 341
root device 288
 configuring 288
 effects of extended system ID 288
 unexpected behavior 288
root guard 341, 356
described 341
enabling 356
shutdown Port Fast-enabled port 332
stack changes, effects of 295
status, displaying 328
MTU 183
 system 183
Multicast Client Aging Robustness 215
Multicast Fast Convergence 422, 435
multicast groups 67, 69, 78, 220
 joining 67
 leaving 69
 static joins 78, 220
multicast packets 937
 ACLs on 937
Multicast Route Discovery 215
multicast router interfaces, monitoring 98
multicast router ports, adding 76
multicast television application 107
multicast traffic 1346
multiple devices on a port 1346
multiple UDP ports 822
MVR 106, 109
 default configuration 109
 described 106
MVR interfaces 112
MVR parameters 109

N
NameSpace Mapper 486
native VLAN 1435
neighbor discovery 231
neighbor discovery, IPv6 231
NetFlow 894
network 18
Network Assistant 737, 1223
 managing switch stacks 737, 1223
Network Load Sharing 1428
 STP path cost 1428
 STP priorities 1428
network policy TLV 165
network services 849
non-IP traffic filtering 912
nonhierarchical policy maps 641
 configuring 641
normal-range 1408
 VLAN configuration guidelines 1408
NTP 1242, 1245
 associations 1245
 defined 1245
 overview 1242
 time 1245
 services 1245
numbering of 371

O
OBFL 1349, 1364, 1365
 configuring 1364
 described 1349
 displaying 1365
offline configuration 731, 743, 1217, 1229
 provisioned configuration, defined 731, 1217
 provisioned switch, defined 731, 1217
 provisioning a new member 743, 1229
on Layer 2 interfaces 387
on-board failure logging 1340
online diagnostics 1331
 described 1331
 overview 1331
operation 849
operation of 783, 800
overview 757, 761, 781, 799, 1331, 1345, 1347

P
packet modification, with QoS 609
PaGP 369
PAgP 372, 373, 375, 387, 392
 aggregate-port learners 392
 described 372
 interaction with other features 375
 interaction with virtual switches 375
 learn method and priority configuration 392
 modes 373
 See EtherChannel 372
 with dual-action detection 375
partitioned 725, 1211, 1360
password 1385
password and privilege level 760
password recovery disable considerations 766
passwords 757, 760, 762, 764, 766, 767, 769, 1344
 default configuration 760
 disabling recovery of 766
 encrypting 764
 overview 757
 recovery of 1344
 setting 762, 764, 767, 769
 enable 762
 enable secret 764
 Telnet 767
 with usernames 769
path cost 256, 275, 312
MSTP 312
STP 275
persistent self-signed certificate 870
ping 1345, 1362, 1370
 character output description 1370
 executing 1362
 overview 1345
PoE 27, 124, 188, 190, 191, 199
 auto mode 190
 CDP with power consumption, described 188
 CDP with power negotiation, described 188
 Cisco intelligent power management 188
 devices supported 124, 188
 high-power devices operating in low-power mode 188
 IEEE power classification levels 188
 monitoring 191
 monitoring power 199
 policing power consumption 199
 policing power usage 191
 power management modes 190
PoE (continued)
 power negotiation extensions to CDP 188
 powered-device detection and initial power allocation 188
 standards supported 188
 static mode 190
 supported watts per port 124, 188
PoE ports 1344
policed-DSCP map for QoS 651
policers 596, 645
 configuring 645
 for more than one traffic class 645
 types of 596
policing 597
 token-bucket algorithm 597
policing power consumption 199
policing power usage 191
policy maps for QoS 641
 nonhierarchical on physical ports 641
 configuring 641
port 256, 263
 priority 256
 root 263
port ACLs 886, 887
 defined 886
 types of 887
Port Aggregation Protocol 372
 See EtherChannel 372
port description TLV 163
port priority 274, 310, 395
 MSTP 310
 STP 274
port security 979
port VLAN ID TLV 163
port-based authentication 1104, 1113, 1114, 1115, 1119, 1130
 configuration guidelines 1114
 configuring 1115, 1119
 RADIUS server 1115
 RADIUS server parameters on the switch 1119
 default configuration 1113
 device roles 1104
 displaying statistics 1130
 enabling 1119
 802.1X authentication 1119
 switch 1104
 as proxy 1104
port-channel interfaces 371
 numbering of 371
power level 19, 20, 27
power management modes 190
power management TLV 165
power negotiation extensions 188
power negotiation extensions to CDP 188
powered-device detection and initial power allocation 188
preemption delay, default configuration 425
preemption, default configuration 425
prerequisites 453, 585, 689, 1425, 1447
 auto-QoS 689
 QoS 585
 VLAN trunks 1425
 VMPS 1447
preventing unauthorized access 757
prioritization 588
priority 1469
 overriding CoS 1469
priority value 741, 1227
privilege levels 761, 771, 773, 774
 changing the default for lines 773
 exiting 774
 logging into 774
 overview 761
 setting a command with 771
Protecting Enable and Enable Secret Passwords with Encryption 775
 Example command 775
provisioned configuration, defined 731, 1217
provisioned switch, defined 731, 1217
provisioning a new member 743, 1229
provisioning new members for a switch stack 731, 1217
proxy reports 422
pruning-eligible list 1434
PVST mode 1428
PVST+ 265, 266
 described 265
 IEEE 802.1Q trunking interoperability 266
 instances supported 265
QoS 590, 591, 592, 594, 595, 596, 598, 600, 604, 605, 608, 609, 612, 613,
 614, 616, 618, 620, 624, 626, 628, 636, 639, 641, 644, 645, 648, 650,
 651, 652, 654, 656, 658, 660, 662, 665, 667, 669, 671, 673, 681, 689,
 691, 693, 694, 697
 QoS 591, 660
 ingress queues 660
 configuring shared weights for SRR 660
 auto-QoS 691, 694, 697
 categorizing traffic 691
 disabling 697
 effects on running configuration 694
 basic model 590
 class maps 636, 639
 configuring 636, 639
classification 590, 591, 592, 594, 624
classification 590, 591, 592, 594, 624
 DSCP transparency, described 624
 forwarding treatment 590
 IP ACLs, described 594
QoS (continued)

