NETCONF Agent

This chapter contains the following topics:

» About the NETCONF Agent, on page 1

* Guidelines and Limitations for NETCONF, on page 2

* Configuring the NETCONF Agent, on page 4
* Establishing a NETCONF Session, on page 5

* NETCONF Read and Write Configuration, on page 7

* NETCONF Notifications, on page 15
* NETCONF Examples, on page 18

* Troubleshooting the NETCONF Agent, on page 23

About the NETCONF Agent

The Network Configuration Protocol (NETCONF) is a network management protocol defined by RFC 6241.
Cisco NX-OS provides a NETCONF agent which is a client-facing interface that provides secure transport
over SSH for the client requests and server responses in the form of a YANG model, encoded in XML.

NETCONEF defines configuration datastores and a set of Create, Read, Update, and Delete (CRUD) operations
that allow manipulation and query on these datastores. Three datastores are supported on NX-OS: running,
startup, and candidate. Here’s a brief descriptions of the operations that are supported:

Table 1: Supported Operations

Operation Description
get Retrieve running configuration and operational state
get-config Retrieve configuration from specified datastore

edit-config

Load specified configuration to the specified target
datastore

close-session

Request graceful termination of a session

kill-session

Force the termination of a session

copy-config

Create or replace datastore with the contents of
another datastore

NETCONF Agent .

http://tools.ietf.org/html/rfc6241

. Guidelines and Limitations for NETCONF

NETCONF Agent |

Operation

Description

lock

Lock the datastore

unlock

Unlock the datastore

validate

Validate the contents of the specified configuration

commit

Commit the candidate configuration as the new current
running configuration

cancel-commit

Cancel an ongoing confirmed commit

discard-changes

Revert the candidate configuration to the current
running configuration

Guidelines and Limitations for NETCONF

The NETCONF Agent has the following guideline and limitation:
* Cisco NX-OS supports both the Cisco Device YANG model and OpenConfig models in NETCONF

notifications.

* The device YANG model defines ephemeral data and they are marked with a comment "// Ephemeral
data". These nonpersistent large-volume data is handled differently from the rest of the model. They are
returned only when <get> query's <filter> parameter points specifically to the particular element marked
with the comment. Refer to the ephemeral data support documentation for detailed information on the

usage.

* Beginning with Cisco NX-OS Release 9.3(3), NETCONF is RFC 6241 compliant with the following

exceptions:

* Sibling content match nodes are logically combined in an "OR" expression instead of an "AND"

expression. (Section 6.2.5)

* Once a candidate datastore has been edited, the running configuration for the same property must
not be edited.

* In a single Get request, the number of objects that are supported is 250,000. If you see the following
error, it means that the data requested is more than 250,000. To avoid this error, send requests with filters
querying for a narrower scope of data.

too many objects (459134 > 250000) to query the entire device model.

* NETCONF does not support enhanced Role-Based Access Control (RBAC) as specified in RFC 6536.
Only users with a "network-admin" role are granted access to the NETCONF agent.

* Beginning with NX-OS 9.3(1), NETCONF get and get-config requests from the NETCONF client
to the switch must contain an explicit namespace and filter. This requirement affects requests to the
OpenConfig YANG and NETCONF Device models. If you see a message that is similar to the following,
the requests are not carrying a namespace:

Request without namespace and filter is an unsupported operation

. NETCONF Agent

http://tools.ietf.org/html/rfc6241
http://tools.ietf.org/html/rfc6536

| NETCONF Agent

Guidelines and Limitations for NETCONF .

The following example shows a get request and response with the behavior before this change. This
example shows the error message that is caused by behavior which is no longer supported.

Request:

<get>
</get>

Response:

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="1">
<rpc-error>
<error-type>protocol</error-type>
<error-tag>operation-not-supported</error-tag>
<error-severity>error</error-severity>
<error-message xml:lang="en">Request without filtering is an unsupported
operation</error-message>
</rpc-error>
</rpc-reply>

The following example shows a get request and response with the correct behavior in NX-OS release
9.3(1) and later.

Request:

<get>
<filter>
<System xmlns="http://cisco.com/ns/yang/cisco-nx-os-device">
</System>
</filter>
</get>

Response:

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<System> ..
</data>
</rpc-reply>

The <edit-config> "replace" operation sometimes might not work due to run-time default values and
behaviors that are implemented by the affected system component. Therefore, it's better to base the
configuration to replace on the configuration obtained through the <get-config> query instead of the
NX-API Developer Sandbox.

The Cisco NX-OS NETCONF server supports a maximum of five subscriptions, one subscription per
client session.

Per RFC 5277, autonomous notifications support NETCONF, SYSLOG, and SNMP streams for event
sources. In this release, Cisco NX-OS supports NETCONF streams only.

Cisco NX-OS does not support the Replay option for subscriptions. Because Start Time and Stop Time
options are part of Replay, they are not supported.

