Catalyst 2960-X Switch IPv6 Configuration Guide, Cisco IOS Release
15.0(2)EX

First Published: July 10, 2013

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000
 800 553-NETS (6387)
Fax: 408 527-0883

Text Part Number: OL-29036-01
CONTENTS

Preface vii
 Document Conventions vii
 Related Documentation ix
 Obtaining Documentation and Submitting a Service Request ix

CHAPTER 1
 Using the Command-Line Interface 1
 Information About Using the Command-Line Interface 1
 Command Modes 1
 Using the Help System 3
 Understanding Abbreviated Commands 4
 No and default Forms of Commands 4
 CLI Error Messages 4
 Configuration Logging 5
 How to Use the CLI to Configure Features 5
 Configuring the Command History 5
 Changing the Command History Buffer Size 6
 Recalling Commands 6
 Disabling the Command History Feature 7
 Enabling and Disabling Editing Features 7
 Editing Commands through Keystrokes 8
 Editing Command Lines That Wrap 9
 Searching and Filtering Output of show and more Commands 10
 Accessing the CLI through a Console Connection or through Telnet 11

CHAPTER 2
 Configuring MLD Snooping 13
 Finding Feature Information 13
 Information About Configuring IPv6 MLD Snooping 13
Understanding MLD Snooping 14
MLD Messages 14
MLD Queries 15
Multicast Client Aging Robustness 15
Multicast Router Discovery 15
MLD Reports 16
MLD Done Messages and Immediate-Leave 16
Topology Change Notification Processing 17
MLD Snooping in Switch Stacks 17
How to Configure IPv6 MLD Snooping 17
Default MLD Snooping Configuration 17
MLD Snooping Configuration Guidelines 18
Enabling or Disabling MLD Snooping on the Switch 18
Enabling or Disabling MLD Snooping on a VLAN 19
Configuring a Static Multicast Group 20
Configuring a Multicast Router Port 21
Enabling MLD Immediate Leave 22
Configuring MLD Snooping Queries 23
Disabling MLD Listener Message Suppression 24
Displaying MLD Snooping Information 25
Configuration Examples for Configuring MLD Snooping 26
Configuring a Static Multicast Group: Example 26
Configuring a Multicast Router Port: Example 27
Enabling MLD Immediate Leave: Example 27
Configuring MLD Snooping Queries: Example 27

CHAPTER 3

Configuring IPv6 Unicast Routing 29
Finding Feature Information 29
Information About Configuring IPv6 Host Functions 29
Understanding IPv6 30
IPv6 Addresses 30
Supported IPv6 Unicast Routing Features 30
128-Bit Wide Unicast Addresses 31
DNS for IPv6 31
ICMPv6 31
<table>
<thead>
<tr>
<th>Chapter 4: Configuring IPv6 ACL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finding Feature Information</td>
</tr>
<tr>
<td>Information About Configuring IPv6 ACLs</td>
</tr>
<tr>
<td>Understanding IPv6 ACLs</td>
</tr>
<tr>
<td>Supported ACL Features</td>
</tr>
<tr>
<td>IPv6 ACL Limitations</td>
</tr>
<tr>
<td>Configuring IPv6 ACLs</td>
</tr>
<tr>
<td>Default IPv6 ACL Configuration</td>
</tr>
<tr>
<td>Interaction with Other Features and Switches</td>
</tr>
<tr>
<td>Creating IPv6 ACL</td>
</tr>
<tr>
<td>Applying an IPv6 ACL to an Interface</td>
</tr>
<tr>
<td>Displaying IPv6 ACLs</td>
</tr>
<tr>
<td>Configuration Examples for IPv6 ACL</td>
</tr>
<tr>
<td>Example: Creating IPv6 ACL</td>
</tr>
<tr>
<td>Example: Applying IPv6 ACLs</td>
</tr>
<tr>
<td>Example: Displaying IPv6 ACLs</td>
</tr>
</tbody>
</table>
Preface

This preface contains the following topics:

- Document Conventions, page vii
- Related Documentation, page ix
- Obtaining Documentation and Submitting a Service Request, page ix

Document Conventions

This document uses the following conventions:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>^ or Ctrl</td>
<td>Both the ^ symbol and Ctrl represent the Control (Ctrl) key on a keyboard.</td>
</tr>
<tr>
<td></td>
<td>For example, the key combination ^D or Ctrl-D means that you hold down the</td>
</tr>
<tr>
<td></td>
<td>Control key while you press the D key. (Keys are indicated in capital letters</td>
</tr>
<tr>
<td></td>
<td>but are not case sensitive.)</td>
</tr>
<tr>
<td>bold font</td>
<td>Commands and keywords and user-entered text appear in bold font.</td>
</tr>
<tr>
<td>Italic font</td>
<td>Document titles, new or emphasized terms, and arguments for which you supply</td>
</tr>
<tr>
<td></td>
<td>values are in italic font.</td>
</tr>
<tr>
<td>Courier font</td>
<td>Terminal sessions and information the system displays appear in Courier font.</td>
</tr>
<tr>
<td>Bold Courier font</td>
<td>Bold Courier font indicates text that the user must enter.</td>
</tr>
<tr>
<td>[x]</td>
<td>Elements in square brackets are optional.</td>
</tr>
<tr>
<td>...</td>
<td>An ellipsis (three consecutive nonbolded periods without spaces) after a</td>
</tr>
<tr>
<td></td>
<td>syntax element indicates that the element can be repeated.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>or arguments.</td>
</tr>
<tr>
<td>Convention</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>[x</td>
<td>y]</td>
</tr>
<tr>
<td>{x</td>
<td>y}</td>
</tr>
<tr>
<td>[x {y</td>
<td>z}]</td>
</tr>
<tr>
<td>string</td>
<td>A nonquoted set of characters. Do not use quotation marks around the string or the string will include the quotation marks.</td>
</tr>
<tr>
<td><></td>
<td>Nonprinting characters such as passwords are in angle brackets.</td>
</tr>
<tr>
<td>[]</td>
<td>Default responses to system prompts are in square brackets.</td>
</tr>
<tr>
<td>!, #</td>
<td>An exclamation point (!) or a pound sign (#) at the beginning of a line of code indicates a comment line.</td>
</tr>
</tbody>
</table>

Reader Alert Conventions

This document uses the following conventions for reader alerts:

- **Note**: Means reader take note. Notes contain helpful suggestions or references to material not covered in the manual.

- **Tip**: Means the following information will help you solve a problem.

- **Caution**: Means reader be careful. In this situation, you might do something that could result in equipment damage or loss of data.

- **Timesaver**: Means the described action saves time. You can save time by performing the action described in the paragraph.

- **Warning**: Means reader be warned. In this situation, you might perform an action that could result in bodily injury.
Related Documentation

Note
Before installing or upgrading the switch, refer to the release notes.

• Cisco SFP and SFP+ modules documentation, including compatibility matrixes, located at:

Obtaining Documentation and Submitting a Service Request

For information on obtaining documentation, submitting a service request, and gathering additional information, see the monthly What's New in Cisco Product Documentation, which also lists all new and revised Cisco technical documentation, at:

Subscribe to the What's New in Cisco Product Documentation as a Really Simple Syndication (RSS) feed and set content to be delivered directly to your desktop using a reader application. The RSS feeds are a free service and Cisco currently supports RSS version 2.0.
CHAPTER 1

Using the Command-Line Interface

This chapter contains the following topics:

• Information About Using the Command-Line Interface, page 1
• How to Use the CLI to Configure Features, page 5

Information About Using the Command-Line Interface

This section describes the Cisco IOS command-line interface (CLI) and how to use it to configure your switch.

Command Modes

The Cisco IOS user interface is divided into many different modes. The commands available to you depend on which mode you are currently in. Enter a question mark (?) at the system prompt to obtain a list of commands available for each command mode.

You can start a CLI session through a console connection, through Telnet, a SSH, or by using the browser. When you start a session, you begin in user mode, often called user EXEC mode. Only a limited subset of the commands are available in user EXEC mode. For example, most of the user EXEC commands are one-time commands, such as show commands, which show the current configuration status, and clear commands, which clear counters or interfaces. The user EXEC commands are not saved when the switch reboots.

To have access to all commands, you must enter privileged EXEC mode. Normally, you must enter a password to enter privileged EXEC mode. From this mode, you can enter any privileged EXEC command or enter global configuration mode.

Using the configuration modes (global, interface, and line), you can make changes to the running configuration. If you save the configuration, these commands are stored and used when the switch reboots. To access the various configuration modes, you must start at global configuration mode. From global configuration mode, you can enter interface configuration mode and line configuration mode.

This table describes the main command modes, how to access each one, the prompt you see in that mode, and how to exit the mode.
Table 1: Command Mode Summary

<table>
<thead>
<tr>
<th>Mode</th>
<th>Access Method</th>
<th>Prompt</th>
<th>Exit Method</th>
<th>About This Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>User EXEC</td>
<td>Begin a session using Telnet, SSH, or console.</td>
<td>Switch></td>
<td>Enter <code>logout</code> or <code>quit</code>.</td>
<td>Use this mode to · Change terminal settings.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>· Perform basic tests.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>· Display system information.</td>
</tr>
<tr>
<td>Privileged EXEC</td>
<td>While in user EXEC mode, enter the <code>enable</code> command.</td>
<td>Switch#</td>
<td>Enter <code>disable</code> to exit.</td>
<td>Use this mode to verify commands that you have entered. Use a password to protect access to this mode.</td>
</tr>
<tr>
<td>Global configuration</td>
<td>While in privileged EXEC mode, enter the <code>configure</code> command.</td>
<td>Switch(config)#</td>
<td>To exit to privileged EXEC mode, enter <code>exit</code> or <code>end</code>, or press Ctrl-Z.</td>
<td>Use this mode to configure parameters that apply to the entire switch.</td>
</tr>
<tr>
<td>VLAN configuration</td>
<td>While in global configuration mode, enter the <code>vlan vlan-id</code> command.</td>
<td>Switch(config-vlan)#</td>
<td>To exit to global configuration mode, enter the <code>exit</code> command.</td>
<td>Use this mode to configure VLAN parameters. When VTP mode is transparent, you can create extended-range VLANs (VLAN IDs greater than 1005) and save configurations in the switch startup configuration file.</td>
</tr>
<tr>
<td>Interface configuration</td>
<td>While in global configuration mode, enter the <code>interface</code> command (with a specific interface).</td>
<td>Switch(config-if)#</td>
<td>To exit to global configuration mode, enter <code>exit</code>.</td>
<td>Use this mode to configure parameters for the Ethernet ports.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>To return to privileged EXEC mode, press Ctrl-Z or enter <code>end</code>.</td>
<td></td>
</tr>
</tbody>
</table>
Using the Help System

You can enter a question mark (?) at the system prompt to display a list of commands available for each command mode. You can also obtain a list of associated keywords and arguments for any command.

SUMMARY STEPS

1. help
2. abbreviated-command-entry ?
3. abbreviated-command-entry <Tab>
4. ?
5. command ?
6. command keyword ?

