THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS” WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: https://www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1721R)

© 2018 Cisco Systems, Inc. All rights reserved.
CONTENTS

CHAPTER 1
- **Overview** 1

CHAPTER 2
- **Dashboard** 3
 - Dashboard 3
 - Dashlets 4

CHAPTER 3
- **Topology** 7
 - Topology 7
 - Status 7
 - Scope 8
 - Searching 8
 - Quick Search 8
 - Host name (vCenter) 8
 - Host IP 9
 - Host MAC 9
 - Multicast Group 9
 - VXLAN ID (VNI) 9
 - VLAN 9
 - VXLAN OAM 9
 - Show Panel 10
 - Layouts 11
 - Zooming, Panning, and Dragging 12
 - Switch Slide-Out Panel 12
 - Beacon 12
 - Tagging 12
 - More Details 12
Contents

CHAPTER 4

Control 21

Fabrics 21

VXLAN BGP EVVPN Fabrics Provisioning 21

Creating a New VXLAN BGP EVVPN Fabric 23

Deleting a VXLAN BGP EVVPN Fabric 62

Return Material Authorization (RMA) 63

Interfaces 68

Adding Interfaces 69

Editing Interfaces 71

Deleting Interfaces 72

Shutting Down and Bringing Up Interfaces 72

Viewing Interface Configuration 72

Rediscovering Interfaces 73

Viewing Interface History 73

Deploying Interface Configurations 73

Creating External Fabric Interfaces 74

Creating and Deploying Networks and VRFs 74

Creating Networks for the Standalone Fabric 74

Editing Networks for the Standalone Fabric 80

Creating VRFs for the Standalone Fabric 81

Editing VRFs for the Standalone Fabric 86

Deploying Networks for the Standalone and MSD Fabrics 87

Deploying VRFs for the Standalone and MSD Fabrics 96

Undeploying Networks for the Standalone Fabric 101

Undeploying VRFs for the Standalone Fabric 101

Deleting Networks and VRFs 102

Creating an External Fabric 102
Multi-Site Domain for VXLan BGP EVPN Fabrics 110
Moving a Standalone Fabric (With Existing Networks and VRFs) to an MSD Fabric 136
Brownfield Deployment-Transitioning VXLAN Fabric Management to DCNM 136
Post DCNM 10.4(2) or 11.0(1) to DCNM 11.1(1) Upgrade for VXLAN BGP EVPN and MSD Fabrics 156
Enabling Freeform Configurations on Fabric Switches 157
Management 161
Resources 161
Adding, Editing, Re-Discovering and Removing VMware Servers 161
 Adding a Virtual Center Server 161
 Deleting a VMware Server 162
 Editing a VMware Server 162
 Rediscovering a VMware Server 162
Template Library 163
 Template Structure 164
 Template Format 164
 Template Variables 171
 Variable Meta Property 172
 Variable Annotation 177
 Templates Content 178
 Advanced Features 181
 Adding a Template 183
 Modifying a Template 184
 Copying a Template 185
 Deleting a Template 185
 Importing a Template 186
 Exporting a Template 186
Image Management 186
 Image Upload 186
 Deleting an Image 186
 Image Upload 187
 Install & Upgrade 187
 Upgrade History 187
 Switch Level History 193
Endpoint Locator 194

Configuring Endpoint Locator 195
Adding High Availability Node to Endpoint Locator Configuration 203
Configuring Endpoint Locator in DCNM High Availability Mode 203
Disabling Endpoint Locator 204
Troubleshooting Endpoint Locator 204

Streaming Telemetry for LAN Deployments 206
Guidelines and Recommendations 206
Pre-Requisites for Enabling the LAN Telemetry Feature 206
Enabling the Streaming Telemetry Feature 207
Viewing LAN Telemetry Health 208
Telemetry Streaming Interface 210

CHAPTER 5 Monitor 211

Inventory 211
Viewing Inventory Information for Switches 211
Viewing System Information 213
VXLAN 213
VLAN 214
FEX 216
VDCs 220
Switch On-Board Analytics 227
Viewing Inventory Information for Modules 231
Viewing Inventory Information for Licenses 232

Monitoring Switch 232
Viewing Switch CPU Information 232
Viewing Switch Memory Information 233
Viewing Switch Traffic and Errors Information 233
Viewing Switch Temperature 233
Enabling Temperature Monitoring 234
Viewing Accounting Information 234
Viewing Events Information 235

Monitoring LAN 235

Cisco DCNM LAN Fabric Configuration Guide, Release 11.1(1)
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitoring Performance Information for Ethernet</td>
<td>236</td>
</tr>
<tr>
<td>Monitoring ISL Traffic and Errors</td>
<td>236</td>
</tr>
<tr>
<td>Monitoring a vPC</td>
<td>237</td>
</tr>
<tr>
<td>Monitoring vPC Performance</td>
<td>238</td>
</tr>
<tr>
<td>Monitoring Endpoint Locator</td>
<td>239</td>
</tr>
<tr>
<td>Exploring Endpoint Locator Details</td>
<td>239</td>
</tr>
<tr>
<td>LAN Telemetry</td>
<td>246</td>
</tr>
<tr>
<td>Monitoring LAN Telemetry</td>
<td>247</td>
</tr>
<tr>
<td>Alerts</td>
<td>247</td>
</tr>
<tr>
<td>Interface</td>
<td>250</td>
</tr>
<tr>
<td>Physical Overview</td>
<td>254</td>
</tr>
<tr>
<td>Logical Overview</td>
<td>256</td>
</tr>
<tr>
<td>Control Plane</td>
<td>258</td>
</tr>
<tr>
<td>Environment</td>
<td>260</td>
</tr>
<tr>
<td>Alarms</td>
<td>275</td>
</tr>
<tr>
<td>Viewing Alarms and Events</td>
<td>275</td>
</tr>
<tr>
<td>Monitoring and Adding Alarm Policies</td>
<td>276</td>
</tr>
<tr>
<td>Activating Policies</td>
<td>277</td>
</tr>
<tr>
<td>Deactivating Policies</td>
<td>278</td>
</tr>
<tr>
<td>Importing Policies</td>
<td>278</td>
</tr>
<tr>
<td>Exporting Policies</td>
<td>278</td>
</tr>
<tr>
<td>Editing Policies</td>
<td>278</td>
</tr>
<tr>
<td>Deleting Policies</td>
<td>279</td>
</tr>
<tr>
<td>Administration</td>
<td>281</td>
</tr>
<tr>
<td>DCMN Server</td>
<td>281</td>
</tr>
<tr>
<td>Starting, Restarting, and Stopping Services</td>
<td>281</td>
</tr>
<tr>
<td>Viewing Log Information</td>
<td>282</td>
</tr>
<tr>
<td>Server Properties</td>
<td>282</td>
</tr>
<tr>
<td>Modular Device Support</td>
<td>283</td>
</tr>
<tr>
<td>Managing Licenses</td>
<td>283</td>
</tr>
<tr>
<td>License Assignments</td>
<td>284</td>
</tr>
<tr>
<td>Smart License</td>
<td>285</td>
</tr>
<tr>
<td>Server License Files</td>
<td>288</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>Native HA</td>
<td>289</td>
</tr>
<tr>
<td>Multi Site Manager</td>
<td>290</td>
</tr>
<tr>
<td>Management Users</td>
<td>293</td>
</tr>
<tr>
<td>Remote AAA</td>
<td>293</td>
</tr>
<tr>
<td>Local</td>
<td>294</td>
</tr>
<tr>
<td>Radius</td>
<td>294</td>
</tr>
<tr>
<td>TACACS+</td>
<td>295</td>
</tr>
<tr>
<td>Switch</td>
<td>295</td>
</tr>
<tr>
<td>LDAP</td>
<td>295</td>
</tr>
<tr>
<td>Managing Local Users</td>
<td>296</td>
</tr>
<tr>
<td>Adding Local Users</td>
<td>296</td>
</tr>
<tr>
<td>Deleting Local Users</td>
<td>296</td>
</tr>
<tr>
<td>Editing a User</td>
<td>297</td>
</tr>
<tr>
<td>User Access</td>
<td>297</td>
</tr>
<tr>
<td>Managing Clients</td>
<td>297</td>
</tr>
<tr>
<td>Performance Setup</td>
<td>298</td>
</tr>
<tr>
<td>Performance Setup LAN Collections</td>
<td>298</td>
</tr>
<tr>
<td>Event Setup</td>
<td>298</td>
</tr>
<tr>
<td>Viewing Events Registration</td>
<td>298</td>
</tr>
<tr>
<td>Notification Forwarding</td>
<td>299</td>
</tr>
<tr>
<td>Adding Notification Forwarding</td>
<td>299</td>
</tr>
<tr>
<td>Removing Notification Forwarding</td>
<td>300</td>
</tr>
<tr>
<td>Event Suppression</td>
<td>301</td>
</tr>
<tr>
<td>Add Event Suppression Rules</td>
<td>301</td>
</tr>
<tr>
<td>Delete Event Suppression Rule</td>
<td>302</td>
</tr>
<tr>
<td>Modify Event Suppression Rule</td>
<td>302</td>
</tr>
<tr>
<td>Credentials Management</td>
<td>302</td>
</tr>
<tr>
<td>LAN Credentials</td>
<td>303</td>
</tr>
</tbody>
</table>

CHAPTER 7

Applications | 305 |
Compute	306
Adding Computes into the Cluster Mode	307
Deleting a Compute	308
Installing a DCNM Compute	309
Overview

Cisco Data Center Network Manager (Cisco DCNM) automates the infrastructure of Cisco Nexus 5000, 6000, 7000, and 9000 Series Switches and Cisco MDS 9000 Series switches. Cisco DCNM enables you to manage multiple devices, while providing ready-to-use control, automation, monitoring, visualization, and troubleshooting capabilities.

The Cisco DCNM home page contains a navigation pane to the left, and shortcuts to a few Cisco DCNM features in the middle pane.

This guide provides comprehensive information about the UI functionalities for the LAN Fabric deployment functionalities.

The top pane displays the following UI elements:

- **Help (?)**: Launches the context-sensitive online help.
- **User Role**: Displays the role of the user who is currently logged in, for example, admin.
- **Gear icon**: Displays information about Cisco DCNM, enables you to change the Cisco DCNM UI password, and allows you to log out from Cisco DCNM UI.

For more information about Cisco DCNM, see:

CHAPTER 2

Dashboard

This chapter contains the following topics:

- Dashboard, on page 3

Dashboard

The intent of Dashboard is to enable network and storage administrators to focus on particular areas of concern around the health and performance of data center switching. This information is provided as 24-hour snapshots. The functional view of LAN switching consists of six dynamic dashlets that display information in the context of the selected scope by default. The scope can be adjusted in the upper right corner of the window to display focused information that is particular to the managed domain. It offers details of a specific topology or set of topologies that is a part of the data center scope.

The various scopes that are available on the Cisco Data Center Network Manager (DCNM) web interface are:

- Data Center
- Default_LAN
- Custom scopes that you create

From the left menu bar, choose Dashboard. The Dashboard window displays the default dashlets.

The following are the default dashlets that appear in the Dashboard window:

- Events
- Data Center
- Network Map
- Link Traffic
- Audit Log
- Server Status

From the Dashlets drop-down list, you can choose more dashlets so that they are added to the dashboard. The panels can be added, removed, and dragged around to reorder.
Dashlets

By default, a subset of the available dashlets is automatically displayed in the dashboard. To add a dashlet that is not automatically displayed in a dashboard, from the Cisco DCNM Web UI, perform the following steps:

Procedure

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Choose Dashboard.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>From the Dashlets drop-down list, choose the dashlet that you want to add in the dashboard.</td>
</tr>
</tbody>
</table>

In the Dashlets drop-down list, an icon appears before the selected dashlet.

The following table lists the dashlets that you can add on the Dashboard window.

<table>
<thead>
<tr>
<th>Dashlet</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Events</td>
<td>Displays events with Critical, Error, and Warning severity. In this dashlet, click the Show Acknowledged Events link to go to the Monitor > Switch > Events.</td>
</tr>
<tr>
<td>Link Traffic</td>
<td>Displays a diagram of Inter-Switch Link (ISL) and saturation link for transmitting and receiving in the data center.</td>
</tr>
<tr>
<td>Data Center</td>
<td>Displays the number of access, spine and leaf devices, and a generic health score for each switch group in the current scope. Devices are aggregated by type within a switch group.</td>
</tr>
<tr>
<td>Audit Log</td>
<td>Displays the accounting log table of Cisco DCNM.</td>
</tr>
<tr>
<td>Network Map</td>
<td>Displays the populated switch groups that are visible in your Role Based Access Control (RBAC) scope on a world map. If you use the scope selector, it limits the set of switch groups displayed. If you use the pop-up option, the map opens in a new tab and can be configured.</td>
</tr>
<tr>
<td></td>
<td>• The network map dialog box has properties that are different from the Summary dashboard view:</td>
</tr>
<tr>
<td></td>
<td>• You can click and drag nodes to move them around the map. The map saves their new positions.</td>
</tr>
<tr>
<td></td>
<td>• You can double click a node to trigger a slider that contains the summary inventory information pertaining to a specific switch group.</td>
</tr>
<tr>
<td></td>
<td>• You can upload an image of your choice as the background to the network map.</td>
</tr>
<tr>
<td>Dashlet</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Dashboard</td>
<td>You will be prompted to upload an image file with recommended dimension, which is the current window size. Reset returns the network map to its default state, resetting the position of the nodes and clearing the custom image.</td>
</tr>
<tr>
<td>Server Status</td>
<td>Displays the status of DCNM and federation servers, and the health check status for the components.</td>
</tr>
<tr>
<td>Top ISLs/Trunks</td>
<td>Displays the performance data for the top ten performing ISLs, trunk ports or both. Each entry shows the current average receive and transmit percentage, with a graph depicting the percentage of time each trunk spent exceeding the currently configured thresholds.</td>
</tr>
<tr>
<td>Top SAN End Ports (SAN only)</td>
<td>Displays the performance data for the top ten performing SAN host and storage ports. Each entry shows the current receive and transmit percentage, with a graph depicting the percentage of time each trunk spent exceeding the currently configured thresholds.</td>
</tr>
<tr>
<td>Top SAN End Ports (SAN only)</td>
<td>Note: This dashlet is only for SAN.</td>
</tr>
<tr>
<td>Top CPU</td>
<td>Displays CPU utilization for the discovered switches over the last 24 hours, with a red bar displaying the high watermark for that 24-hour period.</td>
</tr>
<tr>
<td>Top Temperature</td>
<td>Displays the module temperature sensor details of switches.</td>
</tr>
<tr>
<td>Top Temperature</td>
<td>Note: This dashlet is only for LAN.</td>
</tr>
<tr>
<td>Health</td>
<td>Displays the health summary that contains two columns displaying the summary of problems and summary of events for the past 24 hours.</td>
</tr>
<tr>
<td></td>
<td>Click the count adjacent to the warnings pertaining to switches, ISLs, hosts, or storage (other than 0) to view the corresponding inventory for that fabric.</td>
</tr>
<tr>
<td></td>
<td>Click the count adjacent to the event severity levels (Emergency, Alert, Critical, Error, Warning, Notice, Info, or Debug) to view a summary of the corresponding events and descriptions.</td>
</tr>
<tr>
<td>Errors</td>
<td>Displays the error packets for the selected interface. This information is retrieved from the Errors > In-Peak and Errors > Out-Peak columns of the Monitor > LAN / Ethernet page.</td>
</tr>
</tbody>
</table>
Dashlets

<table>
<thead>
<tr>
<th>Dashlet</th>
<th>Description</th>
</tr>
</thead>
</table>
| Discards | Displays the error packets that are discarded for the selected interface.
Note The Discards dashlet is only for LAN. |
| Inventory (Ports) | Displays the ports inventory summary information. |
| Inventory (Modules) | Displays the switches on which the modules are discovered, the models name and the count. |
| Inventory (ISLs) | Displays the ISLs inventory summary information, such as the category and count of ISLs. |
| Inventory (Logical) | Displays the logical inventory summary information, such as the category and count of logical links. |
| Inventory (Switches) | Displays the switches inventory summary information such as the switch models and the corresponding count. |
| Inventory (Port Capacity)| Displays the port capacity inventory summary information such as the tiers, the number and percentage of the available ports, and the remaining days. |

Note To restore the default dashlets in the dashboard page, click the Default Set link in the Dashlet drop-down list.
Topology

The Topology window displays color-encoded nodes and links that correspond to various network elements, including switches, links, fabric extenders, port-channel configurations, virtual port-channels, and more. For information about each of these elements, hover your cursor over the corresponding element. Also, click a node or the line for a link. A slide-in pane appears from the right side of the window. This pane displays detailed information about either the switch or the link.

You can open multiple tabs simultaneously and can function side by side to facilitate comparison and troubleshooting.

Status

The color coding of each node and link corresponds to its state. The colors and what they indicate are described in the following list:

- Green: Indicates that the element is in good health and functioning as intended.
- Yellow: Indicates that the element is in warning state and requires attention to prevent any further problems.
- Red: Indicates that the element is in critical state and requires immediate attention.
- Gray: Indicates lack of information to identify the element or the element has been discovered.

In the Topology window, FEX appears in gray (Unknown or n/a) because health is not calculated for FEX.

Similarly, in the Fabric Builder topology window there is no configuration sync status for the FEX and it appears as n/a.)
• Black: Indicates that the element is down.

Scope

You can search the topology based on the scope. The default scopes available from the SCOPE drop-down list is: **DEFAULT_LAN**

The following search options are available for **DEFAULT_LAN**:

- Quick Search
- Host name (vCenter)
- Host IP
- Host MAC
- Multicast Group
- VXLAN ID (VNI)
- VLAN
- FabricPath
- VXLAN OAM

Searching

When the number of nodes is large, it quickly becomes difficult to locate the intended switches and links. You can quickly find switches and links by performing a search. You are also able to search for VM tracker and generic setups. Searching feature enables you to see which leaf the host is connected to.

The following searches are available:

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>By default, Quick Search is selected.</td>
</tr>
</tbody>
</table>

Quick Search

Quick Search enables you to search for devices by name, IP address, model, serial number, and switch role. As you enter a search parameter in the **Search** field, the corresponding switches are highlighted in the topology. To perform a search for multiple nodes and links, separate multiple keywords using a comma, for example, ABCD12345, N7K, sw-de4-12345, core, 172.23.45.67. Cisco DCNM supports wildcard searches too. If you know a serial number or switch name partially, you can build a search based on these partial terms that are preceded by an asterisk, for example, ABCD*, sw*12345, core, and so on.

To limit the scope of your search to a parameter, enter the parameter name followed by a space and the parameter in the Search field, for example, name=sw*12345, serialNumber=ABCD12345, and so on.

Host name (vCenter)

The host name search enables you to search for hosts by using vCenter.
Host IP

You can search the topology using host IP addresses. The **Host IP** searches the switches in the scope to locate the hosts that match the IP address that you enter in the **Search** field. The **Host IP** search supports IPv4 and IPv6 addresses. From the Search drop-down list, choose **Host IP** to search the topology using the IP Address of the host device. Enter a host IP address in the **Search** field and press **Enter**. Click **Details** to view the corresponding host details.

Host MAC

You can search a topology using host MAC addresses. The **Host MAC** searches the switches in the scope to locate the hosts that match the MAC address that you enter in the **Search** field. From the Search drop-down list, choose **Host MAC** to search the topology using a host MAC address. Enter a host MAC address in the Search field and press **Enter**. Click **Details** to view the corresponding host details.

Multicast Group

The **Multicast Group** search is limited to the VXLAN context, VXLAN tunnel endpoint or VTEP switches, to get VXLAN IDs (VNIs) associated with this multicast address.

Select the **Multicast Group** search from the drop-down list, enter a multicast address in the search field, and press **Enter**. Click the **Details** link next to the search field to get the detailed multicast address table. The table displays switches, which have the searched multicast address configured on them, along with associated VNI, VNI status, and mapped VLAN.

You can also hover over switches that are highlighted to view details about the search you have performed.

VXLAN ID (VNI)

The VXLAN ID or the VNI search lets you search the topology by VNI. Select the **VXLAN ID (VNI)** search from the drop-down list. Enter a VNI in the search field and press **Enter**. Click the **Details** link next to the search field to view the detailed VNI table. The table displays the switches that have VNI configured on them along with associated multicast address, VNI status, and mapped VLAN.

VLAN

Search by a given VLAN ID. VLAN search provides the search for the VLAN configured on the switch or the links. If STP is enabled, then it provides information that is related to the STP protocol and the STP information for links.

VXLAN OAM

You can track details such as reachability and actual path of the flows in a VXLAN EVPN based-fabric topology by choosing the **VXLAN OAM** option from the **Search** drop-down list or by entering **VXLAN OAM** in the **Search** field. This displays the **Switch to switch** and **Host to host** tabs. DCNM highlights the route on the topology between the source and destination switch for these two options.

The **Switch to switch** option provides the VXLAN OAM ping and traceroute test results for the VTEP-to-VTEP use-case. Provide the following values to enable search by using the **Switch to switch** option:

- From the **Source Switch** drop-down list, choose the source switch.
- From the **Destination Switch** drop-down list, choose the destination switch.
- From the **VRF** drop-down list, choose or enter the VRF details.
• Check the **All Path Included** check box to include all the paths in the search results.

The **Host to host** option provides the VXLAN OAM pathtrace results for the exact path that is taken by a given flow from the VTEP or switch that is connected to the source host to VTEP or switch that is connected to the destination host. For the **Host to host** use-case, there are two suboptions:

• (Optional) In the **Source Port** field, choose Layer 4 source port number from the drop-down list or enter its value.

• (Optional) In the **Destination Port** field, choose destination port number or enter its value.

• (Optional) In the **Protocol** field, choose the protocol value from the drop-down list or enter its value. This is the Layer 4 protocol, usually TCP or UDP.

• Click the **Interchange/Swap Source and Destination IPs (and MACs if applicable)** icon to interchange the source and destination IP addresses. This interchange allows a quick trace of the reverse path without reentering the host IP addresses or MAC addresses.

Provide the following values to enable search using the **Host to host** option:

• In the **Source IP** field, enter the IP address of the source host.

• In the **Destination IP** field, enter the IP address of the destination host.

• In the **VRF** field, choose VRF from the drop-down list or enter the VRF name that is associated with the hosts.

Enter values for the following additional fields:

Show Panel

You can choose to view your topology based on the following options:

• **Auto Refresh**: Check this check box to automatically refresh the topology.

• **Switch Health**: Check this check box to view the switch's health status.

• **FEX**: Check this check box to view the Fabric Extender.

Note

The FEX feature is available only on LAN devices. Therefore, checking this check box displays only the Cisco Nexus switches that support FEX.
FEX is also not supported on Cisco Nexus 1000V devices. Therefore, such devices will not be displayed in the topology when you check the FEX check box.

Links: Check this check box to view links in the topology. The following options are available:

- **Errors Only**: Click this radio button to view only links with errors.
- **All**: Click this radio button to view all the links in the topology.
- **VPC Only**: Check this check box to view only vPC peer-links and vPCs.
- **Bandwidth**: Check this check box to view the color coding based on the bandwidth that is consumed by the links.

OTV: Check this check box to show the Overlay Transport Virtualization (OTV) topology with the cloud icon and the dotted links from the OTV edge devices. Hovering the cursor over the cloud and the links shows the relevant information for OTV topology, such as control group, extended VLANs, and so on. The OTV search field appears below the filter field. Use the OTV search field to search the shown OTV topology that is based on Overlay ID and Extended VLAN ID. The searched virtual links based on the Overlay ID and Extended VLAN ID are marked green.

A **Details** link appears after you check the OTV check box. Clicking the link shows the OTV topology data. The **Overlay Network** column shows whether the particular topology is multicast based or unicast based. The **Edge Device** column displays the edge switches in the particular OTV topology. The other columns display the corresponding overlay interface, extended VLANs, join interface, and data group information.

UI controls: Check the check box to show or hide the various controls on the Topology window.

Compute: Check the check box to enable the compute visibility on the Topology window.

Refresh: You can also perform a topology refresh by clicking the **Refresh** icon in the upper-right corner of this panel.

Layouts

The topology supports different layouts along with a **Save Layout** option that remembers how you positioned your topology.

- **Hierarchical** and **Hierarchical Left-Right**: Provide an architectural view of your topology. Various switch roles can be defined that will draw the nodes on how you configure your CLOS topology.

Note: When running a large-scale setup, being able to easily view all your switches on a leaf-tier can become difficult. To mitigate this, DCNM splits your leaf-tier every 16 switches.

- **Random**: Nodes are placed randomly on the window. DCNM tries to make a guess and intelligently place nodes that belong together in close proximity.

- **Circular** and **Tiered-Circular**: Draw nodes in a circular or concentric circular pattern.
• **Custom saved layout:** Nodes can be dragged around according to your preference. After you position as required, click **Save** to retain the positions. The next time you come to the topology, DCNM will draw the nodes based on your last saved layout positions.

Before a layout is chosen, DCNM checks if a custom layout is applied. If a custom layout is applied, DCNM uses it. If a custom layout is not applied, DCNM checks if switches exist at different tiers, and chooses the Hierarchical layout or the Hierarchical Left-Right layout. Force-directed layout is chosen if all the other layouts fail.

Zooming, Panning, and Dragging

You can zoom in and zoom out using the controls that are provided at the bottom left of the windows or by using your mouse's wheel.

To pan, click and hold anywhere in the whitespace and drag the cursor up, down, left, or right.

To drag switches, click, hold, and move the cursor around the whitespace region of the topology.

Switch Slide-Out Panel

You can click on the switch to display the configured switch name, IP address, switch model, and other summary information such as status, serial number, health, last-poll CPU utilization, and last-poll memory utilization.

Beacon

This button will be shown for switches that support the **beacon** command. After beaconing starts, the button will show a countdown. By default, the beaconing will stop after 60 seconds, but you can stop it immediately by clicking **Stop Beacon**.

Note

The default time can be configured in *server.properties* file. Search for **beacon.turnOff.time**. The time value is in milliseconds. Note that this requires a server restart to take effect.

Tagging

Tagging is a powerful yet easy way to organize your switches. Tags can be virtually any string, for example, *building 6, floor 2, rack 7, problem switch, and Justin debugging*.

Use the search functionality to perform searches based on tags.

More Details

Click **Show more details**; detailed information appears in the switch's dashboard.

Link Slide-Out Panel

You can click a link to view the status and the port or switches that describe the link.
24-Hour Traffic

This feature requires **Performance Monitoring** to be turned ON. When **Performance Monitoring** is ON, traffic information is collected and the aggregate information is displayed along with a graph showing traffic utilization.

vCenter Compute Visualization

In virtualized environments, any kind of troubleshooting starts with identifying the network attachment point for the virtual machines. This means that a quick determination of the server, virtual switch, port group, VLAN, associated network switch, and physical port is critical. This requires multiple touch points and interactions between the server and the network administrator as well as reference to multiple tools (compute orchestrator, compute manager, network manager, network controller, and so on).

This allows you to visualize the vCenter-managed hosts and their leaf switch connections on the **Topology** window. The visualization options include viewing only the attached physical hosts, only the VMs, or both. When you select both, the topology all the way from the leaf switches to the VMs, including the virtual switches are displayed. The VM Search option highlights the path of the VM. Hover the cursor over a host or a connected uplink to view key information relevant to that entity. Up to four vCenters are supported.

Note

- The vCenter Compute Visualization feature is supported on both the LAN Classic and Easy Fabrics installations for the vCenter-managed computes.
- It is not recommended to use special characters in VM name as the VMware vCenter Server and ESX/ESXi Server do not escape special characters used in the display names.

Figure 1: vCenter Compute Visualization
Enabling vCenter Compute Visualization

To enable the vCenter Compute Visualization feature from the Cisco DCNM Web UI, perform the following steps.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Choose Control > Management > Virtual Machine Manager. The Control > Management > Virtual Machine Manager window appears.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Click the + icon to add a new VMware vSphere vCenter.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Enter the server IP address, username, and password to the vCenter. vCenter version 5.5 or later is required. After the initial discovery, the information that is received from the vCenter is appropriately organized and displayed on the main Topology window. An extra menu item labeled Compute appears on the Show pane.</td>
</tr>
</tbody>
</table>
Using vCenter Compute Visualization

To use the vCenter Compute Visualization feature from the Cisco DCNM Web UI, perform the following steps.

Procedure

Step 1 Choose **Topology**.

Step 2 In the **Show** list, select **Compute** to enable the compute visibility.

By default, the **Host** check box is selected. This implies that the topology shows the VMWare vSphere ESXi hosts (servers), that are attached to the network switches.

The following options are available in the Compute Visualization feature.

- **Host**
- **All**
- **VM Only**
In the **All** mode, you can see double-arrows that help you to extend a node. If you double-click this node, you can see all the hidden child nodes.

Step 3
Click a specific ESXi host to view additional information.
The expanded topology displayed in the following figure, shows the virtual switches (both vSwitch and Distributed Virtual Switch) that are configured on the specific ESXi host.

Step 4
When changing from the **Host** suboption to the **All** suboption, all the compute resources are expanded.
When **All** is selected, an expanded view of all the hosts, virtual switches, and virtual machines that are part of the topology are displayed. If a VM is powered off, it is shown in red color; otherwise, it is shown in green color.

Note The vCenter search is unavailable when compute visualization is not enabled. Also, this search is available only when you select the **All** option.

Step 5 Instead of browsing through the large set of available information, to focus on a specific VM. Enter a host name (vCenter) in the **Search** field at the top-left. When you start entering the characters, the topology is instantaneously updated with matching objects.

Using the Virtual Machine List

The **Virtual Machine List** allows you to view the complete list of virtual machines.

Procedure

Step 1 Choose **Topology**.

Step 2 Click **VM List**.

![VM List](image)

Click **Export** to export the list of virtual machines into a .csv file.

Click on the name of a VM to view additional information about that virtual machine.
When you export the VM List to a .CSV file, the .CSV file may appear correct. However, when the .CSV file is imported into Microsoft Excel, it might get reformatted, for example, the VLAN column 1-1024 could be reformatted to a date 1/1/2019. Therefore ensure that columns are formatted correctly in Microsoft Excel while importing the .CSV file.

Resynchronizing Virtual Machines

Procedure

Step 1 Choose **Topology**.

Step 2 Click **Resync vCenters** icon next to **Compute**.
Selecting a Column in the Virtual Machine List

Procedure

Step 1
In the **VM List** window, click the **Columns** under the gear icon drop-down list.

Step 2
Select the columns that you want to display in the VM list table. If you select additional columns, click the Resync **vCenters** icon to refresh and view the new columns.
Periodic resynchronization with the vCenter happens in the back-end. To configure the resync timer value, choose Administration > DCNM Server > Server Properties. In the #GENERAL > DATA SOURCES VMWARE section, specify the timer value in the vmm.resync.timer field. The default value is 60 (for 60 minutes), and this value can be increased or decreased. If you enter a value that is less than 60 minutes, the feature is disabled.

Troubleshooting vCenter Compute Visualization

The following error window appears when the vCenter times out. This error might occur when the discovery of the vCenter is in progress.

![Error Window](image)

Viewing Topology in Scale Mode

The following window shows how the Topology window appears after about 200 devices are available in the topology. Note that the topology graph is trimmed down at scale.

![Topology Window](image)
CHAPTER 4

Control

The following terms are referred in the document:

- Greenfield Deployments: Applicable for provisioning new VXLAN EVPN fabrics.
- Brownfield Deployments: Applicable for existing VXLAN EVPN fabrics.
 - Migrate NFM Managed VXLAN EVPN Fabrics to DCNM.
 - Migrate CLI configured VXLAN EVPN fabrics to DCNM.
- Upgrades: Applicable for VXLAN EVPN fabrics created with previous DCNM versions.
 - Migrate VXLAN fabrics built with DCNM 10.4.2 using POAP templates for Underlay provisioning and Top-down Overlay provisioning, to DCNM 11.1.
 - Migrate VXLAN fabrics built with DCNM 11.0 to DCNM 11.1.

This chapter contains the following topics:

- Fabrics, on page 21
- Management, on page 161
- Template Library, on page 163
- Image Management, on page 186
- Endpoint Locator, on page 194
- Streaming Telemetry for LAN Deployments, on page 206

Fabrics

This section contains the following topics:

VXLAN BGP EVPN Fabrics Provisioning

In DCNM 11.0(1), fabric creation was enhanced to provision VXLAN BGP EVPN underlay network parameters to the fabric switches. The concept of Multi-Site Domain (MSD) fabrics was introduced.

In the DCNM 11.1(1) release, further enhancements are made. For the LAN Fabric deployment type, fabric template support is introduced for Cisco Nexus 3000 Series switches, in addition to the existing support for Cisco Nexus 9000 Series switches.
Support of simplified CLIs for VXLAN EVPN fabrics is not supported in either greenfield or brownfield deployments.

The DCNM GUI functions for creating, deploying, and migrating VXLAN fabrics are as follows

Control > Fabric Builder menu option (under the **Fabrics** sub menu).

Create, edit, and delete a fabric:

- Create new VXLAN, MSD and external VXLAN fabrics.
- View the VXLAN and MSD fabric topologies, including connections between fabrics.
- Update fabric settings.
- Save and deploy updated changes.
- Delete a fabric (if devices are removed).

Fabric Membership changes

- Transition existing VXLAN fabric management to DCNM (through the Preserve Config = Yes option).
- Deploy new fabrics or add new devices to an existing fabric (through the bootstrap or Preserve Config = No options).
- Move fabrics into or out of an MSD.

Device discovery and provisioning start-up configurations on new switches:

- Add switch instances to the fabric.
- Provision start-up configurations and an IP address to a new switch through POAP configuration.
- Update switch policies, save and deploy updated changes.
- Create intra-fabric and inter-fabric links (also called Inter-Fabric Connections [IFCs]).

Transitioning VXLAN fabric management to DCNM

In DCNM 11.1(1) release, transitioning existing VXLAN fabric management to DCNM is introduced.

Control > Interfaces menu option (under the **Fabrics** sub menu).

Underlay provisioning:

- Create, deploy, view, edit and delete a port-channel, vPC switch pair, straight through FEX, AA FEX, loopback, and subinterface.
- Create breakout and unbreakout ports.
- Shut down and bring up interfaces.
- Rediscover ports and view interface configuration history.
- Designate a switch interface as a routed port, trunk port, OSPF interface, and so on.

Note vPC support is added for BGWs in the DCNM 11.1(1) release.
Control > Networks & VRFs menu option (under theFabrics sub menu).

Overlay network provisioning.

- Create new overlay networks and VRFs (from the range specified in fabric creation).
- Provision the overlay networks and VRFs on the switches of the fabric.
- Undeploy the networks and VRFs from the switches.
- Remove the provisioning from the fabric in DCNM.

This chapter mostly covers standalone fabric-related configurations. MSD fabric documentation is available in a separate chapter. The deployment of networks and VRFs is covered under the Networks and VRFs Creation and Deployment topic. Step by step configuration:

Creating a New VXLAN BGP EVPN Fabric

1. Choose Control > Fabric Builder.

The Fabric Builder screen appears. When you log in for the first time, the Fabrics section has no entries. After you create a fabric, it is displayed on the Fabric Builder screen, wherein a rectangular box represents each fabric.

2. Click Create Fabric. The Add Fabric screen appears.
The fields are explained:

Fabric Name - Enter the name of the fabric.

Fabric Template - From the drop-down menu, choose the Easy_Fabric_11_1 fabric template. The fabric settings for creating a standalone fabric comes up.

The tabs and their fields in the screen are explained in the subsequent points. The overlay and underlay network parameters are included in these tabs.

Note

If you are creating a standalone fabric as a potential member fabric of an MSD fabric (used for provisioning overlay networks for fabrics that are connected through EVPN Multi-Site technology), then browse through the Multi-Site Domain for VXLAN BGP EVPN Fabrics topic before member fabric creation.
3. The **General** tab is displayed by default. The fields in this tab are:

- **BGP ASN**: Enter the BGP AS number the fabric is associated with.
- **Fabric Interface Numbering**: Specifies whether you want to use point-to-point (p2p) or unnumbered networks.
- **Underlay Subnet IP Mask**: Specifies the subnet mask for the fabric interface IP addresses.
- **Link-State Routing Protocol**: The IGP used in the fabric, OSPF, or IS-IS.
- **Route-Reflectors**: The number of spine switches that are used as route reflectors for transporting BGP traffic. Choose 2 or 4 from the drop down box. The default value is 2.

To deploy spine devices as RRs, DCNM sorts the spine devices based on their serial numbers, and designates two or four spine devices as RRs. If you add more spine devices, existing RR configuration will not change.

Increasing the count - You can increase the route reflectors from two to four at any point in time. Configurations are automatically generated on the other 2 spine devices designated as RRs.

Decreasing the count

When you reduce four route reflectors to two, you must remove the unneeded route reflector devices from the fabric. Follow these steps to reduce the count from 4 to 2.

1. Change the value in the drop-down box to 2.
2. Identify the spine switches designated as route reflectors.

 An instance of the **rr_state** policy is applied on the spine switch if it is a route reflector. To find out if the policy is applied on the switch, right-click the switch, and choose **View/edit policies**. In the View/Edit Policies screen, search **rr_state** in the **Template** field. It is displayed on the screen.
3. Delete the unneeded spine devices from the fabric (right-click the spine switch icon and choose **Discovery > Remove from fabric**).

 If you delete existing RR devices, the next available spine switch is selected as the replacement RR.
4. Click Save and Deploy at the top right part of the fabric topology screen.

Anycast Gateway MAC: Anycast gateway MAC address.

NX-OS Software Image Version: Select an image from the list.

If you upload Cisco NX-OS software images through the image upload option, the uploaded images are listed in this field. If you select an image, the system checks if the switch has the selected version. If not, an error message is displayed. You can resolve the error by clicking on Resolve. The image management screen comes up and you can proceed with the ISSU option. Alternatively, you can delete the release number and save it later.

If you specify an image in this field, all switches in the fabric should run that image. If some devices do not run the image, a warning is prompted to perform an In-Service Software Upgrade (ISSU) to the specified image. Till all devices run the specified image, the deployment process will be incomplete.

If you want to deploy more than one type of software image on the fabric switches, don’t specify any image. If an image is specified, delete it.

4. Click the **Replication** tab. Most of the fields are auto generated. You can update the fields if needed.
Replication Mode: The mode of replication that is used in the fabric, Ingress Replication, or Multicast. When you choose Ingress replication, the multicast replication fields get disabled.

In the DCNM 11.1(1) release, you can change the fabric setting from one mode to the other, if no overlay profile exists for the fabric.

In the DCNM 11.0(1) release, the replication mode change is not allowed if a policy template instance is created for the current mode. For example, if a multicast related policy is created and deployed, you cannot change the mode to Ingress.

Enable Tenant Routed Multicast – Select the checkbox to enable Tenant Routed Multicast (TRM) as the fabric overlay multicast protocol.

RP mode – Choose from the two supported multicast modes of replication, ASM (for Any-Source Multicast [ASM]) or BiDir (for Bidirectional PIM [BIDIR-PIM]).

When you choose ASM, the BiDir related fields are not enabled. When you choose BiDir, the BiDir related fields are enabled.

Note: BIDIR-PIM is supported on Cisco's Cloud Scale Family platforms 9300-EX and 9300-FX/FX2, and software release 9.2(1) onwards.

Multicast Group Subnet: IP address prefix used for multicast communication. An unique IP address is allocated from this group for each overlay network.

Rendezvous-Points - Enter the number of spine switches acting as rendezvous points.

Underlay RP Loopback ID – The loopback ID used for the rendezvous point (RP), for multicast protocol peering purposes in the fabric underlay.

The next two fields are enabled if you choose BIDIR-PIM as the multicast mode of replication.

Underlay Primary RP Loopback ID – The primary loopback ID used for the phantom RP, for multicast protocol peering purposes in the fabric underlay.

Underlay Backup RP Loopback ID – The secondary loopback ID used for the phantom RP, for multicast protocol peering purposes in the fabric underlay.

5. Click the vPC tab. Most of the fields are auto generated. You can update the fields if needed.
vPC Peer Link VLAN: VLAN used for the vPC peer link SVI.

vPC Peer Keep Alive option – Choose the management or loopback option. If you want to use IP addresses assigned to the management port and the management VRF, choose management. If you use IP addresses assigned to loopback interfaces (and a non-management VRF), choose loopback.

If you use IPv6 addresses, you must use loopback IDs.

vPC Auto Recovery Time - Specifies the vPC auto recovery time-out period in seconds.

vPC Delay Restore Time - Specifies the vPC delay restore period in seconds.

vPC IPv6 ND Synchronize – Enables IPv6 Neighbour Discovery synchronization between vPC switches. The check box is enabled by default. Clear the check box to disable the function.

vPC advertise-pip - Select the check box to enable the Advertise PIP feature.

6. Click the Advanced tab. Most of the fields are auto generated. You can update the fields if needed.

VRF Template and VRF Extension Template: Specifies the VRF template for creating VRFs, and the VRF extension template for enabling VRF extension to other fabrics.

Network Template and Network Extension Template: Specifies the network template for creating networks, and the network extension template for extending networks to other fabrics.
Site ID - The ID for this fabric if you are moving this fabric within an MSD. The site ID is mandatory for a member fabric to be a part of an MSD. Each member fabric of an MSD has a unique site ID for identification.

Underlay Routing Loopback Id - The loopback interface ID is populated as 0 since loopback0 is usually used for fabric underlay IGP peering purposes.

Underlay VTEP Loopback Id - The loopback interface ID is populated as 1 since loopback1 is usually used for the VTEP peering purposes.

Link-State Routing Protocol Tag - The tag defining the type of network.

OSPF Area ID – The OSPF area ID, if OSPF is used as the IGP within the fabric.

Power Supply Mode - Choose the appropriate power supply mode.

CoPP Profile - Choose the appropriate Control Plane Policing (CoPP) profile policy for the fabric. By default, the strict option is populated.

Enable VXLAN OAM - Enables the VXLAM OAM function for existing switches.

This is enabled by default. Clear the check box to disable VXLAN OAM function.

If you want to enable the VXLAN OAM function on specific switches and disable on other switches in the fabric, you can use freeform configurations to enable OAM and disable OAM in the fabric settings.

Greenfield Cleanup Option – Enable or disable the switch cleanup option for greenfield switches.

iBGP Peer-Template Config – Add iBGP peer template configurations on the leaf switches to establish an iBGP session between the leaf switch and route reflector.

Freeform CLIs - Fabric level freeform CLIs can be added while creating or editing a fabric. They are applicable to switches across the fabric. You must add the configurations as displayed in the running configuration, without indentation. Switch level freeform configurations such as VLAN, SVI, and interface configurations should only be added on the switch. Refer the Freeform Configurations on Fabric Switches topic for a detailed explanation and examples.

Leaf Freeform Config - Add CLIs that should be added to switches that have the Leaf, Border, and Border Gateway roles.

Spine Freeform Config - Add CLIs that should be added to switches with a Spine, Border Spine, and Border Gateway Spine roles.

7. Click the Resources tab.
Static Underlay IPAddress Allocation

Select the check box to enable static IP address allocation for the fabric underlay.

- By default, DCNM allocates the underlay IP address resources (for loopbacks, fabric interfaces, etc) dynamically from the defined pools. If you select the check box, the allocation scheme switches to static, and some of the dynamic IP address range fields are disabled.

- For static allocation, the underlay IP address resources must be populated into the Resource Manager (RM) using REST APIs.

Refer the Cisco DCNM REST API Reference Guide, Release 11.1(1) for more details. The REST APIs must be invoked after the switches are added to the fabric, and before you use the Save & Deploy option.

- The Underlay RP Loopback IP Range field stays enabled if BIDIR-PIM function is chosen for multicast replication.

- Changing from static to dynamic allocation keeps the current IP resource usage intact. Only future IP address allocation requests are taken from dynamic pools.

Underlay Routing Loopback IP Range

- Specifies loopback IP addresses for the protocol peering.

Underlay VTEP Loopback IP Range

- Specifies loopback IP addresses for VTEPs.

Underlay RP Loopback IP Range

- Specifies the anycast or phantom RP IP address range.

Underlay Subnet IP Range

- IP addresses for underlay P2P routing traffic between interfaces.

Layer 2 VXLAN VNI Range and Layer 3 VXLAN VNI Range

- Specifies the VXLAN VNI IDs for the fabric.

Network VLAN Range and VRF VLAN Range

- VLAN ranges for the Layer 3 VRF and overlay network.

Subinterface Dot1q Range

- Specifies the subinterface range when L3 sub interfaces are used.

VRF Lite Deployment

- Specify the VRF Lite method for extending inter fabric connections.

If you choose Manual, the VRF Lite subnet details need not be filled.

If you select Back2BackOnly, ToExternalOnly, or Both, then the VRF Lite subnet fields are enabled.
VRF Lite Subnet IP Range and **VRF Lite Subnet Mask** – These fields are populated with the DCI subnet details. Update the fields as needed.

The values shown in your screen are automatically generated. If you want to update the IP address ranges, VXLAN Layer 2/Layer 3 network ID ranges or the VRF/Network VLAN ranges, ensure the following:

- **Note**
 When you update a range of values, ensure that it does not overlap with other ranges. You should only update one range of values at a time. If you want to update more than one range of values, do it in separate instances. For example, if you want to update L2 and L3 ranges, you should do the following.

 1. Update the L2 range and click **Save**.
 2. Click the **Edit Fabric** option again, update the L3 range and click **Save**.

8. Click the **Manageability** tab.

<table>
<thead>
<tr>
<th>General</th>
<th>Replication</th>
<th>vPC</th>
<th>Advanced</th>
<th>Resources</th>
<th>Manageability</th>
<th>Bootstrap</th>
<th>Configuration Backup</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS Server IP</td>
<td>IP Address of DNS Server if used, server IP can be v4 or v6</td>
<td>DNS Server VRF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second DNS Server IP</td>
<td>IP Address of Second DNS Server if used, server IP can be v4 or v6</td>
<td>Second DNS Server VRF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTP Server IP</td>
<td>IP Address of NTP Server if used, server IP can be v4 or v6</td>
<td>NTP Server VRF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second NTP Server IP</td>
<td>IP Address of Second NTP Server if used, server IP can be v4 or v6</td>
<td>Second NTP Server VRF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The fields in this tab are:

- **DNS Server IP** - Specifies the IP address of the DNS server, if you use a DNS server.
- **DNS Server VRF** - Specifies the VRF to be used to contact the DNS server IP address.
- **Second DNS Server IP** - Specifies the IP address of the second DNS server, if you use a second DNS server.
- **Second DNS Server VRF** - Specifies the VRF to be used to contact the second DNS server IP address.
- **NTP Server IP** - Specifies the IP address of the NTP server, if you use an NTP server.
- **NTP Server VRF** - Specifies the VRF to be used to contact the NTP server IP address.
- **Second NTP Server IP** - Specifies the IP address of the second NTP server, if you use a second NTP server.
- **Second NTP Server VRF** - Specifies the VRF to be used to contact the second NTP server IP address.
- **AAA Server Type** - Specifies the AAA server type. By default, no type is populated. You can select a radius or TACACS server.
- **AAA Server IP** - Specifies the IP address of the AAA server, if you use a AAA server.
- **AAA Shared Secret** - Specifies the shared secret of the AAA server, if used.
After fabric creation and discovery of switches, you must update the AAA server password on each fabric switch.

Second AAA Server IP - Specifies the IP address of the second AAA server, if you use a second AAA server.

Second AAA Shared Secret - Specifies the shared secret of the second AAA server, if used.

AAA Server VRF - Specifies the VRF to be used to contact the AAA server IP address.

Syslog Server IP – IP address of the syslog server, if used.

Syslog Server Severity – Severity level of the syslog server. To specify a higher severity, enter a higher number.

Syslog Server VRF – The default or management VRF that the syslog server IP address is assigned to.

Second Syslog Server IP – IP address of the second syslog server, if used.

Second Syslog Server Severity – Severity level of the second syslog server. To specify a higher severity, enter a higher number.

Second Syslog Server VRF – The default or management VRF that the second syslog server’s IP address is assigned to.

9. Click the **Bootstrap** tab.

Enable DHCP - Click this check box to initiate enabling of automatic IP address assignment through DHCP. When you click the check box, the other fields become editable. They are:

DHCP Scope Start Address and **DHCP Scope End Address** - Specifies the first and last IP addresses of the IP address range to be used for the switch out of band POAP.

Switch Management Default Gateway - Specifies the default gateway for the management VRF on the switch.

Switch Management Subnet Prefix - Specifies the prefix for the Mgmt0 interface on the switch. The prefix should be between 8 and 30.

DHCP scope and management default gateway IP address specification - If you specify the management default gateway IP address 10.0.1.0 and subnet mask 24, ensure that the DHCP scope is within the specified subnet, between 10.0.1.1 and 10.0.1.254.

Bootstrap Freeform Config - Enter additional CLI commands as needed.
Copy-paste the running-config to the Bootstrap freeform config with correct indentation, as seen in the running configuration on the NX-OS switches. The freeform config must match the running config. For more information, see Resolving Freeform Config Errors in Switches, on page 160.

A sample screenshot after filling in the fields:

10. Click the **Configuration Backup** tab. The fields on this tab are:

<table>
<thead>
<tr>
<th>General</th>
<th>Replication</th>
<th>vPC</th>
<th>Advanced</th>
<th>Resources</th>
<th>Manageability</th>
<th>Bootstrap</th>
<th>Configuration Backup</th>
</tr>
</thead>
</table>

Hourly Fabric Backup – Select the check box to enable an hourly backup of fabric configurations and the intent. The backup process is initiated only when you click **Save and Deploy**, and the subsequent configuration compliance activity is successfully completed.

– Select the check box to enable an hourly backup (check) for fresh fabric configurations and the intent. If there is a configuration push in the previous hour, DCNM takes a backup.

Intent refers to configurations that are saved in DCNM but yet to be provisioned on the switches.

Scheduled Fabric Backup – Select the check box to enable a daily backup. This backup tracks changes in running configurations on the fabric devices that are not tracked by configuration compliance.

Scheduled Time – Specify the scheduled backup time in a 24-hour format. This field is enabled if you enable the Scheduled Fabric Backup option.

Select both the check boxes to enable both back up processes. If you update settings, execute the **Save & Deploy** option on the fabric topology screen (click within the fabric box to access the fabric topology screen).

Note

Hourly and scheduled backup processes happen only during the next periodic configuration compliance activity, and there can be a delay of up to an hour. To trigger an immediate backup, do the following:

1. Choose **Control > Fabric Builder**. The Fabric Builder screen comes up.

2. Click within the specific fabric box. The fabric topology screen comes up.

3. From the **Actions** panel at the left part of the screen, click **Re-Sync Fabric**.
11. Click **Save** after filling and updating relevant information. A note appears briefly at the bottom right part of the screen, indicating that the fabric is created. When a fabric is created, the fabric page comes up. The fabric name appears at the top left part of the screen.

(At the same time, the newly created fabric instance appears on the **Fabric Builder** screen. To go to the **Fabric Builder** screen, click the left arrow (←) button above the **Actions** panel [to the left of the screen]).

The **Actions** panel at the left part of the screen allows you to perform various functions. One of them is the **Add switches** option to add switches to the fabric. After you create a fabric, you should add fabric devices. The options are explained:

- **Tabular View** - By default, the switches are displayed in the topology view. Use this option to view switches in the tabular view.
- **Refresh topology** - Allows you to refresh the topology.
• **Save Layout** – Saves a custom view of the topology. You can create a specific view in the topology and save it for ease of use.

• **Delete saved layout** – Deletes the custom view of the topology

• **Topology views** - You can choose between Hierarchical, Random and Custom saved layout display options.
 - **Hierarchical** - Provides an architectural view of your topology. Various Switch Roles can be defined that draws the nodes on how you configure your CLOS topology.
 - **Random** - Nodes are placed randomly on the screen. DCNM tries to make a guess and intelligently place nodes that belong together in close proximity.
 - **Custom saved layout** - You can drag nodes around to your liking. Once you have the positions as how you like, you can click Save Layout to remember the positions. Next time you come to the topology, DCNM will draw the nodes based on your last saved layout positions.

• **Restore Fabric** – Allows you to restore the fabric to a prior DCNM configuration state (one month back, two months back, and so on). For more information, see [Restore Fabric, on page 61 section](#).

• **Resync Fabric** - Use this option to resynchronize DCNM state when there is a large scale out-of-band change, or if configuration changes do not register in the DCNM properly. The resync operation does a full CC run for the fabric switches and recollects “show run” and “show run all” commands from the switches. When you initiate the re-sync process, a progress message is displayed on the screen. During the re-sync, the running configuration is taken from the switches. Then, the OUT-OF-SYNC/IN-SYNC status for the switch is recalculated based on the intent or expected configuration defined in DCNM versus the current running configuration that was taken from the switches.

• **Add Switches** – Allows you to add switch instances to the fabric.

• **Fabric Settings** – Allows you to view or edit fabric settings.

SCOPE - You can toggle between fabrics by using the SCOPE drop-down box at the top right part of the screen. The current fabric is highlighted. An MSD and its member fabrics are distinctly displayed, wherein the member fabrics are indented, under the MSD fabric.
Adding Switch Instances to the Fabric

Networks and VRFs can be extended (and hence can be common) across fabrics. However, switches in each fabric are unique, and hence, each switch can only be added to one fabric.

Click the Add Switches option from the Actions panel to add switches to the fabric created in DCNM. The Inventory Management screen comes up. The screen contains two tabs, one for discovering existing switches and the other for discovering new switches. Both options are explained.

Discovering Existing Switches

1. Use the Discover Existing Switches tab to add an existing switch. In this case, a switch with known credentials is added to the Standalone fabric. The IP address (Seed IP), administrator username, and password (Username and Password fields) of the switch are keyed in.

2. Click Start discovery. The Scan Details section comes up shortly. Since the Max Hops field was populated with 2, the switch with the specified IP address (leaf-91) and switches two hops from it are populated in the Scan Details section.
3. Select the check box next to the concerned switch and click **Import into fabric**.