For a stream subscription and filtering, support is only for subtree filtering. XPath filtering is not supported.

When the Cisco NX-OS NETCONF Agent is operating under a heavy load, it is possible that some event
notifications can get dropped.

NETCONF Agent .

http://tools.ietf.org/html/rfc5277

. Configuring the NETCONF Agent

NETCONF Agent |

* Cisco NX-OS supports NETCONF notifications beginning with Cisco NX-OS Release 9.3(1). Cisco

NX-OS supports only the Cisco Device YANG model.

* Cisco NX-OS supports both the Cisco Device YANG model and OpenConfig models. Support for
OpenConfig models in NETCONTF notifications begins with the Cisco NX-OS 9.3(5) release.

Configuring the NETCONF Agent

Configuring the NETCONF Agent Over SSH for Cisco NX-0S 9.3(5) and Later

This procedure describes how to enable and configure the NETCONF Agent over SSH.

\}

Note

Use this procedure with Cisco NX-OS Release 9.3(5) and later.

Before you begin

Before communicating with the switch using NETCONF, the NETCONF Agent must be enabled. The
NETCONF Agent is enabled or disabled by entering the [no] feature netconf command.

Procedure

Command or Action

Purpose

Step 1

configureterminal

Example:

switch# configure terminal

Enters global configuration mode.

Step 2

feature netconf

Example:

switch (config)# feature netconf

Enable NETCONTF services.

Step 3

(Optional) netconf idle-timeout it-num

Example:

switch (config)# netconf idle-timeout 5

(Optional) Specifies the timeout in minutes after
which idle client sessions are disconnected. The
range ofit-numis 0-1440 minutes. The default
timeout is 5 minutes. A value of 0 disables
timeout.

Step 4

(Optional) netconf sessions numM-sessions

Example:

switch (config)# netconf sessions 5

Specifies the number of maximum simultaneous
client sessions. The range of hUM-sessions is
1-10. The default is 5 sessions.

. NETCONF Agent

| NETCONF Agent
Configuring the NETCONF Agent for Cisco NX-0S 9.3(4) and Earlier .

Configuring the NETCONF Agent for Cisco NX-0S 9.3(4) and Earlier
~

Note Use this procedure with Cisco NX-OS Release 9.3(4) and earlier.

The NETCONF Agent supports the following optional configuration parameters under the [netconf]
section in the configuration file (/etc/mtx.conf).

Parameter Description

idle_timeout (Optional) Specifies the timeout in minutes after
which idle client sessions are disconnected.

The default value is 5 minutes.

A value of 0 disables timeout.

limit (Optional) Specifies the number of maximum
simultaneous client sessions.

The default value is 5 sessions.

The range is 1-10.

The following is an example of the [netconf] section in the configuration file:

[netconf]
mtxadapter=/opt/mtx/lib/libmtxadapternetconf.1.0.1.s0
idle timeout=10

limit=1

For the modified configuration file to take effect, you must restart the NETCONF Agent using the CLI
command [no] feature netconf to disable and reenable.

Establishing a NETCONF Session

NETCONTF is a connection-oriented protocol requiring a persistent connection between client and server. The
NETCONF agent on the switch listens at port 830 of the management port IP address. The client can establish
a connection with the NETCONF subsystem over SSH. When a client establishes a session with the NETCONF
agent, the server sends a <hello> message to the client. The client likewise must send its <hello> message
to the server. The <hel1o> messages are exchanged simultaneously as soon as the connection is open. Each
<hello> message contains a list of the sending peer’s protocol version and capabilities. These messages are
used to determine protocol compatibility and capabilities. Both NETCONF peers must verify that a common
protocol version is advertised by the other peer’s <hello> message. Also, the server’s <nello> message must
include a <session-id> whereas the client’s <nel1lo> message must not.

The following shows an example session establishment using the ssh command. The first <he110> message
is received from the server and the second message is sent from the client. The server’s <hel1lo> message
shows the protocol version “urn:ietf:params:netconf:base:1.1” and NETCONF base capabilities that are
supported on Cisco NX-OS Release 9.3(4). Also, the server’s <hello> message includes supported data
models. They might not match the models supported in the current Cisco NX-OS release.

NETCONF Agent .

