
NX-SDK

This chapter contains the following topics:

• About the NX-SDK, on page 1
• On-Box Applications, on page 2

About the NX-SDK
The Cisco NX-OS SDK (NX-SDK) is a C++ abstraction and plugin-library layer that streamlines access to
infrastructure for automation and custom application creation, such as generating custom:

• CLIs

• Syslogs

• Event and Error managers

• Inter-application communication

• High availability (HA)

• Route manager

You can use C++, Python, or Go for application development with NX-SDK.

Requirements

The NX-SDK has the following requirements:

• Docker

• A Linux environment (either Ubuntu 14.04, or Centos 6.7). Cisco recommends using the provided
NX-SDK Docker containers. For more information, see Cisco DevNet NX-SDK.

Related Information

For more information about Cisco NX-SDK, go to:

• Cisco DevNet NX-SDK. Click the versions.md link (https://github.com/CiscoDevNet/NX-SDK/
blob/master/versions.md) to get information about features and details on each supported release.

NX-SDK
1

https://github.com/CiscoDevNet/NX-SDK
https://github.com/CiscoDevNet/NX-SDK
https://github.com/CiscoDevNet/NX-SDK/blob/master/versions.md
https://github.com/CiscoDevNet/NX-SDK/blob/master/versions.md

On-Box Applications

Install the NX-SDK

Procedure

Step 1 Note The Cisco SDK is required for applications started in VSH.

The Cisco SDK is optional for applications started in Bash.

(Optional) Build the Cisco SDK RPM to persist on switch reloads and from standby mode.
a) Pull the Docker image for Ubuntu 14.04+ or Centos 6.7+ from https://hub.docker.com/r/dockercisco/

nxsdk.
b) Source for a 32-bit environment:

Example:
export ENXOS_SDK_ROOT=/enxos-sdk
cd $ENXOS_SDK_Root
source environment-setup-x86-linux

Step 2 Clone the NX-SDK toolkit from https://github.com/CiscoDevNet/NX-SDK.git.

Example:
git clone https://github.com/CiscoDevNet/NX-SDK.git

What to do next

The following references to the API can be found in $PWD/nxsdk and includes the following:

• The NX-SDK public C++ classes and APIs,

• Example applications, and

• Example Python applications.

Building and Packaging C++ Applications
The following instructions describes how to build and package your custom C++ NX-OS application.

Procedure

Step 1 Build your application files..
a) Building a C++ application requires adding your source files to the Makefile

Example:

NX-SDK
2

NX-SDK
On-Box Applications

https://hub.docker.com/r/dockercisco/nxsdk
https://hub.docker.com/r/dockercisco/nxsdk
https://github.com/CiscoDevNet/NX-SDK.git

The example below uses the customCliApp.cpp file from /examples

...
##Directory Structure
...
EXNXSDK_BIN:= customCliApp
...

b) Build the C++ application using themake command.

Example:
$PWD/nxsdk# make clean

$PWD/nxsdk# make all

Step 2 (Optional) Package your application.

Auto-generate RPM package

Custom RPM packages for your applications are required to run on VSH and allow you to specify whether a
given application persists on switch reloads or system switchovers. Use the following to create a custom
specification file for your application.

RPM packaging is required to be done within the provided ENXOS Docker image.Note

a) Use the rpm_gen.py script to auto-generate RPM package for a custom application.

Example:

Specify the -h option of the script to display the usages of the script.
/NX-SDK# python scripts/rpm_gen.py -h

b) By default, NXSDK_ROOT is set to /NX-SDK. If NX-SDK is installed in another location other than the
default, then you must set NXSDK_ROOT env to the appropriate location for the script to run correctly.

Example:
export NXSDK_ROOT=<absolute-path-to-NX-SDK>

Example of Auto-generate RPM package for C++ App examples/customCliApp.cpp

/NX-SDK/scripts# python rpm_gen.py CustomCliApp
###

Generating rpm package...

