

Configuring IPv4

This chapter contains the following sections:

- Finding Feature Information, on page 1
- Information About IPv4, on page 1
- Virtualization Support for IPv4, on page 6
- Prerequisites for IPv4, on page 6
- Guidelines and Limitations for IPv4, on page 6
- Default Settings for IPv4 Parameters, on page 7
- Configuring IPv4, on page 7
- Verifying the IPv4 Configuration, on page 18
- Configuration Examples for IPv4, on page 19
- Related Documents for IPv4, on page 22
- Standards for IPv4, on page 22
- Feature History for IPv4, on page 22

Finding Feature Information

Your software release might not support all the features documented in this module. For the latest caveats and feature information, see the Bug Search Tool at https://tools.cisco.com/bugsearch and the release notes for your software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the "New and Changed Information" chapter or the Feature History table in this chapter.

Information About IPv4

You can configure IP on the device to assign IP addresses to network interfaces. When you assign IP addresses, you enable the interfaces and allow communication with the hosts on those interfaces.

You can configure an IP address as primary or secondary on a device. An interface can have one primary IP address and multiple secondary addresses. All networking device on an interface should share the same primary IP address because the packets that are generated by the device always use the primary IPv4 address. Each IPv4 packet is based on the information from a source or destination IP address.

You can use a subnet to mask the IP addresses. A mask is used to determine what subnet an IP address belongs to. An IP address contains the network address and the host address. A mask identifies the bits that

denote the network number in an IP address. When you use the mask to subnet a network, the mask is then referred to as a subnet mask. Subnet masks are 32-bit values that allow the recipient of IP packets to distinguish the network ID portion of the IP address from the host ID portion of the IP address.

The IP feature is responsible for handling IPv4 packets that terminate in the supervisor module, as well as forwarding of IPv4 packets, which includes IPv4 unicast/multicast route lookup, reverse path forwarding (RPF) checks, and software access control list/policy-based routing (ACL/PBR) forwarding. The IP feature also manages the network interface IP address configuration, duplicate address checks, static routes, and packet send/receive interface for IP clients.

Multiple IPv4 Addresses

Cisco NX-OS supports multiple IP addresses per interface. You can specify an unlimited number of secondary addresses for a variety of situations.

The most common situations are as follows:

- When there are not enough host IP addresses for a particular network interface. For example, if your subnetting allows up to 254 hosts per logical subnet, but on one physical subnet you must have 300 host addresses, then you can use secondary IP addresses on the routers or access servers to allow you to have two logical subnets that use one physical subnet.
- Two subnets of a single network might otherwise be separated by another network. You can create a
 single network from subnets that are physically separated by another network by using a secondary
 address. In these instances, the first network is extended, or layered on top of the second network. A
 subnet cannot appear on more than one active interface of the router at a time.

Note

If any device on a network segment uses a secondary IPv4 address, other devices on that same network segment that require a secondary address must use a secondary address from the same network or subnet. The inconsistent use of secondary addresses on a network segment can quickly cause routing loops.

Address Resolution Protocol

Networking devices and Layer 3 switches use Address Resolution Protocol (ARP) to map IP (network layer) addresses to (Media Access Control [MAC]-layer) addresses to enable IP packets to be sent across networks. Before a device sends a packet to another device, it looks in its own ARP cache to see if there is a MAC address and corresponding IP address for the destination device. If there is no entry, the source device sends a broadcast message to every device on the network.

Each device compares the IP address to its own. Only the device with the matching IP address replies to the device that sends the data with a packet that contains the MAC address for the device. The source device adds the destination device MAC address to its ARP table for future reference, creates a data-link header and trailer that encapsulates the packet, and proceeds to transfer the data.

Figure 1: ARP Process

When the destination device lies on a remote network that is beyond another device, the process is the same except that the device that sends the data sends an ARP request for the MAC address of the default gateway. After the address is resolved and the default gateway receives the packet, the default gateway broadcasts the destination IP address over the networks connected to it. The device on the destination device network uses ARP to obtain the MAC address of the destination device and delivers the packet. ARP is enabled by default.

The default system-defined CoPP policy rate limits ARP broadcast packets bound for the supervisor module. The default system-defined CoPP policy prevents an ARP broadcast storm from affecting the control plane traffic but does not affect bridged packets.

ARP Caching

ARP caching minimizes broadcasts and limits wasteful use of network resources. The mapping of IP addresses to MAC addresses occurs at each hop (device) on the network for every packet sent over an internetwork, which may affect network performance.

ARP caching stores network addresses and the associated data-link addresses in the memory for a period of time, which minimizes the use of valuable network resources to broadcast for the same address each time that a packet is sent. You must maintain the cache entries that are set to expire periodically because the information might become outdated. Every device on a network updates its tables as addresses are broadcast.

