Chapter 1. New and Changed Information
This chapter provides release-specific information for each new and changed feature in the Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 7.x.
This chapter provides release-specific information for each new and changed feature in the Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 7.x.
This table summarizes the new and changed features for the Cisco Nexus 9000 Series NX-OS Programmability Guide, Release 7.x and where they are documented.
Feature	Description	Changed in Release	Where Documented
Model-Driven Telemetry	Enhanced show telemetry control database sensor-paths to show details about encoding, collection, transport, and streaming.	7.0(3)I7(7)	
CLI Command output for NETCONF	Support for converting NX-OS CLI commands to Network Configuration format is documented.	7.0(3)I7(5)	
XML Management Interface	Support for managing the Cisco Nexus 9000 switches with an XML-based tool through the XML-based Network Configuration Protocol (NETCONF) is documented.	7.0(3)I7(5)	
JSON-RPC as an NX-API input request format	JSON-RPC is now an accepted NX-API input request format.	7.0(3)I7(4)	
rollback NX-API request element	The rollback NX-API request element is now available in XML, JSON and JSON-RPC input request formats.	7.0(3)I7(4)	
Patch RPM support	Added instructions for managing patch RPMs.	7.0(3)I7(3)	
UDP telemetry	Added information on UDP telemetry.	7.0(3)I7(3)	
Nexus 9508 Bash shell support	Added support for Nexus 9508 running NX-OS 7.0(3)F3(1).	7.0(3)F3(1)	
Nexus 9508 Python API support	Added support for Nexus 9508 running NX-OS 7.0(3)F3(1).	7.0(3)F3(1)	
Nexus 9508 iPXE support	Added support for Nexus 9508 running NX-OS 7.0(3)F3(1).	7.0(3)F3(1)	
Nexus 9508 Kernel Stack support	Added support for Nexus 9508 running NX-OS 7.0(3)F3(1).	7.0(3)F3(1)	
Nexus 9508 RPMs for Third-Party application support	Added support for Nexus 9508 running NX-OS 7.0(3)F3(1).	7.0(3)F3(1)	
Nexus 9508 Puppet Agent support	Added support for Nexus 9508 running NX-OS 7.0(3)F3(1).	7.0(3)F3(1)	
Nexus 9508 Chef client support	Added support for Nexus 9508 running NX-OS 7.0(3)F3(1).	7.0(3)F3(1)	
Nexus 9508 NX-API REST support	Added support for Nexus 9508 running NX-OS 7.0(3)F3(1).	7.0(3)F3(1)	
Nexus 9508 Guest Shell support	Added support for Nexus 9508 running NX-OS 7.0(3)F3(1).	7.0(3)F3(1)	
Export rootfs of Guest Shell onto multiple devices.	Support to export a specific Guest Shell rootfs and deploy it onto multiple devices.	7.0(3)I7(1)	
Telemetry support for UDP and secure UDP (DTLS) protocols	Added telemetry support for UDP and secure UDP (DTLS) protocols	7.0(3)I7(1)	
Authentication with self signed SSL certificate	Added support for authentication with self signed SSL certificate.	7.0(3)I7(1)	
Telemetry VRF Support	Added telemetry VRF support.	7.0(3)I7(1)	
Telemetry Compression for gRPC Transport	Added support for telemetry compression for gRPC transport.	7.0(3)I7(1)	
NX-OS Programmable Interface Component RPM packages	NX-OS Programmable Interface Component RPM packages included in the NX-OS image.	7.0(3)I7(1)	
Container Tracker	Added support to communicate with the Kubernetes API Server.	7.0(3)I6(1)	
NX-SDK	SDK to create native NX-OS applications.	7.0(3)I6(1)	
NETCONF Candidate	Users can change NETCONF configurations and then chose when to commit those changes.	7.0(3)I6(1)	
Dynamic Logger	Users can now update configurations without restarting the switch	7.0(3)I6(1)	
Model-Driven Telemetry	Telemetry supports the following features:		
7.0(3)I6(1)			
NX-API Developer Sandbox	The Sandbox can convert REST JSON payloads into equivalent CLI commands	7.0(3)I6(1)	
Guest Shell	Version updated from 2.1 to 2.2. Guest shell now includes the following features:		
7.0(3)I5(2)			
NX-API Developer Sandbox | The Sandbox now supports the generation of YANG and NX-API REST payloads. | 7.0(3)I5(1) | |
Model-Driven Programmability | Data modeling provides a programmatic and standards-based method of writing configurations to the network device. | 7.0(3)I5(1) | |
Model-Driven Telemetry | Enables the push model of streaming network data, providing near-real-time access to monitoring data. | 7.0(3)I5(1) | |
XML Management Interface | Added the use of XML Management Interface to configure devices. | 7.0(3)I4(1) | Replaced in a later release by Model-Driven Programmability |
Nexus Application Development | The Cisco SDK is a development kit based on Yocto 1.2. It contains all of the tools needed to build applications for execution on a Cisco Nexus switch. | 7.0(3)i2(1) | |
Kernel Stack | Uses well-known Linux APIs to manage routes and front panel ports. | 7.0(3)I2(1) | |
ISO | The ISO image is a bootable Wind River 5 environment that includes the necessary tools, libraries, and headers to build and RPM-package third-party applications to run natively on a Cisco Nexus switch. | 7.0(3)i2(1) | |
iPXE | Open source network boot firmware. | 7.0(3)i2(1) | |
Chef | Chef is an open-source software package developed by Chef Software, Inc. | 7.0(3)i2(1) | |
Puppet | The Puppet software package, developed by Puppet Labs, is an open source automation toolset for managing servers and other resources by enforcing device states, such as configuration settings. | 7.0(3)i2(1) | |
Third-Party Applications | Open source applications added. | 7.0(3)i2(1) | |
Guest Shell | Updated to Guest Shell 2.0 | 7.0(3)i2(1) | |
iPXE | Open source network boot firmware. | 7.0(3)i2(1) | |
Kernel Stack | Uses well known Linux APIs to manage the routes and front panel ports. | 7.0(3)i2(1) | |
No updates since release 6.x | 7.0(3)I1(1) |
The Cisco NX-OS software running on the Cisco Nexus 9000 Series switches is as follows:
Resilient
Provides critical business-class availability.
Modular
Has extensions that accommodate business needs.
Highly Programmatic
Allows for rapid automation and orchestration through Application Programming Interfaces (APIs).
Secure
Protects and preserves data and operations.
Flexible
Integrates and enables new technologies.
Scalable
Accommodates and grows with the business and its requirements.
Easy to use
Reduces the amount of learning required, simplifies deployment, and provides ease of manageability.
With the Cisco NX-OS operating system, the device functions in the unified fabric mode to provide network connectivity with programmatic automation functions.
Cisco NX-OS contains Open Source Software (OSS) and commercial technologies that provide automation, orchestration, programmability, monitoring, and compliance support.
For more information on Open NX-OS, see https://developer.cisco.com/site/nx-os/.
SNMP (V1, V2, V3)
Syslog
RMON
NETCONF
CLI and CLI scripting
The enhanced Cisco NX-OS on the device supports automation. The platform includes support for Power On Auto Provisioning (POAP).
The enhanced Cisco NX-OS on the device supports automation. The platform includes the following features that support automation:
Power On Auto Provisioning (POAP) support
Chef and Puppet integration
OpenStack integration
OpenDayLight integration and OpenFlow support
Cisco NX-OS software on switches support several capabilities to aid programmability.
Cisco NX-API allows for HTTP-based programmatic access to the switches. This support is delivered by NX-API, an open source webserver. NX-API provides the configuration and management capabilities of the Cisco NX-OS CLI with web-based APIs. The device can be set to publish the output of the API calls in XML or JSON format. This API enables rapid development on the switches.
Cisco NX-OS supports Python v2.7.5 in both interactive and noninteractive (script) modes.
Beginning in Cisco NX-OS Release 9.3(5), Python 3 is also supported.
The Python scripting capability on the devices provides programmatic access to the switch CLI to perform various tasks, and to Power-On Auto Provisioning (POAP) and Embedded Event Manager (EEM) actions. Responses to Python calls that invoke the Cisco NX-OS CLI return text or JSON output.
The Python interpreter is included in the Cisco NX-OS software.
Cisco Nexus 9000 Series switches support Tcl (Tool Command Language). Tcl is a scripting language that enables greater flexibility with CLI commands on the switch. You can use Tcl to extract certain values in the output of a show command, perform switch configurations, run Cisco NX-OS commands in a loop, or define EEM policies in a script.
The Cisco Nexus 9000 Series switch front panel and fabric module line cards contain Broadcom Network Forwarding Engine (NFE). You can access the Broadcom command-line shell (bcm-shell) from these NFEs.
Cisco Nexus switches support direct Bourne-Again Shell (Bash) access. With Bash, you can access the underlying Linux system on the device and manage the system.
Cisco Nexus switches support direct Linux shell access and Linux containers. With Linux shell access, you can access the underlying Linux system on the switch and manage the underlying system. You can also use Linux containers to securely install your own software and to enhance the capabilities of the Cisco Nexus switch. For example, you can install bare-metal provisioning tools like Cobbler on a Cisco Nexus switch to enable automatic provisioning of bare-metal servers from the top-of-rack switch.
The Cisco Nexus 9000 Series switches support a guest shell that provides Bash access into a Linux execution space on the host system that is decoupled from the host Cisco Nexus 9000 NX-OS software. With the guest shell, you can add software packages and update libraries as needed without impacting the host system software.
Cisco NX-OS is configured to communicate with the Kubernetes API Server to understand the capabilities of the containers behind a given switch port.
The following commands communicate with the Kubernetes API Server:
The show containers kubernetes command obtains data from kube-apiserver using API calls over HTTP.
The kubernetes watch resource command uses a daemon to subscribe to requested resources and process streaming data from kube-apiserver.
The action assigned in the watch command is performed on pre-defined triggers. (For example, Add or Delete of a Pod.)
In addition to the Cisco NX-OS CLI, Cisco Nexus 9000 Series switches support access to the Bourne-Again SHell (Bash). Bash interprets commands that you enter or commands that are read from a shell script. Using Bash enables access to the underlying Linux system on the device and to manage the system.
The Bash shell has the following guidelines and limitations:
Starting with NX-OS 7.0(3)F3(1), the Bash shell is supported on the Cisco Nexus 9508 switch.
The binaries located in the /isan folder are meant to be run in an environment which is setup differently from that of the shell entered from the run bash command. It is advisable not to use these binaries from the Bash shell as the behavior within this environment is not predictable.
When importing Cisco Python modules, do not use Python from the Bash shell. Instead use the more recent Python in NX-OS VSH.
In Cisco NX-OS, Bash is accessible from user accounts that are associated with the Cisco NX-OS dev-ops role or the Cisco NX-OS network-admin role.
The following example shows the authority of the dev-ops role and the network-admin role:
switch# show role name dev-ops
Role: dev-ops
Description: Predefined system role for devops access. This role
cannot be modified.
Vlan policy: permit (default)
Interface policy: permit (default)
Vrf policy: permit (default)

Rule Perm Type Scope Entity

4 permit command conf t ; username *
3 permit command bcm module *
2 permit command run bash *
1 permit command python *
switch# show role name network-admin
Role: network-admin
Description: Predefined network admin role has access to all commands
on the switch

Rule Perm Type Scope Entity

1 permit read-write
switch#
Bash is enabled by running the feature bash-shell command.
The run bash command loads Bash and begins at the home directory for the user.
The following examples show how to enable the Bash shell feature and how to run Bash.
switch# configure terminal
switch(config)# feature bash-shell
switch# run?
run Execute/run program
run-script Run shell scripts
switch# run bash?
bash Linux-bash
switch# run bash
bash-4.2$ whoami
admin
bash-4.2$ pwd
/bootflash/home/admin
bash-4.2$
 Note | You can also execute Bash commands with run bash command . For instance, you can run whoami using run bash command : run bash whoami You can also run Bash by configuring the user shelltype : username foo shelltype bash This command puts you directly into the Bash shell upon login. This does not require feature bash-shell to be enabled. |
The privileges of an admin user can escalate their privileges for root access.
The following are guidelines for escalating privileges:
admin privilege user (network-admin / vdc-admin) is equivalent of Linux root privilege user in NX-OS
Only an authenticated admin user can escalate privileges to root, and password is not required for an authenticated admin privilege user.
Bash must be enabled before escalating privileges.
SSH to the switch using root
username through a non-management interface will default to Linux Bash shell-type access for the root user. Type vsh to return to NX-OS shell access.
NX-OS network administrator users must escalate to root to pass configuration commands to the NX-OS VSH if:
The NX-OS user has a shell-type Bash and logs into the switch with a shell-type Bash.
The NX-OS user that logged into the switch in Bash continues to use Bash on the switch.
