CHAPTER 8

Configuring EIGRP

This chapter describes how to configure the Enhanced Interior Gateway Routing Protocol (EIGRP) on the Cisco NX-OS device.

This chapter includes the following sections:

- Information About EIGRP, page 8-1
- Licensing Requirements for EIGRP, page 8-9
- Prerequisites for EIGRP, page 8-9
- Guidelines and Limitations for EIGRP, page 8-9
- Default Settings, page 8-10
- Configuring Basic EIGRP, page 8-11
- Configuring Advanced EIGRP, page 8-15
- Configuring Virtualization for EIGRP, page 8-29
- Verifying the EIGRP Configuration, page 8-31
- Monitoring EIGRP, page 8-31
- Configuration Examples for EIGRP, page 8-32
- Related Topics, page 8-32
- Additional References, page 8-32
- Feature History for EIGRP, page 8-33

Information About EIGRP

EIGRP combines the benefits of distance vector protocols with the features of link-state protocols. EIGRP sends out periodic Hello messages for neighbor discovery. Once EIGRP learns a new neighbor, it sends a one-time update of all the local EIGRP routes and route metrics. The receiving EIGRP router calculates the route distance based on the received metrics and the locally assigned cost of the link to that neighbor. After this initial full route table update, EIGRP sends incremental updates to only those neighbors affected by the route change. This process speeds convergence and minimizes the bandwidth used by EIGRP.

This section includes the following topics:

- EIGRP Components, page 8-2
- EIGRP Route Updates, page 8-3
Information About EIGRP

Send document comments to nexus7k-docfeedback@cisco.com.

- Advanced EIGRP, page 8-5

EIGRP Components

EIGRP has the following basic components:

- Reliable Transport Protocol, page 8-2
- Neighbor Discovery and Recovery, page 8-2
- Diffusing Update Algorithm, page 8-3

Reliable Transport Protocol

The Reliable Transport Protocol guarantees ordered delivery of EIGRP packets to all neighbors. (See the “Neighbor Discovery and Recovery” section on page 8-2.) The Reliable Transport Protocol supports an intermixed transmission of multicast and unicast packets. The reliable transport can send multicast packets quickly when unacknowledged packets are pending. This provision helps to ensure that the convergence time remains low for various speed links. See the “Configuring Advanced EIGRP” section on page 8-15 for details about modifying the default timers that control the multicast and unicast packet transmissions.

The Reliable Transport Protocol includes the following message types:

- Hello—Used for neighbor discovery and recovery. By default, EIGRP sends a periodic multicast Hello message on the local network at the configured hello interval. By default, the hello interval is 5 seconds.
- Acknowledgement—Verify reliable reception of Updates, Queries, and Replies.
- Updates—Send to affected neighbors when routing information changes. Updates include the route destination, address mask, and route metrics such as delay and bandwidth. The update information is stored in the EIGRP topology table.
- Queries and Replies—Sent as part of the Diffusing Update Algorithm used by EIGRP.

Neighbor Discovery and Recovery

EIGRP uses the Hello messages from the Reliable Transport Protocol to discover neighboring EIGRP routers on directly attached networks. EIGRP adds neighbors to the neighbor table. The information in the neighbor table includes the neighbor address, the interface it was learned on, and the hold time, which indicates how long EIGRP should wait before declaring a neighbor unreachable. By default, the hold time is three times the hello interval or 15 seconds.

EIGRP sends a series of Update messages to new neighbors to share the local EIGRP routing information. This route information is stored in the EIGRP topology table. After this initial transmission of the full EIGRP route information, EIGRP sends Update messages only when a routing change occurs. These Update messages contain only the new or changed information and are sent only to the neighbors affected by the change. See the “EIGRP Route Updates” section on page 8-3.

EIGRP also uses the Hello messages as a keepalive to its neighbors. As long as Hello messages are received, Cisco NX-OS can determine that a neighbor is alive and functioning.
Diffusing Update Algorithm

The Diffusing Update Algorithm (DUAL) calculates the routing information based on the destination networks in the topology table. The topology table includes the following information:

- IPv4 or IPv6 address/mask—The network address and network mask for this destination.
- Successors—The IP address and local interface connection for all feasible successors or neighbors that advertise a shorter distance to the destination than the current feasible distance.
- Feasibility distance (FD)—The lowest calculated distance to the destination. The feasibility distance is the sum of the advertised distance from a neighbor plus the cost of the link to that neighbor.

DUAL uses the distance metric to select efficient, loop-free paths. DUAL selects routes to insert into the unicast Routing Information Base (RIB) based on feasible successors. When a topology change occurs, DUAL looks for feasible successors in the topology table. If there are feasible successors, DUAL selects the feasible successor with the lowest feasible distance and inserts that into the unicast RIB, avoiding unnecessary recomputation.

When there are no feasible successors but there are neighbors advertising the destination, DUAL transitions from the passive state to the active state and triggers a recomputation to determine a new successor or next-hop router to the destination. The amount of time required to recompute the route affects the convergence time. EIGRP sends Query messages to all neighbors, searching for feasible successors. Neighbors that have a feasible successor send a Reply message with that information. Neighbors that do not have feasible successors trigger a DUAL recomputation.

EIGRP Route Updates

When a topology change occurs, EIGRP sends an Update message with only the changed routing information to affected neighbors. This Update message includes the distance information to the new or updated network destination.

The distance information in EIGRP is represented as a composite of available route metrics, including bandwidth, delay, load utilization, and link reliability. Each metric has an associated weight that determines if the metric is included in the distance calculation. You can configure these metric weights. You can fine-tune link characteristics to achieve optimal paths, but we recommend that you use the default settings for most configurable metrics.

This section includes the following topics:

- Internal Route Metrics, page 8-3
- Wide Metrics, page 8-4
- External Route Metrics, page 8-5
- EIGRP and the Unicast RIB, page 8-5

Internal Route Metrics

Internal routes are routes that occur between neighbors within the same EIGRP autonomous system. These routes have the following metrics:

- Next hop—The IP address of the next-hop router.
- Delay—The sum of the delays configured on the interfaces that make up the route to the destination network. The delay is configured in tens of microseconds.
Information About EIGRP

- Bandwidth—The calculation from the lowest configured bandwidth on an interface that is part of the route to the destination.

We recommend that you use the default bandwidth value. This bandwidth parameter is also used by EIGRP.

- MTU—The smallest maximum transmission unit value along the route to the destination.
- Hop count—The number of hops or routers that the route passes through to the destination. This metric is not directly used in the DUAL computation.
- Reliability—An indication of the reliability of the links to the destination.
- Load—An indication of how much traffic is on the links to the destination.

By default, EIGRP uses the bandwidth and delay metrics to calculate the distance to the destination. You can modify the metric weights to include the other metrics in the calculation.

Wide Metrics

EIGRP supports wide (64-bit) metrics to improve route selection on higher-speed interfaces or bundled interfaces. Routers supporting wide metrics can interoperate with routers that do not support wide metrics as follows:

- A router that supports wide metrics—Adds local wide metrics values to the received values and sends the information on.
- A router that does not support wide metrics—Sends any received metrics on without changing the values.

