THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED "AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE. IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: https://www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1721R)

© 2018 Cisco Systems, Inc. All rights reserved.
CONTENTS

CHAPTER 1
Overview 1

CHAPTER 2
Dashboard 3
- Summary Dashboard 3
- Dashlets 4
- Network Dashboard 6
- Switch Dashboard 7
 - Installing a Switch License 9
- Storage Dashboard 10
 - Viewing Storage Enclosures Information 10
 - Viewing Storage Systems Information 10
 - Viewing Storage Enclosure Events 15
 - Viewing Storage Enclosure Topology 16
 - Viewing Storage Enclosure Traffic 16
- Introduction 17
- SAN Insights Dashboard 17
 - Viewing SAN Insights Metrics 18
 - Custom Graphing 18
 - ECT Analysis 20
 - Trend Identifier 24
 - Outlier Detection 24
- Compute 25
 - Viewing Host Enclosures 26
 - Viewing Host Events 27
 - Viewing Host Topology 27
 - View Host Traffic 28
CHAPTER 3

Topology 29
 Topology 29
 Status 29
 Scope 30
 Searching 30
 Quick Search 30
 Host name (vCenter) 31
 Host IP 31
 Host MAC 31
 VLAN 31
 VSAN ID/Name 31
 Show Panel 31
 Layouts 32
 Zooming, Panning, and Dragging 33
 Switch Slide-Out Panel 33
 Beacon 33
 Tagging 33
 More Details 33
 Link Slide-Out Panel 33
 24-Hour Traffic 34

CHAPTER 4

Inventory 35
 Viewing Inventory Information 35
 Viewing Inventory Information for Switches 35
 Viewing System Information 37
 Viewing Device Manager Information 38
 Interfaces 39
 VLAN 40
 FEX 42
 VDCs 45
 Switch On-Board Analytics 52
 Viewing Inventory Information for Modules 57
 Viewing Inventory Information for Licenses 57
Discovery 58
 Adding, Editing, Re-Discovering, Purging and Removing LAN, LAN Tasks and Switch 58
 Adding LAN Switches 58
 Editing LAN Devices 59
 Removing LAN Devices from Cisco DCNM 60
 Moving LAN Devices Under a Task 60
 Rediscover LAN Task 60
 Adding, Editing, Re-Discovering, Purging and Removing the Managed Fabrics 60
 Adding a Fabric 61
 Deleting a Fabric 62
 Editing a Fabric 62
 Moving Fabrics to Another Server Federation 62
 Rediscovering a Fabric 63
 Purging a Fabric 63
 Discovering Cisco UCS F1 Switches 63
 Adding, Editing, Removing, Rediscovering and Refreshing SMI-S Storage 71
 Adding SMI-S Provider 71
 Deleting SMI-S Provider 72
 Editing SMI-S Provider 72
 Re-Discover SMI-S Provider 73
 Purge SMI-S Provider 73
 Adding, Editing, Re-Discovering and Removing VMware Servers 73
 Adding a Virtual Center Server 73
 Deleting a VMware Server 74
 Editing a VMware Server 74
 Rediscovering a VMware Server 74

CHAPTER 5 Monitor 75
 Monitoring Switch 75
 Viewing Switch CPU Information 75
 Viewing Switch Memory Information 76
 Viewing Switch Traffic and Errors Information 76
 Viewing Switch Temperature 76
 Enabling Temperature Monitoring 77
Upgrade [ISSU] 152
 Upgrade History [ISSU] 152
 Switch Level History 158
Patch [SMU] 159
 Installation History 159
 Switch Installed Patches 162
Package [RPM] 162
 Package Installation [RPM] 163
 Switch Installed Packages 165
Maintenance Mode [GIR] 166
 Maintenance Mode 166
 Switch Maintenance History 167
Repositories 168
 Add Image or Configuration Server URL 168
 Deleting an Image or Configuration Server URL 168
 Editing an Image or Configuration Server URL 169
 File Browser 169
 Image Upload 169
SAN 170
VSANs 170
 Information About VSANs 170
 Feature Information for Configuring and Managing VSANs 175
 Default VSAN Settings 176
 Create VSAN Wizard 176
 Delete VSAN 179
 Field and Descriptions for VSANs 179
SAN Zoning 185
 Zonesets 185
 Zones 186
 Zone Members 188
 Available to Add 189
IVR Zoning 190
 Zonesets 192
 Zones 193
Contents

- Zone Members 195
- Available to Add 197
- Configuring FCIP 198
- Port Channels 199
 - Information About Configuring Port Channels 199
 - Prerequisites for Configuring Port Channels 209
 - Guidelines and Limitations for Configuring Port Channels 210
 - Default Settings 212
 - Create Port Channel Wizard 212
 - Edit Existing Port Channel 214
- Device Alias 215
 - Configuration 215
 - CFS 216
- Port Monitoring 217
- SAN Insights - Overview 219
 - Introduction 219
 - Prerequisites 220
 - Guidelines and Limitations 220
 - Configuring SAN Insights 221

CHAPTER 7 Administration 231

- DCMN Server 231
 - Starting, Restarting, and Stopping Services 231
 - Viewing Log Information 232
 - Server Properties 232
 - Configuring SFTP/TFTP/SCP Credentials 233
 - Modular Device Support 235
 - Managing Switch Groups 236
 - Adding Switch Groups 236
 - Deleting a Group or a Member of a Group 237
 - Moving a Switch Group to Another Group 237
 - Managing Custom Port Groups 237
 - Adding Custom Port Groups 237
 - Configuring Switch and Interface to the Port Group 238
Removing Port Group Member 238
Removing Port Group 239
Managing Licenses 239
 License Assignments 240
Smart License 241
Server License Files 244
Viewing Server Federation 245
 Elasticsearch Clustering 246
Multi Site Manager 246
Management Users 247
 Remote AAA 247
 Local 247
 Radius 247
 TACACS+ 248
 Switch 248
 LDAP 248
Managing Local Users 251
 Adding Local Users 251
 Deleting Local Users 251
 Editing a User 252
 User Access 252
Managing Clients 253
Performance Setup 253
 Performance Setup LAN Collections 254
 Performance Manager SAN Collections 254
 Performance Setup Thresholds 254
 Configuring User-Defined Statistics 255
Event Setup 255
 Viewing Events Registration 256
 Notification Forwarding 256
 Adding Notification Forwarding 256
 Removing Notification Forwarding 258
 Configuring EMC CallHome 258
 Event Suppression 258
Add Event Suppression Rules 259
Delete Event Suppression Rule 260
Modify Event Suppression Rule 260
Credentials Management 260
SAN Credentials 260
LAN Credentials 261
Overview

Cisco Data Center Network Manager (Cisco DCNM) automates the infrastructure of Cisco Nexus 5000, 6000, 7000, and 9000 Series Switches and Cisco MDS 9000 Series switches. Cisco DCNM enables you to manage multiple devices, while providing ready-to-use control, automation, monitoring, visualization, and troubleshooting capabilities.

The Cisco DCNM home page contains a navigation pane to the left, and shortcuts to a few Cisco DCNM features in the middle pane.

This guide provides comprehensive information about the UI functionalities for the SAN deployment functionalities.

The top pane displays the following UI elements:

- **Help (?)**: Launches the context-sensitive online help.
- **Search**: Helps locate records according to the following search criteria:
 - Name
 - IP Address
 - WWN
 - Alias
 - MAC Address
 - Serial Number
- **User Role**: Displays the role of the user who is currently logged in, for example, admin.
- **Gear icon**: Displays information about Cisco DCNM, enables you to change the Cisco DCNM UI password, and allows you to log out from Cisco DCNM UI.

For more information about Cisco DCNM, see:

CHAPTER 2

Dashboard

This chapter contains the following topics:

- Summary Dashboard, on page 3
- Network Dashboard, on page 6
- Storage Dashboard, on page 10
- Introduction, on page 17
- SAN Insights Dashboard, on page 17
- Compute, on page 25

Summary Dashboard

The intent of the Summary dashboard is to enable network and storage administrators to focus on particular areas of concern around the health and performance of data center switching. This information is provided as 24-hour snapshots. The functional view of LAN and SAN switching consists of six dynamic dashlets that display information in the context of the selected scope by default. The scope can be adjusted in the upper right corner of the window to display focused information that is particular to the managed domain. It offers details of a specific topology or set of topologies that is a part of the data center scope.

The various scopes that are available on the Cisco Data Center Network Manager (DCNM) web interface are:

- Data Center
- Default_SAN
- Default_LAN
- Each SAN Fabric
- Custom scopes that you create

From the left menu bar, choose Dashboard > Summary. The Summary window displays the default dashlets. The following are the default dashlets that appear in the Summary window:

- Events
- Data Center
- Network Map
- Link Traffic
• Audit Log
• Server Status

From the Dashlets drop-down list, you can choose more dashlets so that they are added to the Summary dashboard.

The panels can be added, removed, and dragged around to reorder.

Dashlets

By default, a subset of the available dashlets is automatically displayed in the dashboard. To add a dashlet that is not automatically displayed in a dashboard, from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1
Choose Dashboard > Summary.

Step 2
From the Dashlets drop-down list, choose the dashlet that you want to add in the dashboard.

In the Dashlets drop-down list, an icon appears before the selected dashlet.

The following table lists the dashlets that you can add on the Summary Dashboard window.

<table>
<thead>
<tr>
<th>Dashlet</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Events</td>
<td>Displays events with Critical, Error, and Warning severity. In this dashlet, click the Show Acknowledged Events link to go to the Monitor > Switch > Events.</td>
</tr>
<tr>
<td>Link Traffic</td>
<td>Displays a diagram of Inter-Switch Link (ISL) and saturation link for transmitting and receiving in the data center.</td>
</tr>
<tr>
<td>Data Center</td>
<td>Displays the number of access, spine and leaf devices, and a generic health score for each switch group in the current scope. Devices are aggregated by type within a switch group.</td>
</tr>
<tr>
<td>Audit Log</td>
<td>Displays the accounting log table of Cisco DCNM.</td>
</tr>
<tr>
<td>Network Map</td>
<td>Displays the populated switch groups that are visible in your Role Based Access Control (RBAC) scope on a world map. If you use the scope selector, it limits the set of switch groups displayed. If you use the pop-up option, the map opens in a new tab and can be configured.</td>
</tr>
<tr>
<td></td>
<td>• The network map dialog box has properties that are different from the Summary dashboard view:</td>
</tr>
<tr>
<td>Dashlet</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| | • You can click and drag nodes to move them around the map. The map saves their new positions.
 • You can double click a node to trigger a slider that contains the summary inventory information pertaining to a specific switch group.
 • You can upload an image of your choice as the background to the network map.
 You will be prompted to upload an image file with recommended dimension, which is the current window size. Reset returns the network map to its default state, resetting the position of the nodes and clearing the custom image. | |
<p>| Server Status | Displays the status of DCNM and federation servers, and the health check status for the components. | |
| Top ISLs/Trunks | Displays the performance data for the top ten performing ISLs, trunk ports or both. Each entry shows the current average receive and transmit percentage, with a graph depicting the percentage of time each trunk spent exceeding the currently configured thresholds. | |
| Top SAN End Ports (SAN only) | Displays the performance data for the top ten performing SAN host and storage ports. Each entry shows the current receive and transmit percentage, with a graph depicting the percentage of time each trunk spent exceeding the currently configured thresholds. | Note |
| | This dashlet is only for SAN. | |
| Top CPU | Displays CPU utilization for the discovered switches over the last 24 hours, with a red bar displaying the high watermark for that 24-hour period. | |
| Top Temperature | Displays the module temperature sensor details of switches. | Note |
| | This dashlet is only for LAN. | |
| Health | Displays the health summary that contains two columns displaying the summary of problems and summary of events for the past 24 hours. | |</p>
<table>
<thead>
<tr>
<th>Dashlet</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Click the count adjacent to the warnings pertaining to switches, ISLs, hosts, or storage (other than 0) to view the corresponding inventory for that fabric. Click the count adjacent to the event severity levels (Emergency, Alert, Critical, Error, Warning, Notice, Info, or Debug) to view a summary of the corresponding events and descriptions.</td>
</tr>
<tr>
<td>Errors</td>
<td>Displays the error packets for the selected interface. This information is retrieved from the Errors > In-Peak and Errors > Out-Peak columns of the Monitor > LAN / Ethernet page.</td>
</tr>
<tr>
<td>Discards</td>
<td>Displays the error packets that are discarded for the selected interface. Note: The Discards dashlet is only for LAN.</td>
</tr>
<tr>
<td>Inventory (Ports)</td>
<td>Displays the ports inventory summary information.</td>
</tr>
<tr>
<td>Inventory (Modules)</td>
<td>Displays the switches on which the modules are discovered, the models name and the count.</td>
</tr>
<tr>
<td>Inventory (ISLs)</td>
<td>Displays the ISLs inventory summary information, such as the category and count of ISLs.</td>
</tr>
<tr>
<td>Inventory (Logical)</td>
<td>Displays the logical inventory summary information, such as the category and count of logical links.</td>
</tr>
<tr>
<td>Inventory (Switches)</td>
<td>Displays the switches inventory summary information such as the switch models and the corresponding count.</td>
</tr>
<tr>
<td>Inventory (Port Capacity)</td>
<td>Displays the port capacity inventory summary information such as the tiers, the number and percentage of the available ports, and the remaining days.</td>
</tr>
</tbody>
</table>

Note: To restore the default dashlets in the dashboard page, click the Default Set link in the Dashlet drop-down list.

Network Dashboard

Cisco DCNM enables you to view details of switches including system information, switch capacity, modules, interfaces, and licenses.
Procedure

Step 1
To access the **Network** dashboard, from the left menu bar, choose **Dashboard > Network**.

An inventory of all the switches that are discovered by Cisco DCNM is displayed.

The following table describes the fields that appear on this page.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
<td>Displays the group name of the switch.</td>
</tr>
<tr>
<td>Device Name</td>
<td>Displays the name of the switch.</td>
</tr>
<tr>
<td>IP Address</td>
<td>Displays the IP address of the switch.</td>
</tr>
<tr>
<td>WWN/Chassis Id</td>
<td>Displays the World Wide Name (WWN) if available or chassis ID.</td>
</tr>
<tr>
<td>Health</td>
<td>Displays the health situation of the switch.</td>
</tr>
<tr>
<td>Status</td>
<td>Displays the status of the switch.</td>
</tr>
<tr>
<td># Ports</td>
<td>Displays the number of ports.</td>
</tr>
<tr>
<td>Model</td>
<td>Displays the model name of the switch.</td>
</tr>
<tr>
<td>Serial No</td>
<td>Displays the serial number of the switch.</td>
</tr>
<tr>
<td>Release</td>
<td>Displays the switch version.</td>
</tr>
<tr>
<td>License</td>
<td>Displays the DCNM license that is installed on the switch.</td>
</tr>
<tr>
<td>Up Time</td>
<td>Displays the up time of the switch.</td>
</tr>
</tbody>
</table>

Step 2
Select a switch in the **Device Name** column to view the Switch Dashboard.

Switch Dashboard

The switch dashboard displays the details of the selected switch.

Procedure

Step 1
From Cisco DCNM home page, choose **Dashboard > Network**. Alternatively, from Cisco DCNM home page, you can choose **Inventory > View > Switches**.

An inventory of all the switches that are discovered by Cisco DCNM is displayed.

Step 2
Click a switch in the **Device Name** column.
The Switch dashboard that corresponds to that switch is displayed along with the following information:

- **System Info**—Displays detailed system information such as the group name, health, module, the time when the system is up, the serial number, the version number, contact, location, DCNM license, status, system log sending status, CPU and memory utilization, and VTEP IP address are displayed.

Click Health to access the Health score screen, which includes health score calculation and health trend. The popup contains Overview, Modules, Switch Ports, and Events tabs.

From Cisco DCNM Release 11.0(1), you can view the vPC details of the selected switch in the System Info tab for LAN switches. It includes details of vPC domain ID, role, peer, peer-link state, keep alive state, consistency state, send interface, and receive interface. Click the vPCs Configured link to view the vPC configuration details of the selected switch.

- (Optional) Click SSH to access the switch through Secure Shell (SSH).

- (Optional) Click Device Manager to view a graphical representation of Cisco MDS 9000 Family switch chassis, a Cisco Nexus 5000/7000/9000 Series switch chassis including the installed switching modules, the supervisor modules, the status of each port within each module, the power supplies, and the fan assemblies.

- (Optional) Click HTTP to access the switch through Hypertext Transfer Protocol (HTTP) for that switch.

- (Optional) Click Accounting to go to the Viewing Accounting Information, on page 78 window pertaining to this switch.

- (Optional) Click Backup to go to the Viewing a Configuration window.

- (Optional) Click Events to go to the #unique_9 window.

- (Optional) Click Show Commands to display the device show commands. The Device Show Commands page helps you to view commands and execute them.

- (Optional) Click Copy Running Config to Startup Config to copy the running configuration to the startup configuration.

- **Modules**—Displays detailed modules that are discovered on the switch.

- **Interfaces**—Displays all the interfaces that are discovered for the switch. Select multiple items and click Port Group to create a new port group or add the interfaces into an existing group.

- **FEX**—Allows you to manage a Cisco Nexus 2000 Series Fabric Extender and its association with the Cisco NX-OS switch. You can create or modify FEX for the LAN devices by using this feature. The FEX feature is available only on LAN devices. If a Cisco Nexus switch is discovered as part of the SAN fabric, the FEX feature will not be available. The FEX feature is also not supported on Cisco Nexus 1000V devices.

- **License**—Displays detailed information about the licenses that are installed on the switches. From Cisco DCNM Release 11.0(1), you can install a switch license file on a switch. See Installing a Switch License.

- **Features**—Displays all the enabled features.

- **VXLAN**—Displays VXLANs and their details such as status, mode, multicast address, and mapped VLAN.

- **VLAN**—Allows you to manage VLANs. You can add, edit, delete, and shutdown VLANs.
• **Port Capacity**—This feature is available for Cisco DCNM-licensed switches only. The physical port capacity area includes the available ports in each tier, such as 40G, 10G, 8G, 4G, 2G, and 1G along with the predicted number of days remaining to reach the maximum (100%) utilization. Click a number under the **Days Left** left column to view the capacity trend.

• **VDC**—Allows you to create and manage VDCs. As Cisco DCNM supports Cisco Nexus 7000 Series only, click an active Cisco Nexus 7000 switch. After you create a VDC, you can change the interface allocation, VDC resource limits, and the high availability (HA) policies.

• **Switch On-Board Analytics**—Displays the switch on-board analytics charts containing the following information:
 - Top 10 Slowest Ports
 - Top 10 Slowest Target Ports
 - Top 10 Slowest Flows
 - Top 10 Slowest ITLs
 - Top 10 Port Traffic
 - Top 10 Target Ports Traffic
 - Top 10 Flow Traffic
 - Top 10 ITL Traffic

For more information, see [Switch On-Board Analytics, on page 52](#).

Installing a Switch License

To install a switch license from the Cisco DCNM Web UI, perform the following steps:

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Choose Dashboard > Network, and select a switch in the Device Name column. Alternatively, you can choose Inventory > View > Switches.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Click License in the switch dashboard.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Click Install to install the switch license file on a switch. A Switch License Install window appears.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Click Select License File, and select the license file from your local system.</td>
</tr>
</tbody>
</table>
| **Step 5** | Select the transport method. The available options are:
 - TFTP
 - SCP
 - SFTP |
Step 6 Enter the username and password to connect to the DCNM server.
Step 7 Click Install.

Storage Dashboard

The Storage dashboard provides information about the SAN and LAN storage.
To access the Storage dashboard, from the left menu bar, choose Dashboard > Storage.

Viewing Storage Enclosures Information

After a datasource is configured and the discovery is completed, the discovered storage systems are displayed under the Name column in the Storage Enclosures area. In this area, you can view details of SAN Storage Enclosures, Storage Systems, or both.

To view the storage enclosures information from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose Dashboard > Storage.
Step 2 From the Show drop-down list, choose SAN Storage Enclosures.
Step 3 Select the row to view more details.

You see the Events, Topology, and Traffic information in the dashboard.

Step 4 Click the Filter icon to filter the storage enclosures by Name or by IP Address.
Step 5 In the Traffic pane, the Enclosure Traffic is displayed by default. Click the Traffic Utilization icon to view the traffic utilization. The daily average percentage of traffic utilization of the enclosure ports is displayed as a pie chart.

Clicking on an individual port slice of the pie chart displays specific traffic utilization details for that port.

Viewing Storage Systems Information

To view information about storage systems from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose Dashboard > Storage.
Step 2 From the Show drop-down list, choose Storage Systems.
• The datasource must be configured and discovered at least once to display the discovered storage system(s).

• Cisco DCNM now differentiate Block Storage and Filer Storage in terms of what it discovers and displays. Filer storage has additional elements: Shares, Quotas, and Q-trees.

 • Shares: Individual storage folders on the file server to which users have access.

 • Quotas: File and repository size limitations.

 • Q-trees: Tree based quotas. By using Q-trees, you can partition data and take advantage of different backup strategies, security styles, and settings.

Step 3 Click the Click to see more details... icon to view the storage systems summary.

The following are the elements of the Storage Systems area:

Components

Components are containers for a set or subset of the disks in a storage system. The Component elements view displays a table of disks in the collection, total number of disks managed. It also displays a summary of the collection’s used vs. raw space.

Procedure

Step 1 Use the Storage System drop-down to select the storage system.

Step 2 The right pane displays a summary of the storage components. Click each name to go to the item in the left menu.

Step 3 Hover the mouse cursor on the graph to display its details.

Step 4 In the left pane, select the storage component to view its details.

The number of disks that are managed along with its details are displayed.

Step 5 Click a Serial Number to display the disk and the mapped LUNs details.

Step 6 You can use the search box to search for a specific component.

Pools

Pools are user-defined collections of LUNs displaying the pool storage. The pools elements view displays a summary of the pools, lists the LUNs in the pool, and also displays the total managed and raw space.

Procedure

Step 1 Use the Storage System drop-down to select the storage system.

The bar graph next to each pool indicates the total managed space of that pool.

Step 2 In the left pane, select a pool to display:
LUNs refer to a storage volume or a collection of volumes that are abstracted into a single volume. It is a unit of storage which can be pooled for access protection and management. Each LUN in the LUN Element View is displayed along with the mapping from Hosts to LUNs. If the associated Fabric has also been discovered, additional information concerning the end-to-end connection between a host and LUN is also displayed. You are able to create and delete LUNs, create and delete host and LUN maps, and create zoning for HLMs.

Procedure

Step 1 Use the Storage System drop-down to select the storage system.

Step 2 You can create LUN from Cisco DCNM by choosing Storage > LUNs.

a) In the middle pane, click Add LUN.

b) Enter a valid Name for the LUN, and select its Type and Size. The pool which we carve the storage from is indicated.

 Note The Create LUN pop-up window can also be accessed from a Pool’s details page, when the LUN list view is selected.

c) Click Add.

 A confirmation window displays each step. Once confirmed, the status is updated with the results of each step.

 After LUN creation completes successfully, you can Assign Hosts, or click Close and assign Hosts later from the LUN Details view.

Step 3 Select a LUN in the left navigation pane to view the details.

 • The LUN details along with its status and the number of Associated Hosts.

 • The Host LUN Mapping details along with the Access (Granted) information.

If the associated fabric has also been discovered, additional information about the switch interfaces and zoning concerning the end-to-end connection between the Host and LUN is also displayed.

 Note All fabrics that are discovered must be licensed or the fabric correlation will be disabled in the Cisco DCNM. When the feature is disabled, all correlation fields display “Unlicensed Fabric.”

Step 4 You can delete LUNs in the SMI-S Storage Enclosure.
a) Navigate to **Storage > Storage System > LUNs.**
 A list of LUNs in the SMI-S Storage Enclosure is displayed in the right.

b) Select one LUN from the list and then click **Remove.**
 A confirmation window is displayed at each step. Once confirmed, the status will update with the results of each step.

c) Click **Apply.**

Step 5
You can add mapping from Host to LUN.

a) Select the **LUNs** from a pane on the left.
 A list of LUNs in the SMI-S Storage Enclosure is displayed in the right.

b) Select a LUN from the list underneath.
 The details for the selected LUN are displayed, including the current Host LUN Mappings for that LUN.

c) Click the **Add** button.
 The **Add Hosts to Mask** window pops out.

d) Select one or more Hosts, and then click **Add.** The Hosts are then added to the LUN Mapping. In addition, each HLM pair is zoned if it is not already zoned.

 Note Host LUN Mappings can also be added through the Host Dashboard. See Viewing Host Enclosures, on page 26, for more information.

Step 6
You can remove mapping from Host to LUN.

a) Select the **LUNs** from the pane on the left.
 A list of LUNs in the SMI-S Storage Enclosure is displayed in the right.

b) Select a LUN from the list underneath.
 The details for the selected LUN are displayed, including the current Host LUN Mappings for that LUN.

c) Select one or more existing Host LUN Mappings and click the remove icon.
 A confirmation window appears and displays each step.

d) Click **Apply.**
 The status will update with the results of each step.

Step 7
(Optional) You can add Zoning to the LUNs.

a) Select the **LUNs** from the left pane.
 A list of LUNs in the SMI-S Storage Enclosure is displayed in the right.

b) Select a LUN from the list underneath.
 The details for the selected LUN are displayed, including the current Host LUN Mappings for that LUN.
 One of the columns of the **Host LUN Mapping** table identifies the existing zones if any of the HLM currently has for zoning.

c) Select one or more HLMs which have Unknown or None for zoning, and click **Add Zoning.**

d) Click **Apply.**
Filer Volumes

Filer Volumes are applicable only for NetApp. The Filer Volume Element view displays the Status, Containing Aggregate along with the total capacity and used space.

To view filer volumes from the Cisco DCNM Web UI, perform the following steps:

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Use the Storage System drop-down to select the storage system.</td>
</tr>
</tbody>
</table>
| Step 2 | In the left pane, select the filer to display:
 - The status of the filer along with the containing aggregate name.
 - Hover the mouse cursor over the graph to view the total capacity and available storage of the filer. |
| Step 3 | You can use the search box to search for a specific Filer. |

Hosts

The Hosts describe the NWWNs associated with a host or host enclosure along with the associated Host-LUN Mapping and the Host Ports. If the associated Fabric has also been discovered, additional information concerning the connection between a host and LUN is also displayed.

To configure hosts from the Cisco DCNM Web UI, perform the following steps:

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Use the Storage System drop-down to select the storage system.</td>
</tr>
</tbody>
</table>
| Step 2 | In the left pane, select a Host to display:
 - The NWWN (Node WWN) is the WWN of the device that is connected to the switch.
 - The Host Ports along with the Host LUN Mapping.
 - In the Host Ports section, click a Host Enclosure Name to view its Events, Topology, and SAN Traffic. For more information, see the Storage section.
 - In the Host Ports sections, click a Host Interface to view the Switch Dashboard.
 - In the Host-LUN Mapping section, click a Storage Interface to view the Switch Dashboard.
 - In the Host-LUN Mapping section, click a Storage Name to view its Events, Topology, and SAN Traffic. For more information, see the Storage section. |

If the associated Fabric has also been discovered, additional information about the switch interfaces and zoning concerning the connection between the Host and LUN is also displayed.
**All fabrics that are discovered must be licensed or the fabric correlation is disabled in the Web UI. When the feature is disabled, all correlation fields display “Unlicensed Fabric”.

Note

Step 3

You can use the search box to search for a specific host.

Storage Processors

Storage processors are elements on a storage system, which enable some of its features. A storage processor includes the collection of storage ports it manages. In the Storage Processor Element View, the list of Storage Ports that are associated with a Storage Processor is displayed.

Procedure

Step 1

Use the Storage System drop-down to select the storage system.

Step 2

In the left pane, select a storage processor to display:

- The status, adapter details, and the number of ports of the storage processor.
- The storage ports details.

Step 3

You can use the search box to search for a specific storage processor.

Storage Ports

A storage port is a single port on the Storage System. It displays the summary information of each port selected.

Procedure

Step 1

Use the Storage System drop-down to select the storage system.

Step 2

In the left pane, select a storage port to display its details.

Step 3

You can use the search box to search for a specific storage port.

Viewing Storage Enclosure Events

To view the storage enclosure events information from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1

Choose Dashboard > Storage. Use the drop-down to select All, SAN Storage Enclosures or Storage Systems. The list of storage enclosures is displayed in a table.

Step 2

Click the **Events** icon next to the storage enclosure to view the Events panel.
Viewing Storage Enclosure Topology

To view the storage enclosure topology information from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose Dashboard > Storage. Use the drop-down to select All, SAN Storage Enclosures, or Storage Systems.

The list of storage enclosures in a table is displayed.

Step 2 Select the row to view the topology details.

Step 3 Use the mouse scroll wheel to zoom-in and zoom-out.

Step 4 Click the Fabric/Network icon to view the Fabric or Network path.

Step 5 Click the All Paths icon to view the complete setup.

Step 6 Click the First Shortest Path icon to view the shortest path.

Note Click Map View icon to enable the icons that are listed in the preceding Step 4, 5 and 6.

Step 7 Click the Tabular View icon to view the host topology in tabular format.

Viewing Storage Enclosure Traffic

To view the storage enclosure traffic from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose Dashboard > Storage. Use the drop-down to select All, SAN Storage Enclosures or Storage Systems.

The list of storage enclosures is displayed in the table.

Step 2 Select the row to view the topology details.

Step 3 Use the drop-down to select the traffic according to the time duration.

Step 4 Select the icons to view the traffic as a Grid, Line Chart or Stacked Chart.

Step 5 Click the Show Events icon to view the events.

Step 6 Use the options at the bottom of the screen to view a pie chart or a line chart. Click on each name on the chart to view its details.
Introduction

The SAN Insights feature enables you to configure, monitor, and view the flow analytics in fabrics. Cisco DCNM enables you to visually see health-related indicators in the interface so that you can quickly identify issues in fabrics. Also, the health indicators enable you to understand the problems in fabrics. The SAN Insights feature also provides more comprehensive end-to-end flow-based data from host to LUN.

Cisco DCNM 11.2(1) supports compact GBP transport for better IO performance and improve the overall scalability of SAN Insights.

For SAN insights streaming stability and performance, refer to System Requirements section in the Cisco DCNM Installation Guide for SAN Deployment and the Increasing Elasticsearch Database Heap Size section of the DCNM SAN Management Configuration Guide. Ensure system RAM is of adequate size. Use of NTP is recommended to maintain time synchronization between the DCNM and the switches. Enable PM collection for viewing counter statistics.

SAN Insights Dashboard

Cisco DCNM visually displays fabric-level information in a holistic view from end-to-end. To view the SAN Insights Dashboard, choose Dashboard > SAN Insights. The SAN Insights Dashboard provides visibility for overall read/write IO operations/latency.

In the SAN Insights dashboard page, you can select the fabric and switches from the Fabric and Switches drop-down lists. The dashlets display insight data based on the fabric and switches that you select.

Note

The switches that are capable and licensed for SAN Analytics are displayed in the drop-down list.

Note

Click on the title on top of the donuts, to navigate to the relevant page on Monitor > SAN > SAN Insights.
The SAN Insights dashboard contains the following dashlets.

- Throughput
- ITL Summary (ECT)
- IOPS
- Latency
- Enclosure Summary (ECT)
- Outstanding IO
- Data Access Latency

A warning message appears as **HIGH NPU LOAD Detected** on top of the Dashboard > SAN Insights window. The warning implies that one or more switches have an unacknowledged Syslog event during the previous week. The event may affect the availability of the analytics data stored or displayed. You must acknowledge these events to remove the warning.

Click on the **HIGH NPU LOAD Detected** link. The Monitor > Switch > Events window appears. Note that the list of events is filtered for **Type: HIGH_NPU_LOAD**. Select all the switches and click **Acknowledge**. This removes the **HIGH NPU LOAD Detected** warning.

Viewing SAN Insights Metrics

To view the SAN Insights metrics, choose Dashboard > SAN Insights. The SAN Insights Dashboard page appears. Click the **View SAN Insights Metrics** button. From the **Use Case** drop-down list, choose **ECT Analysis** or **Custom Graphing**.

Note

The refresh interval for ECT Analysis and Custom Graphing is 1 minute. The refresh interval for less than 2 weeks worth of data is 1 minute. The refresh interval for 2 weeks worth of data is 2 minutes.

Custom Graphing

This is a free style dashboard where multiple metrics can be selected and the real time data for the selected metrics will be shown in multi-line graph which is configured to refresh every 1 minute and corresponding raw data will be shown in data table.

Note

The Auto Refresh option is disabled by default. You must click on the pause icon to enable the Auto Refresh feature.

There are 2 components in custom graphing use case.

- Real Time Graph
- Datatable
The Real Time Graph is plotted with corresponding metrics with from & to date selected. This component has slider present below the graph as per your selection. It is dynamic in nature as data is refreshed every 5 minutes and can be converted into static graph using the pause button.

To view, input any of the six dimensions (Initiator WWN, LUN, Target WWN, Source enclosure, Target enclosure, Switch IP) in the search tab, and select an associated metric.

You can also add multiple graphs for comparison by clicking on the “+” icon at the top right. The data table will be replaced by multiple Real Time graphs in this view and you can select the corresponding metric to be plotted by using the multi-select text search feature.
ECT Analysis

There are 4 components in ECT Analysis:

- Data table
- ECT Sequencing by Baseline Deviation
- ECT Baseline Deviation Aggregated
- ITL By Time & Baseline Deviation

Note

The default duration of the ECT analysis 30 minutes. You can click the Reset button to clear all the applied data filters.
The **Last** column displays the period of historical data. The default period of the historical data is 30 minutes.

The data in the ECT Analysis view can be filtered by selecting the switch from the drop-down list or by specifying the WWPN\Enclosure Name\LUN-ID\Switch-IP in the **Search here** field.

The **Search** icon next to the column title indicates that you must search for their value in the **Search here** field.
The data in all the components are populated from the normalized index present in ElasticSearch. The normalized index is calculated from the raw data that is provided for different ITL flows. Raw data mainly consists ECT, Timestamp, I/O, DAL, Throughput, Switch Name, Enclosure ID, and Data Length. The ECT Baseline and Status are the metrics that are used to create the above visualization. The metrics is calculated using the below logic.

The ECT Analysis page is representing the aggregated behavior of the ITL Flows by comparing the current normalized Exchange Completion Time (ECT) to its historical behavior (ECT Baseline) using the below logic. The normalized ECT value is the amount of time it takes to transfer a KB (kilobyte) of data.

ECT Baseline for each ITL Flow (Reads and Writes) is calculated using weighted average learned continuously over a training period:

- The ECT Baseline computation consists of two parts: the training period and the recalibration time.
- The training period for ECT Baseline is 7 days by default (configurable).
- After the training is completed, the ECT Baseline remains the same until the recalibration is triggered after 21 days by default (configurable).
- By default every 28 days training runs for 7 days (cyclic).
- The percentage (%) deviation shows the deviation of the current normalized ECT compared to the ECT Baseline.

Table 1: Baseline Color Legends

<table>
<thead>
<tr>
<th>Relation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>If ECT is above 30% from Baseline.</td>
<td>Red</td>
</tr>
<tr>
<td>If ECT is above and in range 15–30% from Baseline.</td>
<td>Orange</td>
</tr>
<tr>
<td>If ECT is above and in range 1–15% from Baseline.</td>
<td>Yellow</td>
</tr>
<tr>
<td>If ECT is below 1% from Baseline.</td>
<td>Normal</td>
</tr>
</tbody>
</table>

You can click on the Trend Identifier (identifiable) icon to navigate to Trend Identifier. For more information, see Trend Identifier, on page 24.

The data in the ECT Analysis UI can be filtered to view ITLs data corresponding to the above legend, by clicking the circles to disable and enable. For example, on clicking and disabling the Yellow and Orange legend circles, the corresponding data will be displayed.
You can copy and paste the values in the data table into the **Search here** input field at the top of the UI to filter the data in all components. Values in all the columns marked with Magnifying Glass (🔍) icon in the data table are the only fields searchable for this functionality.

The data in ECT BASELINE DEVIATION AGGREGATED component shows the number of ITLs that are in each deviation range. Similarly, the data in ITL BY TIME component shows the number of ITLs grouped by time that are in each deviation range. Clicking on a section of the pie chart or histogram shows drill down data with Initiator Enclosures, Initiator WWPN(s), Target Enclosures, Target WWPN(s) and LUN. Click on the corresponding section of the chart to download the results in a **.csv** format.

The maximum ECT Baseline Deviation aggregated data is set to 20000.

Note

Script Timeout Error in Mozilla browser

In the Mozilla browser, if you see script timeout error with option **Stop** or **Wait**, do not click **Stop**. Perform the following steps to troubleshoot the script timeout error.

1. Launch the Mozilla Firefox.
2. On the Firefox address bar type `about:config` and press Return key.

3. In the confirmation message, click `I accept the risk!`.

4. In the Search field, `dom.max_script_run_time`.
 The Preference names are displayed.

5. Right click on the `dom.max_script_run_time` Preference name and select `Modify`.

6. Enter an integer value of 0 or 20 for `dom.max_script_run_time`.

7. Click `OK` to confirm.

8. Restart the Mozilla Firefox browser.

Trend Identifier

You can click on the Trend Identifier (-important) icon in the top-right corner of the to navigate to Trend Identifier.

Click the Trend (-important) icon in each row of the data table to navigate to Trend Identifier. There are 2 components showing data corresponding to selected ITL. Trends ITL Metrics shows area chart of ECT, DAL, IOPs and Baseline ECT in the selected time interval (5 minutes selected). Histogram Correlation tab shows the histogram of count of correlated ITL’s with current ITL binned by correlation value. Clicking on any bar in this tab converts the histogram into datatable which shows the data corresponding to the selected bar.

Note

The refresh interval for the trend identifier is 30 minutes. You can specify the refresh interval using the Start With Last drop-down list.

Outlier Detection

The **Outlier Detection** page can be viewed by clicking the Outlier Detection icon (-important) that appears in the top right corner of the page. To view data on this page, enter either Host-Enclosure or Initiator Enclosure name in the Search here input box, select a Metric, select a time range and click Submit. This screen takes data from roll up index which is calculated by rolling up each field’s data of flow index by one hour. ITL Distribution tab shows the scatter plot of metric selected for all ITL’s present in the selected time interval (1week in this case). This screen can be navigated to trend screen by clicking any of the dot (corresponds to specific ITL) in the scatter plot. Functionality added 2 tabs namely ITL’s Below Confidence interval & ITL’s above confidence interval. These 2 tabs are data calculated based on Average Confidence Interval line.
You can zoom in to view the respective ITL dots at a more granular level by dragging the mouse and selecting a specific region to be viewed. Clicking on "Reset Zoom" in the zoomed screen will restore default zoom settings.

This use case consists of Multi-select text search feature, where you can search for specific text maximum upto 2 search criteria that can be present in any field (Initiator/Target Enclosure) and corresponding data will be plotted in both the components.

Average Confidence Interval shows a band with average line where majority of the metric value lies in the selected time interval. Remaining 2 tabs shows Box Plot and Pie chart distribution of Top n (5 selected) Initiator/Target of the selected metric in the selected time interval.

Compute

The compute dashboard provides you with all the information that are related to the discovered SAN and LAN hosts. It provides detailed information that is related to the network, such as I/O traffic, disk latency, CPU, memory statistics, topology, and events about each individual host and virtual machines that are configured on top of the virtual host. The compute dashboard consists of four panels:

- **Host Enclosures** panel—Lists the hosts and their network attributes.
- **Traffic** panel—Provides the I/O statistics, CPU and memory information, and disk latency of individual hosts or virtual machines.
- **Topology** panel—Provides an end-to-end topology layout and path information between host enclosures and storage enclosures. The discovered virtual machines are displayed and when you select the virtual machine, the path to the SAN data source is displayed. You can toggle this view to list all data paths.
- **Event** panel—Provides information about events of all the switch ports that are configured within a specific host enclosure.

This section contains the following topics:
Viewing Host Enclosures

Beginning with Cisco NX-OS Release 6.x, you can view and search the network servers that are connected to the Cisco NX-OS devices. Cisco DCNM extends the fabric visibility up to the server and allows you to discover and search the end devices that are attached to the network.

The following table describes the fields that appear on this page.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Displays the hostname.</td>
</tr>
<tr>
<td>IP Address</td>
<td>Displays the IP address of the switch.</td>
</tr>
<tr>
<td>#Macs</td>
<td>Displays the number of MAC addresses.</td>
</tr>
<tr>
<td>Mac Address(es)</td>
<td>Displays the MAC addresses.</td>
</tr>
<tr>
<td>#WWNs</td>
<td>Displays the number of World Wide Names (WWNs).</td>
</tr>
<tr>
<td>Port WWN(s)</td>
<td>Displays the port WWN.</td>
</tr>
<tr>
<td>FCID(s)</td>
<td>Specifies the associated FCID.</td>
</tr>
<tr>
<td>OS</td>
<td>Displays the OS details.</td>
</tr>
<tr>
<td>#VMs</td>
<td>Displays the number of VMs.</td>
</tr>
<tr>
<td>VHost Name</td>
<td>Displays the name of the virtual host.</td>
</tr>
<tr>
<td>VCluster</td>
<td>Displays the name of the virtual cluster.</td>
</tr>
<tr>
<td>Multipath</td>
<td>Displays the multipath details.</td>
</tr>
</tbody>
</table>

Note

- Beginning with Cisco NX-OS Release 6.x, Server Credentials, Servers, and Static Server-Adapter Mapping are no longer available.
- Beginning from Cisco DCNM Release 10.1, you are able to assign storage to hosts.
- Collection level in the vCenter settings determines the amount of data that is gathered and displayed in charts. Level 1 is the default Collection Level for all collection intervals. Change the vCenter statistics settings to Level 2 or higher to collect disk I/O history data.

To view the host enclosures from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose **Dashboard > Compute**.

The list of hosts in the host enclosures table is displayed.
Step 2 Select the row to view more details.

The Events, Topology, and Traffic information in the dashboard is displayed. You can also click the corresponding icons on a host entry to view the Events, Topology, and Traffic information.

Step 3 To edit the hostname, select the row and click the Rename icon. Enter the new name in the pop-out dialog.

Note Specifying a blank name causes the server to default the name.

Step 4 To assign storage to host, you can select the row and click the Assign icon next to the Rename icon.

The Assign Storage to Host window pops out. The selection of Host is by enclosure, and multiple selections of LUNs is allowed. Click assign. A confirmation message is displayed. After confirmed, the status will update with the results of each step.

Step 5 Click Quick Filter drop down to filter host enclosures (not storage) by LAN, SAN, and Virtual.

Viewing Host Events

To view the host events from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose Dashboard > Compute.

The list of hosts in the host enclosures table is displayed.

Step 2 Click the Events icon next to the host enclosure to view the Events panel.

You can use the slider control to resize the panel.

Viewing Host Topology

To view host topology from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose Dashboard > Compute.

The list of hosts in the host enclosures table is displayed.

Step 2 Select the row to view the host topology details.

You can use the mouse scroll wheel to zoom-in and zoom-out.

Step 3

Step 4 Click the Fabric/Network icon to view the fabric and network path.

Step 5 Click the All Paths icon to view the complete set-up.
View Host Traffic

To view the host traffic from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 From the menu bar, choose Dashboard > Compute.

The list of hosts in the host enclosures table is displayed.

Step 2 Select the row to view the host topology details.

Step 3 Use the drop-down to select the traffic according to the time duration.

Step 4 Select the icons to view the traffic as a Grid, Line Chart, or Stacked Chart.

Step 5 In the Traffic pane, the Enclosure Traffic is displayed by default. Click the Traffic Utilization icon to view the traffic utilization. The daily average percentage of traffic utilization of the enclosure ports is displayed as a pie chart.
Topology

The Topology window displays color-encoded nodes and links that correspond to various network elements, including switches, links, fabric extenders, port-channel configurations, virtual port-channels, and more. For information about each of these elements, hover your cursor over the corresponding element. Also, click a node or the line for a link. A slide-in pane appears from the right side of the window. This pane displays detailed information about either the switch or the link.

You can open multiple tabs simultaneously and can function side by side to facilitate comparison and troubleshooting.

Status

The color coding of each node and link corresponds to its state. The colors and what they indicate are described in the following list:

• Green: Indicates that the element is in good health and functioning as intended.

• Yellow: Indicates that the element is in warning state and requires attention to prevent any further problems.

• Red: Indicates that the element is in critical state and requires immediate attention.

• Gray: Indicates lack of information to identify the element or the element has been discovered.

• Black: Indicates that the element is down.

Note

• In the Topology window, FEX appears in gray (Unknown or n/a) because health is not calculated for FEX.
Scope

You can search the topology based on the scope. The default scopes available from the SCOPE drop-down list is: DEFAULT_LAN and DEFAULT_SAN. The search options differ based on the chosen scope.

The following search options are available for DEFAULT_LAN:

- Quick Search
- Host name (vCenter)
- Host IP
- Host MAC
- Multicast Group
- VXLAN ID (VNI)
- VLAN
- VSAN ID/Name
- FabricPath
- VXLAN OAM

The following search options are available for DEFAULT_SAN:

- Quick Search
- VLAN
- VSAN ID/Name

Searching

When the number of nodes is large, it quickly becomes difficult to locate the intended switches and links. You can quickly find switches and links by performing a search. You are also able to search for VM tracker and generic setups. Searching feature enables you to see which leaf the host is connected to.

The following searches are available:

By default, Quick Search is selected.

Quick Search

Quick Search enables you to search for devices by name, IP address, model, serial number, and switch role. As you enter a search parameter in the Search field, the corresponding switches are highlighted in the topology. To perform a search for multiple nodes and links, separate multiple keywords using a comma, for example, ABCD12345, N7K, sw-dc4-12345, core, 172.23.45.67. Cisco DCNM supports wildcard searches too. If you know a serial number or switch name partially, you can build a search based on these partial terms that are preceded by an asterisk, for example, ABCD*, sw*12345, core, and so on.
To limit the scope of your search to a parameter, enter the parameter name followed by a space and the parameter in the Search field, for example, name=sw*12345, serialNumber=ABCD12345, and so on.

Host name (vCenter)

The host name search enables you to search for hosts by using vCenter.

Host IP

You can search the topology using host IP addresses. The **Host IP** search enables you to locate the switches in the scope that match the IP address that you enter in the **Search** field. The **Host IP** search supports IPv4 and IPv6 addresses. From the Search drop-down list, choose **Host IP** to search the topology using the IP Address of the host device. Enter a host IP address in the **Search** field and press **Enter**. Click **Details** to view the corresponding host details.

Host MAC

You can search a topology using host MAC addresses. The **Host MAC** searches the switches in the scope to locate the hosts that match the MAC address that you enter in the **Search** field. From the Search drop-down list, choose **Host MAC** to search the topology using a host MAC address. Enter a host MAC address in the Search field and press **Enter**. Click **Details** to view the corresponding host details.

VLAN

Search by a given VLAN ID. VLAN search provides the search for the VLAN configured on the switch or the links. If STP is enabled, then it provides information that is related to the STP protocol and the STP information for links.

VSAN ID/Name

Search by a given VSAN ID. VSAN search provides the search for VSAN configured on the switch or the links. In order to view the STP details associated with the VSAN, click **STP Details** link.

This shows the STP details, if STP is enabled. If the link is blocked, it is marked as red, green in case of a forwarding link, and orange if the link is blocked for one VSAN range and forwarding for the other VSAN range.

This search is applicable to both the default LAN and SAN scopes.

Show Panel

You can choose to view your topology based on the following options:

- **Auto Refresh**: Check this check box to automatically refresh the topology.
- **Switch Health**: Check this check box to view the switch’s health status.
- **FEX**: Check this check box to view the Fabric Extender.

Note

The FEX feature is available only on LAN devices. Therefore, checking this check box displays only the Cisco Nexus switches that support FEX.
If a Cisco Nexus Switch is discovered as part of SAN fabric, FEX feature is not available. FEX is also not supported on Cisco Nexus 1000V devices. Therefore, such devices will not be displayed in the topology when you check the FEX check box.

