Preface xvi

Audience xvi

Document Organization xvi

Document Conventions xvii

Obtaining Documentation and Submitting a Service Request xviii

Configuring Domain Parameters 1

Configuring Domain Parameters 1

Information About Fibre Channel Domains 1

About Domain Restart 2

Restarting a Domain 3

About Domain Manager Fast Restart 3

Enabling Domain Manager Fast Restart 3

About Switch Priority 4

Configuring Switch Priority 4

Configuring Fabric Names 5

About Incoming RCFs 5

Rejecting Incoming RCFs 5

About Autoreconfiguring Merged Fabrics 6

Enabling Autoreconfiguration 6

Domain IDs 7

About Domain IDs 7

Specifying Static or Preferred Domain IDs 9

About Allowed Domain ID Lists 10

Configuring Allowed Domain ID Lists 10

About CFS Distribution of Allowed Domain ID Lists 11

Enabling Distribution 11
Enabling In-Order Delivery Globally 109
Enabling In-Order Delivery for a VSAN 110
Displaying the In-Order Delivery Status 110
Configuring the Drop Latency Time 110
Displaying Latency Information 111
Flow Statistics Configuration 111
About Flow Statistics 112
Counting Aggregated Flow Statistics 112
Counting Individual Flow Statistics 112
Clearing FIB Statistics 113
Displaying Flow Statistics 113
Default FSPF Settings 113
Managing FLOGI, Name Server, FDMI, and RSCN Databases 115
Managing FLOGI, Name Server, FDMI, and RSCN Databases 115
Information About Fabric Login 115
Name Server Proxy 116
About Registering Name Server Proxies 116
Registering Name Server Proxies 116
About Rejecting Duplicate pWWNs 116
Rejecting Duplicate pWWNs 116
About Name Server Database Entries 117
Displaying Name Server Database Entries 117
FDMI 118
Displaying FDMI 118
RSCN 118
About RSCN Information 118
Displaying RSCN Information 119
About the multi-pid Option 119
Configuring the multi-pid Option 119
Suppressing Domain Format SW-RSCNs 120
Clearing RSCN Statistics 120
Configuring the RSCN Timer 120
Verifying the RSCN Timer Configuration 121
RSCN Timer Configuration Distribution 121
Enabling RSCN Timer Configuration Distribution 122
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clearing the Fabric Binding Statistics</td>
<td>176</td>
</tr>
<tr>
<td>Deleting the Fabric Binding Database</td>
<td>176</td>
</tr>
<tr>
<td>Verifying Fabric Binding Information</td>
<td>176</td>
</tr>
<tr>
<td>Default Fabric Binding Settings</td>
<td>178</td>
</tr>
<tr>
<td>Configuring Port Tracking</td>
<td>179</td>
</tr>
<tr>
<td>Configuring Port Tracking</td>
<td>179</td>
</tr>
<tr>
<td>Information About Port Tracking</td>
<td>179</td>
</tr>
<tr>
<td>Guidelines and Limitations</td>
<td>180</td>
</tr>
<tr>
<td>Default Port Tracking Settings</td>
<td>181</td>
</tr>
<tr>
<td>Configuring Port Tracking</td>
<td>181</td>
</tr>
<tr>
<td>Enabling the Port Tracking Feature</td>
<td>181</td>
</tr>
<tr>
<td>About Configuring Linked Ports</td>
<td>182</td>
</tr>
<tr>
<td>Binding a Tracked Port</td>
<td>182</td>
</tr>
<tr>
<td>About Tracking Multiple Ports</td>
<td>183</td>
</tr>
<tr>
<td>About Monitoring Ports in a VSAN</td>
<td>184</td>
</tr>
<tr>
<td>Monitoring Ports in a VSAN</td>
<td>184</td>
</tr>
<tr>
<td>About Forceful Shutdown</td>
<td>185</td>
</tr>
<tr>
<td>Forcefully Shutting Down a Tracked Port</td>
<td>185</td>
</tr>
<tr>
<td>IVR</td>
<td>187</td>
</tr>
<tr>
<td>IVR</td>
<td>189</td>
</tr>
<tr>
<td>Information About IVR</td>
<td>189</td>
</tr>
<tr>
<td>IVR Terminology</td>
<td>190</td>
</tr>
<tr>
<td>Fibre Channel Header Modifications</td>
<td>191</td>
</tr>
<tr>
<td>IVR Database Merge</td>
<td>191</td>
</tr>
<tr>
<td>Default Settings</td>
<td>192</td>
</tr>
<tr>
<td>Licensing Requirements</td>
<td>193</td>
</tr>
<tr>
<td>Guidelines and Limitations</td>
<td>193</td>
</tr>
<tr>
<td>Configuring IVR</td>
<td>193</td>
</tr>
<tr>
<td>Enabling IVR</td>
<td>194</td>
</tr>
<tr>
<td>Distributing IVR</td>
<td>195</td>
</tr>
<tr>
<td>Commiting IVR Changes</td>
<td>196</td>
</tr>
<tr>
<td>Resolving IVR Merge Failures</td>
<td>196</td>
</tr>
<tr>
<td>Verifying IVR Configuration</td>
<td>197</td>
</tr>
<tr>
<td>Feature History</td>
<td>198</td>
</tr>
<tr>
<td>IVR NAT and Auto Topology</td>
<td>199</td>
</tr>
</tbody>
</table>
Verifying IVR Configuration 226
Feature History 227

Autonomous Fabric IDs 229
Information About Autonomous Fabric IDs 229
Licensing Requirements 230
Guidelines and Limitations 230
Default Settings 230
Configuring AFIDs 231
 Configuring Default AFIDs 231
 Configuring an Individual AFID 231
Verifying IVR Configuration 232
Feature History 233

Service Groups 235
Information about Service Groups 235
 Default Service Group 236
 Service Group Activation 236
Licensing Requirements 236
Guidelines and Limitations 237
Default Settings 237
Configuring a Service Group 237
Verifying IVR Configuration 238
Feature History 239

Persistent FCIDs 241
Information About Persistent FCIDs 241
Licensing Requirements 242
Guidelines and Limitations for Persistent FCIDs 242
Default Settings 243
Configuring Persistent FCIDs 243
Verifying IVR Configuration 244
Feature History 245

Virtual Domains 247
Information About Virtual Domains 247
Licensing Requirements 248
Guidelines and Limitations 248
Default Settings 248
Configuring IVR Virtual Domains 248
Verifying IVR Configuration 249
Feature History 250
Preface

This preface describes the audience, organization, and conventions of the Cisco Nexus 7000 Series NX-OS SAN Switching Configuration Guide. It also provides information on how to obtain related documentation.

• Audience, page xvi
• Document Organization, page xvi
• Document Conventions, page xvii
• Obtaining Documentation and Submitting a Service Request, page xviii

Audience

This publication is for experienced network administrators who configure and maintain Cisco NX-OS 7000 Series switches and Cisco Nexus 2000 Series Fabric Extenders.

Document Organization

This document is organized into the following chapters:

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>Provides an overview of all the features in this guide.</td>
</tr>
<tr>
<td>Configuring Domain Parameters</td>
<td>Describes configuration information for domain parameters, domain IDs, and FC IDs.</td>
</tr>
<tr>
<td>Configuring NPIV</td>
<td>Describes how to configure N-port interface virtualization.</td>
</tr>
<tr>
<td>Configuring VSAN Trunking</td>
<td>Explains TE ports and trunking concepts and describes how to configure VSAN trunking how to enable trunking protocols.</td>
</tr>
<tr>
<td>Configuring and Managing VSANs</td>
<td>Describes how virtual SANs (VSANs) work, explains the concept of default VSANs, isolated VSANs, VSAN IDs, and attributes, and provides details on how to create, delete, and view VSANs.</td>
</tr>
</tbody>
</table>
Chapter Descriptions

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPVM</td>
<td>Describes how to dynamically assign VSANs to a port.</td>
</tr>
<tr>
<td>Configuring and Managing Zones</td>
<td>Defines various zoning concepts and provides details on configuring a zone set and zone management features.</td>
</tr>
<tr>
<td>Distributing Device Alias Services</td>
<td>Describes the use of the Distributed Device Alias Services (device alias) to distribute device alias names on a fabric-wide basis.</td>
</tr>
<tr>
<td>Configuring Fibre Channel Routing Services and Protocols</td>
<td>Provides details and configuration information on Fibre Channel routing services and protocols.</td>
</tr>
<tr>
<td>Managing FLOGI, Name Server, FDMI, an RSCN Databases</td>
<td>Provides name server and fabric login details required to manage storage devices and display registered state change notification (RSCN) databases.</td>
</tr>
<tr>
<td>Advanced Fibre Channel Features and Concepts</td>
<td>Describes the advanced configuration features-time out values, fctrace, fabric analyzer, world wide names, flat FC IDs, loop monitoring, and interoperating switches.</td>
</tr>
<tr>
<td>Configuring FC-SP and DHCHAP</td>
<td>Describes the DHCHAP protocol, an FC-SP protocol, that provides authentication between SAN switches and other devices.</td>
</tr>
<tr>
<td>Configuring Port Security</td>
<td>Provides details on port security features that can prevent unauthorized access to a switch port in the Cisco SAN switches.</td>
</tr>
<tr>
<td>Configuring Fabric Binding</td>
<td>Describes the fabric binding security feature for VSANs, which ensures that ISLs are only enabled between specific switches.</td>
</tr>
<tr>
<td>Configuring Port Tracking</td>
<td>Describes the port tracking feature and provides information to enable port tracking and to configure linked ports.</td>
</tr>
<tr>
<td>IVR</td>
<td>Describes how to enable IVR and IVR distribution.</td>
</tr>
<tr>
<td>IVR NAT and Auto Topology</td>
<td>Describes how to configure IVR NAT and Auto Topology.</td>
</tr>
</tbody>
</table>

Document Conventions

This document uses the following conventions:

- **Note**: Means *reader take note*. Notes contain helpful suggestions or references to material not covered in the manual.

- **Caution**: Means *reader be careful*. In this situation, you might do something that could result in equipment damage or loss of data.
Obtaining Documentation and Submitting a Service Request

For information on obtaining documentation, submitting a service request, and gathering additional information, see the monthly What's New in Cisco Product Documentation, which also lists all new and revised Cisco technical documentation, at:

Subscribe to the What's New in Cisco Product Documentation as a Really Simple Syndication (RSS) feed and set content to be delivered directly to your desktop using a reader application. The RSS feeds are a free service and Cisco currently supports RSS version 2.0.
Configuring Domain Parameters

This chapter contains the following sections:

- Configuring Domain Parameters, page 1

Configuring Domain Parameters

The Fibre Channel domain (fcdomain) feature performs principal switch selection, domain ID distribution, FC ID allocation, and fabric reconfiguration functions as described in the FC-SW-2 standards. The domains are configured on a per-VSAN basis. If you do not configure a domain ID, the local switch uses a random ID.

Caution

Changes to fcdomain parameters should not be performed on a daily basis. These changes should be made by an administrator or individual who is completely familiar with switch operations.

When you change the configuration, be sure to save the running configuration. The next time you reboot the switch, the saved configuration is used. If you do not save the configuration, the previously saved startup configuration is used.

Information About Fibre Channel Domains

This section describes each fcdomain phase:

- Principal switch selection—This phase guarantees the selection of a unique principal switch across the fabric.
- Domain ID distribution—This phase guarantees each switch in the fabric obtains a unique domain ID.
- FC ID allocation—This phase guarantees a unique FC ID assignment to each device attached to the corresponding switch in the fabric.
- Fabric reconfiguration—This phase guarantees a resynchronization of all switches in the fabric to ensure they simultaneously restart a new principal switch selection phase.
The following figure illustrates an example fcDomain configuration.

Figure 1: Sample fcDomain Configuration

About Domain Restart

Fibre Channel domains can be started disruptively or nondisruptively. If you perform a disruptive restart, reconfigure fabric (RCF) frames are sent to other switches in the fabric and data traffic is disrupted on all the switches in the VSAN (including remotely segmented ISLs). If you perform a nondisruptive restart, build fabric (BF) frames are sent to other switches in the fabric and data traffic is disrupted only on the switch.

If you are attempting to resolve a domain ID conflict, you must manually assign domain IDs. A disruptive restart is required to apply most configuration changes, including manually assigned domain IDs. Nondisruptive domain restarts are acceptable only when changing a preferred domain ID into a static one (and the actual domain ID remains the same).

Note

A static domain is specifically configured by the user and may be different from the runtime domain. If the domain IDs are different, the runtime domain ID changes to take on the static domain ID after the next restart, either disruptive or nondisruptive.

If a VSAN is in interop mode, you cannot disruptively restart the fcDomain for that VSAN.
You can apply most of the configurations to their corresponding runtime values. Each of the following sections provide further details on how the fcdomain parameters are applied to the runtime values.

The `fcdomain restart` command applies your changes to the runtime settings. Use the disruptive option to apply most of the configurations to their corresponding runtime values, including preferred domain IDs.

Restarting a Domain

To restart the fabric disruptively or nondisruptively, perform this task:

SUMMARY STEPS

1. `switch# configuration terminal`
2. `switch(config)# fcdomain restart vsan vsan-id`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: <code>switch# configuration terminal</code></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2: <code>switch(config)# fcdomain restart vsan vsan-id</code></td>
<td>Forces the VSAN to reconfigure without traffic disruption.</td>
</tr>
</tbody>
</table>

About Domain Manager Fast Restart

When a principal link fails, the domain manager must select a new principal link. By default, the domain manager starts a build fabric (BF) phase, followed by a principal switch selection phase. Both of these phases involve all the switches in the VSAN, and together take at least 15 seconds to complete. To reduce the time required for the domain manager to select a new principal link, you can enable the domain manager fast restart feature.

When fast restart is enabled and a backup link is available, the domain manager needs only a few milliseconds to select a new principal link to replace the one that failed. Also, the reconfiguration required to select the new principal link only affects the two switches that are directly attached to the failed link, not the entire VSAN. When a backup link is not available, the domain manager reverts to the default behavior and starts a BF phase, followed by a principal switch selection phase. The fast restart feature can be used in any interoperability mode.

Enabling Domain Manager Fast Restart

To enable the domain manager fast restart feature, perform this task:

SUMMARY STEPS

1. `switch# configuration terminal`
2. `switch(config)# fcdomain optimize fast-restart vsan vsan-id`
3. `switch(config)# fcdomain optimize fast-restart vsan vsan-id -vsan-id`
4. `switch(config)# no fcdomain optimize fast-restart vsan vsan-id`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configuration terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# fcdomain optimize fast-restart vsan vsan-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config)# fcdomain optimize fast-restart vsan vsan-id - vsan-id</td>
</tr>
<tr>
<td>Step 4</td>
<td>switch(config)# no fcdomain optimize fast-restart vsan vsan-id</td>
</tr>
</tbody>
</table>

About Switch Priority

By default, the configured priority is 128. The valid range to set the priority is between 1 and 254. Priority 1 has the highest priority. Value 255 is accepted from other switches, but cannot be locally configured.

Any new switch cannot become the principal switch when it joins a stable fabric. During the principal switch selection phase, the switch with the highest priority becomes the principal switch. If two switches have the same configured priority, the switch with the lower world-wide name (WWN) becomes the principal switch.

The priority configuration is applied to runtime when the fcdomain is restarted. This configuration is applicable to both disruptive and nondisruptive restarts.

Configuring Switch Priority

To configure the priority for the principal switch, perform this task:

SUMMARY STEPS

1. switch# configuration terminal
2. switch(config)# fcdomain priority number vsan vsan-id
3. switch(config)# no fcdomain priority number vsan vsan-id

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configuration terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# fcdomain priority number vsan vsan-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config)# no fcdomain priority number vsan vsan-id</td>
</tr>
</tbody>
</table>
Configuring Fabric Names

To set the fabric name value for a disabled fcdomain, perform this task:

SUMMARY STEPS

1. switch# configuration terminal
2. switch(config)# fcdomain fabric-name 20:1:ac:16:5e:0:21:01 vsan vsan-id
3. switch(config)# no fcdomain fabric-name 20:1:ac:16:5e:0:21:01 vsan vsan-id

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configuration terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config)# fcdomain fabric-name 20:1:ac:16:5e:0:21:01 vsan vsan-id</td>
<td>Assigns the configured fabric name value in the specified VSAN.</td>
</tr>
<tr>
<td>Step 3 switch(config)# no fcdomain fabric-name 20:1:ac:16:5e:0:21:01 vsan vsan-id</td>
<td>Changes the fabric name value to the factory default (20:01:05:30:00:28:df) in VSAN 3010.</td>
</tr>
</tbody>
</table>

About Incoming RCFs

You can configure the rcf-reject option on a per-interface, per-VSAN basis. By default, the rcf-reject option is disabled (that is, RCF request frames are not automatically rejected).

The rcf-reject option takes effect immediately.

No fcdomain restart is required.

Note

You do not need to configure the RCF reject option on virtual Fibre Channel interfaces.

Rejecting Incoming RCFs

To reject incoming RCF request frames, perform this task:

SUMMARY STEPS

1. switch# configuration terminal
2. switch(config)# interface vfc slot/port
3. switch(config-if)# fcdomain rcf-reject vsan vsan-id
4. switch(config-if)# no fcdomain rcf-reject vsan vsan-id
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configuration terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# interface vfc slot/port</td>
<td>Configures the specified interface.</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config-if)# fdomain rcf-reject vsan vsan-id</td>
<td>Enables the RCF filter on the specified interface in the specified VSAN.</td>
</tr>
<tr>
<td>Step 4</td>
<td>switch(config-if)# no fdomain rcf-reject vsan vsan-id</td>
<td>Disables (default) the RCF filter on the specified interface in the specified VSAN.</td>
</tr>
</tbody>
</table>

About Autoreconfiguring Merged Fabrics

By default, the autoreconfigure option is disabled. When you join two switches belonging to two different stable fabrics that have overlapping domains, the following situations can occur:

- If the autoreconfigure option is enabled on both switches, a disruptive reconfiguration phase is started.
- If the autoreconfigure option is disabled on either or both switches, the links between the two switches become isolated.

The autoreconfigure option takes immediate effect at runtime. You do not need to restart the fcDomain. If a domain is currently isolated due to domain overlap, and you later enable the autoreconfigure option on both switches, the fabric continues to be isolated. If you enabled the autoreconfigure option on both switches before connecting the fabric, a disruptive reconfiguration (RCF) will occur. A disruptive reconfiguration may affect data traffic. You can nondisruptively reconfigure the fcDomain by changing the configured domains on the overlapping links and eliminating the domain overlap.

Enabling Autoreconfiguration

To enable automatic reconfiguration in a specific VSAN (or range of VSANs), perform this task:

1. switch# configuration terminal
2. switch(config)# fdomain auto-reconfigure vsan vsan-id
3. switch(config)# no fdomain auto-reconfigure vsan vsan-id

SUMMARY STEPS

1. switch# configuration terminal
2. switch(config)# fdomain auto-reconfigure vsan vsan-id
3. switch(config)# no fdomain auto-reconfigure vsan vsan-id

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configuration terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# fdomain auto-reconfigure vsan vsan-id</td>
<td>Enables the automatic reconfiguration option in the specified VSAN.</td>
</tr>
</tbody>
</table>
Domain IDs

Domain IDs uniquely identify a switch in a VSAN. A switch may have different domain IDs in different VSANs. The domain ID is part of the overall FC ID.

About Domain IDs

The configured domain ID can be preferred or static. By default, the configured domain ID is 0 (zero) and the configured type is preferred.

Note

The 0 (zero) value can be configured only if you use the preferred option.

If you do not configure a domain ID, the local switch sends a random ID in its request. We recommend that you use static domain IDs.

When a subordinate switch requests a domain, the following process takes place (see the figure below):

- The local switch sends a configured domain ID request to the principal switch.
• The principal switch assigns the requested domain ID if available. Otherwise, it assigns another available domain ID.

Figure 2: Configuration Process Using the Preferred Option

The operation of a subordinate switch changes based on three factors:
• The allowed domain ID lists.
• The configured domain ID.
• The domain ID that the principal switch has assigned to the requesting switch.

In specific situations, the changes are as follows:
• When the received domain ID is not within the allowed list, the requested domain ID becomes the runtime domain ID and all interfaces on that VSAN are isolated.
• When the assigned and requested domain IDs are the same, the preferred and static options are not relevant, and the assigned domain ID becomes the runtime domain ID.
• When the assigned and requested domain IDs are different, the following cases apply:
 ◦ If the configured type is static, the assigned domain ID is discarded, all local interfaces are isolated, and the local switch assigns itself the configured domain ID, which becomes the runtime domain ID.
 ◦ If the configured type is preferred, the local switch accepts the domain ID assigned by the principal switch and the assigned domain ID becomes the runtime domain ID.
If you change the configured domain ID, the change is only accepted if the new domain ID is included in all the allowed domain ID lists currently configured in the VSAN. Alternatively, you can also configure zero-preferred domain ID.

⚠️ Caution

You must enter the fcdomain restart command if you want to apply the configured domain changes to the runtime domain.

⚠️ Note

If you have configured an allow domain ID list, the domain IDs that you add must be in that range for the VSAN.

Related Topics

- About Allowed Domain ID Lists, page 10

Specifying Static or Preferred Domain IDs

When you assign a static domain ID type, you are requesting a particular domain ID. If the switch does not obtain the requested address, it will isolate itself from the fabric. When you specify a preferred domain ID, you are also requesting a particular domain ID; however, if the requested domain ID is unavailable, then the switch will accept another domain ID.

While the static option can be applied at runtime after a disruptive or nondisruptive restart, the preferred option is applied at runtime only after a disruptive restart.

⚠️ Note

Within a VSAN all switches should have the same domain ID type (either static or preferred). If a configuration is mixed (some switches with static domain types and others with preferred), you may experience link isolation.

To specify a static or preferred domain ID, perform this task:

SUMMARY STEPS

1. switch# configuration terminal
2. switch(config)# fcdomain domain domain-id static vsan vsan-id
3. switch(config)# no fcdomain domain domain-id static vsan vsan-id
4. switch(config)# fcdomain domain domain-id preferred vsan vsan-id
5. switch(config)# no fcdomain domain domain-id preferred vsan vsan-id

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configuration terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| **Step 2** | switch(config)# fcdomain domain **domain-id**
static vsan **vsan-id**

- Configures the switch in the specified VSAN to accept only a specific value and moves the local interfaces in the specified VSAN to an isolated state if the requested domain ID is not granted. |
| **Step 3** | switch(config)# no fcdomain domain **domain-id**
static vsan **vsan-id**

- Resets the configured domain ID to factory defaults in the specified VSAN. The configured domain ID becomes 0 preferred. |
| **Step 4** | switch(config)# fcdomain domain **domain-id**
pREFERRED vsan **vsan-id**

- Configures the switch in the specified VSAN to request a preferred domain ID 3 and accepts any value assigned by the principal switch. The domain is range 1 to 239. |
| **Step 5** | switch(config)# no fcdomain domain **domain-id**
pREFERRED vsan **vsan-id**

- Resets the configured domain ID to 0 (default) in the specified VSAN. The configured domain ID becomes 0 preferred. |

About Allowed Domain ID Lists

By default, the valid range for an assigned domain ID list is from 1 to 239. You can specify a list of ranges to be in the allowed domain ID list and separate each range with a comma. The principal switch assigns domain IDs that are available in the locally configured allowed domain list.

Use allowed domain ID lists to design your VSANs with nonoverlapping domain IDs. This helps you in the future if you need to implement IVR without the NAT feature.

If you configure an allowed list on one switch in the fabric, we recommend that you configure the same list in all other switches in the fabric to ensure consistency or use CFS to distribute the configuration.

An allowed domain ID list must satisfy the following conditions:

- If this switch is a principal switch, all the currently assigned domain IDs must be in the allowed list.
- If this switch is a subordinate switch, the local runtime domain ID must be in the allowed list.
- The locally configured domain ID of the switch must be in the allowed list.
- The intersection of the assigned domain IDs with other already configured domain ID lists must not be empty.

Configuring Allowed Domain ID Lists

To configure the allowed domain ID list, perform this task:

SUMMARY STEPS

1. switch# configuration terminal
2. switch(config)# fcdomain allowed **domain-id range** vsan **vsan-id**
3. switch(config)# no fcdomain allowed **domain-id range** vsan **vsan-id**
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>switch# configuration terminal</td>
<td>Enters configuration mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>switch(config)# fcdomain allowed domain-id range vsan vsan-id</td>
<td>Configures the list to allow switches with the domain ID range in the specified VSAN.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>switch(config)# no fcdomain allowed domain-id range vsan vsan-id</td>
<td>Reverts to the factory default of allowing domain IDs from 1 through 239 in the specified VSAN.</td>
</tr>
</tbody>
</table>

About CFS Distribution of Allowed Domain ID Lists

You can enable the distribution of the allowed domain ID list configuration information to all Cisco SAN switches in the fabric using the Cisco Fabric Services (CFS) infrastructure. This feature allows you to synchronize the configuration across the fabric from the console of a single switch. Because the same configuration is distributed to the entire VSAN, you can avoid possible misconfiguration and the possibility that two switches in the same VSAN have configured incompatible allowed domains.

Use CFS to distribute the allowed domain ID list to ensure consistency in the allowed domain ID lists on all switches in the VSAN.

Note

We recommend configuring the allowed domain ID list and committing it on the principal switch.

Enabling Distribution

CFS distribution of allowed domain ID lists is disabled by default. You must enable distribution on all switches to which you want to distribute the allowed domain ID lists.

To enable (or disable) allowed domain ID list configuration distribution, perform this task:

SUMMARY STEPS

1. switch# configuration terminal
2. switch(config)# fcdomain distribute
3. switch(config)# no fcdomain distribute

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>switch# configuration terminal</td>
<td>Enters configuration mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>switch(config)# fcdomain distribute</td>
<td>Enables domain configuration distribution.</td>
</tr>
</tbody>
</table>
Domain IDs

Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td>switch(config)# no fcdomain distribute</td>
</tr>
</tbody>
</table>

Locking the Fabric

The first action that modifies the existing configuration creates the pending configuration and locks the feature in the fabric. After you lock the fabric, the following conditions apply:

- No other user can make any configuration changes to this feature.
- A pending configuration is created by copying the active configuration. Subsequent modifications are made to the pending configuration and remain there until you commit the changes to the active configuration (and other switches in the fabric) or discard them.

Committing Changes

To apply the pending domain configuration changes to other SAN switches in the VSAN, you must commit the changes. The pending configuration changes are distributed and, on a successful commit, the configuration changes are applied to the active configuration in the SAN switches throughout the VSAN and the fabric lock is released.

To commit pending domain configuration changes and release the lock, perform this task:

SUMMARY STEPS

1. switch# configuration terminal
2. switch(config)# fcdomain commit vsan vsan-id

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configuration terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# fcdomain commit vsan vsan-id</td>
</tr>
</tbody>
</table>

Discarding Changes

At any time, you can discard the pending changes to the domain configuration and release the fabric lock. If you discard (abort) the pending changes, the configuration remains unaffected and the lock is released.

To discard pending domain configuration changes and release the lock, perform this task:

SUMMARY STEPS

1. switch# configuration terminal
2. switch(config)# fcdomain abort vsan vsan-id
Detailed Steps

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>switch# configuration terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# fcdomain abort vsan vsan-id</td>
<td>Discards the pending domain configuration changes.</td>
</tr>
</tbody>
</table>

Clearing a Fabric Lock

If you have performed a domain configuration task and have not released the lock by either committing or discarding the changes, an administrator can release the lock from any switch in the fabric. If the administrator performs this task, your pending changes are discarded and the fabric lock is released.

The pending changes are only available in the volatile directory and are discarded if the switch is restarted.

To release a fabric lock, enter the `clear fcdomain session vsan` command in EXEC mode using a login ID that has administrative privileges.

```
switch# clear fcdomain session vsan 10
```

Displaying CFS Distribution Status

You can display the status of CFS distribution for allowed domain ID lists using the `show fcdomain status` command.

```
switch# show fcdomain status
CFS distribution is enabled
```

Displaying Pending Changes

You can display the pending configuration changes using the `show fcdomain pending` command.

```
switch# show fcdomain pending vsan 10
Pending Configured Allowed Domains
----------------------------------
VSAN 10
Assigned or unallowed domain IDs: 1-9,24,100,231-239.
[User] configured allowed domain IDs: 10-230.
```

You can display the differences between the pending configuration and the current configuration using the `show fcdomain pending-diff` command.

```
switch# show fcdomain pending-diff vsan 10
Current Configured Allowed Domains
----------------------------------
VSAN 10
Assigned or unallowed domain IDs: 24,100.
[User] configured allowed domain IDs: 1-239.
Pending Configured Allowed Domains
----------------------------------
VSAN 10
Assigned or unallowed domain IDs: 1-9,24,100,231-239.
[User] configured allowed domain IDs: 10-230.
```
Displaying Session Status

You can display the status of the distribution session using the `show fcdomain session-status vsan` command.

```
switch# show fcdomain session-status vsan 1
Last Action: Distribution Enable
Result: Success
```

About Contiguous Domain ID Assignments

By default, the contiguous domain assignment is disabled. When a subordinate switch requests the principal switch for two or more domains and the domains are not contiguous, the following situations can occur:

- If the contiguous domain assignment is enabled in the principal switch, the principal switch locates contiguous domains and assigns them to the subordinate switches. If contiguous domains are not available, the switch software rejects this request.
- If the contiguous domain assignment is disabled in the principal switch, the principal switch assigns the available domains to the subordinate switch.

Enabling Contiguous Domain ID Assignments

To enable contiguous domains in a specific VSAN (or a range of VSANs), perform this task:

SUMMARY STEPS

1. `switch# configuration terminal`
2. `switch(config)# fcdomain contiguous-allocation vsan vsan-id - vsan-id`
3. `switch(config)# no fcdomain contiguous-allocation vsan vsan-id`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td><code>switch# configuration terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enables the contiguous allocation option in the specified VSAN range.</td>
</tr>
<tr>
<td><code>switch(config)# fcdomain contiguous-allocation vsan vsan-id - vsan-id</code></td>
<td>Note: The <code>contiguous-allocation</code> option takes immediate effect at runtime. You do not need to restart the fcdomain.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Disables the contiguous allocation option and reverts it to the factory default in the specified VSAN.</td>
</tr>
<tr>
<td><code>switch(config)# no fcdomain contiguous-allocation vsan vsan-id</code></td>
<td></td>
</tr>
</tbody>
</table>

FC IDs

When an N port logs into a SAN switch, it is assigned an FC ID. By default, the persistent FC ID feature is enabled. If this feature is disabled, the following situations can occur:
• An N port logs into a SAN switch. The WWN of the requesting N port and the assigned FC ID are retained and stored in a volatile cache. The contents of this volatile cache are not saved across reboots.

• The switch is designed to preserve the binding FC ID to the WWN on a best-effort basis. For example, if one N port disconnects from the switch and its FC ID is requested by another device, this request is granted and the WWN with the initial FC ID association is released.

• The volatile cache stores up to 4000 entries of WWN to FC ID binding. If this cache is full, a new (more recent) entry overwrites the oldest entry in the cache. In this case, the corresponding WWN to FC ID association for the oldest entry is lost.

• N ports receive the same FC IDs if disconnected and reconnected to any port within the same switch (as long as it belongs to the same VSAN).

About Persistent FC IDs

When persistent FC IDs are enabled, the following occurs:

• The current FC IDs in use in the fcdomain are saved across reboots.

• The fcdomain automatically populates the database with dynamic entries that the switch has learned about after a device (host or disk) is plugged into a port interface.

Note

If you connect to the switch from an AIX or HP-UX host, be sure to enable the persistent FC ID feature in the VSAN that connects these hosts.

Note

When persistent FC IDs are enabled, FC IDs cannot be changed after a reboot. FC IDs are enabled by default, but can be disabled for each VSAN.

A persistent FC ID assigned to an F port can be moved across interfaces and can continue to maintain the same persistent FC ID.

Enabling the Persistent FC ID Feature

To enable the persistent FC ID feature, perform this task:

SUMMARY STEPS

1. switch# configuration terminal
2. switch(config)# fcdomain fcid persistent vsan vsan-id
3. switch(config)# no fcdomain fcid persistent vsan vsan-id
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configuration terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config)# fcdomain fcid persistent vsan vsan-id</td>
<td>Activates (default) persistency of FC IDs in the specified VSAN.</td>
</tr>
<tr>
<td>Step 3 switch(config)# no fcdomain fcid persistent vsan vsan-id</td>
<td>Disables the FC ID persistency feature in the specified VSAN.</td>
</tr>
</tbody>
</table>

Persistent FC ID Configuration Guidelines

When the persistent FC ID feature is enabled, you can enter the persistent FC ID submode and add static or dynamic entries in the FC ID database. By default, all added entries are static. Persistent FC IDs are configured on a per-VSAN basis.

When manually configuring a persistent FC ID, follow these requirements:

- Ensure that the persistent FC ID feature is enabled in the required VSAN.
- Ensure that the required VSAN is an active VSAN. Persistent FC IDs can only be configured on active VSANs.
- Verify that the domain part of the FC ID is the same as the runtime domain ID in the required VSAN. If the software detects a domain mismatch, the command is rejected.
- Verify that the port field of the FC ID is 0 (zero) when configuring an area.

Configuring Persistent FC IDs

To configure persistent FC IDs, perform this task:

SUMMARY STEPS

1. switch# configuration terminal
2. switch(config)# fcdomain fcid database
3. switch(config-fcid-db)# vsan vsan-id wwn 33:e8:00:05:30:00:16:df fcid fcid

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configuration terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config)# fcdomain fcid database</td>
<td>Enters FC ID database configuration submode.</td>
</tr>
</tbody>
</table>
About Unique Area FC IDs for HBAs

Note Only read this section if the Host Bus Adapter (HBA) port and the storage port are connected to the same switch.

Some HBA ports require a different area ID than for the storage ports when they are both connected to the same switch. For example, if the storage port FC ID is 0x6f7704, the area for this port is 77. In this case, the HBA port’s area can be anything other than 77. The HBA port’s FC ID must be manually configured to be different from the storage port’s FC ID.

Cisco SAN switches facilitate this requirement with the FC ID persistence feature. You can use this feature to preassign an FC ID with a different area to either the storage port or the HBA port.

Configuring Unique Area FC IDs for an HBA

The following task uses an example configuration with a switch domain of 111(6f hex). The server connects to the switch over FCoE. The HBA port connects to interface vfc20.

To configure a different area ID for the HBA port, perform this task:

SUMMARY STEPS

1. Obtain the port WWN (Port Name field) ID of the HBA using the `show flogi database` command.
2. Shut down the HBA interface in the SAN switch.
3. Verify that the FC ID feature is enabled using the `show fcdomain vsan` command.
4. Enable the persistent FC ID feature in the SAN switch.
5. Assign a new FC ID with a different area allocation. In this example, replace 77 with ee.
6. Enable the HBA interface in the SAN switch.
7. Verify the pWWN ID of the HBA by using the `show flogi database` command.
DETAILED STEPS

Step 1 Obtain the port WWN (Port Name field) ID of the HBA using the `show flogi database` command.
```
switch# show flogi database
```
<table>
<thead>
<tr>
<th>INTERFACE</th>
<th>VSAN</th>
<th>FCID</th>
<th>PORT NAME</th>
<th>NODE NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>vfc20</td>
<td>3</td>
<td>0x6f77</td>
<td>50:05:08:b2:00:71:c8:c2</td>
<td>50:05:08:b2:00:71:c8:c0</td>
</tr>
</tbody>
</table>

Step 2 Shut down the HBA interface in the SAN switch.
```
switch# configuration terminal
switch(config)# interface vfc 20

switch(config-if)# shutdown

switch(config-if)# end
```

Step 3 Verify that the FC ID feature is enabled using the `show fcdomain vsan` command.
```
switch# show fcdomain vsan 1

Local switch configuration information:
  State: Enabled
  FCID persistence: Disabled
```
If this feature is disabled, continue to the next step to enable the persistent FC ID. If this feature is already enabled, skip to the following step.

Step 4 Enable the persistent FC ID feature in the SAN switch.
```
switch# configuration terminal
switch(config)# fcdomain fcid persistent vsan 1

switch(config)# end
```

Step 5 Assign a new FC ID with a different area allocation. In this example, replace 77 with ee.
```
switch# configuration terminal
switch(config)# fcdomain fcid database
switch(config-fcid-db)# vsan 3 wwn 50:05:08:b2:00:71:c8:c2
fcid 0x6fee00 area
```

Step 6 Enable the HBA interface in the SAN switch.
```
switch# configuration terminal
switch(config)# interface vfc 20

switch(config-if)# no shutdown

switch(config-if)# end
```

Step 7 Verify the pWWN ID of the HBA by using the `show flogi database` command.
```
switch# show flogi database
```
<table>
<thead>
<tr>
<th>INTERFACE</th>
<th>VSAN</th>
<th>FCID</th>
<th>PORT NAME</th>
<th>NODE NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>vfc20</td>
<td>3</td>
<td>0x6fee00</td>
<td>50:05:08:b2:00:71:c8:c2</td>
<td>50:05:08:b2:00:71:c8:c0</td>
</tr>
</tbody>
</table>
About Persistent FC ID Selective Purging

Persistent FC IDs can be purged selectively. Static entries and FC IDs currently in use cannot be deleted. The table below identifies the FC ID entries that are deleted or retained when persistent FC IDs are purged.

Table 1: Purged FC IDs

<table>
<thead>
<tr>
<th>Persistent FC ID state</th>
<th>Persistent Usage State</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static</td>
<td>In use</td>
<td>Not deleted</td>
</tr>
<tr>
<td>Static</td>
<td>Not in use</td>
<td>Not deleted</td>
</tr>
<tr>
<td>Dynamic</td>
<td>In use</td>
<td>Not deleted</td>
</tr>
<tr>
<td>Dynamic</td>
<td>Not in use</td>
<td>Deleted</td>
</tr>
</tbody>
</table>

Purging Persistent FC IDs

To purge persistent FC IDs, perform this task:

SUMMARY STEPS

1. `switch# purge fcdomain fcid vsan vsan-id`
2. `switch# purge fcdomain fcid vsan vsan-id - vsan-id`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Purges all dynamic and unused FC IDs in the specified VSAN.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Purges dynamic and unused FC IDs in the specified VSAN range.</td>
</tr>
</tbody>
</table>

Verifying fcdomain Information

Note

If the fcdomain feature is disabled, the runtime fabric name in the display is the same as the configured fabric name.

This example shows how to display information about fcdomain configurations:

`switch# show fcdomain vsan 2`
Use the `show fcdomain domain-list` command to display the list of domain IDs of all switches belonging to a specified VSAN. This list provides the WWN of the switches owning each domain ID. The next example uses the following values:

- A switch with WWN of 20:01:00:05:30:00:47:df is the principal switch and has domain 200.
- A switch with WWN of 20:01:00:0d:ec:08:60:c1 is the local switch (the one where you typed the CLI command to show the domain-list) and has domain 99.
- The IVR manager obtained virtual domain 97 using 20:01:00:05:30:00:47:df as the WWN for a virtual switch.

```bash
switch# show fcdomain domain-list vsan 76
Number of domains: 3
Domain ID    WWN
---------    -----------------------
0xc8(200)    20:01:00:05:30:00:47:df [Principal]
0x63(99)     20:01:00:0d:ec:08:60:c1 [Local]
0x61(97)     50:00:53:0f:ff:f0:10:06 [Virtual (IVR)]
```

Use the `show fcdomain allowed vsan` command to display the list of allowed domain IDs configured on this switch.

```bash
switch# show fcdomain allowed vsan 1
Assigned or unallowed domain IDs: 1-96,100,111-239.
[Interoperability Mode 1] allowed domain IDs: 97-127.
[User] configured allowed domain IDs: 50-110.
Ensure that the requested domain ID passes the switch software checks, if interop 1 mode is required in this switch.
```

The following example shows how to display all existing, persistent FC IDs for a specified VSAN. You can also specify the unused option to view only persistent FC IDs that are still not in use.

```bash
switch# show fcdomain fcid persistent vsan 1000
```

The following example shows how to display frame and other fcdomain statistics for a specified VSAN or SAN port channel:

```bash
switch# show fcdomain statistics vsan 1
VSAN Statistics
    Number of Principal Switch Selections: 5
    Number of times Local Switch was Principal: 0
    Number of 'Build Fabric's: 3
    Number of 'Fabric Reconfigurations': 0
```

The following example shows how to display FC ID allocation statistics including a list of assigned and free FC IDs:

```bash
switch# show fcdomain address-allocation vsan 1
```

The following example shows how to display the valid address allocation cache. The cache is used by the principal switch to reassign the FC IDs for a device (disk or host) that exited and reentered the fabric. In the cache content, VSAN refers to the VSAN that contains the device, WWN refers to the device that owned the FC IDs, and mask refers to a single or entire area of FC IDs.

```bash
switch# show fcdomain address-allocation cache
```

Default Fibre Channel Domain Settings

The table below lists the default settings for all fcdomain parameters.
Table 2: Default fcdomain Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>fcdomain feature</td>
<td>Enabled</td>
</tr>
<tr>
<td>Configured domain ID</td>
<td>0 (zero)</td>
</tr>
<tr>
<td>Configured domain</td>
<td>Preferred</td>
</tr>
<tr>
<td>auto-reconfigure option</td>
<td>Disabled</td>
</tr>
<tr>
<td>contiguous-allocation option</td>
<td>Disabled</td>
</tr>
<tr>
<td>Priority</td>
<td>128</td>
</tr>
<tr>
<td>Allowed list</td>
<td>1 to 239</td>
</tr>
<tr>
<td>Fabric name</td>
<td>20:01:00:05:30:00:28:df</td>
</tr>
<tr>
<td>rcf-reject</td>
<td>Disabled</td>
</tr>
<tr>
<td>Persistent FC ID</td>
<td>Enabled</td>
</tr>
<tr>
<td>Allowed domain ID list configuration distribution</td>
<td>Disabled</td>
</tr>
</tbody>
</table>
About N Port Identifier Virtualization

N port identifier virtualization (NPIV) provides a means to assign multiple FC IDs to a single N port. This feature allows multiple applications on the N port to use different identifiers and allows access control, zoning, and port security to be implemented at the application level. The following figure shows an example application using NPIV.

Figure 3: NPIV Example

Enabling N Port Identifier Virtualization

To enable or disable NPIV on the switch, perform this task:

Before You Begin

You must globally enable NPIV for all VSANs on the switch to allow the NPIV-enabled applications to use multiple N port identifiers.
All of the N port identifiers are allocated in the same VSAN.

SUMMARY STEPS

1. `switch# configuration terminal`
2. `switch(config)# feature npiv`
3. `switch(config)# no feature npiv`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>switch# configuration terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enables NPIV for all VSANs on the switch.</td>
</tr>
<tr>
<td>switch(config)# feature npiv</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Disables (default) NPIV on the switch.</td>
</tr>
<tr>
<td>switch(config)# no feature npiv</td>
<td></td>
</tr>
</tbody>
</table>
This chapter contains the following sections:

- Configuring and Managing VSANs, page 25

Configuring and Managing VSANs

You can achieve higher security and greater stability in Fibre Channel fabrics by using virtual SANs (VSANs). VSANs provide isolation among devices that are physically connected to the same fabric. With VSANs you can create multiple logical SANs over a common physical infrastructure. Each VSAN can contain up to 239 switches and has an independent address space that allows identical Fibre Channel IDs (FCIDs) to be used simultaneously in different VSANs.

Information About VSANs

A VSAN is a virtual storage area network (SAN). A SAN is a dedicated network that interconnects hosts and storage devices primarily to exchange SCSI traffic. In SANs you use the physical links to make these interconnections. A set of protocols run over the SAN to handle routing, naming, and zoning. You can design multiple SANs with different topologies.

VSAN Topologies

With the introduction of VSANs, the network administrator can build a single topology containing switches, links, and one or more VSANs. Each VSAN in this topology has the same operation and property of a SAN. A VSAN has the following additional features:

- Multiple VSANs can share the same physical topology.
- The same Fibre Channel IDs (FC IDs) can be assigned to a host in another VSAN, which increases VSAN scalability.
- Every instance of a VSAN runs all required protocols such as FSPF, domain manager, and zoning.
- Fabric-related configurations in one VSAN do not affect the associated traffic in another VSAN.
- Events causing traffic disruptions in one VSAN are contained within that VSAN and are not propagated to other VSANs.
The following figure shows a fabric with three switches, one on each floor. The geographic location of the switches and the attached devices is independent of their segmentation into logical VSANs. No communication between VSANs is possible. Within each VSAN, all members can talk to one another.

Figure 4: Logical VSAN Segmentation

The application servers or storage arrays can be connected to the switch using Fibre Channel or virtual Fibre Channel interfaces. A VSAN can include a mixture of Fibre Channel and virtual Fibre Channel interfaces.
The following figure shows a physical Fibre Channel switching infrastructure with two defined VSANs: VSAN 2 (dashed) and VSAN 7 (solid). VSAN 2 includes hosts H1 and H2, application servers AS2 and AS3, and storage arrays SA1 and SA4. VSAN 7 connects H3, AS1, SA2, and SA3.

Figure 5: Example of Two VSANs

The four switches in this network are interconnected by VSAN trunk links that carry both VSAN 2 and VSAN 7 traffic. You can configure a different inter-switch topology for each VSAN. In the preceding figure, the inter-switch topology is identical for VSAN 2 and VSAN 7.

Without VSANs, a network administrator would need separate switches and links for separate SANs. By enabling VSANs, the same switches and links may be shared by multiple VSANs. VSANs allow SANs to be built on port granularity instead of switch granularity. The preceding figure illustrates that a VSAN is a group of hosts or storage devices that communicate with each other using a virtual topology defined on the physical SAN.