EIGRP uses the following equation to calculate path cost with wide metrics:

metric = \[k_1 \times \text{bandwidth} + (k_2 \times \text{bandwidth})/(256 - \text{load}) + k_3 \times \text{delay} + k_6 \times \text{extended attributes}\] \[\times (k_5/\text{reliability} + k_4)]

Since the unicast RIB cannot support 64-bit metric values, EIGRP wide metrics use the following equation with a RIB scaling factor to convert the 64-bit metric value to a 32-bit value:

RIB Metric = (Wide Metric / RIB scale value).

where the RIB scale value is a configurable parameter.

EIGRP wide metrics introduce the following two new metric values represented as k6 in the EIGRP metrics configuration:

- Jitter—(Measured in microseconds) accumulated across all links in the route path. Routes lower jitter values are preferred for EIGRP path selection.
- Energy—(Measured in watts per kilobit) accumulated across all links in the route path. Routes lower energy values are preferred for EIGRP path selection.

EIGRP prefers a path with no jitter or energy metric values or lower jitter or metric values over a path with higher values.

EIGRP wide metrics are sent with a TLV version of 2. For more information, see the “Enabling Wide Metrics” section on page 8-27.
External Route Metrics

External routes are routes that occur between neighbors in different EIGRP autonomous systems. These routes have the following metrics:

- Next hop—The IP address of the next-hop router.
- Router ID—The router ID of the router that redistributed this route into EIGRP.
- AS number—The autonomous system number of the destination.
- Protocol ID—A code that represents the routing protocol that learned the destination route.
- Tag—An arbitrary tag that can be used for route maps.
- Metric—The route metric for this route from the external routing protocol.

EIGRP and the Unicast RIB

EIGRP adds all learned routes to the EIGRP topology table and the unicast RIB. When a topology change occurs, EIGRP uses these routes to search for a feasible successor. EIGRP also listens for notifications from the unicast RIB for changes in any routes redistributed to EIGRP from another routing protocol.

Advanced EIGRP

You can use the advanced features of EIGRP to optimize your EIGRP configuration.

This section includes the following topics:

- Address Families, page 8-5
- Authentication, page 8-6
- Stub Routers, page 8-6
- Route Summarization, page 8-7
- Route Redistribution, page 8-7
- Load Balancing, page 8-7
- Split Horizon, page 8-7
- BFD, page 8-8
- Virtualization Support, page 8-8
- Graceful Restart and High Availability, page 8-8

Address Families

EIGRP supports both IPv4 and IPv6 address families. For backward compatibility, you can configure EIGRPv4 in route configuration mode or in IPV4 address family mode. You must configure EIGRP for IPv6 in address family mode.

Address family configuration mode includes the following EIGRP features:

- Authentication
- AS number
- Default route
You cannot configure the same feature in more than one configuration mode. For example, if you configure the default metric in router configuration mode, you cannot configure the default metric in address family mode.

Authentication

You can configure authentication on EIGRP messages to prevent unauthorized or invalid routing updates in your network. EIGRP authentication supports MD5 authentication digest.

You can configure the EIGRP authentication per virtual routing and forwarding (VRF) instance or interface using key-chain management for the authentication keys. Key-chain management allows you to control changes to the authentication keys used by MD5 authentication digest. See the *Cisco Nexus 7000 Series NX-OS Security Configuration Guide, Release 5.x*, for more details about creating key chains.

For MD5 authentication, you configure a password that is shared at the local router and all remote EIGRP neighbors. When an EIGRP message is created, Cisco NX-OS creates an MD5 one-way message digest based on the message itself and the encrypted password and sends this digest along with the EIGRP message. The receiving EIGRP neighbor validates the digest using the same encrypted password. If the message has not changed, the calculation is identical and the EIGRP message is considered valid.

MD5 authentication also includes a sequence number with each EIGRP message that is used to ensure that no message is replayed in the network.

Stub Routers

You can use the EIGRP stub routing feature to improve network stability, reduce resource usage, and simplify stub router configuration. Stub routers connect to the EIGRP network through a remote router. See the “Stub Routing” section on page 1-7.

When using EIGRP stub routing, you need to configure the distribution and remote routers to use EIGRP and configure only the remote router as a stub. EIGRP stub routing does not automatically enable summarization on the distribution router. In most cases, you need to configure summarization on the distribution routers.

Without EIGRP stub routing, even after the routes that are sent from the distribution router to the remote router have been filtered or summarized, a problem might occur. For example, if a route is lost somewhere in the corporate network, EIGRP could send a query to the distribution router. The distribution router could then send a query to the remote router even if routes are summarized. If a problem communicating over the WAN link between the distribution router and the remote router occurs, EIGRP could get stuck in an active condition and cause instability elsewhere in the network. EIGRP stub routing allows you to prevent queries to the remote router.
Route Summarization

You can configure a summary aggregate address for a specified interface. Route summarization simplifies route tables by replacing a number of more-specific addresses with an address that represents all the specific addresses. For example, you can replace 10.1.1.0/24, 10.1.2.0/24, and 10.1.3.0/24 with one summary address, 10.1.0.0/16.

If more specific routes are in the routing table, EIGRP advertises the summary address from the interface with a metric equal to the minimum metric of the more specific routes.

Note
EIGRP does not support automatic route summarization.

Route Redistribution

You can use EIGRP to redistribute static routes, routes learned by other EIGRP autonomous systems, or routes from other protocols. You must configure a route map with the redistribution to control which routes are passed into EIGRP. A route map allows you to filter routes based on attributes such as the destination, origination protocol, route type, route tag, and so on. See Chapter 16, “Configuring Route Policy Manager.”

You also configure the default metric that is used for all imported routes into EIGRP.

You use distribute lists to filter routes from routing updates. These filtered routes are applied to each interface with the `ip distribute-list eigrp` command.

Load Balancing

You can use load balancing to allow a router to distribute traffic over all the router network ports that are the same distance from the destination address. Load balancing increases the usage of network segments, which increases effective network bandwidth.

Cisco NX-OS supports the Equal Cost Multiple Paths (ECMP) feature with up to 16 equal-cost paths in the EIGRP route table and the unicast RIB. You can configure EIGRP to load balance traffic across some or all of those paths.

Note
EIGRP in Cisco NX-OS does not support unequal cost load balancing.

Split Horizon

You can use split horizon to ensure that EIGRP never advertises a route out of the interface where it was learned.

Split horizon is a method that controls the sending of EIGRP update and query packets. When you enable split horizon on an interface, Cisco NX-OS does not send update and query packets for destinations that were learned from this interface. Controlling update and query packets in this manner reduces the possibility of routing loops.

Split horizon with poison reverse configures EIGRP to advertise a learned route as unreachable back through that the interface that EIGRP learned the route from.

EIGRP uses split horizon or split horizon with poison reverse in the following scenarios:

- Exchanging topology tables for the first time between two routers in startup mode.
Information About EIGRP

- Advertising a topology table change.
- Sending a Query message.

By default, the split horizon feature is enabled on all interfaces.

BFD

This feature supports bidirectional forwarding detection (BFD). BFD is a detection protocol designed to provide fast forwarding-path failure detection times. BFD provides subsecond failure detection between two adjacent devices and can be less CPU-intensive than protocol hello messages because some of the BFD load can be distributed onto the data plane on supported modules. See the Cisco Nexus 7000 Series NX-OS Interfaces Configuration Guide, Release 5.x, for more information.

Virtualization Support

Cisco NX-OS supports multiple instances of EIGRP that runs on the same system. EIGRP supports Virtual Routing and Forwarding instances (VRFs). VRFs exist within virtual device contexts (VDCs). By default, Cisco NX-OS places you in the default VDC and default VRF unless you specifically configure another VDC and VRF. See the Cisco Nexus 7000 Series NX-OS Virtual Device Context Configuration Guide, Release 5.x, and Chapter 14, “Configuring Layer 3 Virtualization.”

