System-Level High Availability

This chapter describes the Cisco NX-OS HA system and application restart operations and includes the following sections:

- Information About Cisco NX-OS System-Level High Availability, page 1
- Licensing Requirements, page 2
- Physical Redundancy, page 3
- Supervisor Restarts and Switchovers, page 5
- Displaying HA Status Information, page 9
- VDC High Availability, page 11
- Related Documents, page 11
- Standards, page 12
- MIBs, page 12
- RFCs, page 12
- Technical Assistance, page 13

Information About Cisco NX-OS System-Level High Availability

Cisco NX-OS system-level HA mitigates the impact of hardware or software failures and is supported by the following features:

- Redundant hardware components:
 - Supervisor
 - Switch fabric
 - Power supply
 - Fan trays

For details about physical requirements and redundant hardware components, respectively, see the Cisco Nexus 7000 Series Site Preparation Guide and the Cisco Nexus 7000 Series Hardware Installation and Reference Guide.
• HA software features:
 * For details about configuring and performing nondisruptive upgrades, see ISSU and High Availability.
 * Nonstop forwarding (NSF) — For details about nonstop forwarding, also known as graceful restart, see the Cisco Nexus 7000 Series NX-OS Unicast Routing Configuration Guide.
 * Virtual device contexts (VDCs) — For details about VDCs and HA, see the Cisco Nexus 7000 Series NX-OS Virtual Device Context Configuration Guide.
 * Generic online diagnostics (GOLD) — For details about configuring GOLD, see the Cisco Nexus 7000 Series NX-OS System Management Configuration Guide.
 * Embedded event manager (EEM) — For details about configuring EEM, see the Cisco Nexus 7000 Series NX-OS System Management Configuration Guide.
 * Smart Call Home — For details about configuring Smart Call Home, see the Cisco Nexus 7000 Series NX-OS System Management Configuration Guide.

Virtualization Support

For information about system-level high availability within a virtual device context (VDC), see Network-Level High Availability.

Note

For complete information on VDCs, see the Cisco Nexus 7000 Series NX-OS Virtual Device Context Configuration Guide.

Licensing Requirements

<table>
<thead>
<tr>
<th>Product</th>
<th>License Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco NX-OS</td>
<td>With the exception of VDC and Smart Call Home, the system-level high availability features require no license. Any feature not included in a license package is bundled with the Cisco NX-OS system images and is provided for free.</td>
</tr>
<tr>
<td>VDC</td>
<td>VDC requires an Advanced Services license.</td>
</tr>
<tr>
<td>Smart Call Home</td>
<td>Smart Call Home is available through Cisco SMARTnet Service and Cisco SP Base Service.</td>
</tr>
</tbody>
</table>

For a complete explanation of the Cisco NX-OS licensing scheme and how to obtain and apply licenses, see the Cisco Nexus 7000 Series NX-OS Licensing Guide.
Physical Redundancy

The Nexus 7000 series includes the following physical redundancies:

For additional details about physical redundancies, see the Cisco Nexus 7000 Series Site Preparation Guide and the Cisco Nexus 7000 Series Hardware Installation and Reference Guide.

Power Supply Redundancy

The Nexus 7000 series supports up to three power supply modules on a Cisco Nexus 7010 switch and up to four power supplies on a Cisco Nexus 7018 switch. Each power supply module can deliver up to 7.5 KW, depending on the number of inputs and the input line voltage. By installing two or three modules, you can ensure that the failure of one module will not disrupt system operations. You can replace the failed module while the system is operating. For information on power supply module installation and replacement, see the Cisco Nexus 7000 Series Hardware Installation and Reference Guide.

For further redundancy, each power supply module includes two internalized isolated power units, which give it two power paths per modular power supply, and six paths in total, per chassis, when fully populated. In addition, the power subsystem allows the three power supplies to be configured in any one of four redundancy modes.

Power Modes

Each of the four available power redundancy modes imposes different power budgeting and allocation models, which in turn deliver varying usable power yields and capacities. For more information regarding power budgeting, usable capacity, planning requirements, and redundancy configuration, see the Cisco Nexus 7000 Series Hardware Installation and Reference Guide.

The redundancy modes are only for software allocation of power to the system. In all the modes, the power supplies will be load shared based on their input and functionality. The available power in the system is determined at the start by the number of supplies in the system.