Links: Check this check box to view links in the topology. The following options are available:

- **Errors Only:** Click this radio button to view only links with errors.
- **All:** Click this radio button to view all the links in the topology.
- **VPC Only:** Check this check box to view only vPC peer-links and vPCs.
- **Bandwidth:** Check this check box to view the color coding based on the bandwidth that is consumed by the links.

- **OTV:** Check this check box to show the Overlay Transport Virtualization (OTV) topology with the cloud icon and the dotted links from the OTV edge devices. Hovering the cursor over the cloud and the links shows the relevant information for OTV topology, such as control group, extended VLANs, and so on. The OTV search field appears below the filter field. Use the OTV search field to search the shown OTV topology that is based on Overlay ID and Extended VLAN ID. The searched virtual links based on the Overlay ID and Extended VLAN ID are marked green.

A Details link appears after you check the OTV check box. Clicking the link shows the OTV topology data. The Overlay Network column shows whether the particular topology is multicast based or unicast based. The Edge Device column displays the edge switches in the particular OTV topology. The other columns display the corresponding overlay interface, extended VLANs, join interface, and data group information.

- **UI controls:** Check the check box to show or hide the various controls on the Topology window.
- **Refresh:** You can also perform a topology refresh by clicking the Refresh icon in the upper-right corner of this panel.

Layouts

The topology supports different layouts along with a **Save Layout** option that remembers how you positioned your topology.

- **Hierarchical** and **Hierarchical Left-Right:** Provide an architectural view of your topology. Various switch roles can be defined that will draw the nodes on how you configure your CLOS topology.

Note
When running a large-scale setup, being able to easily view all your switches on a leaf-tier can become difficult. To mitigate this, DCNM splits your leaf-tier every 16 switches.

- **Random:** Nodes are placed randomly on the window. DCNM tries to make a guess and intelligently place nodes that belong together in close proximity.
- **Circular** and **Tiered-Circular**: Draw nodes in a circular or concentric circular pattern.

- **Custom saved layout**: Nodes can be dragged around according to your preference. After you position as required, click **Save** to retain the positions. The next time you come to the topology, DCNM will draw the nodes based on your last saved layout positions.

Before a layout is chosen, DCNM checks if a custom layout is applied. If a custom layout is applied, DCNM uses it. If a custom layout is not applied, DCNM checks if switches exist at different tiers, and chooses the Hierarchical layout or the Hierarchical Left-Right layout. Force-directed layout is chosen if all the other layouts fail.

Zooming, Panning, and Dragging

You can zoom in and zoom out using the controls that are provided at the bottom left of the windows or by using your mouse's wheel.

To pan, click and hold anywhere in the whitespace and drag the cursor up, down, left, or right.

To drag switches, click, hold, and move the cursor around the whitespace region of the topology.

Switch Slide-Out Panel

You can click on the switch to display the configured switch name, IP address, switch model, and other summary information such as status, serial number, health, last-polled CPU utilization, and last-polled memory utilization.

Beacon

This button will be shown for switches that support the **beacon** command. After beaconing starts, the button will show a countdown. By default, the beaconing will stop after 60 seconds, but you can stop it immediately by clicking **Stop Beacon**.

Note

The default time can be configured in `server.properties` file. Search for `beacon.turnOff.time`. The time value is in milliseconds. Note that this requires a server restart to take effect.

Tagging

Tagging is a powerful yet easy way to organize your switches. Tags can be virtually any string, for example, `building 6`, `floor 2`, `rack 7`, `problem switch`, and `Justin debugging`.

Use the search functionality to perform searches based on tags.

More Details

Click **Show more details**; detailed information appears in the switch's dashboard.

Link Slide-Out Panel

You can click a link to view the status and the port or switches that describe the link.
24-Hour Traffic

This feature requires **Performance Monitoring** to be turned **ON**. When **Performance Monitoring** is **ON**, traffic information is collected and the aggregate information is displayed along with a graph showing traffic utilization.
CHAPTER 4

Inventory

This chapter contains the following topics:

• Viewing Inventory Information, on page 35
• Discovery, on page 58

Viewing Inventory Information

Beginning with Cisco Prime DCNM release 6.x, you can view the inventory and the performance for both SAN and LAN switches by using the global Scope pane. You can select LAN, SAN, or both to view the inventory information. You can also export and print the inventory information.

You can either Print this information or export to Microsoft Excel.

Note

You can use the Print icon to print the information that is displayed or you can also use the Export icon to export the information that is displayed to a Microsoft Excel spreadsheet. You can also choose the column that you want to display.

The Inventory menu includes the following submenus:

Viewing Inventory Information for Switches

To view the inventory information for switches from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1
Choose Inventory > View > Switches.

The Switches window with a list of all the switches for a selected Scope is displayed.

Step 2
You can also view the following information.

• Group column displays the switch group to which the switch belongs.

• In the Device Name column, select a switch to display the Switch Dashboard.
• **IP Address** column displays the IP address of the switch.

• **WWN/Chassis ID** displays the Worldwide Name (WWN) if available or chassis ID.

• **Health** displays the health situation of the switch.

 Note To refresh and recalculate the latest health data for all the switches on Cisco DCNM, click the **Recalculate Health** button above the switches table.

• **Status** column displays the status of the switch.

• **# Ports** column displays the number of ports.

• **Model** column displays the model name of the switch.

• **Serial No.** column displays the serial number of the switch.

• **Release** column displays the switch version.

• **License** column displays the DCNM license that is installed on the switch.

• **Up Time** column displays the time period for which the switch is active.

• **Container Based ISSU Mode** column indicates whether the Container Based ISSU Mode is enabled or not. The container-based ISSU can be enabled for Cisco Nexus 3000 and Cisco Nexus 9000 series switches. This is a one-time configuration on the device.

 Enhanced in-service software upgrade (ISSU)—Enables you to upgrade the device software while the switch continues to forward traffic, which reduces the downtime typically caused by software upgrades (similar to the regular ISSU, also known as a non-disruptive upgrade). However, with container-based ISSU, the software runs inside a separate Linux container (LXC) for the supervisor and line cards, and a third container is created as part of the ISSU procedure and is brought up as a standby supervisor.

 Container-based ISSUs are supported on Cisco Nexus 3164Q, 9200 series switches, 9332PQ, 9372PX, 9372TX, 9396TX, 93120TX, and 93128TX switches.

 For more information about the Cisco Nexus 3000 and 9000 switches, where the Container-based ISSU feature is supported, see the following URLs:

 - [Cisco NX-OS ISSU Support Matrix](http://www.cisco.com)

Step 3

In the **Health** column, the switch health is calculated by the capacity manager based on the following formula in the server.properties file.

The function to implement is:

```java
# calculate(x, x1, y, y1, z).
# @param x: Total number of modules.
# @param x1: Total number of modules in warning.
# @param y: Total number of switch ports.
# @param y1: Total number of switch ports in warning.
# @param z: Total number of events with severity of warning or above.
```
Step 4

The value in the Health column is calculated based on the following default equation.

\[((x-x1)*1.0/x)*0.4 + ((y-y1)*1.0/y)*0.3 + ((z*1.0/1000>=1) ? 0: ((1000-z)*1.0/1000)*0.3). \]

In the above formula, the switch health value is calculated based on the following:

- Percentage of Warning Modules (Contributes 40% of the total health).
- Percentage of Warning Ports (Contributes 30% of the total health).
- Percentage of events with severity of Warning or above (Contributes 30% of the total health. If there are more than 1000 warning events, the event health value is 0).

You may also have your own health calculation formula by implementing the common interface class:

com.cisco.dcbu.sm.common.rif.HealthCalculatorRif. Add the .jar file to the DCNM server and modify the health.calculator property to point to the class name you have created.

The default Java class is defined as: health.calculator=com.cisco.dcbu.sm.common.util.HealthCalculator.

- Capacity Manager calculates health only for the license switches. If the health column does not display a value, the switch either does not have a license or it has missed the capacity manager daily cycle.
- If the switch is unlicensed, click Unlicensed in the DCNM License column. The Administration > License window appears which allows you to assign a license to the user.
- The capacity manager runs two hours after the DCNM server starts. So, if you discover a device after two hours of the DCNM start time, the health will be calculated 24 hours after this DCNM start time.

Viewing System Information

The switch dashboard displays the details of the selected switch.

Procedure

Step 1

From the Cisco DCNM home page, choose **Inventory > View > Switches**.

An inventory of all the switches that are discovered by Cisco Prime DCNM Web Client is displayed.

Step 2

Click a switch in the **Device Name** column.

The **Switch** dashboard that corresponds to that switch is displayed along with the following information:

Step 3

Click the **System Information** tab. This tab displays detailed system information such as group name, health, module, time when system is up, serial number, the version number, contact, location, DCNM license, status, system log sending status, CPU and memory utilization, and VTEP IP address are displayed. Click **Health** to access the Health score screen, which includes health score calculation and health trend. The popup contains Overview, Modules, Switch Ports, and Events tabs.

- (Optional) Click **SSH** to access the switch through Secure Shell (SSH).
- (Optional) Click **Device Manager** to view a graphical representation of a Cisco MDS 9000 Family switch chassis, a Cisco Nexus 5000 Series switch chassis, a Cisco Nexus 7000 Series switch chassis, or a Cisco Nexus 9000 Series switch chassis including the installed switching modules, the supervisor modules, the status of each port within each module, the power supplies, and the fan assemblies.
• (Optional) Click **HTTP** to access the switch through Hypertext Transfer Protocol (HTTP) for that switch.

• (Optional) Click **Accounting** to go to the Viewing Accounting Information, on page 78 window pertaining to this switch.

• (Optional) Click **Backup** to go to the Viewing a Configuration window.

• (Optional) Click **Events** to go to the Viewing Events Registration, on page 256 window.

• (Optional) Click **Show Commands** to display the device show commands. The Device Show Commands page helps you to view commands and execute them.

• (Optional) Click **Copy Running Config to Startup Config** to copy the running configuration to the startup configuration.

Viewing Device Manager Information

Note

After you install Cisco DCNM for Windows, you must edit and provide credentials in the Cisco DCNM SAN Services to Log on. Navigate to Services > Cisco DCNM SAN Server > Cisco DCNM SAN Server Properties > Log On tab. Select This account radio button, and provide username and password. Click **Ok**. Log on to SSH and stop DCNM services. After you start the DCNM services, you must be able to use Device Manager.

Note

After you install Cisco DCNM for Linux, perform the procedure that is provided on the screen for Device Manager to be functional. Device Manager requires graphical environment that is configured properly in the Linux/OVA DCNM server.

The switch dashboard displays the details of the selected switch.

Procedure

Step 1

From the left menu bar, choose **Inventory > View > Switches**.

An inventory of switches discovered by Cisco Prime DCNM Web Client is displayed.

Step 2

Click a switch in the **Device Name** column.

The **Switch** dashboard that corresponds to that switch is displayed along with the following information:

Step 3

Click the **Device Manager** tab. The Device Manager login dialog box appears. Log into the Device Manager application. The Device Manager provides a graphic representation of the installed switching modules, the supervisor modules, the status of each port within each module, the power supplies, and the fan assemblies.

For more information about the Device Manager, go to the following URL:

[Cisco DCNM SAN Client Online Help](#)
Interfaces

Displaying Interface Show Commands

To display interface show commands from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose **Inventory > View > Switches**.
You see the **Switches** window displaying a list of all the switches for a selected **Scope**.

Step 2 In the **Device Name** column, select a switch to display **Switch Dashboard**.

Step 3 Click the **Interfaces** tab.

Step 4 Click **Show** to display the interface show commands.

The **Interface Show Commands** window helps you to view commands and execute them.

Rediscovering Interfaces

To rediscover interfaces from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose **Inventory > View > Switches**.
The **Switches** window is displayed showing a list of all the switches for a selected **Scope**.

Step 2 In the **Device Name** column, select a switch to display **Switch Dashboard**.

Step 3 Click the **Interfaces** tab.

Step 4 Click **Rediscover** to rediscover the selected interfaces. For example, after you edit or enable an interface, you can rediscover the interface.

Viewing Interface History

To view the interface history from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose **Inventory > View > Switches**.
You see the Switches window displaying a list of all the switches for a selected **Scope**.

Step 2 In the **Device Name** column, select a switch to display **Switch Dashboard**.

Step 3 Click the **Interfaces** tab.
Step 4 Click **Interface History** to display the interface history details such as **Policy Name**, **Time of Execution**, and so on.

VLAN

You create a VLAN by assigning a number to it; you can delete VLANs and move them from the active operational state to the suspended operational state.

To configure VLANs, choose **Inventory > View > Switches**, and then click a switch in the **Device Name** column.

The following table describes the buttons that appear on this page.

Table 2: VLAN Tab

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear Selections</td>
<td>Allows you to unselect all the VLANs that you selected.</td>
</tr>
<tr>
<td>Add</td>
<td>Allows you to create Classical Ethernet or Fabric Path VLANs.</td>
</tr>
<tr>
<td>Edit</td>
<td>Allows you to edit a VLAN.</td>
</tr>
<tr>
<td>Delete</td>
<td>Allows you to delete a VLAN.</td>
</tr>
<tr>
<td>No Shutdown</td>
<td>Allows you to enable a VLAN.</td>
</tr>
<tr>
<td>Shutdown</td>
<td>Allows you to disable a VLAN.</td>
</tr>
<tr>
<td>Show</td>
<td>Allows you to display the VLAN show commands.</td>
</tr>
</tbody>
</table>

This section contains the following:

Adding a VLAN

To add a VLAN from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose **Inventory > View > Switches**.

You see the **Switches** window displaying a list of all the switches for a selected **Scope**.

Step 2 In the **Device Name** column, select a switch to display the **Switch Dashboard**.

Step 3 Click the **VLAN** tab.

Step 4 Click **Add** to create Classical Ethernet or Fabric Path VLANs. In the **Add VLAN** window, specify the following fields:

- a) In the **Vlan Id** field, enter the VLAN ID.
- b) In the **Mode** field, specify whether you are adding Classical Ethernet or Fabric Path VLAN.
c) Select the **Admin State ON** check box to specify whether the VLAN is shut down or not.

Editing a VLAN

To edit a VLAN from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose **Inventory > View > Switches**.

The **Switches** window is displayed with a list of all the switches for a selected **Scope**.

Step 2 In the **Device Name** column, select a switch to display the **Switch Dashboard**.

Step 3 Select one or more VLANs, and then click the **Edit**.

Deleting a VLAN

To delete a VLAN from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose **Inventory > View > Switches**.

You see the **Switches** window displaying a list of all the switches for a selected **Scope**.

Step 2 In the **Device Name** column, select a switch to display the **Switch Dashboard**.

Step 3 Click **VLAN** tab.

Step 4 Select the VLAN that you want to delete, and then click **Delete**.

Shutting Down a VLAN

To shut down a VLAN from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose **Inventory > View > Switches**.

You see the **Switches** window displaying a list of all the switches for a selected **Scope**.

Step 2 In the **Device Name** column, select a switch to display **Switch Dashboard**.

Step 3 Click the **VLAN** tab.

Step 4 Click **Shutdown** to disable a VLAN.
To enable a VLAN, click No Shutdown button. For example, if you want to start traffic flow on a VLAN you can enable it.

Displaying VLAN Show Commands

To display VLAN show commands from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose Inventory > View > Switches.

The Switches window is displayed, showing a list of all the switches for a selected Scope.

Step 2 In the Device Name column, select a switch to display Switch Dashboard.

Step 3 Click the VLAN tab.

Step 4 Click Show to display the VLAN show commands. Based on the VLAN selection, you can show the VLAN commands. Interface Show Commands window displays the commands and allows you to execute them.

FEX

The Fabric Extender feature allows you to manage a Cisco Nexus 2000 Series Fabric Extender and its association with the Cisco NX-OS switch that it is attached to. A Fabric Extender is connected to the switch through physical Ethernet interfaces or a Port Channel. By default, the switch does not allow the attached Fabric Extender to connect until it has been assigned a chassis ID and is associated with the connected interface. You can configure a Fabric Extender host interface port as a routed or Layer 3 port. However, no routing protocols can be tied to this routed interface.

Note

FEX feature is available on LAN devices only. Therefore, you will see FEX on Cisco DCNM Inventory Switches. If a Cisco Nexus Switch is discovered as part of SAN fabric, FEX feature is not available. FEX is also not supported on Cisco Nexus 1000V devices.

Note

4x10G breakout for FEX connectivity is not supported on Cisco Nexus 9500 Switches.

Note

The Fabric Extender may connect to the switch through several separate physical Ethernet interfaces or at most one port channel interface.

This section describes how to manage Fabric Extender (FEX) on Cisco Nexus Switches through Cisco DCNM. You can create and manage FEX from Cisco DCNM Inventory > Switches.
FEX tab is visible only if you choose a LAN device.

The following table describes the fields that appear on this page.

Table 3: FEX Operations

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add</td>
<td>Click to add a new FEX to a Cisco Nexus Switch.</td>
</tr>
<tr>
<td>Edit</td>
<td>Select any active FEX radio button and click Edit to edit the FEX configuration. You can create an edit template and use it for editing FEX. Select template type as POLICY and sub type as FEX.</td>
</tr>
<tr>
<td>Delete</td>
<td>Select the FEX radio button, and click Delete icon to delete the FEX associated with the switch.</td>
</tr>
<tr>
<td>Show</td>
<td>Allows you to view various configuration details for the selected FEX ID. You can select the following from the drop-down list. · show_diagnostic · show_fex · show_fex_detail · show_fex_fabric · show_fex_inventory · show_fex_module The variables for respective show commands are displayed in the Variables area. Review the Variables and click Execute. The output appears in the Output area. You can create a show template for FEX. Select template type as SHOW and sub type as FEX.</td>
</tr>
<tr>
<td>FEX History</td>
<td>Allows you to view the history of the FEX configuration tasks for a particular FEX. You can review the Event Type, Policy Name, Status, Time of Execution, User Name for the selected FEX.</td>
</tr>
</tbody>
</table>

Table 4: FEX Field and Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fex Id</td>
<td>Uniquely identifies a Fabric Extender that is connected to a Cisco NX-OS device.</td>
</tr>
<tr>
<td>Fex Description</td>
<td>Description that is configured for the Fabric Extender.</td>
</tr>
</tbody>
</table>
Add FEX

To add single-home FEX from the Cisco DCNM Web UI, perform the following steps:

Before you begin

You can add a Fabric Extender (FEX) to the Cisco Nexus Switches through the Cisco DCNM Web Client. If the FEX is physically connected to the switch, FEX will become online after it is added. If the FEX is not physically connected to the switch, the configuration is deployed to the switch, which in turn enables FEX when connected.

Procedure

1. **Step 1** Choose **Inventory > Switches > FEX**.

 The **FEX** window is displayed.

2. **Step 2** Click the **Add FEX** icon.

Table of FEX Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fex Version</td>
<td>Specifies the version of the FEX that is associated with the switch.</td>
</tr>
<tr>
<td>Pinning</td>
<td>An integer value that denotes the maximum pinning uplinks of the Fabric Extender that is active at a time.</td>
</tr>
<tr>
<td>State</td>
<td>Specifies the status of the FEX as associated with the Cisco Nexus Switch.</td>
</tr>
<tr>
<td>Model</td>
<td>Specifies the model of the FEX.</td>
</tr>
<tr>
<td>Serial No.</td>
<td>Specifies the configured serial number.</td>
</tr>
<tr>
<td>Port Channel</td>
<td>Specifies the port channel number to which the FEX is physically connected to the Switch.</td>
</tr>
<tr>
<td>Ethernet</td>
<td>Refers to the physical interfaces to which the FEX is connected.</td>
</tr>
<tr>
<td>vPC ID</td>
<td>Specifies the vPC ID configured for FEX.</td>
</tr>
</tbody>
</table>

Note: If this configured serial number and the serial number of the Fabric Extender are not the same, the Fabric Extender will not be active.

Step 3 In the General tab, in the **PORTCHANNEL** field, enter the interface port channel number which is connected to the FEX.

Step 4 In the **INT_RANGE** field, enter the interface range within which the FEX is connected to the switch.

Note Do not enter the interface range, if the interfaces are already a part of port channel.

Step 5 In the **FEX_ID** field, enter the ID for FEX that is connected to a Cisco NX-OS device.

The identifier must be an integer value between 100 to 199.

Step 6 Click **Add**.

The configured Single-home FEX appears in the list of FEXs associated to the device.

Edit FEX

To edit and deploy FEX from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose **Inventory > Switches > FEX**.

The **FEX** window is displayed.

Step 2 Select the FEX radio button that you must edit. Click **Edit FEX** icon.

Step 3 In the Edit Configuration window, from the Policy drop-down list, select **Edit_FEX** to edit the FEX configuration.

Step 4 Edit the **pinning** and **FEX_DESC** fields, as required.

Note If you initially configured port 33 on the parent switch as your only fabric interface, all 48 host interfaces are pinned to this port. If you provision another port, for example 35, then you must perform this procedure to redistribute the host interfaces. All host interfaces are brought down and host interfaces 1 to 24 are pinned to fabric interface 33 and host interfaces 25 to 48 are pinned to fabric interface 35.

Step 5 Click **Preview**.

You can view the generated configuration for the selected FEX ID. The following is a configuration example for FEX ID 101.

```
fex 101
pinning max-links 1
description test
```

Step 6 After you review the configuration summary on the Preview window, on the Edit Configuration screen, click **Deploy** to deploy the FEX for the switch.

VDCs

This section describes how to manage Virtual Device Contexts (VDCs) on Cisco Nexus 7000 Switches through Cisco DCNM.
Users with the network administrator (network-admin) role can create Virtual Device Contexts (VDCs). VDC resource templates limit the amount of physical device resources available to the VDC. The Cisco NX-OS software provides a default resource template, or you can create resource templates.

You can create and manage VDCs from Cisco DCNM Inventory > Switches > VDCs. As Cisco DCNM supports DCNM on Cisco Nexus 7000 Series only, click an active Cisco Nexus 7000 Switch. After you create a VDC, you can change the interface allocation, VDC resource limits, and the high availability (HA) policies.

The following table describes the fields that appear on this page.

Table 5: Vdc Operations

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add</td>
<td>Click to add a new VDC.</td>
</tr>
<tr>
<td>Edit</td>
<td>Select any active VDC radio button and click Edit to edit the VDC configuration.</td>
</tr>
<tr>
<td>Delete</td>
<td>Allows you to edit the VDC configuration. Select any active VDC radio button and click Edit to edit the VDC configuration.</td>
</tr>
<tr>
<td>Resume</td>
<td>Allows you to delete the VDC. Select any active VDC radio button and click Delete to remove the VDC associated with the device.</td>
</tr>
<tr>
<td>Suspend</td>
<td>Allows you to suspend an active non-default VDC. Save the VDC running configuration to the startup configuration before suspending the VDC. Otherwise, you will lose the changes to the running configuration. Note You cannot suspend the default VDC. Caution Suspending a VDC disrupts all traffic on the VDC.</td>
</tr>
<tr>
<td>Rediscover</td>
<td>Allows you to resume a non-default VDC from the suspended state. The VDC resumes with the configuration that is saved in the startup configuration.</td>
</tr>
<tr>
<td>Show</td>
<td>Allows you to view the Interfaces and Resources that are allocated to the selected VDC. In the Interface tab, you can view the mode, admin-status, and operational status for each interface associated with the VDC. In the Resource tab, you can view the allocation of resources and current usage of these resources.</td>
</tr>
</tbody>
</table>

Cisco DCNM SAN Management Configuration Guide, Release 11.1(1)
Table 6: Vdc Table Field and Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Displays the unique name for the VDC</td>
</tr>
<tr>
<td>Type</td>
<td>Species the type of VDC. The two types of VDCs are:</td>
</tr>
<tr>
<td></td>
<td>• Ethernet</td>
</tr>
<tr>
<td></td>
<td>• Storage</td>
</tr>
<tr>
<td>Status</td>
<td>Specifies the status of the VDC.</td>
</tr>
<tr>
<td>Resource Limit-Module Type</td>
<td>Displays the allocated resource limit and module type.</td>
</tr>
<tr>
<td>HA-Policy</td>
<td>Specifies the action that the Cisco NX-OS software takes when an unrecoverable VDC fault occurs.</td>
</tr>
<tr>
<td></td>
<td>You can specify the HA policies for single supervisor module and dual supervisor module configurations when you create the VDC. The HA policy options are as follows:</td>
</tr>
<tr>
<td>Single Supervisor module configuration:</td>
<td>• Bringdown—Puts the VDC in the failed state.</td>
</tr>
<tr>
<td></td>
<td>To recover from the failed state, you must reload the physical device.</td>
</tr>
<tr>
<td></td>
<td>• Reload—Reloads the supervisor module.</td>
</tr>
<tr>
<td></td>
<td>• Restart—Takes down the VDC processes and interfaces and restarts it using the startup configuration.</td>
</tr>
<tr>
<td>Dual Supervisor module configuration:</td>
<td>• Bringdown—Puts the VDC in the failed state.</td>
</tr>
<tr>
<td></td>
<td>To recover from the failed state, you must reload the physical device.</td>
</tr>
<tr>
<td></td>
<td>• Restart—Takes down the VDC processes and interfaces and restarts it using the startup configuration.</td>
</tr>
<tr>
<td></td>
<td>• Switchover—Initiates a supervisor module switchover.</td>
</tr>
<tr>
<td></td>
<td>The default HA policies for a non-default VDC that you create is restart for a single supervisor module configuration and switchover for a dual supervisor module configuration. The default HA policy for the default VDC is reload for a single supervisor module configuration and switchover for a dual supervisor module configuration.</td>
</tr>
</tbody>
</table>
Add VDCs

To add VDC from the Cisco DCNM Web UI, perform the following steps:

Before you begin

Ensure that you have discovered the physical device using a username that has the network-admin role.

Obtain an IPv4 or IPv6 address for the management interface (mgmt 0) if you want to use out-of-band management for the VDC.

Create a storage VDC to run FCoE. The storage VDC cannot be the default VDC and you can have one storage VDC on the device.

Procedure

Step 1 Choose **Inventory > Switches > VDC**.

The VDC window is displayed.

Step 2 Click the **Add VDC** icon.

Step 3 From the drop-down list, select the VDC type.

You can configure the VDC in two modes.

- Ethernet VDC
- Storage VDC

The default VDC type is Ethernet.

Step 4 Click **OK**.

Configuring Ethernet VDCs

To configure VDC in Ethernet mode from the Cisco DCNM Web UI, perform the following steps:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mac Address</td>
<td>Specifies the default VDC management MAC address.</td>
</tr>
<tr>
<td>Management Interface</td>
<td>Species the IP Address of the VDC Management interface. The status shows if the interface is up or down.</td>
</tr>
<tr>
<td>• IP Address Prefix</td>
<td></td>
</tr>
<tr>
<td>• Status</td>
<td></td>
</tr>
<tr>
<td>SSH</td>
<td>Specifies the SSH status</td>
</tr>
</tbody>
</table>
Procedure

Step 1 In the General Parameter tab, specify the VDC Name, Single supervisor HA-policy, Dual supervisor HA-policy, and Resource Limit - Module Type.

Step 2 In the Allocate Interface tab, select the network interfaces (dedicated interfaces membership) to be allocated to the VDC.

Click Next.

Step 3 In the Allocate Resource tab, specify the resource limits for the VDC.

Select the radio button and choose Select a Template from existing Templates or Create a New Resource Template. VDC resource templates describe the minimum and maximum resources that the VDC can use. If you do not specify a VDC resource template when you create a VDC, the Cisco NX-OS software uses the default template, vdc-default.

- If you choose Select a Template from existing Templates, from the Template Name drop-down list, you can select None, global-default, or vdc-default.

The template resource limits are detailed in the following below:

<table>
<thead>
<tr>
<th>Resource</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Default VDC Template Resource Limits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anycast Bundled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPv6 multicast route memory</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>IPv4 multicast route memory</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>IPv6 unicast route memory</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>IPv4 unicast route memory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VDC Default Template Resource Limits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitor session extended</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitor session mx exception</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitor SRC INBAND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port Channels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitor DST ERSPAN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPAN Sessions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VLAN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anycast Bundled</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IPv4 multicast route memory and IPv6 multicast route memory are in megabytes.
You can edit individual resource limits for a single VDC through the Cisco DCNM Web Client > Inventory > Switches > VDC.

Click Next.

Step 4
In the Authenticate tab, you can allow the Admin to configure the password and also authenticate users using AAA Server Groups.

In the Admin User Area:
- Check the Enable Password Strength Check checkbox, if necessary.
- In the Password field, enter the admin user password.
- In the Confirm Password field, reenter the admin user password.
- In the Expiry Date field, click the down arrow and choose an expiry date for the admin user from the Expiry Date dialog box. You can also select Never radio button not to expire the password.

In the AAA Server Groups area:
- In the Group Name field, enter an AAA server group name.
- In the Servers field, enter one or more host server IPv4 or IPv6 addresses or names, which are separated by commas.
- In the Type field, choose the type of server group from the drop-down list.

Click Next.

Step 5
In the Management Ip tab, enter IPv4 or IPv6 Address information.
Click Next.

Step 6
In the Summary tab, review the VDC configuration.
Click Previous to edit any parameters.
Click Deploy to configure VDC on the device.

Step 7
In the Deploy tab, the status of the VDC deployment is displayed.
A confirmation message appears. Click Know More to view the commands that are executed to deploy the VDC.
Click **Finish** to close the VDC configuration wizard and revert to view the list of VDCs configured on the device.

Configuring Storage VDCs

To configure VDCs in storage mode from the Cisco DCNM Web UI, perform the following steps:

Before you begin

Create a separate storage VDC when you run FCoE on the device. Only one of the VDCs can be a storage VDC, and the default VDC cannot be configured as a storage VDC.

You can configure shared interfaces that carry both Ethernet and Fibre Channel traffic. In this specific case, the same interface belongs to more than one VDC. The shared interface is allocated to both an Ethernet and a storage VDC.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In the General Parameter tab, specify the VDC Name, Single supervisor HA-policy, Dual supervisor HA-policy, and Resource Limit - Module Type.</td>
</tr>
<tr>
<td>Step 2</td>
<td>In the Allocate FCoE Vlan tab, select the available Ethernet Vdc from the drop-down list. The existing Ethernet VLANs range is displayed. Select None not to choose any available Ethernet VDCs. You can allocate specified FCoE VLANs to the storage VDC and specified interfaces. Click Next.</td>
</tr>
<tr>
<td>Step 3</td>
<td>In the Allocate Interface tab, add the dedicated and shared interfaces to the FCoE VDC. Note The dedicated interface carries only FCoE traffic and the shared interface carries both the Ethernet and the FCoE traffic. You can configure shared interfaces that carry both Ethernet and Fibre Channel traffic. In this specific case, the same interface belongs to more than one VDC. FCoE VLAN and shared interface can be allocated from same Ethernet VDC. Click Next.</td>
</tr>
</tbody>
</table>
| **Step 4** | In the Authenticate tab, you can allow the Admin to configure the password and also authenticate users using AAA Server Groups. In the Admin User Area:
 - Check the **Enable Password Strength Check** checkbox, if necessary.
 - In the **Password** field, enter the admin user password.
 - In the **Confirm Password** field, reenter the admin user password.
 - In the **Expiry Date** field, click the down arrow and choose an expiry date for the admin user from the Expiry Date dialog box. You can also select **Never** radio button not to expire the password. |

In the AAA Server Groups area:
• In the **Group Name** field, enter an AAA server group name.

• In the **Servers** field, enter one or more host server IPv4 or IPv6 addresses or names, which are separated by commas.

• In the **Type** field, choose the type of server group from the drop-down list.

Click **Next**.

Step 5

In the Management Ip tab, enter IPv4 or IPv6 Address information.

Click **Next**.

Step 6

In the Summary tab, review the VDC configuration.

Click **Previous** to edit any parameters.

Click **Deploy** to configure VDC on the device.

Step 7

In the Deploy tab, the status of the VDC deployment is displayed.

A confirmation message appears. Click **Know More** to view the commands that are executed to deploy the VDC.

Click **Finish** to close the VDC configuration wizard and revert to view the list of VDCs configured on the device.

Edit VDC

To edit VDC from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1

Choose **Inventory > Switches > VDC.**

The **VDC** window is displayed.

Step 2

Select the VDC radio button that you must edit. Click the **Edit VDC** icon.

Step 3

Modify the parameters as required.

Step 4

After you review the configuration summary on the Summary tab, click **Deploy** the VDC with the new configuration.

Switch On-Board Analytics

For the selected switch, the **Switch On-Board Analytics** dashboard displays the following charts:

- **Note**

 The graph data cannot be retrieved if correct certificates are not added to the Switch. Ensure that the certificates are valid for nxapi feature and SAN analytics to function properly.

- Top 10 Slowest Ports
The following metrics are supported by the Switch On-Board Analytics charts:

- **Read and Write Completion Time**—Time that is taken for an IO to complete successfully, that is, the time gap between IO status from a Target and IO command from an Initiator. The following metrics are supported:
 - Read Completion Time Min
 - Read Completion Time Max
 - Write Completion Time Min
 - Write Completion Time Max

The IO engine tracks the maximum and minimum IO completion time for read and write commands in the context of a switch’s port, target port, flows, initiators, and LUNs.

- **Read and Write Initiation Time**—Time that is taken for an IO to initiate, that is, the time gap between the first response packet from a Target and IO Command from Initiator. The following metrics are supported:
 - Read Initiation Time Min
 - Read Initiation Time Max
 - Write Initiation Time Min
 - Write Initiation Time Max

The IO engine tracks the maximum and minimum IO initiation time for read and write commands in the context of a switch’s port, target port, flows, initiators, and LUNs.

- **Read and Write IO Bandwidth**—Read and write command bandwidth observed in the context of a switch's port traffic, target port traffic, flow traffic, initiators, and LUNs. The IO bandwidth is computed at every four second time interval based on the number of bytes read or written.

- **Read and Write IO Rate**—Read and write command IO rate observed in the context of a switch's port traffic, target port traffic, flow traffic, initiators, and LUNs. The IO rate is computed at every four second time interval that is based on the number of IO performed.

- **Read and Write IO Size**—Read and write command IO size observed in the context of a switch's port traffic, target port traffic, flow traffic, initiators, and LUNs. The following metrics are supported:
 - Read IO Size Min
 - Read IO Size Max
• Write IO Size Min
• Write IO Size Max

The IO engine tracks the maximum and minimum IO size for read and write commands.

Viewing Switch On-Board Analytics

You can view the switch on-board analytics information from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose Inventory > View > Switches.
The discovered switches are displayed.

Step 2 Click a switch name in the Device Name column.
The Switch dashboard that corresponds to that switch is displayed.

Step 3 Click the Switch On-Board Analytics tab.
This tab displays the Switch On-Board Analytics charts.

Configuring Settings for the Switch On-Board Analytics Charts

Perform the following actions to configure the settings for the switch on-board analytics charts:

• From the Show Time as drop-down list, choose time to be shown in the charts. You can choose one of the following options:
 • Microseconds
 • Milliseconds
 • Seconds

By default, Microseconds is chosen.

Note
The Show Time drop-down list is applicable only for the top ten slowest ports, target ports, flows, and ITLs.

• From the Show Flow From drop-down list, choose whether to show flows from a Target or from an Initiator. By default, flows from a Target are chosen.

Note
The Show Flow From drop-down list is applicable only for the charts displaying flows and ITLs.
• From the **Show bandwidth and Size as** drop-down list, choose the traffic information to be shown in the charts. You can choose one of the following options:

 - **Bytes**
 - **KB**
 - **MB**

 By default, **Bytes** is chosen.

• Check the **Filter results** check box, and click either the **by fc port** or **by VSAN** radio button and specify the appropriate values to filter the chart results. The FC port value must be in the *fc slot/port* format and the VSAN value must be a digit within the allowed VSAN range.

 Click the Filter icon next to the **by fc port** to apply changes.

 | Note | Filtering results by VSAN is not applicable for the **Top 10 Slowest Ports** or **Top 10 Port Traffic** charts. |

• Check the **Single Column** check box to display the charts in a single column instead of double columns.

• Click the **Refresh** icon in the upper-right corner to refresh the charts.

Viewing Switch On-Board Analytics Charts

Perform the following actions to view the charts under the **Switch On-Board Analytics** tab:

• View the charts for the top ten slowest ports, target ports, flows, and ITLs by choosing one of the following variables from the drop-down list:

 • **Read Completion Time**—The read command completion time observed in the context of a switch’s port.

 • **Write Completion Time**—The write command completion time observed in the context of a switch’s port.

 • **Read Initiation Time**—The read command initiation time observed in the context of a switch’s port.

 • **Write Initiation Time**—The write command initiation time observed in the context of a switch’s port.

 | Note | By default, **Read Completion Time** is selected and all the units for time are in Microseconds. |

• Each chart contains a legend that provides information about the variable displayed. Each variable has a check box. Unselecting the check box removes the variable data from the chart or table.
• View the charts for the top ten port traffic, target port traffic, flow traffic, and ITL traffic by choosing one of the following variables from the drop-down list:
 • **Read IO Rate**—The read command data observed in the context of a switch’s port.
 • **Write IO Rate**—The write command observed in the context of a switch’s port.
 • **Read IO Size**—The read command size observed in the context of a switch’s port.
 • **Write IO Size**—The write command size observed in the context of a switch’s port.
 • **Read IO Bandwidth**—The read command bandwidth observed in the context of a switch’s port.
 • **Write IO Bandwidth**—The write command bandwidth observed in the context of a switch’s port.

Note

• By default, **Read IO Rate** is selected. The **Read IO Rate** is IO per second. Both **Rate** and **Bandwidth** units are per second over an 8-second range. The **Size** value is for the life of the switch or since the last clear command was run from the CLI.

• The **Read IO Size** and **Read IO Bandwidth** units are in bytes per second. You can change this unit by using the **Show Bandwidth and Size** drop-down list. You can choose from the three options: **Bytes**, **KB**, and **MB**.

• Each chart contains a legend that provides information about the variable displayed. Each variable has a check box. Unselecting the check box removes the variable data from the chart or table.

• Choose the format to display information from the **Show** drop-down list. You can choose one of the following formats:
 • **Chart**
 • **Table**
 • **Chart and Table**

Note

• To display information in the **Chart and Table** format, enlarge your browser window or check the **Single Column** check box on the upper right corner.

• The default for Top ten Slowest Ports and Top 10 Port Traffic is **Chart and Table**.

• Use the **Chart Type** drop-down list to display information in the **Bar Chart** or **Stacked Bar Chart**.

• Use the **Actions** drop-down list to export information in a CSV or PDF, or print the required information.

• To view a chart or a table in a new window, click the **Detach** icon on the upper-right corner of a chart or a table. After detaching a chart or table, you can view the top 25 slowest ports, target ports, flows, ITLs, or their traffic.
Viewing Inventory Information for Modules

To view the inventory information for modules from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose **Inventory > View > Modules**.
The **Modules** window is displayed with a list of all the switches and its details for a selected Scope.

Step 2 You can view the following information:
- **Group** column displays the group name of the module.
- **Switch** column displays the switch name on which the module is discovered.
- **Name** displays the module name.
- **ModelName** displays the model name.
- **SerialNum** column displays the serial number.
- **2nd SerialNum** column displays the second serial number.
- **Type** column displays the type of the module.
- **Slot** column displays the slot number.
- **Hardware Revision** column displays the hardware version of the module.
- **Software Revision** column displays the software version of the module.
- **Asset ID** column displays the asset id of the module.
- **OperStatus** column displays the operation status of the module.

Viewing Inventory Information for Licenses

To view the inventory information for licenses from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose **Inventory > View > Licenses**.
The **Licenses** window is displayed based on the selected Scope.

Step 2 You can view the following information:
- **Group** column displays the group name of switches.
- **Switch** column displays the switch name on which the feature is enabled.
- **Feature** displays the installed feature.
• **Status** displays the usage status of the license.
• **Type** column displays the type of the license.
• **Warnings** column displays the warning message.

Discovery

Starting from Cisco DCNM release 10.x, Cisco DCNM Web Client allows the **admin** to associate **user** to one or more device scope or group. That means you can only access and configure the associated group or scope devices based on Role Based Access Control (RBAC). Though you might not have the access to other users' associated devices, you can still see all the discovered devices under the **Inventory > Discovery** tab.

From the left menu bar, go to **Administration > Management Users**. You can create users and associate groups, manage remote authentication, and see all the connected clients. For more information about RBAC, navigate to **Managing Local Users**.

Adding, Editing, Re-Discovering, Purging and Removing LAN, LAN Tasks and Switch

Cisco DCNM Web Client reports information that is obtained by the Cisco DCNM-LAN devices.

<table>
<thead>
<tr>
<th>Tip</th>
</tr>
</thead>
<tbody>
<tr>
<td>If the discovered Device is not in the scope of the current user the check box for the LAN Device in the LAN table grays out.</td>
</tr>
</tbody>
</table>

This section contains the following:

Adding LAN Switches

To add LAN switches from the Cisco DCNM Web UI, perform the following steps:

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
</tr>
</thead>
</table>
| Step 1 | Choose **Inventory > Discovery > LAN Switches**.
You see the list of LAN devices in the **Switch** column. |
| Step 2 | Click the **Add** icon to add LAN.
You see the **Add LAN Devices** dialog box. |
| Step 3 | Select **Hops from seed Switch** or **Switch List**. The fields vary depending on your selection. |
| Step 4 | Enter the **Seed Switch** IP address for the fabric.
For LAN Switches Discovery, DCNM allow both IPv4 and IPv6 address for the Seed Switch. |
Step 5 The options vary depending on the discovery type selected. For example, if you check Use SNMPv3/SSH, varied fields are displayed.

Step 6 Click the drop-down list and choose Auth-Privacy security level.

Step 7 Enter the Community, or user credentials.

Step 8 Select the LAN group from the LAN groups candidates which is in the scope of the current user.

Note Select DCNM server and click Add to add LAN switches.

Step 9 Click Next to begin the shallow discovery.

Step 10 Click the drop-down list and choose Auth-Privacy security level.

Step 11 Select a switch and click Add to add a switch to the switch group.

If one of more seed switches is not reachable, it is shown as “unknown” on the shallow Discovery window.

Editing LAN Devices

To edit LAN devices from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose Inventory > Discovery > LAN Switches.

Step 2 Select the check box next to the LAN that you want to edit and click Edit icon.

You see the Edit LAN dialog box.

Step 3 Enter the Username and Password.

Note Select Credential or Management State to change the Credential or Management state. If Credential is selected, you can change the SNMP version and Auth-Privacy if v3, username or password. If Management State is selected, you can change the status to managed or unmanaged.

Step 4 Select the LAN status as Managed or Unmanaged.

Step 5 Click Apply to save the changes.
Removing LAN Devices from Cisco DCNM

You can remove a LAN switch from Cisco DCNM.

Procedure

Step 1 Choose **Inventory > Discovery > LAN Switches**.
Step 2 Select the check box next to the LAN that you want to remove and click **Delete** to remove the switches and all their data.
Step 3 Click **Yes** to review the LAN device.

Moving LAN Devices Under a Task

You can move LAN devices under a task to a different server using Cisco DCNM Web Client. This feature is available only in the federation setup and the Move LAN is displayed in the federation setup screen.

You can move the LAN from a server, which is down, to an active server. The management state remains the same.

Procedure

Step 1 Choose **Inventory > Discovery > LAN Switches**.
Step 2 Choose the LAN devices from the LAN table. Click **Move**.
Step 3 In the **Move LAN Tasks to another DCNM Server** dialog box, enter the LAN Device to be moved and specify the DCNM server.
All the LAN devices under the selected tasks will be moved.

Rediscover LAN Task

Procedure

Step 1 Choose **Inventory > Discovery > LAN Switches**.
Step 2 Click **Rediscover LAN**.
Step 3 Click **Yes** in the pop-up window to rediscover the LAN.

Adding, Editing, Re-Discovering, Purging and Removing the Managed Fabrics

Cisco DCNM reports information that is obtained by the Cisco DCNM-SAN on any fabric known to Cisco DCNM-SAN. To view the SAN Switches, choose **Inventory > Discovery > SAN Switches**.

The Status column of the SAN Switches page displays the fabric status.
• managedContinuously—The fabric is automatically managed when the Cisco DCNM-SAN server starts and continues to be managed until this option is changed to Unmanage.

• managed—The fabric is managed by Cisco DCNM-SAN Server until there are no instances of DCNM-SAN viewing the fabric.

• unmanaged—Cisco DCNM-SAN Server stops managing this fabric.

This section contains the following:

Adding a Fabric

Before you begin
Before you discover a new fabric, ensure that you create an SNMP user on the switch.

Procedure

Step 1 Choose Inventory > Discovery > SAN Switches.
The SAN Switches window is displayed with a list of fabrics, if any, managed by Cisco DCNM-SAN.

Step 2 Click Add to add a new fabric.
The Add Fabric window appears.

Step 3 Enter the Fabric Seed Switch IP address or DNS name for this fabric.

Step 4 (Optional) Check the SNMP check box to use SNMPv3 or SSH. If you check the SNMP check box, the field Community changes to Username and Password.

Step 5 Enter the Username and Password for this fabric.

Step 6 Select the privacy settings from the Auth-Privacy drop-down list.

Step 7 (Optional) Check the Limit Discovery by VSAN check box to specify the included VSAN list or excluded VSAN list from the VSANs provided to discover a new fabric.

Step 8 (Optional) Check the Enable NPV Discovery in all Fabrics check box. If you check enable NPV discovery in all fabrics, the changes are applied to all the fabrics that are previously discovered.

Step 9 Click Options and specify the UCS Username and UCS Password.

Step 10 Select a DCNM server from the DCNM Server drop-down list.

Note This option is applicable only for Federation setups.

Step 11 Click Add to begin managing this fabric.

You can remove single or multiple fabrics from the Cisco DCNM Web Client.
Deleting a Fabric

Procedure

Step 1 Choose **Inventory > Discovery > SAN Switches**.

Step 2 Select the check box next to the fabric that you want to remove.

Step 3 Click **Delete** to remove the fabric from the datasource and to discontinue data collection for that fabric.

Editing a Fabric

To edit a fabric from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose **Inventory > Discovery > SAN Switches**.

Step 2 Select the check box next to the fabric that you want to edit and click the **Edit** icon.

You see the **Edit Fabric** dialog box. You can edit only one fabric at a time.

You can modify the password, go to from the Cisco DCNM Web UI, perform the following steps:

a) Choose **Inventory > Discovery > SAN Switches**.

b) Select the fabric for which the fabric switch password is changed.

c) Click **Edit**, unmanage the fabric, specify the new password, and then manage the fabric.

You will not be able to open the fabric as the new password is not be validated with the database.

You can go to **Administration > Credentials Management > SAN Credentials** to validate the password.

Moving Fabrics to Another Server Federation

This feature is only available on the federation setup and the Move Fabric is only displayed in the federation setup screen.

You can move the fabrics from a server, which is down, to an active server. The management state remains the same.
Procedure

Step 1 Choose Inventory > Discovery > SAN Switches.
Step 2 Select the fabric(s) that you want to move to a different server, and then click Move.
Step 3 In the Move Fabric dialog box, select the DCNM server where the fabrics will be moved. The To DCNM Server drop-down list lists only the active servers.

Rediscovering a Fabric

Procedure

Step 1 Choose Inventory > Discovery > SAN Switches.
Step 2 Select the checkbox next to the fabric and click Rediscover.
Step 3 Click Yes in the pop-up window.
The Fabric is rediscovered.

Purging a Fabric

You can clean and update the fabric discovery table through the Purge option.

Procedure

Step 1 Choose Inventory > Discovery > SAN Switches.
Step 2 Select the checkbox next to the fabric and click Purge fabric icon.
Step 3 Click Yes in the pop-up window.
The Fabric is purged.

Discovering Cisco UCS FI Switches

To include discovery for Cisco UCS FI server blade and service profile, you should enter both SNMP credential and UCS Manager credential.

