Cisco Nexus 7000 Series NX-OS Quality of Service Configuration Guide, Release 4.2

March 21, 2012

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000
800 553-NETS (6387)
Fax: 408 527-0883

Text Part Number: OL-19825-01
New and Changed Information

Preface

Overview

Information About QoS Features

Using QoS
Classification
Marking
Mutation
Policing
Queuing and Scheduling
Sequencing of QoS Actions
Sequencing of Ingress Traffic Actions
Sequencing of Egress Traffic Actions
High Availability Requirements for QoS Features
QoS Feature Configuration with MQC
QoS Statistics
Default QoS Behavior

Using Modular QoS CLI

Information About MQC
Licensing Requirements for Using MQC Objects
Using an MQC Object
Type qos Policies
Type queuing Policies
System-Defined MQC Objects
Configuring an MQC Object
Configuring or Modifying a Class Map
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Configuring Classification 3-1</td>
</tr>
<tr>
<td></td>
<td>Information About Classification 3-1</td>
</tr>
<tr>
<td></td>
<td>Licensing Requirements for Classification 3-2</td>
</tr>
<tr>
<td></td>
<td>Prerequisites for Classification 3-3</td>
</tr>
<tr>
<td></td>
<td>Guidelines and Limitations 3-3</td>
</tr>
<tr>
<td></td>
<td>Configuring Traffic Classes 3-3</td>
</tr>
<tr>
<td></td>
<td>Configuring ACL Classification 3-3</td>
</tr>
<tr>
<td></td>
<td>Configuring DSCP Classification 3-4</td>
</tr>
<tr>
<td></td>
<td>Configuring IP Precedence Classification 3-6</td>
</tr>
<tr>
<td></td>
<td>Configuring Protocol Classification 3-8</td>
</tr>
<tr>
<td></td>
<td>Configuring QoS Group Classification 3-9</td>
</tr>
<tr>
<td></td>
<td>Configuring Discard Class Classification 3-10</td>
</tr>
<tr>
<td></td>
<td>Configuring Layer 3 Packet Length Classification 3-11</td>
</tr>
<tr>
<td></td>
<td>Configuring CoS Classification 3-12</td>
</tr>
<tr>
<td></td>
<td>Configuring IP RTP Classification 3-13</td>
</tr>
<tr>
<td></td>
<td>Configuring Class Map Classification 3-14</td>
</tr>
<tr>
<td></td>
<td>Verifying Classification Configuration 3-16</td>
</tr>
<tr>
<td></td>
<td>Example Configuration 3-16</td>
</tr>
<tr>
<td></td>
<td>Feature History for Classification 3-16</td>
</tr>
<tr>
<td>4</td>
<td>Configuring Marking 4-1</td>
</tr>
<tr>
<td></td>
<td>Information About Marking 4-1</td>
</tr>
<tr>
<td></td>
<td>Licensing Requirements for Marking 4-2</td>
</tr>
<tr>
<td></td>
<td>Prerequisites for Marking 4-2</td>
</tr>
<tr>
<td></td>
<td>Guidelines and Limitations 4-2</td>
</tr>
<tr>
<td></td>
<td>Configuring Marking 4-3</td>
</tr>
<tr>
<td></td>
<td>Configuring DSCP Marking 4-3</td>
</tr>
<tr>
<td></td>
<td>Configuring IP Precedence Marking 4-5</td>
</tr>
<tr>
<td></td>
<td>Configuring CoS Marking 4-7</td>
</tr>
<tr>
<td></td>
<td>Configuring QoS Group Marking 4-8</td>
</tr>
</tbody>
</table>
Send document comments to nexus7k-docfeedback@cisco.com.

Configuring Discard Class Marking 4-9
Configuring Ingress and Egress Marking 4-10
Configuring DSCP Port Marking 4-10
Configuring Table Maps for Use in Marking 4-12
Configuring Marking Using Table Maps 4-13
Verifying the Marking Configuration 4-15
Example Configuration 4-15
Feature History for Marking 4-15

CHAPTER 5
Configuring Mutation Mapping 5-1
Information About Mutation Mapping 5-1
Mutation Mapping in Sequence of Traffic Actions 5-1
Licensing Requirements for Mutation Mapping 5-2
Prerequisites for Mutation Mapping 5-2
Guidelines and Limitations 5-2
Configuring Mutation Mapping 5-3
Verifying the Mutation Mapping Configuration 5-5
Example Configuration 5-5
Feature History for Mutation 5-6

CHAPTER 6
Configuring Policing 6-1
Information About Policing 6-1
Shared Policers 6-2
Licensing Requirements for Policing 6-2
Prerequisites for Policing 6-2
Guidelines and Limitations 6-2
Configuring Policing 6-3
Configuring 1-Rate and 2-Rate, 2-Color and 3-Color Policing 6-3
Configuring Color-Aware Policing 6-8
Configuring Ingress and Egress Policing 6-13
Configuring Markdown Policing 6-13
Configuring Shared Policers 6-15
Verifying the Policing Configuration 6-18
Example Configurations 6-18
Feature History for Policing 6-19
CHAPTER 7

Configuring Queuing and Scheduling 7-1

Information About Queuing and Scheduling 7-1
 Setting Ingress Port CoS 7-2
 Modifying Class Maps 7-2
 Congestion Avoidance 7-2
 Congestion Management 7-3
 Virtualization Support 7-3

Licensing Requirements for Queuing and Scheduling 7-3

Prerequisites for Queuing and Scheduling 7-3

Guidelines and Limitations 7-4

Configuring Queuing and Scheduling 7-4
 Configuring Ingress Port CoS 7-5
 Modifying Queuing Class Maps 7-7
 Configuring Congestion Avoidance 7-8
 Configuring Tail Drop 7-9
 Configuring WRED 7-11
 Configuring Congestion Management 7-13
 Configuring Bandwidth and Bandwidth Remaining 7-14
 Configuring Priority 7-16
 Configuring Shaping 7-18
 Configuring Queue Limits 7-20

Verifying Queuing and Scheduling Configuration 7-22

Example Configurations 7-22
 Setting Ingress Port CoS Configuration Example 7-22
 Priority and Queue Limit Configuration Example 7-23
 Shaping and Tail Drop Configuration Example 7-23
 Bandwidth and WRED Configuration Example 7-23

Feature History for Queuing 7-24

CHAPTER 8

Monitoring QoS Statistics 8-1

Information about QoS Statistics 8-1

Licensing Requirements for Monitoring QoS Statistics 8-1

Prerequisites for Monitoring QoS Statistics 8-1

Enabling Statistics 8-2

Displaying Statistics 8-3

Clearing Statistics 8-3

Example Display 8-3
Send document comments to nexus7k-docfeedback@cisco.com.
New and Changed Information

This chapter provides release-specific information for each new and changed feature in the Cisco NX-OS Quality of Service Configuration Guide, Release 4.2. The latest version of this document is available at the following Cisco website:

To check for additional information about Cisco NX-OS Release 4.2, see the Cisco NX-OS Release Notes available at the following Cisco website:

Table 1 summarizes the new and changed features for the , and tells you where they are documented.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>Changed in Release</th>
<th>Where Documented</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support for Session Manager</td>
<td>Allows you to verify the configuration and required resources prior to committing them to the running configuration.</td>
<td>4.2(1)</td>
<td>—</td>
</tr>
<tr>
<td>Match IPv6 ACLs.</td>
<td>You can now match IPv6, as well as IPv4, addresses.</td>
<td>4.1(2)</td>
<td>Chapter 3, “Configuring Classification”</td>
</tr>
<tr>
<td>Only same variable for mutation mapping</td>
<td>You can match only the same variable with different values for mutation mapping.</td>
<td>4.1(2)</td>
<td>Chapter 5, “Configuring Mutation Mapping”</td>
</tr>
<tr>
<td>Ignore variable for default command.</td>
<td>The ignore variable is no longer supported for the default command.</td>
<td>4.0(2)</td>
<td>Chapter 4, “Configuring Marking”</td>
</tr>
<tr>
<td>Tunnel interfaces</td>
<td>You can apply QoS policies to tunneled interfaces.</td>
<td>4.0(3)</td>
<td>Chapter 2, “Using Modular QoS CLI”</td>
</tr>
<tr>
<td>Type queuing default-in-policy</td>
<td>WRR weights changed for default in queuing policy from 50/50 to 80/20.</td>
<td>4.0(3)</td>
<td>Chapter 2, “Using Modular QoS CLI”</td>
</tr>
</tbody>
</table>
Send document comments to nexus7k-docfeedback@cisco.com.
Preface

This preface describes the audience, organization, and conventions of the Cisco Nexus 7000 Series NX-OS Quality of Service Configuration Guide, Release 4.2. It also provides information on how to obtain related documentation.

This chapter includes the following sections:

- **Audience**, page xi
- **Organization**, page xi
- **Document Conventions**, page xii
- **Related Documentation**, page xiii
- **Obtaining Documentation, Obtaining Support, and Security Guidelines**, page xiv

Audience

This guide is for experienced network administrators who configure and maintain NX-OS devices.

Organization

This publication is organized as follows:

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1, “Overview”</td>
<td>Provides an overview of QoS features.</td>
</tr>
<tr>
<td>Chapter 2, “Using Modular QoS CLI”</td>
<td>Describes how to use CPL to define QoS policies.</td>
</tr>
<tr>
<td>Chapter 3, “Configuring Classification”</td>
<td>Describes how to configure the classification feature.</td>
</tr>
<tr>
<td>Chapter 4, “Configuring Marking”</td>
<td>Describes how to configure the marking feature.</td>
</tr>
<tr>
<td>Chapter 5, “Configuring Mutation Mapping”</td>
<td>Describes how to configure the mutation feature.</td>
</tr>
<tr>
<td>Chapter 6, “Configuring Policing”</td>
<td>Describes how to configure the policing feature.</td>
</tr>
<tr>
<td>Chapter 7, “Configuring Queuing and Scheduling”</td>
<td>Describes how to configure the queuing and scheduling feature.</td>
</tr>
<tr>
<td>Chapter 8, “Monitoring QoS Statistics”</td>
<td>Describes how to view QoS statistics.</td>
</tr>
</tbody>
</table>
Document Conventions

This publication uses the following conventions:

Note

Means reader *take note*. Notes contain helpful suggestions or references to material not covered in the manual.

Caution

Means reader *be careful*. In this situation, you might do something that could result in equipment damage or loss of data.

Tip

Means *the following information will help you solve a problem*.

Command descriptions use these conventions:

<table>
<thead>
<tr>
<th>boldface font</th>
<th>Commands and keywords are in boldface.</th>
</tr>
</thead>
<tbody>
<tr>
<td>italic font</td>
<td>Arguments for which you supply values are in italics.</td>
</tr>
<tr>
<td>{}</td>
<td>Elements in braces are required choices.</td>
</tr>
<tr>
<td>[]</td>
<td>Elements in square brackets are optional.</td>
</tr>
<tr>
<td>x</td>
<td>y</td>
</tr>
</tbody>
</table>

Screen examples use these conventions:

<table>
<thead>
<tr>
<th>screen font</th>
<th>Terminal sessions and information that the switch displays are in screen font.</th>
</tr>
</thead>
<tbody>
<tr>
<td>boldface screen font</td>
<td>Information that you must enter is in boldface screen font.</td>
</tr>
<tr>
<td>italic screen font</td>
<td>Arguments for which you supply values are in italic screen font.</td>
</tr>
<tr>
<td><></td>
<td>Nonprinting characters, such as passwords, are in angle brackets.</td>
</tr>
<tr>
<td>[]</td>
<td>Default responses to system prompts are in square brackets.</td>
</tr>
<tr>
<td>!, #</td>
<td>An exclamation point (!) or number sign (#) at the beginning of a line of code indicates a comment line.</td>
</tr>
</tbody>
</table>
Send document comments to nexus7k-docfeedback@cisco.com.

Related Documentation

Cisco NX-OS documentation is available at the following URL:

The documentation set for Cisco NX-OS includes the following documents:

Release Notes

Cisco Nexus 7000 Series NX-OS Release Notes, Release 4.2

NX-OS Configuration Guides

Cisco Nexus 7000 Series NX-OS Getting Started with Virtual Device Contexts, Release 4.2
Cisco Nexus 7000 Series NX-OS Fundamentals Configuration Guide, Release 4.2
Cisco Nexus 7000 Series NX-OS Interfaces Configuration Guide, Release 4.2
Cisco Nexus 7000 Series NX-OS Layer 2 Switching Configuration Guide, Release 4.2
Cisco Nexus 7000 Series NX-OS Quality of Service Configuration Guide, Release 4.2
Cisco Nexus 7000 Series NX-OS Unicast Routing Configuration Guide, Release 4.2
Cisco Nexus 7000 Series NX-OS Multicast Routing Configuration Guide, Release 4.2
Cisco Nexus 7000 Series NX-OS Security Configuration Guide, Release 4.2
Cisco Nexus 7000 Series NX-OS Virtual Device Context Configuration Guide, Release 4.2
Cisco Nexus 7000 Series NX-OS Software Upgrade and Downgrade Guide, Release 4.2
Cisco Nexus 7000 Series NX-OS Licensing Guide, Release 4.2
Cisco Nexus 7000 Series NX-OS High Availability and Redundancy Guide, Release 4.2
Cisco Nexus 7000 Series NX-OS System Management Configuration Guide, Release 4.2
Cisco NX-OS System Messages Reference
Cisco Nexus 7000 Series NX-OS MIB Quick Reference

NX-OS Command References

Cisco Nexus 7000 Series NX-OS Command Reference Master Index, Release 4.2
Cisco Nexus 7000 Series NX-OS Fundamentals Command Reference, Release 4.2
Cisco Nexus 7000 Series NX-OS Interfaces Command Reference, Release 4.2
Cisco Nexus 7000 Series NX-OS Layer 2 Switching Command Reference, Release 4.2
Cisco Nexus 7000 Series NX-OS Quality of Service Command Reference, Release 4.2
Cisco Nexus 7000 Series NX-OS Unicast Routing Command Reference, Release 4.2
Cisco Nexus 7000 Series NX-OS Multicast Routing Command Reference, Release 4.2
Cisco Nexus 7000 Series NX-OS Security Command Reference, Release 4.2
Cisco Nexus 7000 Series NX-OS Virtual Device Context Command Reference, Release 4.2
Cisco NX-OS High Availability and Redundancy Command Reference, Release 4.2
Obtaining Documentation, Obtaining Support, and Security Guidelines

For information on obtaining documentation, submitting a service request, and gathering additional information, see the monthly What’s New in Cisco Product Documentation, which also lists all new and revised Cisco technical documentation, at:

Subscribe to the What’s New in Cisco Product Documentation as a Really Simple Syndication (RSS) feed and set content to be delivered directly to your desktop using a reader application. The RSS feeds are a free service and Cisco currently supports RSS version 2.0.
Overview

This chapter describes the configurable Cisco Nexus 7000 Series NX-OS Quality of Service (QoS) features on the device.

QoS allows you to classify the network traffic, police and prioritize the traffic flow, and provide congestion avoidance.

This chapter includes the following sections:

- Information About QoS Features, page 1-1
- High Availability Requirements for QoS Features, page 1-4
- QoS Feature Configuration with MQC, page 1-5
- QoS Statistics, page 1-5
- Default QoS Behavior, page 1-5

Information About QoS Features

You use the QoS features to provide the most desirable flow of traffic through a network. QoS allows you to classify the network traffic, police and prioritize the traffic flow, and provide congestion avoidance. The control of traffic is based on the fields in the packets that flow through the system. You use the Modular QoS CLI (MQC) to create the traffic classes and policies of the QoS features.

QoS features are applied using QoS policies and queuing policies, as follows:

- QoS policies include the policing feature and the marking features.
- Queuing policies use the queuing and scheduling features as well as a limited set of the marking feature.

Note

The system-defined QoS features and values that are discussed in Chapter 2, “Using Modular QoS CLI” apply globally to the entire switch and cannot be modified. See the Cisco Nexus 7000 Series NX-OS Virtual Device Context Configuration Guide, Release 4.2 for complete information on VDCs.

This section includes the following topics:

- Using QoS, page 1-2
- Classification, page 1-2
- Marking, page 1-2
- Mutation, page 1-3
Using QoS

Traffic is processed based on how you classify it and the policies that you create and apply to traffic classes.

To configure QoS features, you use the following steps:

1. Create traffic classes by classifying the incoming and outgoing packets that match criteria such as IP address or QoS fields.
2. Create policies by specifying actions to take on the traffic classes, such as limiting, marking, or dropping packets.
3. Apply policies to a port, port channel, VLAN, or a subinterface.

You use MQC to create the traffic classes and policies of the QoS features. For more information, see Chapter 2, “Using Modular QoS CLI.”

Note

The queuing and scheduling operations of the overall QoS feature use IPv6 and IPv4; the rest of the feature uses only IPv4.

Classification

You use classification to partition traffic into classes. You classify the traffic based on the port characteristics (CoS field) or the packet header fields that include IP precedence, Differentiated Services Code Point (DSCP), Layer 2 to Layer 4 parameters, and the packet length.

The values used to classify traffic are called match criteria. When you define a traffic class, you can specify multiple match criteria, you can choose to not match on a particular criterion, or you can determine traffic class by matching any or all criteria.

Traffic that fails to match any class is assigned to a default class of traffic called class-default.

For more information about configuring classification, see Chapter 3, “Configuring Classification.”

Marking

Marking is the setting of QoS information that is related to a packet. You can set the value of standard QoS fields IP precedence, DSCP and Class of Service (CoS), and internal labels that can be used in subsequent actions. Marking is used to identify the traffic type for use in policing, queuing, and scheduling traffic (only CoS is used in scheduling).

For more information about configuring marking, see Chapter 4, “Configuring Marking.”
Mutation

Mutation is the changing of packet header QoS fields. You can map IP precedence, DSCP, or CoS values to all incoming or outgoing packets. You can use mutation in policies that contain policing commands, but you cannot use mutation in queuing and scheduling commands. You use configurable, user-defined table maps for mutation.

For more information about configuring mutation, see Chapter 5, “Configuring Mutation Mapping.”

Policing

Policing is the monitoring of data rates for a particular class of traffic. The device can also monitor associated burst sizes.

Three “colors,” or conditions, are determined by the policer depending on the data rate parameters supplied: conform (green), exceed (yellow), or violate (red). You can configure only one action for each condition. When the data rate exceeds the user-supplied values, packets are either marked down or dropped. You can define single-rate, dual-rate, and color-aware policers.

Single-rate policers monitor the specified committed information rate (CIR) of traffic. Dual-rate policers monitor both CIR and peak information rate (PIR) of traffic. Color-aware policers assume that traffic has been previously marked with a color.

For more information about configuring policing, see Chapter 6, “Configuring Policing.”

Queuing and Scheduling

The queuing and scheduling process allows you to control the bandwidth allocated to traffic classes, so you achieve the desired trade-off between throughput and latency.

You can apply weighted random early detection (WRED) to a class of traffic, which allows packets to be dropped based on the Class of Service (CoS) field. The WRED algorithm allows you to perform proactive queue management to avoid traffic congestion.

You can schedule traffic by imposing a maximum data rate on a class of traffic so that excess packets are retained in a queue to smooth (constrain) the output rate.

For information about configuring queuing and scheduling, see Chapter 7, “Configuring Queuing and Scheduling.”

Sequencing of QoS Actions

The following are the two types of policies:

- **qos**—Defines MQC objects that you can use for marking and policing.
- **queuing**—Defines MQC objects that you can use for queuing and scheduling as well as a limited set of the marking objects.

Note

The default type of policy is **qos**. You cannot apply QoS policies on egress interfaces.
High Availability Requirements for QoS Features

The Cisco NX-OS device processes the QoS policies that you define based on whether they are applied to ingress or egress packets. The system performs actions for QoS policies only if you define them under the type qos service policies.

Note

You can apply only ingress traffic actions for QoS policies on Layer 2 interfaces. You can apply both ingress and egress traffic actions on Layer 3 interfaces.

This section includes the following topics:

- Sequencing of Ingress Traffic Actions, page 1-4
- Sequencing of Egress Traffic Actions, page 1-4

Sequencing of Ingress Traffic Actions

The sequence of QoS actions on ingress traffic is as follows:

1. Queuing and scheduling
2. Mutation
3. Classification
4. Marking
5. Policing

Sequencing of Egress Traffic Actions

The sequencing of QoS actions on egress traffic is as follows:

1. Classification
2. Marking
3. Policing
4. Mutation
5. Queuing and scheduling

Note

Mutation happens much closer to the beginning of the traffic actions on the ingress packets, and any further classification and policing is based on the changed QoS values. Mutation happens at the end of the traffic actions on the egress packets, right before queuing and scheduling.

High Availability Requirements for QoS Features

The Cisco NX-OS QoS software recovers its previous state after a software restart, and it is able to switch over from the active supervisor to the standby supervisor without a loss of state.

Note

See the *Cisco Nexus 7000 Series NX-OS High Availability and Redundancy Guide, Release 4.2* for complete information on high availability.
QoS Feature Configuration with MQC

You use MQC to configure QoS features. The MQC configuration commands are shown in Table 1-1.

Table 1-1 MQC Configuration Commands

<table>
<thead>
<tr>
<th>MQC Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>class-map</td>
<td>Defines a class map that represents a class of traffic.</td>
</tr>
<tr>
<td>table-map</td>
<td>Defines a table map that represents a mapping from one set of field values to another set of field values. You can reference a table map from a policy map.</td>
</tr>
<tr>
<td>policy-map</td>
<td>Defines a policy map that represents a set of policies to be applied to a set of class maps. Policy maps can reference table maps.</td>
</tr>
</tbody>
</table>

You can modify or delete MQC objects, except system-defined objects, when the objects are not associated with any interfaces. See Chapter 2, “Using Modular QoS CLI” for information on system-defined MQC objects.

Once a QoS policy is defined, you can attach the policy map to an interface using the interface configuration command shown in Table 1-2.

Table 1-2 Interface Command to Attach a Policy Map to an Interface

<table>
<thead>
<tr>
<th>Interface Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>service-policy</td>
<td>Applies the specified policy map to input or output packets on the interface.</td>
</tr>
</tbody>
</table>

For information about using MQC, see Chapter 2, “Using Modular QoS CLI.”

QoS Statistics

Statistics are maintained for each policy, class action, and match criteria per interface. You can enable or disable the collection of statistics, you can display statistics using the `show policy-map` interface command, and you can clear statistics based on an interface or policy map with the `clear qos statistics` command. Statistics are enabled by default and can be disabled globally.

For information about monitoring QoS statistics, see Chapter 8, “Monitoring QoS Statistics.”

Default QoS Behavior

The QoS queuing features are enabled by default. Specific QoS-type features, policing and marking, are enabled only when a policy is attached to an interface. Specific policies are enabled when that policy is attached to an interface.
By default, the device always enables a system default queuing policy, or system-defined queuing policy map, on each port and port channel. When you configure a queuing policy and apply the new queuing policy to specified interfaces, the new queuing policy replaces the default queuing policy and those rules now apply. For more information on the system-defined, default queuing policies and the default values that apply to each interface, see Chapter 2, “Using Modular QoS CLI.”

The device enables other QoS features, policing and marking, only when you apply a policy map to an interface.
Using Modular QoS CLI

This chapter describes how to configure Modular QoS CLI (MQC) objects that can be used for configuring QoS features using the Cisco Nexus 7000 Series NX-OS software.

This chapter includes the following sections:

- Information About MQC, page 2-1
- Licensing Requirements for Using MQC Objects, page 2-2
- Using an MQC Object, page 2-2
- Attaching and Detaching a QoS Policy Action from an Interface, page 2-17
- Session Manager Support for QoS, page 2-19
- Feature History for Using Modular QoS CLI, page 2-20

Information About MQC

MQC provides a language to define QoS policies.

Note

MQC commands are included in the Cisco Nexus 7000 Series NX-OS Quality of Service Command Reference, Release 4.2.

You configure QoS policies using three steps:

1. Define traffic classes.
2. Associate policies and actions with each traffic class.
3. Attach policies to logical or physical interfaces and VLANs.

MQC provides three command types to define traffic classes and policies:

- **class-map**—Defines a class map that represents a class of traffic based on packet-matching criteria. Class maps are referenced in policy maps.

Note

When you configure match all for a QoS class map by entering the `class-map type qos match-all` command, the match-all option does not work. Instead, the match criteria is always treated as match any.

- **table-map**—Defines a table map that represents a mapping from one set of packet field values to another set of packet fields. Table maps are referenced in policy maps.
Licensing Requirements for Using MQC Objects

The following table shows the licensing requirements for this feature:

<table>
<thead>
<tr>
<th>Product</th>
<th>License Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX-OS</td>
<td>QoS requires no license. Any feature not included in a license package is bundled with the Cisco NX-OS system images and provided at no extra charge to you. For a complete explanation of the NX-OS licensing scheme, see the Cisco Nexus 7000 Series NX-OS Licensing Guide, Release 4.2.</td>
</tr>
</tbody>
</table>

However, using VDCs requires an Advanced Services license.

Using an MQC Object

You configure QoS and queuing policies using the MQC class-map, policy-map, and table-map objects. You cannot use table maps in queuing policies. After you configure class maps and policy maps, you can attach one policy map of each type to the ingress direction of an interface. Figure 2-1 lists the maximum QoS and queuing policies that you can define on each interface.
A policy map contains either a qos policy or queuing policy. The policy map references the names of class maps that represent traffic classes. For each class of traffic, the device applies the policies on the interface or VLAN that you select.

