Configuring SNMP

This chapter describes how to configure the SNMP feature on Cisco NX-OS devices.

This chapter includes the following sections:

- Information About SNMP, page 10-1
- Licensing Requirements for SNMP, page 10-7
- Prerequisites for SNMP, page 10-7
- Guidelines and Limitations, page 10-8
- Configuring SNMP, page 10-8
- Verifying SNMP Configuration, page 10-24
- SNMP Example Configurations, page 10-24
- Default Settings, page 10-25
- Additional References, page 10-25
- Feature History for SNMP, page 10-26

Information About SNMP

The Simple Network Management Protocol (SNMP) is an application-layer protocol that provides a message format for communication between SNMP managers and agents. SNMP provides a standardized framework and a common language used for the monitoring and management of devices in a network.

This section includes the following topics:

- SNMP Functional Overview, page 10-2
- SNMP Notifications, page 10-2
- SNMPv3, page 10-3
- SNMPv3, page 10-6
- Multiple Instance Support, page 10-6
- High Availability, page 10-7
- Virtualization Support, page 10-7
SNMP Functional Overview

The SNMP framework consists of three parts:

- An SNMP manager—The system used to control and monitor the activities of network devices using SNMP.
- An SNMP agent—The software component within the managed device that maintains the data for the device and reports these data, as needed, to managing systems. Cisco NX-OS supports the agent and MIB. To enable the SNMP agent, you must define the relationship between the manager and the agent.
- A managed information base (MIB)—The collection of managed objects on the SNMP agent.

SNMP is defined in RFCs 3411 to 3418.

Cisco NX-OS supports SNMPv1, SNMPv2c, and SNMPv3. Both SNMPv1 and SNMPv2c use a community-based form of security.

Cisco NX-OS supports SNMP over IPv6.

SNMP Notifications

A key feature of SNMP is the ability to generate notifications from an SNMP agent. These notifications do not require that requests be sent from the SNMP manager. Notifications can indicate improper user authentication, restarts, the closing of a connection, loss of a connection to a neighbor router, or other significant events.

Cisco NX-OS generates SNMP notifications as either traps or informs. A trap is an asynchronous, unacknowledged message sent from the agent to the SNMP managers listed in the host receiver table (see the “Configuring SNMP Notification Receivers with VRFs” section on page 10-14). Informs are asynchronous messages sent from the SNMP agent to the SNMP manager which the manager must acknowledge receipt of.

Traps are less reliable than informs because the SNMP manager does not send any acknowledgment when it receives a trap. Cisco NX-OS cannot determine if the trap was received. An SNMP manager that receives an inform request acknowledges the message with an SNMP response protocol data unit (PDU). If Cisco NX-OS never receives a response, it can send the inform request again.

You can configure Cisco NX-OS to send notifications to multiple host receivers. See the “Configuring SNMP Notification Receivers” section on page 10-11 for more information about host receivers.

Table 10-1 lists the SNMP traps that are enabled by default.

<table>
<thead>
<tr>
<th>Trap Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>generic</td>
<td>coldStart</td>
</tr>
<tr>
<td>generic</td>
<td>warmStart</td>
</tr>
<tr>
<td>entity</td>
<td>entity_mib_change</td>
</tr>
<tr>
<td>entity</td>
<td>entity_module_status_change</td>
</tr>
<tr>
<td>entity</td>
<td>entity_power_status_change</td>
</tr>
<tr>
<td>entity</td>
<td>entity_module_inserted</td>
</tr>
<tr>
<td>entity</td>
<td>entity_module_removed</td>
</tr>
<tr>
<td>entity</td>
<td>entity_unrecognised_module</td>
</tr>
</tbody>
</table>
Send document comments to nexus7k-docfeedback@cisco.com.

Table 10-1 SNMP Traps Enabled By Default (continued)

<table>
<thead>
<tr>
<th>Trap Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>entity</td>
<td>entity_fan_status_change</td>
</tr>
<tr>
<td>entity</td>
<td>entity_power_out_change</td>
</tr>
<tr>
<td>link</td>
<td>linkDown</td>
</tr>
<tr>
<td>link</td>
<td>linkUp</td>
</tr>
<tr>
<td>link</td>
<td>extended-linkDown</td>
</tr>
<tr>
<td>link</td>
<td>extended-linkUp</td>
</tr>
<tr>
<td>link</td>
<td>cieLinkDown</td>
</tr>
<tr>
<td>link</td>
<td>cieLinkUp</td>
</tr>
<tr>
<td>link</td>
<td>delayed-link-state-change</td>
</tr>
<tr>
<td>rf</td>
<td>redundancy_framework</td>
</tr>
<tr>
<td>license</td>
<td>notify-license-expiry</td>
</tr>
<tr>
<td>license</td>
<td>notify-no-license-for-feature</td>
</tr>
<tr>
<td>license</td>
<td>notify-licensefile-missing</td>
</tr>
<tr>
<td>license</td>
<td>notify-license-expiry-warning</td>
</tr>
<tr>
<td>upgrade</td>
<td>UpgradeOpNotifyOnCompletion</td>
</tr>
<tr>
<td>upgrade</td>
<td>UpgradeJobStatusNotify</td>
</tr>
<tr>
<td>rmon</td>
<td>risingAlarm</td>
</tr>
<tr>
<td>rmon</td>
<td>fallingAlarm</td>
</tr>
<tr>
<td>rmon</td>
<td>hcRisingAlarm</td>
</tr>
<tr>
<td>rmon</td>
<td>hcFallingAlarm</td>
</tr>
<tr>
<td>entity</td>
<td>entity_sensor</td>
</tr>
</tbody>
</table>

SNMPv3

SNMPv3 provides secure access to devices by a combination of authenticating and encrypting frames over the network. The security features provided in SNMPv3 are as follows:

- **Message integrity**—Ensures that a packet has not been tampered with while it was in-transit.
- **Authentication**—Determines that the message is from a valid source.
- **Encryption**—Scrambles the packet contents to prevent it from being seen by unauthorized sources.