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>help</td>
<td>Example: Switch# help</td>
<td>Obtains a brief description of the help system in any command mode.</td>
</tr>
</tbody>
</table>

| Step 2 | abbreviated-command-entry ? | *Example:* Switch# di? dir disable disconnect | Obtains a list of commands that begin with a particular character string. |

| Step 3 | abbreviated-command-entry <Tab> | *Example:* Switch# sh conf<tab> Switch# show configuration | Completes a partial command name. |
Understanding Abbreviated Commands

You need to enter only enough characters for the switch to recognize the command as unique.

This example shows how to enter the `show configuration` privileged EXEC command in an abbreviated form:

```
Switch# show conf
```

No and default Forms of Commands

Almost every configuration command also has a `no` form. In general, use the `no` form to disable a feature or function or reverse the action of a command. For example, the `no shutdown` interface configuration command reverses the shutdown of an interface. Use the command without the keyword `no` to reenable a disabled feature or to enable a feature that is disabled by default.

Configuration commands can also have a `default` form. The `default` form of a command returns the command setting to its default. Most commands are disabled by default, so the `default` form is the same as the `no` form. However, some commands are enabled by default and have variables set to certain default values. In these cases, the `default` command enables the command and sets variables to their default values.

CLI Error Messages

This table lists some error messages that you might encounter while using the CLI to configure your switch.
Table 2: Common CLI Error Messages

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Meaning</th>
<th>How to Get Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Ambiguous command: “show con”</td>
<td>You did not enter enough characters for your switch to recognize the command.</td>
<td>Reenter the command followed by a question mark (?) with a space between the command and the question mark. The possible keywords that you can enter with the command appear.</td>
</tr>
<tr>
<td>% Incomplete command.</td>
<td>You did not enter all the keywords or values required by this command.</td>
<td>Reenter the command followed by a question mark (?) with a space between the command and the question mark. The possible keywords that you can enter with the command appear.</td>
</tr>
<tr>
<td>% Invalid input detected at ‘^’ marker.</td>
<td>You entered the command incorrectly. The caret (^) marks the point of the error.</td>
<td>Enter a question mark (?) to display all the commands that are available in this command mode. The possible keywords that you can enter with the command appear.</td>
</tr>
</tbody>
</table>

Configuration Logging

You can log and view changes to the switch configuration. You can use the Configuration Change Logging and Notification feature to track changes on a per-session and per-user basis. The logger tracks each configuration command that is applied, the user who entered the command, the time that the command was entered, and the parser return code for the command. This feature includes a mechanism for asynchronous notification to registered applications whenever the configuration changes. You can choose to have the notifications sent to the syslog.

Note

Only CLI or HTTP changes are logged.

How to Use the CLI to Configure Features

Configuring the Command History

The software provides a history or record of commands that you have entered. The command history feature is particularly useful for recalling long or complex commands or entries, including access lists. You can customize this feature to suit your needs.
Changing the Command History Buffer Size

By default, the switch records ten command lines in its history buffer. You can alter this number for a current terminal session or for all sessions on a particular line. This procedure is optional.

SUMMARY STEPS

1. terminal history [size number-of-lines]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>terminal history [size number-of-lines]</td>
<td>Changes the number of command lines that the switch records during the current terminal session in the privileged EXEC mode. You can configure the size from 0 through 256.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch# terminal history size 200</td>
<td></td>
</tr>
</tbody>
</table>

Recalling Commands

To recall commands from the history buffer, perform one of the actions listed in this table. These actions are optional.

Note

The arrow keys function only on ANSI-compatible terminals such as VT100s.

SUMMARY STEPS

1. Ctrl-P or use the up arrow key
2. Ctrl-N or use the down arrow key
3. show history

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>Ctrl-P or use the up arrow key</td>
<td>Recalls commands in the history buffer, beginning with the most recent command. Repeat the key sequence to recall successively older commands.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>Ctrl-N or use the down arrow key</td>
<td>Returns to more recent commands in the history buffer after recalling commands with Ctrl-P or the up arrow key. Repeat the key sequence to recall successively more recent commands.</td>
</tr>
</tbody>
</table>
Purpose

Command or Action

Step 3

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show history</code></td>
<td>Lists the last several commands that you just entered in privileged EXEC mode. The number of commands that appear is controlled by the setting of the <code>terminal history</code> global configuration command and the <code>history</code> line configuration command.</td>
</tr>
</tbody>
</table>

Example:

```
Switch# show history
```

Disabling the Command History Feature

The command history feature is automatically enabled. You can disable it for the current terminal session or for the command line. This procedure is optional.

SUMMARY STEPS

1. `terminal no history`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>terminal no history</code></td>
<td>Disables the feature during the current terminal session in the privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Example:

```
Switch# terminal no history
```

Enabling and Disabling Editing Features

Although enhanced editing mode is automatically enabled, you can disable it, and reenable it.

SUMMARY STEPS

1. `terminal editing`
2. `terminal no editing`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>terminal editing</code></td>
<td>Reenables the enhanced editing mode for the current terminal session in the privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Example:

```
Switch# terminal editing
```

```
Switch# terminal no editing
```

OL-29036-01

Catalyst 2960-X Switch IPv6 Configuration Guide, Cisco IOS Release 15.0(2)EX
Step 2

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>terminal no editing</code></td>
<td>Enables or disables enhanced mode for current terminal session.</td>
</tr>
<tr>
<td>Example: <code>Switch# terminal no editing</code></td>
<td>Enables or disables enhanced mode for current terminal session.</td>
</tr>
</tbody>
</table>

Editing Commands through Keystrokes

The keystrokes help you to edit the command lines. These keystrokes are optional.

Note: The arrow keys function only on ANSI-compatible terminals such as VT100s.

Table 3: Editing Commands

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl-B or use the left arrow key</td>
<td>Moves the cursor back one character.</td>
</tr>
<tr>
<td>Ctrl-F or use the right arrow key</td>
<td>Moves the cursor forward one character.</td>
</tr>
<tr>
<td>Ctrl-A</td>
<td>Moves the cursor to the beginning of the command line.</td>
</tr>
<tr>
<td>Ctrl-E</td>
<td>Moves the cursor to the end of the command line.</td>
</tr>
<tr>
<td>Esc B</td>
<td>Moves the cursor back one word.</td>
</tr>
<tr>
<td>Esc F</td>
<td>Moves the cursor forward one word.</td>
</tr>
<tr>
<td>Ctrl-T</td>
<td>Transposes the character to the left of the cursor with the character located at the cursor.</td>
</tr>
<tr>
<td>Delete or Backspace key</td>
<td>Erases the character to the left of the cursor.</td>
</tr>
<tr>
<td>Ctrl-D</td>
<td>Deletes the character at the cursor.</td>
</tr>
<tr>
<td>Ctrl-K</td>
<td>Deletes all characters from the cursor to the end of the command line.</td>
</tr>
<tr>
<td>Ctrl-U or Ctrl-X</td>
<td>Deletes all characters from the cursor to the beginning of the command line.</td>
</tr>
<tr>
<td>Ctrl-W</td>
<td>Deletes the word to the left of the cursor.</td>
</tr>
<tr>
<td>Key</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>Esc D</td>
<td>Deletes from the cursor to the end of the word.</td>
</tr>
<tr>
<td>Esc C</td>
<td>Capitalizes at the cursor.</td>
</tr>
<tr>
<td>Esc L</td>
<td>Changes the word at the cursor to lowercase.</td>
</tr>
<tr>
<td>Esc U</td>
<td>Capitalizes letters from the cursor to the end of the word.</td>
</tr>
<tr>
<td>Ctrl-V or Esc Q</td>
<td>Designates a particular keystroke as an executable command, perhaps as a shortcut.</td>
</tr>
<tr>
<td>Return key</td>
<td>Scrolls down a line or screen on displays that are longer than the terminal screen can display. Note: The More prompt is used for any output that has more lines than can be displayed on the terminal screen, including show command output. You can use the Return and Space bar keystrokes whenever you see the More prompt.</td>
</tr>
<tr>
<td>Space bar</td>
<td>Scrolls down one screen.</td>
</tr>
<tr>
<td>Ctrl-L or Ctrl-R</td>
<td>Redisplays the current command line if the switch suddenly sends a message to your screen.</td>
</tr>
</tbody>
</table>

Editing Command Lines That Wrap

You can use a wraparound feature for commands that extend beyond a single line on the screen. When the cursor reaches the right margin, the command line shifts ten spaces to the left. You cannot see the first ten characters of the line, but you can scroll back and check the syntax at the beginning of the command. The keystroke actions are optional.

To scroll back to the beginning of the command entry, press Ctrl-B or the left arrow key repeatedly. You can also press Ctrl-A to immediately move to the beginning of the line.

Note
The arrow keys function only on ANSI-compatible terminals such as VT100s.

The following example shows how to wrap a command line that extend beyond a single line on the screen.

SUMMARY STEPS

1. access-list
2. Ctrl-A
3. Return key
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**

access-list

Example:

Switch(config)# access-list 101 permit tcp 10.15.22.25 255.255.255.0 10.15.22.35 255.255.255.0
Switch(config)# $ t tcp 10.15.22.25 255.255.255.0 131.108.1.20 255.255.255.0 eq
Switch(config)# $ t 15.22.25 255.255.255.0 10.15.22.35 255.255.255.0 eq 45

Displays the global configuration command entry that extends beyond one line.

When the cursor first reaches the end of the line, the line is shifted ten spaces to the left and redisplayed. The dollar sign ($) shows that the line has been scrolled to the left. Each time the cursor reaches the end of the line, the line is again shifted ten spaces to the left.

| **Step 2**

Ctrl-A

Example:

Switch(config)# access-list 101 permit tcp 10.15.22.25 255.255.255.0 10.15.22.35 255.255.255.0

Checks the complete syntax.

The dollar sign ($) appears at the end of the line to show that the line has been scrolled to the right.

| **Step 3**

Return key

Execute the commands.

The software assumes that you have a terminal screen that is 80 columns wide. If you have a different width, use the `terminal width` privileged EXEC command to set the width of your terminal.

Use line wrapping with the command history feature to recall and modify previous complex command entries.

Searching and Filtering Output of show and more Commands

You can search and filter the output for `show` and `more` commands. This is useful when you need to sort through large amounts of output or if you want to exclude output that you do not need to see. Using these commands is optional.

SUMMARY STEPS

1. `{show | more} command | {begin | include | exclude} regular-expression`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**

`{show | more} command | {begin | include | exclude} regular-expression`

Searches and filters the output.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Expressions are case sensitive. For example, if you enter</td>
</tr>
<tr>
<td>Switch# show interfaces</td>
<td>include protocol</td>
</tr>
<tr>
<td>Vlan1 is up, line protocol is up</td>
<td></td>
</tr>
<tr>
<td>Vlan10 is up, line protocol is down</td>
<td></td>
</tr>
<tr>
<td>GigabitEthernet1/0/1 is up, line protocol is down</td>
<td></td>
</tr>
<tr>
<td>GigabitEthernet1/0/2 is up, line protocol is up</td>
<td></td>
</tr>
</tbody>
</table>

Accessing the CLI through a Console Connection or through Telnet

Before you can access the CLI, you must connect a terminal or a PC to the switch console or connect a PC to the Ethernet management port and then power on the switch, as described in the hardware installation guide that shipped with your switch.

If your switch is already configured, you can access the CLI through a local console connection or through a remote Telnet session, but your switch must first be configured for this type of access.