The available power supply redundancy modes are described in the Table below.

Table 1: Power Redundancy Modes

<table>
<thead>
<tr>
<th>Redundancy Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined</td>
<td>This mode does not provide power redundancy. The available power is the total power capacity of all power supplies.</td>
</tr>
<tr>
<td>insrc-redundant</td>
<td>This mode utilizes two electrical grids, each one powering a half module within each power supply. If one power grid goes down, each power supply continues to draw power through its other half module. The available power is the amount of power by the lesser of the two grids through the power supplies.</td>
</tr>
<tr>
<td>ps-redundant</td>
<td>This mode reserves the power of one supply in case any power supply fails. The power from the supply that can provide highest power is reserved. The available power is the sum of the remaining power supply units.</td>
</tr>
</tbody>
</table>
Redundancy Mode | Description
--- | ---
redundant | This mode combines power supply redundancy and input source redundancy, which means that the chassis has an extra power supply and each half of each power supply is connected to one electrical grid while the other half of each power supply is connected to the other electrical grid. The available power is the lesser of the available power for power supply mode and input source mode.

Fan Tray Redundancy

The Cisco Nexus 7000 series chassis contains two redundant system fan trays for I/O module cooling and two additional fan trays for switch fabric module cooling. Only one of each pair of fan trays is required to provide system cooling.

The fan speeds are variable and are automatically adjusted to one of 16 levels in order to optimize system cooling while minimizing overall system noise and power draw. A detected failure of a fan within a given fan tray will trigger an increase in the speed of the remaining fans to compensate for the failure. A detected removal of an entire fan tray, without replacement, will initiate a system shutdown after a three-minute warning period.

Starting with Cisco NX-OS Release 5.0(2a), the fan shutdown policy for the 10-slot chassis is as follows:

- If a system fan is removed: Earlier releases shut off the other fan in 3 minutes. The new policy is to increase the speed of the other fan based on the table mapping.
- If a fabric fan is removed: Earlier releases shut off the other fan in 3 minutes. The new policy is to increase the speed of the other fan to the maximum.

Caution: In the case of a fan tray failure, in the Nexus 7009 or the Nexus 7018 devices, you must leave the failed unit in place to ensure proper airflow until a replacement is made available. The fan trays are hot swappable, but you must complete the removal and replacement within three minutes to avoid an automatic system shutdown.

Switch Fabric Redundancy

Cisco NX-OS provides switching fabric availability through redundant switch fabric module implementation. You can configure a single Nexus 7000 series with one to five switch fabric cards for capacity and redundancy. Each I/O module installed in the system automatically connects to and uses all functionally installed switch fabric modules. A failure of a switch fabric module triggers an automatic reallocation and balancing of traffic across the remaining active switch fabric modules. Replacing the failed fabric module reverses this process. After you insert the replacement fabric module and bring it online, traffic is again redistributed across all installed fabric modules and redundancy is restored.
Supervisor Module Redundancy

The Nexus 7000 series supports dual supervisor modules to provide 1+1 redundancy for the control and management plane. A dual supervisor configuration operates in an active or standby capacity in which only one of the supervisor modules is active at any given time, while the other acts as a standby backup. The state and configuration remain constantly synchronized between the two supervisor modules to provide stateful switchover in the event of a supervisor module failure.

Cisco NX-OS’s Generic On-Line Diagnostics (GOLD) subsystem and additional monitoring processes on the supervisor trigger a stateful failover to the redundant supervisor when the processes detect unrecoverable critical failures, service restartability errors, kernel errors, or hardware failures.

If a supervisor-level unrecoverable failure occurs, the currently active, failed supervisor triggers a switchover. The standby supervisor becomes the new active supervisor and uses the synchronized state and configuration while the failed supervisor is reloaded. If the failed supervisor is able to reload and pass self-diagnostics, it initializes, becomes the new standby supervisor, and then synchronizes its operating state with the newly active unit.

Supervisor Restarts and Switchovers

Restarts on Single Supervisors

In a system with only one supervisor, when all HA policies have been unsuccessful in restarting a service, the supervisor restarts. The supervisor and all services reset and start with no prior state information.