NETCONF Agent |
. Establishing a NETCONF Session

\)

Note The server’s <hello> message has a <session-id>, but the client’s message does not.

client-host % ssh admin@172.19.193.166 -p 830 -s netconf

User Access Verification

Password:

<?xml version="1.0" encoding="UTF-8"7?>

<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<capabilities>

<capability>urn:ietf:params:netconf:base:1.0</capability>
<capability>urn:ietf:params:netconf:base:1.1</capability>
<capability>urn:ietf:params:netconf:capability:writable-running:1.0</capability>
<capability>urn:ietf:params:netconf:capability:rollback-on-error:1.0</capability>
<capability>urn:ietf:params:netconf:capability:candidate:1.0</capability>
<capability>urn:ietf:params:netconf:capability:validate:1.1</capability>
<capability>urn:ietf:params:netconf:capability:confirmed-commit:1.1</capability>
<capability>urn:ietf:params:netconf:capability:notification:1.0</capability>
<capability>urn:ietf:params:netconf:capability:interleave:1.0</capability>

<capability>urn:ietf:params:netconf:capability:with-defaults:1.0?basic-mode=report-all</capability>
<capability>http://cisco.con/ns/yang/cisco-nx-os-device?revision=2020-04-20&anmp; module=Cisco-NX-OS-device</capability>
<cgeani lityPhttp: //quenconfig.net/vangy/acl Previsias2019-11-2 sanpmod lesquenoanfigracl sanp; deviations=cisoo-reequenanfigrac] -deviations</capehi 1ity>
<cgeani lityPhttp: //qeenconfig.ret/vang/ofdPrevi siae201 9-10-25sanpymod lesquenoanficHofcan; deviations=cisao-rrequenamfigrofihdeviations</capei 1ity>

</capabilities>
<session-id>1286775422</session-id>
</hello>
11>]11><hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<capabilities>
<capability>urn:ietf:params:netconf:base:1.1</capability>
</capabilities>
</hello>
11>11>

Using NETCONF with the ssh command is not convenient and is prone to error, as the complexity for message
framing can be seen from RFC 6242 (Using the NETCONF Protocol over SSH). The ssh command is used
for the example above for illustration purposes only. There are various clients written for NETCONF which
are recommended over the ssh command. The ncclient is one such example and is used in the Usage Examples
section.

NETCONTF supports two operations for terminating a session, namely, <close-session>and <kill-session>.
When the server receives a <close-session> request, it gracefully terminates the session by releasing any
locks and resources associated with the session and closing the connection with the client. The following is
an example of the <close-session> request and response for success:

<rpc message-id="1" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<close-session/>
</rpc>

<rpc-reply message-id="1" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<ok/>
</rpc-reply>

. NETCONF Agent

| NETCONF Agent

NETCONF Read and Write Configuration .

The <kil1-session> request forces the termination of another session and requires <session-id> in the
request message. Upon receiving the <kill-session> request, the server terminates current operations, releases
locks and resources, and closes the connection associated with the specified session ID. The following is an
example of the <kill-session> request and response for success:

<rpc message-id="2" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<kill-session>
<session-1d>296324181</session-id>
</kill-session>
</rpc>

<rpc-reply message-id="2" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>

Besides the <close-session>and <kill-session> requests, a session is terminated automatically if the client
does send any request for a certain length of time. The default is five minutes. See Configuring the NETCONF
Agent for configuring the idle timeout.

NETCONF Read and Write Configuration

This section describes supported base protocol operations to manipulate and query datastores. The client can
send RPC messages for these operations after establishing a session with the NETCONF agent. Basic usage
explanations are given and RFC 6242 can be referred to for thorough details about these operations.

<get-config>

This operation retrieves configuration data from a specified datastore. The supported parameters are <source>
and <filter>. The <source> specifies the datastore being queried such as <running/>, which holds the
currently active configuration. The <filter> specifies the portions of the specified datastore to retrieve.

The following are examples of <get-config> request and response messages.

* Retrieve the entire <System> subtree:

<rpc message-1d="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<get-config>
<source>
<running/>
</source>
<filter>
<System xmlns="http://cisco.com/ns/yang/cisco-nx-os-device"/>
</filter>
</get-config>
</rpc>

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<data>
<System xmlns="http://cisco.com/ns/yang/cisco-nx-os-device">

</System>
</data>
</rpc-reply>

* Retrieve a specific list item:

<rpc message-id="102" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<get-config>

NETCONF Agent .

NETCONF Agent |
NETCONF Read and Write Configuration

<source>
<running/>
</source>
<filter>
<System xmlns="http://cisco.com/ns/yang/cisco-nx-os-device">
<bgp-items>
<inst-items>
<dom-items>
<Dom-1list>
<name>default</name>
</Dom-list>
</dom-items>
</inst-items>
</bgp-items>
</System>
</filter>
</get-config>
</rpc>

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="102">
<data>
<System xmlns="http://cisco.com/ns/yang/cisco-nx-os-device">
<bgp-items>
<inst-items>
<dom-items>
<Dom-1list>
<name>default</name>

<rtctrl-items>
<enforceFirstAs>enabled</enforceFirstAs>
<fibAccelerate>disabled</fibAccelerate>
<logNeighborChanges>enabled</logNeighborChanges>
<supprRt>enabled</supprRt>

</rtctrl-items>

<rtrId>1.2.3.4</rtrId>

</Dom-list>
</dom-items>
</inst-items>
</bgp-items>
</System>
</data>
</rpc-reply>