SNMPv3 provides for both security models and security levels. A security model is an authentication strategy that is set up for a user and the role in which the user resides. A security level is the permitted level of security within a security model. A combination of a security model and a security level determines which security mechanism is employed when handling an SNMP packet.

This section includes the following topics:

- **Security Models and Levels for SNMPv1, v2, v3**, page 10-4
- **User-Based Security Model**, page 10-4
- **CLI and SNMP User Synchronization**, page 10-5
Security Models and Levels for SNMPv1, v2, v3

The security level determines if an SNMP message needs to be protected from disclosure and if the message needs to be authenticated. The various security levels that exist within a security model are as follows:

- noAuthNoPriv—Security level that does not provide authentication or encryption.
- authNoPriv—Security level that provides authentication but does not provide encryption.
- authPriv—Security level that provides both authentication and encryption.

Three security models are available: SNMPv1, SNMPv2c, and SNMPv3. The security model combined with the security level determine the security mechanism applied when the SNMP message is processed. Table 10-2 identifies what the combinations of security models and levels mean.

Table 10-2 SNMP Security Models and Levels

<table>
<thead>
<tr>
<th>Model</th>
<th>Level</th>
<th>Authentication</th>
<th>Encryption</th>
<th>What Happens</th>
</tr>
</thead>
<tbody>
<tr>
<td>v1</td>
<td>noAuthNoPriv</td>
<td>Community string</td>
<td>No</td>
<td>Uses a community string match for authentication.</td>
</tr>
<tr>
<td>v2c</td>
<td>noAuthNoPriv</td>
<td>Community string</td>
<td>No</td>
<td>Uses a community string match for authentication.</td>
</tr>
<tr>
<td>v3</td>
<td>noAuthNoPriv</td>
<td>Username</td>
<td>No</td>
<td>Uses a username match for authentication.</td>
</tr>
<tr>
<td>v3</td>
<td>authNoPriv</td>
<td>HMAC-MD5 or HMAC-SHA</td>
<td>No</td>
<td>Provides authentication based on the Hash-Based Message Authentication Code (HMAC) Message Digest 5 (MD5) algorithm or the HMAC Secure Hash Algorithm (SHA).</td>
</tr>
<tr>
<td>v3</td>
<td>authPriv</td>
<td>HMAC-MD5 or HMAC-SHA</td>
<td>DES</td>
<td>Provides authentication based on the HMAC-MD5 or HMAC-SHA algorithms. Provides Data Encryption Standard (DES) 56-bit encryption in addition to authentication based on the Cipher Block Chaining (CBC) DES (DES-56) standard.</td>
</tr>
</tbody>
</table>

User-Based Security Model

The SNMPv3 User-Based Security Model (USM) refers to SNMP message-level security and offers the following services:

- Message integrity—Ensures that messages have not been altered or destroyed in an unauthorized manner and that data sequences have not been altered to an extent greater than can occur nonmaliciously.
- Message origin authentication—Ensures that the claimed identity of the user on whose behalf received data was originated is confirmed.
Message confidentiality—Ensures that information is not made available or disclosed to unauthorized individuals, entities, or processes.

SNMPv3 authorizes management operations only by configured users and encrypts SNMP messages. Cisco NX-OS uses two authentication protocols for SNMPv3:

- HMAC-MD5-96 authentication protocol
- HMAC-SHA-96 authentication protocol

Cisco NX-OS uses Advanced Encryption Standard (AES) as one of the privacy protocols for SNMPv3 message encryption and conforms with RFC 3826.

The `priv` option offers a choice of DES or 128-bit AES encryption for SNMP security encryption. The `priv` option and the `aes-128` token indicate that this privacy password is for generating a 128-bit AES key. The AES priv password can have a minimum of eight characters. If the passphrases are specified in clear text, you can specify a maximum of 64 case-sensitive alphanumeric characters. If you use the localized key, you can specify a maximum of 130 characters.

Note

For an SNMPv3 operation that uses the external AAA server, you must use AES for the privacy protocol in the user configuration on the external AAA server.

CLI and SNMP User Synchronization

SNMPv3 user management can be centralized at the Access Authentication and Accounting (AAA) server level. This centralized user management allows the SNMP agent in Cisco NX-OS to leverage the user authentication service of the AAA server. Once user authentication is verified, the SNMP PDUs are processed further. Additionally, the AAA server is also used to store user group names. SNMP uses the group names to apply the access/role policy that is locally available in the switch.

Any configuration changes made to the user group, role, or password results in database synchronization for both SNMP and AAA.

Cisco NX-OS synchronizes user configuration in the following ways:

- The authentication passphrase specified in the `snmp-server user` command becomes the password for the CLI user.
- The password specified in the `username` command becomes the authentication and privacy passphrases for the SNMP user.
- If you create or delete a user using either SNMP or the CLI, the user is created or deleted for both SNMP and the CLI.
- User-role mapping changes are synchronized in SNMP and the CLI.
- Role changes (deletions or modifications) from the CLI are synchronized to SNMP.

Note

When you configure a passphrase/password in localized key/encrypted format, Cisco NX-OS does not synchronize the user information (password, roles, and so on).

Cisco NX-OS holds the synchronized user configuration for 60 minutes by default. See the “Modifying the AAA Synchronization Time” section on page 10-23 for information on how to modify this default value.
Information About SNMP

Group-Based SNMP Access

Note

Because group is a standard SNMP term used industry-wide, we refer to role(s) as group(s) in this SNMP section.

SNMP access rights are organized by groups. Each group in SNMP is similar to a role through the CLI. Each group is defined with read access or read-write access.

You can begin communicating with the agent once your username is created, your roles are set up by your administrator, and you are added to the roles.