Restarts on Dual Supervisors

When a supervisor-level failure occurs in a system with dual supervisors, the System Manager will perform a switchover rather than a restart to maintain stateful operation. In some cases, however, a switchover may not be possible at the time of the failure. For example, if the standby supervisor module is not in a stable standby state, a restart rather than a switchover is performed.

Switchovers on Dual Supervisors

A dual supervisor configuration allows nonstop forwarding (NSF) with stateful switchover (SSO) when a supervisor-level failure occurs. The two supervisors operate in an active/standby capacity in which only one of the supervisor modules is active at any given time, while the other acts as a standby backup. The two supervisors constantly synchronize the state and configuration in order to provide a seamless and stateful switchover of most services if the active supervisor module fails.

Switchover Characteristics

An HA switchover has the following characteristics:

• It is stateful (nondisruptive) because control traffic is not affected.
• It does not disrupt data traffic because the switching modules are not affected.
• Switching modules are not reset.
• It does not reload the Connectivity Management Processor (CMP).

CMP is a Supervisor 1 only feature.

Switchover Mechanisms

Switchover occurs by one of the following two mechanisms:

• The active supervisor module fails and the standby supervisor module automatically takes over.
• You manually initiate a switchover from an active supervisor module to a standby supervisor module.

When a switchover process begins, another switchover process cannot be started on the same switch until a stable standby supervisor module is available.

Switchover Failures

If a switchover does not complete successfully within 28 seconds, the supervisors will reset. A reset prevents loops in the Layer 2 network if the network topology was changed during the switchover. For optimal performance of this recovery function, we recommend that you do not change the Spanning Tree Protocol (STP) default timers.

If three system-initiated switchovers occur within 20 minutes, all nonsupervisor modules will shut down to prevent switchover cycling. The supervisors remain operational to allow you to collect system logs before resetting the switch.

Manually Initiating a Switchover

To manually initiate a switchover from an active supervisor module to a standby supervisor module, use the system switchover command. After you run this command, you cannot start another switchover process on the same system until a stable standby supervisor module is available.

Note

If the standby supervisor module is not in a stable state (ha-standby), a manually-initiated switchover is not performed.

To ensure that an HA switchover is possible, use the show system redundancy status command or the show module command. If the command output displays the ha-standby state for the standby supervisor module, you can manually initiate a switchover.

Switchover Guidelines

Follow these guidelines when performing a switchover:

• When you manually initiate a switchover, it takes place immediately.
• A switchover can only be performed when two supervisor modules are functioning in the switch.
The modules in the chassis must be functioning.

Verifying Switchover Possibilities

This section describes how to verify the status of the switch and the modules before a switchover.

- Use the `show system redundancy status` command to ensure that the system is ready to accept a switchover.

- Use the `show module` command to verify the status (and presence) of a module at any time. A sample output of the `show module` command follows:

```plaintext
switch# show module
Mod Ports Module-Type Model Status
--- ----- ----------------------------------- ------------------ ----------
1 0 Supervisor module-1X N7K-SUP1 active *
2 0 Supervisor module-1X N7K-SUP1 ha-standby
3 32 1/10 Gbps Ethernet Module N7K-D132XP-15 ok
4 48 1/10 Gbps Ethernet Module N7K-F248XP-24 ok
5 48 10/100/1000 Mbps Ethernet XL Module N7K-M148ST-11L ok
6 32 1/10 Gbps Ethernet Module N7K-F132XP-15 ok
9 32 1/10 Gbps Ethernet Module N7K-F132XP-15 ok
Mod Sw Hw
--- -------------- ------
1 6.0(1) 1.8
2 6.0(1) 1.1
3 6.0(1) 0.405
4 6.0(1) 0.500
5 6.0(1) 1.0
6 6.0(1) 0.617
9 6.0(1) 0.616
Mod MAC-Address(es) Serial-Num
--- -------------------------------------- ----------
1 f0-25-72-ab-a3-f8 to f0-25-72-ab-a4-00 JAF1446BMRR
2 00-22-55-77-bc-48 to 00-22-55-77-bc-50 JAB122901WK
3 00-24-f7-1b-69-70 to 00-24-f7-1b-69-b4 JAF1321ARLQ
4 40-55-39-25-c8-00 to 40-55-39-25-c8-34 JAF1530AAAF
5 e8-b7-48-00-03-60 to e8-b7-48-00-03-94 JAF1513BCCH
6 f8-66-f2-02-a1-f8 to f8-66-f2-02-a2-3c JAF1427DETN
9 a8-b1-d4-57-bc-bc to a8-b1-d4-57-bd-00 JAF1424CFMH
Mod Online Diag Status
--- ------------------
1 Pass
2 Pass
3 Pass
4 Pass
5 Pass
6 Pass
9 Pass
Xbar Ports Module-Type Model Status
--- ----- ----------------------------------- ------------------ ----------
2 0 Fabric Module 2 N7K-C7009-FAB-2 ok
4 0 Fabric Module 2 N7K-C7009-FAB-2 ok
5 0 Fabric Module 2 N7K-C7009-FAB-2 ok
Xbar Sw Hw
--- -------------- ------
2 NA 0.201
4 NA 0.203
5 NA 0.201
Xbar MAC-Address(es) Serial-Num
```
Replacing the Active Supervisor Module in a Dual Supervisor System