To maintain the ARP entry, active MAC address-table entries and host routing adjacencies, Cisco NX-OS sends up to 3 unicast ARP request messages to devices that are present in the ARP cache. The first message is sent at 75% of the configured ARP timeout value, followed by two retries 30 and 60 seconds later if the cached entry has not already been refreshed.

Static and Dynamic Entries in the ARP Cache

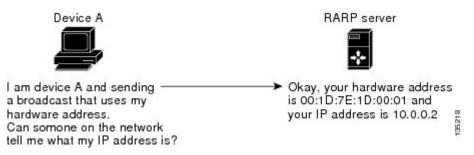
Static routing requires that you manually configure the IP addresses, subnet masks, gateways, and corresponding MAC addresses for each interface of each device. Static routing requires more work to maintain the route table. You must update the table each time you add or change routes.

Dynamic routing uses protocols that enable the devices in a network to exchange routing table information with each other. Dynamic routing is more efficient than static routing because the route table is automatically updated unless you add a time limit to the cache. The default time limit is 25 minutes but you can modify the time limit if the network has many routes that are added and deleted from the cache.

Devices That Do Not Use ARP

When a network is divided into two segments, a bridge joins the segments and filters traffic to each segment based on MAC addresses. The bridge builds its own address table, which uses MAC addresses only. A device has an ARP cache that contains both IP addresses and the corresponding MAC addresses.

Passive hubs are central-connection devices that physically connect other devices in a network. They send messages out on all their ports to the devices and operate at Layer 1 but do not maintain an address table.


Layer 2 switches determine which port is connected to a device to which the message is addressed and sent only to that port. However, Layer 3 switches are devices that build an ARP cache (table).

Reverse ARP

Reverse ARP (RARP) as defined by RFC 903 works the same way as ARP, except that the RARP request packet requests an IP address instead of a MAC address. RARP often is used by diskless workstations because this type of device has no way to store IP addresses to use when they boot. The only address that is known is the MAC address because it is burned into the hardware.

Use of RARP requires an RARP server on the same network segment as the router interface.

Figure 2: Reverse ARP

RARP has several limitations. Because of these limitations, most businesses use DHCP to assign IP addresses dynamically. DHCP is cost effective and requires less maintenance than RARP. The following are the most important limitations:

- Since RARP uses hardware addresses, if the internetwork is large with many physical networks, a RARP server must be on every segment with an additional server for redundancy. maintaining two servers for every segment is costly.
- Each server must be configured with a table of static mappings between the hardware addresses and IP addresses. Maintenance of the IP addresses is difficult.
- RARP only provides IP addresses of the hosts and not subnet masks or default gateways.

Proxy ARP

Proxy ARP enables a device that is physically located on one network appear to be logically part of a different physical network connected to the same device or firewall. Proxy ARP allows you to hide a device with a public IP address on a private network behind a router and still have the device appear to be on the public network in front of the router. By hiding its identity, the router accepts responsibility for routing packets to the real destination. Proxy ARP can help devices on a subnet reach remote subnets without configuring routing or a default gateway.

When devices are not in the same data link layer network but in the same IP network, they try to transmit data to each other as if they are on the local network. However, the router that separates the devices does not send a broadcast message because routers do not pass hardware-layer broadcasts and the addresses cannot be resolved.

When you enable Proxy ARP on the device and it receives an ARP request, it identifies the request as a request for a system that is not on the local LAN. The device responds as if it is the remote destination for which the broadcast is addressed, with an ARP response that associates the device's MAC address with the remote destination's IP address. The local device believes that it is directly connected to the destination, while in reality its packets are being forwarded from the local subnetwork toward the destination subnetwork by their local device. By default, Proxy ARP is disabled.

Local Proxy ARP

You can use local Proxy ARP to enable a device to respond to ARP requests for IP addresses within a subnet where normally no routing is required. When you enable local Proxy ARP, ARP responds to all ARP requests for IP addresses within the subnet and forwards all traffic between hosts in the subnet. Use this feature only on subnets where hosts are intentionally prevented from communicating directly by the configuration on the device to which they are connected.

Gratuitous ARP

Gratuitous ARP sends a request with an identical source IP address and a destination IP address to detect duplicate IP addresses. Cisco NX-OS supports enabling or disabling gratuitous ARP requests or ARP cache updates.

Glean Throttling

When forwarding an incoming IP packet in a line card, if the Address Resolution Protocol (ARP) request for the next hop is not resolved, the line card forwards the packets to the supervisor (glean throttling). The supervisor resolves the MAC address for the next hop and programs the hardware.

The Cisco Nexus 7000 Series device hardware has glean rate limiters to protect the supervisor from the glean traffic. If the maximum number of entries is exceeded, the packets for which the ARP request is not resolved continues to be processed in the software instead of getting dropped in the hardware.

