Object-group ACLs

* Feature History for Object-group ACLs, on page 1
* Object-group ACLs, on page 1

* Object Groups, on page 2

* Types of Supported Object Groups, on page 3

* Integration with Network Features, on page 3

* Guidelines for OGACL, on page 4

* How to configure OGACLs, on page 5

* Verify Object Groups for ACLs, on page 12

* Configuration Examples for OGACLs, on page 12

Feature History for Object-group ACLs

This table provides release and platform support information for the features explained in this module.

These features are available in all the releases subsequent to the one they were introduced in, unless noted

otherwise.
Release Feature Name and Description Supported Platform
Cisco I0S XE 17.18.1 Object-group ACLs: Cisco C9350 Series Smart Switches

Object-groups access control lists | Cisco C9610 Series Smart Switches
(OGACLs) enable network
administrators to classify users,
devices, or protocols into logical
groups and apply these groups to
ACLs.

Object-group ACLs

Object-groups access control lists (OGACLs) enable network administrators to classify users, devices, or
protocols into logical groups and apply these groups to ACLs. By leveraging object groups, you can create
and enforce access control policies based on groups rather than individual elements.

Object-group ACLs .

Object-group ACLs |
. Advantages of 0GACLs

Advantages of 0GACLs

These are the advantages of OGACLs:

* Unlike traditional ACLs that rely on individual IP addresses, protocols, and ports, object groups allow
for greater flexibility and scalability. Each access control entry (ACE) can now permit or deny access
for an entire group of users to a group of servers or services, streamlining the rule set and management
process.

* In extensive network environments, ACLs can become lengthy and challenging to manage, especially
when changes are frequent. OGACLs are more concise, easier to read, and simpler to configure and
update. This approach significantly reduces the complexity associated with both static and dynamic ACL
deployments on networking devices.

* The use of object groups also enhances the Cisco IOS Firewall by simplifying policy creation. For
example, you can easily configure rules so that "Group A has access to Group A services," improving
efficiency and eliminating configuration errors.

* In environments with high volumes of inbound and outbound packets, OGACLs offer enhanced
performance compared to conventional ACLs.

* In large-scale configurations, OGACLs reduce storage requirements in NVRAM by eliminating the need
to define individual ACEs for each address and protocol pair, streamlining both configuration and resource
usage.

* You can configure both conventional ACEs and ACEs that reference object groups within the same ACL.
This flexibility allows seamless integration of object groups into existing ACL configurations.

» All features that use or reference conventional ACLs are compatible with OGACLs, and the feature
interactions for conventional ACLs are the same with OGACLs. This feature extends the conventional
ACLs to support OGACLs including the source and destination addresses and ports and any new keywords.

Object Groups

An object group can contain a single object, such as an individual IP address, network, or subnet, or multiple
objects, including combinations of several IP addresses, networks, or subnets.

Advantages of Object Groups

These are the advantages of object groups:

* A typical ACE allows a group of users to access only a specific group of servers. With OGACLs, you
can create a single ACE referencing an object group, instead of writing multiple ACEs for each unique
IP address. Similarly, protocol port object groups can be used to grant access to specific sets of applications
for designated user groups. ACEs can reference object groups for the source, the destination, both, or
neither.

* Object groups enable separation of ownership for ACE components. For example, individual departments
can manage their own group memberships, while a central administrator controls the ACE to define
inter-departmental access.

* Object groups can also be utilized in features that use Cisco Policy Language (CPL) class maps, further
extending their flexibility and usefulness.

. Object-group ACLs

| Object-group ACLs
Types of Supported Object Groups .

Types of Supported Object Groups

This feature supports two main types of object groups for grouping ACL parameters:
* Network Object Groups: Used to group IP addresses.

* Service Object Groups: Used to group protocols, protocol services (ports), and Internet Control Message
Protocol (ICMP) types.

Objects Allowed in Network Object Groups

A network object group is a group of any of the following objects:

* Any IP address; includes a range from 0.0.0.0 to 255.255.255.255 (This is specified using the any
command.)

* Host IP addresses

* Hostnames

* Subnets

* Host IP addresses

» Network address of group members
* Nested object groups

* Other network object groups

Objects Allowed in Service Object Groups
A service object group is a group of any of the following objects:
* Source and destination protocol ports (such as Telnet or Simple Network Management Protocol [SNMP])
* Internet Control Message Protocol (ICMP) types (such as echo, echo-reply, or host-unreachable)
* Top-level protocols (such as Encapsulating Security Payload [ESP], TCP, or UDP)

* Other service object groups

Integration with Network Features

Object group-based ACLs can be used alongside various network features, including quality of service (QoS)
match criteria, Cisco IOS Firewall, Dynamic Host Configuration Protocol (DHCP), and other functionalities
that utilize extended ACLs. Additionally, these ACLs are compatible with multicast traffic management.