SNMP and Embedded Event Manager

The Embedded Event Manager (EEM) feature monitors events, including SNMP MIB objects, and triggers an action based on these events. One of the actions could be to send an SNMP notification. EEM sends the cEventMgrPolicyEvent of CISCO-EMBEDDED-EVENT-MGR-MIB as the SNMP notification.

See Chapter 13, “Configuring the Embedded Event Manager” for more information about EEM.

Multiple Instance Support

A device can support multiple instances of a logical network entity, such as protocol instances or VRFs. Most existing MIBs cannot distinguish between these multiple logical network entities. For example, the original OSPF-MIB assumes a single protocol instance on a device, but you can now configure multiple OSPF instances on a device.

SNMPv3 uses contexts to distinguish between these multiple instances. An SNMP context is a collection of management information you can access through the SNMP agent. A device can support multiple contexts for different logical network entities. An SNMP context allows the SNMP manager to access one of the multiple instances of a MIB module supported on the device for the different logical network entities.

Cisco NX-OS supports the CISCO-CONTEXT-MAPPING-MIB to map between SNMP contexts and logical network entities. You can associate an SNMP context to a VRF, protocol instance, or topology.

SNMPv3 supports contexts with the contextName field of the SNMPv3 PDU. You can map this contextName field to a particular protocol instance or VRF.

For SNMPv2c, you can map the SNMP community to a context using the snmpCommunityContextName MIB object in the SNMP-COMMUNITY-MIB (RFC 3584). You can then map this snmpCommunityContextName to a particular protocol instance or VRF using the CISCO-CONTEXT-MAPPING-MIB or the CLI.

To map an SNMP context to a logical network entity, follow these steps:

Step 1 Create the SNMPv3 context.
Step 2 Determine the logical network entity instance.
Step 3 Map the SNMPv3 context to a logical network entity.
Licensing Requirements for SNMP

<table>
<thead>
<tr>
<th>Product</th>
<th>License Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX-OS</td>
<td>SNMP requires no license. Any feature not included in a license package is bundled with the Cisco NX-OS system images and is provided at no extra charge to you. For a complete explanation of the NX-OS licensing scheme, see the Cisco NX-OS Licensing Guide.</td>
</tr>
</tbody>
</table>

Prerequisites for SNMP

SNMP has the following prerequisites:

- If you configure VDCs, install the Advanced Services license and enter the desired VDC. For more information, see the Cisco Nexus 7000 Series NX-OS Virtual Device Context Configuration Guide, Release 4.x.
Guidelines and Limitations

SNMP has the following configuration guidelines and limitations:

- Cisco NX-OS supports read-only access to some SNMP MIBs. See the Cisco NX-OS MIB support list at the following URL for more information:

Configuring SNMP

This section includes the following topics:

- Configuring SNMP Users, page 10-8
- Enforcing SNMP Message Encryption, page 10-9
- Assigning SNMPv3 Users to Multiple Roles, page 10-10
- Creating SNMP Communities, page 10-10
- Filtering SNMP Requests, page 10-11
- Configuring SNMP Notification Receivers, page 10-11
- Configuring a Source Interface for SNMP Notifications, page 10-12
- Configuring the Notification Target User, page 10-13
- Configuring SNMP Notification Receivers with VRFs, page 10-14
- Configuring SNMP to Send Traps Using an Inband Port, page 10-15
- Enabling SNMP Notifications, page 10-17
- Displaying SNMP ifIndex for an Interface, page 10-19
- Disabling LinkUp/LinkDown Notifications on an Interface, page 10-19
- Enabling a One-time Authentication for SNMP over TCP, page 10-19
- Assigning the SNMP Device Contact and Location Information, page 10-20
- Configuring the Context to Network Entity Mapping, page 10-21
- Disabling SNMP, page 10-23
- Modifying the AAA Synchronization Time, page 10-23

Note

Be aware that the Cisco NX-OS commands for this feature may differ from those commands used in Cisco IOS.

Configuring SNMP Users

You can configure a user for SNMP.

BEFORE YOU BEGIN

Make sure that you are in the correct VDC. To change the VDC, use the `switchto vdc` command.
Chapter 10 Configuring SNMP

Send document comments to nexus7k-docfeedback@cisco.com.

Chapter 10 Configuring SNMP

SUMMARY STEPS

1. config t
2. snmp-server user name [auth {md5 | sha} passphrase [auto] [priv {aes-128} passphrase] [engineID id] [localizedkey]]
3. show snmp user
4. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>config t</td>
</tr>
<tr>
<td>Example:</td>
<td>switch# config t Enter configuration commands, one per line. End with CNTRL/Z. switch(config)#</td>
</tr>
<tr>
<td>Step 2</td>
<td>snmp-server user name [auth {md5</td>
</tr>
<tr>
<td>Example:</td>
<td>switch(config)# snmp-server user Admin auth sha abcd1234 priv abcdefgh</td>
</tr>
<tr>
<td>Step 3</td>
<td>show snmp user</td>
</tr>
<tr>
<td>Example:</td>
<td>switch(config-callhome)# show snmp user</td>
</tr>
<tr>
<td>Step 4</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td>Example:</td>
<td>switch(config)# copy running-config startup-config</td>
</tr>
</tbody>
</table>

This example shows how to configure the SNMP contact and location information:

switch# config t Enter configuration commands, one per line. End with CNTRL/Z. switch(config)# snmp-server user Admin auth sha abcd1234 priv abcdefgh

Enforcing SNMP Message Encryption

You can configure SNMP to require authentication or encryption for incoming requests. By default, the SNMP agent accepts SNMPv3 messages without authentication and encryption. When you enforce privacy, Cisco NX-OS responds with an authorizationError for any SNMPv3 PDU request using securityLevel parameter of either noAuthNoPriv or authNoPriv.
Use the following command in global configuration mode to enforce SNMP message encryption for a user:

```
Command                  Purpose
snmp-server user name enforcePriv
```

Example:
```
switch(config)# snmp-server user Admin enforcePriv
```

Use the following command in global configuration mode to enforce SNMP message encryption for all users:

```
Command                  Purpose
snmp-server globalEnforcePriv
```

Example:
```
switch(config)# snmp-server globalEnforcePriv
```

Assigning SNMPv3 Users to Multiple Roles

After you configure an SNMP user, you can assign multiple roles for the user.