By default, every instance uses the same system router ID. You can optionally configure a unique router ID for each instance.

Graceful Restart and High Availability

Cisco NX-OS supports nonstop forwarding and graceful restart for EIGRP.

You can use nonstop forwarding for EIGRP to forward data packets along known routes in the FIB while the EIGRP routing protocol information is being restored following a failover. With nonstop forwarding (NSF), peer networking devices do not experience routing flaps. During failover, data traffic is forwarded through intelligent modules while the standby supervisor becomes active.

If a Cisco NX-OS system experiences a cold reboot, the device does not forward traffic to the system and removes the system from the network topology. In this scenario, EIGRP experiences a stateless restart, and all neighbors are removed. Cisco NX-OS applies the startup configuration, and EIGRP rediscovers the neighbors and shares the full EIGRP routing information again.

A dual supervisor platform that runs Cisco NX-OS can experience a stateful supervisor switchover. Before the switchover occurs, EIGRP uses a graceful restart to announce that EIGRP will be unavailable for some time. During a switchover, EIGRP uses nonstop forwarding to continue forwarding traffic based on the information in the FIB, and the system is not taken out of the network topology.

The graceful restart-capable router uses Hello messages to notify its neighbors that a graceful restart operation has started. When a graceful restart-aware router receives a notification from a graceful restart-capable neighbor that a graceful restart operation is in progress, both routers immediately exchange their topology tables. The graceful restart-aware router performs the following actions to assist the restarting router as follows:

- The router expires the EIGRP Hello hold timer to reduce the time interval set for Hello messages. This process allows the graceful restart-aware router to reply to the restarting router more quickly and reduces the amount of time required for the restarting router to rediscover neighbors and rebuild the topology table.
The router starts the route-hold timer. This timer sets the period of time that the graceful restart-aware router will hold known routes for the restarting neighbor. The default time period is 240 seconds.

The router notes in the peer list that the neighbor is restarting, maintains adjacency, and holds known routes for the restarting neighbor until the neighbor signals that it is ready for the graceful restart-aware router to send its topology table or the route-hold timer expires. If the route-hold timer expires on the graceful restart-aware router, the graceful restart-aware router discards held routes and treats the restarting router as a new router that joins the network and reestablishes adjacency.

After the switchover, Cisco NX-OS applies the running configuration, and EIGRP informs the neighbors that it is operational again.

Note
You must enable graceful restart to support in-service software upgrades (ISSU) for EIGRP. If you disable graceful restart, Cisco NX-OS issues a warning that an ISSU cannot be supported with this configuration.

Licensing Requirements for EIGRP

The following table shows the licensing requirements for this feature:

<table>
<thead>
<tr>
<th>Product</th>
<th>License Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco NX-OS</td>
<td>EIGRP requires an Enterprise Services license. For a complete explanation of the Cisco NX-OS licensing scheme and how to obtain and apply licenses, see the Cisco NX-OS Licensing Guide.</td>
</tr>
</tbody>
</table>

Prerequisites for EIGRP

EIGRP has the following prerequisites:

- You must enable EIGRP (see the “Enabling the EIGRP Feature” section on page 8-11).
- If you configure VDCs, install the Advanced Services license and enter the desired VDC (see the Cisco Nexus 7000 Series NX-OS Virtual Device Context Configuration Guide, Release 5.x).

Guidelines and Limitations for EIGRP

EIGRP has the following configuration guidelines and limitations:

- A metric configuration (either through the default-metric configuration option or through a route map) is required for redistribution from any other protocol, connected routes, or static routes (see Chapter 16, “Configuring Route Policy Manager”).
- For graceful restart, an NSF-aware router must be up and completely converged with the network before it can assist an NSF-capable router in a graceful restart operation.
- For graceful restart, neighboring devices participating in the graceful restart must be NSF-aware or NSF-capable.
- Cisco NX-OS EIGRP is compatible with EIGRP in the Cisco IOS software.
Default Settings

Table 8-1 lists the default settings for EIGRP parameters.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default EIGRP Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrative distance</td>
<td>• Internal routes—90</td>
</tr>
<tr>
<td></td>
<td>• External routes—170</td>
</tr>
<tr>
<td>Bandwidth percent</td>
<td>50 percent</td>
</tr>
<tr>
<td>Default metric for redistributed routes</td>
<td>• Bandwidth—100000 Kb/s</td>
</tr>
<tr>
<td></td>
<td>• Delay—100 (10 microsecond units)</td>
</tr>
<tr>
<td></td>
<td>• Reliability—255</td>
</tr>
<tr>
<td></td>
<td>• Loading—1</td>
</tr>
<tr>
<td></td>
<td>• MTU—1500</td>
</tr>
<tr>
<td>EIGRP feature</td>
<td>Disabled</td>
</tr>
<tr>
<td>Hello interval</td>
<td>5 seconds</td>
</tr>
<tr>
<td>Hold time</td>
<td>15 seconds</td>
</tr>
<tr>
<td>Equal-cost paths</td>
<td>8</td>
</tr>
<tr>
<td>Metric weights</td>
<td>1 0 1 0 0 0</td>
</tr>
<tr>
<td>Next-hop address advertised</td>
<td>IP address of local interface</td>
</tr>
<tr>
<td>NSF convergence time</td>
<td>120</td>
</tr>
<tr>
<td>NSF route-hold time</td>
<td>240</td>
</tr>
<tr>
<td>NSF signal time</td>
<td>20</td>
</tr>
</tbody>
</table>

Do not change the metric weights without a good reason. If you change the metric weights, you must apply the change to all EIGRP routers in the same autonomous system.

A mix of standard metrics and wide metrics in an EIGRP network with interface speeds of 1 Gigabit or greater may result in suboptimal routing.

Consider using stubs for larger networks.

Avoid redistribution between different EIGRP autonomous systems because the EIGRP vector metric will not be preserved.

The `no {ip | ipv6} next-hop-self` command does not guarantee reachability of the next hop.

The `{ip | ipv6} passive-interface eigrp` command suppresses neighbors from forming.

Cisco NX-OS does not support IGRP or connecting IGRP and EIGRP clouds.

Autosummarization is disabled by default and cannot be enabled.

Cisco NX-OS supports only IP.

If you are familiar with the Cisco IOS CLI, be aware that the Cisco NX-OS commands for this feature might differ from the Cisco IOS commands that you would use.
Configuring Basic EIGRP

This section includes the following topics:

- Enabling the EIGRP Feature, page 8-11
- Creating an EIGRP Instance, page 8-12
- Restarting an EIGRP Instance, page 8-14
- Shutting Down an EIGRP Instance, page 8-15
- Shutting Down EIGRP on an Interface, page 8-15

Enabling the EIGRP Feature

You must enable EIGRP before you can configure EIGRP.

BEFORE YOU BEGIN

Ensure that you are in the correct VDC (or use the `switchto vdc` command).

SUMMARY STEPS

1. `configure terminal`
2. `feature eigrp`
3. (Optional) `show feature`
4. (Optional) `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td></td>
<td>switch(config)#</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>feature eigrp</code></td>
<td>Enables the EIGRP feature.</td>
</tr>
<tr>
<td>Example:</td>
<td>switch(config)# feature eigrp</td>
</tr>
</tbody>
</table>
Configuring Basic EIGRP

To disable the EIGRP feature and remove all associated configuration, use the following command in configuration mode:

```
no feature eigrp
```

Example:
```
switch(config)# no feature eigrp
```

Disables the EIGRP feature and removes all associated configuration.