The criteria for creating such groups differ based on the VSAN topology:

- VSANs can separate traffic based on the following requirements:
 - Different customers in storage provider data centers
 - Production or test in an enterprise network
 - Low and high security requirements
 - Backup traffic on separate VSANs
 - Replicating data from user traffic
VSANs can meet the needs of a particular department or application.

VSAN Advantages

VSANs offer the following advantages:

- Traffic isolation—Traffic is contained within VSAN boundaries and devices reside only in one VSAN ensuring absolute separation between user groups, if desired.
- Scalability—VSANs are overlaid on top of a single physical fabric. The ability to create several logical VSAN layers increases the scalability of the SAN.
- Per VSAN fabric services—Replication of fabric services on a per VSAN basis provides increased scalability and availability.
- Redundancy—Several VSANs created on the same physical SAN ensure redundancy. If one VSAN fails, redundant protection (to another VSAN in the same physical SAN) is configured using a backup path between the host and the device.
- Ease of configuration—Users can be added, moved, or changed between VSANs without changing the physical structure of a SAN. Moving a device from one VSAN to another only requires configuration at the port level, not at a physical level.

Up to 256 VSANs can be configured in a switch. Of these, one is a default VSAN (VSAN 1), and another is an isolated VSAN (VSAN 4094). User-specified VSAN IDs range from 2 to 4093.

VSANs Versus Zones

Zones are always contained within a VSAN. You can define multiple zones in a VSAN.

Because two VSANs are equivalent to two unconnected SANs, zone A on VSAN 1 is different and separate from zone A in VSAN 2. The following table lists the differences between VSANs and zones.

<table>
<thead>
<tr>
<th>VSAN Characteristic</th>
<th>Zone Characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSANs equal SANs with routing, naming, and zoning protocols.</td>
<td>Routing, naming, and zoning protocols are not available on a per-zone basis.</td>
</tr>
<tr>
<td>VSANs limit unicast, multicast, and broadcast traffic.</td>
<td>Zones limit unicast traffic.</td>
</tr>
<tr>
<td>Membership is typically defined using the VSAN ID to F ports.</td>
<td>Membership is typically defined by the pWWN.</td>
</tr>
<tr>
<td>An HBA or a storage device can belong only to a single VSAN (the VSAN associated with the F port).</td>
<td>An HBA or storage device can belong to multiple zones.</td>
</tr>
<tr>
<td>VSANs enforce membership at each E port, source port, and destination port.</td>
<td>Zones enforce membership only at the source and destination ports.</td>
</tr>
<tr>
<td>VSANs are defined for larger environments (storage service providers).</td>
<td>Zones are defined for a set of initiators and targets not visible outside the zone.</td>
</tr>
<tr>
<td>VSAN Characteristic</td>
<td>Zone Characteristic</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>VSANs encompass the entire fabric.</td>
<td>Zones are configured at the fabric edge.</td>
</tr>
</tbody>
</table>

The following figure shows the possible relationships between VSANs and zones. In VSAN 2, three zones are defined: zone A, zone B, and zone C. Zone C overlaps both zone A and zone B as permitted by Fibre Channel standards. In VSAN 7, two zones are defined: zone A and zone D. No zone crosses the VSAN boundary. Zone A defined in VSAN 2 is different and separate from zone A defined in VSAN 7.

Figure 6: VSANS with Zoning

Configuring VSANs

VSANs have the following attributes:

- **VSAN ID**—The VSAN ID identifies the VSAN as the default VSAN (VSAN 1), user-defined VSANs (VSAN 2 to 4093), and the isolated VSAN (VSAN 4094).

- **State**—The administrative state of a VSAN can be configured to an active (default) or suspended state. Once VSANs are created, they may exist in various conditions or states.
 - The active state of a VSAN indicates that the VSAN is configured and enabled. By enabling a VSAN, you activate the services for that VSAN.
 - The suspended state of a VSAN indicates that the VSAN is configured but not enabled. If a port is configured in this VSAN, it is disabled. Use this state to deactivate a VSAN without losing the VSAN’s configuration. All ports in a suspended VSAN are disabled. By suspending a VSAN, you can preconfigure all the VSAN parameters for the whole fabric and activate the VSAN immediately.
• VSAN name—This text string identifies the VSAN for management purposes. The name can be from 1 to 32 characters long and it must be unique across all VSANs. By default, the VSAN name is a concatenation of VSAN and a four-digit string representing the VSAN ID. For example, the default name for VSAN 3 is VSAN0003.

Note
A VSAN name must be unique.

• Load-balancing attributes—These attributes indicate the use of the source-destination ID (src-dst-id) or the originator exchange OX ID (src-dst-ox-id, the default) for load-balancing path selection.

About VSAN Creation
A VSAN is in the operational state if the VSAN is active and at least one port is up. This state indicates that traffic can pass through this VSAN. This state cannot be configured.

Creating VSANs Statically
You cannot configure any application-specific parameters for a VSAN before creating the VSAN. To create VSANs, perform this task:

SUMMARY STEPS

1. switch# configuration terminal
2. switch(config)# vsan database
3. switch(config-vsan-db)# vsan vsan-id
4. switch(config-vsan-db)# vsan vsan-id name name
5. switch(config-vsan-db)# vsan vsan-id suspend
6. switch(config-vsan-db)# no vsan vsan-id suspend
7. switch(config-vsan-db)# end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configuration terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# vsan database</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config-vsan-db)# vsan vsan-id</td>
</tr>
<tr>
<td>Step 4</td>
<td>switch(config-vsan-db)# vsan vsan-id name name</td>
</tr>
<tr>
<td>Step 5</td>
<td>switch(config-vsan-db)# vsan vsan-id suspend</td>
</tr>
</tbody>
</table>
About Port VSAN Membership

Port VSAN membership on the switch is assigned on a port-by-port basis. By default each port belongs to the default VSAN. You can assign VSAN membership to ports using one of two methods:

- Statically—Assigning VSANs to ports.
- Dynamically—Assigning VSANs based on the device WWN. This method is referred to as dynamic port VSAN membership (DPVM).

VSAN trunking ports have an associated list of VSANs that are part of an allowed list.

Related Topics
- Assigning Static Port VSAN Membership, page 31
- Configuring VSAN Trunking, page 51

Assigning Static Port VSAN Membership

To statically assign VSAN membership for an interface port, perform this task:

SUMMARY STEPS

1. switch# configuration terminal
2. switch(config)# vsan database
3. switch(config-vsan-db)# vsan vsan-id
4. switch(config-vsan-db)# vsan vsan-id interface vfc vfc-id
5. switch(config-vsan-db)# vsan vsan-id vfc vfc-id

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch# configuration terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>switch(config)# vsan database</td>
<td>Configures the database for a VSAN.</td>
</tr>
<tr>
<td>switch(config-vsan-db)# vsan vsan-id</td>
<td>Creates a VSAN with the specified ID if that VSAN does not exist already.</td>
</tr>
<tr>
<td>switch(config-vsan-db)# vsan vsan-id interface vfc vfc-id</td>
<td>Assigns the membership of the specified interface to the VSAN.</td>
</tr>
</tbody>
</table>
About the Default VSAN

The factory settings for Cisco SAN switches have only the default VSAN 1 enabled. We recommend that you do not use VSAN 1 as your production environment VSAN. If no VSANs are configured, all devices in the fabric are considered part of the default VSAN. By default, all ports are assigned to the default VSAN.

Note

VSAN 1 cannot be deleted, but it can be suspended.

Up to 256 VSANs can be configured in a switch. Of these, one is a default VSAN (VSAN 1), and another is an isolated VSAN (VSAN 4094). User-specified VSAN IDs range from 2 to 4093.

About the Isolated VSAN

VSAN 4094 is an isolated VSAN. When a VSAN is deleted, all nontrunking ports are transferred to the isolated VSAN to avoid an implicit transfer of ports to the default VSAN or to another configured VSAN. This action ensures that all ports in the deleted VSAN become isolated (disabled).

Note

When you configure a port in VSAN 4094 or move a port to VSAN 4094, that port is immediately isolated.

Caution

Do not use an isolated VSAN to configure ports.

Note

Up to 256 VSANs can be configured in a switch. Of these, one is a default VSAN (VSAN 1), and another is an isolated VSAN (VSAN 4094). User-specified VSAN IDs range from 2 to 4093.

Displaying Isolated VSAN Membership

The `show vsan 4094 membership` command displays all ports associated with the isolated VSAN.

Operational State of a VSAN

A VSAN is in the operational state if the VSAN is active and at least one port is up. This state indicates that traffic can pass through this VSAN. This state cannot be configured.
About Static VSAN Deletion

When an active VSAN is deleted, all of its attributes are removed from the running configuration. VSAN-related information is maintained by the system software as follows:

- VSAN attributes and port membership details are maintained by the VSAN manager. This feature is affected when you delete a VSAN from the configuration. When a VSAN is deleted, all the ports in that VSAN are made inactive and the ports are moved to the isolated VSAN. If the same VSAN is recreated, the ports do not automatically get assigned to that VSAN. You must explicitly reconfigure the port VSAN membership (see the figure below).

![Figure 7: VSAN Port Membership Details](image)

- VSAN-based runtime (name server), zoning, and configuration (static routes) information is removed when the VSAN is deleted.

- Configured VSAN interface information is removed when the VSAN is deleted.

Note

The allowed VSAN list is not affected when a VSAN is deleted.

Any commands for a nonconfigured VSAN are rejected. For example, if VSAN 10 is not configured in the system, then a command request to move a port to VSAN 10 is rejected.

Related Topics

- Configuring VSAN Trunking, page 51

Deleting Static VSANs

To delete a VSAN and its various attributes, perform this task:
SUMMARY STEPS

1. `switch# configuration terminal`
2. `switch(config)# vsan database`
3. `switch-config-db# vsan 2`
4. `switch(config-vsan-db)# no vsan 5`
5. `switch(config-vsan-db)# end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>switch# configuration terminal</code></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>switch(config)# vsan database</code></td>
<td>Configures the VSAN database.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>switch-config-db# vsan 2</code></td>
<td>Places you in VSAN configuration mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>switch(config-vsan-db)# no vsan 5</code></td>
<td>Deletes VSAN 5 from the database and switch.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>switch(config-vsan-db)# end</code></td>
<td>Places you in EXEC mode.</td>
</tr>
</tbody>
</table>

About Load Balancing

Load-balancing attributes indicate the use of the source-destination ID (src-dst-id) or the originator exchange OX ID (src-dst-ox-id, the default) for load-balancing path selection.

Configuring Load Balancing

To configure load balancing on an existing VSAN, perform this task:

SUMMARY STEPS

1. `switch# configuration terminal`
2. `switch(config)# vsan database`
3. `switch(config-vsan-db)# vsan vsan-id`
4. `switch(config-vsan-db)# vsan vsan-id loadbalancing src-dst-id`
5. `switch(config-vsan-db)# no vsan vsan-id loadbalancing src-dst-id`
6. `switch(config-vsan-db)# vsan vsan-id loadbalancing src-dst-ox-id`
7. `switch(config-vsan-db)# vsan vsan-id suspend`
8. `switch(config-vsan-db)# no vsan vsan-id suspend`
9. `switch(config-vsan-db)# end`
Detailed Steps

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>switch# configuration terminal</code></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>switch(config)# vsan database</code></td>
<td>Enters VSAN database configuration submode</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>switch(config-vsan-db)# vsan vsan-id</code></td>
<td>Specifies an existing VSAN.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>switch(config-vsan-db)# vsan vsan-id loadbalancing src-dst-id</code></td>
<td>Enables the load-balancing guarantee for the selected VSAN and directs the switch to use the source and destination ID for its path selection process.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>switch(config-vsan-db)# no vsan vsan-id loadbalancing src-dst-id</code></td>
<td>Negates the command entered in the previous step and reverts to the default values of the load-balancing parameters.</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>switch(config-vsan-db)# vsan vsan-id loadbalancing src-dst-ox-id</code></td>
<td>Changes the path selection setting to use the source ID, the destination ID, and the OX ID (default).</td>
</tr>
<tr>
<td>Step 7</td>
<td><code>switch(config-vsan-db)# vsan vsan-id suspend</code></td>
<td>Suspends the selected VSAN.</td>
</tr>
<tr>
<td>Step 8</td>
<td><code>switch(config-vsan-db)# no vsan vsan-id suspend</code></td>
<td>Negates the <code>suspend</code> command entered in the previous step.</td>
</tr>
<tr>
<td>Step 9</td>
<td><code>switch(config-vsan-db)# end</code></td>
<td>Returns you to EXEC mode.</td>
</tr>
</tbody>
</table>

About Interop Mode

Interoperability enables the products of multiple vendors to connect with each other. Fibre Channel standards guide vendors to create common external Fibre Channel interfaces.

Related Topics
- [Switch Interoperability, page 133](#)

Displaying Static VSAN Configuration

The following example shows how to display information about a specific VSAN:

```bash
switch# show vsan 100
```

The following example shows how to display VSAN usage:

```bash
switch# show vsan usage
```

The following example shows how to display all VSANs:

```bash
switch# show vsan
```

Default VSAN Settings

The following table lists the default settings for all configured VSANs.
Table 4: Default VSAN Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default VSAN</td>
<td>VSAN 1.</td>
</tr>
<tr>
<td>State</td>
<td>Active state.</td>
</tr>
<tr>
<td>Name</td>
<td>Concatenation of VSAN and a four-digit string representing the VSAN ID. For example, VSAN 3 is VSAN0003.</td>
</tr>
<tr>
<td>Load-balancing attribute</td>
<td>OX ID (src-dst-ox-id).</td>
</tr>
</tbody>
</table>
Information About DPVM

You can use Dynamic Port VSAN Membership (DPVM) to dynamically assign VSAN membership to ports by assigning VSANs based on the device WWN. DPVM eliminates the need to reconfigure the port VSAN membership to maintain fabric topology when a host or storage device connection is moved between two Cisco SAN switches or two ports within a switch. It retains the configured VSAN regardless of where a device is connected or moved.

DPVM assignment is based on port world wide name (pWWN) and node world wide name (nWWN). A DPVM database contains mapping information for each device pWWN/nWWN assignment and the corresponding VSAN. Cisco NX-OS checks the database during a device FLOGI and obtains the required VSAN details.

The pWWN identifies the host or device and the nWWN identifies a node consisting of multiple devices. You can assign any one of these identifiers or any combination of these identifiers to configure DPVM mapping. If you assign a combination, then preference is given to the pWWN.

DPVM uses the Cisco Fabric Services (CFS) infrastructure to allow efficient database management and distribution.
DPVM Databases

The DPVM database consists of a series of device mapping entries. Each entry consists of a device pWWN or nWWN assignment along with the dynamic VSAN assigned. You can configure a maximum of 16,000 DPVM entries in the DPVM database. This database is global to the whole switch (and fabric) and is not maintained for each VSAN.

DPVM uses the following three databases:

- **Configuration (config) database**: Stores all configuration changes when CFS distribution is disabled. Changes to this database are reflected in the active DPVM database when you activate the DPVM config database.

- **Active database**: Represents the DPVM configuration currently active in the fabric.

- **Pending database**: Stores all configuration changes when CFS distribution is enabled. Changes to this database are reflected in the config or active DPVM database when you commit the DPVM pending database.

Related Topics

- [Activating the DPVM Config Database, page 42](#)
- [Verifying DPVM Configuration, page 46](#)

DPVM Database Distribution

DPVM can use CFS to distribute the database to all switches in the fabric. This allows devices to move anywhere and keep the same VSAN membership.

Note

You should enable CFS distribution on all switches in the fabric.

Using the CFS infrastructure, each DPVM server learns the DPVM database from each of its neighboring switches during the ISL bring-up process. If you change the database locally, the DPVM server notifies its neighboring switches, and that database is updated by all switches in the fabric.

When you enable CFS distribution for DPVM, the DPVM configuration database is copied into the DPVM pending database. All changes to DPVM configuration are now stored in the DPVM pending database and the feature is locked (that is, no other switch can make changes to the DPVM database until you commit the changes or discard the changes and free the CFS lock).

The DPVM pending database includes the following changes:

- Adding, deleting, or modifying database entries.
- Activating, deactivating, or deleting the configuration database.
- Enabling or disabling autolearning.

CFS distributes these changes to all switches in a fabric when you commit the changes. You can also discard (abort) the changes at this point.
Database Merge

When you merge to independent fabrics into one fabric, DPVM attempts to merge the DPVM database (the configuration database and static (unlearned) entries in the active DPVM database). To ensure a successful database merge, follow these guidelines:

- Verify that the activation status and the auto-learn status is the same in both fabrics.
- Verify that the combined number of device entries in each database does not exceed 16 K.

If you do not follow these two conditions, the merge will fail. The next CFS distribution will forcefully synchronize the databases and the activation states in the fabric.

Related Topics

- Displaying DPVM Database Merge Results, page 46

Default Settings

Table 5: Default DPVM Parameter Settings

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPVM feature</td>
<td>Disabled</td>
</tr>
<tr>
<td>DPVM CFS distribution</td>
<td>Enabled</td>
</tr>
<tr>
<td>Autolearning</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Licensing Requirements

<table>
<thead>
<tr>
<th>Product</th>
<th>License</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco Nexus 7000 Series.</td>
<td>DPVM requires the FCoE license for each F-series module. FCoE enabled in a storage VDC does not require the Advanced Services License. For a complete explanation of the Cisco NX-OS licensing scheme and how to obtain and apply licenses, see the Cisco NX-OS Licensing Guide.</td>
</tr>
</tbody>
</table>

Guidelines and Limitations for DPVM

DPVM has the following guidelines and limitations:

- You should enable DPVM CFS distribution for all switches in your fabric.
• Connect the dynamic device to an F-port on the switch.
• Verify that the static port VSAN of the F port is valid (not isolated, not suspended, and in existence).
• Verify that the dynamic VSAN configured for the device in the DPVM database is valid (not isolated, not suspended, and in existence).
• DPVM supports MAC-based device mapping for FCoE devices. DPVM does not support pWWN mapping for FCoE devices.

Note
DPVM overrides any existing static port VSAN membership configuration. If the VSAN corresponding to the dynamic port is deleted or suspended, the port is shut down.

Configuring DPVM

Enabling the DPVM Feature

You must enable the DPVM feature before you can configure DPVM.

SUMMARY STEPS

1. `config t`
2. `feature dpvm`
3. (Optional) `show feature`
4. (Optional) `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 config t</td>
<td>Enters configuration mode.</td>
</tr>
</tbody>
</table>
| **Example:**
 switch# config t
 switch(config)# | |
| **Step 2** feature dpvm | Enables the DPVM feature. |
| **Example:**
 switch(config)# feature dpvm | |
| **Step 3** show feature | (Optional)
 Displays the enable or disable state for each feature. |
| **Example:**
 switch(config)# show feature | |
Purpose

Command or Action

- `copy running-config startup-config`

Purpose

(Optional)

Copies the running configuration to the startup configuration.

Adding Entries into the DPVM Database

You can manually add entries into the config and pending DPVM databases.

Note

The DPVM pending database is stored in volatile memory. Changes would be lost if the switch reboots. You should commit changes as soon as possible.

Before You Begin

- Ensure you have enabled the DPVM feature.
- Ensure you have configured device aliases in enhanced mode if you want to configure device aliases in the DPVM database.

SUMMARY STEPS

1. `config t`
2. `dpvm database`
3. `pwwn pwwn vsan vsan-id`
4. `nwwn nwwn vsan vsan-id`
5. `device-alias alias vsan vsan-id`
6. `exit`
7. `show dpvm pending-diff`
8. `dpvm commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enter configuration mode.</td>
</tr>
<tr>
<td><code>config t</code></td>
<td></td>
</tr>
<tr>
<td>Example: <code>switch# config t</code> <code>switch(config)#</code></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 2</td>
<td>dpvm database
Example:
switch(config)# dpvm database
switch(config-dpvm-db)#</td>
</tr>
<tr>
<td></td>
<td>Creates the DPVM config database and enters database configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>pwwn pwwn vsan vsan-id
Example:
switch(config-dpvm-db)# pwwn 12:33:56:78:90:12:34:56 vsan 100</td>
</tr>
<tr>
<td></td>
<td>Maps the configured pWWN to the VSAN. The pwwn is in pWWN dotted notation. The vsan-id range is from 1 to 4093.</td>
</tr>
<tr>
<td>Step 4</td>
<td>nwwn nwwn vsan vsan-id
Example:
switch(config-dpvm-db)# nwwn 14:21:30:12:63:39:72:81 vsan 101</td>
</tr>
<tr>
<td></td>
<td>Maps the configured nWWN to the VSAN. The nwwn is in nWWN dotted notation. The vsan-id range is from 1 to 4093.</td>
</tr>
<tr>
<td>Step 5</td>
<td>device-alias alias vsan vsan-id
Example:
switch(config-dpvm-db)# device-alias device1 vsan 102</td>
</tr>
<tr>
<td></td>
<td>Maps the configured device alias to the VSAN. The alias is any case-sensitive alphanumeric string up to 64 characters. The vsan-id range is from 1 to 4093.</td>
</tr>
<tr>
<td>Step 6</td>
<td>exit
Example:
switch(config-dpvm-db)# exit</td>
</tr>
<tr>
<td></td>
<td>Exits DPVM database configuration mode.</td>
</tr>
<tr>
<td>Step 7</td>
<td>show dpvm pending-diff
Example:
switch(config)# show dpvm pending</td>
</tr>
<tr>
<td></td>
<td>Displays the differences between the pending database and the config database. You can optionally discard these changes using the dpvm abort command.</td>
</tr>
<tr>
<td>Step 8</td>
<td>dpvm commit
Example:
switch(config)# dpvm commit</td>
</tr>
<tr>
<td></td>
<td>Commits the DPVM pending database to the config database. This step is required to release the CFS lock on DPVM configuration and distribute this change across the fabric. You can optionally use the dpvm abort command to discard these changes and release the CFS lock.</td>
</tr>
</tbody>
</table>

What to Do Next

You should compare the DPVM config database to the active database and activate these changes.

Activating the DPVM Config Database

You can activate the DPVM config database to make it the active database. Activation may fail if conflicting entries are found between the DPVM config database and the currently active DPVM database. However, you can force activation to override conflicting entries.

To disable DPVM, you must explicitly deactivate the currently active DPVM database by issuing the *no dpvm activate* command.
Before You Begin

- Ensure you have enabled the DPVM feature.

SUMMARY STEPS

1. `config t`
2. (Optional) `dpvm database diff config`
3. `dpvm activate`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>config t</td>
</tr>
<tr>
<td>Example:</td>
<td><code>switch# config t</code></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>dpvm database diff config</code></td>
</tr>
<tr>
<td>Example:</td>
<td><code>switch(config)# dpvm database diff config</code></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>dpvm activate</code></td>
</tr>
<tr>
<td>Example:</td>
<td><code>switch(config)# dpvm activate</code></td>
</tr>
</tbody>
</table>

Related Topics

- DPVM Databases, page 38
- Verifying DPVM Configuration, page 46

Clearing the DPVM CFS Session Lock

If you have performed a DPVM task and have forgotten to release the lock by either committing or discarding the changes, an administrator can release the lock from any switch in the fabric. If the administrator performs this task, your changes to the DPVM pending database are discarded and the fabric lock is released.

Before You Begin

SUMMARY STEPS

1. `clear dpvm session`
Enabling AutoLearning

You can configure the DPVM database to automatically learn (autolearn) about new devices within each VSAN. Autolearning is a two-part process. When you enable autolearning, DPVM creates learned entries by populating device pWWNs and VSANs in the active DPVM database. DPVM learns currently logged in devices as well as any new devices that log in while autolearning is enabled. These learned entries become permanent in the active DPVM database when you disable autolearning.

The following conditions apply to autolearning:

- If a device logs out while autolearn is enabled, that entry is automatically deleted from the active DPVM database.
- If the same device logs multiple times into the switch through different ports, then the VSAN corresponding to last login is remembered
- Learned entries do not override previously configured and activated entries.

Before You Begin

- Ensure that the active DPVM database is already available.

SUMMARY STEPS

1. configure terminal
2. dpvm auto-learn
3. (Optional) show dpvm ports [vsan vsan-id]
4. no dpvm auto-learn

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>clear dpvm session</td>
<td>Discards the DPVM pending database and releases the CFS lock.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch# clear dpvm session</td>
<td></td>
</tr>
</tbody>
</table>
Clearing AutoLearned Entries

If DPVM autolearning is enabled, you can clear any or all learned entries from the active DPVM database.

Note
Clearing autolearned entries does not initiate a CFS session and can only be configured on the local switch.

Before You Begin

• Ensure DPVM autolearning is enabled.

SUMMARY STEPS

1. `clear dpvm auto-learn pwnn pwnn`
2. `clear dpvm auto-learn`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>clears an individual auto-learned entry.</td>
</tr>
<tr>
<td><code>clear dpvm auto-learn pwnn pwnn</code></td>
<td>Clears an individual auto-learned entry.</td>
</tr>
<tr>
<td>Step 2</td>
<td>clears all auto-learned entries.</td>
</tr>
<tr>
<td><code>clear dpvm auto-learn</code></td>
<td>Clears all auto-learned entries.</td>
</tr>
<tr>
<td>Example: <code>switch# clear dpvm auto-learn 8</code></td>
<td></td>
</tr>
</tbody>
</table>
Displaying DPVM Database Merge Results

When you merge two independent fabrics, DPVM attempts to merge the associated DPVM databases. You can review the results of this database merge to determine if it succeeded or failed.

SUMMARY STEPS

1. `show dpvm merge status`
2. `show dpvm merge statistics`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>show dpvm merge status</code></td>
<td>Displays information about the last DPVM database merge event.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>switch(config)# show dpvm merge status</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>show dpvm merge statistics</code></td>
<td>Displays statistics about the last DPVM database merge.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>switch(config)# show dpvm merge statistics</code></td>
<td></td>
</tr>
</tbody>
</table>

The following example shows conflicts in the DPVM database merge:

```
switch# show dpvm merge status
Last Merge Time Stamp : Fri March 25 15:46:36 2011
Last Merge State : Fail
Last Merge Result : Fail
Last Merge Failure Reason : DPVM DB conflict found during merge [cfs_status: 76]
Last Merge Failure Details: DPVM merge failed due to database conflict
Local Switch WWN : 20:00:00:0d:ec:24:e5:00
Remote Switch WWN : 20:00:00:0d:ec:09:d5:c0

+-----------------------------------------------+-------+-------+
| Conflicting DPVM member(s)                      | Loc VSAN | Rem VSAN |
+-----------------------------------------------+-------+-------+
| dev-alias dpvm_dev_alias_1 [21:00:00:04:cf:cf:45:ba] | 1313   | 1414   |
| dev-alias dpvm_dev_alias_2 [21:00:00:04:cf:cf:45:bb] | 1313   | 1414   |
| dev-alias dpvm_dev_alias_3 [21:00:00:04:cf:cf:45:bc] | 1313   | 1414   |
| [Total 3 conflict(s)]                          |       |       |

switch#
```

Related Topics

- [Database Merge](#)

Verifying DPVM Configuration

To display the DPVM configuration, perform one of the following tasks:
Command	Purpose
show dpvm status | Displays the status for the DPVM configuration.
show dpvm database [active] | Displays information about DPVM databases.
show dpvm merge {status | statistics} | Displays information the last DPVM merge event.
show dpvm pending [activation] | Displays information about the DPVM pending database.
show dpvm pending-diff | Displays the differences between the pending database and the config database.
show dpvm ports [vsan vsan-id] | Displays information about the dynamic ports associated with a VSAN.
show dpvm session status | Displays information about DPVM CFS session.

Related Topics
- DPVM Databases, page 38
- Activating the DPVM Config Database, page 42

DPVM Example Configuration

This example shows how to configure a basic DPVM configuration.

SUMMARY STEPS

1. Enable DPVM and DPVM CFS distribution.
2. Activate the DPVM database.
3. Enable Autolearning.
4. Access other switches in the fabric to verify the DPVM configuration.
5. Disable Autolearning.
6. Access other switches in the fabric to verify the DPVM configuration.

DETAILED STEPS

Step 1
Enable DPVM and DPVM CFS distribution.
Example:
switch1# config t
Enter configuration commands, one per line. End with CNTL/Z.
switch1(config)# feature dpvm
switch1(config)# show dpvm status
No active DB, auto-learn is off, distribution is enabled,
Duplicated pwwn will be Rejected.

DPVM is enabled but the active database is empty.

Step 2
Activate the DPVM database.

Example:
switch1(config)# dpvm activate
switch1(config)# dpvm commit
switch1(config)# show dpvm database active
switch1(config)#

DPVM is enabled but the active database is empty.

Step 3
Enable Autolearning.

Example:
switch1(config)# dpvm auto-learn
switch1(config)# dpvm commit
switch1(config)# show dpvm database active
pwwn 21:00:00:e0:8b:0e:74:8a vsan 4(*)
pwwn 21:01:00:e0:8b:2e:87:8a vsan 5(*)
[Total 2 entries]
* is auto-learnt entry
switch1# show dpvm ports

Interface Vsan Device pWWN Device nWWN

fc1/24 4 21:00:00:e0:8b:0e:74:8a 20:00:00:e0:8b:0e:74:8a
fc1/27 5 21:01:00:e0:8b:2e:87:8a 20:01:00:e0:8b:2e:87:8a
switch1# show flogi database

INTERFACE VSAN FCID PORT NAME NODE NAME

fc1/24 4 0xe70100 21:00:00:e0:8b:0e:74:8a 20:00:00:e0:8b:0e:74:8a
fc1/27 5 0xe80100 21:01:00:e0:8b:2e:87:8a 20:01:00:e0:8b:2e:87:8a

Total number of flogi = 2.
switch1# show dpvm status
DB is activated successfully, auto-learn is on

The currently logged in devices (and their current VSAN assignment) populate the active DPVM database. However
these autolearned entries are not yet permanent in the active DPVM database.

The output of the show dpvm ports and the show flogi database commands display two other devices that have logged
in (referred to as switch9 and switch3 in this sample configuration).

Step 4
Access other switches in the fabric to verify the DPVM configuration.

Example:
switch9# show dpvm database active
pwwn 21:00:00:e0:8b:0e:74:8a vsan 1(*)
pwwn 21:01:00:e0:8b:2e:74:8a vsan 1(*)
[Total 2 entries]
* is auto-learnt entry

switch9# show dpvm status
DB is activated successfully, auto-learn is on

switch3# show dpvm database active
pwwn 21:00:00:e0:8b:0e:76:8a vsan 1(*)
pwwn 21:01:00:e0:8b:2e:76:8a vsan 1(*)
[Total 2 entries]
* is auto-learnt entry

switch3# show dpvm status
DB is activated successfully, auto-learn is on

The autolearned entries show up in the active database for other switches in the fabric.

Step 5
Disable Autolearning.

Example:
```bash
switch1(config)# no dpvm auto-learn
switch1(config)# dpvm commit
```

switch1# show dpvm status
DB is activated successfully, auto-learn is off
switch1# show dpvm database active
pwnn 21:00:00:e0:8b:0e:74:8a vsan 4
pwnn 21:01:00:e0:8b:2e:87:8a vsan 5
pwnn 21:01:00:e0:8b:0e:74:8a vsan 1
pwnn 21:01:00:e0:8b:2e:74:8a vsan 1
pwnn 21:01:00:e0:8b:0e:76:8a vsan 1
pwnn 21:01:00:e0:8b:2e:76:8a vsan 1
[Total 6 entries]
* is auto-learnt entry

switch1# show dpvm status
DB is activated successfully, auto-learn is off

The autolearned entries are now permanent in the active DPVM database.

Step 6
Access other switches in the fabric to verify the DPVM configuration.

Example:
```bash
switch9# show dpvm database active
pwnn 21:00:00:e0:8b:0e:87:8a vsan 1
pwnn 21:01:00:e0:8b:2e:74:8a vsan 1
pwnn 21:00:00:e0:8b:0e:74:8a vsan 4
pwnn 21:01:00:e0:8b:2e:74:8a vsan 1
pwnn 21:00:00:e0:8b:0e:76:8a vsan 1
pwnn 21:01:00:e0:8b:2e:76:8a vsan 1
pwnn 21:00:00:e0:8b:0e:74:8a vsan 5
[Total 6 entries]
* is auto-learnt entry

switch9# show dpvm status
DB is activated successfully, auto-learn is off

switch3# show dpvm database active
pwnn 21:00:00:e0:8b:0e:76:8a vsan 1
pwnn 21:01:00:e0:8b:2e:76:8a vsan 1
pwnn 21:00:00:e0:8b:0e:87:8a vsan 1
pwnn 21:01:00:e0:8b:2e:74:8a vsan 1
pwnn 21:00:00:e0:8b:0e:74:8a vsan 4
```
pwn 21:01:00:e0:8b:2e:87:8a vsan 5
[Total 6 entries]
* is auto-learnt entry

switch3# show dpvm status
DB is activated successfully, auto-learn is off

The autolearned entries show up in the active database for other switches in the fabric.

Feature History

Table 6: Feature History for DPVM

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPVM</td>
<td>5.2(1)</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>
CHAPTER 5

Configuring VSAN Trunking

This chapter contains the following sections:

- Configuring VSAN Trunking, page 51

Configuring VSAN Trunking

Information About VSAN Trunking

VSAN trunking enables interconnected ports to transmit and receive frames in more than one VSAN. Trunking is supported on E ports and F ports.

The VSAN trunking feature includes the following restrictions:

- Trunking configurations are only applicable to E ports. If trunk mode is enabled in an E port and that port becomes operational as a trunking E port, it is referred to as a TE port.
- The trunk-allowed VSANs configured for TE ports are used by the trunking protocol to determine the allowed-active VSANs in which frames can be received or transmitted.
- If a trunking-enabled E port is connected to a third-party switch, the trunking protocol ensures seamless operation as an E port.

Trunking E Ports

Trunking E ports enables interconnected ports to transmit and receive frames in more than one VSAN, over the same physical link, using enhanced ISL (EISL) frame format.

Figure 8: Trunking E Ports

Switch 1 E port ISL E port Switch 1 TE port TE port Switch 2

Trunking
Trunking F Ports

Trunking F ports allows interconnected ports to transmit and receive tagged frames in more than one VSAN, over the same physical link.

VSAN Trunking Mismatches

If you misconfigure VSAN configurations across E ports, issues can occur such as the merging of traffic in two VSANs (causing both VSANs to mismatch). The VSAN trunking protocol validates the VSAN interfaces at both ends of an ISL to avoid merging VSANs (see the following figure).

Figure 9: VSAN Mismatch

In this example, the trunking protocol detects potential VSAN merging and isolates the ports involved. The trunking protocol cannot detect merging of VSANs when a third-party switch is placed in between two Cisco SAN switches (see the following figure).

Figure 10: Third-Party Switch VSAN Mismatch

VSAN 2 and VSAN 3 are effectively merged with overlapping entries in the name server and the zone applications. The Cisco DCNM for SAN helps detect such topologies.

VSAN Trunking Protocol

The trunking protocol is important for E-port and TE-port operations. It supports the following capabilities:

- Dynamic negotiation of operational trunk mode.
- Selection of a common set of trunk-allowed VSANs.
- Detection of a VSAN mismatch across an ISL.

By default, the VSAN trunking protocol is enabled. If the trunking protocol is disabled on a switch, no port on that switch can apply new trunk configurations. Existing trunk configurations are not affected: the TE port continues to function in trunk mode, but only supports traffic in VSANs that it negotiated with previously (when the trunking protocol was enabled). Other switches that are directly connected to this switch are similarly affected on the connected interfaces. If you need to merge traffic from different port VSANs across a nontrunking ISL, disable the trunking protocol.
Configuring VSAN Trunking

Guidelines and Restrictions

When configuring VSAN trunking, note the following guidelines:

- We recommend that both ends of a VSAN trunking ISL belong to the same port VSAN. On platforms or fabric switches where the port VSANs are different, one end returns an error, and the other is not connected.

- To avoid inconsistent configurations, disable all E ports with a `shutdown` command before enabling or disabling the VSAN trunking protocol.

Difference Between TE Ports and TF-TNP Ports

In case of TE ports, the VSAN will be in the initializing state when VSAN is coming up on that interface and when peers are in negotiating phase. Once the handshake is done, VSAN will be moved to up state in the successful case, and isolated state in the case of failure. Device Manager will show the port status as amber during initializing state and it will be green once VSANs are up.

In case of TF ports, after the handshake, one of the allowed VSAN will be moved to up state. And all other VSAN will be in initializing state even though the handshake with the peer is completed and successful. Each VSAN will be moved from initializing state to up state when a server or target logs in through the trunked F or NP ports in the corresponding VSAN.

Enabling or Disabling the VSAN Trunking Protocol

To enable or disable the VSAN trunking protocol, perform this task:

SUMMARY STEPS

1. `switch# configuration terminal`
2. `switch(config)# no trunk protocol enable`
3. `switch(config)# trunk protocol enable`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configuration terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config)# no trunk protocol enable</td>
<td>Disables the trunking protocol.</td>
</tr>
<tr>
<td>Step 3 switch(config)# trunk protocol enable</td>
<td>Enables trunking protocol (default).</td>
</tr>
</tbody>
</table>

About Trunk Mode

By default, trunk mode is enabled in all virtual Fibre Channel interfaces. However, trunk mode configuration takes effect only in E-port mode. You can configure trunk mode as on (enabled), off (disabled), or auto
(automatic). The default trunk mode is on. The trunk mode configurations at the two ends of the link determine the trunking state of the link and the port modes at both ends (see the following table).

Table 7: Trunk Mode Status Between Switches

<table>
<thead>
<tr>
<th>Your Trunk Mode Configuration</th>
<th>Resulting State and Port Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch 1</td>
<td></td>
</tr>
<tr>
<td>On</td>
<td>Trunking (EISL)</td>
</tr>
<tr>
<td>Off</td>
<td>No trunking (ISL)</td>
</tr>
<tr>
<td>Auto</td>
<td>No trunking (ISL)</td>
</tr>
<tr>
<td>Switch 2</td>
<td>TE port</td>
</tr>
<tr>
<td>Auto, on, or off</td>
<td>E port</td>
</tr>
</tbody>
</table>

The preferred configuration on the Cisco SAN switches is that one side of the trunk is set to auto and the other is set to on.

Note

When connected to a third-party switch, the trunk mode configuration has no effect. The ISL is always in a trunking disabled state.

Configuring Trunk Mode

To configure trunk mode, perform this task:

SUMMARY STEPS

1. `switch# configuration terminal`
2. `switch(config)# interface vfc vfc-id`
3. `switch(config-if)# switchport trunk mode on`
4. `switch(config-if)# switchport trunk mode auto`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>switch# configuration terminal</code></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2 <code>switch(config)# interface vfc vfc-id</code></td>
<td>Configures the specified Fibre Channel or virtual Fibre Channel interface.</td>
</tr>
<tr>
<td>Step 3 <code>switch(config-if)# switchport trunk mode on</code></td>
<td>Enables (default) the trunk mode for the specified interface.</td>
</tr>
</tbody>
</table>
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch(config-if)# switchport trunk mode auto</td>
<td>Configures the trunk mode to auto mode, which provides automatic sensing for the interface.</td>
</tr>
</tbody>
</table>

The following examples show how to configure a vFC interface in trunk mode.

```
switch# config t
switch(config)# vfc 200
switch(config-if)# switchport trunk mode on
```

The following example shows the output for the vFC interface 200 in trunk mode.

```
switch(config-if)# show interface vfc200
vfc200 is trunking (Not all VSANs UP on the trunk)
  Bound interface is Ethernet1/3
  Hardware is Virtual Fibre Channel
  Port WWN is 20:c7:00:0d:ec:f2:08:ff
  Peer port WWN is 00:00:00:00:00:00:00:00
  Admin port mode is E, trunk mode is on
  snmp link state traps are enabled
  Port mode is TE
  Port vsan is 1
  Trunk vsans (admin allowed and active) (1-6,10,22)
  Trunk vsans (up) ()
  Trunk vsans (isolated) ()
  Trunk vsans (initializing) (1-6,10,22)
  5 minute input rate 0 bits/sec, 0 bytes/sec, 0 frames/sec
  5 minute output rate 0 bits/sec, 0 bytes/sec, 0 frames/sec
    0 frames input, 0 bytes
    0 discards, 0 errors
    0 frames output, 0 bytes
    0 discards, 0 errors
  last clearing of "show interface" counters never
  Interface last changed at Mon Jan 18 10:01:27 2010
```

About Trunk-Allowed VSAN Lists

Each Fibre Channel interface has an associated trunk-allowed VSAN list. In TE-port mode, frames are transmitted and received in one or more VSANs specified in this list. By default, the complete VSAN range (1 through 4093) is included in the trunk-allowed list.

The common set of VSANs that are configured and active in the switch are included in the trunk-allowed VSAN list for an interface, and they are called **allowed-active VSANs**. The trunking protocol uses the list of allowed-active VSANs at the two ends of an ISL to determine the list of operational VSANs in which traffic is allowed.

In the following figure, switch 1 has VSANs 1 through 5, switch 2 has VSANs 1 through 3, and switch 3 has VSANs 1, 2, 4, and 5 with a default configuration of trunk-allowed VSANs. All VSANs configured in all
three switches are allowed-active. However, only the common set of allowed-active VSANs at the ends of the ISL become operational as shown in below.

Figure 11: Default Allowed-Active VSAN Configuration

You can configure a selected set of VSANs (from the allowed-active list) to control access to the VSANs specified in a trunking ISL.

Using the figure above as an example, you can configure the list of allowed VSANs on a per-interface basis (see the following figure). For example, if VSANs 2 and 4 are removed from the allowed VSAN list of ISLs connecting to switch 1, the operational allowed list of VSANs for each ISL would be as follows:

- The ISL between switch 1 and switch 2 includes VSAN 1 and VSAN 3.
- The ISL between switch 2 and switch 3 includes VSAN 1 and VSAN 2.
- The ISL between switch 3 and switch 1 includes VSAN 1, 2, and 5.
Consequently, VSAN 2 can only be routed from switch 1 through switch 3 to switch 2.

Figure 12: Operational and Allowed VSAN Configuration

Configuring an Allowed-Active List of VSANs

To configure an allowed-active list of VSANs for an interface, perform this task:

SUMMARY STEPS

1. switch# configuration terminal
2. switch(config)# interface vfc slot/port
3. switch(config-if)# switchport trunk allowed vsan vsan-id - vsan-id
4. switch(config-if)# switchport trunk allowed vsan add vsan-id
5. switch(config-if)# switchport trunk allowed vsan all
6. switch(config-if)# no switchport trunk allowed vsan vsan-id - vsan-id
7. switch(config-if)# no switchport trunk allowed vsan add vsan-id

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configuration terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# interface vfc slot/port</td>
<td>Configures the specified interface.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Changes the allowed list for the specified VSAN range.</td>
<td></td>
</tr>
<tr>
<td>switch(config-if)# switchport trunk allowed vsan vsan-id - vsan-id</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Expands the specified VSAN to the new allowed list.</td>
<td></td>
</tr>
<tr>
<td>switch(config-if)# switchport trunk allowed vsan add vsan-id</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>Adds all VSANs to the new allowed list.</td>
<td></td>
</tr>
<tr>
<td>switch(config-if)# switchport trunk allowed vsan all</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>Deletes the specified VSAN range.</td>
<td></td>
</tr>
<tr>
<td>switch(config-if)# no switchport trunk allowed vsan vsan-id - vsan-id</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>Deletes the expanded allowed list.</td>
<td></td>
</tr>
<tr>
<td>switch(config-if)# no switchport trunk allowed vsan add vsan-id</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Default Trunk Configuration Settings

The following table lists the default settings for trunking parameters.

Table 8: Default Trunk Configuration Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch port trunk mode</td>
<td>On</td>
</tr>
<tr>
<td>Allowed VSAN list</td>
<td>1 to 4093 user-defined VSAN IDs</td>
</tr>
<tr>
<td>Trunking protocol</td>
<td>Enabled</td>
</tr>
</tbody>
</table>
Configuring and Managing Zones

This chapter contains the following sections:

- Configuring and Managing Zones, page 59

Configuring and Managing Zones

Zoning enables you to set up access control between storage devices or user groups. If you have administrator privileges in your fabric, you can create zones to increase network security and to prevent data loss or corruption. Zoning is enforced by examining the source-destination ID field.

Advanced zoning capabilities specified in the FC-GS-4 and FC-SW-3 standards are supported. You can use either the existing basic zoning capabilities or the advanced, standards-compliant zoning capabilities.

Information About Zoning

Zoning Features

Zoning includes the following features:

- A zone consists of multiple zone members.
 - Members in a zone can access each other; members in different zones cannot access each other.
 - If zoning is not activated, all devices are members of the default zone.
 - If zoning is activated, any device that is not in an active zone (a zone that is part of an active zone set) is a member of the default zone.
 - Zones can vary in size.
 - Devices can belong to more than one zone.
 - A physical fabric can have a maximum of 16,000 members. This includes all VSANs in the fabric.
- A zone set consists of one or more zones.
 - A zone set can be activated or deactivated as a single entity across all switches in the fabric.
Only one zone set can be activated at any time.

- A zone can be a member of more than one zone set.
- A zone switch can have a maximum of 500 zone sets.

- **Zoning can be administered from any switch in the fabric.**
 - When you activate a zone (from any switch), all switches in the fabric receive the active zone set. Additionally, full zone sets are distributed to all switches in the fabric, if this feature is enabled in the source switch.
 - If a new switch is added to an existing fabric, zone sets are acquired by the new switch.

- **Zone changes can be configured nondisruptively.**
 - New zones and zone sets can be activated without interrupting traffic on unaffected ports or devices.