classification (continued)

MAC ACLs, described 591, 594
options for IP traffic 592
trusted CoS, described 591
configuration guidelines 693
auto-QoS 693
configuring 618, 620, 626, 641, 645, 648, 656, 662, 681, 694
aggregate policers 645, 681
auto-QoS 694
default port CoS value 620
DSCP maps 648
DSCP trust states bordering another domain 626
egress queue characteristics 662
ingress queue characteristics 656
IP standard ACLs 628
policy maps on physical ports 641
port trust states within the domain 618
default auto configuration 690
default configuration 609
egress queues 608, 665, 667, 669
configuring shaped weights for SRR 667
configuring shared weights for SRR 669
displaying the threshold map 667
mapping DSCP or CoS values 665
WTD, described 608
enabling globally 614
enabling VLAN-based on physical ports 616
implicit deny 595
ingress queues 604, 605, 658, 660
allocating bandwidth 660
allocating buffer 658
buffer and bandwidth allocation, described 605
displaying the threshold map 658
priority queue, described 605
WTD, described 604
IP phones 690
automatic classification and queuing 690
limiting bandwidth on egress interface 673
mapping tables 598, 612, 613, 614, 648, 650, 651, 652, 654
CoS-to-DSCP 612, 648
DSCP-CoS 652
DSCP-to-CoS 614
DSCP-to-DSCP-mutation 654
IP-precedence-to-DSCP 613, 650
policed-DSCP 651
types of 598
marked-down actions 644
marking, described 596
packet modification 609
policers 596, 644
configuring 644
types of 596
policing, described 596
QoS (continued)

QoS 591, 660
classification 591
trust DSCP, described 591
trust IP precedence, described 591
queues 600, 608, 671
high priority (expedite) 608, 671
location of 600
WTD, described 600
rewrites 609
SRR 660
configuring 660
shared weights on ingress queues 660
QoS policy 628
queries 24, 41
queries, IGMP 67
querying 56, 57
domains 56
keywords 56
name attribute 56
set power levels 57
queuing 602, 606
R