You can use one of these methods to establish a connection with the switch:

- Connect the switch console port to a management station or dial-up modem, or connect the Ethernet management port to a PC. For information about connecting to the console or Ethernet management port, see the switch hardware installation guide.

- Use any Telnet TCP/IP or encrypted Secure Shell (SSH) package from a remote management station. The switch must have network connectivity with the Telnet or SSH client, and the switch must have an enable secret password configured.
 - The switch supports up to 16 simultaneous Telnet sessions. Changes made by one Telnet user are reflected in all other Telnet sessions.
 - The switch supports up to five simultaneous secure SSH sessions.

After you connect through the console port, through the Ethernet management port, through a Telnet session or through an SSH session, the user EXEC prompt appears on the management station.
Configuring MLD Snooping

This module contains details of configuring MLD snooping

- Finding Feature Information, page 13
- Information About Configuring IPv6 MLD Snooping, page 13
- How to Configure IPv6 MLD Snooping, page 17
- Displaying MLD Snooping Information, page 25
- Configuration Examples for Configuring MLD Snooping, page 26

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About Configuring IPv6 MLD Snooping

Note

To use IPv6 MLD Snooping, the switch must be running the LAN Base image.

You can use Multicast Listener Discovery (MLD) snooping to enable efficient distribution of IP Version 6 (IPv6) multicast data to clients and routers in a switched network on the switch. Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

Note

Stacking is supported only on Catalyst 2960-X switches running the LAN base image.
To use IPv6 on a Catalyst 2960-X switch, you must configure the dual IPv4 and IPv6 Switch Database Management (SDM) template on the switch.

For complete syntax and usage information for the commands used in this chapter, see the command reference for this release or the Cisco IOS documentation referenced in the procedures.

Understanding MLD Snooping

In IP Version 4 (IPv4), Layer 2 switches can use Internet Group Management Protocol (IGMP) snooping to limit the flooding of multicast traffic by dynamically configuring Layer 2 interfaces so that multicast traffic is forwarded to only those interfaces associated with IP multicast devices. In IPv6, MLD snooping performs a similar function. With MLD snooping, IPv6 multicast data is selectively forwarded to a list of ports that want to receive the data, instead of being flooded to all ports in a VLAN. This list is constructed by snooping IPv6 multicast control packets.

MLD is a protocol used by IPv6 multicast routers to discover the presence of multicast listeners (nodes wishing to receive IPv6 multicast packets) on the links that are directly attached to the routers and to discover which multicast packets are of interest to neighboring nodes. MLD is derived from IGMP; MLD Version 1 (MLDv1) is equivalent to IGMPv2, and MLD Version 2 (MLDv2) is equivalent to IGMPv3. MLD is a subprotocol of Internet Control Message Protocol Version 6 (ICMPv6), and MLD messages are a subset of ICMPv6 messages, identified in IPv6 packets by a preceding Next Header value of 58.

The switch supports two versions of MLD snooping:

- MLDv1 snooping detects MLDv1 control packets and sets up traffic bridging based on IPv6 destination multicast addresses.
- MLDv2 basic snooping (MBSS) uses MLDv2 control packets to set up traffic forwarding based on IPv6 destination multicast addresses.

The switch can snoop on both MLDv1 and MLDv2 protocol packets and bridge IPv6 multicast data based on destination IPv6 multicast addresses.

The switch does not support MLDv2 enhanced snooping, which sets up IPv6 source and destination multicast address-based forwarding.

MLD snooping can be enabled or disabled globally or per VLAN. When MLD snooping is enabled, a per-VLAN IPv6 multicast address table is constructed in software and hardware. The switch then performs IPv6 multicast-address based bridging in hardware.

MLD Messages

MLDv1 supports three types of messages:

- Listener Queries are the equivalent of IGMPv2 queries and are either General Queries or Multicast-Address-Specific Queries (MASQs).
- Multicast Listener Reports are the equivalent of IGMPv2 reports
- Multicast Listener Done messages are the equivalent of IGMPv2 leave messages.

MLDv2 supports MLDv2 queries and reports, as well as MLDv1 Report and Done messages. Message timers and state transitions resulting from messages being sent or received are the same as those of IGMPv2 messages. MLD messages that do not have valid link-local IPv6 source addresses are ignored by MLD routers and switches.

MLD Queries

The switch sends out MLD queries, constructs an IPv6 multicast address database, and generates MLD group-specific and MLD group-and-source-specific queries in response to MLD Done messages. The switch also supports report suppression, report proxying, Immediate-Leave functionality, and static IPv6 multicast group address configuration.

When MLD snooping is disabled, all MLD queries are flooded in the ingress VLAN.

When MLD snooping is enabled, received MLD queries are flooded in the ingress VLAN, and a copy of the query is sent to the CPU for processing. From the received query, MLD snooping builds the IPv6 multicast address database. It detects multicast router ports, maintains timers, sets report response time, learns the querier IP source address for the VLAN, learns the querier port in the VLAN, and maintains multicast-address aging.

Note

When the IPv6 multicast router is a Catalyst 6500 switch and you are using extended VLANs (in the range 1006 to 4094), IPv6 MLD snooping must be enabled on the extended VLAN on the Catalyst 6500 switch in order for the Catalyst 2960, 2960-S, 2960-C, or 2960-X switch to receive queries on the VLAN. For normal-range VLANs (1 to 1005), it is not necessary to enable IPv6 MLD snooping on the VLAN on the Catalyst 6500 switch.

When a group exists in the MLD snooping database, the switch responds to a group-specific query by sending an MLDv1 report. When the group is unknown, the group-specific query is flooded to the ingress VLAN.

When a host wants to leave a multicast group, it can send out an MLD Done message (equivalent to IGMP Leave message). When the switch receives an MLDv1 Done message, if Immediate-Leave is not enabled, the switch sends an MASQ to the port from which the message was received to determine if other devices connected to the port should remain in the multicast group.

Multicast Client Aging Robustness

You can configure port membership removal from addresses based on the number of queries. A port is removed from membership to an address only when there are no reports to the address on the port for the configured number of queries. The default number is 2.

Multicast Router Discovery

Like IGMP snooping, MLD snooping performs multicast router discovery, with these characteristics:
- Ports configured by a user never age out.
- Dynamic port learning results from MLDv1 snooping queries and IPv6 PIMv2 packets.
• If there are multiple routers on the same Layer 2 interface, MLD snooping tracks a single multicast router on the port (the router that most recently sent a router control packet).

• Dynamic multicast router port aging is based on a default timer of 5 minutes; the multicast router is deleted from the router port list if no control packet is received on the port for 5 minutes.

• IPv6 multicast router discovery only takes place when MLD snooping is enabled on the switch.

• Received IPv6 multicast router control packets are always flooded to the ingress VLAN, whether or not MLD snooping is enabled on the switch.

• After the discovery of the first IPv6 multicast router port, unknown IPv6 multicast data is forwarded only to the discovered router ports (before that time, all IPv6 multicast data is flooded to the ingress VLAN).

MLD Reports

The processing of MLDv1 join messages is essentially the same as with IGMPv2. When no IPv6 multicast routers are detected in a VLAN, reports are not processed or forwarded from the switch. When IPv6 multicast routers are detected and an MLDv1 report is received, an IPv6 multicast group address is entered in the VLAN MLD database. Then all IPv6 multicast traffic to the group within the VLAN is forwarded using this address. When MLD snooping is disabled, reports are flooded in the ingress VLAN.

When MLD snooping is enabled, MLD report suppression, called listener message suppression, is automatically enabled. With report suppression, the switch forwards the first MLDv1 report received by a group to IPv6 multicast routers; subsequent reports for the group are not sent to the routers. When MLD snooping is disabled, report suppression is disabled, and all MLDv1 reports are flooded to the ingress VLAN.

The switch also supports MLDv1 proxy reporting. When an MLDv1 MASQ is received, the switch responds with MLDv1 reports for the address on which the query arrived if the group exists in the switch on another port and if the port on which the query arrived is not the last member port for the address.

MLD Done Messages and Immediate-Leave

When the Immediate-Leave feature is enabled and a host sends an MLDv1 Done message (equivalent to an IGMP leave message), the port on which the Done message was received is immediately deleted from the group. You enable Immediate-Leave on VLANs and (as with IGMP snooping), you should only use the feature on VLANs where a single host is connected to the port. If the port was the last member of a group, the group is also deleted, and the leave information is forwarded to the detected IPv6 multicast routers.

When Immediate Leave is not enabled in a VLAN (which would be the case when there are multiple clients for a group on the same port) and a Done message is received on a port, an MASQ is generated on that port. The user can control when a port membership is removed for an existing address in terms of the number of MASQs. A port is removed from membership to an address when there are no MLDv1 reports to the address on the port for the configured number of queries.

The number of MASQs generated is configured by using the `ipv6 mld snooping last-listener-query count` global configuration command. The default number is 2.

The MASQ is sent to the IPv6 multicast address for which the Done message was sent. If there are no reports sent to the IPv6 multicast address specified in the MASQ during the switch maximum response time, the port on which the MASQ was sent is deleted from the IPv6 multicast address database. The maximum response time is the time configured by using the `ipv6 mld snooping last-listener-query-interval` global configuration command.
command. If the deleted port is the last member of the multicast address, the multicast address is also deleted, and the switch sends the address leave information to all detected multicast routers.

Topology Change Notification Processing

When topology change notification (TCN) solicitation is enabled by using the `ipv6 mld snooping tcn query solicit` global configuration command, MLDv1 snooping sets the VLAN to flood all IPv6 multicast traffic with a configured number of MLDv1 queries before it begins sending multicast data only to selected ports. You set this value by using the `ipv6 mld snooping tcn flood query count` global configuration command. The default is to send two queries. The switch also generates MLDv1 global Done messages with valid link-local IPv6 source addresses when the switch becomes the STP root in the VLAN or when it is configured by the user. This is same as done in IGMP snooping.

MLD Snooping in Switch Stacks

The MLD IPv6 group address databases are maintained on all switches in the stack, regardless of which switch learns of an IPv6 multicast group. Report suppression and proxy reporting are done stack-wide. During the maximum response time, only one received report for a group is forwarded to the multicast routers, regardless of which switch the report arrives on.

The election of a new stack master does not affect the learning or bridging of IPv6 multicast data; bridging of IPv6 multicast data does not stop during a stack master re-election. When a new switch is added to the stack, it synchronizes the learned IPv6 multicast information from the stack master. Until the synchronization is complete, data ingress on the newly added switch is treated as unknown multicast data.

How to Configure IPv6 MLD Snooping

Default MLD Snooping Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLD snooping (Global)</td>
<td>Disabled.</td>
</tr>
<tr>
<td>MLD snooping (per VLAN)</td>
<td>Enabled. MLD snooping must be globally enabled for VLAN MLD snooping to take place.</td>
</tr>
<tr>
<td>IPv6 Multicast addresses</td>
<td>None configured.</td>
</tr>
<tr>
<td>IPv6 Multicast router ports</td>
<td>None configured.</td>
</tr>
<tr>
<td>MLD snooping Immediate Leave</td>
<td>Disabled.</td>
</tr>
</tbody>
</table>
| MLD snooping robustness variable | Global: 2; Per VLAN: 0.
Note The VLAN value overrides the global setting. When the VLAN value is 0, the VLAN uses the global count.
MLD Snooping Configuration Guidelines

When configuring MLD snooping, consider these guidelines:

- You can configure MLD snooping characteristics at any time, but you must globally enable MLD snooping by using the `ipv6 mld snooping` global configuration command for the configuration to take effect.