- **Zone membership can be specified using the following identifiers:**
 - Port world wide name (pWWN)—Specifies the pWWN of an N port attached to the switch as a member of the zone.
 - Fabric pWWN—Specifies the WWN of the fabric port (switch port’s WWN). This membership is also referred to as port-based zoning.
 - FC ID—Specifies the FC ID of an N port attached to the switch as a member of the zone.
 - Interface and switch WWN (sWWN)—Specifies the interface of a switch identified by the sWWN. This membership is also referred to as interface-based zoning.
 - Interface and domain ID—Specifies the interface of a switch identified by the domain ID.
 - Domain ID and port number—Specifies the domain ID of a Cisco switch domain and additionally specifies a port belonging to a non-Cisco switch.

Note

For N ports attached to the switch over a virtual Fibre Channel interface, you can specify zone membership using the pWWN of the N port, the FC ID of the N port, or the fabric pWWN of the virtual Fibre Channel interface.

- Default zone membership includes all ports or WWNs that do not have a specific membership association. Access between default zone members is controlled by the default zone policy.

- You can configure up to 8000 zones per VSAN and a maximum of 8000 zones for all VSANs on the switch.

Note

Interface-based zoning only works with Cisco SAN switches. Interface-based zoning does not work for VSANs configured in interop mode.
Zoning Example

The following figure shows a zone set with two zones, zone 1 and zone 2, in a fabric. Zone 1 provides access from all three hosts (H1, H2, H3) to the data residing on storage systems S1 and S2. Zone 2 restricts the data on S3 to access only by H3. H3 resides in both zones.

Figure 13: Fabric with Two Zones

You can use other ways to partition this fabric into zones. The following figure shows another possibility. Assume that there is a need to isolate storage system S2 for the purpose of testing new software. To achieve this, zone 3 is configured, which contains only host H2 and storage S2. You can restrict access to only H2 and S2 in zone 3, and to H1 and S1 in zone 1.

Figure 14: Fabric with Three Zones

Zone Implementation

Cisco SAN switches automatically support the following basic zone features (no additional configuration is required):

• Zones are contained in a VSAN.
• Hard zoning cannot be disabled.
• Name server queries are soft-zoned.
• Only active zone sets are distributed.
• Unzoned devices cannot access each other.
• A zone or zone set with the same name can exist in each VSAN.
• Each VSAN has a full database and an active database.
• Active zone sets cannot be changed, without activating a full zone database.
• Active zone sets are preserved across switch reboots.
• Changes to the full database must be explicitly saved.
• Zone reactivation (a zone set is active and you activate another zone set) does not disrupt existing traffic.

If required, you can additionally configure the following zone features:

• Propagate full zone sets to all switches on a per VSAN basis.
• Change the default policy for unzoned members.
• Interoperate with other vendors by configuring a VSAN in the interop mode. You can also configure one VSAN in the interop mode and another VSAN in the basic mode in the same switch without disrupting each other.
• Bring E ports out of isolation.

Active and Full Zone Set Configuration Guidelines

Before configuring a zone set, consider the following guidelines:

• Each VSAN can have multiple zone sets but only one zone set can be active at any given time.
• When you create a zone set, that zone set becomes a part of the full zone set.
• When you activate a zone set, a copy of the zone set from the full zone set is used to enforce zoning, and is called the active zone set. An active zone set cannot be modified. A zone that is part of an active zone set is called an active zone.
• The administrator can modify the full zone set even if a zone set with the same name is active. However, the modification will be enforced only upon reactivation.
• When the activation is done, the active zone set is automatically stored in persistent configuration. This enables the switch to preserve the active zone set information across switch resets.
• All other switches in the fabric receive the active zone set so they can enforce zoning in their respective switches.
• Hard and soft zoning are implemented using the active zone set. Modifications take effect during zone set activation.
• An FC ID or Nx port that is not part of the active zone set belongs to the default zone and the default zone information is not distributed to other switches.
If one zone set is active and you activate another zone set, the currently active zone set is automatically deactivated. You do not need to explicitly deactivate the currently active zone set before activating a new zone set.
The following figure shows a zone being added to an activated zone set.

Figure 15: Active and Full Zone Sets

- **No active Zone set**
 - Zone set Z1: Zone A, Zone B, Zone C
 - Zone set Z2: Zone C, Zone D, Zone E
 - Zone set Z3: Zone A, Zone C, Zone D

- **Active zone set**
 - Zone set Z1: Zone A, Zone B, Zone C

- **After activating Zone set Z1**
 - Zone set Z1: Zone A, Zone B, Zone C, Zone D

- **After adding Zone D to Zone set Z1**
 - Zone set Z1: Zone A, Zone B, Zone C, Zone D

- **After activating Zone set Z1 again**
 - Zone set Z1: Zone A, Zone B, Zone C, Zone D

- **Full zone set**
 - Zone set Z1: Zone A, Zone B, Zone C, Zone D, Zone E
 - Zone set Z2: Zone C, Zone D, Zone E
 - Zone set Z3: Zone A, Zone C, Zone D

Configuring Zones

To configure a zone and assign a zone name, perform this task:

SUMMARY STEPS

1. switch# configuration terminal
2. switch(config)# zone name zone-name vsan vsan-id
3. switch(config-zone)# member type value

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configuration terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# zone name zone-name vsan vsan-id</td>
</tr>
<tr>
<td>Note</td>
<td>All alphanumeric characters or one of the following symbols ($, -, ^, _) are supported.</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config-zone)# member type value</td>
</tr>
<tr>
<td>Caution</td>
<td>You must only configure pWWN-type zoning on all SAN switches running Cisco NX-OS if there is a Cisco MDS 9020 switch running FabricWare in the same fabric.</td>
</tr>
<tr>
<td>Tip</td>
<td>Use a relevant display command (for example, show interface or show flogi database) to obtain the required value in hex format.</td>
</tr>
</tbody>
</table>

Configuring Zones Example

Table 9: Type and Value Syntax for the member Command

<table>
<thead>
<tr>
<th>Domain</th>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain ID</td>
<td>member domain-id domain-id portnumber number</td>
</tr>
<tr>
<td>FC alias</td>
<td>member fcalias fc-alias-name</td>
</tr>
<tr>
<td>FC ID</td>
<td>member fcid fcid</td>
</tr>
<tr>
<td>Fabric pWWN</td>
<td>member fwwn fwwn-id</td>
</tr>
<tr>
<td>Local sWWN interface</td>
<td>member interface type slot/port</td>
</tr>
<tr>
<td>Domain ID interface</td>
<td>member interface type slot/port domain-id domain-id</td>
</tr>
<tr>
<td>Remote sWWN interface</td>
<td>member interface type slot/port swnn swwn-id</td>
</tr>
</tbody>
</table>
Use the `show wwn switch` command to retrieve the sWNN. If you do not provide a sWNN, the software automatically uses the local sWNN.

The following examples show how to configure zone members:

```
switch(config)# zone name MyZone vsan 2
pWNN example:
switch(config-zone)# member pwn 10:00:00:23:45:67:89:ab
Fabric pWNN example:
switch(config-zone)# member fwwn 10:01:10:01:10:ab:cd:ef
FC ID example:
switch(config-zone)# member fcid 0xce00d1
FC alias example:
switch(config-zone)# member fcalias Payroll
Domain ID example:
switch(config-zone)# member domain-id 2 portnumber 23
```

Zone Sets

In the following figure, two separate sets are created, each with its own membership hierarchy and zone members.

Figure 16: Hierarchy of Zone Sets, Zones, and Zone Members

![Zone Set Hierarchy Diagram](diag.png)

Zones provide a method for specifying access control, while zone sets are a grouping of zones to enforce access control in the fabric. Either zone set A or zone set B can be activated (but not together).
Tip
Zone sets are configured with the names of the member zones and the VSAN (if the zone set is in a configured VSAN).

Activating a Zone Set

Changes to a zone set do not take effect in a full zone set until you activate it.

To activate or deactivate an existing zone set, perform this task:

SUMMARY STEPS

1. switch# configuration terminal
2. switch(config)# zoneset activate name zoneset-name vsan vsan-id
3. switch(config)# no zoneset activate name zoneset-name vsan vsan-id

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configuration terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# zoneset activate name zoneset-name vsan vsan-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config)# no zoneset activate name zoneset-name vsan vsan-id</td>
</tr>
</tbody>
</table>

About the Default Zone

Each member of a fabric (in effect a device attached to an Nx port) can belong to any zone. If a member is not part of any active zone, it is considered to be part of the default zone. Therefore, if no zone set is active in the fabric, all devices are considered to be in the default zone. Even though a member can belong to multiple zones, a member that is part of the default zone cannot be part of any other zone. The switch determines whether a port is a member of the default zone when the attached port comes up.

Note
Unlike configured zones, default zone information is not distributed to the other switches in the fabric.

Traffic can either be permitted or denied among members of the default zone. This information is not distributed to all switches; it must be configured in each switch.

Note
When the switch is initialized for the first time, no zones are configured and all members are considered to be part of the default zone. Members are not permitted to communicate with each other.

Configure the default zone policy on each switch in the fabric. If you change the default zone policy on one switch in a fabric, be sure to change it on all the other switches in the fabric.
The default settings for default zone configurations can be changed.

The default zone members are explicitly listed when the default policy is configured as permit or when a zone set is active. When the default policy is configured as deny, the members of this zone are not explicitly enumerated when you view the active zone set.

Configuring the Default Zone Access Permission

To permit or deny traffic to members in the default zone, perform this task:

SUMMARY STEPS

1. `switch# configuration terminal`
2. `switch(config)# zone default-zone permit vsan vsan-id`
3. `switch(config)# no zone default-zone permit vsan vsan-id`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>switch# configuration terminal</code></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td><code>switch(config)# zone default-zone permit vsan vsan-id</code></td>
<td>Permits traffic flow to default zone members.</td>
</tr>
<tr>
<td>3</td>
<td><code>switch(config)# no zone default-zone permit vsan vsan-id</code></td>
<td>Denies (default) traffic flow to default zone members.</td>
</tr>
</tbody>
</table>

About FC Alias Creation

You can assign an alias name and configure an alias member using the following values:

- pWWN—The WWN of the N port is in hex format (for example, 10:00:00:23:45:67:89:ab).
- fWWN—The WWN of the fabric port name is in hex format (for example, 10:00:00:23:45:67:89:ab).
- FC ID—The N port ID is in 0xhhhhhh format (for example, 0xce00d1).
- Domain ID—The domain ID is an integer from 1 to 239. A mandatory port number of a non-Cisco switch is required to complete this membership configuration.
- Interface—Interface-based zoning is similar to port-based zoning because the switch interface is used to configure the zone. You can specify a switch interface as a zone member for both local and remote switches. To specify a remote switch, enter the remote switch WWN (sWWN) or the domain ID in the particular VSAN.

Tip

The switch supports a maximum of 2048 aliases per VSAN.
Creating FC Aliases

To create an alias, perform this task:

SUMMARY STEPS

1. `switch# configuration terminal`
2. `switch(config)# fc alias name alias-name vsan vsan-id`
3. `switch(config-fcalias)# member type value`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configuration terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config)# fc alias name alias-name vsan vsan-id</td>
<td>Configures an alias name. The alias name can be any case-sensitive, alphanumeric string up to 64 characters.</td>
</tr>
<tr>
<td>Step 3 switch(config-fcalias)# member type value</td>
<td>Configures a member for the specified fc alias based on the type (pWWN, fabric pWWN, FC ID, domain ID, or interface) and value specified.</td>
</tr>
</tbody>
</table>

Note

Multiple members can be specified on multiple lines.

Creating FC Aliases Example

Table 10: Type and Value Syntax for the member Command

<table>
<thead>
<tr>
<th>Device alias</th>
<th>member device-alias device-alias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain ID</td>
<td>member domain-id domain-id portnumber number</td>
</tr>
<tr>
<td>FC ID</td>
<td>member fcid fcid</td>
</tr>
<tr>
<td>Fabric pWWN</td>
<td>member fwwn fwwn-id</td>
</tr>
<tr>
<td>Local sWWN interface</td>
<td>member interface type slot/port</td>
</tr>
<tr>
<td>Domain ID interface</td>
<td>member interface type slot/port domain-id domain-id</td>
</tr>
<tr>
<td>Remote sWWN interface</td>
<td>member interface type slot/port swwn swwn-id</td>
</tr>
<tr>
<td>pWWN</td>
<td>member pwwn pwwn-id</td>
</tr>
</tbody>
</table>

The following example shows how to configure different types of member alias:

```
switch(config)# fc alias name AliasSample vsan 3
```
Creating Zone Sets and Adding Member Zones

To create a zone set to include several zones, perform this task:

SUMMARY STEPS

1. switch# configuration terminal
2. switch(config)# zone set name zoneset-name vsan vsan-id
3. switch(config-zoneset)# member name
4. switch(config-zoneset)# zone name zone-name
5. switch(config-zoneset-zone)# member fcid fcid

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>switch# configuration terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>switch(config)# zone set name zoneset-name vsan vsan-id</td>
<td>Configures a zone set with the configured zoneset-name. Tip: To activate a zone set, you must first create the zone and a zone set.</td>
</tr>
<tr>
<td>3</td>
<td>switch(config-zoneset)# member name</td>
<td>Adds a zone as a member of the previously specified zone set. Tip: If the specified zone name was not previously configured, this command will return a "zone not present" error message:</td>
</tr>
<tr>
<td>4</td>
<td>switch(config-zoneset)# zone name zone-name</td>
<td>Adds a zone to the specified zone set. Tip: Execute this step only if you need to create a zone from a zone set prompt.</td>
</tr>
<tr>
<td>5</td>
<td>switch(config-zoneset-zone)# member fcid fcid</td>
<td>Adds a new member to the new zone. Tip: Execute this step only if you need to add a member to a zone from a zone set prompt.</td>
</tr>
</tbody>
</table>
You do not have to copy the running configuration to the startup configuration to store the active zone set. However, you need to copy the running configuration to the startup configuration to explicitly store full zone sets.

Zone Enforcement

Zoning can be enforced in two ways: soft and hard. Each end device (N port) discovers other devices in the fabric by querying the name server. When a device logs in to the name server, the name server returns the list of other devices that can be accessed by the querying device. If an N port does not know about the FC IDs of other devices outside its zone, it cannot access those devices.

In soft zoning, zoning restrictions are applied only during interaction between the name server and the end device. If an end device somehow knows the FC ID of a device outside its zone, it can access that device.

Hard zoning is enforced by the hardware on each frame sent by an N port. As frames enter the switch, source-destination IDs are compared with permitted combinations to allow the frame at wire speed. Hard zoning is applied to all forms of zoning.

Note

Hard zoning enforces zoning restrictions on every frame, and prevents unauthorized access.

Cisco SAN switches support both hard and soft zoning.

Zone Set Distribution

You can distribute full zone sets using one of two methods: one-time distribution using the `zoneset distribute vsan` command at the EXEC mode level or full zone set distribution using the `zoneset distribute full vsan` command at the configuration mode level. The following table lists the differences between the methods.

<table>
<thead>
<tr>
<th>Table 11: Zone Set Distribution Differences</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-Time Distribution</td>
</tr>
<tr>
<td><code>zoneset distribute vsan</code> Command (EXEC Mode)</td>
</tr>
<tr>
<td>Distributes the full zone set immediately.</td>
</tr>
<tr>
<td>Does not distribute the full zone set information along with the active zone set during activation, deactivation, or merge process.</td>
</tr>
</tbody>
</table>

Enabling Full Zone Set Distribution

All Cisco SAN switches distribute active zone sets when new E port links come up or when a new zone set is activated in a VSAN. The zone set distribution takes effect while sending merge requests to the adjacent switch or while activating a zone set.

To enable full zone set and active zone set distribution to all switches on a per VSAN basis, perform this task:
SUMMARY STEPS

1. switch# configuration terminal
2. switch(config)# zoneset distribute full vsan vsan-id

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configuration terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# zoneset distribute full vsan vsan-id</td>
</tr>
</tbody>
</table>

Enabling a One-Time Distribution

You can perform a one-time distribution of inactive, unmodified zone sets throughout the fabric.

Use the `zoneset distribute vsan vsan-id` command in EXEC mode to perform this distribution.

```
switch# zoneset distribute vsan 2
Zoneset distribution initiated, check zone status
```

This command only distributes the full zone set information, as it does not save the information to the startup configuration. You must explicitly enter the `copy running-config startup-config` command to save the full zone set information to the startup configuration.

Note
The one-time distribution of the full zone set is supported in interop 2 and interop 3 modes, and not in interop 1 mode.

Use the `show zone status vsan vsan-id` command to check the status of the one-time zone set distribution request.

```
switch# show zone status vsan 3
VSAN: 3 default-zone: permit distribute: active only Interop: 100
  mode:basic merge-control:allow
  session:none
  hard-zoning:enabled
Default zone:
  qos:none broadcast:disabled ronly:disabled
Full Zoning Database :
  Zonesets:0 Zones:0 Aliases: 0
Active Zoning Database :
  Name: nozoneset Zonesets:1 Zones:2
Status: Zoneset distribution completed at 04:01:06 Aug 28 2010
```

About Recovering from Link Isolation

When two switches in a fabric are merged using a TE or E port, these TE and E ports may become isolated when the active zone set databases are different between the two switches or fabrics. When a TE port or an E port become isolated, you can recover that port from its isolated state using one of three options:

- Import the neighboring switch’s active zone set database and replace the current active zone set (see the figure below).
• Export the current database to the neighboring switch.
• Manually resolve the conflict by editing the full zone set, activating the corrected zone set, and then bringing up the link.

Figure 17: Importing and Exporting the Database

Importing and Exporting Zone Sets

To import or export the zone set information from or to an adjacent switch, perform this task:

SUMMARY STEPS

1. switch# zoneset import interface {vfc | vfc-port-channel} if-number vsan vsan-id
2. switch# zoneset export vsan vsan-id

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# zoneset import interface {vfc</td>
<td>vfc-port-channel} if-number vsan vsan-id</td>
</tr>
<tr>
<td>Step 2 switch# zoneset export vsan vsan-id</td>
<td>Exports the zone set to the adjacent switch connected through the specified VSAN or range of VSANs.</td>
</tr>
</tbody>
</table>

Zone Set Duplication

You can make a copy and then edit it without altering the existing active zone set. You can copy an active zone set from the bootflash: directory, volatile: directory, or slot0 to one of the following areas:

• To the full zone set
• To a remote location (using FTP, SCP, SFTP, or TFTP)

The active zone set is not part of the full zone set. You cannot make changes to an existing zone set and activate it if the full zone set is lost or is not propagated.

Caution
Copying an active zone set to a full zone set may overwrite a zone with the same name if it already exists in the full zone set database.

Copying Zone Sets
On Cisco SAN switches, you cannot edit an active zone set. However, you can copy an active zone set to create a new zone set that you can edit.

To make a copy of a zone set, perform this task:

SUMMARY STEPS

1. switch# zone copy active-zoneset full-zoneset vsan vsan-id
2. switch# zone copy vsan vsan-id active-zoneset scp://guest@myserver/tmp/active_zoneset.txt

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# zone copy active-zoneset full-zoneset vsan vsan-id</td>
<td>Makes a copy of the active zone set in the specified VSAN to the full zone set.</td>
</tr>
<tr>
<td>Step 2 switch# zone copy vsan vsan-id active-zoneset scp://guest@myserver/tmp/active_zoneset.txt</td>
<td>Copies the active zone in the specified VSAN to a remote location using SCP.</td>
</tr>
</tbody>
</table>

Renaming Zones, Zone Sets, and Aliases
To rename a zone, zone set, fcalias, or zone-attribute-group, perform this task:

SUMMARY STEPS

1. switch# configuration terminal
2. switch(config)# zoneset rename oldname newname vsan vsan-id
3. switch(config)# zone rename oldname newname vsan vsan-id
4. switch(config)# fcalias rename oldname newname vsan vsan-id
5. switch(config)# zone-attribute-group rename oldname newname vsan vsan-id
6. switch(config)# zoneset activate name newname vsan vsan-id
Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configuration terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config)# zoneset rename oldname newname vsan vsan-id</td>
<td>Renames a zone set in the specified VSAN.</td>
</tr>
<tr>
<td>Step 3 switch(config)# zone rename oldname newname vsan vsan-id</td>
<td>Renames a zone in the specified VSAN.</td>
</tr>
<tr>
<td>Step 4 switch(config)# fcalias rename oldname newname vsan vsan-id</td>
<td>Renames a fcalias in the specified VSAN.</td>
</tr>
<tr>
<td>Step 5 switch(config)# zone-attribute-group rename oldname newname vsan vsan-id</td>
<td>Renames a zone attribute group in the specified VSAN.</td>
</tr>
<tr>
<td>Step 6 switch(config)# zoneset activate name newname vsan vsan-id</td>
<td>Activates the zone set and updates the new zone name in the active zone set.</td>
</tr>
</tbody>
</table>

Cloning Zones, Zone Sets, FC Aliases, and Zone Attribute Groups

To clone a zone, zone set, fcalias, or zone-attribute-group, perform this task:

SUMMARY STEPS

1. switch# configuration terminal
2. switch(config)# zoneset clone oldname newname vsan vsan-id
3. switch(config)# zone clone oldname newname vsan number
4. switch(config)# fcalias clone oldname newname vsan vsan-id
5. switch(config)# zone-attribute-group clone oldname newname vsan vsan-id
6. switch(config)# zoneset activate name newname vsan vsan-id

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configuration terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config)# zoneset clone oldname newname vsan vsan-id</td>
<td>Clones a zone set in the specified VSAN.</td>
</tr>
<tr>
<td>Step 3 switch(config)# zone clone oldname newname vsan number</td>
<td>Clones a zone in the specified VSAN.</td>
</tr>
<tr>
<td>Step 4 switch(config)# fcalias clone oldname newname vsan vsan-id</td>
<td>Clones a fcalias in the specified VSAN.</td>
</tr>
<tr>
<td>Step 5 switch(config)# zone-attribute-group clone oldname newname vsan vsan-id</td>
<td>Clones a zone attribute group in the specified VSAN.</td>
</tr>
</tbody>
</table>
Clearing the Zone Server Database

You can clear all configured information in the zone server database for the specified VSAN.

To clear the zone server database, use the following command:

```
switch# clear zone database vsan 2
```

Note

After entering a `clear zone database` command, you must explicitly enter the `copy running-config startup-config` to ensure that the running configuration is used when the switch reboots.

Note

Clearing a zone set only erases the full zone database, not the active zone database.

Verifying Zone Information

You can view any zone information by using the `show` command. If you request information for a specific object (for example, a specific zone, zone set, VSAN, or alias, or keywords such as `brief` or `active`), only information for the specified object is displayed.

The following example shows how to display zone information for all VSANs:

```
switch# show zone
```

The following example shows how to display zone information for a specific VSAN:

```
switch# show zone vsan 1
```

The following example shows how to display the configured zone sets for a range of VSANs:

```
switch# show zoneset vsan 2-3
```

The following example shows how to display the members of a specific zone:

```
switch# show zone name Zone1
```

The following example shows how to display fc aliases configuration:

```
switch# show fc alias vsan 1
```

The following example shows how to display all zones to which a member belongs:

```
switch# show zone member pwwn 21:00:00:20:37:9c:48:e5
```

The following example shows how to display the number of control frames exchanged with other switches:

```
switch# show zone statistics
```

The following example shows how to display the active zone set:

```
switch# show zoneset active
```

The following example shows how to display the active zones:

```
switch# show zone active
```

The following example shows how to display the zone status:

```
switch# show zone status
```
Enhanced Zoning

The zoning feature complies with the FC-GS-4 and FC-SW-3 standards. Both standards support the basic zoning functionalities explained in the previous section and the enhanced zoning functionalities described in this section.

About Enhanced Zoning

The following table lists the advantages of the enhanced zoning feature in all switches in the Cisco SAN switches.

Table 12: Advantages of Enhanced Zoning

<table>
<thead>
<tr>
<th>Basic Zoning</th>
<th>Enhanced Zoning</th>
<th>Enhanced Zoning Advantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrators can make simultaneous configuration changes. Upon activation, one administrator can overwrite another administrator’s changes.</td>
<td>Performs all configurations within a single configuration session. When you begin a session, the switch locks the entire fabric to implement the change.</td>
<td>One configuration session for the entire fabric to ensure consistency within the fabric.</td>
</tr>
<tr>
<td>If a zone is part of multiple zone sets, you create an instance of this zone in each zone set</td>
<td>References to the zone are used by the zone sets as required once you define the zone.</td>
<td>Reduced payload size as the zone is referenced. The size is more pronounced with bigger databases.</td>
</tr>
<tr>
<td>The default zone policy is defined per switch. To ensure smooth fabric operation, all switches in the fabric must have the same default zone setting.</td>
<td>Enforces and exchanges the default zone setting throughout the fabric.</td>
<td>Fabric-wide policy enforcement reduces troubleshooting time.</td>
</tr>
<tr>
<td>To retrieve the results of the activation on a per switch basis, the managing switch provides a combined status about the activation. It does not identify the failure switch.</td>
<td>Retrieves the activation results and the nature of the problem from each remote switch.</td>
<td>Enhanced error reporting eases the troubleshooting process</td>
</tr>
<tr>
<td>To distribute the zoning database, you must reactivate the same zone set. The reactivation may affect hardware changes for hard zoning on the local switch and on remote switches.</td>
<td>Implements changes to the zoning database and distributes it without reactivation.</td>
<td>Distribution of zone sets without activation avoids hardware changes for hard zoning in the switches.</td>
</tr>
<tr>
<td>The Cisco-specific zone member types (symbolic node name, and other types) may be used by other non-Cisco switches. During a merge, the Cisco-specific types can</td>
<td>Provides a vendor ID along with a vendor-specific type value to uniquely identify a member type.</td>
<td>Unique vendor type.</td>
</tr>
</tbody>
</table>

Changing from Basic Zoning to Enhanced Zoning

To change to the enhanced zoning mode from the basic mode, perform this task:

SUMMARY STEPS

1. Verify that all switches in the fabric are capable of working in the enhanced mode.
2. If one or more switches are not capable of working in enhanced mode, then your request to move to enhanced mode is rejected.
3. Set the operation mode to enhanced zoning mode.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Verify that all switches in the fabric are capable of working in the enhanced mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>If one or more switches are not capable of working in enhanced mode, then your request to move to enhanced mode is rejected.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Set the operation mode to enhanced zoning mode.</td>
</tr>
</tbody>
</table>

Changing from Enhanced Zoning to Basic Zoning

Cisco SAN switches allow you to change from enhanced zoning to basic zoning to enable you to downgrade and upgrade to other Cisco NX-OS releases.

To change to the basic zoning mode from the enhanced mode, perform this task:

SUMMARY STEPS

1. Verify that the active and full zone set do not contain any configuration that is specific to the enhanced zoning mode.
2. If such configurations exist, delete them before proceeding with this procedure. If you do not delete the existing configuration, the switch software automatically removes them.
3. Set the operation mode to basic zoning mode.
DETAILED STEPS

Step 1 Verify that the active and full zone set do not contain any configuration that is specific to the enhanced zoning mode.
Step 2 If such configurations exist, delete them before proceeding with this procedure. If you do not delete the existing configuration, the switch software automatically removes them.
Step 3 Set the operation mode to basic zoning mode.

Enabling Enhanced Zoning

By default, the enhanced zoning feature is disabled in all Cisco SAN switches.
To enable enhanced zoning in a VSAN, perform this task:

SUMMARY STEPS

1. switch# configuration terminal
2. switch(config)# zone mode enhanced vsan vsan-id
3. switch(config)# no zone mode enhanced vsan vsan-id

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configuration terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# zone mode enhanced vsan vsan-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config)# no zone mode enhanced vsan vsan-id</td>
</tr>
</tbody>
</table>

Modifying the Zone Database

Modifications to the zone database is done within a session. A session is created at the time of the first successful configuration command. On creation of a session, a copy of the zone database is created. Any changes done within the session are performed on this copy of the zoning database. These changes in the copy zoning database are not applied to the effective zoning database until you commit the changes. Once you apply the changes, the session is closed.

If the fabric is locked by another user and for some reason the lock is not cleared, you can force the operation and close the session. You must have permission (role) to clear the lock in this switch and perform the operation on the switch from where the session was originally created.

To commit or discard changes to the zoning database in a VSAN, perform this task:
SUMMARY STEPS

1. switch# configuration terminal
2. switch(config)# zone commit vsan vsan-id
3. switch(config)# zone commit vsan vsan-id force
4. switch(config)# no zone commit vsan vsan-id
5. switch(config)# no zone commit vsan vsan-id force

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configuration terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# zone commit vsan vsan-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config)# zone commit vsan vsan-id force</td>
</tr>
<tr>
<td>Step 4</td>
<td>switch(config)# no zone commit vsan vsan-id</td>
</tr>
<tr>
<td>Step 5</td>
<td>switch(config)# no zone commit vsan vsan-id force</td>
</tr>
</tbody>
</table>

Releasing Zone Database Locks

To release the session lock on the zoning database on the switches in a VSAN, use the no zone commit vsan command from the switch where the database was initially locked.

```
switch# configuration terminal
switch(config)# no zone commit vsan 2
```

If session locks remain on remote switches after using the no zone commit vsan command, you can use the clear zone lock vsan command on the remote switches.

```
switch# clear zone lock vsan 2
```

Note

We recommend using the no zone commit vsan command first to release the session lock in the fabric. If that fails, use the clear zone lock vsan command on the remote switches where the session is still locked.

Merging the Database

The merge method depends on the fabric-wide merge control setting:

- Restrict—If the two databases are not identical, the ISLs between the switches are isolated.
- Allow—The two databases are merged using the merge rules specified in the following table.
Table 13: Database Zone Merge Status

<table>
<thead>
<tr>
<th>Local Database</th>
<th>Adjacent Database</th>
<th>Merge Status</th>
<th>Results of the Merge</th>
</tr>
</thead>
<tbody>
<tr>
<td>The databases contain zone sets with the same name in the enhanced zoning mode, the active zone set does not have a name in interop mode 1. The zone set names are only present for full zone sets, but different zones, aliases, and attributes groups.</td>
<td>Successful.</td>
<td>ISLs are isolated.</td>
<td></td>
</tr>
<tr>
<td>The databases contain a zone, zone alias, or zone attribute group object with same name1 but different members.</td>
<td>Failed.</td>
<td>The adjacent database information populates the local database.</td>
<td></td>
</tr>
<tr>
<td>Empty.</td>
<td>Contains data.</td>
<td>Successful.</td>
<td>The union of the local and adjacent databases.</td>
</tr>
<tr>
<td>Contains data.</td>
<td>Empty.</td>
<td>Successful.</td>
<td>The local database information populates the adjacent database.</td>
</tr>
</tbody>
</table>

The merge process operates as follows:

- The software compares the protocol versions. If the protocol versions differ, then the ISL is isolated.
- If the protocol versions are the same, then the zone policies are compared. If the zone policies differ, then the ISL is isolated.
- If the zone merge options are the same, then the comparison is implemented based on the merge control setting.
 - If the setting is restrict, the active zone set and the full zone set should be identical. Otherwise, the link is isolated.
 - If the setting is allow, then the merge rules are used to perform the merge.

Configuring Zone Merge Control Policies

To configure merge control policies, perform this task:

SUMMARY STEPS

1. switch# configuration terminal
2. switch(config)# zone merge-control restrict vsan vsan-id
3. switch(config)# no zone merge-control restrict vsan vsan-id
4. switch(config)# zone commit vsan vsan-id
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configuration terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config)# zone merge-control restrict vsan vsan-id</td>
<td>Configures a restricted merge control setting for this VSAN.</td>
</tr>
<tr>
<td>Step 3 switch(config)# no zone merge-control restrict vsan vsan-id</td>
<td>Defaults to using the allow merge control setting for this VSAN.</td>
</tr>
<tr>
<td>Step 4 switch(config)# zone commit vsan vsan-id</td>
<td>Commits the changes made to the specified VSAN.</td>
</tr>
</tbody>
</table>

Default Zone Policies

To permit or deny traffic in the default zone, perform this task:

SUMMARY STEPS

1. switch# configuration terminal
2. switch(config)# zone default-zone permit vsan vsan-id
3. switch(config)# no zone default-zone permit vsan vsan-id
4. switch(config)# zone commit vsan vsan-id

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configuration terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config)# zone default-zone permit vsan vsan-id</td>
<td>Permits traffic flow to default zone members.</td>
</tr>
<tr>
<td>Step 3 switch(config)# no zone default-zone permit vsan vsan-id</td>
<td>Denies traffic flow to default zone members and reverts to factory default.</td>
</tr>
<tr>
<td>Step 4 switch(config)# zone commit vsan vsan-id</td>
<td>Commits the changes made to the specified VSAN.</td>
</tr>
</tbody>
</table>

Configuring System Default Zoning Settings

You can configure default settings for default zone policies and full zone distribution for new VSANs on the switch. To configure switch-wide default settings, perform this task:
SUMMARY STEPS

1. `switch# configuration terminal`
2. `switch(config)# system default zone default-zone permit`
3. `switch(config)# no system default zone default-zone permit`
4. `switch(config)# system default zone distribute full`
5. `switch(config)# no system default zone distribute full`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>switch# configuration terminal</code></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>switch(config)# system default zone default-zone permit</code></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>switch(config)# no system default zone default-zone permit</code></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>switch(config)# system default zone distribute full</code></td>
</tr>
<tr>
<td>Step 5</td>
<td><code>switch(config)# no system default zone distribute full</code></td>
</tr>
</tbody>
</table>

Verifying Enhanced Zone Information

The following example shows how to display the zone status for a specified VSAN:

```
switch# show zone status vsan 2
```

Compacting the Zone Database

You can delete excess zones and compact the zone database for the VSAN.

Note

A merge failure occurs when a switch supports more than 2000 zones per VSAN but its neighbor does not. Also, zone set activation can fail if the switch has more than 2000 zones per VSAN and not all switches in the fabric support more than 2000 zones per VSAN.

To delete zones and compact the zone database for a VSAN, perform this task:
SUMMARY STEPS

1. switch# configuration terminal
2. switch(config)# no zone name zone-name vsan vsan-id
3. switch(config)# zone compact vsan vsan-id

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configuration terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# no zone name zone-name vsan vsan-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config)# zone compact vsan vsan-id</td>
</tr>
</tbody>
</table>

Zone and Zone Set Analysis

To better manage the zones and zone sets on your switch, you can display zone and zone set information using the show zone analysis command.

The following example shows how to display full zoning analysis:

`switch# show zone analysis vsan 1`

The following example shows how to display active zoning analysis:

`switch# show zone analysis active vsan 1`

Default Basic Zone Settings

The following table lists the default settings for basic zone parameters.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default zone policy</td>
<td>Denied to all members.</td>
</tr>
<tr>
<td>Full zone set distribute</td>
<td>The full zone set(s) is not distributed.</td>
</tr>
<tr>
<td>Enhanced zoning</td>
<td>Disabled.</td>
</tr>
</tbody>
</table>
Distributing Device Alias Services

This chapter contains the following sections:

- Distributing Device Alias Services, page 85

Distributing Device Alias Services

Cisco SAN switches support Distributed Device Alias Services (device aliases) on a fabric-wide basis.

Information About Device Aliases

When the port WWN (pWWN) of a device must be specified to configure features (for example, zoning, DPVM, or port security) in a Cisco SAN switch, you must assign the correct device name each time you configure these features. An inaccurate device name may cause unexpected results. You can circumvent this problem if you define a user-friendly name for a pWWN and use this name in all the configuration commands as required. These user-friendly names are referred to as device aliases.

Device Alias Features

Device aliases have the following features:

- The device alias information is independent of the VSAN configuration.
- The device alias configuration and distribution is independent of the zone server and the zone server database.
- You can import legacy zone alias configurations without losing data.
- The device alias application uses the Cisco Fabric Services (CFS) infrastructure to enable efficient database management and distribution. Device aliases use the coordinated distribution mode and the fabric-wide distribution scope.
- Basic and enhanced modes.
- Device aliases used to configure zones, IVR zones, or port security features are displayed automatically with their respective pWWNs in the show command output.
Related Topics

- Device Alias Modes, page 87

Device Alias Requirements

Device aliases have the following requirements:

- You can only assign device aliases to pWWNs.
- There must be a one-to-one relationship between the pWWN and the device alias that maps to it.
- A device alias name is restricted to 64 alphanumeric characters and may include one or more of the following characters:
 - a to z and A to Z
 - Device alias names must begin with an alphabetic character (a to z or A to Z).
 - 1 to 9
 - - (hyphen) and _ (underscore)
 - $ (dollar sign) and ^ (up caret)

Zone Aliases Versus Device Aliases

The following table compares the configuration differences between zone-based alias configuration and device alias configuration.

Table 15: Comparison Between Zone Aliases and Device Aliases

<table>
<thead>
<tr>
<th>Zone-Based Aliases</th>
<th>Device Aliases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliases are limited to the specified VSAN.</td>
<td>You can define device aliases without specifying the VSAN number. You can also use the same definition in one or more VSANs without any restrictions.</td>
</tr>
<tr>
<td>Zone aliases are part of the zoning configuration. The alias mapping cannot be used to configure other features.</td>
<td>Device aliases can be used with any feature that uses the pWWN.</td>
</tr>
<tr>
<td>You can use any zone member type to specify the end devices.</td>
<td>Only pWWNs are supported.</td>
</tr>
<tr>
<td>Configuration is contained within the zone server database and is not available to other features.</td>
<td>Device aliases are not restricted to zoning. Device alias configuration is available to the FCNS, zone, fcping, and traceroute applications.</td>
</tr>
</tbody>
</table>

Device Alias Databases

The device alias feature uses two databases to accept and implement device alias configurations.
• Effective database—The database currently used by the fabric.
• Pending database—Your subsequent device alias configuration changes are stored in the pending database.

If you modify the device alias configuration, you need to commit or discard the changes as the fabric remains locked during this period.

Device alias database changes are validated with the applications. If any of the applications cannot accept the device alias database changes, then those changes are rejected; this applies to device alias database changes resulting from either a commit or merge operation.

Creating Device Aliases

To create a device alias in the pending database, perform this task:

SUMMARY STEPS

1. switch# configuration terminal
2. switch(config)# device-alias database
3. switch(config-device-alias-db)# device-alias name device-name pwwn pwwn-id
4. switch(config-device-alias-db)# no device-alias name device-name
5. switch(config-device-alias-db)# device-alias rename old-device-name new-device-name

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters the pending database configuration submode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Specifies a device name for the device that is identified by its pWWN. Starts writing to the pending database and simultaneously locks the fabric as this is the first-issued device alias configuration command.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Removes the device name for the device that is identified by its pWWN.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Renames an existing device alias with a new name.</td>
</tr>
</tbody>
</table>

Example of Creating a Device Alias

To display the device alias configuration, use the show device-alias name command:

```
switch# show device-alias name x
device-alias name x pwwn 21:01:00:e0:8b:2e:80:93
```

Device Alias Modes

You can specify that aliases operate in basic or enhanced modes.
When operating in basic mode, which is the default mode, the device alias is immediately expanded to a pWWN. In basic mode, when device aliases are changed to point to a new HBA, for example, that change is not reflected in the zone server. Users must remove the previous HBA’s pWWN, add the new HBA’s pWWN, and then reactivate the zoneset.

When operating in enhanced mode, applications accept a device alias name in its "native" format. Instead of expanding the device alias to a pWWN, the device alias name is stored in the configuration and distributed in its native device alias format. So applications such as zone server, PSM or DPVM can automatically keep track of the device alias membership changes and enforce them accordingly. The primary benefit of operating in enhanced mode is that you have a single point of change.

Whenever you change device alias modes, the change is distributed to other switches in the network only if device alias distribution is enabled or on. Otherwise, the mode change only takes place on the local switch.

Note

Enhanced mode, or native device alias-based configurations are not accepted in interop mode VSANs. IVR zoneset activation will fail in interop mode VSANs if the corresponding zones have native device alias-based members.

Changing Device Alias Mode Guidelines

When changing device alias modes, follow these guidelines:

- If two fabrics running in different device alias modes are joined together, the device alias merge will fail. There is no automatic conversion to one mode or the other during the merge process. In this situation, you must to select one mode over the other.

- Before changing from enhanced to basic mode, you must first explicitly remove all native device alias-based configurations from both local and remote switches, or, replace all device alias-based configuration members with the corresponding pWWN.

- If you remove a device alias from the device alias database, all applications will automatically stop enforcing the corresponding device alias. If that corresponding device alias is part of an active zoneset, all the traffic to and from that pWWN is disrupted.

- Renaming the device alias not only changes the device alias name in the device alias database, but also replaces the corresponding device alias configuration in all the applications.

- When a new device alias is added to the device alias database, and the application configuration is present on that device alias, it automatically takes effect. For example, if the corresponding device alias is part of the active zoneset and the device is online, then zoning is enforced automatically. You do not have to reactivate the zoneset.

- If a device alias name is mapped to a new HBA’s pWWN, then the application’s enforcement changes accordingly. In this case, the zone server automatically enforces zoning based on the new HBA's pWWN.

Configuring Device Alias Modes

To configure device aliases to operate in enhanced mode, perform this task:
SUMMARY STEPS

1. switch# configuration terminal
2. switch(config)# device-alias mode enhanced
3. switch(config)# no device-alias mode enhance

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configuration terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# device-alias mode enhanced</td>
<td>Assigns the device alias to operate in enhanced mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config)# no device-alias mode enhance</td>
<td>Assigns the device alias to operate in basic mode.</td>
</tr>
</tbody>
</table>

Viewing the Device Alias Mode Setting

To view the current device alias mode setting, enter the `show device-alias status` command.

```
switch# show device-alias status
Fabric Distribution: Enabled
Database:- Device Aliases 0 Mode: Basic
Locked By:- User "admin" SWNN 20:00:00:0d:ec:30:90:40
Pending Database:- Device Aliases 0 Mode: Basic
```

About Device Alias Distribution

By default, device alias distribution is enabled. The device alias feature uses CFS to distribute the modifications to all switches in a fabric.

If device alias distribution is disabled, database changes are not distributed to the switches in the fabric. The same changes would have to be performed manually on all switches in the fabric to keep the device alias database up-to-date. Database changes immediately take effect, so there would not be any pending database and commit or abort operations either. If you have not committed the changes and you disable distribution, then a commit task will fail.

The following example displays a failed device alias status:

```
switch# show device-alias status
Fabric Distribution: Disabled
Database:- Device Aliases 25
Status of the last CFS operation issued from this switch:
=================================================================================
Operation: Commit
Status: Failed (Reason: Operation is not permitted as the fabric distribution is currently disabled.)
```

Locking the Fabric

When you perform any device alias configuration task (regardless of which device alias task), the fabric is automatically locked for the device alias feature. Once you lock the fabric, the following situations apply:

- No other user can make any configuration changes to this feature.
• A copy of the effective database is obtained and used as the pending database. Subsequent modifications are made to the pending database. The pending database remains in use until you commit the modifications to the pending database or discard (abort) the changes to the pending database.

Committing Changes

If you commit the changes made to the pending database, the following events occur:

- The pending database content overwrites the effective database content.
- The pending database is distributed to the switches in the fabric and the effective database on those switches is overwritten with the new changes.
- The pending database is emptied of its contents.
- The fabric lock is released for this feature.

To commit the changes, perform this task:

SUMMARY STEPS

1. switch# configuration terminal
2. switch(config)# device-alias commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configuration terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config)# device-alias commit</td>
<td>Commits the changes made to the currently active session.</td>
</tr>
</tbody>
</table>

Discarding Changes

If you discard the changes made to the pending database, the following events occur:

- The effective database contents remain unaffected.
- The pending database is emptied of its contents.
- The fabric lock is released for this feature.

To discard the device alias session, perform this task:

SUMMARY STEPS

1. switch# configuration terminal
2. switch(config)# device-alias abort
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>switch# configuration terminal</code></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td><code>switch(config)# device-alias abort</code></td>
<td>Discards the currently active session.</td>
</tr>
</tbody>
</table>

Displaying the Status of a Discard Operation

To display the status of the discard operation, use the `device alias status` command.

```console
switch# show device-alias status
Fabric Distribution: Enabled
Database:- Device Aliases 24
Status of the last CFS operation issued from this switch:
Operation: Abort
Status: Success
```

Fabric Lock Override

You can use locking operations (clear, commit, abort) only when device alias distribution is enabled. If you have performed a device alias task and have forgotten to release the lock by either committing or discarding the changes, an administrator can release the lock from any switch in the fabric. If the administrator performs this task, your changes to the pending database are discarded and the fabric lock is released.

The changes are only available in the volatile directory and may be discarded if the switch is restarted.

To use administrative privileges and release a locked device alias session, use the `clear device-alias session` command in EXEC mode.

```console
switch# clear device-alias session
To display the status of the clear operation, use the `show device-alias status` command.

switch# show device-alias status
Fabric Distribution: Enabled
Database:- Device Aliases 24
Status of the last CFS operation issued from this switch:
Operation: Clear Session<------------------------Lock released by administrator
Status: Success<-----------------------------Successful status of the operation
```

Disabling and Enabling Device Alias Distribution

To disable or enable the device alias distribution, perform this task:

SUMMARY STEPS

1. `switch# configuration terminal`
2. `switch(config)# no device-alias distribute`
3. `switch(config)# device-alias distribute`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>switch# configuration terminal</code></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td><code>switch(config)# no device-alias distribute</code></td>
<td>Disables the distribution.</td>
</tr>
<tr>
<td>3</td>
<td><code>switch(config)# device-alias distribute</code></td>
<td>Enables the distribution (default).</td>
</tr>
</tbody>
</table>

Viewing the Status of Device Alias Distribution

To display the status of device alias distribution, use the `show device-alias status` command. The following example shows the device alias display when distribution is enabled:

```
switch# show device-alias status
Fabric Distribution: Enabled <---------------------------Distribution is enabled
Database:-Device Aliases 24
Locked By:-User "Test" SWWN 20:00:00:0c:cf:f4:02:83<-Lock holder's user name and switch ID
Pending Database:- Device Aliases 24
Status of the last CFS operation issued from this switch:

Operation: Enable Fabric Distribution
Status: Success
```

The following example shows the device alias display when distribution is disabled:

```
switch# show device-alias status
Fabric Distribution: Disabled
Database:- Device Aliases 24
Pending Database:- Device Aliases 24
Status of the last CFS operation issued from this switch:

Operation: Disable Fabric Distribution
Status: Success
```

About Legacy Zone Alias Configuration

You can import legacy zone alias configurations to use this feature without losing data if they satisfy the following restrictions:

- Each zone alias has only one member.
- The member type is pWWN.