Creating an EIGRP Instance

You can create an EIGRP instance and associate an interface with that instance. You assign a unique autonomous system number for this EIGRP process (see the “Autonomous Systems” section on page 1-5). Routes are not advertised or accepted from other autonomous systems unless you enable route redistribution.

BEFORE YOU BEGIN

You must enable EIGRP (see the “Enabling the EIGRP Feature” section on page 8-11).

EIGRP must be able to obtain a router ID (for example, a configured loopback address) or you must configure the router ID option.

If you configure an instance tag that does not qualify as an AS number, you must configure the AS number explicitly or this EIGRP instance remains in the shutdown state. For IPv6, this number must be configured under address family.

Ensure that you are in the correct VDC (or use the `switchto vdc` command).

SUMMARY STEPS

1. `configure terminal`
2. `router eigrp instance-tag`
3. (Optional) `autonomous-system as-number`
4. (Optional) `log-adjacency-changes`
5. (Optional) `log-neighbor-warnings [seconds]`
6. `interface interface-type slot/port`
7. `{ip | ipv6} router eigrp instance-tag`
8. (Optional) `show {ip | ipv6} eigrp interfaces`
9. (Optional) `copy running-config startup-config`
Configuring Basic EIGRP

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
</tbody>
</table>
| | **Example:** switch# configure terminal
| | switch(config)# | |
| 2 | router eigrp instance-tag | Creates a new EIGRP process with the configured instance tag. The instance tag can be any case-sensitive, alphanumeric string up to 20 characters.
| | **Example:** switch(config)# router eigrp Test1
| | switch(config-router)# |
| | If you configure an *instance-tag* that does not qualify as an AS number, you must use the **autonomous-system** command to configure the AS number explicitly or this EIGRP instance will remain in the shutdown state. |
| 3 | autonomous-system as-number | (Optional) Configures a unique AS number for this EIGRP instance. The range is from 1 to 65535.
| | **Example:** switch(config-router)# autonomous-system 33 | |
| 4 | log-adjacency-changes | (Optional). Generates a system message whenever an adjacency changes state. This command is enabled by default.
| | **Example:** switch(config-router)# log-adjacency-changes | |
| 5 | log-neighbor-warnings [seconds] | (Optional) Generates a system message whenever a neighbor warning occurs. You can configure the time between warning messages, from 1 to 65535, in seconds. The default is 10 seconds. This command is enabled by default.
| | **Example:** switch(config-router)# log-neighbor-warnings | |
| 6 | interface interface-type slot/port | Enters interface configuration mode. Use ? to determine the slot and port ranges.
| | **Example:** switch(config-router)# interface ethernet 1/2
| | switch(config-if)# | |
| 7 | (ip | ipv6) router eigrp instance-tag | Associates this interface with the configured EIGRP process. The instance tag can be any case-sensitive, alphanumeric string up to 20 characters.
| | **Example:** switch(config-if)# ip router eigrp Test1 | |
| 8 | show (ip | ipv6) eigrp interfaces | (Optional) Displays information about EIGRP interfaces.
| | **Example:** switch(config-if)# show ip eigrp interfaces | |
| 9 | copy running-config startup-config | (Optional) Saves this configuration change.
| | **Example:** switch(config)# copy running-config startup-config | |
To remove the EIGRP process and the associated configuration, use the following command in the configuration mode:

```
no router eigrp instance-tag
```

Example:
```
switch(config)# no router eigrp Test1
```

Note
You should also remove any EIGRP commands configured in interface mode if you remove the EIGRP process.

This example shows how to create an EIGRP process and configure an interface for EIGRP:
```
switch# configure terminal
switch(config)# router eigrp Test1
switch(config)# interface ethernet 1/2
switch(config-if)# ip router eigrp Test1
switch(config-if)# no shutdown
switch(config-if)# copy running-config startup-config
```

For more information about other EIGRP parameters, see the “Configuring Advanced EIGRP” section on page 8-15.

Restarting an EIGRP Instance

You can restart an EIGRP instance. This action clears all neighbors for the instance.

To restart an EIGRP instance and remove all associated neighbors, use the following commands:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>flush-routes</td>
<td>(Optional) Flushes all EIGRP routes in the unicast RIB when this EIGRP instance restarts.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch(config)# flush-routes</td>
<td></td>
</tr>
<tr>
<td>restart eigrp instance-tag</td>
<td>Restarts the EIGRP instance and removes all neighbors. The instance tag can be any case-sensitive, alphanumeric string up to 20 characters.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch(config)# restart eigrp Test1</td>
<td></td>
</tr>
</tbody>
</table>
Shutting Down an EIGRP Instance

You can gracefully shut down an EIGRP instance. This action removes all routes and adjacencies but preserves the EIGRP configuration.

To disable an EIGRP instance, use the following command in router configuration mode:

```
switch(config-router)# shutdown
```

Example:
```
switch(config-router)# shutdown
```

Disables this instance of EIGRP. The EIGRP router configuration remains.

Configuring a Passive Interface for EIGRP

You can configure a passive interface for EIGRP. A passive interface does not participate in EIGRP adjacency but the network address for the interface remains in the EIGRP topology table.

To configure a passive interface for EIGRP, use the following command in interface configuration mode:

```
{ip | ipv6} passive-interface eigrp instance-tag
```

Example:
```
switch(config-if)# ip passive-interface eigrp tag10
```

Suppresses EIGRP hellos, which prevents neighbors from forming and sending routing updates on an EIGRP interface. The instance tag can be any case-sensitive, alphanumeric string up to 20 characters.

Shutting Down EIGRP on an Interface

You can gracefully shut down EIGRP on an interface. This action removes all adjacencies and stops EIGRP traffic on this interface but preserves the EIGRP configuration.

To disable EIGRP on an interface, use the following command in interface configuration mode:

```
{ip | ipv6} eigrp instance-tag shutdown
```

Example:
```
switch(config-router)# ip eigrp Test1 shutdown
```

Disables EIGRP on this interface. The EIGRP interface configuration remains. The instance tag can be any case-sensitive, alphanumeric string up to 20 characters.

Configuring Advanced EIGRP

This section includes the following topics:

- Configuring Authentication in EIGRP, page 8-16
- Configuring EIGRP Stub Routing, page 8-18
Configuring Authentication in EIGRP

You can configure authentication between neighbors for EIGRP. See the “Authentication” section on page 8-6.

You can configure EIGRP authentication for the EIGRP process or for individual interfaces. The interface EIGRP authentication configuration overrides the EIGRP process-level authentication configuration.

BEFORE YOU BEGIN

You must enable EIGRP (see the “Enabling the EIGRP Feature” section on page 8-11).

Ensure that all neighbors for an EIGRP process share the same authentication configuration, including the shared authentication key.

Create the key chain for this authentication configuration. For more information, see the Cisco Nexus 7000 Series NX-OS Security Configuration Guide, Release 5.x.

Ensure that you are in the correct VDC (or use the switchto vdc command).