Though this example describes the discovery of one switch, it is a best practice to discover multiple switches at once. The switches must be properly cabled and connected to the DCNM server and the switch status must be manageable.

The switch discovery process is initiated. The **Progress** column displays progress for all the selected switches. It displays **done** for each switch on completion.

Note

You must not close the screen (and try to add switches again) till all selected switches are imported or an error message comes up.

If an error message comes up, close the screen. The fabric topology screen comes up. The error messages are displayed at the top right part of the screen. Resolve the errors wherever applicable and initiate the import process again by clicking **Add Switches** in the Actions panel.

After DCNM discovers all the switches, and the Progress column displays **done** for all switches, close the screen. The **Standalone** fabric topology screen comes up again. The switch icons of the added switches are displayed in it.
You might encounter the following errors during switch discovery.

Discovery error - The switch discovery process might fail for a few switches, and the Discovery Error message displayed. However, such switches are displayed in the fabric topology. You must remove such switches from the fabric (Right-click the switch icon and click **Discovery > Remove from fabric**), and import them again.

Device connectivity issue - Before proceeding further, wait for ten minutes for the switch-internal processes to complete. Else, you might encounter a device connectivity failure message at a later stage.

4. Click **Refresh topology** to view the latest topology view.

When all switches are added and roles assigned to them, the fabric topology contains the switches and connections between them.

5. After discovering the switches, assign the fabric role to each switch. Since each switch is assigned the leaf role by default, assign other roles as needed. Right click the switch, and use the **Set role** option to set the appropriate role.
• Starting from DCNM 11.1(1), switch roles can be changed if there are no overlays on the switches, but only as per the list of allowed switch role changes given at Switch Operations, on page 45.

• After you upgrade to Cisco DCNM Release 11.1(1) with an existing fabric with the Easy_Fabric template, you cannot set the Border Spine or Border Gateway Spine roles to switches, because these roles are not supported with the Easy_Fabric template. You need to use the Easy_fabric_11_1 template to set these roles for switches in a fabric.

If you choose the Hierarchical layout for display (in the Actions panel), the topology automatically gets aligned as per role assignment, with the leaf switches at the bottom, the spine switches connected on top of them, and the border switches at the top.

To connect fabrics using the EVPN Multi-Site feature, you must change the role of the designated BGW to Border Gateway or Border Gateway Spine. To connect fabrics using the VRF Lite feature, you must change the role of the border leaf switch to Border or Border Spine. If you want to deploy VRF Lite and EVPN Multi-Site features in a fabric, you must set the device role to Border Gateway or Border Gateway Spine and provision VRF Lite and Multi-Site features. If you do not update border device roles correctly at this stage, then you will have to remove the device from the fabric and discover it again through DCNM using the POAP bootstrap option and re provision the configurations for the device.

Assign vPC switch role - To designate a pair of switches as a vPC switch pair, right-click the switch and choose the vPC peer switch from the list of switches.

vPC support is added for BGWs in the DCNM 11.1(1) release.

AAA server password - During fabric creation, if you have entered AAA server information (in the Manageability tab), you must update the AAA server password on each switch. Else, switch discovery fails.

6. Click Save & Deploy at the top right part of the screen.

The template and interface configurations form the underlay network configuration on the switches. Also, freeform CLIs that were entered as part of fabric settings (leaf and spine switch freeform configurations entered in the Advanced tab) are deployed. Refer the Freeform Configurations on Fabric Switches section for more details on freeform configurations.

Configuration Compliance - If the provisioned configurations and switch configurations do not match, the Status column displays out-of-sync. For example, if you enable a function on the switch manually through a CLI, then it results in a configuration mismatch.

To ensure configurations provisioned from DCNM to the fabric are accurate or to detect any deviations (such as out-of-band changes), DCNM’s Configuration Compliance engine reports and provides necessary remediation configurations.

When you click Save & Deploy, the Configuration Deployment screen comes up.
If the status is out-of-sync, it suggests that there is inconsistency between the DCNM and configuration on the device.

The Re-sync button is displayed for each switch in the Re-sync column. Use this option to resynchronize DCNM state when there is a large scale out-of-band change, or if configuration changes do not register in the DCNM properly. The resync operation does a full CC run for the switch and recollects “show run” and “show run all” commands from the switch. When you initiate the re-sync process, a progress message is displayed on the screen. During the re-sync, the running configuration is taken from the switch. Then, the OUT-OF-SYNC/IN-SYNC status for the switch is recalculated based on the intent or expected configuration defined in DCNM versus the current running configuration that was taken from the switch.

Click the Preview Config column entry (updated with a specific number of lines). The Config Preview screen comes up.
The Pending Config tab displays the pending configurations for successful deployment. The Expected Config and Current Config tabs display the expected and current configurations on the switch.

The Side-by-side Comparison tab displays the current configurations and expected configurations together. Common configurations appear next to each other and are not highlighted. In the Expected config column within this tab, the additional configurations are highlighted in green. In the Running config column within this tab, the additional configurations of the running config are highlighted in a distinct color.

Note that multi-line banner configuration support is available in DCNM 11.1(1) release.

<table>
<thead>
<tr>
<th>Pending Config</th>
<th>Expected Config</th>
<th>Current Config</th>
<th>Side-by-side Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf context management</td>
<td>vrf context management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ip route 0.0.0.0/0 111.0.0.251</td>
<td>ip route 0.0.0.0/0 111.0.0.251</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nxapi http port 80</td>
<td>nxapi http port 80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>interface vlan1</td>
<td>interface vlan1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>interface nve1</td>
<td>interface nve1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>no shutdown</td>
<td>no shutdown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>host-reachability protocol bgp</td>
<td>host-reachability protocol bgp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>source-interface loopback1</td>
<td>source-interface loopback1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>multisite border-gateway interface loopback100</td>
<td>multisite border-gateway interface loopback100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>interface ethernet/1</td>
<td>interface ethernet/1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In DCNM 11.0, Configuration Compliance only supports single-line banner motd configuration. In DCNM 11.1, multi-line banner motd configuration is supported. Multi-line banner motd configuration can be configured in DCNM with freeform configuration policy, either per switch using switch_freeform config, or per fabric using leaf/spine freeform configuration. Note that after the multi-line banner motd is configured, deploy the policy by executing the Save & Deploy option in the (top right part of the) fabric topology screen. Else, the policy may not be deployed properly on the switch. The banner policy is only to configure single-line banner configuration. Also, you can only create one banner related freeform configuration/policy. Multiple policies for configuring banner motd is not supported.

7. Close the screen.

In the Configuration Deployment screen, click Deploy Config at the bottom part of the screen to initiate pending configuration onto the switch. The Status column displays FAILED or SUCCESS state. For a FAILED status, investigate the reason for failure to address the issue.

After successful configuration provisioning (when all switches display a progress of 100%), close the screen.

The fabric topology is displayed. The switch icons turn green to indicate successful configuration.

If a switch icon is in red color, it indicates that the switch and DCNM configurations are not in sync. When deployment is pending on a switch, the switch is displayed in blue color.

![Note]

If there are any warning or errors in the CLI execution, a notification will appear in the Fabric builder window. Warnings or errors that are autoresolvable have the Resolve option.

You can right click the switch icon and update switch related settings.

SCOPE – You can toggle between fabrics by using the SCOPE drop-down box at the top right part of the screen. By default, the current fabric is highlighted. An MSD and its member fabrics are distinctly displayed, wherein the member fabrics are indented under the MSD fabric.

You can use Save & Deploy for single and multiple switches. Add switches and then click Save & Deploy to ensure configuration compliance. Whether discovering multiple switches at once or one by one, as a best practice, use Save & Deploy and not the Deploy Config option (accessible after right-clicking the switch icon).

When a leaf switch boots up after a switch reload or RMA operation, DCNM provisions configurations for the switch and FEX devices connected to it. Occasionally, FEX connectivity comes up after DCNM provisions FEX (host interface) configurations, resulting in a configuration mismatch. To resolve the mismatch, click Save & Deploy again in the fabric topology screen.

An example of the Deploy Config option usage is for switch-level freeform configurations. Refer the Freeform Configurations on Fabric Switches topic for details.

The Configuration Compliance function and principles are applicable for discovering existing and new switches. New switch discovery in DCNM (through a simplified POAP process) is explained next.

Discovering New Switches

1. Power on the new switch in the external fabric after ensuring that it is cabled to the DCNM server. Boot the Cisco NX-OS and setup switch credentials.

2. Execute the write erase and reload commands on the switch.
Choose **Yes** to both the CLI commands that prompt you to choose Yes or No.

3. Set the boot variable to the image that you want to POAP. DCNM uses this image to POAP. Also, DCNM injects an information script into the switch to collect the device onboarding information.

4. In the DCNM GUI, go to a standalone fabric (Click **Control > Fabric Builder** and click a standalone fabric). The fabric topology is displayed.

![Fabric Builder: Standalone](image)

Note

If you want to POAP with DHCP, make sure that DHCP is enabled on the fabric settings. Click **Fabric Settings** and edit the DHCP information in the **Bootstrap** tab.

5. Go to the fabric topology window and click the **Add switches** option from the **Actions** panel. The Inventory Management window comes up.

6. Click the **POAP** tab.

 In an earlier step, the **reload** command was executed on the switch. When the switch restarts to reboot, DCNM retrieves the serial number, model number, and version from the switch and displays them on the Inventory Management along window. Also, an option to add the IP address, hostname, and password are made available. If the switch information is not retrieved, refresh the window.

Note

At the top left part of the window, **export** and **import** options are provided to export and import the .csv file that contains the switch information. You can pre-provision devices using the **import** option as well.
Select the checkbox next to the switch and add switch credentials: IP address and host name. DCNM provisions the management IP address and other credentials to the switch. In this simplified POAP process, all ports are opened up.

7. Click **Refresh Topology** to get updated information. The added switch goes through the POAP cycle. Monitor and check the switch for POAP completion.

8. After the added switch completes POAP, the fabric builder topology page is refreshed with the added switch with some physical connections. However, the switch icon is in red color indicating that the fabric is *Out-Of-Sync* and you must click **Save & Deploy** on the fabric builder topology to deploy pending configurations (such as template and interface configurations) onto the switches.

Note

For any changes on the fabric that results in the out-of-sync, then you must deploy the changes. The process is the same as explained in the *Discovering Existing Switches* section.

During fabric creation, if you have entered AAA server information (in the **Manageability** tab), you must update the AAA server password on each switch. Else, switch discovery fails.

9. After the pending configurations are deployed, the **Progress** column displays 100% for all switches.

10. Click **Close** to return to the fabric builder topology.

11. Click **Refresh Topology** to view the update. All switches must be in green color indicating that they are functional.

12. The switch and the link are discovered in DCNM. Configurations are built based on various policies (such as fabric, topology, and switch generated policies). The switch image (and other required) configurations are enabled on the switch.

13. In the DCNM GUI, the discovered switches can be seen in the *Standalone* fabric topology. Up to this step, the POAP is completed with basic settings. All the interfaces are set to trunk ports. You must setup
interfaces through the Control > Interfaces option for any additional configurations, but not limited to the following:

- vPC pairing.
- Breakout interfaces.
- Port channels, and adding members to ports.

Note

- After discovering a switch (new or existing), at any point in time you can provision configurations on it again through the POAP process. The process removes existing configurations and provision new configurations. You can also deploy configurations incrementally without invoking POAP.

- You might encounter an issue with module discovery after bootstrap. In such cases, the discovery happens after a delay. If not, go through the discovery process again.

You can right-click the switch to view various options:

- **Set Role** - Assign a role to the switch (Spine, Border Gateway, and so on).

 Note

 - Changing of the switch role is allowed only before executing **Save & Deploy**.

 - Starting from DCNM 11.1(1), switch roles can be changed if there are no overlays on the switches, but only as per the list of allowed switch role changes given at Switch Operations, on page 45.

 - After you upgrade to Cisco DCNM Release 11.1(1) with an existing fabric with the Easy_Fabric template, you cannot set the Border Spine or Border Gateway Spine roles to switches, because these roles are not supported with the Easy_Fabric template. You need to use the Easy_fabric_11_1 template to set these roles for switches in a fabric.

- **Modes** - Maintenance and Active/Operational modes.
- **vPC Pairing** - Select a switch for vPC and then select its peer.
- **Manage Interfaces** - Deploy configurations on the switch interfaces.
- **View/Edit Policies** - See switch policies and edit them as required.
- **History** - View per switch deployment history.
- **Deploy Config** - Deploy per switch configurations.
- **Discovery** - You can use this option to update the credentials of the switch, reload the switch, rediscover the switch, and remove the switch from the fabric.

The new fabric is created, the fabric switches are discovered in DCNM, the underlay networks provisioned on those switches, and the configurations between DCNM and the switches are synced. The remaining tasks are:
• Provision interface configurations such as vPCs, loopback interface, and subinterface configurations. [Interfaces topic].

• Create overlay networks and VRFs and deploy them on the switches. [Networks and VRFs Creation and Deployment section].

Switch Operations

You can right-click the switch to view various options:

• Set Role - Assign a role to the switch. You can assign any one of the following roles to a switch:
 • Spine
 • Leaf (Default role)
 • Border
 • Border Spine
 • Border Gateway
 • Border Gateway Spine

Note

• Changing of the switch role is allowed only before executing Save & Deploy.

Starting from DCNM 11.1(1), you can change switch roles if there are no overlays on the switches. The updated configuration is then generated after you click Save and Deploy. The following switch role changes are allowed:

• Leaf to Border
• Border to Leaf
• Leaf to Border Gateway
• Border Gateway to Leaf
• Border to Border Gateway
• Border Gateway to Border
• Spine to Border Spine
• Border Spine to Spine
• Spine to Border Gateway Spine
• Border Gateway Spine to Spine
• Border Spine to Border Gateway Spine
• Border Gateway Spine to Border Spine
Changing of switch role from any Leaf role to any Spine role and from any Spine role to any Leaf role is not allowed.

In case the switch role is not changed according to the allowed switch role changes mentioned above, the following error is displayed after you click **Save and Deploy**:

\[
\text{Switch}\{\text{<serial-number>}\}: \text{Role change from } \text{<switch-role> to <switch-role>} \text{ is not permitted.}
\]

You can then change the switch role to the role that was set earlier, or set a new role that adheres to the rules mentioned above, and configure the fabric.

If you have not created any policy template instances before clicking **Save and Deploy**, and there are no overlays, you can change the role of a switch to any other required role.

If you change the switch role of a vPC switch that is part of a vPC pair, the following error is displayed when you click **Save and Deploy**:

\[
\text{Switches role should be the same for VPC pairing. peer1 } \text{<serial-number>}: \text{[<switch-role>], peer2 } \text{<serial-number>}: \text{[<switch-role>]
}\]

To prevent this scenario, change the switch roles of both the switches in the vPC pair to the same role.

Fabric Multi Switch Operations

In the fabric topology screen, click Tabular view option in the Actions panel, at the left part of the screen. The Switches | Links screen comes up.

The Switches tab is for managing switch operations and the Links tab is for adding and updating fabric links. Each row represents a switch in the fabric, and displays switch details, including its serial number.

The buttons at the top of the table are explained, from left to right direction. Some options are also available when you right-click the switch icon. However, the Switches tab enables you to provision configurations on multiple switches (for example, adding and deploying policies) simultaneously.

• Add switches to the fabric. This option is also available in the topology page (Add switches option in Actions panel).

• Initiate the switch discovery process by DCNM afresh.

• Update device credentials such as authentication protocol, username and password.

• Reload the switch.

• Remove the switch from the fabric.

• View/edit Policies – Add, update and delete a policy. The policies are template instances of templates in the template library. After creating a policy, you should deploy it on the switches using the Deploy option available in the View/edit Policies screen.

 Note If you select multiple switches and deploy a policy instance, then it will be deployed on all the selected switches.

• Manage Interfaces – Deploy configurations on the switch interfaces.

• History – View deployment history on the selected switch.

• Deploy – Deploy switch configurations.

Multi-Device Support

Cisco DCNM 11.1(1) provides the ability to group a set of switches, and allows you to push a set of underlay configurations to the group. This release enables you to create a policy template, and apply it to multiple selected switches.

To view, add, deploy, or edit a policy, perform the following steps:
Viewing PTIs for Multiple Switches

Procedure

Step 1
Choose **Control > Fabric Builder**.

Step 2
Select any available fabric, and then click Tabular view.

Step 3
Select multiple switches in switches tab, and click the **View/Edit Policies** button.

PTI's are listed in view or edit policies table for multiple switches.

Cisco DCNM LAN Fabric Configuration Guide, Release 11.1(1)

Control
Adding PTIs for Multiple Switches

Procedure

Step 1 Choose Control > Fabric Builder.
Step 2 Select any available fabric, and then click Tabular view.
Step 3 Select multiple switches in the switches tab, and click the View/Edit Policies button.
Step 4 Click the Add icon.
Step 5 Select a policy template and enter the mandatory parameters data and click Save. PTI is added per each device based on n-number of devices selection.
Deploying PTIs for Multiple Switches

Procedure

Step 1 Choose Control > Fabric Builder.
Step 2 Select any available fabric, and then click Tabular view.
Step 3 Select multiple switches in the switches tab, and click the View/Edit Policies button.
Step 4 Select multiple policies, and then click Deploy. The selected PTI’s configs are pushed to the group of switches.
Multiple policy editing is not supported.

Procedure

Step 1 Choose Control > Fabric Builder.
Step 2 Select any available fabric, and then click Tabular view.
Step 3 Select multiple switches in the switches tab, and click the View/Edit Policies button.
Step 4 Select a PTI, click Edit to modify the required data, and then click Save to save the PTI.
Step 5 Select a PTI, click Edit to modify the required data, and then click Deploy to push the PTI config to the device.
Fabric Links

You can add links between border switches of different fabrics (inter-fabric links) or between switches in the same fabric (intra-fabric links). You can only create an inter-fabric connection (IFC) for a switch that is managed by DCNM.

There are scenarios where you might want to define links between switches before connecting them physically. The links could be inter-fabric or intra-fabric links. Doing so, you can express and represent your intent to add links. The links with intent are displayed in a different colour till they are actually converted to functional links. Once you physically connect the links, they are displayed as connected.

Management links might show up in the fabric topology as red colored links. To remove such links, right-click the link and click Delete Link.

From Cisco DCNM Release 11.1(1), the Border Spine and Border Gateway Spine roles are added to switch roles for border switches.

Creating Intra-Fabric Links

1. Click Control > Fabric Builder to go to the Fabric Builder screen.
2. Click within the rectangular box that represents the fabric. The fabric topology screen comes up.
3. Click Tabular view in the Actions panel that is displayed at the left part of the screen.
A screen with the tabs Switches and Links appears. They list the fabric switches and links in a table.

4. Click the Links tab. You can see a list of links.

The list is empty when you are yet to create a link.
5. Click the Add (+) button at the top left part of the screen to add a link. The Add Link screen comes up. By default, the Intra-Fabric option is chosen as the link type.

The fields are:

Link Type – Choose Intra-Fabric to create a link between two switches in a fabric.
Link Sub-Type – This field populates Fabric indicating that this is a link within the fabric.

Link Template: You can choose any of the following link templates.

- int_intra_fabric_num_link_11_1: If the link is between two ethernet interfaces assigned with IP addresses, choose int_intra_fabric_num_link_11_1.
- int_intra_fabric_unnum_link_11_1: If the link is between two IP unnumbered interfaces, choose int_intra_fabric_unnum_link_11_1.
- int_intra_vpc_peer_keep_alive_link_11_1: If the link is a vPC peer keep-alive link, choose int_intra_vpc_peer_keep_alive_link_11_1.

Correspondingly, the Link Profile section fields is updated.

Source Fabric – The fabric name populates this field since the source fabric is known.

Destination Fabric – Choose the destination fabric. For an intra-fabric link, source and destination fabrics are the same.

Source Device and Source Interface – Choose the source device and interface.

Destination Device and Destination Interface – Choose the destination device and interface.

General tab in the Link Profile section

Interface VRF – Name of a non-default VRF for this interface.

Source IP and Destination IP – Specify the source and destination IP addresses of the source and destination interfaces, respectively.

Interface Admin State – Select or unselect the check box to enable or disable the admin state of the interface.

MTU – Specify the maximum transmission unit (MTU) through the two interfaces.
Advanced tab.

Source Interface Description and Destination Interface Description – Describe the links for later use. For example, if the link is between a leaf switch and a route reflector device, you can enter the information in these fields (Link from leaf switch to RR 1 and Link from RR 1 to leaf switch).

Source Interface Freeform CLIs and Destination Interface Freeform CLIs – Enter configurations specific to the interfaces. You should add the configurations as displayed in the running configuration of the switch, without indentation.

6. Click Save at the bottom right part of the screen.

The new link appears in the Links tab.
7. Click on Save & Deploy to deploy the link configurations on the switches.
The Config Deployment screen comes up. It displays the configuration status on the switches. You can also view the pending configurations by clicking the respective link in the Preview Config column.

8. Close the preview screen and click Deploy Config. The pending configurations are deployed.

9. After ensuring that the progress is 100% in all the rows, click Close at the bottom part of the screen. The Links screen comes up again.
 Click <- at the top left part of the screen to go to the fabric topology. In the fabric topology, you can see that the link between the two devices is displayed.

Creating Inter-Fabric Links

1. Click the Links tab in the Switches | Links page. The list of previously created links are displayed. The list contains intra-fabric links (between switches in a fabric), and inter-fabric links (between BGWs or border leaf/spine switches of different fabrics).

2. Click the Add (+) button at the top left part of the screen to add a link. The Add Link screen comes up.
 By default, the Intra-Fabric option is chosen as the link type.
3. From the Link Type drop-down box, choose Inter-Fabric since you are creating an IFC. The screen changes correspondingly.
The fields for inter-fabric link creation are explained:

Link Type – Choose Inter-Fabric to create an inter-fabric connection between two fabrics, via their border switches.

Link Sub-Type – This field populates the IFC type. VRF_Lite is displayed by default.

The Multi-Site options are explained in the Multi-Site use case.

Link Template – By default, the ext_base_setup base template is populated.

The templates are autopopulated with corresponding pre-packaged default templates that are based on your selection.

Note

You can add, edit, or delete user-defined templates. See *Template Library* section in the Control chapter for more details.

Source Fabric - This field is prepopulated with the source fabric name.

Destination Fabric - Choose the destination fabric from this drop-down box.

Source Device and Source Interface - Choose the source device and Ethernet interface that connects to the destination device.

Destination Device and Destination Interface—Choose the destination device and Ethernet interface that connects to the source device.
Based on the selection of the source device and source interface, the destination information is autopopulated based on Cisco Discovery Protocol information, if available. There is an extra validation performed to ensure that the destination external device is indeed part of the destination fabric.

General tab in the Link Profile section.

Local BGP AS# - In this field, the AS number of the source fabric is autopopulated.

IP MASK—Fill up this field with the IP address of the source interface that connects to the destination device.

NEIGHBOR_IP—Fill up this field with the IP address of the destination interface.

NEIGHBOR ASN—In this field, the AS number of the destination device is autopopulated.

After filling up the Add Link screen, it looks like this:

4. Click Save at the bottom right part of the screen.

The Switches|Links screen comes up again. You can see that the IFC is created and displayed in the list of links.
5. Click on Save & Deploy to deploy the link configurations on the switches. The Config Deployment screen comes up. It displays the configuration status on the switches. You can also view the pending configurations by clicking the respective link in the Preview Config column.

6. Close the preview screen and click Deploy Config. The pending configurations are deployed.

7. After ensuring that the progress is 100% in all the rows, click Close at the bottom part of the screen. The Links screen comes up again.

8. Click <- at the top left part of the screen to go to the fabric topology. In the fabric topology, you can see that the link between the two devices is displayed.

 If the two fabrics are member fabric of an MSD, then you can see the link in the MSD topology too.

When you enable the VRF Lite function using the ToExternalOnly method or Multisite function via MSD fabric, IFCs are automatically created between the (VXLAN fabric) border/BGW device and connected (external fabric) edge router/core device. When you remove the ER/core/border/BGW device, the corresponding IFCs (link PTIs) to/from that switch are deleted on DCNM. Subsequently, DCNM removes the corresponding IFC configurations, if any, from the remaining devices on the next Save & Deploy operation. Also, if you want to remove a device that has an IFCs and overlay extensions over those IFCs, you should undeploy all overlay extensions corresponding to those IFCs for switch delete to be possible.

To undeploy VRF extensions, click Control > Networks & VRFs, select the VXLAN fabric and the extended VRFs, and undeploy the VRFs in the VRF deployment screen.

To delete the IFCs, click Control > Fabric Builder, go to the fabric topology screen, click Tabular view, and delete the IFCs from the Links tab.

Ensure that the fabric switch names are unique. If you deploy VRF extensions on switches with the same name, it leads to erroneous configuration.

The new fabric is created, the fabric switches are discovered in DCNM, the underlay networks provisioned on those switches, and the configurations between DCNM and the switches are synced. The remaining tasks are:

- Provision interface configurations such as vPCs, loopback interface, and subinterface configurations.
- Create overlay networks and VRFs and deploy them on the switches. [Networks and VRFs Creation and Deployment section.

Restore Fabric

Cisco DCNM supports configuration restore at fabric level. Take a backup of the configuration to restore it.
Procedure

Step 1 Choose Control > Fabrics > Fabric Builder and select a fabric.

Step 2 Select Restore Fabric from the Actions menu. Restore Fabric window appears.

Step 3 Select the time for which you want to restore the configuration. Valid values are 1m, 3m, 6m, YTD, 1y, and All. You can zoom into the graph. By default 1m, which is one month, backup information will be displayed. You can also select a custom date range. The backup information includes the backup date, total number of devices, number of devices in sync, and the number of devices out of sync.

Step 4 Click View Backup Summary to see the selected backup information of the devices in sync. The switch name, switch serial number, IP address, status, and the configuration details of the devices appear.

Note The backup is not valid if devices are added or removed from the fabric.

Step 5 Click Get Config to preview the configuration details. Config Preview window appears, which has two tabs.

- **Backup Config**: This tab displays the backup configuration for the selected device.
- **Current Config**: This tab displays the current configuration for the selected device.

Step 6 Go back to View Backup Summary window.

Step 7 Click Restore Intent to proceed with the restoring. Restore Status window appears. You can view the status of Validating Backup, Restoring fabric intent, Restoring underlay intent, Restoring interface intent, and Restoring overlay intent. The valid values for the status of any action will be In Progress, Pending, or Failed.

Note If the status of Validating Backup is Failed, other restoring actions will not be listed in this window.

Step 8 Click Next after the intent is restored.

Configuration Preview window appears. You can view the details of the switch name, IP address, switch serial number, preview configuration, status, and the progress in this window.

Step 9 Click Deploy to deploy the restored configuration.

Configuration Deployment Status window appears. You can view the details of the switch name, IP address, status, status description, and the progress.

Step 10 Click Close after the restoring process is complete.

Deleting a VXLAN BGP EVPN Fabric

Choose Control > Fabric Builder. On the Fabric Builder page, click X on the rectangular box that represents the fabric. Ensure the following before deleting a fabric.
• Fabric devices should not be in transition such as migration into or out of the fabric, ongoing network or VRF provisioning, and so on. Delete a fabric after the transition is complete.

• Remove devices that are still attached to the fabric. Remove non-Cisco Nexus 9000 Series switches first and then remove the 9000 Series switches.

Return Material Authorization (RMA)

This section describes how to replace a physical switch in a Fabric when using Cisco DCNM Easy Fabric mode.

Prerequisites

- Fabric is assumed to be up and running, and minimal disruption is desired when replacing the switch. Also, the switch must be replaced with a switch of the same model (ASIC type) and physical port configuration.
- To use the POAP RMA flow, you must configure the fabric for bootstrap (POAP).
- To copy the FEX configurations for the RMA of switches which have FEX deployed, you may need to perform the Save and Deploy operation one or two times.

Guidelines and Limitations

- The switch must be replaced with a switch of the same model (ASIC type) and physical port configuration. If not, the old switch must be removed and a new switch (replacement) added as a new switch into the fabric.

POAP RMA Flow

Procedure

- **Step 1** Choose Control > Fabric Builder.
- **Step 2** Click the Fabric where you want to perform RMA.
- **Step 3** Move the device into maintenance mode. To move a device into maintenance mode, right-click on the device, and then choose Modes > Maintenance Mode.
Step 4 Physically replace the device in the network. Physical connections should be made in the same place on the replacement switch as they existed on the original switch.

Step 5 Provision RMA flow and select the replacement device.

Step 6 The Provision RMA UI will show the replacement device 5-10 minutes after it is powered on.
Step 7 Select the correct replacement device and click **Swap Switch**. This begins POAP with the full “expected” configuration for that device. Total POAP time is generally around 10-15 minutes.
Manual RMA Flow

Use this flow when “Bootstrap” is not possible (or not desired), including cases that are IPv6 only for the initial Cisco DCNM 11.0(1) release.

Procedure

Step 1 Place the device in maintenance mode (optional).

Step 2 Physically replace the device in the network.

Step 3 Log in through Console and set the Management IP and credentials.

Step 4 The Cisco DCNM rediscovers the new device (or you can manually choose Discovery > Rediscover).

Step 5 Deploy the expected configuration using Deploy.
Step 6 Depending on the configuration, if breakout ports or FEX ports are in use, you have to deploy again to completely restore the configuration.

Step 7 After a successful deployment, and the device is “In-Sync,” you must move the device back to Normal Mode.
RMA for User with Local Authentication

Note
This task is only applicable to non-POAP switches.

Use the following steps to perform RMA for a user with local authentication:

Procedure

Step 1
After the new switch comes online, SSH into the switch and reset the local user passwords with the cleartext password using the "username" command. Reset the local user passwords to resync the SNMP password. The password is stored in the configuration file in a nontransferable form.

Step 2
Wait for the RMA to complete.

Step 3
Update Cisco DCNM switch_snmp_user policy for the switch with the new SNMP MD5 key from the switch.

Interfaces

The Interfaces option displays all the interfaces that are discovered for the switch, Virtual Port Channels (vPCs), and intended interfaces missing on the device.

You can use the following functions:

- Create, deploy, view, edit and delete a port channel, vPC, Straight-through FEX, Active-Active FEX, loopback, and subinterface.
- Create breakout and unbreakout ports.
- Shut down and bring up interfaces.
- Rediscover ports and view interface configuration history.
- Apply host policies on interfaces and vPCs. For example, int_trunk_host_11_1, int_access_host_11_1, and so on.
- View interface information such as its admin status, operation status, reason, policy, speed, MTU, mode, VLANs, IP/Prefix, VRF, port channel, and the neighbor of the interface.

Note
The **Neighbor** column provides details of connected switches that are discovered, intent links, and Virtual Machine Manager (VMM) connectivity. You can navigate to the **Switch** dashboard of the corresponding switch by clicking it. However, intent links and VMM links are not hyperlinked and you cannot navigate to the corresponding dashboard.

You can filter and view information for any of the given fields (such as Device Name). The following table describes the buttons that appear on this page.
Ensure that appropriate configurations are deployed through the Fabric Builder option before deploying from the Interfaces option, including proper vPC pair configurations. If you add or edit an interface before fabric deployment, the configuration may fail on the device.

You can also manage interfaces from the Fabric Builder topology screen. Right click the switch and on the Manage Interfaces option. You can manage the interfaces per switch. If the switch is part of a vPC Pair, then interfaces from both peers are displayed on the page.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add</td>
<td>Allows you to add a logical interface such as a port channel, vPC, Straight-through FEX, Active-Active FEX, loopback and subinterface.</td>
</tr>
<tr>
<td>Breakout, Unbreakout</td>
<td>Allows you to breakout an interface or unbreakout interfaces that are in breakout state.</td>
</tr>
<tr>
<td>Edit</td>
<td>Allows you to edit and change policies that are associated with an interface.</td>
</tr>
<tr>
<td>Delete</td>
<td>Allows you to delete a logical interface that is created from the Interfaces screen. An interface having a policy that is attached from an overlay and underlay cannot be deleted.</td>
</tr>
<tr>
<td>No Shutdown</td>
<td>Allows you to enable an interface (no shutdown or admin up).</td>
</tr>
<tr>
<td>Shutdown</td>
<td>Allows you to shut down the interface.</td>
</tr>
<tr>
<td>Show</td>
<td>Allows you to display the interface show commands. A show command requires show templates in the template library.</td>
</tr>
<tr>
<td>Rediscover</td>
<td>Allows you to rediscover or recalculate the compliance status on the selected interfaces.</td>
</tr>
<tr>
<td>Interface History</td>
<td>Allows you to display the interface deployment history details.</td>
</tr>
<tr>
<td>Deploy</td>
<td>Allows you to deploy or redeploy saved interface configurations.</td>
</tr>
</tbody>
</table>

This section contains the following:

Adding Interfaces

To add the interfaces from the Cisco DCNM Web UI, perform the following steps:
Procedure

Step 1 Choose **Control > Interfaces**.
You see the **Scope** option at the top right part of the screen. If you want to view interfaces for a specific fabric, select the fabric window from the list.

Step 2 Click **Add** to add a logical interface.
The **Add Interface** window appears.

Step 3 In the **Type** field, choose the type of the interface. The respective interface ID field (Port-channel ID, vPC ID, Loopback ID, Subinterface ID) is displayed when you select an interface Type.
For example, port channel, Straight-through FEX, Active-Active FEX, vPC, loopback, and subinterface.
- When you create a port channel through DCNM, add interfaces of the same speed. A port channel that is created from interfaces of varying speeds will not come up. For example, a port channel with two 10 Gigabit Ethernet ports is valid. However, a port channel with a 10-Gigabit Ethernet + 25-Gigabit Ethernet port combination is not valid.
- To add vPC hosts, you must designate vPC switches in the fabric topology (through the Fabric Builder) and deploy vPC and peer-link configurations using the **Save and Deploy** option. Once the vPC pair configurations are deployed, it appears in the Select a vPC pair drop-down box.
 You can create a vPC using the int_vpc_trunk_host_11_1 policy.
- When adding a subinterface, you must select a routed interface from the interface table before clicking the Add button.

Step 4 In the **Select a Device** field, choose the device.
Devices are listed based on the fabric and interface type. External fabric devices are not listed for ST FEX and AA FEX. In the case of vPC or Active to Active FEX, select the vPC switch pair.

Step 5 Enter the ID value in the respective interface ID field (Port-channel ID, vPC ID, Loopback ID and Subinterface ID) that is displayed, based on the selected interface.
You can override this value. The new value is used only if it is available in the Resource Manager pool. Else, it results in an error.

Step 6 In the **Policy** field, you can select the policy to be applied on an interface.
The field only lists the Interface Python Policy with tag interface_edit_policy and filtered based on the interface type.
You must not create a _upg interface policy. For example, you should not create a policy using the vpc_trunk_host_upg, port_channel_aa_fex_upg, port_channel_trunk_host_upg, and trunk_host_upg options.

Step 7 Click **Save** to save the configurations.
Only saved configurations are pushed to the device. While adding the interface, you can only modify the policy attribute after the first save. If you try to use an ID that is already used, you will encounter the Resource could not be allocated error.

Step 8 (Optional) Click the **Preview** option to preview the configurations to be deployed.
Step 9: Click **Deploy** to deploy the specified logical interface. The newly added interface appears in the screen.

Breakout or Unbreakout: You can break out and unbreakout an interface by using the **breakout** option at the top left part of the screen.

Editing Interfaces

To edit the interfaces from the Cisco DCNM Web UI, perform the following steps:

Note

The **Edit Interface** allows you to change the policy and add or remove an interface from a port channel or vPC.

Procedure

Step 1 Choose **Control > Interfaces**.

You can break out and unbreak out an interface by using the breakout option at the top left part of the screen.

Step 2 Select the interface check box to edit an interface or vPC.

Select corresponding check boxes for editing multiple interfaces. You cannot edit multiple port channels and vPC. You cannot edit interfaces of different types at the same time.

Step 3 Click **Edit** to edit an interface.

The variables that are shown in the **Edit Configuration** window are based on the template and its policy. Select the appropriate policy. Preview the policy, save it and deploy the same. This window lists only Interface Python Policy with the tag `interface_edit_policy` and filtered based on the interface type.

In a vPC setup, the two switches are in the order the switch names are displayed in the edit window. For example, if Switch Name is displayed as LEAF1:LEAF2, then Leaf1 is peer switch one and Leaf2 is peer switch two.

For interface policies that are not created from the Control > Interfaces screen, you can edit some configurations but not change the policy itself. The policy and fields that cannot be edited are greyed out.

The following are some examples of policies that cannot be edited:

- **Loopback interface policies** - The `int_fabric_loopback_11_1` policy is used to create a loopback interface. You can edit the loopback IP address and description but not the `int_fabric_loopback_11_1` policy instance.

- **Fabric underlay network interface policies** (`int_fabric_num_11_1`, for example) and fabric overlay network interface (NVE) policies.

- **Policies associated with port channels and member ports of port channels**, including the port channels and member ports associated with a vPC.

- **SVIs created during network and VRF creation**. The associated VLANs appear in the interfaces list.
During overlay network deployment on switches, the network can be associated with trunk interfaces. The trunk interface to network association is reflected in the **Interfaces** screen. You can update such interfaces.

Deleting Interfaces

To delete the interfaces from the Cisco DCNM Web UI, perform the following steps:

Procedure

- **Step 1** Choose *Control > Interfaces*.
- **Step 2** Select the interfaces.
- **Step 3** Click **Delete** to delete the interface.

You cannot delete logical interfaces created in the fabric underlay.

Note

This option allows you to delete only logical ports, port channels, and vPCs. You can delete the interface if it does not have overlay or underlay policy attached.

When a port channel or vPC is removed, the corresponding member ports get the default policy associated. The Default Policy can be configured in *server.properties* file.

Shutting Down and Bringing Up Interfaces

To shut down and bring up the interfaces from the Cisco DCNM Web UI, perform the following steps:

Procedure

- **Step 1** Choose *Control > Interfaces*.
- **Step 2** Select the interfaces that you want to shut down or bring up.
- **Step 3** Click **Shutdown** to disable the selected interfaces. For example, you may want to isolate a host from the network or a host that is not active in the network.
- **Step 4** Click **No Shutdown** to bring up the selected interfaces.

Viewing Interface Configuration

To view the interface configuration commands and execute them from the Cisco DCNM Web UI, perform the following steps:
Rediscovering Interfaces

To rediscover the interfaces from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose **Control > Interfaces**.

Select the interfaces that you want to rediscover.

Step 2 Click **Rediscover** to rediscover the selected interfaces. For example, after you edit or enable an interface, you can rediscover the interface.

Viewing Interface History

To view the interface history from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose **Control > Interfaces**.

Step 2 Select the interface.

Step 3 Click **Interface History** to view the configuration history on the interface.

Step 4 Click **Status** to view each command that is configured for that configuration instance.

Deploying Interface Configurations

To deploy the interface configuration from the Cisco DCNM Web UI, perform the following steps:

Procedure

Choose **Deploy** to deploy and redeploy configurations that are saved for an interface.
Creating External Fabric Interfaces

You can add and edit port channel, vPC, subinterface, and loopback interfaces for external fabric devices. You cannot add Straight-through FEX and Active-Active FEX functions.

The Breakout port function is only supported for Cisco Nexus 9000 and 3000 series switches in the external fabric.

When you add an interface to an external fabric device, the Resource Manager is not in sync with the device. So, ensure that the value populated in the ID field (Port-channel ID, vPC ID, Loopback ID, etc) is not previously configured on the switch.

When an external fabric is set to **Fabric Monitor Mode Only**, you cannot deploy configurations on its switches. If you click **Save & Deploy** in the fabric topology screen, it displays an error message. However, the following settings (available when you right-click the switch icon) are allowed:

- **vPC pairing** - You can designate a vPC switch pair, but it is only for reference.
- **View/edit policy** - You can add a policy but you cannot deploy it on the switch.
- **Manage interfaces** – You can only create intent for adding interfaces. If you try to deploy, edit, or delete interfaces, it results in an error message.

Creating and Deploying Networks and VRFs

The steps for overlay networks and VRFs provisioning are:

2. Deploy the networks and VRFs on the fabric switches.

The two steps are explained:

Creating Networks for the Standalone Fabric

1. Click **Control > Networks & VRFs** (under Fabrics submenu). The LAN Fabric Provisioning page comes up.
2. Click **Continue**. The Select a Fabric page is displayed.
3. From the **Select a Fabric** drop-down list, select the fabric *Standalone*, and click **Continue** on the top right part of the screen. The Networks page is displayed. This page lists the networks that are created for the fabric. Initially, this page will not have any entries.

4. Click the + button at the top left part of the screen (under **Networks**) to add networks to the fabric. The Create Network screen comes up. Most of the fields are autopopulated.
The fields in this screen are:

Network ID and **Network Name**: Specifies the Layer 2 VNI and name of the network. The network name should not contain any white spaces or special characters except underscore (_) and hyphen (-). The corresponding Layer 3 VNI (or VRF VNI) is generated along with VRF creation.

VRF Name: Allows you to select the Virtual Routing and Forwarding (VRF).

When no VRF is created, this field appears blank. If you want to create a new VRF, click the + button. The VRF name should not contain any white spaces or special characters except underscore (_), hyphen (-), and colon (:).

Layer 2 Only: Specifies whether the network is Layer 2 only.

Network Template: A universal template is autopopulated. This is only applicable for leaf switches.

Network Extension Template: A universal extension template is autopopulated. This allows you to extend this network to another fabric. The methods are VRF Lite, Multi Site, and so on. The template is applicable for border leaf switches and BGWs.

VLAN ID: Specifies the corresponding tenant VLAN ID for the network.

Network Profile section contains the **General** and **Advanced** tabs.

General tab

IPv4 Gateway/NetMask: Specifies the IPv4 address with subnet.

IPv6 Gateway/Prefix: Specifies the IPv6 address with subnet.
Specify the anycast gateway IP address for transporting the L3 traffic from a server belonging to MyNetwork_30000 and a server from another virtual network. By default the anycast gateway IP address is the same for MyNetwork_30000 on all switches of the fabric that have the presence of the network.

VLAN Name - Enter the VLAN name.

Interface Description: Specifies the description for the interface. This interface is a switch virtual interface (SVI).

MTU for the L3 interface - Enter the MTU for Layer 3 interfaces.

IPv4 Secondary GW1 - Enter the gateway IP address for the additional subnet.

IPv4 Secondary GW2 - Enter the gateway IP address for the additional subnet.

Advanced tab: Optionally, specify the advanced profile settings by clicking the **Advanced** tab:

- **ARP Suppression** – Select the checkbox to enable the ARP Suppression function.
- **Ingress Replication** - The checkbox is selected if the replication mode is Ingress replication.

Note

Ingress Replication is a read-only option in the Advanced tab. Changing the fabric setting updates the field.

Multicast Group Address - The multicast IP address for the network is autopopulated.

DHCPv4 Server 1 - Enter the DHCP relay IP address of the first DHCP server.

DHCPv4 Server 2 - Enter the DHCP relay IP address of the next DHCP server.

DHCPv4 Server VRF - Enter the DHCP server VRF ID.

Routing Tag – The routing tag is autopopulated. This tag is associated with each gateway IP address prefix.

TRM enable – Select the checkbox to enable TRM.

L2 VNI Route-Target Both Enable - Select the check box to enable automatic importing and exporting of route targets for all L2 virtual networks.

Enable L3 Gateway on Border - Select the checkbox to enable a Layer 3 gateway on the border switches.

A sample of the Create Network screen is given below.
5. Click **Create Network**. A message appears at the bottom right part of the screen indicating that the network is created.

The new network appears on the **Networks** page that comes up.
The Status is NA since the network is created but not yet deployed on the switches. Now that the network is created, you can create more networks if needed and deploy the networks on the devices in the fabric.

Export and Import Network Information

You can export network information to a .CSV file. The exported file contains information pertaining to each network, including the fabric it belongs to, the associated VRF, the network templates used to create the network, and all other configuration details that you saved during network creation.

In the Networks screen, click the Export icon to export network information as a .CSV file.

You can use the exported .CSV file for reference or use it as a template for creating new networks. To import networks, do the following:

1. Update new records in the .CSV file. Ensure that the networkTemplateConfig field contains the JSON Object. A message at the bottom right part of the screen displays errors and success messages. This screenshot depicts two new networks being imported.

2. In the Networks screen, click the Import icon and import the .CSV file into DCNM.

You can see that the imported networks are displayed in the Networks screen.
1. Click Control > Networks & VRFs (under Fabrics submenu). The Networks & VRFs screen comes up.

2. Click Continue. The Select a Fabric screen is displayed.

3. From the Select a Fabric drop-down list, select the fabric Standalone, and click Continue on the top right part of the screen. The Networks page is displayed. This page lists the networks that are created for the fabric.

4. Select the network and click the Edit option at the top left part of the screen.

The Edit Network screen comes up.
5. Update the fields in the General and Advanced tabs of the Network Profile section as needed.
6. Click Save at the bottom right part of the screen to save the updates.

Creating VRFs for the Standalone Fabric

1. From the Networks page, click the VRF View button at the top right part of the screen to create VRFs.
 (If you have freshly logged in to DCNM, do the following:
 Click Control > Networks & VRFs.
 Click Continue in the LAN Fabric Provisioning page.
 Choose the fabric (Standalone) from the drop-down list and click Continue to reach the Networks page.
 Click VRF View at the top right part of the Networks page).

The VRFs page comes up. The page lists the list of VRFs created for the fabric. Initially, this page has no entries. One VRF is already created for this fabric. Let us create one more VRF.
2. Click the + button to add VRFs to the *Standalone* fabric. The Create VRF screen comes up. Most of the fields are autopopulated.

The fields in this screen are:

VRF ID and **VRF Name**: The ID and name of the VRF.

VRF Template: This template is applicable for VRF creation, and only applicable for leaf switches.

VRF Extension Template: The template is applicable when you extend the VRF to other fabrics, and is applicable for border devices.

Fill the fields in the **VRF Profile** section.

General tab – Enter the VLAN ID of the VLAN associated with the VRF, the corresponding Layer 3 virtual interface, and the VRF ID.

For ease of use, the VRF creation option is also available while you create a network.
Advanced tab – The fields in the tab are autopopulated.

Routing Tag – If a VLAN is associated with multiple subnets, then this tag is associated with the IP prefix of each subnet. Note that this routing tag is associated with overlay network creation too.

Redistribute Direct Route Map – Specifies the route map name for redistribution of routes in the VRF.

Max BGP Paths and **Max iBGP Paths** – Specifies the maximum BGP and iBGP paths.

TRM Enable – Select the checkbox to enable TRM.

If you enable TRM, then the RP address, the RP loopback ID and the underlay multicast address must be entered.

Is RP External - Enable this checkbox if the RP is external to the fabric.

RP Address and **RP Loopback ID** – Specifies the loopback ID and IP address of the RP.

Underlay Multicast Address – Specifies the multicast address associated with the VRF. The multicast address is used for transporting multicast traffic in the fabric underlay.

Overlay Multicast Groups – Specifies the multicast address for the VRF, used in the fabric overlay.

Enable IPv6 link-local Option - Enables the IPv6 link-local option under the VRF SVI.

Advertise Host Routes - Enable the checkbox to control advertisement of /32 and /128 routes to Edge Routers.

Advertise Default Route - Enable the checkbox to control advertisement of default routes internally.

To allow inter-subnet communication between end hosts in different VXLAN fabrics, where the subnets are present in both fabrics, you must disable the **Advertise Default Route** feature (clear the **Advertise Default Route** checkbox) for the associated VRF. This will result in /32 routes for hosts being seen in both fabrics. For example, Host1 (VNI 30000, VRF 50001) in Fabric1 can send traffic to Host2 (VNI 30001, VRF 50001) in Fabric2 only if the host route is present in both fabrics. When a subnet is present in only one fabric then default route is sufficient for inter-subnet communication.

Sample screenshots of the Create VRF screen:
3. Click **Create VRF**.

 The *MyVRF_50001* VRF is created and appears on the VRFs page.
Export and Import VRF Information

You can export VRF information to a .CSV file. The exported file contains information pertaining to each VRF, including the fabric it belongs to, the templates used to create the VRF, and all other configuration details that you saved during VRF creation.

In the VRFs screen, click the Export icon to export VRF information as a .CSV file.

You can use the exported .CSV file for reference or use it as a template for creating new VRFs. To import VRFs, do the following:

1. Update new records in the .CSV file. Ensure that the `vrfTemplateConfig` field contains the JSON Object.

2. In the VRFs screen, click the Import icon and import the .CSV file into DCNM.

 A message at the bottom right part of the screen displays errors and success messages. This screenshot depicts a new VRF being imported.

You can see that the imported VRF is displayed in the VRFs screen.
Editing VRFs for the Standalone Fabric

1. Click Control > Networks & VRFs (under Fabrics submenu). The Networks & VRFs screen comes up.

2. Click Continue. The Select a Fabric screen is displayed.

3. From the Select a Fabric drop-down list, select the fabric Standalone, and click Continue on the top right part of the screen. The Networks page is displayed.

4. Click the VRF View at the top right part of the screen. The VRFs page appears.

5. Select the VRF and click the Edit option at the top left part of the screen. The Edit VRF screen comes up.
6. Update the fields in the **General** and **Advanced** tabs of the **VRF Profile** section as needed.

7. Click **Save** at the bottom right part of the screen to save the updates.

Deploying Networks for the Standalone and MSD Fabrics

Before you begin: Ensure that you have created networks for the fabric.

1. Go to the Select a Fabric page.

 (To go to the Select a Fabric page do one of the following:
 Click **Fabric Selection** at the top left part of the screen.
 OR
 From the main menu, click **Control > Networks & VRFs** and click **Continue** in the LAN Fabric Provisioning page).

2. Click **Standalone** from the drop-down list and click **Continue** on the top right part of the screen.

 For an MSD fabric, you can either choose the MSD fabric or the member fabric. If you choose the MSD fabric, you can view all member fabrics in the same topology screen. So, you can provision networks from a single topology screen, one member fabric at a time.

 The Networks page comes up.
The list of networks in the fabric are displayed on the page. The network deployment status is NA since the networks have not been deployed on any switch.

Note

You can edit or delete networks from this screen.

3. Select networks that you want to deploy. In this case, select the checkboxes next to both the networks and click **Continue** at the top right part of the screen.

The Network Deployment page appears. On this page, you can see the network topology of the Standalone fabric.

You can deploy networks simultaneously on multiple switches. The selected devices should have the same role (Leaf, Border Gateway, and so on).

Note

In an MSD fabric, all member fabrics are visible from this screen.
At the bottom right part of the screen, the color codes that represent different stages of deployment are displayed. The color of the switch icons changes accordingly (Blue for Pending state, yellow for In Progress when the provisioning is in progress, green when successfully deployed, and so on).

The overlay networks (/VRFs) provisioning status is context-specific. It is a combination of networks that you chose for provisioning and the relevant switches in the topology. In this example, it means that the networks MyNetwork_30000 and MyNetwork_30001 are yet to be deployed on any switch in this fabric.

You can move the topology around the screen by clicking the left mouse button on the screen and moving it in the direction you desire. You can enlarge or shrink the switch icons proportionately by moving the cursor roller. You can also use corresponding alternatives on the touchpad.

4. Double-click a switch to deploy the networks on it. For deployment of networks on multiple switches, click Multi-Select from the panel at the top right part of the screen (the topology freezes to a static state), and drag the cursor across the switches.
Immediately the Network Attachment screen comes up.

Network Attachment - Attach networks for given switch(es)

Fabric Name: Standalone

Deployment Options

A tab represents each network (the first network is displayed by default) that is being deployed. In each network tab, the switches are displayed. Each row represents a switch.

Click the checkbox next to the Switch column to select all switches. The network is ready to be provisioned on the switches.

VLAN - Update the VLAN ID if needed.
When you update a VLAN ID and complete the network deployment process, the old VLAN is not automatically removed. To complete the process, you should go to the fabric topology screen (click Control > Fabric Builder and click within the corresponding fabric box to go to the screen) and use the Save and Deploy option.

When updating the VLAN ID for a given network, the original VLAN ID is not automatically removed from the attached trunk interface. In order to remove the old or original VLAN ID, you must perform Save and Deploy + Config Deploy operation from within the fabric in Fabric Builder. For this, go to the fabric topology screen (click Control > Fabric Builder and click within the corresponding fabric box to go to the screen) and execute the Save and Deploy operation. Verify that config compliance is removing the expected config, then execute Deploy Config operation to remove the configs.

Interfaces – Click … in the column to add interfaces associated with the selected network.

VLAN to trunk port mapping – The selected trunk ports include the VLAN as an allowed VLAN on the port.

VLAN to vPC domain mapping - If you want to associate the VLAN to port channels of a vPC domain, add the port channels from the list of interfaces. The vPC port channels include the VLAN as an allowed VLAN.

Freeform configurations – Click Freeform config to enable additional configurations on the switch. After the configurations are saved, the Freeform config button gets highlighted.

5. Select the other network tab and make the same selections.

6. Click Save (at the bottom right part of your screen) to save the configurations.

Note

Addition and removal of interfaces are displayed in the Interfaces column of the Switches Deploy screen. Though the interface-related updates (like addition or removal of trunk ports) are provisioned on the switches, the correct configurations will not reflect in the preview screen. When you add or remove a trunk or access port, the preview shows the addition or removal of configurations for the interface under that network.

The topology screen comes up again. Click Refresh in the vertical panel at the top right part of the screen. The blue color on the switch icons indicates that the deployment is pending.