If any name or definition conflict exists, the zone aliases are not imported.

Ensure that you copy any required zone aliases to the device alias database as required by your configuration.

When an import operation is complete, the modified alias database is distributed to all other switches in the physical fabric when you perform the `commit` operation. If you do not want to distribute the configuration to
other switches in the fabric, you can perform the abort operation and the merge changes are completely discarded.

Importing a Zone Alias

To import the zone alias for a specific VSAN, perform this task:

SUMMARY STEPS

1. `switch# configuration terminal`
2. `switch(config)# device-alias import fcalias vsan vlan-id`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configuration terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# device-alias import fcalias vsan vlan-id</td>
</tr>
</tbody>
</table>

Device Alias Database Merge Guidelines

When merging two device alias databases, follow these guidelines:

- Verify that two device aliases with different names are not mapped to the same pWWN.
- Verify that two identical pWWNs are not mapped to two different device aliases.
- Verify that the combined number of device aliases in both databases does not exceed 20K.

If the combined number of device entries in both databases exceeds the supported configuration limit, then the merge will fail.

Verifying Device Alias Configuration

To display device alias information, perform one of the following tasks:

SUMMARY STEPS

1. `switch# show zoneset [active]`
2. `switch# show device-alias database [pending | pending-diffs]`
3. `switch# show device-alias {pwnn pwnn-id | name device-name } [pending]`
4. `switch# show flogi database [pending]`
5. `switch# show fcns database [pending]`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# show zoneset [active]</td>
<td>Displays the device aliases in the zone set information.</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch# show device-alias database [pending</td>
<td>pending-diffs]</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch# show device-alias {pwnn pwnn-id</td>
<td>name device-name } [pending]</td>
</tr>
<tr>
<td>Step 4</td>
<td>switch# show flogi database [pending]</td>
<td>Displays device alias information the flogi database.</td>
</tr>
<tr>
<td>Step 5</td>
<td>switch# show fcns database [pending]</td>
<td>Displays device alias information the fcns database.</td>
</tr>
</tbody>
</table>

Examples of Verifying Device Alias Configuration

The following example shows how to display device alias information in the zone set:

```bash
switch# show zoneset
zoneset name s1 vsan 1
  zone name z1 vsan 1
    pwnn 21:01:00:e0:8b:2e:80:93 [x] <----------Device alias displayed for each pWWN.
    pwnn 21:00:00:20:37:39:ab:5f [y]
  zone name z2 vsan 1
    pwnn 21:00:00:e0:8b:0b:66:56 [SampleName]
    pwnn 21:00:00:20:37:39:ac:0d [z]
```

The following example shows how to display pending changes in the device alias database:

```bash
switch# show device-alias database pending
```

The following example shows how to display a specific pWWN in the device alias database:

```bash
switch# show device-alias pwnn 21:01:00:e0:8b:2e:80:93 pending
```

The following example shows how to display the difference between the pending and effective device alias databases:

```bash
switch# show device-alias database pending-diff
- device-alias name Doc pwnn 21:01:02:03:00:01:01:01
+ device-alias name SampleName pwnn 21:00:00:e0:8b:0b:66:56
```

Where available, device aliases are displayed regardless of a member being configured using a `device-alias` command or a zone-specific `member pwnn` command.

Default Device Alias Settings

The following table lists the default settings for device alias parameters.

Table 16: Default Device Alias Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device alias distribution</td>
<td>Enabled.</td>
</tr>
<tr>
<td>Device alias mode</td>
<td>Basic.</td>
</tr>
<tr>
<td>Parameters</td>
<td>Default</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Database in use</td>
<td>Effective database.</td>
</tr>
<tr>
<td>Database to accept changes</td>
<td>Pending database.</td>
</tr>
<tr>
<td>Device alias fabric lock state</td>
<td>Locked with the first device alias task.</td>
</tr>
</tbody>
</table>
Configuring Fibre Channel Routing Services and Protocols

This chapter contains the following sections:

- Configuring Fibre Channel Routing Services and Protocols, page 97

Configuring Fibre Channel Routing Services and Protocols

Fabric Shortest Path First (FSPF) is the standard path selection protocol used by Fibre Channel fabrics. The FSPF feature is enabled by default on the E mode and TE mode virtual Fibre Channel interfaces on Cisco SAN switches. Except in configurations that require special consideration, you do not need to configure any FSPF services. FSPF automatically calculates the best path between any two switches in a fabric. FSPF provides the following capabilities:

- Dynamically computes routes throughout a fabric by establishing the shortest and quickest path between any two switches.
- Selects an alternative path in the event of the failure of a given path. FSPF supports multiple paths and automatically computes an alternative path around a failed link. It provides a preferred route when two equal paths are available.

Information About FSPF

FSPF is the protocol currently standardized by the T11 committee for routing in Fibre Channel networks. The FSPF protocol has the following characteristics and features:

- Supports multipath routing.
- Bases path status on a link state protocol.
- Routes hop by hop, based only on the domain ID.
- Runs only on E ports or TE ports and provides a loop free topology.
- Runs on a per VSAN basis. Connectivity in a given VSAN in a fabric is guaranteed only for the switches configured in that VSAN.
• Uses a topology database to keep track of the state of the links on all switches in the fabric and associates a cost with each link.

• Guarantees a fast reconvergence time in case of a topology change. Uses the standard Dijkstra algorithm, but there is a static dynamic option for a more robust, efficient, and incremental Dijkstra algorithm. The reconvergence time is fast and efficient as the route computation is done on a per VSAN basis.

Note

The FSPF feature can be used on any topology.

FSPF Examples

Fault Tolerant Fabric Example

The following figure depicts a fault tolerant fabric using a partial mesh topology. If a link goes down anywhere in the fabric, any switch can still communicate with all others in the fabric. In the same way, if any switch goes down, the connectivity of the rest of the fabric is preserved.

Figure 18: Fault Tolerant Fabric

For example, if all links are of equal speed, the FSPF calculates two equal paths from A to C: A-D-C (green) and A-E-C (blue).

Redundant Link Example

To improve on the topology, each connection between any pair of switches can be replicated; two or more links can be present between a pair of switches. The following figure shows this arrangement. Because Cisco SAN switches support SAN port channels, each pair of physical links can appear to the FSPF protocol as one single logical link.

By bundling pairs of physical links, FSPF efficiency is considerably improved by the reduced database size and the frequency of link updates. Once physical links are aggregated, failures are not attached to a single link but to the entire SAN port channel. This configuration also improves the resiliency of the network. The
failure of a link in a SAN port channel does not trigger a route change, which reduces the risks of routing loops, traffic loss, or fabric downtime for route reconfiguration.

Figure 19: Fault Tolerant Fabric with Redundant Links

For example, if all links are of equal speed and no SAN port channels exist, the FSPF calculates four equal paths from A to C: A1-E-C, A2-E-C, A3-D-C, and A4-D-C. If SAN port channels exist, these paths are reduced to two.

FSPF Global Configuration

By default, FSPF is enabled on Cisco SAN switches. Some FSPF features can be globally configured in each VSAN. By configuring a feature for the entire VSAN, you do not have to specify the VSAN number for every command. This global configuration feature also reduces the chance of typing errors or other minor configuration errors.

Note

FSPF is enabled by default. Generally, you do not need to configure these advanced features.

Caution

The default for the backbone region is 0 (zero). You do not need to change this setting unless your region is different from the default. If you are operating with other vendors using the backbone region, you can change this default to be compatible with those settings.

About SPF Computational Hold Times

The SPF computational hold time sets the minimum time between two consecutive SPF computations on the VSAN. Setting this to a small value means that FSPF reacts faster to any fabric changes by recomputing paths on the VSAN. A small SPF computational hold time uses more switch CPU time.

About Link State Records

Each time a new switch enters the fabric, a link state record (LSR) is sent to the neighboring switches, and then flooded throughout the fabric.

The following table displays the default settings for switch responses.
Table 17: LSR Default Settings

<table>
<thead>
<tr>
<th>LSR Option</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgment interval</td>
<td>5 seconds</td>
<td>The time a switch waits for an acknowledgment from the LSR before retransmission.</td>
</tr>
<tr>
<td>(RxmtInterval)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refresh time (LSRefreshTime)</td>
<td>30 minutes</td>
<td>The time a switch waits before sending an LSR refresh transmission.</td>
</tr>
<tr>
<td>Maximum age (MaxAge)</td>
<td>60 minutes</td>
<td>The time a switch waits before dropping the LSR from the database.</td>
</tr>
</tbody>
</table>

The LSR minimum arrival time is the period between receiving LSR updates on this VSAN. Any LSR updates that arrive before the LSR minimum arrival time are discarded.

The LSR minimum interval time is the frequency at which this switch sends LSR updates on a VSAN.

Configuring FSPF on a VSAN

To configure an FSPF feature for the entire VSAN, perform this task:

SUMMARY STEPS

1. `switch# configuration terminal`
2. `switch(config)# fspf config vsan vsan-id`
3. `switch-config-(fspf-config)# spf static`
4. `switch-config-(fspf-config)# spf hold-time value`
5. `switch-config-(fspf-config)# region region-id`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>switch# configuration terminal</code></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2 <code>switch(config)# fspf config vsan vsan-id</code></td>
<td>Enters FSPF global configuration mode for the specified VSAN.</td>
</tr>
<tr>
<td>Step 3 <code>switch-config-(fspf-config)# spf static</code></td>
<td>Forces static SPF computation for the dynamic (default) incremental VSAN.</td>
</tr>
<tr>
<td>Step 4 <code>switch-config-(fspf-config)# spf hold-time value</code></td>
<td>Configures the hold time between two route computations in milliseconds (msec) for the entire VSAN. The default value is 0.</td>
</tr>
</tbody>
</table>

Note

If the specified time is shorter, the routing is faster. However, the processor consumption increases accordingly.
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch-config-(fspf-config)# region region-id</td>
<td>Configures the autonomous region for this VSAN and specifies the region ID.</td>
</tr>
</tbody>
</table>

Resetting FSPF to the Default Configuration

To return the FSPF VSAN global configuration to its factory default, perform this task:

SUMMARY STEPS

1. switch# **configuration terminal**
2. switch(config)# **no fspf config vsan** vsan-id

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch# configuration terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>switch(config)# no fspf config vsan vsan-id</td>
<td>Deletes the FSPF configuration for the specified VSAN.</td>
</tr>
</tbody>
</table>

Enabling or Disabling FSPF

To enable or disable FSPF routing protocols, perform this task:

SUMMARY STEPS

1. switch# **configuration terminal**
2. switch(config)# **fspf enable vsan** vsan-id
3. switch(config)# **no fspf enable vsan** vsan-id

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch# configuration terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>switch(config)# fspf enable vsan vsan-id</td>
<td>Enables the FSPF routing protocol in the specified VSAN.</td>
</tr>
<tr>
<td>switch(config)# no fspf enable vsan vsan-id</td>
<td>Disables the FSPF routing protocol in the specified VSAN.</td>
</tr>
</tbody>
</table>

Clearing FSPF Counters for the VSAN

To clear the FSPF statistics counters for the entire VSAN, perform this task:
SUMMARY STEPS

1. switch# clear fspf counters vsan vsan-id

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# clear fspf counters vsan vsan-id</td>
<td>Clears the FSPF statistics counters for the specified VSAN. If an interface reference is not specified, all counters are cleared.</td>
</tr>
</tbody>
</table>

FSPF Interface Configuration

Several FSPF commands are available on a per-interface basis. These configuration procedures apply to an interface in a specific VSAN.

About FSPF Link Cost

FSPF tracks the state of links on all switches in the fabric, associates a cost with each link in its database, and then chooses the path with a minimal cost. The cost associated with an interface can be administratively changed to implement the FSPF route selection. The integer value to specify cost can range from 1 to 65,535. The default cost for 1 Gbps is 1000 and for 2 Gbps is 500.

Configuring FSPF Link Cost

To configure FSPF link cost, perform this task:

SUMMARY STEPS

1. switch# configuration terminal
2. switch(config)# interface vfc if-number
3. switch(config-if)# fspf cost value vsan vsan-id

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configuration terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config)# interface vfc if-number</td>
<td>Configures the specified interface, or if already configured, enters configuration mode for the specified interface.</td>
</tr>
<tr>
<td>Step 3 switch(config-if)# fspf cost value vsan vsan-id</td>
<td>Configures the cost for the selected interface in the specified VSAN.</td>
</tr>
</tbody>
</table>
About Hello Time Intervals

You can set the FSPF Hello time interval to specify the interval between the periodic hello messages sent to verify the health of the link. The integer value can range from 1 to 65,535 seconds.

Note
This value must be the same in the ports at both ends of the ISL.

Configuring Hello Time Intervals

To configure the FSPF Hello time interval, perform this task:

SUMMARY STEPS

1. `switch# configuration terminal`
2. `switch(config)# interface vfc if-number`
3. `switch(config-if)# fspf hello-interval value vsan vsan-id`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>switch# configuration terminal</code> Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>switch(config)# interface vfc if-number</code> Configures the specified interface, or if already configured, enters configuration mode for the specified interface.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>switch(config-if)# fspf hello-interval value vsan vsan-id</code> Specifies the hello message interval to verify the health of the link in the VSAN. The default is 20 seconds.</td>
</tr>
</tbody>
</table>

About Dead Time Intervals

You can set the FSPF dead time interval to specify the maximum interval for which a hello message must be received before the neighbor is considered lost and removed from the database. The integer value can range from 1 to 65,535 seconds.

Note
This value must be the same in the ports at both ends of the ISL.

Caution
An error is reported at the command prompt if the configured dead time interval is less than the hello time interval.
Configuring Dead Time Intervals

To configure the FSPF dead time interval, perform this task:

SUMMARY STEPS

1. switch# configuration terminal
2. switch(config)# interface vfc if-number
3. switch(config-if)# fspf dead-interval value vsan vsan-id

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configuration terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# interface vfc if-number</td>
<td>Configures the specified interface, or if already configured, enters configuration mode for the specified interface.</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config-if)# fspf dead-interval value vsan vsan-id</td>
<td>Specifies the maximum interval for the specified VSAN before which a hello message must be received on the selected interface before the neighbor is considered lost. The default is 80 seconds.</td>
</tr>
</tbody>
</table>

About Retransmitting Intervals

You can specify the time after which an unacknowledged link state update should be transmitted on the interface. The integer value to specify retransmit intervals can range from 1 to 65,535 seconds.

Note

This value must be the same on the switches on both ends of the interface.

Configuring Retransmitting Intervals

To configure the FSPF retransmit time interval, perform this task:

SUMMARY STEPS

1. switch# configuration terminal
2. switch(config)# interface vfc if-number
3. switch(config-if)# fspf retransmit-interval value vsan vsan-id
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configuration terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# interface vfc if-number</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config-if)# fspf retransmit-interval value vsan vsan-id</td>
</tr>
</tbody>
</table>

About Disabling FSPF for Specific Interfaces

You can disable the FSPF protocol for selected interfaces. By default, FSPF is enabled on all E ports and TE ports. This default can be disabled by setting the interface as passive.

Note: FSPF must be enabled at both ends of the interface for the protocol to work.

Disabling FSPF for Specific Interfaces

You can disable the FSPF protocol for selected interfaces. By default, FSPF is enabled on all E ports and TE ports. This default can be disabled by setting the interface as passive.

To disable FSPF for a specific interface, perform this task:

SUMMARY STEPS

1. switch# configuration terminal
2. switch(config)# interface vfc if-number
3. switch(config-if)# fspf passive vsan vsan-id
4. switch(config-if)# no fspf passive vsan vsan-id

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configuration terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# interface vfc if-number</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config-if)# fspf passive vsan vsan-id</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 4</td>
<td>switch(config-if)# no fspf passive vsan vsan-id</td>
</tr>
<tr>
<td></td>
<td>Reenables the FSPF protocol for the specified interface in the specified VSAN.</td>
</tr>
</tbody>
</table>

Clearing FSPF Counters for an Interface

To clear the FSPF statistics counters for an interface, perform this task:

SUMMARY STEPS

1. switch# clear fspf counters vsan vsan-id interface type if-number

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# clear fspf counters vsan vsan-id interface type if-number</td>
</tr>
<tr>
<td></td>
<td>Clears the FSPF statistics counters for the specified interface in the specified VSAN.</td>
</tr>
</tbody>
</table>

FSPF Routes

FSPF routes traffic across the fabric, based on entries in the FSPF database. These routes can be learned dynamically, or configured statically.

About Fibre Channel Routes

Each port implements forwarding logic, which forwards frames based on its FC ID. Using the FC ID for the specified interface and domain, you can configure the specified route (for example, FC ID 111211 and domain ID 3) in the switch with domain ID 1 (see the following figure).

Figure 20: Fibre Channel Routes
Configuring Fibre Channel Routes

To configure a Fibre Channel route, perform this task:

SUMMARY STEPS

1. `switch# configuration terminal`
2. `switch(config)# fcroute fcid interface vfc slot/port domain domain-id vsan vsan-id`
3. `switch(config)# fcroute fcid interface san-port-channel port domain domain-id vsan vsan-id`
4. `switch(config)# fcroute fcid interface vfc slot/port domain domain-id metric value vsan vsan-id`
5. `switch(config)# fcroute fcid interface vfc slot/port domain domain-id metric value remote vsan vsan-id`
6. `switch(config)# fcroute fcid netmask interface vfc slot/port domain domain-id vsan vsan-id`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configuration terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# fcroute fcid interface vfc slot/port domain domain-id vsan vsan-id</td>
<td>Configures the route for the specified Fibre Channel interface and domain. In this example, the specified interface is assigned an FC ID and a domain ID to the next hop switch.</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config)# fcroute fcid interface san-port-channel port domain domain-id vsan vsan-id</td>
<td>Configures the route for the specified SAN port channel interface and domain. In this example, interface san-port-channel 1 is assigned an FC ID (0x111211) and a domain ID to the next hop switch.</td>
</tr>
<tr>
<td>Step 4</td>
<td>switch(config)# fcroute fcid interface vfc slot/port domain domain-id metric value vsan vsan-id</td>
<td>Configures the static route for a specific FC ID and next hop domain ID and also assigns the cost of the route. If the remote destination option is not specified, the default is direct.</td>
</tr>
<tr>
<td>Step 5</td>
<td>switch(config)# fcroute fcid interface vfc slot/port domain domain-id metric value remote vsan vsan-id</td>
<td>Adds a static route to the RIB. If this is an active route and the FIBFIB = Forwarding Information Base records are free, it is also added to the FIB. If the cost (metric) of the route is not specified, the default is 10.</td>
</tr>
<tr>
<td>Step 6</td>
<td>switch(config)# fcroute fcid netmask interface vfc slot/port domain domain-id vsan vsan-id</td>
<td>Configures the netmask for the specified route the in interface (or SAN port channel). You can specify one of three routes: 0xff0000 matches only the domain, 0xffffffff matches the domain and the area, 0xffffffff matches the domain, area, and port.</td>
</tr>
</tbody>
</table>

In-Order Delivery

In-order delivery (IOD) of data frames guarantees frame delivery to a destination in the same order that they were sent by the originator.
Some Fibre Channel protocols or applications cannot handle out-of-order frame delivery. In these cases, Cisco SAN switches preserve frame ordering in the frame flow. The source ID (SID), destination ID (DID), and optionally the originator exchange ID (OXID) identify the flow of the frame.

On a switch with IOD enabled, all frames received by a specific ingress port and destined to a certain egress port are always delivered in the same order in which they were received.

Use IOD only if your environment cannot support out-of-order frame delivery.

If you enable the in-order delivery feature, the graceful shutdown feature is not implemented.

About Reordering Network Frames

When you experience a route change in the network, the new selected path may be faster or less congested than the old route.

Figure 21: Route Change Delivery

In the figure above, the new path from Switch 1 to Switch 4 is faster. In this scenario, Frame 3 and Frame 4 may be delivered before Frame 1 and Frame 2.

If the in-order guarantee feature is enabled, the frames within the network are delivered as follows:

- Frames in the network are delivered in the order in which they are transmitted.
- Frames that cannot be delivered in order within the network latency drop period are dropped inside the network.

About Reordering SAN Port Channel Frames

When a link change occurs in a SAN port channel, the frames for the same exchange or the same flow can switch from one path to another faster path.

Figure 22: Link Congestion Delivery
In the figure above, the port of the old path (red dot) is congested. In this scenario, Frame 3 and Frame 4 can be delivered before Frame 1 and Frame 2.

When the in-order delivery feature is enabled and a port channel link change occurs, the frames crossing the SAN port channel are delivered as follows:

- Frames using the old path are delivered before new frames are accepted.
- The new frames are delivered through the new path after the network latency drop period has elapsed and all old frames are flushed.

Frames that cannot be delivered in order through the old path within the network latency drop period are dropped.

Related Topics
- Configuring the Drop Latency Time, page 110

About Enabling In-Order Delivery

You can enable the in-order delivery feature for a specific VSAN or for the entire switch. By default, in-order delivery is disabled on Cisco SAN switches.

We recommend that you only enable this feature when devices that cannot handle any out-of-order frames are present in the switch. Load-balancing algorithms within the switch ensure that frames are delivered in order during normal fabric operation. The load-balancing algorithms based on source FC ID, destination FC ID, and exchange ID are enforced in hardware without any performance degradation. However, if the fabric encounters a failure and the in-order delivery feature is enabled, the recovery will be delayed because of an intentional pausing of fabric forwarding to purge the fabric of resident frames that could potentially be forwarded out-of-order.

Enabling In-Order Delivery Globally

To ensure that the in-order delivery parameters are uniform across all VSANs on the switch, enable in-order delivery globally.

Only enable in-order delivery globally if this is a requirement across your entire fabric. Otherwise, enable IOD only for the VSANs that require this feature.

To enable in-order delivery for the switch, perform this task:

SUMMARY STEPS

1. switch# configuration terminal
2. switch(config)# in-order-guarantee
3. switch(config)# no in-order-guarantee

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>step 1 switch# configuration terminal</td>
<td>Enters configuration mode.</td>
</tr>
</tbody>
</table>
Enabling In-Order Delivery for a VSAN

When you create a VSAN, that VSAN automatically inherits the global in-order guarantee value. You can override this global value by enabling or disabling in-order guarantee for the new VSAN.

To use the lowest domain switch for the multicast tree computation, perform this task:

SUMMARY STEPS

1. switch# configuration terminal
2. switch(config)# in-order-guarantee vsan vsan-id
3. switch(config)# no in-order-guarantee vsan vsan-id

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Enables in-order delivery in the specified VSAN.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Reverts the switch to the factory defaults and disables the in-order delivery feature in the specified VSAN.</td>
</tr>
</tbody>
</table>

Displaying the In-Order Delivery Status

Use the `show in-order-guarantee` command to display the present configuration status:

```
switch# show in-order-guarantee
    global inorder delivery configuration:guaranteed
    VSAN specific settings:
    vsan 1 inorder delivery:guaranteed
    vsan 101 inorder delivery:not guaranteed
    vsan 1000 inorder delivery:guaranteed
    vsan 1001 inorder delivery:guaranteed
    vsan 1692 inorder delivery:guaranteed
    vsan 2001 inorder delivery:guaranteed
    vsan 2009 inorder delivery:guaranteed
    vsan 2456 inorder delivery:guaranteed
    vsan 3277 inorder delivery:guaranteed
    vsan 3451 inorder delivery:guaranteed
    vsan 3452 inorder delivery:guaranteed
```

Configuring the Drop Latency Time

You can change the default latency time for a network, a specified VSAN in a network, or for the entire switch.
To configure the network and the switch drop latency time, perform this task:

SUMMARY STEPS

1. `switch# configuration terminal`
2. `switch(config)# fcdroplatency network value`
3. `switch(config)# fcdroplatency network value vsan vsan-id`
4. `switch(config)# no fcdroplatency network value`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configuration terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# fcdroplatency network value</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config)# fcdroplatency network value vsan vsan-id</td>
</tr>
<tr>
<td>Step 4</td>
<td>switch(config)# no fcdroplatency network value</td>
</tr>
</tbody>
</table>

Displaying Latency Information

You can view the configured latency parameters using the `show fcdroplatency` command. The following example shows how to display network latency information:

```
switch# show fcdroplatency
switch latency value:500 milliseconds
global network latency value:2000 milliseconds
VSAN specific network latency settings
vsan 1 network latency:5000 milliseconds
vsan 2 network latency:2000 milliseconds
vsan 103 network latency:2000 milliseconds
vsan 460 network latency:500 milliseconds
```

Flow Statistics Configuration

Flow statistics count the ingress traffic in the aggregated statistics table. You can collect two kinds of statistics:

- Aggregated flow statistics to count the traffic for a VSAN.
- Flow statistics to count the traffic for a source and destination ID pair in a VSAN.
About Flow Statistics

If you enable flow counters, you can enable a maximum of 1000 entries for aggregate flow and flow statistics. Be sure to assign an unused flow index for each new flow. The number space for flow index is shared between the aggregate flow statistics and the flow statistics.

Counting Aggregated Flow Statistics

To count the aggregated flow statistics for a VSAN, perform this task:

SUMMARY STEPS

1. switch# configuration terminal
2. switch(config)# fcflow stats aggregated index value vsan vsan-id
3. switch(config)# no fcflow stats aggregated index value vsan vsan-id

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configuration terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config)# fcflow stats aggregated index value vsan vsan-id</td>
<td>Enables the aggregated flow counter.</td>
</tr>
<tr>
<td>Step 3 switch(config)# no fcflow stats aggregated index value vsan vsan-id</td>
<td>Disables the aggregated flow counter.</td>
</tr>
</tbody>
</table>

Counting Individual Flow Statistics

To count the flow statistics for a source and destination FC ID in a VSAN, perform this task:

SUMMARY STEPS

1. switch# configuration terminal
2. switch(config)# fcflow stats index value dest-fcid source-fcid netmask vsan vsan-id
3. switch(config)# no fcflow stats aggregated index value vsan vsan-id

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configuration terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config)# fcflow stats index value dest-fcid source-fcid netmask vsan vsan-id</td>
<td>Enables the flow counter.</td>
</tr>
<tr>
<td>Note: The source ID and the destination ID are specified in FC ID hex format (for example, 0x123aff). The mask can be one of 0xff0000 or 0xffffffff.</td>
<td></td>
</tr>
</tbody>
</table>
Clearing FIB Statistics

Use the `clear fcflow stats` command to clear the aggregated flow counter. The following example clears the aggregated flow counters:

```
switch# clear fcflow stats aggregated index 1
```

The following example clears the flow counters for source and destination FC IDs:

```
switch# clear fcflow stats index 1
```

Displaying Flow Statistics

Use the `show fcflow stats` commands to view flow statistics. The following example displays the aggregated flow summary:

```
switch# show fcflow stats aggregated
Idx   VSAN  frames
------- -------- --------
  6    1        42871
```

The following example displays the flow statistics:

```
switch# show fcflow stats
```

The following example displays flow index usage:

```
switch# show fcflow stats usage
2 flows configured
Configured flows : 3,7
```

The following example shows how to display global FSPF information for a specific VSAN:

```
switch# show fspf vsan 1
```

The following example shows how to display a summary of the FSPF database for a specified VSAN. If no additional parameters are specified, all LSRs in the database are displayed:

```
switch# show fspf database vsan 1
```

The following example shows how to display FSPF interface information:

```
switch# show fspf vsan 1 interface vfc 1
```

Default FSPF Settings

The following table lists the default settings for FSPF features.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSPF</td>
<td>Enabled on all E ports and TE ports.</td>
</tr>
<tr>
<td>SPF computation</td>
<td>Dynamic.</td>
</tr>
<tr>
<td>SPF hold time</td>
<td>0.</td>
</tr>
</tbody>
</table>
Default FSPF Settings

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backbone region</td>
<td>0.</td>
</tr>
<tr>
<td>Acknowledgment interval (RxmtInterval)</td>
<td>5 seconds.</td>
</tr>
<tr>
<td>Refresh time (LSRefreshTime)</td>
<td>30 minutes.</td>
</tr>
<tr>
<td>Maximum age (MaxAge)</td>
<td>60 minutes.</td>
</tr>
<tr>
<td>Hello interval</td>
<td>20 seconds.</td>
</tr>
<tr>
<td>Dead interval</td>
<td>80 seconds.</td>
</tr>
<tr>
<td>Distribution tree information</td>
<td>Derived from the principal switch (root node).</td>
</tr>
<tr>
<td>Routing table</td>
<td>FSPF stores up to 16 equal cost paths to a given destination.</td>
</tr>
<tr>
<td>Load balancing</td>
<td>Based on destination ID and source ID on different, equal cost paths.</td>
</tr>
<tr>
<td>In-order delivery</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Drop latency</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Static route cost</td>
<td>If the cost (metric) of the route is not specified, the default is 10.</td>
</tr>
<tr>
<td>Remote destination switch</td>
<td>If the remote destination switch is not specified, the default is direct.</td>
</tr>
<tr>
<td>Multicast routing</td>
<td>Uses the principal switch to compute the multicast tree.</td>
</tr>
</tbody>
</table>
Managing FLOGI, Name Server, FDMI, and RSCN Databases

This chapter contains the following sections:

- Managing FLOGI, Name Server, FDMI, and RSCN Databases, page 115

Managing FLOGI, Name Server, FDMI, and RSCN Databases

Information About Fabric Login

In a Fibre Channel fabric, each host or disk requires an FC ID. Use the `show flogi` command to verify if a storage device is displayed in the fabric login (FLOGI) table as in the following examples. If the required device is displayed in the FLOGI table, the fabric login is successful. Examine the FLOGI database on a switch that is directly connected to the host HBA and connected ports.

The following example shows how to verify the storage devices in the fabric login (FLOGI) table:

```
switch# show flogi database
```

```
+-----------------+-------------------+-----------------+-------------------+
| INTERFACE       | VSAN  | FCID               | PORT NAME        | NODE NAME         |
|-----------------+-------+-------------------+-------------------+-------------------+
| vfc3/1          | 2     | 0xb30100           | 10:00:00:05:30:00:49:63 20:00:00:05:30:00:49:5e |
```

The following example shows how to verify the storage devices attached to a specific interface:

```
switch# show flogi database interface vfc1/1
```

```
+-----------------+-------------------+-----------------+-------------------+
| INTERFACE       | VSAN  | FCID               | PORT NAME        | NODE NAME         |
|-----------------+-------+-------------------+-------------------+-------------------+
| vfc1/1          | 1     | 0xb30100           | 20:00:00:1b:21:06:58:bc 10:00:00:1b:21:06:58:bc |
```

Total number of flogi = 1.

The following example shows how to verify the storage devices associated with VSAN 1:

```
switch# show flogi database vsan 1
```

The following example shows how to verify the storage devices associated with VSAN 1:
Name Server Proxy

The name server functionality maintains a database containing the attributes for all hosts and storage devices in each VSAN. Name servers allow a database entry to be modified by a device that originally registered the information.

The proxy feature is useful when you need to modify (update or delete) the contents of a database entry that was previously registered by a different device.

About Registering Name Server Proxies

All name server registration requests come from the same port whose parameter is registered or changed. If it does not, then the request is rejected.

This authorization enables WWNs to register specific parameters for another node.

Registering Name Server Proxies

To register the name server proxy, perform this task:

SUMMARY STEPS

1. switch# configuration terminal
2. switch(config)#fcns proxy-port wwn-id vsan vsan-id

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configuration terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)#fcns proxy-port wwn-id vsan vsan-id</td>
</tr>
</tbody>
</table>

About Rejecting Duplicate pWWNs

You can prevent malicious or accidental log in using another device’s pWWN by enabling the reject-duplicate-pwn option. If you disable this option, these pWWNs are allowed to log in to the fabric and replace the first device in the name server database.

Rejecting Duplicate pWWNs

To reject duplicate pWWNs, perform this task:

SUMMARY STEPS

1. switch# configuration terminal
2. switch(config)# fcns reject-duplicate-pwn vsan vsan-id
3. switch(config)# no fcns reject-duplicate-pwn vsan vsan-id
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configuration terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# fcns reject-duplicate-pwwn vsan vsan-id</td>
<td>Logs out devices when they log into the fabric if the pWWNs already exist.</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config)# no fcns reject-duplicate-pwwn vsan vsan-id</td>
<td>Overwrites the first device’s entry in the name server database with the new device having the same pWWN (default).</td>
</tr>
</tbody>
</table>

About Name Server Database Entries

The name server stores name entries for all hosts in the FCNS database. The name server permits an Nx port to register attributes during a PLOGI (to the name server) to obtain attributes of other hosts. These attributes are deregistered when the Nx port logs out either explicitly or implicitly.

In a multiswitch fabric configuration, the name server instances running on each switch shares information in a distributed database. One instance of the name server process runs on each switch.

Displaying Name Server Database Entries

The following example shows how to display the name server database for all VSANs:

```
switch# show fcns database
```

```
+-----------------+----------------+--------------------------+
<table>
<thead>
<tr>
<th>FCID</th>
<th>TYPE</th>
<th>PWWN</th>
<th>(VENDOR)</th>
<th>FC4-TYPE:FEATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x010000</td>
<td>N</td>
<td>50:06:0b:00:00:10:a7:80</td>
<td>scsi-fcp</td>
<td>fc-gs</td>
</tr>
<tr>
<td>0x010001</td>
<td>N</td>
<td>10:00:00:05:30:00:24:63</td>
<td>(Cisco)</td>
<td>ipfc</td>
</tr>
<tr>
<td>0x010002</td>
<td>N</td>
<td>50:06:04:82:c3:a0:98:52</td>
<td>(Company 1)</td>
<td>scsi-fcp</td>
</tr>
<tr>
<td>0x010100</td>
<td>N</td>
<td>21:00:00:8b:02:99:36</td>
<td>(Company A)</td>
<td>scsi-fcp</td>
</tr>
<tr>
<td>0x020000</td>
<td>N</td>
<td>21:00:00:e0:8b:08:4b:20</td>
<td>(Company A)</td>
<td>ipfc</td>
</tr>
<tr>
<td>0x020100</td>
<td>N</td>
<td>10:00:00:05:30:00:24:23</td>
<td>(Cisco)</td>
<td>scsi-fcp</td>
</tr>
<tr>
<td>0x020200</td>
<td>N</td>
<td>21:01:00:e0:8b:22:99:36</td>
<td>(Company A)</td>
<td>scsi-fcp</td>
</tr>
</tbody>
</table>

Total number of entries = 4
```

The following example shows how to display the name server database details for all VSANs:

```
switch# show fcns database detail
```

```
+-----------------+----------------+--------------------------+
<table>
<thead>
<tr>
<th>FCID</th>
<th>TYPE</th>
<th>PWWN</th>
<th>(VENDOR)</th>
<th>FC4-TYPE:FEATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x030001</td>
<td>N</td>
<td>10:00:00:05:30:00:25:a3</td>
<td>(Cisco)</td>
<td>ipfc</td>
</tr>
<tr>
<td>0x030101</td>
<td>NL</td>
<td>10:00:00:05:77:99:60:2c</td>
<td>(Interphase)</td>
<td>scsi-fcp</td>
</tr>
<tr>
<td>0x030200</td>
<td>N</td>
<td>10:00:00:49:92:28:8c:7:01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0xe00001</td>
<td>NL</td>
<td>21:00:00:20:37:a6:be:14</td>
<td>(Seagate)</td>
<td>scsi-fcp</td>
</tr>
</tbody>
</table>

Total number of entries = 4
```

The following example shows how to display the name server database statistics for all VSANs:

```
switch# show fcns statistics
```

```
FDMI

Cisco SAN switches provide support for the Fabric-Device Management Interface (FDMI) functionality, as described in the FC-GS-4 standard. FDMI enables management of devices such as Fibre Channel host bus adapters (HBAs) through in-band communications. This addition complements the existing Fibre Channel name server and management server functions.

Using the FDMI functionality, the switch software can extract the following management information about attached HBAs and host operating systems without installing proprietary host agents:

- Manufacturer, model, and serial number
- Node name and node symbolic name
- Hardware, driver, and firmware versions
- Host operating system (OS) name and version number

All FDMI entries are stored in persistent storage and are retrieved when the FDMI process is started.

Displaying FDMI

The following example shows how to display all HBA details for a specified VSAN:

```
switch# show fdmi database detail vsan 1
```

RSCN

The Registered State Change Notification (RSCN) is a Fibre Channel service that informs hosts about changes in the fabric. Hosts can receive this information by registering with the fabric controller (through a State Change Registration (SCR) request). These notifications provide a timely indication of one or more of the following events:

- Disks joining or leaving the fabric
- A name server registration change
- A new zone enforcement
- IP address change
- Any other similar event that affects the operation of the host

About RSCN Information

A switch RSCN (SW-RSCN) is sent to registered hosts and to all reachable switches in the fabric.

Note

The switch sends an RSCN to notify registered nodes that a change has occurred. It is up to the nodes to query the name server again to obtain the new information. The details of the changed information are not delivered by the switch in the RSCN sent to the nodes.
Displaying RSCN Information

The following example shows how to display registered device information:

```bash
switch# show rscn scr-table vsan 1
```

Note: The SCR table is not configurable. It is populated when hosts send SCR frames with RSCN information. If hosts do not receive RSCN information, the `show rscn scr-table` command will not return entries.

About the multi-pid Option

If the RSCN multi-pid option is enabled, then RSCNs generated to the registered Nx ports may contain more than one affected port IDs. In this case, zoning rules are applied before putting the multiple affected port IDs together in a single RSCN. By enabling this option, you can reduce the number of RSCNs. For example, you have two disks (D1, D2) and a host (H) connected to switch 1. Host H is registered to receive RSCNs. D1, D2, and H belong to the same zone. If disks D1 and D2 are online at the same time, one of the following actions applies:

- The multi-pid option is disabled on switch 1— Two RSCNs are generated to host H: one for the disk D1 and another for disk D2.
- The multi-pid option is enabled on switch 1— A single RSCN is generated to host H, and the RSCN payload lists the affected port IDs (in this case, both D1 and D2).

Note: Some Nx ports may not support multi-pid RSCN payloads. If so, disable the RSCN multi-pid option.

Configuring the multi-pid Option

To configure the multi-pid option, perform this task:

**SUMMARY STEPS**

1. `switch# configuration terminal`
2. `switch(config)# rscn multi-pid vsan vsan-id`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configuration terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config)# rscn multi-pid vsan vsan-id</td>
<td>Sends RSCNs in a multi-pid format for the specified VSAN.</td>
</tr>
</tbody>
</table>
Suppressing Domain Format SW-RSCNs

A domain format SW-RSCN is sent whenever the local switch name or the local switch management IP address changes. This SW-RSCN is sent to all other domains and switches over the ISLs. The remote switches can issue GMAL and GIELN commands to the switch that initiated the domain format SW-RSCN to determine what changed. Domain format SW-RSCNs can cause problems with some non-Cisco SAN switches.

To suppress the transmission of these SW-RSCNs over an ISL, perform this task:

**SUMMARY STEPS**

1. `switch# configuration terminal`
2. `switch(config)# rscn suppress domain-swrsrn vsan vsan-id`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configuration terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# rscn suppress domain-swrsrn vsan vsan-id</td>
</tr>
</tbody>
</table>

Clearing RSCN Statistics

You can clear the counters and later view the counters for a different set of events. For example, you can keep track of how many RSCNs or SW-RSCNs are generated on a particular event (such as ONLINE or OFFLINE events). You can use these statistics to monitor responses for each event in the VSAN.

The following example shows how to clear the RSCN statistics for the specified VSAN:

```
switch# clear rscn statistics vsan 1
```

After clearing the RSCN statistics, you can view the cleared counters by entering the `show rscn statistics` command:

```
switch# show rscn statistics vsan 1
```

Configuring the RSCN Timer

RSCN maintains a per VSAN event list queue, where the RSCN events are queued as they are generated. When the first RSCN event is queued, a per VSAN timer starts. Upon time-out, all the events are dequeued and coalesced RSCNs are sent to registered users. The default timer values minimize the number of coalesced RSCNs sent to registered users. Some deployments require smaller event timer values to track changes in the fabric.

**Note**

The RSCN timer value must be the same on all switches in the VSAN.
Before performing a downgrade, make sure that you revert the RSCN timer value in your network to the default value. Failure to do so will disable the links across your VSANs and other devices.

To configure the RSCN timer, perform this task:

**SUMMARY STEPS**

1. `switch# configuration terminal`
2. `switch(config)# rscn distribute`
3. `switch(config)# rscn event-tov timeout vsan vsan-id`
4. `switch(config)# no rscn event-tov timeout vsan vsan-id`
5. `switch(config)# rscn commit vsan vsan-id`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configuration terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# rscn distribute</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switch(config)# rscn event-tov timeout vsan vsan-id</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>switch(config)# no rscn event-tov timeout vsan vsan-id</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>switch(config)# rscn commit vsan vsan-id</td>
</tr>
</tbody>
</table>

**Verifying the RSCN Timer Configuration**

You verify the RSCN timer configuration using the `show rscn event-tov vsan` command. The following example shows how to clear the RSCN statistics for VSAN 10:

```
switch# show rscn event-tov vsan 10
Event TOV : 1000 ms
```

**RSCN Timer Configuration Distribution**

Because the timeout value for each switch is configured manually, a misconfiguration occurs when different switches time out at different times. This means different N-ports in a network can receive RSCNs at different times. Cisco Fabric Services (CFS) infrastructure alleviates this situation by automatically distributing the RSCN timer configuration information to all switches in a fabric. This also reduces the number of SW-RSCNs.

RSCN supports two modes, distributed and nondistributed. In distributed mode, RSCN uses CFS to distribute configuration to all switches in the fabric. In nondistributed mode, only the configuration commands on the local switch are affected.
All configuration commands are not distributed. Only the `rscn event-toy toy vsan vsan` command is distributed.

Note

Only the RSCN timer configuration is distributed.

Caution

The RSCN timer is registered with CFS during initialization and switchover. For high availability, if the RSCN timer distribution crashes and restarts or a switchover occurs, it resumes normal functionality from the state prior to the crash or switchover.

Enabling RSCN Timer Configuration Distribution

To enable RSCN timer configuration distribution, perform this task:

**SUMMARY STEPS**

1. `switch# configuration terminal`
2. `switch(config)# rscn distribute`
3. `switch(config)# no rscn distribute`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td><code>switch# configuration terminal</code></td>
<td>Enables RSCN timer distribution.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Disables (default) RSCN timer distribution.</td>
</tr>
<tr>
<td><code>switch(config)# rscn distribute</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td><code>switch(config)# no rscn distribute</code></td>
<td></td>
</tr>
</tbody>
</table>

**Locking the Fabric**

The first action that modifies the database creates the pending database and locks the feature in the VSAN. Once you lock the fabric, the following situations apply:

- No other user can make any configuration changes to this feature.
- A copy of the configuration database becomes the pending database along with the first active change.

**Committing the RSCN Timer Configuration Changes**

If you commit the changes made to the active database, the configuration is committed to all the switches in the fabric. On a successful commit, the configuration change is applied throughout the fabric and the lock is released.

To commit RSCN timer configuration changes, perform this task:
### SUMMARY STEPS

1. switch# **configuration terminal**
2. switch(config)# **rscn commit vsan timeout**

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> switch# <strong>configuration terminal</strong></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> switch(config)# <strong>rscn commit vsan timeout</strong></td>
<td>Commits the RSCN timer changes.</td>
</tr>
</tbody>
</table>

### Discarding the RSCN Timer Configuration Changes

If you discard (abort) the changes made to the pending database, the configuration database remains unaffected and the lock is released.

To discard RSCN timer configuration changes, perform this task:

### SUMMARY STEPS

1. switch# **configuration terminal**
2. switch(config)# **rscn abort vsan timeout**

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> switch# <strong>configuration terminal</strong></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> switch(config)# <strong>rscn abort vsan timeout</strong></td>
<td>Discards the RSCN timer changes and clears the pending configuration database.</td>
</tr>
</tbody>
</table>

### Clearing a Locked Session

If you have changed the RSCN timer configuration and have forgotten to release the lock by either committing or discarding the changes, an administrator can release the lock from any switch in the fabric. If the administrator performs this task, your changes to the pending database are discarded and the fabric lock is released.

The pending database is only available in the volatile directory and are subject to being discarded if the switch is restarted.

To use administrative privileges and release a locked DPVM session, use the **clear rscn session vsan** command in EXEC mode. The following example shows how to clear the RSCN session for VSAN 10:

```
switch# clear rscn session vsan 10
```
Displaying RSCN Configuration Distribution Information

The following example shows how to display the registration status for RSCN configuration distribution:

```
switch# show cfs application name rscn
Enabled : Yes
Timeout : 5s
Merge Capable : Yes
Scope : Logical
```

Note

A merge failure results when the RSCN timer values are different on the merging fabrics.

The following example shows how to display the set of configuration commands that would take effect when you commit the configuration:

```
switch# show rscn pending
rscn event-tov 2000 ms vsan 1
rscn event-tov 2000 ms vsan 2
rscn event-tov 300 ms vsan 10
```

Note

The pending database includes both existing and modified configuration.