SUMMARY STEPS

1. configure terminal
2. router eigrp instance-tag
3. address-family {ipv4 | ipv6} unicast
4. authentication key-chain key-chain
5. authentication mode md5
6. interface interface-type slot/port
7. {ip | ipv6} router eigrp instance-tag
8. {ip | ipv6} authentication key-chain eigrp instance-tag key-chain
9. {ip | ipv6} authentication mode eigrp instance-tag md5
10. (Optional) copy running-config startup-config
Configuring Advanced EIGRP

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>configure terminal</code></td>
<td>Enters configuration mode.</td>
</tr>
</tbody>
</table>
| | **Example:** | | switch# configure terminal
| | | switch(config)# | |
| 2 | `router eigrp instance-tag` | Creates a new EIGRP process with the configured instance tag. The instance tag can be any case-sensitive, alphanumeric string up to 20 characters.
| | **Example:** | | switch(config)# router eigrp Test1
| | | switch(config-router)# | |
| 3 | `address-family (ipv4 | ipv6) unicast` | Enters the address-family configuration mode. This command is optional for IPv4. |
| | **Example:** | | switch(config-router)# address-family ipv4 unicast
| | | switch(config-router-af)# | | |
| 4 | `authentication key-chain key-chain` | Associates a key chain with this EIGRP process for this VRF. The key chain can be any case-sensitive, alphanumeric string up to 20 characters. |
| | **Example:** | | switch(config-router-af)# authentication key-chain routeKeys | |
| 5 | `authentication mode md5` | Configures MD5 message digest authentication mode for this VRF. |
| | **Example:** | | switch(config-router-af)# authentication mode md5 | |
| 6 | `interface interface-type slot/port` | Enters interface configuration mode. Use `?` to find the supported interfaces. |
| | **Example:** | | switch(config-router-af)# interface ethernet 1/2
| | | switch(config-if)# | | |
| 7 | `(ip | ipv6) router eigrp instance-tag` | Associates this interface with the configured EIGRP process. The instance tag can be any case-sensitive, alphanumeric string up to 20 characters. |
| | **Example:** | | switch(config-if)# ip router eigrp Test1 | |
| 8 | `(ip | ipv6) authentication key-chain eigrp instance-tag key-chain` | Associates a key chain with this EIGRP process for this interface. This configuration overrides the authentication configuration set in the router VRF mode.
| | **Example:** | | switch(config-if)# ip authentication key-chain eigrp Test1 routeKeys | | The instance tag can be any case-sensitive, alphanumeric string up to 20 characters. |
Configuring Advanced EIGRP

This example shows how to configure MD5 message digest authentication for EIGRP over Ethernet interface 1/2:

```
switch# configure terminal
switch(config)# router eigrp Test1
switch(config-router)# exit
switch(config)# interface ethernet 1/2
switch(config-if)# ip router eigrp Test1
switch(config-if)# ip authentication key-chain eigrp Test1 routeKeys
switch(config-if)# ip authentication mode eigrp Test1 md5
switch(config-if)# copy running-config startup-config
```

Step 9

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ip</td>
<td>ipv6) authentication mode eigrp instance-tag md5</td>
</tr>
</tbody>
</table>

Step 10

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Saves this configuration change.</td>
</tr>
</tbody>
</table>

Example:
```
switch(config)# copy running-config startup-config
```

This example shows output from the `show ip eigrp neighbor detail` command:

```
Router# show ip eigrp neighbor detail
```

Configuring EIGRP Stub Routing

To configure a router for EIGRP stub routing, use the following command in address-family configuration mode:

```
switch(config-router-af)# eigrp stub [direct | receive-only | redistributed [direct] leak-map map-name]
```

Example:
```
switch(config-router-af)# eigrp stub redistributed
```

This example shows how to configure a stub router to advertise directly connected and redistributed routes:

```
switch# configure terminal
switch(config)# router eigrp Test1
switch(config-router)# address-family ipv6 unicast
switch(config-router-af)# stub direct redistributed
switch(config-router-af)# copy running-config startup-config
```

Use the `show ip eigrp neighbor detail` command to verify that a router has been configured as a stub router. The last line of the output shows the stub status of the remote or spoke router.

This example shows output from the `show ip eigrp neighbor detail` command:

```
Router# show ip eigrp neighbor detail
```
Configuring a Summary Address for EIGRP

You can configure a summary aggregate address for a specified interface. If any more specific routes are in the routing table, EIGRP advertises the summary address out the interface with a metric equal to the minimum of all more specific routes. See the “Route Summarization” section on page 8-7.

To configure a summary aggregate address, use the following command in interface configuration mode:

```
switch(config-if)# {ip | ipv6}
summary-address eigrp instance-tag ip-prefix/length [distance | leak-map map-name]
```

Example:

```
switch(config-if)# ip summary-address eigrp Test1 192.0.2.0/8
```

This example shows how to cause EIGRP to summarize network 192.0.2.0 out Ethernet 1/2 only:

```
switch(config)# interface ethernet 1/2
switch(config-if)# ip summary-address eigrp Test1 192.0.2.0 255.255.255.0
```

Redistributing Routes into EIGRP

You can redistribute routes in EIGRP from other routing protocols.

BEFORE YOU BEGIN

You must enable EIGRP (see the “Enabling the EIGRP Feature” section on page 8-11).

You must configure the metric (either through the default-metric configuration option or through a route map) for routes redistributed from any other protocol.

You must create a route map to control the types of routes that are redistributed into EIGRP. See Chapter 16, “Configuring Route Policy Manager.”

Ensure that you are in the correct VDC (or use the `switchto vdc` command).

SUMMARY STEPS

1. `configure terminal`
2. `router eigrp instance-tag`
Configuring Advanced EIGRP

Send document comments to nexus7k-docfeedback@cisco.com.

3. `address-family {ipv4 | ipv6} unicast`

4. `redistribute {bgp as | {eigrp | isis | ospf | ospfv3 | rip} instance-tag | direct | static} route-map name`

5. `default-metric bandwidth delay reliability loading mtu`

6. (Optional) `show {ip | ipv6} eigrp route-map statistics redistribute`

7. (Optional) `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1
 <code>configure terminal</code>
 Example:
 switch# configure terminal
 switch(config)#</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2
 <code>router eigrp instance-tag</code>
 Example:
 switch(config)# router eigrp Test1
 switch(config-router)#</td>
<td>Creates a new EIGRP process with the configured instance tag. The instance tag can be any case-sensitive, alphanumeric string up to 20 characters. If you configure an <code>instance-tag</code> that does not qualify as an AS number, you must use the <code>autonomous-system</code> command to configure the AS number explicitly or this EIGRP instance will remain in the shutdown state.</td>
</tr>
<tr>
<td>Step 3
 `address-family {ipv4</td>
<td>ipv6} unicast`
 Example:
 switch(config-router)# address-family ipv4 unicast
 switch(config-router-af)#</td>
</tr>
<tr>
<td>Step 4
 `redistribute {bgp as</td>
<td>{eigrp</td>
</tr>
</tbody>
</table>
| **Step 5**
 `default-metric bandwidth delay reliability loading mtu`
 Example:
 switch(config-router-af)# default-metric 500000 30 200 1 1500 | Sets the metrics assigned to routes learned through route redistribution. The default values are as follows:
 - bandwidth—100000 Kb/s
 - delay—100 (10 microsecond units)
 - reliability—255
 - loading—1
 - MTU—1492 |
Configuring Advanced EIGRP

The following example shows how to redistribute BGP into EIGRP for IPv4:

```
switch# configure terminal
switch(config)# router eigrp Test1
switch(config-router)# redistribute bgp 100 route-map BGPFilter
switch(config-router)# default-metric 500000 30 200 1 1500
switch(config-router)# copy running-config startup-config
```

Limiting the Number of Redistributed Routes

Route redistribution can add many routes to the EIGRP route table. You can configure a maximum limit to the number of routes accepted from external protocols. EIGRP provides the following options to configure redistributed route limits:

- Fixed limit—Logs a message when EIGRP reaches the configured maximum. EIGRP does not accept any more redistributed routes. You can optionally configure a threshold percentage of the maximum where EIGRP logs a warning when that threshold is passed.
- Warning only—Logs a warning only when EIGRP reaches the maximum. EIGRP continues to accept redistributed routes.
- Withdraw—Starts the timeout period when EIGRP reaches the maximum. After the timeout period, EIGRP requests all redistributed routes if the current number of redistributed routes is less than the maximum limit. If the current number of redistributed routes is at the maximum limit, EIGRP withdraws all redistributed routes. You must clear this condition before EIGRP accepts more redistributed routes. You can optionally configure the timeout period.