<edit-config>

This operation writes a specified configuration to the target datastore. The <target> parameter specifies the
datastore being edited, such as <running/> or <candidate/>. The candidate datastore can be manipulated
without impacting the running datastore until its changes are committed. For more information, see the
<commit> section. The <config> parameter specifies the modeled data to be written to the target datastore.
The model is specified by the “xmlns” attribute. Any number of elements in the <config> subtree may contain
an “operation” attribute. The operation of an element is inherited by its descendent elements until it’s overridden
by a new “operation” attribute. The supported operations are “merge”, “replace”, “create”, “delete”, and
“remove”. The “remove” operation is different from “delete” in that no error is returned if the configuration
data does not exist. If the “operation” attribute is not specified, the merge operation is assumed as default; the
default operation can be overridden by the optional <default-operation> parameter, which has “merge”,

“replace” or “none”.
The following are examples of <edit-config> request and response messages.

* Create a port-channel named "po5" with MTU 9216 and the description in the running configuration:

. NETCONF Agent

NETCONF Agent
NETCONF Read and Write Configuration .

<rpc message-id="103" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<edit-config>
<target>
<running/>
</target>
<config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
<System xmlns="http://cisco.com/ns/yang/cisco-nx-os-device">
<intf-items>
<aggr-items>
<AggrIf-list xc:operation="create">
<id>po5</id>
<mtu>9216</mtu>
<descr>port-channel 5</descr>
</AggrIf-list>
</aggr-items>
</intf-items>
</System>
</config>
</edit-config>
</rpc>

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="103">
<ok/>
</rpc-reply>

* Replace all configurations of a port-channel with new configurations:

<rpc message-1d="104" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<edit-config>
<target>
<running/>
</target>
<config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
<System xmlns="http://cisco.com/ns/yang/cisco-nx-os-device">
<intf-items>
<aggr-items>
<AggrlIf-list xc:operation="replace">
<id>po5</id>
<mtu>1500</mtu>
<adminSt>down</adminSt>
</AggrIf-list>
</aggr-items>
</intf-items>
</System>
</config>
</edit-config>
</rpc>

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="104">
<ok/>
</rpc-reply>

* Delete a port-channel:

<rpc message-id="105" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<edit-config>
<target>
<running/>
</target>
<config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
<System xmlns="http://cisco.com/ns/yang/cisco-nx-os-device">
<intf-items>
<aggr-items>
<AggrIf-list xc:operation="delete">

NETCONF Agent .

NETCONF Agent |
NETCONF Read and Write Configuration

<id>po5</id>
</AggrIf-list>
</aggr-items>
</intf-items>
</System>
</config>
</edit-config>
</rpc>

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="105">
<ok/>
</rpc-reply>

<copy-config>

This operation replaces the target configuration datastore with the contents of source configuration datastore.
The parameters for source datastore and target datastore are <source> and <target>, respectively.

The following are examples of <copy-config> request and response messages.

* Copy from running configuration to startup configuration:

<rpc message-id="106" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<copy-config>
<target>
<startup/>
</target>
<source>
<running/>
</source>
</copy-config>
</rpc>

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="106">
<ok/>
</rpc-reply>

* Copy from running configuration to candidate configuration:

<rpc message-id="107" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<copy-config>
<target>
<candidate/>
</target>
<source>
<running/>
</source>
</copy-config>
</rpc>

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="107">
<ok/>
</rpc-reply>

<lock>

The <1ock> operation allows a client to lock the configuration datastore, preventing other clients from locking
or modifying the datastore. The lock that is held by the client is released with either the <un1ock> operation
or termination of a session. The <target> parameter is used to specify the datastore to be locked.

. NETCONF Agent

| NETCONF Agent

NETCONF Read and Write Configuration .

The following are examples of <1ock> request and response messages.

A successful acquisition of a lock:

<rpc message-id="108" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<lock>
<target>
<running/>
</target>
</lock>
</rpc>

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="108">
<ok/>
</rpc-reply>

A failed attempt to acquire a lock already in use by another session:

<rpc message-1d="109" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<lock>
<target>
<candidate/>
</target>
</lock>
</rpc>

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="109">
<rpc-error>
<error-type>protocol</error-type>
<error-tag>lock-denied</error-tag>
<error-severity>error</error-severity>
<error-message xml:lang="en">Lock failed, lock is already held</error-message>

<error-info>
<session-1id>1553704357</session-id>
</error-info>
</rpc-error>
</rpc-reply>

<unlock>

The <unlock> operation releases a configuration lock, obtained with the <lock> operation. Only the same
session that issued the <1ock> operation can use the <unlock> operation. The <target> parameter is used to
specify the datastore to be unlocked.

The following is an example of <unlock> request and response messages.

Unlock
<rpc message-id="110" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<unlock>
<target>
<candidate/>
</target>
</unlock>
</rpc>

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="110">
<ok/>
</rpc-reply>

NETCONF Agent .