- To discover the UCS FI switches, choose Inventory > Discovery > SAN switches. In the Add Fabric page, User Name/Password is the SNMP credential while the UCS User Name/UCS Password is the UCS Manager credential.
Cisco UCS FI does not allow you to use the SNMP user “admin”. To create a separate SNMP user on UCS FI, perform the following steps.

Procedure

Step 1 Log in to Cisco UCS Manager by entering the UCS FI IP Address to the web browser and click **Launch UCS Manager**.
Step 2 Click the **Admin** tab, and go to **Communication Management > Communication Services**. Under the SNMP section, ensure that **Admin State** is enabled.
Step 3 Create a new SNMP user, and specify its credential.

Note Cisco UCS Manager 3.2(3) and later releases do not support MD5 authentication if SNMPv3 is in Federal Information Processing Standards (FIPS) mode. To create and deploy such a user, use SHA with AES-128 encryption.

Viewing Inventory Information of UCS FI Switches

Note The Blades tab appears on DCNM for a Primary UCS FI node only. It does not appear for a Secondary UCS FI Node. However, it appears on the DCNM for the Standalone UCS FI deployment.

Procedure

Step 1 To view the inventory information of the UCS FI interfaces, launch Cisco DCNM and then choose **Inventory** > **Switches**.
Step 2 Click the Interfaces tab to view the UCS FI interfaces and the Server Blades that are connected to the UCS FI.

Step 3 Click the chart icon in the Name column to view the 24 Hour traffic data for this port.

- **System Info tab**: For secondary UCS FI, the corresponding primary UCS FI’s IP is displayed.

- **Blades tab**: The Blades tab applies to the primary UCS FI only in the redundancy setup, or if the UCS FI is standalone, and it is not configured in a pair. It displays information of all server blades attached to the UCS FI.
• vHBAs tab: This tab displays the list of vHBA for this UCS FI. You can click the chart icon to show the 24 hour traffic for the vHBA.

• vNICs tab: This tab displays the list of vNIC for this UCS FI. You can click the chart icon will show the 24 hour traffic for the vNIC.

View the Host Enclosure Details of UCS FI

Procedure

Step 1
To view the host enclosure details of UCS FI, choose **Dashboard > Compute**.

Step 2
Click the details for Host Enclosure connecting to the UCS FIs to view the topology, the Server Blade information and its service profile. To show the Blade and Service Profile information, hover your mouse cursor over the host enclosure in the topology.
Inventory

View the Host Enclosure Details of UCS FI

Cisco DCNM SAN Management Configuration Guide, Release 11.1(1)
Configuring Server Properties for UCS FI Integration

Procedure

- To allow discovery for UCS FI server blade and service profile information, you need to configure the `fabric.enableUcsHttpDiscovery server` property. The default value set to true. To configure the Server Properties for UCS FI Integration, choose Administration >DCNM Server > Server Properties.
Adding, Editing, Removing, Rediscovering and Refreshing SMI-S Storage

The SMI-S providers are managed using the Cisco DCNM Web UI.

This section contains the following:

Adding SMI-S Provider

To add an SMI-S provider from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose Inventory > Discovery > Storage Devices.
The Storage Devices window is displayed.

Step 2 Click the Add SMI-S provider icon.
The Add SMI-S Provider window is displayed.

Step 3 Use the drop-down to select the Vendor.
All the supported vendors are available in the drop-down list. More SMI-S storage vendors are discovered through a ‘best effort’ handler using the Other vendor option in the drop-down.

Note At least one valid DCNM license must be provisioned before adding the data sources for SMI-S storage discovery.

Step 4 Specify the SMI-S Server IP, Username, and Password.

Step 5 Specify the Name Space and Interop Name Space.

Step 6 By default, the Port number is prepopulated.
If you select the Secure checkbox, then the default secure port number is populated.

When using the Secure mode with EMC, the default setting is mutual authentication. For more information, see the EMC documentation about adding an SSL certificate to their trust store. Also, you can set
SSLClientAuthentication value to None in the Security_Settings.xml configuration file and restart the ECOM service.

Step 7
Click Add.

The credentials are validated and if it’s valid the storage discovery starts. If the credential check fails, you will be prompted to enter valid credentials.

Deleting SMI-S Provider

To delete the SMI-S provider from the Cisco DCNM Web UI, perform the following steps:

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Choose Inventory > Discovery > Storage Devices.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Use the check-box to select the SMI-S provider and click Delete icon.</td>
</tr>
</tbody>
</table>

The provider is removed and all data that is associated with the provider is purged from the system.

Editing SMI-S Provider

To edit the SMI-S provider from the Cisco DCNM Web UI, perform the following steps:

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Choose Inventory > Discovery > Storage Devices.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Use the check-box to select the SMI-S provider and click the Edit SMI-S provider icon.</td>
</tr>
<tr>
<td>Step 3</td>
<td>In the Edit SMI-S Provider window, use the drop-down to select the Vendor.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Specify the SMI-S Sever IP, User Name and Password.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Specify the Name Space and Interop Name Space.</td>
</tr>
<tr>
<td>Step 6</td>
<td>By default, the Port number is pre-populated.</td>
</tr>
<tr>
<td></td>
<td>If you select the Secure checkbox, then the default secure port number is populated.</td>
</tr>
<tr>
<td>Step 7</td>
<td>Click Apply.</td>
</tr>
</tbody>
</table>

The storage discovery is stopped and a new task is created using the new information and the storage discovery is re-started.
Re-Discover SMI-S Provider

Procedure

Step 1
Choose **Inventory > Discovery > Storage Devices**.

Step 2
Use the check box to select the SMI-S provider and click **Rediscover SMI-S provider**.

Purge SMI-S Provider

Procedure

Step 1
Choose **Inventory > Discovery > Storage Devices**.

Step 2
Use the check box to select the SMI-S provider and click **Purge**.
The providers are purged.

Adding, Editing, Re-Discovering and Removing VMware Servers

Cisco DCMN reports information that is gathered by Cisco DCNM-SAN on any VMware servers supported by Cisco DCNM-SAN.

Note
Ensure that the SAN discovered before you add the vCenter on the datasource.

This section contains the following:

Adding a Virtual Center Server

You can add a virtual center server from Cisco DCMN.

Procedure

Step 1
Choose .
You see the list of VMware servers (if any) that are managed by Cisco DCNM-SAN in the table.

Step 2
Click **Add**.
You see the **Add VCenter** window.

Step 3
Enter the **Virtual Center Server** IP address for this VMware server.

Step 4
Enter the **User Name** and **Password** for this VMware server.
Deleting a VMware Server

You can remove a VMware server from the Cisco DCNM.

Procedure

Step 1 Choose .
Step 2 Select the check box next to the VMware server that you want to remove and click **Delete** to discontinue data collection for that VMware server.

Editing a VMware Server

You can edit a VMware server from Cisco DCNM Web Client.

Procedure

Step 1 Choose .
Step 2 Check the check box next to the VMware server that you want to edit and click **Edit** virtual center icon.
You see the **Edit VCenter** dialog box.
Step 3 Enter a the **User Name** and **Password**.
Step 4 Select managed or unmanaged status.
Step 5 Click **Apply** to save the changes.

Rediscovering a VMware Server

You can rediscover a VMware server from Cisco DCNM.

Procedure

Step 1 Choose .
Step 2 Select the check box next to the VMware that you want to rediscover.
Step 3 Click **Rediscover**.
A dialog box with warning "Please wait for rediscovery operation to complete." appears.
Step 4 Click **OK** in the dialog box.
Monitor

This chapter contains the following topics:

- Monitoring Switch, on page 75
- Monitoring SAN, on page 79
- Monitoring LAN, on page 96
- Monitoring Report, on page 100
- Alarms, on page 104

Monitoring Switch

The Switch menu includes the following submenus:

Viewing Switch CPU Information

To view the switch CPU information from the Cisco DCNM Web UI, perform the following steps:

Procedure

- **Step 1** Choose Monitor > Switch > CPU. The CPU window is displayed. This window displays the CPU information for the switches in that scope.
- **Step 2** You can use the drop-down to filter the view by Last 10 Minutes, Last Hour, Last Day, Last Week, Last Month, and Last Year.
- **Step 3** In the Switch column, click the switch name to view the Switch Dashboard.
- **Step 4** Click the chart icon in the Switch column to view the CPU utilization. You can also change the chart timeline to Last 10 Minutes, Last Hour, Last Day, Last Week, Last Month, and Last Year. You can choose the chart type and chart options to show as well.
Viewing Switch Memory Information

To view the switch memory information from the Cisco DCNM Web UI, perform the following steps:

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Choose Monitor > Switch > Memory. The memory panel is displayed. This panel displays the memory information for the switches in that scope.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Use the drop-down to filter the view by Last 10 Minutes, Last Hour, Last Day, Last Week, Last Month, and Last Year.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Click the chart icon in the Switch column to see a graph of the memory usage of the switch.</td>
</tr>
<tr>
<td>Step 4</td>
<td>In the Switch column, click the switch name to view the Switch Dashboard.</td>
</tr>
<tr>
<td>Step 5</td>
<td>You can use the drop-down to view the chart in different time lines. Use the chart icons to view the memory utilization chart in varied views.</td>
</tr>
</tbody>
</table>

Viewing Switch Traffic and Errors Information

To view the switch traffic and errors information from the Cisco DCNM Web UI, perform the following steps:

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Choose Monitor > Switch > Traffic. The Switch Traffic panel is displayed. This panel displays the traffic on that device for the past 24 hours.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Use the drop-down to filter the view by 24 hours, Week, Month, and Year.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Click the Export icon in the upper-right corner to export the data into a spreadsheet.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Click Save.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Click the switch name to view the Switch Dashboard section.</td>
</tr>
</tbody>
</table>

Viewing Switch Temperature

Cisco DCNM includes the module temperature sensor monitoring feature, using which you can view the sensor temperature of a switch. You can choose an interval by which to filter the sensor list. The default interval is Last Day. Only sensors that have historical temperature data is shown in the list. You can choose between Last ten Minutes, Last Hour, Last Day, Last Week, and Last Month.

Note
It is not necessary to configure the LAN or SAN credentials under the Configure > Credentials Management > LAN Credentials screen to fetch the temperature monitoring data from the switches.
To view the switch temperature information from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose Monitor > Switch > Temperature.

The **Switch Temperature** window is displayed with the following columns.

- **Scope**: The sensor belongs to a switch, which is part of a fabric. The fabric that it belongs to is shown as its scope. When the scope selector at the top of Cisco DCNM is used, the sensor list is filtered by that scope.
- **Switch**: Name of the switch the sensor belongs to.
- **IP Address**: IP Address of the switch.
- **Temperature Module**: The name of the sensor module.
- **Avg/Range**: The first number is the average temperature over the interval that is specified at the top of the table. The second set of numbers is the range of the temperature over that interval.
- **Peak**: The maximum temperature over the interval.

Step 2 From this list, each row has a chart icon, which you can click.

A chart is displayed, which shows historical data for the sensor. The interval for this chart can be changed as well, between 24 hours, 1 week, and 1 month.

Enabling Temperature Monitoring

You can enable the temperature monitoring feature for LAN switches from the LAN Collections screen, and for the SAN switches by setting a few properties under Administration > DCNM Server > Server Properties screens.

Enabling Temperature Monitoring for SAN Switches

1. From the menu bar, select Administration > DCNM Server > Server Properties.
2. Navigate to the #PERFORMANCE_MANAGER > COLLECTIONS area.
3. Set the environment fields `pm.collectSanTemperature` & `pm.sanSensorDiscovery` to TRUE.
4. Click Apply Changes to save the configuration.
5. Restart Cisco DCNM.

Viewing Other Statistics

To view the statistics in user-defined format from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose Monitor > Switch > User Defined.

The **Other** window is displayed.
Step 2 You can use the drop-down to filter the view by 24 hours, Week, Month, and Year. There are variations to this procedure. In addition to these basic steps, you can also do the following:
 • Select the time range, and click Filter to filter the display.
 • Click the chart icon in the Switch column to see a graph of the performance for this user-defined object. You can change the time range for this graph by selecting it from the drop-down list in the upper right corner.
 • Use the chart icons to view the traffic chart in varied views.

Viewing Switch Custom Port Groups Information

To view the custom port group information from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose Monitor > Switch > Custom Port Groups.
The Custom Port Groups window shows statistics and performance details for custom port groups.

Step 2 You can use the drop-down to filter the view by 24 hours, Week, Month, and Year.

Step 3 Click the Export icon in the upper-right corner to export the data into a spreadsheet.

Step 4 Click Save.

Step 5 Click the switch name to view the Switch Dashboard.

Viewing Accounting Information

To view the accounting information from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose Monitor > Switch > Accounting.
The fabric name or the group name along with the accounting information is displayed.

Step 2 Select Advanced Filter beside the filter icon to search the accounting information by Source, Username, Time, and Description. Or select Quick Filter to search under each column.

Step 3 You can also select a row and click the Delete icon to delete accounting information from the list.

Step 4 You can use the Print icon to print the accounting details and use the Export icon to export the data to a Microsoft Excel spreadsheet.
Viewing Events Information

To view the events and syslog from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1
Choose **Monitor > Switch > Events**.
The fabrics along with the switch name and the events details are displayed.
The **Count** column displays the number of times the same event has occurred during the time period as shown in the **Last Seen** and **First Seen** columns.
Click a switch name in the **Switch** column to view the switch dashboard.

Step 2
Select an event in the table and click the **Add Suppressor** icon to open the shortcut of adding an event suppressor rule.

Step 3
Select one or more events from the table and click the **Acknowledge** icon to acknowledge the event information for the fabric.
- After you acknowledge the event for a fabric, the acknowledge icon is displayed in the **Ack** column next to the fabric.

Step 4
Select the fabric and click the **Unacknowledge** icon to cancel an acknowledgment for a fabric.

Step 5
Select **Advanced Filter** beside the filter icon to search the accounting information by **Source**, **Username**, **Time**, and **Description**. Or select **Quick Filter** to search under each column.

Step 6
Select a fabric and use the **Delete** icon to delete the fabric and event information from the list.

Step 7
Click the **Print** icon to print the event details.

Step 8
Click the **Export to Excel** icon to export the data.

Monitoring SAN

The SAN menu includes the following submenus:

Monitoring ISL Traffic and Errors

To monitor the ISL traffic and errors from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1
Choose **Monitor > SAN > ISLs**.
The **ISL Traffic and Errors** window is displayed. This panel displays the ISL information for the end devices in that scope. You can reduce or expand the scope of what is displayed by using the scope menu.

Step 2
You can use the drop-down to filter the view by 24 hours, Week, Month, and Year.
Note NaN (Not a Number) in the data grid means that the data is not available.

Note It is empty for non-FCIP ports under the FCIP Compression Ratio column.

There are variations to this procedure. In addition to these basic steps, you can perform the following steps to view detailed information for ISLs:

• To change the time range for this graph, select it from the drop-down list in the upper-right corner.

• To view the detailed information for a specific period, drag the slider control to choose the time interval for which you need the information.

• Use the chart icons to view the traffic chart in varied views. You can also use the icons to Append, Predict, and Interpolate Data. To view real-time information, choose Refresh icon from in the upper right corner. The real-time data is updated in every 10 seconds.

• To export the data into a spreadsheet, click the Export icon in the upper-right corner and click Save.

• For the Rx/Tx calculation, see the following Rx/Tx calculation formula.

 Note The conversion for Fabrics is 10 bit = 1 byte and for LAN traffic, the conversion is 8 bit = 1 byte.

 • Average Rx/Tx % = Average Rx/Tx divided by Speed * 100
 • Peak Rx/Tx % = Peak Rx/Tx divided by Speed * 100

If the performance tables do not contain any data, see the Performance Setup Thresholds section to turn on performance.

Viewing Performance Information for NPV Links

To view the performance of NPV links from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose Monitor > SAN > NPV Links.

The NPV Links window is displayed. This window displays the NPV links for the selected scope.

Step 2 You can use the drop-down to filter the view by 24 hours, Week, Month, and Year.

Step 3 Click the chart icon in the Name column to see a list of the traffic for the past 24 hours.

There are variations to this procedure. In addition to these basic steps, you can also perform the following steps to view detailed information for NPV links:

• You can change the time range for this information by selecting from the drop-down list in the upper-right corner.

• To view the detailed information for a specific period, drag the slider control to choose the time interval for which you need the information.

• Use the chart icons to view the traffic chart in varied views. You can also use the icons to Append, Predict, and Interpolate Data.
• To export the data into a spreadsheet, click the **Export** icon in the upper-right corner and click **Save**.

• To view real-time information, choose **Real Time** from the drop-down list in the **Chart** menu.

Note
If the performance tables do not contain any data, see the [Performance Setup Thresholds, on page 254](#) section to turn on performance data collection.

Viewing Inventory Information for VSANs

To view the inventory information for VSANs from the Cisco DCNM Web UI, perform the following steps:

Procedure

Choose **Monitor > SAN > VSANs**.

The **VSAN** window is displayed, showing the VSAN details along with the status and **Activated Zoneset** details.

Monitoring Performance Information for Ethernet Ports

To monitor the performance of Ethernet ports from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1
Choose **Monitor > SAN > Ports**.

The **Ethernet Ports** window is displayed.

Step 2
You can use the drop-down to filter the view by **24 hours, Week, Month, and Year**.

There are variations to this procedure. In addition to these basic steps, you can also perform the following steps:

- Choose an Ethernet port in the **Name** column to see a graph of the traffic across that Ethernet port for the past 24 hours. You can change the time range for this graph by selecting it from the drop-down list in the upper-right corner.

- To export the data into a spreadsheet, click the **Export** icon in the upper-right corner and then **Save**.

- Use the chart icons to view the traffic chart in varied views. You can also use the icons to **Append**, **Predict**, and **Interpolate Data**.

- For the Rx/Tx calculation, see the following Rx/Tx calculation formula.
The conversion for Fabrics is 10 bit = 1 byte and for LAN traffic, the conversion is 8 bit = 1 byte.

- Average Rx/Tx % = Average Rx/Tx divided by Speed * 100
- Peak Rx/Tx % = Peak Rx/Tx divided by Speed * 100

Note If the performance tables do not contain any data, see the Performance Setup Thresholds, on page 254 section to turn on performance data collection.

Viewing Inventory Information for Host Ports on FC End Devices

To view the inventory information for host ports on FC end devices from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose Monitor > SAN > FC Ports.

The Inventory > End Ports window is displayed with details of the FC End Devices on the host ports.

Step 2 Use the drop-down to view All or Warning information for the FC End devices on host ports.

Step 3 Click the Show Filter icon to enable filtering by Enclosure, Device Name, or VSAN.

Viewing Performance Information on All Ports

To view the performance of devices that are connected to all the ports from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose Performance > End Devices.

The End Devices Traffic and Errors window is displayed.

Step 2 You can choose to display All ports, Host ports, or Storage ports from the drop-down list on the upper right corner.

Step 3 You can use the drop-down to filter the view by 24 hours, Week, Month, and Year.

Step 4 To export the data into a spreadsheet, click the Export icon in the upper-right corner and click Save.

Step 5 Click the chart icon in the Name column to see the following:

- A graph of the traffic on that device according to the selected timeline.
- Use the chart icons to view the traffic chart in varied views. To view real-time information, click the refresh icon from the drop-down list in the upper right corner. The real-time data is updated in every 10 seconds. You can also use the icons to Append, Predict, and Interpolate Data.
Note If the performance tables do not contain any data, see the Performance Setup Thresholds, on page 254 section to turn on performance data collection.

Viewing Performance Information for FC Flows

To view the performance of the FC Flow traffic from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose Monitor > SAN > FC Flows.
The FC Flows window is displayed.

Step 2 You can use the drop-down to filter the view by 24 hours, Week, Month, and Year.

Step 3 To export the data into a spreadsheet, click the Export icon in the upper-right corner and then click Save.

Step 4 Click the chart icon in the Name column to see:
 • A graph of the traffic on that device according to the selected timeline.
 • Use the chart icons to view the traffic chart in varied views. To view real-time information, click the Refresh icon from the drop-down list in the upper right corner.
 • You can also use the icons to Append, Predict, and Interpolate Data.

Note If the performance tables do not contain any data, see the Performance Setup Thresholds, on page 254 section to turn on performance data collection.

Viewing Performance Information on Enclosures

To view the performance of devices that are connected to the host enclosure from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose Monitor > SAN > Enclosures.
The Enclosures Traffic and Errors window is displayed.

Step 2 You can select to view Host Enclosures or Storage Enclosures from the drop-down list on the upper right corner.

Step 3 You can use the drop-down to filter the view by 24 hours, Week, Month, and Year.

Step 4 To export the data into a spreadsheet, click the Export icon in the upper-right corner and then click Save.

Step 5 Click the chart icon in the Name column to see:
 • A graph of the traffic on that device according to the selected timeline.
Viewing Performance Information on Port Groups

To view the performance of devices that connected to the port groups from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose Monitor > SAN > Port Groups.

The Port Group Traffic and Errors window is displayed.

Step 2 You can use the drop-down to filter the view by 24 hours, Week, Month, and Year.

Step 3 Click the name port group to see the members of that port group.

There are variations to this procedure. In addition to these basic steps, you can also perform the following steps to view detailed information for the port groups:

• To change the time range for this graph, select it from the drop-down list in the upper right corner.

• To view the detailed information for a specific period, drag the slider control to choose the time interval for which you need the information.

• Use the chart icons to view the traffic chart in varied views.

• You can also use the icons to Append, Predict, and Interpolate Data.

• To export the data into a spreadsheet, click the Export icon in the upper-right corner and click Save.

Note If the performance tables do not contain any data, see the Performance Setup Thresholds, on page 254 section to turn on performance data collection.

SAN Host Redundancy

The SAN Host Path Redundancy check enables you to view the non-redundant host storage paths. It helps you identify the host enclosure errors along with the resolution to fix the errors.

Note All fabrics that are discovered must be licensed or this feature will be disabled in the Cisco DCNM Web Client. When the feature is disabled, a notification is displayed stating unlicensed fabrics are discovered.

From the menu bar, choose Monitor > SAN > Host Path Redundancy.
You can see two parts in this window:

- Tests to Run
- Results

Tests to Run

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Choose Monitor > SAN > Host Path Redundancy.</td>
</tr>
<tr>
<td>2</td>
<td>Under the upper Tests to Run area, use the check boxes to select the host redundancy optional checks.</td>
</tr>
<tr>
<td>3</td>
<td>Check the Automatically Run Check Every 24 hours check box to enable periodic running of the checker. The checker will run every 24 hours starting 10 minutes after the server starts.</td>
</tr>
<tr>
<td>4</td>
<td>Check Limit by VSANs check box, and select Inclusion or Exclusion. Enter VSAN or VSAN range in the text field to include or skip the host enclosures that belong to VSANs from the redundancy check.</td>
</tr>
<tr>
<td>5</td>
<td>Check other optional checks to do the relevant check.</td>
</tr>
<tr>
<td>6</td>
<td>Click Clear Results to clear all the errors displayed.</td>
</tr>
<tr>
<td>7</td>
<td>Click Run Tests Now to run the check at anytime.</td>
</tr>
<tr>
<td>8</td>
<td>The results are displayed in the below Results area.</td>
</tr>
</tbody>
</table>

Results

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Choose Monitor > SAN > Host Path Redundancy tab.</td>
</tr>
<tr>
<td>2</td>
<td>The bottom Results area has four tabs that are Host Path Errors, Ignored Hosts, Ignored Storage, and Ignored Host Storage Pairs.</td>
</tr>
</tbody>
</table>
| 3 | Click **Host Path Errors** tab to display the host path redundancy errors table. On the top of the table, the colored **Good**, **Skipped**, and **Errored** host enclosure counts, along with the last update time are displayed.
 a) The **Host Enclosure** column displays the hosts that contain the errors. These are counts of each path in the host enclosures seeing an error. The **Storage Enclosure/Storage Port** column displays the connected storage that is involved the errors. In the **Fix?** column, hover the mouse cursor on the ? icon to view a solution to fix the error.
 b) Select a row and click **Ignore Hosts** to add the selected rows host enclosure to an exclusion list. The errors from that host will no longer be reported and the current errors will be purged from the database.
 c) Select a row and click **Ignore Storage** to add the selected rows storage enclosure to an exclusion list.
 d) Select a row and click **Ignore Host Storage Pair** to add the selected rows host-storage pair enclosure to an exclusion list.
 e) In the drop-down list next to **Show** on the upper right corner of the table, select **Quick Filter**. Enter the keywords in the column headers of the table to filter the items. Select **All** to display all the items.
 f) Click the circulation icon on the upper right corner of the table to refresh the table.
 g) Click the **Print** icon on the upper right corner of the table to print the errors as tables. |
h) Click the Export icon on the upper right corner of the table to export the table to a Microsoft excel spreadsheet.

Step 4

Click the Ignored Hosts tab to display the list of host enclosures that have been skipped or ignored by the redundancy check along with the reason for skipping. The following reasons may be displayed:

- Skipped: Enclosure has only one HBA.
- Host was ignored by the user.
- Host ports managed by more than one federated servers. Check can't be run.
- Skipped: No path to storage found.

Select a host enclosure and click Delete to remove the host from the ignored list and begin receiving errors about a host you had chosen to ignore. However, you can delete entries with message **Host was ignored by user**.

Step 5

Click the Ignored Storage tab to display the list of storage enclosures that have been selected to be ignored during the redundancy check. Select a storage enclosure and click Delete to remove the storage from the ignored list and begin receiving errors about the storage you had chosen to ignore.

Step 6

Click the Ignored Host Storage Pair tab to display the list of host-storage pairs that have been selected to be ignored during the redundancy check. Select a row and click Delete to delete the storage pair from the ignored list.

Slow Drain Analysis

The **Slow Drain Analysis** enables you to view slow drain statistics at the switch level and the port level. You can monitor the slow drain issue within any duration. You can display the data in a chart format and export the data for analysis. You can also view the topology that provides a high-level view of txwait, drops, credit loss recovery, over utilization, and port monitor events.

The slow drain statistics are stored in the cache memory. Therefore, the statistics are lost when the server is restarted or a new diagnostic request is placed.

![Note]

The jobs run in the background, even after you log off.

Procedure

Step 1

Choose **Monitor > SAN > Slow Drain Analysis**.

Step 2

In the **Scope** field, select the fabric from the drop-down list.

Step 3

In the **Duration** drop-down list, select **Once** or **Daily** for the scheduled daily job. **Once** includes intervals, such as 10 min, 30 min, 1 hour, and other hours and run the job immediately. **Daily** allows you to select a start time, and run the job for the selected interval. Use the radio button to select the desired interval to collect data.

Only **Daily** slow drain job sends out report, which can be viewed from **Monitor > Report > View**.

Step 4

Click **Start Collection** to begin polling.
The server collects the slow drain statistics based on the scope defined by you. The Time Remaining is displayed in the right-side of the page.

Step 5
Click Stop Collection to stop polling.

The server maintains the counters in the cache, until a new diagnostic request is placed. You can stop the polling before the time is up.

Step 6
Click the arrow next to Current jobs to display the slow drain details for the jobs running on the fabric. The Fabric Name, the Status of polling, Start, End, and Duration icon for each fabric is displayed.

Step 7
Select the fabric and click Result, Delete or Stop to view, delete or stop a job.

A topology of the selected fabric will appear if you select a fabric and click Result, along with the slow drain details. See *Slow Drain Visualization* for more information.

Step 8
Click Detail to view the saved information.

Step 9
Click Interface chart to display the slow drain value for the switch port in the chart format.

Step 10
Click Filter to display the details based on the defined value for each column.

Step 11
Select the Data Rows Only check box to filter and display the nonzero entries in the statistics.

Step 12
Click Print to print the slow drain details.

Step 13
Click Export to export the slow drain statistics to a Microsoft Excel spreadsheet.

Slow Drain Visualization

A topology of the selected fabric appears if you select a fabric and click Result, along with the slow drain details. The topology window shows color-encoded nodes and links that correspond to various network elements. For each of the elements, you can hover over to fetch some more information. The links and switches are color-coded. Enable performance collections and SNMP traps to view the slow drain information on the topology. Choose Administration > Performance Setup > SAN Collections and enable the performance collections. See *Performance Manager SAN Collections*, on page 254 for more information on enabling the performance collections. Choose Administration > Event Setup > Registration and enable SNMP traps. See #unique_9 for more information on enabling SNMP traps.

The following table lists the color description that is associated with the links and switches.

<table>
<thead>
<tr>
<th>Color</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue (light)</td>
<td>Level 5</td>
<td>High utilization tx-datarate >= 80%</td>
</tr>
<tr>
<td>Green</td>
<td>Level 4</td>
<td>No slow drain found</td>
</tr>
<tr>
<td>Red</td>
<td>Level 3</td>
<td>Credit loss recovery</td>
</tr>
<tr>
<td>Orange</td>
<td>Level 2</td>
<td>Drops</td>
</tr>
<tr>
<td>Yellow (dark)</td>
<td>Level 1.5</td>
<td>txwait >= 30%</td>
</tr>
<tr>
<td>Yellow (light)</td>
<td>Level 1</td>
<td>txwait < 30%</td>
</tr>
<tr>
<td>Gray (light)</td>
<td>No Data</td>
<td>No Data</td>
</tr>
</tbody>
</table>
A switch color represents the highest level slow drain that is found on any link to switch. The maximum value is 3 and the minimum value is 1. A switch has two colors if overutilized. The right half of the switch is colored in light blue to represent the overutilization. A number on the switch represents the number of F ports with the slow drain. The color around the number represents the highest level slow drain that is found on F ports of the switch. Click the switch to see more slow drain details. Double click the switch to filter the slow drain table to view the slow drain data of that switch alone.

Two parallel lines are used to represent the slow drain on links. Links are bidirectional, hence each direction has a color to represent the highest level of slow drain. Hover over a link to view the switch and interface name of the source and destination. Double click a link to filter the slow drain table to view the slow drain data that is related to that link alone.

Note

The highest slow drain level a link can have is Level 4. Valid colors for a link are Green, Red, Orange, Yellow (dark), Yellow (light), and Gray (light).

Viewing Inventory Information for Regular Zones

To view the inventory information for regular zones from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose Monitor > SAN > Regular Zones.
The Regular Zones window is displayed.

Step 2 Click the Settings icon to choose the displaying columns.

Viewing Inventory Information for IVR Zones

To view the inventory information for IVR zones from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose Monitor > SAN > IVR Zones.
The IVR Zones window is displayed with inventory details of the fabrics for the IVR zone.

Step 2 Click the Settings icon to choose the displaying columns.
Monitoring Insights Flows

The SAN Insights page displays the health-related indicators in the interface so that you can quickly identify issues in your environment. You can use health indicators to understand where problems are in your fabrics.

Note

If the interface is down, it is displayed in grey color.

Procedure

Step 1

To monitor the SAN Insights feature, choose Monitor > SAN > SAN Insights. The SAN Insights page appears.
This page provides the basis for Insights data visualization showing counter data, visual topology map with indicators on the map. Also, you can view analytical information and historical insights. In Monitor > SAN Insights window, you can perform the tasks that are mentioned in the steps below.

The color of the status is arrived as an hourly average of Read and Write deviation for the respective Initiator Target Pairs.

Note You can click the Status circle icon in the Initiator-target Pair table to view the 24-Hour deviation chart.

You can click the View SAN Insights Metrics icon in each row of the Initiator-target Pair table to navigate to the ECT Analysis page for more details on the respective Initiator-Target pair.
Step 2 View details about **Host Enclosure**, **Storage Enclosure**, or **Flows**. The Host Enclosures, Storage Enclosures, or IT-pairs can be filtered using the quick-filter functionality.

Step 3 Select time interval (such as now, 6-hours ago, 12-hours ago) to calculate status and fetch flow and port counters.

Step 4 View the status of the host or storage enclosures.
Step 5 View initiator target pair details such as Source PWWN, SID, destination PWWN, DID, fabric name, and status.
Step 6 Use the map to view end-to-end connectivity from initiator to target. Host, storage, and switch have colored status indications. The color codes in the Topology area are only for the switch status. That color code is identical to what you see in the main DCNM Topology legend. The switch interfaces also have status indications. The switch interface is rendered as a small circle at the end of the link that is attached to the switch. Selecting a switch interface populates one of the counter tables. Map displays latest connectivity (not affected by time slider setting).

![Map showing connectivity](image)

Step 7 View counter data for selected flow and switch interface.

- Select the IT flow to display the topology and the flow metrics from the switch telemetry infrastructure in the bottom-left table.

Select the specific interface in the topology view to display interface metrics from port-monitoring infrastructure.

Step 8 You can click the icon in each row of the Initiator-target Pair table to navigate to the ECT Analysis page from from Monitor > SAN Insights page for more details on the respective Initiator-Target pair.
Viewing Host Enclosures

1. Choose Monitor > SAN > SAN Insights, and then choose Host Enclosure.

2. Specify a time interval using the time slider.

3. Select a host from the Host Enclosures table, which lists all the host enclosures.

4. Select one initiator-target pair from the Initiator Target Pairs table. This table lists all the initiator-target pairs for the selected host.

 The flow table shows the details of all metrics on ECT/DAL/read/write times, active I/Os, aborts, failures etc. along with their one hour average and the baseline information.
5. Select a switch interface from the topology map. The **Switch Interface** table displays data for the selected interface.

6. Click the status ball in the **Initiator Target Pairs** table. 24-hour normalized R/W ECT deviation chart is displayed for the selected IT-pair.

Viewing Storage Enclosures

1. Choose **Monitor > SAN > SAN Insights**, and then choose **Storage Enclosure**.

![Storage Enclosures Table and Initiator Target Pairs Table]

2. Specify a time interval using the time slider.

3. Select a storage enclosure from the **Storage Enclosures** table.

4. Select an initiator-target pair from the **Initiator Target Pairs** table.

5. Click the status ball. The 24hr normalized R/W ECT deviation chart is displayed for the selected IT-pair.

6. View the topology map represented for the selected initiator-target pair and the flow metrics. The flow metrics are displayed in the flow table.

7. Select a switch interface from the topology map. The **Switch Interface** table displays data for the selected interface.

Viewing Flows

1. Choose **Monitor > SAN > SAN Insights**, and then choose **Flows**.
2. Specify a time interval using the time slider.

3. Choose a flow from the IT Pairs table. The initiator-target pairs are listed in the Initiator Target Pairs table, the topology map is represented for the selected I-T pair. The flow metrics are displayed in the Flows table.

4. The flow table in this window shows details about all metrics on ECT/DAL/read/write times, active I/Os, aborts, failures and so on. Also, the flow table shows one hour average and the baseline information.

5. Click the status ball in the Initiator Target Pairs table. 24-hour normalized R/W ECT deviation chart is displayed for the selected IT-pair.

6. Select a switch interface from the topology map. The Switch Interface table displays data for the selected interface.

Monitoring LAN

The LAN menu includes the following submenus:

Monitoring Performance Information for Ethernet

To monitor the performance information for ethernet from the Cisco DCMN Web UI, perform the following steps:

Procedure

Step 1 Choose Monitor > LAN > Ethernet.

The Ethernet window is displayed.
Step 2

You can use the drop-down to filter the view by Last 10 Minutes, Last Hour, Last Day, Last Week, Last Month, and Last Year.

There are variations to this procedure. In addition to these basic steps, you can also perform the following steps:

- Select the name of an Ethernet port from the Name column to see a graph of the traffic across that Ethernet port for the past 24 hours. You can change the time range for this graph by selecting it from the drop-down list in the upper-right corner.

- To export the data into a spreadsheet, click the Export icon in the upper-right corner and click Save.

- Use the chart icons to view the traffic chart in varied views. You can also use the icons to Append, Predict, and Interpolate Data.

- For the Rx/Tx calculation, see the following Rx/Tx calculation.

 Note The conversion for Fabrics is 10 bit = 1 byte and for LAN traffic, the conversion is 8 bit = 1 byte.

 - Average Rx/Tx % = Average Rx/Tx divided by Speed * 100
 - Peak Rx/Tx % = Peak Rx/Tx divided by Speed * 100

 Note If the performance tables do not contain any data, see the Thresholds section to turn on performance data collection.

Monitoring ISL Traffic and Errors

To monitor the ISL traffic and errors from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1

Choose Monitor > LAN > Link.

The ISL Traffic and Errors window is displayed. This panel displays the ISL information for the end devices in that scope. You can reduce or expand the scope of what is displayed by using the scope menu.

Step 2

You can use the drop-down to filter the view by Last 10 Minutes, Last Hour, Last Day, Last Week, Last Month, and Last Year.

Note NaN (Not a Number) in the data grid means that the data is not available.

There are variations to this procedure. In addition to these basic steps, you can perform the following steps to view detailed information for ISLs:

- To change the time range for this graph, select it from the drop-down list in the upper-right corner.

- To view the detailed information for a specific period, drag the slider control to choose the time interval for which you need the information.
• Use the chart icons to view the traffic chart in varied views. You can also use the icons to Append, Predict, and Interpolate Data. To view real-time information, choose Real Time from the drop-down list in the Chart menu.

• To export the data into a spreadsheet, choose Export from the drop-down list in the Chart menu and then click Save.

• For the Rx/Tx calculation, see the following Rx/Tx calculation.

 Note
 The conversion for Fabrics is 10 bit = 1 byte and for LAN traffic, the conversion is 8 bit = 1 byte.

 • Average Rx/Tx % = Average Rx/Tx divided by Speed * 100
 • Peak Rx/Tx % = Peak Rx/Tx divided by Speed * 100

 Note
 If the performance tables do not contain any data, see the Performance Setup Thresholds section to turn on performance.

Monitoring a vPC

The virtual port channel (vPC) feature enables you to view the links that are physically connected to different devices as a single port channel. A vPC is an extended form of a port channel which allows you to create redundancy and increase bisectional bandwidth by enabling multiple parallel paths between nodes and allowing load balancing traffic. Traffic is distributed among two single device vPC endpoints. If there is an inconsistency in the vPC configurations, the vPC does not function correctly.

Note

To view the vPC in vPC Performance, both primary and secondary device should be designated to the user. If either one kind of switch is not designated, vPC information is displayed.

Cisco DCNM Web Client > Monitor > vPC displays only consistent vPCs displays both the consistent and inconsistent vPCs.

You can identify the inconsistent vPCs and resolve the inconsistencies in each vPC by using the Cisco DCNM Web UI > Configure > Deploy > vPC Peer and Web Client > Configure > Deploy > vPC.

Table 9: vPC Performance, on page 98 displays the following vPC configuration details in the data grid view.

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search box</td>
<td>Enter any string to filter the entries in their respective column.</td>
</tr>
<tr>
<td>vPC ID</td>
<td>Displays vPC ID's configured device.</td>
</tr>
<tr>
<td>Domain ID</td>
<td>Displays the domain ID of the vPC peer switches.</td>
</tr>
<tr>
<td>Multi Chassis vPC EndPoints</td>
<td>Displays the multi-chassis vPC endpoints for each vPC ID under a vPC domain.</td>
</tr>
<tr>
<td>Column</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Primary vPC Peer - Device Name</td>
<td>Displays the vPC Primary device name.</td>
</tr>
<tr>
<td>Primary vPC Peer - Primary vPC Interface</td>
<td>Displays the primary vPC interface.</td>
</tr>
<tr>
<td>Primary vPC Peer - Capacity</td>
<td>Displays the capacity for the primary vPC peer.</td>
</tr>
<tr>
<td>Primary vPC Peer - Avg. Rx/sec</td>
<td>Displays the average receiving speed of primary vPC peer.</td>
</tr>
<tr>
<td>Primary vPC Peer - Avg. Tx/sec</td>
<td>Displays the average sending speed of primary vPC peer.</td>
</tr>
<tr>
<td>Primary vPC Peer - Peak Util%</td>
<td>Displays the peak utilization percentage of primary vPC peer.</td>
</tr>
<tr>
<td>Secondary vPC Peer - Device Name</td>
<td>Displays the vPC secondary device name.</td>
</tr>
<tr>
<td>Secondary vPC Interface</td>
<td>Displays the secondary vPC interface.</td>
</tr>
<tr>
<td>Secondary vPC Peer - Capacity</td>
<td>Displays the capacity for the secondary vPC peer.</td>
</tr>
<tr>
<td>Secondary vPC Peer - Avg. Rx/sec</td>
<td>Displays the average receiving speed of secondary vPC peer.</td>
</tr>
<tr>
<td>Secondary vPC Peer - Avg. Tx/sec</td>
<td>Displays the average sending speed of secondary vPC peer.</td>
</tr>
<tr>
<td>Secondary vPC Peer - Peak Util%</td>
<td>Displays the peak utilization percentage of secondary vPC peer.</td>
</tr>
</tbody>
</table>

You can use this feature as following:

Monitoring vPC Performance

You can view the relationship among consistent virtual port channels (vPCs). You can view the statistics of all member interfaces and the aggregate of the statistics at the port channel level.

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>This tab only displays consistent vPCs.</td>
</tr>
</tbody>
</table>

To view the VPC performance information from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1
Choose **Monitor > LAN > vPC**.

The **vPC Performance** statistics is displayed. The aggregated statistics of all vPCs are displayed in a tabular manner.

Step 2
Click the **vPC ID**.

The vPC topology, **vPC Details, Peer-link Details**, and **Peer-link Status** is displayed.

The **vPC Consistency, Peer-link Consistency**, and **vPC Type2 Consistency** for the vPC is displayed.

- Click the **vPC Details** tab, you can view the parameter details of vPC **Basic Setting** and **Layer 2 Settings** for both Primary and Secondary vPC devices.
• Click the **Peer-link Details** tab, to view the parameter details of peer-link **vPC Global Setting** and **STP Global Settings** for both Primary and Secondary vPC devices.

• Click the **Peer-link Status** tab, the **vPC Consistency**, and **Peer-Link Consistency** status is displayed. The parameter details of **Role Status** and **vPC Peer keep-alive Status** for both Primary and Secondary vPC devices is also displayed.

Step 3
Click the peer-link icon in front of the **Device Name** in the **Primary vPC peer** or **Secondary vPC peer** column to view its member interface.

Step 4
Click the **Show Chart** icon of the corresponding interface to view its historical statistics.

The traffic distribution statistics appear at the bottom of the vPC window. By default, the Cisco DCNM Web Client displays the historical statistics for 24 hours.

There are variations to this procedure. In addition to these basic steps, you can also perform the following steps to view detailed information for flows:

• To change the time range for this graph, select it from the drop-down list in the upper right corner.

• To view the detailed information for a specific period, drag the slider control to choose the time interval for which you need the information.

• Use the chart icons to view the traffic chart in varied views.

• You can also use the icons to **Append**, **Predict**, and **Interpolate Data**.

• To print the vPC Utilization data, click the **Print** icon in the upper-right corner. The vPC Utilization page appears.

• To export the data into a spreadsheet, click the **Export** icon in the upper-right corner and click **Save File**.

Note
If the performance tables do not contain any data, see the Thresholds section to turn on performance data collection.

Monitoring Report

The Report menu includes the following submenus:

Viewing Reports

You can view the saved reports that are based on the following selection options:

• **By Template**

• **By User**

• From the menu bar, select **Monitor > Report > View**.

To view the reports from the Cisco DCNM Web UI, perform the following steps:
Procedure

Step 1 In the left pane, expand By Template or By User folder.
Step 2 Select the report that you wish to view.
 You can view the report in the main screen or you can select the report in the Report column to view the HTML version of the report in a new browser.
Step 3 To delete a specific report, select the check box and click the Delete icon.
Step 4 To delete all reports, check the check box in the header, and click the Delete icon.

Note If you have multiple fabrics, you can select the DCNM-SAN group in the Scope to view Host to Storage connectivity of multiple fabrics in a single report.

The report is divided into two sections:

• A summary report for all the devices that have faulty modules. The table displays information for every device that includes the device hostname, number of faulty modules, and the module number with its PID.

• The information for the device of the module. The table contains details about the tests failed.

Generating a Report

You can generate reports that are based on a selected template or you can schedule the report to run at a specified time.

Procedure

Step 1 From the menu bar, select Monitor > Report > Generate.
 You see the Generate Report window.
Step 2 In the configuration window, use the drop-down to define the scope for report generation.
 In the Scope drop-down, you can select a scope group with dual fabrics, the traffic data that is generated by hosts and storage end devices are displayed side by side which enables you to view and compare traffic data that is generated on dual fabrics. To view this report, in the Other Predefined folder, select Traffic by VSAN (Dual Fabrics). Click Options to select the Device Type and Fabrics. Click Save to save the configuration.
Step 3 In the pane on the left, expand the folders and select the report.
Step 4 (Optional) In the pane on the right, you can edit the Report Name.
Step 5 (Optional) Check the Export to Csv/Excel check box to export the report to a Microsoft Excel spreadsheet.
Step 6 In the Repeat radio buttons, if you select:
 • Never - The report is generated only during the current session.
 • Once - The report is generated on a specified date and time apart from the current session.
 • Daily - The report is generated everyday based on the Start and End date at a specified time.
• **Weekly** - The report is generated once a week based on the Start and End date at a specified time.
• **Monthly** - The report is generated once every month based on the Start and End date at a specified time.

When you generate a report for Network Configuration Audit, the daily job generates a report for the selected devices for last one day. Similarly, the weekly job generates a report for the last 7 days, and the monthly job generates a report for the last 30 days.

Step 7

Click the **Create** button to generate a report that is based on the specifications.

You see the report results in a new browser window.

Alternatively, you can view the report by choosing **Monitor > Report > View** and selecting the report name from the report template that you used in the navigation pane.

Note
The **Start Date** must be at least five minutes earlier than the **End Date**.

The report is divided into two sections:

• A summary report for all the devices that have faulty modules. The table displays information for every device that includes the device hostname, number of faulty modules and the module number with its PID.
• A detailed information for the device of the module. The table contains details about the tests failed.

Creating SAN User Defined Reports

You can create custom reports from all or any subset of information that is obtained by Cisco DCNM-SAN. You create a report template by selecting events, performance, and inventory statistics you want in your report and set the desired SAN, fabrics, or VSAN to limit the scope of the template. You can generate and schedule a report of your fabric that is based on this template immediately or later. Cisco DCNM Web Client saves each report, which is generated based on the report template, and the time you generate the report.

Since the Cisco MDS NX-OS Release 5.0, the report template design has changed to resolve the limitations of the earlier versions. With the new design model, you can perform add, delete, and modify functionalities on a single page. You can choose multiple fabrics and VSANs using the new navigation system, which allows you to add new items and categories in the future.

The new design model has three panels:

• **Template** panel - The **Template** panel allows you to add new templates, modify existing templates and delete existing templates.
• **Configuration** panel - The **Configuration** panel allows you to configure a new template when it is added, and modify an existing template. The options in the configuration panel are disabled until you either add a new template or select an existing template. The upper portion of the configuration panel contains many categories that you can choose and configure.
• **User Selection** panel - The **User Selection** panel displays your configuration options in real time. While the configuration panel can display information pertaining to one category at a time, the **User Selection** panel displays all of your selections or configurations.

To create custom reports from the Cisco DCNM Web UI, perform the following steps:
Procedure

Step 1 Choose Monitor > Report > User Defined.
The Create User-Defined window is displayed.

Step 2 In the Template panel, under the Name column, select CLICK TO ADD NEW CUSTOM to edit the Name of the new report.

Step 3 In the Configuration panel, click Scope to define scope of the report. The default scope includes Data Center, SAN, LAN, and Fabric configurations.

Step 4 Click Inventory and use the checkbox to select the inventory information that is required in the report. You can also use the drop-down to filter by selecting the Top performance and the timeline that is required in the report.

Step 5 Click Performance and use the checkbox to select the performance information required in the report.

Step 6 Click Health and use the checkbox to select the health information required in the report.

Step 7 Click Save to save this report template.

A confirmation message is displayed confirming that the report is saved.

Deleting a Report Template

To delete a report template from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 In the Template panel, select the report template that you want to delete.

Step 2 Click the Delete icon to delete the report.

Step 3 In the confirmation pop-up, click Yes to delete the template.