Run sudo su 'vsh -c "<configuration commands>"' or sudo bash -c 'vsh -c "<configuration commands>"'.
ssh -l MyUser 1.2.3.4
-bash-4.2$ sudo vsh -c "configure terminal ; interface eth1/2 ; shutdown ; sleep 2 ; show interface eth1/2 brief"
--
Ethernet VLAN Type Mode Status Reason Speed Port
Interface Ch #
--
Eth1/2 -- eth routed down Administratively down auto(D) --
The following example demonstrates with network administrator user MyUser with default shell type Bash entering the NX-OS and then running Bash on the NX-OS:
ssh -l MyUser 1.2.3.4
-bash-4.2$ vsh -h
Cisco NX-OS Software
Copyright (c) 2002-2016, Cisco Systems, Inc. All rights reserved.
Nexus 9000v software ("Nexus 9000v Software") and related documentation,
files or other reference materials ("Documentation") are
the proprietary property and confidential information of Cisco
Systems, Inc. ("Cisco") and are protected, without limitation,
pursuant to United States and International copyright and trademark
laws in the applicable jurisdiction which provide civil and criminal
penalties for copying or distribution without Cisco's authorization.
Any use or disclosure, in whole or in part, of the Nexus 9000v Software
or Documentation to any third party for any purposes is expressly
prohibited except as otherwise authorized by Cisco in writing.
The copyrights to certain works contained herein are owned by other
third parties and are used and distributed under license. Some parts
of this software may be covered under the GNU Public License or the
GNU Lesser General Public License. A copy of each such license is
available at
http://www.gnu.org/licenses/gpl.html and
http://www.gnu.org/licenses/lgpl.html

* Nexus 9000v is strictly limited to use for evaluation, demonstration *
* and NX-OS education. Any use or disclosure, in whole or in part of *
* the Nexus 9000v Software or Documentation to any third party for any *
* purposes is expressly prohibited except as otherwise authorized by *
* Cisco in writing. *

switch# run bash
bash-4.2$ vsh -c "configure terminal ; interface eth1/2 ; shutdown ; sleep 2 ; show interface eth1/2 brief"
--
Ethernet VLAN Type Mode Status Reason Speed Port
Interface Ch #
--
Eth1/2 -- eth routed down Administratively down auto(D) --
 Note | Do not use sudo su - or the system hangs. |
The following example shows how to escalate privileges to root and how to verify the escalation:
switch# run bash
bash-4.2$ sudo su root
bash-4.2# whoami
root
bash-4.2# exit
exit
This section contains examples of Bash commands and output.
The following example displays system statistics:
switch# run bash
bash-4.2$ cat /proc/meminfo
<snip>
MemTotal: 16402560 kB
MemFree: 14098136 kB
Buffers: 11492 kB
Cached: 1287880 kB
SwapCached: 0 kB
Active: 1109448 kB
Inactive: 717036 kB
Active(anon): 817856 kB
Inactive(anon): 702880 kB
Active(file): 291592 kB
Inactive(file): 14156 kB
Unevictable: 0 kB
Mlocked: 0 kB
SwapTotal: 0 kB
SwapFree: 0 kB
Dirty: 32 kB
Writeback: 0 kB
AnonPages: 527088 kB
Mapped: 97832 kB
<\snip>
The following example runs ps from Bash using run bash command :
switch# run bash ps -el
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
4 S 0 1 0 0 80 0 - 528 poll_s ? 00:00:03 init
1 S 0 2 0 0 80 0 - 0 kthrea ? 00:00:00 kthreadd
1 S 0 3 2 0 80 0 - 0 run_ks ? 00:00:56 ksoftirqd/0
1 S 0 6 2 0 -40 - - 0 cpu_st ? 00:00:00 migration/0
1 S 0 7 2 0 -40 - - 0 watchd ? 00:00:00 watchdog/0
1 S 0 8 2 0 -40 - - 0 cpu_st ? 00:00:00 migration/1
1 S 0 9 2 0 80 0 - 0 worker ? 00:00:00 kworker/1:0
1 S 0 10 2 0 80 0 - 0 run_ks ? 00:00:00 ksoftirqd/1
Use these procedures to verify that the system is ready before installing or adding an RPM.
Step 1 | switch# show logging logfile | grep -i "System ready" Before running Bash, this step verifies that the system is ready before installing or adding an RPM. Proceed if you see output similar to the following: 2018 Mar 27 17:24:22 switch %ASCII-CFG-2-CONF_CONTROL: System ready |
Step 2 | switch# run bash sudo su Example:switch# run bash sudo su bash-4.2# Loads Bash. |
Step 1 | sudo yum installed | grep platform Displays a list of the NX-OS feature RPMs installed on the switch. |
Step 2 | yum list available Displays a list of the available RPMs. |
Step 3 | sudo yum -y install rpm Installs an available RPM. |
The following is an example of installing the bfd RPM:
bash-4.2$ yum list installed | grep n9000
base-files.n9000 3.0.14-r74.2 installed
bfd.lib32_n9000 1.0.0-r0 installed
core.lib32_n9000 1.0.0-r0 installed
eigrp.lib32_n9000 1.0.0-r0 installed
eth.lib32_n9000 1.0.0-r0 installed
isis.lib32_n9000 1.0.0-r0 installed
lacp.lib32_n9000 1.0.0-r0 installed
linecard.lib32_n9000 1.0.0-r0 installed
lldp.lib32_n9000 1.0.0-r0 installed
ntp.lib32_n9000 1.0.0-r0 installed
nxos-ssh.lib32_n9000 1.0.0-r0 installed
ospf.lib32_n9000 1.0.0-r0 installed
perf-cisco.n9000_gdb 3.12-r0 installed
platform.lib32_n9000 1.0.0-r0 installed
shadow-securetty.n9000_gdb 4.1.4.3-r1 installed
snmp.lib32_n9000 1.0.0-r0 installed
svi.lib32_n9000 1.0.0-r0 installed
sysvinit-inittab.n9000_gdb 2.88dsf-r14 installed
tacacs.lib32_n9000 1.0.0-r0 installed
task-nxos-base.n9000_gdb 1.0-r0 installed
tor.lib32_n9000 1.0.0-r0 installed
vtp.lib32_n9000 1.0.0-r0 installed
bash-4.2$ yum list available
bgp.lib32_n9000 1.0.0-r0
bash-4.2$ sudo yum -y install bfd
 Note | Upon switch reload during boot up, use the rpm command instead of yum for persistent RPMs. Otherwise, RPMs initially installed using yum bash or install cli shows |
There must be a higher version of the RPM in the yum repository.
sudo yum -y upgrade rpm Upgrades an installed RPM. |
The following is an example of upgrading the bfd RPM:
bash-4.2$ sudo yum -y upgrade bfd
sudo yum -y downgrade rpm Downgrades the RPM if any of the dnf repositories has a lower version of the RPM. |
The following example shows how to downgrade the bfd RPM:
bash-4.2$ sudo yum -y downgrade bfd
 Note | The SNMP RPM and the NTP RPM are protected and cannot be erased. You can upgrade or downgrade these RPMs. It requires a system reload for the upgrade or downgrade to take effect. For the list of protected RPMs, see /etc/yum/protected.d/protected_pkgs.conf. |
sudo yum -y erase rpm Erases the RPM. |
The following example shows how to erase the bfd RPM:
bash-4.2$ sudo yum -y erase bfd
Use these procedures to verify that the system is ready before installing or adding an RPM.
Step 1 | switch# show logging logfile | grep -i "System ready" Before running Bash, this step verifies that the system is ready before installing or adding an RPM. Proceed if you see output similar to the following: 2018 Mar 27 17:24:22 switch %ASCII-CFG-2-CONF_CONTROL: System ready |
Step 2 | switch# run bash sudo su Example:switch# run bash sudo su bash-4.2# Loads Bash. |
Step 1 | yum list --patch-only Displays a list of the patch RPMs present on the switch. |
Step 2 | sudo yum install --add URL_of_patch Adds the patch to the repository, where URL_of_patch is a well-defined format, such as bootflash:/patch, not in standard Linux format, such as /bootflash/patch. |
Step 3 | yum list --patch-only available Displays a list of the patches that are added to the repository but are in an inactive state. |
The following is an example of installing the nxos.CSCab00001-n9k_ALL-1.0.0-7.0.3.I7.3.lib32_n9000 RPM:
bash-4.2# yum list --patch-only
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,
: protect-packages
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
thirdparty | 951 B 00:00 ...
bash-4.2#
bash-4.2# sudo yum install --add bootflash:/nxos.CSCab00001-n9k_ALL-1.0.0-7.0.3.I7.3.lib32_n9000.rpm
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,
: protect-packages
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
thirdparty | 951 B 00:00 ...
[##############] 70%Install operation 135 completed successfully at Tue Mar 27 17:45:34 2018.
[####################] 100%
bash-4.2#
Once the patch RPM is installed, verify that it was installed properly. The following command lists the patches that are added to the repository and are in the inactive state:
bash-4.2# yum list --patch-only available
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,
: protect-packages
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
thirdparty | 951 B 00:00 ...
nxos.CSCab00001-n9k_ALL.lib32_n9000 1.0.0-7.0.3.I7.3 patching
bash-4.2#
You can also add patches to a repository from a tar file, where the RPMs are bundled in the tar file. The following example shows how to add two RPMs that are part of the nxos.CSCab00002_CSCab00003-n9k_ALL-1.0.0-7.0.3.I7.3.lib32_n9000 tar file to the patch repository:
bash-4.2# sudo yum install --add bootflash:/nxos.CSCab00002_CSCab00003-n9k_ALL-1.0.0-7.0.3.I7.3.lib32_n9000.tar
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,
: protect-packages
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
thirdparty | 951 B 00:00 ...
[##############] 70%Install operation 146 completed successfully at Tue Mar 27 21:17:39 2018.
[####################] 100%
bash-4.2#
bash-4.2# yum list --patch-only
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,
: protect-packages
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
patching/primary | 942 B 00:00 ...
patching 2/2
thirdparty | 951 B 00:00 ...
nxos.CSCab00003-n9k_ALL.lib32_n9000 1.0.0-7.0.3.I7.3 patching
nxos.CSCab00002-n9k_ALL.lib32_n9000 1.0.0-7.0.3.I7.3 patching
bash-4.2#
sudo yum install patch_RPM --nocommit Activates the patch RPM, where patch_RPM is a patch that is located in the repository. Do not provide a location for the patch in this step.
|
The following example shows how to activate the nxos.CSCab00001-n9k_ALL-1.0.0-7.0.3.I7.3.lib32_n9000 patch RPM:
bash-4.2# sudo yum install nxos.CSCab00001-n9k_ALL-1.0.0-7.0.3.I7.3.lib32_n9000 --nocommit
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,
: protect-packages
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
thirdparty | 951 B 00:00 ...
Setting up Install Process
Resolving Dependencies
--> Running transaction check
---> Package nxos.CSCab00001-n9k_ALL.lib32_n9000 0:1.0.0-7.0.3.I7.3 will be installed
--> Finished Dependency Resolution
Dependencies Resolved
===
Package Arch Version Repository Size
===
Installing:
nxos.CSCab00001-n9k_ALL lib32_n9000 1.0.0-7.0.3.I7.3 patching 28 k
Transaction Summary
===
Install 1 Package
Total download size: 28 k
Installed size: 82 k
Is this ok [y/N]: y
Downloading Packages:
Running Transaction Check
Running Transaction Test
Transaction Test Succeeded
Running Transaction
Installing : nxos.CSCab00001-n9k_ALL-1.0.0-7.0.3.I7.3.lib32_n9000 1/1
[##################] 90%error: reading /var/sysmgr/tmp/patches/CSCab00001-n9k_ALL/isan/bin/sysinfo manifest, non-printable characters found
Installed:
nxos.CSCab00001-n9k_ALL.lib32_n9000 0:1.0.0-7.0.3.I7.3
Complete!
Install operation 140 completed successfully at Tue Mar 27 18:07:40 2018.
[####################] 100%
bash-4.2#
Enter the following command to verify that the patch RPM was activated successfully:
bash-4.2# yum list --patch-only
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,
: protect-packages
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
thirdparty | 951 B 00:00 ...
nxos.CSCab00001-n9k_ALL.lib32_n9000 1.0.0-7.0.3.I7.3 installed
bash-4.2#
sudo yum install patch_RPM --commit Commits the patch RPM. The patch RPM must be committed to keep it active after reloads. |
The following example shows how to commit the nxos.CSCab00001-n9k_ALL-1.0.0-7.0.3.I7.3.lib32_n9000 patch RPM:
bash-4.2# sudo yum install nxos.CSCab00001-n9k_ALL-1.0.0-7.0.3.I7.3.lib32_n9000 --commit
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,
: protect-packages
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
thirdparty | 951 B 00:00 ...
Install operation 142 completed successfully at Tue Mar 27 18:13:16 2018.