When an ARP request is sent, the software adds a /32 drop adjacency in the hardware to prevent the packets to the same next-hop IP address to be forwarded to the supervisor. When the ARP is resolved, the hardware entry is updated with the correct MAC address. If the ARP entry is not resolved before a timeout period, the entry is removed from the hardware.

Path MTU Discovery

Path maximum transmission unit (MTU) discovery is a method for maximizing the use of available bandwidth in the network between the endpoints of a TCP connection. It is described in RFC 1191. Existing connections are not affected when this feature is turned on or off.

Note

Please ensure you enable **ip unreachables** command between TCP endpoints for the Path MTU discovery feature to work correctly.

ICMP

You can use the Internet Control Message Protocol (ICMP) to provide message packets that report errors and other information that is relevant to IP processing. ICMP generates error messages, such as ICMP destination unreachable messages, ICMP Echo Requests (which send a packet on a round trip between two hosts) and Echo Reply messages. ICMP also provides many diagnostic functions and can send and redirect error packets to the host. By default, ICMP is enabled.

Some of the ICMP message types are as follows:

- Network error messages
- Network congestion messages
- Troubleshooting information
- Timeout announcements

Note

ICMP redirects are disabled on interfaces where the local proxy ARP feature is enabled.

Virtualization Support for IPv4

IPv4 supports virtual routing and forwarding (VRF) instances. VRFs exist within virtual device contexts (VDCs). By default, Cisco NX-OS places you in the default VDC and default VRF unless you specifically configure another VDC and VRF. For more information, see the *Cisco NX-OS Virtual Device Context Configuration Guide*.

Prerequisites for IPv4

IPv4 has the following prerequisites:

IPv4 can only be configured on Layer 3 interfaces.

Guidelines and Limitations for IPv4

IPv4 has the following configuration guidelines and limitations:

- You can configure a secondary IP address only after you configure the primary IP address.
- F2 Series modules do not support IPv4 tunnels.
- If any device on a network segment uses a secondary IPv4 address, other devices on that same network segment that require a secondary address must use a secondary address from the same network or subnet. The inconsistent use of secondary addresses on a network segment can quickly cause routing loops.
- If you are familiar with the Cisco IOS CLI, be aware that the Cisco NX-OS commands for this feature might differ from the Cisco IOS commands that you would use.

Default Settings for IPv4 Parameters

Table 1: Default IPv4 Parameters

Parameters	Default
ARP timeout	1500 seconds
proxy ARP	Disabled
Maximum number of IPv4 ARP entries in the neighbor adjacency table	131,072

Configuring IPv4

Configuring IPv4 Addressing

You can assign a primary IP address for a network interface.

Before you begin

Ensure that you are in the correct VDC (or use the switchto vdc command).

	Command or Action	Purpose
Step 1	switch# configure terminal	Enters global configuration mode.
Step 2	switch(config)# interface ethernet number	Enters interface configuration mode.
Step 3	switch(config-if)# no switchport	Configures the interface as a Layer 3 routed interface.
Step 4	switch(config-if)# ip address <i>ip-address/length</i> [<i>secondary</i>]	 Specifies a primary or secondary IPv4 address for an interface. The network mask can be a four-part dotted decimal address. For example, 255.0.0.0 indicates that each bit equal to 1 means the corresponding address bit belongs to the network address. The network mask can be indicated as a slash (/) and a number—a prefix length. The prefix length is a decimal value that indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the

	Command or Action	Purpose
		address). A slash must precede the decimal value and there is no space between the IP address and the slash.
Step 5	(Optional) switch(config-if)# show ip interface	Displays interfaces configured for IPv4.
Step 6	(Optional) switch(config)# copy running-config startup-config	Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.

Example

This example shows how to assign an IPv4 address:

```
switch# configure terminal
switch(config)# interface ethernet 2/3
switch(config-if)# no switchport
switch(config-if)# ip address 192.2.1.1.255.0.0.0
switch(config-if)# copy running-config startup-config
switch(config-if)#
```

Configuring Multiple IPv4 Addresses

You can only add secondary IP addresses after you configure primary IP addresses.

Before you begin

Ensure that you are in the correct VDC (or use the switchto vdc command).

	Command or Action	Purpose
Step 1	switch# configure terminal	Enters global configuration mode.
Step 2	switch(config)# interface ethernet number	Enters interface configuration mode.
Step 3	switch(config-if)# no switchport	Configures the interface as a Layer 3 routed interface.
Step 4	switch(config-if)# ip address <i>ip-address/length</i> [<i>secondary</i>]	Specifies a the configured address as a secondary IPv4 address.
Step 5	(Optional) switch(config-if)# show ip interface	Displays interfaces configured for IPv4.
Step 6	(Optional) switch(config)# copy running-config startup-config	Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.

L

Configuring a Static ARP Entry

Configure a static ARP entry on the device to map IP addresses to MAC hardware addresses, including static multicast MAC addresses.