Executing(%prep): /bin/sh -e /enxos-sdk/sysroots/x86_64-wrlinuxsdk-linux/var/tmp/rpm-tmp.49266
+ umask 022
+ cd /enxos-sdk/sysroots/x86_64-wrlinuxsdk-linux/usr/lib/rpm/../../src/rpm/BUILD
+ exit 0
Executing(%build): /bin/sh -e
/enxos-sdk/sysroots/x86_64-wrlinuxsdk-linux/var/tmp/rpm-tmp.49266
+ umask 022
+ cd /enxos-sdk/sysroots/x86_64-wrlinuxsdk-linux/usr/lib/rpm/../../src/rpm/BUILD
+ exit 0
Executing(%install): /bin/sh -e
/enxos-sdk/sysroots/x86_64-wrlinuxsdk-linux/var/tmp/rpm-tmp.49266
+ umask 022
+ cd /enxos-sdk/sysroots/x86_64-wrlinuxsdk-linux/usr/lib/rpm/../../src/rpm/BUILD
+ /bin/rm -rf
/enxos-sdk/sysroots/x86_64-wrlinuxsdk-linux/usr/lib/rpm/../../../var/tmp/customCliApp-root

+ /bin/mkdlr -p

NX-SDK
3

NX-SDK
Building and Packaging C++ Applications

https://github.com/CiscoDevNet/NX-SDK/tree/master/scripts

/enxos-sdk/sysrOOts/x86_64-wrIinuxsdk-linux/usr/lib/rpm/../../../var/tmp/customCliApp-root//isan/bin

+ cp -R /NX-SDK/bin /enxos-sdk/sysroots/x86_64-wrlinuxsdk-linux/usr/lib/rpm/..
/../../var/tmp/customCliApp-root//isan/bin
+ exit 0
Processing files: customCliApp-1.0-7.03.I6.1.x86_64
Requires: libc.so.6 libc.so.6(GLIBC 2.0) 3.0) Libc.so.6(GLIBC_2.1.3) libdl.so.2 libgcc_s.so.1
libgcc_s.so.1(GCC_3.0) libm.so.6 libnxsdk.so libstdc++.so.6 libstdc++.so.6 (CXXAB1 1.3)
libstdc++.so.6(GLIBCXX 3.4) libstdc++.so.6(GLIBCXX_3.4.14) rt1d(GNU HASH)
Checking for unpackaged file(s):
/enxos-sdk/sysroots/x86_64-wrlinuxsdk-linux/usr/lib/rpm/check-files
/enos-sdk/sysroots/x86_64-wrlinuxsdk-linux/usr/lib/rpm/../../../var/tmp/customCliApp-root
Wrote:
/enxos-sdk/sysrootS/X86_64-wrlinuxsdk-linux/usr/src/rpm/SRPMS/customCliApp-1.0-7.0.3.I6.1.src-rpm

Wrote:
/enxos-sdk/sysrootS/X86_64-wrlinuxsdk-linux/usr/src/rpm/RPMS/x86_64/customCliApp-1.0-7.0.3.I6.1.x86_64.rpm
Executing($clean): /bin/sh -e
/enxos-sdk/sysroots/x86_64-wrlinuxsdk-linux/var/tmp/rpm-tmp.49266
+ umask 022
+ cd /enxos-sdk/sysroots/x86_64-wrlinuxsdk-linux/usr/lib/rpm/../../src/rpm/BUILD
+ / bin/rm -rf
/enxos-sdk/sysroots/x86_64-wrlinuxsdk-linux/usr/lib/rpm/../../../var/tmp/customCliApp-root

RPM package has been built
###

SPEC file: /NX-SDK/rpm/SPECS/customCliApp.spec
RPM file : /NX-SDK/rpm/RPMS/customCliApp-1.0-7.0.3.I6.1.x86_64.rpm

Manually-generate RPM Package

Custom RPM packages for your applications are required to run on VSH and allow you to specify whether a
given application persists on switch reloads or system switchovers. Use the following steps to create a custom
specification file (*.spec) for your application.

a) Export the Cisco SDK RPM source to $RPM_ROOT.

Example:

export RPM_ROOT=$ENXOS_SDK_ROOT/sysroots/x86_64-wrlinuxsdk-linux/usr/src/rpm

b) Enter the $RPM_ROOT directory.

Example:

ls $RPM_ROOT (BUILD RPMS SOURCES SPECS SRPMS)

c) Create/edit your application-specific *.spec file.

Refer to the customCliApp.spec file in the /rpm/SPECS directory for an example specification
file.

We recommend installing application files to /isan/bin/nxsdk on the switch as per the
example customCliApp.spec file.

Note

Example:

vi $RPM_ROOT/SPECS/<application>.spec

d) Build your RPM package.