Note
Only users belonging to a network-admin role can assign roles to other users.

Use the following command in global configuration mode to assign a role to an SNMP user:

```
Command                  Purpose
snmp-server user name group
```

Example:
```
switch(config)# snmp-server user Admin superuser
```

Creating SNMP Communities

You can create SNMP communities for SNMPv1 or SNMPv2c.

Use the following command in global configuration mode to create an SNMP community string:

```
Command                  Purpose
snmp-server community name group (ro | rw)
```

Example:
```
switch(config)# snmp-server community public ro
```
Filtering SNMP Requests

You can assign an access list (ACL) to a community to filter incoming SNMP requests. If the assigned ACL allows the incoming request packet, SNMP processes the request. If the ACL denies the request, SNMP drops the request and sends a system message.

Create the ACL with the following parameters:
- Source IP address
- Destination IP address
- Source port
- Destination port
- Protocol (UDP or TCP)

See the Cisco Nexus 7000 Series NX-OS Security Configuration Guide, Release 4.x for more information on creating ACLs. The ACL applies to both IPv4 and IPv6 over UDP and TCP.

Use the following command in global configuration mode to assign an ACL to a community to filter SNMP requests:

```
config]
switch(config)# snmp-server community
```

Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>snmp-server community community-name use-acl acl-name</code></td>
<td>Assigns an ACL to an SNMP community to filter SNMP requests.</td>
</tr>
</tbody>
</table>

Example:
```
switch(config)# snmp-server community public use-acl my_acl_for_public
```

Configuring SNMP Notification Receivers

You can configure Cisco NX-OS to generate SNMP notifications to multiple host receivers.

Use the following command in global configuration mode to configure a host receiver for SNMPv1 traps:

```
config]
switch(config)# snmp-server host
```

Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>snmp-server host ip-address traps version 1 community [udp_port number]</code></td>
<td>Configures a host receiver for SNMPv1 traps. The ip-address can be an IPv4 or IPv6 address. The community can be any alphanumeric string up to 255 characters. The UDP port number range is from 0 to 65535.</td>
</tr>
</tbody>
</table>

Example:
```
switch(config)# snmp-server host 192.0.2.1 traps version 1 public
```
Use the following command in global configuration mode to configure a host receiver for SNMPv2c traps or informs:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`snmp-server host ip-address {traps</td>
<td>informs} version 2c community [udp_port number]`</td>
</tr>
</tbody>
</table>

Example:
```
switch(config)# snmp-server host 192.0.2.1 informs version 2c public
```

Use the following command in global configuration mode to configure a host receiver for SNMPv3 traps or informs:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`snmp-server host ip-address {traps</td>
<td>informs} version 3 {auth</td>
</tr>
</tbody>
</table>

Example:
```
switch(config)# snmp-server host 192.0.2.1 informs version 3 auth NMS
```

Note

The SNMP manager must know the user credentials (authKey/PrivKey) based on the SNMP engine ID of the Cisco NX-OS device to authenticate and decrypt the SNMPv3 messages.

Configuring a Source Interface for SNMP Notifications

You can configure SNMP to use the IP address of an interface as the source IP address for notifications. When a notification is generated, its source IP address is based on the IP address of this configured interface. You can configure this as follows:

- All notifications sent to all SNMP notification receivers.
- All notifications sent to a specific SNMP notification receiver. This configuration overrides the global source interface configuration.

Note

Configuring the source interface IP address for outgoing trap packets does not guarantee that the device will use the same interface to send the trap. The source interface IP address defines the source address inside of the SNMP trap, and the connection is opened with the address of the egress interface as source.
Use the following command in global configuration mode to configure a host receiver on a source interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>snmp-server host ip-address source-interface if-type if-number [udp_port number]</code></td>
<td>Configures a host receiver for SNMPv2c traps or informs. The <code>ip-address</code> can be an IPv4 or IPv6 address. Use <code>?</code> to determine the supported interface types. The UDP port number range is from 0 to 65535. This configuration overrides the global source interface configuration.</td>
</tr>
</tbody>
</table>

Example:
```
switch(config)# snmp-server host 192.0.2.1 source-interface ethernet 2/1
```

Use the following command in global configuration mode to configure a source interface for sending out all SNMP notifications:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`snmp-server source-interface {traps</td>
<td>informs} if-type if-number`</td>
</tr>
</tbody>
</table>

Example:
```
switch(config)# snmp-server source-interface traps ethernet 2/1
```

Use the `show snmp source-interface` command to display information about configured source interfaces.

Configuring the Notification Target User

You must configure a notification target user on the device to send SNMPv3 inform notifications to a notification host receiver.

Cisco NX-OS uses the credentials of the notification target user to encrypt the SNMPv3 inform notification messages to the configured notification host receiver.

Note

For authenticating and decrypting the received inform PDU, the notification host receiver should have the same user credentials as configured in Cisco NX-OS to authenticate and decrypt the informs.

Use the following command in global configuration mode to configure the notification target user:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`snmp-server user name [auth {md5</td>
<td>sha} passphrase [auto] [priv {aes-128} passphrase] [engineID id]`</td>
</tr>
</tbody>
</table>

Example:
```
switch(config)# snmp-server user NMS auth sha abcd1234 priv abcdefgh engineID 00:00:00:63:00:01:00:10:20:15:10:03
```
SNMP adds entries into the cExtSnmpTargetVrfTable of the CISCO-SNMP-TARGET-EXT-MIB when you configure the VRF reachability and filtering options for an SNMP notification receiver.

Note
You must configure the host before configuring the VRF reachability or filtering options.