A packet is matched sequentially to a class of traffic starting from the first traffic class definition. When a match is found, the policy actions for that class are applied to the packet.

The reserved class map receives all traffic that is not matched in type qos policies, and the device applies the policy actions as it would for any other traffic class. You use class-default to perform mutations (mutation is a method for translating QoS values in the packet header prior to traffic classification).

Note
You can access user-defined MQC objects only in the virtual device context (VDC) in which they were created. You can access the system-defined MQC objects in all VDCs.

This section includes the following topics:
- Type qos Policies, page 2-3
- Type queuing Policies, page 2-5
- System-Defined MQC Objects, page 2-6
- Configuring an MQC Object, page 2-10
- Applying Descriptions to MQC Objects, page 2-15
- Verifying an MQC Object, page 2-16

Type qos Policies

You use type qos policies to mark, to apply mutations, to set the ingress port trust state, and to police packets.

Figure 2-2 shows the QoS policy structure with the associated MQC objects of type qos without mutation, and Figure 2-3 shows the QoS policy structure with mutation. The MQC objects are shown in bold.
Figure 2-2 QoS Policy Diagram Showing Type qos MQC Object Usage without Mutation

- Class of traffic 1
 - Policy actions
 - Marking
 - Policing

- Class of traffic 2
 - Policy actions
 - Marking
 - Policing

- Class of traffic N
 - Policy actions
 - Marking
 - Policing

- Class of traffic unmatched
 - Policy actions
 - Marking
 - Policing
Type queuing Policies

You use type queuing policies to mark, shape, and queue packets. Marking is limited to the CoS field and does not support the use of table maps.

Figure 2-4 shows the QoS policy structure with associated MQC objects of type queuing. The MQC objects are shown in bold.

Note MQC table-map objects cannot be used in policies of type queuing.
System-Defined MQC Objects

These are the default MQC objects. All of these values apply across all VDCs.

When you configure QoS features, and the system requests one of these MQC objects, you can use these system-defined objects. The system-defined MQC objects are shown in Table 2-1. See the tables listed next to the object for information on these system-defined objects.
Table 2-1 System-Defined MQC Objects

<table>
<thead>
<tr>
<th>Table and Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2-2 on page 2-7</td>
<td>Type qos class maps</td>
</tr>
<tr>
<td>Table 2-3 on page 2-7</td>
<td>Type queuing class maps</td>
</tr>
<tr>
<td>Table 2-4 on page 2-8</td>
<td>Table maps</td>
</tr>
<tr>
<td>Table 2-5 on page 2-9</td>
<td>Policy maps</td>
</tr>
</tbody>
</table>

Type qos class maps that are defined by the system are listed in Table 2-2.

Note
You cannot reference the conform-color-in, conform-color-out, exceed-color-in, or exceed-color-out class maps in a policy map.

Table 2-2 System-Defined Type qos Class Maps

<table>
<thead>
<tr>
<th>Class Map Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>class-default</td>
<td>Type qos class map that is assigned to all packets that match none of the criteria of traffic classes that you define in a type qos policy map. You can use class-default for mutation.</td>
</tr>
<tr>
<td>conform-color-in</td>
<td>Type qos conform color class map in the input direction. This color-aware class map makes a policer color-aware for conform action.</td>
</tr>
<tr>
<td>conform-color-out</td>
<td>Type qos conform color class map in the output direction. This color-aware class map makes a policer color-aware for conform action.</td>
</tr>
<tr>
<td>exceed-color-in</td>
<td>Type qos exceed color class map in the input direction. This color-aware class map makes a policer color-aware for exceed action.</td>
</tr>
<tr>
<td>exceed-color-out</td>
<td>Type qos exceed color class map in the output direction. This color-aware class map makes a policer color-aware for exceed action.</td>
</tr>
</tbody>
</table>

Type queuing class maps that are defined by the system are listed in Table 2-3.

Table 2-3 System-Defined Type queuing Class Maps

<table>
<thead>
<tr>
<th>Class Map Queue Name</th>
<th>Description</th>
<th>Default CoS Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Gigabit Module Ingress: 2 queues with 4 thresholds per queue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2q4t-in-q1</td>
<td>Ingress queue 1 of 2q4t type</td>
<td>5-7</td>
</tr>
<tr>
<td>2q4t-in-q-default</td>
<td>Ingress default queue of 2q4t type</td>
<td>0-4</td>
</tr>
<tr>
<td>1 Gigabit Module Egress: 1 strict priority queue and 3 normal queues with 4 thresholds per queue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1p3q4t-out-pq1</td>
<td>Egress priority queue of 1p3q4t type</td>
<td>5-7</td>
</tr>
<tr>
<td>1p3q4t-out-q2</td>
<td>Egress queue 2 of 1p3q4t type</td>
<td></td>
</tr>
</tbody>
</table>
Table 2-3 System-Defined Type queuing Class Maps (continued)

<table>
<thead>
<tr>
<th>Class Map Queue Name</th>
<th>Description</th>
<th>Default CoS Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>1p3q4t-out-q3</td>
<td>Egress queue 3 of 1p3q4t type</td>
<td>–</td>
</tr>
<tr>
<td>1p3q4t-out-q-default</td>
<td>Egress default queue of 1p3q4t type</td>
<td>0-4</td>
</tr>
</tbody>
</table>

10 Gigabit Module Ingress: 8 queues with 2 thresholds per queue

<table>
<thead>
<tr>
<th>Table Map Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cir-markdown-map</td>
<td>Table map used to mark down packets that exceed the committed information rate (CIR).</td>
</tr>
<tr>
<td>pir-markdown-map</td>
<td>Table map used to mark down packets that violate the peak information rate (PIR).</td>
</tr>
<tr>
<td>cos-discard-class-map</td>
<td>Table map used to map the CoS value to the discard-class value.</td>
</tr>
</tbody>
</table>

1. These are either priority or normal queues. If you use the priority keyword in your configuration, these are used as priority queues. Otherwise, they are used as normal queues.

Table maps that are defined by the system are listed in Table 2-4. The default mapping of values in the tables maps is contained in RFC 2597. These are not configurable.

Table 2-4 System-Defined Table Maps

<table>
<thead>
<tr>
<th>Table Map Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cir-markdown-map</td>
<td>Table map used to mark down packets that exceed the committed information rate (CIR).</td>
</tr>
<tr>
<td>Note</td>
<td>Enter the <code>show table-map</code> command to display the default mapping.</td>
</tr>
<tr>
<td>pir-markdown-map</td>
<td>Table map used to mark down packets that violate the peak information rate (PIR).</td>
</tr>
<tr>
<td>Note</td>
<td>Enter the <code>show table-map</code> command to display the default mapping.</td>
</tr>
<tr>
<td>cos-discard-class-map</td>
<td>Table map used to map the CoS value to the discard-class value.</td>
</tr>
</tbody>
</table>
Table 2-4 System-Defined Table Maps (continued)

<table>
<thead>
<tr>
<th>Table Map Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cos-dscp-map</td>
<td>Table map used to map the CoS value to the DSCP value.</td>
</tr>
<tr>
<td>cos-precedence-map</td>
<td>Table map used to map the CoS value to the precedence value.</td>
</tr>
<tr>
<td>dscp-cos-map</td>
<td>Table map used to map the DSCP value to the CoS value.</td>
</tr>
<tr>
<td>dscp-precedence-map</td>
<td>Table map used to map the DSCP value to the precedence value.</td>
</tr>
<tr>
<td>dscp-discard-class-map</td>
<td>Table map used to map the DSCP value to the discard-class value.</td>
</tr>
<tr>
<td>precedence-dscp-map</td>
<td>Table map used to map the precedence value to the DSCP value.</td>
</tr>
<tr>
<td>precedence-cos-map</td>
<td>Table map used to map the precedence value to the CoS value.</td>
</tr>
<tr>
<td>precedence-discard-class-map</td>
<td>Table map used to map the precedence value to the discard-class value.</td>
</tr>
<tr>
<td>discard-class-cos-map</td>
<td>Table map used to map the discard-class value to the CoS value.</td>
</tr>
<tr>
<td>discard-class-prec-map</td>
<td>Table map used to map the discard-class value to the precedence value.</td>
</tr>
<tr>
<td>discard-class-dscp-map</td>
<td>Table map used to map the discard-class value to the DSCP value.</td>
</tr>
</tbody>
</table>

Policy maps that are defined by the system are listed in Table 2-5.

Table 2-5 System-Defined Queuing Policy Maps

<table>
<thead>
<tr>
<th>Queuing Policy Map Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>default-in-policy</td>
<td>Input queuing policy map that is attached to all module ports to which you do not apply a queuing policy map. The default configuration values are as follows:</td>
</tr>
<tr>
<td></td>
<td>policy-map type queuing default-in-policy</td>
</tr>
<tr>
<td></td>
<td>class type queuing in-q1</td>
</tr>
<tr>
<td></td>
<td>queue-limit percent 50</td>
</tr>
<tr>
<td></td>
<td>bandwidth percent 80</td>
</tr>
<tr>
<td></td>
<td>class type queuing in-q-default</td>
</tr>
<tr>
<td></td>
<td>queue-limit percent 50</td>
</tr>
<tr>
<td></td>
<td>bandwidth percent 20</td>
</tr>
<tr>
<td>default-out-policy</td>
<td>Output queuing policy map that is attached to all module ports to which you do not apply a queuing policy map. The default configuration values are as follows:</td>
</tr>
<tr>
<td></td>
<td>policy-map type queuing default-out-policy</td>
</tr>
<tr>
<td></td>
<td>class type queuing out-pq1</td>
</tr>
<tr>
<td></td>
<td>priority level 1</td>
</tr>
<tr>
<td></td>
<td>queue-limit percent 16</td>
</tr>
<tr>
<td></td>
<td>class type queuing out-q2</td>
</tr>
<tr>
<td></td>
<td>queue-limit percent 1</td>
</tr>
<tr>
<td></td>
<td>class type queuing out-q3</td>
</tr>
<tr>
<td></td>
<td>queue-limit percent 1</td>
</tr>
<tr>
<td></td>
<td>class type queuing out-q-default</td>
</tr>
<tr>
<td></td>
<td>queue-limit percent 82</td>
</tr>
<tr>
<td></td>
<td>bandwidth remaining percent 25</td>
</tr>
</tbody>
</table>
Chapter 2 Using Modular QoS CLI

Send document comments to nexus7k-docfeedback@cisco.com.

Configuring an MQC Object

When you specify a MQC object command, the device creates the object if it does not exist and then enters map mode.

To remove a class-map, table-map, or policy-map object, use the no form of the command that you used to create the object.

For the commands that you can use in the MQC object mode, see the following configuration chapters:

- Chapter 3, “Configuring Classification”
- Chapter 4, “Configuring Marking”
- Chapter 5, “Configuring Mutation Mapping”
- Chapter 6, “Configuring Policing”
- Chapter 7, “Configuring Queuing and Scheduling”

This section includes the following topics:

- Configuring or Modifying a Class Map, page 2-10
- Configuring or Modifying a Table Map, page 2-12
- Configuring or Modifying a Policy Map, page 2-13

Configuring or Modifying a Class Map

You can create or modify a class map. You can then reference class maps in policy maps.

Note

You cannot create a queuing class map; you must use one of the system-defined queuing class maps listed in Table 2-3.

SUMMARY STEPS

1. **config t**
2. **class-map [type qos] [match-any | match-all] class-map-name**
3. **exit**
4. **class-map [type qos] {conform-color-in | conform-color-out | exceed-color-in | exceed-color-out}**
5. **exit**
6. **class-map type queuing match-any class-queuing-name**
7. **exit**
8. **show class-map [type qos] [class-map-name | conform-color-in | conform-color-out | exceed-color-in | exceed-color-out]**
9. **show class-map type queuing [class-queuing-name]**
10. **copy running-config startup-config**
Using Modular QoS CLI

Send document comments to nexus7k-docfeedback@cisco.com.

Chapter 2 Using Modular QoS CLI

Using an MQC Object

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>config t</td>
</tr>
</tbody>
</table>
| **Example:** | switch# config t
switch(config)# | |
| **Step 2** | class-map [type qos] [match-any | match-all] class-map-name | Creates or accesses the class map of type qos, and then enters class-map qos mode. Class-map names can contain alphabetic, hyphen, or underscore characters, are case sensitive, and can be up to 40 characters. |
| **Example:** | switch(config)# class-map class1
switch(config-cmap-qos)# | |
| **Step 3** | exit | Exits class-map qos mode and enters configuration mode. |
| **Example:** | switch(config-cmap-qos)# exit
switch(config)# | |
| **Step 4** | class-map [type qos] [conform-color-in | conform-color-out | exceed-color-in | exceed-color-out] | (Optional) Accesses the class map of type qos for one of the system-defined color maps, and then enters color-map mode. |
| **Example:** | switch(config)# class-map
exceed-color-in
switch(config-color-map)# | |
| **Step 5** | exit | Exits color-map mode, and then enters configuration mode. |
| **Example:** | switch(config-color-map)# exit
switch(config)# | |
| **Step 6** | class-map type queuing match-any [class-queuing-name] | Creates or accesses the class map of type queuing, and then enters class-map queuing mode. Class queuing names are listed in Table 2-3. |
| **Example:** | switch(config)# class-map type queuing
match-any 1p3q4t-out-pql
switch(config-cmap-que)# | |
Using an MQC Object

Send document comments to nexus7k-docfeedback@cisco.com.

Chapter 2 Using Modular QoS CLI

Configuring or Modifying a Table Map

You can create or modify a table map that you can reference in policy maps. See Chapter 4, “Configuring Marking” for information on configuring table maps.

SUMMARY STEPS

1. `config t`
2. `table-map table-map-name`
3. `exit`
4. `table-map [cir-markdown-map | pir-markdown-map`
5. `exit`
6. `show table-map [table-map-name | cir-markdown-map | pir-markdown-map]`
7. `copy running-config startup-config`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>config t</td>
</tr>
</tbody>
</table>
| Example: | switch# config t
| | switch(config)# |
| **Step 2** | table-map table-map-name | Creates or accesses the table map and then enters table-map mode. Table map names can contain alphabetic, hyphen, or underscore characters, are case sensitive, and can be up to 40 characters. |
| Example: | switch(config)# table-map table1
| | switch(config-tmap)# |
| **Step 3** | exit | Exits table-map mode and enters configuration mode. |
| Example: | switch(config-tmap)# exit
| | switch(config)# | |
| **Step 4** | table-map (cir-markdown-map | Accesses one of the system-defined markdown table maps, and then enters markdown-map mode. |
| | | |
| Example: | cir-markdown-map
| | switch(config)# table-map
| | cir-markdown-map
| | switch(config-mrkdwn-map)# |
| **Step 5** | exit | Exits table-map mode and enters configuration mode. |
| Example: | switch(config-mrkdwn-map)# exit
| | switch(config)# | |
| **Step 6** | show table-map [table-map-name | (Optional) Displays information about all configured table maps or a selected table map. |
| | | |
| Example: | cir-markdown-map |
| | switch(config)# show table-map |
| | | |
| **Step 7** | copy running-config startup-config | (Optional) Saves the running configuration to the startup configuration. |
| Example: | switch(config)# copy running-config
| | startup-config |

Configuring or Modifying a Policy Map

You can create or modify a policy map that you can use to define actions to perform on class maps.

SUMMARY STEPS

1. config t
2. policy-map [type qos] [match-first] {qos-policy-map-name | qos-dynamic}
3. exit
4. policy-map type queuing [match-first] {queuing-policy-map-name | qos-dynamic}
5. exit
Using an MQC Object

Send document comments to nexus7k-docfeedback@cisco.com.

6. `show policy-map [type qos] [policy-map-name | qos-dynamic]`

7. `show policy-map type queuing [policy-map-name | qos-dynamic]`

8. `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>config t</td>
</tr>
</tbody>
</table>
| Example: | `switch# config t`
`switch(config)#` |
| Enters configuration mode. |
| **Step 2** | `policy-map [type qos] [match-first] [policy-map-name | qos-dynamic]` |
| Example: | `switch(config)# policy-map policy1`
`switch(config-pmap-qos)#` |
| Creates or accesses the policy map of type qos and then enters policy-map mode. Policy-map names can contain alphabetic, hyphen, or underscore characters, are case sensitive, and can be up to 40 characters. |
| **Step 3** | `exit` |
| Example: | `switch(config-tmap)# exit`
`switch(config)#` |
| Exits policy-map mode and enters configuration mode. |
| **Step 4** | `policy-map type queuing [match-first] [policy-map-name | qos-dynamic]` |
| Example: | `switch(config)# policy-map type queuing policy_queue1`
`switch(config-pmap-que)#` |
| Creates or accesses the policy map of type queuing and then enters policy-map mode. You can specify a policy-map name. Policy-map names can contain alphabetic, hyphen, or underscore characters, are case sensitive, and can be up to 40 characters. |
| **Step 5** | `exit` |
| Example: | `switch(config-tmap)# exit`
`switch(config)#` |
| Exits policy-map mode and enters configuration mode. |
| **Step 6** | `show policy-map [type qos] [policy-map-name | qos-dynamic]` |
| Example: | `switch(config)# show policy-map` |
| (Optional) Displays information about all configured policy maps or a selected policy map of type qos. |
| **Step 7** | `show policy-map type queuing [policy-map-name | qos-dynamic]` |
| Example: | `switch(config)# show policy-map type queuing` |
| (Optional) Displays information about all configured policy maps or a selected policy map of type queuing. |
| **Step 8** | `copy running-config startup-config` |
| Example: | `switch(config)# copy running-config startup-config` |
| (Optional) Saves the running configuration to the startup configuration. |
Applying Descriptions to MQC Objects

You can apply the description command to any MQC object.

SUMMARY STEPS

1. `config t`
2. `class-map [type qos] [match-any | match-all] class-map-name`
 or
 `table-map table-map-name`
 or
 `policy-map [type qos] [match-first] [policy-map-name | qos-dynamic]`
3. `description string`
4. `exit`
5. `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>config t</code></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch# config t</td>
<td></td>
</tr>
<tr>
<td>switch(config)#</td>
<td></td>
</tr>
</tbody>
</table>
Using an MQC Object

To display MQC object configuration information, perform one of the following tasks:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show class-map [type qos] [class-map-name] conform-color-in</td>
<td>Displays information about all configured class maps or a selected class map of type qos.</td>
</tr>
<tr>
<td>show class-map type queuing [class-queuing-name]</td>
<td>Displays information about all configured class maps or a selected class map of type queuing. Class queuing names are listed in Table 2-3.</td>
</tr>
<tr>
<td>show table-map [table-map-name] cir-markdown-map</td>
<td>Displays information about all configured table maps or a selected table map.</td>
</tr>
<tr>
<td>show policy-map [type qos] [policy-map-name] qos-dynamic</td>
<td>Displays information about all configured policy maps or a selected policy map of type qos.</td>
</tr>
<tr>
<td>show policy-map type queuing [policy-map-name] qos-dynamic</td>
<td>Displays information about all configured policy maps or a selected policy map of type queuing.</td>
</tr>
</tbody>
</table>

Verifying an MQC Object

To display MQC object configuration information, perform one of the following tasks:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>class-map [type qos] [match-any</td>
<td>match-all] class-map-name</td>
</tr>
<tr>
<td>table-map table-map-name</td>
<td>Creates or accesses the table map, and then enters table-map mode. The table-map name can contain alphabetic, hyphen, or underscore characters, is case sensitive, and can be up to 40 characters.</td>
</tr>
<tr>
<td>policy-map [type qos] [match-first] [policy-map-name</td>
<td>qos-dynamic]</td>
</tr>
<tr>
<td>description string</td>
<td>Adds a description string to the MQC object. The description can be up to 200 alphanumeric characters. Note You cannot modify the description of system-defined queuing class maps.</td>
</tr>
<tr>
<td>exit</td>
<td>Exits table-map mode and enters configuration mode.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Saves the running configuration to the startup configuration.</td>
</tr>
</tbody>
</table>
Attaching and Detaching a QoS Policy Action from an Interface

The software does not allow you to enable or disable QoS features with a configuration command. To enable or disable QoS features, you must attach or detach QoS policies to or from interfaces, VLANs, or tunnels as described in this section.

Note
You must enable the tunnel feature by entering the feature tunnel command and configure the tunnel before you attach policies.

The system-defined type queuing class maps (see Table 2-3) are attached to each interface unless you specifically attach a different class map.

Note
The device restricts QoS policies to one per interface per direction (ingress or egress) for each of the policy types qos and queuing.

Policies that are defined at multiple interfaces have the following restrictions:

- A QoS policy attached to the physical port will take effect when the port is not a member of a port channel.
- A QoS policy attached to a port channel will take effect even when policies are attached to member ports.
- A QoS policy attached to a VLAN is applied to all ports in that VLAN that do not have other policies specifically applied.
- One ingress policy type queuing is supported for each Layer 2 port- and Layer 2 port-channel interface in both the ingress and egress direction. Egress type qos policies are not allowed on Layer 2 port or Layer 2 port-channel interfaces.
- One ingress and one egress QoS policy are supported for each Layer 3 and Layer 3 port-channel interface.
- One ingress and one egress QoS policy are supported for each VLAN.
- One ingress and one egress queuing policy are supported for each Layer 2 port-, Layer 2 port-channel, Layer 3 port-, and Layer 3 port-channel interface.
- When a VLAN or port channel, or both, touches multiple forwarding engines, all policies that enforce a rate are enforced per forwarding engine.

For example, a policer configured on a specific VLAN that limits the rate for the VLAN to 100 Mbps and has one switch port in the VLAN on one module and has another switch port in the VLAN on another module, each forwarding engine enforces the 100-Mbps rate. In this case, you could actually have up to 200 Mbps in the VLAN you configured to limit the rate to 100 Mbps.

Note
Default queuing policies are active, unless you configure and apply another policy. See Table 2-5 for the default queuing policies.
The interface where a QoS policy is applied is summarized in Table 2-6. Each row represents the interface levels. The entry descriptions are as follows:

- **Applied**—Interface where an attached policy is applied.
- **Present**—Interface where a policy is attached but not applied.
- **Not present**—Interface where no policy is attached.
- **Present or not**—Interface where a policy is either attached or not, but not applied.

<table>
<thead>
<tr>
<th>Port Policy</th>
<th>Port-Channel Policy</th>
<th>VLAN Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied</td>
<td>Not present</td>
<td>Present or not</td>
</tr>
<tr>
<td>Present or not</td>
<td>Applied</td>
<td>Present or not</td>
</tr>
<tr>
<td>Not present</td>
<td>Not present</td>
<td>Applied</td>
</tr>
</tbody>
</table>

To attach a policy map to an interface, use the `service-policy` interface command mode or the VLAN command mode. You specify whether the policies defined in the policy map are applied to the input or output stream of packets on the interface.

To detach a policy map from an interface or VLAN, use the `no` form of the `service-policy` interface command mode or the VLAN command mode.

SUMMARY STEPS

1. `config t`
2. `interface {[ethernet slot/port] | [port-channel channel-number] | [tunnel number]}
 or
 `vlan [vlan-id]`
3. `service-policy [type qos] {input | output} {policy-map-name | qos-dynamic} [no-stats]`
4. `show policy-map [vlan vlan_id] [input | output] [type qos | queuing] [class [type qos | queuing]
 class-map-name]`
5. `copy running-config startup-config`
Session Manager Support for QoS

Beginning in Cisco NX-OS Release 4.2, Session Manager supports the configuration of QoS. This feature allows you to verify the QoS configuration and confirm that the resources required by the configuration are available prior to committing them to the running configuration. See the *Cisco Nexus 7000 Series NX-OS System Management Configuration Guide, Release 4.2* for information about Session Manager.

Once you start the configuration session, do not enter any configuration commands using the configure terminal configuration mode until the configuration session is aborted or committed. Entering parallel configurations (one using the configuration session and another using the configuration terminal configuration mode) may cause verification failures in the configuration session mode.

Detailed Steps

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>config t</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>switch# config t</td>
</tr>
<tr>
<td></td>
<td>switch(config)#</td>
</tr>
</tbody>
</table>
| Step 2 | interface {[
| | ethernet slot/port | | | |
| | port-channel channel-number |
| | tunnel number]} |
| | Example 1: |
| | switch(config)# interface ethernet 1/1 |
| | switch(config-if)# |
| | Example 2: |
| | switch(config)# vlan 2 |
| Step 3 | service-policy {type qos} {input | output} {policy-map-name | qos-dynamic} [no-stats] |
| | Example: |
| | switch(config-if)# service-policy input policy1 |
| | switch(config-if)# |
| Step 4 | show policy-map {vlan vlan-id} {input | output} {type qos | queuing} {class [type qos | queuing] class-map-name} |
| | Example: |
| | switch(config)# show policy-map vlan 1 input type qos |
| Step 5 | copy running-config startup-config |
| | Example: |
| | switch(config)# copy running-config startup-config |

(Optional) Displays information about policy maps applied to all interfaces or the specified interface. You can limit what the device displays to input or output policies, qos or queuing polices, and to a specific class.

This example shows all policy maps on the Ethernet 1/1 interface.