```
switch# show rscn pending-diff vsan 10
- rscn event-tov 2000 ms vsan 10
+ rscn event-tov 300 ms vsan 10
```

Default RSCN Settings

The following table lists the default settings for RSCN.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSCN timer value</td>
<td>2000 milliseconds for Fibre Channel VSANs</td>
</tr>
<tr>
<td>RSCN timer configuration distribution</td>
<td>Disabled</td>
</tr>
</tbody>
</table>
Advanced Fibre Channel Features and Concepts

This chapter contains the following sections:

- Advanced Fibre Channel Features and Concepts, page 125

Advanced Fibre Channel Features and Concepts

Fibre Channel Timeout Values

You can modify Fibre Channel protocol-related timer values for the switch by configuring the following timeout values (TOVs):

- Distributed services TOV (D_S_TOV)—The valid range is from 5,000 to 10,000 milliseconds. The default is 5,000 milliseconds.

- Error detect TOV (E_D_TOV)—The valid range is from 1,000 to 10,000 milliseconds. The default is 2,000 milliseconds. This value is matched with the other end during port initialization.

- Resource allocation TOV (R_A_TOV)—The valid range is from 5,000 to 10,000 milliseconds. The default is 10,000 milliseconds. This value is matched with the other end during port initialization.

Note

The fabric stability TOV (F_S_TOV) constant cannot be configured.

Timer Configuration Across All VSANs

You can modify Fibre Channel protocol related timer values for the switch.

Caution

The D_S_TOV, E_D_TOV, and R_A_TOV values cannot be globally changed unless all VSANs in the switch are suspended.
If a VSAN is not specified when you change the timer value, the changed value is applied to all VSANs in the switch.

To configure Fibre Channel timers across all VSANs, perform this task:

**SUMMARY STEPS**

1. `switch# configure terminal`
2. `switch(config)# fctimer R_A_TOV timeout`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# fctimer R_A_TOV timeout</td>
</tr>
</tbody>
</table>

**Timer Configuration Per-VSAN**

You can also issue the fctimer for a specified VSAN to configure different TOV values for VSANs with special links such as Fibre Channel. You can configure different E_D_TOV, R_A_TOV, and D_S_TOV values for individual VSANs. Active VSANs are suspended and activated when their timer values are changed.

This configuration must be propagated to all switches in the fabric. Be sure to configure the same value in all switches in the fabric.

To configure per-VSAN Fibre Channel timers, perform this task:

**SUMMARY STEPS**

1. `switch# configuration terminal`
2. `switch(config)# fctimer D_S_TOV timeout vsan vsan-id`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configuration terminal</td>
</tr>
</tbody>
</table>
### Purpose

Configure the D_S_TOV timeout value (in milliseconds) for the specified VSAN. Suspend the VSAN temporarily. You have the option to end this command, if required.

### Step 2

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>switch(config)# fctimer D_S_TOV timeout vsan vsan-id</code></td>
<td>Configures the D_S_TOV timeout value (in milliseconds) for the specified VSAN. Suspend the VSAN temporarily. You have the option to end this command, if required.</td>
</tr>
</tbody>
</table>

The following example configures the timer value for VSAN 2:

```
switch(config)# fctimer D_S_TOV 6000 vsan 2
```

Warning: The vsan will be temporarily suspended when updating the timer value. This configuration would impact whole fabric. Do you want to continue? (y/n) y

Since this configuration is not propagated to other switches, please configure the same value in all the switches.

### About fctimer Distribution

You can enable per-VSAN fctimer fabric distribution for all Cisco SAN switches in the fabric. When you perform fctimer configurations, and distribution is enabled, that configuration is distributed to all the switches in the fabric.

You automatically acquire a fabric-wide lock when you enter the first configuration command after you enabled distribution in a switch. The fctimer application uses the effective and pending database model to store or commit the commands based on your configuration.

### Enabling or Disabling fctimer Distribution

To enable or disable fctimer fabric distribution, perform this task:

#### SUMMARY STEPS

1. `switch# configuration terminal`
2. `switch(config)# fctimer distribute`
3. `switch(config)# no fctimer distribute`

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>switch# configuration terminal</code></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td><code>switch(config)# fctimer distribute</code></td>
<td>Enables fctimer configuration distribution to all switches in the fabric. Acquires a fabric lock and stores all future configuration changes in the pending database.</td>
</tr>
<tr>
<td><code>switch(config)# no fctimer distribute</code></td>
<td>Disables (default) fctimer configuration distribution to all switches in the fabric.</td>
</tr>
</tbody>
</table>
Committing fctimer Changes

When you commit the fctimer configuration changes, the effective database is overwritten by the configuration changes in the pending database and all the switches in the fabric receive the same configuration. When you commit the fctimer configuration changes without implementing the session feature, the fctimer configurations are distributed to all the switches in the physical fabric.

To commit the fctimer configuration changes, perform this task:

SUMMARY STEPS

1. switch# configuration terminal
2. switch(config)# fctimer commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>switch# configuration terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Distributes the fctimer configuration changes to all switches in the fabric and releases the lock. Overwrites the effective database with the changes made to the pending database.</td>
</tr>
<tr>
<td>switch(config)# fctimer commit</td>
<td></td>
</tr>
</tbody>
</table>

Discarding fctimer Changes

After making the configuration changes, you can choose to discard the changes by discarding the changes instead of committing them. In either case, the lock is released.

To discard the fctimer configuration changes, perform this task:

SUMMARY STEPS

1. switch# configuration terminal
2. switch(config)# fctimer abort

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>switch# configuration terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Discards the fctimer configuration changes in the pending database and releases the fabric lock.</td>
</tr>
<tr>
<td>switch(config)# fctimer abort</td>
<td></td>
</tr>
</tbody>
</table>
Fabric Lock Override

If you have performed a fctimer fabric task and have forgotten to release the lock by either committing or discarding the changes, an administrator can release the lock from any switch in the fabric. If the administrator performs this task, your changes to the pending database are discarded and the fabric lock is released.

The changes are only available in the volatile directory and are subject to being discarded if the switch is restarted.

To use administrative privileges and release a locked fctimer session, use the `clear fctimer session` command.

```
switch# clear fctimer session
```

Fabric Database Merge Guidelines

When merging two fabrics, follow these guidelines:

- Be aware of the following merge conditions:
  - The merge protocol is not implemented for distribution of the fctimer values. You must manually merge the fctimer values when a fabric is merged.
  - The per-VSAN fctimer configuration is distributed in the physical fabric.
  - The fctimer configuration is only applied to those switches containing the VSAN with a modified fctimer value.
  - The global fctimer values are not distributed.

- Do not configure global timer values when distribution is enabled.

**Note**

The number of pending fctimer configuration operations cannot be more than 15. After 15 operations, you must commit or abort the pending configurations before performing any more operations.

Verifying Configured fctimer Values

Use the `show fctimer` command to display the configured fctimer values. The following example displays the configured global TOVs:

```
switch# show fctimer
F_S_TOV D_S_TOV E_D_TOV R_A_TOV
--
5000 ms 5000 ms 2000 ms 10000 ms
```

**Note**

The F_S_TOV constant, though not configured, is displayed in the output of the `show fctimer` command.

The following example displays the configured TOV for VSAN 10:

```
switch# show fctimer vsan 10
vsan no. F_S_TOV D_S_TOV E_D_TOV R_A_TOV
--
10 5000 ms 5000 ms 3000 ms 10000 ms
```
World Wide Names

The world wide name (WWN) in the switch is equivalent to the Ethernet MAC address. As with the MAC address, you must uniquely associate the WWN to a single device. The principal switch selection and the allocation of domain IDs rely on the WWN.

Cisco SAN switches support three network address authority (NAA) address formats. (see the following table).

Table 20: Standardized NAA WWN Formats

<table>
<thead>
<tr>
<th>NAA Address</th>
<th>NAA Type</th>
<th>WWN Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE 48-bit address</td>
<td>Type 1 = 0001b</td>
<td>000 0000 0000b 48-bit MAC address</td>
</tr>
<tr>
<td>IEEE extended</td>
<td>Type 2 = 0010b</td>
<td>Locally assigned 48-bit MAC address</td>
</tr>
<tr>
<td>IEEE registered</td>
<td>Type 5 = 0101b</td>
<td>IEEE company ID: 24 bits VSID: 36 bits</td>
</tr>
</tbody>
</table>

Caution
Changes to the world-wide names should be made by an administrator or individual who is completely familiar with switch operations.

Verifying WWN Information

Use the `show wwn` commands to display the status of the WWN configuration. The following example displays the status of all WWNs:

```
switch# show wwn status
Type Configured Available Resvd. Alarm State
---- ---------- ----------- ------ ------ -----
1 64 48 (75%) 16 NONE
2,5 524288 442368 (84%) 73728 NONE
```

The following example displays the information for block ID 51:

```
switch# show wwn status block-id 51
WWNs in this block: 21:00:ac:16:5e:52:00:03 to 21:ff:ac:16:5e:52:00:03
Num. of WWNs:: Configured: 256 Allocated: 0 Available: 256
```

Link Initialization WWN Usage

Exchange Link Protocol (ELP) and Exchange Fabric Protocol (EFP) use WWNs during link initialization. ELPs and EFPs both use the VSAN WWN by default during link initialization. However, the ELP usage changes based on the peer switch’s usage:

- If the peer switch ELP uses the switch WWN, then the local switch also uses the switch WWN.
• If the peer switch ELP uses the VSAN WWN, then the local switch also uses the VSAN WWN.

Configuring a Secondary MAC Address

To allocate secondary MAC addresses, perform this task:

SUMMARY STEPS

1. switch# configuration terminal
2. switch(config)# wwn secondary-mac wwn-id range value

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Configures the secondary MAC address. This command cannot be undone.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the secondary MAC address:

```
switch(config)# wwn secondary-mac 00:99:55:77:55:55 range 64
This command CANNOT be undone.
Please enter the BASE MAC ADDRESS again: 00:99:55:77:55:55
Please enter the mac address RANGE again: 64
From now on WWN allocation would be based on new MACs. Are you sure? (yes/no) no
You entered: no. Secondary MAC NOT programmed
```

FC ID Allocation for HBAs

Fibre Channel standards require a unique FC ID to be allocated to an N port attached to an F port in any switch. To conserve the number of FC IDs used, Cisco SAN switches use a special allocation scheme.

Some HBAs do not discover targets that have FC IDs with the same domain and area. The switch software maintains a list of tested company IDs that do not exhibit this behavior. These HBAs are allocated with single FC IDs. If the HBA can discover targets within the same domain and area, a full area is allocated.

To allow further scalability for switches with numerous ports, the switch software maintains a list of HBAs that can discover targets within the same domain and area. Each HBA is identified by its company ID (also known as Organizational Unique Identifier, or OUI) used in the pWWN during a fabric log in. A full area is allocated to the N ports with company IDs that are listed and for the others, a single FC ID is allocated. Regardless of the type (whole area or single) of FC ID allocated, the FC ID entries remain persistent.

Default Company ID List

All Cisco SAN switches contain a default list of company IDs that require area allocation. Using the company ID reduces the number of configured persistent FC ID entries. You can configure or modify these entries using the CLI.
Persistent entries take precedence over company ID configuration. If the HBA fails to discover a target, verify that the HBA and the target are connected to the same switch and have the same area in their FC IDs, then perform the following procedure:

1. Shut down the port connected to the HBA.
2. Clear the persistent FC ID entry.
3. Get the company ID from the port WWN.
4. Add the company ID to the list that requires area allocation.
5. Bring up the port.

The list of company IDs have the following characteristics:

- A persistent FC ID configuration always takes precedence over the list of company IDs. Even if the company ID is configured to receive an area, the persistent FC ID configuration results in the allocation of a single FC ID.
- New company IDs added to subsequent releases are automatically added to existing company IDs.
- The list of company IDs is saved as part of the running and saved configuration.
- The list of company IDs is used only when the fcinterop FC ID allocation scheme is in auto mode. By default, the interop FC ID allocation is set to auto, unless changed.

We recommend that you set the fcinterop FC ID allocation scheme to auto and use the company ID list and persistent FC ID configuration to manipulate the FC ID device allocation.

Use the `fcinterop FCID allocation auto` command to change the FC ID allocation and the `show running-config` command to view the currently allocated mode.

- When you enter a `write erase`, the list inherits the default list of company IDs shipped with a relevant release.

To allocate company IDs, perform this task:

**SUMMARY STEPS**

1. `switch# configuration terminal`
2. `switch(config)# fcid-allocation area company-id value`
3. `switch(config)# no fcid-allocation area company-id value`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>switch# configuration terminal</code></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>switch(config)# fcid-allocation area company-id value</code></td>
<td>Adds a new company ID to the default list.</td>
</tr>
</tbody>
</table>
### Command or Action | Purpose
--- | ---
**Step 3** switch(config)# no fcid-allocation area company-id value | Deletes a company ID from the default list.

The following example adds a new company ID to the default list:

```
switch(config)# fcid-allocation area company-id 0x003223
```

### Verifying the Company ID Configuration

You can view the configured company IDs by entering the `show fcid-allocation area` command. Default entries are listed first and the user-added entries are listed next. Entries are listed even if they were part of the default list and you later removed them.

The following example displays the list of default and configured company IDs:

```
switch# show fcid-allocation area
FCID area allocation company id info:
00:50:2E ←----------------- Default entry
00:50:8B
00:60:B0
00:A0:8B
00:E0:69
00:30:AE + ←------------- User-added entry
00:32:23 +
00:E0:8B * ←------------- Explicitly deleted entry (from the original default list)
Total company ids: 7
+ - Additional user configured company ids.
* - Explicitly deleted company ids from default list.
```

You can implicitly derive the default entries shipped with a specific release by combining the list of Company IDs displayed without any identification with the list of deleted entries.

You can also view or obtain the company IDs in a specific WWN by entering the `show fcid-allocation company-id-from-wwn` command. Some WWN formats do not support company IDs. In these cases, you may need to configure the FC ID persistent entry.

The following example displays the company ID for the specified WWN:

```
switch# show fcid-allocation company-id-from-wwn 20:00:00:05:30:00:21:60
Extracted Company ID: 0x000530
```

### Switch Interoperability

Interoperability enables the products of multiple vendors to interwork with each other. Fibre Channel standards guide vendors towards common external Fibre Channel interfaces.

Not all vendors follow the standards in the same way, which results in the need for interoperability modes. This section briefly explains the basic concepts of these modes.

Each vendor has a regular mode and an equivalent interoperability mode, which specifically turns off advanced or proprietary features and provides the product with a standards-compliant implementation.

### About Interop Mode

The software supports the following four interop modes:

- **Mode 1** — Standards-based interop mode that requires all other vendors in the fabric to be in interop mode.

---

**Note:**

The information provided is for reference only and may not reflect the current state of the software or hardware. Always consult the latest documentation provided by the manufacturer for the most accurate and up-to-date information.
• Mode 2—Brocade native mode (Core PID 0).
• Mode 3—Brocade native mode (Core PID 1).
• Mode 4—McData native mode.

The following table lists the changes in switch operation when you enable interoperability mode.

**Table 21: Changes in Switch Operation When Interoperability Is Enabled**

<table>
<thead>
<tr>
<th>Switch Feature</th>
<th>Changes if Interoperability Is Enabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain IDs</td>
<td>Some vendors cannot use the full range of 239 domains within a fabric. Domain IDs are restricted to the range 97 to 127, to accommodate McData’s nominal restriction to this same range. Domain IDs can either be static or preferred, which operate as follows:</td>
</tr>
<tr>
<td></td>
<td>• Static: Cisco switches accept only one domain ID; if a switch does not get that domain ID it isolates itself from the fabric.</td>
</tr>
<tr>
<td></td>
<td>• Preferred: If the switch does not get its requested domain ID, it accepts any assigned domain ID.</td>
</tr>
<tr>
<td>Timers</td>
<td>All Fibre Channel timers must be the same on all switches as these values are exchanged by E ports when establishing an ISL. The timers are F_S_TOV, D_S_TOV, E_D_TOV, and R_A_TOV.</td>
</tr>
<tr>
<td>F_S_TOV</td>
<td>Verify that the Fabric Stability Time Out Value timers match exactly.</td>
</tr>
<tr>
<td>D_S_TOV</td>
<td>Verify that the Distributed Services Time Out Value timers match exactly.</td>
</tr>
<tr>
<td>E_D_TOV</td>
<td>Verify that the Error Detect Time Out Value timers match exactly.</td>
</tr>
<tr>
<td>R_A_TOV</td>
<td>Verify that the Resource Allocation Time Out Value timers match exactly.</td>
</tr>
<tr>
<td>Trunking</td>
<td>Trunking is not supported between two different vendor’s switches. This feature may be disabled on a per port or per switch basis.</td>
</tr>
<tr>
<td>Default zone</td>
<td>The default zone operation of permit (all nodes can see all other nodes) or deny (all nodes are isolated when not explicitly placed in a zone) may change.</td>
</tr>
</tbody>
</table>
Changes if Interoperability Is Enabled

<table>
<thead>
<tr>
<th>Switch Feature</th>
<th>Changes if Interoperability Is Enabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zoning attributes</td>
<td>Zones may be limited to the pWWN and other proprietary zoning methods (physical port number) may be eliminated.</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong> On a Brocade switch, use the <code>cfgsave</code> command to save fabric-wide zoning configuration. This command does not have any effect on Cisco SAN switches if they are part of the same fabric. You must explicitly save the configuration on each Cisco SAN switch.</td>
</tr>
<tr>
<td>Zone propagation</td>
<td>Some vendors do not pass the full zone configuration to other switches, only the active zone set gets passed. Verify that the active zone set or zone configuration has correctly propagated to the other switches in the fabric.</td>
</tr>
<tr>
<td>VSAN</td>
<td>Interop mode only affects the specified VSAN.</td>
</tr>
<tr>
<td>TE ports and SAN port channel s</td>
<td>TE ports and SAN port channels cannot be used to connect Cisco switches to non-Cisco SAN switches. Only E ports can be used to connect to non-Cisco SAN switches. TE ports and SAN port channels can still be used to connect a Cisco switch to other Cisco SAN switches even when in interop mode.</td>
</tr>
<tr>
<td>FSPF</td>
<td>The routing of frames within the fabric is not changed by the introduction of interop mode. The switch continues to use src-id, dst-id, and ox-id to load balance across multiple ISL links.</td>
</tr>
<tr>
<td>Domain reconfiguration disruptive</td>
<td>This is a switch-wide impacting event. Brocade and McData require the entire switch to be placed in offline mode and/or rebooted when changing domain IDs.</td>
</tr>
<tr>
<td>Domain reconfiguration nondisruptive</td>
<td>This event is limited to the affected VSAN. Cisco SAN switches have the capability to restart only the domain manager process for the affected VSAN and not the entire switch.</td>
</tr>
<tr>
<td>Name server</td>
<td>Verify that all vendors have the correct values in their respective name server database.</td>
</tr>
</tbody>
</table>

### Configuring Interop Mode 1

The interop mode in Cisco SAN switches can be enabled disruptively or nondisruptively.
Brocade’s \texttt{msplmgmtdeactivate} command must explicitly be run prior to connecting from a Brocade switch to either Cisco SAN switches or to McData switches. This command uses Brocade proprietary frames to exchange platform information, which Cisco SAN switches or McData switches do not understand. Rejecting these frames causes the common E ports to become isolated.

To configure interop mode 1, perform this task:

**SUMMARY STEPS**

1. Place the VSAN of the E ports that connect to the OEM switch in interoperability mode.
2. Assign a domain ID in the range of 97 (0x61) through 127 (0x7F).
3. Change the Fibre Channel timers (if they have been changed from the system defaults).
4. When making changes to the domain, you may or may not need to restart the domain manager function for the altered VSAN.

**DETAILED STEPS**

**Step 1**
Place the VSAN of the E ports that connect to the OEM switch in interoperability mode.

```
switch# configuration terminal
switch(config)# vsan database
switch(config-vsan-db)# vsan 1 interop 1
switch(config-vsan-db)# exit
```

**Step 2**
Assign a domain ID in the range of 97 (0x61) through 127 (0x7F).

\textbf{Note} This is an limitation imposed by the McData switches.

In Cisco SAN switches, the default is to request an ID from the principal switch. If the preferred option is used, Cisco SAN switches request a specific ID, but still join the fabric if the principal switch assigns a different ID. If the static option is used, the Cisco SAN switches do not join the fabric unless the principal switch agrees and assigns the requested ID.

\textbf{Note} When changing the domain ID, the FC IDs assigned to N ports also change.

**Step 3**
Change the Fibre Channel timers (if they have been changed from the system defaults).

\textbf{Note} The Cisco SAN switches, Brocade, and McData FC Error Detect (ED\_TOV) and Resource Allocation (RA\_TOV) timers default to the same values. They can be changed if needed. The RA\_TOV default is 10 seconds, and the ED\_TOV default is 2 seconds. Per the FC-SW2 standard, these values must be the same on each switch within the fabric.

```
switch(config)# fctimer e_d_tov ?
<1000-100000> E_D_TOV in milliseconds(1000-100000)

switch(config)# fctimer r_a_tov ?
<5000-100000> R_A_TOV in milliseconds(5000-100000)
```

**Step 4**
When making changes to the domain, you may or may not need to restart the domain manager function for the altered VSAN.
• Force a fabric reconfiguration with the **disruptive** option.

```
switch(config)# fdomain restart disruptive vsan 1
```

or

• Do not force a fabric reconfiguration.

```
switch(config# fdomain restart vsan 1
```

---

## Default Settings for Advanced Features

The following table lists the default settings for the features included in this chapter.

**Table 22: Default Settings for Advanced Features**

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIM server</td>
<td>Disabled</td>
</tr>
<tr>
<td>CIM server security protocol</td>
<td>HTTP</td>
</tr>
<tr>
<td>D_S_TOV</td>
<td>5,000 milliseconds</td>
</tr>
<tr>
<td>E_D_TOV</td>
<td>2,000 milliseconds</td>
</tr>
<tr>
<td>R_A_TOV</td>
<td>10,000 milliseconds</td>
</tr>
<tr>
<td>Timeout period to invoke fctrace</td>
<td>5 seconds</td>
</tr>
<tr>
<td>Number of frame sent by the fcping feature</td>
<td>5 frames</td>
</tr>
<tr>
<td>Remote capture connection protocol</td>
<td>TCP</td>
</tr>
<tr>
<td>Remote capture connection mode</td>
<td>Passive</td>
</tr>
<tr>
<td>Local capture frame limits</td>
<td>10 frames</td>
</tr>
<tr>
<td>FC ID allocation mode</td>
<td>Auto mode</td>
</tr>
<tr>
<td>Loop monitoring</td>
<td>Disabled</td>
</tr>
<tr>
<td>Interop mode</td>
<td>Disabled</td>
</tr>
</tbody>
</table>
Configuring FC-SP and DHCHAP

This chapter contains the following sections:

- Configuring FC-SP and DHCHAP, page 139

Configuring FC-SP and DHCHAP

Fibre Channel Security Protocol (FC-SP) capabilities provide switch-to-switch and host-to-switch authentication to overcome security challenges for enterprise-wide fabrics. Diffie-Hellman Challenge Handshake Authentication Protocol (DHCHAP) is an FC-SP protocol that provides authentication between Cisco SAN switches and other devices. DHCHAP consists of the CHAP protocol combined with the Diffie-Hellman exchange.

Information About Fabric Authentication

All Cisco SAN switches enable fabric-wide authentication from one switch to another switch, or from a switch to a host. These switch and host authentications are performed locally or remotely in each fabric. As storage islands are consolidated and migrated to enterprise-wide fabrics, new security challenges arise. The approach of securing storage islands cannot always be guaranteed in enterprise-wide fabrics. For example, in a campus environment with geographically distributed switches, someone could maliciously interconnect incompatible switches or you could accidentally do so, resulting in Inter-Switch Link (ISL) isolation and link disruption.
Cisco SAN switches support authentication features to address physical security (see the following figure).

*Figure 23: Switch and Host Authentication*

![Switch and Host Authentication Diagram](image)

**Note**
Fibre Channel Host Bus Adapters (HBAs) with appropriate firmware and drivers are required for host-switch authentication.

---

**DHCHAP**

DHCHAP is an authentication protocol that authenticates the devices connecting to a switch. Fibre Channel authentication allows only trusted devices to be added to a fabric, which prevents unauthorized devices from accessing the switch.

**Note**
The terms FC-SP and DHCHAP are used interchangeably in this chapter.
DHCHAP is a mandatory password-based, key-exchange authentication protocol that supports both switch-to-switch and host-to-switch authentication. DHCHAP negotiates hash algorithms and DH groups before performing authentication. It supports MD5 and SHA-1 algorithm-based authentication.

To configure DHCHAP authentication using the local password database, perform this task:

**SUMMARY STEPS**

1. Enable DHCHAP.
2. Identify and configure the DHCHAP authentication modes.
3. Configure the hash algorithm and DH group.
4. Configure the DHCHAP password for the local switch and other switches in the fabric.
5. Configure the DHCHAP timeout value for reauthentication.
6. Verify the DHCHAP configuration.

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enable DHCHAP.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Identify and configure the DHCHAP authentication modes.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Configure the hash algorithm and DH group.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Configure the DHCHAP password for the local switch and other switches in the fabric.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Configure the DHCHAP timeout value for reauthentication.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Verify the DHCHAP configuration.</td>
</tr>
</tbody>
</table>

**DHCHAP Compatibility with Fibre Channel Features**

This section identifies the impact of configuring the DHCHAP feature along with existing Cisco NX-OS features:

- SAN port channel interfaces—If DHCHAP is enabled for ports belonging to a SAN port channel, DHCHAP authentication is performed at the physical interface level, not at the port channel level.
- Port security or fabric binding—Fabric-binding policies are enforced based on identities authenticated by DHCHAP.
- VSANs—DHCHAP authentication is not done on a per-VSAN basis.

**About Enabling DHCHAP**

By default, the DHCHAP feature is disabled in all Cisco SAN switches.

You must explicitly enable the DHCHAP feature to access the configuration and verification commands for fabric authentication. When you disable this feature, all related configurations are automatically discarded.

**Enabling DHCHAP**

To enable DHCHAP, perform this task:
SUMMARY STEPS

1. switch# configuration terminal
2. switch(config)# feature fcsp
3. switch(config)# no feature fcsp

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch# configuration terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>switch(config)# feature fcsp</td>
<td>Enables the DHCHAP in this switch.</td>
</tr>
<tr>
<td>switch(config)# no feature fcsp</td>
<td>Disables (default) the DHCHAP in this switch.</td>
</tr>
</tbody>
</table>

About DHCHAP Authentication Modes

The DHCHAP authentication status for each interface depends on the configured DHCHAP port mode.

When the DHCHAP feature is enabled in a switch, each Fibre Channel interface or FCIP interface may be configured to be in one of four DHCHAP port modes:

- **On**—During switch initialization, if the connecting device supports DHCHAP authentication, the software performs the authentication sequence. If the connecting device does not support DHCHAP authentication, the link is placed in an isolated state.
- **Auto-Active**—During switch initialization, if the connecting device supports DHCHAP authentication, the software performs the authentication sequence. If the connecting device does not support DHCHAP authentication, the software continues with the rest of the initialization sequence.
- **Auto-Passive** (default)—The switch does not initiate DHCHAP authentication, but participates in DHCHAP authentication if the connecting device initiates DHCHAP authentication.
- **Off**—The switch does not support DHCHAP authentication. Authentication messages sent to ports in this mode return error messages to the initiating switch.

Note

Whenever DHCHAP port mode is changed to a mode other than the Off mode, reauthentication is performed.

The following table identifies switch-to-switch authentication between two Cisco switches in various modes.

<table>
<thead>
<tr>
<th>Switch 1 DHCHAP Modes</th>
<th>Link is brought down.</th>
</tr>
</thead>
<tbody>
<tr>
<td>on</td>
<td>FC-SP authentication is performed.</td>
</tr>
<tr>
<td>auto-active</td>
<td>FC-SP authentication is performed.</td>
</tr>
<tr>
<td>auto-passive</td>
<td>FC-SP authentication is performed.</td>
</tr>
<tr>
<td>off</td>
<td></td>
</tr>
</tbody>
</table>
Switch N DHCHAP Modes | Switch 1 DHCHAP Modes
--- | --- | --- | ---
one | auto-active | auto-passive | off
auto-Active |  |  | FC-SP authentication is not performed.
auto-Passive |  | FC-SP authentication is not performed. |  
off | Link is brought down. | FC-SP authentication is not performed. |  

### Configuring the DHCHAP Mode

To configure the DHCHAP mode for a particular interface, perform this task:

#### SUMMARY STEPS

1. `switch# configuration terminal`
2. `switch(config)# interface vfc if-number - if-number`
3. `switch(config-if)# fcsp on`
4. `switch(config-if)# fcsp off`
5. `switch(config-if)# fcsp auto-active timeout-period`
6. `switch(config-if)# fcsp auto-passive`

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><code>switch# configuration terminal</code></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><code>switch(config)# interface vfc if-number - if-number</code></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><code>switch(config-if)# fcsp on</code></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><code>switch(config-if)# fcsp off</code></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><code>switch(config-if)# fcsp auto-active timeout-period</code></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><code>switch(config-if)# fcsp auto-passive</code></td>
</tr>
</tbody>
</table>
About the DHCHAP Hash Algorithm

Cisco SAN switches support a default hash algorithm priority list of MD5 followed by SHA-1 for DHCHAP authentication.

If you change the hash algorithm configuration, then change it globally for all switches in the fabric.

Caution

RADIUS and TACACS+ protocols always use MD5 for CHAP authentication. Using SHA-1 as the hash algorithm may prevent RADIUS and TACACS+ usage, even if these AAA protocols are enabled for DHCHAP authentication.

Configuring the DHCHAP Hash Algorithm

To configure the hash algorithm, perform this task:

SUMMARY STEPS

1. switch# configuration terminal
2. switch(config)# fcsp dhchap hash [md5] [sha1]
3. switch(config)# no fcsp dhchap hash sha1

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enters configuration mode.</td>
</tr>
<tr>
<td>switch# configuration terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configures the use of the MD5 or SHA-1 hash algorithm.</td>
</tr>
<tr>
<td>switch(config)# fcsp dhchap hash [md5] [sha1]</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>reverts to the factory default priority list of the MD5 hash algorithm followed by the SHA-1 hash algorithm.</td>
</tr>
<tr>
<td>switch(config)# no fcsp dhchap hash sha1</td>
<td></td>
</tr>
</tbody>
</table>

About the DHCHAP Group Settings

All Cisco SAN switches support all DHCHAP groups specified in the standard: 0 (null DH group, which does not perform the Diffie-Hellman exchange), 1, 2, 3, or 4.

If you change the DH group configuration, change it globally for all switches in the fabric.

Configuring the DHCHAP Group Settings

To change the DH group settings, perform this task:
SUMMARY STEPS

1. switch# configuration terminal

2. switch(config)# fcs dhcpap dhgroup [0 | 1 | 2 | 3 | 4]

3. switch(config)# no fcs dhcpap dhgroup [0 | 1 | 2 | 3 | 4]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configuration terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config)# fcs dhcpap dhgroup [0</td>
<td>1</td>
</tr>
<tr>
<td>Step 3 switch(config)# no fcs dhcpap dhgroup [0</td>
<td>1</td>
</tr>
</tbody>
</table>

About the DHCHAP Password

DHCHAP authentication in each direction requires a shared secret password between the connected devices. To do this, you can use one of three configurations to manage passwords for all switches in the fabric that participate in DHCHAP:

- Configuration 1—Use the same password for all switches in the fabric. This is the simplest configuration. When you add a new switch, you use the same password to authenticate that switch in this fabric. It is also the most vulnerable configuration if someone from the outside maliciously attempts to access any one switch in the fabric.

- Configuration 2—Use a different password for each switch and maintain that password list in each switch in the fabric. When you add a new switch, you create a new password list and update all switches with the new list. Accessing one switch yields the password list for all switches in that fabric.

- Configuration 3—Use different passwords for different switches in the fabric. When you add a new switch, multiple new passwords corresponding to each switch in the fabric must be generated and configured in each switch. Even if one switch is compromised, the password of other switches are still protected. This configuration requires considerable password maintenance by the user.

Note: All passwords are restricted to 64 alphanumeric characters and can be changed, but not deleted.

We recommend using RADIUS or TACACS+ for fabrics with more than five switches. If you need to use a local password database, you can continue to do so using Configuration 3 and using the Cisco DCNM for SAN to manage the password database.

Configuring DHCHAP Passwords for the Local Switch

To configure the DHCHAP password for the local switch, perform this task:
### SUMMARY STEPS

1. `switch# configuration terminal`  
2. `switch(config)# fcsp dhchap password [0 | 7] password [wwn wwn-id]`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Configures a clear text password for the local switch.</td>
</tr>
</tbody>
</table>

**About Password Configuration for Remote Devices**

You can configure passwords in the local authentication database for other devices in a fabric. The other devices are identified by their device name, which is also known as the switch WWN or device WWN. The password is restricted to 64 characters and can be specified in clear text (0) or in encrypted text (7).

![Note](image)

The switch WWN identifies the physical switch. This WWN is used to authenticate the switch and is different from the VSAN node WWN.

**Configuring DHCHAP Passwords for Remote Devices**

To locally configure the remote DHCHAP password for another switch in the fabric, perform this task:

### SUMMARY STEPS

1. `switch# configuration terminal`  
2. `switch(config)# fcsp dhchap devicename switch-wwn password password`  
3. `switch(config)# no fcsp dhchap devicename switch-wwn password password`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Configures a password for another switch in the fabric that is identified by the switch WWN device name.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Removes the password entry for this switch from the local authentication database.</td>
</tr>
</tbody>
</table>
About the DHCHAP Timeout Value

During the DHCHAP protocol exchange, if the switch does not receive the expected DHCHAP message within a specified time interval, authentication failure is assumed. The time ranges from 20 (no authentication is performed) to 1000 seconds. The default is 30 seconds.

When changing the timeout value, consider the following factors:

- The existing RADIUS and TACACS+ timeout values.
- The same value must also be configured on all switches in the fabric.

Configuring the DHCHAP Timeout Value

To configure the DHCHAP timeout value, perform this task:

**SUMMARY STEPS**

1. switch# configuration terminal
2. switch(config)# fcsp timeout timeout
3. switch(config)# no fcsp timeout timeout

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configuration terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config)# fcsp timeout timeout</td>
<td>Configures the reauthentication timeout to the specified value. The unit is seconds.</td>
</tr>
<tr>
<td>Step 3 switch(config)# no fcsp timeout timeout</td>
<td>Reverts to the factory default of 30 seconds.</td>
</tr>
</tbody>
</table>

Configuring DHCHAP AAA Authentication

You can configure AAA authentication to use a RADIUS or TACACS+ server group. If AAA authentication is not configured, local authentication is used by default.

**Sample Configuration**

To configure the authentication setup, perform this task:
SUMMARY STEPS

1. Obtain the device name of the Cisco SAN switch in the fabric. The Cisco SAN switch in the fabric is identified by the switch WWN.
2. Explicitly enable DHCHAP in this switch.
3. Configure a clear text password for this switch. This password will be used by the connecting device.
4. Configure a password for another switch in the fabric that is identified by the switch WWN device name.
5. Enable the DHCHAP mode for the required interface.
6. Verify the protocol security information configured in this switch by displaying the DHCHAP local password database.
7. Display the DHCHAP configuration in the interface.
8. Repeat these steps on the connecting switch.

DETAILED STEPS

Step 1 Obtain the device name of the Cisco SAN switch in the fabric. The Cisco SAN switch in the fabric is identified by the switch WWN.

Example:
```
switch# show wwn switch
Switch WWN is 20:00:00:05:30:00:54:de
```

Step 2 Explicitly enable DHCHAP in this switch.

Note When you disable DHCHAP, all related configurations are automatically discarded.

Example:
```
switch(config)# feature fcsp
```

Step 3 Configure a clear text password for this switch. This password will be used by the connecting device.

Example:
```
switch(config)# fcsp dhchap password rtp9216
```

Step 4 Configure a password for another switch in the fabric that is identified by the switch WWN device name.

Example:
```
switch(config)# fcsp dhchap devicename 20:00:00:05:30:00:38:5e password rtp9509
```

Step 5 Enable the DHCHAP mode for the required interface.

Note Whenever DHCHAP port mode is changed to a mode other than the Off mode, reauthentication is performed.

Example:
```
switch(config)# interface vfc 2
switch(config-if)# fcsp on
```

Step 6 Verify the protocol security information configured in this switch by displaying the DHCHAP local password database.
Example:
switch# show fcsp dhchap database
DHCHAP Local Password:
  Non-device specific password:******
Other Devices' Passwords:
  Password for device with WWN:20:00:00:05:30:00:38:5e is ******

Step 7 Display the DHCHAP configuration in the interface.

Example:
switch# show fcsp interface vfc 2
vfc 2
  fcsp authentication mode:SEC_MODE_ON
  Status:Successfully authenticated

Step 8 Repeat these steps on the connecting switch.

Example:
MDS-9509# show wwn switch
Switch WWN is 20:00:00:05:30:00:38:5e
MDS-9509(config)# fcsp enable
MDS-9509(config)# fcsp dhchap password rtp9509
MDS-9509(config)# fcsp dhchap devicename 20:00:00:05:30:00:54:de password rtp9216
MDS-9509(config)# interface fc 4/5
MDS-9509(config-if)# fcsp on
MDS-9509# show fcsp dhchap database
DHCHAP Local Password:
  Non-device specific password:******
Other Devices' Passwords:
  Password for device with WWN:20:00:00:05:30:00:54:de is ******
MDS-9509# show fcsp interface fc2/4
Fc2/4
  fcsp authentication mode:SEC_MODE_ON
  Status:Successfully authenticated

You have now enabled and configured DHCHAP authentication for the sample setup.

---

Default Fabric Security Settings

The following table lists the default settings for all fabric security features in any switch.

**Table 24: Default Fabric Security Settings**

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCHAP feature</td>
<td>Disabled</td>
</tr>
<tr>
<td>DHCHAP hash algorithm</td>
<td>A priority list of MD5 followed by SHA-1 for DHCHAP authentication</td>
</tr>
<tr>
<td>DHCHAP authentication mode</td>
<td>Auto-passive</td>
</tr>
<tr>
<td>DHCHAP group default priority exchange order</td>
<td>0, 4, 1, 2, and 3, respectively</td>
</tr>
<tr>
<td>DHCHAP timeout value</td>
<td>30 seconds</td>
</tr>
</tbody>
</table>
### Configuring Port Security

Cisco SAN switches provide port security features that reject intrusion attempts and report these intrusions to the administrator.

**Note**

Port security is supported on virtual Fibre Channel ports.

### Information About Port Security

Typically, any Fibre Channel device in a SAN can attach to any SAN switch port and access SAN services based on zone membership. Port security features prevent unauthorized access to a switch port, using the following methods:

- Login requests from unauthorized Fibre Channel devices (N ports) and switches (xE ports) are rejected.
- All intrusion attempts are reported to the SAN administrator through system messages.
- Configuration distribution uses the CFS infrastructure, and is limited to those switches that are CFS capable. Distribution is disabled by default.

### Port Security Enforcement

To enforce port security, configure the devices and switch port interfaces through which each device or switch is connected, and activate the configuration.

- Use the port world wide name (pWWN) or the node world wide name (nWWN) to specify the N port connection for each device.
- Use the switch world wide name (sWWN) to specify the xE port connection for each switch.
Each N and xE port can be configured to restrict a single port or a range of ports. Enforcement of port security policies are done on every activation and when the port tries to come up. The port security feature uses two databases to accept and implement configuration changes.

- Configuration database—All configuration changes are stored in the configuration database.
- Active database—The database currently enforced by the fabric. The port security feature requires all devices connecting to a switch to be part of the port security active database. The software uses this active database to enforce authorization.

**About Auto-Learning**

You can instruct the switch to automatically learn (auto-learn) the port security configurations over a specified period. This feature allows any Cisco SAN switch to automatically learn about devices and switches that connect to it. Use this feature when you activate the port security feature for the first time as it saves tedious manual configuration for each port. You must configure auto-learning on a per-VSAN basis. If enabled, devices and switches that are allowed to connect to the switch are automatically learned, even if you have not configured any port access.

When auto-learning is enabled, learning happens only for the devices or interfaces that were not already logged into the switch. Learned entries on a port are cleaned up after you shut down that port if auto-learning is still enabled.

Learning does not override the existing configured port security policies. For example, if an interface is configured to allow a specific pWWN, then auto-learning will not add a new entry to allow any other pWWN on that interface. All other pWWNs will be blocked even in auto-learning mode.

No entries are learned for a port in the shutdown state.

When you activate the port security feature, auto-learning is also automatically enabled.

---

**Note**

If you enable auto-learning before activating port security, you cannot activate port security until auto-learning is disabled.

---

**Port Security Activation**

By default, the port security feature is not activated.

When you activate the port security feature, the following operations occur:

- Auto-learning is also automatically enabled, which means:
  - From this point, auto-learning happens only for the devices or interfaces that were not logged into the switch.
  - You cannot activate the database until you disable auto-learning.
- All the devices that are already logged in are learned and are added to the active database.
- All entries in the configured database are copied to the active database.
After the database is activated, subsequent device login is subject to the activated port bound WWN pairs, excluding the auto-learned entries. You must disable auto-learning before the auto-learned entries become activated.

When you activate the port security feature, auto-learning is also automatically enabled. You can choose to activate the port security feature and disable auto-learning.

If a port is shut down because of a denied login attempt, and you subsequently configure the database to allow that login, the port does not come up automatically. You must explicitly enter a `no shutdown` CLI command to bring that port back online.

## Configuring Port Security

### Configuring Port Security with Auto-Learning and CFS Distribution

To configure port security, using auto-learning and CFS distribution, perform this task:

**SUMMARY STEPS**

1. Enable port security.
2. Enable CFS distribution.
3. Activate port security on each VSAN.
4. Issue a CFS commit to copy this configuration to all switches in the fabric.
5. Wait until all switches and all hosts are automatically learned.
6. Disable auto-learn on each VSAN.
7. Issue a CFS commit to copy this configuration to all switches in the fabric.
8. Copy the active database to the configure database on each VSAN.
9. Issue a CFS commit to copy this configuration to all switches in the fabric.
10. Copy the running configuration to the startup configuration, using the fabric option.

**DETAILED STEPS**

**Step 1**
Enable port security.

**Step 2**
Enable CFS distribution.

**Step 3**
Activate port security on each VSAN.
This action turns on auto-learning by default.

**Step 4**
Issue a CFS commit to copy this configuration to all switches in the fabric.
All switches have port security activated with auto-learning enabled.

**Step 5**
Wait until all switches and all hosts are automatically learned.

**Step 6**
Disable auto-learn on each VSAN.

**Step 7**
Issue a CFS commit to copy this configuration to all switches in the fabric.
The auto-learned entries from every switch are combined into a static active database that is distributed to all switches.

**Step 8**
Copy the active database to the configure database on each VSAN.

**Step 9**
Issue a CFS commit to copy this configuration to all switches in the fabric.
This ensures that the configure database is the same on all switches in the fabric.

**Step 10**  
Copy the running configuration to the startup configuration, using the fabric option.

**Related Topics**
- Activating Port Security, page 156
- Committing the Changes, page 164
- Copying the Port Security Database, page 169
- Disabling Auto-Learning, page 159
- Enabling Port Security, page 155
- Enabling Port Security Distribution, page 163

**Configuring Port Security with Auto-Learning without CFS**

To configure port security using auto-learning without CFS, perform this task:

**SUMMARY STEPS**

1. Enable port security.
2. Activate port security on each VSAN, which turns on auto-learning by default.
3. Wait until all switches and all hosts are automatically learned.
4. Disable auto-learn on each VSAN.
5. Copy the active database to the configure database on each VSAN.
6. Copy the running configuration to the startup configuration, which saves the port security configuration database to the startup configuration.
7. Repeat the above steps for all switches in the fabric.

**DETAILED STEPS**

**Step 1**  
Enable port security.

**Step 2**  
Activate port security on each VSAN, which turns on auto-learning by default.

**Step 3**  
Wait until all switches and all hosts are automatically learned.

**Step 4**  
Disable auto-learn on each VSAN.

**Step 5**  
Copy the active database to the configure database on each VSAN.

**Step 6**  
Copy the running configuration to the startup configuration, which saves the port security configuration database to the startup configuration.

**Step 7**  
Repeat the above steps for all switches in the fabric.

**Related Topics**
- Activating Port Security, page 156
- Copying the Port Security Database, page 169
Configuring Port Security with Manual Database Configuration

To configure port security and manually configure the port security database, perform this task:

**SUMMARY STEPS**

1. Enable port security.
2. Manually configure all port security entries into the configure database on each VSAN.
3. Activate port security on each VSAN. This turns on auto-learning by default.
4. Disable auto-learn on each VSAN.
5. Copy the running configuration to the startup configuration, which saves the port security configuration database to the startup configuration.
6. Repeat the above steps for all switches in the fabric.

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configuration terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# feature port-security</td>
<td></td>
</tr>
</tbody>
</table>
### Port Security Activation

#### Activating Port Security

To activate port security, perform this task:

**SUMMARY STEPS**

1. `switch# configuration terminal`
2. `switch(config)# fc-port-security activate vsan vsan-id no-auto-learn`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configuration terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# fc-port-security activate vsan vsan-id no-auto-learn</td>
</tr>
</tbody>
</table>

#### Database Activation Rejection

Database activation is rejected in the following cases:

- Missing or conflicting entries exist in the configuration database but not in the active database.
- The auto-learning feature was enabled before the activation. To reactivate a database in this state, disable auto-learning.
- The exact security is not configured for each port channel member.
- The configured database is empty but the active database is not.

If the database activation is rejected due to one or more conflicts listed in the previous section, you may decide to proceed by forcing the port security activation.

#### Forcing Port Security Activation

If the port security activation request is rejected, you can force the activation.

**Note**

If you force the activation, existing devices are logged out if they violate the active database.
You can view missing or conflicting entries using the `fc-port-security database diff active vsan` command. To forcefully activate the port security database, perform this task:

**SUMMARY STEPS**

1. switch# configuration terminal
2. switch(config)# fc-port-security activate vsan vsan-id force

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configuration terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# fc-port-security activate vsan vsan-id force</td>
</tr>
</tbody>
</table>

**Database Reactivation**

Tip: If auto-learning is enabled, you cannot activate the database without the force option until you disable auto-learning.

To reactivate the port security database, perform this task:

**SUMMARY STEPS**

1. switch# configuration terminal
2. switch(config)# no fc-no port-security auto-learn vsan vsan-id
3. switch(config)# exit
4. switch# fc-port-security database copy vsan vsan-id
5. switch# configuration terminal
6. switch(config)# fc-port-security activate vsan vsan-id

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configuration terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# no fc-no port-security auto-learn vsan vsan-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config)# exit</td>
</tr>
</tbody>
</table>
### Auto-Learning

#### About Enabling Auto-Learning

The state of the auto-learning configuration depends on the state of the port security feature:

- If the port security feature is not activated, auto-learning is disabled by default.
- If the port security feature is activated, auto-learning is enabled by default (unless you explicitly disabled this option).

Tip

If auto-learning is enabled on a VSAN, you can only activate the database for that VSAN by using the force option.

#### Enabling Auto-Learning

To enable auto-learning, perform this task:

**SUMMARY STEPS**

1. `switch# configuration terminal`
2. `switch(config)# fc-port-security auto-learn vsan vsan-id`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# <code>configuration terminal</code></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# <code>fc-port-security auto-learn vsan vsan-id</code></td>
</tr>
</tbody>
</table>
Disabling Auto-Learning

To disable auto-learning, perform this task:

**SUMMARY STEPS**

1. switch# configuration terminal
2. switch(config)# no fc-port-security auto-learn vsan vsan-id

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configuration terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# no fc-port-security auto-learn vsan vsan-id</td>
</tr>
</tbody>
</table>

**Auto-Learning Device Authorization**

The following table summarizes the authorized connection conditions for device requests.

*Table 25: Authorized Auto-Learning Device Requests*

<table>
<thead>
<tr>
<th>Condition</th>
<th>Device (pWWN, nWWN, sWWN)</th>
<th>Requests Connection to</th>
<th>Authorization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Configured with one or more switch ports</td>
<td>A configured switch port</td>
<td>Permitted</td>
</tr>
<tr>
<td>2</td>
<td>Any other switch port</td>
<td>Denied</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Not configured</td>
<td>A switch port that is not configured</td>
<td>Permitted if auto-learning enabled</td>
</tr>
<tr>
<td>4</td>
<td>Not configured</td>
<td>Denied if auto-learning disabled</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Configured or not configured</td>
<td>A switch port that allows any device</td>
<td>Permitted</td>
</tr>
<tr>
<td>6</td>
<td>Configured to log in to any switch port</td>
<td>Any port on the switch</td>
<td>Permitted</td>
</tr>
<tr>
<td>7</td>
<td>Not configured</td>
<td>A port configured with some other device</td>
<td>Denied</td>
</tr>
</tbody>
</table>
Authorization Scenario

Assume that the port security feature is activated and the following conditions are specified in the active database:

- A pWWN (P1) is allowed access through interface vfc 1 (F1).
- A pWWN (P2) is allowed access through interface vfc 2 (F1).
- A nWWN (N1) is allowed access through interface vfc 3 (F2).
- Any WWN is allowed access through interface vfc 4 (F3).
- A nWWN (N3) is allowed access through any interface.
- A pWWN (P3) is allowed access through interface vfc 5 (F4).
- A sWWN (S1) is allowed access through interface vfc 6-8 (F10 to F13).
- A pWWN (P10) is allowed access through interface vfc 9 (F11).

The following table summarizes the port security authorization results for this active database.

Table 26: Authorization Results for Scenario

<table>
<thead>
<tr>
<th>Device Connection Request</th>
<th>Authorization</th>
<th>Condition</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1, N2, F1</td>
<td>Permitted</td>
<td>1</td>
<td>No conflict.</td>
</tr>
<tr>
<td>P2, N2, F1</td>
<td>Permitted</td>
<td>1</td>
<td>No conflict.</td>
</tr>
<tr>
<td>P3, N2, F1</td>
<td>Denied</td>
<td>2</td>
<td>F1 is bound to P1/P2.</td>
</tr>
<tr>
<td>P1, N3, F1</td>
<td>Permitted</td>
<td>6</td>
<td>Wildcard match for N3.</td>
</tr>
<tr>
<td>P1, N1, F3</td>
<td>Permitted</td>
<td>5</td>
<td>Wildcard match for F3.</td>
</tr>
<tr>
<td>P1, N4, F5</td>
<td>Denied</td>
<td>2</td>
<td>P1 is bound to F1.</td>
</tr>
<tr>
<td>P5, N1, F5</td>
<td>Denied</td>
<td>2</td>
<td>N1 is only allowed on F2.</td>
</tr>
<tr>
<td>P3, N3, F4</td>
<td>Permitted</td>
<td>1</td>
<td>No conflict.</td>
</tr>
<tr>
<td>S1, F10</td>
<td>Permitted</td>
<td>1</td>
<td>No conflict.</td>
</tr>
<tr>
<td>S2, F11</td>
<td>Denied</td>
<td>7</td>
<td>P10 is bound to F11.</td>
</tr>
<tr>
<td>P4, N4, F5 (auto-learning)</td>
<td>Permitted</td>
<td>3</td>
<td>No conflict.</td>
</tr>
<tr>
<td>P4, N4, F5 (auto-learning off)</td>
<td>Denied</td>
<td>4</td>
<td>No match.</td>
</tr>
<tr>
<td>Device Connection Request</td>
<td>Authorization</td>
<td>Condition</td>
<td>Reason</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>S3, F5 (auto-learning on)</td>
<td>Permitted</td>
<td>3</td>
<td>No conflict.</td>
</tr>
<tr>
<td>S3, F5 (auto-learning off)</td>
<td>Denied</td>
<td>4</td>
<td>No match.</td>
</tr>
<tr>
<td>P1, N1, F6 (auto-learning on)</td>
<td>Denied</td>
<td>2</td>
<td>P1 is bound to F1.</td>
</tr>
<tr>
<td>P5, N5, F1 (auto-learning on)</td>
<td>Denied</td>
<td>7</td>
<td>Only P1 and P2 bound to F1.</td>
</tr>
<tr>
<td>S3, F4 (auto-learning on)</td>
<td>Denied</td>
<td>7</td>
<td>P3 paired with F4.</td>
</tr>
<tr>
<td>S1, F3 (auto-learning on)</td>
<td>Permitted</td>
<td>5</td>
<td>No conflict.</td>
</tr>
<tr>
<td>P5, N3, F3</td>
<td>Permitted</td>
<td>6</td>
<td>Wildcard ( * ) match for F3 and N3.</td>
</tr>
<tr>
<td>P7, N3, F9</td>
<td>Permitted</td>
<td>6</td>
<td>Wildcard ( * ) match for N3.</td>
</tr>
</tbody>
</table>

**Port Security Manual Configuration**

To manually configure port security, perform this task:

**SUMMARY STEPS**

1. Identify the WWN of the ports that need to be secured.
2. Secure the fWWN to an authorized nWWN or pWWN.
3. Activate the port security database.
4. Verify your configuration.

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Identify the WWN of the ports that need to be secured.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>Secure the fWWN to an authorized nWWN or pWWN.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Activate the port security database.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Verify your configuration.</td>
</tr>
</tbody>
</table>

**WWN Identification Guidelines**

If you decide to manually configure port security, note the following guidelines:
• Identify switch ports by the interface or by the fWWN.
• Identify devices by the pWWN or by the nWWN.
• If an N port is allowed to log in to SAN switch port F, then that N port can only log in through the specified F port.
• If an N port’s nWWN is bound to an F port WWN, then all pWWNs in the N port are implicitly paired with the F port.
• TE port checking is done on each VSAN in the allowed VSAN list of the VSAN trunk port.
• All port channel xE ports must be configured with the same set of WWNs in the same SAN port channel.
• E port security is implemented in the port VSAN of the E port. In this case, the sWWN is used to secure authorization checks.
• Once activated, the configuration database can be modified without any effect on the active database.
• By saving the running configuration, you save the configuration database and activated entries in the active database. Learned entries in the active database are not saved.

Adding Authorized Port Pairs

After identifying the WWN pairs that need to be bound, add those pairs to the port security database.

Tip
Remote switch binding can be specified at the local switch. To specify the remote interfaces, you can use either the fWWN or sWWN-interface combination.

To add authorized port pairs for port security, perform this task:

SUMMARY STEPS

1. switch# configuration terminal
2. switch(config)# fc-port-security database vsan vsan-id
3. switch(config)# no fc-port-security database vsan vsan-id
4. switch(fc-config-port-security)# swwn swwn-id interface san-port-channel 5
5. switch(fc-config-port-security)# any-wwn interface vfc if-number - vfc if-number

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configuration terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# fc-port-security database vsan vsan-id</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switch(config)# no fc-port-security database vsan vsan-id</td>
</tr>
</tbody>
</table>
### Configuring Port Security

#### Purpose

Configure the specified sWWN to only log in through SAN port channel 5.

#### Command or Action

<table>
<thead>
<tr>
<th>Step 4</th>
<th>switch(fc-config-port-security)# swwn swwn-id interface san-port-channel 5</th>
</tr>
</thead>
</table>

Configures the specified sWWN to only log in through SAN port channel 5.

<table>
<thead>
<tr>
<th>Step 5</th>
<th>switch(fc-config-port-security)# any-wwn interface vfc if-number - vfc if-number</th>
</tr>
</thead>
</table>

Configures any WWN to log in through the specified interfaces.

This example enters the port security database mode for VSAN 2:

```
switch(config)# fc-port-security database vsan 2
```

This example configures the specified sWWN to only log in through SAN port channel 5:

```
switch(fc-config-port-security)# swwn 20:01:33:11:00:2a:4a:66 interface san-port-channel 5
```

This example configures the specified pWWN to log in through the specified interface in the specified switch:

```
switch(fc-config-port-security)# pwwn 20:11:33:11:00:2a:4a:66 swwn 20:00:00:0c:85:90:3e:80 interface vfc 2
```

This example configures any WWN to log in through the specified interface in any switch:

```
switch(fc-config-port-security)# any-wwn interface vfc 2
```

### Port Security Configuration Distribution

The port security feature uses the Cisco Fabric Services (CFS) infrastructure to enable efficient database management, provide a single point of configuration for the entire fabric in the VSAN, and enforce the port security policies throughout the fabric.

### Enabling Port Security Distribution

All the configurations performed in distributed mode are stored in a pending (temporary) database. If you modify the configuration, you need to commit or discard the pending database changes to the configurations. The fabric remains locked during this period. Changes to the pending database are not reflected in the configurations until you commit the changes.

**Note**

Port activation or deactivation and auto-learning enable or disable do not take effect until after a CFS commit if CFS distribution is enabled. Always follow any one of these operations with a CFS commit to ensure proper configuration.

For example, if you activate port security, follow up by disabling auto-learning, and finally commit the changes in the pending database, then the net result of your actions is the same as entering a `fc-port-security activate vsan vsan-id` no-auto-learn command.

**Tip**

We recommend that you perform a commit after you activate port security and after you enable auto-learning.

To enable the port security distribution, perform this task:
SUMMARY STEPS

1. switch# configuration terminal
2. switch(config)# fc-port-security distribute
3. switch(config)# no fc-port-security distribute

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>switch# configuration terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enables distribution.</td>
</tr>
<tr>
<td>switch(config)# fc-port-security distribute</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Disables distribution.</td>
</tr>
<tr>
<td>switch(config)# no fc-port-security distribute</td>
<td></td>
</tr>
</tbody>
</table>

Related Topics

- Activation and Auto-Learning Configuration Distribution, page 165

Locking the Fabric

The first action that modifies the existing configuration creates the pending database and locks the feature in the VSAN. Once you lock the fabric, the following situations apply:

- No other user can make any configuration changes to this feature.
- A copy of the configuration database becomes the pending database.

Committing the Changes

If you commit the changes made to the configurations, the configurations in the pending database are distributed to other switches. On a successful commit, the configuration change is applied throughout the fabric and the lock is released.

To commit the port security configuration changes for the specified VSAN, perform this task:

SUMMARY STEPS

1. switch# configuration terminal
2. switch(config)# fc-port-security commit vsan vsan-id

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>switch# configuration terminal</td>
<td></td>
</tr>
</tbody>
</table>
Discarding the Changes

If you discard (abort) the changes made to the pending database, the configuration remains unaffected and the lock is released.

To discard the port security configuration changes for the specified VSAN, perform this task:

**SUMMARY STEPS**

1. switch# configuration terminal
2. switch(config)# fc-port-security abort vsan vsan-id

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch(config)# fc-port-security commit vsan vsan-id</td>
<td>Commits the port security changes in the specified VSAN.</td>
</tr>
</tbody>
</table>

**Activation and Auto-Learning Configuration Distribution**

Activation and auto-learning configurations in distributed mode are remembered as actions to be performed when you commit the changes in the pending database.

Learned entries are temporary and do not have any role in determining if a login is authorized or not. As such, learned entries do not participate in distribution. When you disable learning and commit the changes in the pending database, the learned entries become static entries in the active database and are distributed to all switches in the fabric. After the commit, the active database on all switches are identical and learning can be disabled.

If the pending database contains more than one activation and auto-learning configuration when you commit the changes, the activation and auto-learning changes are consolidated and the resulting operation may change (see the following table).

**Table 27: Scenarios for Activation and Auto-learning Configurations in Distributed Mode**

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Actions</th>
<th>Distribution = OFF</th>
<th>Distribution = ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>A and B exist in the configuration database, activation is not done and enable auto-learning.</td>
<td>1. You activate the port security database and enable auto-learning.</td>
<td>configuration database = {A,B}</td>
<td>configuration database = {A,B}</td>
</tr>
<tr>
<td>Scenario</td>
<td>Actions</td>
<td>Distribution = OFF</td>
<td>Distribution = ON</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>devices C,D are logged in.</td>
<td>active database = {A,B, C*, D*}</td>
<td>active database = {null} pending database = {A,B + activation to be enabled}</td>
<td></td>
</tr>
<tr>
<td>2. A new entry E is added to the configuration database.</td>
<td>configuration database = {A,B, E} active database = {A,B, C*, D*}</td>
<td>configuration database = {A,B} active database = {null} pending database = {A,B, E + activation to be enabled}</td>
<td></td>
</tr>
<tr>
<td>3. You issue a commit.</td>
<td>Not applicable</td>
<td>configuration database = {A,B, E} active database = {A,B, E, C*, D*} pending database = empty</td>
<td></td>
</tr>
<tr>
<td>A and B exist in the configuration database, activation is not done and devices C,D are logged in.</td>
<td>configuration database = {A,B} active database = {A,B, C*, D*}</td>
<td>configuration database = {A,B} active database = {null} pending database = {A,B + activation to be enabled}</td>
<td></td>
</tr>
<tr>
<td>2. You disable learning.</td>
<td>configuration database = {A,B} active database = {A,B, C, D}</td>
<td>configuration database = {A,B} active database = {null} pending database = {A,B + activation to be enabled + learning to be disabled}</td>
<td></td>
</tr>
<tr>
<td>3. You issue a commit.</td>
<td>Not applicable</td>
<td>configuration database = {A,B} active database = {A,B} and devices C and D are logged out. This is equal to an activation with auto-learning disabled. pending database = empty</td>
<td></td>
</tr>
</tbody>
</table>

1 The * (asterisk) indicates learned entries.
Port Security Database Merge Guidelines

A database merge refers to a union of the configuration database and static (unlearned) entries in the active database.

When merging the database between two fabrics, follow these guidelines:

- Verify that the activation status and the auto-learning status is the same in both fabrics.
- Verify that the combined number of configurations for each VSAN in both databases does not exceed 2000.

Caution

If you do not follow these two conditions, the merge will fail. The next distribution will forcefully synchronize the databases and the activation states in the fabric.

Database Interaction

The following table lists the differences and interaction between the active and configuration databases.

Table 28: Active and Configuration Port Security Databases

<table>
<thead>
<tr>
<th>Active Database</th>
<th>Configuration Database</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read-only.</td>
<td>Read-write.</td>
</tr>
<tr>
<td>Saving the configuration only saves the activated entries. Learned entries are not saved.</td>
<td>Saving the configuration saves all the entries in the configuration database.</td>
</tr>
<tr>
<td>Once activated, all devices that have already logged into the VSAN are also learned and added to the active database.</td>
<td>Once activated, the configuration database can be modified without any effect on the active database.</td>
</tr>
<tr>
<td>You can overwrite the active database with the configured database by activating the port security database. Forcing an activation may violate the entries already configured in the active database.</td>
<td>You can overwrite the configuration database with the active database.</td>
</tr>
</tbody>
</table>

Note

You can overwrite the configuration database with the active database using the fc-port-security database copy vsan command. The fc-port-security database diff active vsan command lists the differences between the active database and the configuration database.
Database Scenarios

The following figure illustrates various scenarios showing the active database and the configuration database status based on port security configurations.

Figure 24: Port Security Database Scenarios
Copying the Port Security Database

We recommend that you copy the active database to the config database after disabling auto-learning. This action will ensure that the configuration database is in synchronization with the active database. If distribution is enabled, this command creates a temporary copy (and consequently a fabric lock) of the configuration database. If you lock the fabric, you need to commit the changes to the configuration databases in all the switches.

Tip
Use the `fc-port-security database copy vsan` command to copy from the active to the configured database. If the active database is empty, this command is not accepted.

```
switch# fc-port-security database copy vsan 1
```

Use the `fc-port-security database diff active vsan` command to view the differences between the active database and the configuration database. This command can be used when resolving conflicts.

```
switch# fc-port-security database diff active vsan 1
```

Use the `fc-port-security database diff config vsan` command to obtain information on the differences between the configuration database and the active database.

```
switch# fc-port-security database diff config vsan 1
```

Deleting the Port Security Database

If the distribution is enabled, the deletion creates a copy of the database. An explicit `fc-port-security commit` command is required to actually delete the database.

Tip
Use the `no fc-port-security database vsan` command in configuration mode to delete the configured database for a specified VSAN.

```
switch(config)# no fc-port-security database vsan 1
```

Clearing the Port Security Database

Use the `clear fc-port-security statistics vsan` command to clear all existing statistics from the port security database for a specified VSAN.

```
switch# clear fc-port-security statistics vsan 1
```

Use the `clear fc-port-security database auto-learn interface` command to clear any learned entries in the active database for a specified interface within a VSAN.

```
switch# clear fc-port-security database auto-learn interface fc2/1 vsan 1
```

Use the `clear fc-port-security database auto-learn vsan` command to clear any learned entries in the active database for the entire VSAN.

```
switch# clear fc-port-security database auto-learn vsan 1
```

Note
The `clear fc-port-security database auto-learn` and `clear fc-port-security statistics` commands are only relevant to the local switch and do not acquire locks. Also, learned entries are only local to the switch and do not participate in distribution.
Use the `fc-port-security clear vsan` command to clear the pending session in the VSAN from any switch in the VSAN.

```
switch# clear fc-port-security session vsan 5
```

### Verifying the Port Security Configuration

The `show fc-port-security database` commands display the configured port security information. You can optionally specify a fWWN and a VSAN, or an interface and a VSAN in the `show fc-port-security` command to view the output of the activated port security.

Access information for each port can be individually displayed. If you specify the fWWN or interface options, all devices that are paired in the active database (at that point) with the given fWWN or the interface are displayed.

The following example shows how to display the port security configuration database:

```
switch# show fc-port-security database
```

The following example shows how to display the port security configuration database for VSAN 1:

```
switch# show fc-port-security database vsan 1
```

The following example shows how to display the activated database:

```
switch# show fc-port-security database active
```

The following example shows how to display difference between the temporary configuration database and the configuration database:

```
switch# show fc-port-security pending-diff vsan 1
```

The following example shows how to display the configured fWWN port security in VSAN 1:

```
switch# show fc-port-security database
fwwn 20:01:00:05:30:00:95:de vsan 1
20:00:00:0c:88:00:4a:e2(swwn)
```

The following example shows how to display the port security statistics:

```
switch# show fc-port-security statistics
```

The following example shows how to verify the status of the active database and the auto-learning configuration:

```
switch# show fc-port-security status
```

### Default Port Security Settings

The following table lists the default settings for all port security features in any switch.

**Table 29: Default Security Settings**

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto-learn</td>
<td>Enabled if port security is enabled.</td>
</tr>
<tr>
<td>Port security</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Distribution</td>
<td>Disabled.</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong> Enabling distribution enables it on all VSANs in the switch.</td>
</tr>
</tbody>
</table>
CHAPTER 13

Configuring Fabric Binding

This chapter contains the following sections:

• Configuring Fabric Binding, page 171

Configuring Fabric Binding

Information About Fabric Binding

The fabric binding feature ensures that ISLs are only enabled between specified switches in the fabric. Fabric binding is configured on a per-VSAN basis.

This feature helps prevent unauthorized switches from joining the fabric or disrupting current fabric operations. It uses the Exchange Fabric Membership Data (EFMD) protocol to ensure that the list of authorized switches is identical in all switches in the fabric.

Licensing Requirements for Fabric Binding

Fabric Binding requires the Storage Protocol Services license.

Port Security Versus Fabric Binding

Port security and fabric binding are two independent features that can be configured to complement each other. The following table compares the two features.

Table 30: Fabric Binding and Port Security Comparison

<table>
<thead>
<tr>
<th>Fabric Binding</th>
<th>Port Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uses a set of sWWNs and a persistent domain ID.</td>
<td>Uses pWWNs/nWWNs or fWWNs/sWWNs.</td>
</tr>
<tr>
<td>Binds the fabric at the switch level.</td>
<td>Binds devices at the interface level.</td>
</tr>
<tr>
<td>Authorizes only the configured sWWN stored in the fabric binding database to participate in the fabric.</td>
<td>Allows a preconfigured set of Fibre Channel devices to logically connect to a SAN port. The switch port,</td>
</tr>
</tbody>
</table>
Port Security

Fabric Binding

Fabric Binding

<table>
<thead>
<tr>
<th>Fabric Binding</th>
<th>Port Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Security Fabric Binding</td>
<td>identified by a WWN or interface number, connects to a Fibre Channel device (a host or another switch), also identified by a WWN. By binding these two devices, you lock these two ports into a group (or list).</td>
</tr>
<tr>
<td>Requires activation on a per VSAN basis.</td>
<td>Requires activation on a per VSAN basis.</td>
</tr>
<tr>
<td>Allows specific user-defined switches that are allowed to connect to the fabric, regardless of the physical port to which the peer switch is connected.</td>
<td>Allows specific user-defined physical ports to which another device can connect.</td>
</tr>
<tr>
<td>Does not learn about switches that are logging in.</td>
<td>Learns about switches or devices that are logging in if learning mode is enabled.</td>
</tr>
<tr>
<td>Cannot be distributed by CFS and must be configured manually on each switch in the fabric.</td>
<td>Can be distributed by CFS.</td>
</tr>
</tbody>
</table>

Port-level checking for xE ports is as follows:

- The switch login uses both port security binding and fabric binding for a given VSAN.
- Binding checks are performed on the port VSAN as follows:
  - E port security binding check on port VSAN
  - TE port security binding check on each allowed VSAN

While port security complements fabric binding, they are independent features and can be enabled or disabled separately.

**Fabric Binding Enforcement**

To enforce fabric binding, configure the switch world wide name (sWWN) to specify the xE port connection for each switch. Enforcement of fabric binding policies are done on every activation and when the port tries to come up. For a Fibre Channel VSAN, the fabric binding feature requires all sWWNs connected to a switch to be part of the fabric binding active database.

**Configuring Fabric Binding**

The fabric binding feature ensures ISLs are only enabled between specified switches in the fabric binding configuration. Fabric binding is configured on a per-VSAN basis.

**Configuring Fabric Binding**

To configure fabric binding in each switch in the fabric, perform this task:
SUMMARY STEPS

1. Enable the fabric configuration feature.
2. Configure a list of sWWNs and their corresponding domain IDs for devices that are allowed to access the fabric.
3. Activate the fabric binding database.
5. Save the fabric binding configuration.
6. Verify the fabric binding configuration.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Enable the fabric configuration feature.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>Configure a list of sWWNs and their corresponding domain IDs for devices that are allowed to access the fabric.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Activate the fabric binding database.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Copy the fabric binding active database to the fabric binding configuration database.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Save the fabric binding configuration.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Verify the fabric binding configuration.</td>
</tr>
</tbody>
</table>

Enabling Fabric Binding

The fabric binding feature must be enabled in each switch in the fabric that participates in the fabric binding. By default, this feature is disabled. The configuration and verification commands for the fabric binding feature are only available when fabric binding is enabled on a switch. When you disable this configuration, all related configurations are automatically discarded.

To enable fabric binding on any participating switch, perform this task:

SUMMARY STEPS

1. switch# configuration terminal
2. switch(config)# feature fabric-binding

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configuration terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config)# feature fabric-binding</td>
<td>Enables fabric binding on that switch.</td>
</tr>
</tbody>
</table>
About Switch WWN Lists

A user-specified fabric binding list contains a list of switch WWNs (sWWNs) within a fabric. If an sWWN attempts to join the fabric, and that sWWN is not on the list or the sWWN is using a domain ID that differs from the one specified in the allowed list, the ISL between the switch and the fabric is automatically isolated in that VSAN and the switch is denied entry into the fabric.

Configuring Switch WWN List

To configure a list of sWWNs and optional domain IDs for a Fibre Channel VSAN, perform this task:

SUMMARY STEPS

1. switch# configuration terminal
2. switch(config)# fabric-binding database vsan vsan-id
3. switch(config)# no fabric-binding database vsan vsan-id
4. switch(config-fabric-binding)# swwn swwn-id domain domain-id
5. switch(config-fabric-binding)# no swwn swwn-id domain domain-id

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configuration terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# fabric-binding database vsan vsan-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config)# no fabric-binding database vsan vsan-id</td>
</tr>
<tr>
<td>Step 4</td>
<td>switch(config-fabric-binding)# swwn swwn-id domain domain-id</td>
</tr>
<tr>
<td>Step 5</td>
<td>switch(config-fabric-binding)# no swwn swwn-id domain domain-id</td>
</tr>
</tbody>
</table>

About Fabric Binding Activation and Deactivation

The fabric binding feature maintains a configuration database (config database) and an active database. The config database is a read-write database that collects the configurations you perform. These configurations are only enforced upon activation. This activation overwrites the active database with the contents of the config database. The active database is read-only and is the database that checks each switch that attempts to log in.

By default, the fabric binding feature is not activated. You cannot activate the fabric binding database on the switch if entries existing in the config database conflict with the current state of the fabric. For example, one of the already logged in switches may be denied login by the config database. You can choose to forcefully override these situations.
After activation, any already logged in switch that violates the current active database will be logged out, and all switches that were previously denied login because of fabric binding restrictions are reinitialized.

### Activating Fabric Binding

To activate the fabric binding feature, perform this task:

**SUMMARY STEPS**

1. `switch# configuration terminal`
2. `switch(config)# fabric-binding activate vsan vsan-id`
3. `switch(config)# no fabric-binding activate vsan vsan-id`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configuration terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# fabric-binding activate vsan vsan-id</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switch(config)# no fabric-binding activate vsan vsan-id</td>
</tr>
</tbody>
</table>

### Forcing Fabric Binding Activation

If the database activation is rejected due to one or more conflicts listed in the previous section, you may decide to proceed with the activation by using the force option.

To forcefully activate the fabric binding database, perform this task:

**SUMMARY STEPS**

1. `switch# configuration terminal`
2. `switch(config)# fabric-binding activate vsan vsan-id force`
3. `switch(config)# no fabric-binding activate vsan vsan-id force`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configuration terminal</td>
</tr>
</tbody>
</table>
### Purpose

**Command or Action**

**Step 2**

switch(config)# **fabric-binding activate vsan vsan-id force**

Activates the fabric binding database for the specified VSAN forcefully, even if the configuration is not acceptable.

**Step 3**

switch(config)# **no fabric-binding activate vsan vsan-id force**

Reverts to the previously configured state or to the factory default (if no state is configured).

### Copying Fabric Binding Configurations

When you copy the fabric binding configuration, the config database is saved to the running configuration. You can use the following commands to copy to the config database:

- Use the **fabric-binding database copy vsan** command to copy from the active database to the config database. If the configured database is empty, this command is not accepted.

  switch# **fabric-binding database copy vsan 1**

- Use the **fabric-binding database diff active vsan** command to view the differences between the active database and the config database. This command can be used when resolving conflicts.

  switch# **fabric-binding database diff active vsan 1**

- Use the **fabric-binding database diff config vsan** command to obtain information on the differences between the config database and the active database.

  switch# **fabric-binding database diff config vsan 1**

- Use the **copy running-config startup-config** command to save the running configuration to the startup configuration so that the fabric binding config database is available after a reboot.

  switch# **copy running-config startup-config**

### Clearing the Fabric Binding Statistics

Use the **clear fabric-binding statistics** command to clear all existing statistics from the fabric binding database for a specified VSAN.

switch# **clear fabric-binding statistics vsan 1**

### Deleting the Fabric Binding Database

Use the **no fabric-binding** command in configuration mode to delete the configured database for a specified VSAN.

switch(config)# **no fabric-binding database vsan 10**

### Verifying Fabric Binding Information

To display fabric binding information, perform one of the following tasks:
SUMMARY STEPS

1. switch# show fabric-binding database [active]
2. switch# show fabric-binding database [active] [vsan vsan-id]
3. switch# show fabric-binding statistics
4. switch# show fabric-binding status
5. switch# show fabric-binding violations
6. switch# show fabric-binding efmd [vsan vsan-id]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# show fabric-binding database [active] Displays the configured fabric binding database. Include keyword active to display only the active fabric binding database.</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch# show fabric-binding database [active] [vsan vsan-id] Displays the configured fabric binding database for the specified VSAN.</td>
</tr>
<tr>
<td>Step 4</td>
<td>switch# show fabric-binding status Displays fabric binding status for all VSANs.</td>
</tr>
<tr>
<td>Step 5</td>
<td>switch# show fabric-binding violations Displays fabric binding violations.</td>
</tr>
<tr>
<td>Step 6</td>
<td>switch# show fabric-binding efmd [vsan vsan-id] Displays the configured fabric binding database for the specified VSAN.</td>
</tr>
</tbody>
</table>

The following example displays the active fabric binding information for VSAN 4:

```
switch# show fabric-binding database active vsan 4
```

The following example displays fabric binding violations:

```
switch# show fabric-binding violations
```

---

<table>
<thead>
<tr>
<th>VSAN</th>
<th>Switch WWN [domain]</th>
<th>Last-Time</th>
<th>[Repeat count]</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>20:00:00:05:30:00:4a:1e [0xeb]</td>
<td>Nov 25 05:46:14 2003</td>
<td>2</td>
<td>Domain mismatch</td>
</tr>
<tr>
<td>3</td>
<td>20:00:00:05:30:00:4a:1e [*]</td>
<td>Nov 25 05:44:58 2003</td>
<td>2</td>
<td>sWWN not found</td>
</tr>
<tr>
<td>4</td>
<td>20:00:00:05:30:00:4a:1e [*]</td>
<td>Nov 25 05:46:25 2003</td>
<td>1</td>
<td>Database mismatch</td>
</tr>
</tbody>
</table>

**Note**

In VSAN 3, the sWWN was not found in the list. In VSAN 2, the sWWN was found in the list, but has a domain ID mismatch.

The following example displays EFMD Statistics for VSAN 4:

```
switch# show fabric-binding efmd statistics vsan 4
```
Default Fabric Binding Settings

The following table lists the default settings for the fabric binding feature.

Table 31: Default Fabric Binding Settings

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabric binding</td>
<td>Disabled</td>
</tr>
</tbody>
</table>
Configuring Port Tracking

This chapter contains the following sections:

• Configuring Port Tracking, page 179

Configuring Port Tracking

Cisco SAN switches offer the port tracking feature on virtual Fibre Channel interfaces. This feature uses information about the operational state of the link to initiate a failure in the link that connects the edge device. This process of converting the indirect failure to a direct failure triggers a faster recovery process towards redundant links. When enabled, the port tracking feature brings down the configured links based on the failed link and forces the traffic to be redirected to another redundant link.

Information About Port Tracking

Generally, hosts can instantly recover from a link failure on a link that is immediately (direct link) connected to a switch. However, recovering from an indirect link failure between switches in a WAN or MAN fabric with a keepalive mechanism is dependent on several factors such as the timeout values (TOVs) and on registered state change notification (RSCN) information.
In the following figure, when the direct link 1 to the host fails, recovery can be immediate. However, when the ISL 2 fails between the two switches, recovery depends on TOVs, RSCNs, and other factors.

**Figure 25: Traffic Recovery Using Port Tracking**

The port tracking feature monitors and detects failures that cause topology changes and brings down the links connecting the attached devices. When you enable this feature and explicitly configure the linked and tracked ports, the switch software monitors the tracked ports and alters the operational state of the linked ports on detecting a link state change.

The following terms are used in this chapter:

- **Tracked ports**—A port whose operational state is continuously monitored. The operational state of the tracked port is used to alter the operational state of one or more ports. Virtual Fibre Channel, VSAN, SAN port channel, or a Gigabit Ethernet port can be tracked. Generally, ports in E and TE port modes can also be F ports.

- **Linked ports**—A port whose operational state is altered based on the operational state of the tracked ports. Only virtual E or VE ports can be linked ports.

Port tracking has the following features:

- The application brings the linked port down when the tracked port goes down. When the tracked port recovers from the failure and comes back up again, the linked port is also brought up automatically (unless otherwise configured).

- You can forcefully continue to keep the linked port down, even though the tracked port comes back up. In this case, you must explicitly bring up the linked port when required.

**Related Topics**

- About RSCN Information, page 118
- Fibre Channel Timeout Values, page 125

**Guidelines and Limitations**

Port tracking is supported only on vfc interfaces.
Default Port Tracking Settings

The following table lists the default settings for port tracking parameters.

Table 32: Default Port Tracking Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port tracking</td>
<td>Disabled</td>
</tr>
<tr>
<td>Operational binding</td>
<td>Enabled along with port tracking</td>
</tr>
</tbody>
</table>

Configuring Port Tracking

Before configuring port tracking, consider the following guidelines:

- Verify that the tracked ports and the linked ports are on the same Cisco switch.
- Be aware that the linked port is automatically brought down when the tracked port goes down.
- Do not track a linked port back to itself to avoid recursive dependency.

Enabling the Port Tracking Feature

Before You Begin

You must enable the port track feature from the storage VDC.

SUMMARY STEPS

1. `configuration terminal`
2. `switchto vdc vdc-name`
3. `configuration terminal`
4. `feature port-track`
5. (Optional) `show feature | port-track`
6. (Optional) `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configuration terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>switch(config)#</td>
<td></td>
</tr>
</tbody>
</table>
### Command or Action

<table>
<thead>
<tr>
<th>Step 2</th>
<th><code>switchto vdc vdc-name</code></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Example:</strong></td>
<td><code>switch(config)# switchto vdc storage</code> <code>switch-storage#</code></td>
</tr>
<tr>
<td><strong>Purpose:</strong></td>
<td>Switches to the storage VDC. The <code>vdc-name</code> can be any case-sensitive alphanumeric string up to 32 characters.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th><code>configuration terminal</code></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Example:</strong></td>
<td><code>switch-storage# configure terminal</code> <code>switch-storage(config)#</code></td>
</tr>
<tr>
<td><strong>Purpose:</strong></td>
<td>Enters configuration mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th><code>feature port-track</code></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Example:</strong></td>
<td><code>switch-storage(config)# feature port-track</code></td>
</tr>
<tr>
<td><strong>Purpose:</strong></td>
<td>Enables the port tracking feature.</td>
</tr>
</tbody>
</table>

| Step 5 | `show feature | port-track` |
|--------|-----------------|
| **Example:** | `switch-storage(config)# show feature| port-track` |
| **Optional:** | Displays information about the port tracking feature. |

<table>
<thead>
<tr>
<th>Step 6</th>
<th><code>copy running-config startup-config</code></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Example:</strong></td>
<td><code>switch-storage(config)# copy running-config startup-config</code></td>
</tr>
<tr>
<td><strong>Optional:</strong></td>
<td>Copies the running configuration to the startup configuration.</td>
</tr>
</tbody>
</table>

### About Configuring Linked Ports

You can link ports using one of two methods:

- Operationally binding the linked ports to the tracked port (default).
- Continuing to keep the linked port down forcefully, even if the tracked port has recovered from the link failure.

### Binding a Tracked Port

When you configure the first tracked port, operational binding is automatically in effect. When you use this method, you have the option to monitor multiple ports or monitor ports in one VSAN.

**Before You Begin**

- Ensure you are in the storage vdc.
SUMMARY STEPS

1. configure terminal
2. interface vfc if-number
3. port-track interface vfc if-number | san-port-channel port | vfc-port-channel port

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
</tbody>
</table>
| **Example:** | switch# configure terminal  
switch(config)# |
| | Enters configuration mode. |
| **Step 2** | interface vfc if-number |
| **Example:** | switch(config)# interface vfc 2  
switch(config-if)# |
| | Enters the interface configuration mode for the linked port. You can now configure the tracked ports. | | |
| **Step 3** | port-track interface vfc if-number | san-port-channel port | vfc-port-channel port |
| **Example:** | switch(config-if)# port-track interface vfc-port-channel 1 |
| | Specifies the tracked port. When the tracked port goes down, the linked port is also brought down. |

About Tracking Multiple Ports

You can control the operational state of the linked port based on the operational states of multiple tracked ports. When more than one tracked port is associated with a linked port, the operational state of the linked port will be set to down only if all the associated tracked ports are down. Even if one tracked port is up, the linked port will stay up.
In the following figure, only if both ISLs 2 and 3 fail, will the direct link 1 be brought down. Direct link 1 will not be brought down if either 2 or 3 are still functioning as desired.

**Figure 26: Traffic Recovery Using Port Tracking**

---

**About Monitoring Ports in a VSAN**

You can optionally configure one VSAN from the set of all operational VSANs on the tracked port with the linked port by specifying the required VSAN. This level of flexibility provides higher granularity in tracked ports. In some cases, when a tracked port is a TE port, the set of operational VSANs on the port can change dynamically without bringing down the operational state of the port. In such cases, the port VSAN of the linked port can be monitored on the set of operational VSANs on the tracked port.

If you configure this feature, the linked port is up only when the VSAN is up on the tracked port.

The specified VSAN does not have to be the same as the port VSAN of the linked port.

**Monitoring Ports in a VSAN**

To monitor a tracked port in a specific VSAN, perform this task:

**SUMMARY STEPS**

1. `switch# configure terminal`
2. `switch(config)# interface vfc if-number`
3. `switch(config-if)# port-track interface san-port-channel 1 vsan 2`
4. `switch(config-if)# no port-track interface san-port-channel 1 vsan 2`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>switch# configure terminal</code></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>switch(config)# interface vfc if-number</code></td>
</tr>
</tbody>
</table>
### Configuring Port Tracking

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
</tr>
<tr>
<td><code>switch(config-if)# port-track interface san-port-channel 1 vsan 2</code></td>
<td>Enables tracking of the SAN port channel in VSAN 2.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td></td>
</tr>
<tr>
<td><code>switch(config-if)# no port-track interface san-port-channel 1 vsan 2</code></td>
<td>Removes the VSAN association for the linked port. The SAN port channel link remains in effect.</td>
</tr>
</tbody>
</table>

### About Forceful Shutdown

If a tracked port flaps frequently, then tracking ports using the operational binding feature may cause frequent topology change. In this case, you may choose to keep the port in the down state until you are able to resolve the reason for these frequent flaps. Keeping the flapping port in the down state forces the traffic to flow through the redundant path until the primary tracked port problems are resolved. When the problems are resolved and the tracked port is back up, you can explicitly enable the interface.

If you configure this feature, the linked port continues to remain in the shutdown state even after the tracked port comes back up. You must explicitly remove the forced shut state (by administratively bringing up this interface) of the linked port once the tracked port is up and stable.

### Forcefully Shutting Down a Tracked Port

To forcefully shut down a tracked port, perform this task:

**SUMMARY STEPS**

1. `switch# configuration terminal`
2. `switch(config)# interface vfc if-number`
3. `switch(config-if)# port-track force-shut`
4. `switch(config-if)# no port-track force-shut`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td><code>switch# configuration terminal</code></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td><code>switch(config)# interface vfc if-number</code></td>
<td>Configures the specified interface and enters the interface configuration mode. You can now configure tracked ports.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
</tr>
<tr>
<td><code>switch(config-if)# port-track force-shut</code></td>
<td>Forcefully shuts down the tracked port.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td></td>
</tr>
<tr>
<td><code>switch(config-if)# no port-track force-shut</code></td>
<td>Removes the port shutdown configuration for the tracked port.</td>
</tr>
</tbody>
</table>
PART I

IVR

- IVR, page 189
- IVR NAT and Auto Topology, page 199
- IVR Zones and Zonesets, page 209
- IVR Topology, page 221
- Autonomous Fabric IDs, page 229
- Service Groups, page 235
- Persistent FCIDs, page 241
- Virtual Domains, page 247
Information About IVR

Virtual SANs (VSANs) improve storage area network (SAN) scalability, availability, and security by allowing multiple Fibre Channel SANs to share a common physical infrastructure of switches and ISLs. These benefits are derived from the separation of Fibre Channel services in each VSAN and the isolation of traffic between VSANs. Data traffic isolation between the VSANs also inherently prevents sharing of resources attached to a VSAN, such as robotic tape libraries. Using IVR, you can access resources across VSANs without compromising other VSAN benefits.

IVR supports the following features:

- Accesses resources across VSANs without compromising other VSAN benefits
- Transports data traffic between specific initiators and targets on different VSANs without merging VSANs into a single logical fabric.
- Establishes proper interconnected routes that traverse one or more VSANs across multiple switches. IVR is not limited to VSANs present on a common switch.
- Shares valuable resources (such as tape libraries) across VSANs without compromise. Fibre Channel traffic does not flow between VSANs, nor can initiators access resources across VSANs other than the designated VSAN.
- Provides efficient business continuity or disaster recovery solutions when used in conjunction with FCIP.
- Is in compliance with Fibre Channel standards.
- Incorporates third-party switches, however, IVR-enabled VSANs may need to be configured in one of the interop modes.

**IVR Terminology**

The following IVR-related terms are used in the IVR documentation:

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Native VSAN</td>
<td>The VSAN to which an end device logs on is the native VSAN for that end device.</td>
</tr>
<tr>
<td>Current VSAN</td>
<td>The VSAN currently being configured for IVR.</td>
</tr>
<tr>
<td>Inter-VSAN Routing zone (IVR zone)</td>
<td>Inter-VSAN Routing zone (IVR zone) - A set of end devices that are allowed to communicate across VSANs within their interconnected SAN fabric. This definition is based on their port world-wide names (pWWNs) and their native VSAN associations.</td>
</tr>
<tr>
<td>Inter-VSAN routing zone sets (IVR zone sets)</td>
<td>Inter-VSAN routing zone sets (IVR zone sets) - One or more IVR zones make up an IVR zone set.</td>
</tr>
<tr>
<td>IVR path</td>
<td>An IVR path is a set of switches and Inter-Switch Links (ISLs) through which a frame from an end device in one VSAN can reach another end device in some other VSAN. Multiple paths can exist between two such end devices.</td>
</tr>
<tr>
<td>IVR-enabled switch</td>
<td>A switch on which the IVR feature is enabled.</td>
</tr>
<tr>
<td>Edge VSAN</td>
<td>A VSAN that initiates (source edge-VSAN) or terminates (destination edge-VSAN) an IVR path. Edge VSANs may be adjacent to each other or they may be connected by one or more transit VSANs.</td>
</tr>
<tr>
<td>Note</td>
<td>An edge VSAN for one IVR path can be a transit VSAN for another IVR path.</td>
</tr>
<tr>
<td>Transit VSAN</td>
<td>A VSAN that exists along an IVR path from the source edge VSAN of that path to the destination edge VSAN of that path.</td>
</tr>
<tr>
<td>Note</td>
<td>When the source and destination edge VSANs are adjacent to each other, then a transit VSAN is not required between them</td>
</tr>
<tr>
<td>Border switch</td>
<td>An IVR-enabled switch that is a member of two or more VSANs.</td>
</tr>
<tr>
<td>Edge switch</td>
<td>A switch to which a member of an IVR zone has logged in to. Edge switches are unaware of the IVR configurations in the border switches. Edge switches do not need to be IVR-enabled.</td>
</tr>
<tr>
<td>Autonomous Fabric Identifier (AFID)</td>
<td>Allows you to configure more than one VSAN in the network with the same VSAN ID and avoid downtime when configuring IVR between fabrics that contain VSANs with the same ID.</td>
</tr>
</tbody>
</table>
Service group Allows you to reduce the amount of IVR traffic to non-IVR-enabled VSANs by configuring one or more service groups that restrict the traffic to the IVR-enabled VSANs.

**Fibre Channel Header Modifications**

IVR virtualizes the remote end devices in the native VSAN using a virtual domain. When IVR is configured to link end devices in two disparate VSANs, the IVR border switches are responsible for modifying the Fibre Channel headers for all communication between the end devices. The sections of the Fibre Channel frame headers that are modified include:

- VSAN number
- Source FCID
- Destination FCID

When a frame travels from the initiator to the target, the Fibre Channel frame header is modified such that the initiator VSAN number is changed to the target VSAN number. If IVR Network Address Translation (NAT) is enabled, then the source and destination FCIDs are also translated at the edge border switch. If IVR NAT is not enabled, then you must configure unique domain IDs for all switches involved in the IVR path.

**IVR Database Merge**

A database merge refers to the combination of the configuration database and static (unlearned) entries in the active database.

Consider the following when merging two IVR fabrics:

- The IVR configurations are merged even if two fabrics contain different configurations.
- If dissimilar zones exist in two merged fabrics, the zone from each fabric is cloned in the distributed zone set with appropriate names.
- You can configure different IVR configurations in different Cisco SAN switches.

To avoid traffic disruption, after the database merge is complete, the configuration is a combination of the configurations that were present on the two switches involved in the merge, as follows:

- A combination of zones and zone sets are used to get the merged zones and zone sets. If a dissimilar zone exists in two fabrics, the dissimilar zones are cloned into the zone set with appropriate names so both zones are present.
- The merged topology contains a combination of the topology entries for both fabrics.
- The merge will fail if the merged database contains more topology entries than the allowed maximum.

The following total number of items across the two fabrics cannot exceed the maximum allowed in one fabric:

- VSANs. VSANs with the same VSAN ID but different AFIDs are counted as two separate VSANs.
- IVR-enabled switches.
- Zone members. A zone member is counted twice if it exists in two zones.
- Zones.
- Zone sets.

**Table 33: Results of Merging Two IVR-Enabled Fabrics**

<table>
<thead>
<tr>
<th>IVR Fabric 1</th>
<th>IVR Fabric 2</th>
<th>Merged Fabric</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAT enabled</td>
<td>NAT disabled</td>
<td>Merge succeeds and NAT is enabled</td>
</tr>
<tr>
<td>Auto mode enabled</td>
<td>Auto mode disabled</td>
<td>Merge succeeds and IVR auto topology mode is enabled</td>
</tr>
<tr>
<td>Conflicting AFID database</td>
<td></td>
<td>Merge fails</td>
</tr>
<tr>
<td>Conflicting IVR zone set database</td>
<td></td>
<td>Merge succeeds with new zones created to resolve conflicts</td>
</tr>
<tr>
<td>Combined configuration exceeds limits (such as maximum number of zones or VSANs)</td>
<td></td>
<td>Merge fails</td>
</tr>
<tr>
<td>Service group 1</td>
<td>Service group 2</td>
<td>Merge succeeds with service groups combined</td>
</tr>
<tr>
<td>User-configured VSAN topology configuration with conflicts</td>
<td></td>
<td>Merge fails</td>
</tr>
<tr>
<td>User-configured VSAN topology configuration without conflicts</td>
<td></td>
<td>Merge succeeds</td>
</tr>
</tbody>
</table>

⚠️ **Caution**

If you do not follow these conditions, the merge will fail. The next distribution will forcefully synchronize the databases and the activation states in the fabric.

**Related Topics**

- IVR Configuration Limits, page ?
- Resolving IVR Merge Failures, page 196

**Default Settings**

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVR feature</td>
<td>Disabled</td>
</tr>
<tr>
<td>IVR NAT</td>
<td>Disabled</td>
</tr>
<tr>
<td>IVR distribution</td>
<td>Disabled</td>
</tr>
<tr>
<td>IVR Autotopology</td>
<td>Disabled</td>
</tr>
<tr>
<td>IVR VSANs</td>
<td>Not added to virtual domains</td>
</tr>
<tr>
<td>QoS for IVR Zones</td>
<td>Low</td>
</tr>
</tbody>
</table>
Licensing Requirements

<table>
<thead>
<tr>
<th>Product</th>
<th>License</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco Nexus 7000 Series</td>
<td>IVR requires the FCoE license for each F-series module. FCoE enabled in a storage VDC does not require the Advanced Services License. IVR also requires the Storage Enterprise License. For a complete explanation of the Cisco NX-OS licensing scheme and how to obtain and apply licenses, see the Cisco NX-OS Licensing Guide.</td>
</tr>
</tbody>
</table>

Guidelines and Limitations

IVR has the following guidelines and limitations:

- All border switches in the fabric must be Cisco SAN switches. Other switches in the fabric can be non-Cisco switches.
- IVR must be enabled in the storage VDC.

Configuring IVR

SUMMARY STEPS

1. Enable IVR on all border switches.
2. Enable IVR distribution on all IVR-enabled switches.
3. Enable IVR NAT on a single IVR-enabled switch.
4. Enable IVR auto topology on a single IVR-enabled switch.
5. Configure and activate Zone sets.
6. Commit the IVR configuration.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Enable IVR on all border switches.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>Enable IVR distribution on all IVR-enabled switches.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Enable IVR NAT on a single IVR-enabled switch.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Enable IVR auto topology on a single IVR-enabled switch.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Configure and activate Zone sets.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Commit the IVR configuration.</td>
</tr>
</tbody>
</table>
Enabling IVR

By default, the IVR feature is disabled on the device. You must explicitly enable the IVR feature to access the configuration and verification commands.

Before You Begin

- You must enable the IVR feature from the storage VDC.
- You must enable the IVR feature in all border switches in the fabric that participate in the IVR.

SUMMARY STEPS

1. `switchto vdc vdc-name`
2. `configure terminal`
3. `feature ivr`
4. (Optional) `show feature`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Switch to the storage VDC to enable the IVR feature. The vdc-name can</td>
</tr>
<tr>
<td></td>
<td>be any case-sensitive alphanumeric string up to 32 characters.</td>
</tr>
<tr>
<td><code>switchto vdc vdc-name</code></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>switch(config)# switchto vdc fcoe</code></td>
<td></td>
</tr>
<tr>
<td><code>switch-fcoe#</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>switch-fcoe# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><code>switch-fcoe(config)#</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Enables the IVR feature. You must enable this feature on all border</td>
</tr>
<tr>
<td><code>feature ivr</code></td>
<td>switches in the fabric.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>switch-fcoe(config)# feature ivr</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>(Optional) Displays the enable or disable state for all features.</td>
</tr>
<tr>
<td><code>show feature</code></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>switch-fcoe(config)# show feature</code></td>
<td></td>
</tr>
</tbody>
</table>
Distributing IVR

The IVR feature uses the Cisco Fabric Services (CFS) infrastructure to enable efficient configuration management and to provide a single point of configuration for the entire fabric in the VSAN.

The following configurations are distributed:

- IVR zones
- IVR zone sets
- IVR VSAN topology
- IVR active topology and zone set (activating these features in one switch propagates the configuration to all other distribution-enabled switches in the fabric)
- AFID database

Before You Begin

- You must enable IVR distribution on all IVR-enabled switches in the fabric.

SUMMARY STEPS

1. configure terminal
2. ivr distribute
3. (Optional) show cfs application
4. (Optional) copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>switch(config)#</td>
<td></td>
</tr>
<tr>
<td>Step 2 ivr distribute</td>
<td>Enables CFS distribution for IVR configuration. You must enable IVR distribution on all IVR-enabled switches in the fabric.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch(config)# ivr distribute</td>
<td></td>
</tr>
<tr>
<td>Step 3 show cfs application</td>
<td>(Optional) Displays information about CFS enabled features, such as IVR.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch(config)# show cfs application</td>
<td></td>
</tr>
<tr>
<td>Step 4 copy running-config startup-config</td>
<td>(Optional) Copies the running configuration to the startup configuration.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch(config)# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>
Comitting IVR Changes

If you commit the changes made to the active database, the configuration is committed to all the switches in the fabric. On a successful commit, the configuration change is applied throughout the fabric and the lock is released.

Before You Begin

• Ensure you have enabled CFS distribution for IVR.

SUMMARY STEPS

1. configure terminal
2. ivr commit
3. (Optional) copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>switch(config)#</td>
<td></td>
</tr>
<tr>
<td>Step 2 ivr commit</td>
<td>Commits all pending IVR changes into the active IVR database.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch(config)# ivr commit</td>
<td></td>
</tr>
<tr>
<td>Step 3 copy running-config startup-config</td>
<td>(Optional) Copies the running configuration to the startup configuration.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch(config)# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

Related Topics

• Distributing IVR, page 195

Resolving IVR Merge Failures

Step 1 Display error conditions.

Example:

switch# show ivr merge status
switch# show cfs merge status name ivr
switch# show logging last 100

Review the information from these show commands. Look for MERGE failures in the log output.
Step 2  For failures because the merged fabric exceeded the maximum configuration limits (VSANs, IVR-enabled switches, zone members, zones, or zone sets) where you have a different versions of NX-OS running on Cisco SAN switches, upgrade to the most recent Cisco NX-OS version for all switches, or reduce the configuration below the maximum limits.

Step 3  For failures because the merged fabric exceeded the maximum configuration limits (VSANs, IVR-enabled switches, zone members, zones, or zone sets) and all switches are at the same release for their platform, identify the switch that has the correct configuration and perform a CFS commit to distribute the IVR configuration.

Step 4  For other failures, resolve the error causing the merge failure on the switch that has the correct configuration and perform a CFS commit to distribute the IVR configuration.

After a successful CFS commit, the merge will be successful.

Related Topics
- Commiting IVR Changes, page 196

Verifying IVR Configuration

To display the IVR configuration, perform one of the following tasks:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ivr</td>
<td>Displays the status for the IVR configuration.</td>
</tr>
<tr>
<td>show ivr diagnostics</td>
<td>Displays information about IVR diagnostics.</td>
</tr>
<tr>
<td>show ivr merge status</td>
<td>Displays information the last IVR merge event.</td>
</tr>
<tr>
<td>show ivr pending</td>
<td>Displays information about the IVR pending database.</td>
</tr>
<tr>
<td>show ivr pending-diff</td>
<td>Displays the differences between the pending database and the config database.</td>
</tr>
<tr>
<td>show ivr vsan-topology [active</td>
<td>Displays the IVR VSAN topology.</td>
</tr>
<tr>
<td></td>
<td>configured]</td>
</tr>
<tr>
<td>show ivr session status</td>
<td>Displays information about IVR CFS session.</td>
</tr>
<tr>
<td>show ivr virtual-domains</td>
<td>Displays information about IVR virtual domains for all local VSANs.</td>
</tr>
<tr>
<td>show ivr zone</td>
<td>Displays information about IVR zones.</td>
</tr>
<tr>
<td>Command</td>
<td>Purpose</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-------------------------------------------------------------------------</td>
</tr>
<tr>
<td>show ivr zoneset</td>
<td>Displays information about IVR zone sets.</td>
</tr>
<tr>
<td>show ivr service-group active</td>
<td>Displays information about the active service group.</td>
</tr>
<tr>
<td>show ivr service-group configured</td>
<td>Displays information about the configured service group.</td>
</tr>
<tr>
<td>show autonomous-fabric-id database</td>
<td>Displays information about the AFIDs.</td>
</tr>
<tr>
<td>show ivr virtual-fcdomain-add-status</td>
<td>Displays the status of the IVR virtual domain configuration.</td>
</tr>
</tbody>
</table>

Related Topics

- Information about IVR Zones and Zonesets, page 209
- Configuring IVR Zones, page 212
- Configuring IVR Zone Sets, page 213

Feature History

Table 34: Feature History IVR

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVR</td>
<td>5.2(1)</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>
IVR NAT and Auto Topology

- Information About IVR Auto Topology, page 199
- Default Settings, page 200
- Licensing Requirements, page 200
- Guidelines and Limitations for IVR NAT and Autotopology, page 201
- Configuring IVR NAT and Autotopology, page 202
- Verifying IVR Configuration, page 204
- Example: IVR Auto Topology, page 205
- Feature History, page 208

Information About IVR Auto Topology

IVR uses a configured IVR VSAN topology to determine how to route traffic between the initiator and the target across the fabric. IVR auto topology mode automatically builds the IVR VSAN topology and maintains the topology database when fabric reconfiguration occur. IVR auto topology mode also distributes the IVR VSAN topology to IVR-enabled switches using CFS.

Using IVR auto topology mode, you do not need to manually update the IVR VSAN topology when reconfiguration occur in your fabric. If an IVR manual topology database exists, IVR auto topology mode initially uses that topology information. The automatic update reduces disruption in the network by gradually migrating from the user-specified topology database to the automatically-learned topology database.

User-configured topology entries that are not part of the network are aged out in about three minutes. New entries that are not part of the user-configured database are added as they are discovered in the network.

When IVR auto topology mode is enabled, it starts with the previously active IVR manual topology if it exists, and then the discovery process begins. New, alternate, or better paths may be discovered. If the traffic is switched to an alternate or better path, there may be temporary traffic disruptions that are normally associated with switching paths.

Before configuring an IVR SAN fabric to use IVR NAT and IVR auto topology mode, consider the following:

- Configure IVR only in the relevant switches.
- Enable CFS for IVR on all switches in the fabric.
If you change any FSPF link cost, ensure that the FSPF path distance (that is, the sum of the link costs on the path) of any IVR path is less than 30,000.

Tip

IVR-enabled VSANs can be configured when the interop mode is enabled (any interop mode) or disabled (no interop mode).

Note

IVR Network Address Translation

IVR Network Address Translation (NAT) can be enabled to allow non-unique domain IDs; however, without NAT, IVR requires unique domain IDs for all switches in the fabric. IVR NAT simplifies the deployment of IVR in an existing fabric where non-unique domain IDs might be present.

To use IVR NAT, you must enable it on all IVR-enabled switches in the fabric.

Default Settings

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVR feature</td>
<td>Disabled</td>
</tr>
<tr>
<td>IVR NAT</td>
<td>Disabled</td>
</tr>
<tr>
<td>IVR distribution</td>
<td>Disabled</td>
</tr>
<tr>
<td>IVR Autotopology</td>
<td>Disabled</td>
</tr>
<tr>
<td>IVR VSANs</td>
<td>Not added to virtual domains</td>
</tr>
<tr>
<td>QoS for IVR Zones</td>
<td>Low</td>
</tr>
</tbody>
</table>

Licensing Requirements

<table>
<thead>
<tr>
<th>Product</th>
<th>License</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco Nexus 7000 Series.</td>
<td>IVR requires the FCoE license for each F-series module. FCoE enabled in a storage VDC does not require the Advanced Services License. IVR also requires the Storage Enterprise License. For a complete explanation of the Cisco NX-OS licensing scheme and how to obtain and apply licenses, see the Cisco NX-OS Licensing Guide.</td>
</tr>
</tbody>
</table>
Guidelines and Limitations for IVR NAT and Autotopology

- IVR NAT port login (PLOGI) requests that are received from hosts are delayed a few seconds to perform the rewrite on the FC ID address. If the host’s PLOGI timeout value is set to a value less than five seconds, it may result in the PLOGI being unnecessarily aborted and the host being unable to access the target. We recommend that you configure the host bus adapter for a timeout of at least ten seconds (most HBAs default to a value of 10 or 20 seconds).

- Load balancing of IVR NAT traffic across equal cost paths from an IVR-enabled switch is not supported.

- IVR NAT allows you to set up IVR in a fabric without needing unique domain IDs on every switch in the IVR path. IVR NAT virtualizes the switches in other VSANs by using local VSAN for the destination IDs in the Fibre Channel headers. In some Extended Link Service message types, the destination IDs are included in the packet data. In these cases, IVR NAT replaces the actual destination ID with the virtualized destination ID. IVR NAT supports destination ID replacement in the Extended Link Service messages.

- If you have a message that is not recognized by IVR NAT and contains the destination ID in the packet data, you cannot use IVR with NAT in your topology. You can still use IVR with unique domain IDs.

The following table lists the Extended Link Service messages supported by IVR NAT:

<table>
<thead>
<tr>
<th>Extended Link Service Messages</th>
<th>Link Service Command (LS_COMMAND)</th>
<th>Mnemonic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abort Exchange</td>
<td>0x06 00 00 00</td>
<td>ABTX</td>
</tr>
<tr>
<td>Discover Address</td>
<td>0x52 00 00 00</td>
<td>ADISC</td>
</tr>
<tr>
<td>Discover Address Accept</td>
<td>0x02 00 00 00</td>
<td>ADISC ACC</td>
</tr>
<tr>
<td>Fibre Channel Address Resolution Protocol Reply</td>
<td>0x55 00 00 00</td>
<td>FARP-REPLY</td>
</tr>
<tr>
<td>Fibre Channel Address Resolution Protocol Request</td>
<td>0x54 00 00 00</td>
<td>FARP-REQ</td>
</tr>
<tr>
<td>Logout</td>
<td>0x05 00 00 00</td>
<td>LOGO</td>
</tr>
<tr>
<td>Port Login</td>
<td>0x30 00 00 00</td>
<td>PLOGI</td>
</tr>
<tr>
<td>Read Exchange Concise</td>
<td>0x13 00 00 00</td>
<td>REC</td>
</tr>
<tr>
<td>Read Exchange Concise Accept</td>
<td>0x02 00 00 00</td>
<td>REC ACC</td>
</tr>
<tr>
<td>Read Exchange Status Block</td>
<td>0x08 00 00 00</td>
<td>RES</td>
</tr>
<tr>
<td>Read Exchange Status Block Accept</td>
<td>0x02 00 00 00</td>
<td>RES ACC</td>
</tr>
<tr>
<td>Read Link Error Status Block</td>
<td>0x0F 00 00 00</td>
<td>RLS</td>
</tr>
<tr>
<td>Read Sequence Status Block</td>
<td>0x09 00 00 00</td>
<td>RSS</td>
</tr>
<tr>
<td>Reinstate Recovery Qualifier</td>
<td>0x12 00 00 00</td>
<td>RRQ</td>
</tr>
<tr>
<td>Request Sequence Initiative</td>
<td>0x0A 00 00 00</td>
<td>RSI</td>
</tr>
<tr>
<td>Scan Remote Loop</td>
<td>0x7B 00 00 00</td>
<td>RSL</td>
</tr>
</tbody>
</table>
Configuring IVR NAT and Autotopology

Enabling IVR NAT

Before You Begin

- Ensure you have enabled the IVR feature and IVR distribution.

SUMMARY STEPS

1.  configure terminal
2.  ivr nat
3.  (Optional)  show ivr
4.  (Optional)  copy running-config startup-config

Transit VSAN Guidelines
Consider the following guidelines for transit VSANs:

- In addition to defining the IVR zone membership, you can choose to specify a set of transit VSANs to provide connectivity between two edge VSANs:
  - If two edge VSANs in an IVR zone overlap, then a transit VSAN is not required (though, not prohibited) to provide connectivity.
  - If two edge VSANs in an IVR zone do not overlap, you may need one or more transit VSANs to provide connectivity. Two edge VSANs in an IVR zone will not overlap if IVR is not enabled on a switch that is a member of both the source and destination edge VSANs.

- Traffic between the edge VSANs only traverses through the shortest IVR path.
- Transit VSAN information is common to all IVR zone sets. Sometimes, a transit VSAN can also act as an edge VSAN in another IVR zone.

Border Switch Guidelines

- A border switch must be a member of two or more VSANs.
- A border switch that facilitates IVR communications must be IVR-enabled.
- IVR can (optionally) be enabled on additional border switches to provide redundant paths between active IVR zone members.
- The VSAN topology configuration updates automatically when a border switch is added or removed.

Cisco Nexus 7000 Series NX-OS SAN Switching Configuration Guide

Extended Link Service Messages

<table>
<thead>
<tr>
<th></th>
<th>Link Service Command (LS_COMMAND)</th>
<th>Mnemonic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Third Party Process Logout</td>
<td>0x24 00 00 00</td>
<td>TPRLO</td>
</tr>
<tr>
<td>Third Party Process Logout Accept</td>
<td>0x02 00 00 00</td>
<td>TPRLO ACC</td>
</tr>
</tbody>
</table>
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>switch(config)#</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> ivr nat</td>
<td>Enables IVR NAT.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch(config)# ivr nat</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> show ivr</td>
<td>(Optional) Displays information about IVR.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch(config)# show ivr</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> copy running-config startup-config</td>
<td>(Optional) Copies the running configuration to the startup configuration.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch(config)# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

Enabling IVR Auto Topology

**Before You Begin**

- Ensure you have enabled the IVR feature and IVR distribution.

SUMMARY STEPS

1. configure terminal
2. ivr vsan-topology auto
3. (Optional) show ivr vsan topology
4. (Optional) copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>switch(config)#</td>
<td></td>
</tr>
</tbody>
</table>
### Verifying IVR Configuration

To display the IVR configuration, perform one of the following tasks:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>show ivr</strong></td>
<td>Displays the status for the IVR configuration.</td>
</tr>
<tr>
<td><strong>show ivr diagnostics</strong></td>
<td>Displays information about IVR diagnostics.</td>
</tr>
<tr>
<td><strong>show ivr merge status</strong></td>
<td>Displays information the last IVR merge event.</td>
</tr>
<tr>
<td><strong>show ivr pending</strong></td>
<td>Displays information about the IVR pending database.</td>
</tr>
<tr>
<td><strong>show ivr pending-diff</strong></td>
<td>Displays the differences between the pending database and the config database.</td>
</tr>
<tr>
<td>**show ivr vsan-topology [active</td>
<td>configured]**</td>
</tr>
<tr>
<td><strong>show ivr session status</strong></td>
<td>Displays information about IVR CFS session.</td>
</tr>
<tr>
<td><strong>show ivr virtual-domains</strong></td>
<td>Displays information about IVR virtual domains for all local VSANs.</td>
</tr>
<tr>
<td><strong>show ivr zone</strong></td>
<td>Displays information about IVR zones.</td>
</tr>
<tr>
<td>Command</td>
<td>Purpose</td>
</tr>
<tr>
<td>----------------------------------------------</td>
<td>-------------------------------------------------------------------------</td>
</tr>
<tr>
<td>show ivr zoneset</td>
<td>Displays information about IVR zone sets.</td>
</tr>
<tr>
<td>show ivr service-group active</td>
<td>Displays information about the active service group.</td>
</tr>
<tr>
<td>show ivr service-group configured</td>
<td>Displays information about the configured service group.</td>
</tr>
<tr>
<td>show autonomous-fabric-id database</td>
<td>Displays information about the AFIDs.</td>
</tr>
<tr>
<td>show ivr virtual-fcdomain-add-status</td>
<td>Displays the status of the IVR virtual domain configuration.</td>
</tr>
</tbody>
</table>

**Related Topics**

- Information about IVR Zones and Zonesets, page 209
- Configuring IVR Zones, page 212
- Configuring IVR Zone Sets, page 213

**Example: IVR Auto Topology**

**Step 1**
Enable IVR on every border switch in the fabric.

**Example:**
```
switch# config t
Enter configuration commands, one per line. End with CNTL/Z.
switch(config)# feature ivr
switch(config)# exit
switch#
```

**Step 2**
Verify that IVR is enabled on every IVR-enabled switch.

**Example:**
```
switch# show ivr
Inter-VSAN Routing is enabled

Inter-VSAN enabled switches
--
No IVR-enabled VSAN is active. Check VSAN-Topology configuration.

Inter-VSAN topology status
--
Current Status: Inter-VSAN topology is INACTIVE

Inter-VSAN zoneset status

name :
state : idle
last activate time :

Fabric distribution status

fabric distribution disabled
```
Inter-VSAN NAT mode status
-------------------------------
FCID-NAT is disabled

License status
--------------
IVR is running based on the following license(s)
ENTERPRISE_PKG

Step 3  Enable CFS distribution on every IVR-enabled switch in the fabric.

Example:
switch# config t
Enter configuration commands, one per line. End with CNTL/Z.
switch(config)# ivr distribution

Step 4  Enable IVR auto topology mode.

Example:
switch(config)# ivr vsan-topology auto
fabric is locked for configuration. Please commit after configuration is done.

Step 5  Commit the change to the fabric.

Example:
switch(config)# ivr commit
switch(config)# exit
switch#

Step 6  Verify the status of the commit request.

Example:
switch# show ivr session status
Last Action : Commit
Last Action Result : Success
Last Action Failure Reason : None

Step 7  Verify the active IVR auto topology.

Example:
switch# show ivr vsan-topology active
AFID SWITCH WWN Active Cfg. VSANS
--------------------------------------------------------------
  1 20:00:00:0d:ec:08:6e:40 * yes no 1,336-338
  1 20:00:00:0d:ec:0c:99:40 yes no 336,339

Step 8  Configure IVR zone set and zones.

Example:
switch(config)# ivr zoneset name tape_server1_server2
switch(config-ivr-zoneset)# zone name tape_server1
switch(config-ivr-zoneset-zone)# member pwn 10:02:50:45:32:20:7a:52 vsan 1
switch(config-ivr-zoneset-zone)# member pwn 10:02:66:45:00:20:89:04 vsan 2
switch(config-ivr-zoneset-zone)# exit

switch(config-ivr-zoneset)# zone name tape_server2
switch(config-ivr-zoneset-zone)# member pwn 10:02:50:45:32:20:7a:52 vsan 1
switch(config-ivr-zoneset-zone)# member pwn 10:00:ad:51:78:33:f9:86 vsan 3
switch(config-ivr-zoneset-zone)# exit

Two zones are required:

- One zone has tape T (pwn 10:02:50:45:32:20:7a:52) and server S1 (pwn 10:02:66:45:00:20:89:04).
- Another zone has tape T and server S2 (pwn 10:00:ad:51:78:33:f9:86).

**Tip** Instead of creating two IVR zones, you can also create one IVR zone with the tape and both servers.

**Step 9** View the IVR zone configuration to confirm that the IVR zone set and IVR zones are properly configured.

**Example:**

```
switch(config)# show ivr zoneset
zone name tape_server1_server2
 zone name tape_server1
 pwn 10:02:50:45:32:20:7a:52 vsan 1
 pwn 10:02:66:45:00:20:89:04 vsan 2
 zone name tape_server2
 pwn 10:02:50:45:32:20:7a:52 vsan 1
 pwn 10:00:ad:51:78:33:f9:86 vsan 3
```

**Step 10** View the zoneset prior to IVR zoneset activation. Prior to activating the IVR zone set, view the active zone set. Repeat this step for VSANs 2 and 3.

**Example:**

```
switch(config)# show zoneset active vsan 1
zone name finance_dept vsan 1
 pwn 10:00:23:11:ed:f6:23:12
 pwn 10:00:56:43:11:56:fe:ee
 zone name $default_zone$ vsan 1
```

**Step 11** Activate the configured IVR zone set.

**Example:**

```
switch(config)# ivr zoneset activate name tape_server1_server2
zone set activation initiated. check inter- VSAN zoneset status
switch(config)# exit
```

**Step 12** Verify the IVR zone set activation.

**Example:**

```
switch# show ivr zoneset active
zone name tape_server1_server2
 zone name tape_server1
 pwn 10:02:50:45:32:20:7a:52 vsan 1
 pwn 10:02:66:45:00:20:89:04 vsan 2
 zone name tape_server2
```

---

**Example: IVR Auto Topology**
Step 13 Verify the zone set updates. Upon successful IVR zone set activation, verify that appropriate zones are added to the active zone set. Repeat this step for VSANs 2 and 3.

Example:
```
switch# show zoneset active vsan 1
zoneset name finance_dept vsan 1
 zone name accounts_database vsan 1
 pwwn 10:00:23:11:ed:f6:23:12
 pwwn 10:00:56:43:11:56:fe:ee
zone name IVRZ_tape_server1 vsan 1
 pwwn 10:02:66:45:00:20:89:04
 pwwn 10:02:50:45:32:20:7a:52
zone name IVRZ_tape_server2 vsan 1
 pwwn 10:02:50:45:32:20:7a:52
 pwwn 10:00:ad:51:78:33:f9:86
zone name $default_zone$ vsan 1
switch# show ivr zoneset status
Zoneset Status
 name : tape_server1_server2
 state : activation success
 last activate time : Tue May 20 23:23:01 1980
 force option : on
status per vsan:
 vsan status
 1 active
```

---

**Feature History**

*Table 35: Feature History IVR*

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVR</td>
<td>5.2(1)</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>
CHAPTER 17

IVR Zones and Zonesets

- Information about IVR Zones and Zonesets, page 209
- Default Settings, page 211
- Licensing Requirements, page 211
- Guidelines and Limitations, page 211
- Configuring IVR Zones and Zonesets, page 212
- Verifying IVR Configuration, page 218
- Feature History, page 219

Information about IVR Zones and Zonesets

As part of the IVR configuration, you need to configure one or more IVR zones to enable cross-VSAN communication. To achieve this result, you must specify each IVR zone as a set of (pWWN, VSAN) entries. Like zones, several IVR zone sets can be configured to belong to an IVR zone. You can define several IVR zone sets and activate only one of the defined IVR zone sets.

**Note**

The same IVR zone set must be activated on all of the IVR-enabled switches

<table>
<thead>
<tr>
<th><strong>IVR Zones</strong></th>
<th><strong>Zones</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>IVR zone membership is specified using the VSAN and pWWN combination.</td>
<td>Zone membership is specified using pWWN, fabric WWN, sWWN, or the AFID.</td>
</tr>
<tr>
<td>Default zone policy is always deny (not configurable).</td>
<td>Default zone policy is deny (configurable).</td>
</tr>
</tbody>
</table>

As part of the IVR configuration, you need to configure one or more IVR zone to enable cross-VSAN communication. To achieve this, you must specify each IVR zone as a set of (pWWN, VSAN) entries. Different IVR zone sets can contain the same IVR zone, because IVR zones can be members of one or more IVR zone sets.

Table 36: Key Differences Between IVR Zones and Zones

As part of the IVR configuration, you need to configure one or more IVR zones to enable cross-VSAN communication. To achieve this, you must specify each IVR zone as a set of (pWWN, VSAN) entries. Different IVR zone sets can contain the same IVR zone, because IVR zones can be members of one or more IVR zone sets.
Automatic IVR Zone Creation

To allow pwn1 to communicate with pwn2, they must be in the same zone in VSAN 1, as well as in VSAN 2. If they are not in the same zone, then the hard-zoning ACL entries will prohibit pwn1 from communicating with pwn2.

A zone corresponding to each active IVR zone is automatically created in each edge VSAN specified in the active IVR zone. All pWWNs in the IVR zone are members of these zones in each VSAN.

![Figure 27: Creating Zones Upon IVR Zone Activation](image)

The zones are created automatically by the IVR process when an IVR zone set is activated. They are not stored in a full zone set database and are lost when the switch reboots or when a new zone set is activated. The IVR feature monitors these events and adds the zones corresponding to the active IVR zone set configuration when a new zone set is activated. Like zone sets, IVR zone sets are also activated nondisruptively.

---

**Note**

If pwn1 and pwn2 are in an IVR zone in the current as well as the new IVR zone set, then activation of the new IVR zone set does not cause any traffic disruption between them.

If pwn1 and pwn2 are in an IVR zone in the current as well as the new IVR zone set, then activation of the new IVR zone set does not cause any traffic disruption between them.
Default Settings

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVR feature</td>
<td>Disabled</td>
</tr>
<tr>
<td>IVR NAT</td>
<td>Disabled</td>
</tr>
<tr>
<td>IVR distribution</td>
<td>Disabled</td>
</tr>
<tr>
<td>IVR Autotopology</td>
<td>Disabled</td>
</tr>
<tr>
<td>IVR VSANs</td>
<td>Not added to virtual domains</td>
</tr>
<tr>
<td>QoS for IVR Zones</td>
<td>Low</td>
</tr>
</tbody>
</table>

Licensing Requirements

<table>
<thead>
<tr>
<th>Product</th>
<th>License</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco Nexus 7000 Series.</td>
<td>IVR requires the FCoE license for each F-series module. FCoE enabled in a storage VDC does not require the Advanced Services License. IVR also requires the Storage Enterprise License. For a complete explanation of the Cisco NX-OS licensing scheme and how to obtain and apply licenses, see the <em>Cisco NX-OS Licensing Guide</em>.</td>
</tr>
</tbody>
</table>

Guidelines and Limitations

When interop mode is enabled, consider the following IVR configuration guidelines:

- When a member’s native VSAN is in interop mode (for example, when the interop mode is 2, 3, or 4), then ReadOnly, the QoS attribute, and LUN zoning are not permitted.
- When a member’s VSAN is already in interop mode and an attempt is made to configure ReadOnly, the QoS attribute, or LUN zoning, a warning message is displayed to indicate that the configuration is not permitted.
- When you configure ReadOnly, the QoS attribute, or LUN zoning first, and then change the member’s VSAN interop mode, a warning message is displayed to indicate that the configuration is not permitted. You are then prompted to change the configuration.

This example shows samples of the warning messages that are displayed when configuration changes are made that affect ReadOnly, the QoS attribute, and LUN zoning.

```bash
switch(config)# vsan database
switch(config-vsan-db)# vsan 2
switch(config-vsan-db)# vsan 2 interop 2
switch(config-vsan-db)# exit

switch(config)# ivr zoneset name ivr_zs1
switch(config-ivr-zoneset)# zone name ivr_z1
```
Configuring IVR Zones and Zonesets

Configuring IVR Zones

Before You Begin

- Ensure you are in the correct storage-based VDC.
- Ensure you have enabled the IVR feature.

SUMMARY STEPS

1. configure terminal
2. ivr zone name zonename
3. member pwwn pwwn vsan vsan-id
4. (Optional) show ivr pending-diff
5. (Optional) show ivr zone
6. (Optional) ivr commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>switch(config)#</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| **Step 2**  
ivr zone name zonename  
Example:  
switch(config)# ivr zone name sample_vsan2-3  
switch(config-ivr-zone)# | Creates the IVR zone and enters IVR zone configuration mode. The zonename can be any case-sensitive, alphanumeric string up to 59 characters. |
| **Step 3**  
member pwwn pwn vsan vsan-id  
Example:  
switch(config-ivr-zone)# member pwwn 21:00:00:20:37:c8:5c:6b vsan 2 | Adds the specified pWNN in VSAN 2 as an IVR zone member. The pwn is in colon-separated hexadecimal format. The vsan range is from 1 to 4093. |
| **Step 4**  
show ivr pending-diff  
Example:  
switch(config-ivr-zone)# show ivr pending-diff | (Optional) Displays information about the pending changes to the IVR database. This displays changes that have not been committed yet. |
| **Step 5**  
show ivr zone  
Example:  
switch(config-ivr-zone)# show ivr zone | (Optional) Displays information about the zones in the active zone database. |
| **Step 6**  
ivr commit  
Example:  
switch(config-ivr-zone)# ivr commit | (Optional) Commits all pending changes to IVR to the active IVR database and distributes these changes to all IVR-enabled switches in the fabric. |

**What to Do Next**

You must commit the IVR changes to make these changes permanent and distribute the changes to all IVR-enabled switches in the fabric.

**Related Topics**

- Information about IVR Zones and Zonesets, page 209
- Guidelines and Limitations, page 211
- Verifying IVR Configuration, page 249

**Configuring IVR Zone Sets**

**Before You Begin**

- Ensure you are in the correct storage-based VDC.
- Ensure you have enabled the IVR feature.
### SUMMARY STEPS

1. `configure terminal`
2. `ivr zoneset name zoneset-name`
3. `member zonename`
4. (Optional) `show ivr pending-diff`
5. (Optional) `show ivr zoneset`
6. (Optional) `ivr commit`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><strong>configure terminal</strong>&lt;br&gt;&lt;br&gt;Enters configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>switch# configure terminal</code>&lt;br&gt;<code>switch(config)#</code></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><code>ivr zoneset name zoneset-name</code>&lt;br&gt;&lt;br&gt;Creates the IVR zone set and enters IVR zone set configuration mode. The <code>zoneset-name</code> can be any case-sensitive, alphanumeric string up to 59 characters.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>switch(config)# ivr zoneset name ivrZoneset1</code>&lt;br&gt;<code>switch(config-ivr-zoneset)#</code></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><code>member zonename</code>&lt;br&gt;&lt;br&gt;Adds the specified IVR zone as an IVR zone set member. The <code>zonename</code> can be any case-sensitive, alphanumeric string up to 59 characters.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>switch(config-ivr-zoneset)# member sample_vsan2-3</code></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><code>show ivr pending-diff</code>&lt;br&gt;&lt;br&gt;(Optional) Displays information about the pending changes to the IVR database. This displays changes that have not been committed yet.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>switch(config-ivr-zoneset)# show ivr pending-diff</code></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><code>show ivr zoneset</code>&lt;br&gt;&lt;br&gt;(Optional) Displays information about the zone sets in the active zone set database.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>switch(config-ivr-zoneset)# show ivr zoneset</code></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><code>ivr commit</code>&lt;br&gt;&lt;br&gt;(Optional) Commits all pending changes to IVR to the active IVR database and distributes these changes to all IVR-enabled switches in the fabric.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>switch(config-ivr-zoneset)# ivr commit</code></td>
</tr>
</tbody>
</table>

### What to Do Next

You must commit the IVR changes to make these changes permanent and distribute the changes to all IVR-enabled switches in the fabric. You must also activate the zone set.
### Configuring LUNs in IVR Zoning

LUN zoning can be used between members of active IVR zones. You can configure the service by creating and activating LUN zones between the desired IVR zone members in all relevant edge VSANs using the zoning interface or you can use LUN zoning directly supported by IVR.

### Before You Begin

- Ensure you are in the correct storage-based VDC.
- Ensure you have enabled the IVR feature.

### SUMMARY STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>configure terminal</td>
</tr>
<tr>
<td>2.</td>
<td>ivr zone name zonename</td>
</tr>
<tr>
<td>3.</td>
<td>member pwwn pwwn lun lun-id vsan vsan-id [ autonomous-fabric-id afid]</td>
</tr>
<tr>
<td>4.</td>
<td>(Optional) show ivr pending-diff</td>
</tr>
<tr>
<td>5.</td>
<td>(Optional) show ivr zone</td>
</tr>
<tr>
<td>6.</td>
<td>(Optional) ivr commit</td>
</tr>
</tbody>
</table>

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>switch(config)#</td>
<td></td>
</tr>
<tr>
<td></td>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>switch(config)#</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>ivr zone name zonename</td>
<td>Creates the IVR zone and enters IVR zone configuration mode. The zonename can be any case-sensitive, alphanumeric string up to 59 characters.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>switch(config)#</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ivr zone name ivrLunZone</td>
<td></td>
</tr>
<tr>
<td></td>
<td>switch(config-ivr-zone)#</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>member pwwn pwwn lun lun-id vsan vsan-id [ autonomous-fabric-id afid]</td>
<td>Configures an IVR zone member based on the specified pWWN and LUN value.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>switch(config-ivr-zone)#</td>
<td></td>
</tr>
<tr>
<td></td>
<td>member pwwn pwwn 21:00:00:20:37:c8:5c:6b lun 0x64 vsan 2</td>
<td></td>
</tr>
</tbody>
</table>

**Note** The CLI interprets the LUN identifier value as a hexadecimal value whether or not the 0x prefix is included. The pwwn is in colon-separated hexadecimal format. The lun-id is in hexadecimal notation. The vsan range is from 1 to 4093.
### Configuring IVR Zones and Zonesets

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 4</strong> show ivr pending-diff</td>
<td>(Optional) Displays information about the pending changes to the IVR database. This displays changes that have not been committed yet.</td>
</tr>
<tr>
<td>Example: switch(config-ivr-zone)# show ivr pending-diff</td>
<td></td>
</tr>
</tbody>
</table>

| Step 5 | show ivr zone | (Optional) Displays information about the zones in the active zone database. |
| Example: switch(config-ivr-zone)# show ivr zone |

| Step 6 | ivr commit | (Optional) Commits all pending changes to IVR to the active IVR database and distributes these changes to all IVR-enabled switches in the fabric. |
| Example: switch(config-ivr-zone)# ivr commit |

### Configuring the QoS Attribute

**Before You Begin**

- Ensure you are in the correct storage-based VDC.
- Ensure you have enabled the IVR feature.

**SUMMARY STEPS**

1. configure terminal
2. ivr zone name zonename
3. attribute qos priority { low | medium | high }
4. (Optional) show ivr pending-diff
5. (Optional) show ivr zone
6. (Optional) ivr commit

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Example: switch# configure terminal switch(config)#</td>
<td></td>
</tr>
</tbody>
</table>

| Step 2 | ivr zone name zonename | Creates the IVR zone and enters IVR zone configuration mode. The zonename can be any case-sensitive, alphanumeric string up to 59 characters. |
| Example: switch(config)# ivr zone name sample_vsan2-3 switch(config-ivr-zone)# |
### Purpose
Configure the QoS for IVR zone traffic.

### Command or Action
**Step 3**
```
attribute qos priority { low | medium | high }
```
**Example:**
```
switch(config-ivr-zone)# attribute qos priority medium
```

### Purpose
Configures the QoS for IVR zone traffic.

### Command or Action
**Step 4**
```
show ivr pending-diff
```
**Example:**
```
switch(config-ivr-zone)# show ivr pending-diff
```

### Purpose
(Optional)
Displays information about the pending changes to the IVR database. This displays changes that have not been committed yet.

### Command or Action
**Step 5**
```
show ivr zone
```
**Example:**
```
switch(config-ivr-zone)# show ivr zone
```

### Purpose
(Optional)
Displays information about the zones in the active zone database.

### Command or Action
**Step 6**
```
ivr commit
```
**Example:**
```
switch(config-ivr-zone)# ivr commit
```

### Purpose
(Optional)
Commits all pending changes to IVR to the active IVR database and distributes these changes to all IVR-enabled switches in the fabric.

---

### Configuring Read-only Zoning
Read-only zoning (with or without LUNs) can be used between members of active IVR zones. To configure this service, you must create and activate read-only zones between the desired IVR zone members in all relevant edge VSANs using the zoning interface.

### Note
Read-only zoning cannot be configured in an IVR zone set setup.

### Before You Begin
- Ensure you are in the correct storage-based VDC.
- Ensure you have enabled the IVR feature.

### SUMMARY STEPS
1. configure terminal
2. ivr zone name zonename
3. attribute read-only
4. (Optional) show ivr pending-diff
5. (Optional) show ivr zone
6. (Optional) ivr commit
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>switch(config)#</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> ivr zone name zonename</td>
<td>Enters IVR zone configuration mode. The <em>zonename</em> can be any case-sensitive, alphanumeric string up to 59 characters.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch(config)# ivr zone name sample_vsan2-3</td>
<td></td>
</tr>
<tr>
<td>switch(config-ivr-zone)#</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> attribute read-only</td>
<td>Configures the QoS for IVR zone traffic.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch(config-ivr-zone)# attribute read-only</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> show ivr pending-diff</td>
<td>(Optional) Displays information about the pending changes to the IVR database. This displays changes that have not been committed yet.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch(config-ivr-zone)# show ivr pending-diff</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> show ivr zone</td>
<td>(Optional) Displays information about the zones in the active zone database.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch(config-ivr-zone)# show ivr zone</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> ivr commit</td>
<td>(Optional) Commits all pending changes to IVR to the active IVR database and distributes these changes to all IVR-enabled switches in the fabric.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch(config-ivr-zone)# ivr commit</td>
<td></td>
</tr>
</tbody>
</table>

### Verifying IVR Configuration

To display the IVR configuration, perform one of the following tasks:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ivr</td>
<td>Displays the status for the IVR configuration.</td>
</tr>
<tr>
<td>show ivr diagnostics</td>
<td>Displays information about IVR diagnostics.</td>
</tr>
<tr>
<td>show ivr merge status</td>
<td>Displays information the last IVR merge event.</td>
</tr>
<tr>
<td>Command</td>
<td>Purpose</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------------------------------------------------------------------------</td>
</tr>
<tr>
<td><code>show ivr pending</code></td>
<td>Displays information about the IVR pending database.</td>
</tr>
<tr>
<td><code>show ivr pending-diff</code></td>
<td>Displays the differences between the pending database and the config database.</td>
</tr>
<tr>
<td>`show ivr vsan-topology [active</td>
<td>configured]</td>
</tr>
<tr>
<td><code>show ivr session status</code></td>
<td>Displays information about IVR CFS session.</td>
</tr>
<tr>
<td><code>show ivr virtual-domains</code></td>
<td>Displays information about IVR virtual domains for all local VSANs.</td>
</tr>
<tr>
<td><code>show ivr zone</code></td>
<td>Displays information about IVR zones.</td>
</tr>
<tr>
<td><code>show ivr zoneset</code></td>
<td>Displays information about IVR zone sets.</td>
</tr>
<tr>
<td><code>show ivr service-group active</code></td>
<td>Displays information about the active service group.</td>
</tr>
<tr>
<td><code>show ivr service-group configured</code></td>
<td>Displays information about the configured service group.</td>
</tr>
<tr>
<td><code>show autonomous-fabric-id database</code></td>
<td>Displays information about the AFIDs.</td>
</tr>
<tr>
<td><code>show ivr virtual-fcdomain-add-status</code></td>
<td>Displays the status of the IVR virtual domain configuration.</td>
</tr>
</tbody>
</table>

**Related Topics**
- Information about IVR Zones and Zonesets, page 209
- Configuring IVR Zones, page 212
- Configuring IVR Zone Sets, page 213

**Feature History**

**Table 37: Feature History IVR**

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVR</td>
<td>5.2(1)</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>
IVR Topology

- Information About IVR Without NAT or Autotopology, page 221
- Licensing Requirements, page 223
- Guidelines for Manual IVR Topology, page 223
- Default Settings, page 223
- Configuring Manual Topology, page 224
- Verifying IVR Configuration, page 226
- Feature History, page 227

Information About IVR Without NAT or Autotopology

Before configuring an IVR SAN fabric without IVR in NAT mode or IVR auto topology mode, consider the following general guidelines:

- Acquire a mandatory Enterprise License Package or SAN-EXTENSION license package and one active IPS card for this feature.
- If you change an FSPF link cost, ensure that the FSPF path distance (the sum of the link costs on the path) of any IVR path is less than 30,000.
- IVR-enabled VSANs can be configured when an interop mode is enabled or disabled.

Domain ID Guidelines

Before configuring domain IDs, consider the following guidelines:

- Configure unique domain IDs across all VSANs and switches participating in IVR operations if you are not using IVR NAT. The following switches participate in IVR operations:
  - All edge switches in the edge VSANs (source and destination)
  - All switches in transit VSANs
- Minimize the number of switches that require a domain ID assignment. This ensures minimum traffic disruption.
Minimize the coordination between interconnected VSANs when configuring the SAN for the first time as well as when you add each new switch.

You can configure domain IDs using one of two options:

- Configure the allowed-domains list so that the domains in different VSANs are non-overlapping on all participating switches and VSANs.
- Configure static, non-overlapping domains for each participating switch and VSAN.

In a configuration involving IVR without NAT, if one VSAN in the IVR topology is configured with static domain IDs, then the other VSANs (edge or transit) in the topology must be configured with static domain IDs.

Transit VSAN Guidelines

Before configuring transit VSANs, consider the following guidelines:

- Traffic between the edge VSANs only traverses through the shortest IVR path.
- Transit VSAN information is common to all IVR zone sets. Sometimes, a transit VSAN can also act as an edge VSAN in another IVR zone.

Besides defining the IVR zone membership, you can choose to specify a set of transit VSANs to provide connectivity between two edge VSANs:

- If two edge VSANs in an IVR zone overlap, then a transit VSAN is not required (though, not prohibited) to provide connectivity.
- If two edge VSANs in an IVR zone do not overlap, you may need one or more transit VSANs to provide connectivity. Two edge VSANs in an IVR zone will not overlap if IVR is not enabled on a switch that is a member of both the source and destination edge VSANs.

Border Switch Guidelines

Before configuring border switches, consider the following guidelines:

- Configure IVR only in the relevant border switches.
- Border switches require Cisco MDS SAN-OS Release 1.3(1) or later.
- A border switch must be a member of two or more VSANs.
- A border switch that facilitates IVR communications must be IVR enabled.
- IVR can also be enabled on additional border switches to provide redundant paths between active IVR zone members.
- The VSAN topology configuration must be updated before a border switch is added or removed.
Licensing Requirements

<table>
<thead>
<tr>
<th>Product</th>
<th>License</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco Nexus 7000 Series.</td>
<td>IVR requires the FCoE license for each F-series module. FCoE enabled in a storage VDC does not require the Advanced Services License. IVR also requires the Storage Enterprise License. For a complete explanation of the Cisco NX-OS licensing scheme and how to obtain and apply licenses, see the <em>Cisco NX-OS Licensing Guide</em>.</td>
</tr>
</tbody>
</table>

Guidelines for Manual IVR Topology

You must create the IVR topology on every IVR-enabled switch in the fabric if you have not enabled IVR auto topology mode. To use IVR manual topology mode, follow the instructions in this section.

Consider the following guidelines when using IVR manual topology mode:

- You can configure a maximum of 128 IVR-enabled switches and 128 distinct VSANs in an IVR topology.
- If two VSANs in an IVR topology have the same VSAN ID and different AFIDs, they count as two VSANs for the 128-VSAN limit for IVR.
- The use of a single AFID does not allow for segmented VSANs in an inter-VSAN routing topology.

You will need to specify the IVR topology using the following information:

- The switch WWNs of the IVR-enabled switches.
- A minimum of two VSANs to which the IVR-enabled switch belongs.
- The AFID, which distinguishes two VSANs that are logically and physically separate, but have the same VSAN number. You can specify up to 64 AFIDs.

Default Settings

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVR feature</td>
<td>Disabled</td>
</tr>
<tr>
<td>IVR NAT</td>
<td>Disabled</td>
</tr>
<tr>
<td>IVR distribution</td>
<td>Disabled</td>
</tr>
<tr>
<td>IVR Autotopology</td>
<td>Disabled</td>
</tr>
<tr>
<td>IVR VSANs</td>
<td>Not added to virtual domains</td>
</tr>
<tr>
<td>QoS for IVR Zones</td>
<td>Low</td>
</tr>
</tbody>
</table>
Configuring Manual Topology

Manually Configuring an IVR Topology

You can manually add a switch or VSANs to an IVR topology.

Before You Begin

Use the `show wwn switch` command to obtain the switch WWNs of the IVR-enabled switches.

**SUMMARY STEPS**

1. `ivr vsan-topology database`
2. `autonomous-fabric-id f-id switch switch-id vsan-ranges range`
3. Repeat on all IVR-enabled switches or distribute with CFS.
4. `ivr vsan-topology activate`
5. (Optional) `show ivr vsan-topology`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><strong>ivr vsan-topology database</strong>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;switch(config)# ivr vsan-topology database&lt;br&gt;switch(config-ivr-topology-db)#</td>
</tr>
<tr>
<td></td>
<td>Enters the VSAN topology database configuration mode for the IVR feature.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><strong>autonomous-fabric-id f-id switch switch-id vsan-ranges range</strong>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;switch(config-ivr-topology-db)#&lt;br&gt;autonomous-fabric-id 1 switch 20:00:00:05:30:01:1b:b8 vsan-ranges 1-2,6</td>
</tr>
<tr>
<td></td>
<td>Configures the VSANS that participate in IVR for this switch.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Repeat on all IVR-enabled switches or distribute with CFS.</td>
</tr>
<tr>
<td></td>
<td>Ensures all IVR-enabled switches have the updated IVR topology.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><strong>ivr vsan-topology activate</strong>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;switch(config)# ivr vsan-topology activate</td>
</tr>
<tr>
<td></td>
<td>Activates the IVR topology.</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong> Active IVR topologies cannot be deactivated. You can only switch to IVR auto topology mode.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><strong>show ivr vsan-topology</strong>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;switch(config)# show ivr vsan-topology</td>
</tr>
<tr>
<td></td>
<td>(Optional) Displays the IVR topology.</td>
</tr>
</tbody>
</table>

In the following example output, VSAN 2 is the transit VSAN between VSANs 1, 5, and 6.