Example:

NX-SDK
4

NX-SDK
Building and Packaging C++ Applications

rpm -ba $RPM_ROOT/SPECS/<application>.spec

A successful build will generate an RPM file in $RPMS_ROOT/RPMS/x86_64/

Installing and Running Custom Applications
You can install applications by copying binaries to the switch, or installing unpacking the binaries from the
RPM package.

Only custom applications that are installed from RPM packages can persist on switch reload or system
switchovers. We recommend reserving copying binaries to the switch for simple testing purposes.

Note

To run NX-SDK apps inside the swtich (on box), you must have the Cisco SDK build environment that is
installed.

The Cisco SDK is required to start applications in VSH: VSH requires that all applications be installed through
RPMs, which requires that being built in the Cisco SDK.

The Cisco SDK is not required for Python application.

The Cisco SDK is not required for C++ application, but is still recommended: Using g++ to build applications
and then copying the built files to the switch may pose stability risks as g++ is not supported.

Note

To install or run custom applications on the switch, use this procedure:

Before you begin

The switch must have the NX-SDK enabled before running any custom application. Run feature nxsdk on
the switch.

Procedure

Step 1 Install your application using either VSH or Bash.

To install your application using VSH, perform the following:

a) Add the RPM package to the installer.

Example:
switch(config)# install add bootflash:<app-rpm-package>.rpm

b) After installation, check if the RPM is listed as inactive.

Example:
switch(config)# show install inactive

c) Activate the RPM package.

Example:

NX-SDK
5

NX-SDK
Installing and Running Custom Applications

switch(config)# install activate <app-rpm-package>

d) After activation, check if the RPM is listed as active.

Example:
switch(config)# show install active

To install your application using Bash, run the following commands:
switch(config)# run bash sudo su
bash# yum install /bootflash/<app-rpm-package>.rpm

Step 2 Start your application.

C++ applications can run from VSH or Bash.

• To run a C++ application in VSH, run the nxsdk command:
switch(config)# nxsdk service-name /<install directory>/<application>

If the application is installed in /isan/bin/nxsdk, the full file path is not required. You can
use the nxsdk service-name app-name form of the command.

Note

• To run a C++ application in Bash, start Bash then start the application.
switch(config)# run bash sudo su
bash# <app-full-path> &

Python applications can run from VSH or Bash.

• To run a Python application from VSH, run the nxsdk command:
switch(config)# nxsdk service-name <app-full-path>

The Python application must be made executable to start from VSH:

• Run chmod +x app-full-path

• Add #!/isan/bin/nxpython to the first link of your Python application.

Note

• To run a Python application from Bash,
switch(config)# run bash sudo su
bash# /isan/bin/nxsdk <app-full-path>

By default, NX-SDK uses /isan/bin/nxsdk to run Python applications in Bash, but
you can specify a different install directory if needed.

Note

Step 3 Run show nxsdk internal service to verify that your application is running

Example:
switch(config)# show nxsdk internal service

switch(config)# show nxsdk internal service

NXSDK total services (Max Allowed) : 2 (32)
NXSDK Default App Path : /isan/bin/nxsdk
NXSDK Supported Versions : 1.0

Service-name Base App Started(PID) Version RPM Package
------------------------- --------------- ------------ ---------- --------------------

NX-SDK
6

NX-SDK
Installing and Running Custom Applications

/isan/bin/capp1 nxsdk_app2 VSH(25270) 1.0
capp1-1.0-7.0.3.I6.1.x86_64
/isan/bin/TestApp.py nxsdk_app3 BASH(27823) - -

Step 4 Stop you application.

You can stop your application in the following ways:

• To stop all NX-SDK applications, run no feature nxsdk.

• To stop a specific application in VSH, run no nxsdk service-name /install directory/application

• To stop a specific application in Bash, run application stop-event-loop

Step 5 Uninstall your application.

To uninstall the RPM from the switch using VSH, perform the following:

a) Deactivate the active RPM package.

Example:
switch# install deactive <app-rpm-package>

b) Verify that the package is deactivated.

Example:
switch# show install inactive

c) Remove the RPM package.

Example:
switch# install remove <app-rpm-package>

To uninstall the RPM from the switch using Bash, run yum remove app-full-path

NX-SDK
7

NX-SDK
Installing and Running Custom Applications

NX-SDK
8

NX-SDK
Installing and Running Custom Applications

	NX-SDK
	About the NX-SDK
	On-Box Applications
	Install the NX-SDK
	Building and Packaging C++ Applications
	Installing and Running Custom Applications