Object-group ACLs .

Object-group ACLs |
B Guidelines for 0GACL

Guidelines for 0GACL

These guidelines are applicable to all switches:

* You can add, delete, or modify objects within an object group membership list without needing to delete
or redefine the object group itself.

* You can update the membership list without having to redefine the ACL ACE that references the object
group.

* You can configure OGACLs multiple times using only a source group, only a destination group, or both
source and destination groups as needed.

* You cannot delete an object group if it is currently being used within an ACL or a CPL policy.
* You can use object groups only in extended named and numbered ACLs.
* Object group-based ACLs support only IPv4 or IPv6 addresses.

* Object group-based ACLs support only Layer 3 interfaces (such as routed interfaces and VLAN interfaces)
and sub-interfaces.

* Object group-based ACLs are not supported with IPsec.

* The number of object group-based ACEs supported in an ACL varies depending on platform, subject to
TCAM availability.

These guidelines are applicable only to Cisco C9610 Series Smart Switches:
* Object groups are only supported in extended ACLs.
* Object group-based ACLs support both IPv4 and IPv6 addresses.
* Object group-based ACLs are not supported on Layer 2 interfaces.
* Object group-based ACLs are not supported with IPsec.

» ACL statements using object groups will be ignored on packets that are sent to RP for processing. This
guidelines is applicable for all switches except Cisco C9610 Series Smart Switches.

* Object group-based ACLs are supported only on ingress port. There is no support on egress direction.

* [Pv6 object group-based ACLs with Log option are not supported. However, [Pv4 object group-based
ACLs with Log option is supported.

* [Pv4 object group-based ACLs for multicast packet control are not supported.
* [Pv6 object group-based ACLs for control packet are not supported.
* You cannot configure conventional ACEs and ACE:s that refer to object groups in the same ACL.

* Per ACE statistics is supported only for Deny ACEs. Per ACE statistics for Permit ACE is not supported.
If the same ACL is applied to multiple ports, then the deny counters are cumulative of all the ports on
which the ACL is attached.

. Object-group ACLs

| Object-group ACLs
How to configure 0GACLs .

How to configure OGACLs

To configure OGACLs, follow these steps:

Procedure

Step 1 Create one or more object groups.
These can be any combination of
* network object groups (groups that contain objects such as, host addresses and network addresses)

* service object groups (which use operators such as It, eq, gt, neq, and range with port numbers)

Step 2 Configure access control entries (ACEs) that apply a policy (such as permit or deny) to those object groups.

Create a Network Object Group

A network object group can include a single object, such as an individual IP address, hostname, another
network object group, or subnet, or multiple objects. You can use a network object-group-based ACL to create
access control policies for all the objects within the group.

To create a network object group, perform this task:

Procedure

Step 1 enable

Example:

Device> enable
Enables privileged EXEC mode.

Enter your password, if prompted.

Step 2 configure terminal

Example:

Device# configure terminal
Enters global configuration mode.
Step 3 obj ect-group network object-group-name

Example:

Device (config) # object-group network my-network-object-group

Defines the object group name and enters network object-group configuration mode.

Object-group ACLs .

Object-group ACLs |
. Create a Network Object Group

Step 4 description description-text

Example:

Device (config-network-group) # description test engineers
(Optional) Specifies a description of the object group.

You can use up to 200 characters.

Step 5 host {host-address | host-name}

Example:
Device (config-network-group) # host 209.165.200.237

(Optional)Specifies the IP address or name of a host.

If you specify a host address, you must use an IPv4 address.

Step 6 network-address {/nn | network-mask}

Example:
Device (config-network-group) # 209.165.200.225 255.255.255.224

(Optional) Specifies a subnet object.

You must specify an IPv4 address for the network address. The default network mask is 255.255.255.255.
Step 7 group-obj ect nested-object-group-name

Example:

Device (config-network-group) # group-object my-nested-object-group

(Optional) Specifies a nested (child) object group to be included in the current (parent) object group.

* The type of child object group must match that of the parent (for example, if you are creating a network object group,
you must specify another network object group as the child).