[####################] 100%
bash-4.2#
Enter the following command to verify that the patch RPM was committed successfully:
bash-4.2# yum list --patch-only committed
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,
: protect-packages
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
thirdparty | 951 B 00:00 ...
nxos.CSCab00001-n9k_ALL.lib32_n9000 1.0.0-7.0.3.I7.3 installed
bash-4.2#
Step 1 | sudo yum erase patch_RPM --nocommit Deactivates the patch RPM.
| ||
Step 2 | sudo yum install patch_RPM --commit Commits the patch RPM. You will get an error message if you try to remove the patch RPM without first committing it. |
The following example shows how to deactivate the nxos.CSCab00001-n9k_ALL-1.0.0-7.0.3.I7.3.lib32_n9000 patch RPM:
bash-4.2# sudo yum erase nxos.CSCab00001-n9k_ALL-1.0.0-7.0.3.I7.3.lib32_n9000 --nocommit
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,
: protect-packages
Setting up Remove Process
Resolving Dependencies
--> Running transaction check
---> Package nxos.CSCab00001-n9k_ALL.lib32_n9000 0:1.0.0-7.0.3.I7.3 will be erased
--> Finished Dependency Resolution
Dependencies Resolved
===
Package Arch Version Repository Size
===
Removing:
nxos.CSCab00001-n9k_ALL lib32_n9000 1.0.0-7.0.3.I7.3 @patching 82 k
Transaction Summary
===
Remove 1 Package
Installed size: 82 k
Is this ok [y/N]: y
Downloading Packages:
Running Transaction Check
Running Transaction Test
Transaction Test Succeeded
Running Transaction
[######] 30%error: reading /var/sysmgr/tmp/patches/CSCab00001-n9k_ALL/isan/bin/sysinfo manifest, non-printable characters found
Erasing : nxos.CSCab00001-n9k_ALL-1.0.0-7.0.3.I7.3.lib32_n9000 1/1
[##################] 90%
Removed:
nxos.CSCab00001-n9k_ALL.lib32_n9000 0:1.0.0-7.0.3.I7.3
Complete!
Install operation 143 completed successfully at Tue Mar 27 21:03:47 2018.
[####################] 100%
bash-4.2#
You must commit the patch RPM after deactivating it. If you do not commit the patch RPM after deactivating it, you will get an error message if you try to remove the patch RPM using the instructions in Removing a Patch RPM.
bash-4.2# sudo yum install nxos.CSCab00001-n9k_ALL-1.0.0-7.0.3.I7.3.lib32_n9000 --commit
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,
: protect-packages
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
thirdparty | 951 B 00:00 ...
Install operation 144 completed successfully at Tue Mar 27 21:09:28 2018.
[####################] 100%
bash-4.2#
Enter the following command to verify that the patch RPM has been committed successfully:
bash-4.2# yum list --patch-only
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,
: protect-packages
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
thirdparty | 951 B 00:00 ...
nxos.CSCab00001-n9k_ALL.lib32_n9000 1.0.0-7.0.3.I7.3 patching
bash-4.2#
sudo yum install --remove patch_RPM Removes an inactive patch RPM. |
The following example shows how to remove the nxos.CSCab00001-n9k_ALL-1.0.0-7.0.3.I7.3.lib32_n9000 patch RPM:
bash-4.2# sudo yum install --remove nxos.CSCab00001-n9k_ALL-1.0.0-7.0.3.I7.3.lib32_n9000
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,
: protect-packages
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
thirdparty | 951 B 00:00 ...
[##########] 50%Install operation 145 completed successfully at Tue Mar 27 21:11:05 2018.
[####################] 100%
bash-4.2#
 Note | If you see the following error message after attempting to remove the patch RPM: Install operation 11 "failed because patch was not committed". at Wed Mar 28 22:14:05 2018 Then you did not commit the patch RPM before attempting to remove it. See Deactivating a Patch RPM for instructions on committing the patch RPM before attempting to remove it. |
Enter the following command to verify that the inactive patch RPM was removed successfully:
bash-4.2# yum list --patch-only
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,
: protect-packages
groups-repo | 1.1 kB 00:00 ...
localdb | 951 B 00:00 ...
patching | 951 B 00:00 ...
patching/primary | 197 B 00:00 ...
thirdparty | 951 B 00:00 ...
bash-4.2#
Your application should have a startup Bash script that gets installed in /etc/init.d/application_name
. This startup Bash script should have the following general format (for more information on this format, see http://linux.die.net/man/8/chkconfig).
#!/bin/bash
#
<application_name> Short description of your application
#
chkconfig: 2345 15 85
description: Short description of your application
#
BEGIN INIT INFO
Provides: <application_name>
Required-Start: $local_fs $remote_fs $network $named
Required-Stop: $local_fs $remote_fs $network
Description: Short description of your application
END INIT INFO
See how we were called.
case "$1" in
start)
Put your startup commands here
Set RETVAL to 0 for success, non-0 for failure
;;
stop)
Put your stop commands here
Set RETVAL to 0 for success, non-0 for failure
;;
status)
Put your status commands here
Set RETVAL to 0 for success, non-0 for failure
;;
restart|force-reload|reload)
Put your restart commands here
Set RETVAL to 0 for success, non-0 for failure
;;
*)
echo $"Usage: $prog {start|stop|status|restart|force-reload}"
RETVAL=2
esac
exit $RETVAL
Step 1 | Install your application startup Bash script that you created into /etc/init.d/application_name |
Step 2 | Start your application with /etc/init.d/application_name start |
Step 3 | Enter chkconfig --add application_name |
Step 4 | Enter chkconfig --level 3 application_name on Run level 3 is the standard multi-user run level, and the level at which the switch normally runs. |
Step 5 | Verify that your application is scheduled to run on level 3 by running chkconfig --list application_name and confirm that level 3 is set to on |
Step 6 | Verify that your application is listed in /etc/rc3.d. You should see something like this, where there is an 'S' followed by a number, followed by your application name (tcollector in this example), and a link to your Bash startup script in ../init.d/application_name |
lrwxrwxrwx 1 root root 20 Sep 25 22:56 /etc/rc3.d/S15tcollector -> ../init.d/tcollector
bash-4.2#
The following example demonstrates an application in the Native Bash Shell:
bash-4.2# cat /etc/init.d/hello.sh
#!/bin/bash
PIDFILE=/tmp/hello.pid
OUTPUTFILE=/tmp/hello
echo $$ > $PIDFILE
rm -f $OUTPUTFILE
while true
do
echo $(date) >> $OUTPUTFILE
echo 'Hello World' >> $OUTPUTFILE
sleep 10
done
bash-4.2#
bash-4.2#
bash-4.2# cat /etc/init.d/hello
#!/bin/bash
#
hello Trivial "hello world" example Third Party App
#
chkconfig: 2345 15 85
description: Trivial example Third Party App
#
BEGIN INIT INFO
Provides: hello
Required-Start: $local_fs $remote_fs $network $named
Required-Stop: $local_fs $remote_fs $network
Description: Trivial example Third Party App
END INIT INFO
PIDFILE=/tmp/hello.pid
See how we were called.
case "$1" in
start)
/etc/init.d/hello.sh &
RETVAL=$?
;;
stop)
kill -9 `cat $PIDFILE`
RETVAL=$?
;;
status)
ps -p `cat $PIDFILE`
RETVAL=$?
;;
restart|force-reload|reload)
kill -9 `cat $PIDFILE`
/etc/init.d/hello.sh &
RETVAL=$?
;;
*)
echo $"Usage: $prog {start|stop|status|restart|force-reload}"
RETVAL=2
esac
exit $RETVAL
bash-4.2#
bash-4.2# chkconfig --add hello
bash-4.2# chkconfig --level 3 hello on
bash-4.2# chkconfig --list hello
hello 0:off 1:off 2:on 3:on 4:on 5:on 6:off
bash-4.2# ls -al /etc/rc3.d/*hello*
lrwxrwxrwx 1 root root 15 Sep 27 18:00 /etc/rc3.d/S15hello -> ../init.d/hello
bash-4.2#
bash-4.2# reboot
After reload
bash-4.2# ps -ef | grep hello
root 8790 1 0 18:03 ? 00:00:00 /bin/bash /etc/init.d/hello.sh
root 8973 8775 0 18:04 ttyS0 00:00:00 grep hello
bash-4.2#
bash-4.2# ls -al /tmp/hello*
-rw-rw-rw- 1 root root 205 Sep 27 18:04 /tmp/hello
-rw-rw-rw- 1 root root 5 Sep 27 18:03 /tmp/hello.pid
bash-4.2# cat /tmp/hello.pid
8790
bash-4.2# cat /tmp/hello
Sun Sep 27 18:03:49 UTC 2015
Hello World
Sun Sep 27 18:03:59 UTC 2015
Hello World
Sun Sep 27 18:04:09 UTC 2015
Hello World
Sun Sep 27 18:04:19 UTC 2015
Hello World
Sun Sep 27 18:04:29 UTC 2015
Hello World
Sun Sep 27 18:04:39 UTC 2015
Hello World
bash-4.2#
In addition to the NX-OS CLI and Bash access on the underlying Linux environment, switches support access to a decoupled execution space running within a Linux Container (LXC) called the “Guest Shell”.
From within the Guest Shell the network-admin has the following capabilities:
Access to the network over Linux network interfaces.
Access to the switch's bootflash.
Access to the switch's volatile tmpfs.
Access to the switch's CLI.
Access to Cisco NX-API REST.
The ability to install and run python scripts.
The ability to install and run 32-bit and 64-bit Linux applications.
Decoupling the execution space from the native host system allows customization of the Linux environment to suit the needs of the applications without impacting the host system or applications running in other Linux Containers.
On NX-OS devices, Linux Containers are installed and managed with the virtual-service commands. The Guest Shell will appear in the virtual-service show command output.
 Note | By default, the Guest Shell occupies approximately 5 MB of RAM and 200 MB of bootflash when enabled. Beginning with Cisco NX-OS Release 7.0(3)I2(1) the Guest Shell occupies approximately 35 MB of RAM. Use the guestshell destroy command to reclaim resources if the Guest Shell is not used. |
 Note | Beginning with Cisco NX-OS 7.0(3)F3(1), the Guest Shell is supported on the Cisco Nexus 9508 switch. |
The Guest Shell has the following guideline and limitations:
 Important | If you have performed custom work inside your installation of the Guest Shell, save your changes to bootflash, off-box storage, or elsewhere outside the Guest Shell root file system before performing an upgrade. The |
Use the run guestshell
CLI command to access the Guest Shell on the Cisco Nexus device: The run guestshell
command parallels the run bash
command used to access the host shell. This command allows you to access the Guest Shell and get a bash prompt or run a command within the context of the Guest Shell. The command uses password-less SSH to an available port on the localhost in the default network namespace.
sshd
utility can secure the pre-configured SSH access into the Guest Shell by listening on localhost to avoid connection attempts from ouside the network. sshd
has the following features
It is configured for key-based authentication without fallback to passwords.
Only root can read keys use to access the Guest Shell after Guest Shell restarts.
Only root can read the file that contains the key on the host to prevent a non-privileged user with host bash access from being able to use the key to connect to the Guest Shell. Network-admin users may start another instance of sshd in the Guest Shell to allow remote access directly into the Guest Shell, but any user that logs into the Guest Shell is also given network-admin privilege
 Note | Introduced in Guest Shell 2.2 (0.2), the key file is readable for whom the user account was created for. In addition, the Guest Shell accounts are not automatically removed, and must be removed by the network administrator when no longer needed. Guest Shell installations prior to 2.2 (0.2) with Cisco Nexus release 7.0(3)I5(2) will not dynamically create individual user accounts. |
Installing the Cisco Nexus series switch software release on a fresh out-of-the-box Cisco Nexus switch will automatically enable the Guest Shell. Subsequent upgrades to the Cisco Nexus series switch software will NOT automatically upgrade Guest Shell.
Guest Shell releases increment the major number when distributions or distribution versions change.
Guest Shell releases increment the minor number when CVEs have been addressed. The Guest Shell will update CVEs only when CentOS makes them publically available.
Cisco recommends using yum update to pick up third-party security vulnerability fixes directly from the CentOS repository. This provides the flexibility of getting updates as, and when, available without needing to wait for a Cisco NX-OS software update.
Alternatively, using the guestshell update command would replace the existing Guest Shell rootfs. Any customizations and software package installations would then need to be performed again within the context of this new Guest Shell rootfs.
Guest Shell 2.x is based upon a CentOS 7 root file system. If you have an off-box repository of .conf files and/or utilities that pulled the content down into Guest Shell 1.0, you will need to repeat the same deployment steps in Guest Shell 2.x. Your deployment script may need to be adjusted to account for the CentOS 7 differences.
The Cisco NX-OS automatically installs and enables the Guest Shell by default on systems with sufficient resources. However, if the device is reloaded with a Cisco NX-OS image that does not provide Guest Shell support, the installer will automatically remove the existing Guest Shell and issue a %VMAN-2-INVALID_PACKAGE.