7. Preview the configurations by clicking Preview (the eye icon above the Multi-Select option). Since MyNetwork_30000 and MyNetwork_30001 are networks of VRF 50000, the configurations contain VRF configurations followed by the network configurations.
Preview Configuration

Select a Switch: n9k-16-leaf
Select a Network: MyNetwork_30000

Generated Configuration:

```
configure profile MyVRF_50000
vlan 2000
vn-segment 50000
interface vlan2000
vrf member myvrf_50000
ip forward
ipv6 forward
no ip redirects
no ipv6 redirects
mtu 9216
no shutdown
vrf context myvrf_50000
vni 50000
rd auto
address-family ipv4 unicast
route-target both auto
route-target both auto evpn
address-family ipv6 unicast
route-target both auto
route-target both auto evpn
router bgp 60000
vrf myvrf_50000
address-family ipv4 unicast
advertise evpn
redistribute direct route-map fabric-map-redist-subnet
maximum-paths ibgp 2
address-family ipv6 unicast
advertise evpn
redistribute direct route-map fabric-map-redist-subnet
maximum-paths ibgp 2
interface vlan
member vni 50000 associate-vrf
configure terminal
apply profile MyVRF_50000
```
On the preview screen, you can select from the **Select a switch** and **Select a network** drop-down boxes at the top of the screen to view other network configurations.

After checking the configurations, close the screen. The Topology screen appears again.

8. Click **Deploy** on the top right part of the screen. The color of the switch icons changes to yellow and a message appears at the bottom right part of the screen indicating that the deployment is in progress. After the networks' deployment is complete, the color of the switch icons changes to green, indicating successful deployment.
When you select multiple networks on the Topology View screen and proceed to the deployment screen, the switch color reflects the status of the first network in the selected list of networks. In this example, the switch color turns green when MyNetwork_30000 is provisioned on the switch. Go to the Networks page to view the individual status for all networks.

Note

Network Deployment for an MSD Fabric

Consider a scenario wherein you are deploying the same networks on different member fabric border devices. You can choose one fabric, deploy networks on its border devices, and then choose the second fabric and deploy networks.

Alternatively, you can choose the MSD fabric, and deploy the networks from a single topology view of all member fabric border devices.

This is a topology view of an MSD fabric wherein the two member fabrics topologies and their connections are depicted. You can deploy networks on the BGWs of the fabrics at once.
Detailed View

You can also use the Detailed View option to deploy networks and VRFs. Click **Detailed View** at the top right part of the screen. The Detailed View screen comes up. This lists the networks in a tabular view.

The options:

- **Edit** - Select a network and click the Edit icon at the top left part of the screen.

Note

If you select one network/switch entry and click on Edit, the Network Attach screen comes up. To maintain consistency across the Topology View and Detailed View screens, the Network Attach screen displays all networks, and not just the selected network/switch.

- **Preview** – Click Preview to preview configurations before deployment. You can only preview pending configurations, and not uninitiated or deployed configurations.
- **Deploy** – Click Deploy to provision networks onto the switches.
- **History** – Select a row and click History to view the configuration instances and status. Network and VRF-wise configurations are displayed. Click in the Status column of any instance for more details.
The fields in the table contain the configuration instance in each row, the associated switch and fabric names, the switch role, trunk ports (if any), and the deployment status.

Apply/Save – Selecting a network and clicking Apply/Save will select a switch for the network to be deployed on.

On the Detailed View page, the network profile configuration history is displayed. If you have associated specific trunk interfaces to that network, then the interface configuration is displayed as a separate configuration instance.

Note

When you upgrade from an earlier release (such as DCNM 10.4[2]) to the DCNM 11.0(1) release, overlay networks and VRFs deployment history information from the earlier DCNM release is not retained.

Deploying VRFs for the Standalone and MSD Fabrics

1. From the Networks page, click VRF View at the top right part of the screen to deploy VRFs.

 (If you have freshly logged in to DCNM, do the following:

 Click **Control > Networks & VRFs**.

 Click **Continue** in the LAN Fabric Provisioning page.

 Choose **Standalone** from the drop-down list and click **Continue** to reach the Networks page.

 Click **VRF View** at the top right part of the Networks page).

 The VRFs page comes up. The list of VRFs created for the **Standalone** fabric are displayed in this screen.

 ![Fabric Selected: Standalone](image)

<table>
<thead>
<tr>
<th>VRF Name</th>
<th>VRF ID</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>MyVRF_50000</td>
<td>50000</td>
<td>NA</td>
</tr>
<tr>
<td>MyVRF_50001</td>
<td>50001</td>
<td>NA</td>
</tr>
</tbody>
</table>

2. Select check boxes next to the VRFs that you want to deploy and click **Continue** at the top right part of the screen.

 The VRF Deployment screen appears. On this page, you can see the topology of the Standalone fabric. The following example shows you how to deploy the VRFs MyVRF_50000 and MyVRF_50001 on the leaf switch. You can deploy VRFs simultaneously on multiple switches but of the same role (Leaf, Border Gateway, and so on).
At the bottom right part of the screen, the color codes that represent different stages of deployment are displayed. The color of the switch icons changes accordingly (Blue for Pending state, yellow for In Progress state when the provisioning is in progress, red for failure state, green when successfully deployed, and so on).

The overlay networks (or VRFs) provisioning status is context-specific. It is a combination of VRFs that you chose for provisioning and the relevant switches in the topology. In this example, it means that the VRFs are yet to be deployed on any switch in this fabric.

You can move the topology around the screen by clicking the left mouse button on the screen and moving it in the direction you desire. You can enlarge or shrink the switch icons proportionately by moving the cursor roller. You can also use corresponding alternatives on the touchpad.

3. Double-click a switch to deploy VRFs on it. The VRF Attachment screen comes up.

Note

For deployment of VRFs on multiple switches, click the Multi-Select option from the panel at the top right part of the screen (This freezes the topology to a static state), and drag the cursor across the switches.
A tab represents each VRF that is being deployed (the first selected VRF is displayed by default). In each VRF tab, the selected switches are displayed. Each row represents a switch.

VLAN ID - Click within the VLAN column to update the VRF VLAN ID, if needed.

Freeform configurations – Click Freeform config to enable additional configurations on the switch. After you save freeform configurations, the Freeform config button gets highlighted.

Click the checkbox next to the Switch column to select all switches. VRF MyVRF_50000 is ready to be provisioned on the switch

4. Select the other VRF tab and make the same selections.

5. Click Save (at the bottom right part of your screen) to save VRF configurations.

The topology screen comes up again. Click the Refresh button in the vertical panel at the top right part of the screen. The blue color on the switch icons indicates that the deployment is pending.

Preview the configurations by clicking the Preview button (the eye icon above the Multi-Select option).
After checking the configurations, close the screen. The Topology View screen appears.

6. Click the **Deploy** button on the top right part of the screen. The color of the switch icons changes to yellow and a message appears at the bottom right part of the screen indicating that the deployment is in progress. After the VRF deployment is complete, the color of the switch icons changes to green, indicating successful deployment.

VRFs Deployment for an MSD Fabric

Consider a scenario wherein you are deploying the same VRFs on different member fabric border devices. You can choose one fabric, deploy VRFs on its border devices, and then choose the second fabric and deploy the VRFs.

Alternatively, you can choose the MSD fabric, and deploy the VRFs from a single topology view of all member fabric border devices at once.
Detailed View
You can also use the **Detailed View** button to deploy networks and VRFs.
Click **Detailed View** at the top right part of the screen. The Detailed View screen comes up. This lists the VRFs in a tabular view.

The options:
- **Edit** - Select a VRF and click the Edit icon at the top left part of the screen.

Note
If you select one VRF/switch entry, the VRF Attach screen comes up. To maintain consistency across the Topology View and Detailed View screens, the VRF Attach screen displays all VRFs, and not just the selected VRF/switch entry.

- **Preview** – Click Preview to preview configurations before deployment. You can only preview pending configurations, and not uninitiated or deployed configurations.
- **Deploy** – Click Deploy to provision VRFs onto the switches.
- **History** – Select a row and click History to view the configuration instances and status. Network and VRF-wise configurations are displayed. Click in the Status column of any instance for more details.
The fields in the table contain the configuration instance in each row, the associated switch and fabric names, the switch role, and the deployment status.

Apply/Save – Selecting a VRF and clicking Apply/Save will select a switch for the VRF to be deployed on.

Note

When you upgrade from an earlier release (such as DCNM 10.4[2]) to the DCNM 11.0(1) release, overlay networks and VRFs deployment history information from the earlier DCNM release is not retained.

Undeploying Networks for the Standalone Fabric

You can undeploy VRFs and networks from the deployment screen. The DCNM screen flow for undeployment is similar to the deployment process flow. Go to the deployment screen (Topology View) to undeploy networks:

1. Choose **Control > Networks and VRFs**.
2. In the **Select a Fabric** page, click **Continue** (at the top right part of the screen). The Networks page comes up.
3. Select the networks that you want to undeploy and click Continue. The topology view comes up.
4. Select the Multi-Select button (if you are undeploying the networks from multiple switches), and drag the cursor across switches with the same role. The Network Attachment screen comes up.
 (For a single switch, double-click the switch and the Network Attachment screen comes up).
 (For a single switch, double-click the switch and the Switches Deploy screen comes up).
5. In the Network Attachment screen, the Status column for the deployed networks is displayed as DEPLOYED. Clear the check boxes next to the switches, as needed. Ensure that you repeat this on all tabs since each tab represents a network.
6. Click **Save** (at the bottom right part of the screen) to initiate the undeployment of the networks. The **Topology View** comes up again.

Note

Alternatively, you can click the **Detailed View** button to undeploy networks.

7. Refresh the screen, preview configurations if needed and click **Deploy** to remove the network configurations on the switches. After the switch icons turn green, it indicates successful undeployment.
8. Go to the Networks page to verify if the networks are undeployed.

Undeploying VRFs for the Standalone Fabric

You can undeploy VRFs and networks from the deployment screen. The DCNM screen flow for undeployment is similar to the deployment process flow.

1. Choose **Control > Networks and VRFs**.
2. In the Select a Fabric page, click **Continue** (at the top right part of the screen). The Networks page comes up.
3. Click the **VRF View** button (at the top right part of the screen) to go to the VRFs screen.
4. Select the VRFs that you want to undeploy and click **Continue**. The **Topology View** page comes up.

5. Select the Multi-Select option (if you are undeploying the VRFs from multiple switches), and drag the cursor across switches with the same role. The VRF Attachment screen comes up.

 (For a single switch, double-click the switch and the VRF Attachment screen comes up).

6. In the Switches Deploy screen, the **Status** column for the deployed VRFs is displayed as DEPLOYED. Clear the check boxes next to the switches, as needed. Ensure that you repeat this on all tabs since each tab represents a VRF.

7. Click **Save** (at the bottom right part of the screen) to initiate the undeployment of the VRFs. The topology view comes up again.

Note

Alternatively, you can click the **Detailed View** button to undeploy VRFs.

8. Refresh the screen, preview configurations if needed and click **Deploy** to remove the VRF configurations on the switches. After the switch icons turn green, it indicates successful undeployment.

9. Go to the VRFs page to verify if the networks are undeployed.

Deleting Networks and VRFs

If you want to delete networks and corresponding VRFs in the MSD fabric, follow this order:

1. Undeploy the networks, if not already done.
2. Delete the networks.
3. Undeploy the VRFs, if not already done.
4. Delete the VRFs.

Creating an External Fabric

You can create an external fabric in DCNM to depict a connection between the VXLAN and external fabrics in the DCNM GUI. In DCNM 11.1(1) release, you can add switches to the external fabric. Generic pointers:

- An external fabric is a monitor-only or managed mode fabric.
- You can import, remove, and delete switches for an external fabric.
- For Inter-Fabric Connection (IFC) cases, you can choose Cisco 9000, 7000 and 5600 Series switches as destination switches in the external fabric.
- You can use non-existing switches as destination switches.
- The template that supports an external fabric is **External_Fabric.template**.
- If an external fabric is an MSD fabric member, then the MSD topology screen displays the external fabric with its devices, along with the member fabrics and their devices.

When viewed from an external fabric topology screen, any connections to non-DCNM managed switches are represented by a cloud icon labelled as **Undiscovered**.
• You can set up a Multi-Site or a VRF-lite IFC by manually configuring the links for the border devices in the VXLAN fabric or by using an automatic Deploy Border Gateway Method or VRF Lite IFC Deploy Method. If you are configuring the links manually for the border devices, we recommend using the Core Router role to set up a multisite eBGP underlay from a Border Gateway device to a Core Router and the Edge Router role to set up a VRF-lite Inter-Fabric Connection (IFC) from a Border device to an Edge device.

Creating External Fabric from Fabric Builder

Follow these steps to create an external fabric from Fabric Builder.

1. Click Control > Fabric Builder. The Fabric Builder page comes up.

2. Click the Create Fabric button. The Add Fabric screen comes up. The fields in this screen are:

 Fabric Name - Enter the name of the external fabric.

 Fabric Template - Choose External_Fabric.

When you choose the fabric template, the fabric creation screen for creating an external fabric comes up.

3. Fill up the General, Advanced, Resources and DCI tabs as shown below.

 General tab

 BGP AS # - Enter the BGP AS number.

 Is Fabric Monitor Mode Only – Clear the checkbox if you want DCNM to manage the fabric. Keep the checkbox selected to enable a monitor only external fabric.

 When you create an Inter-Fabric Connection from a VXLAN fabric to this external fabric, the BGP AS number is referenced as the external or neighbor fabric AS Number.

 When an external fabric is set to Fabric Monitor Mode Only, you cannot deploy configurations on its switches. If you click Save & Deploy in the fabric topology screen, it displays an error message. However, the following settings (available when you right-click the switch icon) are allowed:

 vPC pairing - You can designate a vPC switch pair, but it is only for reference.
View/edit policy - You can add a policy but you cannot deploy it on the switch.

Manage interfaces – You can only create intent for adding interfaces. If you try to deploy, edit, or delete interfaces, it results in an error message.

BGP Send-Community-Both Option – Select the checkbox to send standard and extended BGP communities to BGP peers. If the checkbox is not selected, only the extended community is sent.

Advanced tab - The vPC peer link VLAN ID is autopopulated. Update the field to reflect the correct value.

<table>
<thead>
<tr>
<th>General</th>
<th>Advanced</th>
<th>Resources</th>
<th>DCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>* vPC Peer Link VLAN</td>
<td>3600</td>
<td>VLAN for vPC Peer Link SVI</td>
<td></td>
</tr>
</tbody>
</table>

Resources tab - The subinterface 802.1Q range and the underlay routing loopback IP address range are autopopulated.

<table>
<thead>
<tr>
<th>General</th>
<th>Advanced</th>
<th>Resources</th>
<th>DCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Subinterface Dot1q Range</td>
<td>2-511</td>
<td>Per Border Dot1q Range For VRF Lite Connectivity</td>
<td></td>
</tr>
<tr>
<td>* Underlay Routing Loopback IP Range</td>
<td>10.1.0.0/22</td>
<td>Typically Loopback IP Address Range</td>
<td></td>
</tr>
</tbody>
</table>

DCI tab – The DCI subnet IP prefix and subnet mask information are populated.

<table>
<thead>
<tr>
<th>General</th>
<th>Advanced</th>
<th>Resources</th>
<th>DCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>* DCI Subnet IP Range</td>
<td>10.10.1.0/24</td>
<td>Address range to assign P2P DCI Links</td>
<td></td>
</tr>
<tr>
<td>* Subnet Target Mask</td>
<td>30</td>
<td>Target Mask for Subnet Range</td>
<td></td>
</tr>
</tbody>
</table>

4. Click Save.

After the external fabric is created, the external fabric topology page comes up.

After creating the external fabric, add switches to it.
Add Switches to the External Fabric

1. Click Add switches. The Inventory Management screen comes up. You can also add switches by clicking Tabular View > Switches > +.

 ![Inventory Management Screen](image)

 - **Seed IP**: Enter the IP address of the switch.
 - **Authentication Protocol**: MD5
 - **Username**
 - **Password**
 - **Max Hops**: Enter the maximum number of hops, e.g., 2.

 - **Start discovery** button

2. Enter the IP address (Seed IP), administrator username, and password (Username and Password fields) of the switch.

3. Click Start discovery at the bottom part of the screen. The Scan Details section comes up shortly. Since the Max Hops field was populated with 2, the switch with the specified IP address and switches two hops from it are populated.

4. Select the check boxes next to the concerned switches and click Import into fabric. You can discover multiple switches at the same time. The switches must be properly cabled and connected to the DCNM server and the switch status must be manageable.

 The switch discovery process is initiated. The Progress column displays the progress. After DCNM discovers the switch, the screen closes and the fabric screen comes up again. The switch icons are seen at the centre of the fabric screen.

5. Click Refresh topology to view the latest topology view.

The options are:

Set Role – By default, no role is assigned to an external fabric switch. The allowed roles are Edge Router and Core Router. Assign the Core Router role for a Multi-Site Inter-Fabric Connection (IFC) and the Edge Router role for a VRF Lite IFC between the external fabric and VXLAN fabric border devices.

Note

Changing of switch role is allowed only before executing Save & Deploy.

- **Modes** – Active/Operational mode.
- **vPC Pairing** – Select a switch for vPC and then select its peer.
- **Manage Interfaces** – Deploy configurations on the switch interfaces.
- **Straight-through FEX, Active/Active FEX, and breakout of interfaces are not supported for external fabric switch interfaces.**
- **View/edit Policies** – Add, update and delete policies on the switch. The policies you add to a switch are template instances of the templates available in the template library. After creating policies, you should deploy them on the switch using the Deploy option available in the View/edit Policies screen.
- **History** – View per switch deployment history.
- **Deploy Config** – Deploy per switch configurations.
- **Discovery** - You can use this option to update the credentials of the switch, reload the switch, rediscover the switch, and remove the switch from the fabric.

7. Click Save & Deploy at the top right part of the screen. The template and interface configurations form the configuration provisioning on the switches.

When you click Save & Deploy, the Configuration Deployment screen comes up.
8. Click Deploy Config at the bottom part of the screen to initiate pending configuration onto the switch.
9. Close the screen after deployment is complete.

Move an External Fabric Under an MSD Fabric

You should go to the MSD fabric page to associate an external fabric as its member.

1. Click Control > Fabric Builder to go to the Fabric Builder screen.
2. Click within the MSD-Parent-Fabric box to go to its topology screen.
3. In the topology screen, go to the Actions panel and click Move Fabrics.

The Move Fabric screen comes up. It contains a list of fabrics. The external fabric is displayed as a standalone fabric.

4. Select the radio button next to the external fabric and click Add.
Now, in the Scope drop-down box at the top right part of the screen, you can see that the external fabric appears under the MSD fabric.

5. Click ← at the top left part of the screen to go to the Fabric Builder screen. In the MSD fabric box’s Member Fabrics field, the external fabric is displayed.
External Fabric Depiction in an MSD Fabric Topology

The MSD topology screen displays MSD member fabrics and external fabrics together. The external fabric External65000 is displayed as part of the MSD topology.

Note

When you deploy networks or VRFs for the VXLAN fabric, the deployment page (MSD topology view) shows the VXLAN and external fabrics that are connected to each other.
External Fabric Switch Operations

In the external fabric topology screen, click Tabular view option in the Actions panel, at the left part of the screen. The Switches | Links screen comes up.

The switches tab is for managing switch operations and the Links tab is for viewing fabric links. Each row represents a switch in the external fabric, and displays switch details, including its serial number.

The buttons at the top of the table are explained, from left to right direction. Some options are also available when you right-click the switch icon. However, the switches tab enables you to provision configurations on multiple switches (for adding and deploying policies, etc) simultaneously.

- Add switches to the fabric. This option is also available in the topology page (Add switches option in Actions panel).
- Initiate the switch discovery process by DCNM afresh.
- Update device credentials such as authentication protocol, username and password.
- Reload the switch.
- Remove the switch from the fabric.
- View/edit Policies – Add, update and delete a policy on multiple switches simultaneously. The policies are template instances of templates in the template library. After creating a policy, you should deploy it on the switches using the Deploy option available in the View/edit Policies screen.

Note

If you select multiple switches and deploy a policy instance, then it will be deployed on all the selected switches.

- Manage Interfaces – Deploy configurations on the switch interfaces.
- History – View deployment history on the selected switch.
- Deploy – Deploy switch configurations.

External Fabric Links

You can only view and delete external fabric links. You cannot create links or edit them.

To delete a link in the external fabric, do the following:

1. Go to the topology screen and click the Tabular view option in the Actions panel, at the left part of the screen.

 The Switches | Links screen comes up.
2. Choose one or more checkboxes and click the Delete icon at the top left part of the table.
 The links are deleted.

Move Neighbor Switch to External Fabric

1. Click Add switches. The Inventory Management screen comes up.
2. Click Move Neighbor Switches tab.
3. Select the switch and click Move Neighbor at the top right part of the screen.

To delete a neighbor, select a switch and click Delete Neighbor at the top right part of the screen.

Multi-Site Domain for VXLAN BGP EVPN Fabrics

A Multi-Site Domain (MSD) is a multifabric container that is created to manage multiple member fabrics. An MSD is a single point of control for definition of overlay networks and VRFs that are shared across member fabrics. When you move fabrics (that are designated to be part of the multifabric overlay network domain) under the MSD as member fabrics, the member fabrics share the networks and VRFs created at the MSD-level. This way, you can consistently provision network and VRFs for different fabrics, at one go. It significantly reduces the time and complexity involving multiple fabric provisionings.

Since server networks and VRFs are shared across the member fabrics (as one stretched network), the new networks and VRFs provisioning function is provided at the MSD fabric level. Any new network and VRF creation is only allowed for the MSD. All member fabrics inherit any new network and VRF created for the MSD.

In DCNM 11.1(1) release, in addition to member fabrics, the topology view for the MSD fabric is introduced. This view displays all member fabrics, and how they are connected to each other, in one view.

Also, a deployment view is introduced for the MSD fabric. You can deploy overlay networks (and VRFs) on member fabrics from a single topology deployment screen, instead of visiting each member fabric deployment screen separately and deploying.

A few fabric-specific terms:

- **Standalone fabric**: A fabric that is not part of an MSD is referred as a standalone fabric from the MSD perspective. Before the MSD concept, all fabrics were considered standalone, though two or more such fabrics can be connected with each other.

- **Member fabrics**: Fabrics that are part of an MSD are called member fabrics or members. Create a standalone fabric (of the type Easy_Fabric) first and then move it within an MSD as a member fabric.

When a standalone fabric is added to the MSD, the following actions take place:

- The standalone fabric's relevant attributes and the network and VRF definitions are checked against that of the MSD. If there is a conflict, then the standalone fabric addition to the MSD fails. If there are no conflicts, then the standalone fabric becomes a member fabric for the MSD. If there is a conflict, the exact conflicts are logged in the pending errors log for the MSD fabric. You can remedy the conflicts and then attempt to add the standalone fabric to the MSD again.

- All the VRFs and networks definitions from the standalone fabric that do not have presence in the MSD are copied over to the MSD and in turn inherited to each of its other existing member fabrics.
• The VRFs (and their definitions) from the MSD (such as the MSD's VRF, and L2 and L3 VNI parameters that do not have presence in the standalone fabric) are inherited into the standalone fabric that just became a member.

Fabric and Switch Instance Variables

While the MSD provisions a global range of network and VRF values, some parameters are fabric-specific and some parameters are switch-specific. The parameters are called fabric instance and switch instance variables.

Fabric instance values can be edited in the fabric context. Specify fabric instance values for each fabric. For example, multicast group subnet address.

Switch instance values can be edited on deployment of the network on the switch. For example, VLAN ID.

MSD and Member Fabric Process Flow

An MSD has multiple sites (and hence, multiple member fabrics under an MSD). VRFs and networks are created for the MSD and get inherited by the member fabrics. For example, VRF-50000 (and L3 network with ID 50000), and L2 networks with IDs 30000 and 30001 are created for the MSD, in one go.

A high-level flow chart of the MSD and member fabric creation and MSD-to-member fabric inheritance process:
The sample flow explained the inheritance from the MSD to one member. An MSD has multiple sites (and hence, multiple member fabrics under an MSD). A sample flow from an MSD to multiple members:

In this example, VRF-50000 (and L3 network with ID 50000), and L2 networks with IDs 30000 and 30001 are created in one go. Networks and VRFs are deployed on the member fabric switches, one after another, as depicted in the image.
In DCNM 11.1(1), you can provision overlay networks through a single MSD deployment screen.

Note

If you move a standalone fabric with existing networks and VRFs to an MSD, DCNM does appropriate validation. This is explained in detail in an upcoming section.

Upcoming sections in the document explain the following:

- Creation of an MSD fabric.
- Creation of a standalone fabric (as a potential member) and its movement under the MSD as a member.
- Creation of networks and VRFs in the MSD and their inheritance to the member fabrics.
- Deployment of networks and VRFs from the MSD and member fabric topology views.
- Other scenarios for fabric movement:
 - Standalone fabric with existing networks and VRFs to an MSD fabric.
 - Member fabric from one MSD to another.

Creating an MSD Fabric and Associating Member Fabrics to It

The process is explained in two steps:

2. Create a new standalone fabric and move it under the MSD fabric as a member fabric.
Creating an MSD Fabric

1. Click Control > Fabric Builder.

The Fabric Builder screen comes up. When you view the screen for the first time, the Fabrics section has no entries. After you create a fabric, it is displayed on the Fabric Builder screen, wherein a rectangular box represents each fabric.

A standalone or member fabric contains Switch_Fabric in the Type field, its AS number in the ASN field and mode of replication, Multicast or Ingress Replication, in the Replication Mode field. Since no device or network traffic is associated with an MSD fabric as it is a container, it does not have these fields.

2. Click the Create Fabric button. The Add Fabric screen comes up. The fields are:

Fabric Name - Enter the name of the fabric.

Fabric Template - This field has template options for creating specific types of fabric. Choose MSD_Fabric. The MSD screen comes up.
The fields in the screen are explained:

In the **General** tab, all fields are autopopulated with data. The fields consist of the Layer 2 and Layer 3 VXLAN segment identifier range, the default network and VRF templates, and the anycast gateway MAC address. Update the relevant fields as needed.

- **L2 Segment ID Range** - Layer 2 VXLAN segment identifier range.
- **L3 Partition ID Range** - Layer 3 VXLAN segment identifier range.
- **VRF Template** - Default VRF template.
- **Network Template** - Default network template.
- **VRF Extension Template** - Default VRF extension template.
- **Network Extension Template** - Default network extension template.
- **Anycast-Gateway-MAC** - Anycast gateway MAC address.
- **Multisite Routing Loopback Id** – The multicast routing loopback ID is populated in this field.

3. Click the DCI tab.

The fields are:

- **DCI Subnet IP Range** and **Subnet Target Mask** – Specify the Data Center Interconnect (DCI) subnet IP address and mask.
Deploy Border Gateway Method – Choose how you will connect the data centers through the BGW, manually, in a back-to-back fashion or through a route server.

If you choose to connect them through a route server, you should enter the route server details.

MS Route Server List – Specify the IP addresses of the route server. If you specify more than one, separate the IP addresses by a comma.

BGP ASN of Route Server(s) one for each route server – Specify the BGP AS Number of the router server. If you specify more than one route server, separate the AS Numbers by a comma.

4. Click the Resources tab.

MultiSite Routing Loopback IP Range – Specify the Multi-Site loopback IP address range used for the EVPN Multi-Site function.

A unique loopback IP address is assigned from this range to each member fabric because each member site must have a Loopback 100 IP address assigned for overlay network reachability. The per-fabric loopback IP address is assigned on all the BGWs in a specific member fabric.

5. Click Save.

A message appears briefly at the bottom right part of the screen, indicating that you have created a new MSD fabric. After fabric creation, the fabric page comes up. The fabric name *MSD-Parent-Fabric* appears at the top left part of the screen.

Since the MSD fabric is a container, you cannot add a switch to it. The *Add Switches* button that is available in the *Actions* panel for member and standalone fabrics is not available for the MSD fabric.

When a new MSD is created, the newly created MSD fabric instance appears (as a rectangular box) on the Fabric Builder page. To go to the Fabric Builder page, click the ← button at the top left part of the *MSD-Parent-Fabric* page.
An MSD fabric is displayed as **MSD** in the **Type** field, and it contains the member fabric names in the **Member Fabrics** field. When no member fabric is created, **None** is displayed.

The steps for creation of an MSD fabric and moving member fabrics under it are:

1. **Create an MSD fabric.**
2. **Create a new standalone fabric and move it under the MSD fabric as a member fabric.**

Step 1 is completed. Step 2 is explained in the next section.

Creating and Moving a New Fabric Under the MSD Fabric as a Member

A new fabric is created as a standalone fabric. After you create a new fabric, you can move it under an MSD as a member. As a best practice, when you create a new fabric that is a potential member fabric (of an MSD), do not add networks and VRFs to the fabric. Move the fabric under the MSD and then add networks and VRFs for the MSD. That way, there will not be any need for validation (or conflict resolution) between the member and MSD fabric network and VRF parameters.

New fabric creation is explained in the Easy Fabric creation process. In the MSD document, fabric movement is covered. However, some pointers about a standalone (potential member) fabric:

The values that are displayed in the screen are automatically generated. The VXLAN VNI ID ranges (in the L2 Segment ID Range and L3 Partition ID Range fields) allocated for new network and VRF creation are
values from the MSD fabric segment ID range. If you want to update the VXLAN VNI ranges or the VRF and Network VLAN ranges, ensure the following:

- If you update a range of values, ensure that it does not overlap with other ranges.
- You must update one range of values at a time. If you want to update more than one range of values, do it in separate instances. For example, if you want to update L2 and L3 ranges, you should do the following:
 1. Update the L2 range and click Save.
 2. Click the Edit Fabric option again, update the L3 range and click Save.

Ensure that the Anycast Gateway MAC, the Network Template and the VRF Template field values are the same as the MSD fabric. Else, member fabric movement to the MSD fail.

Other pointers:
- Ensure that the Anycast Gateway MAC, the Network Template and the VRF Template field values are the same as the MSD fabric. Else, member fabric movement to the MSD fail.
- The member fabric should have a Site ID configured and the Site ID must be unique among the members.
- The BGP AS number should be unique for a member fabric.
- The underlay subnet range for loopback0 should be unique.
- The underlay subnet range for loopback1 should be unique.

After you click Save, a note appears at the bottom right part of the screen indicating that the fabric is created. When a fabric is created, the fabric page comes up. The fabric name appears at the top left part of the screen. Simultaneously, the Fabric Builder page also displays the newly created fabric, Member1.
Simultaneously, the Fabric Builder page also displays the newly created fabric, Member1.

Moving the Member1 Fabric Under MSD-Parent-Fabric

You should go to the MSD fabric page to associate a member fabric under it.

If you are on the Fabric Builder page, click within the **MSD-Parent-Fabric** box to go to the MSD-Parent-Fabric page.

[If you are in the Member1 fabric page, you should go to the MSD-Parent-Fabrics-Docs fabric page. Click <- above the Actions panel. You will reach the Fabric Builder page. Click within the MSD-Parent-Fabric box].

1. In the MSD-Parent-Fabric page, go to the **Actions** panel and click **Move Fabrics**.

The Move Fabric screen comes up. It contains a list of fabrics.
Member fabrics of other MSD container fabrics are not displayed here.

The Member1 fabric is still a standalone fabric. A fabric is considered a member fabric of an MSD fabric only when you associate it with the MSD fabric. Also, each standalone fabric is a candidate for being an MSD fabric member, until you associate it to one of the MSD fabrics.

2. Since Member1 fabric is to be associated with the MSD fabric, select the Member1 radio button. The Add button is enabled.

3. Click Add.

 Immediately, a message appears at the top of the screen indicating that the Member1 fabric is now associated with the MSD fabric MSD-Parent-Fabric. Now, the MSD-Parent-Fabric fabric page appears again.

4. Click the Move Fabrics option to check the fabric status. You can see that the fabric status has changed from standalone to member.
5. Close this screen.

6. Click ← above the Actions panel to go to the Fabric Builder page.

You can see that Member1 is now added to MSD fabric and is displayed in the Member Fabrics field.

MSD Fabric Topology View Pointers

- MSD fabric topology view - Member fabrics and their switches are displayed. A boundary defines each member fabric. All fabric devices of the fabric are confined to the boundary.

All links are displayed, including intra-fabric links and Multi-Site (underlay and overlay), and VRF Lite links to remote fabrics.
• **Member fabric topology view** - A member fabric and its switches are displayed. In addition, the connected external fabric is displayed.
Adding and Editing Links

To add a link, right-click anywhere in the topology and use the Add Link option. To edit a link, right-click on the link and use the Edit Link option.

Alternatively, you can use the Tabular view option in the Actions panel.

To know how to add links between border switches of different fabrics (inter-fabric links) or between switches in the same fabric (intra-fabric links), refer the Fabric Links topic.

Creating and Deploying Networks and VRFs in an MSD Fabric

In standalone fabrics, networks and VRFs are created for each fabric. In an MSD fabric, networks and VRFs should be created at the MSD fabric level. The networks and VRFs are inherited by all the member networks. You cannot create or delete networks and VRFs for member fabrics. However, you can edit them.

For example, consider an MSD fabric with two member fabrics. If you create three networks in the MSD fabric, then all three networks will automatically be available for deployment in both the member fabrics.

Though member fabrics inherit the MSD fabric's networks and VRFs, you have to deploy the networks and VRFs distinctly, for each fabric.
In DCNM 11.1(1) release, a deployment view is introduced for the MSD, in addition to the per-fabric deployment view. In this view, you can view and provision overlay networks for all member fabrics within the MSD, at once. However, you still have to apply and save network and VRF configurations distinctly, for each fabric.

Note

Networks and VRFs are the common identifiers (represented across member fabrics) that servers (or end hosts) are grouped under so that traffic can be sent between the end hosts based on the network and VRF IDs, whether they reside in the same or different fabrics. Since they have common representation across member fabrics, networks and VRFs can be provisioned at one go. As the switches in different fabrics are physically and logically distinct, you have to deploy the same networks and VRFs separately for each fabric.

For example, if you create networks 30000 and 30001 for an MSD that contains two member fabrics, the networks are automatically created for the member fabrics and are available for deployment.

In DCNM 11.1(1) release, you can deploy 30000 and 30001 on the border devices of all member fabrics through a single (MSD fabric) deployment screen. Prior to this, you had to access the first member fabric deployment screen, deploy 30000 and 300001 on the fabric's border devices, and then access the second member fabric deployment screen and deploy again.

Networks and VRFs are created in the MSD and deployed in the member fabrics. The steps are explained below:

2. Deploy the networks and VRFs in the member fabric devices, one fabric at a time.

Creating Networks in the MSD Fabric

1. Click **Control > Networks & VRFs** (under Fabrics submenu). The **Networks & VRFs** page comes up.
2. Click **Continue**. The Select a Fabric page comes up.

 ![Select a Fabric](image)

You can click the Select a Fabric drop-down box to see the list of fabrics.
The MSD fabric *MSD-Parent-Fabric* contains one member fabric, *Member1*. It is indented to the right, indicating that it is a part of the MSD. All other standalone fabrics appear in the same indent level of the MSD.

3. Select *MSD-Parent-Fabric* from the list and click **Continue** at the top right part of the screen.

The Networks page comes up. This lists the list of networks created for the MSD fabric. Initially, this screen has no entries.

4. Click the + button at the top left part of the screen (under **Networks**) to add networks to the MSD fabric. The Create Network screen comes up. Most of the fields are autopopulated.
The fields in this screen are:

Network ID and **Network Name** - Specifies the Layer 2 VNI and name of the network. The network name should not contain any white spaces or special characters except underscore (_), and hyphen (-).

VRF Name - Allows you to select the Virtual Routing and Forwarding (VRF).

When no VRF is created, this field is blank. If you want to create a new VRF, click the + button. The VRF name should not contain any white spaces or special characters except underscore (_), hyphen (-), and colon (:).

Layer 2 Only - Specifies whether the network is Layer 2 only.

Network Template - Allows you to select a network template.

Network Extension Template - This template allows you to extend the network between member fabrics.

VLAN ID - Specifies the corresponding tenant VLAN ID for the network.

Network Profile section contains the General and Advanced tabs, explained below.

General tab

IPv4 Gateway/NetMask - Specifies the IPv4 address with subnet.

IPv6 Gateway/Prefix - Specifies the IPv6 address with subnet.
VLAN Name - Enter the VLAN name.

If the VLAN is mapped to more than one subnet, enter the anycast gateway IP addresses for those subnets.

Interface Description - Specifies the description for the interface.

MTU for the L3 interface - Enter the MTU for Layer 3 interfaces.

IPv4 Secondary GW1 - Enter the gateway IP address for the additional subnet.

IPv4 Secondary GW2 - Enter the gateway IP address for the additional subnet.

Advanced tab - Optionally, specify the advanced profile settings by clicking the **Advanced** tab. The options are:

- **ARPSuppression**

- **DHCPv4 Server 1 and DHCPv4 Server 2** - Enter the DHCP relay IP address of the first and second DHCP servers.

- **DHCPv4 Server VRF** - Enter the DHCP server VRF ID.

- **Loopback ID for DHCP Relay interface** - Enter the loopback ID of the DHCP relay interface.

- **Routing Tag** – The routing tag is autopopulated. This tag is associated with each gateway IP address prefix.

- **TRM enable** – Select the checkbox to enable TRM.

- **L2 VNI Route-Target Both Enable** - Select the check box to enable automatic importing and exporting of route targets for all L2 virtual networks.

- **Enable L3 Gateway on Border** - Select the checkbox to enable the Layer 3 gateway on the border device.

A sample of the Create Network screen:
5. Click **Create Network**. A message appears at the bottom right part of the screen indicating that the network is created. The new network *(MyNetwork_30000)* appears on the Networks page that comes up.
Editing Networks in the MSD Fabric

1. In the Networks screen of the MSD fabric, select the network you want to edit and click the Edit icon at the top left part of the screen.

The Edit Network screen comes up.

You can edit the **Network Profile** part (General and Advanced tabs) of the MSD fabric network.

2. Click **Save** at the bottom right part of the screen to save the updates.

Network Inheritance from MSD-Parent-Fabric to Member1

MSD-Parent-Fabric fabric contains one member fabric, **Member1**. Go to the Select a Fabric page to access the **Member1** fabric.

1. From the main menu, click **Control > Networks & VRFs** and click **Continue** in the Networks & VRFs page.
2. Click Member1 from the Select a Fabric drop-down box and click Continue on the top right part of the screen. The Networks page comes up. You can see that the network created for the MSD is inherited to its member.

Editing Networks in the Member Fabric

You can update a network's multicast group address since it is a fabric instance variable.

1. Select the network and click the Edit option at the top left part of the screen. The Edit Network screen comes up.

2. Click the Advanced tab in the Network Profile section, update the multicast group address, and click Save.

This option is only available for member fabrics and not MSD networks.
Deleting Networks in the MSD and Member Fabrics

You can only delete networks from the MSD fabric, and not member fabrics. To delete networks and corresponding VRFs in the MSD fabric, follow this order:

1. Undeploy the networks on the respective fabric devices before deletion.
2. Delete the networks from the MSD fabric. To delete networks, use the delete (X) option at the top left part of the Networks screen. You can delete multiple networks at once.

Note

When you delete networks from the MSD fabric, the networks are automatically removed from the member fabrics too.

3. Undeploy the VRFs on the respective fabric devices before deletion.
4. Delete the VRFs from the MSD fabric by using the delete (X) option at the top left part of the screen. You can delete multiple VRF instances at once.

Creating VRFs in the MSD Fabric

1. From the MSD fabric's Networks page, click the VRF View button at the top right part of the screen to create VRFs.

 [If you have freshly logged in to DCNM, do the following:
 1. Click Control > Networks & VRFs. The Networks & VRFs page comes up.
 2. Click Continue. The Select a Fabric page comes up.
 3. Choose the MSD fabric (MSD-Parent-Fabric) from the drop-down box and click Continue. The Networks page comes up.
 4. Click VRF View at the top right part of the Networks page].

The VRFs page comes up. This lists the list of VRFs created for the MSD fabric. Initially, this screen has no entries.

2. Click the + button at the top left part of the screen to add VRFs to the MSD fabric. The Create VRF screen comes up. Most of the fields are autopopulated.

 The fields in this screen are:

 VRF ID and **VRF Name** - The ID and name of the VRF.
 The VRF ID is the VRF VNI or the L3 VNI of the tenant.
For ease of use, the VRF creation option is also available while you create a network.

VRF Template - This is populated with the Default_VRF template.

VRF Extension Template - This template allows you to extend the VRF between member fabrics.

3. **General** tab – Enter the VLAN ID of the VLAN associated with the VRF, the corresponding Layer 3 virtual interface, and the VRF ID.

4. **Advanced** tab

 Routing Tag – If a VLAN is associated with multiple subnets, then this tag is associated with the IP prefix of each subnet. Note that this routing tag is associated with overlay network creation too.

 Redistribute Direct Route Map – Specifies the route map name for redistribution of routes in the VRF.

 Max BGP Paths and **Max iBGP Paths** – Specifies the maximum BGP and iBGP paths.

 TRM Enable – Select the checkbox to enable TRM.

 If you enable TRM, then the RP address, the RP loopback ID and the underlay multicast address must be entered.

 Is RP external - Select the checkbox if a fabric-external device is designated as RP.

 RP Address and **RP Loopback ID** – Specifies the loopback ID and IP address of the RP.

 Underlay Multicast Address – Specifies the multicast address associated with the VRF. The multicast address is used for transporting multicast traffic in the fabric underlay.

 Overlay Multicast Groups – Specifies the multicast address for the VRF, used in the fabric overlay.

 Enable IPv6 link-local Option - Select the checkbox to enable the IPv6 link-local option.

 Advertise Host Routes - Select the checkbox to control advertisement of /32 and /128 routes to Edge Routers.

 Advertise Default Route - Select the checkbox to control advertisement of default routes within the fabric.

A sample screenshot:
Advanced tab:

5. Click Create VRF.

The MyVRF_50000 VRF is created and appears on the VRFs page.
Editing VRFs in the MSD Fabric

1. In the VRFs screen of the MSD fabric, select the VRF you want to edit and click the Edit icon at the top left part of the screen.

The Edit VRF screen comes up.

You can edit the VRF Profile part (General and Advanced tabs).

2. Click Save at the bottom right part of the screen to save the updates.
VRF Inheritance from MSD-Parent-Fabric to Member1

MSD-Parent-Fabric contains one member fabric, *Member1*. Do the following to access the member fabric page.

1. From the main menu, click **Control > Networks & VRFs**. In the Networks & VRFs page, click **Continue**.
2. Choose *Member1* in the Select a Fabric drop-down box, and click **Continue**. The Networks page comes up.
3. Click the **VRF View** button. On the VRFs page, you can see that the VRF created for the MSD is inherited to its member.

![VRF View](image)

Deleting VRFs in the MSD and Member Fabrics

You can only delete networks from the MSD fabric, and not member fabrics. To delete networks and corresponding VRFs in the MSD fabric, follow this order:

1. Undeploy the networks on the respective fabric devices before deletion.
2. Delete the networks from the MSD fabric.
3. Undeploy the VRFs on the respective fabric devices before deletion.
4. Delete the VRFs from the MSD fabric by using the delete (X) option at the top left part of the screen. You can delete multiple VRF instances at once.

Note

When you delete VRFs from the MSD fabric, they are automatically removed from the member fabrics too.

Editing VRFs in the Member Fabric

You cannot edit VRF parameters at the member fabric level. Update VRF settings in the MSD fabric. All member fabrics are automatically updated.

Deleting VRFs in the Member Fabric

You cannot delete VRFs at the member fabric level. Delete VRFs in the MSD fabric. The deleted VRFs are automatically removed from all member fabrics.

Step 1 of the following is explained. Step 2 information is mentioned in the next subsection.

2. Deploy the networks and VRFs in the member fabric devices, one fabric at a time.
Deployment and Undeployment of Networks and VRFs in Member Fabrics

Before you begin, ensure that you have created networks at the MSD fabric level since the member fabric inherits networks and VRFs created for the MSD fabric.

Note

The deployment (and undeployment) of networks and VRFs in member fabrics are the same as explained for standalone fabrics. Refer the standalone fabric documentation (Networks Deployment and VRFs Deployment sections in the Networks and VRFs Creation and Deployment in a Standalone Fabric topic).

Moving a Standalone Fabric (With Existing Networks and VRFs) to an MSD Fabric

If you move a standalone fabric with existing networks and VRFs to an MSD fabric as a member, ensure that common networks (that is, L2 VNI and L3 VNI information), anycast gateway MAC, and VRF and network templates are the same across the fabric and the MSD. DCNM validates the standalone fabric (network and VRF information) against the (network and VRF information) of the MSD fabric to avoid duplicate entries. An example of duplicate entries is two common network names with a different network ID. After validation for any conflicts, the standalone fabric is moved to the MSD fabric as a member. Details:

- The MSD fabric inherits the networks and VRFs of the standalone fabric that do not exist in the MSD fabric. These networks and VRFs are in turn inherited by the member fabrics.
- The newly created member fabric inherits the networks and VRFs of the MSD fabric (that do not exist in the newly created member fabric).
- If there are conflicts between the standalone and MSD fabrics, validation ensures that an error message is displayed. After the updation, when you move the member fabric to the MSD fabric, the move will be successful. A message comes up at the top of the page indicating that the move is successful.

If you move back a member fabric to standalone status, then the networks and VRFs remain as they are, but they remain relevant as in an independent fabric, outside the purview of an MSD fabric.

Brownfield Deployment-Transitioning VXLAN Fabric Management to DCNM

This document explains Brownfield deployments, wherein you transition your VXLAN BGP EVPN fabric management to DCNM. The transition involves migrating existing networks configurations to DCNM.

Typically, your fabric is created and managed through manual CLI configuration or custom automation scripts. Now, you want to start managing the fabric through DCNM. After the migration, the fabric underlay and overlay networks will be managed by DCNM.

The migration procedure only supports VXLAN BGP EVPN networks that use the best practices mentioned in the Prerequisites section.

Support of simplified CLIs for VXLAN EVPN fabrics is not supported in either Greenfield or brownfield deployments.

Note

The Brownfield deployment section is applicable for the Easy_Fabric_11_1 template.

Prerequisites
• DCNM supported NX-OS software versions. For details, refer *Cisco DCNM Release Notes, Release 11.1(1)*.

• Underlay routing protocol is OSPF or IS-IS.

• The supported underlay is based on the DCNM 10.2(1) POAP template's best practices for the VXLAN fabric (dcnm_ip_vxlan_fabric_templates.10.2.1.ST.1.zip) available on Cisco.com.

• The following fabric wide loopback interface IDs must not overlap:
 • Routing loopback interface for IGP/BGP.
 • VTEP loopback ID
 • Underlay rendezvous point loopback ID if ASM is used for multicast replication.

• BGP configuration uses the ‘router-id’, which is the IP address of the routing loopback interface.

• If the iBGP peer template is configured, then it must be configured on the leaf switches and route reflectors. The template name that needs to be used between leaf and route reflector should be identical.

• The BGP route reflector and multicast rendezvous point (if applicable) functions are implemented on spine switches. Leaf switches do not support the functions.

• Install DCNM 11.1(1) release software. Refer the Installation Guide for more details. Log in to DCNM and set the default LAN Credentials when prompted.

• Familiarity with the DCNM 11.1(1) fabric management and monitoring features before initiating the migration process.

• Familiarity with VXLAN BGP EVPN fabric concepts and functioning of the fabric from the DCNM perspective.

• Fabric switch nodes are operationally stable and functional and all fabric links are up.

• vPC switches and the peer links are up before the migration. Ensure that no configuration updates are in progress or changes pending.

• Create an inventory list of the switches in the fabric with their IP addresses and credentials. DCNM uses this information to connect to the switches.

• Shut down any other controller software you are using presently so that no further configuration changes are made to the VXLAN fabric. Alternatively, disconnect the network interfaces from the controller software (if any) so that no changes are allowed on the switches.

• The switch overlay configurations must have the mandatory configurations defined in the shipping DCNM Universal Overlay profiles. Additional network or VRF overlay related configurations found on the switches are preserved in the freeform configuration associated with the network or VRF DCNM entries.

• All the overlay network and VRF profile parameters such as VLAN name and route map name should be consistent across all devices in the fabric for the brownfield migration to be successful.

Guidelines and Limitations

• Fabric interfaces can be numbered or unnumbered.

• Various other interface types are supported.

• The following features are unsupported.

Cisco DCNM LAN Fabric Configuration Guide, Release 11.1(1)
- eBGP underlay
- BIDIR-PIM function
- TRM
- Border Spine or Border Gateway Spine
- Layer 3 port channel
- Configuration profiles present in the brownfield configurations (the expectation is that the overlays should be configured through regular CLIs).

- Take a backup of the switch configurations and save them before the migration.
- No configuration changes (unless instructed to do so in this document) must be made to the switches until the migration is completed. Else, significant network issues can occur.
- Migration to Cisco DCNM is only supported for Cisco Nexus 9000 switches.
- Multi-line banner configuration on the switch is preserved in the switch_freeform configuration, along with other configurations captured in the switch_freeform configuration, if any.

Procedure
Transitioning VXLAN fabric management to DCNM involves these steps.

2. Initiating VXLAN fabric management transition to DCNM – This step adds switch instances to DCNM and initiates the transition.

Creating a New VXLAN BGP EVPN Fabric
First, guidelines for updating the settings are noted. Then each VXLAN fabric settings tab is explained:

- Some values (BGP AS Number, OSPF, etc) are considered as reference points to your existing fabric, and the values you enter must match the existing fabric values.
- For some fields (such as IP address range, VXLAN ID range), the values that are auto-populated or entered in the settings are only used for future allocation. The existing fabric values are honored during migration.
- Some fields relate to new functions that may not exist in your existing fabric (such as advertise-pip). Enable or disable it as per your need.
- At a later point in time, after the fabric transition is complete, you can update settings if needed.

1. Choose **Control > Fabric Builder**.
The Fabric Builder screen appears. When you log in for the first time, the Fabrics section has no entries. After you create a fabric, it is displayed on the Fabric Builder screen, wherein a rectangular box represents each fabric.

A standalone or member fabric contains Switch_Fabric (in the Type field), the AS number (in the ASN field), and mode of replication (in the Replication Mode field).

2. Click Create Fabric. The Add Fabric screen appears. The fields are explained:
Fabric Name - Enter the name of the fabric.

Fabric Template - From the drop-down menu, choose the Easy_Fabric_11_1 fabric template. The fabric settings for creating a standalone fabric come up.

The tabs and their fields in the screen are explained in the subsequent points. The overlay and underlay network parameters are included in these tabs.

Note

If you are creating a standalone fabric as a potential member fabric of an MSD fabric (used for provisioning overlay networks for fabrics that are connected through EVPN Multi-Site technology), then browse through the Multi-Site Domain for VXLAN BGP EVPN Fabrics topic before member fabric creation.

3. The **General** tab is displayed by default. The fields in this tab are:
BGP ASN: Enter the BGP AS number the fabric is associated with.

Fabric Interface Numbering: Specify whether you are using a point-to-point (p2p) or unnumbered network in your existing setup.

Underlay Subnet IP Mask: Specify the subnet mask you are using for the fabric underlay IP address subnets in your existing setup.

Link-State Routing Protocol: The IGP used in the existing fabric, OSPF, or IS-IS.

Route-Reflector: The Route Reflector count is only applicable post-migration. The existing route reflector configuration is honored when importing into the DCNM setup.

The number of spine switches that are used as route reflectors for transporting BGP traffic. Choose 2 or 4 from the drop down box. The default value is 2.

To deploy spine devices as route reflectors, DCNM sorts the spine devices based on their serial numbers, and designates two or four spine devices as route reflectors. If you add more spine devices, existing route reflector configuration will not change.

Increasing the count - You can increase the route reflectors from two to four at any point in time. Configurations are automatically generated on the other 2 spine devices designated as route reflectors.

Decreasing the count

When you reduce four route reflectors to two, you must remove the unneeded route reflector devices from the fabric. Follow these steps to reduce the count from 4 to 2.

1. Change the value in the drop-down box to 2.
2. Identify the spine switches designated as route reflectors.
 An instance of the \texttt{rr_state} policy is applied on the spine switch if it is a route reflector. To find out if the policy is applied on the switch, right-click the switch, and choose \textit{View/edit policies}. In the View/Edit Policies screen, search \texttt{rr_state} in the \texttt{Template} field. It is displayed on the screen.
3. Delete the unneeded spine devices from the fabric (right-click the spine switch icon and choose Discovery > Remove from fabric).
 If you delete existing route reflector devices, the next available spine switch is selected as the replacement route reflector.
4. Click Save and Deploy at the top right part of the fabric topology screen.

Anycast Gateway MAC: Enter the Anycast gateway MAC address of the existing fabric.

NX-OS Software Image Version: Leave this field blank. You can update this post-transition, as desired.

Click the Replication tab. Most of the fields are auto generated.
Replication Mode: The mode of replication that is used in the existing fabric, Ingress Replication, or Multicast.

When you choose Ingress replication, the multicast replication fields get disabled.

Enable Tenant Routed Multicast – Do not enable the checkbox. TRM is not supported for transitioning fabric management.

RP mode – Retain asm (for Any-Source Multicast [ASM]) mode. Do not change the selection to bidir since BIDIR-PIM is not supported for fabric migration.

When you choose ASM, the BiDir related fields are not enabled.

Multicast Group Subnet - The IP address prefix for multicast communication is used for post-migration allocation. The IP address prefix used in your existing fabric is honored during the transition.

An unique IP address is allocated from this group for each overlay network.

Rendezvous-Points - The RP count is only applicable post-migration. The existing RP configuration is honored when importing into the DCNM setup.

Underlay RP Loopback ID – The loopback ID has to match your existing setup's loopback ID. This is the loopback ID used for the rendezvous point (RP), for multicast protocol peering purposes in the fabric underlay.

The other two fields are greyed out.

The next two fields are enabled if Rendezvous-Points is set to 4. However, the fabric can have only 2 RPs for the brownfield migration.

5. Click the vPC tab. Most of the fields are auto generated.

vPC Peer Link VLAN - Enter the VLAN ID used for the vPC peer link SVI in the existing fabric.

vPC Peer Keep Alive option – Choose the management or loopback option, as used in the existing fabric. If you want to use IP addresses assigned to the management port and the management VRF,
choose management. If you use IP addresses assigned to loopback interfaces (and a non-management VRF), choose loopback.

If you only use IPv6 addresses on the management interface, you must use the loopback option.