* You can use duplicated objects in an object group only via nesting of group objects. For example, if object 1 is in
both group A and group B, you can define a group C that includes both A and B. However, you cannot include a
group object that causes the group hierarchy to become circular (for example, you cannot include group A in group
B and then also include group B in group A).

* You can use an unlimited number of levels of nested object groups (however, a maximum of two levels is

recommended).
Step 8 Repeat the steps until you have specified objects on whichyou want to base your object group.
Step 9 end
Example:

Device (config-network-group) # end

Exits network object-group configuration mode and returns to privileged EXEC mode.

. Object-group ACLs

| Object-group ACLs

Create a Service Object Group .

Create a Service Object Group

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

A service object group allows you to define specific TCP and/or UDP ports or port ranges. When linked to
an access control list (ACL), a service object-group-based ACL can control access to the designated ports.

To create a service object group, perform this task.

Procedure

enable

Example:

Device> enable
Enables privileged EXEC mode.

Enter your password, if prompted.

configureterminal

Example:

Device# configure terminal
Enters global configuration mode.
obj ect-group service object-group-name

Example:

Device (config) # object-group service my-service-object-group

Defines an object group name and enters serviceobject-group configuration mode.

description description-text

Example:

Device (config-service-group) # description test engineers
(Optional) Specifies a description of the object group.

You can use up to 200 characters.

protocol

Example:

Device (config-service-group) # ahp

(Optional) Specifies an IP protocol number or name.

{tcp | udp | tcp-udp} [source {{[eq] | It | gt} portl | range portl port2}] [{[eq] | It | gt} portl|range portl port2]

Example:

Device (config-service-group) # tcp-udp range 2000 2005
(Optional) Specifies TCP, UDP, or both

icmp icmp-type
Example:

Object-group ACLs .

Object-group ACLs |

. Create an Object-Group-Based ACL

Step 8

Step 9
Step 10

Device (config-service-group) # icmp conversion-error

(Optional)Specifies the decimal number or name of an Internet Control Message Protocol (ICMP) type.
group-obj ect nested-object-group-name

Example:

Device (config-service-group) # group-object my-nested-object-group

(Optional) Specifies a nested (child) object group to be included in the current (parent) object group.

* The type of child object group must match that of the parent (for example, if youare creating a network object
group, you must specify another network object group as the child).

* You can use duplicated objects in an object group only via nesting of group objects. For example, if object 1 is in
both group A and group B, you can define a group C that includes both A and B. However, you cannot include a
group objectthat causes the group hierarchy to become circular (for example, you cannot include group A in group
B and then also include group B in group A).

* You can use an unlimited number of levels of nested object groups (however, a maximum of two levels is
recommended).

Repeat the steps to specify the objects on whichyou want to base your object group.
end

Example:

Device (config-service-group) # end

Exits service object-group configuration mode and returns to privileged EXEC mode.

Create an Object-Group-Based ACL

Step 1

Step 2

When creating an object-group-based access control list (ACL), configure the ACL to reference one or more
object groups. Similar to traditional ACLs, you can apply the same access policy to multiple interfaces.

Within a single object-group-based ACL, you can define multiple ACEs that reference object groups, and
you can reuse the same object group in different ACEs as needed.

To create an object-group-based ACL, perform this task.

Procedure

enable

Example:

Device> enable
Enables privileged EXEC mode.

Enter your password, if prompted.

configure terminal

. Object-group ACLs

| Object-group ACLs

Step 3

Step 4

Step 5

Create an Object-Group-Based ACL .

Example:

Device# configure terminal

Enters global configuration mode.

ip access-list extended access-list-name

Example:

Device (config) # ip access-list extended nomarketing

Defines an extended IP access list using a name and enters extended access-list configuration mode.

remark remark

Example:
Device (config-ext-nacl)# remark protect server by denying access from the
Marketing network

(Optional) Adds a comment about the configured access list entry.

* A remark can precede or follow an access list entry.

* In this example, the remark reminds the network administrator that the subsequent entry denies the Marketing
network access to the interface.

deny protocol source [source-wildcard] destination [destination-wildcard] [option option-name] [precedence precedence]
[tostos] [established] [log | log-input] [time-range time-range-name] [fragments]

Example:

Device (config-ext-nacl)# deny ip 209.165.200.244 255.255.255.224 host
209.165.200.245 log

Example based on object-group:

Device (config) # object-group network my network_object_ group

Device (config-network-group) # 209.165.200.224 255.255.255.224

Device (config-network-group) # exit

Device (config) # object-group network my other network_object_ group

Device (config-network-group) # host 209.165.200.245

Device (config-network-group) # exit

Device (config) # ip access-list extended nomarketing

Device (config-ext-nacl) # deny ip object-group my network object group object-group
my_ other network object group log

(Optional) Denies any packet that matches all conditions specified in the statement.