```
switch# show ivr vsan-topology
AFID SWITCH WWN Active Cfg. VSANS
--
```

---

Cisco Nexus 7000 Series NX-OS SAN Switching Configuration Guide

OL-24915-01

224
What to Do Next

Transit VSANs are deduced based on your configuration. The IVR feature does not have an explicit transit-VSAN configuration.

Copying the Active Topology to the Configure Topology

You can edit a manually configured IVR topology; however, you cannot edit an active IVR topology.

SUMMARY STEPS

1. `ivr copy active-topology user-configured-topology`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ivr copy active-topology user-configured-topology</code></td>
<td>Copies the active database to the configure database so that you can edit the topology.</td>
</tr>
</tbody>
</table>

Example:

```
switch# ivr copy active-topology user-configured-topology
```

Clearing the Manual Topology

SUMMARY STEPS

1. `no ivr vsan-topology database`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>no ivr vsan-topology database</code></td>
<td>Clears the manually added IVR topology.</td>
</tr>
</tbody>
</table>

Example:

```
switch(config)# no ivr vsan-topology database
```
Migrating from Autotopology to Manual Topology

If you want to migrate from IVR autotopology mode to IVR manual topology mode, copy the active IVR VSAN topology database to the user-configured IVR VSAN topology database before switching modes.

**SUMMARY STEPS**

1. `ivr copy auto-topology user-configured-topology`
2. `configure terminal`
3. `ivr vsan-topology activate`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> <code>ivr copy auto-topology user-configured-topology</code></td>
<td>Copies the automatic IVR topology database to the user-configured IVR topology.</td>
</tr>
<tr>
<td><strong>Example:</strong> <code>switch# ivr copy auto-topology user-configured-topology</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> <code>configure terminal</code></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> <code>switch# configure terminal switch(config)#</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> <code>ivr vsan-topology activate</code></td>
<td>Activates the IVR topology.</td>
</tr>
<tr>
<td><strong>Example:</strong> <code>switch(config)# ivr vsan-topology activate</code></td>
<td><strong>Note</strong> Active IVR topologies cannot be deactivated. You can only switch to IVR auto topology mode.</td>
</tr>
</tbody>
</table>

This task disables IVR auto topology mode for the IVR topology database and enables IVR manual topology mode.

**Verifying IVR Configuration**

To display the IVR configuration, perform one of the following tasks:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ivr</code></td>
<td>Displays the status for the IVR configuration.</td>
</tr>
<tr>
<td><code>show ivr diagnostics</code></td>
<td>Displays information about IVR diagnostics.</td>
</tr>
<tr>
<td><code>show ivr merge status</code></td>
<td>Displays information the last IVR merge event.</td>
</tr>
<tr>
<td>Command</td>
<td>Purpose</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>show ivr pending</td>
<td>Displays information about the IVR pending database.</td>
</tr>
<tr>
<td>show ivr pending-diff</td>
<td>Displays the differences between the pending database and the config database.</td>
</tr>
<tr>
<td>show ivr vsan-topology [active</td>
<td>configured]</td>
</tr>
<tr>
<td>show ivr session status</td>
<td>Displays information about IVR CFS session.</td>
</tr>
<tr>
<td>show ivr virtual-domains</td>
<td>Displays information about IVR virtual domains for all local VSANs.</td>
</tr>
<tr>
<td>show ivr zone</td>
<td>Displays information about IVR zones.</td>
</tr>
<tr>
<td>show ivr zoneset</td>
<td>Displays information about IVR zone sets.</td>
</tr>
<tr>
<td>show ivr service-group active</td>
<td>Displays information about the active service group.</td>
</tr>
<tr>
<td>show ivr service-group configured</td>
<td>Displays information about the configured service group.</td>
</tr>
<tr>
<td>show autonomous-fabric-id database</td>
<td>Displays information about the AFIDs.</td>
</tr>
<tr>
<td>show ivr virtual-fcdomain-add-status</td>
<td>Displays the status of the IVR virtual domain configuration.</td>
</tr>
</tbody>
</table>

Related Topics
- Information about IVR Zones and Zonesets, page 209
- Configuring IVR Zones, page 212
- Configuring IVR Zone Sets, page 213

Feature History

Table 38: Feature History IVR

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVR</td>
<td>5.2(1)</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>
## Autonomous Fabric IDs

- Information About Autonomous Fabric IDs, page 229
- Licensing Requirements, page 230
- Guidelines and Limitations, page 230
- Default Settings, page 230
- Configuring AFIDs, page 231
- Verifying IVR Configuration, page 232
- Feature History, page 233

### Information About Autonomous Fabric IDs

You can configure AFIDs individually for VSANs, or you can set the default AFIDs for all VSANs on a switch. If you configure an individual AFID for a subset of the VSANs on a switch that has a default AFID, that subset uses the configured AFID while all other VSANs on that switch use the default AFID.

You can only use an AFID configuration when the VSAN topology is in IVR auto topology mode. In IVR manual topology mode, the AFIDs are specified in the VSAN topology configuration itself and a separate AFID configuration is not needed.

---

Two VSANs with the same VSAN number but different AFIDs are counted as two VSANs out of the total 128 VSANs allowed in the fabric.

When devices attached to multiple switches belong to one VSAN, they cannot communicate with each other by configuring the regular zone set because the AFIDs are different. You can consider that the different AFIDs are different fabrics; therefore, the three switches represent three separate fabrics.

If we specify the IVR VSAN topology as shown below, IVR will set up the connection between the devices across the switches even though they have the same VSAN.

```
switch# show ivr vsan-topology
AFID SWITCH WWN Active Cfg. VSANS

 1 20:00:00:0d:ec:27:6b:c0 yes yes 1
 2 20:00:00:0d:ec:27:6c:00 yes yes 1
 3 20:00:00:0d:ec:27:6c:40 yes yes 1
```
Licensing Requirements

<table>
<thead>
<tr>
<th>Product</th>
<th>License</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco Nexus 7000 Series</td>
<td>IVR requires the FCoE license for each F-series module. FCoE enabled in a storage VDC does not require the Advanced Services License.</td>
</tr>
<tr>
<td></td>
<td>IVR also requires the Storage Enterprise License.</td>
</tr>
<tr>
<td></td>
<td>For a complete explanation of the Cisco NX-OS licensing scheme and how to obtain and apply licenses, see the Cisco NX-OS Licensing Guide.</td>
</tr>
</tbody>
</table>

Guidelines and Limitations

IVR has the following guidelines and limitations:

- All border switches in the fabric must be Cisco SAN switches. Other switches in the fabric can be non-Cisco switches.
- IVR must be enabled in the storage VDC.

Default Settings

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVR feature</td>
<td>Disabled</td>
</tr>
<tr>
<td>IVR NAT</td>
<td>Disabled</td>
</tr>
<tr>
<td>IVR distribution</td>
<td>Disabled</td>
</tr>
<tr>
<td>IVR Autotopology</td>
<td>Disabled</td>
</tr>
<tr>
<td>IVR VSANs</td>
<td>Not added to virtual domains</td>
</tr>
<tr>
<td>QoS for IVR Zones</td>
<td>Low</td>
</tr>
</tbody>
</table>
Configuring AFIDs

Configuring Default AFIDs

SUMMARY STEPS

1. autonomous-fabric-id database
2. switch-wwn wwn default-autonomous-fabric-id afid

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>autonomous-fabric-id database</td>
<td>Enters AFID database configuration mode.</td>
</tr>
<tr>
<td>switch-wwn wwn default-autonomous-fabric-id afid</td>
<td>Configures the default AFID for all VSANs not explicitly associated with an AFID. The valid range for the default AFID is 1 to 64.</td>
</tr>
</tbody>
</table>

Configuring an Individual AFID

SUMMARY STEPS

1. autonomous-fabric-id database
2. switch-wwn wwn autonomous-fabric-id afid vsan-ranges range

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>autonomous-fabric-id database</td>
<td>Enters AFID configuration mode.</td>
</tr>
<tr>
<td>switch-wwn wwn autonomous-fabric-id afid vsan-ranges range</td>
<td>Configures an AFID and VSAN range for a switch. The valid range for AFIDs is 1 to 64.</td>
</tr>
</tbody>
</table>
Verifying IVR Configuration

To display the IVR configuration, perform one of the following tasks:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ivr</td>
<td>Displays the status for the IVR configuration.</td>
</tr>
<tr>
<td>show ivr diagnostics</td>
<td>Displays information about IVR diagnostics.</td>
</tr>
<tr>
<td>show ivr merge status</td>
<td>Displays information the last IVR merge event.</td>
</tr>
<tr>
<td>show ivr pending</td>
<td>Displays information about the IVR pending database.</td>
</tr>
<tr>
<td>show ivr pending-diff</td>
<td>Displays the differences between the pending database and the config database.</td>
</tr>
<tr>
<td>show ivr vsan-topology [active</td>
<td>configured] Displays the IVR VSAN topology.</td>
</tr>
<tr>
<td>show ivr session status</td>
<td>Displays information about IVR CFS session.</td>
</tr>
<tr>
<td>show ivr virtual-domains</td>
<td>Displays information about IVR virtual domains for all local VSANs.</td>
</tr>
<tr>
<td>show ivr zone</td>
<td>Displays information about IVR zones.</td>
</tr>
<tr>
<td>show ivr zoneset</td>
<td>Displays information about IVR zone sets.</td>
</tr>
<tr>
<td>show ivr service-group active</td>
<td>Displays information about the active service group.</td>
</tr>
<tr>
<td>show ivr service-group configured</td>
<td>Displays information about the configured service group.</td>
</tr>
<tr>
<td>show autonomous-fabric-id database</td>
<td>Displays information about the AFIDs.</td>
</tr>
<tr>
<td>show ivr virtual-fcdomain-add-status</td>
<td>Displays the status of the IVR virtual domain configuration.</td>
</tr>
</tbody>
</table>

Related Topics
- Information about IVR Zones and Zonesets, page 209
Feature History

Table 39: Feature History IVR

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVR</td>
<td>5.2(1)</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>
Feature History
Service Groups

- Information about Service Groups, page 235
- Licensing Requirements, page 236
- Guidelines and Limitations, page 237
- Default Settings, page 237
- Configuring a Service Group, page 237
- Verifying IVR Configuration, page 238
- Feature History, page 239

Information about Service Groups

In a complex network topology, you might only have a few IVR-enabled VSANs. To reduce the amount of traffic to non-IVR-enabled VSANs, you can configure service groups that restrict the traffic to the IVR-enabled VSANs. A maximum of 16 IVR service groups are allowed in a network. When a new IVR-enabled switch is added to the network, you must update the service groups to include the new VSANs.

Guidelines

When configuring IVR service groups, consider these guidelines:

- If you use service groups with IVR auto topology mode, you should enable IVR and configure your service groups first, then distribute them with CFS before setting the IVR auto topology mode.
- The CFS distribution is restricted within the service group only when the IVR VSAN topology is in IVR auto topology mode.
- You can configure as many as 16 service groups in a network.
- When a new IVR-enabled switch is added to the network, you must update the service group to include the new VSANs.
- The same VSAN and AFID combination cannot be a member of more than one service group, otherwise, a CFS merge will fail.
• The total number of AFID and VSAN combinations in all the service groups combined cannot exceed 128. The maximum number of AFID and VSAN combinations in a single service group is 128.

• The IVR service group configuration is distributed in all IVR-enabled switches. IVR data traffic between two end devices belonging to a service group stays within that service group. For example, two members (for example, pWWN 1 and pWWN 2) cannot communicate if they belong to the same IVR zone and they belong to different service groups.

• During a CFS merge, service groups with the same name would be merged, as long as there are no conflicts with other service groups.

• If the total number of service groups exceeds 16 during a CFS merge, the CFS merge fails.

• CFS distributes service group configuration information to all reachable SANs. If you do not enable CFS distribution, you must ensure that the service group configuration is the same on all IVR-enabled switches in all VSANs.

• IVR end devices belonging to an IVR service group are not exported to any AFID or VSAN outside of its service group.

• When at least one service group is defined and an IVR zone member does not belong to the service group, that IVR zone member is not able to communicate with any other device.

• The default service group ID is zero (0).

Default Service Group

All AFID and VSAN combinations that are part of an IVR VSAN topology but are not part of any user-defined service group are members of the default service group. The identifier of the default service group is 0.

By default, IVR communication is permitted between members of the default service group. You can change the default policy to deny. The default policy is not part of ASCII configuration.

Service Group Activation

A configured service group must be activated. Like zone set activation or VSAN topology activation, the activation of a configured service group replaces the currently active service group, if any, with the configured one. There is only one configured service group database and one active service group database. Each of these databases can have up to 16 service groups.

Licensing Requirements

<table>
<thead>
<tr>
<th>Product</th>
<th>License</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco Nexus 7000 Series.</td>
<td>IVR requires the FCoE license for each F-series module. FCoE enabled in a storage VDC does not require the Advanced Services License. IVR also requires the Storage Enterprise License. For a complete explanation of the Cisco NX-OS licensing scheme and how to obtain and apply licenses, see the Cisco NX-OS Licensing Guide.</td>
</tr>
</tbody>
</table>
Guidelines and Limitations

IVR has the following guidelines and limitations:

- All border switches in the fabric must be Cisco SAN switches. Other switches in the fabric can be non-Cisco switches.
- IVR must be enabled in the storage VDC.

Default Settings

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVR feature</td>
<td>Disabled</td>
</tr>
<tr>
<td>IVR NAT</td>
<td>Disabled</td>
</tr>
<tr>
<td>IVR distribution</td>
<td>Disabled</td>
</tr>
<tr>
<td>IVR Autotopology</td>
<td>Disabled</td>
</tr>
<tr>
<td>IVR VSANs</td>
<td>Not added to virtual domains</td>
</tr>
<tr>
<td>QoS for IVR Zones</td>
<td>Low</td>
</tr>
</tbody>
</table>

Configuring a Service Group

SUMMARY STEPS

1. `ivr service-group name group-name`
2. `autonomous-fabric-id afid vsan-ranges range`
3. `exit`
4. `ivr service-group activate [default-sg-deny]`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td><code>ivr service-group name group-name</code></td>
<td>Configures the IVR service group and enters IVR server group configuration mode.</td>
</tr>
<tr>
<td>Example: <code>switch(config)# ivr service-group name IVR-SG1</code></td>
<td></td>
</tr>
<tr>
<td><code>switch(config-ivr-sg)#</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td><code>autonomous-fabric-id afid vsan-ranges range</code></td>
<td>Configures the autonomous fabric ID and the VSAN range for this service group.</td>
</tr>
<tr>
<td>Example: <code>switch(config-ivr-sg)# autonomous-fabric-id afid</code></td>
<td></td>
</tr>
<tr>
<td><code>10 vsan-ranges 1,2,6-10</code></td>
<td></td>
</tr>
</tbody>
</table>
Purpose| Command or Action
---|---
**Step 3**| exit
**Example:**
switch(config-ivr-sg)# exit
switch(config)#
Exits IVR server group configuration mode.

**Step 4**| ivr service-group activate [default-sg-deny]
**Example:**
switch(config)# ivr service-group activate
Activates the service group configuration and optionally sets the communication policy between switches in the default service group to deny.

**Note** To change the communication policy back to allow, you must issue the ivr service-group activate command again.

What to Do Next
To complete this configuration, ensure you have enabled CFS distribution for IVR, then activate the IVR VSAN topology and commit the changes.

Verifying IVR Configuration
To display the IVR configuration, perform one of the following tasks:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ivr</td>
<td>Displays the status for the IVR configuration.</td>
</tr>
<tr>
<td>show ivr diagnostics</td>
<td>Displays information about IVR diagnostics.</td>
</tr>
<tr>
<td>show ivr merge status</td>
<td>Displays information the last IVR merge event.</td>
</tr>
<tr>
<td>show ivr pending</td>
<td>Displays information about the IVR pending database.</td>
</tr>
<tr>
<td>show ivr pending-diff</td>
<td>Displays the differences between the pending database and the config database.</td>
</tr>
<tr>
<td>show ivr vsan-topology [active</td>
<td>configured]</td>
</tr>
<tr>
<td>show ivr session status</td>
<td>Displays information about IVR CFS session.</td>
</tr>
<tr>
<td>show ivr virtual-domains</td>
<td>Displays information about IVR virtual domains for all local VSANs.</td>
</tr>
<tr>
<td>Command</td>
<td>Purpose</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------------------------------------------------------</td>
</tr>
<tr>
<td>show ivr zone</td>
<td>Displays information about IVR zones.</td>
</tr>
<tr>
<td>show ivr zoneset</td>
<td>Displays information about IVR zone sets.</td>
</tr>
<tr>
<td>show ivr service-group active</td>
<td>Displays information about the active service group.</td>
</tr>
<tr>
<td>show ivr service-group configured</td>
<td>Displays information about the configured service group.</td>
</tr>
<tr>
<td>show autonomous-fabric-id database</td>
<td>Displays information about the AFIDs.</td>
</tr>
<tr>
<td>show ivr virtual-fcdomain-add-status</td>
<td>Displays the status of the IVR virtual domain configuration.</td>
</tr>
</tbody>
</table>

Related Topics

- Information about IVR Zones and Zonesets, page 209
- Configuring IVR Zones, page 212
- Configuring IVR Zone Sets, page 213

Feature History

Table 40: Feature History IVR

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVR</td>
<td>5.2(1)</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>
Persistent FCIDs

- Information About Persistent FCIDs, page 241
- Licensing Requirements, page 242
- Guidelines and Limitations for Persistent FCIDs, page 242
- Default Settings, page 243
- Configuring Persistent FCIDs, page 243
- Verifying IVR Configuration, page 244
- Feature History, page 245

Information About Persistent FCIDs

FC ID persistence improves IVR management by providing the following features:

- Allows you to control and assign a specific virtual domain to use in a native VSAN.
- Allows you to control and assign a specific virtual FC ID for a device.

The benefits of persistent FC IDs for IVR are as follows:

- Host devices always see the same FC ID for targets.
- FC IDs help you plan your SAN layout better by assigning virtual domains for IVR to use.
- FC IDs can make SAN monitoring and management easier. When you see the same domain or FC ID consistently assigned, you can readily determine the native VSAN or device to which it refers.
Licensing Requirements

<table>
<thead>
<tr>
<th>Product</th>
<th>License</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco Nexus 7000 Series.</td>
<td>IVR requires the FCoE license for each F-series module. FCoE enabled in a storage VDC does not require the Advanced Services License. IVR also requires the Storage Enterprise License. For a complete explanation of the Cisco NX-OS licensing scheme and how to obtain and apply licenses, see the <em>Cisco NX-OS Licensing Guide.</em></td>
</tr>
</tbody>
</table>

Guidelines and Limitations for Persistent FCIDs

You can configure two types of database entries for persistent IVR FC IDs:

- Virtual domain entries
- Virtual FC ID entries

Virtual domain entries contain the virtual domain that should be used to represent a native VSAN in a specific VSAN (current VSAN). Virtual domain entries contain the following information:

- Native AFID
- Native VSAN
- Current AFID
- Current VSAN
- Virtual domain to be used for the native AFID and VSAN in current AFID and VSAN

Virtual FC ID entries contain the virtual FC ID that should be used to represent a device in a specific VSAN (current VSAN). Virtual FC ID entries contain the following information:

- Port WWN
- Current AFID
- Current VSAN
- Virtual FC ID to be used to represent a device for the given pWWN in the current AFID and VSAN

If you use persistent FC IDs for IVR, we recommend that you use them for all the devices in the IVR zone set. We do not recommend using persistent FC IDs for some of the IVR devices while using automatic allocation for other devices.

IVR NAT must be enabled to use IVR persistent FC IDs.

In an IVR NAT configuration, if one VSAN in the IVR topology is configured with static domain IDs, then the IVR domains that can be exported to that VSAN must also be assigned static domains.
Default Settings

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVR feature</td>
<td>Disabled</td>
</tr>
<tr>
<td>IVR NAT</td>
<td>Disabled</td>
</tr>
<tr>
<td>IVR distribution</td>
<td>Disabled</td>
</tr>
<tr>
<td>IVR Autotopology</td>
<td>Disabled</td>
</tr>
<tr>
<td>IVR VSANs</td>
<td>Not added to virtual domains</td>
</tr>
<tr>
<td>QoS for IVR Zones</td>
<td>Low</td>
</tr>
</tbody>
</table>

Configuring Persistent FCIDs

SUMMARY STEPS

3. `pwwn pwwn fcid fcid`
4. `device-alias alias-name fcid fcid`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enters IVR fcdomain database configuration submode for current AFID and VSAN.</td>
</tr>
<tr>
<td><code>ivr fcdomain database autonomous-fabric-num fabric-num vsan vsan-id</code></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>switch(config)#</code></td>
<td><code>ivr fcdomain database autonomous-fabric-num 21 vsan 22</code></td>
</tr>
<tr>
<td><code>switch(config-fcdomain)#</code></td>
<td></td>
</tr>
</tbody>
</table>

**Step 2**	Adds or replaces a database entry for native AFID, native VSAN, and domain, and enters IVR fcdomain FC ID configuration submode. Domains of all the corresponding persistent FC ID entries, if any, are also changed to the configured domain ID.
`native-autonomous-fabric-num fabric-num native-vsan vsan-id domain domain-id`	
**Example:**	
`switch(config-fcdomain)#`	`native-autonomous-fabric-num 20 native-vsan 11 domain 12`
`switch(config-fcdomain-db)#`	

**Step 3**	Adds or replaces a database entry for mapping the pWWN to the FC ID.
`pwwn pwwn fcid fcid`	
**Example:**	
Verifying IVR Configuration

To display the IVR configuration, perform one of the following tasks:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ivr</td>
<td>Displays the status for the IVR configuration.</td>
</tr>
<tr>
<td>show ivr diagnostics</td>
<td>Displays information about IVR diagnostics.</td>
</tr>
<tr>
<td>show ivr merge status</td>
<td>Displays information the last IVR merge event.</td>
</tr>
<tr>
<td>show ivr pending</td>
<td>Displays information about the IVR pending database.</td>
</tr>
<tr>
<td>show ivr pending-diff</td>
<td>Displays the differences between the pending database and the config database.</td>
</tr>
<tr>
<td>show ivr vsan-topology [active</td>
<td>configured]</td>
</tr>
<tr>
<td>show ivr session status</td>
<td>Displays information about IVR CFS session.</td>
</tr>
<tr>
<td>show ivr virtual-domains</td>
<td>Displays information about IVR virtual domains for all local VSANs.</td>
</tr>
<tr>
<td>show ivr zone</td>
<td>Displays information about IVR zones.</td>
</tr>
<tr>
<td>show ivr zoneset</td>
<td>Displays information about IVR zone sets.</td>
</tr>
<tr>
<td>show ivr service-group active</td>
<td>Displays information about the active service group.</td>
</tr>
<tr>
<td>show ivr service-group configured</td>
<td>Displays information about the configured service group.</td>
</tr>
<tr>
<td>Command</td>
<td>Purpose</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------------------------------------------------------------</td>
</tr>
<tr>
<td><code>show autonomous-fabric-id database</code></td>
<td>Displays information about the AFIDs.</td>
</tr>
<tr>
<td><code>show ivr virtual-fcdomain-add-status</code></td>
<td>Displays the status of the IVR virtual domain configuration.</td>
</tr>
</tbody>
</table>

**Related Topics**

- Information about IVR Zones and Zonesets, page 209
- Configuring IVR Zones, page 212
- Configuring IVR Zone Sets, page 213

### Feature History

**Table 41: Feature History IVR**

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVR</td>
<td>5.2(1)</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>
Virtual Domains

- Information About Virtual Domains, page 247
- Licensing Requirements, page 248
- Guidelines and Limitations, page 248
- Default Settings, page 248
- Configuring IVR Virtual Domains, page 248
- Verifying IVR Configuration, page 249
- Feature History, page 250

Information About Virtual Domains

In a remote VSAN, the IVR application does not automatically add the virtual domain to the assigned domains list. Some switches (for example, the Cisco SN5428 switch) do not query the remote name server until the remote domain appears in the assigned domains list in the fabric. In such cases, add the IVR virtual domains in a specific VSAN to the assigned domains list in that VSAN. When adding IVR domains, all IVR virtual domains that are currently present in the fabric (and any virtual domain that is created in the future) will appear in the assigned domains list for that VSAN.

Tip

Be sure to add IVR virtual domains if Cisco SN5428 or MDS 9020 switches exist in the VSAN. VSAN. Be

When you enable the IVR virtual domains, links may fail to come up due to overlapping virtual domain identifiers. If this occurs, temporarily withdraw the overlapping virtual domain from that VSAN.

Note

Withdraw an overlapping virtual domain from an IVR VSAN disrupts IVR traffic to and from that domain.

Use the ivr withdraw domain command in EXEC mode to temporarily withdraw the overlapping virtual domain interfaces from the affected VSAN.
Only add IVR domains in the edge VSANs and not in transit VSANs.

Licensing Requirements

<table>
<thead>
<tr>
<th>Product</th>
<th>License</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco Nexus 7000 Series.</td>
<td>IVR requires the FCoE license for each F-series module. FCoE enabled in a storage VDC does not require the Advanced Services License. IVR also requires the Storage Enterprise License. For a complete explanation of the Cisco NX-OS licensing scheme and how to obtain and apply licenses, see the <em>Cisco NX-OS Licensing Guide</em>.</td>
</tr>
</tbody>
</table>

Guidelines and Limitations

IVR has the following guidelines and limitations:

- All border switches in the fabric must be Cisco SAN switches. Other switches in the fabric can be non-Cisco switches.
- IVR must be enabled in the storage VDC.

Default Settings

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVR feature</td>
<td>Disabled</td>
</tr>
<tr>
<td>IVR NAT</td>
<td>Disabled</td>
</tr>
<tr>
<td>IVR distribution</td>
<td>Disabled</td>
</tr>
<tr>
<td>IVR Autotopology</td>
<td>Disabled</td>
</tr>
<tr>
<td>IVR VSANs</td>
<td>Not added to virtual domains</td>
</tr>
<tr>
<td>QoS for IVR Zones</td>
<td>Low</td>
</tr>
</tbody>
</table>

Configuring IVR Virtual Domains

**SUMMARY STEPS**

1. `ivr virtual-fcdomain-add vsan-ranges vsan-range`
2. (Optional) `ivr commit`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ivr virtual-fcdomain-add vsan-ranges vsan-range</td>
<td>Adds the IVR virtual domains to the configured VSANs.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> switch(config)# ivr virtual-fcdomain-add vsan-ranges 1-4093</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>ivr commit</td>
<td>(Optional) Commit the IVR changes to distribute to all IVR-enabled switches in the fabric.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> switch(config)# ivr commit</td>
<td></td>
</tr>
</tbody>
</table>

Verifying IVR Configuration

To display the IVR configuration, perform one of the following tasks:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ivr</td>
<td>Displays the status for the IVR configuration.</td>
</tr>
<tr>
<td>show ivr diagnostics</td>
<td>Displays information about IVR diagnostics.</td>
</tr>
<tr>
<td>show ivr merge status</td>
<td>Displays information the last IVR merge event.</td>
</tr>
<tr>
<td>show ivr pending</td>
<td>Displays information about the IVR pending database.</td>
</tr>
<tr>
<td>show ivr pending-diff</td>
<td>Displays the differences between the pending database and the config database.</td>
</tr>
<tr>
<td>show ivr vsan-topology [active</td>
<td>configured]</td>
</tr>
<tr>
<td>show ivr session status</td>
<td>Displays information about IVR CFS session.</td>
</tr>
<tr>
<td>show ivr virtual-domains</td>
<td>Displays information about IVR virtual domains for all local VSANs.</td>
</tr>
<tr>
<td>show ivr zone</td>
<td>Displays information about IVR zones.</td>
</tr>
<tr>
<td>Command</td>
<td>Purpose</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------------------------------------------------------------------------</td>
</tr>
<tr>
<td>show ivr zoneset</td>
<td>Displays information about IVR zone sets.</td>
</tr>
<tr>
<td>show ivr service-group active</td>
<td>Displays information about the active service group.</td>
</tr>
<tr>
<td>show ivr service-group configured</td>
<td>Displays information about the configured service group.</td>
</tr>
<tr>
<td>show autonomous-fabric-id database</td>
<td>Displays information about the AFIDs.</td>
</tr>
<tr>
<td>show ivr virtual-fcdomain-add-status</td>
<td>Displays the status of the IVR virtual domain configuration.</td>
</tr>
</tbody>
</table>

**Related Topics**
- Information about IVR Zones and Zonesets, page 209
- Configuring IVR Zones, page 212
- Configuring IVR Zone Sets, page 213

**Feature History**

**Table 42: Feature History IVR**

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVR</td>
<td>5.2(1)</td>
<td>This feature was introduced.</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>domain IDs <em>(continued)</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>preferred</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>static</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>domain manager</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fast restart feature</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>DPVM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>default settings</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>description</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>guidelines and limitations</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>verifying</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>drop latency time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>configuring</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>configuring for FSPF in-order delivery</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>displaying information</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>fabric binding <em>(continued)</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>deleting from config database (procedure)</td>
<td>176</td>
<td></td>
</tr>
<tr>
<td>description</td>
<td>171</td>
<td></td>
</tr>
<tr>
<td>disabling</td>
<td>173</td>
<td></td>
</tr>
<tr>
<td>EFMD</td>
<td>171</td>
<td></td>
</tr>
<tr>
<td>enabling</td>
<td>173</td>
<td></td>
</tr>
<tr>
<td>enforcement</td>
<td>172</td>
<td></td>
</tr>
<tr>
<td>forceful activation</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>forceful deactivation</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>initiation process</td>
<td>172</td>
<td></td>
</tr>
<tr>
<td>licensing requirements</td>
<td>171</td>
<td></td>
</tr>
<tr>
<td>port security comparison</td>
<td>171</td>
<td></td>
</tr>
<tr>
<td>saving to config database</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>verifying status</td>
<td>173</td>
<td></td>
</tr>
<tr>
<td>viewing active databases (procedure)</td>
<td>176</td>
<td></td>
</tr>
<tr>
<td>viewing EFMD statistics (procedure)</td>
<td>176</td>
<td></td>
</tr>
<tr>
<td>viewing violations (procedure)</td>
<td>176</td>
<td></td>
</tr>
<tr>
<td>fabric login</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>fabric pWWNs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>zone membership</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>fabric reconfiguration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fcdomain phase</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>fabric security</td>
<td></td>
<td></td>
</tr>
<tr>
<td>authentication</td>
<td>139</td>
<td></td>
</tr>
<tr>
<td>default settings</td>
<td>149</td>
<td></td>
</tr>
<tr>
<td>Fabric Shortest Path First</td>
<td></td>
<td></td>
</tr>
<tr>
<td>routing services</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>Fabric-Device Management Interface</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td>fabrics</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>fault tolerant fabrics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>example (figure)</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>FC IDs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>allocating</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>allocating default company ID lists</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>configuring fc aliases members</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>description</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>persistent</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>FC-SP</td>
<td>139, 141</td>
<td></td>
</tr>
<tr>
<td>authentication</td>
<td>139</td>
<td></td>
</tr>
<tr>
<td>enabling</td>
<td>141</td>
<td></td>
</tr>
<tr>
<td>fc aliases</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cloning</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>configuring for zones</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>creating</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>renaming</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>fcdomains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>autoreconfigured merged fabrics</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>configuring CFS distribution</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>default settings</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>description</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>displaying information</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>displaying statistics</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>domain IDs</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>domain manager fast restart</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
fcdomains (continued)
  enabling autoreconfiguration 6
  incoming RCFs 5
  restarts 1
  switch priorities 4
fctimers
  displaying configured values 129
FDI
  description 118
  displaying database information 118
Fibre Channel
  sWWNs for fabric binding 174
  timeout values 125
  TOV 125
Fibre Channel domains 1
Fibre Channel Security Protocol 139
FLOGI
  description 115
flow statistics
  clearing 113
  counting 112
  description 112
  displaying 113
FSPF
  clearing counters 106
  clearing VSAN counters 101
  computing link cost 102
  configuring globally 99
  configuring Hello time intervals 103
  configuring link cost 102
  configuring on a VSAN 100
  configuring on interfaces 102
  dead time intervals 103
  default settings 113
  description 97
  disabling 101
  disabling on interfaces 105
  disabling routing protocols 101
  displaying database information 113
  displaying global information 113
  enabling 101
  fault tolerant fabrics 97
  in-order delivery 107
  interoperability 133
  link state record defaults 99
  reconvergence times 97
  redundant links 98
  resetting configuration 101
  resetting to defaults 101
  retransmitting intervals 104
  routing services 97
  topology examples 97
FSPF routes
  configuring 107
FSPF routes (continued)
  description 106
full zone sets
  considerations 62
  enabling distribution 71
fWWNs
  configuring fc aliases members 68
Fx ports
  VSAN membership 28

H
hard zoning
  description 71
HBA ports
  configuring area FCIDs 17
Hello time intervals
  configuring for FSPF 103
  description 103

I
in-order delivery
  configuring drop latency time 110
  displaying status 110
  enabling for VSANs 110
  enabling globally 109
  guidelines 109
  reordering network frames 108
  reordering port channel frames 108
indirect link failures
  recovering 179
interfaces
  assigning to VSANs 31
  configuring fc aliases members 68
  VSAN membership 30
interop modes
  configuring mode 1 133
  default settings 137
  description 133
interoperability
  configuring interop mode 1 133
  description 133
  VSANs 35
IOD 107
isolated VSANs
  description 32
  displaying membership 32
IVR
  verifying 197, 204, 218, 226, 232, 238, 244, 249
IVR Zones
   description 209
IVR Zonesets
   description 209

L
link costs
   configuring for FSPF 102
   description 102
link failures
   recovering 179
load balancing
   attributes 34
   attributes for VSANs 29
   configuring 34
   description 34
   guarantees 34

M
MAC addresses
   configuring secondary 131
McData
   native interop mode 133
merged fabrics
   autoreconfigured 6

N
N ports
   hard zoning 71
   zone enforcement 71
   zone membership 59
name servers
   displaying database entries 117
   interoperability 133
   proxy feature 116
   registering proxies 116
NPIV
   enabling 23

P
passwords
   DHCHAP 145
persistent FC IDs
   configuring 15
   description 15
   displaying 19
   enabling 15
   purging 17
PLOGI
   name server 117
port channels
   compatibility with DHCHAP 141
   configuring Fibre Channel routes 107
   interoperability 133
   link changes 108
port security
   activating 156
   activation 152
   activation rejection 156
   auto-learning 152
   compatibility with DHCHAP 141
   configuring manually without auto-learning 161
   deactivating 156
   default settings 170
   disabling 155
   displaying settings (procedure) 157
   displaying statistics (procedure) 157
   displaying violations (procedure) 157
   enabling 155
   enforcement mechanisms 151
   fabric binding comparison 171
   forcing activation 156
   license requirement 151
   preventing unauthorized accesses 151
port security auto-learning
   description 152
   device authorization 159
   disabling 159
   distributing configuration 163
   enabling 158
   guidelines for configuring with CFS 153
   guidelines for configuring without CFS 154
port security databases
   copying 169
   copying active to config (procedure) 157
   deleting 169
   interactions 167
   manual configuration guidelines 155
   merge guidelines 167
   reactivating 157
   scenarios 168
port tracking
   default settings 181
   description 179
   guidelines 181
   shutting down ports forcefully 185
port world wide names 59
ports
  VSAN membership 30
principal switches
  assigning domain ID 7
  configuring 10
proxies
  registering for name servers 116
pWWNs
  configuring fc alias members 68
  zone membership 59

source IDs (continued)
  path selection 34
SPF
  computational hold times 99
static routes
  runtime checks 106
storage devices
  access control 59
switch priorities
  default 4
description 4
sWWNs
  configuring for fabric binding 174

T

TE ports
  fabric binding checking 171
FSPF topologies 97
interoperability 133
recovering from link isolations 72
trunking restrictions 52
timeout values 125
TOV
  configuring across all VSANs 125
counting for a VSAN 126
default settings 137
interoperability 133
ranges 125
trunking
  configuration guidelines 52
  configuring modes 53
default settings 58
description 51
interoperability 133
link state 53
merging traffic 52
restrictions 51
trunking ports
  associated with VSANs 31
trunking protocol
  default settings 58
default state 53

S

scalability
  VSANs 28
SCR
  request 118
secondary MAC addresses
  configuring 131
soft zoning
  description 71
source IDs
  in-order delivery 107

RCFs
  description 2
  incoming 5
  rejecting incoming 5
reconfigure fabric frames 2
redundancy
  VSANs 28
Registered State Change Notifications 118
retransmitting intervals
  configuring for FSPF 104
description 104
route costs
  computing 102
RSCN
  default settings 124
description 118
  displaying information 119
  multiple port IDs 119
  suppressing domain format SW-RSCNs 120
  switch RSCN 118
RSCN timers
  configuration distribution using CFS 121
  configuring 120
runtime checks
  static routes 106

Cisco Nexus 7000 Series NX-OS SAN Switching Configuration Guide
OL-24915-01
IN-5
trunking protocol (continued)
  description 52
  detecting port isolation 52

U
unique area FC IDs
  configuring 17
  description 17

V
VSAN IDs
  allowed list 58
  description 29
  range 28
  VSAN membership 28
VSANs
  advantages 25
  allowed-active 52
  cache contents 19
  comparison with zones (table) 28
  compatibility with DHCHAP 141
  configuring 30
  configuring allowed-active lists 57
  configuring FSPF 99
  configuring trunk-allowed lists 57
  default settings 35
  deleting 33
  description 25
  displaying configuration 35
  displaying membership 31
  displaying usage 35
  domain ID automatic reconfiguration 7
FC IDs 25
  features 25
  flow statistics 111
FSPF 100
  FSPF connectivity 97
  interop mode 133
  isolated 32
  load balancing 34
  load balancing attributes 29
  multiple zones 62
  name server 116
  names 29
  operational states 32
  port membership 30
  states 29
  timer configuration 125
  TOV 125

VSANs (continued)
  traffic isolation 25
  trunk-allowed 52
  trunking ports 31

W
world wide names 130
WWNs
  description 130
  displaying information 130
  link initialization 130
  secondary MAC addresses 131

Z
zone aliases
  conversion to device aliases 92
zone attribute groups
  cloning 75
zone databases
  migrating a non-Cisco SAN database 76
  release locks 80
zone members
  displaying information 67
zone server databases
  clearing 76
zone sets
  activating 67
  analyzing 84
  cloning 75
  considerations 62
  creating 66
  displaying information 76
  distributing configuration 71
  enabling distribution 71
  exporting 73
  exporting databases 73
  features 59
  importing 73
  importing databases 73
  one-time distribution 72
  recovering from link isolations 72
  renaming 74
  viewing information 76
zones
  access control 66
  analyzing 84
  backing up (procedure) 74
  cloning 75
  compacting for downgrading 83
zones (continued)
  comparison with device aliases 86
  comparison with VSANs (table) 28
  configuring aliases 69
  configuring fcaliases 69
  default policies 59
  displaying information 76
  exporting databases 73
  features 59, 61
  importing databases 73

zones (continued)
  membership using pWWNs 28
  renaming 74
  restoring (procedure) 74
  viewing information 76
zoning
  description 59
  example 61
  implementation 61