- When the IPv6 multicast router is a Catalyst 6500 switch and you are using extended VLANs (in the range 1006 to 4094), IPv6 MLD snooping must be enabled on the extended VLAN on the Catalyst 6500 switch in order for the switch to receive queries on the VLAN. For normal-range VLANs (1 to 1005), it is not necessary to enable IPv6 MLD snooping on the VLAN on the Catalyst 6500 switch.

- MLD snooping and IGMP snooping act independently of each other. You can enable both features at the same time on the switch.

- The maximum number of address entries allowed for the switch or switch stack is 1000.

Enabling or Disabling MLD Snooping on the Switch

By default, IPv6 MLD snooping is globally disabled on the switch and enabled on all VLANs. When MLD snooping is globally disabled, it is also disabled on all VLANs. When you globally enable MLD snooping, the VLAN configuration overrides the global configuration. That is, MLD snooping is enabled only on VLAN interfaces in the default state (enabled).

You can enable and disable MLD snooping on a per-VLAN basis or for a range of VLANs, but if you globally disable MLD snooping, it is disabled in all VLANs. If global snooping is enabled, you can enable or disable VLAN snooping.

Beginning in privileged EXEC mode, follow these steps to globally enable MLD snooping on the switch:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last listener query count</td>
<td>Global: 2; Per VLAN: 0.</td>
</tr>
<tr>
<td></td>
<td>Note The VLAN value overrides the global setting. When the VLAN value is 0, the VLAN uses the global count.</td>
</tr>
<tr>
<td>Last listener query interval</td>
<td>Global: 1000 (1 second); VLAN: 0.</td>
</tr>
<tr>
<td></td>
<td>Note The VLAN value overrides the global setting. When the VLAN value is 0, the VLAN uses the global interval.</td>
</tr>
<tr>
<td>TCN query solicit</td>
<td>Disabled.</td>
</tr>
<tr>
<td>TCN query count</td>
<td>2.</td>
</tr>
<tr>
<td>MLD listener suppression</td>
<td>Enabled.</td>
</tr>
</tbody>
</table>
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ipv6 mld snooping</td>
<td>Enables MLD snooping on the switch.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config)# ipv6 mld snooping</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config)# end</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config)# copy running-config startup-config</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>reload</td>
<td>Reload the operating system.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config)# reload</td>
<td></td>
</tr>
</tbody>
</table>

Enabling or Disabling MLD Snooping on a VLAN

Beginning in privileged EXEC mode, follow these steps to enable MLD snooping on a VLAN.
Configuring MLD Snooping

Configuring MLD Snooping

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | **configure terminal** Enters global configuration mode.
| Example: | |
| Switch# configure terminal | |
| **Step 2** | **ipv6 mld snooping** Enables MLD snooping on the switch.
| Example: | |
| Switch(config)# ipv6 mld snooping | |
| **Step 3** | **ipv6 mld snooping vlan vlan-id** Enables MLD snooping on the VLAN. The VLAN ID range is 1 to 1001 and 1006 to 4094.
| Example: | **Note** MLD snooping must be globally enabled for VLAN snooping to be enabled. |
| Switch(config)# ipv6 mld snooping vlan 1 | |
| **Step 4** | **end** Returns to privileged EXEC mode.
| Example: | |
| Switch(config)# ipv6 mld snooping vlan 1 | |

Configuring a Static Multicast Group

Hosts or Layer 2 ports normally join multicast groups dynamically, but you can also statically configure an IPv6 multicast address and member ports for a VLAN.

Beginning in privileged EXEC mode, follow these steps to add a Layer 2 port as a member of a multicast group:

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | **configure terminal** Enters global configuration mode
| Example: | |
| Switch# configure terminal | |
| **Step 2** | **ipv6 mld snooping vlan vlan-id** static ipv6_multicast_address interface interface-id Configures a multicast group with a Layer 2 port as a member of a multicast group.
| Example: | |
| Switch(config)# ipv6 mld snooping vlan 1 static 2001:db8:abcd::1 interface FastEthernet0/1 | |
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
| `Switch(config)# ipv6 mld snooping vlan 1 static FF12::3 interface gigabitethernet 0/1` | `• vlan-id` is the multicast group VLAN ID. The VLAN ID range is 1 to 1001 and 1006 to 4094.
`• ipv6_multicast_address` is the 128-bit group IPv6 address. The address must be in the form specified in RFC 2373.
`• interface-id` is the member port. It can be a physical interface or a port channel (1 to 48). |

Step 3

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| `Switch(config)# end` | `end`
Retrieves to privileged EXEC mode. |

Step 4

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| `Switch(config)# end` | `step`
Verifies the static member port and the IPv6 address. |

Configuring a Multicast Router Port

Note Static connections to multicast routers are supported only on switch ports.

Beginning in privileged EXEC mode, follow these steps to add a multicast router port to a VLAN:

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>

Example:

```
Switch# configure terminal
```

Catalyst 2960-X Switch IPv6 Configuration Guide, Cisco IOS Release 15.0(2)EX
Configuring MLD Snooping

Enabling MLD Immediate Leave

Beginning in privileged EXEC mode, follow these steps to enable MLDv1 Immediate Leave:

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
configure terminal | Enters global configuration mode. |
| **Example:**
Switch# configure terminal | |
| **Step 2**
ipv6 mld snooping vlan vlan-id immediate-leave | Enables MLD Immediate Leave on the VLAN interface. |
| **Example:**
Switch(config)# ipv6 mld snooping vlan 1 immediate-leave | |
| **Step 3**
end | Returns to privileged EXEC mode. |
| **Example:**
Switch(config)# end | |
Configuring MLD Snooping Queries

Beginning in privileged EXEC mode, follow these steps to configure MLD snooping query characteristics for the switch or for a VLAN:

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>show ipv6 mld snooping vlan vlan-id</td>
<td>Verifies that Immediate Leave is enabled on the VLAN interface.</td>
</tr>
</tbody>
</table>

Example:

```
Switch# show ipv6 mld snooping vlan 1
```

Step 1

(Optional) Sets the number of queries that are sent before switch will deletes a listener (port) that does not respond to a general query. The range is 1 to 3; the default is 2.

Command or Action

```
ipv6 mld snooping robustness-variable value
```

Example:

```
Switch(config)# ipv6 mld snooping robustness-variable 3
```

Step 2

(Optional) Sets the robustness variable on a VLAN basis, which determines the number of general queries that MLD snooping sends before aging out a multicast address when there is no MLD report response. The range is 1 to 3; the default is 0. When set to 0, the number used is the global robustness variable value.

Command or Action

```
ipv6 mld snooping vlan vlan-id robustness-variable value
```

Example:

```
Switch(config)# ipv6 mld snooping vlan 1 robustness-variable 3
```

Step 3

(Optional) Sets the number of MASQs that the switch sends before aging out an MLD client. The range is 1 to 7; the default is 2. The queries are sent 1 second apart.

Command or Action

```
ipv6 mld snooping last-listener-query-count count
```

Example:

```
Switch(config)# ipv6 mld snooping last-listener-query-count 7
```

Step 4

(Optional) Sets the last-listener query count on a VLAN basis. This value overrides the value configured globally. The range is 1 to 7; the default is 0. When set to 0, the global count value is used. Queries are sent 1 second apart.

Command or Action

```
ipv6 mld snooping vlan vlan-id last-listener-query-count count
```

Example:

```
Switch(config)# ipv6 mld snooping vlan 1 last-listener-query-count 7
```
Disabling MLD Listener Message Suppression

MLD snooping listener message suppression is enabled by default. When it is enabled, the switch forwards only one MLD report per multicast router query. When message suppression is disabled, multiple MLD reports could be forwarded to the multicast routers.

Beginning in privileged EXEC mode, follow these steps to disable MLD listener message suppression:

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# ipv6 mld snooping vlan 1</td>
<td>(Optional) Sets the maximum response time that the switch waits after sending out a MASQ before deleting a port from the multicast group. The range is 100 to 32,768 thousands of a second. The default is 1000 (1 second).</td>
</tr>
<tr>
<td>Step 6</td>
<td></td>
</tr>
<tr>
<td>ipv6 mld snooping last-listener-query-interval</td>
<td></td>
</tr>
<tr>
<td>interval</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# ipv6 mld snooping last-listener-query-interval 2000</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td></td>
</tr>
<tr>
<td>ipv6 mld snooping vlan vlan-id</td>
<td>(Optional) Sets the last-listener query interval on a VLAN basis. This value overrides the value configured globally. The range is 0 to 32,768 thousands of a second. The default is 0. When set to 0, the global last-listener query interval is used.</td>
</tr>
<tr>
<td>last-listener-query-interval</td>
<td></td>
</tr>
<tr>
<td>interval</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# ipv6 mld snooping vlan 1 last-listener-query-interval 2000</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td></td>
</tr>
<tr>
<td>ipv6 mld snooping tcn query solicit</td>
<td>(Optional) Enables topology change notification (TCN) solicitation, which means that VLANs flood all IPv6 multicast traffic for the configured number of queries before sending multicast data to only those ports requesting to receive it. The default is for TCN to be disabled.</td>
</tr>
<tr>
<td>Step 9</td>
<td></td>
</tr>
<tr>
<td>ipv6 mld snooping tcn flood query count</td>
<td>(Optional) When TCN is enabled, specifies the number of TCN queries to be sent. The range is from 1 to 10; the default is 2.</td>
</tr>
<tr>
<td>count</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# ipv6 mld snooping tcn flood query count 5</td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 11</td>
<td></td>
</tr>
<tr>
<td>show ipv6 mld snooping querier [vlan vlan-id]</td>
<td>(Optional) Verifies that the MLD snooping querier information for the switch or for the VLAN.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Switch(config)# show ipv6 mld snooping querier vlan 1</td>
<td></td>
</tr>
</tbody>
</table>
Configuring MLD Snooping

Displaying MLD Snooping Information

You can display MLD snooping information for dynamically learned and statically configured router ports and VLAN interfaces. You can also display IPv6 group address multicast entries for a VLAN configured for MLD snooping.