Modifying a Custom Report Template

Procedure

Step 1 Choose Monitor > Report > User Defined.

You see the Template, Configuration, and User Selection panels.

Step 2 Select a report from the Template panel.

You see the current information about this report in the User Selection panel.

Step 3 Modify the information in the Configuration panel.

Step 4 Click Save to save the report template.

A confirmation message is displayed confirming that the report is saved.
You cannot change the scope for an existing report. Generate a new report for a new scope.

Viewing Scheduled Jobs Based on a Report Template

To view the scheduled jobs that are based on a report template from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose **Monitor > Report > Jobs**.

The **Report Jobs** window is displayed with details of the reports that are scheduled for generation along with its status.

Step 2 Select the checkbox for a specific report and click the **Delete** Job icon to delete a report.

Alarms

The Alarms menu includes the following submenus:

Monitoring and Adding Alarm Policies

You can add alarm policies for the following:

- **Device Health**: Device health policies enable you to create alarms when Device ICMP Unreachable, Device SNMP Unreachable, or Device SSH Unreachable. Also, these policies enable you to monitor chassis temperature, CPU, and memory usage.

- **Interface Health**: Interface health policies enable you to monitor Up or Down, Packet Discard, Error, Bandwidth details of the interfaces. By default all interfaces are selected for monitoring.

- **Syslog Alarm**: Syslog Alarm Policy defines a pair of Syslog messages formats; one which raises the alarm, and one which clears the alarm.

Before you begin

If you have created a self-signed certificate or imported an SSL certificate to the keystore, you must copy the new fmserver.jks located at /usr/local/cisco/dcm/wildfly-10.1.0.Final/standalone/configuration to /etc/elasticsearch. If you do not copy the fmserver.jks file to the elasticsearch directory, you will not be able to get the Alarms and Policies. As the elasticsearch database will be stabilizing, you cannot configure any Alarm Policy on the Cisco DCNM **Web UI Monitor > Alarms > Alarm Policies**.
Procedure

Step 1 Choose Monitor > Alarms > Alarm Policies.
Step 2 Select the Enable Alarms check box to enable alarm policies.
Step 3 From the Add drop-down list, choose any of the following:

- Device Health Policy: Select the devices for which you want to create policies. Specify the policy name, description, CPU Utilization parameters, Memory Utilization parameters, Environment Temperature parameters, device availability, and device features.
- Interface Health Policy: Select the devices for which you want to create policies. Specify the policy name, description, link-state, Bandwidth (In/Out), Inbound errors, Outbound errors, Inbound Discards, and Outbound Discards.
- Syslog Alarm Policy: Select the devices for which you want to create policies and then specify the following parameters.
 - Devices: Define the scope of this policy. Select individual devices or all devices to apply this policy.
 - Policy Name: Specify the name for this policy. It must be unique.
 - Description: Specify a brief description for this policy.
 - Severity: Define the severity level for this syslog alarm policy. Choices are: Critical, Major, Minor, and Warning.
 - Identifier: Specify the identifier portions of the raise & clear messages.
 - Raise Regex: Define the format of a syslog raise message. The syntax is as follows: Facility-Severity-Type: Message
 - Clear Regex: Define the format of a syslog clear message. The syntax is as follows: Facility-Severity-Type: Message

<table>
<thead>
<tr>
<th>Table 10: Example 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identifier</td>
</tr>
<tr>
<td>Raise Regex</td>
</tr>
<tr>
<td>Clear Regex</td>
</tr>
</tbody>
</table>

In the above example, the regex expressions are part of the syslog messages that appear in the terminal monitor.

<table>
<thead>
<tr>
<th>Table 11: Example 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identifier</td>
</tr>
<tr>
<td>Raise Regex</td>
</tr>
<tr>
<td>Clear Regex</td>
</tr>
</tbody>
</table>
Table 12: Example 3

<table>
<thead>
<tr>
<th>Identifier</th>
<th>ID1-ID2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raise Regex</td>
<td>ETHPORT-5-IF_SFP_WARNING: Interface $ID1), High Rx Power Warning</td>
</tr>
<tr>
<td>Clear Regex</td>
<td>ETHPORT-5-IF_SFP_WARNING: Interface $ID1), High Rx Power Warning cleared</td>
</tr>
</tbody>
</table>

Step 4
Click OK to add the policy.

Syslog Messages in Terminal Monitor and Console

The following examples show how the syslog messages appear in the terminal monitor and the console. The regex expression is matched with the part of the syslog messages after the % sign.

leaf-9516# terminal monitor
leaf-9516# conf t
leaf-9516(config)# int e15/1-32
leaf-9516(config-if-range)# no shut
2019 Aug 2 04:41:27 leaf-9516 %ETHPORT-5-IF_ADMIN_UP: Interface Ethernet15/1 is admin up.
2019 Aug 2 04:41:27 leaf-9516 %ETHPORT-5-IF_DOWN_NONE: Interface Ethernet15/1 is down (Transceiver Absent)
2019 Aug 2 04:41:27 leaf-9516 %ETHPORT-5-IF_ADMIN_UP: Interface Ethernet15/2 is admin up.
2019 Aug 2 04:41:27 leaf-9516 %ETHPORT-5-IF_DOWN_NONE: Interface Ethernet15/2 is down (Transceiver Absent)
2019 Aug 2 04:41:28 leaf-9516 %ETHPORT-5-IF_ADMIN_UP: Interface Ethernet15/3 is admin up.

The syslog messages in the console have a similar format as they would appear in the terminal monitor, except for the additional port information enclosed in the %$ signs. However, the regex expression is matched with the part of the syslog messages after the last % sign.

SR-leaf1# 2019 Aug 26 23:55:45 SR-leaf1 %$ VDC-1 %$ %PLATFORM-1-PFM_ALERT: FAN_BAD: fan6
2019 Aug 26 23:56:15 SR-leaf1 %$ VDC-1 %$ %PLATFORM-1-PFM_ALERT: FAN_BAD: fan6
2019 Aug 26 23:56:18 SR-leaf1 %$ VDC-1 %$ %ASCII-CFG-2-CONF_CONTROL: System ready
2019 Aug 26 23:56:25 SR-leaf1 %$ VDC-1 %$ %PLATFORM-1-PFM_ALERT: FAN_BAD: fan6
2019 Aug 26 23:56:35 SR-leaf1 %$ VDC-1 %$ %PLATFORM-1-PFM_ALERT: FAN_BAD: fan6
2019 Aug 26 23:56:39 SR-leaf1 %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Successfully activated virtual service 'guestshell'
2019 Aug 26 23:56:39 SR-leaf1 %$ VDC-1 %$ %VMAN-2-DEACTIVATION_STATE: Successfully deactivated virtual service 'guestshell'
2019 Aug 26 23:56:45 SR-leaf1 %$ VDC-1 %$ %VMAN-2-GUESTSHELL_ENABLED: The guest shell has been enabled. The command 'guestshell' may be used to access it, 'guestshell destroy' to remove it.
2019 Aug 26 23:56:45 SR-leaf1 %$ VDC-1 %$ %PLATFORM-2-FAN_REMOVED: Fan module 5 (Serial number) Fan5(sys_fan5) removed
2019 Aug 26 23:56:45 SR-leaf1 %$ VDC-1 %$ %PLATFORM-1-PFM_ALERT: System will shutdown in 2 minutes 0 seconds due to fan policy __pfm_fanabsent_any_singlefan.
2019 Aug 26 23:56:45 SR-leaf1 %$ VDC-1 %$ %PLATFORM-1-PFM_ALERT: FAN_BAD: fan6
Activating Policies

After you create new alarm policies, activate them.

Procedure

Step 1 Choose Monitor > Alarms > Policies.
Step 2 Select the policies that you want to activate and then click the Activate button.

Deactivating Policies

You can deactivate the active alarm policies.

Procedure

Step 1 Choose Monitor > Alarms > Policies.
Step 2 Select the policies that you want to deactivate and then click the Deactivate button.

Importing Policies

You can create alarm policies using the import functionality.

Procedure

Step 1 Choose Monitor > Alarms > Policies and then click the Import button.
Step 2 Browse and select the policy file saved on your computer.
You can only import policies in text format.

Exporting Policies

You can export the alarm policies into a text file.
Editing Policies

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>From the menu bar, choose Monitor > Alarms > Policies.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Click the Export button and then select a location on your computer to store the exported file.</td>
</tr>
</tbody>
</table>

Deleting Policies

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>From the menu bar, choose Monitor > Alarms > Policies.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Select the policy that you want to delete.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Click the Delete button. The policy is deleted.</td>
</tr>
</tbody>
</table>

Viewing Alarms and Events

You can view the alarms, cleared alarms, and events.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Choose Monitor > Alarms > View.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Choose any of the following tabs.</td>
</tr>
<tr>
<td></td>
<td>• Alarms: This tab displays the alarms that are generated for various categories. This tab displays information such as ID (optional), Severity, Failure Source, Name, Category, Acknowledged, Creation Time, Last Updated (optional), Policy, and Message. You can specify the Refresh Interval in this tab. You can select one or more alarms and then acknowledge or unacknowledge their status using the Change Status drop-down list. In addition, you can select one or more alarms and then click the Delete button to delete them.</td>
</tr>
<tr>
<td></td>
<td>• Cleared Alarms: This tab displays the cleared alarms. This tab displays information such as ID (optional), Severity, Failure Source, Name, Category, Acknowledged, Creation Time, Cleared At (optional), Cleared</td>
</tr>
</tbody>
</table>
By, Policy, and Message. You can select one or more alarms and then click the **Delete** button to delete them.

- **Events**: This tab displays the events that are generated for the switches. This tab displays information such as Ack, Acknowledged user, Group, Switch, Severity, Facility, Type, Count, Last Seen, and Description. You can select one or more events and then acknowledge or unacknowledge their status using the **Change Status** drop-down list. In addition, you can select one or more alarms and then click the **Delete** button to delete them. If you want to delete all events, click the **Delete All** button.
CHAPTER 6

Configure

This chapter contains the following topics:

- Templates, on page 111
- Backup, on page 140
- Image Management, on page 152
- SAN, on page 170

Templates

The Templates menu includes the following option:

Template Library

Template Library includes the following tabs:

Template Library

You can add, edit, or delete templates that are configured across different Cisco Nexus and Cisco MDS platforms using Cisco DCNM Web client. From Cisco DCNM Web client home page, choose Configure > Templates > Template Library > Templates. The following parameters are displayed for each template that is configured on Cisco DCNM Web client. Templates support JavaScript. You can use the JavaScript function in a template to perform arithmetic operations and string manipulations in the template syntax.

The following table describes the fields that appear on this page.

Table 13: Templates Operations

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add Template</td>
<td>Allows you to add a new template.</td>
</tr>
<tr>
<td>Launch job creation wizard</td>
<td>Allows you to create jobs.</td>
</tr>
<tr>
<td>Modify/View Template</td>
<td>Allows you to view the template definition and modify as required.</td>
</tr>
<tr>
<td>Save Template As</td>
<td>Allows you to save the selected template in a different name. You can edit the template as required.</td>
</tr>
</tbody>
</table>
Field | Description
--- | ---
Delete Template | Allows you to delete a template

Import Template | Allows you to import a template from your local directory, one at a time.

Export template | Allows you to export the template configuration to a local directory location.

Import Template Zip File | Allows you to import .zip file, that contains more than one template that is bundled in a .zip format

All the templates in the ZIP file are extracted and listed in the table as individual templates.

Note

Notifications appear next to **Import Template Zip File** if there are issues while loading templates after restarting the server. Click the notifications to see the errors in the **Issues in loading Template** window. Templates with errors are not listed in the **Templates** window. To import these templates, correct the errors, and import them.

Table 14: Template Properties

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Template Name</td>
<td>Displays the name of the configured template.</td>
</tr>
<tr>
<td>Template Description</td>
<td>Displays the description that is provided while configuring templates.</td>
</tr>
<tr>
<td>Tags</td>
<td>Displays the tag that is assigned for the template and aids to filter templates based on the tags.</td>
</tr>
<tr>
<td>Supported Platforms</td>
<td>Displays the supported Cisco Nexus platforms compatible with the template. Check the check box of platforms that are supported with the template.</td>
</tr>
</tbody>
</table>

Note

You can select multiple platforms.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Template Type</td>
<td>Displays the type of the template.</td>
</tr>
<tr>
<td>Template Sub Type</td>
<td>Specifies the sub type that is associated with the template.</td>
</tr>
<tr>
<td>Template Content Type</td>
<td>Specifies if it is Jython or Template CLI.</td>
</tr>
</tbody>
</table>

Table 15: Advanced Template Properties

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implements</td>
<td>Displays the abstract template to be implemented.</td>
</tr>
</tbody>
</table>
In addition, from the menu bar, choose Configure > Templates > Template Library > Templates and you can also:

- Click **Show Filter** to filter the templates that is based on the headers.
- Click **Print** to print the list of templates.
- Click **Export to Excel** to export the list of template to a Microsoft Excel spreadsheet.

This section contains the following:

Template Structure

The configuration template content mainly consists of four parts. Click the **Help** icon next to the **Template Content** for information about editing the content of the template.

This section contains the following:

Template Format

This section describes the basic information of the template. The possible fields are as detailed in the table below.

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
<th>Valid Values</th>
<th>Optional?</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>The name of the template</td>
<td>Text</td>
<td>No</td>
</tr>
<tr>
<td>description</td>
<td>Brief description about the template</td>
<td>Text</td>
<td>Yes</td>
</tr>
<tr>
<td>userDefined</td>
<td>Indicates whether the user created the template. Value is ‘true’ if user created.</td>
<td>“true” or “false”</td>
<td>Yes</td>
</tr>
<tr>
<td>supportedPlatforms</td>
<td>List of device platforms supports this configuration template. Specify ‘All’ to support all platforms.</td>
<td>N1K, N3K, N3500, N4K, N5K, N5500, N5600, N6K, N7K, N9K, MDS, VDC, N9K-9000v, All list separated by comma.</td>
<td>No</td>
</tr>
<tr>
<td>Property Name</td>
<td>Description</td>
<td>Valid Values</td>
<td>Optional?</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>--------------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| templateType | Specifies the type of Template used. | • CLI
 • POAP
 • POLICY
 • SHOW
 • PROFILE
 • FABRIC
 • ABSTRACT | Yes |
<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
<th>Valid Values</th>
<th>Optional?</th>
</tr>
</thead>
<tbody>
<tr>
<td>templateSubType</td>
<td>Specifies the sub type associated with the template.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Property Name</td>
<td>Description</td>
<td>Valid Values</td>
<td>Optional?</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• CLI</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• POAP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• VXLAN</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• FABRICPATH</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• VLAN</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PMN</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• POLICY</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• VLAN</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE_VLAN</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE_VPC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACEETHERNET</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACEBD</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE_PORT_CHANNEL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE_FC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE_MGMT</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE_LOOPBACK</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE_NVE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE_VFC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE_SAN_PORT_CHANNEL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• DEVICE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• FEX</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTRA_FABRIC_LINK</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTER_FABRIC_LINK</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• SHOW</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• VLAN</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE_VLAN</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE_VPC</td>
<td></td>
</tr>
<tr>
<td>Property Name</td>
<td>Description</td>
<td>Valid Values</td>
<td>Optional?</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE_ETHERNET</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE_BD</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE_PORTCHANNEL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE.FC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE.MGMT</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE_LOOPBACK</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE.NVE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE.VFC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE_SANPORTCHANNEL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• DEVICE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• FEX</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTRA_FABRIC_LINK</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTER_FABRIC_LINK</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PROFILE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• VXLAN</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• FABRIC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• NA</td>
<td></td>
</tr>
<tr>
<td>Property Name</td>
<td>Description</td>
<td>Valid Values</td>
<td>Optional?</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ABSTRACT</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• VLAN</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE_VLAN</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE_VPC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE_Ethernet</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE_BD</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE_FOOT_CHANNEL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE_FC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE_MGMT</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE_LOOPBACK</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE_NVE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE_VFC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE_SAN_PORT_CHANNEL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• DEVICE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• FEX</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTRA_FABRIC_LINK</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTER_FABRIC_LINK</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE</td>
<td></td>
</tr>
</tbody>
</table>
Template Variables

This section contains declared variables, the data type, default values, and valid values conditions for the parameters that are used in the template. These declared variables are used for value substitution in the template content section during the dynamic command generation process. Also these variables are used in decision making and in iteration blocks in the template content section. Variables have predefined data types. You can also add a description about the variable. The following table describes the syntax and usage for the available datatypes.
<table>
<thead>
<tr>
<th>Variable Type</th>
<th>Valid Value</th>
<th>Iterative?</th>
</tr>
</thead>
<tbody>
<tr>
<td>boolean</td>
<td>true/false</td>
<td>No</td>
</tr>
<tr>
<td>enum</td>
<td>Example: running-config, startup-config</td>
<td>No</td>
</tr>
<tr>
<td>float</td>
<td>Floating number format</td>
<td>No</td>
</tr>
<tr>
<td>floatRange</td>
<td>Example: 10.1, 50.01</td>
<td>Yes</td>
</tr>
<tr>
<td>Integer</td>
<td>Any number</td>
<td>No</td>
</tr>
<tr>
<td>integerRange</td>
<td>Contiguous numbers separated by “-“</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Discrete numbers separated by “,”</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example: 1-10, 15, 18, 20</td>
<td></td>
</tr>
<tr>
<td>interface</td>
<td>Format: <code><if type><slot>[/<sub slot>]/<port></code></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Example: eth1/1, fa10/1/2 etc.</td>
<td></td>
</tr>
<tr>
<td>interfaceRange</td>
<td>Example: eth10/1/20-25, eth11/1-5</td>
<td>Yes</td>
</tr>
<tr>
<td>ipAddress</td>
<td>IPv4 OR IPv6 address</td>
<td>No</td>
</tr>
<tr>
<td>ipAddressList</td>
<td>Example: 172.22.31.97, 172.22.31.99, 172.22.31.105, 172.22.31.109</td>
<td>Yes</td>
</tr>
<tr>
<td>ipAddressWithoutPrefix</td>
<td>Example: 192.168.1.1</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example: 1:2:3:4:5:6:7:8</td>
<td></td>
</tr>
<tr>
<td>ipV4Address</td>
<td>IPv4 address</td>
<td>No</td>
</tr>
<tr>
<td>ipV4AddressWithSubnet</td>
<td>Example: 192.168.1.1/24</td>
<td>No</td>
</tr>
<tr>
<td>ipV6Address</td>
<td>IPv6 address</td>
<td>No</td>
</tr>
<tr>
<td>ipV6AddressWithPrefix</td>
<td>Example: 1:2:3:4:5:6:7:8 22</td>
<td>No</td>
</tr>
<tr>
<td>ipV6AddressWithSubnet</td>
<td>IPv6 Address with Subnet</td>
<td>No</td>
</tr>
<tr>
<td>ISISNetAddress</td>
<td>Example: 49.0001.00a0.c96b.c490.00</td>
<td>No</td>
</tr>
<tr>
<td>long</td>
<td>Example: 100</td>
<td>No</td>
</tr>
<tr>
<td>macAddress</td>
<td>14 or 17 character length MAC address format</td>
<td>No</td>
</tr>
<tr>
<td>Variable Type</td>
<td>Valid Value</td>
<td>Iterative?</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>string</td>
<td>Free text, for example, used for the description of a variable</td>
<td>No</td>
</tr>
</tbody>
</table>
| | Example: string scheduledTime
| | { regularExpr=([01]\d{2}[0-3]):([0-5]\d)\$; } | |
| string[] | Example: {a,b,c,str1,str2} | Yes |
| struct | Set of parameters that are bundled under a single variable. | No |
| | struct <structure name declaration> {
| | <parameter type> <parameter 1>;
| | <parameter type> <parameter 2>;
| |
| | }[<structure_inst1>], [<structure_inst2>]
| | [, <structure_array_inst3[]>]; | |
| wwn | (Available only in Cisco DCNM Web Client) | No |
| | Example: 20:01:00:08:02:11:05:03 | |

Example: Template Variables

```plaintext
##template variables
integer VSAN_ID;
string SLOT_NUMBER;
integerRange PORT_RANGE;
integer VFC_PREFIX;
##
```

Variable Meta Property

Each variable that is defined in the template variable section has a set of meta properties. The meta properties are mainly the validation rules that are defined for the variable.

The following table describes the various meta properties applicable for the available variable types.
<table>
<thead>
<tr>
<th>Variable Type</th>
<th>Description</th>
<th>Variable Meta Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>boolean</td>
<td>A boolean value. Example: true</td>
<td>valid Values: Yes, decimal Length: Yes, min: Yes, max: Yes, min Port: Yes, max Port: Yes, min Length: Yes, max Length: Yes, regular Expr: No</td>
</tr>
<tr>
<td>enum</td>
<td></td>
<td>valid Values: Yes, decimal Length: Yes, min: Yes, max: Yes, min Port: Yes, max Port: Yes, min Length: Yes, max Length: Yes, regular Expr: No</td>
</tr>
<tr>
<td>float</td>
<td>signed real number. Example: 75.56, -8.5</td>
<td>valid Values: Yes, decimal Length: Yes, min: Yes, max: Yes, min Port: Yes, max Port: Yes, min Length: Yes, max Length: Yes, regular Expr: No</td>
</tr>
<tr>
<td>intRange</td>
<td>range of signed real numbers. Example: 50.5 - 54.75</td>
<td>valid Values: Yes, decimal Length: Yes, min: Yes, max: Yes, min Port: Yes, max Port: Yes, min Length: Yes, max Length: Yes, regular Expr: No</td>
</tr>
<tr>
<td>integer</td>
<td>signed number. Example: 50, -75</td>
<td>valid Values: Yes, decimal Length: Yes, min: Yes, max: Yes, min Port: Yes, max Port: Yes, min Length: Yes, max Length: Yes, regular Expr: No</td>
</tr>
<tr>
<td>intRange</td>
<td>Range of signed numbers. Example: 50-65</td>
<td>valid Values: Yes, decimal Length: Yes, min: Yes, max: Yes, min Port: Yes, max Port: Yes, min Length: Yes, max Length: Yes, regular Expr: No</td>
</tr>
<tr>
<td>interface</td>
<td>specific interfaces. Example: Ethernet 5/10</td>
<td>valid Values: Yes, decimal Length: Yes, min: Yes, max: Yes, min Port: Yes, max Port: Yes, min Length: Yes, max Length: Yes, regular Expr: No</td>
</tr>
<tr>
<td>intRange</td>
<td></td>
<td>valid Values: Yes, decimal Length: Yes, min: Yes, max: Yes, min Port: Yes, max Port: Yes, min Length: Yes, max Length: Yes, regular Expr: No</td>
</tr>
<tr>
<td>Variable Type</td>
<td>Description</td>
<td>Variable Meta Property</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>IPAddress</td>
<td>IP address in IPv4 or IPv6 format</td>
<td>Yes</td>
</tr>
<tr>
<td>IPAddressList</td>
<td>Example: 192.168.1.1, 10.0.0.1</td>
<td>Yes</td>
</tr>
<tr>
<td>Note</td>
<td>Separate the addresses in the list using commas and not hyphens.</td>
<td></td>
</tr>
<tr>
<td>IPAddress</td>
<td>IPv4 or IPv6 Address (does not require prefix)</td>
<td>Yes</td>
</tr>
<tr>
<td>IPAddress</td>
<td>IPv4 address</td>
<td>Yes</td>
</tr>
<tr>
<td>IPAddress</td>
<td>IPv4 Address with Subnet</td>
<td>Yes</td>
</tr>
<tr>
<td>IPAddress</td>
<td>IPv6 address</td>
<td>Yes</td>
</tr>
<tr>
<td>IPAddress</td>
<td>IPv6 Address with prefix</td>
<td>Yes</td>
</tr>
<tr>
<td>Variable Type</td>
<td>Description</td>
<td>Variable Meta Property</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>IPv6</td>
<td>IPv6 Address with Subnet</td>
<td>Yes</td>
</tr>
<tr>
<td>IPv4</td>
<td>Example: 10.0.0.0</td>
<td></td>
</tr>
<tr>
<td>long</td>
<td>Example: 100</td>
<td>Yes Yes Yes</td>
</tr>
<tr>
<td>macAddress</td>
<td>MAC address</td>
<td></td>
</tr>
<tr>
<td>string</td>
<td>literal string</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Example for string Regular expression: string schedule {</td>
<td></td>
</tr>
<tr>
<td></td>
<td>}</td>
<td></td>
</tr>
<tr>
<td>string[]</td>
<td>string literals that are separated by a comma (,) Example: {string1, string2}</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Cisco DCNM SAN Management Configuration Guide, Release 11.1(1)
Variable Meta Property

<table>
<thead>
<tr>
<th>Variable Type</th>
<th>Description</th>
<th>Variable Meta Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>struct</td>
<td>Set of parameters that are bundled under a single variable.</td>
<td>default Value</td>
</tr>
<tr>
<td>wwn</td>
<td>WWN address</td>
<td></td>
</tr>
</tbody>
</table>

Example: Meta Property Usage

```plaintext
###template variables

integer VLAN_ID {
    min = 100;
    max= 200;
};

string USER_NAME {
    defaultValue = admin123;
    minLength = 5;
};

struct interface_a{
```
string inf_name;
string inf_description;
ipAddress Inf_host;
enum duplex {
 validValues = auto, full, half;
};
}myInterface;

Variable Annotation

You can configure the variable properties marking the variables using annotations.

Note

Variable Annotations are available for POAP only. However, the annotations do not impact on the template type ‘CLI’.

The following annotations can be used in the template variable section.

<table>
<thead>
<tr>
<th>Annotation Key</th>
<th>Valid Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataDepend</td>
<td>Text</td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>Text</td>
<td>Description of the field appearing in the window</td>
</tr>
<tr>
<td>DisplayName</td>
<td>Text</td>
<td>Display name of the field appearing in the window</td>
</tr>
<tr>
<td></td>
<td>Note</td>
<td>Enclose the text with quotes, if there is space.</td>
</tr>
<tr>
<td>Enum</td>
<td>Text1, Text2, Text3, and so on</td>
<td>Lists the text or numeric values to select from</td>
</tr>
<tr>
<td>IsAlphaNumeric</td>
<td>“true” or “false”</td>
<td>Validates if the string is alphanumeric</td>
</tr>
<tr>
<td>IsAsn</td>
<td>“true” or “false”</td>
<td></td>
</tr>
<tr>
<td>IsDestinationDevice</td>
<td>“true” or “false”</td>
<td></td>
</tr>
<tr>
<td>IsDestinationFabric</td>
<td>“true” or “false”</td>
<td></td>
</tr>
<tr>
<td>IsDestinationInterface</td>
<td>“true” or “false”</td>
<td></td>
</tr>
<tr>
<td>IsDestinationSwitchName</td>
<td>“true” or “false”</td>
<td></td>
</tr>
<tr>
<td>IsDeviceID</td>
<td>“true” or “false”</td>
<td></td>
</tr>
<tr>
<td>IsDot1qId</td>
<td>“true” or “false”</td>
<td></td>
</tr>
<tr>
<td>IsFEXID</td>
<td>“true” or “false”</td>
<td></td>
</tr>
<tr>
<td>Annotation Key</td>
<td>Valid Values</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>IsGateway</td>
<td>“true” or “false”</td>
<td>Validates if the IP address is a gateway</td>
</tr>
<tr>
<td>IsInternal</td>
<td>“true” or “false”</td>
<td>Makes the fields internal and does not display them on the window</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note Use this annotation only for the ipAddress variable.</td>
</tr>
<tr>
<td>IsManagementIP</td>
<td>“true” or “false”</td>
<td>This annotation must be marked only for variable “ipAddress”.</td>
</tr>
<tr>
<td>IsMandatory</td>
<td>“true” or “false”</td>
<td>Validates if a value should be passed to the field mandatorily</td>
</tr>
<tr>
<td>IsMTU</td>
<td>“true” or “false”</td>
<td></td>
</tr>
<tr>
<td>IsMultiCastGroupAddress</td>
<td>“true” or “false”</td>
<td></td>
</tr>
<tr>
<td>IsMultiLineString</td>
<td>“true” or “false”</td>
<td>Converts a string field to multiline string text area</td>
</tr>
<tr>
<td>IsMultiplicity</td>
<td>“true” or “false”</td>
<td></td>
</tr>
<tr>
<td>IsPassword</td>
<td>“true” or “false”</td>
<td></td>
</tr>
<tr>
<td>IsPositive</td>
<td>“true” or “false”</td>
<td>Checks if the value is positive</td>
</tr>
<tr>
<td>IsReplicationMode</td>
<td>“true” or “false”</td>
<td></td>
</tr>
<tr>
<td>IsShow</td>
<td>“true” or “false”</td>
<td>Displays or hides a field on the window</td>
</tr>
<tr>
<td>IsSiteId</td>
<td>“true” or “false”</td>
<td></td>
</tr>
<tr>
<td>IsSourceDevice</td>
<td>“true” or “false”</td>
<td></td>
</tr>
<tr>
<td>IsSourceFabric</td>
<td>“true” or “false”</td>
<td></td>
</tr>
<tr>
<td>IsSourceInterface</td>
<td>“true” or “false”</td>
<td></td>
</tr>
<tr>
<td>IsSourceSwitchName</td>
<td>“true” or “false”</td>
<td></td>
</tr>
</tbody>
</table>
Annotation Key | Valid Values | Description
--- | --- | ---
IsSwitchName | “true” or “false” | (none)
IsRMID | “true” or “false” | (none)
IsVPCDomainID | “true” or “false” | (none)
IsVPCID | “true” or “false” | (none)
IsVPCPeerLinkPort | “true” or “false” | (none)
IsVPCPeerLinkPortChannel | “true” or “false” | (none)
IsVPCPortChannel | “true” or “false” | (none)
Password | Text | Validates the password field
UsePool | “true” or “false” | (none)
UseDNSReverseLookup | (none) | (none)
Username | Text | Displays the username field on the window

Example: DisplayName Annotation

```java
##template variables
@{(DisplayName="Host Name", Description = "Description of the host")}
String hostname;
@{(DisplayName="Host Address", Description = "test description" IsManagementIP=true)
ipAddress hostAddress;
##
```

Example: IsMandatory Annotation

```java
##template variables
@{IsMandatory="ipv6!=null"}
ipV4Address ipv4;
@{IsMandatory="ipv4!=null"}
ipV6Address ipv6;
##
```

Example: IsMultiLineString Annotation

```java
##template variables
@{IsMultilineString=true}
string EXTRA_CONF_SPINE;
##
```

IsShow Annotation

```java
##template variables
boolean isVlan;
@{IsShow="isVlan==true"}
integer vlanNo;
```
##template variables
boolean enableScheduledBackup;
@{IsShow="enableScheduledBackup==true", Description="Server time"}
string scheduledTime;

The condition "enableScheduledBackup==true" evaluates to true/false

##template variables
@{Enum="Manual,Back2BackOnly,ToExternalOnly,Both"
string VRF_LITE_AUTOCONFIG;
@{IsShow="VRF_LITE_AUTOCONFIG!="Manual", Description="Target Mask"
integer DCI_SUBNET_TARGET_MASK

The condition "VRF_LITE_AUTOCONFIG!="Manual" matches string comparison to evaluate to true or false

Templates Content

This section includes the configuration commands and any parameters that you want to include in the template. These commands can include the variables declared in the template variables section. During the command generation process the variable values are substituted appropriately in the template content.

Note

You must specify the commands that you include as if you were entering them in the global configuration command mode on any device. You must consider the command mode when you include commands.

Template content is governed by the usage of variables.

- **Scalar variables**: does not take a range or array of values which cannot be used for iteration (In the variable types table those marked iterate-able as 'No'). Scalar variables must be defined inside the template content.

 Syntax: $$<variable name>$$
 Example: $$USER_NAME$$

- **Iterative variables**: used for block iteration. These loop variable must be accessed as shown below inside the iteration block.

 Syntax:@<loop variable>
 Example:
 foreach val in $$INTEGER_RANGE_VALUES$$ {
 @val
 }

- **Scalar Structure Variable**: Structure member variables can be accessed inside the template content.

 Syntax: $$<structure instance name>.<member variable name>$$
 Example: $$myInterface.inf_name$$

- **Array Structure Variable**: Structure member variables can be accessed inside the template content.

 Syntax: $$<structure instance name>.<member variable name>$$
 Example: $$myInterface.inf_name$$

In addition to the template variables, you can use the conditional and iterative command generation using the following statements:
• if-else if-else Statement: makes a logical decision in inclusion/exclusion of set of configuration command based on the value assigned for the variable in it.

Syntax: if(<operand 1> <logical operator> <operand 2>){
 command1 ..
 command2..
 ..
} else if (<operand 3> <logical operator> <operand 4>) {
 Command3 ..
 Command4..
 ..
} else {
 Command5 ..
 Command6..
 ..
} Example: if-else if-else statement
if($$USER_NAME$$ == 'admin'){
 Interface2/10
 no shut
} else {
 Interface2/10
 shut
}

• foreach Statement: used for iterating a block of commands. The iteration is performed based on the assigned loop variable value.

Syntax:
foreach <loop index variable> in $$<loop variable>$$ {
 @<loop index variable>..
} Example: foreach Statement
foreach ports in $$MY_INF_RANGE$${
 interface @ports
 no shut
}

• Optional parameters: By default all parameters are mandatory. To make a parameter optional, you must annotate the parameter.

• Interactive command handling: Include prompt and response as part of the template content for handling interactive commands.

Example:
##template variables
string srcFile;
string srcDir;
string password;
string vrf;
##
##template content
copy scp://root@10.127.117.65/$$srcFile$$ bootflash: vrf $$vrf$$ <prompt:'(yes/no)?',
response:'yes'> <prompt:'(y/n)?[n]',

Cisco DCNM SAN Management Configuration Guide, Release 11.1(1)
In the variable section, you can include the following command:

- @IsMandatory=false

- Integer frequency;

In the template content section, a command can be excluded or included without using “if” condition check, by assigning a value to the parameter. The optional command can be framed as below:

- probe icmp [frequency frequency-value] [timeout seconds] [retry-count retry-count-value]

Template Content Editor

The template content editor has the following features:

- Syntax highlighting: The editor highlights the syntax, like different types of statements, keywords, and so on, for Python scripting.

- Autocompletion: The editor suggests the template datatypes, annotations, or metaproperties when you start typing.

- Go to line: You can navigate to the exact line in the template content editor instead of scrolling. Press Command-L in Mac or Ctrl-L in Windows, and enter the line number to which you want to navigate to in the pop-up window.

 If you enter a value greater than the number of lines in the editor, you will be navigated to the last line in the editor window.

- Template search and replace: Press Command-F in Mac or Ctrl-F in Windows, enter the search term in the Search for field, and select the type of search in the search window. You can perform the following searches in the editor:

 - RegExp Search: You can perform the regular expression search in the editor.

 - CaseSensitive Search: You can perform a case-sensitive search in the editor.

 - Whole Word Search: You can perform a whole word search to find the exact words in the editor. For example, a regular search for the word "play" returns results where it is part of words like "display," but the whole word search returns results only when there is an exact match for the word "play".

 - Search In Selection: You can perform a search in the selected content. Select the content to which you want to limit the search and enter the search term.

Choose the + icon in the search window to use the replace option. Enter the replacing word in the Replace with field. You can replace the selected word once by selecting Replace. To replace all the occurrences of the selected word, select All.

- Code folding: You can expand or group code blocks in the editor by clicking the arrow next to their line numbers.

- Other features: The editor automatically indents the code, the closing braces, and highlights the matching parenthesis.
You can edit the following features of a template editor by clicking Template Editor Settings.

- **Theme**: Select the required theme for the editor from the drop-down list.

- **KeyBinding**: Select the editor mode from the KeyBinding drop-down list to customize the editor. Vim and Ace modes are supported. The default is Ace.

- **Font Size**: Select the required font size for the editor.

Advanced Features

The following are the advanced features available to configure templates.

- **Assignment Operation**

 Config template supports assignment of variable values inside the template content section. The values are validated for the declared data type of the variable. If there is a mismatch, the value is not assigned.

 Assignment operation can be used under the following guidelines:

 - The operator on the left must be any of the template parameters or a for loop parameter.

 - The operator on the right values can be any of the values from template parameters, for loop parameters, literal string values surrounded by quotes or simple string values.

 If a statement does not follow these guidelines, or if it does not suit this format, it will not be considered as assignment operation. It is substituted during command generation like other normal lines.

 Example: Template with assignment operation

  ```
  ##template properties
  name = vlan creation;
  userDefined= true;
  supportedPlatforms = All;
  templateType = CLI;
  published = false;
  ##
  ##template variables
  integerRange vlan_range;
  @(internal=true)
  integer vlanName;
  ##
  ##template content
  foreach vlanID in $$vlan_range$$
  vlan @vlanID
  $$vlanName$$=@vlanID
  name myvlan$$vlanName$$
  }
  ##
  ```

- **Evaluate methods**

 Config template uses the Java runtime provided Java script environment to perform arithmetic operations (such as ADD, SUBTRACT, and so on), string manipulations, and so on.

 Locate the JavaScript file in the template repository path. This file contains primary set of arithmetic, string functions. You can also add custom JavaScript methods.

 These methods can be called from config template content section in below format:

 Example1:
  ```
  $$somevar$$ = evalscript(add, "100", $$anothervar$$)
  ```
Also the `evalscript` can be called inside if conditions as below:

```java
if($$range$$ > evalscript(sum, $$vlan_id$$, -10)){
do something...
}
```

You can call a method that is located at the backend of the JavaScript file.

• Dynamic decision

Config template provides a special internal variable “LAST_CMD_RESPONSE”. This variable stores the last command response from the device during the execution of the command. This can be used in the config template content to make dynamic decisions to deliver the commands that are based on the device condition.

Note The if block must be followed by an else block in a new line, which can be empty.

An example use case to create a VLAN, if it is does not exist on the device.

```plaintext
Example: Create VLAN
##template content
show vlan id $$vlan_id$$
if($$LAST_CMD_RESPONSE$$ contains "not found"){
vlan $$vlan_id$$
}
else{
}
##
```

This special implicit variable can be used only in the “IF” blocks.

• Template referencing

You can have a base template with all the variables defined. This base template can be imported to multiple templates. The base template content is substituted in the appropriate place of the extending template. The imported template parameters and the contents can be accessed inside the extending template.

Example: Template Referencing

Base template:
```
##template properties
name = a vlan base;
userDefined= true;
supportedPlatforms = All;
templateType = CLI;
published = false;
timestamp = 2015-07-14 16:07:52;
imports = ;
##
##template variables
integer vlan_id;
##
##template content
cvlan $$vlan_id$$
```

Derived Template:
```
##template properties
name = a vlan extended;
userDefined= true;
```
When you launch the extended template, the parameter inputs for the base template are also obtained. In addition, the substituted content is used for complete CLI command generation.

• Solution POAP Templates for VXLAN and FabricPath

From Cisco DCNM Release 10.0(1), Cisco provides you a set of defined templates to aid in POAP operations. You can download Cisco-defined templates from https://software.cisco.com/download/release.html.

For instructions on how to download and install POAP templates, see Cisco DCNM Installation Guide, Release 10.0(x).

Adding a Template

To add user-defined templates and schedule jobs from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose Configure > Templates > Template Library > Templates.

The Templates window is displayed with the name of the template along with its description, supported platforms, and tags.

Step 2 Click Add to add a new template.

The Template Properties window appears.

Step 3 Specify a template name, description, tags, and supported platforms for the new template.

Step 4 Specify a Template Type for the template. Select POAP to make this template available when you power on the application.

Note The template is considered as a CLI template if POAP is not selected.

Step 5 Select a Template Sub Type and Template Content Type for the template.

Step 6 Click the Advanced tab to edit other properties like Implements, Dependencies, Published, and Imports. Select Published to make the template read-only. You cannot edit a published template.

Step 7 From the Imports > Template Name list, check the template check box.

The base template content is displayed in the Template Content window. The base template displays the template properties, template variables, and template content. This template can be imported in to another template and the base template content is substituted in the appropriate place of the extending template. When
you launch the extended template, the parameter inputs for the base template are also obtained. Also, the substituted content is used for complete CLI command generation.

Note The base templates are CLI templates.

Step 8
Click **OK** to save the template properties, or click the cancel icon at the top-right corner of the window to revert the changes.

Note You can edit the template properties by clicking **Template Property**.

Step 9
Click **Template Content** to edit the template syntax. For information about the structure of the Configuration Template, see the **Template Structure** section.

Step 10
Click **Validate Template Syntax** to validate the template values.

If an error or a warning message appears, you can check the validation details in **Validation Table** by clicking the error and warnings field.

Note You can continue to save the template if there are warnings only. However, if there is an error, you must edit the templates to fix the errors before you proceed. Click the line number under the Start Line column to locate the error in the template content. You will get an error if you validate a template that does not have a template name.

Step 11
Click **Save** to save the template.

Step 12
Click **Save and Exit** to save the configuration and go back to the configuring templates screen.

Configuring Template Job

To configure and schedule jobs for individual templates from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1
Choose **Configure > Templates > Template Library > Templates**.

Step 2
Select a template.

Note Config Job wizard is applicable only for CLI templates.

Step 3
Click **Launch job creation wizard** icon and click **Next**.

Step 4
Use the drop-down to select **Device Scope**.

The devices that are configured under the selected **Device Scope** are displayed.

Note If no devices are displayed, check if the device LAN credentials are configured by choosing **Administration > Credentials Management > LAN Credentials**.

Step 5
Use the arrows to move the devices to the right column for job creation and click **Next**.

Step 6
In the **Define Variable** section, specify the **VSAN_ID**, **VLAN_ID**, **ETH_SLOT_NUMBER**, **VFC_SLOT_NUMBER**, **SWITCH_PORT_MODE**, **ETH_PORT_RANGE** and **ALLOWED_VLANS** values.

Note Based on the selected template, variables vary.
Step 7 In the **Edit Variable Per Device** section, double click the fields to edit the variables for specific devices and click **Next**.

Step 8 If you have selected multiple devices, use the drop-down to select a specific device and preview its configuration. Click **Back** to edit the configuration or click **Next**.

Step 9 Specify a job name and description.

The Device Credentials are populated from **Administration > Credentials Management > LAN Credentials**.

Step 10 Use the radio button to select **Instant Job** or **Schedule Job**.

If you select **Schedule Job**, specify the date and time for the job delivery.

Step 11 Use the check box to select **Copy Run to Start**.

Step 12 If you want to configure more transaction and delivery options, use the check box to select **Show more options**.

Step 13 Under **Transaction Options(Optional)**, if you have a device with rollback feature support, select **Enable Rollback** check box and select the appropriate radio button.

You can choose one of the following options by selecting the appropriate radio button:

- **Rollback the configuration on a device if there is any failure on that device**
- **Rollback the configuration on all the devices if there is any failure on any device**
- **Rollback the configuration on a device if there is any failure on any device and stop further configuration delivery to remaining devices**

Step 14 Under **Delivery Options (Optional)**, specify the command response timeout in seconds and use the radio button to select a delivery order. The value of command response timeout ranges from 1 to 180.

You can choose one of the following options by selecting the appropriate radio button:

- **Deliver configuration one device at a time in sequential**
- **Delivery configuration in parallel to all devices at the same time**

Step 15 Click **Finish** to create the job.

A confirmation message is displayed that the job has been successfully created.

Modifying a Template

You can edit the user-defined templates. However, the predefined templates and templates that are already published cannot be edited.

Procedure

Step 1 From **Configure > Templates > Template Library > Templates**, select a template.

Step 2 Click **Modify/View template**.

Step 3 Edit the template description and tags.

The edited template content is displayed in a pane on the right.
Copying a Template

To copy a template from the Cisco DCNM Web UI, perform the following steps:

Procedure

1. Choose **Configure > Templates > Template Library > Templates**, and select a template.
2. Click **Save Template As**.
3. Edit the template name, description, tags, and other parameters.
 - The edited template content is displayed in the right-hand pane.
4. From the **Imports > Template Name** list, check the template check box.
 - The base template content is displayed in the **Template Content** window. You can edit the template content that is based on your requirement in the **Template Content** window. Click the help icon next to the **Template Content** window for information about editing the content of the template.
5. Edit the supported platforms for the template.
6. Click **Validate Template Syntax** to validate the template values.
7. Click **Save** to save the template.
8. Click **Save and Exit** to save the configuration and go back to the configuring templates screen.

Deleting a Template

You can delete the user-defined templates. However, you cannot delete the predefined templates. From Cisco DCNM Release 11.0(1), you can delete multiple templates at once.

To delete a template from the Cisco DCNM Web UI, perform the following steps:

Procedure

1. Choose **Configure > Templates > Template Library > Templates**.
2. Use the check box to select a template and click **Remove template** icon.
The template is deleted without any warning message.

What to do next

The template is deleted from the list of templates on the DCNM Web UI. When you restart the DCNM services, the deleted templates are displayed on the **Configure > Templates > Template Library > Templates** page.

To delete the template permanently, delete the template that is located in your local directory: `Cisco Systems\dcm\dcnm\data\templates\`

Importing a Template

To import a template from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose **Configure > Templates > Template Library > Templates** and click **Import Template**.

Step 2 Browse and select the template that is saved on your computer. You can edit the template parameters, if necessary. For information, see Modifying a Template, on page 136.

Note The “
” in the template is considered as a new line character when imported and edited, but it works fine when imported as a ZIP file.

Step 3 Click **Validate Template Syntax** to validate the template.

Step 4 Click **Save** to save the template or **Save and Exit** to save the template and exit.

Note You can import Cisco-defined FabricPath and IP VXLAN Programmable Fabric POAP Templates to the Cisco DCNM Web Client. For more information, see Installing POAP Templates, on page 138.

Exporting a Template

To export a template from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose **Configure > Templates > Template Library > Templates**.

Step 2 Use the check box to select a template and click **Export Template**. The browser requests you to open or save the template to your directory.

Installing POAP Templates

Cisco DCNM allows you to add, edit, or delete user-defined templates that are configured across different Cisco Nexus platforms. From Cisco DCNM Release 10.0(x), Cisco-defined FabricPath and IP VXLAN...
Programmable Fabric POAP Templates are provided as a separate download on the official Cisco website. These templates are compatible for use with the DCNM Virtual Appliance (OVA or ISO) for use with Nexus 2000, Nexus 5000, Nexus 6000, Nexus 7000, and Nexus 9000 Series switches.

You can download the Cisco-defined templates from https://software.cisco.com/download/release.html.

Perform the following task to install the POAP templates from the Cisco DCNM.

Procedure

Step 1
Navigate to www.cisco.com/go/dcnm, and download the latest file.

You can choose one of the following:

- `dcnm_ip_vxlan_fabric_templates.10.0.1a.zip`
- `dcnm_fabricpath_fabric_templates.10.0.1a.zip`

Step 2
Unzip and extract the files to the local directory on your computer.

Step 3
Choose **Configure > Templates > Template Library > Templates**.

Step 4
Click **Import Template**.

Step 5
Browse and select the template that is saved on your computer. You can edit the template parameters, if necessary.

Step 6
Check **POAP** and **Publish** check box to designate these templates as POAP templates.

Step 7
Click **Validate Template Syntax** to validate the template.

Step 8
Click **Save** to save the template or **Save and Exit** to save the template and exit.

Configuring Jobs

To configure jobs from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1
Choose **Configure > Templates > Templates Library > Jobs**.

The jobs are listed along with the Job ID, description and status.

Step 2
Click **Show Filter** to filter the list.

In the **Status** column, use the drop-down to select the job status.

Step 3
Select a job and click the **Delete** icon to delete the job.

Step 4
To view the status of a job, click the **Job ID** radio button and click **Status**.

Step 5
To view the command execution status for a device, click the radio button of a device name from the **Devices** table in the **Job Execution Status** window.

Note
You can delete multiple jobs at once, but you cannot view the status of multiple jobs at once.
Backup

The Backup menu includes the following submenus:

Switch Configuration

This feature allows you to backup device configurations from running configuration as a regular text file in the file system. However, you can also perform operations on startup configuration. The backup files can be stored in the DCNM server host or on a file server.