RADIUS 799, 800, 808, 822, 825, 827, 829, 831, 832, 834, 836, 842
attributes 834, 836, 842
vendor-proprietary 836, 842
vendor-specific 834
configuring 822, 825, 829, 831, 832
accounting 831
authentication 825
authorization 829
communication, global 822, 832
communication, per-server 822
multiple UDP ports 822
default configuration 808
defining AAA server groups 827
identifying the server 822
key 822
limiting the services to the user 829
login 825
operation of 800
overview 799
suggested network environments 799
tracking services accessed by user 831
RADIUS Change of Authorization 801
rapid convergence 297
Rapid Spanning Tree Protocol 287
See RSTP 287
realm 846
reconfirmation interval, changing 1454
reconfirmation interval, VMPS, changing 1454
reconfirming 1454
reconfirming dynamic VLAN membership 1454
reconfirming membership 1454
recovery of 1344
recurrences 23, 38
configuring 31, 34, 35, 38, 47, 152, 387, 740, 741, 785, 787, 790, 791, 822, 825, 829, 831, 832, 850, 862, 872, 875, 878, 1226, 1227, 1310, 1452
day of month 23
day of week 23
redirecting error message output 1363
redundancy 263, 335, 368
 EtherChannel 368
 STP 263, 335
 backbone 263
 multidrop backbone 335
redundant links and UplinkFast 351, 352
reference 294
references 707
 auto-QoS 707
Remote Authentication Dial-In User Service 799
 See RADIUS 799
remote SPAN 551
removing a provisioned member 744, 1230
replacing 731, 1217
replacing a failed member 731, 1217
report suppression 224
 disabling 224
report suppression, IGMP 70, 89, 224
 described 70
 disabling 89, 224
restricting access 757, 781, 799
 overview 757
 RADIUS 799
 TACACS+ 781
restrictions 65, 106, 255, 286, 331, 454, 484, 690, 1378, 1448, 1464
 auto-QoS 690
 Configuration Engine 484
 IGMP snooping 65
 MSTP 286
 Optional Spanning-Tree Features 331
 STP 255
 voice VLANs 1464
 VTP 1378
retry count, changing 1456
retry count, VMPS, changing 1456
RFC 66, 1242
 1112, IP multicast and IGMP 66
 1305, NTP 1242
RFC 5176 Compliance 803
role 256
 port 256
root 256, 257
 port 256
root (continued)
 switch 256, 257
root device 271, 307
 MSTP 307
 STP 271
routed packets, ACLs on 936
routed ports 979
router ACLs 886, 888
 defined 886
types of 888
RSPAN 548, 549, 550, 551, 553, 554, 555, 556, 557, 559, 560, 567, 568, 571, 575
 and stack changes 559
 characteristics 557
 configuration guidelines 560
 default configuration 559
 destination ports 556
 in a device stack 550
 interaction with other features 557
 monitored ports 555
 monitoring ports 556
 overview 549
 received traffic 554
 session limits 548
 sessions 553, 567, 568, 571, 575
 creating 567, 568
 defined 553
 limiting source traffic to specific VLANs 571
 specifying monitored ports 567, 568
 with ingress traffic enabled 575
source ports 555
transmitted traffic 554
VLAN-based 555
RSTP 296, 297, 298, 299, 300, 319, 321
 active topology 296
 BPDU 299, 300
 format 299
 processing 300
 designated port, defined 296
 designated switch, defined 296
 interoperability with IEEE 802.1D 296, 300, 321
 described 296
 restarting migration process 321
 topology changes 300
 overview 296
 port roles 296, 298
 described 296
 synchronized 298
 rapid convergence 297, 298, 319
 cross-stack rapid convergence 298
 described 297
 edge ports and Port Fast 297
 point-to-point links 297, 319
 root ports 297