During the transition, the switch configuration is not checked for the following fields in the vPC tab. The switch configurations will get updated if they are different.

vPC Auto Recovery Time - Specify the vPC auto recovery time-out period in seconds, as needed.

vPC Delay Restore Time - Specify the vPC delay restore period in seconds, as needed.

vPC IPv6 ND Synchronize – Enables IPv6 Neighbour Discovery synchronization between vPC switches. The check box is enabled by default. Clear the check box to disable the function as needed.

vPC advertise-pip - Select the check box to enable the Advertise PIP feature.

6. Click the **Advanced** tab. Most of the fields are auto generated.

<table>
<thead>
<tr>
<th>General</th>
<th>Replication</th>
<th>vPC</th>
<th>Advanced</th>
<th>Resources</th>
<th>Manageability</th>
<th>Bootstrap</th>
<th>Configuration Backup</th>
</tr>
</thead>
<tbody>
<tr>
<td>* VRF Template</td>
<td>Default_VRF_Universal</td>
<td>▼</td>
<td>Default Overlay VRF Template For Leafs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Network Template</td>
<td>Default_Network_Universal</td>
<td>▼</td>
<td>Default Overlay Network Template For Leafs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* VRF Extension Template</td>
<td>Default_VRF_Extension_Universal</td>
<td>▼</td>
<td>Default Overlay VRF Template For Borders</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Network Extension Template</td>
<td>Default_Network_Extension_Universal</td>
<td>▼</td>
<td>Default Overlay Network Template For Borders</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site Id</td>
<td></td>
<td></td>
<td></td>
<td>For EVPN Multi-Site Support (Min:1, Max:16777216)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Underlay Routing Loopback Id</td>
<td>0</td>
<td></td>
<td></td>
<td>0-512</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Underlay VTEP Loopback Id</td>
<td>1</td>
<td></td>
<td></td>
<td>0-512</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Link-State Routing Protocol Tag</td>
<td>UNDERLAY</td>
<td></td>
<td></td>
<td>Routing Process Tag</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* OSPF Area Id</td>
<td>0.0.0.0</td>
<td></td>
<td></td>
<td>OSPF Area Id in decimal format or IP address format</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Power Supply Mode</td>
<td>ps-redundant</td>
<td>▼</td>
<td>Default Power Supply Mode For The Fabric</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* CoPP Profile</td>
<td>strict</td>
<td>▼</td>
<td>Fabric Wide CoPP Policy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enable VXLAN OAM</td>
<td></td>
<td></td>
<td></td>
<td>For Operations And Management Of VXLAN Fabrics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Greenfield Cleanup Option</td>
<td>Disable</td>
<td>▼</td>
<td>Switch Cleanup Without Reidbale When PreserveConfigmno</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBGP Peer-Template Config</td>
<td></td>
<td></td>
<td></td>
<td>Leaf to RR IBGP session establishment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leaf Freeform Config</td>
<td></td>
<td></td>
<td></td>
<td>Additional CLIs For All Leafs As Captured From Show Running Configuration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spine Freeform Config</td>
<td></td>
<td></td>
<td></td>
<td>Additional CLIs For All Spines As Captured From Show Running Configuration</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VRF Template and **VRF Extension Template**: Specifies the VRF template for creating VRFs, and the VRF extension template for enabling VRF extension to other fabrics.

Network Template and **Network Extension Template**: Specifies the network template for creating networks, and the network extension template for extending networks to other fabrics.

You must not change the templates when migrating. Only the Universal templates are supported for overlay migration.

Site ID - The ID for this fabric if you are moving this fabric within an MSD. You can update this field post-migration.

Underlay Routing Loopback Id - The loopback interface ID is populated as 0 since loopback0 is usually used for fabric underlay IGP peering purposes. This must match the existing configuration on the switches. This must be the same across all the switches.
Underlay VTEP Loopback Id - The loopback interface ID is populated as 1 since loopback 1 is usually used for the VTEP peering purposes. This must match the existing configuration on the switches. This must be the same across all the switches where VTEPs are present.

Link-State Routing Protocol Tag - Enter the existing fabric’s routing protocol tag in this field to define the type of network.

OSPF Area ID – The OSPF area ID of the existing fabric, if OSPF is used as the IGP within the fabric.

Power Supply Mode - Choose the appropriate power supply mode.

CoPP Profile - Choose the Control Plane Policing (CoPP) profile policy used in the existing fabric. By default, the strict option is populated.

Enable VXLAN OAM - Enables the VXLAM OAM function for existing switches.

This is enabled by default. Clear the check box to disable VXLAN OAM function.

If you want to enable the VXLAN OAM function on specific switches and disable on other switches in the fabric, you can use freeform configurations to enable OAM and disable OAM in the fabric settings.

Greenfield Cleanup Option – Enable or disable the switch cleanup option for Greenfield switches. This is applicable post-migration when new switches are added.

iBGP Peer-Template Config – Add iBGP peer template configurations on the leaf switches and route reflectors to establish an iBGP session between the leaf switch and route reflector. Set this field based on switch configuration. If this field is blank, it implies that the iBGP peer template is not used. If the iBGP peer template is used, enter the peer template definition as defined on the switch. The peer template name on devices configured with BGP should be the same as defined here.

Leaf Freeform Config and **Spine Freeform Config** - You can enter these fields after fabric transitioning is complete, as needed.

7. Click the **Resources** tab.

Static Underlay IP Address Allocation – Do not select this check box if you are transitioning your VXLAN fabric management to DCNM.

Review the ranges and ensure they are consistent with the existing fabric. The migration will honor the existing resources as found on the fabric. The range settings apply to post migration allocation.
Underlay Routing Loopback IP Range - Specifies loopback IP addresses for the protocol peering.
Underlay VTEP Loopback IP Range - Specifies loopback IP addresses for VTEPs.
Underlay RP Loopback IP Range - Specifies the anycast or phantom RP IP address range.
Underlay Subnet IP Range - IP addresses for underlay P2P routing traffic between interfaces.
Layer 2 VXLAN VNI Range and Layer 3 VXLAN VNI Range - Specifies the VXLAN VNI IDs for the fabric.
Network VLAN Range and VRF VLAN Range - VLAN ranges for the Layer 3 VRF and overlay network.
Subinterface Dot1q Range - Specifies the subinterface range when L3 sub interfaces are used.
VRF Lite Deployment - Specify the VRF Lite method for extending inter fabric connections.
If you choose Manual, the VRF Lite subnet details need not be filled.
If you select Back2BackOnly, ToExternalOnly, or Both, then the VRF Lite subnet fields are enabled.
VRF Lite Subnet IP Range and VRF Lite Subnet Mask – These fields are populated with the DCI subnet details. Update the fields as needed.
The values shown in your screen are automatically generated. If you want to update the IP address ranges, VXLAN Layer 2/Layer 3 network ID ranges or the VRF/Network VLAN ranges, ensure the following:

Note
When you update a range of values, ensure that it does not overlap with other ranges. You should only update one range of values at a time. If you want to update more than one range of values, do it in separate instances. For example, if you want to update L2 and L3 ranges, you should do the following.
1. Update the L2 range and click Save.
2. Click the Edit Fabric option again, update the L3 range and click Save.

The remaining tabs do not require updates. However, their purpose is mentioned.
8. Click the Manageability tab - Leave the fields in this tab blank to retain existing DNS, NTP, AAA, and syslog configurations. Policies are created using the source "".
Post transition, for any new device added to the fabric, you must manually enter the configuration in the switch_freeform policy configuration. If the tab has any field filled before or after migration, it will overwrite the corresponding feature configuration on the switch.
9. Click the Bootstrap tab. Update the fields in this tab post transition, when new switches are added to the fabric.
10. Click the Configuration Backup tab. Leave the fields in this tab blank. You can update post transition.
11. Click Save after filling and updating relevant information. A note appears briefly at the bottom right part of the screen, indicating that the fabric is created. When a fabric is created, the fabric page comes up. The fabric name appears at the top left part of the screen.
The **Actions** panel at the left part of the screen allows you to perform various functions. One of them is the **Add switches** option to add switches to the fabric. After you create a fabric, you should add fabric devices. The process is explained next:

Adding Switch Instances and Transitioning VXLAN Fabric Management to DCNM

1. In the fabric topology screen, click Add switches. The Inventory Management screen comes up. The Discover Existing Switches tab is displayed by default.
The POAP tab is only used for adding new switches to the fabric. Use the tab only after migrating your existing fabric to DCNM.

2. Enter the IP address (Seed IP), administrator username and password (Username and Password fields) of the switch, and set the Max Hops count for the switch. Ensure that all fabric switches can be added to DCNM at once.

 Important - Ensure that the Preserve Config field remains set to yes. Selecting 'no' can cause significant configuration loss and fabric disruption.
3. Click Start discovery, at the bottom part of the screen. The switch with the specified IP address and switches up to two hops away (depending on the setting of Max Hops) from it are populated in the Scan Details section.
4. Select the check box next to the concerned switches and click Import into fabric.

It is a best practice to discover multiple switches at once. The switches must be properly cabled and connected to the DCNM server and the switch status must be manageable.
The switch discovery process is initiated. The Progress column displays progress for all the selected switches. It displays **done** for each switch on completion.

Note

You must not close the screen (and try to import switches again) till all selected switches are imported or an error message comes up.

If an error message comes up, close the screen. The fabric topology screen comes up. The error messages are displayed at the top right part of the screen. Resolve the errors and initiate the import process again by clicking on Add Switches in the Actions panel.

After DCNM discovers all the switches, and the Progress column displays **done** for all switches, close the screen. The fabric topology screen comes up again. The switch is in Migration Mode now and the Migration mode label is displayed on the switch icons.

At this point, you must not try to add Greenfield or new switches. Support is not available for adding new switches during the migration process. It might lead to undesirable consequences for your network. However, you can add a new switch after the migration process is complete.
The switch discovery process might fail for a few switches, and the Discovery Error message displayed. However, such switches are still displayed in the fabric topology. You must remove such switches from the fabric (Right-click the switch icon and click Discovery > Remove from fabric), and import them again. You must not proceed to the next step till all switches in the existing fabric are discovered in DCNM.

5. Each switch’s role and vPC pairing must be set during the fabric migration process.
 Right-click the switch icon and use the Set role option (Leaf, Border, etc) to update switch role.
If you choose the Hierarchical layout for display (in the Actions panel), the topology automatically gets aligned as per role assignment, with the leaf switches at the bottom, the spine switches connected on top of them, and the border switches at the top.

vPC Pairing - The vPC pairing must be done for switches where the Layer 3 vPC peer-keep alive is used. The vPC configuration is automatically picked up from the switches when the vPC peer keep alive is established through the management option. This pairing reflects in the GUI only after the migration is complete.

1. Right-click the switch icon and click vPC Pairing to set a vPC switch pair.

 The Select vPC peer screen comes up. It lists potential vPC peer switches.

2. Select the appropriate switch and click OK. The fabric topology comes up again. The vPC pair is formed now.
Check if you have added all switches from the current fabric. If you have missed adding switches, add them now. Once you are certain that you have imported all existing switches, move to the next step, the Save and Deploy option.

6. Use the Save and Deploy option (at the top right part of the screen) to sync configurations between the switch and DCNM.

 The Saving Fabric Configuration message comes up immediately. This indicates that overlay and underlay network migration, and switch and port channel settings migration to DCNM is initiated.

 If there are configuration mismatches, error messages are displayed. Update changes in the fabric settings or the switch configuration as needed, and click Save and Deploy again.

 After the migration of underlay and overlay networks, the Configuration Deployment screen comes up.

 The Preview Config column is updated with entries denoting a specific number of lines.
We strongly recommend that you preview the configuration before proceeding to deploy it on the switches. Click the Preview Config column entry. The Config Preview screen comes up. It lists the pending configurations on the switch.

The Side-by-side Comparison tab displays the running configuration and expected configuration side-by-side.

Close the preview screen.
7. Click Deploy Config at the bottom part of the screen to initiate pending configuration onto the switch. The Status column displays FAILED or SUCCESS state. For a FAILED status, investigate the reason for failure to address the issue.

The progress bar shows 100% for each switch. After correct provisioning and successful configuration compliance, close the screen. In the fabric topology screen that comes up, all imported switch instances are displayed in green color, indicating successful configuration. Also, the Migration Mode label is not displayed on any switch icon.

![Fabric Topology Diagram](image)

Post-transitioning of VXLAN fabric management to DCNM - This completes the transitioning process of VXLAN fabric management to DCNM. Now, you can add new switches and provision overlay networks for your fabric. For details, refer the respective section in the Fabrics topic in the configuration guide.

Fabric Options

- **Tabular View** - By default, the switches are displayed in the topology view. Use this option to view switches in the tabular view.

- **Refresh topology** - Allows you to refresh the topology.
- **Save Layout** – Saves a custom view of the topology. You can create a specific view in the topology and save it for ease of use.

- **Delete saved layout** – Deletes the custom view of the topology.

- **Topology views** - You can choose between Hierarchical, Random and Custom saved layout display options.
 - **Hierarchical** - Provides an architectural view of your topology. Various Switch Roles can be defined that draws the nodes on how you configure your CLOS topology.
 - **Random** - Nodes are placed randomly on the screen. DCNM tries to make a guess and intelligently place nodes that belong together in close proximity.
 - **Custom saved layout** - You can drag nodes around to your liking. Once you have the positions as how you like, you can click Save Layout to remember the positions. Next time you come to the topology, DCNM will draw the nodes based on your last saved layout positions.

- **Restore Fabric** – Allows you to restore the fabric to a prior DCNM configuration state (one month back, two months back, and so on). For more information, see *Restore Fabric, on page 61* section.

- **Resync Fabric** - Use this option to resynchronize DCNM state when there is a large scale out-of-band change, or if configuration changes do not register in the DCNM properly. The resync operation does a full CC run for the fabric switches and recollects “show run” and “show run all” commands from the switches. When you initiate the re-sync process, a progress message is displayed on the screen. During the re-sync, the running configuration is taken from the switches. Then, the OUT-OF-SYNC/IN-SYNC status for the switch is recalculated based on the intent or expected configuration defined in DCNM versus the current running configuration that was taken from the switches.

- **Add Switches** – Allows you to add switch instances to the fabric.

- **Fabric Settings** – Allows you to view or edit fabric settings.

Post DCNM 10.4(2) or 11.0(1) to DCNM 11.1(1) Upgrade for VXLAN BGP EVPN and MSD Fabrics

Note the following guidelines after you upgrade DCNM Release 10.4(2) or 11.0(1) to DCNM 11.1(1):

- After you upgrade to Cisco DCNM Release 11.1(1) with an existing fabric with the *Easy_Fabric* template, you cannot set the Border Spine or Border Gateway Spine roles to switches because these roles are not supported with the *Easy_Fabric* template. You need to use the *Easy_fabric_11_1* template to set these roles for switches in a fabric.

- After you upgrade DCNM Release 10.4(2) or 11.0(1) to Release 11.1(1), perform the following steps to use the LAN fabric features of DCNM 11.1(1):
 - Update or save all the Easy Fabrics with the new Easy Fabric Template, that is, *Easy_Fabric_11_1*. Then click *Save & Deploy* to deploy each updated Easy fabric.
 - Update or save all the MSD Fabrics with new MSD Template, that is, *MSD_Fabric_11_1*. Then click *Save & Deploy* to deploy each updated MSD fabric.
Under the Resources tab for each Easy Fabric, the Loopback IP Ranges should not be a duplicate of any other Easy Fabric Loopback IP Ranges.

Enabling Freeform Configurations on Fabric Switches

In DCNM, you can add custom configurations through freeform policies in the following ways:

1. **Fabric-wide**
 - On all leaf and border leaf switches in the fabric, at once.
 - On all spine and border spine switches, at once.

2. **On a specific switch.**

Leaf switches are identified by the roles Leaf, Border and Border Gateway and spine switches by the roles Spine, Border Spine, and Border Gateway Spine.

Note

You can deploy freeform CLIs when you create a fabric or when a fabric is already created. The following examples are for an existing fabric. However, you can use this as a reference for a new fabric.

Deploying Fabric-Wide Freeform CLIs on Leaf and Spine Switches

1. Click **Control > Fabric Builder**. The Fabric Builder screen comes up. A rectangular box represents each fabric.

2. Click the **Edit Fabric** icon (located on the top right part of the rectangular box) for adding custom configurations to an existing fabric. The **Edit Fabric** screen comes up.

 (If you are creating a fabric for the first time, click **Create Fabric**).

3. Click the **Advanced** tab and update the following fields:
 - **Leaf Freeform Config** – In this field, add configurations for all leaf and border leaf switches in the fabric.
 - **Spine Freeform Config** - In this field, add configurations for all Spine, Border Spine, and Border Gateway Spine switches in the fabric.

Note

Copy-paste the intended configuration with correct indentation, as seen in the running configuration on the Nexus switches. For more information, see **Resolving Freeform Config Errors in Switches, on page 160**.

4. Click **Save**. The fabric topology screen comes up.

5. Click **Save & Deploy** at the top right part of the screen to save and deploy configurations.

Configuration Compliance functionality will ensure that the intended configuration as expressed by those CLIs are present on the switches and if they are removed or there is a mismatch, then it will flag it as a mismatch and indicate that the device is OUT-OF-SYNC.
Incomplete Configuration Compliance - On some Cisco Nexus 9000 Series switches, in spite of configuring pending switch configurations using the **Save & Deploy** option, there could be a mismatch between the intended and switch configuration. To resolve the issue, add a `switch_freeform_config` policy to the affected switch (as explained in the **Deploy Freeform CLIs on a Specific Switch** section). For example, consider the following persistent pending configurations:

```plaintext
line vty
logout-warning 0
```

After adding the above configurations in a policy and saving the updates, click **Save and Deploy** in the topology screen to complete the deployment process.

To bring the switch back in-sync, you can add the above configuration in a `switch_freeform_config` policy saved and deployed onto the switch.

Deploying Freeform CLIs on a Specific Switch

1. Click **Control > Fabric Builder**. The Fabric Builder screen comes up.
2. Click on the rectangular box that represents the fabric. The Fabric Topology screen comes up.

Note

To provision freeform CLIs on a new fabric, you have to create a fabric, import switches into it, and then deploy freeform CLIs.

3. Right-click the switch icon and select the **View/edit policies** option.

 The **View/Edit Policies** screen comes up.
4. Click +. The **Add Policy** screen comes up.

 In the **Priority** field, the priority is set to 500 by default. You can choose a higher priority (by specifying a lower number) for CLIs that need to appear higher up during deployment. For example, a command to enable a feature should appear earlier in the list of commands.
5. From the **Policy** field, select `switch_freeform_config`.
6. Add or update the CLIs in the **Freeform Config CLI** box.

 Copy-paste the intended configuration with correct indentation, as seen in the running configuration on the Nexus switches. For more information, see **Resolving Freeform Config Errors in Switches**, on page 160.
7. Click **Save**.

 After the policy is saved, it gets added to the intended configurations for that switch.
9. Right click the switch and click **Deploy Config**.

 The **Save & Deploy** option can also be used for deployment. However, the **Save & Deploy** option will identify mismatch between the intended and running configuration across all fabric switches.

Pointers for `switch_freeform_config` Policy Configuration:
• You can create multiple instances of the policy.
• For a vPC switch pair, create consistent `switch_freeform_config` policies on both the vPC switches.
• When you edit a `switch_freeform_config` policy and deploy it onto the switch, you can see the changes being made (in the Side-by-side tab of the Preview option).

Freeform CLI Configuration Examples

Console line configuration

This example involves deploying some fabric-wide freeform configurations (for all leaf, and spine switches), and individual switch configurations.

Fabric-wide session timeout configuration:

```
line console
  exec-timeout 1
```

Console speed configuration on a specific switch:

```
line console
  speed 115200
```

ACL configuration

ACL configurations are typically configured on specific switches and not fabric-wide (leaf/spine switches). When you configure ACLs as freeform CLIs on a switch, you should include sequence numbers. Else, there will be a mismatch between the intended and running configuration. A configuration sample with sequence numbers:

```
ip access-list ACL_VTY
  10 deny tcp 172.29.171.67/32 172.29.171.36/32
  20 permit ip any any
ip access-list vlan65-acl
  10 permit ip 69.1.1.201/32 65.1.1.11/32
  20 deny ip any any

interface Vlan65
  ip access-group vlan65-acl in
line vty
  access-class ACL_VTY in
```

If you have configured ACLs without sequence numbers in a `switch_freeform_config` policy, update the policy with sequence numbers *as shown in the running configuration of the switch.*

After the policy is updated and saved, right click the device and select the per switch **Deploy Config** option to deploy the configuration. Alternatively, use the **Save and Deploy** option in the fabric topology screen (within Fabric Builder) so that the fabric triggers Configuration Compliance and resolves the configuration mismatch.
Resolving Freeform Config Errors in Switches

Copy-paste the running-config to the freeform config with correct indentation, as seen in the running configuration on the NX-OS switches. The freeform config must match the running config. Otherwise, configuration compliance in DCNM marks switches as out-of-sync.

Let us see an example of the freeform config of a switch.

```
feature bash-shell
feature telemetry
clock timezone CET 1 0
# Daylight saving time is observed in Metropolitan France from the last Sunday in March
# (02:00 CET) to the last Sunday in October (03:00 CEST)
clock summer-time CEST 5 Sunday March 02:00 5 Sunday October 03:00 60
clock protocol ntp
telemetry
destination-profile
  use-vrf management
```

The highlighted line about the daylight saving time is a comment that is not displayed in the `show running config` command output. Therefore, configuration compliance marks the switch as out-of-sync because the intent does not match the running configuration.

Let us check the running config in the switch for the clock protocol.

```
spine1# show run all | grep "clock protocol"
clock protocol ntp vdc 1
```

You can see that `vdc 1` is missing from the freeform config.

In this example, let us copy-paste the running config to the freeform config.

Here is the updated freeform config:

```
feature bash-shell
feature telemetry
clock timezone CET 1 0
clock summer-time CEST 5 Sunday March 02:00 5 Sunday October 03:00 60
clock protocol ntp vdc 1
telemetry
destination-profile
  use-vrf management
```

After you copy-paste the running config and deploy, the switch will be in-sync. When you click Save & Deploy, the Side-by-side Comparison tab in the Config Preview window provides you information about the difference between the defined intent and the running config.
Management

The Management menu includes the following submenus:

Resources

Cisco DCNM allows you to manage the resources. The following table describes the fields that appear on this page.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope Type</td>
<td>Specifies the scope level at which the resources are managed. The scope types can be Fabric, Device, DeviceInterface, or DevicePair.</td>
</tr>
<tr>
<td>Scope</td>
<td>Specifies the resource usage scope. Valid values are the switch serial numbers or fabric names. Resources with serial numbers are unique, and can be used on the serial number of the switch only.</td>
</tr>
<tr>
<td>Allocated Resource</td>
<td>Specifies if the resources that are managed with device, device interface, or fabric. Valid values are ID type, subnet, or IP addresses.</td>
</tr>
<tr>
<td>Allocated To</td>
<td>Specifies the purpose of resource allocation.</td>
</tr>
<tr>
<td>Resource Type</td>
<td>Specifies the resource type. The valid values are TOP_DOWN_VRF_LAN, TOP_DOWN_NETWORK_VLAN, LOOPBACK_ID, VPC_ID, and so on.</td>
</tr>
<tr>
<td>Is Allocated?</td>
<td>Specifies if the resource is allocated or not. The value is set to True if the resource is permanently allocated to the given entity. The value is set to False if the resource is reserved for an entity and not permanently allocated.</td>
</tr>
<tr>
<td>Allocated On</td>
<td>Specifies the date and time of the resource allocation.</td>
</tr>
</tbody>
</table>

Adding, Editing, Re-Discovering and Removing VMware Servers

This section contains the following:

Adding a Virtual Center Server

You can add a virtual center server from Cisco DCNM.

Procedure

1. **Step 1** Choose **Inventory > Discovery > Virtual Machine Manager**.
 - You see the list of VMware servers (if any) that are managed by Cisco DCNM-LAN in the table.

2. **Step 2** Click **Add**.
Deleting a VMware Server

You can remove a VMware server from the Cisco DCNM.

Procedure

Step 1 Choose **Inventory > Discovery > Virtual Machine Manager**.
Step 2 Select the check box next to the VMware server that you want to remove and click **Delete** to discontinue data collection for that VMware server.

Editing a VMware Server

You can edit a VMware server from Cisco DCNM Web Client.

Procedure

Step 1 Choose **Inventory > Discovery > Virtual Machine Manager**.
Step 2 Check the check box next to the VMware server that you want to edit and click **Edit** virtual center icon.

You see the **Edit VCenter** dialog box.

Step 3 Enter a the **User Name** and **Password**.
Step 4 Select managed or unmanaged status.
Step 5 Click **Apply** to save the changes.

Rediscovering a VMware Server

You can rediscover a VMware server from Cisco DCNM.

Procedure

Step 1 Choose **Inventory > Discovery > Virtual Machine Manager**.
Step 2 Select the check box next to the VMware that you want to rediscover.
Step 3 Click **Rediscover**.

A dialog box with warning "Please wait for rediscovery operation to complete." appears.
Template Library

You can add, edit, or delete templates that are configured across different Cisco Nexus and Cisco MDS platforms using Cisco DCNM Web client. From Cisco DCNM Web client home page, choose Control > Template Library > Templates. The following parameters are displayed for each template that is configured on Cisco DCNM Web client. Templates support JavaScript. You can use the JavaScript function in a template to perform arithmetic operations and string manipulations in the template syntax.

The following table describes the fields that appear on this page.

Table 1: Templates Operations

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add Template</td>
<td>Allows you to add a new template.</td>
</tr>
<tr>
<td>Modify/View Template</td>
<td>Allows you to view the template definition and modify as required.</td>
</tr>
<tr>
<td>Save Template As</td>
<td>Allows you to save the selected template in a different name. You can edit the template as required.</td>
</tr>
<tr>
<td>Delete Template</td>
<td>Allows you to delete a template.</td>
</tr>
<tr>
<td>Import Template</td>
<td>Allows you to import a template from your local directory, one at a time.</td>
</tr>
<tr>
<td>Export template</td>
<td>Allows you to export the template configuration to a local directory location.</td>
</tr>
<tr>
<td>Import Template Zip File</td>
<td>Allows you to import .zip file, that contains more than one template that is bundled in a .zip format.</td>
</tr>
<tr>
<td></td>
<td>All the templates in the ZIP file are extracted and listed in the table as individual templates.</td>
</tr>
</tbody>
</table>

Note

Notifications appear next to Import Template Zip File if there are issues while loading templates after restarting the server. Click the notifications to see the errors in the Issues in loading Template window. Templates with errors are not listed in the Templates window. To import these templates, correct the errors, and import them.

Table 2: Template Properties

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Template Name</td>
<td>Displays the name of the configured template.</td>
</tr>
</tbody>
</table>
Template Properties

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description Field</td>
<td>Displays the description that is provided while configuring templates.</td>
</tr>
<tr>
<td>Tags</td>
<td>Displays the tag that is assigned for the template and aids to filter</td>
</tr>
<tr>
<td></td>
<td>templates based on the tags.</td>
</tr>
<tr>
<td>Supported Platforms</td>
<td>Displays the supported Cisco Nexus platforms compatible with the template.</td>
</tr>
<tr>
<td></td>
<td>Check the check box of platforms that are supported with the template.</td>
</tr>
<tr>
<td></td>
<td>Note You can select multiple platforms.</td>
</tr>
<tr>
<td>Template Type</td>
<td>Displays the type of the template.</td>
</tr>
<tr>
<td>Template Sub Type</td>
<td>Specifies the sub type that is associated with the template.</td>
</tr>
<tr>
<td>Template Content Type</td>
<td>Specifies if it is Jython or Template CLI.</td>
</tr>
</tbody>
</table>

Advanced Template Properties

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implements</td>
<td>Displays the abstract template to be implemented.</td>
</tr>
<tr>
<td>Dependencies</td>
<td>Specifies the specific feature of a switch.</td>
</tr>
<tr>
<td>Published</td>
<td>Specifies if the template is published or not.</td>
</tr>
<tr>
<td>Imports</td>
<td>Specifies the base template for importing.</td>
</tr>
</tbody>
</table>

In addition, from the menu bar, choose **Control > Template Library > Templates** and you can also:

- Click **Show Filter** to filter the templates that is based on the headers.
- Click **Print** to print the list of templates.
- Click **Export to Excel** to export the list of template to a Microsoft Excel spreadsheet.

This section contains the following:

Template Structure

The configuration template content mainly consists of four parts. Click the **Help** icon next to the **Template Content** for information about editing the content of the template.

This section contains the following:

Template Format

This section describes the basic information of the template. The possible fields are as detailed in the table below.
<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
<th>Valid Values</th>
<th>Optional?</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>The name of the template</td>
<td>Text</td>
<td>No</td>
</tr>
<tr>
<td>description</td>
<td>Brief description about the template</td>
<td>Text</td>
<td>Yes</td>
</tr>
<tr>
<td>userDefined</td>
<td>Indicates whether the user created the template. Value is ‘true’ if user created.</td>
<td>“true” or “false”</td>
<td>Yes</td>
</tr>
<tr>
<td>supportedPlatforms</td>
<td>List of device platforms supports this configuration template. Specify ‘All’ to support all platforms.</td>
<td>N1K, N3K, N3500, N4K, N5K, N5500, N5600, N6K, N7K, N9K, MDS, VDC, N9K-9000v, All list separated by comma.</td>
<td>No</td>
</tr>
</tbody>
</table>
| templateType | Specifies the type of Template used. | • CLI
• POAP
Note POAP option is not applicable for Cisco DCNM LAN Fabric deployment.
• POLICY
• SHOW
• PROFILE
• FABRIC
• ABSTRACT | Yes |
<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
<th>Valid Values</th>
<th>Optional?</th>
</tr>
</thead>
<tbody>
<tr>
<td>templateSubType</td>
<td>Specifies the sub type associated with the template.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Property Name</td>
<td>Description</td>
<td>Valid Values</td>
<td>Optional?</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• CLI</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• POAP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• VXLAN</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• FABRICPATH</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• VLAN</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PMN</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>POAP option is not applicable for Cisco DCNM LAN Fabric deployment.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• POLICY</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• VLAN</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE_VLAN</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE_VPC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE_Ethernet</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE_BD</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE_PORT_CHANNEL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE_FC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE_MGMT</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE_LOOPBACK</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE_NVE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE_VFC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE_PORT_CHANNEL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• DEVICE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• FEX</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTRA_FABRIC_LINK</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTER_FABRIC_LINK</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE</td>
<td></td>
</tr>
<tr>
<td>Property Name</td>
<td>Description</td>
<td>Valid Values</td>
<td>Optional?</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• SHOW</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• VLAN</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE_VLAN</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE_VPC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACEETHERNET</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE_BD</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE_PORT_CHANNEL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE_FC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE_MGMT</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE_LOOPBACK</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE_NVE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE_VFC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE_PORT_CHANNEL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• DEVICE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• FEX</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTRA_FABRIC_LINK</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTER_FABRIC_LINK</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INTERFACE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PROFILE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• VXLAN</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• FABRIC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• NA</td>
<td></td>
</tr>
<tr>
<td>Property Name</td>
<td>Description</td>
<td>Valid Values</td>
<td>Optional?</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>---</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ABSTRACT
• VLAN
• INTERFACE_VLAN
• INTERFACE_VPC
• INTERFACE_ETHERNET
• INTERFACE_BD
• INTERFACE_PORT_CHANNEL
• INTERFACE_FC
• INTERFACE_MGMT
• INTERFACE_LOOPBACK
• INTERFACE_NVE
• INTERFACE_VFC
• INTERFACE_SAN_PORT_CHANNEL
• DEVICE
• FEX
• INTRA_FABRIC_LINK
• INTER_FABRIC_LINK
• INTERFACE</td>
<td></td>
</tr>
<tr>
<td>Property Name</td>
<td>Description</td>
<td>Valid Values</td>
<td>Optional?</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>--------------</td>
<td>-----------</td>
</tr>
</tbody>
</table>
| contentType | | • CLI
 • TEMPLATE_CLI
 • POAP
 • TEMPLATE_CLI
 Note POAP option is not applicable for Cisco DCNM LAN Fabric deployment.
 • POLICY
 • TEMPLATE_CLI
 • PYTHON
 • SHOW
 • TEMPLATE_CLI
 • PROFILE
 • TEMPLATE_CLI
 • PYTHON
 • FABRIC
 • PYTHON
 • ABSTRACT
 • TEMPLATE_CLI
 • PYTHON | Yes |
| implements | Used to implement the abstract template. | Text | Yes |
| dependencies | Used to select the specific feature of a switch. | Text | Yes |
| published | Used to Mark the template as read only and avoids changes to it. | “true” or “false” | Yes |
Template Variables

This section contains declared variables, the data type, default values, and valid values conditions for the parameters that are used in the template. These declared variables are used for value substitution in the template content section during the dynamic command generation process. Also these variables are used in decision making and in iteration blocks in the template content section. Variables have predefined data types. You can also add a description about the variable. The following table describes the syntax and usage for the available datatypes.

<table>
<thead>
<tr>
<th>Variable Type</th>
<th>Valid Value</th>
<th>Iterative?</th>
</tr>
</thead>
<tbody>
<tr>
<td>boolean</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>enum</td>
<td>Example: running-config, startup-config</td>
<td>No</td>
</tr>
<tr>
<td>float</td>
<td>Floating number format</td>
<td>No</td>
</tr>
<tr>
<td>floatRange</td>
<td>Example: 10.1,50.01</td>
<td>Yes</td>
</tr>
<tr>
<td>Integer</td>
<td>Any number</td>
<td>No</td>
</tr>
<tr>
<td>integerRange</td>
<td>Contiguous numbers separated by “-”</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Discrete numbers separated by “,”</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example: 1-10,15,18,20</td>
<td></td>
</tr>
<tr>
<td>interface</td>
<td>Format: <if type><slot>[<sub slot>]<port></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Example: eth1/1, fa10/1/2 etc.</td>
<td></td>
</tr>
<tr>
<td>interfaceRange</td>
<td>Example: eth10/1/20-25, eth11/1-5</td>
<td>Yes</td>
</tr>
<tr>
<td>ipAddress</td>
<td>IPv4 OR IPv6 address</td>
<td>No</td>
</tr>
<tr>
<td>ipAddressList</td>
<td>Example: 172.22.31.97, 172.22.31.99,</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>172.22.31.105, 172.22.31.109</td>
<td></td>
</tr>
<tr>
<td>ipAddressWithoutPrefix</td>
<td>Example: 192.168.1.1</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example: 1:2:3:4:5:6:7:8</td>
<td></td>
</tr>
<tr>
<td>ipAddress[]</td>
<td>Example:{192.168.1.1, 192.168.1.2, 10.1.1.1}</td>
<td>Yes</td>
</tr>
<tr>
<td>ipV4Address</td>
<td>IPv4 address</td>
<td>No</td>
</tr>
<tr>
<td>ipV4AddressWithSubnet</td>
<td>Example: 192.168.1.1/24</td>
<td>No</td>
</tr>
<tr>
<td>ipV6Address</td>
<td>IPv6 address</td>
<td>No</td>
</tr>
<tr>
<td>ipV6AddressWithPrefix</td>
<td>Example: 1:2:3:4:5:6:7:8</td>
<td>No</td>
</tr>
</tbody>
</table>
Variable Meta Property

Each variable that is defined in the template variable section has a set of meta properties. The meta properties are mainly the validation rules that are defined for the variable.

The following table describes the various meta properties applicable for the available variable types.

<table>
<thead>
<tr>
<th>Variable Type</th>
<th>Description</th>
<th>Variable Meta Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>A boolean value.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example: true</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>default Value</td>
</tr>
<tr>
<td></td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>float</td>
<td>A signed real number.</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>Example: 75.56, -8.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variable Type</td>
<td>Description</td>
<td>default Value</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>---------------</td>
</tr>
<tr>
<td>intRange</td>
<td>range of signed real numbers</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Example: 50.5 - 54.75</td>
<td></td>
</tr>
<tr>
<td>integer</td>
<td>signed number</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Example: 50, -75</td>
<td></td>
</tr>
<tr>
<td>intRange</td>
<td>Range of signed numbers</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Example: 50 - 65</td>
<td></td>
</tr>
<tr>
<td>interface</td>
<td>specifies interface</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Example: Ethernet 5/10</td>
<td></td>
</tr>
<tr>
<td>interface</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>ipAdress</td>
<td>IP address in IPv4 or IPv6 format</td>
<td>Yes</td>
</tr>
<tr>
<td>Variable Type</td>
<td>Description</td>
<td>Variable Meta Property</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>------------------------</td>
</tr>
</tbody>
</table>
| p
dbls\s | Example: 192.168.123.1, 172.16.10.1 | Yes |
<p>| Note | Separate the addresses in the list using commas and not hyphens. | |
| pAddr([]) | IPv4 or IPv6 Address (does not require p(\d)(\d)) | |
| | List of IP addresses separated by a comma (,) | Yes |
| p(\d)(\d) | IPv4 address | Yes |
| p(\d)(\d) | IPv4 Address with Subnet | Yes |
| p(\d)(\d) | IPv6 address | Yes |
| p(\d)(\d) | IPv6 Address with prefix | Yes |</p>
<table>
<thead>
<tr>
<th>Variable Type</th>
<th>Description</th>
<th>Variable Meta Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6</td>
<td>IPv6 Address with Subnet</td>
<td>Yes</td>
</tr>
<tr>
<td>isNot</td>
<td>Example: <code>0000:0000:0001</code></td>
<td></td>
</tr>
<tr>
<td>long</td>
<td>Example: 100</td>
<td>Yes, Yes, Yes</td>
</tr>
<tr>
<td>macAddrs</td>
<td>MAC address</td>
<td></td>
</tr>
<tr>
<td>string</td>
<td>literal string</td>
<td>Yes</td>
</tr>
<tr>
<td>string[]</td>
<td>string literals that are separated by a comma (,)</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Example: <code>(string1, string2)</code></td>
<td></td>
</tr>
<tr>
<td>Variable Type</td>
<td>Designation</td>
<td>Variable Meta Property</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>struct</td>
<td>Set of parameters that are bundled under a single variable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>struct</td>
<td><structure name declaration> { <parameter type>, <parameter type>, <parameter type>, ..., }<structure instance> [,<structure instance> [,<structure array instance> []]>];</td>
</tr>
<tr>
<td>wwn</td>
<td>WWN address</td>
<td></td>
</tr>
</tbody>
</table>

Example: Meta Property Usage

```python
# template variables

integer VLAN_ID { 
min = 100; 
max = 200; 
};

string USER_NAME { 
defaultValue = admin123; 
minLength = 5; 
};

struct interface_a{
```
string inf_name;
string inf_description;
ipAddress inf_host;
enum duplex {
 validValues = auto, full, half;
};
myInterface;

Variable Annotation

You can configure the variable properties marking the variables using annotations.

Variable Annotations are available for POAP only. However, the annotations do not impact on the template type ‘CLI’.

The following annotations can be used in the template variable section.

<table>
<thead>
<tr>
<th>Annotation Key</th>
<th>Valid Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataDepend</td>
<td>Text</td>
</tr>
<tr>
<td>Description</td>
<td>Text</td>
</tr>
<tr>
<td>DisplayName</td>
<td>Text</td>
</tr>
<tr>
<td>Note</td>
<td>Enclose the text with quotes, if there is space.</td>
</tr>
<tr>
<td>IsAlphaNumeric</td>
<td>“true” or “false”</td>
</tr>
<tr>
<td>IsDeviceID</td>
<td>“true” or “false”</td>
</tr>
<tr>
<td>IsGateway</td>
<td>“true” or “false”</td>
</tr>
<tr>
<td>IsInternal</td>
<td>“true” or “false”</td>
</tr>
<tr>
<td>IsManagementIP</td>
<td>“true” or “false”</td>
</tr>
<tr>
<td>Note</td>
<td>This annotation must be marked only for variable “ipAddress”.</td>
</tr>
<tr>
<td>IsMandatory</td>
<td>“true” or “false”</td>
</tr>
<tr>
<td>IsMultiplicity</td>
<td>“true” or “false”</td>
</tr>
<tr>
<td>IsPositive</td>
<td>“true” or “false”</td>
</tr>
<tr>
<td>Password</td>
<td>Text</td>
</tr>
<tr>
<td>PeerOneFEXID</td>
<td>“true” or “false”</td>
</tr>
<tr>
<td>PeerTwoFEXID</td>
<td>“true” or “false”</td>
</tr>
<tr>
<td>PeerOnePCID</td>
<td>“true” or “false”</td>
</tr>
</tbody>
</table>
Example: Variable Annotation

```csharp
##template variables
@(DisplayName="Host Name", Description = "Description of the host")
String hostname;
@(DisplayName="Host Address", Description = "test description" IsManagementIP=true)
IpAddress hostAddress;
##
```

Example: IsMandatory Annotation

```csharp
##template variables
@(IsMandatory="ipv6!=null")
IpV4Address ipv4;
@(IsMandatory="ipv4!=null")
IpV6Address ipv6;
##
```

IsShow Annotation

```csharp
##template variables
boolean isVlan;
@(IsShow="isVlan==true")
Integer vlanNo;
##
```

Templates Content

This section includes the configuration commands and any parameters that you want to include in the template. These commands can include the variables declared in the template variables section. During the command generation process the variable values are substituted appropriately in the template content.

Note

You must specify the commands that you include as if you were entering them in the global configuration command mode on any device. You must consider the command mode when you include commands.

Template content is governed by the usage of variables.

- Scalar variables—does not take a range or array of values which cannot be used for iteration (In the variable types table those marked iterate-able as 'No'). Scalar variables must be defined inside the template content.

Syntax: $$<variable name>$$
Example: $$USER_NAME$$
• Iterative variables—used for block iteration. These loop variable must be accessed as shown below inside the iteration block.

Syntax: `@<loop variable>`
Example: `foreach val in $$INTEGER_RANGE_VALUE$$ { @val }`

• Scalar Structure Variable—Structure member variables can be accessed inside the template content.

Syntax: `$$<structure instance name>.<member variable name>$$`
Example: `$$myInterface.inf_name$$`

• Array Structure Variable—Structure member variables can be accessed inside the template content.

Syntax: `$$<structure instance name>.<member variable name>$$`
Example: `$$myInterface.inf_name$$`

In addition to the template variables, you can use the conditional and iterative command generation using the following statements:

• if-elseif-else Statement—makes a logical decision in inclusion/exclusion of set of configuration command based on the value assigned for the variable in it.

Syntax: `if(<operand 1> <logical operator> <operand 2>){ command1 .. command2 } else if (<operand 3> <logical operator> <operand 4>) { Command3 .. Command4 } else { Command5 .. Command6 }
Example: if-else if-else statement
`if($$USER_NAME$$ == 'admin'){ Interface2/10 no shut }
else { Interface2/10 shut }

• foreach Statement—used for iterating a block of commands. The iteration is performed based on the assigned loop variable value.

Syntax: `foreach <loop index variable> in $$<loop variable>$$ { @<loop index variable> .. }
`
Example: foreach Statement
foreach ports in $$MY_INF_RANGE$$
{
 interface @ports
 no shut
}

• Optional parameters—By default all parameters are mandatory. To make a parameter optional, you must annotate the parameter.

In the variable section, you can include the following command:

• @ (IsMandatory=false)

• Integer frequency;

In the template content section, a command can be excluded or included without using “if” condition check, by assigning a value to the parameter. The optional command can be framed as below:

• probe icmp [frequency frequency-value] [timeout seconds] [retry-count retry-count-value]

Template Content Editor

The template content editor has the following features:

• Syntax highlighting: The editor highlights the syntax, like different types of statements, keywords, and so on, for Python scripting.

• Autocompletion: The editor suggests the template datatypes, annotations, or metaproperties when you start typing.

• Go to line: You can navigate to the exact line in the template content editor instead of scrolling. Press Command-L in Mac or Ctrl-L in Windows, and enter the line number to which you want to navigate to in the pop-up window.

If you enter a value greater than the number of lines in the editor, you will be navigated to the last line in the editor window.

• Template search and replace: Press Command-F in Mac or Ctrl-F in Windows, enter the search term in the Search for field, and select the type of search in the search window. You can perform the following searches in the editor:

 • RegExp Search: You can perform the regular expression search in the editor.

 • CaseSensitive Search: You can perform a case-sensitive search in the editor.

 • Whole Word Search: You can perform a whole word search to find the exact words in the editor. For example, a regular search for the word "play" returns results where it is part of words like "display," but the whole word search returns results only when there is an exact match for the word "play".

 • Search In Selection: You can perform a search in the selected content. Select the content to which you want to limit the search and enter the search term.

Choose the + icon in the search window to use the replace option. Enter the replacing word in the Replace with field. You can replace the selected word once by selecting Replace. To replace all the occurrences of the selected word, select All.

• Code folding: You can expand or group code blocks in the editor by clicking the arrow next to their line numbers.
• Other features: The editor automatically indents the code, the closing braces, and highlights the matching parenthesis.

Template Editor Settings

You can edit the following features of a template editor by clicking Template Editor Settings.

• **Theme**: Select the required theme for the editor from the drop-down list.

• **KeyBinding**: Select the editor mode from the KeyBinding drop-down list to customize the editor. Vim and Ace modes are supported. The default is Ace.

• **Font Size**: Select the required font size for the editor.

Advanced Features

The following are the advanced features available to configure templates.

• **Assignment Operation**

 Config template supports assignment of variable values inside the template content section. The values are validated for the declared data type of the variable. If there is a mismatch, the value is not assigned.

 Assignment operation can be used under the following guidelines:

 • The operator on the left must be any of the template parameters or a for loop parameter.

 • The operator on the right values can be any of the values from template parameters, for loop parameters, literal string values surrounded by quotes or simple string values.

 If a statement does not follow these guidelines, or if it does not suit this format, it will not be considered as assignment operation. It is substituted during command generation like other normal lines.

 Example: Template with assignment operation

  ```
  ##template properties
  name = vlan creation;
  userDefined = true;
  supportedPlatforms = All;
  templateType = CLI;
  published = false;
  ##
  ##template variables
  integerRange vlan_range;
  @(internal=true)
  integer vlanName;
  ##
  ##template content
  foreach vlanID in $$vlan_range$$ {
  vlan @vlanID
  $$vlanName$$=@vlanID
  name myvlan$$vlanName$$
  }
  ##
  ```

• **Evaluate methods**

 Config template uses the Java runtime provided Java script environment to perform arithmetic operations (such as ADD, SUBTRACT, and so on), string manipulations, and so on.
Locate the javascript file in the template repository path. This file contains primary set of arithmetic, string functions. You can also add custom Javascript methods.

These methods can be called from config template content section in below format:

Example1:
$$somevar$$ = evalscript(add, "100", $$anothervar$$)

Also the evalscript can be called inside if conditions as below:

if($$range$$ > evalscript(sum, $$vlan_id$$, -10)){
do something...
}

You can call a method that is located at the backend of the Java script file.

• Dynamic decision

Config template provides a special internal variable “LAST_CMD_RESPONSE”. This variable stores the last command response from the device during the execution of the command. This can be used in the config template content to make dynamic decisions to deliver the commands that are based on the device condition.

An example use case to create a VLAN, if it is does not exist on the device.

Example: Create VLAN
```bash
##template content
show vlan id $$vlan_id$$
if($$LAST_CMD_RESPONSE$$ contains "not found"){
    vlan $$vlan_id$$
} else{
}
##
```

This special implicit variable can be used only in the “IF” blocks.

• Template referencing

You can have a base template with all the variables defined. This base template can be imported to multiple templates. The base template content is substituted in the appropriate place of the extending template. The imported template parameters and the contents can be accessed inside the extending template.

Example: Template Referencing
Base template:
```bash
##template properties
name = a vlan base;
userDefined= true;
supportedPlatforms = All;
templateType = CLI;
published = false;
timestamp = 2015-07-14 16:07:52;
imports = ;
##
##template variables
integer vlan_id;
```
Adding a Template

To add user-defined templates and schedule jobs from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose Control > Template Library.

The Templates window is displayed with the name of the template along with its description, supported platforms, and tags.

Step 2 Click Add to add a new template.

The Template Properties window appears.

Step 3 Specify a template name, description, tags, and supported platforms for the new template.

Step 4 Specify a Template Type for the template.

Step 5 Select a Template Sub Type and Template Content Type for the template.

Step 6 Click the Advanced tab to edit other properties like Implements, Dependencies, Published, and Imports. Select Published to make the template read-only. You cannot edit a published template.

Step 7 From the Imports > Template Name list, check the template check box.

The base template content is displayed in the Template Content window. The base template displays the template properties, template variables, and template content. This template can be imported into another template and the base template content is substituted in the appropriate place of the extending template. When you launch the extended template, the parameter inputs for the base template are also obtained. Also, the substituted content is used for complete CLI command generation.
The base templates are CLI templates.

Step 8 Click **OK** to save the template properties, or click the cancel icon at the top-right corner of the window to revert the changes.

Note You can edit the template properties by clicking **Template Property**.

Step 9 Click **Template Content** to edit the template syntax. For information about the structure of the Configuration Template, see the **Template Structure** section.

Step 10 Click **Validate Template Syntax** to validate the template values.

If an error or a warning message appears, you can check the validation details in **Validation Table** by clicking the error and warnings field.

Note You can continue to save the template if there are warnings only. However, if there is an error, you must edit the templates to fix the errors before you proceed. Click the line number under the **Start Line** column to locate the error in the template content. You will get an error if you validate a template that does not have a template name.

Step 11 Click **Save** to save the template.

Step 12 Click **Save and Exit** to save the configuration and go back to the configuring templates screen.

Modifying a Template

You can edit the user-defined templates. However, the predefined templates and templates that are already published cannot be edited.

Procedure

1. **Step 1** From **Control > Template Library**, select a template.
2. **Step 2** Click **Modify/View template**.
3. **Step 3** Edit the template description and tags.

 The edited template content is displayed in a pane on the right.

4. **Step 4** From the **Imports > Template Name** list, check the template check box.

 The base template content is displayed in the **Template Content** window. You can edit the template content based on your requirement in the **Template Content** window. Click the help icon next to the **Template Content** window for information about editing the content of the template.

5. **Step 5** Edit the supported platforms for the template.
6. **Step 6** Click **Validate Template Syntax** to validate the template values.
7. **Step 7** Click **Save** to save the template.
8. **Step 8** Click **Save and Exit** to save the configuration and go back to the configuring templates screen.
Copying a Template

To copy a template from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose Control > Template Library, and select a template.

Step 2 Click Save Template As.

Step 3 Edit the template name, description, tags, and other parameters.

 The edited template content is displayed in the right-hand pane.

Step 4 From the Imports > Template Name list, check the template check box.

 The base template content is displayed in the Template Content window. You can edit the template content that is based on your requirement in the Template Content window. Click the help icon next to the Template Content window for information about editing the content of the template.

Step 5 Edit the supported platforms for the template.

Step 6 Click Validate Template Syntax to validate the template values.

Step 7 Click Save to save the template.

Step 8 Click Save and Exit to save the configuration and go back to the configuring templates screen.

Deleting a Template

You can delete the user-defined templates. However, you cannot delete the predefined templates. From Cisco DCNM Release 11.0(1), you can delete multiple templates at once.

To delete a template from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose Control > Template Library.

Step 2 Use the check box to select a template and click Remove template icon.

 The template is deleted without any warning message.

What to do next

The template is deleted from the list of templates on the DCNM Web UI. When you restart the DCNM services, the deleted templates are displayed on the Control > Template Library page.

To delete the template permanently, delete the template that is located in your local directory: Cisco Systems\dcm\dcnm\data\templates\.
Importing a Template

To import a template from the Cisco DCNM Web UI, perform the following steps:

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Choose Control > Template Library and click Import Template.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Browse and select the template that is saved on your computer. You can edit the template parameters, if necessary. For information, see Modifying a Template, on page 184. Note: The “\n” in the template is considered as a new line character when imported and edited, but it works fine when imported as a ZIP file.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Click Validate Template Syntax to validate the template.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Click Save to save the template or Save and Exit to save the template and exit.</td>
</tr>
</tbody>
</table>

Exporting a Template

To export a template from the Cisco DCNM Web UI, perform the following steps:

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Choose Control > Template Library.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Use the check box to select a template and click Export Template. The browser requests you to open or save the template to your directory.</td>
</tr>
</tbody>
</table>

Image Management

The Image Management menu includes the following options:

Image Upload

This feature allows you to upload or delete images that are used during POAP and switch upgrade.

Deleting an Image

To delete an image from the repository from the Cisco DCNM Web UI, perform the following steps:
Procedure

Step 1
On the Smart Image Management window, select an existing image from the list, and click **Delete**.

Step 2
In the delete notification, click **Yes** to delete the image.

Note
The default SCP Repository cannot be deleted.

Image Upload

To upload different types of images to the server from the Cisco DCNM Web UI, perform the following steps:

Note
Devices use these images during POAP.

Procedure

Step 1
On the Smart Image Management window, check the server name check box to select the server for uploading images.

The Select Image File window appears.

Step 2
Click **Browse** to select the image file from the directory.

Step 3
From the Platform drop-down list, select the device to which you must upload this image.

Step 4
From the Type drop-down list, select the type of the image you are uploading to the device.

Step 5
Click **OK**.

The image is uploaded to the repository.

Install & Upgrade

The **Install & Upgrade** menu includes the following submenus:

Upgrade History

This feature enables you to upgrade the Cisco Nexus Platform Switches using In-Service Software Upgrade (ISSU). This upgrade procedure may be disruptive or non-disruptive based on the device configuration. You can select the Kickstart, System, or NX-OS images from image repository or the file system on the device. To select the images from the repository, the same needs to be uploaded from **Control > Image Management > Image upload** tab.