Table 5: Commands for Displaying MLD Snooping Information

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ipv6 mld snooping [vlan vlan-id]</code></td>
<td>Displays the MLD snooping configuration information for all VLANs on the switch or for a specified VLAN. (Optional) Enter <code>vlan vlan-id</code> to display information for a single VLAN. The VLAN ID range is 1 to 1001 and 1006 to 4094.</td>
</tr>
</tbody>
</table>
Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ipv6 mld snooping mrouter [vlan vlan-id]</td>
<td>Displays information on dynamically learned and manually configured multicast router interfaces. When you enable MLD snooping, the switch automatically learns the interface to which a multicast router is connected. These are dynamically learned interfaces. (Optional) Enters <code>vlan vlan-id</code> to display information for a single VLAN. The VLAN ID range is 1 to 1001 and 1006 to 4094.</td>
</tr>
<tr>
<td>show ipv6 mld snooping querier [vlan vlan-id]</td>
<td>Displays information about the IPv6 address and incoming port for the most-recently received MLD query messages in the VLAN. (Optional) Enters <code>vlan vlan-id</code> to display information for a single VLAN. The VLAN ID range is 1 to 1001 and 1006 to 4094.</td>
</tr>
</tbody>
</table>
| **show ipv6 mld snooping address [vlan vlan-id] [count | dynamic | user]** | Displays all IPv6 multicast address information or specific IPv6 multicast address information for the switch or a VLAN.
 - Enters `count` to show the group count on the switch or in a VLAN.
 - Enters `dynamic` to display MLD snooping learned group information for the switch or for a VLAN.
 - Enters `user` to display MLD snooping user-configured group information for the switch or for a VLAN. |
| **show ipv6 mld snooping address vlan vlan-id [ipv6-multicast-address]** | Displays MLD snooping for the specified VLAN and IPv6 multicast address. |

Configuration Examples for Configuring MLD Snooping

Configuring a Static Multicast Group: Example

This example shows how to statically configure an IPv6 multicast group:

```
Switch# configure terminal
Switch(config)# ipv6 mld snooping vlan 2 static FF12::3 interface gigabitethernet 1/0/1
Switch(config)# end
```
Configuring a Multicast Router Port: Example

This example shows how to add a multicast router port to VLAN 200:

```
Switch# configure terminal
Switch(config)# ipv6 mld snooping vlan 200 mrouter interface gigabitethernet 0/2
Switch(config)# exit
```

Enabling MLD Immediate Leave: Example

This example shows how to enable MLD Immediate Leave on VLAN 130:

```
Switch# configure terminal
Switch(config)# ipv6 mld snooping vlan 130 immediate-leave
Switch(config)# exit
```

Configuring MLD Snooping Queries: Example

This example shows how to set the MLD snooping global robustness variable to 3:

```
Switch# configure terminal
Switch(config)# ipv6 mld snooping robustness-variable 3
Switch(config)# exit
```

This example shows how to set the MLD snooping last-listener query count for a VLAN to 3:

```
Switch# configure terminal
Switch(config)# ipv6 mld snooping vlan 200 last-listener-query-count 3
Switch(config)# exit
```

This example shows how to set the MLD snooping last-listener query interval (maximum response time) to 2000 (2 seconds):

```
Switch# configure terminal
Switch(config)# ipv6 mld snooping last-listener-query-interval 2000
Switch(config)# exit
```
Configuring MLD Snooping Queries: Example
CHAPTER 3

Configuring IPv6 Unicast Routing

- Finding Feature Information, page 29
- Information About Configuring IPv6 Host Functions, page 29
- Configuration Examples for IPv6 Unicast Routing, page 41

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/efn. An account on Cisco.com is not required.

Information About Configuring IPv6 Host Functions

This chapter describes how to configure IPv6 host functions on the Catalyst 2960, 2960-S, 2960-C, 2960-X switch.

Note
To use IPv6 Host Functions, the switch must be running the LAN Base image.

For information about configuring IPv6 Multicast Listener Discovery (MLD) snooping, see Configuring MLD Snooping.

To enable dual stack environments (supporting both IPv4 and IPv6) on a Catalyst 2960 switch, you must configure the switch to use the a dual IPv4 and IPv6 switch database management (SDM) template. See the "Dual IPv4 and IPv6 Protocol Stacks" section. This template is not required on Catalyst 2960-S switches.

Note
For complete syntax and usage information for the commands used in this chapter, see the Cisco IOS documentation referenced in the procedures.
Understanding IPv6

IPv4 users can move to IPv6 and receive services such as end-to-end security, quality of service (QoS), and globally unique addresses. The IPv6 address space reduces the need for private addresses and Network Address Translation (NAT) processing by border routers at network edges.

For information about how Cisco Systems implements IPv6, go to:

For information about IPv6 and other features in this chapter

- See the Cisco IOS IPv6 Configuration Library.
- Use the Search field on Cisco.com to locate the Cisco IOS software documentation. For example, if you want information about static routes, you can enter Implementing Static Routes for IPv6 in the search field to learn about static routes.

IPv6 Addresses

The switch supports only IPv6 unicast addresses. It does not support site-local unicast addresses, anycast addresses, or multicast addresses.

The IPv6 128-bit addresses are represented as a series of eight 16-bit hexadecimal fields separated by colons in the format: n:n:n:n:n:n:n:n. This is an example of an IPv6 address:

2031:0000:130F:0000:0000:09C0:080F:130B

For easier implementation, leading zeros in each field are optional. This is the same address without leading zeros:

2031:0:130F:0:0:9C0:80F:130B

You can also use two colons (::) to represent successive hexadecimal fields of zeros, but you can use this short version only once in each address:

2031:0:130F::09C0:080F:130B

For more information about IPv6 address formats, address types, and the IPv6 packet header, see the "Implementing IPv6 Addressing and Basic Connectivity" chapter of Cisco IOS IPv6 Configuration Library on Cisco.com.

In the "Implementing Addressing and Basic Connectivity" chapter, these sections apply to the Catalyst 2960, 2960-S, 2960-C, or 2960-X switch:

- IPv6 Address Formats
- IPv6 Address Output Display
- Simplified IPv6 Packet Header

Supported IPv6 Unicast Routing Features

Support on the switch includes expanded address capability, header format simplification, improved support of extensions and options, and hardware parsing of the extension header. The switch supports hop-by-hop extension header packets, which are routed or bridged in software.
128-Bit Wide Unicast Addresses

The switch supports aggregatable global unicast addresses and link-local unicast addresses. It does not support site-local unicast addresses.

- Aggregatable global unicast addresses are IPv6 addresses from the aggregatable global unicast prefix. The address structure enables strict aggregation of routing prefixes and limits the number of routing table entries in the global routing table. These addresses are used on links that are aggregated through organizations and eventually to the Internet service provider.

These addresses are defined by a global routing prefix, a subnet ID, and an interface ID. Current global unicast address allocation uses the range of addresses that start with binary value 001 (2000::/3). Addresses with a prefix of 2000::/3(001) through E000::/3(111) must have 64-bit interface identifiers in the extended unique identifier (EUI)-64 format.

- Link local unicast addresses can be automatically configured on any interface by using the link-local prefix FE80::/10(1111 1110 10) and the interface identifier in the modified EUI format. Link-local addresses are used in the neighbor discovery protocol (NDP) and the stateless autoconfiguration process. Nodes on a local link use link-local addresses and do not require globally unique addresses to communicate. IPv6 routers do not forward packets with link-local source or destination addresses to other links.

For more information, see the section about IPv6 unicast addresses in the "Implementing IPv6 Addressing and Basic Connectivity" chapter in the Cisco IOS IPv6 Configuration Library on Cisco.com.

DNS for IPv6

IPv6 supports Domain Name System (DNS) record types in the DNS name-to-address and address-to-name lookup processes. The DNS AAAA resource record types support IPv6 addresses and are equivalent to an A address record in IPv4. The switch supports DNS resolution for IPv4 and IPv6.

ICMPv6

The Internet Control Message Protocol (ICMP) in IPv6 generates error messages, such as ICMP destination unreachable messages, to report errors during processing and other diagnostic functions. In IPv6, ICMP packets are also used in the neighbor discovery protocol and path MTU discovery.

Neighbor Discovery

The switch supports NDP for IPv6, a protocol running on top of ICMPv6, and static neighbor entries for IPv6 stations that do not support NDP. The IPv6 neighbor discovery process uses ICMP messages and solicited-node multicast addresses to determine the link-layer address of a neighbor on the same network (local link), to verify the reachability of the neighbor, and to keep track of neighboring routers.

The switch supports ICMPv6 redirect for routes with mask lengths less than 64 bits. ICMP redirect is not supported for host routes or for summarized routes with mask lengths greater than 64 bits.

Neighbor discovery throttling ensures that the switch CPU is not unnecessarily burdened while it is in the process of obtaining the next hop forwarding information to route an IPv6 packet. The switch drops any additional IPv6 packets whose next hop is the same neighbor that the switch is actively trying to resolve. This drop avoids further load on the CPU.
IPv6 Stateless Autoconfiguration and Duplicate Address Detection

The switch uses stateless autoconfiguration to manage link, subnet, and site addressing changes, such as management of host and mobile IP addresses. A host autonomously configures its own link-local address, and booting nodes send router solicitations to request router advertisements for configuring interfaces.

For more information about autoconfiguration and duplicate address detection, see the "Implementing IPv6 Addressing and Basic Connectivity" chapter of Cisco IOS IPv6 Configuration Library on Cisco.com.

IPv6 Applications

The switch has IPv6 support for these applications:

- Ping, traceroute, and Telnet
- Secure Shell (SSH) over an IPv6 transport
- HTTP server access over IPv6 transport
- DNS resolver for AAAA over IPv4 transport
- Cisco Discovery Protocol (CDP) support for IPv6 addresses

For more information about managing these applications, see the "Managing Cisco IOS Applications over IPv6" chapter and the "Implementing IPv6 Addressing and Basic Connectivity" chapter in the Cisco IOS IPv6 Configuration Library on Cisco.com.

Dual IPv4 and IPv6 Protocol Stacks

On a Catalyst 2960-X switch, you must use the dual IPv4 and IPv6 template to allocate ternary content addressable memory (TCAM) usage to both IPv4 and IPv6 protocols.

This figure shows a router forwarding both IPv4 and IPv6 traffic through the same interface, based on the IP packet and destination addresses.

Figure 1: Dual IPv4 and IPv6 Support on an Interface

Use the dual IPv4 and IPv6 switch database management (SDM) template to enable IPv6 routing dual stack environments (supporting both IPv4 and IPv6). For more information about the dual IPv4 and IPv6 SDM template, see Configuring SDM Templates.

The dual IPv4 and IPv6 templates allow the switch to be used in dual stack environments.
• If you try to configure IPv6 without first selecting a dual IPv4 and IPv6 template, a warning message appears.

• In IPv4-only environments, the switch routes IPv4 packets and applies IPv4 QoS and ACLs in hardware. IPv6 packets are not supported.

• In dual IPv4 and IPv6 environments, the switch applies IPv4 QoS and ACLs in hardware.

• IPv6 QoS and ACLs are not supported.

• If you do not plan to use IPv6, do not use the dual stack template because this template results in less hardware memory capacity for each resource.

For more information about IPv4 and IPv6 protocol stacks, see the "Implementing IPv6 Addressing and Basic Connectivity" chapter of Cisco IOS IPv6 Configuration Library on Cisco.com.

SNMP and Syslog Over IPv6

To support both IPv4 and IPv6, IPv6 network management requires both IPv6 and IPv4 transports. Syslog over IPv6 supports address data types for these transports.