* Optionally use the object-group service-object-group-name keyword and argument as a substitute for the protocol
argument.

« Optionally use the object-group source-network-object-group-name keyword and argument as a substitute for the
sour ce source-wildcard arguments.

« Optionally use the object-group destination-networ k-object-group-name keyword and argument as a substitute for
the destination destination-wildcard arguments.

« If the source-wildcard or destination-wildcard is omitted, a wildcard mask of 0.0.0.0 is assumed, which matches all
bits of the source or destination address, respectively.

Object-group ACLs .

Object-group ACLs |

. Create an Object-Group-Based ACL

Step 6

Step 7

Step 8

Step 9

* Optionally use the any keyword as a substitute for the source source-wildcard or destination destination-wildcard
to specify the address and wildcard of 0.0.0.0 255.255.255.255.

* Optionally use the host source keyword and argument to indicate a source and source wildcard of source 0.0.0.0 or
the host destination keyword and argument to indicate a destination and destination wildcard of destination 0.0.0.0.

In this example, packets from all sources are denied access to the destination network 209.165.200.244. Logging
messages about packets permitted or denied by the access list are sent to the facility configured by the logging
facility command (for example, console, terminal, or syslog). That is, any packet that matches the access list will
cause an informational logging message about the packet to be sent to the configured facility. The level of messagesl
ogged to the console is controlledby the logging console command.

remark remark

Example:

Device (config-ext-nacl)# remark allow TCP from any source to any destination
(Optional) Adds a comment about the configured access list entry.

A remark can precede or follow an access list entry.

permit protocol source [source-wildcard] destination [destination-wildcard] [option option-name] [precedence
precedence] [tostos] [established] [log | log-input] [time-range time-range-name] [fragments]

Example:

Device (config-ext-nacl)# permit tcp any any
Permits any packet that matches all conditions specified in the statement.
Every access list needs at least one permit statement.

* Optionally use the object-group service-object-group-name keyword and argument as a substitute for the protocol.

« Optionally use the object-group source-networ k-object-group-name keyword and argument as a substitute for the
source source-wildcard.

* Optionally use the object-group destination-networ k-object-group-name keyword and argument as a substitute for
the destination destination-wildcard.

If source-wildcard or destination-wildcard is omitted, a wildcard mask of 0.0.0.0 is assumed,which matches on all
bits of the source or destination address, respectively.

* Optionally use the any keyword as a substitutefor the source source-wildcard or destination destination-wildcard
to specify the address and wildcard of 0.0.0.0 255.255.255.255.

In this example, TCP packets are allowed from any source to any destination.

* Use the log-input keyword to include input interface, source MAC address, or virtual circuit in the logging output.

Repeat the steps to specify the fields and values on which you want to base your access list.

Remember that all sources not specifically permitted are denied by an implicit deny statement at the end of the access
list.

end

Example:

Device (config-ext-nacl) # end

. Object-group ACLs

| Object-group ACLs
Apply an Object-Group-Based ACL to an Interface .

Exits extended access-list configuration mode and returns to privileged EXEC mode.

Apply an Object-Group-Based ACL to an Interface

An OGACL can be used to control traffic on any interface where it is applied. Use the ip access-group
command to apply an object group-based ACL to an interface.

To apply an OGACL to an interface, perform this task.

Procedure

Step 1 enable

Example:

Device> enable
Enables privileged EXEC mode.

Enter your password, if prompted.

Step 2 configure terminal

Example:

Device# configure terminal

Enters global configuration mode.

Step 3 inter face type number

Example:

Device (config) # interface vlan 100

Specifies the interface and enters interface configuration mode.

Step 4 ip access-group {access-list-name | access-list-number} {in | out}

Example:

Device (config-if)# ip access-group my-ogacl-policy in
Applies the ACL to the interface and specifies whether to filter inbound or outbound packets.
Step 5 end

Example:

Device (config-if)# end

Exits interface configuration mode and returns to privileged EXEC mode.

Object-group ACLs .