You can nondisruptively replace the active supervisor module in a dual supervisor system.

To replace the active supervisor module, follow these steps:

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch # system switchover</td>
<td>Initiates a manual switchover to the standby supervisor. Note Wait until the switchover completes and the standby supervisor becomes active.</td>
</tr>
<tr>
<td>Step 2 switch# out-of-service slot-number</td>
<td>Powers down the supervisor module you are replacing.</td>
</tr>
<tr>
<td>Step 3 Remove the supervisor and insert the replacement.</td>
<td>The new supervisor will automatically sync up the image and configuration from the currently active supervisor.</td>
</tr>
</tbody>
</table>

Replacing the Standby Supervisor Module in a Dual Supervisor System

You can nondisruptively replace standby supervisor module in a dual supervisor system.

To replace the standby supervisor module, follow these steps:

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# out-of-service slot-number</td>
<td>Powers down the standby supervisor module.</td>
</tr>
</tbody>
</table>
Purpose

The new supervisor will automatically sync up the image and configuration from the currently active supervisor.

Step 2

Remove the supervisor and insert the replacement.

The new supervisor will automatically sync up the image and configuration from the currently active supervisor.

Displaying HA Status Information

Use the `show system redundancy status` command to view the HA status of the system. The tables below explain the possible output values for the redundancy, supervisor, and internal states.

```
switch# show system redundancy status
Redundancy mode
---------------
  administrative: HA
  operational: HA
This supervisor (sup-1)
-----------------------
  Redundancy state: Active
  Supervisor state: Active
  Internal state: Active with HA standby
Other supervisor (sup-2)
------------------------
  Redundancy state: Standby
  Supervisor state: HA standby
  Internal state: HA standby
```

The following conditions identify when automatic synchronization is possible:

- If the internal state of one supervisor module is Active with HA standby and the other supervisor module is ha-standby, the system is operationally HA and can perform automatic synchronization.
- If the internal state of one of the supervisor modules is none, the system cannot perform automatic synchronization.

The Table below lists the possible values for the redundancy states.

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not present</td>
<td>The supervisor module is not present or is not plugged into the chassis.</td>
</tr>
<tr>
<td>Initializing</td>
<td>The diagnostics have passed and the configuration is being downloaded.</td>
</tr>
<tr>
<td>Active</td>
<td>The active supervisor module and the switch are ready to be configured.</td>
</tr>
<tr>
<td>Standby</td>
<td>A switchover is possible.</td>
</tr>
<tr>
<td>Failed</td>
<td>The system detects a supervisor module failure on initialization and automatically attempts to power-cycle the module three times. After the third attempt, it continues to display a failed state.</td>
</tr>
</tbody>
</table>
The supervisor module is intentionally shut down for debugging purposes. Offline

The system has established connection with the supervisor and the supervisor module is performing diagnostics. At BIOS

The system is intentionally shut down for debugging purposes. Offline

Unknown The system is in an invalid state. If it persists, call TAC.

This Table lists the possible values for the supervisor module states.