SNMP and syslog over IPv6 provide these features:

• Support for both IPv4 and IPv6

• IPv6 transport for SNMP and to modify the SNMP agent to support traps for an IPv6 host

• SNMP- and syslog-related MIBs to support IPv6 addressing

• Configuration of IPv6 hosts as trap receivers

For support over IPv6, SNMP modifies the existing IP transport mapping to simultaneously support IPv4 and IPv6. These SNMP actions support IPv6 transport management:

• Opens User Datagram Protocol (UDP) SNMP socket with default settings

• Provides a new transport mechanism called `SR_IPV6_TRANSPORT`

• Sends SNMP notifications over IPv6 transport

• Supports SNMP-named access lists for IPv6 transport

• Supports SNMP proxy forwarding using IPv6 transport

• Verifies SNMP Manager feature works with IPv6 transport

For information on SNMP over IPv6, including configuration procedures, see the "Managing Cisco IOS Applications over IPv6" chapter in the Cisco IOS IPv6 Configuration Library on Cisco.com.

For information about syslog over IPv6, including configuration procedures, see the "Implementing IPv6 Addressing and Basic Connectivity" chapter in the Cisco IOS IPv6 Configuration Library on Cisco.com.

HTTP(S) Over IPv6

The HTTP client sends requests to both IPv4 and IPv6 HTTP servers, which respond to requests from both IPv4 and IPv6 HTTP clients. URLs with literal IPv6 addresses must be specified in hexadecimal using 16-bit values between colons.
The accept socket call chooses an IPv4 or IPv6 address family. The accept socket is either an IPv4 or IPv6 socket. The listening socket continues to listen for both IPv4 and IPv6 signals that indicate a connection. The IPv6 listening socket is bound to an IPv6 wildcard address.

The underlying TCP/IP stack supports a dual-stack environment. HTTP relies on the TCP/IP stack and the sockets for processing network-layer interactions.

Basic network connectivity (ping) must exist between the client and the server hosts before HTTP connections can be made.

For more information, see the "Managing Cisco IOS Applications over IPv6" chapter in the Cisco IOS IPv6 Configuration Library on Cisco.com.

IPv6 and Switch Stacks

The switch supports IPv6 forwarding across the stack and IPv6 host functionality on the stack master. The stack master runs IPv6 host functionality and IPv6 applications.

While the new stack master is being elected and is resetting, the switch stack does not forward IPv6 packets. The stack MAC address changes, which also changes the IPv6 address. When you specify the stack IPv6 address with an extended unique identifier (EUI) by using the `ipv6 address` interface configuration command, the address is based on the interface MAC address. See the "Configuring IPv6 Addressing and Enabling IPv6 Host" section.

If you configure the persistent MAC address feature on the stack and the stack master changes, the stack MAC address does not change for approximately 4 minutes. For more information, see the "Enabling Persistent MAC Address" section in "Managing Switch Stacks.

Default IPv6 Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDM template</td>
<td>Default desktop.</td>
</tr>
<tr>
<td>IPv6 addresses</td>
<td>None configured</td>
</tr>
</tbody>
</table>

Configuring IPv6 Addressing and Enabling IPv6 Routing

This section describes how to assign IPv6 addresses to individual Layer 3 interfaces and to globally forward IPv6 traffic on the switch.

Before configuring IPv6 on the switch, consider these guidelines:

- Be sure to select a dual IPv4 and IPv6 SDM template.
- In the `ipv6 address` interface configuration command, you must enter the `ipv6-address` and `ipv6-prefix` variables with the address specified in hexadecimal using 16-bit values between colons. The `prefix-length`
variable (preceded by a slash [/]) is a decimal value that shows how many of the high-order contiguous
bits of the address comprise the prefix (the network portion of the address).

To forward IPv6 traffic on an interface, you must configure a global IPv6 address on that interface. Configuring
an IPv6 address on an interface automatically configures a link-local address and activates IPv6 for the
interface. The configured interface automatically joins these required multicast groups for that link:

• solicited-node multicast group FF02:0:0:0:1:ff00::/104 for each unicast address assigned to the interface
 (this address is used in the neighbor discovery process.)
• all-nodes link-local multicast group FF02::1
• all-routers link-local multicast group FF02::2

For more information about configuring IPv6 routing, see the “Implementing Addressing and Basic Connectivity
for IPv6” chapter in theCisco IOS IPv6 Configuration Library on Cisco.com.

Beginning in privileged EXEC mode, follow these steps to assign an IPv6 address to a Layer 3 interface and
enable IPv6 forwarding:

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>sdm prefer dual-ipv4-and-ipv6 {default}</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# sdm prefer dual-ipv4-and-ipv6 default</td>
</tr>
<tr>
<td></td>
<td>Selects an SDM template that supports IPv4 and IPv6.</td>
</tr>
<tr>
<td></td>
<td>• default—Sets the switch to the default template to balance system resources.</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch(config)# end</td>
</tr>
<tr>
<td></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>reload</td>
</tr>
<tr>
<td>Example:</td>
<td>Switch# reload</td>
</tr>
<tr>
<td></td>
<td>Reloads the operating system.</td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
</tbody>
</table>
| **Step 5** | configure terminal | Enters global configuration mode after the switch reloads.
Example:
Switch# configure terminal |
| **Step 6** | interface interface-id | Enters interface configuration mode, and specifies the Layer 3 interface to configure.
Example:
Switch(config)# interface gigabitethernet 1/0/1 |
| **Step 7** | Use one of the following:
- ipv6 address ipv6-prefix/prefix length eui-64
- ipv6 address ipv6-address/prefix length
- ipv6 address ipv6-address link-local
- ipv6 enable |
• Specifies a global IPv6 address with an extended unique identifier (EUI) in the low-order 64 bits of the IPv6 address. Specify only the network prefix; the last 64 bits are automatically computed from the switch MAC address. This enables IPv6 processing on the interface.
• Manually configures an IPv6 address on the interface.
• Specifies a link-local address on the interface to be used instead of the link-local address that is automatically configured when IPv6 is enabled on the interface. This command enables IPv6 processing on the interface.
• Automatically configures an IPv6 link-local address on the interface, and enables the interface for IPv6 processing. The link-local address can only be used to communicate with nodes on the same link.
Example:
Switch(config-if)# ipv6 address 2001:0DB8:c18:1::<64 eui 64
Switch(config-if)# ipv6 address 2001:0DB8:c18:1::<64
Switch(config-if)# ipv6 address 2001:0DB8:c18:1:: link-local
Switch(config-if)# ipv6 enable |
| **Step 8** | exit | Returns to global configuration mode.
Example:
Switch(config-if)# exit |
| **Step 9** | end | Returns to privileged EXEC mode.
Example:
Switch(config)# end |
| **Step 10** | show ipv6 interface interface-id | Verifies your entries.
Example:
Switch# show ipv6 interface gigabitethernet |
Purpose | Command or Action | Step 11 | Example: Switch# copy running-config startup-config (Optional) Saves your entries in the configuration file.

Configuring IPv6 ICMP Rate Limiting

ICMP rate limiting is enabled by default with a default interval between error messages of 100 milliseconds and a bucket size (maximum number of tokens to be stored in a bucket) of 10.

Beginning in privileged EXEC mode, follow these steps to change the ICMP rate-limiting parameters:

SUMMARY STEPS

1. configure terminal
2. ipv6 icmp error-interval interval [bucketsize]
3. end
4. show ipv6 interface [interface-id]
5. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>ipv6 icmp error-interval interval [bucketsize]</th>
<th>Configures the interval and bucket size for IPv6 ICMP error messages:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example: Switch(config)# ipv6 icmp error-interval 50 20</td>
<td>• interval—The interval (in milliseconds) between tokens being added to the bucket. The range is from 0 to 2147483647 milliseconds.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• bucketsize—(Optional) The maximum number of tokens stored in the bucket. The range is from 1 to 200.</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Static Routing for IPv6

Before configuring a static IPv6 route, you must enable routing by using the `ip routing` global configuration command, enable the forwarding of IPv6 packets by using the `ipv6 unicast-routing` global configuration command, and enable IPv6 on at least one Layer 3 interface by configuring an IPv6 address on the interface.

For more information about configuring static IPv6 routing, see the “Implementing Static Routes for IPv6” chapter in the [Cisco IOS IPv6 Configuration Library](https://www.cisco.com) on Cisco.com.

Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**

configure terminal

Example:
`Switch# configure terminal`

Enters global configuration mode. |
| **Step 2**

ipv6 route ipv6-prefix/prefix length

Example:
`Switch(config)# ipv6 route 2001:0DB8::/32`

Configures a static IPv6 route.

- `ipv6-prefix`—The IPv6 network that is the destination of the static route. It can also be a hostname when static host routes are configured.
- `/prefix length`—The length of the IPv6 prefix. A decimal value that shows how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). A slash mark must precede the decimal value. |
Purpose

Command or Action
gigabitethernet2/0/1 130

Purpose
- *ipv6-address*—The IPv6 address of the next hop that can be used to reach the specified network. The IPv6 address of the next hop need not be directly connected; recursion is done to find the IPv6 address of the directly connected next hop. The address must be in the form documented in RFC 2373, specified in hexadecimal using 16-bit values between colons.

- *interface-id*—Specifies direct static routes from point-to-point and broadcast interfaces. With point-to-point interfaces, there is no need to specify the IPv6 address of the next hop. With broadcast interfaces, you should always specify the IPv6 address of the next hop, or ensure that the specified prefix is assigned to the link, specifying a link-local address as the next hop. You can optionally specify the IPv6 address of the next hop to which packets are sent.

Note
You must specify an *interface-id* when using a link-local address as the next hop (the link-local next hop must also be an adjacent router).

- *administrative distance*—(Optional) An administrative distance. The range is 1 to 254; the default value is 1, which gives static routes precedence over any other type of route except connected routes. To configure a floating static route, use an administrative distance greater than that of the dynamic routing protocol.

Step 3

end

Returns to privileged EXEC mode.

Example:

```
Switch(config)# end
```

Step 4

Use one of the following:

- *show ipv6 static [ipv6-address | ipv6-prefix/prefix length] [interface interface-id] [recursive] [detail]*

Example:

```
Switch# show ipv6 static 2001:0DB8::/32 interface gigabitethernet2/0/1 130
```

- *show ipv6 route static [updated]*

Example:

```
Switch# show ipv6 route static
```

Verifies your entries by displaying the contents of the IPv6 routing table.

- *interface interface-id*—(Optional) Displays only those static routes with the specified interface as an egress interface.

- *recursive*—(Optional) Displays only recursive static routes. The *recursive* keyword is mutually exclusive with the *interface* keyword, but it can be used with or without the IPv6 prefix included in the command syntax.

- *detail*—(Optional) Displays this additional information:
 - For valid recursive routes, the output path set, and maximum resolution depth.
 - For invalid routes, the reason why the route is not valid.
Displaying IPv6

For complete syntax and usage information on these commands, see the Cisco IOS command reference publications.