You can configure Cisco NX-OS to use a configured VRF to reach the host receiver.

Use the following command in global configuration mode to configure a VRF to use for sending notifications to the host receiver:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>snmp-server host ip-address use-vrf vrf_name [udp_port number]</code></td>
<td>Configures SNMP to use the selected VRF to communicate with the host receiver. The ip-address can be an IPv4 or IPv6 address. The VRF name can be any alphanumeric string up to 255 characters. The UDP port number range is from 0 to 65535. This command adds an entry into the ExtSnmpTargetVrfTable of the CISCO-SNMP-TARGET-EXT-MB.</td>
</tr>
<tr>
<td><code>no snmp-server host ip-address use-vrf vrf_name [udp_port number]</code></td>
<td>Removes the VRF reachability information for the configured host, and removes the entry from the ExtSnmpTargetVrfTable of the CISCO-SNMP-TARGET-EXT-MB. The ip-address can be an IPv4 or IPv6 address. Does not remove the host configuration.</td>
</tr>
</tbody>
</table>

You can configure Cisco NX-OS filter notifications based on the VRF in which the notification occurred.

Use the following command in global configuration mode to filter notifications based on a configured VRF:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>snmp-server host ip-address filter-vrf vrf_name [udp_port number]</code></td>
<td>Filters notifications to the notification host receiver based on the configured VRF. The ip-address can be an IPv4 or IPv6 address. The VRF name can be any alphanumeric string up to 255 characters. The UDP port number range is from 0 to 65535. This command adds an entry into the ExtSnmpTargetVrfTable of the CISCO-SNMP-TARGET-EXT-MB.</td>
</tr>
</tbody>
</table>
Configuring SNMP to Send Traps Using an Inband Port

You can configure SNMP to send traps using an inband port. To do so, you must configure the source interface (at the global or host level) and the VRF used to send the traps.

SUMMARY STEPS

1. `config t`
2. `snmp-server source-interface if-type if-number`
3. `show snmp source-interface`
4. `snmp-server host ip-address use-vrf vrf_name [udp_port number]`
5. `show snmp host`
6. `copy running-config startup-config`

DETAILED STEPS

Step 1

```
config t
```

Purpose

Places you in global configuration mode.

Example:

```
switch# config t
Enter configuration commands, one per line. End with CNTL/Z.
switch(config)#
```

Step 2

```
no snmp-server host ip-address filter-vrf vrf_name
```

Purpose

Removes the VRF filter information for the configured host, and removes the entry from the ExtSnmpTargetVrfTable of the CISCO-SNMP-TARGET-EXT-MB.

Example:

```
switch(config)# no snmp-server host 192.0.2.1 filter-vrf Red
```

The `ip-address` can be an IPv4 or IPv6 address. This command does not remove the host configuration.

Command	**Purpose**
`no snmp-server host ip-address filter-vrf vrf_name` | Removes the VRF filter information for the configured host, and removes the entry from the ExtSnmpTargetVrfTable of the CISCO-SNMP-TARGET-EXT-MB. The `ip-address` can be an IPv4 or IPv6 address. This command does not remove the host configuration.

Command	**Purpose**
`config t` | Places you in global configuration mode.

```
Example:
switch# config t
Enter configuration commands, one per line. End with CNTL/Z.
switch(config)#
```

Command	**Purpose**
`snmp-server source-interface traps if-type if-number` | Globally configures a source interface for sending out SNMP traps. Use `?` to determine the supported interface types.

Example:

```
switch(config)# snmp-server source-interface traps ethernet 1/2
```

You can configure the source interface at the global level or at a host level. When the source interface is configured globally, any new host configuration uses the global configuration to send the traps.

Note

To configure a source interface at the host level, use this command: `snmp-server host ip-address source-interface if-type if-number`.
Command	**Purpose**
Step 3 | **show snmp source-interface**
Example:
`switch(config)# show snmp source-interface`
(Optional) Displays information about configured source interfaces.

Step 4 | **snmp-server host ip-address use-vrf vrf_name [udp_port number]**
Example:
`switch(config)# snmp-server host 171.71.48.164 use_vrf default`
Configures SNMP to use the selected VRF to communicate with the host receiver. The *ip-address* can be an IPv4 or IPv6 address. The VRF name can be any alphanumeric string up to 255 characters. The UDP port number range is from 0 to 65535. This command adds an entry into the ExtSnmpTargetVrfTable of the CISCO-SNMP-TARGET-EXT-MB.

Note By default, SNMP sends the traps using the management VRF. If you do not want to use the management VRF, you must use this command to specify the desired VRF.

Step 5 | **show snmp host**
Example:
`switch(config)# show snmp host`
(Optional) Displays information about configured SNMP hosts.

Step 6 | **copy running-config startup-config**
Example:
`switch(config)# copy running-config startup-config`
(Optional) Saves this configuration change.

This example shows how to configure SNMP to send traps using a globally configured inband port:

```
switch# config t
Enter configuration commands, one per line.  End with CNTL/Z.
switch(config)# snmp-server source-interface traps ethernet 1/2
switch(config)# show snmp source-interface
Notification source-interface
trap Ethernet1/2
inform -

switch(config)# snmp-server host 171.71.48.164 use_vrf default
switch(config)# show snmp host
Host Port Version Level Type SecName
171.71.48.164 162 v2c noauth trap public
Use VRF: default
Source interface: Ethernet 1/2
```
Enabling SNMP Notifications

You can enable or disable notifications. If you do not specify a notification name, Cisco NX-OS enables all notifications.

Table 10-3 lists the commands that enable the notifications for Cisco NX-OS MIBs.

The `snmp-server enable traps` command enables both traps and informs, depending on the configured notification host receivers.