Table 3: Supervisor States

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>The active supervisor module in the switch is ready to be configured.</td>
</tr>
<tr>
<td>HA standby</td>
<td>A switchover is possible.</td>
</tr>
<tr>
<td>Offline</td>
<td>The system is intentionally shut down for debugging purposes.</td>
</tr>
<tr>
<td>Unknown</td>
<td>The system is in an invalid state and requires a support call to TAC.</td>
</tr>
</tbody>
</table>

This Table lists the possible values for the internal redundancy states.

Table 4: Internal States

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HA standby</td>
<td>The HA switchover mechanism in the standby supervisor module is enabled.</td>
</tr>
<tr>
<td>Active with no standby</td>
<td>A switchover is impossible.</td>
</tr>
<tr>
<td>Active with HA standby</td>
<td>The active supervisor module in the switch is ready to be configured. The standby supervisor module is in the ha-standby state.</td>
</tr>
<tr>
<td>Shutting down</td>
<td>The system is being shut down.</td>
</tr>
<tr>
<td>HA switchover in progress</td>
<td>The system is in the process of entering the active state.</td>
</tr>
<tr>
<td>Offline</td>
<td>The system is intentionally shut down for debugging purposes.</td>
</tr>
<tr>
<td>HA synchronization in progress</td>
<td>The standby supervisor module is in the process of synchronizing its state with the active supervisor modules.</td>
</tr>
<tr>
<td>Standby (failed)</td>
<td>The standby supervisor module is not functioning.</td>
</tr>
</tbody>
</table>
VDC High Availability

The Cisco NX-OS software incorporates high availability (HA) features that minimize the impact on the data plane if the control plane fails or a switchover occurs. The different HA service levels provide data plane protection, including service restarts, stateful supervisor module switchovers, and in-service software upgrades (ISSUs). All of these high availability features support VDCs.

If unrecoverable errors occur in a VDC, the Cisco NX-OS software provides HA policies that you can specify for each VDC. These HA policies include the following:

- **Bringdown**—Puts the VDC in the failed state. To recover from the failed state, you must reload the physical device. This is the behavior for default VDC. For non-default VDC, there is no need to reload the physical device.
- **Reset**—Initiates a supervisor module switchover for a Cisco NX-OS device with two supervisor modules, or reloads a Cisco NX-OS device with one supervisor module.
- **Restart**—Deletes the VDC and recreates it by using the startup configuration.

For details about VDCs and HA, see the *Cisco Nexus 7000 Series NX-OS Virtual Device Context Configuration Guide*.

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual device context (VDC)</td>
<td>Cisco Nexus 7000 Series NX-OS Virtual Device Context Configuration Guide</td>
</tr>
<tr>
<td>Redundant hardware</td>
<td>Cisco Nexus 7000 Series Site Preparation Guide and the Cisco Nexus 7000 Series Hardware Installation and Reference Guide</td>
</tr>
<tr>
<td>Power mode configuration and Cisco NX-OS fundamentals</td>
<td>Cisco Nexus 7000 Series NX-OS Fundamentals Configuration Guide</td>
</tr>
<tr>
<td>Nonstop forwarding (NSF)</td>
<td>Cisco Nexus 7000 Series NX-OS Unicast Routing Configuration Guide</td>
</tr>
<tr>
<td>In-service software upgrades (ISSU)</td>
<td>Cisco Nexus 7000 Series NX-OS Software Upgrade and Downgrade Guide</td>
</tr>
</tbody>
</table>
Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>• CISCO-SYSTEM-EXT-MIB: ciscoHaGroup, cseSwCoresTable, cseHaRestartNotify, cseShutDownNotify, cseFailSwCoreNotify, cseFailSwCoreNotifyExtended</td>
<td>To locate and download MIBs, go to the following URL: http://www.cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml</td>
</tr>
<tr>
<td>• CISCO-PROCESS-MIB</td>
<td></td>
</tr>
<tr>
<td>• CISCO-RF-MIB</td>
<td></td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No RFCs are supported by this feature</td>
<td>—</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Assistance Center (TAC) home page, containing 30,000 pages of</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
<tr>
<td>searchable technical content, including links to products, technologies,</td>
<td></td>
</tr>
<tr>
<td>solutions, technical tips, and tools. Registered Cisco.com users can log</td>
<td></td>
</tr>
<tr>
<td>in from this page to access even more content.</td>
<td></td>
</tr>
</tbody>
</table>