(Optional) Saves the running configuration to the startup configuration.
Feature History for Using Modular QoS CLI

Table 2-7 lists the release history for this feature.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>No change</td>
<td>4.1(2)</td>
<td>-</td>
</tr>
<tr>
<td>Support for Session Manager</td>
<td>4.2(1)</td>
<td>Allows you to verify the configuration and required resources prior to committing them to the running configuration.</td>
</tr>
</tbody>
</table>
Configuring Classification

This chapter describes how to configure classification on the Cisco Nexus 7000 Series NX-OS device. This chapter includes the following sections:

- Information About Classification, page 3-1
- Licensing Requirements for Classification, page 3-2
- Prerequisites for Classification, page 3-3
- Guidelines and Limitations, page 3-3
- Configuring Traffic Classes, page 3-3
- Verifying Classification Configuration, page 3-16
- Example Configuration, page 3-16
- Feature History for Classification, page 3-16

Information About Classification

Classification is the separation of packets into traffic classes. You configure the device to take specific action on the specified classified traffic, such as policing or marking down, or other actions.

You can create class maps to represent each traffic class by matching packet characteristics with the classification criteria in Table 3-1.

Table 3-1 Classification Criteria

<table>
<thead>
<tr>
<th>Classification Criteria</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoS</td>
<td>Class of Service (CoS) field in the IEEE 802.1Q header.</td>
</tr>
<tr>
<td>IP precedence</td>
<td>Precedence value within the Type of Service (TOS) byte of the IP header.</td>
</tr>
<tr>
<td>Differentiated Services Code Point (DSCP)</td>
<td>DSCP value within the DiffServ field of the IP header.</td>
</tr>
<tr>
<td>QoS group</td>
<td>Locally significant QoS values that can be manipulated and matched within the system. The range is from 0 to 126.</td>
</tr>
</tbody>
</table>
Chapter 3 Configuring Classification

You can specify multiple match criteria, you can choose to not match on a particular criterion, or you can determine traffic class by matching any or all criteria.

Note However, if you match on an ACL, no other match criteria, except packet length, can be specified in a match-all class. In a match-any class, you can match on ACLs and any other match criteria.

Some match criteria relate only to ingress or egress traffic. For example, the internal label QoS group has no meaning on ingress traffic because it has not yet been assigned a value.

Traffic that fails to match any class in a QoS policy map is assigned to a default class of traffic called class-default. The class class-default can be referenced in a QoS policy map to select this unmatched traffic.

Note When you configure match all for a QoS class map by entering the class-map type qos match-all command, the match-all option does not work. Instead, the match criteria is always treated as match any.

You can reuse class maps within the same VDC when defining the QoS policies for different interfaces that process the same types of traffic.

Note See Chapter 2, “Using Modular QoS CLI” for more information on class maps.

Licensing Requirements for Classification

The following table shows the licensing requirements for this feature:

<table>
<thead>
<tr>
<th>Product</th>
<th>License Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX-OS</td>
<td>QoS requires no license. Any feature not included in a license package is bundled with the Cisco NX-OS system images and is provided at no extra charge to you. For a complete explanation of the NX-OS licensing scheme, see the Cisco Nexus 7000 Series NX-OS Licensing Guide, Release 4.2.</td>
</tr>
</tbody>
</table>
However, using VDCs requires an Advanced Services license.

Prerequisites for Classification

Classification has the following prerequisites:

- You must be familiar with Chapter 2, “Using Modular QoS CLI.”
- You are logged on to the switch.
- You are in the correct virtual device context (VDC). A VDC is a logical representation of a set of system resources. You can use the `switchto vdc` command with a VDC number.

Guidelines and Limitations

Classification has the following guidelines and limitations:

- You can specify a maximum of 1024 match criteria in a class map.
- You can configure a maximum of 4096 classes for use in a single policy map.
- When you match on an ACL, the only other match you can specify is the Layer 3 packet length in a match-all class.
- You can classify traffic on Layer 2 ports based on either the port policy or VLAN policy of the incoming packet, but not both. Either the port policy or the VLAN policy takes effect, but not both; if both are present, the device acts on the port policy and ignores the VLAN policy.

Configuring Traffic Classes

This section includes the following topics.

- Configuring ACL Classification, page 3-3
- Configuring DSCP Classification, page 3-4
- Configuring IP Precedence Classification, page 3-6
- Configuring Protocol Classification, page 3-8
- Configuring QoS Group Classification, page 3-9
- Configuring Discard Class Classification, page 3-10
- Configuring Layer 3 Packet Length Classification, page 3-11
- Configuring CoS Classification, page 3-12
- Configuring IP RTP Classification, page 3-13
- Configuring Class Map Classification, page 3-14

Configuring ACL Classification

Note The device does not support the not form of this command.
You can classify traffic by matching packets based on existing ACLs. The permit and deny ACL keywords are ignored in the matching. QoS does not use the permit-deny functions of ACLs. You can classify by either IPv4 or IPv6.

Note
Tunneled IP packets will not be matched unless the tunneling protocol is also IP, and then the match applies to the outer IP header and not the encapsulated IP header.

SUMMARY STEPS

1. `config t`
2. `class-map [type qos [match-any | match-all] class-map-name`
3. `match access-group name acl-name`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>config t</code></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Example: <code>switch# config t switch(config)#</code></td>
<td></td>
</tr>
<tr>
<td>Step 2 `class-map [type qos [match-any</td>
<td>match-all] class-map-name`</td>
</tr>
<tr>
<td>Example: <code>switch(config)# class-map class_acl</code></td>
<td></td>
</tr>
<tr>
<td>Step 3 <code>match access-group name acl-name</code></td>
<td>Configures traffic class by matching packets based on <code>acl-name</code>. The permit and deny ACL keywords are ignored in the matching.</td>
</tr>
<tr>
<td>Example: <code>switch(config-cmap-qos)# match access-group name my_acl</code></td>
<td>Note The device does not support the <code>not</code> form of this command.</td>
</tr>
</tbody>
</table>

Use the `show class-map` command to display the ACL class map configuration:

`switch# show class-map class_acl`

Configuring DSCP Classification

You can classify traffic based on the DSCP value in the DiffServ field of the IP header. The standard DSCP values are found in Table 3-2.

<table>
<thead>
<tr>
<th>Table 3-2</th>
<th>Standard DSCP Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>List of DSCP Values</td>
</tr>
<tr>
<td>af11</td>
<td>AF11 dscp (001010)—decimal value 10</td>
</tr>
<tr>
<td>af12</td>
<td>AF12 dscp (001100)—decimal value 12</td>
</tr>
</tbody>
</table>
Chapter 3 Configuring Classification

Configuring Traffic Classes

Table 3-2 Standard DSCP Values (continued)

<table>
<thead>
<tr>
<th>Value</th>
<th>List of DSCP Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>af13</td>
<td>AF13 dscp (001110)—decimal value 14</td>
</tr>
<tr>
<td>af21</td>
<td>AF21 dscp (010010)—decimal value 18</td>
</tr>
<tr>
<td>af22</td>
<td>AF22 dscp (010100)—decimal value 20</td>
</tr>
<tr>
<td>af23</td>
<td>AF23 dscp (010110)—decimal value 22</td>
</tr>
<tr>
<td>af31</td>
<td>AF31 dscp (011010)—decimal value 26</td>
</tr>
<tr>
<td>af32</td>
<td>AF40 dscp (011100)—decimal value 28</td>
</tr>
<tr>
<td>af33</td>
<td>AF33 dscp (011110)—decimal value 30</td>
</tr>
<tr>
<td>af41</td>
<td>AF41 dscp (100010)—decimal value 34</td>
</tr>
<tr>
<td>af42</td>
<td>AF42 dscp (100100)—decimal value 36</td>
</tr>
<tr>
<td>af43</td>
<td>AF43 dscp (100110)—decimal value 38</td>
</tr>
<tr>
<td>cs1</td>
<td>CS1 (precedence 1) dscp (001000)—decimal value 8</td>
</tr>
<tr>
<td>cs2</td>
<td>CS2 (precedence 2) dscp (010000)—decimal value 16</td>
</tr>
<tr>
<td>cs3</td>
<td>CS3 (precedence 3) dscp (011000)—decimal value 24</td>
</tr>
<tr>
<td>cs4</td>
<td>CS4 (precedence 4) dscp (100000)—decimal value 32</td>
</tr>
<tr>
<td>cs5</td>
<td>CS5 (precedence 5) dscp (101000)—decimal value 40</td>
</tr>
<tr>
<td>cs6</td>
<td>CS6 (precedence 6) dscp (110000)—decimal value 48</td>
</tr>
<tr>
<td>cs7</td>
<td>CS7 (precedence 7) dscp (111000)—decimal value 56</td>
</tr>
<tr>
<td>default</td>
<td>Default dscp (000000)—decimal value 0</td>
</tr>
<tr>
<td>ef</td>
<td>EF dscp (101110)—decimal value 46</td>
</tr>
</tbody>
</table>

Note

Tunneled IP packets will not be matched unless the tunneling protocol is also IP, and then the match applies to the outer IP header and not the encapsulated IP header.

SUMMARY STEPS

1. `config t`
2. `class-map [type qos] [match-any | match-all] class-map-name`
3. `match [not] dscp dscp-list`
4. `exit`
5. `copy running-config startup-config`
Configuring Traffic Classes

Send document comments to nexus7k-docfeedback@cisco.com.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1
<code>config t</code>
Example:
switch# config t
switch(config)#</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2
`class-map [type qos] [match-any</td>
<td>match-all] class-map-name`
Example:
switch(config)# class-map class_dscp</td>
</tr>
<tr>
<td>Step 3
<code>match [not] dscp dscp-list</code>
Example:
switch(config-cmap-qos)# match dscp af21, af32</td>
<td>Configures the traffic class by matching packets based on <code>dscp-values</code>. The standard DSCP values are shown in Table 3-2. Use the <code>not</code> keyword to match on values that do not match the specified range.</td>
</tr>
<tr>
<td>Step 4
<code>exit</code>
Example:
switch(config-cmap-qos)# exit
switch(config)#</td>
<td>Exits class-map queuing mode, and enters configuration mode.</td>
</tr>
<tr>
<td>Step 5
<code>copy running-config startup-config</code>
Example:
switch(config)# copy running-config startup-config</td>
<td>(Optional) Saves the running configuration to the startup configuration.</td>
</tr>
</tbody>
</table>

Use the `show class-map` command to display the DSCP class-map configuration:
`switch# show class-map class_dscp`

Configuring IP Precedence Classification

You can classify traffic based on the precedence value in the Type of Service (TOS) byte field of the IP header. Table 3-3 shows the precedence values.

<table>
<thead>
<tr>
<th>Value</th>
<th>List of Precedence Values</th>
</tr>
</thead>
<tbody>
<tr>
<td><0-7></td>
<td>IP precedence value</td>
</tr>
<tr>
<td>critical</td>
<td>Critical precedence (5)</td>
</tr>
<tr>
<td>flash</td>
<td>Flash precedence (3)</td>
</tr>
<tr>
<td>flash-override</td>
<td>Flash override precedence (4)</td>
</tr>
<tr>
<td>immediate</td>
<td>Immediate precedence (2)</td>
</tr>
<tr>
<td>internet</td>
<td>Internetwork control precedence (6)</td>
</tr>
</tbody>
</table>
Configuring Traffic Classes

Chapter 3 Configuring Classification

Send document comments to nexus7k-docfeedback@cisco.com.

Table 3-3 Precedence Values (continued)

<table>
<thead>
<tr>
<th>Value</th>
<th>List of Precedence Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>network</td>
<td>Network control precedence (7)</td>
</tr>
<tr>
<td>priority</td>
<td>Priority precedence (1)</td>
</tr>
<tr>
<td>routine</td>
<td>Routine precedence (0)</td>
</tr>
</tbody>
</table>

Note: Tunneled IP packets will not be matched unless the tunneling protocol is also IP, and then the match applies to the outer IP header and not the encapsulated IP header.

SUMMARY STEPS

1. `config t`
2. `class-map [type qos] [match-any | match-all] class-map-name`
3. `match [not] precedence precedence-values`
4. `exit`
5. `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>config t</code></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch# config t</td>
<td></td>
</tr>
<tr>
<td>switch(config)#</td>
<td></td>
</tr>
<tr>
<td>Step 2 `class-map [type qos] [match-any</td>
<td>match-all] class-map-name`</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch(config)# class-map</td>
<td></td>
</tr>
<tr>
<td>class_ip_precedence</td>
<td></td>
</tr>
<tr>
<td>Step 3 <code>match [not] precedence precedence-values</code></td>
<td>Configures the traffic class by matching packets based on precedence-values. Values are shown in Table 3-3. Use the not keyword to match on values that do not match the specified range.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch(config-cmap-qos)# match precedence 1-2, 5-7</td>
<td></td>
</tr>
<tr>
<td>Step 4 <code>exit</code></td>
<td>Exits class-map queuing mode and enters configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch(config-cmap-qos)# exit</td>
<td></td>
</tr>
<tr>
<td>switch(config)#</td>
<td></td>
</tr>
<tr>
<td>Step 5 <code>copy running-config startup-config</code></td>
<td>(Optional) Saves the running configuration to the startup configuration.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch(config)# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

Use the `show class-map` command to display the IP precedence class-map configuration:
Configuring Protocol Classification

For Layer 3 protocol traffic, you can use the ACL classification match (see “Configuring ACL Classification” section on page 3-3).

You can classify traffic based on the protocol arguments described in Table 3-4.

Table 3-4 match Command Protocol Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>arp</td>
<td>Address Resolution Protocol (ARP)</td>
</tr>
<tr>
<td>bridging</td>
<td>Bridging</td>
</tr>
<tr>
<td>cdp</td>
<td>Cisco Discovery Protocol (CDP)</td>
</tr>
<tr>
<td>clns</td>
<td>Connectionless Network Service (CLNS)</td>
</tr>
<tr>
<td>clns_es</td>
<td>CLNS End Systems</td>
</tr>
<tr>
<td>clns_is</td>
<td>CLNS Intermediate System</td>
</tr>
<tr>
<td>dhcp</td>
<td>Dynamic Host Configuration (DHCP)</td>
</tr>
<tr>
<td>isis</td>
<td>Intermediate system to intermediate system (IS-IS)</td>
</tr>
<tr>
<td>ldp</td>
<td>Label Distribution Protocol (LDP)</td>
</tr>
<tr>
<td>netbios</td>
<td>NetBIOS Extended User Interface (NetBEUI)</td>
</tr>
</tbody>
</table>

Note

A maximum of eight different protocols (in Table 3-4) can be matched at one time.

SUMMARY STEPS

1. config t
2. class-map [type qos] [match-any | match-all] class-map-name
3. match [not] protocol {arp | bridging | clns | clns_is | dhcp | isis | netbios | cdp | clns_es | ldp}
4. exit
5. copy running-config startup-config
Chapter 3 Configuring Classification

Configuring Traffic Classes

Send document comments to nexus7k-docfeedback@cisco.com.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>config t</td>
</tr>
</tbody>
</table>
| Example: | switch# config t
switch(config)# |
| **Step 2** | **class-map [type qos] [match-any | match-all] class-map-name** | | | | | | | | |
| Example: | switch(config)# class-map class_protocol |
| **Step 3** | **match [not] protocol {arp | bridging | cdp | clns | clns_is | dhcp | isis | netbios | clns_es | ldp}** |
| | switch(config-cmap-qos)# match protocol isis |
| **Step 4** | **exit** |
| Example: | switch(config-cmap-qos)# exit
switch(config)# |
| **Step 5** | **copy running-config startup-config** |
| Example: | switch(config)# copy running-config startup-config |

Use the **show class-map** command to display the protocol class-map configuration:

`switch# show class-map class_protocol`

Configuring QoS Group Classification

You can classify traffic based on the value of the QoS group internal label, which is not part of the packet payload or any packet header. You can set the value of the QoS group within a policy map using the **set qos-group** command as described in the “Configuring QoS Group Marking” section on page 4-8.

Note

You match on the QoS group only in egress policies because its value is undefined until you set it in an ingress policy.

SUMMARY STEPS

1. **config t**
2. **class-map [type qos] [match-any | match-all] class-map-name**
3. **match [not] qos-group multi-range-qos-group-values**
4. **exit**
5. **copy running-config startup-config**
Configuring Traffic Classes

Send document comments to nexus7k-docfeedback@cisco.com.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Command</td>
</tr>
<tr>
<td>config t</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>switch# config t</td>
</tr>
<tr>
<td></td>
<td>switch(config)#</td>
</tr>
<tr>
<td>Step 2</td>
<td>Command</td>
</tr>
<tr>
<td>class-map [type qos] [match-any</td>
<td>Creates or accesses the class map named</td>
</tr>
<tr>
<td>match-all] class-map-name</td>
<td>class-map-name, and then enters class-map mode. The</td>
</tr>
<tr>
<td>Example:</td>
<td>class-map name can contain alphabetic, hyphen, or</td>
</tr>
<tr>
<td></td>
<td>underscore characters, is case sensitive, and can be up</td>
</tr>
<tr>
<td></td>
<td>to 40 characters.</td>
</tr>
<tr>
<td>switch(config)# class-map</td>
<td>class_qos_group</td>
</tr>
<tr>
<td>Step 3</td>
<td>Command</td>
</tr>
<tr>
<td>match [not] qos-group</td>
<td>Configures the traffic class by matching packets based</td>
</tr>
<tr>
<td>multi-range-qos-group-values</td>
<td>on a list of QoS group values. Values can range from 0</td>
</tr>
<tr>
<td>Example:</td>
<td>to 126. The default QoS group value is 0. Use the not</td>
</tr>
<tr>
<td></td>
<td>keyword to match on values that do not match the</td>
</tr>
<tr>
<td>switch(config-cmap-qos)# match qos-group</td>
<td>specified range.</td>
</tr>
<tr>
<td>4, 80-90</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Command</td>
</tr>
<tr>
<td>exit</td>
<td>Exits class-map queuing mode and enters</td>
</tr>
<tr>
<td>Example:</td>
<td>configuration mode.</td>
</tr>
<tr>
<td></td>
<td>switch(config-cmap-qos)# exit</td>
</tr>
<tr>
<td></td>
<td>switch(config)#</td>
</tr>
<tr>
<td>Step 5</td>
<td>Command</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Saves the running configuration to the</td>
</tr>
<tr>
<td>Example:</td>
<td>startup configuration.</td>
</tr>
<tr>
<td>switch(config)# copy running-config</td>
<td>startup-config</td>
</tr>
</tbody>
</table>

Use the `show class-map` command to display the QoS group class-map configuration:

```
switch# show class-map class_qos_group
```

Configuring Discard Class Classification

You can classify traffic based on the value of the discard class internal label, which is not part of the packet payload or any packet header. You can set the value of the discard class within a policy map using the `set discard-class` command as described in the “Configuring Discard Class Marking” section on page 4-9.

Note

You match on the discard class only in egress policies because its value is undefined until you set it in an ingress policy.

SUMMARY STEPS

1. config t
2. class-map [type qos] [match-any | match-all] class-map-name
3. match [not] discard-class multi-range-discard-class-values
Configuring Traffic Classes

[Send document comments to nexus7k-docfeedback@cisco.com.]

4. `exit`
5. `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>config t</code></td>
</tr>
</tbody>
</table>
| **Example:** | `switch# config t`
| | `switch(config)#` |
| **Step 2** | `class-map [type qos] [match-any | match-all] class-map-name` |
| **Example:** | `switch(config)# class-map class_discard_class`
| **Note:** | This feature is designed for IP packets only. |
| **Step 3** | `match [not] discard-class multi-range-discard-class-values` |
| **Example:** | `switch(config-cmap-qos)# match discard-class 4, 60-62`
| **Step 4** | `exit` |
| **Example:** | `switch(config-cmap-qos)# exit`
| | `switch(config)#` |
| **Step 5** | `copy running-config startup-config` |
| **Example:** | `switch(config)# copy running-config startup-config`
| **(Optional)** | Saves the running configuration to the startup configuration. |

Use the `show class-map` command to display the discard class class-map configuration:

```
switch# show class-map class_discard_class
```

Configuring Layer 3 Packet Length Classification

You can classify Layer 3 traffic based on various packet lengths.

Note

This feature is designed for IP packets only.

SUMMARY STEPS

1. `config t`
2. `class-map [type qos] [match-any | match-all] class-map-name`
3. `match [not] packet length min packet-length-list`
4. `exit`
Configuring CoS Classification

You can classify traffic based on Class of Service (CoS) in the IEEE 802.1Q header. This 3-bit field is defined in IEEE 802.1p to support QoS traffic classes. CoS is encoded in the high order 3 bits of the VLAN ID Tag field and is referred to as user_priority.

SUMMARY STEPS

1. `config t`
2. `class-map [type qos] [match-any | match-all] class-map-name`
3. `match [not] cos cos-list`
4. `exit`
5. `copy running-config startup-config`

Configuring Traffic Classes

5. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>config t</td>
</tr>
<tr>
<td>Example:</td>
<td>switch# config t switch(config)#</td>
</tr>
<tr>
<td>Step 2</td>
<td>class-map [type qos] [match-any</td>
</tr>
<tr>
<td>Example:</td>
<td>switch(config)# class-map class_packet_length</td>
</tr>
<tr>
<td>Step 3</td>
<td>match [not] packet length packet-length-list</td>
</tr>
<tr>
<td>Example:</td>
<td>switch(config-cmap-qos)# match packet length 2000</td>
</tr>
<tr>
<td>Step 4</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td>switch(config-cmap-qos)# exit switch(config)#</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td>Example:</td>
<td>switch(config)# copy running-config startup-config</td>
</tr>
</tbody>
</table>

Use the `show class-map` command to display the packet length class-map configuration:

`switch# show class-map class_packet_length`
Send document comments to nexus7k-docfeedback@cisco.com.

Chapter 3 Configuring Classification

Configuring Traffic Classes

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>config t</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>switch# config t</td>
</tr>
<tr>
<td></td>
<td></td>
<td>switch(config)#</td>
</tr>
<tr>
<td>2</td>
<td>class-map [type qos] [match-any</td>
<td>match-all] class-map-name</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Example: switch(config)# class-map class_cos</td>
</tr>
<tr>
<td>3</td>
<td>match [not] cos cos-list</td>
<td>Configures the traffic class by matching packets based on list of CoS values. Values can range from 0 to 7. Use the not keyword to match on values that do not match the specified range.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Example: switch(config-cmap-qos)# match cos 4, 5-6</td>
</tr>
<tr>
<td>4</td>
<td>exit</td>
<td>Exits class-map queuing mode and enters configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>switch(config-cmap-qos)# exit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>switch(config)#</td>
</tr>
<tr>
<td>5</td>
<td>copy running-config startup-config</td>
<td>(Optional) Saves the running configuration to the startup configuration.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>switch(config)# copy running-config startup-config</td>
</tr>
</tbody>
</table>

Use the **show class-map** command to display the CoS class-map configuration:

```
switch# show class-map class_cos
```

Configuring IP RTP Classification

IP Real-time Transport Protocol (RTP) is a transport protocol for real-time applications that transmits data such as audio or video and is defined by RFC 3550. Although RTP does not use a common TCP or UDP port, you typically configure RTP to use ports 16384 to 32767. UDP communications uses an even port and the next higher odd port is used for RTP Control Protocol (RTCP) communications.

You can configure classification based on UDP port ranges, which are likely to target applications using RTP.

SUMMARY STEPS

1. config t
2. class-map [type qos] [match-any | match-all] class-map-name
3. match [not] ip rtp udp-port-values
4. exit
5. copy running-config startup-config
Configuring Class Map Classification

You can classify traffic based on the match criteria in another class map. You can reference the same class map in multiple policies.

- The referenced class map must be created prior to its reference.
- You can configure only one level of nesting of class maps. You cannot reference a class map that references another class map.

Use the following guidelines to configure class-map classification:

- To perform a logical OR with the class map specified in the `match class-map` command, use the `match-any` keyword. The `match-any` or `match-all` specification of the matched class map is ignored.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>config t</td>
</tr>
</tbody>
</table>
| Example: | switch# config t
| | switch(config)# | | | |
| **Step 2** | class-map [type qos] | match-any | match-all | class-map-name |
| Example: | switch(config)# class-map class_rtp |
| **Step 3** | match [not] ip rtp udp-port-value |
| Example: | switch(config-cmap-qos)# match ip rtp 2000-2100, 4000-4100 |
| **Step 4** | exit |
| Example: | switch(config-cmap-qos)# exit
| | switch(config)# |
| **Step 5** | copy running-config startup-config |
| Example: | switch(config)# copy running-config startup-config |

Use the `show class-map` command to display the rtp class-map configuration:

`switch# show class-map class_rtp`
To perform a logical AND with the class map specified in the `match class-map` command, use the `match-all` keyword. The `match-any` or `match-all` specification of the matched class map is ignored.

Before you delete a referenced class map, you should delete all references to that class map.