<table>
<thead>
<tr>
<th>MIB</th>
<th>Related Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>All notifications</td>
<td><code>snmp-server enable traps</code></td>
</tr>
<tr>
<td>CISCO-AAA-SERVER-MIB</td>
<td><code>snmp-server enable traps aaa</code></td>
</tr>
<tr>
<td>CISCO-STP-BRIDGE-MIB</td>
<td><code>snmp-server enable traps bridge</code></td>
</tr>
<tr>
<td>CISCO-CALLHOME-MIB</td>
<td><code>snmp-server enable traps callhome</code></td>
</tr>
<tr>
<td></td>
<td><code>snmp-server enable traps callhome event-notify</code></td>
</tr>
<tr>
<td></td>
<td><code>snmp-server enable traps callhome smtp-send-fail</code></td>
</tr>
<tr>
<td>CISCO-EIGRP-MIB</td>
<td><code>snmp-server enable traps eigrp</code></td>
</tr>
<tr>
<td>ENTITY-MIB,</td>
<td><code>snmp-server enable traps entity</code></td>
</tr>
<tr>
<td>CISCO-ENTITY-FRU-CONTROL-MIB,</td>
<td><code>snmp-server enable traps entity fru</code></td>
</tr>
<tr>
<td>CISCO-ENTITY-SENSOR-MIB</td>
<td></td>
</tr>
<tr>
<td>CISCO-HSRP-MIB</td>
<td><code>snmp-server enable traps hsrp</code></td>
</tr>
<tr>
<td></td>
<td><code>snmp-server enable traps hsrp state-change</code></td>
</tr>
<tr>
<td>CISCO-LICENSE-MGR-MIB</td>
<td><code>snmp-server enable traps license</code></td>
</tr>
<tr>
<td>IF-MIB</td>
<td><code>snmp-server enable traps link</code></td>
</tr>
<tr>
<td>CISCO-RF-MIB</td>
<td><code>snmp-server enable traps rf</code></td>
</tr>
<tr>
<td>SNMPv2-MIB</td>
<td><code>snmp-server enable traps snmp</code></td>
</tr>
<tr>
<td></td>
<td><code>snmp-server enable traps snmp authentication</code></td>
</tr>
<tr>
<td>CISCO-STPX-MIB</td>
<td><code>snmp-server enable traps stpx</code></td>
</tr>
</tbody>
</table>

Use the following commands in global configuration mode to enable the specified notification:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>snmp-server enable traps</code></td>
<td>Enables all SNMP notifications.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>switch(config)# snmp-server enable traps</code></td>
<td></td>
</tr>
<tr>
<td><code>snmp-server enable traps aaa</code></td>
<td>Enables the AAA SNMP notifications.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>switch(config)# snmp-server enable traps aaa</code></td>
<td></td>
</tr>
<tr>
<td><code>snmp-server enable traps aaa</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>switch(config)# snmp-server enable traps aaa</code></td>
<td></td>
</tr>
</tbody>
</table>
Configuring SNMP

Command

`snmp-server enable traps bridge [newroot | topologychange]`

Example:

```
switch(config)# snmp-server enable traps bridge newroot
```

Enables the STP bridge SNMP notifications.

`snmp-server enable traps callhome [event-notify] [smtp-send-fail]`

Example:

```
switch(config)# snmp-server enable traps callhome
```

Enables the CISCO-CALLHOME-MIB SNMP notifications. Optionally, enables the following specific notifications:

- **event-notify**—Enables Call Home external event notifications.
- **smtp-send-fail**—Enables SMTP message send fail notifications.

`snmp-server enable traps eigrp`

Example:

```
switch(config)# snmp-server enable traps eigrp
```

Enables the CISCO-EIGRP-MIB SNMP notifications.

`snmp-server enable traps entity [fru]`

Example:

```
switch(config)# snmp-server enable traps entity
```

Enables the ENTITY-MIB SNMP notifications.

`snmp-server enable traps hsrp [state-change]`

Example:

```
switch(config)# snmp-server enable traps hsrp
```

Enables the HSRP-MIB SNMP notifications.

`snmp-server enable traps license`

Example:

```
switch(config)# snmp-server enable traps license
```

Enables the license SNMP notification.

`snmp-server enable traps link`

Example:

```
switch(config)# snmp-server enable traps link
```

Enables the link SNMP notifications.

`snmp-server enable traps rf`

Example:

```
switch(config)# snmp-server enable traps rf
```

Enables the redundancy framework (RF) SNMP notifications.

`snmp-server enable traps [trap-arg [trap_sub_category] | snmp [authentication]]`

Example:

```
switch(config)# snmp-server enable traps snmp
```

Enables the SNMP agent notifications.

Command Purpose

Enables the STP bridge SNMP notifications.

Enables the CISCO-CALLHOME-MIB SNMP notifications.

Enables the CISCO-EIGRP-MIB SNMP notifications.

Enables the ENTITY-MIB SNMP notifications.

Enables the HSRP-MIB SNMP notifications.

Enables the license SNMP notification.

Enables the link SNMP notifications.

Enables the redundancy framework (RF) SNMP notifications.

Enables the SNMP agent notifications.
Configuring SNMP

Disabling LinkUp/LinkDown Notifications on an Interface

You can disable linkUp and linkDown notifications on an individual interface. You can use these limit notifications on a flapping interface (an interface that transitions between up and down repeatedly).

Use the following command in interface configuration mode to disable linkUp/linkDown notifications for the interface:

```
no snmp trap link-status
```

Example:
```
switch(config-if)# no snmp trap link-status
```

Disables SNMP link-state traps for the interface. This command is enabled by default.

Displaying SNMP ifIndex for an Interface

The SNMP ifIndex is used across multiple SNMP MIBs to link related interface information. The ifIndex is also used by NetFlow to collect information on an interface.

Use the following command in any mode to display the SNMP ifIndex values for interfaces:

```
show interface snmp-ifindex
```

Example:
```
switch# show interface snmp-ifindex | grep -i Eth12/1
Eth12/1 441974784 (0x1a580000)
```

Displays the persistent SNMP ifIndex value from IF-MIB for all interfaces. Optionally, use the I keyword and the grep keyword to search for a particular interface in the output.