 Note | Systems with 4GB of RAM will not enable Guest Shell by default. Use the guestshell enable command to install and enable Guest Shell. |
The install all command validates the compatibility between the current Cisco NX-OS image against the target Cisco NX-OS image.
The following is an example output from installing an incompatible image:
switch#
Installer will perform compatibility check first. Please wait.
uri is: /
2014 Aug 29 20:08:51 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE:
Successfully activated virtual service 'guestshell+'
Verifying image bootflash:/n9kpregs.bin for boot variable "nxos".
[####################] 100% -- SUCCESS
Verifying image type.
[####################] 100% -- SUCCESS
Preparing "" version info using image bootflash:/.
[####################] 100% -- SUCCESS
Preparing "bios" version info using image bootflash:/.
[####################] 100% -- SUCCESS
Preparing "" version info using image bootflash:/.
[####################] 100% -- SUCCESS
Preparing "" version info using image bootflash:/.
[####################] 100% -- SUCCESS
Preparing "nxos" version info using image bootflash:/.
[####################] 100% -- SUCCESS
Preparing "" version info using image bootflash:/.
[####################] 100% -- SUCCESS
Preparing "" version info using image bootflash:/.
[####################] 100% -- SUCCESS
"Running-config contains configuration that is incompatible with the new image (strict
incompatibility).
Please run 'show incompatibility-all nxos <image>' command to find out which feature
needs to be disabled.".
Performing module support checks.
[####################] 100% -- SUCCESS
Notifying services about system upgrade.
[#] 0% -- FAIL.
Return code 0x42DD0006 ((null)).
"Running-config contains configuration that is incompatible with the new image (strict
incompatibility).
Please run 'show incompatibility-all nxos <image>' command to find out
which feature needs to be disabled."
Service "vman" in vdc 1: Guest shell not supported, do 'guestshell destroy' to remove
it and then retry ISSU
Pre-upgrade check failed. Return code 0x42DD0006 ((null)).
switch#
 Note | As a best practice, remove the Guest Shell with the guestshell destroy command before reloading an older Cisco Nexos image that does not support the Guest Shell. |
The Guest Shell starts an OpenSSH server upon boot up. The server listens on a randomly generated port on the localhost IP address interface 127.0.0.1 only. This provides the password-less connectivity into the Guest Shell from the NX-OS vegas-shell when the guestshell keyword is entered. If this server is killed or its configuration (residing in /etc/ssh/sshd_config-cisco) is altered, access to the Guest Shell from the NX-OS CLI might not work.
The following steps instantiate an OpenSSh server within the Guest Shell as root:
Determine which network namespace or VRF you want to establish your SSH connections through.
Determine port you want OpenSSH to listen on. Use the NX-OS command show socket connection to view ports already in use.
 Note | The Guest Shell sshd service for password-less access uses a randomized port starting at 17680 through 49150. To avoid port conflict choose a port outside this range. |
The following steps start the OpenSSH server. The examples start the OpenSSH server for management netns on IP address 10.122.84.34:2222:
-rw-r--r-- 1 root root 394 Apr 7 14:21 /usr/lib/systemd/system/sshd-mgmt.service
-rw------- 1 root root 4478 Apr 7 14:22 /etc/ssh/sshd-mgmt_config
Copy the Unit and Service contents from the /usr/lib/systemd/system/ssh.service file to sshd-mgmt.service.
Edit the sshd-mgmt.service file to match the following:
[Unit]
Description=OpenSSH server daemon
After=network.target sshd-keygen.service
Wants=sshd-keygen.service
[Service]
EnvironmentFile=/etc/sysconfig/sshd
ExecStartPre=/usr/sbin/sshd-keygen
ExecStart=/sbin/ip netns exec management /usr/sbin/sshd -f /etc/ssh/sshd-mgmt_config -D $OPTIONS
ExecReload=/bin/kill -HUP $MAINPID
KillMode=process
Restart=on-failure
RestartSec=42s
[Install]
WantedBy=multi-user.target
Port 2222
ListenAddress 10.122.84.34
sudo systemctl daemon-reload
sudo systemctl start sshd-mgmt.service
sudo systemctl status sshd-mgmt.service -l
ss -tnldp | grep 2222
ssh -p 2222 guestshell@10.122.84.34
sudo systemctl enable sshd-mgmt.service
For passwordless SSH/SCP and remote execution, generate the public and private keys for the user ID you want to user for SSH/SCP using the ssh-keygen -t dsa command.
[root@node01 ~]# cd ~/.ssh
[root@node02 .ssh]# ls -l
total 8
-rw-------. 1 root root 1675 May 5 15:01 id_rsa
-rw-r--r--. 1 root root 406 May 5 15:01 id_rsa.pub
cat id_rsa.pub >> /root/.ssh/authorized_keys
chmod 700 /root/.ssh
chmod 600 /root/.ssh/*
ssh -p <port#> userid@hostname [<remote command>]
scp -P <port#> userid@hostname/filepath /destination
The Guest Shell shares /etc/localtime with the host system.
 Note | If you do not want to share the same localtime with the host, this symlink can be broken and a Guest Shell specific /etc/localtime can be created. |
switch(config)# clock timezone PDT -7 0
switch(config)# clock set 10:00:00 27 Jan 2017
Fri Jan 27 10:00:00 PDT 2017
switch(config)# show clock
10:00:07.554 PDT Fri Jan 27 2017
switch(config)# run guestshell
guestshell:~$ date
Fri Jan 27 10:00:12 PDT 2017
In Cisco NX-OS, the Guest Shell is accessible to the network-admin. It is automatically enabled in the system and can be accessed using the run guestshell command. Consistent with the run bash command, these commands can be issued within the Guest Shell with the run guestshell command form of the NX-OS CLI command.
 Note | The Guest Shell is automatically enabled on systems with more than 4 GB of RAM. |
switch# run guestshell ls -al /bootflash/*.ova
-rw-rw-rw- 1 2002 503 83814400 Aug 21 18:04 /bootflash/pup.ova
-rw-rw-rw- 1 2002 503 40724480 Apr 15 2012 /bootflash/red.ova
 Note | When running in the Guest Shell, you have network-admin level privileges. |
 Note | The Guest Shell starting in 2.2(0.2) will dynamically create user accounts with the same as the user logged into switch. However, all other information is NOT shared between the switch and the Guest Shell user accounts. In addition, the Guest Shell accounts are not automatically removed, and must be removed by the network administrator when no longer needed. |
By default, the resources for the Guest Shell have a small impact on resources available for normal switch operations. If the network-admin requires additional resources for the Guest Shell, the guestshell resize {cpu | memory | rootfs} command changes these limits.
Resource	Default	Minimum/Maximum
CPU | 1% | 1/20% |
Memory | 400 MB | 256/3840 MB |
Storage | 200 MB | 200/2000 MB |
The CPU limit is the percentage of the system compute capacity that tasks running within the Guest Shell are given when there is contention with other compute loads in the system. When there is no contention for CPU resources, the tasks within the Guest Shell are not limited.
 Note | A Guest Shell reboot is required after changing the resource allocations. This can be accomplished with the guestshell reboot command. |
The Guest Shell has a number of utilities and capabilities available by default.
The Guest Shell is populated with CentOS 8 Linux which provides the ability to Yum install software packages built for this distribution. The Guest Shell is pre-populated with many of the common tools that would naturally be expected on a networking device including net-tools , iproute , tcpdump and OpenSSH. For Guest Shell 2.x, python 2.7.5 is included by default as is the PIP for installing additional python packages. For Guest Shell 3.x, replace python with python 3 and PIP3.
By default the Guest Shell is a 64-bit execution space. If 32-bit support is needed, the glibc.i686 package can be Yum installed.
The Guest Shell has access to the Linux network interfaces used to represent the management and data ports of the switch. Typical Linux methods and utilities like ifconfig and ethtool can be used to collect counters. When an interface is placed into a VRF in the NX-OS CLI, the Linux network interface is placed into a network namespace for that VRF. The name spaces can be seen at /var/run/netns and the ip netns utility can be used to run in the context of different namespaces. A couple of utilities, chvrf and vrfinfo , are provided as a convenience for running in a different namespace and getting information about which namespace/vrf a process is running in.
systemd is used to manage services in CentOS 8 environments, including the Guest Shell.
The Guest Shell provides an application to allow the user to issue NX-OS commands from the Guest Shell environment to the host network element. The dohost application accepts any valid NX-OS configuration or exec commands and issues them to the host network element.
When invoking the dohost command each NX-OS command may be in single or double quotes:
dohost "<NXOS CLI>"
The NX-OS CLI can be chained together:
[guestshell@guestshell ~]$ dohost "sh lldp time | in Hold" "show cdp global"
Holdtime in seconds: 120
Global CDP information:
CDP enabled globally
Refresh time is 21 seconds
Hold time is 180 seconds
CDPv2 advertisements is enabled
DeviceID TLV in System-Name(Default) Format
[guestshell@guestshell ~]$
The NX-OS CLI can also be chained together using the NX-OS style command chaining technique by adding a semicolon between each command. (A space on either side of the semicolon is required.):
[guestshell@guestshell ~]$ dohost "conf t ; cdp timer 13 ; show run | inc cdp"
Enter configuration commands, one per line. End with CNTL/Z.
cdp timer 13
[guestshell@guestshell ~]$
 Note | For release 7.0(3)I5(2) using Guest Shell 2.2 (0.2), commands issued on the host through the dohost command are run with privileges based on the effective role of the Guest Shell user. Prior versions of Guest Shell will run command with network-admin level privileges. The dohost command fails when the number of UDS connections to NX-API are at the maximum allowed. |
The NX-OS switch ports are represented in the Guest Shell as Linux network interfaces. Typical Linux methods like view stats in /proc/net/dev, through ifconfig or ethtool are all supported:
The Guest Shell has a number of typical network utilities included by default and they can be used on different VRFs using the chvrf vrf command command.
[guestshell@guestshell bootflash]$ ifconfig Eth1-47
Eth1-47: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 13.0.0.47 netmask 255.255.255.0 broadcast 13.0.0.255
ether 54:7f:ee:8e:27:bc txqueuelen 100 (Ethernet)
RX packets 311442 bytes 21703008 (20.6 MiB)
RX errors 0 dropped 185 overruns 0 frame 0
TX packets 12967 bytes 3023575 (2.8 MiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
Within the Guest Shell, the networking state can be monitored, but may not be changed. To change networking state, use the NX-OS CLI or the appropriate Linux utilities in the host bash shell.
The tcpdump command is packaged with the Guest Shell to allow packet tracing of punted traffic on the management or switch ports.
The sudo ip netns exec management ping utility is a common method for running a command in the context of a specified network namespace. This can be done within the Guest Shell:
[guestshell@guestshell bootflash]$ sudo ip netns exec management ping 10.28.38.48
PING 10.28.38.48 (10.28.38.48) 56(84) bytes of data.
64 bytes from 10.28.38.48: icmp_seq=1 ttl=48 time=76.5 ms
The chvrf utility is provided as a convenience:
guestshell@guestshell bootflash]$ chvrf management ping 10.28.38.48
PING 10.28.38.48 (10.28.38.48) 56(84) bytes of data.
64 bytes from 10.28.38.48: icmp_seq=1 ttl=48 time=76.5 ms
 Note | Commands that are run without the chvrf command are run in the current VRF/network namespace. |
For example, to ping IP address 10.0.0.1 over the management VRF, the command is “chvrf management ping 10.0.0.1 ”. Other utilities such as scp or ssh would be similar.
Example:
switch# guestshell
[guestshell@guestshell ~]$ cd /bootflash
[guestshell@guestshell bootflash]$ chvrf management scp foo@10.28.38.48:/foo/index.html index.html
foo@10.28.38.48's password:
index.html 100% 1804 1.8KB/s 00:00
[guestshell@guestshell bootflash]$ ls -al index.html
-rw-r--r-- 1 guestshe users 1804 Sep 13 20:28 index.html
[guestshell@guestshell bootflash]$
[guestshell@guestshell bootflash]$ chvrf management curl cisco.com
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html><head>
<title>301 Moved Permanently</title>
</head><body>
<h1>Moved Permanently</h1>
<p>The document has moved here.</p>
</body></html>
[guestshell@guestshell bootflash]$
To obtain a list of VRFs on the system, use the show vrf command natively from NX-OS or through the dohost command:
Example:
[guestshell@guestshell bootflash]$ dohost 'sh vrf'
VRF-Name VRF-ID State Reason
default 1 Up --
management 2 Up --
red 6 Up --
Within the Guest Shell, the network namespaces associated with the VRFs are what is actually used. It can be more convenient to just see which network namespaces are present:
[guestshell@guestshell bootflash]$ ls /var/run/netns
default management red
[guestshell@guestshell bootflash]$
To resolve domain names from within the Guest Shell, the resolver needs to be configured. Edit the /etc/resolv.conf file in the Guest Shell to include a DNS nameserver and domain as appropriate for the network.