Object-group ACLs |
. Verify Object Groups for ACLs

Verify Object Groups for ACLs

Command Description
show obj ect-group Displays the configuration in the named or numbered object group
[object-group-name] (or in all object groups if no name is entered).

show ip access-list [access-list-name] | Displays the contents of the named or numbered access list or object
group-based ACL (or for all access lists and object group-based
ACLs if no name is entered).

Configuration Examples for 0GACLs

These sections provide configuration examples for OGACL.

Example: Create a Network Object Group

The following example shows how to create a network object group named my-network-object-group, Which
contains two hosts and a subnet as objects:

Device> enable

Device# configure terminal

Device (config) # object-group network my-network-object-group
Device (config-network-group) # description test engineers
Device (config-network-group) # host 209.165.200.237

Device (config-network-group) # host 209.165.200.238

Device (config-network-group) # 209.165.200.241 255.255.255.224
Device (config-network-group) # end

The following example shows how to create a network object group named my-company-network, which
contains two hosts, a subnet, and an existing object group (child) named my-nested-object-group as objects:

Device> enable

Device# configure terminal

Device (config) # object-group network my-company-network

Device (config-network-group) # host hostl

Device (config-network-group) # host 209.165.200.242

Device (config-network-group) # 209.165.200.225 255.255.255.224
Device (config-network-group)# group-object my-nested-object-group
Device (config-network-group) # end

Example: Create a Service Object Group

The following example shows how to create a service object group named my-service-object-group, which
contains several ICMP, TCP, UDP, and TCP-UDP protocols and an existing object group named
my-nested-object-group as ObjeCtSI

Device> enable

Device# configure terminal

Device (config) # object-group service my-service-object-group
Device (config-service-group) # icmp echo

. Object-group ACLs

| Object-group ACLs

Example: Create an Object Group-Based ACL .

Device (config-service-group) # tcp smtp

Device (config-service-group) # tcp telnet

Device (config-service-group) # tcp source range 1 65535 telnet
Device (config-service-group) # tcp source 2000 ftp

Device (config-service-group) # udp domain

Device (config-service-group)# tcp-udp range 2000 2005

Device (config-service-group) # group-object my-nested-object-group
Device (config-service-group) # end

Example: Create an Object Group-Based ACL

The following example shows how to create an object-group-based ACL that permits packets from the users
in my-network-object-group if the protocol ports match the ports specified in my-service-object-group:

Device> enable

Device# configure terminal

Device (config) # ip access-list extended my-ogacl-policy

Device (config-ext-nacl)# permit object-group my-service-object-group object-group
my-network-object-group any

Device (config-ext-nacl) # deny tcp any any

Device (config-ext-nacl) # end

Example: Verify Object Groups for ACLs

The following example shows how to display all object groups:

Device# show object-group

Network object group auth-proxy-acl-deny-dest host 209.165.200.235
Service object group auth-proxy-acl-deny-services tcp eq www

tcp eq 443

Network object group auth-proxy-acl-permit-dest 209.165.200.226 255.255.255.224
209.165.200.227 255.255.255.224

209.165.200.228 255.255.255.224

209.165.200.229 255.255.255.224

209.165.200.246 255.255.255.224

209.165.200.230 255.255.255.224

209.165.200.231 255.255.255.224

209.165.200.232 255.255.255.224

209.165.200.233 255.255.255.224

209.165.200.234 255.255.255.224

Service object group auth-proxy-acl-permit-services tcp eq www

tcp eq 443

The following example shows how to display information about specific object-group-based ACLs:

Device# show ip access-list my-ogacl-policy

Extended IP access list my-ogacl-policy
10 permit object-group eng service any any

Object-group ACLs .

Object-group ACLs |
. Example: Verify Object Groups for ACLs

. Object-group ACLs

	Object-group ACLs
	Feature History for Object-group ACLs
	Object-group ACLs
	Advantages of OGACLs

	Object Groups
	Advantages of Object Groups

	Types of Supported Object Groups
	Objects Allowed in Network Object Groups
	Objects Allowed in Service Object Groups

	Integration with Network Features
	Guidelines for OGACL
	How to configure OGACLs
	Create a Network Object Group
	Create a Service Object Group
	Create an Object-Group-Based ACL
	Apply an Object-Group-Based ACL to an Interface

	Verify Object Groups for ACLs
	Configuration Examples for OGACLs
	Example: Create a Network Object Group
	Example: Create a Service Object Group
	Example: Create an Object Group-Based ACL
	Example: Verify Object Groups for ACLs