NETCONF Agent |
. NETCONF Read and Write Configuration

<get>

The <get> operation retrieves running configuration and operational state data. The supported parameter is
<filter>. The <filter> specifies the portions of the running configuration operational state data to retrieve.

The following is an example of <get> request and response messages.

* Retrieve running configuration and operational state data of a list item:

<rpc message-id="111" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<get>
<filter>
<System xmlns="http://cisco.com/ns/yang/cisco-nx-os-device">
<bgp-items>
<inst-items>
<dom-items>
<Dom-1list>
<name>default</name>
</Dom-list>
</dom-items>
</inst-items>
</bgp-items>
</System>
</filter>
</get>
</rpc>

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="111">
<data>
<System xmlns="http://cisco.com/ns/yang/cisco-nx-os-device">
<bgp-items>
<inst-items>
<dom-items>
<Dom-1list>

<name>default</name>

<always>disabled</always>
<bestPathIntv1>300</bestPathIntvl>
<clusterId>120</clusterId>

<firstPeerUpTs>2020-04-20T16:19:03.784+00:00</firstPeerUpTs>

<holdIntv1>180</holdIntvl1>
<id>1</id>

<kaIntvl>60</kaIntvl>
<mode>fabric</mode>
<numEstPeers>0</numEstPeers>
<numPeers>0</numPeers>
<numPeersPending>0</numPeersPending>
<operRtrId>1.2.3.4</operRtrId>
<operSt>up</operSt>
<pfxPeerTimeout>90</pfxPeerTimeout>
<pfxPeerWaitTime>90</pfxPeerWaitTime>
<reConnIntvl>60</reConnIntvl>
<rtrId>1.2.3.4</rtrId>
<vnid>0</vnid>

</Dom-list>
</dom-items>
</inst-items>
</bgp-items>
</System>
</data>
</rpc-reply>

. NETCONF Agent

| NETCONF Agent

NETCONF Read and Write Configuration .

<validate>

This operation validates the configuration contents of the candidate datastore. It is useful for validating the
configuration changes made on the candidate datastore before committing them to the running datastore. The
<source> parameter supports <candidate/>.

The following is an example of <validate> request and response messages.

* Validate the contents of the candidate datastore:

<rpc message-id="112" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<validate>
<source>
<candidate/>
</source>
</validate>
</rpc>

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="112">
<ok/>
</rpc-reply>

<commit>

This operation commits the candidate configuration to the running configuration. The operation without any
parameter is considered final and cannot be reverted. If <commit> is issued with the <confirmed/> parameter,
it is considered a confirmed commit, and commit is finalized only if it is followed by another <commit>
operation without the <confirmed/> parameter. That is, the confirming commit. The confirmed commit allows
two parameters: <confirm-timeout> and <persist>. The <confirm-timeout> is the period in seconds before
the confirmed commit is reverted, restoring the running configuration to its state before the confirmed commit
was issued, unless the confirming commit is issued before or the timeout is reset by another confirmed commit.
If the <confirm-timeout> is not specified, the default timeout is 600 seconds. Also, the confirmed commit
is reverted if the session is terminated. The <persist> parameter makes the confirmed commit to persist even
if the session is terminated. The value of the <persist> parameter is used to identify the confirmed commit
from any session, and must be used as the value of the <persist-id> parameter of subsequent confirmed
commit or confirming commit.

The following are examples of <commit> request and response messages.

» Commit the contents of the candidate datastore:

<rpc message-id="113" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<commit/>
</rpc>

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="113">
<ok/>
</rpc-reply>

Confirmed commit with the timeout:

<rpc message-id="114" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<commit>
<confirmed/>
<confirm-timeout>120</confirm-timeout>
</commit>
</rpc>

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="114">

NETCONF Agent .

NETCONF Agent |
. NETCONF Read and Write Configuration

<ok/>
</rpc-reply>

Start a persistent confirmed commit and then confirm the persistent confirmed commit:

<rpc message-1d="115" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<commit>
<confirmed/>
<persist>ID1234</persist>
</commit>
</rpc>

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="115">
<ok/>
</rpc-reply>

<!-- confirm the persistent confirmed-commit, from the same session or another session
-—>
<rpc message-id="116" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<commit>
<persist-id>ID1234</persist-id>
</commit>
</rpc>

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="116">
<ok/>
</rpc-reply>

<cancel-commit>

This operation cancels an ongoing confirmed commit. If a confirmed commit from a different session needs
to be canceled, the <persist-id> parameter must be used with the same value that was given in the <persist>
parameter of the confirmed commit.

« Cancel the confirmed commit from the same sessions:

<rpc message-id="117" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<cancel-commit/>
</rpc>

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="117">
<ok/>
</rpc-reply>

<discard-changes>

This operation discards any uncommitted changes that are made on the candidate configuration by resetting
back to the content of the running configuration. No parameter is required.