Example:
nameserver 10.1.1.1
domain cisco.com
The nameserver and domain information should match what is configured through the NX-OS configuration.
Example:
switch(config)# ip domain-name cisco.com
switch(config)# ip name-server 10.1.1.1
switch(config)# vrf context management
switch(config-vrf)# ip domain-name cisco.com
switch(config-vrf)# ip name-server 10.1.1.1
If the switch is in a network that uses an HTTP proxy server, the http_proxy and https_proxy environment variables must be set up within the Guest Shell also.
Example:
export http_proxy=http://proxy.esl.cisco.com:8080
export https_proxy=http://proxy.esl.cisco.com:8080
These environment variables should be set in the .bashrc file or in an appropriate script to ensure that they are persistent.
Network administrators can manage files with Linux commands and utilities in addition to using NX-OS CLI commands. By mounting the system bootflash at /bootflash in the Guest Shell environment, the network-admin can operate on these files with Linux commands.
Example:
find . –name “foo.txt”
rm “/bootflash/junk/foo.txt”
Python can be used interactively or python scripts can be run in the Guest Shell.
Example:
guestshell:~$ python
Python 2.7.5 (default, Jun 24 2015, 00:41:19)
[GCC 4.8.3 20140911 (Red Hat 4.8.3-9)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>
guestshell:~$
The pip python package manager is included in the Guest Shell to allow the network-admin to install new python packages.
Example:
[guestshell@guestshell ~]$ sudo su
[root@guestshell guestshell]# pip install Markdown
Collecting Markdown
Downloading Markdown-2.6.2-py2.py3-none-any.whl (157kB)
100% |################################| 159kB 1.8MB/s
Installing collected packages: Markdown
Successfully installed Markdown-2.6.2
[root@guestshell guestshell]# pip list | grep Markdown
Markdown (2.6.2)
[root@guestshell guestshell]#
 Note | You must enter the sudo su command before entering the pip install command. |
Guest Shell 2.X provides a Centos 7.1 environment, which does not have Python 3 installed by default. There are multiple methods of installing Python 3 on Centos 7.1, such as using third-party repositories or building from source. Another option is using the Red Hat Software Collections, which supports installing multiple versions of Python within the same system.
To install the Red Hat Software Collections (SCL) tool:
Install the scl-utils package.
Enable the Centos SCL repository and install one of its provided Python 3 RPMs.
[admin@guestshell ~]$ sudo su
[root@guestshell admin]# yum install -y scl-utils | tail
Running transaction test
Transaction test succeeded
Running transaction
Installing : scl-utils-20130529-19.el7.x86_64 1/1
Verifying : scl-utils-20130529-19.el7.x86_64 1/1
Installed:
scl-utils.x86_64 0:20130529-19.el7
Complete!
[root@guestshell admin]# yum install -y centos-release-scl | tail
Verifying : centos-release-scl-2-3.el7.centos.noarch 1/2
Verifying : centos-release-scl-rh-2-3.el7.centos.noarch 2/2
Installed:
centos-release-scl.noarch 0:2-3.el7.centos
Dependency Installed:
centos-release-scl-rh.noarch 0:2-3.el7.centos
Complete!
[root@guestshell admin]# yum install -y rh-python36 | tail
warning: /var/cache/yum/x86_64/7/centos-sclo-rh/packages/rh-python36-2.0-1.el7.x86_64.rpm: Header V4 RSA/SHA1 Signature, key ID f2ee9d55: NOKEY
http://centos.sonn.com/7.7.1908/os/x86_64/Packages/groff-base-1.22.2-8.el7.x86_64.rpm: [Errno 12] Timeout on http://centos.sonn.com/7.7.1908/os/x86_64/Packages/groff-base-1.22.2-8.el7.x86_64.rpm: (28, 'Operation too slow. Less than 1000 bytes/sec transferred the last 30 seconds')
Trying other mirror.
Importing GPG key 0xF2EE9D55:
Userid : "CentOS SoftwareCollections SIG (https://wiki.centos.org/SpecialInterestGroup/SCLo) <security@centos.org>"
Fingerprint: c4db d535 b1fb ba14 f8ba 64a8 4eb8 4e71 f2ee 9d55
Package : centos-release-scl-rh-2-3.el7.centos.noarch (@extras)
From : /etc/pki/rpm-gpg/RPM-GPG-KEY-CentOS-SIG-SCLo
rh-python36-python-libs.x86_64 0:3.6.9-2.el7
rh-python36-python-pip.noarch 0:9.0.1-2.el7
rh-python36-python-setuptools.noarch 0:36.5.0-1.el7
rh-python36-python-virtualenv.noarch 0:15.1.0-2.el7
rh-python36-runtime.x86_64 0:2.0-1.el7
scl-utils-build.x86_64 0:20130529-19.el7
xml-common.noarch 0:0.6.3-39.el7
zip.x86_64 0:3.0-11.el7
Complete!
Using SCL, it is possible to create an interactive bash session with Python 3’s environment variables automatically setup.
 Note | The root user is not needed to use the SCL Python installation. |
[admin@guestshell ~]$ scl enable rh-python36 bash
[admin@guestshell ~]$ python3
Python 3.6.9 (default, Nov 11 2019, 11:24:16)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-39)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>
The Python SCL installation also provides the pip utility.
[admin@guestshell ~]$ pip3 install requests --user
Collecting requests
Downloading https://files.pythonhosted.org/packages/51/bd/23c926cd341ea6b7dd0b2a00aba99ae0f828be89d72b2190f27c11d4b7fb/requests-2.22.0-py2.py3-none-any.whl (57kB)
100% |################################| 61kB 211kB/s
Collecting idna<2.9,>=2.5 (from requests)
Downloading https://files.pythonhosted.org/packages/14/2c/cd551d81dbe15200be1cf41cd03869a46fe7226e7450af7a6545bfc474c9/idna-2.8-py2.py3-none-any.whl (58kB)
100% |################################| 61kB 279kB/s
Collecting chardet<3.1.0,>=3.0.2 (from requests)
Downloading https://files.pythonhosted.org/packages/bc/a9/01ffebfb562e4274b6487b4bb1ddec7ca55ec7510b22e4c51f14098443b8/chardet-3.0.4-py2.py3-none-any.whl (133kB)
100% |################################| 143kB 441kB/s
Collecting certifi>=2017.4.17 (from requests)
Downloading https://files.pythonhosted.org/packages/b9/63/df50cac98ea0d5b006c55a399c3bf1db9da7b5a24de7890bc9cfd5dd9e99/certifi-2019.11.28-py2.py3-none-any.whl (156kB)
100% |################################| 163kB 447kB/s
Collecting urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 (from requests)
Downloading https://files.pythonhosted.org/packages/e8/74/6e4f91745020f967d09332bb2b8b9b10090957334692eb88ea4afe91b77f/urllib3-1.25.8-py2.py3-none-any.whl (125kB)
100% |################################| 133kB 656kB/s
Installing collected packages: idna, chardet, certifi, urllib3, requests
Successfully installed certifi-2019.11.28 chardet-3.0.4 idna-2.8 requests-2.22.0 urllib3-1.25.8
You are using pip version 9.0.1, however version 20.0.2 is available.
You should consider upgrading via the 'pip install --upgrade pip' command.
[admin@guestshell ~]$ python3
Python 3.6.9 (default, Nov 11 2019, 11:24:16)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-39)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import requests
>>> requests.get("https://cisco.com")
<Response [200]>
The default Python 2 installation can be used alongside the SCL Python installation.
[admin@guestshell ~]$ which python3
/opt/rh/rh-python36/root/usr/bin/python3
[admin@guestshell ~]$ which python2
/bin/python2
[admin@guestshell ~]$ python2
Python 2.7.5 (default, Aug 7 2019, 00:51:29)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-39)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> print 'Hello world!'
Hello world!
Software Collections makes it possible to install multiple versions of the same RPM on a system. In this case, it is possible to install Python 3.5 in addition to Python 3.6.
[admin@guestshell ~]$ sudo yum install -y rh-python35 | tail
Dependency Installed:
rh-python35-python.x86_64 0:3.5.1-13.el7
rh-python35-python-devel.x86_64 0:3.5.1-13.el7
rh-python35-python-libs.x86_64 0:3.5.1-13.el7
rh-python35-python-pip.noarch 0:7.1.0-2.el7
rh-python35-python-setuptools.noarch 0:18.0.1-2.el7
rh-python35-python-virtualenv.noarch 0:13.1.2-2.el7
rh-python35-runtime.x86_64 0:2.0-2.el7
Complete!
[admin@guestshell ~]$ scl enable rh-python35 python3
Python 3.5.1 (default, May 29 2019, 15:41:33)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-36)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>
 Note | Creating new interactive bash sessions when multiple Python versions are installed in SCL can cause an issue where the libpython shared object file cannot be loaded. There is a workaround where you can use the source scl_source enable python-installation command to properly set up the environment in the current bash session. The default Guest Shell storage capacity is not sufficient to install Python 3. Use the guestshell resize rootfs size-in-MB command to increase the size of the file system. Typically, setting the rootfs size to 550 MB is sufficient. |
The /etc/yum.repos.d/CentOS-Base.repo file is set up to use the CentOS mirror list by default. Follow instructions in that file if changes are needed.
Yum can be pointed to one or more repositories at any time by modifying the yumrepo_x86_64.repo file or by adding a new .repo file in the repos.d directory.
For applications to be installed inside Guest Shell 3.0, go to the CentOS 8 repo at http://mirror.centos.org/centos/8/BaseOS/x86_64/os/Packages/.
For applications to be installed inside Guest Shell 2.x, go to the CentOS 7 repo at http://mirror.centos.org/centos/7/os/x86_64/Packages/.
Yum resolves the dependancies and installs all the required packages.
[guestshell@guestshell ~]$ sudo chvrf management yum -y install glibc.i686
Loaded plugins: fastestmirror
Loading mirror speeds from cached hostfile
* base: bay.uchicago.edu
* extras: pubmirrors.dal.corespace.com
* updates: mirrors.cmich.edu
Resolving Dependencies
"-->" Running transaction check
"--->" Package glibc.i686 0:2.17-78.el7 will be installed
"-->" Processing Dependency: libfreebl3.so(NSSRAWHASH_3.12.3) for package: glibc-2.17-78.el7.i686
"-->" Processing Dependency: libfreebl3.so for package: glibc-2.17-78.el7.i686
"-->" Running transaction check
"--->" Package nss-softokn-freebl.i686 0:3.16.2.3-9.el7 will be installed
"-->" Finished Dependency Resolution
Dependencies Resolved
==
Package Arch Version Repository Size
==
Installing:
glibc i686 2.17-78.el7 base 4.2 M
Installing for dependencies:
nss-softokn-freebl i686 3.16.2.3-9.el7 base 187 k
Transaction Summary
==
Install 1 Package (+1 Dependent package)
Total download size: 4.4 M
Installed size: 15 M
Downloading packages:
Delta RPMs disabled because /usr/bin/applydeltarpm not installed.
(1/2): nss-softokn-freebl-3.16.2.3-9.el7.i686.rpm | 187 kB 00:00:25
(2/2): glibc-2.17-78.el7.i686.rpm | 4.2 MB 00:00:30
--
Total 145 kB/s | 4.4 MB 00:00:30
Running transaction check
Running transaction test
Transaction test succeeded
Running transaction
Installing : nss-softokn-freebl-3.16.2.3-9.el7.i686 1/2
Installing : glibc-2.17-78.el7.i686 2/2
error: lua script failed: [string "%triggerin(glibc-common-2.17-78.el7.x86_64)"]:1: attempt to compare number with nil
Non-fatal "<"unknown">" scriptlet failure in rpm package glibc-2.17-78.el7.i686
Verifying : glibc-2.17-78.el7.i686 1/2
Verifying : nss-softokn-freebl-3.16.2.3-9.el7.i686 2/2
Installed:
glibc.i686 0:2.17-78.el7
Dependency Installed:
nss-softokn-freebl.i686 0:3.16.2.3-9.el7
Complete!
 Note | When more space is needed in the Guest Shell root file system for installing or running packages, the guestshell resize roofs size-in-MB command is used to increase the size of the file system. |
 Note | Some open source software packages from the repository might not install or run as expected in the Guest Shell as a result of restrictions that have been put into place to protect the integrity of the host system. |
Use of the Guest Shell and virtual services in switches are only two of the many ways that the network-admin can manage or extend the functionality of the system. These options are geared toward providing an execution environment that is decoupled from the native host context. This separation allows the introduction of software into the system that may not be compatible with the native execution environment. It also allows the software to run in an environment that does not interfere with the behavior, performance, or scale of the system.
By default, Cisco network elements require applications to provide a valid Cisco digital signature at runtime. The Cisco digital signature ensures the integrity of Cisco-developed packages and applications.