The following table describes the fields that appear on **Control > Image Management > Upgrade History**.
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task Id</td>
<td>Specifies the serial number of the task. The latest task will be listed in the top. Note If Failover is triggered in Native HA, the Task Id sequence number is incremented by 32.</td>
</tr>
<tr>
<td>Task Type</td>
<td>Specifies the type of task. • Compatibility • Upgrade</td>
</tr>
<tr>
<td>Owner</td>
<td>Based on the Role-Based Authentication Control (RBAC), specifies the owner who initiated this task.</td>
</tr>
<tr>
<td>Devices</td>
<td>Displays all the devices that were selected for this task.</td>
</tr>
<tr>
<td>Job Status</td>
<td>Specifies the status of the job. • Planned • In Progress • Completed • Completed with Exceptions</td>
</tr>
<tr>
<td>Created Time</td>
<td>Specifies the time when the task was created.</td>
</tr>
<tr>
<td>Scheduled At</td>
<td>Specifies the time when the task is specified to be executed. You can also choose to schedule a task to be executed at a later time.</td>
</tr>
<tr>
<td>Comment</td>
<td>Shows any comments that the Owner has added while performing the task.</td>
</tr>
</tbody>
</table>

Note

After a fresh Cisco DCNM installation, this page will have no entries.

You can perform the following:

New Installation

To upgrade the devices that are discovered from the Cisco DCNM, perform the following steps:

Procedure

Step 1

Choose Control > Image Management > Install & Upgrade > Upgrade History, click New Installation to install, or upgrade the kickstart and the system images on the devices.

The devices with default VDCs are displayed in the Select Switches window.
Step 2 Select the check box to the left of the switch name.
You can select more than one device and move the devices to the right column.

Step 3 Click Add or Remove icons to include the appropriate switches for upgrade.
The selected switches appear in a column on the right.

Step 4 Click Next to navigate to the Specify Software Images window. This tab displays the switches that you
selected in the previous screen and allows you to choose the images for upgrade.
• The Auto File Selection check box enables you to specify an image version, and a path where you can
apply the upgraded image to the selected devices.
• Select File Server is disabled, and the default server is used.
• In the Image Version field, specify the image version as displayed in Image Upload screen.
• The Path field is disabled, and the default image path is used.

Step 5 Click Select Image in the Kickstart image column.
The Software Image Browser dialog box appears.
Note • Cisco Nexus 9000 Series Switches require only the system image to load the Cisco NX-OS
operating system. Therefore, the option to select kickstart images for these devices is disabled.
• If there is an issue in viewing the Software Image Browser dialog box, reduce the font size
of your browser and retry.

Step 6 Click Select Image in the System Image column.
The Software Image Browser dialog box appears.

Step 7 On the Software Image Browser dialog box, you can choose the kickstart image from File Server or Switch File System.
If you choose File Server:
 a) From the Select the File server list, choose the appropriate file server on which the kickstart image is
stored.
 The servers at Control > Image Management > Image Upload are displayed in the drop-down list.
 b) From the Select Image list, choose the appropriate kickstart image. Check the check box to use the same
image for all other selected devices of the same platform.
 Example: For platform types N9K-C93180YC-EX and N9K-C93108TC-EX, logic matches platform
(N9K) and three characters (C93) from subplatform. The same logic is used across all platform switches.
 Note Only files with BIN extension are listed if you select File Server. To view other files, choose
Administration > DCNM Server > Server Properties, set FILE_SELECTION_FILTER
to false, and restart the server. It is set to true by default.
 c) Click OK to choose the kickstart image or Cancel to revert to the Specify Software Images window.
If you choose Switch File System:
 a) From the Select Image list, choose the appropriate image that is located on the flash memory of the device.
Only files with BIN extension are listed if you select Switch File System. To view other files, choose Administration > DCNM Server > Server Properties, set FILE_SELECTION_FILTER to false, and restart the server. It is set to true by default.

b) Click OK to choose the kickstart image or Cancel to revert to the Specify Software Images dialog box.

Step 8
The Vrf column indicates the name of the virtual routing and forwarding (VRF).
VRF is not applicable for Cisco MDS devices.

Step 9
In the Available Space column, specify the available space for the Primary Supervisor and Secondary Supervisor modules of the switch.

Available Space column shows the available memory in MB on the switch (for less than 1 MB, it is shown and marked as KB).

Bootflash browser shows the filename, size, and last modified date for all the files and directories on the switch bootflash. You can delete files by selecting them and clicking Delete to increase the available space on the switch.

Step 10
Selected Files Size column shows the size of images that are selected from the server.

If the total size of selected images is greater than available space on a switch, the file size is marked in red. We recommend that you create more space on the switch to copy images to it and install.

Step 11
Drag and drop the switches to reorder the upgrade task sequence.

Step 12
Select Skip Version Compatibility if you are sure that the version of the Cisco NX-OS software on your device is compatible with the upgraded images that you have selected.

Step 13
Select Select Parallel Line Card upgrade to upgrade all the line cards at the same time.
Upgrading a parallel line card is not applicable for Cisco MDS devices.

Step 14
Select Options under the Upgrade Options column to choose the type of upgrade.

Upgrade Options window appears with two upgrade options. The drop-down list for Upgrade Option 1 has the following options:

• NA
• bios-force
• non-disruptive

NA is the default value.

The drop-down list for Upgrade Option 2 has the following options:

• NA
• bios-force

When NA is selected under Upgrade Option 1, Upgrade Option 2 is disabled.
When bios-force is selected under Upgrade Option 1, Upgrade Option 2 is disabled.
When non-disruptive is selected under Upgrade Option 1, you can choose NA or bios-force under Upgrade Option 2.
Check the **Use this Option for all other selected devices** check box to use the selected option for all the selected devices and click **OK**.

Note

- The upgrade options are applicable only for Cisco Nexus 3000 Series and 9000 Series switches.
- Selecting the non-disruptive option for upgrading does not ensure a non-disruptive upgrade. Perform a compatibility check to ensure that the device supports non-disruptive upgrade.

Step 15

Click **Next**.

If you did not select **Skip Version Compatibility**, the Cisco DCNM performs a compatibility check.

You can choose to wait until the check is complete or click **Finish Installation Later**.

The installation wizard is closed and a compatibility task is created in **Control > Image Management > Install & Upgrade > Upgrade History** tasks.

The time that is taken to check the image compatibility depends on the configuration and the load on the device.

The **Version Compatibility Verification** status column displays the status of verification.

If you skip the version compatibility check by choosing **Skip Version Compatibility**, Cisco DCNM displays only the name of the device, the **Current Action** column displays **Completed**, and the **Version Compatibility Verification** column displays **Skipped**.

Step 16

Click **Finish Installation Later** to perform the upgrade later.

Step 17

Click **Next**.

Step 18

Check the **Next** check box to put a device in maintenance mode before upgrade.

Step 19

Check the check box to save the running configuration to the start up configuration before upgrading the device.

Step 20

You can schedule the upgrade process to occur immediately or later.

1. Select **Deploy Now** to upgrade the device immediately.

2. Select **Choose time to Deploy** and specify the time in MMM/DD/YYYY HH:MM:SS format to perform the upgrade later.

 This value is relative to the server time. If the selected time to deploy is in the past, the job is executed immediately.

Step 21

You can choose the execution mode based on the devices and the line cards you have chosen to upgrade.

1. Select **Sequential** to upgrade the devices in the order in which they were chosen.

2. Select **Concurrent** to upgrade all the devices at the same time.

Step 22

Click **Finish** to begin the upgrade process.

The Installation wizard closes and a task to Upgrade is created on the **Control > Image Management > Install & Upgrade > Upgrade History** page.
Finish Installation

You can choose to complete the installation for tasks which was completed on the Compatibility Check page. Perform the following task to complete the upgrade process on the devices.

Procedure

Step 1 Choose Control > Image Management > Install & Upgrade > Upgrade History, select a task for which the compatibility check is complete.
Select only one task at a time.

Step 2 Click Finish Installation. Software Installation Wizard appears.

Step 3 Check the check box to save the running configuration to the startup configuration before upgrading the device.

Step 4 Check the check box to put a device in maintenance mode before upgrade. This option is valid only for the devices that support maintenance mode.

Step 5 You can schedule the upgrade process to occur immediately or later.
1. Select Deploy Now to upgrade the device immediately.
2. Select Choose time to Deploy and specify the time in DD/MM/YYYY HH:MM:SS format to perform the upgrade later.

Step 6 You can choose the execution mode that is based on the devices and the line cards that you have chosen to upgrade.
1. Select Sequential to upgrade the devices in the order in which they were chosen.
2. Select Concurrent to upgrade the devices at the same time.

Step 7 Click Finish to complete the upgrade process.

View

To view the image upgrade history from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose Control > Image Management > Install & Upgrade > Upgrade History, check the task ID check box.
Select only one task at a time.

Step 2 Click View.
The Installation Task Details window is displayed.

Step 3 Click Settings. Select Columns and choose the column details options.
This window displays the location of the kickstart and system images, compatibility check status, installation status, descriptions, and logs.

Step 4
Select the device.

The detailed status of the task is displayed. For the completed tasks, the response from the device is displayed. If the upgrade task is in progress, a live log of the installation process appears.

Note
This table is refreshed every 30 secs for jobs in progress, when you are on this window.

Delete

To delete a task from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1
Choose Control > Image Management > Install & Upgrade > Upgrade History, and check the Task ID check box.

Step 2
Click Delete.

Step 3
Click OK to confirm deletion of the job.

Switch Level History

You can view the history of the upgrade process at a switch level. You can view the current version of the switch and other details.

The following table describes the fields that appear on Control > Image Management > Install & Upgrade > Switch Level History:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch Name</td>
<td>Specifies the name of the switch</td>
</tr>
<tr>
<td>IP Address</td>
<td>Specifies the IP Address of the switch</td>
</tr>
<tr>
<td>Platform</td>
<td>Specifies the Cisco Nexus switch platform</td>
</tr>
<tr>
<td>Current Version</td>
<td>Specifies the current version on the switch software</td>
</tr>
</tbody>
</table>

Click the radio button next to a switch name to select the switch and view its upgrade history. Click View to view the upgrade task history for the selected switch.

The following table describes the fields that appear on Control > Image Management > Install & Upgrade > Switch Level History > View Device Upgrade Tasks:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>Specifies the owner who initiated the upgrade.</td>
</tr>
</tbody>
</table>
Endpoint Locator

The Endpoint Locator menu includes the following submenus:

Endpoint Locator

The Endpoint Locator (EPL) feature allows real-time tracking of endpoints within a data center. The tracking includes tracing the network life history of an endpoint and getting insights into the trends that are associated with endpoint additions, removals, moves and so on. An endpoint is anything with an IP and MAC address. In that sense, an endpoint can be a virtual machine (VM), container, bare-metal server, service appliance and so on.

Note

Endpoint Locator is currently only supported for VXLAN BGP EVPN fabric deployments and DFA (BGP L3VPN) based fabric deployments. It is not supported for access aggregation that is based deployments.

EPL relies on BGP updates to track endpoint information. Hence, the DCNM needs to peer with the BGP Route-Reflector (RR) to get these updates. For this purpose, IP reachability from the DCNM to the RR is required. This can be achieved over in-band network connection to the DCNM eth2 port.

Some key highlights of the Endpoint Locator are:

- Support for dual-homed and dual-stacked (IPv4 + IPv6) endpoints
- Support for up to two BGP route reflectors
- Support for real-time and historical dashboards for insights such as endpoint lifetime, network, endpoint, VRF daily views, and operational heat map
• Support for high availability
• Support for endpoint data stored for up to 180 days, amounting to a maximum of 5 G storage space
• Support for optional flush of the endpoint data in order to start afresh
• Supported scale: 10K endpoints

For more information about EPL, refer to the following sections:

Configuring Endpoint Locator

The DCNM OVA or the ISO installation comes with 3 interfaces—eth0 interface for external access to the DCNM, eth1 interface that is used primarily for fabric management, and eth2 interface for in-band network connectivity to Cisco DCNM. In most deployments the eth1 interface is part of the same network on which the mgmt0 interfaces of the Cisco Nexus switches reside (Out-of-band or OOB network). This allows DCNM to perform out-of-band management of these devices including POAP.

BGP peering between the Cisco DCNM and the Route-Reflector is required for EPL. Since the BGP process on Nexus devices typically runs on the non-management VRF, specifically default VRF, it requires an in-band IP connectivity from the Cisco DCNM to the fabric. For this purpose, the eth2 interface can be configured using the `appmgr setup inband` command. The user will be prompted to specify an IP address, netmask and gateway IP. On the fabric side if the DCNM eth2 port is directly connected to one of the front-end interfaces on a switch then the front-end interface can be configured using the `epl_routed_intf` template.

After the in-band connectivity is established between the physical or virtual DCNM and the fabric, BGP peering can be established. There is a simple wizard for enabling Endpoint Locator.
During the EPL configuration using the wizard, the route reflectors (RRs) are configured to accept DCNM as a BGP peer. During the same configuration, the DCNM is also configured by adding routes to the BGP loopback IP via the eth2 gateway. The DCNM can be directly attached to a ToR, or leaf, that in turn provides reachability to the RR. Also, DCNM can have simple IP connectivity via a gateway to the fabric in any case the gateway of eth2 should be appropriately configured when setting up the eth2 port on DCNM.

Note
Cisco DCNM queries the BGP RR to glean information for establishment of the peering, like ASN, RR, IP, and so on.

It should be noted that it is very important to configure eth2 interface properly, if it is a native HA setup then eth2 on active and standby Cisco DCNMs must be in the same subnet, which means they should have the same gateway addresses.
Procedure

Step 1 From the Cisco DCNM home page, choose **Control > Endpoint Locator > Configure**. The **Endpoint Locator** page appears with a **See how it works** help link.
Step 2 Click Continue.

Step 3 Select the appropriate fabric on which the endpoint locator feature should be enabled to track endpoint activity.

EPL can only be enabled for one fabric. It can be DFA or EVPN.

Step 4 Select the switches on the fabric hosting the RRs. Cisco DCNM will peer with the RRs.

Step 5 Check DCNM eth2 configuration for IP reachability to the RR.
Step 6 Check Next-hop IP, and ensure the gateway IP is correct. If there is an error go to command line and reconfigure the eth2 port using the `appmgr setup inband` command.

Step 7 The last step provides a summary of the information entered in the previous steps. The wizard view allows navigation to any particular step whereby one can make necessary changes/edits. In this step, one must specify whether additional information such as PORT, VLAN, VRF etc. is required when enabling the EPL feature. If the No option is selected, then this information will not be collected and reported by EPL.
However, if the Yes option is selected in the drop down, a warning pop-up appears that feature NX-API must be supported and enabled on the switches/ToRs/leafs to gather this information. Otherwise this additional information cannot be fetched or reported.

Step 8 Once the appropriate selections are made and various inputs have been reviewed, click **Continue** to enable EPL. A progress bar will appear indicating the status of the EPL feature enable process.
If there are any errors during the enablement, the enable process will abort and the appropriate error message will be displayed. Otherwise, EPL will be successfully enabled and on clicking **OK**, the screen will be automatically redirected to the EPL dashboard.

When the Endpoint Locator feature is enabled, there are a number of steps that occur in the background. DCNM will contact the selected RRs and determine the ASN, determine whether the fabric is L3VPN or EVPN enabled, and also determine the interface IP that is bound to the BGP process. Also, appropriate BGP neighbor statements are added on the RR(s), to get it ready to accept the BGP connection that will be initiated from the DCNM. The neighbor address will be the same as that of the eth2 interface shown in step 2. In order to provide reachability to the RR, a static route will be added to DCNM. This ensures that DCNM has connectivity to the RR. Once EPL is successfully enabled, the user is automatically redirected to the EPL dashboard.
dashboard that depicts operational and exploratory insights into the endpoints that are present in the fabric. For more information, refer to Section Exploring Endpoint Locator Details.

Flushing the Endpoint Database

To flush the all the Endpoint information, perform the following steps:

Procedure

Step 1

From Cisco DCNM home page, choose **Control > Endpoint Locator > Configure**, and then click the **clean up** link.

This shows a warning message indicating that all the endpoint information from the database will be flushed.
Adding High Availability Node to Endpoint Locator Configuration

To add a HA node to endpoint locator from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose Control > Endpoint Locator > Configure.
The Endpoint Locator page appears and the fabric configuration details are displayed.

Step 2 Click the Add HA node link.

Step 3 In the Configure Standby DCNM Interface page, choose the Ethernet interface on DCNM that provides reachability to the BGP Route-Reflectors within the fabric.

Step 4 Click Continue.

Step 5 In the Next-Hop page check the value of the next-hop IP.

Step 6 Click Configure HA Node.

The configuration details are displayed on the Endpoint Locator page.

Configuring Endpoint Locator in DCNM High Availability Mode

To configure an endpoint locator in DCNM HA mode from the Cisco DCNM Web UI, perform the following steps:
Procedure

Step 1 Choose Control > Endpoint Locator > Configure. The Endpoint Locator page appears and the fabric configuration details are displayed.
Step 2 In the Select a fabric to configure endpoint locator in DCNM HA mode.
Step 3 Click Continue.
Step 4 Select a Route-Reflector (RR).
Step 5 Click Continue.
Step 6 Configure Ethernet interfaces on both primary and standby DCNM nodes.
Step 7 Click Continue.
Step 8 Select switch interface that is connected to both the primary and standby DCNM.
Step 9 Click Continue.
Step 10 Configure the Connect Switch or Next-hop IP.
Step 11 Click Continue.

After you configure the Endpoint Locator in HA mode, you can view details such as Endpoint Activity and Endpoint History in the Endpoint dashboard. To view these details, navigate to Monitor > Endpoint Locator > Explore.

Disabling Endpoint Locator

To disable endpoint locator from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose Control > Endpoint Locator > Configure.

The Endpoint Locator page appears and the fabric configuration details are displayed.

Step 2 Click Disable Feature.

Troubleshooting Endpoint Locator

There may be multiple reasons why enabling the Endpoint Locator feature may fail. Typically, if the appropriate devices are selected and the IP addresses to be used are correctly specified, the connectivity of the DCNM to the BGP RR may not be present due to which the feature cannot be enabled. This is a sanity check that is present to ensure that basic IP connectivity is available. The following image shows an example error scenario that was encountered during an attempt to enable the EPL feature.

The logs for EPL are located at the following location: /usr/local/cisco/dcm/fm/logs. The log that provides further details on what all occurred when the EPL feature is enabled or disabled, are present in the file epl.log. The following example provides a snapshot of the log that provides the user further information on when EPL enablement failed.

The following example helps you to understand why Endpoint Locator is unable to Connect to a switch.
In this example, the LAN credentials set in DCNM for accessing the switch were incorrect. There may be other reasons for which enablement of the EPL feature may fail. In all scenarios, an appropriate error message will be depicted to the user and additional context information can be obtained from epl.log.

Once EPL is successfully enabled, all the debug/error/info logs associated with endpoint information are stored in bgp.log. Depending on the scale of the network and the number of endpoint events, the file size may grow. Hence, there is a restriction on the maximum number and size of bgp.log. Up to 10 such files will be stored with each file having a maximum size of 10MB.

As mentioned earlier, the Endpoint Locator relies on BGP updates to get endpoint information. In order for this to work, the switch loopback or VTEP interface IPs must be discovered on the DCNM for all switches that have endpoints. This can be validated by navigating to the Cisco DCNM Switch Dashboard Interfaces tab, and verifying if the IP/Prefix associated with the corresponding L3 interfaces (typically loopbacks) are correctly displayed.

In a large-scale setup, it may take more than 30 seconds (default timer set in Cisco DCNM) to get this information from the switch. If this occurs, the ssh.read-wait-timeout property (in the Administration > DCNM Server > Server Properties page) should be changed from 30000(default) to 60000 or a higher value.
Streaming Telemetry for LAN Deployments

In today’s data center environments, granular visibility and tracking of network events has become critical. The traditional polling-based methods that pull the network state in predefined intervals need a fork-lift upgrade. More advanced streaming approaches are required that provide network event visibility in closer to real time through a push method. Streaming telemetry not only allows data to be pushed out at a much finer granularity with a lower cadence (shorter interval) but it also enables event-based notifications. While getting relevant data in a timely fashion is highly desirable, the data needs to be analyzed and converted into actionable insights.

As a first step toward LAN analytics, DCNM 11.0(1) enables subscriptions for environmental metrics through streaming telemetry for consumption and analysis. The environmental metrics that are streamed include CPU, Memory, Power, Temperature, and Fan Speed; all these are enabled with a single click. DCNM allows you to configure the streaming interval for these metrics. The default streaming interval for CPU, Memory is set to 30 seconds, and those for Power, Temperature, and Fan Speed is set to 300 seconds (5 minutes).

Starting from DCNM 11.1(1), subscriptions are enabled for Interface, Transceivers, Control Plane, and Resource summary metrics through streaming telemetry for consumption and analysis. DCNM allows you to configure the streaming interval for these metrics. The default streaming interval for Interface, Transceivers, Control Plane, and Resource summary metrics is set to 30 seconds.

The per-metric real-time streaming dashboards allow filtering on a per fabric and per switch level including a per-switch drill-down where applicable. Streaming telemetry is currently supported on the Nexus 9000 platforms.

Guidelines and Recommendations

• Cisco DCNM LAN Telemetry is a preview-only feature. Do not enable this feature in the production environments.

• In a cluster mode, a minimum of three compute nodes have to be up for LAN Telemetry to start properly. However, LAN Telemetry functions properly if any one of the three compute nodes is intermittently down.

• If two compute nodes go down, both nodes have to be restored for Zoo Keeper and Kafka Connect to bootstrap correctly and resume data transmission.

• We recommend using the LAN Telemetry feature for up to 30 switches.

Pre-Requisites for Enabling the LAN Telemetry Feature

• The Cisco Nexus 9000 switches and Cisco DCNM need to be time synchronized (NTP is recommended).

• Minimum software version on the Nexus 9000 switches must be 7.0(3)l6(1) or higher.

• In the LAN Classic mode, you need to manually enable the following configurations on all the switches before enabling telemetry:
 • feature nxapi
 • nxapi http port 80
If the preceding configurations are unavailable on the switches, the telemetry health on Cisco DCNM does not show the configurations and the connection status for the telemetry-enabled switches. The preceding commands can be manually defined in a new template, and then pushed to all the switches in the fabric from Cisco DCNM. Use an unused port (for example, port 80) configure nxapi.

Enabling the Streaming Telemetry Feature

Procedure

Step 1 Choose Control > LAN Telemetry > Configure. Select the fabric for which LAN Telemetry has to be enabled. Then press the Enable button.

A warning message appears to indicate that the Cisco DCNM and switches need to be time-synchronized before this feature is enabled. Recall, that this is a prerequisite for this feature. If the prerequisite is met, acknowledge by clicking Yes.

Note When Telemetry is enabled, the NTP configuration is done on the switches for LAN Classic deployment, wherein the NTP server address is set to DCNM’s out-of-band interface’s IPv4 address. In case of HA setups, the NTP server address is set to the VIP address of the out-of-band interface. Ensure that the NTP configurations are not removed/modified from the switches.
Step 2

Once this feature is enabled, a message appears indicating the initialization process has begun, which takes a couple of minutes. This time is needed for the streaming configuration to be pushed to the switches. The initial data to be streamed out from the switches, which are consumed by DCNM, and depicted on the LAN telemetry dashboard.

Once the LAN telemetry preview feature is enabled, DCNM updates the switch telemetry configuration for the environmental metrics. Every switch that does not conform to the telemetry requirements (must be Cisco Nexus 9000) is excluded from the configuration update. The status of the switch configuration can be monitored by choosing **Control > LAN Telemetry > Health**.

Once the jobs are successfully executed, the required telemetry configuration has been applied to the switches and the streaming data appears once received and processed.

Viewing LAN Telemetry Health

The LAN Telemetry Health window provides a detailed break-down of how much data is streamed out by each switch per feature for the last 24 hours. This window shows the status of the configuration for every switch, apart from showing the statistics of the received data for every metric from every switch. The Connection Status indicates the status of the connection used to transport telemetry data between the switch and DCNM.

To view the LAN Telemetry Health, perform the following steps:

Procedure

Step 1 Choose **Control > LAN Telemetry > Health**.
Step 2 Click the **Top Streamers** tab to view the graphs that depicts the top five streaming switches and has a drill-down capability for a feature-wise break-down.
Telemetry Streaming Interface

Telemetry data, by default is streamed through the management interface of the switches to the Cisco DCNM. This is the Out-of-Band network. This is a global configuration for all fabrics or switch-groups in DCNM. The switches can also stream the Telemetry data through their front panel ports to DCNM assuming there’s connectivity from the switches to the DCNM. This is the In-band network. To use the in-band network, do the following:

Procedure

Step 1
Disable Telemetry on all the Enabled fabrics.

Step 2
Go to the Health window and change the settings by clicking on the gear icon on the Heath window. In the Telemetry Settings window that comes up, select **In-Band** from the Interface drop-down list. The VRF option is set to default. Click Submit.

![Telemetry Settings](image)

The VRF option is set to default. You can also change this to any other VRF assuming that the switches are configured with the VRF and there is availability to the in-band interface of the DCNM through that VRF.

Note
If Telemetry is already enabled for some fabrics, you should first disable Telemetry on all the enabled fabrics and only then modify the Telemetry network setting. After modifying the Telemetry network settings, you can enable Telemetry on the fabrics. Now, Telemetry data start coming through the in-band interface.
Monitor

This chapter contains the following topics:

- Inventory, on page 211
- Monitoring Switch, on page 232
- Monitoring LAN, on page 235
- Monitoring Endpoint Locator, on page 239
- LAN Telemetry, on page 246
- Alarms, on page 275

Inventory

This chapter contains the following topics:

Viewing Inventory Information for Switches

To view the inventory information for switches from the Cisco DCNM Web UI, perform the following steps:

 Procedure

Step 1
Choose Monitor > Inventory > Switches.
The Switches window with a list of all the switches for a selected Scope is displayed.

Step 2
You can also view the following information.

- **Group** column displays the switch group to which the switch belongs.
- In the **Device Name** column, select a switch to display the Switch Dashboard.
- **IP Address** column displays the IP address of the switch.
- **WWN/Chassis ID** displays the Worldwide Name (WWN) if available or chassis ID.
- **Health** displays the health situation of the switch.

Note To refresh and recalculate the latest health data for all the switches on Cisco DCNM, click the **Recalculate Health** button above the switches table.
• **Status** column displays the status of the switch.

• **# Ports** column displays the number of ports.

• **Model** column displays the model name of the switch.

• **Serial No.** column displays the serial number of the switch.

• **Release** column displays the switch version.

• **License** column displays the DCNM license that is installed on the switch.

• **Up Time** column displays the time period for which the switch is active.

Step 3

In the **Health** column, the switch health is calculated by the capacity manager based on the following formula in the server.properties file.

The function to implement is:

```
# calculate(x, x1, y, y1, z).
# @param x: Total number of modules.
# @param x1: Total number of modules in warning.
# @param y: Total number of switch ports.
# @param y1: Total number of switch ports in warning.
# @param z: Total number of events with severity of warning or above.
```

Step 4

The value in the **Health** column is calculated based on the following default equation.

```
((x-x1)*1.0/x)*0.4 + ((y-y1)*1.0/y)*0.3 + ((z*1.0/1000>=1)?0:((1000-z)*1.0/1000)*0.3).
```

In the above formula, the switch health value is calculated based on the following:

• Percentage of Warning Modules (Contributes 40% of the total health).

• Percentage of Warning Ports (Contributes 30% of the total health).

• Percentage of events with severity of Warning or above (Contributes 30% of the total health. If there are more than 1000 warning events, the event health value is 0).

You may also have your own health calculation formula by implementing the common interface class:

`com.cisco.dcbu.sm.common.rif.HealthCalculatorRif`. Add the `.jar` file to the DCNM server and modify the `health.calculator` property to point to the class name you have created.

The default Java class is defined as: `healthcalculator=com.cisco.dcbu.sm.common.util.HealthCalculator`.

• Capacity Manager calculates health only for the license switches. If the health column does not display a value, the switch either does not have a license or it has missed the capacity manager daily cycle.

• If the switch is unlicensed, click **Unlicensed** in the DCNM License column. The **Administration > License** window appears which allows you to assign a license to the user.

• The capacity manager runs two hours after the DCNM server starts. So, if you discover a device after two hours of the DCNM start time, the health will be calculated 24 hours after this DCNM start time.
Viewing System Information

The switch dashboard displays the details of the selected switch.

Procedure

Step 1
From the Cisco DCNM home page, choose **Monitor > Inventory > Switches**.
An inventory of all the switches that are discovered by Cisco Prime DCNM Web Client is displayed.

Step 2
Click a switch in the **Device Name** column.
The **Switch** dashboard that corresponds to that switch is displayed along with the following information:

Step 3
Click the **System Information** tab. This tab displays detailed system information such as group name, health, module, time when system is up, serial number, the version number, contact, location, DCNM license, status, system log sending status, CPU and memory utilization, and VTEP IP address are displayed. Click **Health** to access the Health score screen, which includes health score calculation and health trend. The popup contains Overview, Modules, Switch Ports, and Events tabs.

- (Optional) Click **SSH** to access the switch through Secure Shell (SSH).
- (Optional) Click **Device Manager** to view a graphical representation of a Cisco MDS 9000 Family switch chassis, a Cisco Nexus 5000 Series switch chassis, a Cisco Nexus 7000 Series switch chassis, or a Cisco Nexus 9000 Series switch chassis including the installed switching modules, the supervisor modules, the status of each port within each module, the power supplies, and the fan assemblies.
- (Optional) Click **HTTP** to access the switch through Hypertext Transfer Protocol (HTTP) for that switch.
- (Optional) Click **Accounting** to go to the Viewing Accounting Information, on page 234 window pertaining to this switch.
- (Optional) Click **Backup** to go to the Viewing a Configuration window.
- (Optional) Click **Events** to go to the #unique_140 window.
- (Optional) Click **Show Commands** to display the device show commands. The Device Show Commands page helps you to view commands and execute them.
- (Optional) Click **Copy Running Config to Startup Config** to copy the running configuration to the startup configuration.

VXLAN

You can view VXLANs and their details under the **VXLAN** tab.

To view VXLANs, choose **Inventory > View > Switches**, and then click a switch name in the **Device Name** column.

The following table describes the fields that are displayed:
Table 4: The VXLAN Tab

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VNI</td>
<td>Displays the Layer 2 (network) or Layer 3 (VRF) VXLAN VNI that is configured on a switch.</td>
</tr>
<tr>
<td>Multicast address</td>
<td>Displays the multicast address that is associated with the Layer 2 VNI, if applicable.</td>
</tr>
<tr>
<td>VNI Status</td>
<td>Displays the status of the VNI.</td>
</tr>
<tr>
<td>Mode</td>
<td>Displays the VNI modes: Control Plane or Data Plane.</td>
</tr>
<tr>
<td>Type</td>
<td>Displays whether the VXLAN VNI is associated with a network (Layer 2) or a VRF (Layer 3).</td>
</tr>
<tr>
<td>VRF</td>
<td>Displays the VRF name that is associated with the VXLAN VNI if it is a Layer 3 VNI.</td>
</tr>
<tr>
<td>Mapped VLAN</td>
<td>Displays the VLAN or Bridge domain that is mapped to VNI.</td>
</tr>
</tbody>
</table>

VLAN

You create a VLAN by assigning a number to it; you can delete VLANs and move them from the active operational state to the suspended operational state.

To configure VLANs, choose **Inventory > View > Switches**, and then click a switch in the **Device Name** column.

The following table describes the buttons that appear on this page.

Table 5: VLAN Tab

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear Selections</td>
<td>Allows you to unselect all the VLANs that you selected.</td>
</tr>
<tr>
<td>Add</td>
<td>Allows you to create Classical Ethernet or Fabric Path VLANs.</td>
</tr>
<tr>
<td>Edit</td>
<td>Allows you to edit a VLAN.</td>
</tr>
<tr>
<td>Delete</td>
<td>Allows you to delete a VLAN.</td>
</tr>
<tr>
<td>No Shutdown</td>
<td>Allows you to enable a VLAN.</td>
</tr>
<tr>
<td>Shutdown</td>
<td>Allows you to disable a VLAN.</td>
</tr>
<tr>
<td>Show</td>
<td>Allows you to display the VLAN show commands.</td>
</tr>
</tbody>
</table>

This section contains the following:
Adding a VLAN

To add a VLAN from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose **Inventory > View > Switches**.
You see the **Switches** window displaying a list of all the switches for a selected **Scope**.

Step 2 In the **Device Name** column, select a switch to display the **Switch Dashboard**.

Step 3 Click the **VLAN** tab.

Step 4 Click **Add** to create Classical Ethernet or Fabric Path VLANs. In the **Add VLAN** window, specify the following fields:

a) In the **Vlan Id** field, enter the VLAN ID.
b) In the **Mode** field, specify whether you are adding Classical Ethernet or Fabric Path VLAN.
c) Select the **Admin State ON** check box to specify whether the VLAN is shut down or not.

Editing a VLAN

To edit a VLAN from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose **Inventory > View > Switches**.
The **Switches** window is displayed with a list of all the switches for a selected **Scope**.

Step 2 In the **Device Name** column, select a switch to display the **Switch Dashboard**.

Step 3 Select one or more VLANs, and then click the **Edit**.

Deleting a VLAN

To delete a VLAN from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose **Inventory > View > Switches**.
You see the **Switches** window displaying a list of all the switches for a selected **Scope**.

Step 2 In the **Device Name** column, select a switch to display the **Switch Dashboard**.

Step 3 Click **VLAN** tab.

Step 4 Select the VLAN that you want to delete, and then click **Delete**.
Shutting Down a VLAN

To shut down a VLAN from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose **Inventory > View > Switches**.

You see the **Switches** window displaying a list of all the switches for a selected **Scope**.

Step 2 In the **Device Name** column, select a switch to display **Switch Dashboard**.

Step 3 Click the **VLAN** tab.

Step 4 Click **Shutdown** to disable a VLAN.

To enable a VLAN, click **No Shutdown** button. For example, if you want to start traffic flow on a VLAN you can enable it.

Displaying VLAN Show Commands

To display VLAN show commands from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose **Inventory > View > Switches**.

The **Switches** window is displayed, showing a list of all the switches for a selected **Scope**.

Step 2 In the **Device Name** column, select a switch to display **Switch Dashboard**.

Step 3 Click the **VLAN** tab.

Step 4 Click **Show** to display the VLAN show commands. Based on the VLAN selection, you can show the VLAN commands. **Interface Show Commands** window displays the commands and allows you to execute them.

FEX

The Fabric Extender feature allows you to manage a Cisco Nexus 2000 Series Fabric Extender and its association with the Cisco NX-OS switch that it is attached to. A Fabric Extender is connected to the switch through physical Ethernet interfaces or a Port Channel. By default, the switch does not allow the attached Fabric Extender to connect until it has been assigned a chassis ID and is associated with the connected interface. You can configure a Fabric Extender host interface port as a routed or Layer 3 port. However, no routing protocols can be tied to this routed interface.

Note

FEX feature is available on LAN devices only. Therefore, you will see FEX on Cisco DCNM **Inventory Switches**. FEX is also not supported on Cisco Nexus 1000V devices.
Note

4x10G breakout for FEX connectivity is not supported on Cisco Nexus 9500 Switches.

Note

The Fabric Extender may connect to the switch through several separate physical Ethernet interfaces or at most one port channel interface.

This section describes how to manage Fabric Extender (FEX) on Cisco Nexus Switches through Cisco DCNM.

You can create and manage FEX from Cisco DCNM **Inventory > Switches**.

Note

FEX tab is visible only if you choose a LAN device.

The following table describes the fields that appear on this page.

Table 6: FEX Operations

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add</td>
<td>Click to add a new FEX to a Cisco Nexus Switch.</td>
</tr>
</tbody>
</table>
| Edit | Select any active FEX radio button and click Edit to edit the FEX configuration.
You can create an edit template and use it for editing FEX. Select template type as POLICY and sub type as FEX. |
| Delete | Select the FEX radio button, and click Delete icon to delete the FEX associated with the switch. |
| Show | Allows you to view various configuration details for the selected FEX ID. You can select the following from the drop-down list.
• show_diagnostic
• show_fex
• show_fex_detail
• show_fex_fabric
• show_fex_inventory
• show_fex_module

The variables for respective show commands are displayed in the Variables area. Review the Variables and click **Execute**. The output appears in the **Output** area.
You can create a show template for FEX. Select template type as SHOW and sub type as FEX. |
Add FEX

This chapter includes the following sections:

Add FEX

To add single-home FEX from the Cisco DCNM Web UI, perform the following steps:

Before you begin

You can add a Fabric Extender (FEX) to the Cisco Nexus Switches through the Cisco DCNM Web Client. If the FEX is physically connected to the switch, FEX will become online after it is added. If the FEX is not physically connected to the switch, the configuration is deployed to the switch, which in turn enables FEX when connected.

Note

You can create only single homed FEX through Inventory > Switches > FEX > Add FEX. To create a dual-homed FEX, use the vPC wizard through Configure > Deploy > vPC.

Table 7: FEX Field and Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEX History</td>
<td>Allows you to view the history of the FEX configuration tasks for a particular FEX. You can review the Event Type, Policy Name, Status, Time of Execution, User Name for the selected FEX.</td>
</tr>
</tbody>
</table>

Table 7: FEX Field and Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fex Id</td>
<td>Uniquely identifies a Fabric Extender that is connected to a Cisco NX-OS device.</td>
</tr>
<tr>
<td>Fex Description</td>
<td>Description that is configured for the Fabric Extender.</td>
</tr>
<tr>
<td>Fex Version</td>
<td>Specifies the version of the FEX that is associated with the switch.</td>
</tr>
<tr>
<td>Pinning</td>
<td>An integer value that denotes the maximum pinning uplinks of the Fabric Extender that is active at a time.</td>
</tr>
<tr>
<td>State</td>
<td>Specifies the status of the FEX as associated with the Cisco Nexus Switch.</td>
</tr>
<tr>
<td>Model</td>
<td>Specifies the model of the FEX.</td>
</tr>
<tr>
<td>Serial No.</td>
<td>Specifies the configured serial number.</td>
</tr>
<tr>
<td></td>
<td>Note If this configured serial number and the serial number of the Fabric Extender are not the same, the Fabric Extender will not be active.</td>
</tr>
<tr>
<td>Port Channel</td>
<td>Specifies the port channel number to which the FEX is physically connected to the Switch.</td>
</tr>
<tr>
<td>Ethernet</td>
<td>Refers to the physical interfaces to which the FEX is connected.</td>
</tr>
<tr>
<td>vPC ID</td>
<td>Specifies the vPC ID configured for FEX.</td>
</tr>
</tbody>
</table>
Ensure that you have successfully discovered LAN devices and configured LAN credentials before you configure FEX.

Procedure

Step 1 Choose `Inventory > Switches > FEX`. The FEX window is displayed.

Step 2 Click the Add FEX icon.

Step 3 In the General tab, in the `PORTCHANNEL` field, enter the interface port channel number which is connected to the FEX.

Step 4 In the `INT_RANGE` field, enter the interface range within which the FEX is connected to the switch.

- **Note** Do not enter the interface range, if the interfaces are already a part of port channel.

Step 5 In the `FEX_ID` field, enter the ID for FEX that is connected to a Cisco NX-OS device. The identifier must be an integer value between 100 to 199.

Step 6 Click Add. The configured Single-home FEX appears in the list of FEXs associated to the device.

Edit FEX

To edit and deploy FEX from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose `Inventory > Switches > FEX`. The FEX window is displayed.

Step 2 Select the FEX radio button that you must edit. Click Edit FEX icon.

Step 3 In the Edit Configuration window, from the Policy drop-down list, select `Edit_FEX` to edit the FEX configuration.

Step 4 Edit the `pinning` and `FEX_DESC` fields, as required.

- **Note** If you initially configured port 33 on the parent switch as your only fabric interface, all 48 host interfaces are pinned to this port. If you provision another port, for example 35, then you must perform this procedure to redistribute the host interfaces. All host interfaces are brought down and host interfaces 1 to 24 are pinned to fabric interface 33 and host interfaces 25 to 48 are pinned to fabric interface 35.

Step 5 Click Preview. You can view the generated configuration for the selected FEX ID. The following is a configuration example for FEX ID 101.
After you review the configuration summary on the Preview window, on the Edit Configuration screen, click **Deploy** to deploy the FEX for the switch.

VDCs

This section describes how to manage Virtual Device Contexts (VDCs) on Cisco Nexus 7000 Switches through Cisco DCNM.

Users with the network administrator (network-admin) role can create Virtual Device Contexts (VDCs). VDC resource templates limit the amount of physical device resources available to the VDC. The Cisco NX-OS software provides a default resource template, or you can create resource templates.

You can create and manage VDCs from Cisco DCNM **Inventory > Switches > VDCs**. As Cisco DCNM supports DCNM on Cisco Nexus 7000 Series only, click an active Cisco Nexus 7000 Switch. After you create a VDC, you can change the interface allocation, VDC resource limits, and the high availability (HA) policies.

The following table describes the fields that appear on this page.

Table 8: Vdc Operations

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add</td>
<td>Click to add a new VDC.</td>
</tr>
<tr>
<td>Edit</td>
<td>Select any active VDC radio button and click Edit to edit the VDC configuration.</td>
</tr>
<tr>
<td>Delete</td>
<td>Allows you to edit the VDC configuration. Select any active VDC radio button and click Edit to edit the VDC configuration.</td>
</tr>
<tr>
<td>Resume</td>
<td>Allows you to delete the VDC. Select any active VDC radio button and click Delete to remove the VDC associated with the device.</td>
</tr>
<tr>
<td>Suspend</td>
<td>Allows you to suspend an active non-default VDC. Save the VDC running configuration to the startup configuration before suspending the VDC. Otherwise, you will lose the changes to the running configuration. Note: You cannot suspend the default VDC. Caution: Suspending a VDC disrupts all traffic on the VDC.</td>
</tr>
<tr>
<td>Rediscover</td>
<td>Allows you to resume a non-default VDC from the suspended state. The VDC resumes with the configuration that is saved in the startup configuration.</td>
</tr>
</tbody>
</table>
VDCs

DescriptionField

- **Show**: Allows you to view the Interfaces and Resources that are allocated to the selected VDC.
 - In the Interface tab, you can view the mode, admin-status, and operational status for each interface associated with the VDC.
 - In the Resource tab, you can view the allocation of resources and current usage of these resources.

Table 9: Vdc Table Field and Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Displays the unique name for the VDC</td>
</tr>
</tbody>
</table>
| Type | Specifies the type of VDC. The two types of VDCs are:
 - Ethernet
 - Storage |
| Status | Specifies the status of the VDC. |
| Resource Limit-Module Type | Displays the allocated resource limit and module type. |
HA-Policy
 • Single Supervisor
 • Dual Supervisor

Specifies the action that the Cisco NX-OS software takes when an unrecoverable VDC fault occurs.

You can specify the HA policies for single supervisor module and dual supervisor module configurations when you create the VDC. The HA policy options are as follows:

Single supervisor module configuration:
 • Bringdown—Puts the VDC in the failed state. To recover from the failed state, you must reload the physical device.
 • Reload—Reloads the supervisor module.
 • Restart—Takes down the VDC processes and interfaces and restarts it using the startup configuration.

Dual supervisor module configuration:
 • Bringdown—Puts the VDC in the failed state. To recover from the failed state, you must reload the physical device.
 • Restart—Takes down the VDC processes and interfaces and restarts it using the startup configuration.
 • Switchover—Initiates a supervisor module switchover.

The default HA policies for a non-default VDC that you create is restart for a single supervisor module configuration and switchover for a dual supervisor module configuration. The default HA policy for the default VDC is reload for a single supervisor module configuration and switchover for a dual supervisor module configuration.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HA-Policy</td>
<td>Specifies the default VDC management MAC address.</td>
</tr>
<tr>
<td>Mac Address</td>
<td>Specifies the default VDC management MAC address.</td>
</tr>
<tr>
<td>Management Interface</td>
<td>Specifies the IP Address of the VDC Management interface. The status shows if the interface is up or down.</td>
</tr>
<tr>
<td>SSH</td>
<td>Specifies the SSH status</td>
</tr>
</tbody>
</table>

This chapter includes the following sections:
Add VDCs

To add VDC from the Cisco DCNM Web UI, perform the following steps:

Before you begin

Ensure that you have discovered the physical device using a username that has the network-admin role.

Obtain an IPv4 or IPv6 address for the management interface (mgmt 0) if you want to use out-of-band management for the VDC.

Create a storage VDC to run FCoE. The storage VDC cannot be the default VDC and you can have one storage VDC on the device.

Procedure

Step 1
Choose **Inventory > Switches > VDC**.

The VDC window is displayed.

Step 2
Click the **Add VDC** icon.

Step 3
From the drop-down list, select the VDC type.

You can configure the VDC in two modes.

- Ethernet VDC
- Storage VDC

The default VDC type is Ethernet.

Step 4
Click **OK**.

Configuring Ethernet VDCs

To configure VDC in Ethernet mode from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1
In the General Parameter tab, specify the VDC **Name**, **Single supervisor HA-policy**, **Dual supervisor HA-policy**, and **Resource Limit - Module Type**.

Step 2
In the Allocate Interface tab, select the network interfaces (dedicated interfaces membership) to be allocated to the VDC.

Click **Next**.

Step 3
In the Allocate Resource tab, specify the resource limits for the VDC.

Select the radio button and choose **Select a Template from existing Templates** or **Create a New Resource Template**. VDC resource templates describe the minimum and maximum resources that the VDC can use. If you do not specify a VDC resource template when you create a VDC, the Cisco NX-OS software uses the default template, vdc-default.
If you choose Select a Template from existing Templates, from the Template Name drop-down list, you can select None, global-default, or vdc-default.

The template resource limits are detailed in the following below:

Table 10: Template Resource Limits

<table>
<thead>
<tr>
<th>Resource</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Default VDC Template Resource Limits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anycast Bundled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPv6 multicast route memory</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>IPv4 multicast route memory</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>IPv6 unicast route memory</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>IPv4 unicast route memory</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VDC Default Template Resource Limits

Monitor session extended
Monitor session mx exception
Monitor SRC INBAND
Port Channels
Monitor DST ERSPAN
SPAN Sessions
VLAN
Anycast Bundled
IPv6 multicast route memory
IPv4 multicast route memory
IPv6 unicast route memory
IPv4 unicast route memory
VRF

If you choose Create New Resource Template, enter a unique Template Name. In the Resource Limits area, enter the minimum and maximum limits, as required for the resources.

You can edit individual resource limits for a single VDC through the Cisco DCNM Web Client > Inventory > Switches > VDC.
Click Next.

Step 4
In the Authenticate tab, you can allow the Admin to configure the password and also authenticate users using AAA Server Groups.

In the Admin User Area:
- Check the **Enable Password Strength Check** checkbox, if necessary.
- In the **Password** field, enter the admin user password.
- In the **Confirm Password** field, reenter the admin user password.
- In the **Expiry Date** field, click the down arrow and choose an expiry date for the admin user from the Expiry Date dialog box. You can also select **Never** radio button not to expire the password.

In the AAA Server Groups area:
- In the **GroupName** field, enter an AAA server group name.
- In the **Servers** field, enter one or more host server IPv4 or IPv6 addresses or names, which are separated by commas.
- In the **Type** field, choose the type of server group from the drop-down list.

Click Next.

Step 5
In the Management Ip tab, enter IPv4 or IPv6 Address information.
Click Next.

Step 6
In the Summary tab, review the VDC configuration.
Click Previous to edit any parameters.
Click Deploy to configure VDC on the device.

Step 7
In the Deploy tab, the status of the VDC deployment is displayed.
A confirmation message appears. Click **Know More** to view the commands that are executed to deploy the VDC.
Click Finish to close the VDC configuration wizard and revert to view the list of VDCs configured on the device.

Configuring Storage VDCs

To configure VDCs in storage mode from the Cisco DCNM Web UI, perform the following steps:

Before you begin

Create a separate storage VDC when you run FCoE on the device. Only one of the VDCs can be a storage VDC, and the default VDC cannot be configured as a storage VDC.

You can configure shared interfaces that carry both Ethernet and Fibre Channel traffic. In this specific case, the same interface belongs to more than one VDC. The shared interface is allocated to both an Ethernet and a storage VDC.
Procedure

Step 1 In the General Parameter tab, specify the VDC Name, Single supervisor HA-policy, Dual supervisor HA-policy, and Resource Limit - Module Type.

Step 2 In the Allocate FCoE Vlan tab, select the available Ethernet Vdc from the drop-down list.

 The existing Ethernet VLANs range is displayed. Select None not to choose any available Ethernet VDCs.

 You can allocate specified FCoE VLANs to the storage VDC and specified interfaces.

 Click Next.

Step 3 In the Allocate Interface tab, add the dedicated and shared interfaces to the FCoE VDC.

 Note The dedicated interface carries only FCoE traffic and the shared interface carries both the Ethernet
 and the FCoE traffic.

 You can configure shared interfaces that carry both Ethernet and Fibre Channel traffic. In this specific case,
 the same interface belongs to more than one VDC. FCoE VLAN and shared interface can be allocated from
 same Ethernet VDC.

 Click Next.

Step 4 In the Authenticate tab, you can allow the Admin to configure the password and also authenticate users using AAA Server Groups.

 In the Admin User Area:

 • Check the Enable Password Strength Check checkbox, if necessary.

 • In the Password field, enter the admin user password.

 • In the Confirm Password field, reenter the admin user password.

 • In the Expiry Date field, click the down arrow and choose an expiry date for the admin user from the
 Expiry Date dialog box. You can also select Never radio button not to expire the password.

 In the AAA Server Groups area:

 • In the Group Name field, enter an AAA server group name.

 • In the Servers field, enter one or more host server IPv4 or IPv6 addresses or names, which are separated
 by commas.

 • In the Type field, choose the type of server group from the drop-down list.

 Click Next.

Step 5 In the Management Ip tab, enter IPv4 or IPv6 Address information.

 Click Next.

Step 6 In the Summary tab, review the VDC configuration.

 Click Previous to edit any parameters.

 Click Deploy to configure VDC on the device.

Step 7 In the Deploy tab, the status of the VDC deployment is displayed.
A confirmation message appears. Click **Know More** to view the commands that are executed to deploy the VDC.

Click **Finish** to close the VDC configuration wizard and revert to view the list of VDCs configured on the device.

Edit VDC

To edit VDC from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1
Choose **Inventory > Switches > VDC**.
The VDC window is displayed.

Step 2
Select the VDC radio button that you must edit. Click the **Edit VDC** icon.

Step 3
Modify the parameters as required.

Step 4
After you review the configuration summary on the Summary tab, click **Deploy** the VDC with the new configuration.

Switch On-Board Analytics

The **Switch On-Board Analytics** dashboard displays the following charts:

- Top 10 Slowest Ports
- Top 10 Slowest Target Ports
- Top 10 Slowest Flows
- Top 10 Slowest ITLs
- Top 10 Port Traffic
- Top 10 Target Ports Traffic
- Top 10 Flow Traffic
- Top 10 ITL Traffic

The following metrics are supported by the Switch On-Board Analytics charts:

- Read and Write Completion Time—Time that is taken for an IO to complete successfully, that is, the time gap between IO status from a Target and IO command from an Initiator. The following metrics are supported:
 - Read Completion Time Min
 - Read Completion Time Max
 - Write Completion Time Min
Write Completion Time Max

The IO engine tracks the maximum and minimum IO completion time for read and write commands in the context of a switch’s port, target port, flows, initiators, and LUNs.

Read and Write Initiation Time—Time that is taken for an IO to initiate, that is, the time gap between the first response packet from a Target and IO Command from Initiator. The following metrics are supported:

- Read Initiation Time Min
- Read Initiation Time Max
- Write Initiation Time Min
- Write Initiation Time Max

The IO engine tracks the maximum and minimum IO initiation time for read and write commands in the context of a switch’s port, target port, flows, initiators, and LUNs.

Read and Write IO Bandwidth—Read and write command bandwidth observed in the context of a switch’s port traffic, target port traffic, flow traffic, initiators, and LUNs. The IO bandwidth is computed at every four second time interval based on the number of bytes read or written.

Read and Write IO Rate—Read and write command IO rate observed in the context of a switch’s port traffic, target port traffic, flow traffic, initiators, and LUNs. The IO rate is computed at every four second time interval that is based on the number of IO performed.

Read and Write IO Size—Read and write command IO size observed in the context of a switch’s port traffic, target port traffic, flow traffic, initiators, and LUNs. The following metrics are supported:

- Read IO Size Min
- Read IO Size Max
- Write IO Size Min
- Write IO Size Max

The IO engine tracks the maximum and minimum IO size for read and write commands.

Viewing Switch On-Board Analytics

You can view the switch on-board analytics information from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose **Inventory > View > Switches**.

The discovered switches are displayed.

Step 2 Click a switch name in the **Device Name** column.

The **Switch** dashboard that corresponds to that switch is displayed.
Step 3 Click the Switch On-Board Analytics tab.

This tab displays the Switch On-Board Analytics charts.

Configuring Settings for the Switch On-Board Analytics Charts

Perform the following actions to configure the settings for the switch on-board analytics charts:

- From the Show Time drop-down list, choose time to be shown in the charts. You can choose one of the following options:
 - Microseconds
 - Milliseconds
 - Seconds

 By default, Microseconds is chosen.

 Note The Show Time drop-down list is applicable only for the top ten slowest ports, target ports, flows, and ITLs.

- From the Show Flow From drop-down list, choose whether to show flows from a Target or from an Initiator. By default, flows from a Target are chosen.

 Note The Show Flow From drop-down list is applicable only for the charts displaying flows and ITLs.

- From the bandwidth and size drop-down list, choose the traffic information to be shown in the charts. You can choose one of the following options:
 - Bytes
 - KB
 - MB

 By default, Bytes is chosen.

- Check the Single Column check box to display the charts in a single column instead of double columns.
- Click the Refresh icon in the upper-right corner to refresh the charts.

Viewing Switch On-Board Analytics Charts

Perform the following actions to view the charts under the Switch On-Board Analytics tab:

- View the charts for the top ten slowest ports, target ports, flows, and ITLs by choosing one of the following variables from the drop-down list:
• **Read Completion Time**—The read command completion time observed in the context of a switch’s port.