The following is an example of <discard-changes> request and response messages.

* Discard the changes made on the candidate datastore:

<rpc message-1d="118" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<discard-changes/>
</rpc>

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="118">
<ok/>

. NETCONF Agent

| NETCONF Agent
NETCONF Notifications]

</rpc-reply>

NETCONF Notifications

About NETCONF Notifications

NETCONEF notification is a mechanism where a NETCONF client can subscribe to system events and then
receive notifications to these events from a NETCONF agent. These features are defined in RFC 5277.
Beginning with Cisco NX-OS Release 9.3(1), support for NETCONF notifications began as described in RFC
5277. This is an optional capability that is advertised in the NETCONF hello message.

A NETCONEF client can subscribe for notifications using Deviceyang or OpenConfig models. Support for
OpenConfig models in NETCONF notifications begins with Cisco NX-OS Release 9.3(5).

With this support, any NETCONF client can:
* Subscribe to event notifications.

Each subscription is a one-time request over a session from a NETCONF client. The Cisco NX-OS
NETCONF agent responds, and the subscription is active until the session is explicitly closed by the
NETCONEF client. The subscription can also be closed by an administrative action, such as a switch
restart or disabling NETCONF feature on the switch. The subscription is active as long as the underlying
NETCONEF session is active. The events that are generated for these subscribed filters are sent as
notifications to the client. Clients can subscribe to notifications for system events. For example, port
state change, fan speed change, and process memory change to name a few. Also, configuration events
such as a new feature being enabled.

* Receive event notifications.

An event notification is a well-formed XML document that contains information about the configuration
or operational events on the switch. The NETCONF client can send filtering criteria in the subscription
request to specify a subset of events instead of all events.

* Interleave event notifications with other operations.

The Cisco NX-OS NETCONF agent can receive, process, and respond to NETCONF requests on a
session with an active notification subscription.

Capabilities Exchange

During the NETCONF handshake, the Cisco NX-OS NETCONF server sends the <capabilities> element to
the connecting NETCONF clients to indicate what requests that the server can process. As part of the exchange,
the server includes the following identifiers, which inform the client that the Cisco NX-OS NETCONF server
supports both notifications and interleave.

Capability identifier for notification:

urn:ietf:params:netconf:capability:notification:1.0

Capability identifier for interleave:

NETCONF Agent .

http://tools.ietf.org/html/rfc5277
http://tools.ietf.org/html/rfc5277
http://tools.ietf.org/html/rfc5277

NETCONF Agent |
. Event Stream Discovery

urn:ietf:params:netconf:capability:interleave:1.0

Event Stream Discovery

The client can discover the Cisco NX-OS NETCONF server's supported streams by using a NETCONF <get>
operation for all available <streams>. Cisco NX-OS supports the NETCONF stream only. Discovering event
streams occurs through a request and reply sequence.

Request to retrieve available streams:

Any NETCONEF client can send a NETCONF <get> request with filter for <streams> to identify all supported
streams. The following example shows the payload of a client request message:

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<get>
<filter type="subtree">
<netconf xmlns="urn:ietf:params:xml:ns:netmod:notification">
<streams/>
</netconf>
</filter>
</get>
</rpc>

Reply:

The Cisco NX-OS NETCONF server replies with all the event streams that are available and to which the
client can subscribe. Cisco NX-OS supports the NETCONF stream only.

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<netconf xmlns="urn:ietf:params:xml:ns:netmod:notification">
<streams>
<stream>
<name>NETCONF</name>
<description>default NETCONF event stream </description>
</stream>
</streams>
</netconf>
</data>
</rpc-reply>

Creating Subscriptions

NETCONEF clients can create subscriptions for events on the switch through an RPC with a
<create-subscription™> protocol operation. When the Cisco NX-OS NETCONF server responds with the <ok/>
element, the subscription is active.

Unlike synchronous Get and Set operations, a subscription is a persistent, asynchronous operation. The
subscription stays active until the client explicitly closes the subscription or the session goes offline. For
example, by a switch restart.

If a client subscribes to event notifications, but it goes offline, the server terminates the subscription and closes
the session.

. NETCONF Agent

| NETCONF Agent

Receiving Notifications .

If a subscription is closed, the NETCONF client must reconnect and create the subscription again to receive
all event notifications.

The server does not initiate subscriptions, so you must to write client programs that contain the
<create-subscription> operation. The following is an example for <create-subscription> sent by any
NETCONF client:

<create-subscription xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
<stream>NETCONF</stream>
<filter xmlns:nsl="urn:ietf:params:xml:ns:netconf:base:1.0" type="subtree">
<System xmlns="http://cisco.com/ns/yang/cisco-nx-os-device">
<intf-items>
<phys-items>
<PhysIf-list>
<id>ethl/54/1</id>
<phys-items>
<operSt/>
</phys-items>
</PhysIf-list>
</phys-items>
</intf-items>
</System>
</filter>
</create-subscription>

The <create-subscription> operation supports any of the following options:

* <stream>, Which specifies which stream of events the client wants to subscribe to. If you specify no
stream, by default, events in the NETCONF stream are sent to the client.