The Cisco Nexus 9000 Series switches support the configuration of a signing level policy to allow for unsigned OVA software packages. To allow unsigned and Cisco-signed packages for creating virtual-services, the network-admin can configure the following:
virtual-service
signing level unsigned
 Note | The Guest Shell software package has a Cisco signature and does not require this configuration. |
Cisco responds to pertinent Common Vulnerabilities and Exposures (CVEs) with platform updates that address known vulnerabilities.
Cisco 9000 NX-OS supports the use of Address Space Layout Randomization (ASLR) and Executable Space Protection (X-Space) for runtime defense. The software in Cisco-signed packages make use of this capability. If other software is installed on the system, it is recommended that it be built using a host OS and development toolchain that supports these technologies. Doing so reduces the potential attack surface that the software presents to potential intruders.
The host and virtual service are separated into separate namespaces. This provides the basis of separating the execution spaces of the virtual services from the host. Namespace isolation helps to protect against data loss and data corruption due to accidental or intentional data overwrites between trust boundaries. It also helps to ensure the integrity of confidential data by preventing data leakage between trust boundaries: an application in one virtual service cannot access data in another virtual service
As a best practice for developing secure code, it is recommend running applications with the least privilege needed to accomplish the assigned task. To help prevent unintended accesses, software added into the Guest Shell should follow this best practice.
All processes within a virtual service are subject to restrictions imposed by reduced Linux capabilities. If your application must perform operations that require root privileges, restrict the use of the root account to the smallest set of operations that absolutely requires root access, and impose other controls such as a hard limit on the amount of time that the application can run in that mode.
The set of Linux capabilities that are dropped for root within virtual services follow:
CAP_SYS_BOOT | CAP_MKNOD | CAP_SYS_PACCT |
CAP_SYS_MODULE | CAP_MAC_OVERRIDE | CAP_SYS_RESOURCE |
CAP_SYS_TIME | CAP_SYS_RAWIO | CAP_AUDIT_WRITE |
CAP_AUDIT_CONTROL | CAP_SYS_NICE | CAP_NET_ADMIN |
CAP_MAC_ADMIN | CAP_SYS_PTRACE |
As root within a virtual service, bind mounts may be used as well as tmpfs and ramfs mounts. Other mounts are prevented.
A Denial-of-Service (DoS) attack attempts to make a machine or network resource unavailable to its intended users. Misbehaving or malicious application code can cause DoS as the result of over-consumption of connection bandwidth, disk space, memory, and other resources. The host provides resource-management features that ensure fair allocation of resources among all virtual services on the host.
To preserve the integrity of the files within the virtual services, the file systems of the virtual services are not accessible from the NX-OS CLI. If a given virtual-service allows files to be modified, it needs to provide an alternate means by which this can be done (i.e. yum install , scp , ftp , etc).
bootflash:
and volatile:
of the host are mounted as /bootflash and /volatile within the Guest Shell. A network-admin can access files on this media using the NX-OS exec commands from the host or using Linux commands from within the Guest Shell.
The following are commands to manage the Guest Shell:
Commands | Description | ||
---|---|---|---|
guestshell enable {package [guest shell OVA file | rootfs-file-URI]} |
| ||
guestshell export rootfs package destination-file-URI | Exports a Guest Shell rootfs file to a local URI (bootflash, USB1, etc.). (7.0(3)I7(1) and later releases) | ||
guestshell disable | Shuts down and disables the Guest Shell. | ||
guestshell upgrade {package [guest shell OVA file | rootfs-file-URI]} |
| ||
guestshell reboot | Deactivates the Guest Shell and then reactivates it. You are prompted for a confirmation prior to carrying out the reboot command.
| ||
guestshell destroy | Deactivates and uninstalls the Guest Shell. All resources associated with the Guest Shell are returned to the system. The show virtual-service global command indicates when these resources become available. Issuing this command results in a prompt for a confirmation prior to carrying out the destroy command. | ||
guestshell run guestshell | Connects to the Guest Shell that is already running with a shell prompt. No username/password is required. | ||
guestshell run command run guestshell command | Executes a Linux/UNIX command within the context of the Guest Shell environment. After execution of the command you are returned to the switch prompt. | ||
guestshell resize [cpu | memory | rootfs] | Changes the allotted resources available for the Guest Shell. The changes take effect the next time the Guest Shell is enabled or rebooted.
| ||
guestshell sync | On systems that have active and standby supervisors, this command synchronizes the Guest Shell contents from the active supervisor to the standby supervisor. The network-admin issues this command when the Guest Shell rootfs has been set up to a point that they would want the same rootfs used on the standby supervisor when it becomes the active supervisor. If this command is not used, the Guest Shell is freshly installed when the standby supervisor transitions to an active role using the Guest Shell package available on that supervisor. | ||
virtual-service reset force | In the event that the guestshell or virtual-services cannot be managed, even after a system reload, the reset command is used to force the removal of the Guest Shell and all virtual-services. The system needs to be reloaded for the cleanup to happen. No Guest Shell or additional virtual-services can be installed or enabled after issuing this command until after the system has been reloaded. You are prompted for a confirmation prior to initiating the reset. |
 Note | Administrative privileges are necessary to enable/disable and to gain access to the Guest Shell environment. |
 Note | The Guest Shell is implemented as a Linux container (LXC) on the host system. On NX-OS devices, LXCs are installed and managed with the virtual-service commands. The Guest Shell appears in the virtual-service commands as a virtual service named |
The guestshell disable command shuts down and disables the Guest Shell.
When the Guest Shell is disabled and the system is reloaded, the Guest Shell remains disabled.
Example:
switch# show virtual-service list
Virtual Service List:
Name Status Package Name

guestshell+ Activated guestshe11.ova
switch# guestshell disable
You will not be able to access your guest shell if it is disabled. Are you sure you want to disable the guest shell? (y/n) [n) y
2014 Jul 30 19:47:23 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Deactivating virtual service 'guestshell+'
2014 Jul 30 18:47:29 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Successfully deactivated virtual service 'guestshell+'
switch# show virtual-service list
Virtual Service List:
Name Status Package Name
guestshell+ Deactivated guestshell.ova
 Note | The Guest Shell is reactivated with the guestshell enable command. |
The guestshell destroy command uninstalls the Guest Shell and its artifacts. The command does not remove the Guest Shell OVA.
When the Guest Shell is destroyed and the system is reloaded, the Guest Shell remains destroyed.
switch# show virtual-service list
Virtual Service List:
Name Status Package Name

guestshell+ Deactivated guestshell.ova
switch# guestshell destroy
You are about to destroy the guest shell and all of its contents. Be sure to save your work. Are you sure you want to continue? (y/n) [n] y
2014 Jul 30 18:49:10 switch %$ VDC-1 %$ %VMAN-2-INSTALL_STATE: Destroying virtual service
'guestshell+'
2014 Jul 30 18:49:10 switch %$ VDC-1 %$ %VMAN-2-INSTALL_STATE: Successfully destroyed
virtual service 'guestshell +'
switch# show virtual-service list
Virtual Service List:
 Note | The Guest Shell can be re-enabled with the guestshell enable command. |
 Note | If you do not want to use the Guest Shell, you can remove it with the guestshell destroy command. Once the Guest Shell has been removed, it remains removed for subsequent reloads. This means that when the Guest Shell container has been removed and the switch is reloaded, the Guest Shell container is not automatically started. |
The guestshell enable command installs the Guest Shell from a Guest Shell software package. By default, the package embedded in the system image is used for the installation. The command is also used to reactivate the Guest Shell if it has been disabled.
When the Guest Shell is enabled and the system is reloaded, the Guest Shell remains enabled.
Example:
switch# show virtual-service list
Virtual Service List:
switch# guestshell enable
2014 Jul 30 18:50:27 switch %$ VDC-1 %$ %VMAN-2-INSTALL_STATE: Installing virtual service 'guestshell+'
2014 Jul 30 18;50;42 switch %$ VDC-1 %$ %VMAN-2-INSTALL_STATE: Install success virtual service 'guestshell+'; Activating
2014 Jul 30 18:50:42 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Activating virtual service 'guestshell+'
2014 Jul 30 18:51:16 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Successfully activated
virtual service 'guestshell+'
switch# show virtual-service list
Virtual Service List:
Name Status Package Name
guestshell+ Activated guestshell.ova
Beginning with Cisco NX-OS release 7.0(3)I7(1), a Guest Shell rootfs that is customized on one switch can be deployed onto multiple switches.
The approach is to customize and then export the Guest Shell rootfs and store it on a file server. A POAP script can download (import) the Guest Shell rootfs to other switches and install the specific Guest Shell across many devices simultaneously.
Use the guestshell export rootfs package destination-file-URI command to export a Guest Shell rootfs.
The destination-file-URI parameter is the name of the file that the Guest Shell rootfs is copied to. This file allows for local URI options (bootflash, USB1, etc.).
The guestshell export rootfs package command:
Disables the Guest Shell (if already enabled).
Creates a Guest Shell import YAML file and inserts it into the /cisco directory of the rootfs ext4 file.
Copies the rootfs ext4 file to the target URI location.
Re-enables the Guest Shell if it had been previously enabled.
When importing a Guest Shell rootfs, there are two situations to consider:
Use the guestshell enable package rootfs-file-URI command to import a Guest Shell rootfs when the Guest Shell is in a destroyed state. This command brings up the Guest Shell with the specified package.
Use the guestshell upgrade package rootfs-file-URI command to import a Guest Shell rootfs when the Guest Shell is already installed. This command removes the existing Guest Shell and installs the specified package.
The rootfs-file-URI parameter is the rootfs file stored on local storage (bootflash, USB, etc.).
When this command is executed with a file that is on bootflash, the file is moved to a storage pool on bootflash.
As a best practice, you should copy the file to the bootflash and validate the md5sum before using the guestshell upgrade package rootfs-file-URI command.
 Note | The guestshell upgrade package rootfs-file-URI command can be executed from within the Guest Shell. |
 Note | The rootfs file is not a Cisco signed package, you must configure to allow unsigned packages before enabling as shown in the example:
|
 Note | To restore the embedded version of the rootfs:
|
 Note | When running this command from within a Guest Shell, or outside a switch using NX-API, you must set terminal dont-ask to skip any prompts. |
The guestshell enable package rootfs-file-URI command:
Performs basic validation of the rootfs file.
Moves the rootfs into the storage pool.
Mounts the rootfs to extract the YAML file from the /cisco directory.
Parses the YAML file to obtain VM definition (including resource requirements).
Activates the Guest Shell.
switch# copy scp://user@10.1.1.1/my_storage/gs_rootfs.ext4 bootflash: vrf management
switch# guestshell resize cpu 8
Note: System CPU share will be resized on Guest shell enable
switch# guestshell enable package bootflash:gs_rootfs.ext4
Validating the provided rootfs
switch# 2017 Jul 31 14:58:01 switch %$ VDC-1 %$ %VMAN-2-INSTALL_STATE: Installing virtual service 'guestshell+'
2017 Jul 31 14:58:09 switch %$ VDC-1 %$ %VMAN-2-INSTALL_STATE: Install success virtual service 'guestshell+'; Activating
2017 Jul 31 14:58:09 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Activating virtual service 'guestshell+'
2017 Jul 31 14:58:33 switch %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Successfully activated virtual service 'guestshell+'
 Note | Workflow for guestshell upgrade is preceded by the existing Guest Shell being destroyed. |
 Note | Resize values are cleared when the guestshell upgrade command is used. |
A YAML file that defines some user modifiable characteristics of the Guest Shell is automatically created as a part of the export operation. It is embedded into the Guest Shell rootfs in the /cisco directory. It is not a complete descriptor for the Guest Shell container. It only contains some of the parameters that are user modifiable.

import-schema-version: "1.0"
info:
name: "GuestShell"
version: "2.2(0.3)"
description: "Exported GuestShell: 20170216T175137Z"
app:
apptype: "lxc"
cpuarch: "x86_64"
resources:
cpu: 3
memory: 307200
disk:
- target-dir: "/"
capacity: 250
...
The YAML file is generated when the guestshell export rootfs package command is executed. The file captures the values of the currently running Guest Shell.
The info section contains non-operational data that is used to help identify the Guest Shell. Some of the information will be displayed in the output of the show guestshell detail command.
The description value is an encoding of the UTC time when the YAML file was created. The time string format is the same as DTSTAMP in RFC5545 (iCal).
The resources section describes the resources required for hosting the Guest Shell. The value "/" for the target-dir in the example identifies the disk as the rootfs.
 Note | If resized values were specified while the Guest Shell was destroyed, those values take precedence over the values in the import YAML file when the guestshell enable package command is used. |
The cpuarch value indicates the CPU architecture that is expected for the container to run.
You can modify the YAML file (such as the description or increase the resource parameters, if appropriate) after the export operation is complete .