• **Write Completion Time**—The write command completion time observed in the context of a switch’s port.

• **Read Initiation Time**—The read command initiation time observed in the context of a switch’s port.

• **Write Initiation Time**—The write command initiation time observed in the context of a switch’s port.

Note

• By default, **Read Completion Time** is selected and all the units for time are in **Microseconds**.

• Each chart contains a legend that provides information about the variable displayed. Each variable has a check box. Unselecting the check box removes the variable data from the chart or table.

• View the charts for the top ten port traffic, target port traffic, flow traffic, and ITL traffic by choosing one of the following variables from the drop-down list:

 • **Read IO Rate**—The read command data observed in the context of a switch’s port.

 • **Write IO Rate**—The write command observed in the context of a switch’s port.

 • **Read IO Size**—The read command size observed in the context of a switch’s port.

 • **Write IO Size**—The write command size observed in the context of a switch’s port.

 • **Read IO Bandwidth**—The read command bandwidth observed in the context of a switch’s port.

 • **Write IO Bandwidth**—The write command bandwidth observed in the context of a switch’s port.

Note

• By default, **Read IO Rate** is selected. The **Read IO Rate** is IO per second. Both **Rate** and **Bandwidth** units are per second over an 8-second range. The **Size** value is for the life of the switch or since the last clear command was run from the CLI.

• The **Read IO Size** and **Read IO Bandwidth** units are in bytes per second. You can change this unit by using the **Show Bandwidth and Size** drop-down list. You can choose from the three options: Bytes, KB, and MB.

• Each chart contains a legend that provides information about the variable displayed. Each variable has a check box. Unselecting the check box removes the variable data from the chart or table.

• Choose the format to display information from the **Show** drop-down list. You can choose one of the following formats:
Viewing Inventory Information for Modules

To view the inventory information for modules from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose Inventory > View > Modules.

The Modules window is displayed with a list of all the switches and its details for a selected Scope.

Step 2 You can view the following information.

• **Group** column displays the group name of the module.
• **Switch** column displays the switch name on which the module is discovered.
• **Name** displays the module name.
• **ModelName** displays the model name.
• **SerialNum** column displays the serial number.
• **2nd SerialNum** column displays the second serial number.
• **Type** column displays the type of the module.
• **Slot** column displays the slot number.
• **Hardware Revision** column displays the hardware version of the module.
• **Software Revision** column displays the software version of the module.
• **Asset ID** column displays the asset id of the module.
Viewing Inventory Information for Licenses

To view the inventory information for licenses from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1
Choose **Inventory > View > Licenses**.
The **Licenses** window is displayed based on the selected Scope.

Step 2
You can view the following information.
- **Group** column displays the group name of switches.
- **Switch** column displays the switch name on which the feature is enabled.
- **Feature** displays the installed feature.
- **Status** displays the usage status of the license.
- **Type** column displays the type of the license.
- **Warnings** column displays the warning message.

Monitoring Switch

The Switch menu includes the following submenus:

Viewing Switch CPU Information

To view the switch CPU information from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1
Choose **Monitor > Switch > CPU**.
The **CPU** window is displayed. This window displays the CPU information for the switches in that scope.

Step 2
You can use the drop-down to filter the view by Last 10 Minutes, Last Hour, Last Day, Last Week, Last Month, and Last Year.

Step 3
In the **Switch** column, click the switch name to view the Switch Dashboard.

Step 4
Click the chart icon in the **Switch** column to view the CPU utilization.
You can also change the chart timeline to Last 10 Minutes, Last Hour, Last Day, Last Week, Last Month, and Last Year. You can choose the chart type and chart options to show as well.

Viewing Switch Memory Information

To view the switch memory information from the Cisco DCNM Web UI, perform the following steps:

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Choose Monitor > Switch > Memory. The memory panel is displayed. This panel displays the memory information for the switches in that scope.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Use the drop-down to filter the view by Last 10 Minutes, Last Hour, Last Day, Last Week, Last Month, and Last Year.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Click the chart icon in the Switch column to see a graph of the memory usage of the switch.</td>
</tr>
<tr>
<td>Step 4</td>
<td>In the Switch column, click the switch name to view the Switch Dashboard.</td>
</tr>
<tr>
<td>Step 5</td>
<td>You can use the drop-down to view the chart in different time lines. Use the chart icons to view the memory utilization chart in varied views.</td>
</tr>
</tbody>
</table>

Viewing Switch Traffic and Errors Information

To view the switch traffic and errors information from the Cisco DCNM Web UI, perform the following steps:

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Choose Monitor > Switch > Traffic. The Switch Traffic panel is displayed. This panel displays the traffic on that device for the past 24 hours.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Use the drop-down to filter the view by 24 hours, Week, Month, and Year.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Click the Export icon in the upper-right corner to export the data into a spreadsheet.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Click Save.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Click the switch name to view the Switch Dashboard section.</td>
</tr>
</tbody>
</table>

Viewing Switch Temperature

Cisco DCNM includes the module temperature sensor monitoring feature, using which you can view the sensor temperature of a switch. You can choose an interval by which to filter the sensor list. The default interval is Last Day. Only sensors that have historical temperature data is shown in the list. You can choose between Last ten Minutes, Last Hour, Last Day, Last Week, and Last Month.
It is not necessary to configure the LAN credentials under the Configure > Credentials Management > LAN Credentials screen to fetch the temperature monitoring data from the switches.

To view the switch temperature information from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1
Choose Monitor > Switch > Temperature.

The Switch Temperature window is displayed with the following columns.

- **Scope**: The sensor belongs to a switch, which is part of a fabric. The fabric that it belongs to is shown as its scope. When the scope selector at the top of Cisco DCNM is used, the sensor list is filtered by that scope.
- **Switch**: Name of the switch the sensor belongs to.
- **IP Address**: IP Address of the switch.
- **Temperature Module**: The name of the sensor module.
- **Avg/Range**: The first number is the average temperature over the interval that is specified at the top of the table. The second set of numbers is the range of the temperature over that interval.
- **Peak**: The maximum temperature over the interval

Step 2
From this list, each row has a chart icon, which you can click.
A chart is displayed, which shows historical data for the sensor. The interval for this chart can be changed as well, between 24 hours, 1 week, and 1 month.

Enabling Temperature Monitoring

You can enable the temperature monitoring feature for LAN switches from the LAN Collections screen, and for the SAN switches by setting a few properties under Administration > DCMN Server > Server Properties screens.

Enabling Temperature Monitoring for LAN Switches

1. From the menu bar, choose Administration > Performance Setup > LAN Collections.
2. Select the Temperature Sensor check box.
3. Select the type of LAN switches for which you want to collect performance data.
4. Click Apply to save the configuration.

Viewing Accounting Information

To view the accounting information from the Cisco DCNM Web UI, perform the following steps:
Procedure

Step 1 Choose Monitor > Switch > Accounting.
The fabric name or the group name along with the accounting information is displayed.

Step 2 Select Advanced Filter beside the filter icon to search the accounting information by Source, Username, Time, and Description. Or select Quick Filter to search under each column.

Step 3 You can also select a row and click the Delete icon to delete accounting information from the list.

Step 4 You can use the Print icon to print the accounting details and use the Export icon to export the data to a Microsoft Excel spreadsheet.

Viewing Events Information

To view the events and syslog from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose Monitor > Switch > Events.
The fabrics along with the switch name and the events details are displayed.

The Count column displays the number of times the same event has occurred during the time period as shown in the Last Seen and First Seen columns.

Click a switch name in the Switch column to view the switch dashboard.

Step 2 Select an event in the table and click the Add Suppressor icon to open the shortcut of adding an event suppressor rule.

Step 3 Select one or more events from the table and click the Acknowledge icon to acknowledge the event information for the fabric.

• After you acknowledge the event for a fabric, the acknowledge icon is displayed in the Ack column next to the fabric.

Step 4 Select the fabric and click the Unacknowledge icon to cancel an acknowledgment for a fabric.

Step 5 Select Advanced Filter beside the filter icon to search the accounting information by Source, Username, Time, and Description. Or select Quick Filter to search under each column.

Step 6 Select a fabric and use the Delete icon to delete the fabric and event information from the list.

Step 7 Click the Print icon to print the event details.

Step 8 Click the Export to Excel icon to export the data.

Monitoring LAN

The LAN menu includes the following submenus:
Monitoring Performance Information for Ethernet

To monitor the performance information for ethernet from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose Monitor > LAN > Ethernet.

The Ethernet window is displayed.

Step 2 You can use the drop-down to filter the view by Last 10 Minutes, Last Hour, Last Day, Last Week, Last Month, and Last Year.

There are variations to this procedure. In addition to these basic steps, you can also perform the following steps:

- Select the name of an Ethernet port from the Name column to see a graph of the traffic across that Ethernet port for the past 24 hours. You can change the time range for this graph by selecting it from the drop-down list in the upper-right corner.

- To export the data into a spreadsheet, click the Export icon in the upper-right corner and click Save.

- Use the chart icons to view the traffic chart in varied views. You can also use the icons to Append, Predict, and Interpolate Data.

- For the Rx/Tx calculation, see the following Rx/Tx calculation.

 Note The conversion for Fabrics is 10 bit = 1 byte and for LAN traffic, the conversion is 8 bit = 1 byte.

 - Average Rx/Tx % = Average Rx/Tx divided by Speed * 100
 - Peak Rx/Tx % = Peak Rx/Tx divided by Speed * 100

 Note If the performance tables do not contain any data, see the Thresholds section to turn on performance data collection.

Monitoring ISL Traffic and Errors

To monitor the ISL traffic and errors from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose Monitor > LAN > Link.

The ISL Traffic and Errors window is displayed. This panel displays the ISL information for the end devices in that scope. You can reduce or expand the scope of what is displayed by using the scope menu.
Step 2
You can use the drop-down to filter the view by Last 10 Minutes, Last Hour, Last Day, Last Week, Last Month, and Last Year.

Note NaN (Not a Number) in the data grid means that the data is not available.

There are variations to this procedure. In addition to these basic steps, you can perform the following steps to view detailed information for ISLs:

- To change the time range for this graph, select it from the drop-down list in the upper-right corner.
- To view the detailed information for a specific period, drag the slider control to choose the time interval for which you need the information.
- Use the chart icons to view the traffic chart in varied views. You can also use the icons to Append, Predict, and Interpolate Data. To view real-time information, choose Real Time from the drop-down list in the Chart menu.
- To export the data into a spreadsheet, choose Export from the drop-down list in the Chart menu and then click Save.
- For the Rx/Tx calculation, see the following Rx/Tx calculation.

Note The conversion for Fabrics is 10 bit = 1 byte and for LAN traffic, the conversion is 8 bit = 1 byte.

- Average Rx/Tx % = Average Rx/Tx divided by Speed * 100
- Peak Rx/Tx % = Peak Rx/Tx divided by Speed * 100

Note If the performance tables do not contain any data, see the Performance Setup Thresholds section to turn on performance.

Monitoring a vPC

The virtual port channel (vPC) feature enables you to view the links that are physically connected to different devices as a single port channel. A vPC is an extended form of a port channel which allows you to create redundancy and increase bisectional bandwidth by enabling multiple parallel paths between nodes and allowing load balancing traffic. Traffic is distributed among two single device vPC endpoints. If there is an inconsistency in the vPC configurations, the vPC does not function correctly.

Note To view the vPC in vPC Performance, both primary and secondary device should be designated to the user. If either one kind of switch is not designated, vPC information is isplayed.

Cisco DCNM Web Client > Monitor > vPC displays only consistent vPCs displays both the consistent and inconsistent vPCs.

You can identify the inconsistent vPCs and resolve the inconsistencies in each vPC by using the Cisco DCNM Web UI > Configure > Deploy > vPC Peer and Web Client > Configure > Deploy > vPC.

Table 11: vPC Performance, on page 238 displays the following vPC configuration details in the data grid view.
Table 11: vPC Performance

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search box</td>
<td>Enter any string to filter the entries in their respective column.</td>
</tr>
<tr>
<td>vPC ID</td>
<td>Displays vPC ID's configured device.</td>
</tr>
<tr>
<td>Domain ID</td>
<td>Displays the domain ID of the vPC peer switches.</td>
</tr>
<tr>
<td>Multi Chassis vPC EndPoints</td>
<td>Displays the multi-chassis vPC endpoints for each vPC ID under a vPC domain.</td>
</tr>
<tr>
<td>Primary vPC Peer - Device Name</td>
<td>Displays the vPC Primary device name.</td>
</tr>
<tr>
<td>Primary vPC Peer - Primary vPC Interface</td>
<td>Displays the primary vPC interface.</td>
</tr>
<tr>
<td>Primary vPC Peer - Capacity</td>
<td>Displays the capacity for the primary vPC peer.</td>
</tr>
<tr>
<td>Primary vPC Peer - Avg. Rx/sec</td>
<td>Displays the average receiving speed of primary vPC peer.</td>
</tr>
<tr>
<td>Primary vPC Peer - Avg. Tx/sec</td>
<td>Displays the average sending speed of primary vPC peer.</td>
</tr>
<tr>
<td>Primary vPC Peer - Peak Util%</td>
<td>Displays the peak utilization percentage of primary vPC peer.</td>
</tr>
<tr>
<td>Secondary vPC Peer - Device Name</td>
<td>Displays the vPC secondary device name.</td>
</tr>
<tr>
<td>Secondary vPC Interface</td>
<td>Displays the secondary vPC interface.</td>
</tr>
<tr>
<td>Secondary vPC Peer - Capacity</td>
<td>Displays the capacity for the secondary vPC peer.</td>
</tr>
<tr>
<td>Secondary vPC Peer - Avg. Rx/sec</td>
<td>Displays the average receiving speed of secondary vPC peer.</td>
</tr>
<tr>
<td>Secondary vPC Peer - Avg. Tx/sec</td>
<td>Displays the average sending speed of secondary vPC peer.</td>
</tr>
<tr>
<td>Secondary vPC Peer - Peak Util%</td>
<td>Displays the peak utilization percentage of secondary vPC peer.</td>
</tr>
</tbody>
</table>

You can use this feature as following:

Monitoring vPC Performance

You can view the relationship among consistent virtual port channels (vPCs). You can view the statistics of all member interfaces and the aggregate of the statistics at the port channel level.

Note

This tab only displays consistent vPCs.

To view the VPC performance information from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose **Monitor > LAN > vPC**.
The vPC Performance statistics is displayed. The aggregated statistics of all vPCs are displayed in a tabular manner.

Step 2
Click the vPC ID.
The vPC topology, vPC Details, Peer-link Details, and Peer-link Status is displayed.
The vPC Consistency, Peer-link Consistency, and vPC Type2 Consistency for the vPC is displayed.

- Click the vPC Details tab, you can view the parameter details of vPC Basic Setting and Layer 2 Settings for both Primary and Secondary vPC devices.
- Click the Peer-link Details tab, to view the parameter details of peer-link vPC Global Setting and STP Global Settings for both Primary and Secondary vPC devices.
- Click the Peer-link Status tab, the vPC Consistency, and Peer-Link Consistency status is displayed. The parameter details of Role Status and vPC Peer keep-alive Status for both Primary and Secondary vPC devices is also displayed.

Step 3
Click the peer-link icon in front of the Device Name in the Primary vPC peer or Secondary vPC peer column to view its member interface.

Step 4
Click the Show Chart icon of the corresponding interface to view its historical statistics.
The traffic distribution statistics appear at the bottom of the vPC window. By default, the Cisco DCNM Web Client displays the historical statistics for 24 hours.

There are variations to this procedure. In addition to these basic steps, you can also perform the following steps to view detailed information for flows:

- To change the time range for this graph, select it from the drop-down list in the upper right corner.
- To view the detailed information for a specific period, drag the slider control to choose the time interval for which you need the information.
- Use the chart icons to view the traffic chart in varied views.
- You can also use the icons to Append, Predict, and Interpolate Data.
- To print the vPC Utilization data, click the Print icon in the upper-right corner. The vPC Utilization page appears.
- To export the data into a spreadsheet, click the Export icon in the upper-right corner and click Save File.

Note
If the performance tables do not contain any data, see the Thresholds section to turn on performance data collection.

Monitoring Endpoint Locator

The Endpoint Locator menu includes the following submenus:

Exploring Endpoint Locator Details
To explore endpoint locator details from the Cisco DCNM Web UI, perform the following steps:
Procedure

Choose **Monitor > Endpoint Locator > Explore**. The Endpoint Locator dashboard appears. The Endpoint Locator Dashboard displays the following information:

- **Endpoint History**—Real time plot displaying Endpoint events for the period specified in the relative or absolute date range. A user can search for a specific metric value in the search bar. Search is supported on any of the fields as specified under the “Available Fields” column on the menu on the left. A sample screenshot of the endpoint history based on an IP address specified in the search field is depicted below.

- **Endpoint Activity**—This view displays the current state of the active endpoints in the fabric.

Filters - You can filter and view results for a switch, VRF, IPv4 and IPv6 type of address and IP address of an end point. The entire dashboard view across all tiles and the data table, are updated as soon as the search filters are applied.

Tiles - The number of active endpoints including the number of active VRFs and active networks are listed in the top 3 tiles, just below the filters. The break-up of active endpoints is also available on a per VRF as well as a per switch basis. If there is at least one active endpoint in a given VRF behind a switch, then that VRF is considered as active on that switch. Note that the VRF may be configured on a number of switches but it is only considered active and justifies burning resources on the switch, if there is at least one active endpoint in that VRF behind that switch. In that sense, the “ACTIVE SWITCHES BY VRF” tile can provide a good insight for the network administrator into removing extraneous VRF configurations from switches where it may not be needed. At the bottom of the dashboard, there is a data table named **LIST OF ACTIVE ENDPOINTS** which provides a list of endpoints with context information such as the VRF, IP, MAC, Switch, VLAN, Port etc. By default, the endpoint information is refreshed every 30 seconds. However, the refresh interval may be changed as desired.
Search results can be downloaded in csv format by clicking on the “DOWNLOAD RAW” icon at the top left part of the screen. A sample snippet of the downloaded csv file from a search result is shown below:

It is possible to search based on any of the fields describing the information of each endpoint. For example, if the user wants to know the list of endpoints in a given network, that can be achieved as follows. Recall that each network is represented by a unique 24-bit identifier. This parameter is represented by the field L2_VNI. Here are the steps:

1. Go to the LIST OF ACTIVE ENDPOINTS data table and click on any row. This will expand the row as shown below:
2. Click the **Filter for value** + icon next to the L2_VNI field. This selects the highlighted value (30000 in this example) and filters the search results based on that. In other words, the information of all active endpoints in the network associated with L2_VNI 30000 is displayed on the dashboard. If instead, all endpoints that are not in the network L2_VNI are required, click the – icon next to the L2_VNI value of 30000. In the same manner, one can choose any combination of fields to get the set of endpoints matching the corresponding selected filter criteria.

- **Network Historical View**— The NHV view displays historical information of endpoints, networks, and VRFs (tenants) captured on a daily basis. These graphs are updated once a day at mid-night based on the DCNM server time. The time at which the data is refreshed/updated is listed at the top right. The idea is to provide a daily report of the Active, Added (New) and Deleted endpoints, networks, and VRFs respectively. If the same endpoint is added and removed on a day, then that contributes to an add count of 1 and a delete count of 1. Users can select one of the 3 dots at the bottom to toggle between the endpoints, networks, & VRF views. There are options to zoom in/out using zoom icons on top right. The users can also select the type of visualization with the choices being – Grouped or Stacked (shown below). Daily reports up to 180 days in the past can be displayed. Active endpoints/networks/VRFs are shown in blue color, deleted ones are shown in red color while the added ones are shown in green color. Every block in all screens is ‘clickable’ and the complete dataset associated with the selection, can be downloaded in csv format.

The historic endpoint count in ‘Stacked’ format is shown below:
The same representation with the Grouped visualization selection is shown below:

Similarly, the figure below depicts the historic network count in stacked format:
Along the same lines, the figure below depicts the historic vrf count:

The figure below provides a sample screenshot of the endpoints added on 01-03-2018 obtained by clicking on the blue bar for that day.
Operational Heatmap—This view displays a heat-map of all endpoint operations occurring in the fabric.

The heat-map is color coded and the intensity of the color varies based on the number of endpoint operations captured on an hourly basis. The break down is available per hour across dates, and user can see the details of operations that occurred during a particular hour on a particular day by clicking on the appropriate square. The figure below depicts the endpoint operations reported by BGP on 01-02-2018 between 12 and 1pm.

Again, as with the other views, the complete data set can be downloaded in csv format using the Download option. A sample screenshot of a downloaded csv file is shown below:
• **Endpoint Life**—This view displays a timeline of a particular endpoint in its entire existence within the fabric. Specifically, given an identity of an endpoint in terms of its IP address and VRF/Network-identifier, the output displays the list of switches that an endpoint was present under including the associated start and end dates. This view is essentially the network life view of an endpoint. If the endpoint is viewed as active by the network, it will have a band here. If an endpoint is dual-homed, then there will be 2 horizontal bands reporting the endpoint existence, one band for each switch (typically the vPC pair of switches).

As endpoints move within the network, for example with VM move, this view provides a succinct and intuitive pictorial view of this activity.

The underlying data that drives this view can also be downloaded in csv format (shown below) by clicking on download icon on right bottom corner.
Monitoring LAN Telemetry

Once LAN telemetry has been successfully enabled, the LAN Telemetry Summary window is available. You can navigate to the LAN Telemetry Summary window by choosing Monitor > LAN Telemetry > Explore. Select the fabric (for example, Default_LAN) for which LAN telemetry has been enabled through the SCOPE at the top.

There are six insights (Alerts, Physical Overview, Logical Overview, Control Plane, Interface, and Environment) shown through interactive visualizations depicting different aspects of switch metrics. Click the Alerts, Physical Overview, Logical Overview, Control Plane, and Interface tiles to find more information about the metrics. On the Environment tile, click the donut chart icons to display more information. The Environment tile displays metrics for CPU usage, Memory, Temperature, Power, and Fans.

Alerts

The Alerts tile displays the number of alerts that have occurred. The alerts are classified as Critical, Major, Minor, and Info. Each kind of alert is associated with a specific color.
1. Click the **Alerts** tile for more information about the alerts. You can select a specific switch for which you want to display the metrics. You can also select **All Switches** to display metrics for all the switches in the selected fabric.

2. You can select a specific time interval to view the alerts that have occurred in that time interval. Click the fields showing the date and time to select the required date and time interval. Click **Now** to display metrics for the current date and time. Click the **Refresh** icon next to the switch selection dropdown to display metrics for the last 30 minutes.

3. Hover over specific points on the graph for the time at which the alert has occurred.
4. Click the icon at the top right of the graph to download the graph as a PNG image, PDF document, JPEG image or an XLS file.

5. The bottom of the page has the following fields: Creation Time, Severity, Switch Name, Affected Object and Description. These fields provide more information about each alert. Click the filter icon next to Severity to filter the alerts based on severity level.
6. Click the icon next to Alerts at the top of the window to go back to the LAN Telemetry Summary window.

Interface

The **Interface** tile displays the Inter-Switch Link Utilization and Host Interface Utilization metrics. It shows the number of Inter-Switch Links in the fabric along with the associated percentage, and the number of host interfaces that are utilized to send and receive data from hosts along with the associated percentage. On the top right of the **Interface** tile, you can see the number of interfaces that are down next to the red dot and the number of interfaces that are up next to the green dot along with the total number of interfaces in the fabric.

1. Click the **Interface** tile to display more information about the ISLs and Host Interfaces. On the **Interface** window, you can select a specific switch for which you want to display the metrics.
Select All Switches to display metrics for all the switches in the selected fabric. This window displays the top five switches based on the number of anomalies, top five ISLs, and the top five host facing links. In the graph displaying the top five switches based on the number of anomalies, each switch has a specific color that is associated with it in the graph. In the graph for the Top 5 Inter-Switch Links and the Top 5 Host Facing links, each switch interface has a specific color that is associated with it in the graph. You can see the colors that are associated with the switches and interfaces on the right of the graphs.
2. You can select a specific time interval to view the metrics during that time interval. Click the fields showing the date and time to select the required date and time interval. Click **Now** to display metrics for the current date and time. Click the **Refresh** icon next to the switch selection dropdown to display metrics for the last 30 minutes.
3. Hover over specific points on the respective graphs for more information on the switch anomalies and ISLs at a specific time.

In the graph for Host Facing links, you can toggle between displaying the top five host facing links based on sending traffic (TX) and the top five host facing links based on receiving traffic (RX).

4. Click the icon at the top right of the graph to download the graph as a PNG image, PDF document, JPEG image or an XLS file.
5. Click the icon next to **Interface** at the top of the window to go back to the LAN Telemetry Summary window.

Physical Overview

The **Physical Overview** tile displays the number of switches, Virtual Port Channel (VPC) peers, and Transceivers in the specified fabric.

![Physical Overview](image)

1. Click the **Physical Overview** tile to display more information about the VPC peers and Transceivers. On the **Physical Overview** window, you can select a specific switch from the drop-down list for which you want to display the metrics. You can select **All Switches** to display metrics for all the switches in the selected fabric.
2. You can select a specific time interval to view the metrics during that time interval. Click the fields showing the date and time to select the required date and time interval. Click Now to display metrics for the current date and time. Click the Refresh icon next to the switch selection dropdown to display metrics for the last 30 minutes.

3. Hover over specific points on the respective graphs to display the number of VPC peers and Transceivers that are associated with a switch at a specific time.
4. Click the icon at the top right of the graph to download the graph as a PNG image, PDF document, JPEG image or an XLS file.

5. Click the icon next to Physical Overview at the top of the window to go back to the LAN Telemetry Summary window.

Logical Overview

The Logical Overview tile displays the number of Virtual Routing and Forwarding instances (VRFs), VLANs, and VXLAN Tunnel Endpoints (VTEPs) in the specified fabric.

1. Click the Logical Overview tile to display more information about the VRFs, VLANs, and VTEPs. On the Logical Overview window, you can select a specific switch from the drop-down list for which you
want to display the metrics. You can select **All Switches** to display metrics for all the switches in the selected fabric.

2. You can select a specific time interval to view the metrics during that time interval. Click the fields showing the date and time to select the required date and time interval. Click **Now** to display metrics for the current date and time. Click the **Refresh** icon next to the switch selection dropdown to display metrics for the last 30 minutes.

3. Hover over specific points on the respective graphs to display the number of VRFs, VLANs, and VTEPs associated with a switch at a specific time.
4. Click the icon at the top right of the graph to download the graph as a PNG image, PDF document, JPEG image or an XLS file.

5. Click the icon next to Logical Overview at the top of the window to go back to the LAN Telemetry Summary window.

Control Plane

The Control Plane tile displays the number of Border Gateway Protocol (BGP) sessions, Open Shortest Path First (OSPF) sessions, and Intermediate System-to-Intermediate System (IS-IS) sessions in the specified fabric.
1. Click the **Control Plane** tile to display more information about the BGP sessions, OSPF sessions, and IS-IS sessions. On the **Control Plane** window, you can select a specific switch from the drop-down list for which you want to display the metrics. You can select **All Switches** to display metrics for all the switches in the selected fabric.

![Control Plane Window](image)

2. You can select a specific time interval to view the metrics during that time interval. Click the fields showing the date and time to select the required date and time interval. Click **Now** to display metrics for the current date and time. Click the **Refresh** icon next to the switch selection dropdown to display metrics for the last 30 minutes.

![Control Plane Window](image)

3. Hover over specific points on the respective graphs to display the number of BGP sessions, OSPF sessions, and IS-IS sessions associated with a switch at a specific time.
4. Click the icon at the top right of the graph to download the graph as a PNG image, PDF document, JPEG image or an XLS file.

5. Click the icon next to Control Plane at the top of the window to go back to the LAN Telemetry Summary window.

Environment

The Environment tile displays metrics for CPU usage, Memory, Temperature, Power, and Fans. On the top right of the Environment tile, you can select the Top N switches from the dropdown to display metrics for the top N switches. For example, if Top 5 is selected, donut charts are plotted for the top five switches based on specific metrics.

Environment - CPU

The first donut chart shows the proportion of top five or top ten switches based on CPU usage values. When hovered, it shows the switch name and the corresponding metric value.
1. Click the CPU usage donut to display more information about CPU usage. On the Environment: CPU window, you can select a specific switch from the drop-down list for which you want to display the metrics.

You can select All Switches to display metrics for all the switches in the selected fabric. This window displays the top five switches based on the number of anomalies and top five switches based on CPU utilization. Each switch has a specific color that is associated with it in the graph. You can see the colors that are associated with the switches on the right of the graph.
2. You can select a specific time interval to view the metrics during that time interval. Click the fields showing the date and time to select the required date and time interval. Click **Now** to display metrics for the current date and time. Click the **Refresh** icon next to the switch selection dropdown to display metrics for the last 30 minutes.

3. Hover over specific points on the graph for more information on CPU utilization at a specific time.
4. Click the icon at the top right of the graph to download the graph as a PNG image, PDF document, JPEG image or an XLS file.

5. Click the icon next to Environment: CPU at the top of the window to go back to the LAN Telemetry Summary window.

Environment - Memory

The second donut chart shows the proportion of top five or top ten switches based on memory usage values. When hovered, it shows the switch name and the corresponding metric value.
1. Click the memory usage donut to display more information about memory usage. The memory dashboard depicts the actual memory consumption (RAM) on every switch in Gigabytes (GB). On the **Environment: Memory** window, you can select a specific switch from the drop-down list for which you want to display the metrics.

You can select **All Switches** to display metrics for all the switches in the selected fabric. This window displays the top five switches based on the number of anomalies and top five switches based on memory utilization. Each switch has a specific color that is associated with it in the graph. You can see the colors that are associated with the switches on the right of the graph.
2. You can select a specific time interval to view the metrics during that time interval. Click the fields showing the date and time to select the required date and time interval. Click **Now** to display metrics for the current date and time. Click the **Refresh** icon next to the switch selection dropdown to display metrics for the last 30 minutes.

3. Hover over specific points on the respective graphs for more information on memory utilization at a specific time.
4. Click the icon at the top right of the graph to download the graph as a PNG image, PDF document, JPEG image or an XLS file.

5. Click the icon next to Environment: Memory at the top of the window to go back to the LAN Telemetry Summary window.

Environment - Temperature

The third donut chart shows the proportion of top five or top ten switches based on temperature levels. When hovered, it shows the switch name and the corresponding metric value.
1. Click the temperature levels donut to display more information about temperature levels for the switches in the fabric. On the **Environment: Temperature** window, you can select a specific switch from the drop-down list for which you want to display the metrics.

You can select **All Switches** to display metrics for all the switches in the selected fabric. This window displays the top five switches based on the number of anomalies and top five switches based on temperature. Each switch has a specific color that is associated with it in the graph. You can see the colors that are associated with the switches on the right of the graph.
2. You can select a specific time interval to view the metrics during that time interval. Click the fields showing the date and time to select the required date and time interval. Click **Now** to display metrics for the current date and time. Click the **Refresh** icon next to the switch selection dropdown to display metrics for the last 30 minutes.

3. Hover over specific points on the graph for more information on the temperature of the selected switch at a specific time.
4. Click the icon at the top right of the graph to download the graph as a PNG image, PDF document, JPEG image or an XLS file.

5. Click the icon next to **Environment: Temperature** at the top of the window to go back to the LAN Telemetry Summary window.

Environment - Power

The fourth donut chart shows the proportion of top five or top ten switches based on the power usage or efficiency of the power supplies. When hovered, it shows the switch name and the corresponding metric value.
1. Click the Power donut to display more information about the power efficiency metrics for the switches in the fabric. On the Environment: Power window, you can select a specific switch from the drop-down list for which you want to display the metrics.

You can select All Switches to display metrics for the top five switches based on anomalies and the top five switches based on power usage or efficiency. By definition, efficiency is Output-Power/Input-Power, which therefore results in a maximum efficiency of 1.0. Each switch has a specific color that is associated with it in the graph. You can see the colors that are associated with the switches on the right of the graph.
2. You can select a specific time interval to view the metrics during that time interval. Click the fields showing the date and time to select the required date and time interval. Click Now to display metrics for the current date and time. Click the Refresh icon next to the switch selection dropdown to display metrics for the last 30 minutes.

3. Hover over specific points on the graph for more information on the power efficiency or usage at a specific time.
4. Click the icon at the top right of the graph to download the graph as a PNG image, PDF document, JPEG image or an XLS file.

5. Click the icon next to **Environment: Power** at the top of the window to go back to the LAN Telemetry Summary window.

Environment - Fan

The fifth donut chart shows the proportion of top five or top ten switches based on fan utilization. When hovered, it shows the switch name and the corresponding metric value.
1. Click the Fan donut to display more information about the fan utilization. On the Environment: Fan window, you can select a specific switch from the drop-down list for which you want to display the metrics.

You can select All Switches to display metrics for the top five switches based on the number of anomalies and the top five switches based on fan utilization. Each switch has a specific color that is associated with it in the graph. You can see the colors that are associated with the switches on the right of the graph.
2. You can select a specific time interval to view the metrics during that time interval. Click the fields showing the date and time to select the required date and time interval. Click **Now** to display metrics for the current date and time. Click the **Refresh** icon next to the switch selection dropdown to display metrics for the last 30 minutes.

3. Hover over specific points on the respective graphs for more info on fan utilization at a specific time.
4. Click the icon at the top right of the graph to download the graph as a PNG image, PDF document, JPEG image or an XLS file.

5. Click the icon next to Environment: Fan at the top of the window to go back to the LAN Telemetry Summary window.

Alarms

The Alarms menu includes the following submenus:

Viewing Alarms and Events

You can view the alarms, cleared alarms, and events.
Procedure

Step 1 Choose Monitor > Alarms > View.

Step 2 Choose any of the following tabs.

- **Alarms**: This tab displays the alarms that are generated for various categories. This tab displays information such as ID (optional), Severity, Failure Source, Name, Category, Acknowledged, Creation Time, Last Updated (optional), Policy, and Message. You can specify the **Refresh Interval** in this tab. You can select one or more alarms and then acknowledge or unacknowledge their status using the **Change Status** drop-down list. In addition, you can select one or more alarms and then click the **Delete** button to delete them.

- **Cleared Alarms**: This tab displays the cleared alarms. This tab displays information such as ID (optional), Severity, Failure Source, Name, Category, Acknowledged, Creation Time, Cleared At (optional), Cleared By, Policy, and Message. You can select one or more alarms and then click the **Delete** button to delete them.

- **Events**: This tab displays the events that are generated for the switches. This tab displays information such as Ack, Acknowledged user, Group, Switch, Severity, Facility, Type, Count, Last Seen, and Description. You can select one or more events and then acknowledge or unacknowledge their status using the **Change Status** drop-down list. In addition, you can select one or more alarms and then click the **Delete** button to delete them. If you want to delete all events, click the **Delete All** button.

Monitoring and Adding Alarm Policies

You can add alarm policies for the following:

- **Device Health**: Device health policies enable you to create alarms when Device ICMP Unreachable, Device SNMP Unreachable, or Device SSH Unreachable. Also, these policies enable you to monitor chassis temperature, CPU, and memory usage.

- **Interface Health**: Interface health policies enable you to monitor Up or Down, Packet Discard, Error, Bandwidth details of the interfaces. By default all interfaces are selected for monitoring.

- **Syslog Alarm**: Syslog Alarm Policy defines a pair of Syslog messages formats; one which raises the alarm, and one which clears the alarm.

Before you begin

If you have created a self-signed certificate or imported an SSL certificate to the keystore, you must copy the new fmserver.jks located at `/usr/local/cisco/dcm/wildfly-10.1.0.Final/standalone/configuration` to `/etc/elasticsearch`. If you do not copy the fmserver.jks file to the elasticsearch directory, you will not be able to get the Alarms and Policies. As the elasticsearch database will be stabilizing, you cannot configure any Alarm Policy on the Cisco DCNM **Web UI Monitor > Alarms > Alarm Policies**.

Procedure

Step 1 Choose Monitor > Alarms > Alarm Policies.
Step 2 Select the **Enable Alarms** check box to enable alarm policies.

Step 3 From the **Add** drop-down list, choose any of the following:

- **Device Health Policy**: Select the devices for which you want to create policies. Specify the policy name, description, CPU Utilization parameters, Memory Utilization parameters, Environment Temperature parameters, device availability, and device features.
- **Interface Health Policy**: Select the devices for which you want to create policies. Specify the policy name, description, link-state, Bandwidth (In/Out), Inbound errors, Outbound errors, Inbound Discards, and Outbound Discards.
- **Syslog Alarm Policy**: Select the devices for which you want to create policies and then specify the following parameters.
 - **Devices**: Define the scope of this policy. Select individual devices or all devices to apply this policy.
 - **Policy Name**: Specify the name for this policy. It must be unique.
 - **Description**: Specify a brief description for this policy.
 - **Severity**: Define the severity level for this syslog alarm policy. Choices are: Critical, Major, Minor, and Warning.
 - **Identifier**: Specify the identifier portions of the raise & clear messages.
 - **Raise Regex**: Define the format of a syslog raise message.
 - **Clear Regex**: Define the format of a syslog clear message.

Table 12: Example1

<table>
<thead>
<tr>
<th>Identifier</th>
<th>ID1-ID2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raise Regex</td>
<td>ETH_PORT_CHANNEL-5-PORT_DOWN: $(ID1): $(ID2) is down</td>
</tr>
<tr>
<td>Clear Regex</td>
<td>ETH_PORT_CHANNEL-5-PORT_UP: $(ID1): $(ID2) is up</td>
</tr>
</tbody>
</table>

Table 13: Example2

<table>
<thead>
<tr>
<th>Identifier</th>
<th>ID1-ID2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raise Regex</td>
<td>ETHPORT-5-IF_SFP_WARNING: Interface $(ID1), High Rx Power Warning</td>
</tr>
<tr>
<td>Clear Regex</td>
<td>ETHPORT-5-IF_SFP_WARNING: Interface $(ID1), High Rx Power Warning cleared</td>
</tr>
</tbody>
</table>

Step 4 Click **OK** to add the policy.

Activating Policies

After you create new alarm policies, activate them.
Deactivating Policies

You can deactivate the active alarm policies.

Procedure

Step 1 Choose Monitor > Alarms > Policies.
Step 2 Select the policies that you want to deactivate and then click the Deactivate button.

Importing Policies

You can create alarm policies using the import functionality.

Procedure

Step 1 Choose Monitor > Alarms > Policies and then click the Import button.
Step 2 Browse and select the policy file saved on your computer.
You can only import policies in text format.

Exporting Policies

You can export the alarm policies into a text file.

Procedure

Step 1 From the menu bar, choose Monitor > Alarms > Policies.
Step 2 Click the Export button and then select a location on your computer to store the exported file.

Editing Policies

Procedure

Step 1 From the menu bar, choose Monitor > Alarms > Policies.
Deleting Policies

Procedure

Step 1 From the menu bar, choose Monitor > Alarms > Policies.
Step 2 Select the policy that you want to delete.
Step 3 Click the Delete button. The policy is deleted.
Deleting Policies
Administration

This chapter contains the following topics:

- DCNM Server, on page 281
- Management Users, on page 293
- Performance Setup, on page 298
- Event Setup, on page 298
- Credentials Management, on page 302

DCNM Server

The DCNM Server menu includes the following submenus:

Starting, Restarting, and Stopping Services

To clean up the performance manager database (PM DB) stale entries, start, restart, or stop a service, from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose Administration > DCNM Server > Server Status.

The Status window appears that displays the server details.

Step 2 In the Actions column, click the Start or Stop icons to start or stop services.

Step 3 In the Actions column, click the Delete icon to clean up PM DB stale entries.

Step 4 You can see the latest status in the Status column.

What to do next

See the latest status in the Status column.

Using the Commands Table
The commands table contains links to commands that launch new dialog boxes to provide information about the server status and server administrative utility scripts. These commands can be directly executed on the server CLI as well.

- **ifconfig**: click this link to view information about interface parameters, IP address, and netmask used on the Cisco DCNM server.
- **appmgr status all**: click this link to view the DCNM server administrative utility script that checks the status of different services currently running.
- **clock**: click this link to view information about the server clock details such as time, zone information.

Note
The commands section is applicable only for the OVA or ISO installations.

Viewing Log Information

You can view the logs for performance manager, SAN management server, SME server, web reports, web server, and web services. These processes have no corresponding GUI that allows you to view information about these log files. If you see errors, preserve these files for viewing.

Note
Logs cannot be viewed from a remote server in a federation.

To view the logs from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose Administration > DCNM Server > Logs.
You see a tree-based list of logs in the left column. Under the tree, there is a node for every server in the federation. The log files are under the corresponding server node.

Step 2 Click a log file under each node of the tree to view it on the right.

Step 3 Double-click the tree node for each server to download a ZIP file containing log files from that server.

Step 4 Click the Print icon on the upper right corner to print the logs.

Server Properties

You can set the parameters that are populated as default values in the DCNM server.

To set the parameters of the DCNM server from the Cisco DCNM Web UI, perform the following steps:
Procedure

Step 1 Choose Administration > DCNM Server > Server Properties.

Step 2 Click Apply Changes to save the server settings.

Modular Device Support

To support any new hardware that does not require many major changes, a patch can be delivered instead of waiting for the next DCNM release. Modular Device Support helps to deliver and apply the DCNM patch releases. An authorized DCNM administrator can apply the patch to the production setup. Patch releases are applicable for the following scenarios:

- Support any new hardware, like chassis or line cards
- Support latest NX-OS versions
- Support critical fixes as patches

To view the patch details from Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose Administration > DCNM Server > Modular Device Support.

You see the DCNM Servers column on the left in the window and Modular Device support information window on the right.

Step 2 Expand DCNM Servers to view all the DCNM servers.

It includes the list of patches installed along with the version number, corresponding platforms supported, chassis supported, NX-OS version supported, PID supported, backup directory and the last patch deployment time in the Modular Device support information table.

What to do next

For more details about how to apply and rollback a patch, go to http://www.cisco.com/go/dcnm for more information.

Managing Licenses

You can view the existing Cisco DCNM licenses by choosing Administration > DCNM Server > License. You can view and assign licenses in the following tabs:

- License Assignments
- Smart License
- Server License Files
By default, the License Assignments tab appears.

The following table displays the SAN and LAN license information.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>License</td>
<td>Specifies SAN or LAN.</td>
</tr>
<tr>
<td>Free/Total Server-based Licenses</td>
<td>Specifies the number of free licenses that are purchased out of the total number of licenses.</td>
</tr>
<tr>
<td>Unlicensed/Total (Switches/VDCs)</td>
<td>Specifies the number of unlicensed switches or VDCs out of the total number of switches or VDCs.</td>
</tr>
<tr>
<td>Need to Purchase</td>
<td>Specifies the number of licenses to be purchased.</td>
</tr>
</tbody>
</table>

This section includes the following topics:

License Assignments

The following table displays the license assignment details for every switch or VDC.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
<td>Displays if the group is fabric or LAN.</td>
</tr>
<tr>
<td>Switch Name</td>
<td>Displays the name of the switch.</td>
</tr>
<tr>
<td>WWN/Chassis ID</td>
<td>Displays the world wide name or Chassis ID.</td>
</tr>
<tr>
<td>Model</td>
<td>Displays the model of the device. For example, DS-C9124 or N5K-C5020P-BF.</td>
</tr>
<tr>
<td>License State</td>
<td>Displays the license state of the switch that can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• Permanent</td>
</tr>
<tr>
<td></td>
<td>• Eval</td>
</tr>
<tr>
<td></td>
<td>• Unlicensed</td>
</tr>
<tr>
<td></td>
<td>• Not Applicable</td>
</tr>
<tr>
<td></td>
<td>• Expired</td>
</tr>
<tr>
<td></td>
<td>• Invalid</td>
</tr>
<tr>
<td>License Type</td>
<td>Displays if the license is a switch-based embedded license or a server-based license.</td>
</tr>
<tr>
<td>Expiration Date</td>
<td>Displays the expiry date of the license.</td>
</tr>
</tbody>
</table>

Note Text under the Expiration Date column is in red for licenses, which expire in seven days.
Smart License

From Cisco DCNM Release 11.1(1), you can use the smart licensing feature to manage licenses at device-level and renew them if required. From Cisco DCNM Web UI, choose **Administration > DCNM Server > License > Smart License**. You will see a brief introduction on Cisco smart licensing, a menu bar, and the **Switch Licenses** area.

In the introduction, click **Click Here** to view the information on smart software licensing.

The menu bar has the following icons:

- **Registration Status**: Displays details of the current registration in a pop-up window when clicked. The value is **UNCONFIGURED** if the smart licensing is not enabled. After you enable the smart licensing without registering, the value is set to **DEREGISTERED**. The value is set to **REGISTERED** after you register. Click the registration status to view the last action, account details, and other registration details in the **Registration Details** pop-up window.

- **License Status**: Specifies the status of the license. The value is **UNCONFIGURED** if the smart licensing is not enabled. After you enable the smart licensing without registering, the value is set to **NO LICENSES**.
The value is set to **AUTHORIZED** or **OUT-OF-COMPLIANCE** after registering and assigning licenses. Click the license status to view the last action, last authorization attempt, next authorization attempt, and the authorization expiry in the **License Authorization Details** pop-up window.

- **Control**: Allows you to enable or disable smart licensing, register tokens, and renew the authorization.

The following table describes the fields that appear in the **Switch Licenses** section.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Specifies the license name.</td>
</tr>
<tr>
<td>Count</td>
<td>Specifies the number of licenses used.</td>
</tr>
<tr>
<td>Status</td>
<td>Specifies the status of the licenses used. Valid values are Authorized and Out of Compliance.</td>
</tr>
<tr>
<td>Description</td>
<td>Specifies the type and details of the license.</td>
</tr>
<tr>
<td>Last Updated</td>
<td>Specifies the timestamp when switch licenses were last updated.</td>
</tr>
<tr>
<td>Print</td>
<td>Allows you to print the details of switch licenses.</td>
</tr>
<tr>
<td>Export</td>
<td>Allows you to export the license details.</td>
</tr>
</tbody>
</table>

After you remove a product license from your account in Cisco Smart Software Manager, disable the smart licensing and register it again.

Enabling Smart Licensing

To enable smart licensing from Cisco DCNM Web UI, perform the following steps:

Procedure

1. **Step 1**: Choose **Administration** > **DCNM Server** > **License** > **Smart License**.
2. **Step 2**: Click **Control** and choose **Enable** in the drop-down list to enable the smart licensing. A confirmation window appears.
3. **Step 3**: Click **Yes**.

Instructions to register the DCNM instance appear.

The registration status changes from **UNCONFIGURED** to **DEREGISTERD**, and the license status changes from **UNCONFIGURED** to **No Licenses in Use**.

Registering a Cisco DCNM Instance

Before you begin

Create a token in Cisco Smart Software Manager.
Procedure

Step 1 Choose Administration > DCNM Server > License > Smart License.
Step 2 Click Control and choose Register in the drop-down list.
 The Register window appears.
Step 3 Select the transport option to register the smart licensing agent.
 The options are:
 • Default - DCNM communicates directly with Cisco’s licensing servers
 This option uses the following URL: https://tools.cisco.com/its/service/oddce/services/DDCEService
 • Transport Gateway - Proxy via Gateway or Satellite
 Enter the URL if you select this option.
 • Proxy - Proxy via intermediate HTTP or HTTPS proxy
 Enter the URL and the port if you select this option.
Step 4 Enter the registration token in the Token field.
Step 5 Click Submit to register the license.
 The registration status changes from DEREGISTERED to REGISTERED. The name, count, and status of
 switch licenses appear.
 Click Registration Status: REGISTERED to see the details of the registered token.
 The switch details are updated under the Switches/VDCs section of the License Assignments
 tab. The license type and the license state of switches that are licensed using the smart license option are Smart.

Renew Authorization

You can manually renew the authorization only if you have registered. Automatic reauthorization happens
periodically. Click License Status to view details about the next automatic reauthorization. To renew
authorization from Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose Administration > DCNM Server > License > Smart License.
Step 2 Click Control and choose Renew Authorization in the drop-down list to renew any licensing authorizations.
 A request is sent to Cisco Smart Software Manager to fetch updates, if any. The Smart Licenses
 window is refreshed after the update.

Disabling Smart Licensing

To disable smart licensing from Cisco DCNM Web UI, perform the following steps:
Procedure

Step 1 Select **Control** and select **Disable** to disable smart licensing.
A confirmation window appears.

Step 2 Click **Yes**.

The license status of the switches using this token, under the **License Assignments** tab, changes to **Unlicensed**. This token is removed from the list under the **Product Instances** tab in the Cisco Smart Software Manager.

If a smart license is not available and you disable smart licensing, release the license manually from the **License Assignments** tab.

Server License Files

Server License Files

The following table displays the Cisco DCNM server license fields.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filename</td>
<td>Specifies the license file name.</td>
</tr>
<tr>
<td>Feature</td>
<td>Specifies the licensed feature.</td>
</tr>
<tr>
<td>PID</td>
<td>Specifies the product ID.</td>
</tr>
<tr>
<td>LAN (Free/Total)</td>
<td>Displays the number of free versus total licenses for LAN.</td>
</tr>
<tr>
<td>Expiration Date</td>
<td>Displays the expiry date of the license.</td>
</tr>
</tbody>
</table>

Note Text in the **Expiration Date** field is in Red for licenses that expires in seven days.

Adding Cisco DCNM Licenses

To add Cisco DCNM licenses from Cisco DCNM, perform the following steps:

Before you begin

You must have network administrator privileges to complete the following procedure.

Procedure

Step 1 Choose **Administration > DCNM Server > License** to start the license wizard.

Step 2 Choose the **Server License Files** tab.

The valid Cisco DCNM-LAN license files are displayed.

Ensure that the security agent is disabled when you load licenses.
Step 3 Download the license pack file that you received from Cisco into a directory on the local system.

Step 4 Click Add License File and select the license pack file that you saved on the local machine.

The file is uploaded to the server machine, which is saved into the server license directory, and then loaded on to the server.

Note Ensure that you do not edit the contents of the .lic file or the Cisco DCNM software ignores any features that are associated with that license file. The contents of the file are signed and must remain intact. When you accidentally copy, rename, or insert the license file multiple times, the duplicate files are ignored, but the original is counted.

Native HA

Procedure

Step 1 By default, DCNM is bundled with an embedded database engine PostgreSQL. The native DCNM HA is achieved by two DCNMs running as Active / Warm Standby, with their embedded databases synchronized in real time. So once the active DCNM is down, the standby takes over with the same database data and resume the operation. The standby host database down scenario is documented after this procedure.

Step 2 From the menu bar, choose Administration > DCNM Server > Native HA.

You see the Native HA window.

Step 3 You can allow manual failover of DCNM to the standby host by clicking the Failover button, and then click OK.

- Alternatively, you can initiate this action from the Linux console.
 1. SSH into the DCNM active host.
 2. Enter " /usr/share/heartbeat/hb_standby"

Step 4 You can allow manual syncing database and disk files to standby host by clicking Force Sync, and then click OK.

Step 5 You can test or validate the HA setup by clicking Test and then click OK.

What to do next

Some HA troubleshooting scenarios are noted in this sub section.

The standby host database is down: Typically, the DCNM database (PostgreSQL) is up on the active and standby hosts. In DCNM 10.1 and earlier versions, the standby database can be down due to a database synchronization failure.

- Enter “ps -ef | grep post”. You should see multiple postgres processes running. If not, it indicates that the database is down.

- Restore database data from a backup file that is created at the beginning of database synchronization. Change directory to “/usr/local/cisco/dcm/db”
• Check existence of file replication/pgsql-standby-backup.tgz. If the file exists, restore database data files:

```
rm -rf data/*
tar -zxf replication/pgsql-standby-backup.tgz data
/etc/init.d/postgresql-9.4 start
ps -ef | grep post
```

The active DCNM host will synchronize the two databases.

The TFTP server is not bound to the eth1 VIP address on the active host: The TFTP server should run on the active host (not on the standby host), and it should be bound to the eth1 VIP address. In some setups, the bind address is not the VIP address, as per the TFTP configuration file, and this could cause issues when switches try to use TFTP.

• Enter “grep bind /etc/xinetd.d/tftp” to check if the TFTP configuration file has the right bind address. If the displayed IP address is not the eth1 VIP address, then change the bind address to the VIP address. Repeat the procedure for the standby host. Update the bind address to the VIP address.

• Enter “/etc/init.d/xinetd restart” on the active host to restart TFTP.

Note

The TFTP server can be started or stopped with the “appmgr start/stop ha-apps” command.

Multi Site Manager

Using Multi Site Manager, you can view the health of a DCNM server application and retrieve switch information for switches in local and remote sites. To access switch information for remote DCNM servers, you must register the server in Multi Site Manager. The procedures to access remote DCNM servers and search for switch information are explained:

Add Remote DCNM Server Information

This procedure allows you to access a DCNM server in a remote site from the DCNM server that you are currently logged on to. For the remote site to access the current DCNM server, registration is required on the remote site.

1. Choose **Administration > DCNM Server > Multi Site Manager**. The Multi Site Manager screen comes up.
The currently logged on DCNM application health status is displayed on the screen.

Note

The *Application Health* function is only available for the DCNM ISO/OVA installation type and not for the Windows/RHEL installation type.

2. Click **Add DCNM Server**. The *Enter Remote DCNM Server Information* screen comes up.

 Enter the remote DCNM server name, its IP address or URL, the user credentials of the remote DCNM server, and optionally, the port number.

Note

Do not disable the **Use HTTPS** check box. If you disable, DCNM will not be accessible.
3. Click OK. After validation, the remote DCNM server is represented in the screen, next to the local DCNM server.

You can click Refresh All Sites to display updated information.

Retrieve Switch Information

1. Choose Administration > DCNM Server > Multi Site Manager. The Multi Site Manager screen comes up
2. From the search box at the top of the screen, search for a switch based on one of the following parameters:
 - VM information (VM IP and VM Name fields) - A connected VM’s IP address or name.
 - Switch information (Switch and MAC fields) – A switch’s name or MAC address.
 - Segment (Segment ID field) that has presence on the switch.