SUMMARY STEPS

1. `config t`
2. `class-map [type qos] [match-any | match-all] class-map-name`
3. `match [not] class-map class-map-name`
4. `exit`
5. `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>config t</code></td>
</tr>
</tbody>
</table>
| **Example:** | switch# config t
switch(config)# | |
| **Step 2** | `class-map [type qos] [match-any | match-all] class-map-name` | Creates or accesses the class map named `class-map-name`, and then enters class-map mode. The class-map name can contain alphabetic, hyphen, or underscore characters, is case sensitive, and can be up to 40 characters. |
| **Example:** | switch(config)# class-map
class_class_map | |
| **Step 3** | `match [not] class-map class-map-name` | Configures the traffic class by matching packets based on match criteria in another class map. Because match-all is the default for the `class-map` command, match criteria specified in class_map3 are ANDed with match criteria in class_class_map. Use the `not` keyword to match on values that do not match the specified range. |
| **Example:** | switch(config-cmap-qos)# match class-map
class_map3 | |
| **Step 4** | `exit` | Exits class-map queuing mode and enters configuration mode. |
| **Example:** | switch(config-cmap-qos)# exit
switch(config)# | |
| **Step 5** | `copy running-config startup-config` | (Optional) Saves the running configuration to the startup configuration. |
| **Example:** | switch(config)# copy running-config
startup-config | |

Use the `show class-map` command to display the class-map class-map configuration:

`switch# show class-map class_class_map`
Verifying Classification Configuration

Use the `show class-map` command to verify the class-map configuration. This command displays all class maps.

```
switch# show class-map
...
```

Example Configuration

The following example shows how to configure classification for two classes of traffic:

```plaintext
class-map class_dscp
    match dscp af21, af32
exit
class-map class_cos
    match cos 4, 5-6
exit
```

Feature History for Classification

Table 3-5 lists the release history for this feature.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>You can match IPv4 and IPv6 ACLs.</td>
<td>4.1(2)</td>
<td>-</td>
</tr>
<tr>
<td>No change</td>
<td>4.2(1)</td>
<td>-</td>
</tr>
</tbody>
</table>
Configuring Marking

This chapter describes how to configure the marking features that you can use to define the class of traffic to which the packet belongs to.

This chapter includes the following sections:
- Information About Marking, page 4-1
- Licensing Requirements for Marking, page 4-2
- Prerequisites for Marking, page 4-2
- Guidelines and Limitations, page 4-2
- Configuring Marking, page 4-3
- Verifying the Marking Configuration, page 4-15
- Example Configuration, page 4-15
- Feature History for Marking, page 4-15

Information About Marking

Marking is a method that you use to modify the QoS fields of the incoming and outgoing packets. The QoS fields that you can mark are CoS in Layer 2, and IP precedence and DSCP in Layer 3. QoS group and discard class are two labels local to the system that you can assign intermediate marking values, which you can then use to determine the final values marked in a packet.

You can use marking commands in traffic classes that are referenced in a policy map. The marking features that you can configure are listed in Table 4-1.

<table>
<thead>
<tr>
<th>Marking Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSCP</td>
<td>Layer 3 Differentiated Service Code Point (DSCP). If you manipulate this dscp value, you cannot manipulate discard class values, and vice-versa.</td>
</tr>
<tr>
<td>IP precedence</td>
<td>Layer 3 IP precedence. IP precedence uses only the lower 3 bits of the Type of Service (TOS) field. The device overwrites the first 3 bits of the TOS field to 0.</td>
</tr>
</tbody>
</table>
Licensing Requirements for Marking

The following table shows the licensing requirements for this feature:

<table>
<thead>
<tr>
<th>Product</th>
<th>License Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX-OS</td>
<td>QoS requires no license. Any feature not included in a license package is bundled with the Cisco NX-OS system images and is provided at no extra charge to you. For a complete explanation of the NX-OS licensing scheme, see the Cisco Nexus 7000 Series NX-OS Licensing Guide, Release 4.2.</td>
</tr>
</tbody>
</table>

However, using VDCs requires an Advanced Services license.

Prerequisites for Marking

Marking has the following prerequisites:

- You must be familiar with Chapter 2, “Using Modular QoS CLI.”
- You are logged on to the switch.
- You are in the correct virtual device context (VDC). A VDC is a logical representation of a set of system resources. You can use the `switchto vdc` command with a VDC number.

Guidelines and Limitations

Use the following guidelines to configure marking:

- The `set cos` command is applicable only to 802.1Q interfaces, and you can only use it in egress policies.
You can only use the `set qos-group` command in ingress policies.

You can only use the `set discard-class` command in ingress policies.

When the protocol independent multicast (PIM) is enabled on the switch virtual interface (SVI), you cannot mark the Layer-2 switched multicast traffic on that VLAN.

Configuring Marking

You can combine one or more of the marking features in a policy map to control the setting of QoS values. You can then apply policies to either incoming or outgoing packets on an interface.

This section includes the following topics:

- Configuring DSCP Marking, page 4-3
- Configuring IP Precedence Marking, page 4-5
- Configuring CoS Marking, page 4-7
- Configuring QoS Group Marking, page 4-8
- Configuring Discard Class Marking, page 4-9
- Configuring Ingress and Egress Marking, page 4-10
- Configuring DSCP Port Marking, page 4-10
- Configuring Table Maps for Use in Marking, page 4-12
- Configuring Marking Using Table Maps, page 4-13

Note

Do not press Enter after you use the `set` command and before you add the rest of the command. If you press Enter directly after entering the `set` keyword, you will be unable to continue to configure with the QoS configuration.

Configuring DSCP Marking

Note

If you configure this value, you cannot configure the discard-class value (see the “Configuring Discard Class Marking” section on page 4-9).

You can set the DSCP value in the six most significant bits of the DiffServ field of the IP header to a specified value. You can enter numeric values from 0 to 60, as well as the standard DSCP values shown in Table 4-2.

<table>
<thead>
<tr>
<th>Value</th>
<th>List of DSCP Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>af11</td>
<td>AF11 dscp (001010)—decimal value 10</td>
</tr>
<tr>
<td>af12</td>
<td>AF12 dscp (001100)—decimal value 12</td>
</tr>
<tr>
<td>af13</td>
<td>AF13 dscp (001110)—decimal value 14</td>
</tr>
<tr>
<td>af21</td>
<td>AF21 dscp (010010)—decimal value 18</td>
</tr>
</tbody>
</table>
Chapter 4 Configuring Marking

Configuring Marking

For more information about DSCP, see RFC 2475.

<table>
<thead>
<tr>
<th>Value</th>
<th>List of DSCP Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>af22</td>
<td>AF22 dscp (010100)—decimal value 20</td>
</tr>
<tr>
<td>af23</td>
<td>AF23 dscp (010110)—decimal value 22</td>
</tr>
<tr>
<td>af31</td>
<td>AF31 dscp (011010)—decimal value 26</td>
</tr>
<tr>
<td>af32</td>
<td>AF40 dscp (011100)—decimal value 28</td>
</tr>
<tr>
<td>af33</td>
<td>AF33 dscp (011110)—decimal value 30</td>
</tr>
<tr>
<td>af41</td>
<td>AF41 dscp (100010)—decimal value 34</td>
</tr>
<tr>
<td>af42</td>
<td>AF42 dscp (100100)—decimal value 36</td>
</tr>
<tr>
<td>af43</td>
<td>AF43 dscp (100110)—decimal value 38</td>
</tr>
<tr>
<td>cs1</td>
<td>CS1 (precedence 1) dscp (001000)—decimal value 8</td>
</tr>
<tr>
<td>cs2</td>
<td>CS2 (precedence 2) dscp (010000)—decimal value 16</td>
</tr>
<tr>
<td>cs3</td>
<td>CS3 (precedence 3) dscp (011000)—decimal value 24</td>
</tr>
<tr>
<td>cs4</td>
<td>CS4 (precedence 4) dscp (100000)—decimal value 32</td>
</tr>
<tr>
<td>cs5</td>
<td>CS5 (precedence 5) dscp (101000)—decimal value 40</td>
</tr>
<tr>
<td>cs6</td>
<td>CS6 (precedence 6) dscp (110000)—decimal value 48</td>
</tr>
<tr>
<td>cs7</td>
<td>CS7 (precedence 7) dscp (111000)—decimal value 56</td>
</tr>
<tr>
<td>default</td>
<td>Default dscp (000000)—decimal value 0</td>
</tr>
<tr>
<td>ef</td>
<td>EF dscp (101110)—decimal value 46</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Value</th>
<th>List of DSCP Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>af22</td>
<td>AF22 dscp (010100)—decimal value 20</td>
</tr>
<tr>
<td>af23</td>
<td>AF23 dscp (010110)—decimal value 22</td>
</tr>
<tr>
<td>af31</td>
<td>AF31 dscp (011010)—decimal value 26</td>
</tr>
<tr>
<td>af32</td>
<td>AF40 dscp (011100)—decimal value 28</td>
</tr>
<tr>
<td>af33</td>
<td>AF33 dscp (011110)—decimal value 30</td>
</tr>
<tr>
<td>af41</td>
<td>AF41 dscp (100010)—decimal value 34</td>
</tr>
<tr>
<td>af42</td>
<td>AF42 dscp (100100)—decimal value 36</td>
</tr>
<tr>
<td>af43</td>
<td>AF43 dscp (100110)—decimal value 38</td>
</tr>
<tr>
<td>cs1</td>
<td>CS1 (precedence 1) dscp (001000)—decimal value 8</td>
</tr>
<tr>
<td>cs2</td>
<td>CS2 (precedence 2) dscp (010000)—decimal value 16</td>
</tr>
<tr>
<td>cs3</td>
<td>CS3 (precedence 3) dscp (011000)—decimal value 24</td>
</tr>
<tr>
<td>cs4</td>
<td>CS4 (precedence 4) dscp (100000)—decimal value 32</td>
</tr>
<tr>
<td>cs5</td>
<td>CS5 (precedence 5) dscp (101000)—decimal value 40</td>
</tr>
<tr>
<td>cs6</td>
<td>CS6 (precedence 6) dscp (110000)—decimal value 48</td>
</tr>
<tr>
<td>cs7</td>
<td>CS7 (precedence 7) dscp (111000)—decimal value 56</td>
</tr>
<tr>
<td>default</td>
<td>Default dscp (000000)—decimal value 0</td>
</tr>
<tr>
<td>ef</td>
<td>EF dscp (101110)—decimal value 46</td>
</tr>
</tbody>
</table>

For more information about DSCP, see RFC 2475.

SUMMARY STEPS

1. `config t`
2. `policy-map [type qos] [match-first] {qos-policy-map-name | qos-dynamic}`
3. `class [type qos] {class-map-name | qos-dynamic | class-default} [insert-before before-class-map-name]`
4. `set dscp dscp-value`
Configuring Marking

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1
 config t</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Example:
 switch# config t
 switch(config)#</td>
<td></td>
</tr>
<tr>
<td>Step 2
 policy-map [type qos] [match-first] [policy-map-name</td>
<td>qos-dynamic]</td>
</tr>
<tr>
<td>Example:
 switch(config)# policy-map policy1
 switch(config-pmap-qos)#</td>
<td></td>
</tr>
<tr>
<td>Step 3
 class [type qos] [class-map-name</td>
<td>qos-dynamic</td>
</tr>
<tr>
<td>Example:
 switch(config-pmap)# class class1
 switch(config-pmap-c-qos)#</td>
<td></td>
</tr>
<tr>
<td>Step 4
 set dscp dscp-value</td>
<td>Sets the DSCP value to dscp-value. Standard values are shown in Table 4-2.</td>
</tr>
<tr>
<td>Example:
 switch(config-pmap-c-qos)# set dscp af31
 switch(config-pmap-c-qos)#</td>
<td></td>
</tr>
</tbody>
</table>

Use the *show policy-map* command to display the policy-map configuration:

```
switch# show policy-map policy1
```  

Configuring IP Precedence Marking

You can set the value of the IP precedence field in bits 0–2 of the IPv4 Type of Service (ToS) field of the IP header.

Note
The device rewrites the last 3 bits of the ToS field to 0 for packets that match this class.

Table 4-3 shows the precedence values.

<table>
<thead>
<tr>
<th>Table 4-3</th>
<th>Precedence Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>List of Precedence Values</td>
</tr>
<tr>
<td><0-7></td>
<td>IP precedence value</td>
</tr>
<tr>
<td>critical</td>
<td>Critical precedence (5)</td>
</tr>
<tr>
<td>flash</td>
<td>Flash precedence (3)</td>
</tr>
</tbody>
</table>
Send document comments to nexus7k-docfeedback@cisco.com.

Chapter 4 Configuring Marking

Table 4-3 Precedence Values (continued)

<table>
<thead>
<tr>
<th>Value</th>
<th>List of Precedence Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>flash-override</td>
<td>Flash override precedence (4)</td>
</tr>
<tr>
<td>immediate</td>
<td>Immediate precedence (2)</td>
</tr>
<tr>
<td>internet</td>
<td>Internetwork control precedence (6)</td>
</tr>
<tr>
<td>network</td>
<td>Network control precedence (7)</td>
</tr>
<tr>
<td>priority</td>
<td>Priority precedence (1)</td>
</tr>
<tr>
<td>routine</td>
<td>Routine precedence (0)</td>
</tr>
</tbody>
</table>

SUMMARY STEPS

1. `config t`
2. `policy-map [type qos] [match-first] {qos-policy-map-name | qos-dynamic}`
3. `class [type qos] {class-map-name | qos-dynamic | class-default} [insert-before before-class-map-name]`
4. `set precedence precedence-value`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>config t</code></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td><code>Example:</code> switch# config t</td>
<td></td>
</tr>
<tr>
<td>switch(config)#</td>
<td></td>
</tr>
<tr>
<td>Step 2 `policy-map [type qos] [match-first] {policy-map-name</td>
<td>qos-dynamic}`</td>
</tr>
<tr>
<td><code>Example:</code> switch(config)#</td>
<td></td>
</tr>
<tr>
<td>policy-map policy1</td>
<td></td>
</tr>
<tr>
<td>switch(config-pmap-qos)#</td>
<td></td>
</tr>
<tr>
<td>Step 3 `class [type qos] {class-map-name</td>
<td>qos-dynamic</td>
</tr>
<tr>
<td><code>Example:</code> switch(config-pmap-qos)# class class1</td>
<td></td>
</tr>
<tr>
<td>switch(config-pmap-c-qos)#</td>
<td></td>
</tr>
<tr>
<td>Step 4 <code>set precedence precedence-value</code></td>
<td>Sets the IP precedence value to <code>precedence-value</code>. The value can range from 0 to 7. You can enter one of the values shown in Table 4-3.</td>
</tr>
<tr>
<td><code>Example:</code> switch(config-pmap-c-qos)# set precedence 3</td>
<td></td>
</tr>
<tr>
<td>switch(config-pmap-c-qos)#</td>
<td></td>
</tr>
</tbody>
</table>

Use the `show policy-map` command to display the policy-map configuration:

`switch# show policy-map policy1`
Configuring CoS Marking

You can set the value of the CoS field in the high-order three bits of the VLAN ID Tag field in the IEEE 802.1Q header.

Note
You can set CoS only in egress policies.

SUMMARY STEPS

1. config t
2. policy-map [type qos] [match-first] {qos-policy-map-name | qos-dynamic}
3. class [type qos] {class-map-name | qos-dynamic | class-default | [insert-before before-class-map-name]}
4. set cos cos-value

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>config t</td>
</tr>
<tr>
<td>Example:</td>
<td>switch# config t</td>
</tr>
<tr>
<td></td>
<td>switch(config)#</td>
</tr>
<tr>
<td>Step 2</td>
<td>policy-map [type qos] [match-first] {qos-policy-map-name</td>
</tr>
<tr>
<td>Example:</td>
<td>switch(config)# policy-map policy1</td>
</tr>
<tr>
<td></td>
<td>switch(config-pmap-qos)#</td>
</tr>
<tr>
<td>Step 3</td>
<td>class [type qos] {class-map-name</td>
</tr>
<tr>
<td>Example:</td>
<td>switch(config-pmap-qos)# class class1</td>
</tr>
<tr>
<td></td>
<td>switch(config-pmap-c-qos)#</td>
</tr>
<tr>
<td>Step 4</td>
<td>set cos cos-value</td>
</tr>
<tr>
<td>Example:</td>
<td>switch(config-pmap-c-qos)# set cos 3</td>
</tr>
<tr>
<td></td>
<td>switch(config-pmap-c-qos)#</td>
</tr>
</tbody>
</table>

Use the `show policy-map` command to display the policy-map configuration:

switch# show policy-map policy1
Configuring QoS Group Marking

You can set the value of the internal label QoS group, which is only locally significant. You can reference this value in subsequent policy actions or classify traffic that is referenced in egress policies by using the `match qos-group` class-map command.

Note

You can set QoS group only in ingress policies.

SUMMARY STEPS

1. `config t`
2. `policy-map [type qos] [match-first] {qos-policy-map-name | qos-dynamic}`
3. `class [type qos] {class-map-name | qos-dynamic | class-default} [insert-before before-class-map-name]`
4. `set qos-group qos-group-value`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 config t</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Example: switch# config t switch(config)#</td>
<td></td>
</tr>
<tr>
<td>Step 2 policy-map [type qos] [match-first] {qos-policy-map-name</td>
<td>qos-dynamic}</td>
</tr>
<tr>
<td>Example: switch(config)# policy-map policy1 switch(config-pmap-qos)#</td>
<td></td>
</tr>
<tr>
<td>Step 3 class [type qos] {class-map-name</td>
<td>qos-dynamic</td>
</tr>
<tr>
<td>Example: switch(config-pmap-qos)# class class1 switch(config-pmap-c-qos)#</td>
<td></td>
</tr>
<tr>
<td>Step 4 set qos-group qos-group-value</td>
<td>Sets the QoS group value to <code>qos-group-value</code>. The value can range from 0 to 126.</td>
</tr>
<tr>
<td>Example: switch(config-pmap-c-qos)# set qos-group 100 switch(config-pmap-c-qos)#</td>
<td></td>
</tr>
</tbody>
</table>

Use the `show policy-map` command to display the policy-map configuration:

switch# show policy-map policy1
Configuring Discard Class Marking

Note
If you configure this value, you cannot configure the DSCP value (see the “Configuring DSCP Marking” section on page 4-3).

You can set the value of the internal label discard class, which is locally significant only. You can reference this value in subsequent policy actions or classify traffic that is referenced in egress policies by using the **match discard-class** class-map command.

Note
You can set the discard class only in ingress policies.

SUMMARY STEPS

1. `config t`
2. `policy-map [type qos] [match-first] {qos-policy-map-name | qos-dynamic}`
3. `class [type qos] {class-map-name | qos-dynamic | class-default} [insert-before before-class-map-name]`
4. `set discard-class discard-class-value`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>config t</td>
</tr>
<tr>
<td>Example: switch# config t switch(config)#</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>policy-map [type qos] [match-first] {qos-policy-map-name</td>
</tr>
<tr>
<td>Example: switch(config)# policy-map policy1 switch(config-pmap-qos)#</td>
<td>Creates or accesses the policy map named policy-map-name, and then enters policy-map mode. The policy-map name can contain alphabetic, hyphen, or underscore characters, is case sensitive, and can be up to 40 characters.</td>
</tr>
<tr>
<td>Step 3</td>
<td>class [type qos] {class-map-name</td>
</tr>
<tr>
<td>Example: switch(config-pmap-qos)# class class1 switch(config-pmap-c-qos)#</td>
<td>Creates a reference to class-map-name, and enters policy-class configuration mode. The class is added to the end of the policy map unless insert-before is used to specify the class to insert before. Specify class-default to select all traffic not currently matched by classes in the policy map.</td>
</tr>
<tr>
<td>Step 4</td>
<td>set discard-class discard-class-value</td>
</tr>
<tr>
<td>Example: switch(config-pmap-c-qos)# set discard-class 40 switch(config-pmap-c-qos)#</td>
<td>Sets the discard class value to discard-class-value. The value can range from 0 to 63.</td>
</tr>
</tbody>
</table>

Use the **show policy-map** command to display the policy-map configuration:

Send document comments to nexus7k-docfeedback@cisco.com.
Configuring Ingress and Egress Marking

You can apply the marking instructions in a QoS policy map to ingress or egress packets by attaching that QoS policy map to an interface. To select ingress or egress, you specify either the `input` or `output` keyword in the `service-policy` command. For detailed instructions, see the “Attaching and Detaching a QoS Policy Action from an Interface” section on page 2-17.

Note
Egress marking on a VLAN might cause error because the mapping table is not supported.

Configuring DSCP Port Marking

You can set the DSCP value for each class of traffic defined in a specified ingress policy map.

The default behavior of the device is to preserve the DSCP value, or to trust DSCP. To make the port untrusted, change the DSCP value. Unless you configure a QoS policy and attach that policy to specified interfaces, the DSCP value is preserved.

Note
- You can attach only one policy type qos map to each interface in each direction.
- The DSCP value is trust on the Layer 3 port of a Cisco Nexus 7000 Series NX-OS device.
- If the default policy-map policy is used, DSCP maps to a relevant CoS value and the queuing works correctly.
- If a customer policy is used, you must manually set the DSCP value to map to a CoS value so that the traffic is queued to the correct queue.

SUMMARY STEPS

1. `config t`
2. `policy-map [type qos] [match-first] [qos-policy-map-name | qos-dynamic]`
3. `class [type qos] [class-map-name | qos-dynamic | class-default] [insert-before before-class-map-name]`
4. `set dscp-value`
5. `exit`
6. `class [type qos] [class-map-name | qos-dynamic | class-default] [insert-before before-class-map-name]`
7. `set dscp-value`
8. `exit`
9. `class [type qos] [class-map-name | qos-dynamic | class-default] [insert-before before-class-map-name]`
10. `set dscp-value`
11. `exit`
Send document comments to nexus7k-docfeedback@cisco.com.

12. `exit`

13. `{[interface ethernet slot/port] | vlan-id]}

14. `service-policy [type qos] [input | output] {policy-map-name | qos-dynamic} [no-stats]`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>config t</code></td>
</tr>
<tr>
<td>Purpose</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>switch# config t</code> \n<code>switch(config)#</code></td>
</tr>
<tr>
<td>Step 2</td>
<td>`policy-map [type qos] [match-first] [policy-map-name</td>
</tr>
<tr>
<td>Purpose</td>
<td>Creates or accesses the policy map named <code>policy-map-name</code> and then enters policy-map mode. The policy-map name can contain alphabetic, hyphen, or underscore characters, is case sensitive, and can be up to 40 characters.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>switch(config)# policy-map policy1</code> \n<code>switch(config-pmap-qos)#</code></td>
</tr>
<tr>
<td>Step 3</td>
<td>`class [type qos] {class-map-name</td>
</tr>
<tr>
<td>Purpose</td>
<td>Creates a reference to <code>class-map-name</code> and enters policy-map class configuration mode. The class is added to the end of the policy map unless <code>insert-before</code> is used to specify the class to insert before. Specify <code>class-default</code> to select all traffic not currently matched by classes in the policy map so far.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>switch(config-pmap)# class class1</code> \n<code>switch(config-pmap-c-qos)#</code></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>set dscp-value</code></td>
</tr>
<tr>
<td>Purpose</td>
<td>Sets the DSCP value to <code>dscp-value</code>. Valid values are shown in Table 4-2.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>switch(config-pmap-c-qos)# set dscp af31</code> \n<code>switch(config-pmap-c-qos)#</code></td>
</tr>
<tr>
<td>Step 5</td>
<td><code>exit</code></td>
</tr>
<tr>
<td>Purpose</td>
<td>Returns to policy-map configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>switch(config-pmap-c-qos)# exit</code> \n<code>switch(config-pmap-qos)#</code></td>
</tr>
<tr>
<td>Step 6</td>
<td>`class [type qos] {class-map-name</td>
</tr>
<tr>
<td>Purpose</td>
<td>Creates a reference to <code>class-map-name</code>, and enters policy-map class configuration mode. The class is added to the end of the policy map unless <code>insert-before</code> is used to specify the class to insert before. Specify <code>class-default</code> to select all traffic not currently matched by classes in the policy map.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>switch(config-pmap-qos)# class class2</code> \n<code>switch(config-pmap-c-qos)#</code></td>
</tr>
<tr>
<td>Step 7</td>
<td><code>set dscp-value</code></td>
</tr>
<tr>
<td>Purpose</td>
<td>Sets the DSCP value to <code>dscp-value</code>. Valid values are shown in Table 4-2.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>switch(config-pmap-c-qos)# set dscp af13</code> \n<code>switch(config-pmap-c-qos)#</code></td>
</tr>
<tr>
<td>Step 8</td>
<td><code>exit</code></td>
</tr>
<tr>
<td>Purpose</td>
<td>Returns to policy-map configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>switch(config-pmap-c-qos)# exit</code> \n<code>switch(config-pmap-qos)#</code></td>
</tr>
</tbody>
</table>
Use the `show policy-map` command to display the policy-map configuration:

```
switch# show policy-map policy1
```

Configuring Table Maps for Use in Marking

You can use the system-defined table maps to define the mapping of values from one variable to another from a source QoS field to a destination QoS field (see Chapter 2, “Using Modular QoS CLI” for the list of system-defined table maps). The source and destination fields are determined by the context of the table map in the `set` and `police` commands. For information about table maps, see the “Configuring Marking Using Table Maps” section on page 4-13.
Configuring Marking

You can use the system-defined table maps to perform marking in the `set` and `police` policy map class commands.

Note
See Chapter 2, “Using Modular QoS CLI” for the list of system-defined table maps.

A source field and destination field are specified in the command that maps to the source and destination values supplied in the referenced table map. The QoS fields that can be used in these commands are listed in Table 4-4.

Table 4-4 QoS Table Map Fields

<table>
<thead>
<tr>
<th>QoS Table Map Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoS</td>
<td>Class of Service field in the 802.1Q header.</td>
</tr>
<tr>
<td>DSCP</td>
<td>Differentiated Services Code Point in the IP header.</td>
</tr>
<tr>
<td>IP precedence</td>
<td>Bits 0–2 of the IPv4 ToS field.</td>
</tr>
<tr>
<td>Discard class</td>
<td>Locally significant values that can be matched and manipulated within the system. The range is from 0 to 63.</td>
</tr>
</tbody>
</table>

Using the system-defined table maps, you cannot change unlike values, you can only change one value to another when it is the same variable. You can use the markdown system-defined table maps for the `exceed` or `violate` action of the `police` command by using the same syntax as the `set` command.