RSTP (continued)
 root port, defined 296
RTC 1242
 benefits 1242
 defined 1242

S

collider 471
samplers 461
scheduling 602, 606
SCP 862
 and SSH 862
 configuring 862
SDM 737, 1223, 1310
 switch stack consideration 737, 1223
 templates 1310
 configuring 1310
SDM templates 213
SDM templates supporting 232
Secure Copy Protocol
secure HTTP client 878, 879
 configuring 878
 displaying 879
secure HTTP server 875, 879
 configuring 875
 displaying 879
Secure Shell 861
SecureOn 26
security 22
security and identification 1361
See also IP traceroute 1347
See also Kerberos[KDC 846
 zzz] 846
See EtherChannel 372, 376
See Ethernet management port 157
See EUI 231
see HTTPS 869
See IP 230
See KDC 846
See RADIUS 799
See SCP 862
See TACACS+ 781
self-signed certificate 870
server 846
service-provider network, MSTP and RSTP 287
services 486
 networking 486
setting 762, 764, 767, 769
 enable 762
 enable secret 764
 Telnet 767
setting (continued)
 with usernames 769
setting a command with 771
setting a password 767
Setting a Telnet Password for a Terminal Line 776
 Example command 776
Setting or Changing a Static Enable Password 775
 Example command 775
setting packet forwarding 1364
Setting the Privilege Level for a Command 776
 Example command 776
SFP security and identification 1361
SFP status 1362
SFPs 1361, 1362
 monitoring status of 1362
 security and identification 1361
 status, displaying 1362
shaped mode 608
shared mode 608
show access-lists hw-summary command 895
show forward command 1364
show interfaces switchport 435
show platform forward command 1364
Simple Network Management Protocol (SNMP) 507
 single-switch EtherChannel 370
SNMP 1262, 1265, 1267
 traps 1262, 1265, 1267
 enabling MAC address notification 1262, 1265, 1267
SNMP and Syslog Over IPv6 233
snooping 225
source-and-destination MAC address forwarding, EtherChannel 377
source-and-destination-IP address based forwarding, EtherChannel 377
source-IP address based forwarding, EtherChannel 377
source-IP address-based forwarding 378
source-MAC address forwarding 378
source-MAC address forwarding, EtherChannel 377
SPAN 548, 549, 553, 554, 555, 556, 557, 559, 560, 563, 565
 and stack changes 559
 configuration guidelines 559
 default configuration 559
 destination ports 556
 interaction with other features 557
 monitored ports 555
 monitoring ports 556
 overview 549
 received traffic 554
 session limits 548
 sessions 553, 559, 560, 563, 565
 creating 560
 defined 553
 limiting source traffic to specific VLANs 565
 removing destination (monitoring) ports 559
SPAN (continued)
sessions (continued)
 specifying monitored ports 560
 with ingress traffic enabled 563
source ports 555
transmitted traffic 554
VLAN-based 555
SPAN traffic 554
Spanning Tree 260
states 260
spanning-tree 256
port priority 256
SRR 601
 described 601
 shaped mode 601
 shared mode 601
SSH 860, 861
 encryption methods 861
 user authentication methods, supported 861
SSL 872, 875, 878, 879
 configuration guidelines 872
 configuring a secure HTTP client 878
 configuring a secure HTTP server 875
 monitoring 879
stack changes 233
 effects on 233
 IPv6 routing 233
stack changes, effects of 381
stack changes, effects on
 ACL configuration 891
 cross-stack EtherChannel 383
 EtherChannel 381
 IGMP snooping 70
 IP routing 715
 SPAN and RSPAN 559
 STP 267
stack changes, effects on 295
 MSTP 295
stack master 233
 IPv6 233
stack master functions 233
stack member 233, 731, 740, 741, 743, 744, 744, 1217, 1226, 1227, 1229, 1230
 configuring 740, 741, 1226, 1227
 member number 740, 1226
 priority value 741, 1227
 IPv6 233
 provisioning a new member 743, 1229
 removing a provisioned member 744, 1230
 replacing 731, 1217
stacking 461
stacks 107
stacks switch 731, 1217
 replacing a failed member 731, 1217
stacks, 257, 265
 MSTP instances supported 265
 STP 257
 bridge ID 257
 switch 265
stacks, switch 233, 731, 734, 738, 741, 743, 1217, 1220, 1224, 1227, 1229, 1247, 1250
 assigning information 741, 1227, 1229
 priority value 741, 1227
 provisioning a new member 743, 1229
 auto-advice 734, 1220
 auto-extract 734, 1220
 auto-upgrade 734, 1220
 IPv6 on 233
 MAC address of 738, 1224
 offline configuration 731, 743, 1217, 1229
 provisioned configuration, defined 731, 1217
 provisioned switch, defined 731, 1217
 provisioning a new member 743, 1229
 partitioned 1360
 system prompt consideration 1247
 version-mismatch (VM) mode 734, 1220
 automatic upgrades with auto-upgrade 734, 1220
 described 734, 1220
 upgrades with auto-extract 734, 1220
 stacks, switch version-mismatch (VM) mode 734, 1220
 manual upgrades with auto-advice 734, 1220
 stacks, switch 725, 734, 740, 744, 1217, 1220, 1226, 1230
 assigning information 740, 1226
 member number 740, 1226
 auto-copy 734, 1220
 merged 725, 1211
 offline configuration 744, 1230
 removing a provisioned member 744, 1230
 partitioned 725, 1211
 standards supported 188
 Stateless Autoconfiguration 231
 static addresses 1248
 See addresses 1248
 static bindings 980, 981
 adding 980, 981
 static hosts 981
 static joins 220
 static mode 190
 static-access ports 1415
 statistics 202, 1130
 802.1X 1130
 interface 202
 status, displaying 1362
 accelerating root port selection 334