{
"$schema": "http://json-schema.org/draft-04/schema#",
"title": "Guest Shell import schema",
"description": "Schema for Guest Shell import descriptor file - ver 1.0",
"copyright": "2017 by Cisco systems, Inc. All rights reserved.",
"id": "",
"type": "object",
"additionalProperties": false,
"properties": {
"import-schema-version": {
"id": "/import-schema-version",
"type": "string",
"minLength": 1,
"maxLength": 20,
"enum": [
"1.0"
]
},
"info": {
"id": "/info",
"type": "object",
"additionalProperties": false,
"properties": {
"name": {
"id": "/info/name",
"type": "string",
"minLength": 1,
"maxLength": 29
},
"description": {
"id": "/info/description",
"type": "string",
"minLength": 1,
"maxLength": 199
},
"version": {
"id": "/info/version",
"type": "string",
"minLength": 1,
"maxLength": 63
},
"author-name": {
"id": "/info/author-name",
"type": "string",
"minLength": 1,
"maxLength": 199
},
"author-link": {
"id": "/info/author-link",
"type": "string",
"minLength": 1,
"maxLength": 199
}
}
},
"app": {
"id": "/app",
"type": "object",
"additionalProperties": false,
"properties": {
"apptype": {
"id": "/app/apptype",
"type": "string",
"minLength": 1,
"maxLength": 63,
"enum": [
"lxc"
]
},
"cpuarch": {
"id": "/app/cpuarch",
"type": "string",
"minLength": 1,
"maxLength": 63,
"enum": [
"x86_64"
]
},
"resources": {
"id": "/app/resources",
"type": "object",
"additionalProperties": false,
"properties": {
"cpu": {
"id": "/app/resources/cpu",
"type": "integer",
"multipleOf": 1,
"maximum": 100,
"minimum": 1
},
"memory": {
"id": "/app/resources/memory",
"type": "integer",
"multipleOf": 1024,
"minimum": 1024
},
"disk": {
"id": "/app/resources/disk",
"type": "array",
"minItems": 1,
"maxItems": 1,
"uniqueItems": true,
"items": {
"id": "/app/resources/disk/0",
"type": "object",
"additionalProperties": false,
"properties": {
"target-dir": {
"id": "/app/resources/disk/0/target-dir",
"type": "string",
"minLength": 1,
"maxLength": 1,
"enum": [
"/"
]
},
"file": {
"id": "/app/resources/disk/0/file",
"type": "string",
"minLength": 1,
"maxLength": 63
},
"capacity": {
"id": "/app/resources/disk/0/capacity",
"type": "integer",
"multipleOf": 1,
"minimum": 1
}
}
}
}
},
"required": [
"memory",
"disk"
]
}
},
"required": [
"apptype",
"cpuarch",
"resources"
]
}
},
"required": [
"app"
]
}
The output of the show guestshell detail command includes information that indicates whether the Guest Shell was imported or was installed from an OVA.
Example of the show guestshell detail command after importing rootfs.
switch# show guestshell detail
Virtual service guestshell+ detail
State : Activated
Package information
Name : rootfs_puppet
Path : usb2:/rootfs_puppet
Application
Name : GuestShell
Installed version : 2.3(0.0)
Description : Exported GuestShell: 20170613T173648Z
Signing
Key type : Unsigned
Method : Unknown
Licensing
Name : None
Version : None
You can verify virtual service and Guest Shell information with the following commands:
Command | Description |
---|---|
show virtual-service global switch# show virtual-service global | Displays the global state and limits for virtual services. |
show virtual-service list
| Displays a summary of the virtual services, the status of the virtual services, and installed software packages. |
show guestshell detail
| Displays details about the guestshell package (such as version, signing resources, and devices). |
Your application should have a systemd / systemctl service file that gets installed in /usr/lib/systemd/system/application_name.service
. This service file should have the following general format:
[Unit]
Description=Put a short description of your application here
[Service]
ExecStart=Put the command to start your application here
Restart=always
RestartSec=10s
[Install]
WantedBy=multi-user.target
 Note | To run systemd as a specific user, add |
Step 1 | Install your application service file that you created above into |
Step 2 | Start your application with systemctl start application_name |
Step 3 | Verify that your application is running with systemctl status -l application_name |
Step 4 | Enable your application to be restarted on reload with systemctl enable application_name |
Step 5 | Verify that your application is running with systemctl status -l application_name |
The following example demonstrates an application in the Guest Shell:
root@guestshell guestshell]# cat /etc/init.d/hello.sh
#!/bin/bash
OUTPUTFILE=/tmp/hello
rm -f $OUTPUTFILE
while true
do
echo $(date) >> $OUTPUTFILE
echo 'Hello World' >> $OUTPUTFILE
sleep 10
done
[root@guestshell guestshell]#
[root@guestshell guestshell]#
[root@guestshell system]# cat /usr/lib/systemd/system/hello.service
[Unit]
Description=Trivial "hello world" example daemon
[Service]
ExecStart=/etc/init.d/hello.sh &
Restart=always
RestartSec=10s
[Install]
WantedBy=multi-user.target
[root@guestshell system]#
[root@guestshell system]# systemctl start hello
[root@guestshell system]# systemctl enable hello
[root@guestshell system]# systemctl status -l hello
hello.service - Trivial "hello world" example daemon
Loaded: loaded (/usr/lib/systemd/system/hello.service; enabled)
Active: active (running) since Sun 2015-09-27 18:31:51 UTC; 10s ago
Main PID: 355 (hello.sh)
CGroup: /system.slice/hello.service
##355 /bin/bash /etc/init.d/hello.sh &
##367 sleep 10
Sep 27 18:31:51 guestshell hello.sh[355]: Executing: /etc/init.d/hello.sh &
[root@guestshell system]#
[root@guestshell guestshell]# exit
exit
[guestshell@guestshell ~]$ exit
logout
switch# reload
This command will reboot the system. (y/n)? [n] y
After reload
[root@guestshell guestshell]# ps -ef | grep hello
root 20 1 0 18:37 ? 00:00:00 /bin/bash /etc/init.d/hello.sh &
root 123 108 0 18:38 pts/4 00:00:00 grep --color=auto hello
[root@guestshell guestshell]#
[root@guestshell guestshell]# cat /tmp/hello
Sun Sep 27 18:38:03 UTC 2015
Hello World
Sun Sep 27 18:38:13 UTC 2015
Hello World
Sun Sep 27 18:38:23 UTC 2015
Hello World
Sun Sep 27 18:38:33 UTC 2015
Hello World
Sun Sep 27 18:38:43 UTC 2015
Hello World
[root@guestshell guestshell]#
Running under systemd / systemctl, your application is automatically restarted if it dies (or if you kill it). The Process ID is originally 226. After killing the application, it is automatically restarted with a Process ID of 257.
[root@guestshell guestshell]# ps -ef | grep hello
root 226 1 0 19:02 ? 00:00:00 /bin/bash /etc/init.d/hello.sh &
root 254 116 0 19:03 pts/4 00:00:00 grep --color=auto hello
[root@guestshell guestshell]#
[root@guestshell guestshell]# kill -9 226
[root@guestshell guestshell]#
[root@guestshell guestshell]# ps -ef | grep hello
root 257 1 0 19:03 ? 00:00:00 /bin/bash /etc/init.d/hello.sh &
root 264 116 0 19:03 pts/4 00:00:00 grep --color=auto hello
[root@guestshell guestshell]#
The Cisco Nexus 9000 Series device front panel and fabric module line cards contain Broadcom Network Forwarding Engines (NFE). The number of NFEs varies depending upon the specific model of the front panel line card (LC) or the fabric module (FM).
You can access and read information from the T2 ASICs without any limitations. However, Cisco does not recommend changing the T2 configuration settings. Use caution when accessing the Broadcom Shell.
The following sections describe approaches to access the Broadcom Shell (bcm-shell).
The bcm-shell commands are passed directly from the Cisco NX-OS CLI to the specific T2 ASIC instance. The T2 ASIC instance can be on the fabric module or on the front panel line card.
The command syntax is as follows:
bcm-shell module module_number [instance_number:command]
Where
module_number | Module number in the chassis. |
instance_number | T2 instance number
|
command | Broadcom command |
 Note | Cisco NX-OS command extensions such as ‘pipe include’ or ‘redirect output to file’ can be used to manage command output. |
 Note | Entering commands with the CLI API are recorded in the system accounting log for auditing purposes. Commands that are entered directly from the bcm-shell are not recorded in the accounting log. |
The following is an example when the T2 instance number not entered.:
switch# bcm-shell module 26 "ports"
Executing ports on bcm shell on module 26
ena/ speed/ link auto STP lrn inter max loop
port link duplex scan neg? state pause discrd ops face frame back
hg0 !ena 42G FD HW No Forward None FA XGMII 16360
hg1 !ena 42G FD HW No Forward None FA XGMII 16360
hg2 !ena 42G FD HW No Forward None FA XGMII 16360
hg3 !ena 42G FD HW No Forward None FA XGMII 16360
hg4 !ena 42G FD HW No Forward None FA XGMII 16360
<snip>
The following is an example when accessing the bcm-shell ‘ports’ display on module 26, T2 instance 1, and using the pipe to display only the ports in ‘up’ state:
switch# bcm-shell module 26 "1:ports" | inc up
port link duplex scan neg? state pause discrd ops face frame back
hg9 up 42G FD HW No Forward None FA XGMII 16360
hg10 up 42G FD HW No Forward None FA XGMII 16360
hg11 up 42G FD HW No Forward None FA XGMII 16360
The following example when the T2 instance number specified as a wildcard ('*').:
The first set in the output is the result for T2 instance 0. The second set is the result for instance 1 on the fabric module.
switch# bcm-shell module 26 "*:ports" | inc up
port link duplex scan neg? state pause discrd ops face frame back
hg9 up 42G FD HW No Forward None FA XGMII 16360
hg10 up 42G FD HW No Forward None FA XGMII 16360
hg11 up 42G FD HW No Forward None FA XGMII 16360
port link duplex scan neg? state pause discrd ops face frame back
hg9 up 42G FD HW No Forward None FA XGMII 16360
hg10 up 42G FD HW No Forward None FA XGMII 16360
hg11 up 42G FD HW No Forward None FA XGMII 16360
 Note | Alternatively, you can access the bcm-shell on a module (LC or FM) directly from the supervisor. The following is an example of how to access the bcm-shell from the supervisor. switch# bcm-shell module 3 |
An eight-slot line card (LC) chassis can host a maximum of six fabric modules (FMs). These slots are numbered 21 through 26.You must specify the FM that you wish to access the bcm-shell on.
The following example shows how to access the bcm-shell on the FM in slot 24, access context help, and exit the bcm-shell.
switch# show module
Mod Ports Module-Type Model Status
--- ----- ----------------------------------- ------------------ ----------
3 36 36p 40G Ethernet Module N9k-X9636PQ ok
4 36 36p 40G Ethernet Module N9k-X9636PQ ok
21 0 Fabric Module Nexus-C9508-FM ok
22 0 Fabric Module Nexus-C9508-FM ok
23 0 Fabric Module Nexus-C9508-FM ok
24 0 Fabric Module Nexus-C9508-FM ok
25 0 Fabric Module Nexus-C9508-FM ok
26 0 Fabric Module Nexus-C9508-FM ok
27 0 Supervisor Module Nexus-SUP-A active *
29 0 System Controller Nexus-SC-A active
switch# attach module 24
Attaching to module 24 ...
To exit type 'exit', to abort type '$.'
module-24# test hardware internal bcm-usd bcm-diag-shell
Available Unit Numbers: 0 1
bcm-shell.0> 1
At this point, you are at the Broadcom shell for the fabric module in slot 24, T2 ASIC instance 1. Any commands that you enter are specific to this specific ASIC instance.
help: "??" or "help" for summary
Commands common to all modes:
? ?? ASSert BackGround BCM
BCMX break BroadSync CASE CD
cint CONFig CONSole CoPy CPUDB
CTEcho CTInstall CTSetup DATE DBDump
DBParse DeBug DeBugMod DELAY DEVice
 Note | Uppercase characters indicate command abbreviations. |
 Note | The Cisco CLI feature of using TAB to complete a command entry is not available. |
bcm-shell.1> conf ?
Usage (CONFig): Parameters: show <substring> | refresh |
save [filename=<filename>] [pattern=<substring>] |
add [<var>=<value>] | delete <var>
If no parameters are given, displays the current config vars.
show display current config vars.
Next parameter (optional) maybe a substring to match
refresh reload config vars from non-volatile storage
save save config vars to non-volatile storage.
it can optionally save current config to any given file
providing the optional <pattern> will only save variables matching the pattern
<var>=<value> change the value of a config var
add <var>=<value> create a new config var
delete <var> deletes a config var
clear deletes all config vars
= prompt for new value for each config var
NOTE: changes are not retained permanently unless saved
bcm-shell.1> exit
module-24# exit
rlogin: connection closed.