Note
- The internal label QoS group is not supported through table maps.
- Marking down in the `police` command requires the use of a table map.

For information on the `police` command, see Chapter 6, “Configuring Policing.”

SUMMARY STEPS

1. `config t`
2. `policy-map [type qos] [match-first] {qos-policy-map-name | qos-dynamic}`
Configuring Marking

3. class [type qos] [class-map-name | qos-dynamic | class-default] [insert-before before-class-map-name]

4. set [cos | dscp | discard-class | precedence | discard-class] [cos | dscp | discard-class | precedence | discard-class] table-map-name

5. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 config t</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch# config t</td>
<td></td>
</tr>
<tr>
<td>switch(config)#</td>
<td></td>
</tr>
<tr>
<td>Step 2 policy-map [type qos] [match-first] [policy-map-name</td>
<td>qos-dynamic]</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch(config)# policy-map policy1</td>
<td></td>
</tr>
<tr>
<td>switch(config-pmap-qos)#</td>
<td></td>
</tr>
<tr>
<td>Step 3 class [type qos] [class-map-name</td>
<td>qos-dynamic</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch(config-pmap-qos)# class class1</td>
<td></td>
</tr>
<tr>
<td>switch(config-pmap-c-qos)#</td>
<td></td>
</tr>
<tr>
<td>Step 4 set [cos</td>
<td>dscp</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch(config-pmap-c-qos)# set cos dscp</td>
<td></td>
</tr>
<tr>
<td>cos-dscp-map</td>
<td></td>
</tr>
<tr>
<td>switch(config-pmap-c-qos)#</td>
<td></td>
</tr>
<tr>
<td>Step 5 exit</td>
<td>Returns to policy-map configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch(config-pmap-c)# exit</td>
<td></td>
</tr>
<tr>
<td>switch(config-pmap-qos)#</td>
<td></td>
</tr>
</tbody>
</table>

Use the show policy-map and show table-map command to display the policy1 policy-map configuration:

switch# show policy-map policy
Verifying the Marking Configuration

Use the `show table-map` and `show policy-map` commands to verify the marking configuration. This command displays all table maps:

```
switch# show table-map
```

This command displays all policy maps:

```
switch# show policy-map
```

Example Configuration

The following example shows how to configure marking:

```
config t
    policy-map type qos untrust_dcsp
        class class-default
            set dscp 0
    policy-map type queuing untrust_1Gport_policy
        class type queuing 2q4t-in-q-default
            set cos 0
    policy-map type queuing untrust_10Gport_policy
        class type queuing 8q2t-in-q-default
            set cos 0
```

Feature History for Marking

Table 4-5 lists the release history for this feature.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>No change</td>
<td>4.1(2)</td>
<td>-</td>
</tr>
<tr>
<td>No change</td>
<td>4.2(1)</td>
<td>-</td>
</tr>
</tbody>
</table>
Send document comments to nexus7k-docfeedback@cisco.com.
Configuring Mutation Mapping

This chapter describes how to configure the mutation of packet values used to define traffic classes. This chapter includes the following sections:

- Information About Mutation Mapping, page 5-1
- Licensing Requirements for Mutation Mapping, page 5-2
- Prerequisites for Mutation Mapping, page 5-2
- Guidelines and Limitations, page 5-2
- Configuring Mutation Mapping, page 5-3
- Verifying the Mutation Mapping Configuration, page 5-5
- Example Configuration, page 5-5
- Feature History for Mutation, page 5-6

Information About Mutation Mapping

Mutation mapping is a method of modifying a QoS field in all packets on an interface. On ingress, mutation mapping occurs before traffic classification and all other actions. On egress, mutation mapping occurs after traffic classification and before the other actions. You can apply mutation mapping to packet fields CoS, DSCP, or IP precedence, or to the internal field discard class.

You cannot configure system-defined mutation maps. You can only configure those maps that modify the same source and destination variable.

You use a hierarchical policy map to configure mutation mapping. In the mutation mapping policy map you specify the field to mutate and the policy map to apply with the mutation.

Note

The device supports hierarchical policies only for mutation mapping.

Mutation Mapping in Sequence of Traffic Actions

The sequence of QoS actions on ingress traffic is as follows:

1. Queuing and scheduling
2. Mutation
3. Classification
4. Marking
5. Policing

The sequencing of QoS actions on egress traffic is as follows:
1. Classification
2. Marking
3. Policing
4. Mutation
5. Queuing and scheduling

Note

Mutation happens much closer to the beginning of the traffic actions on the ingress packets, and any further classification and policing is based on the changed QoS values. Mutation happens at the end of the traffic actions on the egress packets, right before queuing and scheduling.

Licensing Requirements for Mutation Mapping

The following table shows the licensing requirements for this feature:

<table>
<thead>
<tr>
<th>Product</th>
<th>License Requirement</th>
</tr>
</thead>
</table>
| NX-OS | QoS requires no license. Any feature not included in a license package is bundled with the Cisco NX-OS system images and is provided at no extra charge to you. For a complete explanation of the NX-OS licensing scheme, see the *Cisco Nexus 7000 Series NX-OS Licensing Guide, Release 4.2*.

However, using VDCs requires an Advanced Services license.

Prerequisites for Mutation Mapping

Mutation mapping has the following prerequisites:
- You must be familiar with Chapter 2, “Using Modular QoS CLI.”
- You are logged on to the switch.
- You are in the correct virtual device context (VDC). A VDC is a logical representation of a set of system resources. You can use the `switchto vdc` command with a VDC number.

Guidelines and Limitations

Use the following guidelines to configure mutation mapping:
- You use a hierarchical policy for mutation mapping. Hierarchical policies are not supported for any other use.
- The device supports only one level of hierarchy.
Configuring Mutation Mapping

To configure mutation mapping, you create a hierarchical policy map that uses the class-default traffic class to capture all packets and apply mutation mapping to them. You use the service-policy command to specify the policy map to apply with mutation mapping.

Note

You can set only similar values when you create a mutation map. For example, you can set cos-cos or dscp-dscp; you cannot set cos-dscp or dscp-precedence.

To configure mutation mapping, follow these steps:

Step 1 Create the policy map to apply in the mutation mapping hierarchical policy. For information about configuring policy maps, see Chapter 6, “Configuring Policing” or Chapter 7, “Configuring Queuing and Scheduling.”

Step 2 Create the table map to use in the mutation mapping hierarchical policy. For information about configuring table maps, see the “Configuring Marking Using Table Maps” section on page 4-13.

Step 3 Configure the mutation mapping hierarchical policy as described in this section.

Step 4 Apply the service policy to the interface. For information about attaching policies to interfaces, see Chapter 2, “Using Modular QoS CLI.”

SUMMARY STEPS

1. `config t`
2. `policy-map [type qos] [match-first] {qos-policy-map-name | qos-dynamic}`
3. `class class-default`
4. `set {cos | discard-class | dscp | precedence} {cos | discard-class | dscp | precedence} table table-map-name`
5. `service-policy [type qos] {policy-map-name | qos-dynamic} [no-stats]`
6. `show policy-map [type {qos | queuing}] {policy-map-name | qos-dynamic}`
7. `copy running-config startup-config`
Send document comments to nexus7k-docfeedback@cisco.com.

Chapter 5 - Configuring Mutation Mapping

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 config t</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>switch# config t</td>
</tr>
<tr>
<td></td>
<td>switch(config)#</td>
</tr>
<tr>
<td>Step 2 policy-map [type qos] [match-first] [policy-map-name</td>
<td>qos-dynamic]</td>
</tr>
<tr>
<td>Example:</td>
<td>switch(config)# policy-map policy1</td>
</tr>
<tr>
<td></td>
<td>switch(config-pmap-qos)#</td>
</tr>
<tr>
<td>Step 3 class class-default</td>
<td>Configures class-default to capture all traffic in this policy map.</td>
</tr>
<tr>
<td>Example:</td>
<td>switch(config-pmap-qos)# class class-default</td>
</tr>
<tr>
<td></td>
<td>switch(config-pmap-c-qos)#</td>
</tr>
<tr>
<td>Step 4 set {cos</td>
<td>discard-class</td>
</tr>
<tr>
<td>Example:</td>
<td>switch(config-pmap-c-qos)# set dscp dscp</td>
</tr>
<tr>
<td></td>
<td>table dscp_mutation</td>
</tr>
<tr>
<td></td>
<td>switch(config-pmap-c-qos)#</td>
</tr>
<tr>
<td>Step 5 service-policy [type qos] [policy-map-name</td>
<td>qos-dynamic] [no-stats]</td>
</tr>
<tr>
<td>Example:</td>
<td>switch(config-pmap-c-qos)# service-policy testpolicy</td>
</tr>
<tr>
<td></td>
<td>switch(config-pmap-c-qos)#</td>
</tr>
<tr>
<td>Step 6 show policy-map [type {qos</td>
<td>queuing}] [policy-map-name</td>
</tr>
<tr>
<td>Example:</td>
<td>switch(config-pmap-c-qos)# show policy-map policy1</td>
</tr>
<tr>
<td>Step 7 copy running-config startup-config</td>
<td>(Optional) Saves the running configuration to the startup configuration.</td>
</tr>
<tr>
<td>Example:</td>
<td>switch(config-pmap-c-qos)# copy running-config startup-config</td>
</tr>
</tbody>
</table>
Verifying the Mutation Mapping Configuration

To display the mutation mapping configuration information, perform one of the following tasks:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`show policy-map [type {qos</td>
<td>queuing}] [policy-map-name</td>
</tr>
</tbody>
</table>

For detailed information about the fields in the output from these commands, see the *Cisco Nexus 7000 Series NX-OS Quality of Service Command Reference, Release 4.2*.

Example Configuration

The following example shows a mutation configuration:

```plaintext
Note
If the child service policy (in this example, child_qos_policy) is not configured in the parent policy map (in this example, parent_policy_for_mutation), all packets will be changed according to the mutation map.

```

```plaintext
class-map type qos match-all dscp0-12
  match dscp 0-12
  match protocol dhcp

class-map type qos match-all dscp13-60
  match dscp 13-60

table-map mutate_dscp
  default copy
  from 0 to 0
  from 1 to 1
  from 2 to 1
  from 63 to 46

policy-map type qos child_policy
class dscp0-12
  police cir 10 mbps bc 200 ms pir 20 mbps be 200 ms conform transmit exceed set dscp dscp table mutate_dscp violate drop
class dscp13-63
  police cir 20 mbps bc 200 ms pir 40 mbps be 200 ms conform transmit exceed set dscp dscp table mutate_dscp violate drop
class class-default
  police cir 5 mbps bc 200 ms conform transmit violate drop

policy-map type qos parent_policy_for_mutation
class class-default
  set dscp dscp table mutate_dscp
  service-policy type qos child_qos_policy
```
Feature History for Mutation

Table 5-1 lists the release history for this feature.

Table 5-1 Feature History for Mutation

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>You can only use similar variables for mutation mapping.</td>
<td>4.1(2)</td>
<td>-</td>
</tr>
<tr>
<td>No change</td>
<td>4.2(1)</td>
<td>-</td>
</tr>
</tbody>
</table>
Configuring Policing

This chapter describes how to configure policing of traffic classes. This chapter includes the following sections:

- Information About Policing, page 6-1
- Licensing Requirements for Policing, page 6-2
- Prerequisites for Policing, page 6-2
- Guidelines and Limitations, page 6-2
- Configuring Policing, page 6-3
- Verifying the Policing Configuration, page 6-18
- Example Configurations, page 6-18
- Feature History for Policing, page 6-19

Information About Policing

Policing is the monitoring of the data rates for a particular class of traffic. When the data rate exceeds user-configured values, marking or dropping of packets occurs immediately. Policing does not buffer the traffic, so transmission delay is not affected. When traffic exceeds the data rate, you instruct the system to either drop the packets or mark QoS fields in them.

You can define single-rate, dual-rate, and color-aware policers.

Single-rate policers monitor the committed information rate (CIR) of traffic. Dual-rate policers monitor both CIR and peak information rate (PIR) of traffic. In addition, the system monitors associated burst sizes. Three “colors,” or conditions, are determined by the policer for each packet depending on the data rate parameters supplied: conform (green), exceed (yellow), or violate (red).

You can configure only one action for each condition. For example, you might police for traffic in a class to conform to the data rate of 256000 bits per second, with up to 200 millisecond bursts. The system would apply the conform action to traffic that falls within this rate, and it would apply the violate action to traffic that exceeds this rate.

Color-aware policers assume that traffic has been previously marked with a color. This information is then used in the actions taken by this type of policer.

For more information about policers, see RFC 2697 and RFC 2698.
Shared Policers

QoS applies the bandwidth limits specified in a shared policer cumulatively to all flows in the matched traffic. A shared policer applies the same policer to more than one interface simultaneously.

For example, if you configure a shared policer to allow 1 Mbps for all TFTP traffic flows on VLAN 1 and VLAN 3, the device limits the TFTP traffic for all flows combined on VLAN 1 and VLAN 3 to 1 Mbps.

The following are guidelines for configuring shared policers:

- You create named shared policers by entering the `qos shared-policer` command. If you create a shared policer and create a policy using that shared policer and attach the policy to multiple ingress ports, the device polices the matched traffic from all the ingress ports to which it is attached.
- You define shared policers in a policy map class within the police command. If you attach a named shared policer to multiple ingress ports, the device polices the matched traffic from all the ingress ports to which it is attached.
- Shared policing works independently on each module.

Licensing Requirements for Policing

The following table shows the licensing requirements for this feature:

<table>
<thead>
<tr>
<th>Product</th>
<th>License Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX-OS</td>
<td>QoS requires no license. Any feature not included in a license package is bundled with the Cisco NX-OS system images and is provided at no extra charge to you. For a complete explanation of the NX-OS licensing scheme, see the Cisco Nexus 7000 Series NX-OS Licensing Guide, Release 4.2.</td>
</tr>
</tbody>
</table>

However, using VDCs requires an Advanced Services license.

Prerequisites for Policing

Policing has the following prerequisites:

- You must be familiar with Chapter 2, “Using Modular QoS CLI.”
- You are logged on to the switch.
- You are in the correct virtual device context (VDC). A VDC is a logical representation of a set of system resources. You can use the `switchto vdc` command with a VDC number.

Guidelines and Limitations

Use the following guidelines to configure policing:

- Each module polices independently, which might affect QoS features that are being applied to traffic that is distributed across more than one module. The following are examples of these QoS features:
 - Policers applied to a port channel interface.
Send document comments to nexus7k-docfeedback@cisco.com.

- Egress policers applied to a Layer 3 interface. Note that the device performs egress policing decisions at the ingress interface, on the ingress module.
- Policers applied to a VLAN.

- All policers in either the ingress or egress direction must use the same mode. For example, if color-aware mode is needed for a class, all classes in that policy in the same direction must be in color-aware mode.

Configuring Policing

You can configure a single- or dual-rate policer.

This section includes the following topics:

- Configuring 1-Rate and 2-Rate, 2-Color and 3-Color Policing, page 6-3
- Configuring Color-Aware Policing, page 6-8
- Configuring Ingress and Egress Policing, page 6-13
- Configuring Markdown Policing, page 6-13
- Configuring Shared Policers, page 6-15

Configuring 1-Rate and 2-Rate, 2-Color and 3-Color Policing

The type of policer created by the device is based on a combination of the `police` command arguments described in Table 6-1.

Table 6-1 Arguments to the police Command

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cir</td>
<td>Committed information rate, or desired bandwidth, specified as a bit rate or a percentage of the link rate. Although a value for cir is required, the argument itself is optional. The range of values is 1 to 80000000000; the range of policing values that are mathematically significant is 8000 to 80 Gbps.</td>
</tr>
<tr>
<td>percent</td>
<td>Specifies the rate as a percentage of the interface rate. The range of values is 1 to 100%.</td>
</tr>
<tr>
<td>bc</td>
<td>Indication of how much the cir can be exceeded, either as a bit rate or an amount of time at cir. The default is 200 milliseconds of traffic at the configured rate. The default data rate units are bytes, and the Gigabit per second (gbps) rate is not supported for this parameter.</td>
</tr>
<tr>
<td>pir</td>
<td>Peak information rate, specified as a PIR bit rate or a percentage of the link rate. There is no default. The range of values is 1 to 80000000000; the range of policing values that are mathematically significant is 8000 to 80 Gbps. The range of percentage values is 1 to 100%.</td>
</tr>
</tbody>
</table>

Note Specify the identical value for pir and cir to configure 1-rate 3-color policing.
Configuring Policing

Note

For information on the color-aware police command arguments, see the “Configuring Color-Aware Policing” section on page 6-8.

Although all the arguments in Table 6-1 are optional, you must specify a value for cir. In this section, cir indicates what is its value but not necessarily the keyword itself. The combination of these arguments and the resulting policer types and actions are shown in Table 6-2.

Table 6-2 Policer Types and Actions from Police Arguments Present

<table>
<thead>
<tr>
<th>Police Arguments Present</th>
<th>Policer Type</th>
<th>Policer Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>cir, but not pir, be, or violate</td>
<td>1-rate, 2-color</td>
<td><= cir, then conform; else violate</td>
</tr>
<tr>
<td>cir and pir</td>
<td>1-rate, 3-color</td>
<td><= cir, then conform; <= pir, then exceed; else violate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: You must specify identical values for cir and pir.</td>
</tr>
<tr>
<td>cir and pir</td>
<td>2-rate, 3-color</td>
<td><= cir, then conform; <= pir, then exceed; else violate</td>
</tr>
</tbody>
</table>

The policer actions that you can specify are described in Table 6-3 and Table 6-4.
Configuring Policing

Table 6-3 Policer Actions for Exceed or Violate

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>drop</td>
<td>Drops the packet. This is only available when the packet exceeds or violates the parameters.</td>
</tr>
<tr>
<td>set dscp dscp table</td>
<td>Sets the specified fields from a table map and transmits the packet. For more information on the system-defined, or default table maps, see Chapter 4, “Configuring Marking.” This is available only when the packet exceeds the parameters (use the cir-markdown-map) or violates the parameters (use the pir-markdown-map).</td>
</tr>
</tbody>
</table>

Table 6-4 Policer Actions for Conform

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>transmit</td>
<td>Transmits the packet. This is available only when the packet conforms to the parameters.</td>
</tr>
<tr>
<td>set-prec-transmit</td>
<td>Sets the IP precedence field to a specified value and transmits the packet. This is available only when the packet conforms to the parameters.</td>
</tr>
<tr>
<td>set-dscp-transmit</td>
<td>Sets the DSCP field to a specified value and transmits the packet. This is available only when the packet conforms to the parameters.</td>
</tr>
<tr>
<td>set-cos-transmit</td>
<td>Sets the CoS field to a specified value and transmits the packet. This is available only when the packet conforms to the parameters.</td>
</tr>
<tr>
<td>set-qos-transmit</td>
<td>Sets the QoS group internal label to specified value and transmits the packet. This action can be used only in input policies and is available only when the packet conforms to the parameters.</td>
</tr>
<tr>
<td>set-discard-class-transmit</td>
<td>Sets the discard-class internal label to a specified value and transmits the packet. This action can be used only in ingress policies and is available only when the packet conforms to the parameters.</td>
</tr>
</tbody>
</table>

Note: The policer can only drop or markdown packets that exceed or violate the specified parameters. See Chapter 4, “Configuring Marking” for information on marking down packets.

The data rates used in the `policer` command are described in Table 6-5.

Table 6-5 The Data Rates for the `policer` Command

<table>
<thead>
<tr>
<th>Rate</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bps</td>
<td>Bits per second (default)</td>
</tr>
<tr>
<td>kbps</td>
<td>1,000 bits per second</td>
</tr>
<tr>
<td>mbps</td>
<td>1,000,000 bits per second</td>
</tr>
<tr>
<td>gbps</td>
<td>1,000,000,000 bits per second</td>
</tr>
</tbody>
</table>

Burst sizes used in the `policer` command are described in Table 6-6.
Chapter 6 Configuring Policing

Send document comments to nexus7k-docfeedback@cisco.com.

Table 6-6 Burst Sizes for the police Command

<table>
<thead>
<tr>
<th>Speed</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bytes</td>
<td>bytes</td>
</tr>
<tr>
<td>kbytes</td>
<td>1,000 bytes</td>
</tr>
<tr>
<td>mbytes</td>
<td>1,000,000 bytes</td>
</tr>
<tr>
<td>ms</td>
<td>milliseconds</td>
</tr>
<tr>
<td>us</td>
<td>microseconds</td>
</tr>
</tbody>
</table>

SUMMARY STEPS

Note Specify the identical value for `pir` and `cir` to configure 1-rate 3-color policing.

1. `config t`
2. `policy-map [type qos] [match-first] [qos-policy-map-name | qos-dynamic]`
3. `class [type qos] [class-map-name | qos-dynamic | class-default] [insert-before before-class-map-name]`
4. `police [cir] [committed-rate [data-rate | percent cir-link-percent] [bc committed-burst-rate [link-speed] | [pir] [peak-rate [data-rate | percent cir-link-percent] [be peak-burst-rate [link-speed] | [conform [transmit | set-prec-transmit | set-dscp-transmit | set-cos-transmit | set-qos-transmit | set-discard-class-transmit | [exceed [drop | set dscp dscp table (cir-markdown-map) | [violate [drop | set dscp dscp table (pir-markdown-map)]]]]]
5. `exit`
6. `exit`
7. `show policy-map [type qos] [policy-map-name | qos-dynamic]`
8. `copy running-config startup-config`

Note A 1-rate 2-color policer with the violate markdown action is not supported.
Chapter 6 Configuring Policing

Send document comments to nexus7k-docfeedback@cisco.com.

Detailed Steps

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>config t</td>
</tr>
</tbody>
</table>
| **Example:** | switch# config t
switch(config)# |
| Enters configuration mode. | |
| **Step 2** | policy-map [type qos] [match-first]
[policy-map-name | qos-dynamic] |
| **Example:** | switch(config)# policy-map policy1
switch(config-pmap-qos)# |
| Creates or accesses the policy map named policy-map-name, and then enters policy-map mode.
The policy-map name can contain alphabetic, hyphen, or underscore characters, is case sensitive, and can be up to 40 characters. | |
| **Step 3** | class [type qos] (class-map-name | qos-dynamic | class-default)
[insert-before before-class-map-name] |
| **Example:** | switch(config-pmap-qos)# class
class-default
switch(config-pmap-c-qos)# |
| Creates a reference to class-map-name, and enters policy-map class configuration mode. The class is added to the end of the policy map unless insert-before is used to specify the class to insert before. Specify class-default to select all traffic that is not matched by classes in the policy map so far. | |
| **Step 4** | police [cir] (committed-rate
[data-rate] | percent cir-link-percent)
[[be committed-burst-rate
(link-speed)]|pir] (peak-rate
[data-rate] | percent cir-link-percent)
[[be peak-burst-rate [link-speed]]
[conform (transmit | set-prec-transmit |
set-dscp-transmit | set-cos-transmit |
set-qos-transmit |
set-discard-class-transmit)] | exceed
[drop | set dscp dscp table
(cir-markdown-map)] | violate [drop |
set dscp dscp table
(pir-markdown-map)]] |
Example: | switch(config-pmap-c-qos)# police cir
256000 pir 256000 conform transmit
exceed set dscp dscp table
cir-markdown-map violate drop
switch(config-pmap-c-qos)# |
| Polices cir in bits or as a percentage of the link rate.
The conform action is taken if the data rate is <= cir.
If be and pir are not specified, all other traffic takes the violate action. If be or violate are specified, the exceed action is taken if the data rate <= pir, and the violate action is taken otherwise. The actions are described in Table 6-3 and Table 6-4. The data rates and link speeds are described in Table 6-5 and Table 6-6.
This example shows a 1-rate, 3-color policer that transmits if the data rate is within 200 milliseconds of traffic at 256000 bps, marks DSCP to 6 if the data rate is within 300 milliseconds of traffic at 256000 bps, and drops packets otherwise. | |

Note You must specify identical values for cir and pir.
Configuring Policing

Use the `show policy-map` command to display the policy1 policy-map configuration:

```
switch# show policy-map policy1
```

Configuring Color-Aware Policing

Color-aware policing implies that the QoS DSCP field in a class of traffic has been previously marked with values that you can use in a policer. This feature allows you to mark traffic at one node in a network and then take action based on this marking at a subsequent node.

Note
For information on the `police` command, see the “Configuring 1-Rate and 2-Rate, 2-Color and 3-Color Policing” section on page 6-3.

You can use one or more of the four police command class maps `conform-color` or `exceed-color` to perform color-aware policing. These keywords require a class-map name that is used to classify packets. Based on the match criteria that you specify in the class maps, the traffic is classified into one of these two classes or class-default if there is no match. The policer then takes the following action:

- Packets that belong to the `conform-color` class are policed with the `cir` and `pir` arguments to the `police` command.
- Packets that belong to the `exceed-color` class are policed only against the `pir` argument to the `police` command. If `pir` is not specified, then the `cir` values are used.
- Packets that end up in class-default because they fail to match either the `conform-color` or `exceed-color` class will immediately take the violate action.

Note
A color other than class-default cannot be assigned to the violate action because according to RFC 2697 and RFC 2698, all packets must be assigned a color.
You can set the DSCP value for color-aware policing to a specified value. The list of valid DSCP values is shown in Table 6-7.