STP (continued)
BackboneFast 338, 353
 described 338
 enabling 353
BPDU message exchange 257
 configuring 268, 271, 273, 274, 275, 277, 278, 279, 280, 281
 device priority 277
 forward-delay time 279
 hello time 278
 maximum aging time 280
 path cost 275
 port priority 274
 root device 271
 secondary root device 273
 spanning-tree mode 268
 transmit hold-count 281
cross-stack UplinkFast 335
 described 335
default configuration 267
designated, defined 257
 switch 257
designated port, defined 257
detecting indirect link failures 338
disabling 270
displaying status 282
EtherChannel guard 341, 354
 described 341
 enabling 354
extended system ID 255, 258, 271, 273
 effects on root device 271
 effects on the secondary root device 273
 overview 258
 unexpected behavior 255
IEEE 802.1D and bridge ID 258
IEEE 802.1D and multicast addresses 264
IEEE 802.11t and VLAN identifier 258
instances supported 265
interface states 260, 261, 262
 blocking 261
 disabled 262
 forwarding 261, 262
 learning 262
 listening 262
interoperability and compatibility among modes 266, 286
keepalive messages 256
limitations with IEEE 802.1Q trunks 266
modes supported 265
overview 256
protocols supported 265
redundant connectivity 263
root 255, 257
 election 257
 switch 255, 257
 unexpected behavior 255
STP (continued)
root device 258, 259, 271
 configuring 259
 effects of extended system ID 258, 271
root port, defined 257
stack changes, effects of 267
status, displaying 282
UplinkFast 334, 351, 352
 described 334
 disabling 352
 enabling 351
VLAN-bridge 266
STP path cost 1441
STP port priorities 1437
stratum, NTP 1244
subnet mask 717
Subnetwork Access Protocol (SNAP) 507
suggested network environments 799
summer time 1252
supported features 158, 230
supported watts per port 124, 188
SVIs 888
 and router ACLs 888
Switch Access 775
 displaying 775
 switch as trusted third party 846
 switch stack 1364
 switch stack consideration 737, 1223
 switch stacks 217, 1383
 switched packets, ACLs on 935
 switchport backup interface 436
 system 183
 system capabilities TLV 163
 system clock 1242, 1250, 1251, 1252
 configuring 1250, 1251, 1252
 daylight saving time 1252
 manually 1250
 summer time 1252
 time zones 1251
 overview 1242
 system description TLV 163
 system name 1247, 1256
 default configuration 1247
 manual configuration 1256
 system name TLV 163
 system priority 394
 system prompt, default setting 1247

T
TACACS+ 781, 783, 785, 787, 790, 791, 793
 accounting, defined 781
TACACS+ *(continued)*
- authentication, defined 781
- authorization, defined 781
- configuring 785, 787, 790, 791
 - accounting 791
 - authentication key 785
 - authorization 790
 - login authentication 787
 - default configuration 785
- displaying 793
- identifying the server 785
- key 785
- limiting the services to the user 790
- login 787
- operation of 783
- overview 781
- tracking services accessed by user 791

TCAM entries 979

technical assistance 59, 686

Telnet 767
 - setting a password 767

templates 1310
 - configuring 1310

temporary self-signed certificate 870

Terminal Access Controller Access Control System Plus 781
 - See TACACS+ 781

terminal lines, setting a password 767

terms 846

TGT 846

tickets 846

time 1241
 - See NTP and system clock 1241

time format 23

time ranges in ACLs 897, 907

time zone 23

time zones 1251

time-exceeded messages 1347

time-range command 897

timestamp sys-uptime 458

TLVs 163
 - defined 163

Token Rings 1392

Topology Change Notification Processing 216

traceroute and 1347

traceroute command 1347
 - See also IP traceroute 1347

traceroute, Layer 2 *(continued)*
 - and ARP 1346
 - and CDP 1346
 - broadcast traffic 1346
 - described 1346
 - IP addresses and subnets 1346
 - MAC addresses and VLANs 1346

traceroute, Layer 2 *(continued)*
 - multicast traffic 1346
 - multiple devices on a port 1346
 - unicast traffic 1346
 - usage guidelines 1346

tracking services accessed by user 791, 831

traffic 889, 890
 - fragmented 889, 890

transport tcp flags 458

traps 1262, 1265, 1267
 - configuring MAC address notification 1262, 1265, 1267
 - enabling 1262, 1265, 1267

troubleshooting 697, 1345, 1347, 1348, 1361, 1364, 1457
 - auto-QoS 697
 - setting packet forwarding 1364
 - SFP security and identification 1361
 - show forward command 1364
 - with debug commands 1348
 - with ping 1345
 - with traceroute 1347