You can also configure the archive system to support scheduling of jobs for the selected list of devices. You can configure only one job for a switch.

The following tables describe the icons and fields that appear on Configure > Backup > Switch Configuration.

Table 16: Switch Configuration Operations

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copy Configuration to bootflash</td>
<td>Allows you to copy a configuration file of a switch to the bootflash of the selected destination switches.</td>
</tr>
<tr>
<td>View Configuration</td>
<td>Allows you to view the configuration file.</td>
</tr>
<tr>
<td>Delete Configuration</td>
<td>Allows you to delete the configuration file.</td>
</tr>
<tr>
<td>Compare Configuration</td>
<td>Allows you to compare two configuration files, from different devices or on the same device.</td>
</tr>
<tr>
<td>Export Configuration</td>
<td>Allows you to export a configuration file from the DCNM server.</td>
</tr>
<tr>
<td>Import User-Defined Configuration</td>
<td>Allows you to import a user-defined configuration file to the DCNM server.</td>
</tr>
<tr>
<td>Restore Configuration to devices</td>
<td>Allows you to restore configuration from the selected devices.</td>
</tr>
<tr>
<td>Archive Jobs</td>
<td>Allows you to add, delete, view, or modify the jobs.</td>
</tr>
</tbody>
</table>

Table 17: Switch Configuration Field and Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Name</td>
<td>Displays the device name. Click the arrow next to the device to view the configuration files.</td>
</tr>
<tr>
<td>IP Address</td>
<td>Displays the IP address of the device.</td>
</tr>
<tr>
<td>Group</td>
<td>Displays the group of the device.</td>
</tr>
</tbody>
</table>
Field Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration</td>
<td>Displays the configuration files that are archived for that device.</td>
</tr>
<tr>
<td>Archive Time</td>
<td>Displays the time when the device configuration files were archived.</td>
</tr>
<tr>
<td></td>
<td>The format is Day:Mon:DD:YYYY HH:MM:SS.</td>
</tr>
<tr>
<td>Size</td>
<td>Displays the size of the archived file.</td>
</tr>
</tbody>
</table>

This section contains the following:

Copy Configuration

You can copy the configuration files to the same device, to another device, or multiple devices concurrently. Perform the following task to view the status of tasks.

Procedure

Step 1 From Cisco DCNM home page, choose **Configure > Backup > Switch Configuration**. Select any startup/running/archive configuration of the device that you must copy.

Step 2 Click **Copy Configuration to bootflash**.

Copy Configuration to bootflash page appears, displaying the **Source Configuration Preview** and **Selected Devices** area.

Source Configuration Preview area shows the contents of running/startup/version configuration file which is copied to the devices.

Step 3 In the **Selected Devices** area, check the device name check box to copy the configuration to the device.

Note You can select multiple destination devices to copy the configuration.

The selected devices area shows the following fields:

- Device Name—Specifies the target device name to which the source configuration is copied.
- IP Address—Specifies the IP Address of the destination device.
- Group—Specifies the group to which the device belongs.
- Status—Specifies the status of the device.

Step 4 Click **Copy**.

A confirmation window appears.

Step 5 Click **Yes** to copy the configuration to the destination device configuration.
View Configuration

You can view or edit the configuration file on the device.

Perform the following task to view or edit the configuration file for the devices.

Procedure

Step 1
From Cisco DCNM home page, choose Configure > Backup > Switch Configuration. Click the arrow next to the device name to view the configuration files on the device. Select the configuration file radio button to view the configuration file.

Step 2
Click the View Configuration.

The View Configuration window appears showing the configuration file content.

Delete Configuration

Perform the following task to delete the configuration file from the device.

Note
Ensure that you take a backup of the configuration file before you delete.

Procedure

Step 1
From Cisco DCNM home page, choose Configure > Backup > Switch Configuration. Click the arrow next to the device name to view the configuration files on the device.

Step 2
Click the configuration file radio button to be deleted.

Note
You can delete multiple configuration files. However, you cannot delete startup, or running configuration files.

Step 3
Click Yes to delete the configuration file.

Compare Configuration Files

This feature allows you to compare the configuration file with another version of the same device or with the configuration file of another device.

Perform the following task to compare the configuration files.

Procedure

Step 1
Navigate to Configure > Backup > Switch Configuration. Click the arrow next to the device name to view the configuration files on the device.
Step 2
Check the check box and select two configuration files to compare.
The first file that you selected is designated as Source and the second configuration file is designated as the Target file.

Step 3
Click Compare Configuration.

View Config Diff page appears, displaying the difference between the two configuration files.
The Source and Target configuration files content is displayed in two columns. From the drop-down list in the right-top corner, choose All to view the entire configuration. You can also choose Changed to view the configuration differences of the configuration files.
The differences in the configuration file are show in the table, with legends.

- **Red**: Deleted configuration details.
- **Green**: New added configuration.
- **Blue**: Modified configuration details.

Step 4
Click Copy to Target to copy the source configuration to the target configuration file. Click Cancel to revert to the configuration details page.
The Copy Configuration window displays the source configuration preview and the target device of the destination configuration. The selected devices area shows the following fields:

- **Device Name**—Specifies the target device name to which the source configuration is copied.
- **IP Address**—Specifies the IP Address of the destination device.
- **Group**—Specifies the group to which the device belongs.
- **Status**—Specifies the status of the device.

Step 5
Click Yes to copy the configuration to the destination device configuration.

Export Configuration

You can export a configuration file from the Cisco DCNM server. Perform the following task to export a configuration file.

Procedure

Step 1
From Cisco DCNM home page, choose Configure > Backup, select a configuration to export.

Step 2
Click Export Configuration.
The files are downloaded in your local system. You can use the third-party file transfer tools to transfer these files to an external server.
Import Configuration File

You can import the configuration file from the file server to the Cisco DCNM. Perform the following task to import a single or multiple configuration files.

Procedure

Step 1

From Cisco DCNM home page, choose **Configure > Backup > Switch Configuration** and click **Import User-Defined Configuration**. The file server directory opens.

Step 2

Browse the directory and select the configuration file that you want to import. Click **Open**. A confirmation screen appears.

Step 3

Click **Yes** to import the selected file. The imported configuration file appears as a User Imported file.

Restore Configuration

You can restore the configuration file from the selected switches. From Cisco DCNM Release 11.0(1), you can restore configuration based on the selected date as well.

Note

You cannot restore the configuration for SAN switches and FCoE-enabled switches.

Perform the following task to restore the configuration from the selected devices.

Procedure

Step 1

From Cisco DCNM home page, choose **Configure > Backup > Switch Configuration**, and click **Restore**.

Step 2

Select the type of restore from the drop-down list. You can choose **Version-based** or **Date-based**.

Note

• If you choose date-based restore, you have to select the date and time. The configuration available before the mentioned time is restored.

• If you choose version-based restore, you have to choose a configuration from the **Configuration** column. You can view the configuration details in the **View** column.

Step 3

Check the **Device Name** check box from which you want to restore the configuration. Click **Restore**. The **Devices** area shows the following fields:

• **Device Name**—Specifies the device name from which the configuration file is restored.

• **IP Address**—Specifies the IP Address of the device.
• Group—Specifies the group to which the device belongs.

• Status—Specifies the status of the device.

Note You can restore the configuration only from the same device. If you select user-imported configuration files, you can restore configuration for any number of devices.

Archive Jobs

This section contains context-sensitive online help content under Cisco DCNM **Configure > Backup > Switch Configuration > Archive Jobs**.

Note The configuration files from the archived jobs are located in the DCNM Server directory: `\dcm\dcnm\data\archive\<dcnm-ip-address>\`. You can use the third-party file transfer tools or file transfer commands to transfer these files to an external server.

The following table describes the fields that appear on the **Archive Jobs** window.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User</td>
<td>Specifies who created this job.</td>
</tr>
<tr>
<td>Group</td>
<td>Specifies the group to which this job belongs.</td>
</tr>
<tr>
<td>Group Job</td>
<td>Specifies whether it is a group job or a per-device job. The values are true or false.</td>
</tr>
<tr>
<td>Schedule</td>
<td>Specifies the schedule of the job. Also show the recurrence information.</td>
</tr>
<tr>
<td>Last Execution</td>
<td>Specifies the date and time at which this job was last executed.</td>
</tr>
<tr>
<td>Job Status</td>
<td>Specifies if the job was successful, scheduled, running, or failure.</td>
</tr>
<tr>
<td>User Comments</td>
<td>Specifies the comments or description provided by the user.</td>
</tr>
</tbody>
</table>

Archive Jobs

To add, delete or view the job from the Cisco DCNM Web UI, perform the following steps:
You must set the SFTP/TFTP/SCP credentials before you configure jobs. On the DCNM Web Client, navigate to Administration > DCNM Server > Archive FTP Credentials to set the credentials.

Procedure

Step 1

Choose Configure > Backup > Switch Configuration > Archive Jobs > Archive Jobs tab, and click Add Job.

The Create Job screen displays the Schedule, Device Selection and Selected Devices.

A backup is scheduled as defined.

a) In the Schedule area, configure the start time, repeat interval and repeat days.

 • Start At: Configure the start time using the hour:minutes:seconds drop-down lists.
 - Once: Configure the job to be executed once, on the particular day. The time at which this job will be executed is determined by the Start At field.
 - Now—Configure the job to be executed immediately. Cisco DCNM will consider the default date and time as configured on the server.

 Note: You can schedule a job to run Now even if a job is already scheduled.

 • Daily: Check the check box on the days you want this job to be executed. The time at which this job will be executed is determined by the Start At field.

 • Real Time: Configure the job to be executed if there is any configuration changes in the device. The device must be quiet for 5 minutes, after which the DCNM Sever will execute this job.

 • Repeat Interval: Check the Repeat Interval check box to repeat the job at scheduled intervals. Configure the intervals using either days or hours drop-down list.

 • Comments: Enter your comments, if any.

b) In the Device Selection area, use the radio button to choose one of the following:

 • Device Group: Click the Device Group radio button to select the entire group of devices for this job.

 Select the Device Group from the drop-down list.

 Note: When the devices are not licensed, they will not be shown under the group on the Cisco DCNM Configure > Backup > Switch Configuration > Archive Jobs. When none of the devices under a group is licensed, the group alone will be shown with no devices, until a device under that group is licensed.

 • Selected Devices: Click the Selected Devices radio button to select one of multiple devices from various groups for this job.

 Select the devices from the drop-down list.
From Cisco DCNM Release 11.2(1), you can apply VRF for all the selected devices simultaneously. You can either apply Management VRFs or Default VRFs.

Note
When the SAN and LAN credentials are not configured for a switch, it will not be listed in the Selected Devices drop-down list. To configure, navigate to Administration > Credentials Management > SAN Credentials and Administration > Credentials Management > LAN Credentials.

c) In the **Selected Devices** area, the following fields are shown:

- **Name**: Specifies the name of the device on which the job is scheduled.
- **IPAddress**: Specifies the IP Address of the device.
- **Group**: Specifies the group to which the device belongs.
- **VRF**: Specifies the virtual routing and forwarding (VRF) instance.

Select a VRF type to modify the existing VRF type to the specified device. You can either apply Management VRFs or Default VRFs.

Note
If a job for a device exists under device level, you can create a group level job which includes this switch as part of that group. However, this switch will be excluded during the execution of the job.

d) Click **Create** to add a new job.

Step 2
To delete a job, from the Cisco DCNM home page, choose **Configure > Backup > Switch Configuration > Archive Jobs > Archive Jobs**, and select a job.

a) Click **Delete Job**.

The Schedule, Device Selection and the Selected devices for this job is displayed.

b) Click **Delete**.

Step 3
To view the details of the job, from the Cisco DCNM home page, choose **Configure > Backup > Switch Configuration > Archive Jobs > Archive Jobs**, and check the job check box.

a) Click **View/Modify Job**.

The Schedule, Device Selection and the Selected devices for this job is displayed.

b) Modify the required details. Click **OK** to revert to view the list of jobs.

Note
- You cannot modify a job that is scheduled to be run **Now** to one that is scheduled to be run **Daily**.

- You cannot modify the repeat interval duration for an archive job. When you try to modify, the operation fails and the job is deleted. You must delete existing repeat interval archive job and create a new job.
What to do next

You can also configure the Cisco DCNM to retain the number of archived files per device. Choose **Administration > DCNM Server > Server Properties**, and update the **archived.versions.limit** field.

Job Execution Details

The Cisco DCNM **Web Client > Configure > Backup > Switch Configuration > Archive Jobs > Archive Jobs > Job Execution Details** tab shows the following tabs in the Job Execution History table:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job Name</td>
<td>Displays the system-generated job name.</td>
</tr>
<tr>
<td>User</td>
<td>Specifies the persona of the person who created the job.</td>
</tr>
<tr>
<td>Device Group</td>
<td>Specifies fabric or the LAN group under which the job was created.</td>
</tr>
<tr>
<td>Device</td>
<td>Specifies the IP Address of the Device.</td>
</tr>
<tr>
<td>Server</td>
<td>Specifies the IP Address of the DCNM Server to which the device is associated with.</td>
</tr>
<tr>
<td>Protocol</td>
<td>Specifies if the SFTP, TFTP, or SCP protocol is applied.</td>
</tr>
<tr>
<td>Execution time</td>
<td>Specifies the time at which the job was last executed.</td>
</tr>
<tr>
<td>Status</td>
<td>Specifies the status of the job.</td>
</tr>
<tr>
<td></td>
<td>• Skipped</td>
</tr>
<tr>
<td></td>
<td>• Failed</td>
</tr>
<tr>
<td></td>
<td>• Successful</td>
</tr>
<tr>
<td>Error Cause</td>
<td>Specifies the error if the job has failed. The categories are as follows:</td>
</tr>
<tr>
<td></td>
<td>• No change in the configuration.</td>
</tr>
<tr>
<td></td>
<td>• Switch is not managed by this server.</td>
</tr>
</tbody>
</table>

Note If the error cause column is empty, it implies that the job was executed successfully.

Archives

A user with network operator role can view configuration archives for a switch and their details in the **Archives** window.

The following tables describe the icons and fields that are displayed in this window.
Table 18: Archive Operations

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compare</td>
<td>Allows you to compare two configuration files either from different devices or on the same device.</td>
</tr>
<tr>
<td>View</td>
<td>Allows you to view a configuration file.</td>
</tr>
</tbody>
</table>

Table 19: Archive Field and Description

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Name</td>
<td>Displays the device name</td>
</tr>
<tr>
<td></td>
<td>Click on the arrow next to the device to view the configuration files.</td>
</tr>
<tr>
<td>IP Address</td>
<td>Displays the IP address of the device.</td>
</tr>
<tr>
<td>Group</td>
<td>Displays the group of the device.</td>
</tr>
<tr>
<td>Configuration</td>
<td>Displays the configuration files that are archived for the device.</td>
</tr>
<tr>
<td>Archive Time</td>
<td>Displays the time at which the device configuration files were archived.</td>
</tr>
<tr>
<td></td>
<td>The format is Day:Mon:DD:YYYY HH:MM:SS.</td>
</tr>
<tr>
<td>Size</td>
<td>Displays the size of the archived file.</td>
</tr>
</tbody>
</table>

This section contains the following:

Compare Configuration Files

You can compare one version of a configuration file with another version of the same configuration file in the same device, or the configuration files of two different devices.

To compare the configuration files from the Cisco DCNM Web UI, perform the following steps:

Procedure

1. **Step 1** Choose **Configure > Backup > Archives**.
2. **Step 2** In the **Archives** area, click the arrow that is adjacent the name of the device whose configuration files you want to view. The list of configuration files is displayed.
3. **Step 3** Check the check box next to configuration files and select two configuration files to compare.

 The first file that you select is designated as the source and the second configuration file is designated as the target file.

4. **Step 4** Click **Compare**.

 The **View Config Diff** page displays the difference between the two configuration files.
The Source and Target configuration files content are displayed in two columns. Choose All from the drop-down list in the right-top corner to view the entire configuration. Choose Changed to view the configuration differences between the configuration files.

The differences in the configuration files are shown in a table, with legends.

- **Red**—Deleted configuration details.
- **Green**—Newly added configuration.
- **Blue**—Modified configuration details.

View Configuration

You can view an archived configuration file.

To view or edit the configuration file for the devices from the Cisco DCNM Web UI, perform the following steps:

Procedure

1. **Step 1** Choose **Configure > Backup > Archives**.
 - The **Archives** window is displayed.
2. **Step 2** Click the arrow that is next to the name of the device whose configuration files you want to view.
 - The list of configuration files are displayed.
3. **Step 3** Select the radio button that is next to the corresponding file you want to view.
4. **Step 4** Click the **View** configuration icon.
 - The **View** configuration window appears showing the configuration file content in the right column.

Network Config Audit

Cisco DCNM provides auditing for the configuration changes across the network switches. The Network Audit Reporting feature enables you to generate audit reports so that you can track the added, deleted, or modified configurations. You will be able to generate the network audit reports only when you have existing archival jobs. Using the generated reports, you can view the config differences on a device for a specified period.

This section contains the following:

Generating Network Config Audit Reports

To generate the network config audit reports from the Cisco DCNM Web UI, perform the following steps:
Procedure

Step 1 Choose Configure > Backup > Network Config Audit.
The Network Audit Report window is displayed.

Step 2 In the Devices drop-down list, choose the devices to generate a report.

Step 3 Specify the Start Date and the End Date.

Step 4 Click Generate Report to view the configuration differences. The configuration differences are color-coded.

- Red: Deleted Configuration
- Green: Newly Added Configuration
- Blue: Changed configuration
- Strikethrough: Old configuration

After you generate a report, you can export the configuration reports into an HTML file.

Creating a Network Config Audit Report

To create a network config audit job and view the configuration differences between the devices from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose Monitor > Report > Generate.
The left pane shows various reports that you can create.

Step 2 Choose Common > Network Config Audit.

Step 3 In the Report Name field, enter the name of the report.

Step 4 In the Repeat field, choose the appropriate repeat interval, that is, Daily, Weekly, or Monthly.

Daily job generates a report of configuration differences for all the selected devices for last 1 day. Weekly job generates a report for the last 7 days, and the monthly job generates a report for the last 30 days.

Step 5 In the Start and End date fields, specify the start and end date for the report.

Step 6 In the Email Report field, specify the email delivery options.

- No: Select this option if you do not want to send the report through email.
- Link Only: Select this option if you want to send the link to the report.
- Contents: Select this option if you want to send the report content.

If you select Link Only or the Contents option, enter the email address and subject in the To and Subject fields.

Monitoring Network Config Audit Report

To monitor the network config audit report from the Cisco DCNM Web UI, perform the following steps:
Deleting a Network Config Audit Report

To delete a network config audit report from the Cisco DCNM Web UI, perform the following steps:

Procedure

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Choose Monitor > Report > View.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>Choose Common > Network Config Audit in the left pane to the network config audit reports.</td>
</tr>
</tbody>
</table>

| Step 3 | Select the reports that you want to delete, and click the Delete icon. |

Image Management

The Image Management menu includes the following options:

Upgrade [ISSU]

The Upgrade [ISSU] menu includes the following submenus:

Upgrade History [ISSU]

This feature enables you to upgrade the Cisco Nexus Platform Switches using In-Service Software Upgrade (ISSU). This upgrade procedure may be disruptive or non-disruptive based on the device configuration. You can select the Kickstart, System, or SSI images required for the upgrade from a remote server using SFTP, SCP, TFTP, FTP or from image repository or the file system on the device. Image repository can use SCP, SFTP, FTP, or TFTP as file transfer protocol. To select the images from the repository, the same needs to be uploaded from Configure > Image Management > Repositories tab.

The following table describes the fields that appear on Configure > Image Management > Upgrade [ISSU] > Upgrade History.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task Id</td>
<td>Specifies the serial number of the task. The latest task will be listed in the top.</td>
</tr>
<tr>
<td>Note</td>
<td>If Failover is triggered in Native HA, the Task Id sequence number is incremented by 32.</td>
</tr>
</tbody>
</table>
Field | Description
--- | ---
Task Type | Specifies the type of task.
- Compatibility
- Upgrade

Owner | Based on the Role-Based Authentication Control (RBAC), specifies the owner who initiated this task.

Devices | Displays all the devices that were selected for this task.

Job Status | Specifies the status of the job.
- Planned
- In Progress
- Completed
- Completed with Exceptions

Created Time | Specifies the time when the task was created.

Scheduled At | Specifies the time when the task is specified to be executed.
You can also choose to schedule a task to be executed at a later time.

Comment | Shows any comments that the Owner has added while performing the task.

Note

After a fresh Cisco DCNM installation, this page will have no entries.

You can perform the following:

New Installation

To upgrade the devices that are discovered from the Cisco DCNM, perform the following steps:

Procedure

Step 1 Choose **Configure > Image Management > Upgrade [ISSU] > Upgrade History**, click **New Installation** to install, or upgrade the kickstart and the system images on the devices.
The devices with default VDCs are displayed in the **Select Switches** window.

Step 2 Select the check box to the left of the switch name.
You can select more than one device and move the devices to the right column.

Step 3 Click **Add** or **Remove** icons to include the appropriate switches for upgrade.
The selected switches appear in a column on the right.

Step 4

Click **Next** to navigate to the **Specify Software Images** window. This tab displays the switches that you selected in the previous screen and allows you to choose the images for upgrade.

- The **Auto File Selection** check box enables you to specify a file server, an image version, and a path where you can apply the upgraded image to the selected devices.
- In the **Select File Server** drop-down list, select the one of the file servers that is created in the Cisco DCNM repositories.
- In the **Image Version** field, specify the image version. For example, enter 7.3.9.D1.1 in the Image Version field if you have selected m9700-sf3ek9-kickstart-mz.7.3.0.D1.1.bin as the image version.
- In the **Path** field, specify the image path. Specify an absolute path if you choose SCP or SFTP. For example, //root/images/. Specify a relative path to the FTP or TFTP home directory if you choose FTP or TFTP. Specify the absolute path of the image if you are using TFTP server that is provided by Cisco DCNM, local DCNM TFTP. You cannot use the same DCNM TFTP server for creating another job when the current job is in progress.

Step 5

Click **Select Image** in the **Kickstart image** column.

The **Software Image Browser** dialog box appears.

Note

- Cisco Nexus 3000 Series and 9000 Series Switches require only the system image to load the Cisco NX-OS operating system. Therefore, the option to select kickstart images for these devices is disabled.
- If there is an issue in viewing the **Software Image Browser** dialog box, reduce the font size of your browser and retry.

Step 6

Click **Select Image** in the **System Image** column.

The **Software Image Browser** dialog box appears.

Step 7

On the **Software Image Browser** dialog box, you can choose the image from **File Server** or **Switch File System**.

If you choose **File Server**:

a) From the **Select the File server** list, choose the appropriate file server on which the image is stored.

The servers at **Configure > Image Management > Repositories** are displayed in the drop-down list.

b) From the **Select Image** list, choose the appropriate image. Check the check box to use the same image for all other selected devices of the same platform.

Example: For platform types N7K-C7009 and N7K-C7010, logic matches platform (N7K) and three characters (C70) from subplatform. The same logic is used across all platform switches.

Note Only files with BIN extension are listed if you select **File Server**. To view other files, choose **Administration > DCNM Server > Server Properties**, set FILE_SELECTION_FILTER to false, and restart the server. It is set to true by default.

c) Click **OK** to choose the kickstart image or **Cancel** to revert to the **Specify Software Images** window.

If the file server selected is either ftp or tftp, in the text box, enter the relative path of the file from the home directory.
If you choose **Switch File System**:

a) From the **Select Image** list, choose the appropriate image that is located on the flash memory of the device.

 Note Only files with BIN extension are listed if you select **Switch File System**. To view other files, choose *Administration > DCNM Server > Server Properties*, set FILE_SELECTION_FILTER to false, and restart the server. It is set to **true** by default.

b) Click **OK** to choose the kickstart image or **Cancel** to revert to the **Specify Software Images** dialog box.

Step 8
The Vrf column indicates the name of the virtual routing and forwarding (VRF).

VRF is not applicable for Cisco MDS devices.

Step 9
In the **Available Space** column, specify the available space for the **Primary Supervisor** and **Secondary Supervisor** modules of the switch.

Available Space column shows the available memory in MB on the switch (for less than 1 MB, it is shown and marked as KB).

Bootflash browser shows the filename, size, and last modified date for all the files and directories on the switch bootflash. You can delete files by selecting them and clicking **Delete** to increase the available space on the switch.

Step 10
Selected Files Size column shows the size of images that are selected from the SCP or SFTP server.

If the total size of selected images is greater than available space on a switch, the file size is marked in red. We recommend that you create more space on the switch to copy images to it and install.

Step 11
Drag and drop the switches to reorder the upgrade task sequence.

Step 12
Select **Skip Version Compatibility** if you are sure that the version of the Cisco NX-OS software on your device is compatible with the upgraded images that you have selected.

Step 13
Select **Select Parallel Line Card upgrade** to upgrade all the line cards at the same time.

Upgrading a parallel line card is not applicable for Cisco MDS devices.

Step 14
Select **Options** under the **Upgrade Options** column to choose the type of upgrade.

Upgrade Options window appears with two upgrade options. The drop-down list for **Upgrade Option 1** has the following options:

- **NA**
- **bios-force**
- **non-disruptive**

NA is the default value.

The drop-down list for **Upgrade Option 2** has the following options:

- **NA**
- **bios-force**

When **NA** is selected under **Upgrade Option 1**, **Upgrade Option 2** is disabled.

When **bios-force** is selected under **Upgrade Option 1**, **Upgrade Option 2** is disabled.
When **non-disruptive** is selected under **Upgrade Option 1**, you can choose **NA** or **bios-force** under **Upgrade Option 2**.

Check the **Use this Option for all other selected devices** check box to use the selected option for all the selected devices and click **OK**.

Note
- The upgrade options are applicable only for Cisco Nexus 3000 Series and 9000 Series switches.
- Selecting the non-disruptive option for upgrading does not ensure a non-disruptive upgrade. Perform a compatibility check to ensure that the device supports non-disruptive upgrade.

Step 15

Click **Next**.

If you did not select **Skip Version Compatibility**, the Cisco DCNM performs a compatibility check.

You can choose to wait until the check is complete or click **Finish Installation Later**.

The installation wizard is closed and a compatibility task is created in **Configure > Image Management > Upgrade [ISSU] > Upgrade History** tasks.

The time that is taken to check the image compatibility depends on the configuration and the load on the device.

The **Version Compatibility Verification** status column displays the status of verification.

If you skip the version compatibility check by choosing **Skip Version Compatibility**, Cisco DCNM displays only the name of the device, the **Current Action** column displays **Completed**, and the **Version Compatibility Verification** column displays **Skipped**.

Step 16

Click **Finish Installation Later** to perform the upgrade later.

Step 17

Click **Next**.

Step 18

Check the **Next** check box to put a device in maintenance mode before upgrade.

Step 19

Check the check box to save the running configuration to the startup configuration before upgrading the device.

Step 20

You can schedule the upgrade process to occur immediately or later.

1. Select **Deploy Now** to upgrade the device immediately.

2. Select **Choose time to Deploy** and specify the time in MMM/DD/YYYY HH:MM:SS format to perform the upgrade later.

 This value is relative to the server time. If the selected time to deploy is in the past, the job is executed immediately.

Step 21

You can choose the execution mode based on the devices and the line cards you have chosen to upgrade.

1. Select **Sequential** to upgrade the devices in the order in which they were chosen.

2. Select **Concurrent** to upgrade all the devices at the same time.

Step 22

Click **Finish** to begin the upgrade process.

The Installation wizard closes and a task to Upgrade is created on the **Configure > Image Management > Upgrade [ISSU] > Upgrade History** page.
What to do next

After you complete the ISSU on the switch, ensure that you wait for 20 minutes to allow the switch to reboot, and stabilize the SNMP agent. Cisco DCNM will discovery polling cycles in order to display the new version of the switch on the Cisco DCNM Web UI.

Finish Installation

You can choose to complete the installation for tasks which was completed on the Compatibility Check page. Perform the following task to complete the upgrade process on the devices.

Procedure

Step 1 Choose Configure > Image Management > Upgrade [ISSU] > Upgrade History, select a task for which the compatibility check is complete. Select only one task at a time.

Step 2 Click Finish Installation.

Software Installation Wizard appears.

Step 3 Check the check box to save the running configuration to the startup configuration before upgrading the device.

Step 4 Check the check box to put a device in maintenance mode before upgrade. This option is valid only for the devices that support maintenance mode.

Step 5 You can schedule the upgrade process to occur immediately or later.
 1. Select Deploy Now to upgrade the device immediately.
 2. Select Choose time to Deploy and specify the time in DD/MM/YYYY HH:MM:SS format to perform the upgrade later.

Step 6 You can choose the execution mode that is based on the devices and the line cards that you have chosen to upgrade.
 1. Select Sequential to upgrade the devices in the order in which they were chosen.
 2. Select Concurrent to upgrade the devices at the same time.

Step 7 Click Finish to complete the upgrade process.

View

To view the image upgrade history from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose Configure > Image Management > Upgrade [ISSU] > Upgrade History, check the task ID check box. Select only one task at a time.
Step 2
Click **View**.
The **Installation Task Details** window is displayed.

Step 3
Click **Settings**. Select **Columns** and choose the column details options.
This window displays the location of the kickstart and system images, compatibility check status, installation status, descriptions, and logs.

Step 4
Select the device.
The detailed status of the task is displayed. For the completed tasks, the response from the device is displayed.
If the upgrade task is in progress, a live log of the installation process appears.

Note
This table is refreshed every 30 secs for jobs in progress, when you are on this window.
The switch-level status for an ongoing upgrade on a Cisco MDS switch is not displayed for other users without SAN credentials applied. To apply SAN Credentials, choose **Administration > Credentials Management > SAN Credentials**.

Delete

To delete a task from the Cisco DCNM Web UI, perform the following steps:

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Choose Configure > Image Management > Upgrade [ISSU] > Upgrade History, and check the Task ID check box.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Click Delete.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Click OK to confirm deletion of the job.</td>
</tr>
</tbody>
</table>

Switch Level History

You can view the history of the upgrade process at a switch level. You can view the current version of the switch and other details.

The following table describes the fields that appear on **Configure > Image Management > Upgrade [ISSU] > Switch Level History**.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch Name</td>
<td>Specifies the name of the switch</td>
</tr>
<tr>
<td>IP Address</td>
<td>Specifies the IP Address of the switch</td>
</tr>
<tr>
<td>Platform</td>
<td>Specifies the Cisco Nexus switch platform</td>
</tr>
<tr>
<td>Current Version</td>
<td>Specifies the current version on the switch software</td>
</tr>
</tbody>
</table>
Click the radio button next to a switch name to select the switch and view its upgrade history. Click View to view the upgrade task history for the selected switch.

The following table describes the fields that appear on Configure > Image Management > Upgrade [ISSU] > Switch Level History > View Device Upgrade Tasks:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>Specifies the owner who initiated the upgrade.</td>
</tr>
<tr>
<td>Job Status</td>
<td>Specifies the status of the job.</td>
</tr>
<tr>
<td></td>
<td>• Planned</td>
</tr>
<tr>
<td></td>
<td>• In Progress</td>
</tr>
<tr>
<td></td>
<td>• Completed</td>
</tr>
<tr>
<td>KickStart Image</td>
<td>Specifies the kickStart image that is used to upgrade the Switch.</td>
</tr>
<tr>
<td>System Image</td>
<td>Specifies the system image that is used to upgrade the switch.</td>
</tr>
<tr>
<td>Completed Time</td>
<td>Specifies the date and time at which the upgrade was successfully completed.</td>
</tr>
<tr>
<td>Status Description</td>
<td>Specifies the installation log information of the job.</td>
</tr>
</tbody>
</table>

Patch [SMU]

The Patch [SMU] menu includes the following submenus:

Installation History

This feature allows you to activate or deactivate packages using Software Maintenance Update (SMU). Personnel with Admin privileges can perform this operation.

The following table describes the fields that appear on Configure > Image Management > Patch [SMU] > Installation History.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task Id</td>
<td>Specifies the serial number of the task. The latest task is listed at the top. The tasks are performed in the sequential order.</td>
</tr>
<tr>
<td>Switch Name</td>
<td>Specifies the name of the switch for which the patch file is installed.</td>
</tr>
<tr>
<td>IP Address</td>
<td>Specifies the IP Address of the device.</td>
</tr>
<tr>
<td>Task</td>
<td>Specifies if the patch is installed or uninstalled on this device.</td>
</tr>
</tbody>
</table>
Install Patch

To install the patch on your devices from Cisco DCNM Web Client, perform the following steps:

Procedure

Step 1 Choose Configure > Image Management > Patch [SMU] > Installation History, click Install.

The Select Switches window appears. All the Cisco Nexus switches that are discovered by Cisco DCNM are displayed.

Step 2 Select the check box to the left of a switch name.

You can select more than one device.

Step 3 Click Add or Remove icons to include the appropriate switches for installing the patch.

The selected switches appear in the right column.

Step 4 Click Next.

Step 5 Click Select Packages in the Packages column.

The SMU Package Browser dialog box appears.

Step 6 In the SMU Package Browser dialog box, you can choose the patch file from File Server or Switch File System.

If you choose File Server:

a) From the Select the file server list, choose the appropriate file server on which the patch is stored.

 The servers, which are listed in the Repositories window, are displayed in the drop-down list. Choose Configure > Image Management > Repositories to view the Repositories window.

b) From the Select Image list, choose the appropriate patch that must be installed on the device.

 You can select more than one patch file to be installed on the device.

 Note If the patch installation results in the restart of the device, select only one patch file.

 Check the check box to use the same patch for all other selected devices of the same platform.

 Only files with BIN extension are listed if you select File Server. To view other files, choose Administration > DCNM Server > Server Properties, set FILE_SELECTION_FILTER to false, and restart the server. It is set to true by default.
c) From the **Select Vrf** list, choose the appropriate virtual routing and forwarding (VRF).

The two options in the drop-down list are **management** and **default**.

Check the check box to use the same VRF for all other selected devices.

d) Click **OK** to choose the patch image or **Cancel** to revert to the SMU installation wizard.

If you choose **Switch File System**:

a) From the **Select Image** list, choose the appropriate patch file image that is located on the flash memory of the device.

You can select more than one patch file to be installed on the device.

Only files with BIN extension are listed if you select **Switch File System**. To view other files, choose **Administration > DCNM Server > Server Properties**, set **FILE_SELECTION_FILTER** to **false**, and restart the server. It is set to **true** by default.

b) Click **OK** to choose the image, **Clear Selections** to uncheck all the check boxes, or **Cancel** to revert to the **SMU Package Browser** dialog box.

Step 7

Click **Finish**.

You will get a confirmation window. Click **OK**.

Note SMU installation may reload the switch if the SMU is reloaded.

You can view the list of patches that are installed on the switch in the **Switches** window by choosing **DCNM > Inventory > Switches**.

Uninstall Patch

To uninstall the patch on your devices from Cisco DCNM Web Client, perform the following steps:

Procedure

Step 1

Choose **Configure > Image Management > Patch [SMU] > Installation History**, click **Uninstall**.

The **Select Switches** page appears. The discovered Cisco Nexus switches are displayed.

Step 2

Check the check box on the left of the switch name.

You can select more than one image device.

Step 3

Click **Add** or **Remove** icons to include the appropriate switches for installing the patch.

The selected switches appear in a column on the right.

Step 4

Click **Next**.

The **Active Packages** page appears.

Step 5

Click **Select Packages** under the **Installed Packages** column.

The **Packages Installed** window appears, which lists the patches that are applied to the switch.

Step 6

Select the patches that you want to uninstall from this device.
You can select more than one patch that is applied on the device.

Note If the patch uninstallation results in the restart of the device, select only one patch.

Step 7 Click **Finish** to uninstall the patch from the device.

You will get a confirmation window. Click **OK**.

You can uninstall more than one patch at a time.

Note SMU uninstallation may reload the switch if the SMU is reloaded.

Delete Patch Installation Tasks

To delete the patch installation tasks from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose **Configure > Image Management > Patch [SMU] > Installation History**, check the task ID check box.

Step 2 Click **Delete**.

Step 3 Click **OK** to confirm deletion of the patch installation task.

Switch Installed Patches

You can view the patches that are installed on all the switches in the network. You can refresh the view to see the latest installed patches.

The following table describes the fields that appear on **Configure > Image Management > Patch [SMU] > Switch Installed Patches**.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch Name</td>
<td>Specifies the name of the switch.</td>
</tr>
<tr>
<td>IP Address</td>
<td>Specifies the IP address of the switch.</td>
</tr>
<tr>
<td>Platform</td>
<td>Specifies the Cisco Nexus switch platform.</td>
</tr>
<tr>
<td>Installed Patches</td>
<td>Specifies the currently installed patches on switches.</td>
</tr>
</tbody>
</table>

Click **Refresh** to refresh the table.

Package [RPM]

The Package [RPM] menu includes the following submenus:
Package Installation [RPM]

The package [RPM] feature allows you to install RPM packages. This feature is available for the Cisco Nexus 9000 Series and 3000 Series Switches.

The following table describes the fields that appear on Configure > Image Management > Package [RPM] > Installation History.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task Id</td>
<td>Specifies the serial number of the task. The latest task is listed in the top. The tasks are performed in the sequential order.</td>
</tr>
<tr>
<td>Switch Name</td>
<td>Specifies the name of the switch for which the package file is installed.</td>
</tr>
<tr>
<td>IPAddress</td>
<td>Specifies the IP address of the device.</td>
</tr>
<tr>
<td>Task</td>
<td>Specifies if the package is installed or uninstalled on this device.</td>
</tr>
<tr>
<td>Package</td>
<td>Specifies the name of the package file.</td>
</tr>
<tr>
<td>Status</td>
<td>Specifies the status of installation or uninstallation of the package files.</td>
</tr>
<tr>
<td>Completed Time</td>
<td>Specifies the time at which the installation or uninstallation task completed.</td>
</tr>
<tr>
<td>Status Description</td>
<td>Describes the status of installation or uninstallation of the package files.</td>
</tr>
</tbody>
</table>

This section contains the following:

Install Package [RPM]

Perform the following task to install the package on your devices using Cisco DCNM Web client.

Procedure

Step 1 Choose Configure > Image Management > Package [RPM] > Installation History, click Install. The Select Switches page appears.

Step 2 Check the check box on the left of the switch name.
You can select more than one device.

Step 3 Click Add or Remove to include appropriate switches for installing packaging.
The selected switches appear in a column on the right.

Step 4 Click Next.

Step 5 Click Select Packages in the Packages column.
The **RPM Package Browser** screen appears.

Step 6

Choose the package file from **File Server** or **Switch File System**.

If you choose **File Server**:

a) From the **Select the file server** list, choose the appropriate file server on which the package is stored.

 The servers at **Configure > Image Management > Repositories** are displayed in the drop-down list.

b) From the **Select Image** list, choose the appropriate package that must be installed on the device.

 You can select more than one package file to be installed on the device.

 Only files with RPM extension are listed if you select **File Server**. To view other files, choose **Administration > DCNM Server > Server Properties**, set **FILE_SELECTION_FILTER** to `false`, and restart the server. It is set to `true` by default.

 Check the check box to use the same package for all other selected devices of the same platform.

c) Click **OK** to choose the patch image or **Cancel** to revert to the RPM Installation Wizard.

If you choose **Switch File System**:

a) From the **Select Image** list, choose the appropriate package file image that is located on the flash memory of the device.

 You can select more than one package file to be installed on the device.

 Only files with RPM extension are listed if you select **Switch File System**. To view other files, choose **Administration > DCNM Server > Server Properties**, set **FILE_SELECTION_FILTER** to `false`, and restart the server. It is set to `true` by default.

b) Click **OK**.

Step 7

In the **Installation Type** column, choose one of the installation types:

- **Normal**—Fresh installation
- **Upgrade**—Upgrading the existing RPM
- **Downgrade**—Downgrading the existing RPM

Step 8

Click **Finish**.

You can view the list of packages that are installed on the switch, on the **Web Client > Inventory > Switches** page.

Note

If you are using Cisco DCNM Release 10.1(2), in case of installation of reload RPMs, perform a manual install commit on the switch after it switch reloads.

Uninstall Package [RPM]

To uninstall the RPM on your devices from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1

Choose **Configure > Image Management > Package [RPM] > Installation History**, click **Uninstall**.
The Select Switches window appears.

Step 2
Check the check box on the left of the switch name.
You can select more than one switch.

Step 3
Click the Add or Remove icons to include the appropriate switches for uninstalling the package.
The selected switches appear in a column on the right.

Step 4
Click Next.
The Active Packages page appears.

Step 5
Click Select Packages under the Installed Packages column.
The Packages Installed window appears, which lists the packages that are installed in the switch.

Step 6
Click Finish to uninstall the package from the device.
You will get a confirmation window. Click OK.
You can uninstall more than one package at a time.

Note
- If you are using Cisco DCNM Release 10.1(2), in case of uninstallation of reload RPMs, a manual install commit needs to be performed on the switch once the switch is reloaded.
- RPM uninstallation may reload the switch if the RPM is reload RPM.

Delete Package Installation Tasks

To delete the package installation tasks from the history view from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1
Choose Configure > Image Management > Package [RPM] > Installation History, select the task ID check box.

Step 2
Click Delete.

Step 3
Click OK to confirm deletion of the task.

Switch Installed Packages

You can view the RPM packages that are installed on all Switches in the network. You can refresh the view to see the latest installed packages.

The following table describes the fields that appear on Configure > Image Management > Packages [RPM] > Switch Installed Packages.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch Name</td>
<td>Specifies the name of the switch.</td>
</tr>
</tbody>
</table>
Maintenance Mode [GIR]

The Maintenance Mode [GIR] menu includes the following submenus:

Maintenance Mode

The maintenance mode allows you to isolate the Cisco Nexus Switch from the network to perform an upgrade or debug, using Graceful Insertion and Removal (GIR). When the switch maintenance is complete, you can return the switch to normal mode. When the switch is in the maintenance mode, all protocols are gracefully brought down and all physical ports are shut down. When the normal mode is restored, all the protocols and ports are initiated again.

Perform the following to change the system mode of the devices.

Procedure

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Choose Configure > Image Management > Maintenance Mode [GIR] > Maintenance Mode, check the switch name check box. You can select multiple switches.</th>
</tr>
</thead>
</table>
| Step 2 | Choose one of the following options under the Mode Selection column:
 - Shutdown
 - Isolate

 Note
 Click the appropriate option before you change the mode. |
| Step 3 | Click Change System Mode.
 A confirmation message appears. |
| Step 4 | Click OK to confirm to change the maintenance mode of the device.
 The status of operation can be viewed in the System Mode and the Maintenance Status. |

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>Specifies the IP address of the switch.</td>
</tr>
<tr>
<td>Platform</td>
<td>Specifies the Cisco Nexus switch platform.</td>
</tr>
<tr>
<td>Installed Packages</td>
<td>Specifies the currently installed packages on the switches and the type of package. The installed packages can be base packages or non-base packages.</td>
</tr>
</tbody>
</table>
Switch Maintenance History

You can view the history of the maintenance mode changes executed from the Cisco DCNM.

The following table describes the fields that appear on **Configure > Image Management > Maintenance Mode [GIR] > Switch Maintenance History**.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task Id</td>
<td>Specifies the serial number of the task. The latest tasks that are listed in the top.</td>
</tr>
<tr>
<td>Switch Name</td>
<td>Specifies the name of the switch for which the maintenance mode was changed.</td>
</tr>
<tr>
<td>IP Address</td>
<td>Specifies the IP address of the switch.</td>
</tr>
<tr>
<td>User</td>
<td>Specifies the name of the user who initiated the maintenance.</td>
</tr>
<tr>
<td>System Mode</td>
<td>Specifies the mode of the system.</td>
</tr>
<tr>
<td>Maintenance Status</td>
<td>Specifies the mode of the maintenance process.</td>
</tr>
<tr>
<td>Status</td>
<td>Specifies the status of the mode change.</td>
</tr>
<tr>
<td>Completed Time</td>
<td>Specified the time at which the maintenance mode activity was completed.</td>
</tr>
</tbody>
</table>

Click the radio button next to the switch name to select the switch for which you need to view the upgrade history. Click **View** to view the upgrade task history for the selected switch.

The following table describes the fields that appear on **Configure > Image Management > Upgrade [ISSU] > Switch Level History > View > Upgrade Tasks History**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>Specifies the owner who initiated the upgrade.</td>
</tr>
<tr>
<td>Job Status</td>
<td>Specifies the status of the job.</td>
</tr>
<tr>
<td></td>
<td>• Planned</td>
</tr>
<tr>
<td></td>
<td>• In Progress</td>
</tr>
<tr>
<td></td>
<td>• Completed</td>
</tr>
<tr>
<td>KickStart Image</td>
<td>Specifies the kickstart image that is used to upgrade the Switch.</td>
</tr>
<tr>
<td>System Image</td>
<td>Specifies the system image that is used to upgrade the switch.</td>
</tr>
<tr>
<td>Completed Time</td>
<td>Specifies the date and time at which the upgrade was successfully completed.</td>
</tr>
</tbody>
</table>
Repositories

This feature allows you to add image servers and configuration servers information to fetch images for Upgrade, Patch, and POAP mode operations.

You can specify valid servers for SCP/SFTP/FTP/TFTP. DCNM does not perform the validation for SCP/SFTP/FTP/TFTP servers while creating or updating the servers. DCNM performs validation only for the SCP servers.

Note

The SCP repositories use SSH protocol for the directory listing and therefore you need to enable SSH on the SCP repository server. The SFTP repository uses SFTP protocol for directory listing. The TFTP and FTP repositories do not support directory listing. You need to specify the file path manually.

Add Image or Configuration Server URL

To add an image or a configuration server URL to the repository from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1
On the Image and Configuration Servers window, click the Add icon.

The Add Image or Configuration Server URL window is displayed.

Step 2
Specify a name for the image.

Step 3
Click the radio button to select the protocol.

The available protocols are SCP, FTP, SFTP, and TFTP. Use the SCP protocol for POAP and Image Management.

You can use IPv4 and IPv6 addresses with these protocols.

Step 4
Enter the hostname or IP address and the path to download or upload files.

Step 5
Specify the username and password.

Step 6
Click OK to save.

Deleting an Image or Configuration Server URL

To delete an image from the repository from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1
On the Image and Configuration Servers window, select an existing image from the list, and click Delete.

Step 2
In the delete notification, click Yes to delete the image and configuration server.
The default SCP Repository cannot be deleted.

Editing an Image or Configuration Server URL

To edit an image or a configuration server URL to the repository from the Cisco DCNM Web UI, perform the following steps:

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>On the Image and Configuration Servers window, select an existing image and configuration server from the list, and click Edit.</td>
</tr>
<tr>
<td>2</td>
<td>In the Edit Image or Configuration Server URL window, edit the required fields.</td>
</tr>
<tr>
<td>3</td>
<td>Click OK to save or click Cancel to discard the changes.</td>
</tr>
</tbody>
</table>

File Browser

You can view the contents of the server on the **Image and Configuration Servers** page.

1. In the **Image and Configurations** page, check the **Server Name** check box to view the content.
2. Click **File Browser** to view the contents of this server.

Image Upload

To upload different types of images to the server from the Cisco DCNM Web UI, perform the following steps:

Note

Devices use these images during POAP.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>On the Image and Configuration Servers window, check the server name check box to select the server for uploading images. The Select Image File window appears.</td>
</tr>
<tr>
<td>2</td>
<td>Click Browse to select the image file from the directory.</td>
</tr>
<tr>
<td>3</td>
<td>From the Platform drop-down list, select the device to which you must upload this image.</td>
</tr>
<tr>
<td>4</td>
<td>From the Type drop-down list, select the type of the image you are uploading to the device.</td>
</tr>
<tr>
<td>5</td>
<td>Click OK. The image is uploaded to the repository.</td>
</tr>
</tbody>
</table>
The SAN menu includes the following submenus:

VSANs

Beginning with Cisco DCNM Release 11, you can configure and manage VSANs from the Cisco DCNM. From the menu bar, choose **Configure > SAN > VSAN** to view VSAN information. You can view or configure VSAN for the discovered fabrics, with either **Manageable** or **Manage Continuously** status. For the selected fabric, a VSAN Scope tree is displayed in the left panel.