* <filter>, which enables filtering the events to provide a subset of events carried on the stream.

The Cisco NX-OS NETCONF server responds back with an <ok> message if the server is able to create the
subscription successfully.

The following is a sample successful response received in the client for the <create-subscription> request
that it sent to the server.

Response for <create-subscription>, received in the client:

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"

message-id="urn:uuid:6f£f0bda6-d3£f1-4288-9a7e-0£30581edbab">
<ok/>

</rpc-reply>

N

Note Subscriptions with Replay are not supported, so the Start Time and Stop Time options cannot be used.

Receiving Notifications

When the NETCONEF client has successfully created a subscription, the Cisco NX-OS NETCONF server
begins sending relevant event notifications, for any events in the switch, for the filter used. The event notification
is its own XML-formatted document that contains the notification element.

NETCONF Agent .

NETCONF Agent |
. Terminating Subscriptions

The following is a sample notification for an Ethernet interface going down, when the client subscribed to
interface operSt, from the DeviceYang model. The <create-subscription> is in the Creating Subscriptions
section.

<?xml version="1.0" encoding="UTF-8"?>
<notification xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
<eventTime>2020-05-05T10:22:52.260+00:00</eventTime>
<operation>modified</operation>
<event>
<System xmlns="http://cisco.com/ns/yang/cisco-nx-os-device">
<intf-items>
<phys-items>
<PhysIf-list>
<id>ethl/54/1</id>
<phys-items>
<operSt>down</operSt>
</phys-items>
</PhysIf-list>
</phys-items>
</intf-items>
</System>
</event>
</notification>

The <notification> messages contain the following fields:
* <eventTime>, the date and timestamp of when the event occurred.
* <operation>, the type of event on the model node.

» <event>, the model data to which the client is subscribed.

Terminating Subscriptions

Subscriptions are terminated when the NETCONF client sends specific operations to the Cisco NX-OS
NETCONF server in the payload of a NETCONF message. Subscription termination occurs in any of the
following ways:

* Closing the subscription session, which occurs when the <close-session> operation is sent to the
NETCONF Server for a specific subscription session.

* Terminating the NETCONF session, which occurs when the <kill-session> operation is sent to the
NETCONTF server.

Every subscription is tied to one NETCONF session. It is a one-to-one relationship.

NETCONF Examples
A\

Note All examples in this section use the ncclient python library.

. NETCONF Agent

| NETCONF Agent

NETCONF Examples [

Connecting Cisco NX-0S with the ncclient

The ncclient is a Python library for NETCONF clients. The following is an example of how to establish a
connection to Cisco NX-OS from the ncclient Manager API:

device = {
"address": "10.10.10.10",
"netconf port": 830,
"username": "admin",
"password": "cisco"

}
with manager.connect (host = device["address"],
port = device["netconf port"],
username = device["username"],
password = device["password"],
hostkey verify = False) as m:
do your stuff

Using the Sandbox to Generate the NETCONF Payload

Refer to NXAPI Developer Sandbox section to enable it. In order to generate a payload for NETCONF, change
the method to RESTCONF (Yang) and message format to XML. Enter the command you need to convert in
the text window, click Convert and the equivalent payload is displayed in the Request text box:

Figure 1: NCCLIENT

interfoce ethernet 174 Method:=9

swi o rt mode trunk
switchport trunk ollowed vian 109 Message format:

mestcont/ dala ' Cisco-NX-05-dovice: System'

Requaest Python Python3 Java JavaScript Go-Lang

<intf-itesss ; ==

«phiyi

Getting Configuration Data from Cisco NX-0S
Here is an example of how to use the ncclient to get the BGP configuration from Cisco NX-OS:
from ncclient import manager

import sys
from lxml import etree

NETCONF Agent .

NETCONF Agent |
[l NETCONF Examples

device = {
"address": "nexus",
"netconf port": 830,
"username": "admin",
"password": "cisco!"

create a main() method
def main () :
bgp_dom =
<filter type="subtree">
<System xmlns="http://cisco.com/ns/yang/cisco-nx-os-device">
<bgp-items>
<inst-items>
<dom-items>
<Dom-list/>
</dom-items>
</inst-items>
</bgp-items>
</System>
</filter>

[IRIR1]

[IRIR1]

with manager.connect (host=device["address"],
port=device["netconf port"],
username=device["username"],
password=device["password"],
hostkey verify=False) as m:

Collect the NETCONF response

netconf response = m.get config(source='running', filter=bgp_ dom)
Parse the XML and print the data

xml_data = netconf response.data_ele

print (etree.tostring(xml data, pretty print=True) .decode ("utf-8"))

if name == "'_|
sys.exit (main())

main ':