 If there is a match, the switch name appears as a hyperlink below the search box, in the appropriate local or remote DCNM server depiction.

 In this example, the switch leaf3 is available in the remote site managed by a DCNM server. A link to leaf3 is available in the remote-DCNM panel.

3. Click leaf3 to view detailed switch information in an adjacent browser tab.

 At any point in time, you can click the Launch Topology View icon to view the fabric’s topology.

Management Users

The Management Users menu includes the following submenus:

Remote AAA

To configure remote AAA from the Cisco DCNM Web UI, perform the following steps:
Procedure

Step 1 Choose Administration > Management Users > Remote AAA Properties. The AAA properties configuration window appears.

Step 2 Use the radio button to select one of the following authentication modes:

- **Local**: In this mode the authentication authenticates with the local server.
- **Radius**: In this mode the authentication authenticates against the RADIUS servers specified.
- **TACACS+**: In this mode the authentication authenticates against the TACAS servers specified.
- **Switch**: In this mode the authentication authenticates against the switches specified.
- **LDAP**: In this mode the authentication authenticates against the LDAP server specified.

Step 3 Click **Apply**.

Note Restart the Cisco DCNM LAN services if you update the Remote AAA properties.

Local

Procedure

Step 1 Use the radio button and select **Local** as the authentication mode.

Step 2 Click **Apply** to confirm the authentication mode.

Radius

Procedure

Step 1 Use the radio button and select **Radius** as the authentication mode.

Step 2 Specify the Primary server details and click **Test** to test the server.

Step 3 (Optional) Specify the Secondary and Tertiary server details and click **Test** to test the server.

Step 4 Click **Apply** to confirm the authentication mode.
TACACS+

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Use the radio button and select TACACS+ as the authentication mode.</td>
</tr>
<tr>
<td>2</td>
<td>Specify the Primary server details and click Test to test the server.</td>
</tr>
<tr>
<td>3</td>
<td>(Optional) Specify the Secondary and Tertiary server details and click Test to test the server.</td>
</tr>
<tr>
<td>4</td>
<td>Click Apply to confirm the authentication mode.</td>
</tr>
</tbody>
</table>

Switch

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1 | Use the radio button to select **Switch** as the authentication mode.
DCNM also supports LAN switches with the IPv6 management interface. |
| 2 | Specify the Primary Switch name and click **Apply** to confirm the authentication mode. |
| 3 | (Optional) Specify the names for Secondary and Tertiary Switches. |
| 4 | Click **Apply** to confirm the authentication mode. |

LDAP

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Use the radio button and select LDAP as the authentication mode.</td>
</tr>
<tr>
<td>2</td>
<td>In the Host field, enter DNS address of the host.</td>
</tr>
<tr>
<td>3</td>
<td>Click Test to test the AAA server. The Test AAA Server window pops out.</td>
</tr>
</tbody>
</table>
| 4 | Enter a valid **Username** and **Password** in the **Test AAA Server** window.
A dialog box appears confirming the status of the AAA server test. If the test has failed, the **LDAP Authentication Failed** dialog box appears. |
| 5 | In the **Port** field, enter a port number. |
| 6 | (Optional) Select the **SSL Enabled** check box, if SSL is enabled on the AAA server. |
| 7 | In the **Base DN** field, enter the base domain name. |
| 8 | In the **Filter** field, specify the filter parameters. |
| 9 | Choose an option to determine a role by either **Attribute** or **Admin Group Map**. |
| 10 | In the **Role Admin Group** field, enter the name of the role. |
| 11 | In the **Map to DCNM Role** field, enter the name of the role to be mapped. |
| 12 | In the **Access Map** field, enter the Role Based Access Control (RBAC) group to be mapped. |
Managing Local Users

As an admin user, you can use Cisco DCMN Web UI to create a new user, assign the role and associate one or more groups or scope for the user.

This section contains the following:

Adding Local Users

Procedure

Step 1
From the menu bar, choose **Administration** > **Management Users** > **Local**. You see the **Local Users** page.

Step 2
Click **Add User**.

You see the **Add User** dialog box.

Step 3
Enter the username in the **User name** field.

Note
The username is case sensitive, but the username guest is a reserved name, which is not case sensitive. The guest user can only view reports. The guest user cannot change the guest password, or access the Admin options in DCMN Web Client.

Step 4
From the **Role** drop-down list, select a role for the user.

Step 5
In the **Password** field, enter the password.

Step 6
In the **Confirm Password** field, enter the password again.

Step 7
Click **Add** to add the user to the database.

Step 8
Repeat Steps 2 through 7 to continue adding users.

Deleting Local Users

To delete local users from the Cisco DCMN Web UI, perform the following steps:

Procedure

Step 1
Choose **Administration** > **Management Users** > **Local**. The **Local Users** page is displayed.

Step 2
Select one or more users from the **Local Users** table and click the **Delete User** button.

Step 3
Click **Yes** on the warning window to delete the local user. Click **No** to cancel deletion.
Editing a User

To edit a user from the Cisco DCNM Web UI, perform the following steps:

Procedure

- **Step 1** Choose Administration > Management Users > Local.
- **Step 2** Use the checkbox to select a user and click the Edit User icon.
- **Step 3** In the Edit User window, the Username and Role are mentioned by default. Specify the Password and Confirm Password.
- **Step 4** Click Apply to save the changes.

User Access

To control the local users to access the specific groups from the Cisco DCNM Web UI, perform the following steps:

Procedure

- **Step 1** Choose Administration > Management Users > Local. The Local Users window is displayed.
- **Step 2** Select one user from the Local Users table. Click User Access. The User Access selection window is displayed.
- **Step 3** Select the groups allowed to access for the user and click Apply.

Managing Clients

You can use Cisco DCNM to disconnect DCNM Client Servers.

Procedure

- **Step 1** Choose Administration > Management Users > Clients. A list of DCNM Servers are displayed.
- **Step 2** Use the check box to select a DCNM server and click Disconnect Client to disconnect the DCNM server.
 - **Note** You cannot disconnect a current client session.
Performance Setup

The Performance Setup menu includes the following submenus:

Performance Setup LAN Collections

If you are managing your switches with the Performance Manager, you must set up an initial set of flows and collections on the switch. You can use Cisco DCNM to add and remove performance collections. License the switch and keep it in the Managed Continuously state before creating a collection for the switch.

To add a collection, follow these steps:

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Choose Administration > Performance Setup > LAN Collections.</td>
</tr>
<tr>
<td>2</td>
<td>For all the licensed LAN switches, use the check boxes to enable performance data collection for Trunks, Access, Errors & Discards, and Temperature Sensor.</td>
</tr>
<tr>
<td>3</td>
<td>Use the check boxes to select the types of LAN switches for which you want to collect performance data.</td>
</tr>
<tr>
<td>4</td>
<td>Click Apply to save the configuration.</td>
</tr>
<tr>
<td>5</td>
<td>In the confirmation dialog box, click Yes to restart the performance collector.</td>
</tr>
</tbody>
</table>

Event Setup

The Event Setup menu includes the following submenus:

Viewing Events Registration

To enable Send Syslog, Send Traps and Delayed Traps you must configure the following in the DCNM SAN client:

- Enabling Send Syslog: Choose Physical Attributes > Events > Syslog > Servers. Click Create Row, provide the required details, and click Create.
- Enabling Send Traps: Choose Physical Attributes > Events > SNMP Traps > Destination. Click Create Row, provide the required details, and click Create.
- Enabling Delayed Traps: Choose Physical Attributes > Events > SNMP Traps > Delayed Traps. In the Feature Enable column, use the check boxes to enable delayed traps for the switch and specify the delay in minutes.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Choose Administration > Event Setup > Registration.</td>
</tr>
</tbody>
</table>
The SNMP and Syslog receivers along with the statistics information are displayed.

Step 2
Check the **Enable Syslog Receiver** check box and click **Apply**, to enable the syslog receiver if it is disabled in the server property.

To configure event registration or syslog properties, choose **Administration > DCMN Server > Server Properties** and follow the on-screen instructions.

Step 3
Select **Copy Syslog Messages to DB** and click **Apply** to copy the syslog messages to the database.
If this option is not selected, the events will not be displayed in the events page of the Web client.

The columns in the second table display the following:
- Switches sending traps
- Switches sending syslog
- Switches sending syslog accounting
- Switches sending delayed traps

Notification Forwarding

You can use Cisco DCNM Web UI to add and remove notification forwarding for system messages.
This section contains the following:

Adding Notification Forwarding

Cisco DCNM Web UI forwards fabric events through email or SNMPv1 traps.
To add and remove notification forwarding for system messages from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1
Choose **Administration > Event Setup > Forwarding**.
The events forwarding scope, the recipient email address, severity of the event and type of the event is displayed. The description Regex field is applicable only when the forwarding source is selected as Syslog while adding the events forwarder.

Step 2
Check the **Enable** checkbox to enable events forwarding.

Step 3
Specify the **SMTP Server** details and the **From** email address.

Step 4
Click **Apply** to save the configuration, or in the **Apply and Test** icon, use the drop-down to select the fabric.
Click **Apply and Test** to save and test the configuration.
Step 5 In the Event Count Filter, add a filter for the event count to the event forwarder.

The forwarding stops forwarding an event if the event count exceeds the limit as specified in the event count filter. In this field, you can specify a count limit. Before an event can be forwarded, the Cisco DCNM checks if its occurrence exceeds the count limit. If it does, the event will not be forwarded.

Step 6 Select the Snooze checkbox and specify the Start date and time and the End date and time. Click Apply to save the configuration.

Step 7 Under the Event Forwarder Rules table, click the + icon to add an event forwarder rule.

You see the Add Event Forwarder Rule dialog box.

Step 8 In the Forwarding Method, choose either E-mail or Trap. If you choose Trap, a Port field is added to the dialog box.

Step 9 If you choose the E-mail forwarding method, enter the IP address in the Email Address field. If you choose the Trap method, enter the trap receiver IP address in the Address field and specify the port number.

Step 10 For Forwarding Scope, choose the Fabric/LAN or Port Groups for notification.

Step 11 In the Source field, select DCNM or Syslog.

If you select DCNM, then:

a) From the Type drop-down list, choose an event type.
b) Check the Storage Ports Only check box to select only the storage ports.
c) From the Minimum Severity drop-down list, select the severity level of the messages to receive.
d) Click Add to add the notification.

If you select Syslog, then:

a) In the Facility list, select the syslog facility.
b) Specify the syslog Type.
c) In the Description Regex field, specify a description that matches with the event description.
d) From the Minimum Severity drop-down list, select the severity level of the messages to receive.
e) Click Add to add the notification.

Note The Minimum Severity option is available only if the Event Type is set to All.

The traps that are transmitted by Cisco DCNM correspond to the severity type. A text description is also provided with the severity type.

\[
\begin{align*}
\text{trap type(s)} & = 40990 \ (\text{emergency}) \\
& = 40991 \ (\text{alert}) \\
& = 40992 \ (\text{critical}) \\
& = 40993 \ (\text{error}) \\
& = 40994 \ (\text{warning}) \\
& = 40995 \ (\text{notice}) \\
& = 40996 \ (\text{info}) \\
& = 40997 \ (\text{debug}) \\
\text{textDescriptionOid} & = 1, 3, 6, 1, 4, 1, 9, 9, 40999, 1, 1, 3, 0
\end{align*}
\]

Removing Notification Forwarding

You can remove notification forwarding.
Event Suppression

Cisco DCNM allows you to suppress the specified events that are based on the user-specified suppressor rules. Such events will not be displayed on the Cisco DCNM Web UI. The events will neither be persisted to DCNM database, nor forwarded via email or SNMP trap.

You can view, add, modify, and delete suppressor rules from the table. You can create a suppressor rule from the existing event table. Select a given event as the template, and invoke the rule dialog window. Event details are automatically ported from the selected event in the event table to the input fields of the rule creation dialog window.

This section includes the following:

Add Event Suppression Rules

To add rules to the Event Suppression from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose Administration > Event Setup > Suppression. The Suppression window is displayed.

Step 2 Click the Add icon above the Event Suppressors table. The Add Event Suppressor Rule window is displayed.

Step 3 In the Add Event Suppressor Rule window, specify the Name for the rule.

Step 4 Select the required Scope for the rule that is based on the event source.

In the Scope drop-down list, the LAN groups and the port groups are listed separately. You can choose LAN, Port Groups or Any. For LAN, select the scope of the event at the Fabric or Group or Switch level. You can only select groups for Port Group scope. If use selects Any as the scope, the suppressor rule is applied globally.

Step 5 Enter the Facility name or choose from the LAN Switch Event Facility List. If you do not specify a facility, wildcard is applied.

Step 6 From the drop-down list, select the Event Type. If you do not specify the event type, wildcard is applied.

Step 7 In the Description Matching field, specify a matching string or regular expression. The rule matching engine uses regular expression that is supported by Java Pattern class to find a match against an event description text.
Delete Event Suppression Rule

To delete event suppressor rules from the Cisco DCNM Web UI, perform the following steps:

Procedure

Step 1 Choose Administration > Event Setup > Suppression.
Step 2 Select the rule from the list and click **Delete** icon.
Step 3 Click **Yes** to confirm.

Modify Event Suppression Rule

To modify the event suppressor rules, do the following tasks:

Procedure

Step 1 Choose Administration > Event Setup > Suppression.
Step 2 Select the rule from the list and click **Edit**.
You can edit **Facility**, **Type**, **Description Matching** string, and **Valid time range**.

Step 3 Click **Apply** to save the changes.

Credentials Management

The Credential Management menu includes the following submenus:

Step 8
Check the **Active Between** box and select a valid time range during which the event is suppressed.
By default, the time range is not enabled, i.e., the rule is always active.

Note
In general, you must not suppress accounting events. Suppressor rule for Accounting events can be created only for certain rare situations where Accounting events are generated by actions of DCNM or switch software. For example, lots of 'sync-snmp-password' AAA syslog events are automatically generated during the password synchronization between DCNM and managed switches. To suppress Accounting events, navigate to the **Suppressor table** and invoke the **Add Event Suppressor Rule** dialog window.

Note
Choose **Monitor > Switch > Events** to create a suppressor rule for a known event. There is no such shortcut to create suppressor rules for Accounting events.
LAN Credentials

While changing the device configuration, Cisco DCNM uses the device credentials provided by you. However, if the LAN Switch credentials are not provided, Cisco DCNM prompts you to open the Administration > Credentials Management > LAN Credentials page to configure LAN credentials.

Cisco DCNM uses two sets of credentials to connect to the LAN devices:

- **Discovery Credentials**—Cisco DCNM uses these credentials during discovery and periodic polling of the devices.
- **Configuration Change Credentials**—Cisco DCNM uses these credentials when user tries to use the features that change the device configuration.

LAN Credentials Management allows you to specify configuration change credentials. Before changing any LAN switch configuration, you must furnish Configuration Change SSH credentials for the switch. If you do not provide the credentials, the configuration change action will be rejected.

These features get the device write credentials from LAN Credentials feature.

- Upgrade (ISSU)
- Maintenance Mode (GIR)
- Patch (SMU)
- Template Deployment
- POAP-Write erase reload, Rollback
- Interface Creation/Deletion/Configuration
- VLAN Creation/Deletion/Configuration
- VPC Wizard

You must specify the configuration change credentials irrespective of whether the devices were discovered initially or not. This is a one-time operation. Once the credentials are set, that will be used for any configuration change operation.

Default Credentials

Default credentials is used to connect all the devices that the user has access to. You can override the default credentials by specifying credentials for each of the devices in the Switch Table below.

Cisco DCNM tries to use individual switch credentials in the Switch Table, to begin with. If the credentials (username/password) columns are empty in the Switch Table, the default credentials will be used.

Switch Table

Switch table lists all the LAN switches that user has access. You can specify the switch credentials individually, that will override the default credentials. In most cases, you need to provide only the default credentials.

You can perform the following operations on this screen.

- **Edit Credentials**, on page 304
- **Validate Credentials**, on page 304
- **Clear Switch Credentials**, on page 304
The LAN Credentials for the DCNM User table has the following fields.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch</td>
<td>Displays the LAN switch name.</td>
</tr>
<tr>
<td>IP Address</td>
<td>Specifies the IP Address of the switch.</td>
</tr>
<tr>
<td>User Name</td>
<td>Specifies the username of the switch DCNM user.</td>
</tr>
<tr>
<td>Password</td>
<td>Displays the encrypted form of the SSH password.</td>
</tr>
<tr>
<td>Group</td>
<td>Displays the group to which the switch belongs.</td>
</tr>
</tbody>
</table>

Edit Credentials

Perform the following task to edit the credentials.

1. From the Cisco DCNM home page, choose Administration > Credentials Management > LAN Credentials, check the Switch check box for which you need to edit the credentials.
2. Click Edit icon.
3. Specify User Name and Password for the switch.

Validate Credentials

Perform the following task to validate the credentials.

1. From the Administration > Credentials Management > LAN Credentials, check the Switch check box for which you need to validate the credentials.
2. Click Validate.

 A confirmation message appears, stating if the operation was successful or a failure.

Clear Switch Credentials

Perform the following task to clear the switch credentials.

1. From the Administration > Credentials Management > LAN Credentials, check the Switch check box for which you need to clear the credentials.
2. Click Clear.
3. Click Yes to clear the switch credentials from the DCNM server.
Applications

Cisco Data Center Network Manager (DCNM) uses the Applications Framework to build and deploy its various functions.

The Applications Framework provides the following features:

• An infrastructure for hosting applications that require additional system resources as the scale of the network increases.

• An independent application development-deployment-management lifecycle for applications.

To use the Applications Framework feature, in the Cisco DCNM home page's left pane, click Applications. The Applications window displays the following tabs:

• Catalog—This tab lists the applications that are used by Cisco DCNM. These applications are used for performing various functions within Cisco DCNM. For more information, see Catalog.

• Compute—This tab displays the existing compute nodes. The tab shows nodes that are part of the hosting infrastructure. The uptime indicates how long they have been part of the infrastructure. In a High Availability (HA) setup, both the active and the standby nodes appear as joined. In a cluster mode, the compute nodes are also displayed along with the indication of whether they are joined or discovered. For more information, see Compute, on page 306.

Note

In cluster mode, the Cisco DCNM servers will not appear under the Compute tab.

• Preferences—This tab is relevant to the cluster mode of deployment, where the application instances are placed. This tab enables you to compute cluster connectivity and configure the Cluster Connectivity preferences. For more information, see Preferences, on page 309.

Cisco DCNM uses the following applications:

• Compliance(0.1): This application helps in building fabrics for the Easy Fabric installation. The Compliance application runs as one instance per fabric. It is enabled when a fabric is created. Similarly, it is disabled when a fabric is deleted.

• ElasticCluster(5.6): This application is used for storing various database information.
• **Kibana(1.0):** This is an open-source data-visualization plug-in for Elasticsearch, which provides visualization capabilities. Cisco DCNM uses the Kibana application for the media controller, Endpoint Locator, and Telemetry.

• **UTR(1.0):** The Universal Telemetry Receiver (UTR) receives and decodes the streaming data from the switches, and feeds the data to a Kafka storage. The UTR can dynamically scale and instantiate multiple instances of UTR. It is a containerized application, that is instantiated using the Application Hosting Framework of Cisco DCNM.

• **vmmplugin(2.0):** The Virtual Machine Manager (VMM) plug-in stores all the computes and the virtual machine information that is connected to the fabric or the switch groups that are loaded into Cisco DCNM.

Note

In Release 11.1(1), the applications are view-only in the Cisco DCNM UI. You cannot control the applications from the user interface. For example, you cannot start or stop these applications from the Catalog tab of the Applications window.

- Compute, on page 306
- Preferences, on page 309
- Cisco DCNM Cluster Mode, on page 310
- Disaster Recovery, on page 312
- Converting from Un-Cluster to Cluster Mode with Existing Elasticsearch Data, on page 314

Compute

This tab displays the existing compute nodes. The tab shows nodes that are part of the hosting infrastructure. The uptime indicates how long they have been part of the infrastructure. In a High Availability (HA) setup, both the active and the standby nodes appear as joined. In a cluster mode, the compute nodes are also displayed along with the indication of whether they are joined or discovered.

Note

In cluster mode, the Cisco DCNM servers will not appear under the Compute tab.

The following table describes the fields that appear on **Applications > Compute**.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute IP Address</td>
<td>Specifies the IP Address of the Compute node.</td>
</tr>
<tr>
<td>In-Band Interface</td>
<td>Specifies the in-band management interface.</td>
</tr>
<tr>
<td>Out-Band Interface</td>
<td>Specifies the out-band management interface.</td>
</tr>
<tr>
<td>Status</td>
<td>Specifies if the Compute node are joined or broken.</td>
</tr>
<tr>
<td>Memory</td>
<td>Specifies the memory consumed for that node.</td>
</tr>
</tbody>
</table>
Adding Computes into the Cluster Mode

Compute is an additional installation mode with Cisco DCNM 11.1(1). It is supported with both small and large installations. Cisco DCNM supports a maximum of three Computes.

When a Compute is installed with correct parameters, it appears as Discovered.

To add computes into the cluster mode, perform the following steps:

Procedure

Step 1
In the left pane, click **Applications**.

Step 2
Click the **Compute** tab.

Step 3
Click the **Add Compute (+)** button.

- While using Compute, ensure that Cisco DCNM GUI shows nodes as Joined.
- Offline indicates that some connectivity issues between Nodes (on Eth0).
- Health only indicates the amount of Memory left (Just like UnClustered mode).

The Compute window can also be used to monitor the health of computes. In Cisco DCNM 11.1(1), the health essentially indicates the amount of memory left in the compute, this is based on applications that are enabled. If a Compute is not properly communicating with the DCNM Server, the status of the Compute appears as Offline, and no applications will be running on Offline Computes. Most applications do not function properly if there are less than three computes, while a short loss of a single Compute node is mostly fine. In such cases, refer to the requirements of the individual applications.

Step 4
In the **Add Compute** dialog box, verify the **Compute IP Address**, **In-Band Interface**, and the **Out-Band Interface** fields.
Deleting a Compute

To delete a compute, perform the following steps:

Procedure

- **Step 1** In the left pane, click **Applications**.
- **Step 2** Click the **Compute** tab.
- **Step 3** Click the **Remove (X)** button.

Caution When you delete a Compute, you will lose all the data that is stored in the Compute. You need to be cautious while deleting a Compute, since it can cause a cluster failure, for any data stored on Elasticsearch. If you are trying to restore a Compute, follow disaster recovery methods.

Note When you install compute as a Virtual machine on the VMWare platform, Vswitch or DV Switch port groups associated eth1 and eth2 should allow for packets associated with Mac address other than eth1 and eth2 to be forwarded.

Step 5 Click **OK**.
Installing a DCNM Compute

With Native HA installations, the HA status be **Ok** before DCNM can be converted to cluster mode.

A Cisco DCNM Compute can be installed using an ISO or OVA of a regular Cisco DCNM image. It can be deployed directly on a bare metal using an ISO or a VM using the OVA. After you deploy Cisco DCNM, using the DCNM web installer, choose **Compute** as the install mode for Cisco DCNM. On a Compute VM, you will not find DCNM processes or postgres database; it runs a minimum set of services required to provision and monitor applications.

For Cisco DCNM 11.1, the specifications of compute node should be atleast 16 vpcus, 32G RAM, 500G hard disk. When deploying DCNM OVA for a compute node, this matches with large install mode.

Follow the instructions on the Web installer to install the compute. After the compute installation is complete, it appears as **Discovered** in the Applications > Compute tab. Compute will not join the cluster unless a user with admin privileges logs into the DCNM, and adds the compute to the cluster. After it is added, the status of the compute changes to **Joined**.

Preferences

This tab is relevant to the cluster mode of deployment, where the application instances are placed. This tab enables you to compute cluster connectivity and configure the Cluster Connectivity preferences.

Compute Cluster Connectivity

Configure the connectivity interfaces for the cluster node.

- In the InBand Fabric field, enter the inband-fabric IP address for the compute cluster.
- In the Out-of-Band field, enter the out-of-band IP address for the compute cluster.
- In the Inter Application field, enter the IP address for the applications.

Object Archival Configuration

The NIA application collects tech support logs for all switches in Fabric, and thereby, determines the advisory based on the data. The logs can be saved on the Cisco DCNM server for further analysis or troubleshooting. If you need to download these logs before their life span ends or to create some space on the DCNM server, you can move the logs to a remote server.

In the URI field, enter the relative path to the archive folder, in the format `host[:port]/[path to archive]`. Enter the user name and password to access the URI, in the **User Name** and **Password** field. Click **Submit** to archive the logs.

Telemetry Network Configuration

For the Network Insights Resource (NIR) application, a UTR micro-service running inside the NIR connects to the discovered switches either through an interface and receives telemetry traffic. By default, the telemetry is configured to be streaming via the in-band (eth2) interface. You can choose to change it to out-of-band interface from the drop-down list.
Cisco DCNM Cluster Mode

Starting from Cisco DCNM 11.1, in a DCNM HA setup (active + standby), 80 switches with Endpoint Locator, Virtual Machine Manager, config compliance are validated. For a network exceeding 80 switches, with these features in a given DCNM instance, (maximum qualified scale is 256 switches), it is recommended to add 3 compute nodes. This is called the clustered mode in Cisco DCNM.

Compute nodes are scale out application hosting nodes that run resource-intensive services to provide services to larger fabric. When compute nodes are added, all containerized services run only on these nodes. This includes Config Compliance, Endpoint Locator, Virtual Machine Manager. The Elasticsearch time series database for these features run on compute nodes in case of clustered mode.

While DCNM core functionalities only run on the DCNM HA nodes. Addition of compute nodes beyond 80 switches is to build a scale out model for DCNM and related services.

From Release 11.2(1), you can configure IPv6 address for Network Management for compute clusters. However, DCNM does not support IPv6 address for containers and must connect to DCNM using only IPv4 address only.

Replication of Containers for DCNM Services

The replication and deployment of the containers is dependent on how the services are configured. There are three modes.

1. Applications that do not require replication (single container applications, such as config compliance or Endpoint Locator of LAN fabric installation). If a compute node that is hosting this container is lost, a new container is brought up on the available computes.

2. Applications that get one container per compute. If a new compute is added, automatic creation of container for the new compute happens on runtime (such as Elasticsearch infra application). If a compute node is lost, the corresponding container is lost as well and is unavailable until the compute comes back.

3. Applications that require their containers be replicated based on a certain count (defined by the application). These containers are generally spread evenly across the computes. When a compute goes down, new instances are created to match the required count and spread evenly on the rest of the computes. When the computes come back, they are not rebalanced as of DCNM11.1.

 Docker default algorithm tries to round robin spinning up of containers for the services. All computes will be of uniform resource.

Scale

In Cisco DCNM 11.1, for less than 80 switches managed by DCNM, you do not require compute nodes. For switches greater than 80 and less than 250, you require 3 compute nodes.

For more information about the DCNM scale information, see https://www.cisco.com/c/en/us/td/docs/switches/datacenter/sw/11_1_1/scalability_guide/b_scale_guide_dcnm_11_1.html.

It is recommend to use 3 compute nodes. Also, Cisco DCNM is validated for 3 compute nodes.
Sizing

For Cisco DCNM 11.1, the specifications for compute node are the same as Cisco DCNM, that is, 16 vpcus, 32G RAM, 500G hard disk.

For the next release of Cisco DCNM, the specifications will be changed to accommodate new applications within Cisco DCNM.

Subnet Requirements

In general, eth0 of the Cisco DCNM server is used for Management, Eth1 is used to connect Cisco DCNM Out-Of-Band with Switch Management, and Eth2 is used for InBand front panel connectivity of Cisco DCNM. The same concept extends into compute nodes as well. Some services in cluster mode have additional requirements. That is, some services require a switch to reach into Cisco DCNM, for example, Route Reflector to Endpoint Locator connection or switch streaming telemetry into the Telemetry receiver service of the application. This IP address needs to remain sticky during all failure scenarios. For this purpose, a pool needs to be provided to Cisco DCNM at the time of cluster configuration from both Out of Band and InBand subnets.

How Do the Compute Nodes Communicate with DCNM Nodes?

The compute nodes communicate with DCNM nodes using APIs.

How Do the Compute Nodes Communicate with Each Other?

The compute nodes communicate with each other using eth0 IP addresses. When in clustered mode, it is recommended to have at least 16 IP addresses in the pool for the containers.

Enabling the Compute Cluster

The Compute cluster feature provides a scale mechanism to serve large fabrics and advanced features such as Telemetry, Advisories, and so on. The default status of Cisco DCNM in any of the install modes does not support having computes as a cluster.

Note

Compute cluster is supported only on LAN Fabric mode. The Classic LAN and the IP Fabric for Media (IPFM) installations do not support the Compute cluster functionality.

The values you specify under the Preferences tab are not actually subnets with their gateway; rather, they are IP prefix pools of addresses that can be used within the services that run inside a container. Hovering your cursor over the ? displays the acceptable input. Cisco DCNM computes constantly communicates with DCNM controllers. This ensures that the required applications are running on only theComputes that are functioning. In a native HA environment, only the active DCNM initiates the compute cluster; the standby DCNM takes over if the active one fails. In Cisco DCNM 11.1(1), a maximum of three computes are supported for each Cisco DCNM server installation.

For more information about the Cisco DCNM Cluster mode, see the Cisco DCNM Cluster Mode, on page 310 section.

To enable the Compute Cluster Connectivity, perform the following steps:
Procedure

Step 1 In the Cisco DCNM homepage's left pane, click Applications.

Step 2 Click the Preferences tab.

Step 3 In the InBand Fabric field, specify the IP prefix pool to connect applications through the inband path.

InBand Fabric is required for applications that connect with switches over the Underlay or Front Panel network. For example, EPL and Telemetry over In-Band. These IP addresses are visible outside of the compute. The InBand Pool Mask should range between /24-/28.

Step 4 In the Out-Of-Band field, specify the IP prefix pool to connect applications with the fabric management network.

Out-Of-Band is required for applications that connect with switches over the Management network of the switches, e.g., Telemetry. These IP addresses are visible outside of the compute. The Out of Band Pool range should be between /24 - /28.

Step 5 In the Inter Application field, specify the IP prefix pool for inter-application communication.

This pool is used by microservices to communicate with each other, for example, Endpoint Locator trying to add entries to Elasticsearch. This network is not directly visible externally, but it is overlayed on top of the eth0 interfaces of the computes. The applications also communicate with the DCNM server using this network.

You can specify a pool that does not fall in either of the above subnets. Inter Application Network is not visible outside of the DCNM cluster, it is an internal network for communication between multiple services. But, the network should not conflict with the endpoints that the services try to reach. The Inter-Application Pool mask should be between /20 to /24 and, it should be wider than the Out of Band or Inband Pool Mask.

Step 6 Click Enable.

Disaster Recovery

The appmpgr backup operation on a compute gathers all the data that is required to re-install the compute. Also, this operation preserves all the application data. Using the tar ball generated by the backup command, the appmpgr restore command restores all the data into the compute. This is similar to how you restore Cisco DCNM from a backup data.
When a compute needs to be reinstalled in a disaster recovery mode, you need to restore the application data into a new installation. It is also possible that the Cisco DCNM servers need to be restored into a new server. You may find the following scenarios:

- Cisco DCNM Controllers need to be recovered
- Cisco DCNM Computes need to be recovered
- Cisco DCNM Controllers and Computes need to be recovered

Scenario 1

You can use SSH to access the computes as root, and enter the `appmgr stop afw` command on each of the compute nodes. Now, the DCNM controllers can be powered off and restored onto a new DCNM Installation.

After the restore of the DCNM controllers is complete, verify that DCNM controller is completely up and the Applications screen is loading. Verify that all computes are showing up as offline. Now, enter the `appmgr start afw` command on each of the computes. After a while ensure all the applications are running and Computes are showing as “Joined”.

Scenario 2

In this case, enter the `appmgr stop afw` command on the compute that is being restored, after the compute shows offline in the Compute tab. Restore the compute on a new installation.

Perform one restore after the other.

Scenario 3

In this case, first perform scenario 1, and then perform scenario 2.

Failure Scenario

Recommendation for minimum redundancy configuration with a DCNM OVA install is as follows:

- DCNM Active Node(Active) and compute node 1 in server 1
- DCNM Standby Node and compute node 2 in server 2
- Compute node 3 in server 3

When one DCNM node is lost, the standby DCNM node takes full responsibility of running the core functionality.

Applications may continue to function at loss of one compute node, sometimes with limited functionality. If this situation persists for a longer duration, performance of the applications will be affected. When more than 1 node is lost, services which write data to Elasticsearch will be affected until the 2 nodes are brought back up. For example, Virtual Machine Manager, Endpoint Locator etc. All of the 250 switches' Config compliance will run on a single compute and hence may notice relatively low performance.

Hence, you need to maintain 3 compute nodes at any time, and at an event any of these are lost, they must be brought up for the services to function as expected.
Converting from Un-Cluster to Cluster Mode with Existing Elasticsearch Data

Note

Every time Cisco DCNM is converted from un-clustered to clustered, run the steps mentioned below to rebuild the database schema and preserve the Elasticsearch data.

Read through the complete procedure before proceeding with the Cluster mode conversion.

To convert from un-cluster to cluster mode, perform the following steps.

Procedure

Step 1
From the left pane, choose Preferences, and then click the Preferences tab.

Step 2
Take backup of the Elasticsearch data by executing the appmgr afw backup-es command.

• If the setup is HA, repeat the step on DCNM Standby.

Step 3
Copy the tarball file produced from Step 2 to Compute 1.

• If the setup is HA, copy the tarball file on DCNM Standby to Compute 2.

Step 4
Restore the Elasticsearch data by executing the appmgr afw restore-es Starball command on the Compute node, where Starball is the location of the tarball file copied in Step 3.

• If the setup is HA, repeat the step on Compute 2.

Step 5
Proceed with adding the Compute nodes. Ensure that Compute 1 is added before Compute 2.

• If the setup is HA, ensure that Compute 2 is added before the rest of the computes (except for Compute 1).
Border Provisioning Use Case in VXLAN BGP EVPN Fabrics - VRF Lite

External connectivity from data centers is a prime requirement. Virtual eXtensible Local Area Network (VXLAN) Border Gateway Protocol (BGP) Ethernet VPN (EVPN) based data center fabrics provide east-west connectivity by distributing IP-MAC reachability information among various devices within the fabric. While the EVPN Multi-Site feature provides intersite connectivity, the VRF Lite feature is used for connecting the fabric to an external Layer 3 domain. Tenants, typically represented by virtual routing and forwarding instances (VRFs) can procure external connectivity via special nodes called borders. In this way, tenant workloads in one data center fabric can have Layer 3 connectivity to hosts within the same VRF in other fabrics. This chapter describes LAN Fabric provisioning of the Nexus 9000-based border devices through the Cisco® Data Center Network Manager (DCNM) for the VRF Lite use case. This use case shows you how to extend a VRF to an external fabric. In DCNM 11.1(1), configuration parameters are enhanced as follows:

Configuration methods - You can configure VRF Lite through automatic configuration and through the DCNM GUI.

Supported destination devices - You can extend VRFs from a VXLAN fabric to Cisco Nexus and non-Nexus devices. A connected non-Cisco device can also be represented in the topology.

- Prerequisites, on page 315
- Sample Scenarios, on page 317
- VRF Lite Through the DCNM GUI – From a BGW Device to a Nexus 7000 Series Edge Router, on page 318
- VRF Lite Through the DCNM GUI – From a BGW Device To a Non-Nexus Device, on page 330
- Automatic VRF Lite (IFC) Configuration, on page 337
- Deleting VRF Lite IFCs, on page 340
- Additional References, on page 342
- Appendix, on page 342

Prerequisites

- The VRF Lite feature requires Cisco Nexus 9000 Series NX-OS Release 7.0(3)I6(2) or later.
- Familiarity with VXLAN BGP EVPN data center fabric architecture and top-down based LAN fabric provisioning through the DCNM.
• Fully configured VXLAN BGP EVPN fabrics including underlay and overlay configurations on the various leaf and spine devices, external fabric configuration through DCNM, and relevant external fabric device configuration (edge routers, for example).

 • A VXLAN BGP EVPN fabric (and its connectivity to an external Layer 3 domain for north-south traffic flow) can be configured manually or using DCNM. This document explains the process to connect the fabric to an edge router (outside the fabric, towards the external fabric) through DCNM. So, you should know how to configure and deploy VXLAN BGP EVPN and external fabrics through DCNM. For more details, see the Control chapter in the Cisco DCNM LAN Fabric Configuration Guide, Release 11.1(1).

• Ensure that the role of the designated border device is Border or Border Spine or Border Gateway (a switch on which Multi-Site and VRF Lite functions co-exist). To verify, right-click the switch and click Set role. You can see that (current) is added to the current role of the switch. If the role is inappropriate for a border device, set the appropriate role.

• Create an external fabric. If you connect the VXLAN fabric border device to a Nexus 7000 Series switch (or other Nexus device) for external connectivity, add the Nexus 7000 series switch to the external fabric and set its role to Edge Router. In DCNM 11.1(1), you can import switches to an external fabric, and update selected configurations. For details, refer the Creating an External Fabric section in the Control chapter.

• To allow inter-subnet communication between end hosts in different VXLAN fabrics, where the subnets are present in both fabrics, you must disable the Advertise Default Route feature for the associated VRF. This will result in /32 routes for hosts being seen in both fabrics. For example, Host1 (VNI 30000, VRF 50001) in Fabric1 can send traffic to Host2 (VNI 30001, VRF 50001) in Fabric2 only if the host route is present in both fabrics. When a subnet is present in only one fabric, then default route is sufficient for inter-subnet communication. Steps:

 1. Go to the fabric’s VRFs screen and select the VRF.

 2. Click the Edit option at the top left part of the screen.

 3. In the Edit VRF screen, click Advanced in the VRF Profile section.

 4. Clear the Advertise Default Route checkbox and click Save.

 5. Follow this procedure for all VRFs deployed on the VXLAN fabrics’ border devices connected through VRF Lite.

 Note If you create a new VRF, ensure that you clear the Advertise Default Route checkbox.

 Note For an explanation on the VRF Lite feature, see the Cisco Programmable Fabric with VXLAN BGP EVPN Configuration Guide document.
Sample Scenarios

Scenarios explained in this document:

- VRF Lite through the DCNM GUI – From a BGW device to a Nexus 7000 Series edge router.
- VRF Lite through the DCNM GUI – From a BGW device to a non-Nexus device.
- Automatic VRF Lite (IFC) Configuration.

DCNM GUI configuration only - From BGW and BGW Spine devices, you can create an IFC only via the DCNM GUI. Also, you can edit and delete VRF Lite IFCs only through the DCNM GUI.
VRF Lite Through the DCNM GUI – From a BGW Device to a Nexus 7000 Series Edge Router

- The topology displays the VXLAN BGP EVPN fabric **Easy7200** connected to the external fabric **External65000** (the cloud icon). The BGWs of the VXLAN fabric are connected to the edge router **n7k1-Edge1** (not visible in the image) in the external fabric.

- The BGWs are special devices that allow clear control and data plane segregation from the fabric domain to the external Layer 3 domain while allowing for policy enforcement points for any inter-fabric traffic. Network configurations for the VXLAN fabric are provisioned through DCNM. For external Layer 3 reachability from hosts connected to leaf switches within the fabric, border devices need to be provisioned with the appropriate VRF configuration. Multiple border devices in the fabric ensure redundancy in the
case of failures as well as effective load distribution. This document shows you how to enable Layer 3 north-south traffic between the VXLAN fabric and the external fabric.

- Before VRF Lite configuration, end hosts associated with a specific VRF can send traffic to each other, but only within the fabric. After VRF Lite configuration, end hosts can send traffic outside the VXLAN fabric, towards other (VXLAN or classic LAN) fabrics

Enabling the VRF Lite feature

For this example, we will enable connectivity between Easy7200 and External65000. The steps:

Step 1 - Deploy IFC prototypes on physical interfaces, on N9K-3-BGW and N9K-4-BGW.

Step 2 - Deploy the individual VRF extensions on the BGWs N9K-3-BGW and N9K-4-BGW.

Step 3 - Deploy VRF extensions on the edge router n7k1-Edge1.

The third step completes the configuration between **Easy7200** and **External65000**.

Step 1 – Deploying IFC prototypes on physical interfaces on N9K-3-BGW and N9K-4-BGW

For VRF Lite configuration, you should enable eBGP peering between the fabric’s BGW interfaces and the edge router’s interfaces, through point-to-point connections. The BGW physical interfaces are:

- **eth 1/48 on N9K-3-BGW**, towards **eth 7/1/4 on n7k1-Edge1**.

- **eth 1/47 on N9K-4-BGW**, towards **eth 7/4/1 on n7k1-Edge1**.

Note

You can also enable VRF Lite in a back-to-back topology wherein Border/Border Gateways are directly connected to each other.

1. Click **Control > Fabric Builder**. The Fabric Builder screen comes up.

2. Click the **Easy7200** box. The fabric topology comes up.

3. Click **Tabular view**. The **Switches | Links** screen comes up.

 The **Links** tab lists fabric links. Each row either represents a link between two devices within **Easy7200** or a link from a device in **Easy7200** to an external fabric.

Note

An inter-fabric link is a physical connection between two Ethernet interfaces or a virtual connection (such as a fabric overlay between two loopback interfaces). When you add a physical connection between devices, the new link appears in the **Links** tab by default.

4. Select the link checkbox (that represents the connection between **eth 1/48 on N9K-3-BGW**, towards **eth 7/1/4 on n7k1-Edge1**) and click the Edit icon at the top left part of the screen.
The fields are:

Scope – The source and destination fabrics are displayed. For an intra-fabric link, only one fabric name (Easy7200) is displayed since the source and destination interfaces are part of the same fabric. An inter-fabric link is displayed as **Easy7200 <-> External65000**.

Name – The name is formed with the following syntax:

source device ~ source interface --- destination device ~ destination interface.

So, the entry is **N9K-4-BGW ~ Ethernet1/47 --- n7k1-Edge1 ~ Ethernet7/4/1**.

Policy – The policy used for creating VRF Lite, ext_fabric_setup_11_1 is displayed.

Info – This displays the status of the link (Link Present, Neighbor Present, Neighbor Missing, etc).

Admin State – This displays the administrative state of the link (Up, Down, etc).

Oper State – This displays the operational state of the link (Up, Down, etc).

The **Link Management – Edit Link** comes up.

Some fields are explained:

Link Sub-Type - By default, the VRF_Lite option is displayed.
Link Template – The default template for a VRF Lite IFC, `ext_fabric_setup_11_1`, is displayed. The template enables the source and destination interfaces as Layer 3 interfaces, configures the `no shutdown` command, and sets their MTU to 9216.

You can edit the `ext_fabric_setup_11_1` template or create a new one with custom configurations.

In the General tab, the BGP AS numbers of Easy7200 and External65000 are displayed. Fill in the other fields as explained.

![General Tab](image)

IP_MASK – Enter the IP address prefix to assign an IP address for the Ethernet 1/48 sub interfaces, the source interface of the IFC. A subinterface is associated for each VRF extended on this IFC, and a unique 802.1Q ID is assigned to it.

For example, an 802.1Q ID of 2 is associated with subinterface Eth 1/48.2 for VRF 50000 traffic, and 802.1Q ID of 3 is associated with Eth 1/48.3 and VRF 50001, and so on.

(The VRF extension deployment is explained in a subsequent section).

The IP prefix is reserved with the DCNM resource manager. Ensure that you use a unique IP address prefix for each IFC you create in the topology.

NEIGHBOR_IP – Enter the IP address of the eBGP neighbor for each VRF extension deployed on this IFC, on the N9K-3_BGW end.

Inter-fabric traffic from VRFs for an IFC will have the same source IP address (2.2.2.2/24) and destination IP address (2.2.2.1).

5. Click Save at the bottom right part of the screen.

The Switches|Links screen comes up again. You can see that the IFC entry is updated with the VRF Lite policy template used for creating the IFC, `ext_fabric_setup_11_1`. A representation of the topology is shown below.
6. Similarly, create an IFC from **eth 1/47** on **N9K-4-BGW** towards **eth 7/4/1** on **n7k1-Edge1**. An entry is seen in the **Links** screen. A representation of the topology is shown below.
7. Click **Save and Deploy** at the top right part of the screen. The **Links** tab after executing **Save and Deploy** looks like this. The links on which IFC has deployed have the relevant policy configured in the **Policy** column.

![Diagram showing network topology and links]

8. Go to the **Scope** drop down box at the top right part of the screen and choose **External65000**. The external fabric **Links** screen is displayed. You can see that the two IFCs created from **Easy7200** to **External65000** is displayed here.
When you create an IFC or edit its setting in the VXLAN fabric, the corresponding entry is automatically created in the connected external fabric.

9. Click **Save and Deploy** to save the IFCs creation on **External65000**.

Base configurations – For VRF Lite to function, appropriate route maps and policies that apply to VRFs have to be deployed on the border devices **N9K-3-BGW** and **N9K-4-BGW**. You do not need to manually enable the base configurations. They are automatically deployed via a default template **ext_base_border_vrflite_11_1**.

For a device with a Border Leaf or Border Spine role, the base configurations are deployed when you execute the **Save and Deploy** operation (available in the fabric topology screen [via the Fabric Builder screen > Fabric Box]) for the first time in a fabric.

For a Border Gateway or Border Gateway Spine role, the base configurations are deployed when you deploy the first VRF Lite IFC on the device.

You can edit the **ext_base_border_vrflite_11_1** template for specific needs, but only before you deploy a template instance. The configurations are noted in the **Appendix** section.
The first step in the VRF Lite configuration scenario, creating IFCs on the border devices and edge router, is complete. Next, the VRF extensions are deployed on the switches.

Step 1 - Deploy IFC prototypes on physical interfaces, on N9K-3-BGW and N9K-4-BGW.

Step 2 - Deploy the individual VRF extensions on the BGWs N9K-3-BGW and N9K-4-BGW.

Step 3 - Deploy VRF extensions on the edge router n7k1-Edge1.

The third step completes the configuration between Easy7200 and External65000.

Step 2 - Deploy the individual VRF extensions on the BGWs N9K-3-BGW and N9K-4-BGW

During the IFC creation process, base configurations are created, and IP addresses are reserved for the interfaces that transport the inter-fabric traffic on N9K-3-BGW and N9K-4-BGW. In this step, the VRF and VRF extension configuration is deployed on the interfaces.

To extend VRFs beyond the fabric, the VRFs should have been created and deployed on relevant fabric devices, except the border devices.

The steps are:

1. Click **Control > Networks and VRFs**. The **Networks & VRFs** screen comes up.
2. Click **Continue**. The **Select a Fabric** screen comes up.
3. Select **Easy7200** and click **Continue** at the top right part of the screen.

 The **Networks** screen comes up.
4. Click **VRFs** at the top right part of the screen. The **VRFs** screen comes up.
5. Select the VRF that you want to deploy (**MyVRF_5000** in this case) and click **Continue** at the top right part of the screen.
The Easy7200 fabric topology comes up.

6. Select the Multi-Select checkbox at the top right part of the screen and drag the cursor across the BGWs on which you want to deploy the VRF and VRF extension configuration.

The VRF Extension Attachment screen comes up. Each row represents a switch and each tab a VRF. Update settings for each tab as explained.
In the **Extend** column, click on **NONE** and choose the **VRF_LITE** option from the drop down box. Do this for the second row too.

Select the checkboxes in both rows.

The **Extension Details** section comes up at the bottom of the screen. It displays the IFCs created on the selected switches, wherein each row represents an IFC.

Select the IFC check boxes in both rows.

After selecting the IFCs, the screen looks like this.

Click **Save** at the bottom right part of the screen.

The fabric topology screen comes up.
7. Click the **Preview** option at the top right part of the screen to preview VRF and VRF extension configuration.

8. Click **Deploy** at the top right part of the screen.

 At the bottom right part of the screen, the color codes that represent different stages of deployment are displayed. The color of the switch icons changes accordingly (Blue for Pending state, yellow for In Progress state when the provisioning is in progress, red for failure state, green when successfully deployed).

 When the switch icons turn green, it means that the VRFs are successfully deployed.

The second step in the VRF Lite configuration scenario, deploying VRF extensions on the border devices is complete. Next, the VRF extensions are deployed on the edge router **n7k1-Edge1**.

Step 1 - Deploy IFC prototypes on physical interfaces, on **N9K-3-BGW** and **N9K-4-BGW**.

Step 2 - Deploy the individual VRF extensions on the BGWs **N9K-3-BGW** and **N9K-4-BGW**.

Step 3 - Deploy VRF extensions on the edge router **n7k1-Edge1**.

The third step completes the configuration between **Easy7200** and **External65000**.

Step 3 - Deploy VRF extensions on the edge router **n7k1-Edge1**

In order to extend VRFs on the edge router, keep a note of the following fields. VRF extension on the border device is on a per interface basis.

- **IP_MASK** - This will become the neighbor address at the edge router end and mask will be the local mask on the edge router. This is derived from the IFC prototype created in the earlier step.

- **Easy Fabric ASN** - This will become neighbor ASN from the edge router end. This is derived from the IFC prototype created in the earlier step.

- **Dot1Q tag** - This will be same on the edge router. This is derived from the VRF extension table.

- **Neighbor ASN** - This will become LOCAL ASN on the edge router. IFC prototype.

- **Neighbor IP** - This will become Local IP for sub-interface on the edge router. IFC prototype.

- **Destination port** - Will be local port on edge router upon which extension will be deployed.

You have deployed VRF extensions for **MyVRF_50000** from the BGWs **N9K-3-BGW** and **N9K-4-BGW**. Now, you should deploy the VRF extensions on the other end of the links, on **n7k1-Edge1**. In DCNM 11.1, the CLI template used for this is **External_VRF_Lite_eBGP**.

eBGP configuration on the edge router

1. In the **External65000** fabric topology screen, click **Tabular view**.

 The **Switches | Links** screen comes up.

2. Select the switch checkbox and click the **View/Edit Policies** button.
The **View/Edit Policies** screen comes up.

3. Click + at the top left part of the screen to add a policy, and fill in the **Add Policy** screen as shown in the image.

 You can use a user defined template too in the **Policy** field.

 Note

 Note the policy ID for this VRF extension. It is useful when deleting the policy to remove the extension, when applicable.

 This defines a policy from the edge router towards **N9K-3-BGW**.

4. As per the earlier steps, create a policy for the VRF extension towards **N9K-4-BGW**. The **Neighbor IPv4 Address** field for the second extension is updated with 3.3.3.3.

Sub interface policy on Edge Router

1. In the **External65000** fabric topology screen, click **Tabular view**.

 The **Switches | Links** screen comes up.

2. Select the switch checkbox and click the **Manage Interfaces** button.
The Manage Interfaces screen comes up.

3. As shown in the image, select the interface connected to the border device (in this case Eth7/1/4), and click + at the top left part of the screen. Then, fill the Add Interface screen from corresponding IFC and VRF extensions on the border device.

The example shows a break out port on the Cisco Nexus 7000 Series switch. This breakout must be performed using the DCNM breakout policy (the template name is breakout_interface). If this is not done, the subinterface deletion is blocked by DCNM.

4. Click Save to save the settings, and Deploy to deploy the settings onto the switch.

5. As explained in the earlier steps, create another subinterface policy for the VRF extension towards N9K-4-BGW. The Subinterface IP field for the second extension is updated with 3.3.3.1.

The third step in the VRF Lite configuration scenario, deploying VRF extensions on the edge router N7k1-Edge1 is complete. This step completes the configuration between Easy7200 and External65000.

VRF Lite Through the DCNM GUI – From a BGW Device To a Non-Nexus Device

In this case, the non-Nexus device is an ASR 9000 Series router, ASR9K-1-Edge which is connected to the BGW N9K-3-BGW in the Easy7200 fabric. The router is not imported through DCNM nor discovered via
CDP or LLDP. To represent the non-Nexus device, you must create an external fabric. Refer the Creating an External Fabric topic to know how to create an external fabric. For this example, the external fabric External65000 is created.

The device and connection are displayed in the DCNM topology after the IFC creation between ASR9K-1-Edge and N9K-3-BGW.

Note
A connected non-Cisco device can also be represented in the topology.

The topology:

![Topology Diagram]

The steps are:

Step 1 - Deploy an IFC prototype on the N9K-3-BGW physical interface that connects to ASR9K-1-Edge.

Step 2 - Deploy the individual VRF extensions on N9K-3-BGW.

This step completes the configuration between Easy7200 and the non-Nexus device.

Step 1 - Deploy an IFC prototype on the N9K-3-BGW physical interface that connects to ASR9K-1-Edge.
For VRF Lite configuration, you should enable eBGP peering between the fabric’s BGW interface and the ASR9K-1-Edge interface, through a point-to-point link.

1. Click Control > Fabric Builder. The Fabric Builder screen comes up.
2. Click the rectangular box that represents the Easy7200 fabric. The fabric topology screen comes up.
3. Click Tabular view. The Switches | Links screen comes up.

The Links tab lists fabric links. Each row either represents a link between two devices within Easy7200 or a link from a device in Easy7200 to an external fabric.

4. Click + to add a new link. The Link Management – Add Link screen comes up.

```
<table>
<thead>
<tr>
<th>Link Management – Add Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Add Link</td>
</tr>
<tr>
<td>Link Type</td>
</tr>
<tr>
<td>Inter-Fabric</td>
</tr>
<tr>
<td>Link Sub-Type</td>
</tr>
<tr>
<td>VRF_Lite</td>
</tr>
<tr>
<td>Link Template</td>
</tr>
<tr>
<td>int_intra_fabric_num_link_11_1</td>
</tr>
<tr>
<td>Source Fabric</td>
</tr>
<tr>
<td>Easy7200</td>
</tr>
<tr>
<td>Destination Fabric</td>
</tr>
<tr>
<td>Easy7200</td>
</tr>
<tr>
<td>Source Device</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Destination Device</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Source Interface</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Destination Interface</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
```

Fill or choose the fields as noted:

Link Type – Choose Inter-Fabric.