You can achieve higher security and greater stability in Fibre Channel fabrics by using virtual SANs (VSANs) on Cisco Data Center Switches and Cisco MDS 9000 Family switches. VSANs provide isolation among devices that are physically connected to the same fabric. With VSANs, you can create multiple logical SANs over a common physical infrastructure. Each VSAN can contain up to 239 switches and has an independent address space that allows identical Fibre Channel IDs (FC IDs) to be used simultaneously in different VSANs.

Note

Cisco DCNM does not discover, nor display any suspended VSAN.

The information that is associated with the selected VSAN scope appears in the right panel. If a VSAN is segmented, each individual segmented VSAN is a VSAN scope. For every selected VSAN scope, you can view information in tabs.

- Switches tab
- ISLs Tab
- Host Ports Tab
- Storage Tab
- Attributes Tab
- Domain ID Tab
- VSAN Membership Tab

For description on all fields that appear on the tabs, refer to Field and Descriptions for VSANs, on page 179.

Information About VSANs

With the introduction of VSANs, the network administrator can build a single topology containing switches, links, and one or more VSANs. Each VSAN in this topology has the same behavior and property of a SAN. A VSAN has the following additional features:

- Multiple VSANs can share the same physical topology.
- The same Fibre Channel IDs (FC IDs) can be assigned to a host in another VSAN, thus increasing VSAN scalability.
- Every instance of a VSAN runs all required protocols such as FSPF, domain manager, and zoning.
• Fabric-related configurations in one VSAN do not affect the associated traffic in another VSAN.

• Events causing traffic disruptions in one VSAN are contained within that VSAN and are not propagated to other VSANs.

A VSAN is in the operational state if the VSAN is active and at least one port is up. This state indicates that traffic can pass through this VSAN. This state cannot be configured.

Interoperability enables the products of multiple vendors to come into contact with each other. Fibre Channel standards guide vendors towards common external Fibre Channel interfaces. You can enable FICON in up to eight VSANs.

This section describes VSANs and includes the following topics:

VSAN Topologies

The following figure shows a fabric with three switches, one on each floor. The geographic location of the switches and the attached devices is independent of their segmentation into logical VSANs. No communication between VSANs is possible. Within each VSAN, all members can talk to one another.

Figure 1: Logical VSAN Segmentation

The following shows a physical Fibre Channel switching infrastructure with two defined VSANs: VSAN 2 (dashed) and VSAN 7 (solid). VSAN 2 includes hosts H1 and H2, application servers AS2 and AS3, and storage arrays SA1 and SA4. VSAN 7 connects H3, AS1, SA2, and SA3.
The four switches in this network are interconnected by trunk links that carry both VSAN 2 and VSAN 7 traffic. The inter-switch topology of both VSAN 2 and VSAN 7 are identical. This is not a requirement and a network administrator can enable certain VSANs on certain links to create different VSAN topologies.

Without VSANs, a network administrator would need separate switches and links for separate SANs. By enabling VSANs, the same switches and links may be shared by multiple VSANs. VSANs allow SANs to be built on port granularity instead of switch granularity. Figure 1-2 illustrates that a VSAN is a group of hosts or storage devices that communicate with each other using a virtual topology defined on the physical SAN.

The criteria for creating such groups differ based on the VSAN topology:

- VSANs can separate traffic based on the following requirements:
 - Different customers in storage provider data centers
 - Production or test in an enterprise network
 - Low and high security requirements
 - Back up traffic on separate VSANs
 - Replicating data from user traffic
• VSANs can meet the needs of a particular department or application.

VSAN Advantages

VSANs offer the following advantages:

• Traffic isolation—Traffic is contained within VSAN boundaries and devices reside only in one VSAN ensuring absolute separation between user groups, if desired.

• Scalability—VSANs are overlaid on top of a single physical fabric. The ability to create several logical VSAN layers increases the scalability of the SAN.

• Per VSAN fabric services—Replication of fabric services on a per VSAN basis provides increased scalability and availability.

• Redundancy—Several VSANs created on the same physical SAN ensure redundancy. If one VSAN fails, redundant protection (to another VSAN in the same physical SAN) is configured using a backup path between the host and the device.

• Ease of configuration—Users can be added, moved, or changed between VSANs without changing the physical structure of a SAN. Moving a device from one VSAN to another only requires configuration at the port level, not at a physical level.

Up to 256 VSANs can be configured in a switch. Of these, one is a default VSAN (VSAN 1), and another is an isolated VSAN (VSAN 4094). User-specified VSAN IDs range from 2 to 4093.

VSAN Configuration

VSANs have the following attributes:

• VSAN ID—The VSAN ID identifies the VSAN as the default VSAN (VSAN 1), user-defined VSANs (VSAN 2 to 4093), and the isolated VSAN (VSAN 4094).

• State—The administrative state of a VSAN can be configured to an active (default) or suspended state. Once VSANs are created, they may exist in various conditions or states.

 • The active state of a VSAN indicates that the VSAN is configured and enabled. By enabling a VSAN, you activate the services for that VSAN.

 • The suspended state of a VSAN indicates that the VSAN is configured but not enabled. If a port is configured in this VSAN, it is disabled. Use this state to deactivate a VSAN without losing the VSAN’s configuration. All ports in a suspended VSAN are disabled. By suspending a VSAN, you can preconfigure all the VSAN parameters for the whole fabric and activate the VSAN immediately.

• VSAN name—This text string identifies the VSAN for management purposes. The name can be from 1 to 32 characters long and it must be unique across all VSANs. By default, the VSAN name is a concatenation of VSAN and a four-digit string representing the VSAN ID. For example, the default name for VSAN 3 is VSAN0003.

 Note A VSAN name must be unique.

• Load balancing attributes—These attributes indicate the use of the source-destination ID (src-dst-id) or the originator exchange OX ID (src-dst-ox-id, the default) for load balancing path selection.
Note
OX ID-based load balancing of IVR traffic from IVR-enabled switches is not supported on Generation 1 switching modules. OX ID-based load balancing of IVR traffic from a non-IVR MDS 9000 Family switch should work. Generation 2 switching modules support OX ID-based load balancing of IVR traffic from IVR-enabled switches.

- Load balancing attributes indicate the use of the source-destination ID (src-dst-id) or the originator exchange OX ID (src-dst-ox-id, the default) for load balancing path selection.

Port VSAN Membership

Port VSAN membership on the switch is assigned on a port-by-port basis. By default, each port belongs to the default VSAN. You can assign VSAN membership to ports using one of two methods:

- Statically—By assigning VSANs to ports.
- Dynamically—By assigning VSANs based on the device WWN. This method is referred to as dynamic port VSAN membership (DPVM).

Types of VSAN

The following are the different types of VSAN:

Default VSAN

The factory settings for switches in the Cisco MDS 9000 Family have only the default VSAN 1 enabled. We recommend that you do not use VSAN 1 as your production environment VSAN. If no VSANs are configured, all devices in the fabric are considered part of the default VSAN. By default, all ports are assigned to the default VSAN.

Note
VSAN 1 cannot be deleted, but it can be suspended.

Up to 256 VSANs can be configured in a switch. Of these, one is a default VSAN (VSAN 1), and another is an isolated VSAN (VSAN 4094). User-specified VSAN IDs range from 2 to 4093.

Isolated VSAN

VSAN 4094 is an isolated VSAN. All non-trunking ports are transferred to this VSAN when the VSAN to which they belong is deleted. This avoids an implicit transfer of ports to the default VSAN or to another configured VSAN. All ports in the deleted VSAN are isolated (disabled).

Note
When you configure a port in VSAN 4094 or move a port to VSAN 4094, that port is immediately isolated.

Caution
Do not use an isolated VSAN to configure ports.
Up to 256 VSANs can be configured in a switch. Of these, one is a default VSAN (VSAN 1), and another is an isolated VSAN (VSAN 4094). User-specified VSAN IDs range from 2 to 4093.

Static VSAN Deletion

When an active VSAN is deleted, all of its attributes are removed from the running configuration. VSAN-related information is maintained by the system software as follows:

- VSAN attributes and port membership details are maintained by the VSAN manager. This feature is affected when you delete a VSAN from the configuration. When a VSAN is deleted, all the ports in that VSAN are made inactive and the ports are moved to the isolated VSAN. If the same VSAN is recreated, the ports do not automatically get assigned to that VSAN. You must explicitly reconfigure the port VSAN membership (see the following figure).

Figure 3: VSAN Port Membership Details – 79947.ps

- VSAN-based runtime (name server), zoning, and configuration (static routes) information is removed when the VSAN is deleted.
- Configured VSAN interface information is removed when the VSAN is deleted.

Note

The allowed VSAN list is not affected when a VSAN is deleted.

Any commands for a non-configured VSAN are rejected. For example, if VSAN 10 is not configured in the system, then a command request to move a port to VSAN 10 is rejected.

Feature Information for Configuring and Managing VSANs

The following table shows the licensing requirements for this feature:

<table>
<thead>
<tr>
<th>License</th>
<th>License Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTERPRISE_PKG</td>
<td>The enterprise license is required to enable VSAN. For a complete explanation of the licensing scheme, see the Cisco DCNM Licensing Guide.</td>
</tr>
</tbody>
</table>
The enterprise license is required to enable VSAN. For a complete explanation of the licensing scheme, see the Cisco DCNM Licensing Guide.

<table>
<thead>
<tr>
<th>License</th>
<th>License Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTERPRISE_PKG</td>
<td>The enterprise license is required to enable VSAN. For a complete explanation of the licensing scheme, see the Cisco DCNM Licensing Guide.</td>
</tr>
</tbody>
</table>

Default VSAN Settings

The following table lists the default settings for all configured VSANs.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default VSAN</td>
<td>VSAN 1.</td>
</tr>
<tr>
<td>State</td>
<td>Active State</td>
</tr>
<tr>
<td>Name</td>
<td>Concatenation of VSAN and a four-digit string representing the VSAN ID. For example, VSAN 3 is VSAN0003.</td>
</tr>
<tr>
<td>Load-balancing attribute</td>
<td>OX ID (src-dst-ox-id).</td>
</tr>
</tbody>
</table>

Create VSAN Wizard

VSAN Creation Wizard Work flow includes:
- Specify VSAN ID and name.
- Select Switches.
- Specify VSAN attributes.
- Specify VSAN Domain.
- Specify VSAN Members.

Beginning with Release 11, you can configure VSAN using a wizard that facilitates creating VSANs on multiple switches in a managed Fabric. Choose **Configure > SAN > VSAN**. After you select a Fabric from the drop-down list, click **Create VSAN Wizard** icon. The Welcome screen of the wizard is displayed.

Note
Ensure that the VSAN is not already created.

Note
Ensure that you provide Switch credentials, if you are different from the Discover user. To provide SAN credentials, navigate to **Administration > Credentials Management > SAN Credentials**.

To create and configure VSANs from the Cisco DCNM Web UI, perform the following steps:

Before you begin
You cannot configure any application-specific parameters for a VSAN before creating the VSAN.
Ensure that the VSAN is not already created. Do not create the VSAN in suspended state.

Note
The suspended VSANs are not managed.

Procedure

Step 1
On the Create VSAN Wizard Welcome screen, click **Next**.
The Select VSAN ID and Name window is displayed.

Step 2
In the Select VSAN ID and Name window, perform the following steps:

a) Ensure that the correct Fabric is against the Fabric field.
b) In the VSAN ID field, select VSAN ID from the drop-down list.
 The range is from 2 to 4094 for the list of VSAN ID that is available to be created in at least one Switch in the Fabric. VSAN ID 4079 is for reserved VSAN.
c) In the Name field, enter a name for VSAN.
 Note If the field is left blank, the Switch assigns a default name to the VSAN.
d) Click FICON checkbox to enable FICON on the switch.
e) Click Next.

Step 3
In the Select Switches screen, click the checkbox next to the Switch Name, to create the VSAN.
If the switch name is grayed out, it implies that the switch is already a part of VSAN. It may also imply that the switch does not have FICON feature enabled, if FICON is checked in the previous step.
Click **Next**.

Step 4
In the Config VSAN Attributes screen, configure the VSAN attributes.

Note If you create a VSAN in a suspended state, it will not appear on the Cisco DCNM as DCNM does not manage suspended VSANs.

a) In the LoadBalancing, select the load balancing type to be used on the VSAN.
 The following types are available:
 • srcIdDestId: based on only source ID (S_ID) and destination ID (D_ID).
 • srcIdDestIdOxId: Originator exchange ID (OX_ID) is also used for load balancing in addition to S_ID and D_ID. OX_ID is an exchange ID assigned by the originator Interconnect Port for an exchange with the target Interconnect Port.
 Note srcId/DestId/OxId is the default for non-FICON VSAN and it is not available for FICON VSAN, srcId/DestId is the default for FICON VSAN.
b) In the InterOp field, select the interoperability value the drop-down list.
 The InterOp value is used to interoperate with different vendor devices. You can choose from one of the following:
 • 0: implies that the interoperability is disabled.
- 1: implies that the VSAN can interoperate with all the Fibre Channel vendor devices.
- 2: implies that the VSAN can interoperate with specific Fibre Channel vendor devices for basic to advanced functionalities.
- 3: implies that the VSAN can interoperate with specific Fibre Channel vendor devices for basic to advanced functionalities.
- 4: implies that the VSAN can interoperate with specific Fibre Channel vendor devices for basic to advanced functionalities.

Note: InterOp is not supported on FICON VSAN.

c) In the Admin State field, select the configurable state for this VSAN.
 - active: implies that the VSAN is configured and services for this VSAN is activated.
 - suspended: implies that the VSAN is configured, but the service for this VSAN is deactivated.
 Choose this state to preconfigure all the VSAN parameters for the whole Fabric.
 Note: DCNM does not manage a suspended VSAN, and therefore it will not appear in the VSAN scope.

d) Check the Inorder Delivery checkbox to allow in-order delivery.
 When the value of fcInorderDelivery is changed, the value of this object is set to the new value of that object.

e) In the Add Fabric Binding DB field, check the checkbox if you want to enable the fabric binding for the FICON VSAN.
 If the checkbox is selected, the all the peers in the selected switches are added to each switch in the selected list.

f) In the All Port Prohibited field, check the checkbox if you want to prohibit all the ports for FICON VSAN.
 If the checkbox is selected, the FICON VSAN is created as all Ports prohibited, by default.

g) Click Next.

Step 5
In the Config VSAN Domain screen, configure the static domain IDs for FICON VSAN.

a) Select the Use Static Domain IDs field, to configure the domain ID for the switches in the VSAN.

b) The Available Domain IDs field shows all the available Domain IDs in the Fabric.

 Click Apply Available Domain IDs to assign the domain ID for every switch that is selected to be a part of the VSAN.

c) For every switch in the table, enter the domain ID from the list of available Domain IDs.

d) Click Next.

Step 6
In the Config Port VSAN Membership screen, for every switch in the VSAN, configure the interfaces, as the member of the new VSAN.

Note: Modifying the Port VSAN may affect the I/O of the interface.

Click Next.

Step 7
In the Summary screen, verify if you have configured the VSAN correctly.
Click **Previous** to navigate to the earlier screen and modify the configuration.

Click **Cancel** to discard the configuration.

Click **Finish** to confirm and configure the VSAN. The VSAN creation result is displayed at the bottom of the window.

Note After the VSAN is created, it will take few minutes for the new VSAN to appear in the VSAN scope tree.

Delete VSAN

To delete a VSAN and its attributes from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose **Configure > SAN > VSAN**.

The VSAN window is displayed.

Step 2 From the Fabric drop-down list, select the Fabric to which the VSAN is associated.

The VSAN scope tree for the selected Fabric is displayed in the VSAN area.

Step 3 Expand the Fabric and select the VSAN that you want to delete.

Note You cannot delete Segmented VSAN.

Step 4 Click the **Delete VSAN** icon.

The Delete VSAN screen appears, showing the switches associated with the VSAN.

Step 5 Select the checkbox of the Switch for which you want to remove the VSAN.

Click **Delete**.

A confirmation window appears.

Step 6 Click **Yes** to confirm the deletion or click **No** to close the dialog box without deleting the VSAN.

Note After the VSAN is deleted, it will take few minutes for the new VSAN to disappear from the VSAN scope tree.

Field and Descriptions for VSANs

The Field and Descriptions for all the tabs that are displayed on **Cisco Web UI > SAN > VSAN** are explained in the following tables.

- Switches tab, on page 180
- ISLs Tab, on page 180
- Host Ports Tab, on page 181
Switches tab

This tab displays Switches in the VSAN scope. Click the Switch name to view the summary information of the switch. The following table describes the fields that appear on the Switches tab.

Table 20: Field and Description on Switches Tab

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Specifies the name of the switch in the VSAN. Click the name to view the switch summary. For description about the fields in the Switch Summary, refer to Viewing Inventory Information for Switches, on page 35. Click Show more Details to view complete information.</td>
</tr>
<tr>
<td>Domain ID</td>
<td>Specifies an insistent domain ID.</td>
</tr>
<tr>
<td>VSAN WWN</td>
<td>Specifies the WorldWide Name (WWN) of the VSAN.</td>
</tr>
<tr>
<td>Principal WWN</td>
<td>Specifies the WorldWide Name (WWN) of the switch.</td>
</tr>
<tr>
<td>Model</td>
<td>Specifies the model name of the switch.</td>
</tr>
<tr>
<td>Release</td>
<td>Specifies the NX-OS version on the switch.</td>
</tr>
<tr>
<td>Uptime</td>
<td>Specifies the time from which the switch is up.</td>
</tr>
<tr>
<td>Icons</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>The number next to Total specifies the entries under this tab.</td>
</tr>
<tr>
<td>Refresh</td>
<td>Click the Refresh icon to refresh the entries.</td>
</tr>
</tbody>
</table>

ISLs Tab

This tab displays information about the ISLs about the switches in the VSAN scope. Click the Switch name to view the summary information. Click [Show more Details](#) to view complete information on the selected switch. The following table describes the fields that appear on the ISLs tab. If the VSAN is configured on both the switches across the ISL and if VSAN is not enabled on the ISL, DCNM considers VSAN as segmented. Therefore, add the VSAN to the trunked VSANs across the ISL to clear the warning message. Alternatively, you can ignore this warning message.

Table 21: Field and Description on ISLs Tab

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSANs</td>
<td>All VSANs which this ISL runs traffic on.</td>
</tr>
</tbody>
</table>
Field | Description
--- | ---
From Switch | The source switch of the link.
From Interface | The port index of source E_port of the link.
To Switch | The switch on the other end of the link.
To Interface | The port index of destination E_port of the link.
Speed | The speed of this ISL.
Status | The operational status of the link.
Port Channel Members | The member of Port Channel if ISL is a Port Channel.
Additional Info | Additional information for this ISL, e.g., TE/TF/TNP ISL.
Icons |
Total | The number next to Total specifies the entries under this tab.
Refresh Icon | Click the Refresh icon to refresh the entries.

Host Ports Tab

This tab displays information about the host ports on the switches in the VSAN scope. The following table describes the fields that appear on the Host Ports tab.

Table 22: Field and Description on Host Ports Tab

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enclosure</td>
<td>The name of the enclosure.</td>
</tr>
<tr>
<td>device Alias</td>
<td>The device alias of this entry.</td>
</tr>
<tr>
<td>Port WWN</td>
<td>The assigned PWWN for this host.</td>
</tr>
<tr>
<td>FcId</td>
<td>The FC ID assigned for this host.</td>
</tr>
<tr>
<td>Switch Interface</td>
<td>Interface on the switch that is connected with the end device.</td>
</tr>
<tr>
<td>Link Status</td>
<td>The operational status of the link.</td>
</tr>
<tr>
<td>Vendor</td>
<td>Specifies the name of the vendor.</td>
</tr>
<tr>
<td>Model</td>
<td>Specifies the name of the model.</td>
</tr>
<tr>
<td>Firmware</td>
<td>The version of the firmware that is executed by this HBA.</td>
</tr>
<tr>
<td>Driver</td>
<td>The version of the driver that is executed by this HBA.</td>
</tr>
<tr>
<td>Additional Info</td>
<td>The information list corresponding to this HBA.</td>
</tr>
<tr>
<td>Icons</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>The number next to Total specifies the entries under this tab.</td>
</tr>
<tr>
<td>Refresh</td>
<td>Click the Refresh icon to refresh the entries.</td>
</tr>
</tbody>
</table>
Storage Tab

This tab displays information about the storage ports on the switches in the VSAN scope. The following table describes the fields that appear on the Storage Ports tab.

Table 23: Field and Description on Storage Tab

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enclosure</td>
<td>The name of the enclosure.</td>
</tr>
<tr>
<td>device Alias</td>
<td>The device alias of this entry.</td>
</tr>
<tr>
<td>Port WWN</td>
<td>The assigned PWWN for this host.</td>
</tr>
<tr>
<td>FcId</td>
<td>The FC ID assigned for this host.</td>
</tr>
<tr>
<td>Switch Interface</td>
<td>Interface on the switch that is connected with the end device.</td>
</tr>
<tr>
<td>Link Status</td>
<td>The operational status of the link.</td>
</tr>
<tr>
<td>Icons</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>The number next to Table specifies the entries under this tab.</td>
</tr>
<tr>
<td>Refresh</td>
<td>Click the Refresh icon to refresh the entries.</td>
</tr>
</tbody>
</table>

Attributes Tab

This tab displays the attributes of all the switches in the VSAN scope. The following table describes the fields that appear on the Attributes tab.

Table 24: Field and Description on Attributes Tab

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edit</td>
<td>Click Edit to modify the attributes of the VSAN and to push the same VSAN attributes to the selected switches. If the VSAN is FICON VSAN in any selected switch, the following fields will not appear on the UI, as they cannot be modified for the FICON VSAN.</td>
</tr>
<tr>
<td></td>
<td>• Load-balancing</td>
</tr>
<tr>
<td></td>
<td>• InterOp</td>
</tr>
<tr>
<td></td>
<td>• InorderDelivery</td>
</tr>
<tr>
<td></td>
<td>After modify the attributes, you can click Apply to save changes or Cancel to discard.</td>
</tr>
<tr>
<td>Switch Name</td>
<td>Displays the name of the switch that is associated with the VSAN.</td>
</tr>
<tr>
<td>Name</td>
<td>Displays the name of the VSAN.</td>
</tr>
</tbody>
</table>
Specifies if the status of the Admin is either Active or Suspend.

- **active** implies that the VSAN is configured and services for the VSAN is activated.
- **suspended** implies that the VSAN is configured; however, the service for the VSAN is deactivated. You can use set this state to preconfigure all the VSAN parameters by using the CLI only.

Note If you suspend a VSAN, it is removed from Cisco DCNM as well.

Field	**Description**
Admin | Specifies if the status of the Admin is either Active or Suspend.
Oper | The operational state of the VSAN.
MTU | Displays the MTU for the switch.
LoadBalancing | Specifies the load balancing type that is used in the VSAN.
InterOp | The interoperability mode of the local switch on this VSAN.
InorderDelivery | The InorderDelivery guarantee flag of device. If true, then the inorder delivery is guaranteed. If false, it is not guaranteed.
FICON | True if the VSAN is FICON-enabled.

Domain ID Tab

This tab displays information about the VSAN domain and its parameters. The following table describes the fields that appear on the Domain ID tab.

Table 25: Field and Description on Domain ID Tab

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edit</td>
<td>Click Edit icon to modify the Domain ID information for the selected switch.</td>
</tr>
</tbody>
</table>
Field and Description for VSANs

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch Name</td>
<td>Specifies the switch name in the VSAN.</td>
</tr>
<tr>
<td>Note</td>
<td>NPV switches are not listed in this column. However, the NPV switches exist in this VSAN fabric.</td>
</tr>
<tr>
<td>State</td>
<td>Specifies the state of the Switch.</td>
</tr>
<tr>
<td>Enable</td>
<td>Specifies if the Domain ID is enabled or disabled.</td>
</tr>
<tr>
<td>Running</td>
<td>Specifies the running domain.</td>
</tr>
<tr>
<td>Config Type</td>
<td>Specifies the usage of the domain ID type—preferred or static.</td>
</tr>
<tr>
<td>Icons</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>The number next to Table specifies the entries under this tab.</td>
</tr>
<tr>
<td>Refresh Icon</td>
<td>Click the Refresh icon to refresh the entries.</td>
</tr>
</tbody>
</table>

VSAN Membership Tab

This tab displays information about the interfaces on the switches that form the VSAN. The following table describes the fields that appear on the VSAN Membership tab.

Table 26: Field and Description on VSAN Membership Tab

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edit</td>
<td>Click Edit icon to modify Port VSAN Membership for selected VSAN and selected switch.</td>
</tr>
<tr>
<td></td>
<td>Port VSAN Membership is presented by different types including FC (physical), PortChannel, FCIP, iSCSI, VFC (slot/port), VFC (ID), VFC (Channel), VFC FEX, and VFC Breakout. PortChooser is provided for each type to show all existing interfaces on a selected switch for the user to choose from.</td>
</tr>
<tr>
<td>Note</td>
<td>If you modify Port VSAN Membership for any operational trunking port or port channel members, a warning appears. Use the Device Manager to change Allowed VSAN List for Trunking Interface.</td>
</tr>
<tr>
<td>Switch Name</td>
<td>Name of the switch</td>
</tr>
<tr>
<td>Interfaces</td>
<td>FC Ports in VSAN</td>
</tr>
<tr>
<td>Icons</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>The number next to Table specifies the entries under this tab.</td>
</tr>
<tr>
<td>Refresh Icon</td>
<td>Click the Refresh icon to refresh the entries.</td>
</tr>
</tbody>
</table>
SAN Zoning

Zoning enables you to set up access control between storage devices or user groups. If you have administrator privileges in your fabric, you can create zones to increase the network security and to prevent data loss or corruption. Zoning is enforced by examining the source-destination ID field.

The following table describes the fields and icons that appear on Cisco DCNM Configure > SAN > Zoning tab.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabric</td>
<td>From the Fabric drop-down list, you can choose the fabric for which you are configuring or viewing the SAN Zoning.</td>
</tr>
<tr>
<td>VSAN</td>
<td>From the VSAN drop-down list, you can choose the VSAN for which you are configuring zoning.</td>
</tr>
<tr>
<td>Switches</td>
<td>From the Switch drop-down list, select the switch to which you want to configure.</td>
</tr>
<tr>
<td>Commit Changes</td>
<td>Commits the Zoning configuration changes to all the switches. This field is only applicable when a zone is in the enhanced or smart mode.</td>
</tr>
<tr>
<td>Distribute</td>
<td>Distributes the Zoning configuration to all the switches. This field is only applicable when a zone is in the basic mode.</td>
</tr>
<tr>
<td>Export All</td>
<td>You can export the Zoning configurations to a .csv file, and save it on your local directory.</td>
</tr>
<tr>
<td>Zonesets</td>
<td>Lists all the Zoneset configured for the selected Fabric, VSAN, and the Switch.</td>
</tr>
<tr>
<td>Zones</td>
<td>Lists all the Zones that are configured under the selected Zoneset.</td>
</tr>
<tr>
<td>Zone Members</td>
<td>Lists the members present in the selected Zone.</td>
</tr>
<tr>
<td>Available to Add</td>
<td>Lists the available devices to add to the Zones.</td>
</tr>
<tr>
<td>Clear Server Cache</td>
<td>Clears the cache on the Cisco DCNM server.</td>
</tr>
<tr>
<td>Discard Pending Changes</td>
<td>Discards the changes in progress.</td>
</tr>
</tbody>
</table>

This section contains the following:

Zonesets

Based on the selected Fabric, VSAN and Switch, the Zoneset area displays the configured zonesets and their status. You can create, copy, delete or edit the zonesets. Further, the zonesets can be activated or deactivated.
Procedure

Step 1
To create zonesets from Cisco DCNM Web UI, choose **Configure > SAN Zoning > Zonesets** and click **Create Zoneset** icon.

The **Create Zoneset** window appears.

Step 2
Enter a valid name for the zoneset, and click **Create**.
A zoneset is created and is listed in the **Zoneset** area.

Step 3
Choose the zone radio button and click **Clone/Copy Zoneset** icon to clone or copy zonesets.
The Clone or Copy Zoneset window shows two options.

- Choose the appropriate **Action** radio button. You can choose one of the following:
 - **Copy**: Creates a new zoneset that consists of copies of the zones in the initial zoneset.
 You can prepend or append a string to identify the copied zoneset. Enter a valid string in the **Tag** field, and choose the **Prepend** or **Append** radio button.
 - **Clone**: To create a new zoneset with a new name consisting of the same zones as the source zoneset.
 In the **Name** field, enter a valid name for the new zoneset.

- Click **OK** to clone or copy the zoneset.
The cloned or the copied zoneset appears in the **Zoneset** area.

Step 4
To delete the zoneset, choose the zoneset radio button and click delete zoneset icon.
A confirmation window appears. Click **Yes** to delete the zoneset.

Step 5
To edit the zone name, choose the zone radio button and click **Rename Zoneset** icon.
In the **Name** field, enter the new name for the zoneset. Click **Rename**.

Step 6
To activate a zoneset, choose the zoneset radio button and click **Activate**.
The **Zoneset Differences** window shows the changes made to the zoneset since it was activated previously. Click **Activate**.

Step 7
To deactivate a zoneset, choose the zoneset radio button and click **Deactivate**.
A confirmation window appears. Click **Yes** to deactivate the zoneset.

Zones

Based on the Zoneset that is selected, the zones that are configured under that zoneset are displayed in the **Zones** area. It also displays true or false only when the VSAN has smart zone that is enabled. You can create, copy, delete, or edit the zones. Furthermore, the zones can be added to or removed from the selected Zoneset. You can also enable or disable the smart zone on the zone table.
Select the Zoneset for which you must alter the zones.

Select Zoneset radio button in the Zonesets area. The zones that are configured on the selected Zoneset and zones on the switch are displayed. The zones that are a part of the Zone are marked with a green check mark.

The Zones area has the following fields and their descriptions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Zoneset</td>
<td>Specifies whether a zone is part of a zoneset. Displays true if the zone is part of a zoneset. Otherwise, displays false. You can search by choosing true or false from the In Zoneset drop-down list.</td>
</tr>
<tr>
<td>Zone Name</td>
<td>Displays the name of the zone. You can search by specifying the zone name.</td>
</tr>
<tr>
<td>Smart Zone</td>
<td>Specifies whether a zone is a smart zone. Displays true if the zone is a smart zone. Otherwise, displays false. You can search this field by choosing true or false from the Smart Zone drop-down list. This field only shows that up when the VSAN has smart zone that is enabled.</td>
</tr>
</tbody>
</table>

Procedure

Step 1

To create zones, choose Configure > SAN > Zoning > Zones, click Create icon.

a) In the Create Zone window, enter a valid name for the Zone, and click Create.

A zone is created and is listed in the Zones area.

Step 2

To Clone Zones, choose Configure > SAN > Zoning > Zones, select the Zone radio button and click Clone Zone icon.

The Clone Zone window is displayed.

a) In the Name field, enter a valid name for the new zoneset.
b) Click Clone to clone the zone.

The cloned zones appear in the Zones area.

Step 3

To add zone to a zoneset, choose Configure > SAN Zoning > Zones, select the zone that is not a part of the zoneset. Click Add Zone icon. You can select more than one zone to be added to the Zoneset.

The zone is added to the selected Zoneset. A green tick mark appears next to the Zone name to indicate that the zone is added to the zoneset.
Step 4 To remove zone from a zoneset, choose Configure > SAN Zoning > Zones, check the Zone check box. Click Remove Zone icon. You can select more than one Zone to be deleted from the Zoneset.

The zone is removed from the selected Zoneset. A green tick mark disappears next to the Zone name to indicate that the zone is removed from the zoneset.

Step 5 To Delete Zones, choose Configure > SAN Zoning > Zones, check the Zone check box. Click Delete Zone icon.

A confirmation window appears.

Click Yes to delete the selected zones.

Note You cannot delete a zone that is a member of the selected zoneset. Remove the zone from the zoneset to delete it.

Step 6 To edit the zone name, choose Configure > SAN Zoning > Zones, select the Zone radio button. Click Rename Zone icon.

In the Name field, enter the new name for the zone.

Click Rename.

Step 7 To enable smart zone, choose Configure > SAN Zoning > Zones, select the Zone radio button. Click Enable Smart Zone icon.

Under the Smart Zone column, it displays True.

Step 8 To disable smart zone, choose Configure > SAN Zoning > Zones, select the Zone radio button. Click Disable Smart Zone icon.

Under the Smart Zone column, it displays false.

Zone Members

Based on the selected Zoneset and the Zone, the Zone Members area displays the zone members and their status. You can create, or remove members from the Zoneset.

The Zone Members area has the following fields and their descriptions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone</td>
<td>Displays the Zone under which this member is present. You can search by zone name in this field.</td>
</tr>
<tr>
<td>Zoned By</td>
<td>Displays the type of zoning. You can search by type of zoning such as WWN, FCID, fcAlias, or iSCSI.</td>
</tr>
<tr>
<td>Device Type</td>
<td>Displays the smart zoning device type. The applicable values are Host, Storage, or Both. You can search this field by choosing Host, Storage or Both from the Device Type drop-down list.</td>
</tr>
</tbody>
</table>
Field Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Displays the name of the zone member. You can search by specifying the zone name.</td>
</tr>
<tr>
<td>Name</td>
<td>Specifies the switch interface that the zone member is attached to. You can search by specifying the switch interface.</td>
</tr>
<tr>
<td>FcId</td>
<td>Specifies the FcID associated with the zone member. You can search by specifying the FcID associated with the zone member.</td>
</tr>
<tr>
<td>WWN</td>
<td>Specifies the WWN of the switch. You can search by specifying the WWN of the switch.</td>
</tr>
</tbody>
</table>

Procedure

Step 1
To create zone members, from Cisco DCNM Web Client > Configure > SAN Zoning > Zone Members, click Create icon.

a) In the Create and Add Member window, enter the WWN name for the zone member.
b) Click Create and Add.

Add Members to Zones window pops out, you can specify the smart zoning device type as Host, Storage or Both (Host and Storage). A zone member is created and is listed in the Zone Member area.

The Create and Add feature allows you to add a member to a zone that does not exist in the fabric, currently. This feature can also be utilized when the device discovery did not discover all the devices. With the Available to add feature, you can add a discovered device to the zone.

Step 2
To Remove Zone Member, from Cisco DCNM Web Client > Configure > SAN Zoning > Zone Members, check the Zone Member check box. Click Remove Member icon.

You can remove more than one zone member at a time, for deletion.

Available to Add

The Available to Add area has the following fields and their descriptions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Displays the smart zoning device type. The applicable values are Host or Storage.</td>
</tr>
</tbody>
</table>
IVR Zoning

From Cisco DCNM Release 11.0(1), IVR Zoning feature is supported. You can use IVR Zoning to create, edit, copy, or delete IVR zones in the web client.

The IVR Zoning page is launched from Cisco DCNM Configure > SAN > IVR Zoning menu item. After you launch the IVR Zoning page, you will see the following fields and sections:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Displays the name of the zone.</td>
</tr>
<tr>
<td></td>
<td>You can search by specifying the zone name.</td>
</tr>
<tr>
<td>Switch Interface</td>
<td>Specifies the switch interface that the zone member is attached to.</td>
</tr>
<tr>
<td></td>
<td>You can search by specifying the switch interface.</td>
</tr>
<tr>
<td>FcId</td>
<td>Specifies the FcID associated with the zone member.</td>
</tr>
<tr>
<td></td>
<td>You can search by specifying the FcID associated with the zone member.</td>
</tr>
<tr>
<td>WWN</td>
<td>Specifies the WWN of the switch.</td>
</tr>
<tr>
<td></td>
<td>You can search by specifying the WWN of the switch.</td>
</tr>
</tbody>
</table>

To add discovered devices to one or more zones from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose Configure > SAN > Zoning > Available to Add.

Step 2 In the Zone by area, select the Ports or Device radio buttons.

The Zone by feature determines if the device must be added to the zone using the device WWN or Device alias.

A window appears showing the list of End Ports or Devices available to add.

If you choose Zone By: End Port, the devices are added to the zones by WWN. If you choose Zone By: Device Alias, the devices are added to the zones by Device Alias. Based on the zone by option you choose, the devices are displayed.

Step 3 Select the devices to add to a zone.

Step 4 Click Add to add the selected devices to the zone.

Note You can select more than one zone. A dialog appears that shows a list of all the zones that are currently selected on the zone table.
- Fabric
- Region ID
- Switches
- Commit Changes
- Export All
- Clear Server Cache
- Discard Pending Changes
- Zonesets
- Zone Members
- Zones
- Available to Add

The following table describes the fields and icons on Cisco DCNM Configure > SAN > IVR Zoning tab.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabric</td>
<td>From the Fabric drop-down list, you can choose the fabric for which you are configuring or viewing the IVR Zoning. You must select a fabric to view the options of Region ID and Switches.</td>
</tr>
<tr>
<td>Region ID</td>
<td>From the Region ID drop-down list, you can choose the region for a switch.</td>
</tr>
<tr>
<td>Switches</td>
<td>From the Switch drop-down list, select the switch to which you want to configure. Zone Seed switch is selected by default.</td>
</tr>
<tr>
<td>Commit Changes</td>
<td>Commits the IVR zoning configuration changes to all the switches. This field is only applicable when a zone is in the enhanced or smart mode.</td>
</tr>
<tr>
<td>Export All</td>
<td>You can export the IVR zoning configurations to a .csv file, and save it on your local directory.</td>
</tr>
<tr>
<td>Clear Server Cache</td>
<td>Clears the discovered zoning cache on the Cisco DCNM server.</td>
</tr>
<tr>
<td>Discard Pending Changes</td>
<td>Discards the changes in progress.</td>
</tr>
</tbody>
</table>

To display the zone sets, you need to select the desired fabric, region ID, and switch. This is different from regular zoning, which needs the fabric, VSAN, and switch.

Three checks are made when a switch is selected and can result in a warning dialog including one or more of the following warnings:

- Check for IVR Cisco Fabric Services enabled.
• Check for NAT and Auto Topology Enabled.
• Check if there is an existing IVR zone merge failure.

If the IVR Cisco Fabric Services feature is not enabled, then Activate, Deactivate, Commit Changes, and Discard Pending Changes are blocked. If IVR NAT and IVR Auto Topology are not enabled, you will get a warning to enable them.

This section contains the following:

Zonesets

Based on the selected fabric, region and switch, the Zoneset area displays the configured zonesets and their status. You can create, copy or clone, delete, rename, activate, or deactivate a zoneset.

The following table describes the fields and icons that appear on Cisco DCNM Web Client > Configure > SAN > IVR Zoning > Zonesets area.

<table>
<thead>
<tr>
<th>Fields</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create Zoneset</td>
<td>Creates a zoneset.</td>
</tr>
</tbody>
</table>
| Copy/Clone Zoneset | • Copy—Creates a zoneset and copies of zones in the original zoneset. The copied names are the existing names that are prepended or appended with a specified string.
 | • Clone—Creates only a zoneset with a new name consisting the same zones as the original zoneset. |
| Delete Zoneset | Deletes the selected zoneset. |
| Rename Zoneset | Renames the selected zoneset. |
| Zoneset | Lists all the zonesets that is configured for the selected fabric, region ID, and the switch. |
| Status | Displays if the zoneset is active or not. |
| Modified | Displays if the zoneset is modified or not. |

Procedure

Step 1
To create zonesets, choose Configure > SAN > IVR Zoning > Zonesets. Click Create Zoneset icon.

a) In the Create Zoneset window, enter a valid name for the zoneset.
b) Click Create.

A zoneset is created and is listed in the Zoneset area.

Step 2
To clone or copy zonesets, choose Configure > SAN > IVR Zoning > Zonesets. Select the radio button of the zoneset to be copied or cloned. Click Clone/Copy Zoneset icon.

The Clone/Copy Zoneset window shows two options.
a) Click the appropriate Action radio button.
 You can choose one of the following:
 • Copy—You can prepend or append a string to identify the copied zoneset. Enter a valid string in the Tag field, and select the Prepend or Append radio button.
 • Clone—In the Name field, enter a valid name for the new zoneset.

b) Click OK to clone or copy the zoneset.
 The cloned or the copied zoneset appears in the Zoneset area.

Step 3
To delete the zoneset, choose Configure > SAN > IVR Zoning > Zonesets. Select the Zoneset radio button. Click Delete Zoneset icon.
A confirmation window appears.
Click Yes to delete the zoneset.

Step 4
To rename the zoneset name, choose Configure > SAN > IVR Zoning > Zonesets. Select the zoneset radio button. Click Rename Zoneset icon.
In the Name field, enter the new name for the zoneset.
Click Rename.

Step 5
To activate a zoneset, choose Configure > SAN > IVR Zoning > Zonesets. Select the zoneset radio button. Click Activate.
The Zoneset Differences window shows the changes that are made to the zoneset after the previous activation.
Click Activate.

Step 6
To deactivate a zoneset, choose Configure > SAN > IVR Zoning > Zonesets. Select the zoneset radio button. Click Deactivate.
A confirmation window appears.
Click Yes to deactivate the zoneset.

Zones
All zones that are configured appear under Zones when a zoneset is selected. The zones that belong to the selected zoneset have a green check box. You can create, copy, delete, or edit zones. Furthermore, the zones can be added to or removed from the selected zoneset. You can also enable or disable the smart zone on the zone table.

The following table describes the fields and icons that appear on Cisco DCMN Configure > SAN > IVR Zoning > Zones:

<table>
<thead>
<tr>
<th>Fields</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create Zone</td>
<td>Creates a zone.</td>
</tr>
<tr>
<td>Clone Zone</td>
<td>Creates a zone with a new name consisting the same zone members as the source zone.</td>
</tr>
</tbody>
</table>
Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add Zone</td>
<td>Adds a zone to the selected zoneset.</td>
</tr>
<tr>
<td>Remove Zone</td>
<td>Removes the selected zones from a zoneset.</td>
</tr>
<tr>
<td>Delete Zone</td>
<td>Deletes the selected zones that do not belong to a zoneset.</td>
</tr>
<tr>
<td>Rename Zone</td>
<td>Renames the selected zone.</td>
</tr>
<tr>
<td>In Zoneset</td>
<td>Specifies whether a zone is part of a zoneset. The check box is selected if</td>
</tr>
<tr>
<td></td>
<td>the zone is part of a zoneset.</td>
</tr>
<tr>
<td></td>
<td>You can search by choosing true or false from the In Zoneset drop-down</td>
</tr>
<tr>
<td>Zone Name</td>
<td>Displays the name of the zone. You can search by specifying the zone name.</td>
</tr>
<tr>
<td>Smart Zone</td>
<td>Specifies whether a zone is a smart zone. Displays true if the zone is</td>
</tr>
<tr>
<td></td>
<td>a smart zone. Otherwise, displays false. You can search this field by</td>
</tr>
<tr>
<td></td>
<td>choosing true or false from the Smart Zone drop-down list.</td>
</tr>
</tbody>
</table>

Procedure

Step 1
To create a zone, choose **Configure > SAN > IVR Zoning > Zones**.

Step 2
Click **Create Zone**.

a) In the **Create Zone** window, enter a valid name for the zone.
b) Click **Create**.

A zone is created and is listed in the **Zones** area.

Step 3
To clone a zone, **Configure > SAN > IVR Zoning > Zones**, select a zoneset.

All the zones in the fabric appear under **Zones**. From **Zones**, select a zone and click **Clone Zone**.

Note You can clone only one zone at a time.

a) In the **Clone Zone** window, enter a valid name for the new zone.
b) Click **Clone**.

The cloned zones appear under **Zones**.
Step 4 To add a zone that is not part of a zoneset, choose **Configure > SAN > IVR Zoning > Zoneset**, select a zoneset.

All the zones in the fabric appear under **Zones**. From **Zones**, select a zone that is not part of the zoneset. Click **Add Zone** icon.

You can select more than one zone to be added to the zoneset.

The zone are added to the selected zoneset. A green check mark appears next to the zone name to indicate that the zone is added to the zoneset.

Step 5 To remove a zone from a zoneset, choose **Configure > SAN > IVR Zoning > Zonesets**. Select a zoneset.

All the zones in the fabric appear under **Zones**. From **Zones**, select a zone that belongs to the selected zoneset and click **Remove Zone**.

The zone is removed from the selected zoneset. The green check mark next to the zone name disappears to indicate that the zone is removed from the zoneset.

Step 6 To delete a zone from a zoneset, choose **Configure > SAN > IVR Zoning > Zonesets**, select a zoneset.

All the zones in the fabric appear under **Zones**. From **Zones**, select a zone that does not belong to the selected zoneset and click **Delete Zone**.

A confirmation window appears. Click **Yes** to delete the selected zones.

Note You cannot delete a zone that is a member of the selected zoneset. Remove the zone from the zoneset to delete it.

Step 7 To rename a zone, choose **Configure > SAN > IVR Zoning > Zonesets**, select a zoneset. From **Zones**, select the zone to be renamed and click **Rename Zone**.

In the **Name** field, enter the new name for the zone.

Click **Rename**.

Step 8 To enable a smart zone, choose **Configure > SAN > IVR Zoning > Zones**. Select a zoneset.

From **Zones**, select a zone, and click **Enable Smart Zone**.

Under the **Smart Zone** column, it displays **True**.

Step 9 To disable a smart zone, choose **Configure > SAN > IVR Zoning > Zonesets**, select a zoneset.

From **Zones**, select a zone, and click **Disable Smart Zone**.

Under the **Smart Zone** column, it displays **False**.

Zone Members

Based on the selected zoneset and zone, the **Zone Members** area displays the zone members and their status.

The following table describes the fields and icons that appear on Cisco DCMN **Configure > SAN > IVR Zoning > Zone Members** area.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create and Add Member to Zone</td>
<td>Creates a zone member and adds it to a zone.</td>
</tr>
</tbody>
</table>
To add or remove members from the zoneset from the Cisco DCNM Web UI, perform the following steps:

Before you begin
Select a zoneset and zones to view the list of zone members.

Procedure

Step 1
To create and add zone members, choose **Configure > SAN > IVR Zoning > Zone Members**. Click **Create and Add Member to Zone**.

a) In the **Create and Add Member** window, enter the WWN name and VSAN for the zone member.

 You can enter the WWN name with or without colons.

b) Click **Create and Add**.

The Create and Add feature allows you to add a member to a zone that does not exist in the fabric, currently. This feature can be also utilized when the device discovery did not discover all the devices. With the Available to add feature, you can add a discovered device to the zone.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remove Member</td>
<td>Removes a zone member. You can remove more than one member at a time.</td>
</tr>
<tr>
<td>Zone</td>
<td>Displays the zone under which this member is present. You can search by zone name in this field.</td>
</tr>
<tr>
<td>Zoned By</td>
<td>Displays the type of zoning. You can search by type of zoning such as WWN, FCID, fcAlias, or iSCSI.</td>
</tr>
<tr>
<td>Name</td>
<td>Displays the name of the zone member. You can search by specifying the zone name.</td>
</tr>
<tr>
<td>Switch Interface</td>
<td>Specifies the switch interface that the zone member is attached to. You can search by specifying the switch interface.</td>
</tr>
<tr>
<td>VSAN</td>
<td>Specifies the VSAN the zone member is in.</td>
</tr>
<tr>
<td>FcId</td>
<td>Specifies the FcID associated with the zone member. You can search by specifying the FcID associated with the zone member.</td>
</tr>
<tr>
<td>WWN</td>
<td>Specifies the WWN of the switch. You can search by specifying the WWN of the switch.</td>
</tr>
</tbody>
</table>
Step 2

To remove a zone member, choose `Configure > SAN > IVR Zoning > Zone Members`, select a zone member. Click `Remove Member`.

Available to Add

You can add discovered devices to the zones using `Available to Add` option. The `Add Member` dialog has an additional field for VSAN to be entered, which is only visible when launched from the IVR Zoning page and not the regular Zoning page.