Table 6-7 Color-Aware Policing Valid DSCP Values

<table>
<thead>
<tr>
<th>Value</th>
<th>List of DSCP Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>af11</td>
<td>AF11 dscp (001010)—decimal value 10</td>
</tr>
<tr>
<td>af12</td>
<td>AF12 dscp (001100)—decimal value 12</td>
</tr>
<tr>
<td>af13</td>
<td>AF13 dscp (001110)—decimal value 14</td>
</tr>
<tr>
<td>af21</td>
<td>AF21 dscp (010010)—decimal value 18</td>
</tr>
<tr>
<td>af22</td>
<td>AF22 dscp (010100)—decimal value 20</td>
</tr>
<tr>
<td>af23</td>
<td>AF23 dscp (010110)—decimal value 22</td>
</tr>
<tr>
<td>af31</td>
<td>AF31 dscp (011010)—decimal value 26</td>
</tr>
<tr>
<td>af32</td>
<td>AF40 dscp (011100)—decimal value 28</td>
</tr>
<tr>
<td>af33</td>
<td>AF33 dscp (011110)—decimal value 30</td>
</tr>
<tr>
<td>af41</td>
<td>AF41 dscp (100010)—decimal value 34</td>
</tr>
<tr>
<td>af42</td>
<td>AF42 dscp (100100)—decimal value 36</td>
</tr>
<tr>
<td>af43</td>
<td>AF43 dscp (100110)—decimal value 38</td>
</tr>
<tr>
<td>cs1</td>
<td>CS1 (precedence 1) dscp (001000)—decimal value 8</td>
</tr>
<tr>
<td>cs2</td>
<td>CS2 (precedence 2) dscp (010000)—decimal value 16</td>
</tr>
<tr>
<td>cs3</td>
<td>CS3 (precedence 3) dscp (011000)—decimal value 24</td>
</tr>
<tr>
<td>cs4</td>
<td>CS4 (precedence 4) dscp (100000)—decimal value 32</td>
</tr>
<tr>
<td>cs5</td>
<td>CS5 (precedence 5) dscp (101000)—decimal value 40</td>
</tr>
<tr>
<td>cs6</td>
<td>CS6 (precedence 6) dscp (110000)—decimal value 48</td>
</tr>
<tr>
<td>cs7</td>
<td>CS7 (precedence 7) dscp (111000)—decimal value 56</td>
</tr>
<tr>
<td>default</td>
<td>Default dscp (000000)—decimal value 0</td>
</tr>
<tr>
<td>ef</td>
<td>EF dscp (101110)—decimal value 46</td>
</tr>
</tbody>
</table>

After you apply color-aware policing, all matching packets in the device will be policed according to the specifications of the color-aware policer.

To configure color-aware policing, follow these steps:

Step 1 Create the class map. For information about configuring class maps, see Chapter 3, “Configuring Classification.”

Step 2 Create a policy map. For information about policy maps, see this chapter and Chapter 2, “Using Modular QoS CLI.”

Step 3 Configure the color-aware class map as described in this section.

Step 4 Apply the service policy to the interfaces. For information about attaching policies to interfaces, see Chapter 2, “Using Modular QoS CLI.”
Configuring Policing

Note

The rates specified in the shared policer are shared by the number of interfaces to which you apply the service policy. Each interface does not have its own dedicated rate as specified in the shared policer.

SUMMARY STEPS

1. `config t`
2. `class-map { conform-color-in | conform-color-out | exceed-color-in | exceed-color-out }
3. `match dscp dscp-value`
4. `policy-map [type qos] [match-first] { qos-policy-map-name | qos-dynamic }
5. `class [type qos] { class-map-name | qos-dynamic | class-default } [insert-before before-class-map-name]
7. `exit`
8. `show policy-map [policy-map-name | qos-dynamic]
9. `copy running-config startup-config`
Configuring Policing

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>config t</td>
</tr>
<tr>
<td>Example:</td>
<td>switch# config t
 switch(config)#</td>
</tr>
<tr>
<td>Enters configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>class-map {conform-color-in</td>
</tr>
<tr>
<td>Example:</td>
<td>switch(config)# class-map
 conform-color-in
 switch(config-color-map)#</td>
</tr>
<tr>
<td>Accesses the color-aware class map, and enters color-map mode. When you enter this command, the system returns the following message: Warning: Configuring match for any DSCP values in this class-map will make ALL policers in the system color-aware for those DSCP values.</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>match dscp dscp-value</td>
</tr>
<tr>
<td>Example:</td>
<td>switch(config-color-map)# match dscp af22
 switch(config-color-map)#</td>
</tr>
<tr>
<td>Specifies the DSCP value to match for color-aware policers. See Table 6-7 for list of valid values.</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>policy-map [type qos] [match-first] [policy-map-name</td>
</tr>
<tr>
<td>Example:</td>
<td>switch(config)# policy-map policy1
 switch(config-pmap-qos)#</td>
</tr>
<tr>
<td>Creates or accesses the policy-map named policy-map-name, and then enters policy-map mode. The policy-map name can contain alphabetic, hyphen, or underscore characters, is case sensitive, and can be up to 40 characters.</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>class [type qos] (class-map-name</td>
</tr>
<tr>
<td>Example:</td>
<td>switch(config-pmap-qos)# class
 class-default
 switch(config-pmap-c-qos)#</td>
</tr>
<tr>
<td>Creates a reference to class-map-name and enters policy-map class configuration mode. The class is added to the end of the policy map unless insert-before is used to specify the class to insert before. Specify class-default to select all traffic that is not matched by classes in the policy map so far.</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Policing

Use the `show policy-map` command to display the policy1 policy-map configuration:

```
switch# show policy-map policy1
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>police</code></td>
<td>Polices <code>cir</code> in bits or as a percentage of the link rate. The <code>conform</code> action is taken if the data rate is \leq <code>cir</code>. If <code>be</code> and <code>pir</code> are not specified, all other traffic takes the <code>violate</code> action. If <code>be</code> or <code>violate</code> are specified, then the <code>exceed</code> action is taken if the data rate \leq <code>pir</code>, and the <code>violate</code> action is taken otherwise. The actions are described in Table 6-3 and Table 6-4. The data rates and link speeds are described in Table 6-5 and Table 6-6.</td>
</tr>
<tr>
<td><code>clear</code></td>
<td>This first example shows a 1-rate, 3-color color-aware policer that transmits if conform-class the data rate is within 200 milliseconds of traffic at 256000 bps, marks DSCP to 6 if the exceed-class the data rate is within 300 milliseconds of traffic at 256000 bps, and drops packets otherwise.</td>
</tr>
<tr>
<td><code>clear</code></td>
<td>This second example shows a 2-rate, 3-color color-aware policer that transmits if the data rate is within 200 milliseconds of traffic at 256000 bps, marks CoS to 5 if the data rate exceeds 200 milliseconds of traffic at 512 bps, and drops packets otherwise.</td>
</tr>
<tr>
<td><code>clear</code></td>
<td>Exits color-map mode and then enters configuration mode.</td>
</tr>
<tr>
<td><code>clear</code></td>
<td>(Optional) Displays information about all configured policy maps or a selected policy map of type qos.</td>
</tr>
<tr>
<td><code>clear</code></td>
<td>(Optional) Saves the running configuration to the startup configuration.</td>
</tr>
</tbody>
</table>

Step 6

```
```

Example #1:

```
switch(config-pmap-c-qos)# police cir 256000 be 300 ms conform-class my_conform_class_map conform transmit exceed set dscp dscp table cir-markdown-map violate drop
switch(config-pmap-c-qos)#
```

Example #2:

```
switch(config-pmap-c-qos)# police cir 256000 pir 512000 conform-class my_conform_class_map exceed-class my_exceed_class_map conform transmit exceed set dscp dscp table cir-markdown-map violate drop
switch(config-pmap-c-qos)#
```

Step 7

```
exit
```

Example:

```
switch(config-color-map)# exit
switch(config)#
```

Step 8

```
show policy-map [type qos] [policy-map-name | qos-dynamic]
```

Example:

```
switch(config)# show policy-map
```

Step 9

```
copy running-config startup-config
```

Example:

```
switch(config)# copy running-config startup-config
```

Use the `show policy-map` command to display the policy1 policy-map configuration:
Chapter 6 Configuring Policing

Configuring Ingress and Egress Policing

You can apply the policing instructions in a QoS policy map to ingress or egress packets by attaching that QoS policy map to an interface. To select ingress or egress, you specify either the **input** or **output** keyword in the **service-policy** command. For more information on attaching and detaching a QoS policy action from an interface, see the Chapter 2, “Using Modular QoS CLI.”

Configuring Markdown Policing

Markdown policing is the setting of a QoS field in a packet when traffic exceeds or violates the policed data rates. You can configure markdown policing by using the **set** commands for policing action described in Table 6-3 and Table 6-4.

The example in this section shows you how to use a table map to perform markdown.

SUMMARY STEPS

1. config t
2. policy-map [type qos] [match-first] {qos-policy-map-name | qos-dynamic}
3. class [type qos] {class-map-name | qos-dynamic | class-default} [insert-before before-class-map-name]
5. exit
6. exit
7. show policy-map [type qos] [policy-map-name | qos-dynamic]
8. copy running-config startup-config
Configuring Policing

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Purpose</td>
</tr>
<tr>
<td><code>config t</code></td>
<td>Enters configuration mode.</td>
</tr>
</tbody>
</table>
| **Example:** switch# config t
switch(config)# | |
| **Step 2** | Creates or accesses the policy-map named `policy-map-name`, and then enters policy-map mode. The policy-map name can contain alphabetic, hyphen, or underscore characters, is case sensitive, and can be up to 40 characters. |
| `policy-map [type qos] [match-first] [policy-map-name | qos-dynamic]` | |
| **Example:** switch(config)# policy-map policy1
switch(config-pmap-qos)# | |
| **Step 3** | Creates a reference to `class-map-name`, and enters policy-map class configuration mode. The class is added to the end of the policy map unless `insert-before` is used to specify the class to insert before. Specify `class-default` to select all traffic not matched by classes in the policy map so far. |
| `class [type qos] [class-map-name | qos-dynamic | class-default] [insert-before before-class-map-name]` | |
| **Example:** switch(config-pmap-qos)# class class-default
switch(config-pmap-c-qos)# | |
| **Step 4** | Polices `cir` in bits or as a percentage of the link rate. The `conform` action is taken if the data rate is <= `cir`. If `be` and `pir` are not specified, all other traffic takes the `violate` action. If `be` or `violate` are specified, then the `exceed` action is taken if the data rate <= `pir`, and the `violate` action is taken otherwise. The actions are described in Table 6-3 and Table 6-4. The data rates and link speeds are described in Table 6-5 and Table 6-6. |
| `police [cir] [committed-rate [data-rate] | percent cir-link-percent] [bc | burst] burst-rate [link-speed] [be | peak-burst] peak-burst-rate [link-speed] [conform conform-action [exceed set dscp dscp table cir-markdown-map [violate set dscp dscp table pir-markdown-map]]]` | |
| **Example:** switch(config-pmap-c-qos)# police cir 256000 be 300 ms conform transmit exceed set dscp dscp table cir-markdown-map violate drop
switch(config-pmap-c-qos)# | |

This example shows a 1-rate, 3-color policer that transmits if the data rate is within 200 milliseconds of traffic at 256000 bps; marks down DSCP using the system-defined table map if the data rate is within 300 milliseconds of traffic at 256000 bps; and drops packets otherwise.
Send document comments to nexus7k-docfeedback@cisco.com.

Configuring Policing

Use the `show policy-map` command to display the policy1 policy-map configuration:

```
switch# show policy-map policy1
```

Configuring Shared Policers

The shared-policer feature allows you to apply the same policing parameters to several interfaces simultaneously. You create a shared policer by assigning a name to a policer, and then applying that policer to a policy map that you attach to the specified interfaces. The shared policer is also referred to as the named aggregate policer in other Cisco documentation.

Note

After you configure the shared policer, you can use the shared-policer name to configure any type of shared policing, as described in the following sections: “Configuring 1-Rate and 2-Rate, 2-Color and 3-Color Policing” section on page 6-3, “Configuring Color-Aware Policing” section on page 6-8, “Configuring Ingress and Egress Policing” section on page 6-13, and “Configuring Markdown Policing” section on page 6-13.

To configure shared policing, follow these steps:

1. **Step 1** Configure the shared policer as described in this section.
2. **Step 2** Create the class map. For information about configuring class maps, see Chapter 3, “Configuring Classification.”
3. **Step 3** Create a policy map. For information about policy maps, see this chapter and Chapter 2, “Using Modular QoS CLI.”
4. **Step 4** Reference the shared policer to the policy map as described in this section.

Command Table

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5 exit</td>
<td>Exits policy-map class configuration mode and enters policy-map mode.</td>
</tr>
<tr>
<td>Example: switch(config-pmap-c-qos)# exit switch(config-pmap-qos)#</td>
<td></td>
</tr>
<tr>
<td>Step 6 exit</td>
<td>Exits policy-map mode and enters configuration mode.</td>
</tr>
<tr>
<td>Example: switch(config-pmap-qos)# exit switch(config)#</td>
<td></td>
</tr>
<tr>
<td>Step 7 show policy-map [type qos] [policy-map-name</td>
<td>qos-dynamic]</td>
</tr>
<tr>
<td>Example: switch(config)# show policy-map</td>
<td></td>
</tr>
<tr>
<td>Step 8 copy running-config startup-config</td>
<td>(Optional) Saves the running configuration to the startup configuration.</td>
</tr>
<tr>
<td>Example: switch(config)# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>
Apply the service policy to the interfaces. For information about attaching policies to interfaces, see Chapter 2, “Using Modular QoS CLI.”

The rates specified in the shared policer are shared by the number of interfaces to which you apply the service policy. Each interface does not have its own dedicated rate as specified in the shared policer.

SUMMARY STEPS

1. `config t`
2. `qos shared-policer [type qos] shared-policer-name [cir] [committed-rate [data-rate] | percent cir-link-percent] [bc committed-burst-rate [link-speed]] [pir] [peak-rate [data-rate] | percent cir-link-percent] [be peak-burst-rate [link-speed]]
 - `{conform conform-action [exceed [drop | set dscp dscp table cir-markdown-map]]}
 - `{violate [drop | set dscp dscp table pir-markdown-map]]
3. `policy-map [type qos] [match-first] [qos-policy-map-name | qos-dynamic]
4. `class [type qos] [class-map-name | qos-dynamic | class-default] [insert-before before-class-map-name]
5. `police aggregate shared-policer-name
6. `exit
7. `exit
8. `show qos shared-policer shared-policer-name
9. `copy running-config startup-config
Chapter 6 Configuring Policing

Send document comments to nexus7k-docfeedback@cisco.com.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 config t</td>
<td>Enters configuration mode.</td>
</tr>
</tbody>
</table>
| **Step 2** qos shared-policer [type qos]
shared-policer-name [cir]
(committed-rate [data-rate] | percent cir-link-percent) [(bc committed-burst-rate [link-speed]) [pir]
(peak-rate [data-rate] | percent cir-link-percent) [(be peak-burst-rate [link-speed]) [conform conform-action
[exceed set dscp dscp table
cir-markdown-map [violate set dscp dscp table pir-markdown-map]]] | Creates or accesses the shared policer. The shared-policer-name can contain alphabetic, hyphen, or underscore characters, is case sensitive, and can be up to 40 characters. Polices cir in bits or as a percentage of the link rate. The conform action is taken if the data rate is <= cir. If be and pir are not specified, all other traffic takes the violate action. If be or violate are specified, then the exceed action is taken if the data rate <= pir, and the violate action is taken otherwise. The actions are described in Table 6-3 and Table 6-4. The data rates and link speeds are described in Table 6-5 and Table 6-6. |
| **Step 3** policy-map [type qos] [match-first]
[policy-map-name | qos-dynamic] | Creates or accesses the policy-map named policy-map-name, and then enters policy-map mode. The policy-map name can contain alphabetic, hyphen, or underscore characters, is case sensitive, and can be up to 40 characters. |
| **Step 4** class [type qos] [class-map-name | qos-dynamic | class-default]
[insert-before before-class-map-name] | Creates a reference to class-map-name and enters policy-map class configuration mode. The class is added to the end of the policy map unless insert-before is used to specify the class to insert before. Specify class-default to select all traffic that is currently not matched by classes in the policy map. |
| **Step 5** police aggregate shared-policer-name | Creates a reference in the policy map to shared-policer-name. |
Verifying the Policing Configuration

Use these command to verify the policing configuration.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show policy-map</td>
<td>Displays information about policy maps and policing.</td>
</tr>
<tr>
<td>show qos shared-policer [type qos] [policer-name]</td>
<td>Displays information about all shared policing.</td>
</tr>
</tbody>
</table>

Example Configurations

The following are examples of how to configure policing:

- 1-rate, 2-color policer:
  ```
  config t
  policy-map policy1
  class one_rate_2_color_policer
  police cir 256000 conform transmit violate drop
  ```

- 1-rate, 2-color policer with DSCP markdown:
  ```
  config t
  policy-map policy2
  class one_rate_2_color_policer_with_dscp_markdown
  ```

Verifying the Policing Configuration

Use these command to verify the policing configuration.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>exit</td>
<td>Exits policy-map class configuration mode and enters policy-map mode.</td>
</tr>
<tr>
<td>exit</td>
<td>Exits policy-map mode and enters configuration mode.</td>
</tr>
<tr>
<td>show qos shared-policer [type] [shared-policer-name]</td>
<td>(Optional) Displays information about the configuration of all shared policers.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Saves the running configuration to the startup configuration.</td>
</tr>
</tbody>
</table>

Use the `show qos shared-policer` command to display the test1 shared-policer configurations:

```
switch# show qos shared-policer test1
```
police cir 256000 conform transmit violate drop

- 1-rate, 3-color policer:
  ```
  config t
  policy-map policy3
  class one_rate_3_color_policer
  police cir 256000 pir 256000 conform transmit exceed set dscp dscp table
cir-markdown-map violate drop
  ```

- 2-rate, 3-color policer:
  ```
  config t
  policy-map policy4
  class two_rate_3_color_policer
  police cir 256000 pir 256000 conform transmit exceed set dscp dscp table
cir-markdown-map violate drop
  ```

- Color-aware policer for specified DSCP values:
  ```
  config t
  class-map conform-color-in
  match dscp 0-10
  policy-map policy5
  class one_rate_2_color_policer
  police cir 256000 conform transmit violate drop
  ```

- Shared policer:
  ```
  config t
  qos shared-policer type qos udp_policer type cir 10 mbps pir 20 mbps conform transmit
  exceed set dscp dscp table cir-markdown-map violate drop
  policy-may type qos udp_policy
  class type qos udp_qos
  police aggregate udp_1mbps
  ```

Feature History for Policing

Table 6-8 lists the release history for this feature.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>No change.</td>
<td>4.1(2)</td>
<td>-</td>
</tr>
<tr>
<td>No change</td>
<td>4.2(1)</td>
<td>-</td>
</tr>
</tbody>
</table>
CHAPTER 7

Configuring Queuing and Scheduling

This chapter describes how to configure the QoS queuing and scheduling features on the Cisco Nexus 7000 Series NX-OS device.

This chapter includes the following sections:

- Information About Queuing and Scheduling, page 7-1
- Licensing Requirements for Queuing and Scheduling, page 7-3
- Prerequisites for Queuing and Scheduling, page 7-3
- Guidelines and Limitations, page 7-4
- Configuring Queuing and Scheduling, page 7-4
- Verifying Queuing and Scheduling Configuration, page 7-22
- Example Configurations, page 7-22
- Feature History for Queuing, page 7-24

Information About Queuing and Scheduling

Traffic queuing is the ordering of packets and applies to both input and output of data. Device modules can support multiple queues, which you can use to control the sequencing of packets in different traffic classes. You can also set weighted random early detection (WRED) and taildrop thresholds. The device drops packets only when the configured thresholds are exceeded.

Traffic scheduling is the methodical output of packets at a desired frequency to accomplish a consistent flow of traffic. You can apply traffic scheduling to different traffic classes to weight the traffic by priority.

The queuing and scheduling processes allow you to control the bandwidth that is allocated to the traffic classes, so that you achieve the desired trade-off between throughput and latency for your network.

Table 7-1 describes the system-defined queues that you can use to perform queuing and scheduling.

<table>
<thead>
<tr>
<th>Queue Type</th>
<th>Direction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2q4t</td>
<td>Input</td>
<td>2 queues with 4 WRED or tail drop thresholds per queue</td>
</tr>
<tr>
<td>1p3q4t</td>
<td>Output</td>
<td>1 strict priority plus 3 normal queues or 4 normal queues with 4 WRED or tail-drop thresholds per queue</td>
</tr>
</tbody>
</table>
Information About Queuing and Scheduling

Send document comments to nexus7k-docfeedback@cisco.com.

Table 7-1 System-Defined Queue Types (continued)

<table>
<thead>
<tr>
<th>Queue Type</th>
<th>Direction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8q2t</td>
<td>Input</td>
<td>8 queues with 2 tail drop thresholds per queue</td>
</tr>
<tr>
<td>1p7q4t</td>
<td>Output</td>
<td>1 strict priority queue plus 7 normal queues or 8 normal queues with 4 WRED or tail drop thresholds per queue</td>
</tr>
</tbody>
</table>

The queues match on the Class of Service (CoS) field. The device ensures that every CoS value from 0 to 7 maps to a queue for each queue type. Only one queue for a queue type can be assigned a specific CoS value. For more information about the system-defined queues, see Table 2-3.

This section includes the following topics:

- Setting Ingress Port CoS, page 7-2
- Modifying Class Maps, page 7-2
- Congestion Avoidance, page 7-2
- Congestion Management, page 7-3
- Virtualization Support, page 7-3

Setting Ingress Port CoS

You can set the CoS field in all ingress packets for untrusted ports. By default, ports are trusted and the CoS field is not modified. (Use this method to configure the port state to trusted or untrusted.)

For information about configuring ingress port CoS, see the “Configuring Ingress Port CoS” section on page 7-5.

Modifying Class Maps

You can modify the CoS values that are matched by system-defined queuing class maps, which modifies the CoS-to-queue mapping. Table 2-3 on page 2-7 lists the default system-defined CoS values. Each CoS value appears only once in the queues of the same type.

Note

- When you modify a system-defined class queuing map, the changes occur immediately and may disrupt traffic on all VDCs.
- For traffic crossing Layer 3, the queue mapping CoS-to-queue occurs automatically.

For information about configuring class maps, see the “Modifying Queuing Class Maps” section on page 7-7.

Congestion Avoidance

You can use the following methods to proactively avoid traffic congestion on the device:

- Apply WRED to a class of traffic, which allows the device to drop packets based on the CoS field. WRED is designed to work with TCP traffic.
Apply tail drop to a class of traffic, which allows the device to drop packets based on the Class of Service (CoS) field.

For information about configuring congestion avoidance, see the “Configuring Congestion Avoidance” section on page 7-8.

Congestion Management

For ingress packets, you can configure congestion management by specifying a bandwidth that allocates a minimum data rate to a queue.

For egress packets, you can choose one of the following congestion management methods:

- Specify a bandwidth that allocates a minimum data rate to a queue.
- Impose a maximum data rate on a class of traffic so that excess packets are retained in a queue to shape the output rate.
- Allocate all data for a class of traffic to a priority queue. The device distributes the remaining bandwidth among the other queues.

For information about configuring congestion management, see the “Configuring Congestion Management” section on page 7-13.

Virtualization Support

A virtual device context (VDC) is a logical representation of a set of system resources. Other than configuring class maps, queuing and scheduling apply only to the VDC where the commands are entered. For information about configuring class maps, see the “Modifying Queuing Class Maps” section on page 7-7.

For information about configuring VDCs, see the Cisco Nexus 7000 Series NX-OS Virtual Device Context Configuration Guide, Release 4.2.

Licensing Requirements for Queuing and Scheduling

The following table shows the licensing requirements for this feature:

<table>
<thead>
<tr>
<th>Product</th>
<th>License Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX-OS</td>
<td>QoS requires no license. Any feature not included in a license package is bundled with the Cisco NX-OS system images and is provided at no extra charge to you. For a complete explanation of the NX-OS licensing scheme, see the Cisco Nexus 7000 Series NX-OS Licensing Guide, Release 4.2.</td>
</tr>
</tbody>
</table>

However, using VDCs requires an Advanced Services license.

Prerequisites for Queuing and Scheduling

Queuing and scheduling have the following prerequisites:

- You must be familiar with Chapter 2, “Using Modular QoS CLI.”
Guidelines and Limitations

Use the following guidelines to configure queuing and scheduling:

- Configure system-defined class maps with care as the changes occur immediately and traffic may be disrupted on all VDCs.
- When you are working with 10-Gigabit Ethernet ports in shared mode, the egress queuing policy applies to all the ports in the port group. With 10-Gigabit Ethernet ports in shared mode, all the ports in the port group must be in the same VDC. See the Cisco NX-OS Interfaces Configuration Guide for information on shared and dedicated mode, as well as the Cisco Nexus 7000 Series Hardware Installation and Reference Guide for information about the port groups.
- You cannot set either the queue limit or WRED on ingress 10-Gigabit Ethernet ports.

Configuring Queuing and Scheduling

You configure queuing and scheduling by creating policy maps of type queuing that you apply to either traffic direction of an interface. You can modify system-defined class maps, which are used in policy maps to define classes of traffic to which you want to apply policies.

Additional considerations are:

- Changes to system class-maps take effect immediately across all VDCs. The specified COS values immediately map to the new queues.
- Changes are disruptive. The traffic passing through ports of the specified port type experience a brief period of traffic loss. All ports of the specified type are affected. For example, if you change COS-to-queue mapping for the M1 10G egress interface type, then all M1 10G ports in all VDCs experience a brief disruption.
- Performance can be impacted. If one or more ports of the specified type do not have a queuing policy applied that defines the behavior for the new queue, then the traffic mapping to that queue may experience performance degradation.
- If you change the COS-to-queue mapping by modifying the queuing class-maps, then ensure that a new queuing policy was applied to all ports of that type that use the new queues.
- By default, non-used queues do not have an allocated buffer. Allocate buffers to these queues to avoid tail drop.
- Changes to system class-maps are only made on the default VDC.

For information about configuring policy maps and class maps, see Chapter 2, “Using Modular QoS CLI.”

You can configure the congestion-avoidance features (which include tail drop and WRED) in any queue. You can configure one of the egress congestion management features (which include priority, shaping, and bandwidth) in output queues, and bandwidth in input queues.
We recommend that you modify the CoS value before you create a policy map. You can modify the CoS values that are matched by device-defined class map queues. You must assign each CoS value from 0 to 7 to one or more of the queues for each queue type. Each CoS value can be used only once in each queue type.

The system-defined policy maps default-in-policy and default-out-policy are attached to all ports to which you do not apply a queuing policy map. The default policy maps cannot be configured. For more information about the default policy maps, see Table 2-5.

If you downgrade from Release 4.0(3) to Release 4.0(2) and enter the `show running-configuration` command, the input default queuing policy has an unknown enum in the display, as follows:

```
switch# show running-config
version 4.0(2)
...
   policy-map type queuing default-in-policy
   class type queuing unknown enum 0
   queue-limit percent 50
   bandwidth percent 80
   class type queuing unknown enum 0
   queue-limit percent 50
   bandwidth percent 20
```

If you copy and paste this configuration into any NX-OS software release, the device sends errors while executing all the commands starting from the `policy-map type queuing default-in-policy` command. These errors are harmless and will not affect the running of the device.

This section includes the following topics:

- Configuring Ingress Port CoS, page 7-5
- Modifying Queuing Class Maps, page 7-7
- Configuring Congestion Avoidance, page 7-8
- Configuring Congestion Management, page 7-13
- Configuring Queue Limits, page 7-20

Configuring Ingress Port CoS

To make a port untrusted, set the CoS value to a static value.

Note

- By default, ports are trusted (trust CoS) and the CoS field is not modified. When you configure the ingress port CoS value, the port becomes untrusted.
- For the untagged bridged traffic, a Cisco Nexus 7000 Series NX-OS device ignores the Differentiated Services Code Point (DSCP) and queues on ingress and egress direction, if the CoS value is 0.
- By default, Layer 3 ports trust DSCP and also copy the DSCP value to CoS.

You use the ingress default queues from the system-defined queue classes for the type of module to which you want to apply the policy map. See Table 2-3 on page 2-7 for the list of system-defined class maps for each type of module.
The CoS values set using this procedure apply to all packets ingressing the specified interfaces, not just to the class-default packets. If you set the CoS value, the device modifies the value before ingress queuing and scheduling so the CoS-modified packets are classified differently.

ISUMMARY STEPS

1. `config t`
2. `policy-map type queuing [match-first] {policy-map-name | que-dynamic}`
3. `class type queuing class-queuing-name`
4. `set cos value`
5. `exit`
6. `show policy-map type queuing [policy-map-name | que-dynamic]`
7. `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 config t</td>
<td>Enters configuration mode. Example: <code>switch# config t</code> <code>switch(config)#</code></td>
</tr>
<tr>
<td>Step 2 `policy-map type queuing [match-first] {policy-map-name</td>
<td>que-dynamic}`</td>
</tr>
<tr>
<td>Step 3 <code>class type queuing class-queuing-name</code></td>
<td>Configures the class map of type queuing, and then enters policy-map class queuing mode. Class queuing names are listed in Table 2-3. Example: <code>switch(config)# class type queuing 2q4t-in-q-default switch(config-pmap-c-que)#</code> Note To configure port CoS, you can use only an ingress default system-defined queue type.</td>
</tr>
</tbody>
</table>
Chapter 7 Configuring Queuing and Scheduling

Configuring Queuing and Scheduling

You can modify the CoS values that are matched by system-defined class maps. Table 2-3 on page 2-7 lists the default system-defined CoS values.

The system-defined class maps can only be changed from the default VDC. Changes occur immediately and are applied to all ports on all VDCs that use the modified class map.

Note

When you modify a system-defined class map, the changes occur immediately and may disrupt traffic on all VDCs that use the modified class map.

The device automatically modifies the CoS values that you configured in other queues so that each CoS value appears only once in the queues of the same type.

Note

If you want to change the system-defined queuing class-maps, you must either modify the configured queuing policies or create new queuing policies and attach these to the affected interfaces. If you do not do this, you can render the default queuing or the configured queuing policies invalid, which may affect interfaces in multiple VDCs.

BEFORE YOU BEGIN

Ensure you are in the default VDC for the device.

SUMMARY STEPS

1. config t
2. class-map type queuing match-any class-queuing-name

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 4 | set cos value
Example: switch(config-pmap-c-que)# set cos 5
Sets the CoS field in all ingress packet to the value specified. The range is from 0 to 7. |
| Step 5 | exit
Example: switch(config-cmap-que)# exit
switch(config)#
Exits policy-map queue mode, and enters configuration mode. |
| Step 6 | show policy-map type queuing [policy-map-name | que-dynamic]
Example: switch(config)# show policy-map type untrusted_port_cos
(Optional) Displays information about all configured policy maps or a selected policy map of type queuing. |
| Step 7 | copy running-config startup-config
Example: switch(config)# copy running-config startup-config
(Optional) Saves the running configuration to the startup configuration. |
Chapter 7 Configuring Queuing and Scheduling

Send document comments to nexus7k-docfeedback@cisco.com.

3. match cos value-range
4. Repeat Steps 2 and 3 to modify CoS values for additional queues
5. exit
6. show class-map type queuing [class-queuing-name]
7. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 config t</td>
<td>Enters configuration mode.</td>
</tr>
</tbody>
</table>
| Example:
switch# config t
switch(config)# | |
| Step 2 class-map type queuing match-any | Configures the class map of type queuing, and then enters class-map queue mode. Class queuing names are listed in Table 2-3.|
| class-queuing-name | |
| Example:
switch(config)# class-map type queuing
match-any lp3q4t-out-pql
switch(config-cmap-que)# | |
| Step 3 match cos value-range | Sets the CoS value range matched by this queue. You can specify a range of values by using a hyphen between the beginning and ending values and a comma between values. The range is from 0 to 7.|
| Example:
switch(config-cmap-que)# match 0-3,7 | |
| Step 4 Repeat Steps 2 and 3 to modify CoS values for additional queues. | — |
| Step 5 exit | Exits class-map queue mode and enters configuration mode. |
| Example:
switch(config-cmap-que)# exit
switch(config)# | |
| Step 6 show class-map type queuing | (Optional) Displays information about all configured class maps or a selected class map of type queuing. Class queuing names are listed in Table 2-3.|
| [class-queuing-name] | |
| Example:
switch(config)# show class-map type queuing | |
| Step 7 copy running-config startup-config | (Optional) Saves the running configuration to the startup configuration. |
| Example:
switch(config)# copy running-config startup-config | |

Configuring Congestion Avoidance

You can configure congestion avoidance with tail drop or WRED features. Both features can be used in ingress and egress policy maps.
Configuring Queuing and Scheduling

Chapter 7 Configuring Queuing and Scheduling

Configuring Queuing and Scheduling

Note

WRED and tail drop cannot be configured in the same class.

This section includes the following topics:

- Configuring Tail Drop, page 7-9
- Configuring WRED, page 7-11

Configuring Tail Drop

You can configure tail drop on both ingress and egress queues by setting thresholds by CoS values. The device will drop packets that exceed the thresholds. You can specify a threshold based on queue size or buffer memory used by the queue.

Note

You cannot configure the queue size on ingress 10-Gigabit Ethernet ports.

You use the system-defined queue classes for the type of module to which you want to apply the policy map. See Table 2-3 on page 2-7.

Note

WRED and tail drop cannot be configured in the same class.

SUMMARY STEPS

1. config t
2. policy-map type queuing [match-first] {queuing-policy-map-name | que-dynamic}
3. class type queuing class-queuing-name
4. queue-limit cos value {threshold [packets | bytes | kbytes | mbytes | ms | us] | percent percent_of_queuelimit}
5. Repeat Step 4 to assign tail drop thresholds for other CoS values.
6. Repeat Steps 3 through 5 to assign tail drop thresholds for other queue classes.
7. exit
8. show policy-map type queuing [policy-map-name | que-dynamic]
9. copy running-config startup-config
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>config t</td>
</tr>
</tbody>
</table>
| Example: | switch# config t
switch(config)# |
| | Enters configuration mode. |
| **Step 2** | **policy-map type queuing [match-first]**
[policy-map-name | que-dynamic] |
| Example: | switch(config)# policy-map type queuing
shape_queues
switch(config-pmap-que)# |
| | Configures the policy map of type queuing, and then enters policy-map mode for the policy-map name you specify. Policy-map names can contain alphabetic, hyphen, or underscore characters, are case sensitive, and can be up to 40 characters. |
| **Step 3** | **class type queuing class-queuing-name** |
| Example: | switch(config)# class type queuing
1p3q4t-out-pql
switch(config-pmap-c-que)# |
| | Configures the class map of type queuing, and then enters policy-map class queuing mode. Class queuing names are listed in Table 2-3. |
| **Step 4** | **queue-limit cos value {threshold**
[packets | bytes | kbytes | mbytes | ms
| | us] | percent percent_of_queuelimit}** |
| Example: | switch(config-pmap-c-que)# queue-limit
| cos 5 10 mbytes|
| | Assigns a tail drop threshold based on queue size or percentage of the buffer memory used by the queue. The device will drop packets that exceed the specified threshold. You can configure the threshold by the number of packets, number of bytes, or the duration of time at the underlying interface minimum guaranteed link rate. The default threshold is in packets. The size is from 1 to 52428800. The duration is from 1 to 52428800. The percentage is from 1 to 100.
The example shows how to set a tail drop threshold for packets with a CoS of 5 to a maximum size of 10 MB. |
| **Step 5** | (Optional) Repeat Step 4 to assign tail drop thresholds for other CoS values. |
| **Step 6** | (Optional) Repeat Steps 3 through 5 to assign tail drop thresholds for other queue classes. |
| **Step 7** | **exit** |
| Example: | switch(config-cmap-que)# exit
switch(config)# |
| | Exits policy-map queue mode and enters configuration mode. |
| **Step 8** | **show policy-map type queuing**
[policy-map-name | que-dynamic] |
| Example: | switch(config)# show policy-map type
queuing shape_queues |
| | (Optional) Displays information about all configured policy maps or a selected policy map of type queuing. |
| **Step 9** | **copy running-config startup-config** |
| Example: | switch(config)# copy running-config
startup-config |
| | (Optional) Saves the running configuration to the startup configuration. |
Configuring WRED

Before configuring WRED, ensure that the CoS values are there (see the “Modifying Queuing Class Maps” section on page 7-7).

You can configure WRED on both ingress and egress queues to set minimum and maximum packet drop thresholds. The frequency of dropped packets increases as the queue size exceeds the minimum threshold. When the maximum threshold is exceeded, all packets for the CoS value are dropped.

Note

You cannot configure WRED on ingress 10-Gigabit Ethernet ports.

You can configure WRED thresholds by CoS value, and configure a single WRED threshold to use on all CoS values that you do not specifically configure.

Note

WRED and tail drop cannot be configured in the same class.

You use the system-defined queue classes for the type of module to which you want to apply the policy map. See Table 2-3 on page 2-7.

SUMMARY STEPS

1. `config t`
2. `policy-map type queuing [match-first] {queuing-policy-map-name | que-dynamic}`
3. `class type queuing class-queuing-name`

 random-detect {cos cos-list [minimum-threshold] {min-threshold [packets | bytes | kbytes | mbytes | ms | us] | percent min-percent-of-qsize} [maximum-threshold] {max-threshold [packets | bytes | kbytes | mbytes | ms | us] | percent max-percent-of-qsize}}
5. `random-detect {cos cos-list [minimum-threshold] {min-threshold [packets | bytes | kbytes | mbytes | ms | us] | percent min-percent-of-qsize} [maximum-threshold] {max-threshold [packets | bytes | kbytes | mbytes | ms | us] | percent max-percent-of-qsize}}`
6. Repeat Step 5 to configure WRED for other CoS values.
7. Repeat Steps 3 through 6 to configure WRED for other queuing classes.
8. `exit`
9. `show policy-map type queuing [policy-map-name | que-dynamic]`
10. `copy running-config startup-config`
Configuring Queuing and Scheduling

Send document comments to nexus7k-docfeedback@cisco.com.

Detailed Steps

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>config t</code></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:
switch# config t
switch(config)#</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>`policy-map type queuing [match-first] [policy-map-name</td>
<td>que-dynamic]`</td>
</tr>
<tr>
<td></td>
<td>Example:
switch(config)# policy-map type queuing shape_queues
switch(config-pmap-que)#</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td><code>class type queuing class-queuing-name</code></td>
<td>Configures the class map of type queuing, and then enters policy-map class queuing mode. Class queuing names are listed in Table 2-3.</td>
</tr>
<tr>
<td></td>
<td>Example:
switch(config)# class type queuing 1p3q4t-out-pq1
switch(config-pmap-c-que)#</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>`random-detect cos-based [aggregate [minimum-threshold] {min-threshold [packets</td>
<td>bytes</td>
</tr>
<tr>
<td></td>
<td>Example 1:
switch(config-pmap-c-que)# random-detect cos-based aggregate 10 mbytes 20 mbytes</td>
<td>Example 1 shows how to set the aggregate WRED thresholds for nonconfigured classes of traffic to a minimum of 10 MB and a maximum of 20 MB.</td>
</tr>
<tr>
<td></td>
<td>Example 2:
switch(config-pmap-c-que)# random-detect cos-based aggregate percent 10 percent 20</td>
<td>Example 2 shows how to set the aggregate WRED thresholds for nonconfigured classes of traffic to a minimum of 10 percent and a maximum of 20 percent of the queue size. Note You can specify only one <code>random-detect cos-based</code> command in a class.</td>
</tr>
</tbody>
</table>
Configuring Congestion Management

You can configure only one of the following congestion management methods in a policy map:

- Allocate a minimum data rate to a queue by using the `bandwidth` and `bandwidth remaining` commands.
- Allocate all data for a class of traffic to a priority queue by using the `priority` command. You can use the `bandwidth remaining` command to distribute remaining traffic among the nonpriority queues. By default, the system evenly distributes the remaining bandwidth among the nonpriority queues.
- Allocate a maximum data rate to a queue by using the `shape` command.

Command Table

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>random-detect (cos cos-list [aggregate] [minimum-threshold] [min-threshold] [bandwidth remaining] [packets</td>
<td>bytes</td>
</tr>
<tr>
<td>6</td>
<td>random-detect cos 5,7 15 mbytes 20 mbytes</td>
<td>—</td>
</tr>
<tr>
<td>7</td>
<td>random-detect cos 5 percent 5 percent 15</td>
<td>—</td>
</tr>
<tr>
<td>8</td>
<td>exit</td>
<td>Exits policy-map queue mode and enters configuration mode.</td>
</tr>
<tr>
<td>9</td>
<td>show policy-map type queuing [policy-map-name</td>
<td>que-dynamic]</td>
</tr>
<tr>
<td>10</td>
<td>copy running-config startup-config</td>
<td>(Optional) Saves the running configuration to the startup configuration.</td>
</tr>
</tbody>
</table>
In addition to the congestion management feature that you choose, you can configure one of the following queue features in each class of a policy map:

- Taildrop thresholds based on queue size and queue limit usage. For more information, see the “Configuring Tail Drop” section on page 7-9.
- WRED for preferential packet drops based on CoS. For more information, see the “Configuring WRED” section on page 7-11.

This section includes the following topics:

- Configuring Bandwidth and Bandwidth Remaining, page 7-14
- Configuring Priority, page 7-16
- Configuring Shaping, page 7-18

Configuring Bandwidth and Bandwidth Remaining

You can configure the bandwidth and bandwidth remaining on both ingress and egress queues to allocate a minimum percentage of the interface bandwidth to a queue. You use the system-defined ingress or egress queue class for the type of module to which you want to apply the policy map. See Table 2-3 on page 2-7 for the list of system-defined ingress or egress queue classes for each module.

Note
If you configure bandwidth, you cannot configure priority or shaping in the same policy map.

SUMMARY STEPS

1. `config t`
2. `policy-map type queuing [match-first] {queuing-policy-map-name | que-dynamic}`
3. `class type queuing class-queuing-name`
4. `bandwidth {rate [bps | kbps | mbps | gbps] | percent percent} or bandwidth remaining percent percent`
5. Repeat Steps 3 to 4 to assign bandwidth or bandwidth remaining for other queuing classes.
6. `exit`
7. `show policy-map type queuing [policy-map-name | que-dynamic]`
8. `copy running-config startup-config`
Configuring Queuing and Scheduling

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>config t</code></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Example: <code>switch# config t</code> <code>switch(config)#</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>`policy-map type queuing [match-first] [policy-map-name</td>
<td>que-dynamic]`</td>
</tr>
<tr>
<td>Example: <code>switch(config)# policy-map type queuing</code> <code>shape_queues</code> <code>switch(config-pmap-que)#</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td><code>class type queuing class-queuing-name</code></td>
<td>Configures the class map of type queuing, and then enters policy-map class queuing mode. You must select one of the system-defined output queues. Class queuing names are listed in Table 2-3.</td>
</tr>
<tr>
<td>Example: <code>switch(config)# class type queuing</code> <code>1p3q4t-out-pq1</code> <code>switch(config-pmap-c-que)#</code></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>`bandwidth (rate [bps</td>
<td>kbps</td>
</tr>
<tr>
<td>Example 1: <code>switch(config-pmap-c-que)# bandwidth 10</code> <code>mbps</code></td>
<td>Example 1 shows how to set the bandwidth to a minimum rate of 10 megabits per second (mbps).</td>
</tr>
<tr>
<td>Example 2: <code>switch(config-pmap-c-que)# bandwidth</code> <code>percent 25</code></td>
<td>Example 2 shows how to set the bandwidth to a minimum of 25 percent of the underlying link rate.</td>
</tr>
<tr>
<td><code>bandwidth remaining percent percent</code></td>
<td>(Optional) Assigns the percent of the bandwidth that remains to this queue. The range is from 0 to 100.</td>
</tr>
<tr>
<td>Example: <code>switch(config-pmap-c-que)# bandwidth remaining percent 25</code></td>
<td>The example shows how to set the bandwidth for this queue to 25 percent of the remaining bandwidth.</td>
</tr>
</tbody>
</table>
Configuring Queuing and Scheduling

Configuring Priority

If you don’t specify the priority, the system-defined egress pq queues behave like normal queues. (See Chapter 2, “Using Modular QoS CLI” for information on the system-defined type queuing class maps.)

You can configure only one level of priority on an egress priority queue. You use the system-defined priority queue class for the type of module to which you want to apply the policy map. See Table 2-3 on page 2-7 for the list of available system-defined, class maps for each module.

For the nonpriority queues, you can configure how much of the remaining bandwidth to assign to each queue. By default, the device evenly distributes the remaining bandwidth among the nonpriority queues.

Note

If you configure priority, you cannot configure bandwidth or shaping in the same policy map.

SUMMARY STEPS

1. `config t`
2. `policy-map type queuing [match-first] {queuing-policy-map-name | que-dynamic}`
3. `class type queuing class-queuing-name`
4. `priority [level value]`
5. `class type queuing class-queuing-name`
6. `bandwidth remaining percent percent`
7. Repeat Steps 5 to 6 to assign bandwidth remaining for the other nonpriority queues.
8. `exit`
9. `show policy-map type queuing [policy-map-name | que-dynamic]`
10. `copy running-config startup-config`
Chapter 7 Configuring Queuing and Scheduling

Send document comments to nexus7k-docfeedback@cisco.com.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>config t</td>
</tr>
<tr>
<td>Example: switch# config t switch(config)#</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>policy-map type queuing [match-first] [policy-map-name</td>
</tr>
<tr>
<td>Example: switch(config)# policy-map type queuing priority_queue1 switch(config-pmap-que)#</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>class type queuing class-queuing-name</td>
</tr>
<tr>
<td>Example: switch(config-pmap-que)# class type queuing ip3q4t-out-pq1 switch(config-pmap-c-que)#</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>priority [level value]</td>
</tr>
<tr>
<td>Example: switch(config-pmap-c-que)# priority</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>class type queuing class-queuing-name</td>
</tr>
<tr>
<td>Example: switch(config-pmap-c-que)# class type queuing ip3q4t-out-q2</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>bandwidth remaining percent percent</td>
</tr>
<tr>
<td>Example: switch(config-pmap-c-que)# bandwidth remaining percent 25</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Shaping

Note

The device forces the shape rate to the closest value in the following percentage intervals: 100, 50, 33, 25, 12.5, 6.25, 3.13, or 1.07.

You can configure shaping on an egress queue to impose a maximum rate on it. You use the system-defined egress queue class for the type of module to which you want to apply the policy map. See Table 2-3 on page 2-7 for the list of available system-defined class maps for each module.

Note

If you configure shaping, you cannot configure bandwidth or priority in the same policy map.

SUMMARY STEPS

1. `config t`
2. `policy-map type queuing [match-first] {queueing-policy-map-name | que-dynamic}`
3. `class type queuing class-queuing-name`
4. `shape [average] {rate [bps | kbps | mbps | gbps] | percent percent}`
5. Repeat Steps 3 to 4 to configure shaping for other queuing classes.
6. `exit`
7. `show policy-map type queuing [policy-map-name | que-dynamic]`
8. `copy running-config startup-config`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>config t
 Example: switch# config t
 switch(config)#</td>
</tr>
<tr>
<td>Enters configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>policy-map type queuing [match-first] [policy-map-name</td>
</tr>
<tr>
<td>Configures the policy map of type queuing, and then enters policy-map mode for the policy-map name you specify. Policy-map names can contain alphabetic, hyphen, or underscore characters, are case sensitive, and can be up to 40 characters.</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>class type queuing class-queuing-name
 Example: switch(config)# class type queuing lp3q4t-out-pql
 switch(config-pmap-c-que)#</td>
</tr>
<tr>
<td>Configures the class map of type queuing and then enters policy-map class queuing mode. You must select one of the system-defined output queues. Class queuing names are listed in Table 2-3.</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>shape [average] {rate [bps</td>
</tr>
<tr>
<td>Assigns a maximum rate on an output queue. You can configure a data rate by the bit rate or as a percentage of the underlying interface link rate. The default bit rate is in bits per second (bps). The data rate is from 8000 bps to 10 gbps. The percentage is from 1 to 100.
 Note You can use only the percent keyword for interfaces set to autonegotiate.</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>(Optional) Repeat Steps 3 to 4 to configure shaping for other queuing classes.</td>
</tr>
<tr>
<td>Step 6</td>
<td>exit
 Example: switch(config-cmap-que)# exit
 switch(config)#</td>
</tr>
<tr>
<td>Exits policy-map queue mode and enters configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>show policy-map type queuing [policy-map-name</td>
</tr>
<tr>
<td>(Optional) Displays information about all configured policy maps or a selected policy map of type queuing.</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>copy running-config startup-config
 Example: switch(config)# copy running-config startup-config</td>
</tr>
<tr>
<td>(Optional) Saves the running configuration to the startup configuration.</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Queue Limits

You can configure the queue limit on both ingress and egress queues. The device drops any packets over the queue limit. You use the system-defined queue classes for the type of module to which you want to apply the policy map. See Table 2-3 on page 2-7.

SUMMARY STEPS

1. config t
2. policy-map type queuing [match-first] {queuing-policy-map-name | que-dynamic}
3. class type queuing class-queuing-name
4. queue-limit {threshold [packets | bytes | kbytes | mbytes | ms | us] | percent percent_of_queue_limit}
5. exit
6. exit
7. show policy-map type queuing [policy-map-name | que-dynamic]
8. copy running-config startup-config
Chapter 7 Configuring Queuing and Scheduling

Send document comments to nexus7k-docfeedback@cisco.com.

Detailed Steps

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>config t
Example:
switch# config t
switch(config)#</td>
</tr>
<tr>
<td>Step 2</td>
<td>policy-map type queuing (match-first)
**[policy-map-name</td>
</tr>
<tr>
<td>Step 3</td>
<td>class type queuing class-queuing-name
Example:
switch(config)# class type queuing 1p3q4t-out-pq1
switch(config-pmap-c-que)#</td>
</tr>
<tr>
<td>Step 4</td>
<td>queue-limit (threshold
**[packets</td>
</tr>
<tr>
<td>Step 5</td>
<td>exit
Example:
switch(config-pmap-c-que)# exit
switch(config-pmap-que)#</td>
</tr>
<tr>
<td>Step 6</td>
<td>exit
Example:
switch(config-pmap-que)# exit
switch(config)#</td>
</tr>
<tr>
<td>Step 7</td>
<td>show policy-map type queuing
**[policy-map-name</td>
</tr>
<tr>
<td>Step 8</td>
<td>copy running-config startup-config
Example:
switch(config)# copy running-config startup-config</td>
</tr>
</tbody>
</table>
Verifying Queuing and Scheduling Configuration

To display the queuing and scheduling configuration information, perform one of the following tasks:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show class-map type queuing [class-queuing-name]</td>
<td>Displays information about all configured class maps or a selected class map of type queuing. Class queuing names are listed in Table 2-3.</td>
</tr>
<tr>
<td>show policy-map type queuing [policy-map-name</td>
<td>que-dynamic]</td>
</tr>
</tbody>
</table>

For detailed information about the fields in the output from these commands, see the Cisco Nexus 7000 Series NX-OS Quality of Service Command Reference, Release 4.2.

Example Configurations

In this section you can find examples of configuring queuing and scheduling.

This section includes the following topics:

- Setting Ingress Port CoS Configuration Example, page 7-22
- Priority and Queue Limit Configuration Example, page 7-23
- Shaping and Tail Drop Configuration Example, page 7-23
- Bandwidth and WRED Configuration Example, page 7-23

Setting Ingress Port CoS Configuration Example

Note Setting the ingress port CoS value makes the specified interfaces untrusted.

Note Ensure that you are using the default queue for the port type that you are configuring. See Chapter 2, “Using Modular QoS CLI” for information on the default queue for the port types.

The following example shows how to configure ingress port CoS for 1-Gigabit Ethernet ports:

```
config
t
  policy-map type queuing untrusted_port_cos
  class type queuing 2q4t-in-q-default
  set cos 5
  interface ethernet 2/1
  service-policy type queuing input untrusted_port_cos
```
The following example shows how to configure ingress port CoS for 10-Gigabit Ethernet ports:

```
config t
  policy-map type queuing untrusted_port_cos
    class type queuing 8q2t-in-q-default
    set cos 5
  interface ethernet 2/1
    service-policy type queuing input untrusted_port_cos
```

Priority and Queue Limit Configuration Example

The following example shows how to configure the priority and queue limit features:

```
config t
  class-map type queuing match-any 1p3q4t-out-pq1
    match cos 5-7
  class-map type queuing match-any 1p3q4t-out-q2
    match cos 3-4
  class-map type queuing match-any 1p3q4t-out-q3
    match cos 0-2
  policy-map type queuing priority_queue1
    class type queue 1p3q4t-out-pq1
      priority
    class type queue 1p3q4t-out-q2
      bandwidth remaining percent 60
      queue-limit 1 mbytes
    class type queue 1p3q4t-out-q3
      bandwidth remaining percent 40
      queue-limit 2 mbytes
```

Shaping and Tail Drop Configuration Example

The following example shows how to configure the shaping and taildrop features:

```
config t
  class-map type queuing match-any 1p3q4t-out-pq1
    match cos 5-7
  class-map type queuing match-any 1p3q4t-out-q2
    match cos 3-4
  policy-map type queuing shape_dt
    class type queue 1p3q4t-out-pq1
      shape percent 50
      queue-limit cos 5 percent 10
      queue-limit cos 6 percent 10
    class type queue 1p3q4t-out-q2
      shape percent 25
      queue-limit cos 4 percent 15
```

Note

If the priority keyword is not specified for a pq1 queue, the queue is just a normal queue, not a priority queue.

Bandwidth and WRED Configuration Example

The following example shows how to configure the bandwidth and WRED features:

```
config t
  class-map type queuing match-any 1p3q4t-out-pq1
```

Send document comments to nexus7k-docfeedback@cisco.com.
match cos 5-7
class-map type queuing match-any 1p3q4t-out-q2
match cos 3-4
policy-map type queuing bandwidth_wred
class type queuing 1p3q4t-out-pq1
 bandwidth percent 50
 random-detect cos-based
 random-detect cos 5 minimum-threshold percent 10 maximum-threshold percent 30
 random-detect cos 6 minimum-threshold percent 40 maximum-threshold percent 60
class type queuing 1p3q4t-out-q2
 bandwidth percent 25
 random-detect cos-based
 random-detect cos 4 minimum-threshold percent 20 maximum-threshold percent 40

Feature History for Queuing

Table 7-2 lists the release history for this feature.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>No change.</td>
<td>4.1(2)</td>
<td>-</td>
</tr>
<tr>
<td>No change</td>
<td>4.2(1)</td>
<td>-</td>
</tr>
</tbody>
</table>
Monitoring QoS Statistics

This chapter describes how to enable, display, and clear QoS statistics on the Cisco Nexus 7000 Series NX-OS device.

This chapter includes the following sections:

- Licensing Requirements for Monitoring QoS Statistics, page 8-1
- Prerequisites for Monitoring QoS Statistics, page 8-1
- Enabling Statistics, page 8-2
- Displaying Statistics, page 8-3
- Clearing Statistics, page 8-3
- Feature History for Statistics, page 8-5

Information about QoS Statistics

You can display various QoS statistics for the device. Statistics are enabled by default, but you can disable this feature. (See the “Example Display” section on page 8-3 for the statistics displayed.)

Licensing Requirements for Monitoring QoS Statistics

The following table shows the licensing requirements for this feature:

<table>
<thead>
<tr>
<th>Product</th>
<th>License Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX-OS</td>
<td>QoS requires no license. Any feature not included in a license package is bundled with the Cisco NX-OS system images and is provided at no extra charge to you. For a complete explanation of the NX-OS licensing scheme, see the Cisco Nexus 7000 Series NX-OS Licensing Guide, Release 4.2. However, using VDCs requires an Advanced Services license.</td>
</tr>
</tbody>
</table>

Prerequisites for Monitoring QoS Statistics

Monitoring QoS statistics has the following prerequisites:
Enabling Statistics

You can enable or disable QoS statistics for all interfaces on the device. By default, QoS statistics are enabled.

SUMMARY STEPS

1. `config t`
2. `qos statistics`
 - `no qos statistics`
3. `show policy-map interface`
 - `show policy-map vlan`
4. `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>config t</code></td>
</tr>
<tr>
<td>Example:</td>
<td>switch# <code>config t</code> no qos statistics</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>qos statistics</code></td>
</tr>
<tr>
<td>Example:</td>
<td>switch(config)# <code>qos statistics</code></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>show policy-map interface</code></td>
</tr>
<tr>
<td>Example:</td>
<td>switch(config)# <code>show policy-map interface</code></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>copy running-config startup-config</code></td>
</tr>
<tr>
<td>Example:</td>
<td>switch(config)# <code>copy running-config startup-config</code></td>
</tr>
</tbody>
</table>
Displaying Statistics

You can display QoS statistics for all interfaces or a selected interface, data direction, or QoS type.

SUMMARY STEPS

1. `show policy-map [policy-map-name] [interface] [vlan] [input | output] [type {qos | queuing}]`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Displays statistics and the configured policy maps on all interfaces or the specified interface, all VLANs or specified VLANs, data direction, and QoS type.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Displays statistics and the configured policy maps on all interfaces or the specified interface, all VLANs or the specified VLANs, data direction, or QoS type.</td>
</tr>
</tbody>
</table>

Clearing Statistics

You can clear QoS statistics for all interfaces or a selected interface, data direction, or QoS type.

SUMMARY STEPS

1. `clear qos statistics [interface] [vlan] [input | output] [type {qos | queuing}]`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Displays statistics and the configured policy maps on all interfaces or the specified interface, all VLANs or specified VLANs, data direction, and QoS type.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Displays statistics and the configured policy maps on all interfaces or the specified interface, all VLANs or the specified VLANs, data direction, or QoS type.</td>
</tr>
</tbody>
</table>

Example Display

The following is an example of a display of the QoS statistics:

```
switch(config)# show policy-map interface ethernet 8/1

Global statistics status: enabled
Ethernet8/1
Service-policy (qos) input: pmap
policy statistics status: enabled
Class-map (qos): map (match-all)
```
0 packets, 0 bytes
5 minute offered rate 0 bps, drop rate 0 bps
Match: cos 0
police cir 10 mbps bc 200 ms
conformed 0 bytes, 0 bps action: transmit
violated 0 bytes, 0 bps action: drop
Class-map (qos): map1 (match-all)
0 packets, 0 bytes
5 minute offered rate 0 bps, drop rate 0 bps
Match: dscp 0
police cir 10 mbps bc 200 ms
conformed 0 bytes, 0 bps action: transmit
violated 0 bytes, 0 bps action: drop
Class-map (qos): map2 (match-all)
0 packets, 0 bytes
5 minute offered rate 0 bps, drop rate 0 bps
Match: precedence 5
police cir 20 mbps bc 200 ms
conformed 0 bytes, 0 bps action: transmit
violated 0 bytes, 0 bps action: drop
Class-map (qos): map3 (match-all)
0 packets, 0 bytes
5 minute offered rate 0 bps, drop rate 0 bps
Match: cos 3
police cir 30 mbps bc 200 ms
conformed 0 bytes, 0 bps action: transmit
violated 0 bytes, 0 bps action: drop
Class-map (qos): map4 (match-all)
0 packets, 0 bytes
5 minute offered rate 0 bps, drop rate 0 bps
Match: packet length 100
police cir 40 mbps bc 200 ms
conformed 0 bytes, 0 bps action: transmit
violated 0 bytes, 0 bps action: drop
Class-map (qos): map5 (match-all)
0 packets, 0 bytes
5 minute offered rate 0 bps, drop rate 0 bps
Match: access-group foo
police cir 50 mbps bc 200 ms
conformed 0 bytes, 0 bps action: transmit
violated 0 bytes, 0 bps action: drop
Class-map (qos): class-default (match-any)
0 packets, 0 bytes
5 minute offered rate 0 bps, drop rate 0 bps
police cir 60 mbps bc 200 ms
conformed 0 bytes, 0 bps action: transmit
violated 0 bytes, 0 bps action: drop

See the Cisco NX-OS Quality of Service Command Reference for complete information on the show policy-map command.
Feature History for Statistics

Table 8-1 lists the release history for this feature.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>No change.</td>
<td>4.1(2)</td>
<td>-</td>
</tr>
<tr>
<td>No change</td>
<td>4.2(1)</td>
<td>-</td>
</tr>
</tbody>
</table>
This appendix contains additional information related to implementing QoS.

This appendix includes the following sections:

- Related Documents, page 9-1
- RFCs, page 9-1

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDCs</td>
<td>Cisco Nexus 7000 Series NX-OS Virtual Device Context Configuration Guide, Release 4.2</td>
</tr>
<tr>
<td>CLI commands</td>
<td>Cisco Nexus 7000 Series NX-OS Quality of Service Command Reference, Release 4.2</td>
</tr>
<tr>
<td>Release Notes</td>
<td>Cisco Nexus 7000 Series NX-OS Release Notes, Release 4.2</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 2475</td>
<td>Architecture for Differentiated Services</td>
</tr>
<tr>
<td>RFC 2697</td>
<td>A Single Rate Three Color Marker</td>
</tr>
<tr>
<td>RFC 2698</td>
<td>A Dual Rate Three Color Marker</td>
</tr>
<tr>
<td>RFC 3289</td>
<td>Management Information Base for the Differentiated Services Architecture</td>
</tr>
</tbody>
</table>
Send document comments to nexus7k-docfeedback@cisco.com.
Configuration Limits for Cisco NX-OS Quality of Service Configuration Features, Release 4.2

The features supported by Cisco Nexus 7000 Series NX-OS have maximum configuration limits. For some of the features, we have verified configurations that support limits less than the maximum. Table A-1 lists the Cisco verified limits and maximum limits for Quality of Service (QoS) features using Cisco NX-OS Release 4.2.

Table A-1 Cisco NX-OS Release 4.2 QoS Configuration Limits

<table>
<thead>
<tr>
<th>Feature</th>
<th>Maximum Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policers</td>
<td>16384</td>
</tr>
<tr>
<td>Shared policers</td>
<td>16384</td>
</tr>
<tr>
<td>Number of policer profiles</td>
<td>4000</td>
</tr>
<tr>
<td>Number of classes</td>
<td>4000</td>
</tr>
<tr>
<td>Number of class-maps per policy</td>
<td>128</td>
</tr>
<tr>
<td>Number of matches</td>
<td>1024</td>
</tr>
<tr>
<td>Number of policies</td>
<td>2000</td>
</tr>
<tr>
<td>Mutation table maps for ingress interfaces</td>
<td>14</td>
</tr>
<tr>
<td>Mutation table maps for egress interfaces</td>
<td>15</td>
</tr>
<tr>
<td>QoS groups</td>
<td>126</td>
</tr>
<tr>
<td>Classes in a queuing policy map</td>
<td>64</td>
</tr>
</tbody>
</table>
access control lists. See ACLs
ACLs
 classification criteria 3-2
 configuring matching 3-4
 IP version 3-4
 matching sequence 3-2
 permit-deny 3-4
Address Resolution Protocol. See ARP
ARP
 classification criteria 3-2

bandwidth allocation
 bandwidth remaining 7-13, 7-14
 configuration example 7-23
 configuring 7-14
 defined 7-1
 egress traffic 7-3
 ingress traffic 7-3
 shaping 7-13
burst sizes
 policing 6-5

CIR
 cir-markdown-map 6-5
 defined 6-3
classification
 and class maps 3-1

class-default 3-2
configuration example 3-16
criteria 3-1
defined 3-1
egress traffic 3-2
guidelines 3-3
ingress traffic 3-2
limitations 3-3
marking 4-1
matching alternatives 3-1
multiple criteria 3-2
troubleshooting 3-2, 3-4
class map
 default 2-7
 match all 2-1, 3-2
 queuing default 2-7
 queuing system-defined 2-7
 system-defined 2-7
class-map
 troubleshooting 2-1, 3-2
class maps
 and marking 4-1
 and policy maps 2-7
 applying description 2-15
 classifying traffic 2-3
 configuration example 3-16
 configuring 2-10
 description 2-1
 matching other class maps 3-14
 maximum criteria 3-3
 modifying 2-10, 7-2, 7-7
 modifying CoS values 7-5
 policing command 6-8
index

Send document comments to nexus7k-docfeedback@cisco.com.

queuing 2-10, 7-4

system-defined 2-7, 7-7, 7-9, 7-11, 7-14, 7-16, 7-18, 7-20

system-defined for type queuing 2-7, 7-5

troubleshooting 2-10

VDCs 3-2

verifying 2-16, 3-16

class-maps

troubleshooting 7-7

Class of Service. See CoS

CLNS

classification criteria 3-2

color-aware policers

description 6-1

color-aware policing

conditions 6-1

description 6-8

steps to configure 6-9

configuration limits

description (table) A-1

conforming traffic

actions 6-4, 6-5

color-aware policing 6-1

congestion avoidance

taildrop 7-2

WRED 7-2

congestion management

configuring 7-13

egress traffic 7-3

ingress traffic 7-3

policy maps 7-13

Connectionless Network Service. See CLNS

COS

queuing 7-2

CoS

classification criteria 3-1

configuring marking 4-7

marking 4-2

modified in queues 7-7

modifying 7-5

modifying system-defined class maps 7-7

modifying values 7-2

policy maps 7-14

queuing 7-5

taildrop 7-3, 7-9

values 7-2

WRED 7-11

CoS-to-queue mapping

modifying 7-2

CoS value

configuring matching 3-12

D

data rates

policing 6-3

defaults 1-6

default settings

bandwidth 7-16

per interface 2-7

statistics 8-1

Differentiated Services Code Point. See DSCP

DiffServ. See DSCP

discard class

classification criteria 3-2

configuring marking 4-9

configuring matching 3-9, 3-10

marking 4-2

documentation

additional publications i-xiii

dropping packets

policing 6-1

DSCP 4-1

classification criteria 3-1

configuring for marking 4-3

configuring matching 3-4

marking 4-1

modifying with policy maps 4-10

policing 6-8
standard values 3-4
trusted 4-10

egress traffic
bandwidth allocation 7-3
congestion management 7-3
Layer 2 interfaces 1-4
Layer 3 interfaces 1-4
marking 4-2
matching 3-2
policers 6-3
QoS policy map 4-10
queue limits 7-20
shaping 7-18
shared-mode port groups 7-4
examples
bandwidth allocation 7-23
classification 3-16
class maps 3-16
marking 4-15
mutation mapping 5-5
policing 6-18
priority 7-23
queueing 7-22
queue limit 7-23
scheduling 7-22
setting ingress port CoS 7-22
shaping 7-23
statistics 8-3	
tailldrop 7-23
WRED 7-23
exceeding traffic
actions 6-5
color-aware 6-1

G

guidelines
classification 3-3
marking 4-2
mutation mapping 5-2
policing 6-2
queuing 7-4
scheduling 7-4
shared policers 6-2

I

ingress traffic
applying CoS values 7-6
bandwidth allocation 7-3
congestion management 7-3
Layer 2 interfaces 1-4
Layer 3 interfaces 1-4
marking 4-2
matching 3-2
policers 6-3
QoS policy map 4-10
queue limits 7-20
queue size 7-9
setting ingress CoS 7-2
interfaces
default queuing class maps
defined 2-7
default queuing policy 1-6

IP precedence 4-1
classification criteria 3-1
configuring marking 4-5
configuring matching 3-6
marking 4-1
values 3-6
IPv6
using 1-2
Layer 2 ports
 policies applied 3-3
licenses
 VLANs 2-2, 3-2, 4-2, 5-2, 6-2, 7-3, 8-1
limitations
 classification 3-3
 marking 4-2
 mutation mapping 5-2
 policing 6-2
 queuing 7-4
 scheduling 7-4
limits
 description (table) A-1
 QoS features A-1

markdown maps
 policing 6-5, 6-13
marking 4-1
 and class maps 4-1
 and policy maps 4-1
 and table maps 4-12 to 4-14
 classification 4-1
 configuration example 4-15
 configuring DSCP 4-3
 configuring for CoS 4-7
 configuring for discard class 4-9
 configuring for IP precedence 4-5
 configuring for QoS internal label 4-8
CoS 4-2
 description 4-1
 discard class 4-2
 egress traffic 4-2
 guidelines 4-2
 ingress traffic 4-2
 limitations 4-2
multiple features 4-3
 policing 6-1
 QoS internal label 4-2
 qos policies 2-3
 troubleshooting 4-1, 4-2, 4-3, 4-13
 verifying 4-15
matching
 all criteria 3-2
 configuring for ACLs 3-4
 configuring for CoS values 3-12
 configuring for discard class 3-9, 3-10
 configuring for DSCP 3-4
 configuring for IP precedence 3-6
 configuring for Layer 3 packet length 3-11
 configuring for protocol 3-8
 configuring for QoS internal label 3-9
 configuring RTP 3-13
 configuring UDP port ranges 3-13
 egress traffic 3-2
 ignore specific criteria 3-2
 ingress traffic 3-2
 maximum criteria 3-3
 multiple criteria 3-2
 other class maps 3-14
 troubleshooting 3-2, 3-9, 3-10
modifying QoS fields
 marking 4-1
Modular QoS CLI. See MQC
mutation
 troubleshooting 5-1
mutation mapping
 configuration example 5-5
 configuring 5-3
 guidelines 5-2
 limitations 5-2
 policy maps 5-1, 5-3
 sequence on egress traffic 5-2
 sequence on ingress traffic 5-1
 service policies 5-3
Index

troubleshooting 5-3
values 5-3
verifying 5-5

mutation marking
description 5-1

N

named aggregate policer
shared policers 6-15

P

peak information rate. See PIR
PIR
defined 6-3
pir-markdown-map 6-5
policers
applied to distributed traffic 6-2
color-aware 6-1
dual-rate
description 6-1
single-rate
description 6-1
types 6-4
policies
applying to interfaces 2-2
policing
burst sizes 6-5
class maps 6-8
color-aware 2-7, 6-3, 6-8, 6-9
configuration examples 6-18
data rates 6-3, 6-5
description 6-1
dropping packets 6-1
dual-rate 6-3
egress 6-13
guidelines 6-2

ingress 6-13
limitations 6-2
markdown 6-13
markdown maps 6-5
marking packets 6-1
multiple interfaces 6-2
named aggregate policer 6-15
qos policies 2-3
single-rate 6-3
traffic that exceeds 6-1
troubleshooting 6-4
verifying 6-18

policy maps
and class maps 2-3, 2-13
and marking 4-1
applying description 2-15
bandwidth 7-14
configuring 2-13
congestion management 7-13
CoS 7-14
default queuing policy maps 2-9
description 2-2
detaching 2-18
hierarchical 5-1
marking 4-3, 4-10
maximum classes 3-3
modifying 2-13
modifying CoS value 7-5
mutation mapping 5-1, 5-3
priority 7-14
queue size 7-14
queuing 7-4
setting DSCP value 4-10
shaping 7-14
shared policers 6-2
system-defined 2-9, 7-5
taildrop 7-14
verifying 2-16, 4-15
WRED 7-14
port channels
 QoS policies 2-17
ports
 trusted 7-5
 untrusted 7-5
priority
 configuration example 7-23
 default settings 7-16
queues 7-3
priority queues
 configuring 7-16
protocol
 classification criteria 3-2
 configuring matching 3-8
 valid matches 3-8
QoS
commit model 2-19
default behavior 1-6
enabling 2-17
limits A-1
queueing 7-1
scheduling 7-1
Session Manager 2-19
statistics 8-2
steps to configure 1-2
troubleshooting 7-2, 7-11
QoS internal label
 classification criteria 3-1
 configuring marking 4-8
 configuring matching 3-9
 marking 4-2
QoS policies
 applying 2-17
 attaching 2-17
 implementing 2-17
 multiple interfaces 2-17
port channels 2-17
VLANs 2-17
qos policies
 description 2-2, 2-3
 maximum 2-2
QoS troubleshooting 7-14
Quality of Service. See QoS
queue limits
 configuration example 7-23
 configuring 7-20
queues
 nonpriority 7-16
 priority 7-3, 7-16
 shaping 7-18
 strict priority 7-1
queue size
 10-Gigabit Ethernet ports 7-9
 policy maps 7-14
 thresholds 7-9, 7-11
queue type
 system-defined 7-1, 7-5
queuing
 10-Gigabit Ethernet ports 7-4
 by priority 7-1
 class maps 7-4
 CoS 7-2
 defined 7-1
 guidelines 7-4
 limitations 7-4
 mapping to a queue 7-2
 modifying CoS 7-6
 modifying queuing maps 7-2
 multiple queues 7-1
 policy maps 7-4
 pq queues 7-16
 shaping 7-3
 shared-mode port groups 7-4
 system-defined queues 7-1
 system-defined queue types 7-1
Send document comments to nexus7k-docfeedback@cisco.com.

- thresholds 7-1
- verifying 7-22

queuing and scheduling
- IPv6 1-2

queuing policies
- applying 7-4
- description 2-2, 2-5
- maximum 2-2
- queuing 2-5
- shaping 2-5

queuing policy
- default 1-6

R

Real-Time Transport Protocol. See RTP
related documents i-xiii

RTP
- classification criteria 3-2
- configuring matching 3-13

S

scheduling
- applying 7-1
- defined 7-1
- guidelines 7-4
- limitations 7-4
- modifying CoS 7-6
- queuing policies 7-4
- shared-mode port groups 7-4
- system-defined queues 7-1
- verifying 7-22

service policies
- description 2-2
- mutation mapping 5-3

Session Manager 2-19

setting ingress port CoS

configuration example 7-22
ingress traffic 7-2

shaping
- bandwidth allocation 7-13
- configuration example 7-23
- defined 7-18
- queuing 7-3
- values 7-18

shared mode
- egress queuing policy 7-4

shared policers
- configuring 6-15
- description 6-2
- guidelines 6-2
- policy maps 6-2
- rates shared 6-10
- steps to configuring 6-15
- verifying 6-18

statistics
- clearing 8-3
- default settings 8-1
- display example 8-3
- displaying 1-5, 8-3
- enabling 8-2
- monitoring 8-1

strict priority
- queues 7-1

system-defined
- class maps 2-7
- policy maps 2-9
- queue types 7-1
- type queuing class maps 2-7, 7-5
- VDCs 2-3

system-defined class maps
- bandwidth 7-14
- modifying CoS values 7-7
- priority 7-16
- queue limits 7-20
- shaping 7-18
Index

Send document comments to nexus7k-docfeedback@cisco.com.

taildrop 7-9
WRED 7-11

T

table maps
 and policy maps 2-12
 applying description 2-15
configuring 2-12
description 2-1
marking 4-12
maximums 5-3
modifying 2-12
verifying 2-16
taildrop
 class 7-9
 configuration example 7-23
congestion avoidance 7-2
CoS values 7-3, 7-9
thresholds 7-1, 7-9
thresholds
 queue size 7-9
taildrop 7-1
WRED 7-1
troubleshooting 1-1
commands 2-2
queuing 7-7
trusted port
 setting ingress port CoS 7-2
Type of Service. See TOS

U

UDP port ranges
 configuring matching 3-13
untrusted port
 setting ingress port CoS 7-2
user-defined

V

VDCs 1-1
 accessing QoS objects 2-3
 class maps 3-2, 7-3
 queuing and scheduling 7-3
verifying
 class maps 2-16, 3-16
 marking 4-15
 mutation mapping 5-5
 policing 6-18
 policy maps 2-16, 4-15
 queuing 7-22
 scheduling 7-22
 table maps 2-16
violating traffic
 actions 6-5
 color-aware policing 6-1
Virtual Device Context. See VDCs
VLANs
 licenses 2-2, 3-2, 4-2, 5-2, 6-2, 7-3, 8-1
 QoS policies 2-17

W

weighted random early detection. See WRED

WRED
 10-Gigabit Ethernet ports 7-4, 7-11
 class 7-9
 configuration example 7-23
 congestion avoidance 7-2
 CoS values 7-11
 queue size 7-11
 thresholds 7-1, 7-11