Before you begin

Ensure that you are in the correct VDC (or use the switchto vdc command).

Procedure

	Command or Action	Purpose
Step 1	switch# configure terminal	Enters global configuration mode.
Step 2	switch(config)# interface ethernet number	Enters interface configuration mode.
Step 3	switch(config)# no switchport	Configures the interface as a Layer 3 routed interface.
Step 4	switch(config-if)# ip arp address <i>ip-address mac-address</i>	Associates an IP address with a MAC address as a static entry.
Step 5	(Optional) switch(config)# copy running-config startup-config	Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.

Example

This example shows how to assign a static ARP entry:

```
switch# configure terminal
switch(config)# interface ethernet 2/3
switch(config-if)# no switchport
switch(config-if)# ip arp 192.2.1.1.0019.076c.1a78
switch(config-if)# copy running-config startup-config
switch(config-if)#
```

Configuring Proxy ARP

Configure proxy ARP on the device to determine the media addresses of hosts on other networks or subnets.

Before you begin

Ensure that you are in the correct VDC (or use the switchto vdc command).

	Command or Action	Purpose
Step 1	switch# configure terminal	Enters global configuration mode.

	Command or Action	Purpose
Step 2	switch(config-if)# interface ethernet number	Enters interface configuration mode.
Step 3	switch(config-if)# no switchport	Configures the interface as a Layer 3 routed interface.
Step 4	switch(config-if)# ip proxy arp	Enables proxy ARP on the interface.
Step 5	switch(config)# copy running-config startup-config	(Optional) Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.

Example

This example shows how to configure proxy ARP:

```
switch# configure terminal
switch(config)# interface ethernet 2/3
switch(config-if)# no switchport
switch(config-if)# ip proxy-arp
switch(config-if)# copy running-config startup-config
switch(config-if)#
```

Configuring Local Proxy ARP

Before you begin

Ensure that you are in the correct VDC (or use the switchto vdc command).

Procedure

	Command or Action	Purpose
Step 1	switch# configure terminal	Enters global configuration mode.
Step 2	switch(config)# interface ethernet number	Enters interface configuration mode.
Step 3	switch(config)# no switchport	Configures the interface as a Layer 3 routed interface.
Step 4	switch(config-if)# ip local-proxy-arp	Enables local proxy ARP on the interface.
Step 5	(Optional) switch(config)# copy running-config startup-config	Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.

Example

This example shows how to configure local proxy ARP:

L

```
switch# configure terminal
switch(config)# interface ethernet 2/3
switch(config-if)# no switchport
switch(config-if)# ip local-proxy-arp
switch(config-if)# copy running-config startup-config
switch(config-if)#
```

Configuring Gratuitous ARP

Before you begin

Ensure that you are in the correct VDC (or use the switchto vdc command).

Procedure

	Command or Action	Purpose
Step 1	switch# configure terminal	Enters global configuration mode.
Step 2	switch(config)# interface ethernet number	Enters interface configuration mode.
Step 3	switch(config-if)# no switchport	Configures the interface as a Layer 3 routed interface.
Step 4	switch(config-if)# ip arp gratuitous {request update]	Enables gratuitous ARP on the interface. Gratuitous ARP is enabled by default.
Step 5	(Optional) switch(config)# copy running-config startup-config	Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.

Example

This example shows how to configure gratuitous ARP:

```
switch# configure terminal
switch(config)# interface ethernet 2/3
switch(config-if)# no switchport
switch(config-if)# ip arp gratuitous request
switch(config-if)# copy running-config startup-config
switch(config-if)#
```

Configuring the IP ARP Cache Limit

Before you begin

Ensure that you are in the correct VDC (or use the switchto vdc command).

	Command or Action	Purpose
Step 1	switch(config)# configure terminal	Enters global configuration mode.
Step 2	<pre>switch(config)# ip arp cache limit max-arp-entries [syslog syslogs-per-second]</pre>	Configures the maximum number of ARP entries in the neighbor adjacency table. The range is from 1 to 409600.
		The syslog keyword configures the number of syslogs per second. The range is from 1 to 1000
		If you do not configure a limit, system logs appear on the console if you try to add an adjacency after reaching the default limit. If you configure a limit for IPv4 ARP entries, system logs appear if you try to add an adjacency after reaching the configured limit.
Step 3	switch(config)# show ip adjacency summary	Displays the global limit of the neighbor adjacency table and a summary of throttle adjacencies.
Step 4	(Optional) switch(config)# copy running-config startup-config	Saves this configuration change.

Procedure

Configuring Glean Optimization

You can configure glean optimization to improve the performance of glean packets by reducing the processing of the packets in the supervisor. Glean optimization applies to glean packets where the destination IP address is part of the same subnet and does not apply to packets where the destination IP address is in a different subnet. The default is enabled.