Getting the Running Configuration and Operational Data from Cisco NX-0S
Here is example of getting the interface counters of all the physical interfaces on Cisco NX-OS:
from ncclient import manager

import sys
from lxml import etree

device = {
"address": "nexus",
"netconf port": 830,
"username": "admin",
"password": "cisco"

}

def main () :

intf ctr filter = """
<filter>
<System xmlns="http://cisco.com/ns/yang/cisco-nx-os-device">

. NETCONF Agent

| NETCONF Agent

NETCONF Examples [

<intf-items>
<phys-items>
<PhysIf-list>
<dbgIfIn-items/>
<dbgIfOut-items/>
</PhysIf-list>
</phys-items>
</intf-items>
</System>
</filter>"""

with manager.connect (host=device["address"],
port=device["netconf port"],
username=device["username"],
password=device["password"],
hostkey verify=False) as m:

Collect the NETCONF response

netconf response = m.get (filter=intf ctr filter)

Parse the XML and print the data

xml_data = netconf response.data_ele

print (etree.tostring(xml data, pretty print=True) .decode ("utf-8"))

if name == "'_|
sys.exit (main())

main ':

Creating a New Configuration Using NETCONF
Here is example of how to create VLAN 100 with name using edit config of ncclient:
from ncclient import manager

import sys
from lxml import etree

device = {
"address": "nexus",
"netconf port": 830,
"username": "admin",
"password": "cisco"

}

def main() :
add vlan = """
<config>

<System xmlns="http://cisco.com/ns/yang/cisco-nx-os-device">
<bd-items>
<bd-items>
<BD-list>
<fabEncap>vlan-100</fabEncap>
<name>inb mgmt</name>
</BD-list>
</bd-items>
</bd-items>
</System>
</config>

wun

with manager.connect (host=device["address"],
port=device["netconf port"],
username=device ["username"],
password=device["password"],

NETCONF Agent .

NETCONF Agent |
[l NETCONF Examples

hostkey verify=False) as m:

create vlan with edit config
netconf response = m.edit config(target="running", config=add vlan)
print (netconf response)
if name == "'_main_ ':
sys.exit (main())

Deleting Configuration Using NETCONF

Here is example of deleting a loopback interface from Cisco NX-OS:

from ncclient import manager
import sys
from lxml import etree

device = {
"address": "nexus",
"netconf port": 830,
"username": "admin",
"password": "cisco"

}

def main() :

v =

remove loopback e
<config>

<System xmlns="http://cisco.com/ns/yang/cisco-nx-os-device">
<intf-items>
<lb-items>
<LbRtdIf-list operation="delete">
<id>lol0</id>
</LbRtdIf-1list>
</lb-items>
</intf-items>
</System>
</config>"""

with manager.connect (host=device["address"],
port=device["netconf port"],
username=device ["username"],
password=device["password"],
hostkey verify=False) as m:

create vlan with edit_config
netconf response = m.edit config(target="running", config=remove loopback)

print (netconf response)

if name == ' main ':

sys.exit (main())

. NETCONF Agent

| NETCONF Agent
Troubleshooting the NETCONF Agent .

Troubleshooting the NETCONF Agent

Troubleshooting Connectivity

* From a client system, ping the management port of the switch to verify that the switch is reachable.
* In Cisco NX-OS, enter the show feature | inc netconf command to check the agent status.

* There is the XML Management Interface (also known as xmlagent), which is quite different from and
often confused as the NETCONF Agent. Please ensure that you connect to the correct port 830 and
receive a correct <hello> message (similar to what is shown in the Establishing a NETCONF Session
section) from the server if the server does not respond with the correct NETCONF messages.

* You can view NETCONF agent debugs from the Bash shell by viewing the contents of the
/volatile/netconf-internal-log file. You can enable the Bash shell by using the feature bash command.
After enabling the Bash shell, enter the Bash shell through the run bash command. For more information,
see the chapter titled Bash in this document.

Note: The debug netconf commands cannot be used to debug NETCONF Agent operations. These
debug commands will not output any NETCONF Agent-related logs.

NETCONF Agent .

NETCONF Agent |
. Troubleshooting the NETCONF Agent

. NETCONF Agent

	NETCONF Agent
	About the NETCONF Agent
	Guidelines and Limitations for NETCONF
	Configuring the NETCONF Agent
	Configuring the NETCONF Agent Over SSH for Cisco NX-OS 9.3(5) and Later
	Configuring the NETCONF Agent for Cisco NX-OS 9.3(4) and Earlier

	Establishing a NETCONF Session
	NETCONF Read and Write Configuration
	NETCONF Notifications
	About NETCONF Notifications
	Capabilities Exchange
	Event Stream Discovery
	Creating Subscriptions
	Receiving Notifications
	Terminating Subscriptions

	NETCONF Examples
	Troubleshooting the NETCONF Agent