Link Sub-Type – VRF_Lite is displayed by default.

Link Template - By default, the ext_fabric_setup_11_1 template is populated.

Note

You can add, edit, or delete user-defined templates. See Template Library section in the Control chapter for more details.

- **Source Fabric** - Easy7200 is selected by default.
- **Destination Fabric** – Select External65000.
- **Source Device** and **Source Interface** - Choose the BGW and the interface that connects to the ASR device.
- **Destination Device** and **Destination Interface**— Destination device and interface do not appear in the drop down box. Type any string here that will help identify the device. This name appears in the external fabric topology screen in the Fabric builder screen.
General tab in the Link Profile section.

Local BGP AS# - In this field, the AS number of the source fabric Easy7200 is autopopulated.
IP_MASK - Enter the IP address and mask that is used in the VRF Extension Sub-interfaces.
NEIGHBOR_IP - Enter the IP address that is used on the External box as local interface address for the VRF Extensions.
NEIGHBOR_ASN - In this field, the AS number of the external fabric External65000 is autopopulated since we selected it as the external fabric.

After filling up the Add Link screen, it looks like this:

5. Click Save at the bottom right part of the screen.

The Switches|Links screen comes up again. You can see that the IFC entry is updated.

6. Click Save and Deploy at the top right part of the screen.

The links on which the IFC is deployed has the relevant policy (ext_fabric_setup_11_1) configured in the Policy column.

7. Go to the Scope drop down box at the top right part of the screen and choose External65000. The external fabric Links screen is displayed. You can see that the IFC created from Easy7200 to the ASR device is displayed here.

8. Click Save and Deploy.

9. Go to the external fabric External65000 and execute the Save and Deploy option the top right part of the Fabric Builder topology screen.

The first step in the VRF Lite configuration scenario from a BGW to a non-Nexus device is complete. Next, the VRF extensions are deployed on the BGW towards the ASR device.

Step 2 - Deploy the individual VRF extensions on N9K-3-BGW
To extend VRFs beyond the fabric, the VRFs should have been created and deployed on relevant fabric devices, excepting the border devices.

1. Click Control > Networks and VRFs. The Networks & VRFs screen comes up.
2. Click Continue. The Select a Fabric screen comes up.
3. Select Easy7200 and click Continue at the top right part of the screen.

The Networks screen comes up.

4. Click VRFs at the top right part of the screen. The VRFs screen comes up.

5. Select the VRF that you want to deploy (MyVRF_5000 in this case) and click Continue at the top right part of the screen.

The Easy7200 fabric topology comes up.

6. Double-click the N9K-3-BGW icon on which you want to deploy the VRF and VRF extension configuration.

The VRF Extension Attachment screen comes up. Each row represents a switch and each tab a VRF. Only one VRF is extended in this example.
In the **Extend** column, click on **NONE**. A drop down box appears. Choose the **VRF_LITE** option, and click outside the row.

Select the checkbox next to the switch.

The **Extension Details** section comes up at the bottom of the screen. It displays the IFCs created on the selected switches, wherein each row represents an IFC.

Select the IFC check box. After selecting the IFCs, the screen looks like this.
Click **Save** at the bottom right part of the screen.

The fabric topology screen comes up.

7. Click the **Preview** option at the top right part of the screen to preview VRF and VRF extension configuration.

8. Click **Deploy** at the top right part of the screen.

 At the bottom right part of the screen, the color codes that represent different stages of deployment are displayed. The color of the switch icons changes accordingly (Blue for Pending state, yellow for In Progress state when the provisioning is in progress, red for failure state, green when successfully deployed, and so on).

 When the switch icons turn green, it means that the VRF is successfully deployed.

 The second step in the VRF Lite configuration scenario, deploying VRF extensions on the border device towards the non-Nexus ASR device is complete.

 The device and connection will display in the **Easy7200** and **External65000** fabrics.
Automatic VRF Lite (IFC) Configuration

You can configure VRF Lite IFCs automatically by specifying an IP address prefix in the VXLAN fabric settings screen.

Note
The view is from Control > Topology. In the fabric topology screen within Fabric Builder, only the individual fabric and the connected external fabric are displayed.
The topology displays VXLAN BGP EVPN fabrics Easy60000 (at the left) and Easy7200 (at the right) and external fabric External65000 (at the top). The border leaf of one VXLAN fabric is connected to the border leaf of the other through the edge router n7k1-Edge1 in the external fabric.

The border leafs are special devices that allow clear control and data plane segregation from the fabric domain to the external Layer 3 domain while allowing for policy enforcement points for any inter-fabric traffic. Multiple border devices in the fabric ensure redundancy in the case of failures as well as effective load distribution. This document shows you how to enable Layer 3 north-south traffic between the VXLAN fabrics and the external fabric.

Before VRF Lite configuration, end hosts associated with a specific VRF can send traffic to each other, but only within the fabric. After VRF Lite configuration, end hosts can send traffic across fabrics.

Network configurations for the VXLAN fabric are provisioned through DCNM.

The template used for VRF Lite IFC auto configuration is ext_fabric_setup_11_1. You can edit the ext_fabric_setup_11_1 template or create a new one with custom configurations.

Automatic VRF Lite Creation Rules

- Ensure that no user policy is enabled on the interface that connects to the edge router. If a policy exists, then the interface will not be configured.

- Auto configuration is only provided for the Border or Border Spine role in the VXLAN fabric and Edge Router role in the connected external fabric device.
To deploy configurations in the external fabric, ensure that the Fabric Monitor Mode check box is cleared in the External65000 settings screen. When an external fabric is set to Fabric Monitor Mode Only, you cannot deploy configurations on its switches.

There are four modes available for VRF Lite IFC creation.

1. **Manual** - Use the GUI to deploy the VRF Lite IFCs as shown in the earlier section.
2. **To External Only** - Configure a VRF Lite IFC on each physical interface of a border leaf (Spine) device in the VXLAN fabric that is connected to a device with the Edge Router role in the external fabric.
3. **Back to Back Only** - Configure VRF Lite IFCs between directly connected border leaf (Spine) device interfaces of different VXLAN fabrics.
4. **Both** - Use this option to configure IFCs for the modes To External Only and Back to Back Only.

The default mode in fabric settings is Manual Mode. In order to change the mode to any of the others, edit fabric settings. Under the Resources Tab, modify the VRF Lite Deployment field to one of the above mentioned auto config modes. In this example, ToExternalOnly option is chosen.

Once an auto config option is chose, two other fields in resource tab become visible and editable:

- **VRF Lite Subnet IP Range**: The IP address for VRF Lite IFC deployment is chosen from this range. The default value is set to 10.33.0.0/16. Best practice is to ensure that each fabric has its own unique range and distinct from any underlay range in order to avoid possible duplication. These addresses are reserved with the Resource Manager.
- **VRF Lite Subnet Mask**: By default its set to /30 which is best practice for P2P links.

![Edit Fabric](image)

Similarly, update the settings for the Easy60000 fabric too.

Once the fields are set, execute the Save and Deploy option in the VXLAN and external fabrics.
Deleting VRF Lite IFCs

Before deleting the IFC, remove all VRF extensions enabled on the IFC. Else, an error message is reported.

1. Go to the Links tab of the fabric.
2. Select the links with VRF Lite policy configured and click the delete button.
3. Click OK to confirm deletion.
4. Execute the Save and Deploy option in the fabric to reset the VRF Lite policy.

Deleting VRF Extensions deployed in External Fabric

This is a two part process:

1. Delete the sub interface created using interface TAB.

Note

Skip this step if the VRF extension is to a non-Nexus device.

2. Delete the policy created for eBGP external connection.

Deleting the sub-interface

Navigate to the Control->Interfaces page as shown below, select the sub-interface(s) to be deleted and the click the delete button.
Deleting the eBGP policy

Navigate to fabric builder page and select the relevant external fabric (External65000 in this example). Select the device and using the second mouse button select view edit policy.

Select the row for the policy ID used in eBGP policy create. Click the “X” as shown below to delete the policy.

Issue a save and deploy in external fabric to deploy the policy change.

Deleting IFCs Created By Automatic VRF Lite creation

Editing and deleting IFCs are done through the Link tab in the VXLAN fabric. The extra consideration for auto configured IFCs is that, in order to prevent the regeneration of IFC on next save and deploy, the mode should be changed back to manual mode, or Save config should be done only on the relevant devices.
Additional References

<table>
<thead>
<tr>
<th>Document Title and Link</th>
<th>Document Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco Programmable Fabric with VXLAN BGP EVPN Configuration Guide</td>
<td>This document explains external connectivity using VRF Lite.</td>
</tr>
</tbody>
</table>

Appendix

N9K-3-BGW Configurations

N9K-3-BGW (base border configurations) generated by template `ext_base_border_vrflite_11_1`

Note: `switch(config)#` refers to the global configuration mode. To access this mode, type the following on your switch: `switch# configure terminal`.

```
(config) #
ip prefix-list default-route seq 5 permit 0.0.0.0/0 le 1
ip prefix-list host-route seq 5 permit 0.0.0.0/0 eq 32
route-map extcon-rmap-filter deny 10
   match ip address prefix-list default-route
route-map extcon-rmap-filter deny 20
   match ip address prefix-list host-route
route-map extcon-rmap-filter permit 1000
   match ip address prefix-list default-route
route-map extcon-rmap-filter-allow-host deny 10
   match ip address prefix-list default-route
route-map extcon-rmap-filter-allow-host permit 1000
ipv6 prefix-list default-route-v6 seq 5 permit 0::/0
ipv6 prefix-list host-route-v6 seq 5 permit 0::/0 eq 128
route-map extcon-rmap-filter-v6 deny 10
   match ipv6 address prefix-list default-route-v6
route-map extcon-rmap-filter-v6 deny 20
   match ipv6 address prefix-list host-route-v6
route-map extcon-rmap-filter-v6 permit 1000
route-map extcon-rmap-filter-v6-allow-host deny 10
   match ipv6 address prefix-list default-route-v6
route-map extcon-rmap-filter-v6-allow-host permit 1000
```

N9K-3-BGW VRF extension configuration

```
(config) #
configure profile MyVRF_50000
  vlan 2000
  vn-segment 50000
interface vlan2000
  vrf member myvrf_50000
    ip forward
    ipv6 forward
    no ip redirects
```
no ipv6 redirects
mtu 9216
no shutdown

(config) #

vrf context myvrf_50000
 vni 50000
 rd auto
 address-family ipv4 unicast
 route-target both auto
 route-target both auto evpn
 ip route 0.0.0.0/0 2.2.2.1
 address-family ipv6 unicast
 route-target both auto
 route-target both auto evpn

router bgp 7200
 vrf myvrf_50000
 address-family ipv4 unicast
 advertise l2vpn evpn
 redistribute direct route-map fabric-rmap-redist-subnet
 maximum-paths ibgp 2
 network 0.0.0.0/0
 address-family ipv6 unicast
 advertise l2vpn evpn
 redistribute direct route-map fabric-rmap-redist-subnet
 maximum-paths ibgp 2
 neighbor 2.2.2.1 remote-as 65000
 address-family ipv4 unicast
 send-community both
 route-map extcon-rmap-filter out

(config) #

interface ethernet1/48.2
 encapsulation dot1q 2
 vrf member myvrf_50000
 ip address 2.2.2.2/24
 no shutdown

interface nve1
 member vni 50000 associate-vrf
configure terminal
 apply profile MyVRF_50000
CHAPTER 9

Border Provisioning Use Case in VXLAN BGP EVPN Fabrics - Multi-Site

This chapter explains LAN Fabric border provisioning using EVPN Multi-Site feature.

- Border Provisioning Use Case in VXLAN BGP EVPN Fabrics - Multi-Site , on page 345
- Prerequisites, on page 346
- Limitations, on page 347
- Save & Deploy Operation in the MSD Fabric, on page 347
- EVPN Multi-Site Configuration, on page 349
- Viewing, Editing and Deleting Multi-Site Overlays, on page 358
- Deleting Multi-Site IFCs, on page 358
- Creating and Deploying Networks and VRFs in the MSD Fabric, on page 359
- Deploying Pseudo-BGW (Legacy Site BGW), on page 363
- Additional References, on page 371
- Appendix, on page 371

Border Provisioning Use Case in VXLAN BGP EVPN Fabrics - Multi-Site

This section explains how to connect two Virtual eXtensible Local Area Network (VXLAN) Border Gateway Protocol (BGP) Ethernet VPN (EVPN) fabrics through DCNM using the EVPN Multi-Site feature. The EVPN Multi-Site configurations are applied on the Border Gateways (BGWs) of the two fabrics. Also, you can connect two member fabrics of a Multi-Site Domain (MSD).

Introduced in DCNM 11.0(1) release, MSD is a multifabric container that is created to manage multiple member fabrics. It is a single point of control for definition of overlay networks and VRFs that are shared across member fabrics. See Multi-Site Domain for VXLAN BGP EVPN Fabrics section in the Control chapter for more information on MSD.

For a detailed explanation on the EVPN Multi-Site feature, see the VXLAN BGP EVPN Multi-Site Design and Deployment document.

Configuration methods - You can create underlay and overlay Inter-Fabric Connections (IFCs) between member fabrics through auto-configuration and through the DCNM GUI.

vPC configuration is supported for BGWs with the role Border Gateway in the DCNM 11.1(1) release.
Supported destination devices - You can connect a VXLAN fabric to Cisco Nexus and non-Nexus devices. A connected non-Cisco device can also be represented in the topology.

Prerequisites

- The EVPN Multi-Site feature requires Cisco Nexus 9000 Series NX-OS Release 7.0(3)I7(1) or later.
- Familiarity with VXLAN BGP EVPN data center fabric architecture and configuration through DCNM.
- Familiarity with MSD fabrics, if you are connecting member fabrics of an MSD fabric.
- Fully configured VXLAN BGP EVPN fabrics that are ready to be connected using the EVPN Multi-Site feature, external fabric(s) configuration through DCNM, and relevant external fabric devices' configuration (for example, route servers).
 - VXLAN BGP EVPN fabrics (and their interconnection) can be configured manually or using DCNM. This document explains the process to connect the fabrics through DCNM. So, you should know how to configure and deploy a VXLAN BGP EVPN fabric, and how to create an external fabric through DCNM. For more details, see the VXLAN BGP EVPN Fabrics Provisioning section in the Control chapter.
- When you enable the EVPN Multi-Site feature on a BGW, ensure that there are no prior overlay deployments on it. Remove existing overlay profiles and then start provisioning Multi-Site extensions through DCNM.
- Execute the Save & Deploy operation in the member fabrics and external fabrics, and then in the MSD fabric.

 ![Note]

 The Save & Deploy button appears at the top right part of the fabric topology screen (accessible through the Fabric Builder window, and clicking the fabric).

- Ensure that the role of the designated BGW is Border Gateway (or Border Gateway Spine for spine switches). To verify, right-click the BGW and click Set role. You can see that (current) is added to the current role of the switch.
- To ensure consistency across fabrics, ensure the following:

 ![Note] These checks are done for member fabrics of an MSD when the fabrics are moved under the MSD fabric.

 - The underlay IP addresses across the fabrics, the loopback 0 address and the loopback 1 address subnets should be unique. Ensure that each fabric has a unique IP address pool to avoid duplicates.
 - Each fabric should have a unique site ID and BGP AS number associated and configured.
 - All fabrics should have the same Anycast Gateway MAC address.
 - While the MSD provisions a global range of network and VRF values, some parameters are fabric-specific and some are switch-specific. You should specify fabric instance values for each
fabric (for example, multicast group subnet address) and switch instance values for each switch (for example, VLAN ID).

Note
Case 1 - During network creation, if a VLAN is specified, then for every switch, when you attach the network to the switch, automatically the VLAN will be auto-populated with the same VLAN that was specified during network creation. The network listing screen shows the VLAN a network level which applies for all the switch (has to be the same). The other thing to keep in mind is that even if one specified a VLAN during network creation, this can still be overwritten on a per switch basis.

Case 2 - During network creation, if a VLAN is not specified, then for every switch, when you attach the network to the switch, the next free VLAN from the per-switch VLAN pool is auto-populated. This means that on a per-switch basis, the VLAN may be different. The user can always overwrite the auto-populated VLAN and DCNM will honor it. For this case, it is possible that VNI 10000 may use VLAN 10 on leaf1 and VLAN 11 on leaf2. Hence, in the network listing, in this case, the VLAN will not be showcased.

DCNM always keeps track of VLANs on a per switch basis in its resource manager. This is true for either of the 2 cases mentioned above.

Limitations

- vPC configuration is not supported for the **Border Gateway Spine** role.

Save & Deploy Operation in the MSD Fabric

These are some operations performed when you execute **Save & Deploy**:

- **Duplicate IP address check** - The MSD fabric checks if any BGW has a duplicate IP address. If so, an error message is displayed.

Change the BGP peering loopback IP address of the BGW(s).

After duplicate IP address issues are resolved, execute the **Save & Deploy** operation again in the MSD fabric.

- **BGW base configuration** - When you execute Save and Deploy for the first time in the MSD fabric (assuming there are currently no IFCs or overlays to deploy), appropriate base configurations are deployed on the BGWs. They are given below:
<table>
<thead>
<tr>
<th>Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>evpn multisite border-gateway 7200</td>
<td>7200 is the site ID of the member fabric Easy7200.</td>
</tr>
<tr>
<td>delay-restore time 300</td>
<td></td>
</tr>
<tr>
<td>multisite border-gateway interface loopback100</td>
<td>The loopback interface 100 is the configuration set in the MSD fabric settings. Once a loopback ID is chosen and Save and Deploy is executed, the loopback ID cannot be changed. You have to modify the role of the BGW, save the update on the switch, and modify the role back to BGW, and again save the switch configuration in the VXLAN fabric.</td>
</tr>
<tr>
<td>interface nve1</td>
<td></td>
</tr>
<tr>
<td>multisite border-gateway interface loopback100</td>
<td></td>
</tr>
<tr>
<td>interface ethernet1/47</td>
<td>The evpn multisite fabric-tracking command is configured on all ports on a Border Gateway that have a connection to a switch with a Spine role. In case of a Border Gateway Spine role, all ports facing the leaf switch have this command configured.</td>
</tr>
<tr>
<td>evpn multisite fabric-tracking</td>
<td></td>
</tr>
<tr>
<td>interface loopback100</td>
<td>The Multi-Site loopback interface. This is configured on all Border Gateway (Spines). All BGWs in the same fabric get the same IP address. Each fabric gets its own unique IP address. It is not possible to change this address or ID without first changing role of the BGW.</td>
</tr>
<tr>
<td>ip address 10.10.0.1/32 tag 54321</td>
<td></td>
</tr>
<tr>
<td>ip router ospf UNDERLAY area 0.0.0.0</td>
<td></td>
</tr>
<tr>
<td>ip pim sparse-mode</td>
<td></td>
</tr>
<tr>
<td>no shutdown</td>
<td></td>
</tr>
<tr>
<td>route-map rmap-redist-direct permit 10</td>
<td>This is the configuration to redistribute the BGP peering loopback IP address (commonly loopbak0), the VTEP primary (in case of vPC, the loopback secondary IP address), commonly loopback1, and the Multi-Site loopback IP address into the Multi-Site eBGP underlay sessions.</td>
</tr>
<tr>
<td>match tag 54321</td>
<td></td>
</tr>
</tbody>
</table>

* When you execute the **Save & Deploy** operation in the MSD fabric, it works on all the BGW (or BGW Spine) devices in the member fabrics of an MSD.

After completing the EVPN Multi-Site specific prerequisites, start EVPN Multi-Site configuration. A sample scenario is explained.
EVPN Multi-Site Configuration

The EVPN Multi-Site feature is explained through an example scenario. Consider two VXLAN BGP EVPN fabrics, Easy60000 and Easy7200, and an external fabric, External65000. The 3 fabrics are member fabrics of the MSD fabric MSD-Fabric, and identified by a unique AS number. Easy60000 and Easy7200 are connected to a route server in External65000 (each fabric is). This document shows you how to enable end-to-end Layer 3 and Layer 2 traffic between hosts in Easy60000 and Easy7200, through the route server.

VXLAN BGP EVPN intra-fabric configurations, including network and VRF configurations are provisioned on the switches through DCNM software, 11.1(1) release. However, server traffic between the fabrics is only possible through the following configurations:

- A Data Center Interconnect (DCI) function like the Multi-Site feature is configured on the BGWs of both the fabrics (N9K-3-BGW and N9K-4-BGW in Easy7200, and the BGW in Easy60000). As part of the configuration, since the BGWs of the fabrics are connected to the route server N7k1-RS1 in the external fabric External65000, appropriate eBGP peering configurations are enabled on the BGWs.

- As of now, overlay networks and VRFs are enabled on the non-BGW leaf and spine switches. For a fabric’s traffic to go beyond the BGW, networks and VRFs should be deployed on all the BGWs too.

In a nutshell, the EVPN Multi-Site feature configuration comprises of setting up the BGW base configuration (enabled during the Save & Deploy operation), the eBGP underlay and overlay peering from the three BGWs to the route server N7k1-RS1. Both the underlay and overlay peering are established over eBGP through DCNM 11.1(1).

You can create Multi-Site Inter-Fabric Connections (IFCs) between the fabrics through the DCNM GUI or through automatic configuration. First, underlay IFC creation is explained, followed by the overlay IFC creation.
Configuring Multi-Site Underlay IFCs - DCNM GUI

The end-to-end configurations can be split into these 2 high-level steps.

Step 1 - EVPN Multi-Site configurations on the BGWs in Easy7200

Step 2 - EVPN Multi-Site configurations on the BGW in Easy60000

Note

An inter-fabric link is a physical connection between two Ethernet interfaces (an underlay connection) or a virtual connection (a fabric overlay connection between two loopback interfaces). When you add a physical connection between devices, the new link appears in the Links tab by default.

Step 1 - EVPN Multi-Site configurations on the BGWs in Easy7200

For Multi-Site connectivity from Easy7200 to the external fabric, N9K-3-BGW and N9K-4-BGW are connected to the route server N7k1-RS1 in the external fabric. Follow these steps:

Deploying underlay IFCs between Easy7200 and External65000

- Deploying Underlay IFC from N9K-3-BGW to N7k1-RS1.
- Deploying Underlay IFC from N9K-4-BGW to N7k1-RS1.

Deploying Underlay IFC from N9K-3-BGW to N7k1-RS1

For the Multi-Site DCNM GUI configuration option, the **Deploy Border Gateway Method** field in the MSD fabric’s settings (**DCI** tab) is set to **Manual**.

1. Navigate to the **Links** tab and select the physical link connecting N9K-3-BGW to N7k1-RS1.
2. Click the link edit icon as shown in the figure below to bring up the pop up.
3. Select the MS underlay IFC sub type and fill in the required fields.
4. Save and deploy in the MSD will deploy the configuration on the N9K-3-BGW and N7k1-RS1.

Similar steps can be used to edit already created IFCs via the Links tab.

5. Similarly, create the underlay IFC from N9K-4-BGW to N7k1-RS1.
This completes Step 1 of the following.

Step 1 - EVPN Multi-Site configurations on the BGWs in Easy7200.

Step 2 - EVPN Multi-Site configurations on the BGW in Easy60000.

Next, configurations are enabled on the BGW in Easy60000.

Step 2 - EVPN Multi-Site configurations on the BGW in Easy60000

For Multi-Site connectivity between the Easy6000 fabric and the external fabric, EVPN Multi-Site configurations are enabled on the BGW interfaces in Easy60000 that are connected to the route server (N7k1-RS1) in the external fabric. Follow the steps as per the explanation for the connections between Easy7200 and External65000.

Configuring Multi-Site Underlay IFCs - Auto-Configuration

An underlay IFC is a physical link between the devices’ interfaces.

- For underlay connectivity from Easy7200 to the external fabric, N9K-3-BGW and N9K-4-BGW are connected to the route server N7k1-RS1 in the external fabric.
- For underlay connectivity from Easy60000 to the external fabric, its BGW is connected to the route server N7k1-RS1.

Deploying Multi-Site Underlay IFCs Through Auto-Configuration

The underlay generated by DCNM is an eBGP session in the default IPv4 unicast routing table, in order to distribute the three loopback addresses needed for the Multi-Site control plane and data plane to function correctly.

For the Multi-Site auto-configuration option, the underlay IFCs are automatically deployed by the MSD fabric.

The following rules apply to Multi-Site underlay IFC creation:

1. The Deploy Border Gateway Method field in the MSD fabric’s settings (DCI tab) is set to Route_Server or Back_to_Back.
2. An IFC is deployed on every physical connection between the BGWs of different member fabrics that are physically connected.
3. An IFC is deployed on every physical connection between a BGW and a router with the role Core Router imported into an external fabric which is a member of the MSD fabric.

 If you do not want an IFC to be auto generated on a connection, then shut the link, execute the Save & Deploy operation, and delete the undesired IFCs. Also, ensure that there is no existing policy or pre-configured IP address on the interface. Else, use the Manual mode.
4. The IP addresses used to deploy the underlay are derived from the IP address range in the DCI Subnet IP Range field (DCI tab) of the MSD fabric.

Just like overlay IFCs, Multi-Site underlay IFCs can be viewed via the MSD, external and member fabrics. Also, the underlay IFCs can be edited and deleted via the VXLAN or MSD fabrics.
Configuring Multi-Site Underlay IFCs Towards a Non-Nexus Device - DCNM GUI

In this case, the non-Nexus device is not imported into DCNM, or discovered through Cisco Discovery Protocol or Link Layer Discovery Protocol (LLDP). For example, a Cisco ASR 9000 Series router or even a non-Cisco device.

The steps are similar to the Configuring Multi-Site Underlay IFCs - DCNM GUI task.

1. In the Fabric Builder window, choose the Easy7200 fabric.
 The Easy7200 topology window appears.

2. From the Actions panel at the left, click Tabular view.
 The Switches | Links window appears.

3. Click the Links tab and click +.
 The Add Link window appears.

4. Fill in the fields.

 ![Add Link window](image)

 Link Type – Choose Inter-Fabric.

 Link Sub-Type – Choose MULTISITE_UNDERLAY.

 Link Template - By default, the ext_multisite_underlay_setup_11_1 template is populated.

 Source Fabric - Easy7200 is selected by default since the IFC is created from Easy7200 to the ASR device.

 Destination Fabric – Select the external fabric. In this case, External65000 is selected.

 Source Device and **Source Interface** - Choose the border device and the interface that is connected to the ASR device.

 Destination Device - Type any string that identifies the device. The destination device ASR9K-RS2 does not appear in the drop-down list when you create an IFC for the first time. Once you create an IFC towards
ASR9K-RS2 and associate it with the external fabric External65000. ASR9K-RS2 appears in the list of devices displayed in the Destination Device field.

Also, after the first IFC creation, ASR9K-RS2 is displayed in the External65000 external fabric topology, within Fabric Builder.

Destination Interface - Type any string that identifies the interface.

You have to manually enter the destination interface name each time.

General tab in the Link Profile section.

Local BGP AS# - In this field, the AS number of the source fabric Easy7200 is autopopulated.

IP_MASK - Enter the IP address and mask that is used as the local interface for the Multi-Site underlay IFC.

NEIGHBOR_IP - Enter the IP address of the ASR9K-RS2 interface used as the eBGP neighbor.

NEIGHBOR_ASN - In this field, the AS number of the external fabric External65000 is autopopulated since it is chosen as the external fabric.

5. Click Save at the bottom right of the window.

The Switches|Links window appears again. You can see that the IFC entry is updated.

6. Click Save and Deploy at the top right of the window.

The link on which the IFC is deployed has the relevant policy configured in the Policy column.

7. Go to the Scope drop-down list at the top right of the window and choose External65000. The external fabric Links window is displayed. You can see that the IFC created from Easy7200 to the ASR device is displayed here.

Configuring Multi-Site Overlay IFCs - DCNM GUI

An overlay IFC is a link between the devices’ loopback0 interfaces.

Deploying Overlay IFCs in Easy7200 and Easy60000 comprises of these steps:

- Deploying Overlay IFC from N9K-3-BGW to N7k1-RS1.
- Deploying Overlay IFC from N9K-4-BGW to N7k1-RS1.
- Deploying the Overlay IFC from the BGW in Easy60000 to N7k1-RS1.

Deploying Overlay IFCs between Easy7200 and External65000

- Deploying Overlay IFC from N9K-3-BGW to N7k1-RS1.
- Deploying Overlay IFC from N9K-4-BGW to N7k1-RS1.

Deploying Overlay IFCs - from N9K-3-BGW to N7k1-RS1

1. Click Control > Fabric Builder. The Fabric Builder window appears.

3. Click Tabular view. The Switches | Links screen comes up.
4. Click the Links tab. It lists links within the MSD fabric. Each row either represents an intra-fabric link within Easy7200 or Easy60000, or a link between border devices of member fabrics, including External65000.

5. Click the Add Link icon at the top left part of the screen.
 The Link Management – Add Link screen comes up.
 Some fields are explained:
 Link Type – Inter-Fabric is autopopulated.
 Link Sub-Type – Choose MULTISITE_OVERLAY.
 Link Template – The default template for creating an overlay is displayed.
 You can edit the template or create a new one with custom configurations.
 In the General tab, the BGP AS numbers of Easy7200 and External65000 are displayed. Fill in the other fields as explained. The BGP AS numbers are derived based on fabric values.

6. Click Save at the bottom right part of the screen.
 The Switches|Links screen comes up again. You can see that the IFC entry is updated.

7. Click Save & Deploy at the top right part of the screen.

8. Go to the Scope drop-down list at the top right of the window and choose External65000. The external fabric Links screen is displayed. You can see that the two IFCs created from Easy7200 to External65000 is displayed here.

Note

When you create an IFC or edit its setting in the VXLAN fabric, the corresponding entry is automatically created in the connected external fabric.
9. Click Save and Deploy to save the IFCs creation on External65000.

10. Similarly, create an overlay IFC from N9K-4-BGW to N7k1-RS1.
 After the overlay IFCs from N9K-3-BGW and N9K-4-BGW to N7k1-RS1 are deployed, the fabric
 overlay traffic can flow between Easy7200 and External65000.

11. Similarly, deploy the overlay IFC from the BGW in the Easy60000 fabric to N7k1-RS1.

Configuring Multi-Site Overlay IFCs - Auto-Configuration

An overlay IFC is a link between the devices’ loopback0 interfaces. For overlay connectivity from the Easy7200
and Easy60000 fabrics to the route server N7k1-RS1 in External65000, a link is enabled between the BGW
devices and the N7k1-RS1’s loopback0 interfaces.

Deploying Overlay IFCs in Easy7200 and Easy60000

- Deploying Overlay IFC from N9K-3-BGW to N7k1-RS1.
- Deploying Overlay IFC from N9K-4-BGW to N7k1-RS1.
- Deploying the Overlay IFC from the BGW in Easy60000 to N7k1-RS1.

Deploying Multi-Site Overlay IFCs Through Auto-Configuration

You can automatically configure the Multi-Site overlay through one of these options:

1. **Route Server** - The BGW forms an overlay to the route server. This option is explained in the example.

2. **Back 2 Back** - BGW in member fabrics form overlay to BGWs in other fabrics.

To choose one of the above options, go to the MSD fabric’s settings, select the DCI tab, and set the Deploy
Border Gateway Method field to Route_Server (such as for this example) or Back_to_Back. By default, the
Manual option is selected.
The IFCs needed for deployment of Networks and VRFs at the BGW nodes can be auto configured via the MSD fabric template. The settings to enable that are in MSD fabric template.

The default mode for the Deploy Border Gateway Method field is Manual, which implies that the IFCs have to be created via the link tab in MSD fabric. It must be changed to the Route_Server or Back_to_Back mode for auto-configuration.

The IFCs created via auto configuration can only be edited or deleted via the link tab in MSD or member fabrics (except external fabric). As long as an IFC exists, or there is any user defined policy on the physical or logical link, auto configuration will not touch the IFC configuration.

You can see that Route_Server is selected in the Deploy Border Gateway Method field in the above image.

Route Server

This implies that all BGW devices in all member fabrics will create a Multi-Site overlay BGP connection to one or more route servers in one or more external fabrics which are members of the MSD fabric.

In this topology, there is one route server n7k1-RS1, and its BGP peering address (2.2.2.2) is shown in the route server list. This peering address can be configured out of band or with create interface tab in DCNM. N7k1-RS1 must be imported into the DCNM (in the external fabric, in this example) and the peering address configured before executing the Save & Deploy option.

You can edit the route server peering IP address list at any time, but you can delete a configured Multi-Site overlay only through the Links tab.

The BGP AS number of each route server should be specified in the MSD fabric settings. Note that the route server AS number can be different than the fabric AS number of the external fabric.

Configuring Multi-Site Overlay IFCs Towards a Non-Nexus Device - DCNM GUI

In this case, the non-Nexus device is not imported into DCNM, or discovered through Cisco Discovery Protocol or Link Layer Discovery Protocol (LLDP). For example, a Cisco ASR 9000 Series router or even a non-Cisco device.

The steps are similar to the Configuring Multi-Site Overlay IFCs - DCNM GUI task.

1. In the Fabric Builder window, choose the Easy7200 fabric.
 - The Easy7200 topology window appears.
2. From the Actions panel, click Tabular view.
 - The Switches | Links window appears.
3. Click the Links tab and click +.
 - The Add Link screen comes up.
4. Fill in the fields.
Link Type – Choose **Inter-Fabric**.

Link Sub-Type – Choose **MULTISITE_OVERLAY**.

Link Template – By default, the `ext_evpn_multisite_overlay_setup` template is populated.

Source Fabric – **Easy7200** is selected by default since the IFC is created from **Easy7200** to the ASR device.

Destination Fabric – Select the external fabric. In this case, **External65000** is selected.

Source Device and Source Interface – Choose the border device and the loopback0 interface that is the source interface of the overlay.

Destination Device: Type any string that identifies the device. The destination device **ASR9K-RS1** does not appear in the drop-down list when you create an IFC for the first time. Once you create an IFC towards **ASR9K-RS1** and associate it with the external fabric **External65000**, **ASR9K-RS1** appears in the list of devices displayed in the **Destination Device** field.

Also, after the first IFC creation, **ASR9K-RS1** is displayed in the **External65000** topology screen, within Fabric Builder.

Destination Interface: Type any string that identifies the interface.

You have to manually enter the destination interface name each time.

General tab in the Link Profile section.

Local BGP AS#: In this field, the AS number of the source fabric **Easy7200** is autopopulated.

SOURCE_IP: Enter the IP address of the loopback0 interface for the Multi-Site overlay IFC.

NEIGHBOR_IP: Enter the IP address of the **ASR9K-RS1** loopback interface used for this Multi-Site overlay IFC.

NEIGHBOR_ASN: In this field, the AS number of the external fabric **External65000** is autopopulated since it is chosen as the external fabric.

5. Click **Save** at the bottom right part of the screen.
The **Switches|Links** screen comes up again. You can see that the IFC entry is updated.

6. Click **Save and Deploy** at the top right part of the screen.

The link on which the IFC is deployed has the relevant policy configured in the **Policy** column.

7. Go to the **Scope** drop-down list at the top right of the window and choose **External65000**. The external fabric **Links** screen is displayed. You can see that the overlay IFC is displayed here.

Overlay and Underlay Peering Configurations on the Route Server N7k1-RS1

When you execute the Save and Deploy operation in the MSD fabric during the IFCs creation, peering configurations are enabled on the router server N7k1-RS1 towards the BGWs in the VXLAN fabrics.

Viewing, Editing and Deleting Multi-Site Overlays

The overlay IFCs can be viewed via the MSD and member fabrics **Links** tab as shown below.

The IFCs can be edited and deleted in the member fabric or in the MSD fabric.

Multi-Site overlay IFCs can also be created by the links tab in MSD fabric.

Once the IFC is deleted, you should execute the Save & Deploy operation in the external and VXLAN fabric (or MSD fabric) to undeploy the IFC on the switches and remove the intent from DCNM.

Note

Until a particular IFC is completely deleted from DCNM, auto configuration will not regenerate it on a Save & Deploy operation in the MSD fabric.

Deleting Multi-Site IFCs

1. Navigate to the Links tab, select the IFCs to be deleted and click the Delete icon as shown below.

2. Perform a Save & Deploy in the MSD fabric to complete deletion.
If auto configuration of IFCs is enabled in the MSD fabric settings, then performing a Save & Deploy may regenerate the IFC intent.

If all or large number of IFCs are to be deleted, then temporarily change the BGW deploy mode to Manual setting before performing Save & Deploy.

In the following example, the Multi-Site overlay and underlay IFCs are selected for deletion.

Creating and Deploying Networks and VRFs in the MSD Fabric

Networks and VRFs can be created from the MSD context in the Networks and VRF page, these can be deployed on BGW nodes for all member fabrics of that MSD.

The following screenshots show how to select networks and deploy them. From the MSD fabric context, any device can be selected for network or VRF deployment. However, networks or VRFs can be deployed only on BGWs from the MSD context in the network deployment screen. The leaf deployment can be done from the fabric context or from the Fabric Builder context.
Border Provisioning Use Case in VXLAN BGP EVPN Fabrics - Multi-Site

Creating and Deploying Networks and VRFs in the MSD Fabric

1. Navigate to the network deployment page of the relevant MSD fabric.
2. Select (VRF) to be deployed.
3. Check this box to multiple BGWs, then use GUI to select one or more BGWs. Then this pop-up will appear.
4. Click this to browse to select BGDs on which to deploy the VRF.
5. Click this to update deployment screen, repeat till all nodes on which VRFs are to be deployed.
Deploying Networks with a Layer 3 Gateway on a BGW

Perform the following steps:

Note

This is only available on vPC BGW setups. This is a device limitation not a DCNM limitation.

1. In order to deploy a network with a Layer 3 gateway on a Border device (Border, Border spine, Border Gateway [vPC pair only], Border Gateway spine [vPC Pair only]), perform these steps.

 When creating the network, check the **Enable L3 gateway on Border** check box, as shown in the figure below. Note that this a network wide setting, so whenever this network is deployed on the Border device, the Layer 3 gateway will be deployed. If this is required on only a subset of the Borders, then a custom template is required.

 When deploying the network on the Border device, select the interface(s) in the **Interface** column.

 Just like the leaf switch, the candidate ports should have `int_trunk_host_policy_11_1`, otherwise they will not be in the interface list.

 The interface policy can be modified through the **Control > Interfaces** tab.
2. When deploying the network on the vPC pair of BGWs, select the interface(s) in the Interfaces column. Only vPC port channel interfaces are the candidate interfaces.
Deploying Pseudo-BGW (Legacy Site BGW)

You can connect non-VXLAN BGP EVPN (legacy) and VXLAN BGP EVPN fabrics by positioning a set of VTEPs external to the fabric. Such VTEPs are called pseudo-BGWs. This topic explains how to set up a pseudo-BGW through DCNM 11.1(1). For more information on legacy site integration, refer the Legacy Site Integration section in the VXLAN EVPN Multi-Site Design and Deployment White Paper document.

It is assumed that the legacy network is setup and functional. The procedure and method used for setting up the legacy network is out of the scope of this document.
Reference Topology

The image shows the portion of the topology that includes the route servers RS_1 and RS_2 (imported into external fabrics), pseudo-BGWs A-LEAF9 and A-LEAF10 in the PSEUDO_BGW fabric, and the legacy fabric named LEGACY. Each fabric and their connectivity is explained.

Route Servers

RS_1 and RS_2 are connected to a VXLAN BGP EVPN fabric (located above the route servers, not seen in the above image. This connection is configured as described in the standard Multi-Site configuration section).

RS_1 and RS_2 are connected to the pseudo-BGWs (A-LEAF9 and A-LEAF10) directly below them, through Multi-Site inter-fabric connections (IFCs).

Pseudo-BGWs

A-LEAF9 and A-LEAF10 are pseudo-BGWs in the PSEUDO_BGW VXLAN fabric. They are configured as a vPC switch pair, with the vPC formed towards the directly connected devices in the LEGACY fabric, to its south.

Legacy Fabric

The switches in the legacy network are imported into a dedicated external fabric in Monitor mode.
When an external fabric is set to **Fabric Monitor Mode Only**, you cannot deploy configurations on its switches. Refer to the *Creating an External Fabric* topic in the Control chapter for details.

The **Deploying Pseudo-BGW** topic covers these configurations:

Step 1 - Configuring the PSEUDO_BGW VXLAN Fabric

- Setting the replication mode for the fabric and the role of the pseudo-BGWs.
- Setting the pseudo-BGWs as a vPC switch pair towards the legacy fabric switches.

Step 2 - Creating Multi-Site underlay eBGP IFCs from the pseudo-BGWs to the route servers.

Step 3 - Creating Multi-Site overlay eBGP IFCs from the pseudo-BGWs to the route servers.

Detailed explanation

Step 1 - Configuring the PSEUDO_BGW VXLAN Fabric

The pseudo-BGWs are Cisco Nexus 9000 Series switches that are imported into DCNM. Enable the following configurations in the **PSEUDO_BGW** fabric.

You must enable the **Ingress** replication mode for the **PSEUDO_BGW** fabric, assign the **Leaf** role for the pseudo-BGWs, configure the pseudo-BGWs as a vPC switch pair, and form the vPC towards the legacy fabric devices.

Enabling the Ingress Replication Mode

1. In the **Fabric Builder** screen, click the **Edit Fabric** icon for the fabric.

 The **Edit Fabric** screen comes up

2. In the **Replication** tab, choose the Replication Mode option as **Ingress**.

Setting the Leaf Role For the Pseudo-BGWs

1. In the **Fabric Builder** screen, click the **PSEUDO_BGW** fabric.
The PSEUDO_BGW topology window appears.

2. Right-click A-LEAF9 and set its role as Leaf.
3. Right-click A-LEAF10 and set its role as Leaf.

Setting the Pseudo-BGWs as a vPC Switch Pair

1. Right-click the A-LEAF9 switch icon and choose vPC Pairing.
 The list of potential vPC peer switches for A-LEAF9 comes up.
2. Click the radio button next to A-LEAF10 (the vPC peer switch) and click OK.
3. To set up the vPC towards the legacy fabric switches, right click the A-LEAF9 switch icon and choose Manage interfaces.
 Similar flow is achieved through Control > Interfaces.

4. In the Manage Interfaces screen, click + and enter the fields as shown in the following example. From the drop-down list, choose the vPC policy and fill in the fields for your topology.
5. Click **Preview** to see the configurations that are to be deployed. For this topology, the configurations are shown in the **Appendix** section.

6. Click **Save** to save the settings, and then **Deploy** to deploy the settings.

This completes the first task in the following configurations.

Step 1 - Configuring the PSEUDO_BGW VXLAN fabric

Step 2 - Creating Multi-Site underlay eBGP IFCs from the pseudo-BGWs to the route servers.

Step 3 - Creating Multi-Site overlay eBGP IFCs from the pseudo-BGWs to the route servers.

Next, the second step is explained.

Step 2 - Creating Multi-Site Underlay eBGP IFCs From the Pseudo-BGWs to the Route Servers

The Multi-Site underlay configuration shown here is similar to that of the MSD flow, except that switch freeform configurations are used for adding network statements to distribute loopback0 and loopback1 (primary and secondary address) into the underlay eBGP session towards the route server.

You can skip the Multi-Site underlay step in case your setup has a different method to distribute the loopback addresses to the route servers or Core routers.

These tasks are performed from the VXLAN fabric, and the **Save & Deploy** operation is executed in the VXLAN and external fabrics.

In DCMN 11.1(1), configuring Multi-Site underlay IFCs is not mandatory for configuring Multi-Site overlay IFCs.

Step 2 comprises the following configuration tasks.

- Configuring Multi-Site Underlay session through the DCMN GUI.
- Configuring Networks statements on Pseudo-BGWs.

Configuring Multi-Site Underlay Session Through the DCMN GUI
In this example, one Multi-Site underlay is shown between RS_1 and A-LEAF9. Repeat the same process for every session required to a route server or Core router.

1. In the PSEUDO_BGW fabric, navigate to the Links tab.

2. Choose the check box corresponding to the physical connection between A-LEAF9 and RS_1, and click the Edit icon.

3. Fill in the fields.

This process is the same as the Multi-Site underlay IFC creation for an MSD fabric.
Configuring Networks Statements on Pseudo-BGWs

This is an additional step required on pseudo-BGWs.

For BGWs, DCNM 11.1(1) distributes the loopback addresses by tagging them and redistributing them into eBGP. This is only available on BGWs, and not pseudo-BGWs.

Use the switch freeform policy to add network statements for loopback0, loopback 1 (primary and secondary IP addresses) under the IPv4 address family, under the default routing table.

1. Right-click the switch icon and choose View/edit policies.

The View/Edit Policies screen comes up.

2. Click + at the top left part of the screen to add a policy.

The Add Policy screen comes up.

3. From the Policy drop-down list, choose switch_freeform_config.

4. In the Freeform Config CLI field, add the policy configurations.
This completes the second task in the following configurations.

Step 1 - Configuring the PSEUDO_BGW VXLAN fabric

Step 2 - Creating Multi-Site underlay eBGP IFCs from the pseudo-BGWs to the route servers.

Step 3 - Creating Multi-Site overlay eBGP IFCs from the pseudo-BGWs to the route servers.

The third step is explained below.

Step 3 - Creating Multi-Site Overlay eBGP IFCs from the Pseudo-BGWs to the Route Servers

Configuring Multi-Site overlay from pseudo-BGWs to the route server or directly to the BGW in the VXLAN fabric is similar.

1. In the PSEUDO_BGW fabric, navigate to the **Links** tab.
2. Click + and fill the fields in the **Add Link** window.
3. Click **Save** at the bottom right part of the screen.

4. Execute the **Save & Deploy** operation in the VXLAN and external fabrics (VXLAN fabric for the Back-to-Back BGW case).

Additional References

<table>
<thead>
<tr>
<th>Document Title and Link</th>
<th>Document Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VXLAN EVPN Multi-Site Design and Deployment White Paper</td>
<td>This document explains Multi-Site design and deployment in detail.</td>
</tr>
<tr>
<td>Configuring VXLAN EVPN Multi-Site</td>
<td>This document explains manual configurations for the Multi-Site solution.</td>
</tr>
</tbody>
</table>

Appendix

Multi-Site Fabric Base Configurations – Box Topology

In the Easy7200 fabric, N9K-3-BGW and N9K-4-BGW are connected to each other over two physical interfaces, and the BGWs do not form a vPC pair. Such a topology is called a Box topology. An IBGP session is configured on each physical connection. One connection is between the Eth1/21 interfaces, and the other is between the Eth1/22 interfaces.
IBGP Configuration for the Box Topology in the Easy7200 Fabric

The following configuration is generated on each of the nodes if the fabric has numbered interfaces. In case the fabric interfaces are unnumbered, then the IBGP session is formed via the loopback0 address.

```plaintext
N9K-BGW-3

router bgp 7200
neighbor 10.4.0.17
    remote-as 7200
    update-source ethernet1/22
    address-family ipv4 unicast
    next-hop-self

router bgp 7200
neighbor 10.4.0.14
    remote-as 7200
    update-source ethernet1/21
    address-family ipv4 unicast
    next-hop-self

interface ethernet1/22
    evpn multisite dci-tracking
    no switchport
    ip address 10.4.0.17/30
    description connected-to-N9K-4-BGW-Ethernet1/22

interface ethernet1/21
    evpn multisite dci-tracking
    no switchport
    ip address 10.4.0.14/30
    description connected-to-N9K-4-BGW-Ethernet1/21

N9K-BGW-4

router bgp 7200
neighbor 10.4.0.18
    remote-as 7200
    update-source ethernet1/22
    address-family ipv4 unicast
    next-hop-self

router bgp 7200
neighbor 10.4.0.13
    remote-as 7200
    update-source ethernet1/21
    address-family ipv4 unicast
    next-hop-self

interface Ethernet1/22
    evpn multisite dci-tracking
    no switchport
    ip address 10.4.0.18/30
    description connected-to-N9K-4-BGW-Ethernet1/22

interface Ethernet1/21
    evpn multisite dci-tracking
    no switchport
    ip address 10.4.0.13/30
    description connected-to-N9K-4-BGW-Ethernet1/21
```
Changing loopback0 Policy To Modify IP Address

Route Server Configuration

The route server overlay and base configurations are only deployed if the external fabric is not in Monitor mode.

When an external fabric is set to Fabric Monitor Mode Only, you cannot deploy configurations on its switches. Refer the Creating an External Fabric topic in the Control chapter for details.

Route Server Base Configuration - These are one time deployed on the route server, and may be edited or deleted via the corresponding policy. The router server overlay and base configurations are only deployed if the external fabric is not in Monitor mode.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>route-map unchanged permit 10</td>
<td>—</td>
</tr>
<tr>
<td>set ip next-hop unchanged</td>
<td>—</td>
</tr>
<tr>
<td>router bgp 65000</td>
<td>The network command to redistribute the BGP peering address of RS1 to the eBGP underlay sessions so that BGWs know how to reach RS.</td>
</tr>
<tr>
<td>address-family ipv4 unicast network 2.2.2.2/32</td>
<td>If operator is using a different method to distribute the route server peering address to BGW, then this is not needed</td>
</tr>
<tr>
<td>interface ethernet1/22 evpn multisite dci-tracking no switchport ip address 10.4.0.18/30 description connected-to-N9K-4-BGW-Ethernet1/22</td>
<td>interface Ethernet1/22 evpn multisite dci-tracking no switchport ip address 10.4.0.17/30 description connected-to-N9K-3-BGW-Ethernet1/22</td>
</tr>
</tbody>
</table>
Configuration

<table>
<thead>
<tr>
<th>Template peer OVERLAY-PEERING</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>update-source loopback0</td>
<td>The knob in the external fabric controls if send community is sent in the form shown here, or as send-community both.</td>
</tr>
<tr>
<td>ebgp-multihop 5</td>
<td>If this form causes a persistent CC difference, then edit the policy on the device in the external fabric as shown in the Deploying the Send-Community Both Attribute section below.</td>
</tr>
<tr>
<td>address-family l2vpn evpn</td>
<td></td>
</tr>
<tr>
<td>route-map unchanged out</td>
<td></td>
</tr>
<tr>
<td>address-family l2vpn evpn</td>
<td></td>
</tr>
<tr>
<td>retain route-target all</td>
<td></td>
</tr>
<tr>
<td>send-community</td>
<td></td>
</tr>
<tr>
<td>send-community extended</td>
<td></td>
</tr>
</tbody>
</table>

Deploying the Send-Community Both Attribute

If you want to deploy the send-community both attribute, set the corresponding field to true in the ext_multisite_rs_base_setup policy, as shown in the image.

Multi-Site Overlay IFC Configuration

In the reference topology, there are two BGWs in the Easy7200 fabric. Each BGW forms a BGP overlay connection with the route server.
See below for the configurations generated on the BGW and the route server.

Multi-Site Underlay IFC Configuration – Out-of-Box Profiles

The following table shows the Multi-Site IFC configuration deployed by DCNM with the out-of-the box profiles. If the IFC is between two VXLAN fabrics, then both sides have the BGW configurations shown below.

<table>
<thead>
<tr>
<th>BGW Configuration</th>
<th>Core Router Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>router bgp 7200</td>
<td>router bgp 65000</td>
</tr>
<tr>
<td>neighbor 10.10.1.6</td>
<td>neighbor 10.10.1.5</td>
</tr>
<tr>
<td>remote-as 65000</td>
<td>remote-as 7200</td>
</tr>
<tr>
<td>update-source ethernet1/47</td>
<td>update-source ethernet7/4/1</td>
</tr>
<tr>
<td>address-family ipv4 unicast</td>
<td>address-family ipv4 unicast</td>
</tr>
<tr>
<td>next-hop-self</td>
<td>next-hop-self</td>
</tr>
<tr>
<td>interface ethernet1/47</td>
<td>interface ethernet7/4/1</td>
</tr>
<tr>
<td>mtu 9216</td>
<td>mtu 9216</td>
</tr>
<tr>
<td>no shutdown</td>
<td>no shutdown</td>
</tr>
<tr>
<td>no switchport</td>
<td>no switchport</td>
</tr>
<tr>
<td>ip address 10.10.1.5/30 tag 54321</td>
<td>ip address 10.10.1.6/30 tag 54321</td>
</tr>
<tr>
<td>evpn multisite dci-tracking</td>
<td>evpn multisite dci-tracking</td>
</tr>
</tbody>
</table>

The tag 54321 attached to the IP address is not required for correct functioning and will be removed in subsequent releases. It is benign.

Deploying Pseudo-BGW (Legacy Site BGW)

vPC Configurations Towards the Legacy Fabric Switches
Configurations Deployed on the Pseudo-BGWs

A-LEAF9 FDO22320545

```
interface port-channel2
  switchport
```
switchport mode trunk
switchport trunk allowed vlan none
switchport
vpc 2
no shutdown

interface Ethernet1/18
switchport
switchport mode trunk
switchport trunk allowed vlan none
channel-group 2 force mode active
no shutdown

interface Ethernet1/17
switchport
switchport mode trunk
switchport trunk allowed vlan none
no shutdown
channel-group 2 force mode active

interface Ethernet1/19
switchport
switchport mode trunk
switchport trunk allowed vlan none
channel-group 2 force mode active
no shutdown

interface Ethernet1/20
switchport
switchport mode trunk
switchport trunk allowed vlan none
channel-group 2 force mode active
no shutdown

A-LEAF10:FD022320AJC

interface port-channel2
switchport
switchport mode trunk
switchport trunk allowed vlan none
no shutdown
switchport
vpc 2

interface Ethernet1/17
switchport
switchport mode trunk
switchport trunk allowed vlan none
no shutdown
channel-group 2 force mode active

interface Ethernet1/18
switchport
switchport mode trunk
switchport trunk allowed vlan none
channel-group 2 force mode active
no shutdown

interface Ethernet1/19
switchport
switchport mode trunk
switchport trunk allowed vlan none
channel-group 2 force mode active
no shutdown
interface Ethernet1/20
 switchport
 switchport mode trunk
 switchport trunk allowed vlan none
 channel-group 2 force mode active
 no shutdown