Before you begin

Ensure that you are in the correct VDC (or use the switchto vdc command).

	Command or Action	Purpose
Step 1	switch# configure terminal	Enters global configuration mode.
Step 2	switch(config)# interface ethernet number	Enters interface configuration mode.
Step 3	switch(config-if)# [no] ip arp fast-path	Enables glean optimization. Use the no form of the command to disable this feature.
Step 4	(Optional) switch(config)# copy running-config startup-config	Saves this configuration change.

Configuring Bloom Filter Support for Glean Adjacencies

Bloom Filter Support for Glean Adjacencies is introduced in Cisco NX-OS Release 8.4(2).

When a routed frame has an ARP cache miss, the packet hits a glean adjacency (which means the IP DA hits on the FIB table but cannot resolve MAC DA for the routed frame), and it is punted to the supervisor module. Until the ARP cache is updated, all packets belonging to this flow will hit the glean adjacency and are punted to the supervisor module. To avoid this punting of the supervisor module, the L3 engine hashes a flow to set a bit in a leak table to indicate that the packet has been punted to the supervisor module. Subsequent frames are dropped until the software clears the leak table bit. This helps to forward the packets without any further delay.

The Bloom Filter Support for Glean Adjacencies feature is supported on M3 and F4 modules.

Before you perform the configuration, ensure that you are in the correct VDC or use the **switchto vdc** command. This command is a global, system CLI on the default vdc and it is not configurable on a non-default vdc.

	Command or Action	Purpose
Step 1	switch# configure terminal	Enters global configuration mode.
Step 2	switch(config)# hardware forwarding glean-bloom-filter	Enables the bloom filter forwarding. This command is disabled by default.
Step 3	switch(config)# no hardware forwarding glean-bloom-filter	Disables the bloom filter forwarding.
Step 4	(Optional) switch(config)# copy running-config startup-config	Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.
Step 5	switch(config)# exit	Exits the global configuration mode.
Step 6	(Optional) switch# show system internal forwarding route summary	Displays the glean routes from all supported modules.

Procedure

Example

This example shows how to enable IP glean throttling:

```
switch# configure terminal
switch(config)# hardware forwarding glean-bloom-filter
switch(config)# copy running-config startup-config
switch(config)# exit
switch# show system internal forwarding route summary
```

Configuring Path MTU Discovery

Before you begin

Ensure that you are in the correct VDC (or use the switchto vdc command).

I

	Command or Action	Purpose
Step 1	switch# configure terminal	Enters global configuration mode.
Step 2	switch(config)# ip tcp path-mtu-discovery	Enables path MTU discovery.
Step 3	(Optional) switch(config)# copy running-config startup-config	Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.

Procedure

Configuring IP Packet Verification

Cisco NX-OS supports an Intrusion Detection System (IDS) that checks for IP packet verification. You can enable or disable these IDS checks.

	Command or Action	Purpose
Step 1	switch# configure terminal	Enters global configuration mode.
Step 2	switch(config)# hardware ip verify address {destination zero identical reserved source {broadcast multicast}}	 Performs the following IDS checks on the IP address: destination zero—Drops IP packets if the destination IP address is 0.0.0. identical—Drops IP packets if the source IP address is identical to the destination IP address. reserved—Drops IP packets if the IP address is in the 127.x.x.range. source—Drops IP packets if the IP source address is either 255.255.255.255
Step 3	switch(config)# hardware ip verify checksum	(broadcast) or in the 224.x.x.x range (multicast). Drops IP packets if the packet checksum is invalid.
Step 4	switch(config)# hardware ip verify fragment	Drops IP packets if the packet fragment has a nonzero offset and the DF bit is active.
Step 5	switch(config)# hardware ip verify length {consistent maximum {max-frag max-tcp udp} minimum}	 Performs the following IDS checks on the IP address: consistent— Drops IP packets where the Ethernet frame size is greater than or equal to the IP packet length plus the Ethernet header.

	Command or Action	Purpose
		• maximum max-frag—Drops IP packets if the maximum fragment offset is greater than 65536.
		 maximum max-tcp—Drops IP packets if the TCP length is greater than the IP payload length.
		 maximum udp—Drops IP packets if the IP payload length is less than the UDP packet length.
		 minimum—Drops IP packets if the Ethernet frame length is less than the IP packet length plus four octets (the CRC length).
Step 6	switch(config)# hardware ip verify tcp tiny-frag	Drops TCP packets if the IP fragment offset is 1, or if the IP fragment offset is 0 and the IP payload length is less than 16.
Step 7	switch(config)# hardware ip verify version	Drops IP packets if the ethertype is not set to 4 (IPv4).

What to do next

Use the show hardware forwarding ip verify command to display the IP packet verification configuration.

Configuring IP Glean Throttling

Cisco NX-OS software supports glean throttling rate limiters to protect the supervisor from the glean traffic.