Troubleshooting Examples command 1370

trunk 1429, 1432
 - configuration 1429
 - failover 412
 - interfaces 979
 - port 1430

trunking 1426

trunking modes 1426

trunks 1427
 - allowed VLANs 1427

trust states 617

trusted boundary for QoS 622

trusted port states 591
 - classification options 591

trustpoints, CA 870

twisted-pair, detecting unidirectional links 442

types of connections 1452

U

UDLD 441, 442, 443, 444, 445, 446
 - aggressive 442, 443
 - aggressive mode 445
 - message time 445
 - default configuration 444
 - disabling 446
 - per interface 446
 - echoing detection mechanism 443, 444
 - enabling 445, 446
 - globally 445
 - per interface 446
 - fiber-optic links 443
UDLD (continued)
 neighbor database 443
 neighbor database maintenance 443
 normal 442
 normal mode 442
 overview 442
 restrictions 441
 twisted-pair links 443
unicast MAC address filtering 1270
configuration 1270
unicast traffic 1346
unsupported features 158
upgrades with auto-extract 734, 1220
UplinkFast 334, 351, 352
 described 334
 disabling 352
 enabling 351
usage guidelines 1346
user authentication methods, supported 861
username-based authentication 769
using commands 1348

V
vendor-proprietary 836
vendor-specific 834
version-mismatch (VM) mode 734, 1220
 automatic upgrades with auto-upgrade 734, 1220
 described 734, 1220
 displaying 734, 1220
 manual upgrades with auto-advice 734, 1220
 upgrades with auto-extract 734, 1220
virtual switches and PAgP 375
VLAN 475, 1404
 definition 1404
VLAN ACLs 886
 See VLAN maps 886
VLAN filtering and SPAN 556
VLAN ID, discovering 1249
VLAN load balancing on Flex Links 421, 425
 configuration guidelines 425
 described 421
VLAN map entries, order of 895
VLAN maps 886, 895, 916, 917, 918, 919, 920, 933, 934
 applying 920
 common uses for 933
 configuring guidelines 895
 configuring 916
 creating 918
 defined 886
 denying access to a server example 934
 denying and permitting packets 917, 919
VLAN membership 1454
 confirming 1454
VLAN monitoring commands 1419
VLAN port membership modes 1406
VLANs 264, 266, 565, 571
 aging dynamic addresses 264
 limiting source traffic with RSPAN 571
 limiting source traffic with SPAN 565
 STP and IEEE 802.1Q trunks 266
 VLAN-bridge STP 266
VMPS 1448, 1449, 1450, 1454, 1456, 1457
 dynamic port membership 1449, 1454, 1457
 described 1449
 reconfirming 1454
 troubleshooting 1457
 entering server address 1450
 reconfirmation interval, changing 1454
 reconfirming membership 1454
 retry count, changing 1456
 VMPS client configuration 1450
 default 1450
 VMPS Configuration Example command 1458
 voice VLAN 1465, 1469
 configuration guidelines 1465
 configuring IP phones for data traffic 1469
 override CoS of incoming frame 1469
 voice VLANs 1463, 1464
 VoIP device specifics 691
VRF 979
VTP 1378, 1384, 1385
 configuration requirements 1384
 version 1385
 VTP advertisements 1381
 VTP domain 1379, 1396
 VTP mode 1387
 VTP modes 1380
 VTP password 1389
 VTP primary 1391
 VTP pruning 1383, 1393
 VTP settings 1384
 VTP version 1392
 VTP version 2 1381
 VTP version 3 1382

W
Wake on LAN 16, 26
web-based authentication 1103, 1109
 customizable web pages 1109
 description 1103
 web-based authentication, interactions with other features 1112

wired location service 165, 166, 176
 configuring 176
 location TLV 165
 understanding 166
with debug commands 1348
with dual-action detection 375
with ping 1345
with RADIUS 825, 829, 831
with STP 383
with TACACS+ 781, 787, 790, 791
with traceroute 1347
with usernames 769

WoL 48, 49
 without a MAC address 49
 with a MAC address 48
WTD 656, 662
 setting thresholds 656, 662
 egress queue-sets 662
 ingress queues 656

Z

zzz] 846