Enabling a One-time Authentication for SNMP over TCP

You can enable a one-time authentication for SNMP over a TCP session.

Use the following command in global configuration mode to enable a one-time authentication for SNMP over TCP:

```
snmp-server enable traps
trap-arg-global-scope [trap_sub_category]

Example:
switch(config)# snmp-server enable traps
entity
```

Enables the SNMP agent notifications at global scope.

```
no snmp trap link-status
```

```
show interface snmp-ifindex
```

```
Enables the STPX SNMP notifications.
```

```
Example:
switch(config)# snmp-server enable traps stpx root-inconsistency
```

Enables the STPX SNMP notifications.
Configuring SNMP

Assigning the SNMP Device Contact and Location Information

You can assign the device contact information, which is limited to 32 characters (without spaces) and the device location.

BEFORE YOU BEGIN

Make sure that you are in the correct VDC. To change the VDC, use the `switchto vdc` command.

SUMMARY STEPS

1. `config t`
2. `snmp-server contact name`
3. `snmp-server location name`
4. `show snmp`
5. `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>snmp-server tcp-session [auth]</code></td>
<td>Enables a one-time authentication for SNMP over a TCP session. The default is disabled.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 1</th>
<th><code>config t</code></th>
</tr>
</thead>
</table>
| Example: | `switch# config t`
| Enter configuration commands, one per line. End with CNTL/Z. |
| `switch(config)#` |

<table>
<thead>
<tr>
<th>Step 2</th>
<th><code>snmp-server contact name</code></th>
</tr>
</thead>
</table>
| Example: | `switch(config)# snmp-server contact Admin`

<table>
<thead>
<tr>
<th>Step 3</th>
<th><code>snmp-server location name</code></th>
</tr>
</thead>
</table>
| Example: | `switch(config)# snmp-server location Lab-7`
Chapter 10 Configuring SNMP

Configuring SNMP

This example shows how to configure the SNMP contact and location information:

```
switch# config t
Enter configuration commands, one per line.  End with CNTL/Z.
switch(config)# snmp contact Admin
switch(config)# snmp location Lab-7
```

Configuring the Context to Network Entity Mapping

You can configure an SNMP context to map to a logical network entity, such as a protocol instance or VRF.

BEFORE YOU BEGIN

Make sure that you are in the correct VDC. To change the VDC, use the `switch to vdc` command.

Determine the logical network entity instance. For more information on VRFs and protocol instances, see the Cisco Nexus 7000 Series NX-OS Unicast Routing Configuration Guide, Release 4.x, or the Cisco Nexus 7000 Series NX-OS Multicast Routing Configuration Guide, Release 4.x.

SUMMARY STEPS

1. `config t`
2. `snmp-server context context-name [instance instance-name] [vrf vrf-name] [topology topology-name]`
3. `snmp-server mib community-map community-name context context-name`
4. `show snmp context`
5. `copy running-config startup-config`

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4 show snmp</td>
<td>(Optional) Displays information about one or more destination profiles.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>switch(config)# show snmp</code></td>
<td></td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Saves this configuration change.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>switch(config)# copy running-config startup-config</code></td>
<td></td>
</tr>
</tbody>
</table>

This example shows how to configure the SNMP contact and location information:

```
switch# config t
Enter configuration commands, one per line.  End with CNTL/Z.
switch(config)# snmp contact Admin
switch(config)# snmp location Lab-7
```
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>config t</td>
</tr>
<tr>
<td>Example:</td>
<td>switch# config t</td>
</tr>
<tr>
<td></td>
<td>Enter configuration commands, one per line. End with CNTL/Z.</td>
</tr>
<tr>
<td></td>
<td>switch(config)#</td>
</tr>
<tr>
<td>Step 2</td>
<td>snmp-server context context-name [instance instance-name] [vrf vrf-name] [topology topology-name]</td>
</tr>
<tr>
<td>Example:</td>
<td>switch(config)# snmp-server context public1 vrf red</td>
</tr>
<tr>
<td>Step 3</td>
<td>snmp-server mib community-map community-name context context-name</td>
</tr>
<tr>
<td>Example:</td>
<td>switch(config)# snmp-server mib community-map public context public1</td>
</tr>
<tr>
<td>Step 4</td>
<td>show snmp context</td>
</tr>
<tr>
<td>Example:</td>
<td>switch(config)# show snmp context</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td>Example:</td>
<td>switch(config)# copy running-config startup-config</td>
</tr>
</tbody>
</table>

This example shows how to map VRF red to the SNMPv2c public community string:

```plaintext
switch# config t
Enter configuration commands, one per line. End with CNTL/Z.
switch(config)# vrf context red
switch(config-vrf)# exit
switch(config)# snmp-server context public1 vrf red
switch(config)# snmp-server mib community-map public context public1
```

This example shows how to map OSPF instance Enterprise to the same SNMPv2c public community string:

```plaintext
switch# config t
Enter configuration commands, one per line. End with CNTL/Z.
switch(config)# feature ospf
switch(config)# router ospf Enterprise
switch(config-router)# exit
switch(config)# snmp-server context public1 instance Enterprise
switch(config)# snmp-server mib community-map public context public1
```

Use the following command in global configuration mode to delete the mapping between an SNMP context and a logical network entity:
Disabling SNMP

You can disable SNMP on a device.

Use the following command in global configuration mode to disable SNMP:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>no snmp-server protocol enable</td>
<td>Disables SNMP. This command is enabled by default.</td>
</tr>
</tbody>
</table>

Example:

```
switch(config)# no snmp-server protocol enable
```

Modifying the AAA Synchronization Time

You can modify how long Cisco NX-OS holds the synchronized user configuration.