We recommend that you configure the IP glean throttle feature by using the **hardware ip glean throttle** command to filter the unnecessary glean packets that are sent to the supervisor for ARP resolution for the next hops that are not reachable or do not exist. IP glean throttling boosts software performance and helps to manage traffic more efficiently.

Before you begin

Ensure that you are in the correct VDC (or use the switchto vdc command).

	Command or Action	Purpose
Step 1	switch# configure terminal	Enters global configuration mode.
Step 2	switch(config)# hardware ip glean throttle	Enables ARP throttling.
Step 3	switch(config)# no hardware ip glean throttle	Disables ARP throttling.

Note

	Command or Action	Purpose
Step 4		Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.

Example

This example shows how to enable IP glean throttling:

```
switch# configure terminal
switch(config)# hardware ip glean throttle
switch(config-if)# copy running-config startup-config
```

Configuring the Hardware IP Glean Throttle Maximum

You can limit the maximum number of drop adjacencies that are installed in the Forwarding Information Base (FIB).

Before you begin

Ensure that you are in the correct VDC (or use the switchto vdc command).

Procedure

	Command or Action	Purpose
Step 1	switch# configure terminal	Enters global configuration mode.
Step 2	switch(config)# hardware ip glean throttle maximum count	Configures the number of drop adjacencies that are installed in the FIB.
Step 3	switch(config)# no hardware ip glean throttle maximum <i>count</i>	Applies the default limits. The default value is 1000. The range is from 0 to 32767 entries.
Step 4	(Optional) switch(config)# copy running-config startup-config	Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.

Example

This example shows how to limit the maximum number of drop adjacencies that are installed in the FIB:

```
switch# configure terminal
switch(config)# hardware ip glean throttle maximum 2134
switch(config-if)# copy running-config startup-config
```

L

Configuring the Hardware IP Glean Throttle Timeout

You can configure a timeout for the installed drop adjacencies to remain in the Forwarding Information Base (FIB).

Before you begin

Ensure that you are in the correct VDC (or use the switchto vdc command).

Procedure

	Command or Action	Purpose	
Step 1	switch# configure terminal	Enters g	lobal configuration mode.
Step 2	switch(config)# hardware ip glean throttle maximum timeout timeout-in-seconds		res the timeout for the installed drop cies to remain in the FIB.
Step 3	switch(config) # no hardware ip glean throttle maximum timeout <i>timeout-in-seconds</i>	Applies	the default limits.
			eout value is in seconds. The range is seconds (5 minutes) to 1800 seconds tes).
		Note	After the timeout period is exceeded, the drop adjacencies are removed from the FIB.
Step 4	(Optional) switch(config)# copy running-config startup-config	and rest	e change persistently through reboots arts by copying the running ation to the startup configuration.

Configuring the Hardware IP Glean Throttle Syslog

You can a syslog if the number of packets that get dropped for a specific flow exceeds the configured packet count.

Before you begin

Ensure that you are in the correct VDC (or use the switchto vdc command).

	Command or Action	Purpose
Step 1	switch# configure terminal	Enters global configuration mode.
Step 2	switch(config)# hardware ip glean throttle syslog packet-count	Generates a syslog if the number of packets that get dropped for a specific flow exceed the configured packet count.
Step 3	switch(config)# no hardware ip glean throttle syslog packet-count	Applies the default limits.

	Command or Action		Purpose	
			The default is 10000 packets. The range is from 0 to 65535 packets.	
		Note	After the timeout period is exceeded, the drop adjacencies are removed from the FIB.	
Step 4	(Optional) switch(config)# copy running-config startup-config	and res	he change persistently through reboots tarts by copying the running ration to the startup configuration.	

Example

This example shows how to generate a syslog if the number of packets that get dropped for a specific flow exceeds the configured packet count:

```
switch# configure terminal
switch(config)# hardware ip glean throttle maximum timeout 300
switch(config-if)# copy running-config startup-config
```

Verifying the IPv4 Configuration

Use one of the following commands to verify the configuration:

Command	Purpose
show hardware forwarding ip verify	Shows the IP packet verification configuration.
show ip adjacency	Displays the adjacency table.
show ip adjacency summary	Displays the summary of number of throttle adjacencies.
show ip arp	Displays the ARP table.
show ip arp summary	Displays the summary of the number of throttle adjacencies.
show ip adjacency throttle statistics	Displays only the throttle adjacencies.
show ip interface	Displays IP-related interface information.
show ip arp statistics [vrf vrf-name]	Displays the ARP statistics.