The following table describes the fields and icons that appear on Cisco DCNM `Configure > SAN > IVR Zoning > Available to Add`.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add Member</td>
<td>Adds a device to a zone.</td>
</tr>
<tr>
<td>Zone By</td>
<td>The Zone by feature determines if the device must be added to the zone using the device WWN or device alias. If you choose Zone By: End Ports, the devices are added to the zones by WWN. If you choose Zone By: Device Alias, the devices are added to the zones by device alias.</td>
</tr>
<tr>
<td>Type</td>
<td>Displays the smart zoning device type. The applicable values are Host or Storage. You can search this field by choosing Host or Storage from the Type drop-down list.</td>
</tr>
<tr>
<td>Name</td>
<td>Displays the name of the zone. You can search by specifying the zone name.</td>
</tr>
<tr>
<td>Switch Interface</td>
<td>Specifies the switch interface that the zone member is attached to. You can search by specifying the switch interface.</td>
</tr>
<tr>
<td>VSAN</td>
<td>Specifies the VSAN the zone member is in.</td>
</tr>
<tr>
<td>FcId</td>
<td>Specifies the FcID associated with the zone member. You can search by specifying the FcID associated with the zone member.</td>
</tr>
<tr>
<td>WWN</td>
<td>Specifies the WWN of the switch. You can search by specifying the WWN of the switch.</td>
</tr>
</tbody>
</table>

Procedure

Step 1
Choose `Configure > SAN > IVR Zoning > Available to Add`.

Step 2
In the Zone by field, select End Ports or Device Alias radio button.
A window appears showing the list of end ports or devices available to add.

Step 3 Select the devices to be added to a zone.

Step 4 Click Add.

Note Specify the device type for smart zoning if smart zone is enabled for that zone. You can select more than one zone. When this occurs, a dialog appears that shows a list of all the zones that are currently selected on the zone table.

Configuring FCIP

Cisco DCNM allows you to create FCIP links between Gigabit Ethernet ports, enables Fibre Channel write acceleration and IP compression.

To configure FCIP from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose Configure > SAN > FCIP.

The Welcome page displays the tasks to configure FCIP using the FCIP Wizard.

Step 2 Click Next to select the switch pair.

Note FCIP is not supported on Cisco MDS 9000 24/10-Port SAN Extension Module.

Step 3 Select two MDS switches to connect via FCIP for **Between Switch** and **Switch** from the drop-down list. Each switch must have an Ethernet port that is connected to an IP network to function correctly.

Note In the case of a federation setup, both switches must belong to the fabrics that are discovered or managed by the same server.

Step 4 Click Next to select the Ethernet ports.

Step 5 Select the Ethernet ports to be used in FCIP ISL between the selected switches. Down ports must be enabled to function correctly. Security can be enforced for unconfigured 14+2, 18+4, 9250i and SSN16 Ethernet ports.

Step 6 Click Next to specify the IP addresses and add an IP route.

Step 7 Enter the Ethernet ports IP addresses and specify the IP Routes if the port addresses are in a different subnet.

Note Click Next to apply the changes to IP Address and IP Route.

Step 8 Click Next to specify Tunnel properties.

Step 9 Specify the following parameters to tunnel the TCP connections.

Enter the parameters.

* **Max Bandwidth**: Enter the number between 1 to 5000. The unit is Mb.
Configure

Port Channels

• **Min Bandwidth**: Enter the minimum bandwidth value. The unit is **Mb**.

• **Estimated RTT (Round Trip Time)**—Enter the number between 0 to 300000. The unit is **us**. Click *Measure* to measure the roundtrip time.

• **Write Acceleration**: Check the check box to enable the write acceleration.

 Note: If Write Acceleration is enabled, ensure that flows will not load balance across multiple ISLs.

• **Enable Optimum Compression**: Check the check box to enable the optimum compression.

• **Enable XRC Emulator**: Check the check box to enable XRC emulator.

• **Connections**: Enter the number of connections from 0 to 100.

Step 10 Click *Next* to create FCIP ISL.

Step 11 Enter the **Profile ID** and **Tunnel ID** for the switch pair, and select the **FICON Port Address** from the drop-down list.

Step 12 Click *View Configured* to display the **Profiles** and **Tunnels** information.

Step 13 Select the **Trunk Mode** from **non-Trunk**, **trunk**, and **auto**. Specify the **Port VSAN** for **non-Trunk** and **auto**, and allowed **VSAN List** for Trunk tunnel.

Step 14 Click *Next* to the last summary page.

The **Summary** view displays what you have selected in the previous steps.

Step 15 Click *Deploy* to configure FCIP or click *Finish* complete the configuration and deploy later.

Port Channels

Port Channels refer to the aggregation of multiple physical interfaces into one logical interface to provide higher aggregated bandwidth, load balancing, and link redundancy. Port Channels can connect to interfaces across switching modules, so a failure of a switching module cannot bring down the Port Channel link.

Beginning with Cisco Data Center Network Manager 11.0(1), you can configure and edit Port Channels. Navigate to **Configure > SAN > Port Channel** to create or edit Port Channels.

Click **Create New Port Channel** to launch the wizard to create new Port Channel.

Click **Edit Existing Port Channel** to launch the wizard to edit an existing Port Channel.

Information About Configuring Port Channels

Port Channels Overview

Port Channels refer to the aggregation of multiple physical interfaces into one logical interface to provide higher aggregated bandwidth, load balancing, and link redundancy (See below figure). Port Channels can connect to interfaces across switching modules, so a failure of a switching module cannot bring down the Port Channel link.
Port Channels on Cisco MDS 9000 Family switches allow flexibility in configuration. This illustrates three possible Port Channel configurations:

- Port Channel A aggregates two links on two interfaces on the same switching module at each end of a connection.
- Port Channel B also aggregates two links, but each link is connected to a different switching module. If the switching module goes down, traffic is not affected.
- Port Channel C aggregates three links. Two links are on the same switching module at each end, while one is connected to a different switching module on switch 2.

Port Channeling and Trunking

Trunking is a commonly used storage industry term. However, the Cisco NX-OS software and switches in the Cisco MDS 9000 Family implement trunking and Port Channeling as follows:

- Port Channeling enables several physical links to be combined into one aggregated logical link.
- Trunking enables a link transmitting frames in the EISL format to carry (trunk) multiple VSAN traffic. For example, when trunking is operational on an E port, that E port becomes a TE port. A TE port is specific to switches in the Cisco MDS 9000 Family. An industry standard E port can link to other vendor switches and is referred to as a nontrunking interface (See Figure 5: Trunking Only, on page 200 and Figure 6: Port Channeling and Trunking, on page 201).

Figure 4: Port Channel Flexibility

Figure 5: Trunking Only
Port Channeling and trunking are used separately across an ISL.

- **Port Channeling**—Interfaces can be channeled between the following sets of ports:
 - E ports and TE ports
 - F ports and NP ports
 - TF ports and TNP ports

- **Trunking**—Trunking permits carrying traffic on multiple VSANs between switches.

- Both Port Channeling and trunking can be used between TE ports over EISLS.

Load Balancing

Two methods support the load-balancing functionality:

- **Flow-based**—All frames between a source and destination follow the same links for a given flow. That is, whichever link is selected for the first exchange of the flow is used for all subsequent exchanges.

- **Exchange-based**—The first frame in an exchange picks a link and subsequent frames in the exchange follow the same link. However, subsequent exchanges can use a different link. This provides more granular load balancing while preserving the order of frames for each exchange.

The following figure illustrates how a source ID 1 (SID1) and destination ID1 (DID1)-based load balancing works. When the first frame in a flow is received on an interface for forwarding, link 1 is selected. Each subsequent frame in that flow is sent over the same link. No frame in SID1 and DID1 utilizes link 2.
The following figure illustrates how exchange-based load balancing works. When the first frame in an exchange is received for forwarding on an interface, link 1 is chosen by a hash algorithm. All remaining frames in that particular exchange are sent on the same link. For exchange 1, no frame uses link 2. For the next exchange, link 2 is chosen by the hash algorithm. Now all frames in exchange 2 use link 2.
You can configure each Port Channel with a channel group mode parameter to determine the Port Channel protocol behavior for all member ports in this channel group. The possible values for a channel group mode are as follows:

- **ON (default)**—The member ports only operate as part of a Port Channel or remain inactive. In this mode, the Port Channel protocol is not initiated. However, if a Port Channel protocol frame is received from a peer port, the software indicates its nonnegotiable status. This mode is backward compatible with the existing implementation of Port Channels in releases prior to Release 2.0(1b), where the channel group mode is implicitly assumed to be ON. In Cisco MDS SAN-OS Releases 1.3 and earlier, the only available Port Channel mode was the ON mode. Port Channels that are configured in the ON mode require you to explicitly enable and disable the Port Channel member ports at either end if you add or remove ports from the Port Channel configuration. You must physically verify that the local and remote ports are connected to each other.

- **ACTIVE**—The member ports initiate Port Channel protocol negotiation with the peer ports regardless of the channel group mode of the peer port. If the peer port, while configured in a channel group, does not support the Port Channel protocol, or responds with a nonnegotiable status, it defaults to the ON mode behavior. The ACTIVE Port Channel mode allows automatic recovery without explicitly enabling and disabling the Port Channel member ports at either end.
The following table compares ON and ACTIVE modes.

<table>
<thead>
<tr>
<th>ON Mode</th>
<th>ACTIVE Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>No protocol is exchanged.</td>
<td>A Port Channel protocol negotiation is performed with the peer ports.</td>
</tr>
<tr>
<td>Moves interfaces to the suspended state if its operational values are incompatible with the Port Channel.</td>
<td>Moves interfaces to the isolated state if its operational values are incompatible with the Port Channel.</td>
</tr>
<tr>
<td>When you add or modify a Port Channel member port configuration, you must explicitly disable (shut) and enable (no shut) the Port Channel member ports at either end.</td>
<td>When you add or modify a Port Channel interface, the Port Channel automatically recovers.</td>
</tr>
<tr>
<td>Port initialization is not synchronized.</td>
<td>There is synchronized startup of all ports in a channel across peer switches.</td>
</tr>
<tr>
<td>All misconfigurations are not detected as no protocol is exchanged.</td>
<td>Consistently detect misconfigurations using a Port Channel protocol.</td>
</tr>
<tr>
<td>Transitions misconfigured ports to the suspended state. You must explicitly disable (shut) and enable (no shut) the member ports at either end.</td>
<td>Transitions misconfigured ports to the isolated state to correct the misconfiguration. Once you correct the misconfiguration, the protocol ensures automatic recovery.</td>
</tr>
</tbody>
</table>

Port Channel Deletion

When you delete the Port Channel, the corresponding channel membership is also deleted. All interfaces in the deleted Port Channel convert to individual physical links. After the Port Channel is removed, regardless of the mode used (ACTIVE and ON), the ports at either end are gracefully brought down, indicating that no frames are lost when the interface is going down.

If you delete the Port Channel for one port, then the individual ports within the deleted Port Channel retain the compatibility parameter settings (speed, mode, port VSAN, allowed VSAN, and port security). You can explicitly change those settings as required.

- If you use the default ON mode to avoid inconsistent states across switches and to maintain consistency across switches, then the ports shut down. You must explicitly enable those ports again.
- If you use the ACTIVE mode, then the Port Channel ports automatically recover from the deletion.

Interfaces in a Port Channel

You can add or remove a physical interface (or a range of interfaces) to an existing Port Channel. The compatible parameters on the configuration are mapped to the Port Channel. Adding an interface to a Port Channel increases the channel size and bandwidth of the Port Channel. Removing an interface from a Port Channel decreases the channel size and bandwidth of the Port Channel.

This section describes interface configuration for a Port Channel and includes the following topics:
Interface Addition to a Port Channel

You can add a physical interface (or a range of interfaces) to an existing Port Channel. The compatible parameters on the configuration are mapped to the Port Channel. Adding an interface to a Port Channel increases the channel size and bandwidth of the Port Channel.

A port can be configured as a member of a static Port Channel only if the following configurations are the same in the port and the Port Channel:

- Speed
- Mode
- Rate mode
- Port VSAN
- Trunking mode
- Allowed VSAN list or VF-ID list

After the members are added, regardless of the mode (ACTIVE and ON) used, the ports at either end are gracefully brought down, indicating that no frames are lost when the interface is going down (see the “Generation 1 Port Channel Limitations” section on page -12).

Compatibility Check

A compatibility check ensures that the same parameter settings are used in all physical ports in the channel. Otherwise, they cannot become part of a Port Channel. The compatibility check is performed before a port is added to the Port Channel.

The check ensures that the following parameters and settings match at both ends of a Port Channel:

- Capability parameters (type of interface, Gigabit Ethernet at both ends, or Fibre Channel at both ends).
- Administrative compatibility parameters (speed, mode, rate mode, port VSAN, allowed VSAN list, and port security).

Note

Ports in shared rate mode cannot form a Port Channel or a trunking Port Channel.

- Operational parameters (remote switch WWN and trunking mode).

A port addition procedure fails if the capability and administrative parameters in the remote switch are incompatible with the capability and administrative parameters in the local switch. If the compatibility check is successful, the interfaces are operational and the corresponding compatibility parameter settings apply to these interfaces.

Suspended and Isolated States

If the operational parameters are incompatible, the compatibility check fails and the interface is placed in a suspended or isolated state based on the configured mode:

- An interface enters the suspended state if the interface is configured in the ON mode.
- An interface enters the isolated state if the interface is configured in the ACTIVE mode.
Forcing an Interface Addition

You can force the port configuration to be overwritten by the Port Channel. In this case, the interface is added to a Port Channel.

- If you use the default ON mode to avoid inconsistent states across switches and to maintain consistency across switches, then the ports shut down. You have to explicitly enable those ports again.
- If you use the ACTIVE mode, then the Port Channel ports automatically recover from the addition.

Note

When Port Channels are created from within an interface, the force option cannot be used.

After the members are forcefully added, regardless of the mode (ACTIVE and ON) used, the ports at either end are gracefully brought down, indicating that no frames are lost when the interface is going down.

Interface Deletion from a Port Channel

When a physical interface is deleted from the Port Channel, the channel membership is automatically updated. If the deleted interface is the last operational interface, then the Port Channel status is changed to a down state. Deleting an interface from a Port Channel decreases the channel size and bandwidth of the Port Channel.

- If you use the default ON mode to avoid inconsistent states across switches and to maintain consistency across switches, then the ports shut down. You must explicitly enable those ports again.
- If you use the ACTIVE mode, then the Port Channel ports automatically recover from the deletion.

After the members are deleted, regardless of the mode (ACTIVE and ON) used, the ports at either end are gracefully brought down, indicating that no frames are lost when the interface is going down.

Port Channel Protocols

In earlier Cisco SAN-OS releases, Port Channels required additional administrative tasks to support synchronization. The Cisco NX-OS software provides robust error detection and synchronization capabilities. You can manually configure channel groups or they can be automatically created. In both cases, the channel groups have the same capability and configurable parameters. Any change in configuration that is applied to the associated Port Channel interface is propagated to all members of the channel group.

A protocol to exchange Port Channel configurations is available in all Cisco MDS switches. This addition simplifies Port Channel management with incompatible ISLs. An additional autocreation mode enables ISLs with compatible parameters to automatically form channel groups without manual intervention.

The Port Channel protocol is enabled by default.

The Port Channel protocol expands the Port Channel functional model in Cisco MDS switches. It uses the exchange peer parameters (EPP) services to communicate across peer ports in an ISL. Each switch uses the information that is received from the peer ports along with its local configuration and operational values to decide if it should be part of a Port Channel. The protocol ensures that a set of ports is eligible to be part of the same Port Channel. They are only eligible to be part of the same Port Channel if all the ports have a compatible partner.

The Port Channel protocol uses two subprotocols:

- Bringup protocol—Automatically detects misconfigurations so you can correct them. This protocol synchronizes the Port Channel at both ends so that all frames for a given flow (as identified by the source
FC ID, destination FC ID and OX_ID) are carried over the same physical link in both directions. This helps make applications such as write acceleration, work for Port Channels over FCIP links.

- Autocreation protocol—Automatically aggregates compatible ports into a Port Channel.

This section describes how to configure the Port Channel protocol and includes the following sections:

Channel Group Creation

Channel groups are not supported on internal ports in the Cisco Fabric Switch for HP c-Class BladeSystem and the Cisco Fabric Switch for IBM BladeSystem.

Assuming link A1-B1 comes up first (see Figure 1-9), that link is operational as an individual link. When the next link comes up, for example, A2-B2, the Port Channel protocol identifies if this link is compatible with link A1-B1 and automatically creates channel groups 10 and 20 in the respective switches. If link A3-B3 can join the channel groups (the Port Channels), the respective ports have compatible configurations. If link A4-B4 operates as an individual link, it is because of the incompatible configuration of the two end ports with the other member ports in this channel group.

Figure 9: Autocreating Channel Groups

The channel group numbers are selected dynamically, and as such, the administrative configuration of the ports forming the channel group at either end are applicable to the newly created channel group. The channel group number being chosen dynamically may be different across reboots for the same set of Port Channels based on the order of ports that are initialized in the switch.

Table 1-10 identifies the differences between user-configured and auto-configured channel groups.

<table>
<thead>
<tr>
<th>User-Configured Channel Group</th>
<th>Autocreated Channel Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manually configured by the user.</td>
<td>Created automatically when compatible links come up between two compatible switches, if channel group autocreation is enabled in all ports at both ends.</td>
</tr>
<tr>
<td>Member ports cannot participate in autocreation of channel groups. The autocreation feature cannot be configured.</td>
<td>None of these ports are members of a user-configured channel group.</td>
</tr>
</tbody>
</table>
You can form the Port Channel with a subset of the ports in the channel group. Incompatible ports remain in a suspended or isolated state depending on the ON or ACTIVE mode configuration.

All ports included in the channel group participate in the Port Channel—no member port becomes isolated or suspended; instead, the member port is removed from the channel group when the link is found to be incompatible.

Any administrative configuration that is made to the Port Channel is applied to all ports in the channel group, and you can save the configuration for the Port Channel interface.

Any administrative configuration that is made to the Port Channel is applied to all ports in the channel group, but the configurations are saved for the member ports; no configuration is saved for the Port Channel interface. You can explicitly convert this channel group, if required.

You can remove any channel group and add members to a channel group.

You cannot remove a channel group, or add/remove any of its members. The channel group is removed when no member ports exist.

Autocreation

The autocreation protocol has the following functionality:

- A port is not allowed to be configured as part of a Port Channel when the autocreation feature is enabled. These two configurations are mutually exclusive.

- Autocreation must be enabled in both the local and peer ports to negotiate a Port Channel.

- Aggregation occurs in one of two ways:
 - A port is aggregated into a compatible autocreated Port Channel.
 - A port is aggregated with another compatible port to form a new Port Channel.

- Newly created Port Channels are allocated from the maximum Port Channel (128 for Generation 1 or a combination of Generation 1 and Generation 2 switches, or 256 for Generation 2 switches) in a decreasing order based on availability. If all 128 (or 256) numbers are used up, aggregation is not allowed.

- You cannot change the membership or delete an autocreated Port Channel.

- When you disable autocreation, all member ports are removed from the autocreated Port Channel.

- Once the last member is removed from an autocreated Port Channel, the channel is automatically deleted and the number is released for reuse.

- An autocreated Port Channel is not persistent through a reboot. An autocreated Port Channel can be manually configured to appear the same as a persistent Port Channel. Once the Port Channel is made persistent, the autocreation feature is disabled in all member ports.

- You can enable or disable the autocreation feature on a per-port basis or for all ports in the switch. When this configuration is enabled, the channel group mode is assumed to be active. The default for this task is disabled.

- If autocreation of channel groups is enabled for an interface, you must first disable autocreation before downgrading to earlier software versions or before configuring the interface in a manually configured channel group.
When enabling autocreation in any switch in the Cisco MDS 9000 Family, we recommend that you retain at least one interconnected port between the switches without any autocreation configuration. If all ports between two switches are configured with the autocreation feature at the same time, you may face a possible traffic disruption between these two switches as the ports are automatically disabled and reenabled when ports are added to an autocreared Port Channel.

Note

Manually Configured Channel Groups

A user-configured channel group cannot be converted to an autocreared channel group. However, you can convert an autocreared channel group to a manual channel group. Once performed, this task is irreversible. The channel group number does not change, but the member ports operate according to the properties of the manually configured channel group, and the autocreation of channel group is implicitly disabled for all member ports.

Tip

If you enable persistence, be sure to enable it at both ends of the Port Channel.

Prerequisites for Configuring Port Channels

Before configuring a Port Channel, consider the following guidelines:

- Configure the Port Channel across switching modules to implement redundancy on switching module reboots or upgrades.
- Ensure that one Port Channel is not connected to different sets of switches. Port Channels require point-to-point connections between the same set of switches.

On switches with Generation 1 switching modules, or a combination of Generation 1 and Generation 2 switching modules, you can configure a maximum of 128 Port Channels. On switches with only Generation 2 switching modules, or Generation 2 and Generation 3 switching modules, you can configure a maximum of 256 Port Channels.

If you misconfigure Port Channels, you may receive a misconfiguration message. If you receive this message, the Port Channel’s physical links are disabled because an error has been detected.

A Port Channel error is detected if the following requirements are not met:

- Each switch on either side of a Port Channel must be connected to the same number of interfaces.
- Each interface must be connected to a corresponding interface on the other side (see Figure 1-11 for an example of an invalid configuration).
- Links in a Port Channel cannot be changed after the Port Channel is configured. If you change the links after the Port Channel is configured, be sure to reconnect the links to interfaces within the Port Channel and reenable the links.

If all three conditions are not met, the faulty link is disabled.

Enter the show interface command for that interface to verify that the Port Channel is functioning as required.
Guidelines and Limitations for Configuring Port Channels

This section includes the guidelines and limitations for this feature:

General Guidelines for Cisco MDS 9000 Series Switches

Cisco MDS 9000 Family switches support the following number of Port Channels per switch:

- Switches with only Generation 1 switching modules do not support F and TF Port Channels.
- Switches with Generation 1 switching modules, or a combination of Generation 1 and Generation 2 switching modules, support a maximum of 128 Port Channels. Only Generation 2 ports can be included in the Port Channels.
- Switches with only Generation 2 switching modules or Generation 2 and Generation 3 modules support a maximum of 256 Port Channels with 16 interfaces per Port Channel.
- A Port Channel number refers to the unique identifier for each channel group. This number ranges from 1 to 256.

Generation 1 Port Channel Limitations

This section includes the restrictions on creation and addition of Port Channel members to a Port Channel on Generation 1 hardware:

- The 32-port 2-Gbps or 1-Gbps switching module.
- The MDS 9140 and 9120 switches.

When configuring the host-optimized ports on Generation 1 hardware, the following Port Channel guidelines apply:

- If you execute the write erase command on a 32-port switching module, and then copy a saved configuration to the switch from a text file that contains the no system default switchport shutdown command, you have to copy the text file to the switch again for the E ports to come up without manual configuration.
- Any (or all) full line rate ports in the Cisco MDS 9100 Series can be included in a Port Channel.
- The host-optimized ports in the Cisco MDS 9100 Series are subject to the same Port Channel rules as 32-port switching modules; only the first port of each group of four ports is included in a Port Channel.
 - You can configure only the first port in each 4-port group as an E port (for example, the first port in ports 1–4, the fifth port in ports 5–8, and so on). If the first port in the group is configured as a Port Channel, the other three ports in each group (ports 2–4, 6–8, and so on) are not usable and remain in the shutdown state.
 - If any of the other three ports are configured in a no shutdown state, you cannot configure the first port to be a Port Channel. The other three ports continue to remain in a no shutdown state.

F and TF Port Channel Limitations

The following guidelines and restrictions are applicable for F and TF Port Channels:

- The ports must be in F mode.
• Automatic creation is not supported.

• The Port Channel interface must be in ACTIVE mode when multiple FCIP interfaces are grouped with WA.

• ON mode is not supported. Only ACTIVE-ACTIVE mode is supported. By default, the mode is ACTIVE on the NPV switches.

• Devices that are logged in through F Port Channel on an MDS switch are not supported in IVR non-NAT configuration. The devices are supported only in IVR NAT configuration.

• Port security rules are enforced only on physical pWWNs at the single link level.

• FC-SP authenticates only the first physical FLOGI of every Port Channel member.

• Since the FLOGI payload carries only the VF bits to trigger the use of a protocol after the FLOGI exchange, those bits will be overridden. In the case of the NPV switches, the core has a Cisco WWN and tries to initiate the PCP protocol.

• The name server registration of the N ports logging in through an F Port Channel uses the fWWN of the Port Channel interface.

• DPVM configuration is not supported.

• The Port Channel port VSAN cannot be configured using DPVM.

• The Dynamic Port VSAN Management (DPVM) database is queried only for the first physical FLOGI of each member, so that the port VSAN can be configured automatically.

• DPVM does not bind FC_IDs to VSANs, but pWWNs to VSANs. It is queried only for the physical FLOGI.

Valid and Invalid Port Channel Examples

Port Channels are created with default values. You can change the default configuration just like any other physical interface. The following figure provides examples of valid Port Channel configurations.

Figure 10: Valid Port Channel Configurations

The following figure provides examples of invalid configurations. Assuming that the links are brought up in the 1, 2, 3, 4 sequence, links 3 and 4 will be operationally down as the fabric is misconfigured.
Default Settings

The following table lists the default settings for Port Channels.

Table 28: Default Port Channel Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Channels</td>
<td>FSPF is enabled by default.</td>
</tr>
<tr>
<td>Create Port Channel</td>
<td>Administratively up.</td>
</tr>
<tr>
<td>Default Port Channel mode</td>
<td>ON mode on non-NPV and NPIV core switches. ACTIVE mode on NPV switches.</td>
</tr>
<tr>
<td>Autocreation</td>
<td>Disabled.</td>
</tr>
</tbody>
</table>

Create Port Channel Wizard

To create a Port Channel using the Create New Port Channel Wizard on the DCNM Web UI, perform the following steps:
Procedure

Step 1 Choose **Configure > SAN > Port Channel**.
Click **Create New Port Channel** to launch the Create Port Channel Wizard.

Step 2 In the Select Switch Pair screen, perform the following steps:
 a) Select the appropriate fabric from the Fabric drop-down.
 The list contains switch pairs in the fabric that have an ISL between them, that is not already in a port channel.
 b) Select a switch pair to be linked by an FC Port Channel.
 If there are NPV links between NPIV-core and NPV switches, you must enable F Port Trunking and Channeling Protocol using the `feature fport-channel-trunk` command on the NPIV switch in order to see the switch-pair and the number of NPV links.
 c) Click **Next**.

Step 3 In the Select ISLs screen, select one or more ISLs or Links to create a new Channel between the switch pair.
 a) From the list of ISLs in the Available area, select and click right arrow to move the ISL to the Selected area.
 b) Click **Next**.

Step 4 In the Create Port Channel screen, define, or edit the channel attributes.
 a) Channel ID field is populated with the next unused channel ID. Change the channel ID or description for each switch, if necessary.
 The range of the channel ID is from 1 to 256.
 b) FICON Port Address is only enabled if the switches are FICON enabled. From the drop-down list, select the appropriate FICON port address on the switch. Select the port address that you want to assign to the Port Channel port.
 c) In the Channel Attributes area, to configure the speed, click the appropriate radio button.
 d) Select the appropriate Trunk Mode radio button to enable trunking on the links in the Port Channel.
 • Select **trunk** if your link is between TE ports.
 • Select **nonTrunk** if your link is between E ports.
 • Select **auto** if you are not sure.
 e) In the Port VSAN field, enter the interface ID for port VSAN which must be used when trunking is not enabled.
 Every interface must have a port VSAN even if trunking is enabled. If trunking is enabled, this port VSAN is not used. However, the switch must configure the port, so that the network knows what VSAN to use by default, if trunking is disabled.
 f) VSAN list field provides a list of VSANs you want to allow the port channel to use for trunking.
 This field is disabled if the Trunk Mode is set to **nonTrunk** or **auto**.
 g) In the Core Switch Bandwidth field, select dedicated or shared radio button to allocate the switch bandwidth.
 This bandwidth is applicable only for port channels between an NPIV and NPV switch.
h) Check the **Force Admin, Trunk, Speed, and VSAN attributes to be identical** checkbox to ensure that the same parameter settings are used in all physical ports in the channel. If these settings are not identical, the ports cannot become part of the Port Channel.

Step 5 Click **Previous** to return to the previous screen and edit the settings. Click **Finish** to configure the Port Channel. A success message appears.

Step 6 Click **Close** to close the Create Port Channel Wizard.

Edit Existing Port Channel

To edit a Port Channel using the Edit Port Channel Wizard on the DCNM Web UI, follow these steps:

Procedure

Step 1 From the Cisco DCNM Web UI, navigate to **Configure > SAN > Port Channel**. Click on **Edit Existing Port Channel** to launch the Edit Port Channel Wizard.

Step 2 In the Select Switch Pair screen, do the following:

a) Select the appropriate fabric from the Fabric drop-down list.

The switch pairs that have port channels between them are listed in the area below.

b) Select a switch pair to edit the port channel.

c) Click **Next**.

Step 3 In the Select Port Channel screen, select a Port Channel to edit.

Click **Next**.

Step 4 In the Edit Port Channel screen, select the desired ISL.

a) Click the right and left arrow to select the available ISLs.

 Note The selected ISLs are contained in the Port Channel after you save the changes. If the Selected ISLs list is empty, the Delete Port Channel is Empty checkbox is enabled.

b) If you do not choose any ISL, check the **Delete Port Channel if Empty** checkbox to delete the port channel.

c) Check the **Force admin, trunk, speed, VSAN attributes to be identical** checkbox to choose identical values for admin, trunk, speed and VSAN attributes.

d) Click **Next**.

Step 5 Click **Finish** to apply the changes.

Click **Previous** to go back to the previous screen and edit the values.

Click **Cancel** to abort the changes.
Device Alias

A device alias is a user-friendly name for a port WWN. Device alias name can be specified when configuring features such as zoning, QoS, and port security. The device alias application uses the Cisco Fabric Services (CFS) infrastructure to enable efficient database management and fabric-wide distribution.

This section contains context-sensitive online help content under Configure > SAN > Device Alias.

The following table describes the fields that appear under Configure > SAN > Device Alias.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seed Switch</td>
<td>Displays the device alias seed switch name.</td>
</tr>
<tr>
<td>Device Alias</td>
<td>Displays the alias retrieved from the seed switch.</td>
</tr>
<tr>
<td>pWWN</td>
<td>Displays the port WWN.</td>
</tr>
</tbody>
</table>

This section contains the following:

Configuration

Select the Fabric from the Fabric drop-down list. The list of device aliases existing on the fabric will be retrieved and displayed.

Before performing any Device Alias configuration, check the status on the CFS tab, to ensure that the status is "success".

Note

To perform Device Alias configuration from the Cisco DCNM Web client, the fabric must be configured as Device Alias enhanced mode.

Procedure

Step 1

To delete the device alias, Cisco DCNM Web Client > Configure > SAN > Device Alias > Configuration tab, check the device alias you need to delete.

a) Click Delete.

A confirmation message appears.

Note Deleting the device alias may cause traffic interruption.

b) Click Yes to delete the topic alias.

Step 2

To create the device alias, from Cisco DCNM Web Client > Configure > SAN > Device Alias > Configuration tab, click Create.

The Add Device Alias windows appears.

All the provisioned port WWNs are populated in the table.

a) Enter a device alias name in the Device Alias field to indicate to create a device alias for the selected pWWN.
b) Click **Save** to exit the inline editor mode.
c) Click **Apply** to assign the device alias to the switches.

You can also create a device alias with a non-provisioned port WWN.

a) Click **New Alias** to create a new table row in inline editor mode.
b) In the **pWWN** field, enter the non-provisioned port WWN for the new alias.
c) Click **Save** to exit the inline editor mode.
d) Click **Apply** to assign the device alias and the associated pWWN to the switches.

Note If you close the Add Device Alias window before applying the device alias to the switches, the changes will be discarded and the device alias will not be created.

Step 3
For end devices with an attached service profile, the service profile name is populated to the **Device Alias** field. This allows the service profile name as device alias name for those devices.

Device Alias creation is CFS auto-committed after clicking Apply. Click **CFS** tab to check if CFS is properly performed after the device alias was created. In case of failure, you must troubleshoot and fix the problem.

CFS

Select the Fabric from the Fabric drop-down list. The list of device aliases existing on the fabric is retrieved and displayed.

CFS information is listed for all the eligible switches in the fabric. Before performing any Device Alias configuration, check the status on the **CFS** tab to ensure that the status is "success". If the CFS is locked by another user, or if the previous operation failed, ensure that the CFS session is unlocked.

To view CFS information from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1
Choose **Configure > SAN > Device Alias > CFS**.

Step 2
To commit the CFS configuration, select the **Switch** radio button.

Click **Commit**.

The CFS configuration for this switch is committed.

Step 3
To abort the CFS configuration, select the **Switch** radio button.

Click **Abort**.

The CFS configuration for this switch is aborted.

Step 4
To clear the lock on the CFS configuration of the switch, select the **Switch** radio button.

Click **Clear Lock**.

If the CFS is locked by another user, or if the previous operation failed, ensure that the CFS session is unlocked.
Port Monitoring

This feature allows you to save custom Port Monitoring policies in the Cisco DCNM database. It allows you to push the selected custom policy to one or more fabrics or Cisco MDS 9000 Series Switches. The policy is designated as active Port-Monitor policy in the switch.

This feature is supported only on the Cisco MDS 9000 SAN Switches and therefore the Cisco DCNM user is allowed to select the MDS switch to push the policy.

Cisco DCNM provides five templates to customize the policy. The user-defined policies are saved in the Cisco DCNM database. You can select any template or customized policy to push to the selected fabric or switch with the desired port type.

You can edit only user-defined policies.

The following table describes the fields that appear on Cisco DCNM Configure > SAN > Port Monitoring.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Templates</td>
<td>This drop-down list shows the following templates for policies:</td>
</tr>
<tr>
<td></td>
<td>• Normal_accessPort</td>
</tr>
<tr>
<td></td>
<td>• Normal_allPort</td>
</tr>
<tr>
<td></td>
<td>• Normal_trunksPort</td>
</tr>
<tr>
<td></td>
<td>• Aggressive_accessPort</td>
</tr>
<tr>
<td></td>
<td>• Aggressive_allPort</td>
</tr>
<tr>
<td></td>
<td>• Aggressive_trunksPort</td>
</tr>
<tr>
<td></td>
<td>• Most-Aggressive_accessPort</td>
</tr>
<tr>
<td></td>
<td>• Most-Aggressive_allPort</td>
</tr>
<tr>
<td></td>
<td>• Most-Aggressive_trunksPort</td>
</tr>
<tr>
<td></td>
<td>• default</td>
</tr>
<tr>
<td></td>
<td>• slowdrain</td>
</tr>
<tr>
<td>Save</td>
<td>Allows you to save your changes for the user-defined policies.</td>
</tr>
<tr>
<td>Save As</td>
<td>Allows you to save an existing policy as a new policy with a different name.</td>
</tr>
<tr>
<td></td>
<td>This creates another item in the templates as Custom Policy. The customized</td>
</tr>
<tr>
<td></td>
<td>policy is saved under this category.</td>
</tr>
<tr>
<td></td>
<td>If you click Save As while the policy is edited, the customized policy is</td>
</tr>
<tr>
<td></td>
<td>saved.</td>
</tr>
</tbody>
</table>
Configure Port Monitoring

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note</td>
<td>The port type of the customized policy will not be saved when Save As is selected.</td>
</tr>
</tbody>
</table>

Delete

- Allows you to delete any user-defined policies.

Push to switches

- Allows you to select a fabric or switch and push the selected policies with a desired port type.

The available port types are:

 - trunks/Core
 - access-port/Edge
 - all

Note

- If you choose trunks or all, the port guard is disabled.

The following policies select the trunks/Core policy type:

 - Normal_trunksPort
 - Aggressive_trunksPort
 - Most-Aggressive_trunksPort

The following policies select the access-port/Edge policy type:

 - Normal_accessPort
 - Aggressive_accessPort
 - Most-Aggressive_accessPort
 - slowdrain

The following policies select the all policy type:

 - Normal_allPort
 - Aggressive_allPort
 - Most-Aggressive_allPort
 - default

Select the parameters and click **Push** to push the policies to the switches in the fabric.

If there is any active policy with the same or common port type, the push command configures the same policy on the selected devices. This policy replaces...
SAN Insights - Overview

Introduction

The SAN Insights feature enables you to configure, monitor, and view the flow analytics in fabrics. Cisco DCNM enables you to visually see health-related indicators in the interface so that you can quickly identify issues in fabrics. Also, the health indicators enable you to understand the problems in fabrics. The SAN Insights feature also provides more comprehensive end-to-end flow-based data from host to LUN.

Cisco DCNM 11.2(1) supports compact GBP transport for better IO performance and improve the overall scalability of SAN Insights.

For SAN insights streaming stability and performance, refer to System Requirements section in the Cisco DCNM Installation Guide for SAN Deployment and the Increasing Elasticsearch Database Heap Size section of the DCNM SAN Management Configuration Guide. Ensure system RAM is of adequate size. Use of NTP

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counter Description</td>
<td>Specifies the counter type. Move the pointer to the "i" icon next to the counter description to view detailed information.</td>
</tr>
<tr>
<td>Rising Threshold</td>
<td>Specifies the upper threshold limit for the counter type.</td>
</tr>
<tr>
<td>Rising Event</td>
<td>Specifies the type of event to be generated when rising threshold is reached or crossed.</td>
</tr>
<tr>
<td>Falling Threshold</td>
<td>Specifies the lower threshold limit for the counter type.</td>
</tr>
<tr>
<td>Falling Event</td>
<td>Specifies the type of event to be generated when falling threshold is reached or crossed.</td>
</tr>
<tr>
<td>Poll Interval</td>
<td>Specifies the time interval to poll for the counter value.</td>
</tr>
<tr>
<td>Warning Threshold</td>
<td>Allows you to set an optional threshold value lower than the rising threshold value and higher than the falling threshold value to generate syslogs. The range is 0–922372036854775807.</td>
</tr>
<tr>
<td>Port Guard</td>
<td>Specifies if the port guard is enabled or disabled. The value can be false, flap, or errordisable. The default value is "false".</td>
</tr>
<tr>
<td>Monitor ?</td>
<td>The default value is "true".</td>
</tr>
</tbody>
</table>
is recommended to maintain time synchronization between the DCNM and the switches. Enable PM collection for viewing counter statistics.

Prerequisites

- The SAN Insights feature is supported for Cisco MDS NX-OS Release 8.3(1) and later.
- The SAN Insights feature is not supported on small deployment.
- You can use the SAN Insights feature on a medium-sized deployment with 2 TB disk space as well.
- Every Federation node must consist of 3 Large configuration nodes.

Guidelines and Limitations

- Ensure that the time configurations in Cisco DCNM and the supported switches are synchronized to the local NTP server for deploying the SAN Insights feature.
- Any applicable daylight time savings settings must be consistent across the switches and Cisco DCNM.
- To modify the streaming interval, use the CLI from the switch, and remove the installed query for Cisco DCNM. Modify the “san.telemetry.streaming.interval” property in the DCMN server properties. The allowed values for the interval are between 30 and 300 seconds. The default value is 30 seconds. Again configure the same switch from Cisco DCNM to push the new streaming interval.
- For deploying SAN Insights in HA Federation mode, 3-node federation setup is necessary for HA performance of Elastic Search cluster.
- Use the ISL query installation type only for the switches that have storage connected (storage-edge switches).
- For the ISL query installation type, in the Configure SAN Insights wizard, analytics cannot be enabled on interfaces that are members of port-channel ISL to non-MDS platform switches.

For information about the SAN Insights dashboard, see [SAN Insights Dashboard](#).

For information about monitoring SAN Insights, see [Monitoring Insights Flows](#).

For information about configuring SAN Insights dashboard, see [Configuring SAN Insights](#), on page 221.

The following table describes the property name and their default values. To modify these values, navigate to Administration > DCMN Server > Server Properties on the Web UI.

<table>
<thead>
<tr>
<th>property Name</th>
<th>Description</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>san.telemetry.processing.interval</td>
<td>Specifies the SAN Insights processing interval.</td>
<td>300000 milliseconds</td>
</tr>
<tr>
<td>san.telemetry.streaming.interval</td>
<td>Specifies the SAN Insights streaming interval.</td>
<td>30 seconds</td>
</tr>
<tr>
<td>san.telemetry.use.noop.data</td>
<td>Specifies if the noop frames are used in ECT baseline training calculation.</td>
<td>true</td>
</tr>
</tbody>
</table>
Configuring SAN Insights

To configure SAN insights from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose Configure > SAN > SAN Insights. The **Configure SAN Insights** wizard appears.

Table: SAN Insights Configuration

<table>
<thead>
<tr>
<th>property Name</th>
<th>Description</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>san.telemetry.train.timeframe</td>
<td>Specifies the training time frame for flows ECT baseline.</td>
<td>7 days</td>
</tr>
<tr>
<td>san.telemetry.train.reset</td>
<td>Specifies the time duration to periodically restart the ECT baseline training after number of days.</td>
<td>28</td>
</tr>
</tbody>
</table>

Cisco DCNM SAN Management Configuration Guide, Release 11.1(1)
Click Continue.

Step 2

In the Configure SAN Insights page, click Continue.

The Fabric Selection window is displayed.

Step 3

Select a fabric where you want the SAN Insights functionality to be configured. The wizard works with one fabric at a time.
The Cisco DCNM time is displayed in this UI and switch time is marked in RED if the switch time is found to be deviating from the DCNM time more than 10 minutes.

You can click the (information) icon in the Switch column to get the configuration details for analytics and telemetry features from the switch (if Analytics Query and Telemetry features are configured).

Step 4
Click **Continue**. The switches that are capable of streaming analytics are listed in the **Select Switches** page. Select the switches on which SAN Insights must be configured.

Step 5
Note Both Cisco DCNM and switch time are captured and displayed when you navigate to the **Select Switches** page. This helps you to ensure that the clocks of Cisco DCNM and switch are in sync.

If you want to clear the Cisco DCNM queries that are installed on the switch, click the **Clear Installed Query** button. In the **Clear Installed Query** dialog box, select the switch, and then click **Commit**. This clears all the analytics and telemetry configuration on the selected switch. Also, both features will be removed from the selected switch.

In the **Install Query** column, choose one type of port per switch, and then click **Save**. You can choose from these options: **ISL**, **host**, or **storage**.

- **host**—lists all ports where hosts or initiators are connected on the switch.
- **storage**—lists all ports where storage or targets are connected on the switch.
- **ISL**—lists all ISL and port channel ISL ports on the switch.
- **none**—indicates that there is no query has been installed.

The following queries are used:

- **dcnmtgtITL**—This is the storage-only query.
- dcnmInitITL—This is the host-only query.
- dcnmisLpcITL—This is the ISL and pc-member query.

Note Cisco DCNM supports 20K ITLs per DCNM server; however, it does not manage duplicate ITLs. If you configure both host and storage queries (on the switches where their Hosts and Storage are connected respectively), the data will be duplicated for the same ITL. This results in inconsistencies in the computed metrics.

When the administrator selects the ISL/Host/Storage on the configure wizard, the respective ports are filtered and listed on the next step.

Step 6 Click **Continue**. You can see all the analytics supported modules on the switches selected in the previous view, listed with the respective instantaneous NPU load in the last column. Port-sampling configuration (optional) for the module can be specified in this step. The default configuration on the switch is to monitor all analytics-enabled ports on the switch for analytics.

Step 7 In the **Configure Modules** tab, configure the module(s) for SAN Insights functionality.

To change the values for **Sample Window (ports)** and **Rotation Interval (seconds)**, click the row and enter the desired values.

- To undo the changes, click **Cancel**.
- To save changes, click **Save**.

The **NPU Load** column displays the network processing unit (NPU) within a module.

Step 8 Click **Continue**.
Step 9 In the **Select Interfaces** tab, select the interfaces that generate analytics data within the fabric. You can click the toggle button to enable or disable analytics on the desired port.

Step 10 Click **Continue**, and then review the changes that you have made.

Step 11 Click **Commit**. The CLI is executed on the switch.

Step 12 Review the results and see that the response is successful.

Step 13 Click **Close** to return to the home page. The Close button appears only after all CLI commands are executed on the switch.
If you want to make any changes to the SAN Insights configurations, you can navigate to the SAN Insights page and make necessary configuration changes.

Increasing Elasticsearch Database Heap Size

Perform the following procedures to increase the ElasticSearch heap size on Windows and Linux platforms.

Note
By default, the heap size is set to 4G. We recommend that you increase the heap size to 16G.

Elasticsearch Heap Size on Windows PowerShell

To specify the Elasticsearch Heap Size on Windows PowerShell, perform the following steps:

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Access Windows Desktop UI as administrator and open Powershell</td>
</tr>
<tr>
<td>Step 2</td>
<td>Stop elastic search and open elastic search manager using the below CLI commands.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Navigate to Java Tab and Update: Xms16g and -Xmx16g in the Java Options</td>
</tr>
<tr>
<td>Step 4</td>
<td>Change the Initial and Maximum memory pool to 16384, and click Apply, and then click OK to close the window.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Start elastic search service using the following commands.</td>
</tr>
</tbody>
</table>
Configure Elasticsearch Heap Size on Windows PowerShell

The service "Elasticsearch-service-x64-5.6.7" has been stopped.

Elasticsearch 5.6.7 (elasticsearch-service-x64-5.6.7) Property Editor

- Use default
- Java Virtual Machine:
 - %JAVA_HOME%\bin\server\jvm.dll
- Java Classpath:
 - C:\Program Files\Cisco Systems\don\elasticsearch567\elasticsearch-service-x64-5.6.7\manager
- Java Options:
 - -Xms1g
 - -Xmx1g
 - -Xms1g
 - -Xmx1g
- Initial memory pool: 644 MB
- Maximum memory pool: 644 MB
- Thread stack size: 1024 KB

OK Cancel Apply
The following example shows the Windows CLI Commands:

```powershell
PS C:\Users\Administrator> & 'C:\Program Files\Cisco Systems\dcm\elasticsearch\bin\elasticsearch-service.bat' stop
PS C:\Users\Administrator> & 'C:\Program Files\Cisco Systems\dcm\elasticsearch\bin\elasticsearch-service.bat' manager
PS C:\Users\Administrator> & 'C:\Program Files\Cisco Systems\dcm\elasticsearch\bin\elasticsearch-service.bat' start
```

As a result:

- Scripts are located at the relative folder location where DCNM is installed.
- In Windows Powershell multiple start operations could be necessary for starting the Elasticsearch process.
Note The server may experience slowness due to high number of ITLs or large dataset in ElasticSearch database over a period of time. In such a scenario, do the following.

- We recommend that you must update the heap size to 32G.
- We recommend that you update the search thread pool queue size. By default, the queue size is 1000.

To increase the queue size to 2000, do the following on all the nodes.

1. Stop the ElasticSearch service.
2. Navigate to the `elasticsearch.yml` file located at the relative install path on your system.

 Path:
 `<your-dcnm-install-path>/dcm/elasticsearch/config/elasticsearch.yml`

3. In the `elasticsearch.yml`, modify the thread pool search value to 2000.

 `thread_pool.search.queue_size: 2000`

4. Restart the ElasticSearch service.

Increasing Elasticsearch Heap Size on Linux CLI

To specify the Elasticsearch Heap Size on Linux CLI, perform the following steps:

Procedure

Step 1 Stop the ElasticSearch by using the following command:

```
service elasticsearch stop
```

Step 2 `vi <install-folder>/dcm/elasticsearch/config/jvm.options`

Step 3 Update `-Xms16g` and `-Xmx16g` and save and close the file

Step 4 `service elasticsearch start`

Note Scripts are located at the relative folder location where Cisco DCNM is installed.
Note The server may experience slowness due to high number of ITLs or large dataset in ElasticSearch database over a period of time. In such a scenario, do the following.