Use the following command in global configuration mode to modify the AAA synchronization time:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>snmp-server aaa-user cache-timeout seconds</td>
<td>Configures how long the AAA synchronized user configuration stays in the local cache. The range is from 1 to 86400 seconds. The default is 3600.</td>
</tr>
</tbody>
</table>

Example:

```
switch(config)# snmp-server aaa-user cache-timeout 1200.
```
Verifying SNMP Configuration

To display the SNMP configuration information, perform one of the following tasks:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show interface snmp-ifidex</td>
<td>Displays the SNMP ifIndex value for all interfaces (from IF-MIB).</td>
</tr>
<tr>
<td>show running-config snmp [all]</td>
<td>Displays the SNMP running configuration.</td>
</tr>
<tr>
<td>show snmp</td>
<td>Displays the SNMP status.</td>
</tr>
<tr>
<td>show snmp community</td>
<td>Displays the SNMP community strings.</td>
</tr>
<tr>
<td>show snmp context</td>
<td>Displays the SNMP context mapping.</td>
</tr>
<tr>
<td>show snmp engineID</td>
<td>Displays the SNMP engineID.</td>
</tr>
<tr>
<td>show snmp group</td>
<td>Displays SNMP roles.</td>
</tr>
<tr>
<td>show snmp host</td>
<td>Displays information about configured SNMP hosts.</td>
</tr>
<tr>
<td>show snmp session</td>
<td>Displays SNMP sessions.</td>
</tr>
<tr>
<td>show snmp source-interface</td>
<td>Displays information about configured source interfaces.</td>
</tr>
<tr>
<td>show snmp trap</td>
<td>Displays the SNMP notifications enabled or disabled.</td>
</tr>
<tr>
<td>show snmp user</td>
<td>Displays SNMPv3 users.</td>
</tr>
</tbody>
</table>

SNMP Example Configurations

This example shows how to configure Cisco NX-OS to send the Cisco linkUp or Down notifications to one notification host receiver using the Blue VRF and defines two SNMP users, Admin and NMS:

```
config t
snmp-server contact Admin@company.com
snmp-server user Admin auth sha abcd1234 priv abcdefgh
snmp-server user NMS auth sha abcd1234 priv abcdefgh engineID 00:00:00:63:00:01:00:22:32:15:10:03
snmp-server host 192.0.2.1 informs version 3 auth NMS
snmp-server host 192.0.2.1 use-vrf Blue
snmp-server enable traps link cisco
```

This example shows how to configure SNMP to send traps using an inband port configured at the host level:

```
switch# config t
Enter configuration commands, one per line. End with CNTL/Z.
switch(config)# snmp-server host 171.71.48.164 version 2c public
switch(config)# snmp-server host 171.71.48.164 source-interface ethernet 1/2
switch(config)# show snmp host
```

<table>
<thead>
<tr>
<th>Host</th>
<th>Port</th>
<th>Version</th>
<th>Level</th>
<th>Type</th>
<th>SecName</th>
</tr>
</thead>
<tbody>
<tr>
<td>171.71.48.164</td>
<td>162</td>
<td>v2c</td>
<td>noauth</td>
<td>trap</td>
<td>public</td>
</tr>
</tbody>
</table>
Source interface: Ethernet 1/2

```
switch(config)# snmp-server host 171.71.48.164 use_vrf default
switch(config)# show snmp host
```

```
<table>
<thead>
<tr>
<th>Host</th>
<th>Port</th>
<th>Version</th>
<th>Level</th>
<th>Type</th>
<th>SecName</th>
</tr>
</thead>
<tbody>
<tr>
<td>171.71.48.164</td>
<td>162</td>
<td>v2c</td>
<td>noauth</td>
<td>trap</td>
<td>public</td>
</tr>
</tbody>
</table>
```

Use VRF: default

Source interface: Ethernet 1/2

Default Settings

Table 10-4 lists the default settings for SNMP parameters.

Table 10-4 Default SNMP Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>license notifications</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

Additional References

For additional information related to implementing SNMP, see the following sections:

- Related Documents, page 10-25
- Standards, page 10-26
- MIBs, page 10-26

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDCs and VRFs</td>
<td>Cisco Nexus 7000 Series NX-OS Virtual Device Context Configuration Guide, Release 4.x</td>
</tr>
</tbody>
</table>
Chapter 10 Configuring SNMP

Feature History for SNMP

Table 10-5 lists the release history for this feature.

Table 10-5 Feature History for SNMP

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 support</td>
<td>4.2(1)</td>
<td>Supports configuring IPv6 SNMP hosts.</td>
</tr>
<tr>
<td>Filter SNMP requests by community using an ACL</td>
<td>4.2(1)</td>
<td>Assigns an ACL to an SNMP community to filter SNMP requests. See the “Filtering SNMP Requests” section on page 10-11</td>
</tr>
<tr>
<td>Use interfaces for SNMP notification receivers</td>
<td>4.2(1)</td>
<td>Adds support to designate an interface to act as the source interface for SNMP notifications. See the “Configuring SNMP Notification Receivers” section on page 10-11</td>
</tr>
<tr>
<td>SNMP AAA synchronization</td>
<td>4.0(3)</td>
<td>Adds ability to modify the synchronized user configuration timeout. See the “Modifying the AAA Synchronization Time” section on page 10-23.</td>
</tr>
<tr>
<td>SNMP protocol</td>
<td>4.0(3)</td>
<td>Added ability to disable the SNMP protocol. See the “Disabling SNMP” section on page 10-23.</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>• SNMP-COMMUNITY-MIB</td>
<td>To locate and download MIBs, go to the following URL: http://www.cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml</td>
</tr>
<tr>
<td>• SNMP-FRAMEWORK-MIB</td>
<td></td>
</tr>
<tr>
<td>• SNMP-NOTIFICATION-MIB</td>
<td></td>
</tr>
<tr>
<td>• SNMP-TARGET-MIB</td>
<td></td>
</tr>
<tr>
<td>• SNMPv2-MIB</td>
<td></td>
</tr>
</tbody>
</table>