Limiting the Number of Redistributed Routes

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6</td>
<td>**show (ip</td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

Example:
```
switch(config-router-af)# show ip eigrp route-map statistics redistribute bgp
```

The following example shows how to redistribute BGP into EIGRP for IPv4:

```
switch# configure terminal
switch(config)# router eigrp Test1
switch(config-router)# redistribute bgp 100 route-map BGPFilter
switch(config-router)# default-metric 500000 30 200 1 1500
switch(config-router)# copy running-config startup-config
```

SUMMARY STEPS

1. configure terminal
2. router eigrp instance-tag
3. redistribute {bgp id | direct | eigrp id | isis id | ospf id | rip id | static} route-map map-name
4. redistribute maximum-prefix max [threshold] [warning-only | withdraw [num-retries timeout]]
5. (Optional) show running-config eigrp

Send document comments to nexus7k-docfeedback@cisco.com.
Configuring Advanced EIGRP

Send document comments to nexus7k-docfeedback@cisco.com.

6. (Optional) copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
</tbody>
</table>
| Example: | switch# configure terminal
switch(config)# |
| Enters configuration mode. |

| **Step 2** | router eigrp instance-tag |
| Example: | switch(config)# router eigrp Test1
switch(config-router)# |
| Creates a new EIGRP instance with the configured instance tag. |

| **Step 3** | redistribute {bgp id | direct | eigrp id
isis id | ospf id | rip id | static} route-map map-name |
| Example: | switch(config-router)# redistribute bgp route-map FilterExternalBGP |
| Redistributes the selected protocol into EIGRP through the configured route map. |

| **Step 4** | redistribute maximum-prefix max
threshold | warning-only | withdraw
[num-retries timeout] |
| Example: | switch(config-router)# redistribute maximum-prefix 1000 75 warning-only |
| Specifies a maximum number of prefixes that EIGRP distributes. The range is from 0 to 65536. Optionally specifies the following:
 * **threshold**—Percent of maximum prefixes that triggers a warning message.
 * **warning-only**—Logs an warning message when the maximum number of prefixes is exceeded.
 * **withdraw**—Withdraws all redistributed routes. Optionally tries to retrieve the redistributed routes. The **num-retries** range is from 1 to 12. The **timeout** is from 60 to 600 seconds. The default is 300 seconds. Use the **clear ip eigrp redistribution** command if all routes are withdrawn. |

| **Step 5** | show running-config eigrp |
| Example: | switch(config-router)# show running-config eigrp |
| (Optional) Displays the EIGRP configuration. |

| **Step 6** | copy running-config startup-config |
| Example: | switch(config-router)# copy running-config startup-config |
| (Optional) Saves this configuration change. |

This example shows how to limit the number of redistributed routes into EIGRP:

```
switch# configure terminal  
switch(config)# router eigrp Test1  
switch(config-router)# redistribute bgp route-map FilterExternalBGP  
switch(config-router)# redistribute maximum-prefix 1000 75
```
Configuring Load Balancing in EIGRP

You can configure load balancing in EIGRP. You can configure the number of Equal Cost Multiple Path (ECMP) routes using the maximum paths option. See the “Configuring Load Balancing in EIGRP” section on page 8-23.

BEFORE YOU BEGIN

You must enable EIGRP (see the “Enabling the EIGRP Feature” section on page 8-11). Ensure that you are in the correct VDC (or use the `switchto vdc` command).

SUMMARY STEPS

1. `configure terminal`
2. `router eigrp instance-tag`
3. `address-family {ipv4 | ipv6} unicast`
4. `maximum-paths num-paths`
5. (Optional) `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1
 <code>configure terminal</code></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Example:
 <code>switch# configure terminal</code>
<code>switch(config)#</code></td>
<td></td>
</tr>
<tr>
<td>Step 2
 <code>router eigrp instance-tag</code></td>
<td>Creates a new EIGRP process with the configured instance tag. The instance tag can be any case-sensitive, alphanumeric string up to 20 characters. If you configure an <code>instance-tag</code> that does not qualify as an AS number, you must use the <code>autonomous-system</code> command to configure the AS number explicitly or this EIGRP instance remains in the shutdown state.</td>
</tr>
<tr>
<td>Example:
 <code>switch(config)# router eigrp Test1</code>
<code>switch(config-router)#</code></td>
<td></td>
</tr>
<tr>
<td>Step 3
 `address-family {ipv4</td>
<td>ipv6} unicast`</td>
</tr>
<tr>
<td>Example:
 <code>switch(config-router)# address-family ipv4 unicast</code>
<code>switch(config-router-af)#</code></td>
<td></td>
</tr>
</tbody>
</table>
Configuring Advanced EIGRP

This example shows how to configure equal cost load balancing for EIGRP over IPv4 with a maximum of six equal cost paths:

```
switch# configure terminal
switch(config)# router eigrp Test1
switch(config-router)# maximum-paths 6
switch(config-router)# copy running-config startup-config
```

Configuring Graceful Restart for EIGRP

You can configure graceful restart or nonstop forwarding for EIGRP. See the “Graceful Restart and High Availability” section on page 8-8.

Note
Graceful restart is enabled by default.

BEFORE YOU BEGIN

You must enable EIGRP (see the “Enabling the EIGRP Feature” section on page 8-11).

An NSF-aware router must be up and completely converged with the network before it can assist an NSF-capable router in a graceful restart operation.

Neighboring devices participating in the graceful restart must be NSF-aware or NSF-capable.

Ensure that you are in the correct VDC (or use the `switchto vdc` command).

SUMMARY STEPS

1. `configure terminal`
2. `router eigrp instance-tag`
3. `address-family {ipv4 | ipv6} unicast`
4. `graceful-restart`
5. `timers nsf converge seconds`
6. `timers nsf route-hold seconds`
7. `timers nsf signal seconds`
8. *(Optional)* `copy running-config startup-config`

Command Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td><code>maximum-paths num-paths</code></td>
<td>Sets the number of equal cost paths that EIGRP accepts in the route table. The range is from 1 to 16. The default is 8.</td>
</tr>
<tr>
<td>5</td>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Saves this configuration change.</td>
</tr>
</tbody>
</table>

Example:

```
switch(config-router-af)# maximum-paths 5
```

Sets the number of equal cost paths that EIGRP accepts in the route table. The range is from 1 to 16. The default is 8.