- We recommend that you must update the heap size to 32G.
- We recommend that you update search thread pool queue size. By default, the queue size is 1000.

To increase the queue size to 2000, do the following on all the nodes.

1. Stop the ElasticSearch service.
2. Navigate to the `elasticsearch.yml` file located at the relative install path on your system.

 Path:
 `<your-dcnm-install-path>\dcm\elasticsearch\config\elasticsearch.yml`

3. In the `elasticsearch.yml`, modify the thread pool search value to 2000.

 `thread_pool.search.queue_size: 2000`

4. Restart the ElasticSearch service.

Viewing Pipeline Services

The SAN Insights feature uses the nexus-pipeline process to listen to the switch port and collect data.

To verify the status of the nexus-pipeline process, run the following command:

```
# service PIPELINE status
```

To verify the Pipeline Service on Windows server, launch the Services application. In the Services dialog box, you can find the status of the Cisco DCNM Nexus Pipeline Server. Alternatively, you can click the search box near the Start button on your Windows server, and type services.
Administration

This chapter contains the following topics:

• DCNM Server, on page 231
• Management Users, on page 247
• Performance Setup, on page 253
• Event Setup, on page 255
• Credentials Management, on page 260

DCNM Server

The DCNM Server menu includes the following submenus:

Starting, Restarting, and Stopping Services

To clean up the performance manager database (PM DB) stale entries, start, restart, or stop a service, from the Cisco DCNM Web UI, perform the following steps:

Procedure

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Choose Administration > DCNM Server > Server Status. The Status window appears that displays the server details.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>In the Actions column, click the Re(start) icon to start or restart services, and click the Stop icon to stop services.</td>
</tr>
<tr>
<td>Step 3</td>
<td>In the Actions column, click the Delete icon to clean up PM DB stale entries.</td>
</tr>
<tr>
<td>Step 4</td>
<td>You can see the latest status in the Status column.</td>
</tr>
</tbody>
</table>

What to do next

See the latest status in the Status column.

Using the Commands Table
The commands table contains links to commands that launch new dialog boxes to provide information about the server status and server administrative utility scripts. These commands can be directly executed on the server CLI as well.

- **ifconfig**: click this link to view information about interface parameters, IP address, and netmask used on the Cisco DCNM server.
- **appmgr status all**: click this link to view the DCNM server administrative utility script that checks the status of different services currently running.
- **clock**: click this link to view information about the server clock details such as time, zone information.

Note

The commands section is applicable only for the OVA or ISO installations.

Viewing Log Information

You can view the logs for performance manager, SAN management server, SME server, web reports, web server, and web services. These processes have no corresponding GUI that allows you to view information about these log files. If you see errors, preserve these files for viewing.

Note

Logs cannot be viewed from a remote server in a federation.

To view the logs from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose *Administration > DCNM Server > Logs*.

You see a tree-based list of logs in the left column. Under the tree, there is a node for every server in the federation. The log files are under the corresponding server node.

Step 2 Click a log file under each node of the tree to view it on the right.

Step 3 Double-click the tree node for each server to download a ZIP file containing log files from that server.

Step 4 Click the *Print* icon on the upper right corner to print the logs.

Server Properties

You can set the parameters that are populated as default values in the DCNM server.

To set the parameters of the DCNM server from the Cisco DCNM Web UI, perform the following steps:
Configuring SFTP/TFTP/SCP Credentials

A file server is required to collect device configuration and restoring configurations to the device.

To configure the SFTP/TFTP/SCP credentials for a file store from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose Administration > DCNM Server > Server Properties.

Step 2 Click Apply Changes to save the server settings.

Configuring SFTP/TFTP/SCP Credentials

A file server is required to collect device configuration and restoring configurations to the device.

To configure the SFTP/TFTP/SCP credentials for a file store from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose Administration > DCNM Server > Archive FTP Credentials.

The Archive FTP Credentials window is displayed.

Note The credentials are autopopulated for fresh OVA and ISO installations.

Step 2 In the Server Type field, use the radio button to select SFTP.

- You must have an SFTP server to perform backup operation. The SFTP server can be an external server. The SFTP directory must be an absolute Linux/SSH path format and must have read/write access to the SFTP User.
- If you are using an external server, enter its IP address in the server.FileServerAddress field in Administration > DCNM Server > Server Properties.
- If the nat.enabled field under Administration > DCNM Server > Server Properties is true, you must enter the NAT device IP in the server.FileServerAddress field and the SFTP server must be local.

a) Enter the User Name and Password.
b) Enter the Directory path.

The path must be in absolute Linux path format.

If SFTP is unavailable on your device, you can use third-party SFTP applications, such as, mini-SFTP, Solarwinds, and so on. When you use an external SFTP, you must provide the relative path in the STFP Directory Path. For example, consider the use cases at the end of this procedure.

c) From the Verification Switches drop-down list, select a switch.
d) Click Apply to save the credentials.

e) Click Verify & Apply to verify if SFTP and switch have connectivity and save the configuration.

If there are any failures during the verification, the new changes will not be stored.

f) Click Clear SSH Hosts to clear SSH hosts for all switches or selected switches.
If there is a failure in any of the switches, an error message appears. Navigate to Configure > Backup > Switch Configuration > Archive Jobs > Job Execution Details to view the number of successful and unsuccessful switches.

Step 3

In the **Server Type** field, use the radio button to select **TFTP**.

Cisco DCNM uses a local TFTP server for data transfer. Ensure that there is no external TFTP server running on the DCNM server.

Note

Ensure that your switch user role includes the copy command. Operator roles receive a *permission denied* error. You can change your credentials in the **Discovery** window. Navigate to Inventory > Discovery.

a) From the **Verification Switch** drop-down list, select a switch.
b) Click **Apply** to save the credentials everywhere.
c) Click **Verify & Apply** to verify if TFTP and switch have connectivity and save the configuration.

If there are any failures during the verification, the new changes are not stored.

Step 4

In the **Server Type** field, use the radio button to select **SCP**.

Note

- You must have an SCP server to perform backup operation. The SCP server can be an external server. The SCP directory must be an absolute Linux/SSH path format and must have read/write access to the SCP User.
- If you are using an external server, enter its IP address in the server.FileServerAddress field under Administration > DCNM Server > Server Properties.
- If the nat.enabled field under Administration > DCNM Server > Server Properties is true, you must enter the NAT device IP in the server.FileServerAddress field and the server must be local.

a) Enter the **User Name** and **Password**.
b) Enter the **Directory** path.

The path must be in absolute Linux path format.

If SCP is unavailable on your device, use external SCP applications, such as, mini-SCP, Solarwinds, and so on. When you use an external SCP, you must provide the relative path in the SCP Directory Path. For example, consider the use cases at the end of this procedure.
c) From the **Verification Switches** drop-down, select the switch.
d) Click **Apply** to save the credentials everywhere.
e) Click **Verify & Apply** to verify if SCP and switch have connectivity and save the configuration. If there are any failures during the verification, the new changes will not be stored.
f) Click **Clear SSH Hosts** to clear SSH hosts for all switches or selected switches.

If there is a failure in any of the switches, an error message is displayed. To view the number of successful and unsuccessful switches, go to Configure > Backup > Switch Configuration > Archive Jobs > Job Execution Details.

Step 5

Choose **Configuration > Templates > Templates Library > Jobs** to view individual device verification status.
The configurations that are backed up are removed from the file server and are stored in the file system.

SFTP Directory Path

Use Case 1:

If Cisco DCNM is installed on Linux platforms, like OVA, ISO, or Linux, and the test folder is located at /test/sftp/, you must provide the entire path of the SFTP directory. In the SFTP Directory field, enter /test/sftp.

Use Case 2:

If Cisco DCNM is installed on the Windows platform, and the test folder is located at C:/Users/test/sftp/, you must provide the relative path of the SFTP directory. In the SFTP Directory field, enter /.

For Example:

- If the path in the external SFTP is C:/Users/test/sftp/, then the Cisco DCNM SFTP Directory path must be /.
- If the path in the external SFTP is C:/Users/test, then the Cisco DCNM SFTP Directory path must be /sftp/.

Examples for SCP Directory Path

Use Case 1:

If Cisco DCNM is installed on Linux platforms, like OVA, ISO, or Linux, and the test folder is located at /test/scp/, you must provide the entire path of the SCP directory. In the SCP Directory field, enter /test/scp.

Use Case 2:

If Cisco DCNM is installed on the Windows platform, and the test folder is located at C:/Users/test/scp/, you must provide the relative path of the SCP directory. In the SCP Directory field, enter /.

For Example:

- If the path in the external SCP is C:/Users/test/scp/, then the Cisco DCNM SCP directory path must be /.
- If the path in the external SCP is C:/Users/test, then the Cisco DCNM SCP directory path must be /scp/.

Modular Device Support

To support any new hardware that does not require many major changes, a patch can be delivered instead of waiting for the next DCNM release. **Modular Device Support** helps to deliver and apply the DCNM patch releases. An authorized DCNM administrator can apply the patch to the production setup. Patch releases are applicable for the following scenarios:

- Support any new hardware, like chassis or line cards
• Support latest NX-OS versions
• Support critical fixes as patches

To view the patch details from Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose Administration > DCNM Server > Modular Device Support.
You see the DCNM Servers column on the left in the window and Modular Device support information window on the right.

Step 2 Expand DCNM Servers to view all the DCNMs servers.
It includes the list of patches installed along with the version number, corresponding platforms supported, chassis supported, NX-OS version supported, PID supported, backup directory and the last patch deployment time in the Modular Device support information table.

What to do next
For more details about how to apply and rollback a patch, go to http://www.cisco.com/go/dcnm for more information.

Managing Switch Groups

From Cisco NX-OS Release 6x, you can configure switch groups by using Cisco DCNM Web UI. You can add, delete, rename, or move a switch to a group or move a group of switches to another group.

This section contains the following:

Adding Switch Groups

To add switch groups from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose Administration > DCNM Server > Switch Groups.
Step 2 Click the Add icon.
The Add Group window is displayed, that allows you to enter the name for the switch group.
Step 3 Enter the name of the switch group and click Add to complete adding the switch group.
The switch group name validation, and the maximum tree depth is 10. If you do not choose a parent group before adding a new switch group, the new group is added on the top of the hierarchy.
Deleting a Group or a Member of a Group

You can delete a group or a member of the group from the Cisco DCNM Web UI. When you delete a group, the associated groups are deleted. The fabrics or ethernet switches of the deleted groups are moved to the default SAN or LAN.

To delete a group or a member of a group from the Cisco DCNM Web UI, perform the following steps:

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Choose the switch group or members of a group that you want to remove.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Click the Remove icon or press the Delete key on your keyboard. A dialog box prompts you to confirm the deletion of the switch group or the member of the group.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Click Yes to delete or No to cancel the action.</td>
</tr>
</tbody>
</table>

Moving a Switch Group to Another Group

To move a switch group to another group from the Cisco DCNM Web UI, perform the following steps:

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Select a switch or switch group.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Drag the highlighted switch or switch group to another group. To move multiple switches across different switch groups, use Ctrl key or Shift key. You can see the switch or switch group. Users are not allowed to move multiple switches in the group level under the new group now.</td>
</tr>
</tbody>
</table>

Note: It is not allowed to move multiple switches in the group level. You may not mix a group with switches. |

Managing Custom Port Groups

Custom port groups aid you to test the performance of the interfaces in the group. You can view the defined custom ports and their configurations.

This section includes the following topics:

Adding Custom Port Groups

To add a custom port group from the Cisco DCNM Web UI, perform the following steps:
Procedure

Step 1
Choose Administration > DCNM Server > Custom Port Groups.

The Custom Port Groups window is displayed.

Step 2
In the User-Defined Groups block, click the Add icon.

Step 3
Enter the name for the custom port group in the Add Group Dialog window.

Step 4
Click Add.

A custom port group is created in the User-Defined Groups area.

Configuring Switch and Interface to the Port Group

To configure the custom port group to include switches and interfaces from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1
Choose Administration > DCNM Server > Custom Port Groups.

Step 2
In the User-Defined Groups area, select the port group to add the switch and interfaces.

Step 3
In the Configurations area, click Add Member.

The Port Configuration window appears for the selected custom port group.

Step 4
In the Switches tab, select the switch to include in the custom port group.

The list of available Interfaces appears.

Step 5
Select all the interfaces to check the performance.

Step 6
Click Submit.

The list of interfaces is added to the custom port group.

Removing Port Group Member

To remove or delete a port group member in a custom port group from Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1
Choose Administration > DCNM Server > Custom Port Groups.

Step 2
In the User Defined Groups area, select a port group.

Step 3
In the Configuration area, select the switch name and interface that must be deleted.

Step 4
In the User Defined Groups area, select the group from which the member must be deleted.
Removing Port Group

To remove or delete a port group from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose Administration > DCNM Server > Custom Port Groups.
Step 2 In the User Defined Groups area, select the group which must be deleted.
Step 3 Click Remove.
A confirmation window appears.
Step 4 Click Yes to delete the custom group.

Managing Licenses

You can view the existing Cisco DCNM licenses by choosing Administration > DCNM Server > License. You can view and assign licenses in the following tabs:

- License Assignments
- Smart License
- Server License Files

By default, the License Assignments tab appears.

The following table displays the SAN and LAN license information.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>License</td>
<td>Specifies SAN or LAN.</td>
</tr>
<tr>
<td>Free/Total Server-based</td>
<td>Specifies the number of free licenses that are purchased out of the total number of licenses.</td>
</tr>
<tr>
<td>Licenses</td>
<td></td>
</tr>
<tr>
<td>Unlicensed/Total</td>
<td>Specifies the number of unlicensed switches or VDCs out of the total number of switches or VDCs.</td>
</tr>
<tr>
<td>(Switches/VDCs)</td>
<td></td>
</tr>
<tr>
<td>Need to Purchase</td>
<td>Specifies the number of licenses to be purchased.</td>
</tr>
</tbody>
</table>
This section includes the following topics:

License Assignments

The following table displays the license assignment details for every switch or VDC.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
<td>Displays if the group is fabric or LAN.</td>
</tr>
<tr>
<td>Switch Name</td>
<td>Displays the name of the switch.</td>
</tr>
<tr>
<td>WWN/Chassis ID</td>
<td>Displays the world wide name or Chassis ID.</td>
</tr>
<tr>
<td>Model</td>
<td>Displays the model of the device. For example, DS-C9124 or N5K-C5020P-BF.</td>
</tr>
<tr>
<td>License State</td>
<td>Displays the license state of the switch that can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• Permanent</td>
</tr>
<tr>
<td></td>
<td>• Eval</td>
</tr>
<tr>
<td></td>
<td>• Unlicensed</td>
</tr>
<tr>
<td></td>
<td>• Not Applicable</td>
</tr>
<tr>
<td></td>
<td>• Expired</td>
</tr>
<tr>
<td></td>
<td>• Invalid</td>
</tr>
<tr>
<td>License Type</td>
<td>Displays if the license is a switch-based embedded license or a server-based license.</td>
</tr>
<tr>
<td>Expiration Date</td>
<td>Displays the expiry date of the license.</td>
</tr>
<tr>
<td></td>
<td>Note Text under the Expiration Date column is in red for licenses, which expire in seven days.</td>
</tr>
<tr>
<td>Assign License</td>
<td>Select a row and click this option on the toolbar to assign the license.</td>
</tr>
<tr>
<td>Unassign License</td>
<td>Select a row and click this option on the toolbar to unassign the license.</td>
</tr>
<tr>
<td></td>
<td>Note If you unassign licenses of all switches in a fabric, even the fabric is unlicensed. However, in a federated setup after you unassign the license for a fabric, restart the PM service so that the fabric is no longer listed in the SAN Collections window. Restarting the PM is required to move the fabric from one node to another node successfully.</td>
</tr>
<tr>
<td>Assign All</td>
<td>Click this option on the toolbar to refresh the table and assign the licenses for all the items in the table.</td>
</tr>
<tr>
<td>Unassign All</td>
<td>Click this option on the toolbar to refresh the table and unassign all the licenses.</td>
</tr>
</tbody>
</table>
You must have network administrator privileges to assign or unassign licenses.

When the fabric is first discovered and if the switch does not have a valid switch-based license, a license is automatically assigned to the fabric from the file license pool until no more licenses are left in the pool. If you have an existing fabric and a new switch is added to the fabric, the new switch is assigned a license if one is available in the file license pool and if it does not already have a switch-based license.

After you register smart license, if you click Assign License for a switch that does not have a permanent license, a smart license is assigned to the switch. The priority of licenses that are assigned are in the following order:

1. Permanent
2. Smart
3. Eval

Disabling smart licensing unassigns licenses of switches that were smart-licensed.

The evaluation license is assigned for switches that do not support smart licensing. The license state is Eval and the license type is DCMN-Server. See Cisco DCNM Licensing Guide, Release 11.x to view the list of switches that support smart licensing.

Smart License

From Cisco DCNM Release 11.1(1), you can use the smart licensing feature to manage licenses at device-level and renew them if required. From Cisco DCNM Web UI, choose Administration > DCMN Server > License > Smart License. You will see a brief introduction on Cisco smart licensing, a menu bar, and the Switch Licenses area.

In the introduction, click Click Here to view the information on smart software licensing.

The menu bar has the following icons:

- **Registration Status**: Displays details of the current registration in a pop-up window when clicked. The value is UNCONFIGURED if the smart licensing is not enabled. After you enable the smart licensing without registering, the value is set to DEREISTERED. The value is set to REGISTERED after you register. Click the registration status to view the last action, account details, and other registration details in the Registration Details pop-up window.

- **License Status**: Specifies the status of the license. The value is UNCONFIGURED if the smart licensing is not enabled. After you enable the smart licensing without registering, the value is set to NO LICENSES IN USE. The value is set to AUTHORIZED or OUT-OF-COMPLIANCE after registering and assigning licenses. Click the license status to view the last action, last authorization attempt, next authorization attempt, and the authorization expiry in the License Authorization Details pop-up window.

- **Control**: Allows you to enable or disable smart licensing, register tokens, and renew the authorization.

The following table describes the fields that appear in the Switch Licenses section.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Specifies the license name.</td>
</tr>
</tbody>
</table>
Enabling Smart Licensing

To enable smart licensing from Cisco DCMN Web UI, perform the following steps:

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Choose Administration > DCMN Server > License > Smart License.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Click Control and choose Enable in the drop-down list to enable the smart licensing. A confirmation window appears.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Click Yes. Instructions to register the DCMN instance appear. The registration status changes from UNCONFIGURED to DEREGISTERED, and the license status changes from UNCONFIGURED to No Licenses in Use.</td>
</tr>
</tbody>
</table>

Registering a Cisco DCMN Instance

Before you begin

Create a token in Cisco Smart Software Manager.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Choose Administration > DCMN Server > License > Smart License.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Click Control and choose Register in the drop-down list. The Register window appears.</td>
</tr>
</tbody>
</table>
Step 3 Select the transport option to register the smart licensing agent.

The options are:

- **Default - DCMN communicates directly with Cisco's licensing servers**

 This option uses the following URL: https://tools.cisco.com/its/service/oddce/services/DDCEService

- **Transport Gateway - Proxy via Gateway or Satellite**

 Enter the URL if you select this option.

- **Proxy - Proxy via intermediate HTTP or HTTPS proxy**

 Enter the URL and the port if you select this option.

Step 4 Enter the registration token in the **Token** field.

Step 5 Click **Submit** to register the license.

The registration status changes from **DEREGISTERED** to **REGISTERED**. The name, count, and status of switch licenses appear.

Click **Registration Status: REGISTERED** to see the details of the registered token.

The switch details are updated under the **Switches/VDCs** section of the **License Assignments** tab. The license type and the license state of switches that are licensed using the smart license option are **Smart**.

What to do next

Troubleshoot communication errors, if any, that you encounter after the registration.

Renew Authorization

You can manually renew the authorization only if you have registered. Automatic reauthorization happens periodically. Click **License Status** to view details about the next automatic reauthorization. To renew authorization from Cisco DCMN Web UI, perform the following steps:

Procedure

Step 1 Choose **Administration > DCMN Server > License > Smart License**.

Step 2 Click **Control** and choose **Renew Authorization** in the drop-down list to renew any licensing authorizations.

A request is sent to Cisco Smart Software Manager to fetch updates, if any. The **Smart Licenses** window is refreshed after the update.

Disabling Smart Licensing

To disable smart licensing from Cisco DCMN Web UI, perform the following steps:
Procedure

Step 1 Select Control and select Disable to disable smart licensing.
A confirmation window appears.

Step 2 Click Yes.
The license status of the switches using this token, under the License Assignments tab, changes to Unlicensed. This token is removed from the list under the Product Instances tab in the Cisco Smart Software Manager.
If a smart license is not available and you disable smart licensing, release the license manually from the License Assignments tab.

Server License Files

Server License Files
The following table displays the Cisco DCNM server license fields.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filename</td>
<td>Specifies the license file name.</td>
</tr>
<tr>
<td>Feature</td>
<td>Specifies the licensed feature.</td>
</tr>
<tr>
<td>PID</td>
<td>Specifies the product ID.</td>
</tr>
<tr>
<td>SAN (Free/Total)</td>
<td>Displays the number of free versus total licenses for SAN.</td>
</tr>
<tr>
<td>LAN (Free/Total)</td>
<td>Displays the number of free versus total licenses for LAN.</td>
</tr>
<tr>
<td>Expiration Date</td>
<td>Displays the expiry date of the license.</td>
</tr>
</tbody>
</table>

Note Text in the Expiration Date field is in Red for licenses that expires in seven days.

Adding Cisco DCNM Licenses

To add Cisco DCNM licenses from Cisco DCNM, perform the following steps:

Before you begin
You must have network administrator privileges to complete the following procedure.

Procedure

Step 1 Choose Administration > DCNM Server > License to start the license wizard.
Step 2 Choose the Server License Files tab.
The valid Cisco DCNM-LAN and DCNM-SAN license files are displayed.
Ensure that the security agent is disabled when you load licenses.

Step 3 Download the license pack file that you received from Cisco into a directory on the local system.

Step 4 Click **Add License File** and select the license pack file that you saved on the local machine.

The file is uploaded to the server machine, which is saved into the server license directory, and then loaded on to the server.

Note Ensure that you do not edit the contents of the .lic file or the Cisco DCNM software ignores any features that are associated with that license file. The contents of the file are signed and must remain intact. When you accidently copy, rename, or insert the license file multiple times, the duplicate files are ignored, but the original is counted.

Viewing Server Federation

To view federation server information in Cisco DCNM, perform the following steps:

Procedure

Step 1 Choose **Administration > DCNM Server > Federation**.

The list of servers along with its IP address, status, location, local time, and data sources are displayed.

Step 2 Use the **Enable Automatic Failover** check box to turn on or turn off the failover functionality.

Step 3 In the **Location** column, double-click to edit the location.

If the status of one of the servers in the federation is **Inactive**, some functionality may not work unless the server status changes to **Active**.

Note Before upgrading Cisco DCNM, ensure that **Enable Automatic Failover** is unchecked. Otherwise, if one server within the federation is down, the devices are moved to the other DCNM server which comes up first after the upgrade. To prevent the automove for DCNM upgrade, you must disable the automove on all DCNMs within the federation, and upgrade the DCNM server one by one. Only after all the DCNMs upgrade successfully and run normally, then enable the auto move again.

Note In DCNM Federation, when **Enable Automatic Failover** is enabled, if a DCNM is down, the devices under its management is moved to the other DCNM. However after the DCNM is back, the devices will not move back.

Note When you upgrade Cisco DCNM Federation, you need to revisit the **Administration > DCNM Server > Federation** page, and run the Elasticsearch cluster sync command after the upgrade is complete. This will update the Elasticsearch configurations and restart performance monitoring. To run the Elasticsearch cluster sync command, you need to enable Elasticsearch clustering button in the **Administration > DCNM Server > Federation** page. To restart the performance monitoring, choose **Administration > DCNM Server > Server Status**, and click the green button.

The **ElasticSearch Cluster** section gives the details about the elastic search. It has the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Specifies the name of the elastic search cluster.</td>
</tr>
</tbody>
</table>
Elasticsearch Clustering

To sync each of the elastic search nodes that are associated with a federated server, into an elastic search cluster, perform the following steps:

Procedure

Step 1 In the **Federation** window, click **ElasticSearch Clustering**. The **Elastic Search Clustering** pop-up window appears.

Step 2 Click **Apply**. This operation synchronizes each of the elastic search nodes that are associated with a federated server, into an elastic search cluster. The operation is disruptive to any features using elastic search as a data store. Some features are impacted by ongoing data synchronization operations after the elastic search services are resumed.

Multi Site Manager

Procedure

Step 1 Multi-Site-Manager (MsM) provides a single pane for users to search for switches that are managed by DCNM globally. MSM can do realtime search to find out which switch globally handles the traffic for a given virtual machine based on IP address, name or mac address, and supporting VXLAN basing on segment ID as well. It provides hyperlink to launch the switch only. This window also plays the role of remote site registration. The registration only allows the current DCNM server to access the remote DCNM server or site. For the remote site to access the current DCNM server, registration is required on the remote site as well.

Step 2 Choose **Administration > DCNM Server > Multi Site Manager**. The MsM window displays the overall health or status of the remote site and the application health.

Step 3 You can search by **Switch, VM IP, VM Name, MAC, and Segment ID**.

Step 4 You can add a new DCNM server by clicking **+Add DCNM Server**. The **Enter Remote DCNM Server Information** window opens. Fill in the information that is required and click **OK** to save.

Step 5 Click **Refresh All Sites** to display the updated information.
Management Users

The Management Users menu includes the following submenus:

Remote AAA

To configure remote AAA from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose Administration > Management Users > Remote AAA Properties. The AAA properties configuration window appears.

Step 2 Use the radio button to select one of the following authentication modes:

- **Local**: In this mode the authentication authenticates with the local server.
- **Radius**: In this mode the authentication authenticates against the RADIUS servers specified.
- **TACACS+**: In this mode the authentication authenticates against the TACAS servers specified.
- **Switch**: In this mode the authentication authenticates against the switches specified.
- **LDAP**: In this mode the authentication authenticates against the LDAP server specified.

Step 3 Click Apply.

Note Restart the Cisco DCNM SAN services if you update the Remote AAA properties. You must restart all the instances of Cisco DCNM if federation is deployed.

Local

Procedure

Step 1 Use the radio button and select Local as the authentication mode.

Step 2 Click Apply to confirm the authentication mode.

Radius

Procedure

Step 1 Use the radio button and select Radius as the authentication mode.

Step 2 Specify the Primary server details and click Test to test the server.
TACACS+

Procedure

1. **Step 1** Use the radio button and select **TACACS+** as the authentication mode.
2. **Step 2** Specify the Primary server details and click **Test** to test the server.
3. **Step 3** (Optional) Specify the Secondary and Tertiary server details and click **Test** to test the server.
4. **Step 4** Click **Apply** to confirm the authentication mode.

Switch

Procedure

1. **Step 1** Use the radio button to select **Switch** as the authentication mode.
2. **Step 2** Specify the Primary Switch name and click **Apply** to confirm the authentication mode.
3. **Step 3** (Optional) Specify the names for Secondary and Tertiary Switches.
4. **Step 4** Click **Apply** to confirm the authentication mode.

LDAP

Procedure

1. **Step 1** Use the radio button and select **LDAP** as the authentication mode.
Step 2 In the **Host** field, enter either the IPv4 or IPv6 address.

If DNS service is enabled, you can enter DNS address (hostname) of the LDAP server.

Step 3 In the **Port** field, enter a port number.

Enter 389 for non-SSL; enter 636 for SSL. By default, the port is configured for non-SSL.

Step 4 Select the **SSL Enabled** check box, if SSL is enabled on the AAA server.

This ensures the integrity and confidentiality of the transferred data by causing the LDAP client to establish a SSL session, before sending the bind or search request.

Step 5 In the **Base DN** field, enter the base domain name.

The LDAP server searches this domain. You can find the base DN by using the `dsquery.exe user -name <display_name>` command on the LDAP server.

For example:

```
ldapserver# dsquery.exe users -name "John Smith"
```

```
CN=john smith,CN=Users,DC=cisco,DC=com
```

The Base DN is DC=cisco,DC=com.

Note Ensure that you enter the elements within the Base DN in the correct order. This specifies the navigation of the application when querying Active Directory.

Step 6 In the **Filter** field, specify the filter parameters.

These values are used to send a search query to the Active Directory. The LDAP search filter string is limited to a maximum of 128 characters.

For example:

- `$userid@cisco.com`

 This matches the user principal name.

- `CN=$userid,OU=Employees,OU=Cisco Users`
This matches the exact user DN.

Step 7 Choose an option to determine a role. Select either **Attribute** or **Admin Group Map**.

- **Admin Group Map**: In this mode, DCNM queries LDAP server for a user based on the Base DN and filter. If the user is a part of any user group, the DCNM role will be mapped to that user group.

- **Attribute**: In this mode, DCNM queries for a user attribute. You can select any attribute. When you choose **Attribute**, the **Role Admin Group** field changes to **Role Attributes**.

Step 8 Enter value for either **Roles Attributes** or **Role Admin Group** field, based on the selection in the previous step.

- If you chose **Admin Group Map**, enter the name of the admin group in the **Role Admin Group** field.

- If you chose **Attribute**, enter the appropriate attribute in the **Attributes** field.

Step 9 In the **Map to DCNM Role** field, enter the name of the DCNM role that will be mapped to the user.

Generally, **network-admin** or **network-operator** are the most typical roles.

For example:

- **Role Admin Group**: `dcnm-admins`
- **Map to DCNM Role**: `network-admin`

This example maps the Active Directory User Group `dcnm-admins` to the `network-admin` role.

To map multiple Active Directory User Groups to multiple roles, use the following format:

- **Role Admin Group**: `dcnm-admins`
- **Map To DCNM Role**: `dcnm-admins:network-admin;dcnm-operators:network-operator`

Note that **Role Admin Group** is blank, and **Map To DCNM Role** contains two entries delimited by a semicolon.

Step 10 In the **Access Map** field, enter the Role Based Access Control (RBAC) device group to be mapped to the user.

Step 11 Click **Test** to verify the configuration. The Test AAA Server window appears.

Step 12 Enter a valid **Username** and **Password** in the Test AAA Server window.

If the configuration is correct, the following message is displayed.

Authentication succeeded.

The cisco-av-pair should return 'role-network-admin' if this user needs to see the DCNM Admin pages. 'SME' roles will allow SME page access. All other roles - even if defined on the switches - will be treated as network operator.

This message is displayed regardless of 'Role Admin Group' or 'Attribute' mode. It implies that Cisco DCNM can query your Active Directory, the groups, and the roles are configured correctly.

If the test fails, the LDAP Authentication Failed message is displayed.

Warning Don’t save the configuration unless the test is successful. You cannot access DCNM if you save incorrect configurations.

Step 13 Click **Apply Changes** icon (located in the right top corner of the screen) to save the configuration.

Step 14 Restart the DCNM SAN service.
Managing Local Users

As an admin user, you can use Cisco DCMN Web UI to create a new user, assign the role and associate one or more groups or scope for the user.

This section contains the following:

Adding Local Users

Procedure

Step 1 From the menu bar, choose Administration > Management Users > Local. You see the Local Users page.
Step 2 Click Add User.
 You see the Add User dialog box.
Step 3 Enter the username in the User name field.
 Note The username is case sensitive, but the username guest is a reserved name, which is not case sensitive.
 The guest user can only view reports. The guest user cannot change the guest password, or access the Admin options in DCMN Web Client.
Step 4 From the Role drop-down list, select a role for the user.
Step 5 In the Password field, enter the password.
Step 6 In the Confirm Password field, enter the password again.
Step 7 Click Add to add the user to the database.
Step 8 Repeat Steps 2 through 7 to continue adding users.

Deleting Local Users

To delete local users from the Cisco DCMN Web UI, perform the following steps:

Procedure

Step 1 Choose Administration > Management Users > Local.
 The Local Users page is displayed.
Step 2 Select one or more users from the Local Users table and click the Delete User button.

• For Windows – On your system navigate to Computer Management > Services and Applications > Services. Locate and right click on the DCMN application. Select Stop. After a minute, right click on the DCMN application and select Start to restart the DCMN SAN service.

• For Linux – Go to /etc/init.d/FMServer.restart and hit return key to restart DCMN SAN service.
Step 3 Click Yes on the warning window to delete the local user. Click No to cancel deletion.

Editing a User

To edit a user from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose Administration > Management Users > Local.

Step 2 Use the checkbox to select a user and click the Edit User icon.

Step 3 In the Edit User window, the Username and Role are mentioned by default. Specify the Password and Confirm Password.

Step 4 Click Apply to save the changes.

User Access

You can select specific groups or fabrics that local users can access. This restricts local users from accessing specific groups or fabrics for which they have not been provided access. To do this, perform the following steps:

Procedure

Step 1 Choose Administration > Management Users > Local.

The Local Users window is displayed.

Step 2 Select one user from the Local Users table. Click User Access.

The User Access selection window is displayed.
Managing Clients

You can use Cisco DCNM to disconnect DCNM Client Servers.

Procedure

Step 1
Choose Administration > Management Users > Clients.
A list of DCNM Servers are displayed.

Step 2
Use the check box to select a DCNM server and click Disconnect Client to disconnect the DCNM server.

Note
You cannot disconnect a current client session.

Performance Setup

The Performance Setup menu includes the following submenus:
Performance Setup LAN Collections

If you are managing your switches with the Performance Manager, you must set up an initial set of flows and collections on the switch. You can use Cisco DCNM to add and remove performance collections. License the switch and keep it in the Managed Continuously state before creating a collection for the switch.

To add a collection, follow these steps:

Procedure

Step 1 Choose Administration > Performance Setup > LAN Collections.
Step 2 For all the licensed LAN switches, use the check boxes to enable performance data collection for Trunks, Access, Errors & Discards, and Temperature Sensor.
Step 3 Use the check boxes to select the types of LAN switches for which you want to collect performance data.
Step 4 Click Apply to save the configuration.
Step 5 In the confirmation dialog box, click Yes to restart the performance collector.

Performance Manager SAN Collections

If you are managing your switches with the performance manager, you must set up an initial set of flows and collections on the switch. You can use Cisco DCNM to add and remove performance collections. License the switch and keep it in the managed Continuously state before creating a collection for the switch. Only licensed fabrics appear in this window.

To add a collection, follow these steps:

Procedure

Step 1 Choose Administration > Performance Setup > SAN Collections.
Step 2 Select a fabric and select the Name, ISL/NPV Links, Hosts, Storage, FC Flows, and FC Ethernet to enable performance collection for these data types.
Step 3 Click Apply to save the configuration.
Step 4 In the confirmation dialog box, click Yes to restart the performance collector.

Performance Setup Thresholds

If you are managing your switches with the Performance Manager, you must set up an initial set of flows and collections on the switch. You can use Cisco DCNM to add and remove performance collections. License the switch and keep it in the Managed Continuously state before creating a collection for the switch.
Configuring User-Defined Statistics

To configure user-defined statistics from the Cisco DCNM Web UI, perform the following steps:

Procedure

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Choose Administration > Performance Setup > User Defined. The User-Defined statistics window is displayed.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>Click Add icon. The Add SNMP Statistic to Performance Collection window is displayed.</td>
</tr>
<tr>
<td>Step 3</td>
<td>From the Switch table, select the switch for which you want to add other statistics.</td>
</tr>
<tr>
<td>Step 4</td>
<td>From the SNMP OID drop-down list, select the OID.</td>
</tr>
<tr>
<td>Note</td>
<td>For SNMP OID ModuleX_Temp,IFHCInOctets.IFINDEX,IFHCOutOctets.IFINDEX, selected from drop-down list, you must replace ‘X’ with correct module number or the corresponding IFINDEX.</td>
</tr>
<tr>
<td>Step 5</td>
<td>In the Display Name box, enter a new name.</td>
</tr>
<tr>
<td>Step 6</td>
<td>From the SNMP Type drop-down list, select the type.</td>
</tr>
<tr>
<td>Step 7</td>
<td>Click Add to add this statistic.</td>
</tr>
</tbody>
</table>
Viewing Events Registration

To enable Send Syslog, Send Traps and Delayed Traps you must configure the following in the DCNM SAN client:

- **Enabling Send Syslog**: Choose Physical Attributes > Events > Syslog > Servers. Click Create Row, provide the required details, and click Create.
- **Enabling Send Traps**: Choose Physical Attributes > Events > SNMP Traps > Destination. Click Create Row, provide the required details, and click Create.
- **Enabling Delayed Traps**: Choose Physical Attributes > Events > SNMP Traps > Delayed Traps. In the Feature Enable column, use the check boxes to enable delayed traps for the switch and specify the delay in minutes.

Procedure

Step 1 Choose Administration > Event Setup > Registration. The SNMP and Syslog receivers along with the statistics information are displayed.

Step 2 Check the Enable Syslog Receiver check box and click Apply, to enable the syslog receiver if it is disabled in the server property.

To configure event registration or syslog properties, choose Administration > DCNM Server > Server Properties and follow the on-screen instructions.

Step 3 Select Copy Syslog Messages to DB and click Apply to copy the syslog messages to the database.

If this option is not selected, the events will not be displayed in the events page of the Web client.

The columns in the second table display the following:

- Switches sending traps
- Switches sending syslog
- Switches sending syslog accounting
- Switches sending delayed traps

Notification Forwarding

You can use Cisco DCMN Web UI to add and remove notification forwarding for system messages.

This section contains the following:

Adding Notification Forwarding

Cisco DCMN Web UI forwards fabric events through email or SNMPv1 traps.

To add and remove notification forwarding for system messages from the Cisco DCMN Web UI, perform the following steps:
Test forwarding works only for the licensed fabrics.

Procedure

Step 1
Choose **Administration > Event Setup > Forwarding**.

The events forwarding scope, the recipient email address, severity of the event and type of the event is displayed. The description Regex field is applicable only when the forwarding source is selected as Syslog while adding the events forwarder.

Step 2
Check the **Enable** checkbox to enable events forwarding.

Step 3
Specify the **SMTP Server** details and the **From** email address.

Step 4
Click **Apply** to save the configuration, or in the **Apply and Test** icon, use the drop-down to select the fabric. Click **Apply and Test** to save and test the configuration.

Step 5
In the **Event Count Filter**, add a filter for the event count to the event forwarder.

The forwarding stops forwarding an event if the event count exceeds the limit as specified in the event count filter. In this field, you can specify a count limit. Before an event can be forwarded, the Cisco DCMN checks if its occurrence exceeds the count limit. If it does, the event will not be forwarded.

Step 6
Select the **Snooze** checkbox and specify the **Start** date and time and the **End** date and time. Click **Apply** to save the configuration.

Step 7
Under the **Event Forwarder Rules** table, click the + icon to add an event forwarder rule.

You see the **Add Event Forwarder Rule** dialog box.

Step 8
In the **Forwarding Method**, choose either **E-mail** or **Trap**. If you choose **Trap**, a **Port** field is added to the dialog box.

Step 9
If you choose the **E-mail** forwarding method, enter the IP address in the **Email Address** field. If you choose the **Trap** method, enter the trap receiver IP address in the **Address** field and specify the port number.

You can either enter an IPv4 or IPv6 addresses or DNS server name in the **Address** field.

Step 10
For **Forwarding Scope**, choose the **Fabric/LAN** or **Port Groups** for notification.

Step 11
In the **Source** field, select **DCNM** or **Syslog**.

If you select **DCNM**, then:

a) From the **Type** drop-down list, choose an event type.

b) Check the **Storage Ports Only** check box to select only the storage ports.

c) From the **Minimum Severity** drop-down list, select the severity level of the messages to receive.

d) Click **Add** to add the notification.

If you select **Syslog**, then:

a) In the **Facility** list, select the syslog facility.

b) Specify the syslog **Type**.

c) In the **Description Regex** field, specify a description that matches with the event description.

d) From the **Minimum Severity** drop-down list, select the severity level of the messages to receive.

e) Click **Add** to add the notification.
Note: The Minimum Severity option is available only if the Event Type is set to All.

The traps that are transmitted by Cisco DCNM correspond to the severity type. A text description is also provided with the severity type.

```
trap type(s) = 40990 (emergency)
40991 (alert)
40992 (critical)
40993 (error)
40994 (warning)
40995 (notice)
40996 (info)
40997 (debug)
textDescriptionOid = 1, 3, 6, 1, 4, 1, 9, 9, 40999, 1, 1, 3, 0
```
You can view, add, modify, and delete suppressor rules from the table. You can create a suppressor rule from
the existing event table. Select a given event as the template, and invoke the rule dialog window. Event details
are automatically ported from the selected event in the event table to the input fields of the rule creation dialog
window.

This section includes the following:

Add Event Suppression Rules

To add rules to the Event Suppression from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose **Administration > Event Setup > Suppression**.

The **Suppression** window is displayed.

Step 2 Click the **Add** icon above the **Event Suppressors** table.

The **Add Event Suppressor Rule** window is displayed.

Step 3 In the **Add Event Suppressor Rule** window, specify the **Name** for the rule.

Step 4 Select the required **Scope** for the rule that is based on the event source.

In the Scope drop-down list, the LAN groups and the port groups are listed separately. You can choose
SAN/LAN, Port Groups or **Any**. For **SAN** and **LAN**, select the scope of the event at the Fabric or Group or
Switch level. You can only select groups for **Port Group** scope. If use selects **Any** as the scope, the suppressor
rule is applied globally.

Step 5 Enter the **Facility** name or choose from the **SAN/LAN Switch Event Facility** List.

If you do not specify a facility, wildcard is applied.

Step 6 From the drop-down list, select the Event **Type**.

If you do not specify the event type, wildcard is applied.

Step 7 In the **Description Matching** field, specify a matching string or regular expression.

The rule matching engine uses regular expression that is supported by Java Pattern class to find a match against
an event description text.

Step 8 Check the **Active Between** box and select a valid time range during which the event is suppressed.

By default, the time range is not enabled, i.e., the rule is always active.

Note In general, you must not suppress accounting events. Suppressor rule for Accounting events can be
created only for certain rare situations where Accounting events are generated by actions of DCNM
or switch software. For example, lots of `sync-snmp-password` AAA syslog events are automatically
generated during the password synchronization between DCNM and managed switches. To suppress
Accounting events, navigate to the **Suppressor table** and invoke the **Add Event Suppressor Rule**
dialog window.
Delete Event Suppression Rule

To delete event suppressor rules from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose **Administration > Event Setup > Suppression**.

Step 2 Select the rule from the list and click **Delete** icon.

Step 3 Click **Yes** to confirm.

Modify Event Suppression Rule

To modify the event suppressor rules, do the following tasks:

Procedure

Step 1 Choose **Administration > Event Setup > Suppression**.

Step 2 Select the rule from the list and click **Edit**.

You can edit **Facility, Type, Description Matching string**, and **Valid time range**.

Step 3 Click **Apply** to save the changes.

Credentials Management

The Credential Management menu includes the following submenus:

SAN Credentials

The Cisco DCNM home page, choose **Administration > Credentials Management > SAN Credentials** displays the SNMP access details to the fabric seed switch. If the user has validated the access to all the fabrics, the SNMP credentials for all the seed switches of the fabrics is displayed.

The switch credentials window for the Cisco DCNM has the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabric Name</td>
<td>The fabric name to which the switch belongs.</td>
</tr>
<tr>
<td>Seed Switch</td>
<td>IP address of the switch.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>User Name</td>
<td>Specifies the username of the Cisco DCNM user.</td>
</tr>
<tr>
<td>Password</td>
<td>Displays the encrypted form of the switch SNMP user.</td>
</tr>
<tr>
<td>SNMPv3/SSH</td>
<td>Specifies if the SNMP protocol is validated or not. The default value is false.</td>
</tr>
<tr>
<td>Auth/Privacy</td>
<td>Specifies the Authentication protocol The default value is NOT_SET.</td>
</tr>
<tr>
<td>Status</td>
<td>Displays the status of the switch</td>
</tr>
</tbody>
</table>

Before the Cisco DCNM user configures the fabric using SNMP, the user must furnish and validate SNMP credentials on the seed switch of the fabric. If the user does not provide valid credentials for the fabric seed switch, the Switch Credentials table shows the default values for SNMPv3/SSH and AuthPrivacy fields.

Click the switch row and enter correct credentials information. Click Save to commit the changes.

If the user changes the configuration, but does not provide a valid switch credential, the user action is rejected. Validate the switch credentials to commit your changes.

You can perform the following operations on this screen.

- To Revalidate the credentials:
 1. From the Cisco DCNM home page, choose Administration > Credentials Management > SAN Credentials, click the Fabric Name radio button to select a seed switch whose credentials needs to be validated.
 2. Click Revalidate.
 A confirmation message appears, stating if the operation was successful or a failure.

- To clear the switch credentials:
 1. From the Cisco DCNM home page, choose Administration > Credentials Management > SAN Credentials, click the Fabric Name radio button to select a seed switch to delete.
 2. Click Clear.
 A confirmation message appears.
 3. Click Yes to delete the switch credential from the DCNM server.

LAN Credentials

While changing the device configuration, Cisco DCNM uses the device credentials provided by you. However, if the LAN Switch credentials are not provided, Cisco DCNM prompts you to open the Administration > Credentials Management > LAN Credentials page to configure LAN credentials.

Cisco DCNM uses two sets of credentials to connect to the LAN devices:
• **Discovery Credentials**—Cisco DCNM uses these credentials during discovery and periodic polling of the devices.

• **Configuration Change Credentials**—Cisco DCNM uses these credentials when user tries to use the features that change the device configuration.

LAN Credentials Management allows you to specify configuration change credentials. Before changing any LAN switch configuration, you must furnish Configuration Change SSH credentials for the switch. If you do not provide the credentials, the configuration change action will be rejected.

These features get the device write credentials from LAN Credentials feature.

• Upgrade (ISSU)
• Maintenance Mode (GIR)
• Patch (SMU)
• Template Deployment
• POAP-Write erase reload, Rollback
• Interface Creation/Deletion/Configuration
• VLAN Creation/Deletion/Configuration
• VPC Wizard

You must specify the configuration change credentials irrespective of whether the devices were discovered initially or not. This is a one-time operation. Once the credentials are set, that will be used for any configuration change operation.

Default Credentials

Default credentials is used to connect all the devices that the user has access to. You can override the default credentials by specifying credentials for each of the devices in the Switch Table below.

Cisco DCNM tries to use individual switch credentials in the Switch Table, to begin with. If the credentials (username/password) columns are empty in the Switch Table, the default credentials will be used.

Switch Table

Switch table lists all the LAN switches that user has access. You can specify the switch credentials individually, that will override the default credentials. In most cases, you need to provide only the default credentials.

You can perform the following operations on this screen.

• **Edit Credentials, on page 263**
• **Validate Credentials, on page 263**
• **Clear Switch Credentials, on page 263**

The LAN Credentials for the DCNM User table has the following fields.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch</td>
<td>Displays the LAN switch name.</td>
</tr>
<tr>
<td>IP Address</td>
<td>Specifies the IP Address of the switch.</td>
</tr>
</tbody>
</table>
Field | **Description**
--- | ---
User Name | Specifies the username of the switch DCNM user.
Password | Displays the encrypted form of the SSH password.
Group | Displays the group to which the switch belongs.

Edit Credentials
Perform the following task to edit the credentials.

1. From the Cisco DCNM home page, choose **Administration > Credentials Management > LAN Credentials**, check the **Switch** check box for which you need to edit the credentials.
2. Click Edit icon.
3. Specify **User Name** and **Password** for the switch.

Validate Credentials
Perform the following task to validate the credentials.

1. From the **Administration > Credentials Management > LAN Credentials**, check the **Switch** check box for which you need to validate the credentials.
2. Click **Validate**.

 A confirmation message appears, stating if the operation was successful or a failure.

Clear Switch Credentials
Perform the following task to clear the switch credentials.

1. From the **Administration > Credentials Management > LAN Credentials**, check the **Switch** check box for which you need to clear the credentials.
2. Click **Clear**.
3. Click **Yes** to clear the switch credentials from the DCNM server.