Table 7: Commands for Monitoring IPv6

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ipv6 access-list</td>
<td>Displays a summary of access lists.</td>
</tr>
<tr>
<td>show ipv6 interface interface-id</td>
<td>Displays IPv6 interface status and configuration.</td>
</tr>
<tr>
<td>show ipv6 mtu</td>
<td>Displays IPv6 MTU per destination cache.</td>
</tr>
<tr>
<td>show ipv6 neighbors</td>
<td>Displays IPv6 neighbor cache entries.</td>
</tr>
<tr>
<td>show ipv6 prefix-list</td>
<td>Displays a list of IPv6 prefix lists.</td>
</tr>
<tr>
<td>show ipv6 protocols</td>
<td>Displays IPv6 routing protocols on the switch.</td>
</tr>
<tr>
<td>show ipv6 route</td>
<td>Displays the IPv6 route table entries.</td>
</tr>
<tr>
<td>show ipv6 static</td>
<td>Displays IPv6 static routes.</td>
</tr>
<tr>
<td>show ipv6 traffic</td>
<td>Displays IPv6 traffic statistics.</td>
</tr>
</tbody>
</table>

Table 8: Commands for Displaying IPv4 and IPv6 Address Types

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip http server history</td>
<td>Displays the previous 20 connections to the HTTP server, including the IP address accessed and the time when the connection was closed.</td>
</tr>
</tbody>
</table>
Command Purpose

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ip http server connection</code></td>
<td>Displays the current connections to the HTTP server, including the local and remote IP addresses being accessed.</td>
</tr>
<tr>
<td><code>show ip http client connection</code></td>
<td>Displays the configuration values for HTTP client connections to HTTP servers.</td>
</tr>
<tr>
<td><code>show ip http client history</code></td>
<td>Displays a list of the last 20 requests made by the HTTP client to the server.</td>
</tr>
</tbody>
</table>

Configuration Examples for IPv6 Unicast Routing

Configuring IPv6 Addressing and Enabling IPv6 Routing: Example

This example shows how to enable IPv6 with both a link-local address and a global address based on the IPv6 prefix 2001:0DB8:c18:1::/64. The EUI-64 interface ID is used in the low-order 64 bits of both addresses.

Output from the `show ipv6 interface` EXEC command is included to show how the interface ID (20B:46FF:FE2F:D940) is appended to the link-local prefix FE80::/64 of the interface.

```
Switch(config)# sdm prefer dual-ipv4-and-ipv6 default
Switch(config)# interface gigabitethernet1/0/11
Switch(config-if)# ipv6 address 2001:0DB8:c18:1::/64 eui 64
Switch(config-if)# end
Switch# show ipv6 interface gigabitethernet1/0/11
GigabitEthernet1/0/11 is up, line protocol is up
IPv6 is enabled, link-local address is FE80::20B:46FF:FE2F:D940
Global unicast address(es):
  2001:0DB8:c18:1::20B:46FF:FE2F:D940, subnet is 2001:0DB8:c18:1::/64 [EUI]
Joined group address(es):
  2001:0DB8:c18:1::FF02::1
  2001:0DB8:c18:1::FF02::2
  2001:0DB8:c18:1::FF02::1:FF2F:D940
MTU is 1500 bytes
ICMP error messages limited to one every 100 milliseconds
ICMP redirects are enabled
ND DAD is enabled, number of DAD attempts: 1
ND reachable time is 30000 milliseconds
ND advertised reachable time is 0 milliseconds
ND advertised retransmit interval is 0 milliseconds
ND router advertisements are sent every 200 seconds
ND router advertisements live for 1800 seconds
Hosts use stateless autoconfig for addresses.
```
Configuring IPv6 ICMP Rate Limiting: Example

This example shows how to configure an IPv6 ICMP error message interval of 50 milliseconds and a bucket size of 20 tokens.

Switch(config)#ipv6 icmp error-interval 50 20

Configuring Static Routing for IPv6: Example

This example shows how to configure a floating static route to an interface with an administrative distance of 130:

Switch(config)# ipv6 route 2001:0DB8::/32 gigabitethernet2/0/1 130

Displaying IPv6: Example

This is an example of the output from the `show ipv6 interface` privileged EXEC command:

Switch# show ipv6 interface
Vlan1 is up, line protocol is up
 IPv6 is enabled, link-local address is FE80::20B:46FF:FE2F:D940
 Global unicast address(es):
 3FFE::C000:0:1:20B:46FF:FE2F:D940, subnet is 3FFE::C000:0:1::64 [EUI]
 Joined group address(es):
 FF02::1
 FF02::2
 FF02::1:FF2F:D940
 MTU is 1500 bytes
 ICMP error messages limited to one every 100 milliseconds
 ICMP redirects are enabled
 ND DAD is enabled, number of DAD attempts: 1
 ND reachable time is 30000 milliseconds
 ND advertised reachable time is 0 milliseconds
 ND advertised retransmit interval is 0 milliseconds
 ND router advertisements are sent every 200 seconds
 ND router advertisements live for 1800 seconds
<output truncated>
CHAPTER

Configuring IPv6 ACL

- Finding Feature Information, page 43
- Information About Configuring IPv6 ACLs, page 43
- Configuring IPv6 ACLs, page 45
- Configuration Examples for IPv6 ACL, page 51

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About Configuring IPv6 ACLs

You can filter IP version 6 (IPv6) traffic by creating IPv6 access control lists (ACLs) and applying them to interfaces similarly to the way that you create and apply IP version 4 (IPv4) named ACLs. You can also create and apply input router ACLs to filter Layer 3 management traffic.

To use IPv6, you must configure the dual IPv4 and IPv6 Switch Database Management (SDM) template on the switch. You select the template by entering the `sdm prefer {default | dual-ipv4-and-ipv6}` global configuration command.

For complete syntax and usage information for the commands used in this chapter, see the command reference for this release or the Cisco IOS documentation referenced in the procedures.
Understanding IPv6 ACLs

A switch image supports two types of IPv6 ACLs:

- **IPv6 router ACLs** - Supported on outbound or inbound traffic on Layer 3 interfaces, which can be routed ports, switch virtual interfaces (SVIs), or Layer 3 EtherChannels. Applied to only IPv6 packets that are routed.

- **IPv6 port ACLs** - Supported on inbound traffic on Layer 2 interfaces only. Applied to all IPv6 packets entering the interface.

Note

If you configure unsupported IPv6 ACLs, an error message appears and the configuration does not take affect.

The switch does not support VLAN ACLs (VLAN maps) for IPv6 traffic.

You can apply both IPv4 and IPv6 ACLs to an interface.

As with IPv4 ACLs, IPv6 port ACLs take precedence over router ACLs:

- When an input router ACL and input port ACL exist in an SVI, packets received on ports to which a port ACL is applied are filtered by the port ACL. Routed IP packets received on other ports are filtered by the router ACL. Other packets are not filtered.

- When an output router ACL and input port ACL exist in an SVI, packets received on the ports to which a port ACL is applied are filtered by the port ACL. Outgoing routed IPv6 packets are filtered by the router ACL. Other packets are not filtered.

Note

If any port ACL (IPv4, IPv6, or MAC) is applied to an interface, that port ACL is used to filter packets, and any router ACLs attached to the SVI of the port VLAN are ignored.

Supported ACL Features

IPv6 ACLs on the switch have these characteristics:

- Fragmented frames (the fragments keyword as in IPv4) are supported.

- The same statistics supported in IPv4 are supported for IPv6 ACLs.

- If the switch runs out of TCAM space, packets associated with the ACL label are forwarded to the CPU, and the ACLs are applied in software.

- Routed or bridged packets with hop-by-hop options have IPv6 ACLs applied in software.

- Logging is supported for router ACLs, but not for port ACLs.
IPv6 ACL Limitations

With IPv4, you can configure standard and extended numbered IP ACLs, named IP ACLs, and MAC ACLs. IPv6 supports only named ACLs.

The switch supports most Cisco IOS-supported IPv6 ACLs with some exceptions:

- IPv6 source and destination addresses-ACL matching is supported only on prefixes from /0 to /64 and host addresses (/128) that are in the extended universal identifier (EUI)-64 format. The switch supports only these host addresses with no loss of information:
 - aggregatable global unicast addresses
 - link local addresses

- The switch does not support matching on these keywords: flowlabel, routing header, and undetermined-transport.

- The switch does not support reflexive ACLs (the reflect keyword).

- This release supports only port ACLs and router ACLs for IPv6; it does not support VLAN ACLs (VLAN maps).

- The switch does not apply MAC-based ACLs on IPv6 frames.

- You cannot apply IPv6 port ACLs to Layer 2 EtherChannels.

- The switch does not support output port ACLs.

- Output router ACLs and input port ACLs for IPv6 are supported only on . Switches support only control plane (incoming) IPv6 ACLs.

- When configuring an ACL, there is no restriction on keywords entered in the ACL, regardless of whether or not they are supported on the platform. When you apply the ACL to an interface that requires hardware forwarding (physical ports or SVIs), the switch checks to determine whether or not the ACL can be supported on the interface. If not, attaching the ACL is rejected.

- If an ACL is applied to an interface and you attempt to add an access control entry (ACE) with an unsupported keyword, the switch does not allow the ACE to be added to the ACL that is currently attached to the interface.

Configuring IPv6 ACLs

Before configuring IPv6 ACLs, you must select one of the dual IPv4 and IPv6 SDM templates.

To filter IPv6 traffic, you perform these steps:
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Create an IPv6 ACL, and enter IPv6 access list configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Step 2 Configure the IPv6 ACL to block (deny) or pass (permit) traffic.</td>
<td></td>
</tr>
<tr>
<td>Step 3 Apply the IPv6 ACL to an interface. For router ACLs, you must also configure an IPv6 address on the Layer 3 interface to which the ACL is applied.</td>
<td></td>
</tr>
</tbody>
</table>

Default IPv6 ACL Configuration

There are no IPv6 ACLs configured or applied.

Interaction with Other Features and Switches

- If an IPv6 router ACL is configured to deny a packet, the packet is not routed. A copy of the packet is sent to the Internet Control Message Protocol (ICMP) queue to generate an ICMP unreachable message for the frame.
- If a bridged frame is to be dropped due to a port ACL, the frame is not bridged.
- You can create both IPv4 and IPv6 ACLs on a switch or switch stack, and you can apply both IPv4 and IPv6 ACLs to the same interface. Each ACL must have a unique name; an error message appears if you try to use a name that is already configured.

You use different commands to create IPv4 and IPv6 ACLs and to attach IPv4 or IPv6 ACLs to the same Layer 2 or Layer 3 interface. If you use the wrong command to attach an ACL (for example, an IPv4 command to attach an IPv6 ACL), you receive an error message.
- You cannot use MAC ACLs to filter IPv6 frames. MAC ACLs can only filter non-IP frames.
- If the hardware memory is full, for any additional configured ACLs, packets are forwarded to the CPU, and the ACLs are applied in software.