Example:

```
switch(config-router-af)# copy running-config startup-config
```
Send document comments to nexus7k-docfeedback@cisco.com.

Detailed Steps

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2 router eigrp instance-tag</td>
<td>Creates a new EIGRP process with the configured instance tag. The instance tag can be any case-sensitive, alphanumeric string up to 20 characters. If you configure an instance-tag that does not qualify as an AS number, you must use the autonomous-system command to configure the AS number explicitly or this EIGRP instance remains in the shutdown state.</td>
</tr>
<tr>
<td>Step 3 address-family (ipv4</td>
<td>ipv6) unicast</td>
</tr>
<tr>
<td>Step 4 graceful-restart</td>
<td>Enables graceful restart. This feature is enabled by default.</td>
</tr>
<tr>
<td>Step 5 timers nsf converge seconds</td>
<td>Sets the time limit for the convergence after a switchover. The range is from 60 to 180 seconds. The default is 120.</td>
</tr>
<tr>
<td>Step 6 timers nsf route-hold seconds</td>
<td>Sets the hold time for routes learned from the graceful restart-aware peer. The range is from 20 to 300 seconds. The default is 240.</td>
</tr>
<tr>
<td>Step 7 timers nsf signal seconds</td>
<td>Sets the time limit for signaling a graceful restart. The range is from 10 to 30 seconds. The default is 20.</td>
</tr>
<tr>
<td>Step 8 copy running-config startup-config</td>
<td>(Optional) Saves this configuration change.</td>
</tr>
</tbody>
</table>

This example shows how to configure graceful restart for EIGRP over IPv6 using the default timer values:

```
switch# configure terminal
switch(config)# router eigrp Test1
switch(config-router)# address-family ipv6 unicast
switch(config-router-af)# graceful-restart
switch(config-router-af)# timers nsf converge 100
switch(config-router-af)# timers nsf route-hold 200
switch(config-router-af)# timers nsf signal 15
switch(config-router-af)# copy running-config startup-config
```
Chapter 8 Configuring EIGRP

Send document comments to nexus7k-docfeedback@cisco.com.

Adjusting the Interval Between Hello Packets and the Hold Time

You can adjust the interval between Hello messages and the hold time.

By default, Hello messages are sent every 5 seconds. The hold time is advertised in Hello messages and indicates to neighbors the length of time that they should consider the sender valid. The default hold time is three times the hello interval, or 15 seconds.

To change the interval between hello packets, use the following command in interface configuration mode:

```
switch(config-if)# {ip | ipv6} hello-interval eigrp instance-tag seconds
```

Example:
```
switch(config-if)# ip hello-interval eigrp Test1 30
```

On very congested and large networks, the default hold time might not be sufficient time for all routers to receive hello packets from their neighbors. In this case, you might want to increase the hold time.

To change the hold time, use the following command in interface configuration mode:

```
switch(config-if)# {ip | ipv6} hold-time eigrp instance-tag seconds
```

Example:
```
switch(config-if)# ipv6 hold-time eigrp Test1 30
```

Use the `show ip eigrp interface detail` command to verify the timer configuration.

Disabling Split Horizon

You can use split horizon to block route information from being advertised by a router out of any interface from which that information originated. Split horizon usually optimizes communications among multiple routing devices, particularly when links are broken.

By default, split horizon is enabled on all interfaces.

To disable split horizon, use the following command in interface configuration mode:

```
switch(config-if)# no {ip | ipv6} split-horizon eigrp instance-tag
```

Example:
```
switch(config-if)# no ip split-horizon eigrp Test1
```

Disables split horizon.
Enabling Wide Metrics

To enable wide metrics, use the following command in router or address family configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>switch(config-router)# metrics version 64bit</code></td>
<td>Enables 64-bit metric values.</td>
</tr>
<tr>
<td><code>switch(config-router)# metrics version 64bit</code></td>
<td>Example:</td>
</tr>
</tbody>
</table>

To optionally configure a scaling factor for the RIB, use the following commands in router or address family configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>switch(config-router)# metrics rib-scale value</code></td>
<td>(Optional) Configures the scaling factor used to convert the 64-bit metric values to 32 bit in the RIB. The range is from 1 to 255. The default is 128.</td>
</tr>
<tr>
<td><code>switch(config-router)# metrics rib-scale 128</code></td>
<td>Example:</td>
</tr>
</tbody>
</table>

Tuning EIGRP

You can configure optional parameters to tune EIGRP for your network.

You can configure the following optional parameters in address-family configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`default-information originate [always</td>
<td>Configures the administrative distance for this EIGRP process. The range is from 1 to 255. The internal value sets the distance for routes learned from within the same autonomous system (the default value is 90). The external value sets the distance for routes learned from an external autonomous system (the default value is 170).</td>
</tr>
<tr>
<td>or route-map map-name]`</td>
<td><code>switch(config-router-af)# default-information originate always</code></td>
</tr>
<tr>
<td><code>switch(config-router-af)# default-information originate always</code></td>
<td>Example:</td>
</tr>
<tr>
<td><code>distance internal external</code></td>
<td><code>switch(config-router-af)# distance 25 100</code></td>
</tr>
<tr>
<td><code>metric max-hops hop-count</code></td>
<td><code>switch(config-router-af)# metric max-hops 70</code></td>
</tr>
<tr>
<td><code>switch(config-router-af)# distance 25 100</code></td>
<td>Example:</td>
</tr>
<tr>
<td><code>switch(config-router-af)# metric max-hops 70</code></td>
<td>Example:</td>
</tr>
</tbody>
</table>
Configuring Advanced EIGRP

Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| `metric weights tos k1 k2 k3 k4 k5 k6` | Adjusts the EIGRP metric or K value. EIGRP uses the following formula to determine the total metric to the network:

\[
\text{metric} = [k1 \times \text{bandwidth} + (k2 \times \text{bandwidth})/(256 - \text{load}) + k3 \times \text{delay} + k6 \times \text{extended attributes}] \times [k5/(\text{reliability} + k4)]
\]

Default values and ranges are as follows:
- **TOS**—0. The range is from 0 to 8.
- **k1**—1. The range is from 0 to 255.
- **k2**—0. The range is from 0 to 255.
- **k3**—1. The range is from 0 to 255.
- **k4**—0. The range is from 0 to 255.
- **k5**—0. The range is from 0 to 255.
- **k6**—0. The range is from 0 to 255. |

| Example: | switch(config-router-af)# metric weights 0 1 3 2 1 0 | |

timers active-time (time-limit | disabled)

| Example: | switch(config-router-af)# timers active-time 200 | Sets the time the router waits in minutes (after sending a query) before declaring the route to be stuck in the active (SIA) state. The range is from 1 to 65535. The default is 3. |

You can configure the following optional parameters in interface configuration mode:

Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`{ip</td>
<td>ipv6} bandwidth eigrp instance-tag bandwidth`</td>
</tr>
</tbody>
</table>

| Example: | switch(config-if)# ip bandwidth eigrp Test1 30000 | |

| `{ip | ipv6} bandwidth-percent eigrp instance-tag percent` | Configures the percentage of bandwidth that EIGRP might use on an interface. The instance tag can be any case-sensitive, alphanumeric string up to 20 characters. The percent range is from 0 to 100. The default is 50. |

| Example: | switch(config-if)# ip bandwidth-percent eigrp Test1 30 | |

| no `{ip | ipv6} delay eigrp instance-tag delay` | Configures the delay metric for EIGRP on an interface. The instance tag can be any case-sensitive, alphanumeric string up to 20 characters. The delay range is from 1 to 16777215 (in tens of microseconds). |

| Example: | switch(config-if)# ip delay eigrp Test1 100 | |
Configuring Virtualization for EIGRP

You can configure multiple EIGRP processes in each VDC. You can also create multiple VRFs within each VDC and use the same or multiple EIGRP processes in each VRF. You assign an interface to a VRF.