Configuration Examples for IPv4

Example: Reserving All Ports on a Module for Proxy Routing

This example shows how to reserve all ports on a module for proxy routing:

Step 1: Determine which modules are present in the device:

switch# show module Mod Ports Module-Type Model Status 1 32 10 Gbps Ethernet Module N7K-M132XP-12 ok 2 48 10/100/1000 Mbps Ethernet Module N7K-M148GT-11 ok 3 48 1000 Mbps Optical Ethernet Modul N7K-M148GS-11 ok 5 0 Supervisor module-1X N7K-SUP1 active * 6 0 Supervisor module-1X N7K-SUP1 ha-standby 8 32 1/10 Gbps Ethernet Module N7K-F132XP-15 ok

The F1 module is in Slot 8, and the M1 modules are in Slots 1 to 3.

Step 2: Determine which ports are available in the VDC:

```
switch# show vdc membership | end "Ethernet3/48"
vdc id: 0 vdc name: Unallocated interfaces:
vdc id: 1 vdc_name: switch interfaces:
Ethernet1/9 Ethernet1/10 Ethernet1/11
Ethernet1/12 Ethernet1/13 Ethernet1/14
Ethernet1/15 Ethernet1/16 Ethernet1/17
Ethernet1/18 Ethernet1/19 Ethernet1/20
Ethernet1/21 Ethernet1/22 Ethernet1/23
Ethernet1/24 Ethernet1/25 Ethernet1/26
Ethernet1/27 Ethernet1/28 Ethernet1/29
Ethernet1/30 Ethernet1/31 Ethernet1/32
Ethernet2/1 Ethernet2/2 Ethernet2/3
Ethernet2/4 Ethernet2/5 Ethernet2/6
Ethernet2/7 Ethernet2/8 Ethernet2/9
Ethernet2/10 Ethernet2/11 Ethernet2/12
Ethernet2/25 Ethernet2/26 Ethernet2/27
Ethernet2/28 Ethernet2/29 Ethernet2/30
Ethernet2/31 Ethernet2/32 Ethernet2/33
Ethernet2/34 Ethernet2/35 Ethernet2/36
Ethernet2/37 Ethernet2/38 Ethernet2/39
Ethernet2/40 Ethernet2/41 Ethernet2/42
Ethernet2/43 Ethernet2/44 Ethernet2/45
Ethernet2/46 Ethernet2/47 Ethernet2/48
Ethernet3/1 Ethernet3/2 Ethernet3/3
Ethernet3/4 Ethernet3/5 Ethernet3/6
Ethernet3/7 Ethernet3/8 Ethernet3/9
Ethernet3/10 Ethernet3/11 Ethernet3/12
Ethernet3/13 Ethernet3/14 Ethernet3/15
Ethernet3/16 Ethernet3/17 Ethernet3/18
Ethernet3/19 Ethernet3/20 Ethernet3/21
Ethernet3/22 Ethernet3/23 Ethernet3/24
Ethernet3/25 Ethernet3/26 Ethernet3/27
Ethernet3/28 Ethernet3/29 Ethernet3/30
Ethernet3/31 Ethernet3/32 Ethernet3/33
Ethernet3/34 Ethernet3/35 Ethernet3/36
Ethernet3/37 Ethernet3/38 Ethernet3/39
Ethernet3/40 Ethernet3/41 Ethernet3/42
Ethernet3/43 Ethernet3/44 Ethernet3/45
Ethernet3/46 Ethernet3/47 Ethernet3/48
```

Step 3: Determine which ports are available for proxy routing:

```
switch# show hardware proxy layer-3 detail
Global Information:
F1 Modules: Count: 1 Slot: 8
M1 Modules: Count: 3 Slot: 1-3
Replication Rebalance Mode: Manual
Number of proxy layer-3 forwarders: 13
Number of proxy layer-3 replicators: 8
Forwarder Interfaces Status Reason
_____
                                        _____
Eth1/9, Eth1/11, Eth1/13, Eth1/15 up SUCCESS
Eth1/10, Eth1/12, Eth1/14, Eth1/16 up SUCCESS
Eth1/17, Eth1/19, Eth1/21, Eth1/23 up SUCCESS
Eth1/18, Eth1/20, Eth1/22, Eth1/24 up SUCCESS
Eth1/25, Eth1/27, Eth1/29, Eth1/31 up SUCCESS
Eth1/26, Eth1/28, Eth1/30, Eth1/32 up SUCCESS
Eth2/1-12 up SUCCESS
Eth2/25-36 up SUCCESS
Eth2/37-48 up SUCCESS
Eth3/1-12 up SUCCESS
Eth3/13-24 up SUCCESS
Eth3/25-36 up SUCCESS
Eth3/37-48 up SUCCESS
Replicator Interfaces #Interface-Vlan Interface-Vlan
       Eth1/1, Eth1/3, Eth1/5, Eth1/7, Eth1/9, 0
Eth1/11, Eth1/13, Eth1/15
Eth1/2, Eth1/4, Eth1/6, Eth1/8, Eth1/10, 0
Eth1/12, Eth1/14, Eth1/16
Eth1/17, Eth1/19, Eth1/21, Eth1/23, 0
Eth1/25, Eth1/27, Eth1/29, Eth1/31
Eth1/18, Eth1/20, Eth1/22, Eth1/24, 0
Eth1/26, Eth1/28, Eth1/30, Eth1/32
Eth2/1-24 0
Eth2/25-48 0
Eth3/1-24 0
Eth3/25-48 0
switch#
```

Note Ports are listed in their respective port groups.