Creating IPv6 ACL

Beginning in privileged EXEC mode, follow these steps to create an IPv6 ACL:
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2 ipv6access-list access-list-name</td>
<td>Define an IPv6 access list name, and enter IPv6 access-list configuration mode.</td>
</tr>
<tr>
<td>Example: ipv6 access-list access-list-name</td>
<td></td>
</tr>
<tr>
<td>Step 3 {deny</td>
<td>permit} protocol</td>
</tr>
<tr>
<td>Example: {deny</td>
<td>permit} protocol {source-ipv6-prefix/prefix-length</td>
</tr>
</tbody>
</table>

- For protocol, enter the name or number of an Internet protocol: ahp, esp, icmp, ipv6, pcp, step, tcp, or udp, or an integer in the range 0 to 255 representing an IPv6 protocol number.
- The source-ipv6-prefix/prefix-length or destination-ipv6-prefix/prefix-length is the source or destination IPv6 network or class of networks for which to set deny or permit conditions, specified in hexadecimal and using 16-bit values between colons (see RFC 2373).
- Enter any as an abbreviation for the IPv6 prefix ::/0.
- For host source-ipv6-address or destination-ipv6-address, enter the source or destination IPv6 host address for which to set deny or permit conditions, specified in hexadecimal using 16-bit values between colons.
- (Optional) For operator, specify an operand that compares the source or destination ports of the specified protocol. Operands are lt (less than), gt (greater than), eq (equal), neq (not equal), and range.
- If the operator follows the source-ipv6-prefix/prefix-length argument, it must match the source port. If the operator follows the destination-ipv6-prefix/prefix-length argument, it must match the destination port.
- (Optional) The port-number is a decimal number from 0 to 65535 or the name of a TCP or UDP port. You can use TCP port names only when filtering TCP. You can use UDP port names only when filtering UDP.
- (Optional) Enter dscp value to match a differentiated services code point value against the traffic class value in the Traffic Class field of each IPv6 packet header. The acceptable range is from 0 to 63.
Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>{deny</td>
<td>permit} tcp</td>
</tr>
<tr>
<td></td>
<td>• deny—Permit a packet to pass.</td>
</tr>
<tr>
<td></td>
<td>• permit—Deny a packet to pass.</td>
</tr>
<tr>
<td></td>
<td>• operator {port-number}—Port range.</td>
</tr>
<tr>
<td></td>
<td>• operator {port</td>
</tr>
<tr>
<td></td>
<td>• dscp value—DiffServ Code Point value.</td>
</tr>
<tr>
<td></td>
<td>• log—Log packet information.</td>
</tr>
<tr>
<td></td>
<td>• log-input—Log input interface.</td>
</tr>
<tr>
<td></td>
<td>• range {port</td>
</tr>
<tr>
<td></td>
<td>• time-range name—Matches packets in the time range.</td>
</tr>
</tbody>
</table>

Step 4

Example:

```plaintext
{deny | permit} tcp {source-ipv6-prefix/prefix-length | any | hostsource-ipv6-address} [operator {port-number}] [destination-ipv6-prefix/prefix-length | any | hostdestination-ipv6-address] [operator {port-number}] [ack] [dscp value] [established] [fin] [log] [log-input] [neq {port | protocol}] [psh] [range {port | protocol}] [rst] [routing] [sequence value] [syn] [time-range name] [urg]
```

Step 5

Example:

```plaintext
{deny | permit} udp {source-ipv6-prefix/prefix-length | any | hostsource-ipv6-address} [operator {port-number}] [destination-ipv6-prefix/prefix-length | any | hostdestination-ipv6-address] [operator {port-number}] [dscp value] [log] [log-input]
```

(Optional) Define a UDP access list and the access conditions. Enter udp for the User Datagram Protocol. The UDP parameters are the same as those described for TCP, except that the operator [port | protocol] port number or name must be a UDP port number or name, and the established parameter is not valid for UDP.
Applying an IPv6 ACL to an Interface

This section describes how to apply IPv6 ACLs to network interfaces. You can apply an ACL to outbound or inbound traffic on Layer 3 interfaces, or to inbound traffic on Layer 2 interfaces.

Beginning in privileged EXEC mode, follow these steps to control access to an interface:

Step 6
Command or Action

```
[neq {port |protocol}] [range {port |protocol}] [routing][sequence value][time-range name]
```

Purpose

(Optional) Define an ICMP access list and the access conditions.

Enter `icmp` for Internet Control Message Protocol. The ICMP parameters are the same as those described for most IP protocols in Step 3a, with the addition of the ICMP message type and code parameters. These optional keywords have these meanings:

- `icmp-type`—Enter to filter by ICMP message type, a number from 0 to 255.
- `icmp-code`—Enter to filter ICMP packets that are filtered by the ICMP message code type, a number from 0 to 255.
- `icmp-message`—Enter to filter ICMP packets by the ICMP message type name or the ICMP message type and code name. To see a list of ICMP message type names and code names, use the `?` key or see command reference for this release.

Step 7
Command or Action

```
end
```

Purpose

Returns to privileged EXEC mode. Alternatively, you can also press `Ctrl-z` to exit global configuration mode.

Step 8
Command or Action

```
show ipv6 access-list
```

Purpose

Verify the access list configuration.

Step 9
Command or Action

```
copy running-config startup-config
```

Purpose

(Optional) Save your entries in the configuration file.
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>interface interface_id</td>
<td>Identify a Layer 2 interface (for port ACLs) or Layer 3 interface (for router ACLs) on which to apply an access list, and enter interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# interface interface-id</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>no switchport</td>
<td>If applying a router ACL, change the interface from Layer 2 mode (the default) to Layer 3 mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# no switchport</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ipv6 address ipv6_address</td>
<td>Configure an IPv6 address on a Layer 3 interface (for router ACLs). This command is not required on Layer 2 interfaces or if the interface has already been configured with an explicit IPv6 address.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# ipv6 address ipv6-address</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ipv6 traffic-filter access-list-name</td>
<td>Apply the access list to incoming or outgoing traffic on the interface. The out keyword is not supported for Layer 2 interfaces (port ACLs).</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch# ipv6 traffic-filter access-list-name {in</td>
<td>out}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Step 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>end</td>
<td>Returns to privileged EXEC mode. Alternatively, you can also press Ctrl-z to exit global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Switch(config)# end</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Step 7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>show running-config</td>
<td>Verify the access list configuration.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Step 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

Displaying IPv6 ACLs

You can display information about all configured access lists, all IPv6 access lists, or a specific access list by using one or more of the privileged EXEC commands.
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 show access-list</td>
<td>Displays all access lists configured on the switch</td>
</tr>
<tr>
<td>Example: Switch# show access-lists</td>
<td></td>
</tr>
</tbody>
</table>

| **Step 2** show ipv6 access-list acl_name | Displays all configured IPv6 access list or the access list specified by name. |
| **Example:** Switch# show ipv6 access-list [access-list-name] |

Configuration Examples for IPv6 ACL

Example: Creating IPv6 ACL

This example configures the IPv6 access list named CISCO. The first deny entry in the list denies all packets that have a destination TCP port number greater than 5000. The second deny entry denies packets that have a source UDP port number less than 5000. The second deny also logs all matches to the console. The first permit entry in the list permits all ICMP packets. The second permit entry in the list permits all other traffic. The second permit entry is necessary because an implicit deny -all condition is at the end of each IPv6 access list.

```
Switch(config)# ipv6 access-list CISCO
Switch (config-ipv6-acl)# deny tcp any any gt 5000
Switch (config-ipv6-acl)# deny ::/0 lt 5000 ::/0 log
Switch(config-ipv6-acl)# permit icmp any any
Switch(config-ipv6-acl)# permit any any
```

Example: Applying IPv6 ACLs

This example shows how to apply the access list Cisco to outbound traffic on a Layer 3 interface.

```
Switch(config-if)# no switchport
Switch(config-if)# ipv6 address 2001::/64 eui-64
Switch(config-if)# ipv6 traffic-filter CISCO out
```

Example: Displaying IPv6 ACLs

This is an example of the output from the `show access-lists` privileged EXEC command. The output shows all access lists that are configured on the switch or switch stack.

```
Switch #show access-lists
Extended IP access list hello
10 permit ip any any
IPv6 access list ipv6
permit ipv6 any any sequence 10
```
This is an example of the output from the `show ipv6 access-lists` privileged EXEC command. The output shows only IPv6 access lists configured on the switch or switch stack.

```
Switch# show ipv6 access-list
IPv6 access list inbound
  permit tcp any any eq bgp (8 matches) sequence 10
  permit tcp any any eq telnet (15 matches) sequence 20
  permit udp any any sequence 30

IPv6 access list outbound
  deny udp any any sequence 10
  deny tcp any any eq telnet sequence 20
```
INDEX

128-bit 30

default configuration (continued)
 IPv6 34
defined 30
disabling 24
Displaying IPv6 42
 Example command 42
DNS 31
 in IPv6 31
dual IPv4 and IPv6 templates 32
dual protocol stacks 32
 IPv4 and IPv6 32
 SDM templates supporting 32

effects on 34
 IPv6 routing 34
 enabling 22
 enabling and disabling 18
 Enabling MLD Immediate Leave 27
 Example command 27
EUI 31
 extended universal identifier 31
 See EUI 31

forwarding 34

HTTP(S) Over IPv6 33

ICMP 31
 IPv6 31

A
ACLs 43
 address formats 30
 addresses 30
 IPv6 30
 aggregatable global unicast addresses 31
 and IPv6 30
 and switch stacks 34
 applications 32
 assigning address 34
 assigning IPv6 addresses to 34
 autoconfiguration 32

C
Configuration Examples command 41
 Configuration Examples for Configuring MLD Snooping Queries command 26
 Configuring a Multicast Router Port 27
 Example command 27
 Configuring a Static Multicast Group 26
 Example command 26
 Configuring IPv6 Addressing and Enabling IPv6 Routing 41
 Example command 41
 Configuring IPv6 ICMP Rate Limiting 42
 Example command 42
 Configuring MLD Snooping Queries 27
 Example command 27
 Configuring Static Routing for IPv6 42
 Example command 42

D
default configuration 17, 18, 34
 IGMP snooping 17, 18
ICMPv6 31
IGMP 22, 24, 25
 leave processing, enabling 22
 report suppression 24
 disabling 24
 snooping 25
IGMP snooping 17, 18, 25
 default configuration 17, 18
 enabling and disabling 18
 monitoring 25
Immediate Leave, IGMP 22
 enabling 22
in IPv6 31
Internet Protocol version 6 30
 See IPv6 30
IP addresses 30
 128-bit 30
 IPv6 30
IP unicast routing 30
 IPv6 30
IPv4 and IPv6 32
IPv6 13, 30, 31, 32, 34, 40, 43
 ACL 43
 address formats 30
 addresses 30
 and switch stacks 34
 applications 32
 assigning address 34
 autoconfiguration 32
 default configuration 34
 defined 30
 forwarding 34
 ICMP 31
 monitoring 40
 neighbor discovery 31
 SDM templates 13
 stack master functions 34
 Stateless Autoconfiguration 32
 supported features 30
IPv6 on 34
IPv6 routing 34
ISL 30
 and IPv6 30

L
Layer 3 interfaces 34
 assigning IPv6 addresses to 34
leave processing, enabling 22
link local unicast addresses 31

M
MLD Messages 14
MLD Queries 15
MLD Reports 16
MLD Snooping 14
MLDv1 Done message 16
 monitoring 25, 40
 IGMP 25
 snooping 25
 IPv6 40
Multicast Client Aging Robustness 15
multicast groups 20
 static joins 20
Multicast Router Discovery 15

N
neighbor discovery 31
neighbor discovery, IPv6 31

R
report suppression 24
 disabling 24
report suppression, IGMP 24
 disabling 24

S
SDM templates 13
SDM templates supporting 32
See EUI 31
See IPv6 30
SNMP and Syslog Over IPv6 33
snooping 25
stack changes 34
 effects on 34
 IPv6 routing 34
stack master 34
 IPv6 34
stack master functions 34
stack member 34
 IPv6 34
stacks, switch 34
 IPv6 on 34
Stateless Autoconfiguration 32
static joins 20
 supported features 30
 switch stacks 17
Topology Change Notification Processing 17