Note

Configure all other parameters for an interface after you configure the VRF for an interface. Configuring a VRF for an interface deletes all other configuration for that interface.

BEFORE YOU BEGIN

You must enable EIGRP (see the “Enabling the EIGRP Feature” section on page 8-11). Create the VDCs and VRFs. Ensure that you are in the correct VDC (or use the `switchto vdc` command).

SUMMARY STEPS

1. `configure terminal`
2. `vrf context vrf-name`
3. `router eigrp instance-tag`
4. `interface ethernet slot/port`
Configuring Virtualization for EIGRP

Send document comments to nexus7k-docfeedback@cisco.com.

5. vrf member vrf-name
6. `{ip | ipv6} router eigrp instance-tag`
7. (Optional) `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
</tbody>
</table>
| **Example:** switch# configure terminal
switch(config)# | |
| **Step 2** vrf context vrf-name | Creates a new VRF and enters VRF configuration mode. The VRF name can be any case-sensitive, alphanumeric string up to 20 characters. |
| **Example:** switch(config)# vrf context
RemoteOfficeVRF
switch(config-vrf)# | |
| **Step 3** router eigrp instance-tag | Creates a new EIGRP process with the configured instance tag. The instance tag can be any case-sensitive, alphanumeric string up to 20 characters.
If you configure an `instance-tag` that does not qualify as an AS number, you must use the `autonomous-system` command to configure the AS number explicitly or this EIGRP instance remains in the shutdown state. |
| **Example:** switch(config)# router eigrp Test1
switch(config-router)# | |
| **Step 4** interface ethernet slot/port | Enters interface configuration mode. Use ? to find the slot and port ranges. |
| **Example:** switch(config)# interface ethernet 1/2
switch(config-if)# | |
| **Step 5** vrf member vrf-name | Adds this interface to a VRF. The VRF name can be any case-sensitive, alphanumeric string up to 20 characters. |
| **Example:** switch(config-if)# vrf member
RemoteOfficeVRF | |
| **Step 6** `{ip | ipv6} router eigrp instance-tag` | Adds this interface to the EIGRP process. The instance tag can be any case-sensitive, alphanumeric string up to 20 characters. |
| **Example:** switch(config-if)# ip router eigrp Test1 | |
| **Step 7** `copy running-config startup-config` | (Optional) Saves this configuration change. |
| **Example:** switch(config-if)# copy running-config startup-config | |
This example shows how to create a VRF and add an interface to the VRF:

```
switch# configure terminal
switch(config)# vrf context NewVRF
switch(config-vrf)# router eigrp Test1
switch(config-router)# interface ethernet 1/2
switch(config-if)# ip router eigrp Test1
switch(config-if)# vrf member NewVRF
switch(config-if)# copy running-config startup-config
```

Verifying the EIGRP Configuration

To display the EIGRP configuration, perform one of the following tasks:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ip eigrp</code></td>
<td>Displays a summary of the configured EIGRP processes.</td>
</tr>
<tr>
<td><code>show ip eigrp interfaces</code></td>
<td>Displays information about all configured EIGRP interfaces.</td>
</tr>
<tr>
<td><code>show ip eigrp instance-tag neighbors</code></td>
<td>Displays information about all the EIGRP neighbors. Use this command to verify the EIGRP neighbor configuration.</td>
</tr>
<tr>
<td><code>show ip eigrp instance-tag route ip-prefix/length [active] [all-links] [detail-links] [pending] [summary] [zero-successors] [vrf vrf-name]</code></td>
<td>Displays information about all the EIGRP routes.</td>
</tr>
<tr>
<td><code>show ip eigrp instance-tag topology ip-prefix/length [active] [all-links] [detail-links] [pending] [summary] [zero-successors] [vrf vrf-name]</code></td>
<td>Displays information about the EIGRP topology table.</td>
</tr>
<tr>
<td><code>show running-configuration eigrp</code></td>
<td>Displays the current running EIGRP configuration.</td>
</tr>
</tbody>
</table>

Monitoring EIGRP

To display EIGRP statistics, use the following commands:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ip eigrp instance-tag accounting vrf vrf-name</code></td>
<td>Displays accounting statistics for EIGRP.</td>
</tr>
<tr>
<td><code>show ip eigrp instance-tag route-map statistics redistribute</code></td>
<td>Displays redistribution statistics for EIGRP.</td>
</tr>
<tr>
<td><code>show ip eigrp instance-tag traffic vrf vrf-name</code></td>
<td>Displays traffic statistics for EIGRP.</td>
</tr>
</tbody>
</table>
Send document comments to nexus7k-docfeedback@cisco.com.

Configuration Examples for EIGRP

This example shows how to configure EIGRP:

```plaintext
feature eigrp
interface ethernet 1/2
  ip address 192.0.2.55/24
  ip router eigrp Test1
  no shutdown
router eigrp Test1
  router-id 192.0.2.1
```

Related Topics

See Chapter 16, “Configuring Route Policy Manager” for more information on route maps.

Additional References

For additional information related to implementing EIGRP, see the following sections:

- Related Documents, page 8-32

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIGRP CLI commands</td>
<td>Cisco Nexus 7000 Series NX-OS Unicast Routing Command Reference, Release 5.x</td>
</tr>
<tr>
<td>VDCs and VRFs</td>
<td>Cisco Nexus 7000 Series NX-OS Virtual Device Context Configuration Guide, Release 5.x</td>
</tr>
<tr>
<td>http://www.cisco.com/warp/public/103/1.html</td>
<td>Introduction to EIGRP Tech Note</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISCO-EIGRP-MIB</td>
<td>To locate and download MIBs, go to the following URL:</td>
</tr>
</tbody>
</table>
Feature History for EIGRP

Table 8-2 lists the release history for this feature.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wide metrics</td>
<td>5.2(1)</td>
<td>Added support for EIGRP wide metrics.</td>
</tr>
<tr>
<td>BFD</td>
<td>5.0(2)</td>
<td>Added support for BFD. See the Cisco Nexus 7000 Series NX-OS Interfaces Configuration Guide, Release 5.x, for more information.</td>
</tr>
<tr>
<td>Graceful shutdown</td>
<td>4.2(1)</td>
<td>Added support to gracefully shut down an EIGRP instance or EIGRP on an interface but preserve the EIGRP configuration.</td>
</tr>
<tr>
<td>EIGRP instance tag</td>
<td>4.2(1)</td>
<td>Changed length to 20 characters.</td>
</tr>
<tr>
<td>Limits on redistributed routes</td>
<td>4.2(1)</td>
<td>Added support for limiting the number of redistributed routes.</td>
</tr>
<tr>
<td>EIGRP IPv6 support</td>
<td>4.1(2)</td>
<td>Added support for IPv6.</td>
</tr>
<tr>
<td>Authentication</td>
<td>4.0(3)</td>
<td>Added the ability to configure authentication within a VRF for EIGRP.</td>
</tr>
<tr>
<td>EIGRP</td>
<td>4.0(1)</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>