Step 4: Reserve a module for unicast and multicast proxy routing:

```
switch# configure terminal
switch(config)# hardware proxy layer-3 forwarding use module 2
switch(config)# hardware proxy layer-3 replication use module 2
```

Step 5: Verify this configuration:

```
Replicator Interfaces #Interface-Vlan Interface-Vlan

Eth2/1-24 0

Eth2/25-48 0

switch(config)#
```

Example: Reserving Ports for Proxy Routing

This example shows how to reserve some ports on a module for proxy routing:

Step 1: Reserve a subset of ports on a module:

```
switch(config)# hardware proxy layer-3 forwarding use interface ethernet 2/1-6
switch(config)# hardware proxy layer-3 replication use interface ethernet 2/1-6 <----subset
of port group</pre>
```

This example reserves a subset of ports from a port group.

Step 2: Verify this configuration:

```
Note
```

All ports in a port group are reserved for proxy routing.

Eth1/26, Eth1/28, Eth1/30, Eth1/32 up SUCCESS

Example: Excluding Ports From Proxy Routing

The following example excludes some ports on a module for proxy routing:

```
switch(config)# hardware proxy layer-3 forwarding exclude interface ethernet 2/1-12
switch(config)# hardware proxy layer-3 replication exclude interface ethernet 2/1-12
switch(config) # show hardware proxy layer-3 detail
Global Information:
F1 Modules: Count: 1 Slot: 8
M1 Modules: Count: 3 Slot: 1-3
Replication Rebalance Mode: Manual
Number of proxy layer-3 forwarders: 12
Number of proxy layer-3 replicators: 7
Forwarder Interfaces Status Reason
   ____
         _____
                                               _____
Eth1/9, Eth1/11, Eth1/13, Eth1/15 up SUCCESS
Eth1/10, Eth1/12, Eth1/14, Eth1/16 up SUCCESS
Eth1/17, Eth1/19, Eth1/21, Eth1/23 up SUCCESS
Eth1/18, Eth1/20, Eth1/22, Eth1/24 up SUCCESS
Eth1/25, Eth1/27, Eth1/29, Eth1/31 up SUCCESS
```

```
Eth2/25-36 up SUCCESS
Eth2/37-48 up SUCCESS
Eth3/1-12 up SUCCESS
Eth3/13-24 up SUCCESS
Eth3/25-36 up SUCCESS
Eth3/37-48 up SUCCESS
Replicator Interfaces #Interface-Vlan Interface-Vlan
   _____
Eth1/1, Eth1/3, Eth1/5, Eth1/7, Eth1/9, 0
Eth1/11, Eth1/13, Eth1/15
Eth1/2, Eth1/4, Eth1/6, Eth1/8, Eth1/10, 0
Eth1/12, Eth1/14, Eth1/16
Eth1/17, Eth1/19, Eth1/21, Eth1/23, 0
Eth1/25, Eth1/27, Eth1/29, Eth1/31
Eth1/18, Eth1/20, Eth1/22, Eth1/24, 0
Eth1/26, Eth1/28, Eth1/30, Eth1/32
Eth2/25-48 0
Eth3/1-24 0
Eth3/25-48 0
switch(config)#
```

Related Documents for IPv4

Related Topic	Document Title
IP CLI commands	https://www.cisco.com/c/en/us/td/docs/switches/ datacenter/nexus7000/sw/unicast/command/cisco_ nexus7000_unicast_routing_command_ref.html

Standards for IPv4

Standards	Title
No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.	

Feature History for IPv4

This table includes only the updates for those releases that have resulted in additions or changes to the feature.

Table 2: Feature History for IPv4

Feature Name	Release	Feature Information
Glean optimization	6.2(2)	This feature was introduced.
ARP	6.2(2)	Added the ability to configure the maximum number of ARP entries in the neighbor adjacency table.

Feature Name	Release	Feature Information
IP	6.0(1)	Updated for F2 Series modules.
ACL filter for IP directed broadcasts	5.2(1)	Added support to filter IP directed broadcasts through an IP access list.
Glean throttling	5.1(1)	Added support for IPv4 glean throttling.
ARP	4.1(4)	Added support to protect against an ARP broadcast storm.
IP	4.1(3)	Changed the platform ip verify command to the hardware ip verify command.
ARP	4.0(3)	Added support for gratuitous ARP. The ip arp gratuitous {request update } command was added.
IP	4.0(1)	This feature was introduced.