When connecting to the T2 ASIC on the line card (LC), you first attach to the module, enter root mode, run the shell access exec, and select the ASIC instance to which you want to attach. The number of available ASICs depends on the model of the line card to which you are attached.
The following example shows how to access the bcm-shell of ASIC instance 1 on the LC in slot 2 and exit the bcm-shell on an LC that contains three T2 instances.
switch# attach module 2
Attaching to module 2 ...
To exit type 'exit', to abort type '$.'
Last login: Wed Aug 7 14:13:15 UTC 2013 from sup27 on ttyp0
switch-2# test hardware internal bcm-usd bcm-diag-shell
Available Unit Numbers: 0 1 2
bcm-shell.0> 1
bcm-shell.1>
At this point, you are at the Broadcom shell for the line card module in slot 2, T2 ASIC instance 1.
bcm-shell.1> exit
module-2# exit
rlogin: connection closed.
This section contains examples of Broadcom shell commands and output.
To compare the L2 entries on an FM and an LC, display the L2 entries on the T2 instance.
switch# bcm-shell module 2 “config show l2_mem_entries”
l2_mem_entries=163840
switch# bcm-shell module 24 “config show l2_mem_entries”
l2_mem_entries=32768
In this example, the ASICs have different values that are configured for L2 entries because the operation mode setting of the T2 ASIC is different on the LC and the FM.
The following shows how to display the routing information from an FM instance and an LC ASIC instance.
 Note |
|
switch# bcm-shell module 22 “l3 defip show”
Unit 0, Total Number of DEFIP entries: 16385
VRF Net addr Next Hop Mac INTF MODID PORT PRIO CLASS HIT VLAN
0 1 192.168.1.0/24 00:00:00:00:00:00 10000 4 0 0 0 0 n
0 1 192.168.2.0/24 00:00:00:00:00:00 10000 4 0 0 0 0 n
switch# bcm-shell module 2 “l3 defip show”
Unit 2, Total Number of DEFIP entries: 8193
VRF Net addr Next Hop Mac INTF MODID PORT PRIO CLASS HIT VLAN
2048 Override 0.0.0.0/0 00:00:00:00:00:00 10000 4 0 0 0 0 n
The following shows how to display spanning tree group (STG) entries.
switch# bcm-shell module 2 “stg show”
STG 0: contains 7 VLANs (4032-4035,4042,4044,4095)
Forward: xe,hg
STG 1: contains 1 VLAN (4043)
Disable: xe
Forward: hg
STG 4: contains 1 VLAN (1)
Block: xe
Forward: hg
STG 5: contains 1 VLAN (100)
Block: xe
Forward: hg
The following shows how to display T2 counters for interface xe0 that maps to a front panel port.
switch# bcm-shell module 2 “show counters xe0”
RDBGC1.xe0 : 38,169 +4
R127.xe0 : 37,994 +4
R511.xe0 : 16,562 +2
RPKT.xe0 : 55,046 +6
RMCA.xe0 : 54,731 +6
<snip>
 Note | The numbers in the output on the far right denoted with '+', indicate the change in the counter value since the last show command was executed. |
The following shows how to display L3 information from the T2.
switch# bcm-shell module 2 “l3 l3table show”
Unit 0, free L3 table entries: 147448
Entry VRF IP address Mac Address INTF MOD PORT CLASS HIT
1 1 10.100.100.2 00:00:00:00:00:00 100006 0 0 0 n
2 1 10.101.101.2 00:00:00:00:00:00 100006 0 0 0 y
3 1 10.101.101.1 00:00:00:00:00:00 149151 0 0 0 y (LOCAL ROUTE)
4 1 10.100.100.1 00:00:00:00:00:00 149151 0 0 0 n (LOCAL ROUTE)
5 1 10.101.101.0 00:00:00:00:00:00 100000 0 0 0 n (LOCAL ROUTE)
6 1 10.100.100.0 00:00:00:00:00:00 100000 0 0 0 n (LOCAL ROUTE)
7 1 10.101.101.255 00:00:00:00:00:00 149150 0 0 0 n
8 1 10.100.100.255 00:00:00:00:00:00 149150 0 0 0 n
Python is an easy to learn, powerful programming language. It has efficient high-level data structures and a simple but effective approach to object-oriented programming. Python's elegant syntax and dynamic typing, together with its interpreted nature, make it an ideal language for scripting and rapid application development in many areas on most platforms.
The Python interpreter and the extensive standard library are freely available in source or binary form for all major platforms from the Python website:
http://www.python.org/
The same site also contains distributions of and pointers to many free third-party Python modules, programs and tools, and more documentation.
The Cisco Nexus 9000 Series devices support Python v2.7.5 in both interactive and noninteractive (script) modes and are available in the Guest Shell.
The Python scripting capability gives programmatic access to the device's command-line interface (CLI) to perform various tasks and Power On Auto Provisioning (POAP) or Embedded Event Manager (EEM) actions. Python also can be accessed from the Bash shell.
The Python interpreter is available in the Cisco NX-OS software.
For information about using Python with Cisco Nexus devices, see the Cisco Nexus 9000 Series Python SDK User Guide and API Reference at this URL: https://developer.cisco.com/site/nx-os/docs/apis/python/.
This section describes how to write and execute Python scripts.
Cisco NX-OS provides a Cisco Python package that enables access to many core network-device modules, such as interfaces, VLANs, VRFs, ACLs, and routes. You can display the details of the Cisco Python package by entering the help() command. To obtain additional information about the classes and methods in a module, you can run the help command for a specific module. For example, help(cisco.interface) displays the properties of the cisco.interface module.
The following is an example of how to display information about the Cisco Python package:
>>> import cisco
>>> help(cisco)
Help on package cisco:
NAME
cisco
FILE
/isan/python/scripts/cisco/__init__.py
PACKAGE CONTENTS
acl
bgp
cisco_secret
cisco_socket
feature
interface
key
line_parser
md5sum
nxcli
ospf
routemap
routes
section_parser
ssh
system
tacacs
vrf
CLASSES
__builtin__.object
cisco.cisco_secret.CiscoSecret
cisco.interface.Interface
cisco.key.Key
The Python API has the following guidelines and limitations:
Starting with NX-OS 7.0(3)F3(1), the Python API is supported on the Cisco Nexus 9508 switch.
The Python programming language uses three APIs that can execute CLI commands. The APIs are available from the Python CLI module.
These APIs are listed in the following table. You must enable the APIs with the from cli import * command. The arguments for these APIs are strings of CLI commands. To execute a CLI command through the Python interpreter, you enter the CLI command as an argument string of one of the following APIs:
API | Description | ||
---|---|---|---|
cli() Example: string = cli (“cli-command”) | Returns the raw output of CLI commands, including control or special characters.
| ||
clid() Example: json_string = clid (“cli-command”) | Returns JSON output for cli-command, if XML support exists for the command, otherwise an exception is thrown.
| ||
clip() Example: clip (“cli-command”) | Prints the output of the CLI command directly to stdout and returns nothing to Python.
|
When two or more commands are run individually, the state is not persistent from one command to subsequent commands.
In the following example, the second command fails because the state from the first command does not persist for the second command:
>>> cli("conf t")
>>> cli("interface eth4/1")
When two or more commands are run together, the state is persistent from one command to subsequent commands.
In the following example, the second command is successful because the state persists for the second and third commands:
>>> cli("conf t ; interface eth4/1 ; shut")
 Note | Commands are separated with " ; " as shown in the example. The semicolon (;) must be surrounded with single blank characters. |
The following example shows how to invoke Python 2 from the CLI:
 Note | The Python interpreter is designated with the ">>>" or "…" prompt. |
switch# python
switch# python
Warning: Python 2.7 is End of Support, and future NXOS software will deprecate
python 2.7 support. It is recommended for new scripts to use 'python3' instead.
Type "python3" to use the new shell.
Python 2.7.11 (default, Jun 4 2020, 09:48:24)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>
>>> from cli import *
>>> import json
>>> cli('configure terminal ; interface loopback 1 ; no shut')
''
>>> intflist=json.loads(clid('show interface brief'))
>>> i=0
>>> while i < len(intflist['TABLE_interface']['ROW_interface']):
... intf=intflist['TABLE_interface']['ROW_interface'][i]
... i=i+1
... if intf['state'] == 'up':
... print intf['interface']
...
mgmt0
loopback1
>>>
The following examples show various display formats using the Python APIs:
Example 1:
>>> from cli import *
>>> cli("conf ; interface loopback 1")
''
>>> clip('where detail')
mode:
username: admin
vdc: switch
routing-context vrf: default
Example 2:
>>> from cli import *
>>> cli("conf ; interface loopback 1")
''
>>> cli('where detail')
' mode: \n username: admin\n vdc:
switch\n routing-context vrf: default\n'
>>>
Example 3:
>>> from cli import *
>>> cli("conf ; interface loopback 1")
''
>>> r = cli('where detail') ; print r
mode:
username: admin
vdc: EOR-1
routing-context vrf: default
>>>
Example 4:
>>> from cli import *
>>> import json
>>> out=json.loads(clid('show version'))
>>> for k in out.keys():
... print "%30s = %s" % (k, out[k])
...
kern_uptm_secs = 21
kick_file_name = bootflash:///nxos.9.2.1.bin.S246
rr_service = None
module_id = Supervisor Module
kick_tmstmp = 07/11/2018 00:01:44
bios_cmpl_time = 05/17/2018
bootflash_size = 20971520
kickstart_ver_str = 9.2(1)
kick_cmpl_time = 7/9/2018 9:00:00
chassis_id = Nexus9000 C9504 (4 Slot) Chassis
proc_board_id = SAL171211LX
memory = 16077872
manufacturer = Cisco Systems, Inc.
kern_uptm_mins = 26
bios_ver_str = 05.31
cpu_name = Intel(R) Xeon(R) CPU D-1528 @ 1.90GHz
kern_uptm_hrs = 2
rr_usecs = 816550
rr_sys_ver = 9.2(1)
rr_reason = Reset Requested by CLI command reload
rr_ctime = Wed Jul 11 20:44:39 2018
header_str = Cisco Nexus Operating System (NX-OS) Software
TAC support: http://www.cisco.com/tac
Copyright (C) 2002-2018, Cisco and/or its affiliates.
All rights reserved.
The copyrights to certain works contained in this software are
owned by other third parties and used and distributed under their own
licenses, such as open source. This software is provided "as is," and unless
otherwise stated, there is no warranty, express or implied, including but not
limited to warranties of merchantability and fitness for a particular purpose.
Certain components of this software are licensed under
the GNU General Public License (GPL) version 2.0 or
GNU General Public License (GPL) version 3.0 or the GNU
Lesser General Public License (LGPL) Version 2.1 or
Lesser General Public License (LGPL) Version 2.0.
A copy of each such license is available at
http://www.opensource.org/licenses/gpl-2.0.php and
http://opensource.org/licenses/gpl-3.0.html and
http://www.opensource.org/licenses/lgpl-2.1.php and
http://www.gnu.org/licenses/old-licenses/library.txt.
host_name = switch
mem_type = kB
kern_uptm_days = 0
>>>
A Python script can run in non-interactive mode by providing the Python script name as an argument to the Python CLI command. Python scripts must be placed under the bootflash or volatile scheme. A maximum of 32 command-line arguments for the Python script are allowed with the Python CLI command.
The switch also supports the source CLI command for running Python scripts. The bootflash:scripts directory is the default script directory for the source CLI command.
This example shows the script first and then executing it. Saving is like bringing any file to the bootflash.
switch# show file bootflash:deltaCounters.py
#!/isan/bin/python
from cli import *
import sys, time
ifName = sys.argv[1]
delay = float(sys.argv[2])
count = int(sys.argv[3])
cmd = 'show interface ' + ifName + ' counters'
out = json.loads(clid(cmd))
rxuc = int(out['TABLE_rx_counters']['ROW_rx_counters'][0]['eth_inucast'])
rxmc = int(out['TABLE_rx_counters']['ROW_rx_counters'][1]['eth_inmcast'])
rxbc = int(out['TABLE_rx_counters']['ROW_rx_counters'][1]['eth_inbcast'])
txuc = int(out['TABLE_tx_counters']['ROW_tx_counters'][0]['eth_outucast'])
txmc = int(out['TABLE_tx_counters']['ROW_tx_counters'][1]['eth_outmcast'])
txbc = int(out['TABLE_tx_counters']['ROW_tx_counters'][1]['eth_outbcast'])
print 'row rx_ucast rx_mcast rx_bcast tx_ucast tx_mcast tx_bcast'
print '==='
print ' %8d %8d %8d %8d %8d %8d' % (rxuc, rxmc, rxbc, txuc, txmc, txbc)
print '==='
i = 0
while (i < count):
time.sleep(delay)
out = json.loads(clid(cmd))
rxucNew = int(out['TABLE_rx_counters']['ROW_rx_counters'][0]['eth_inucast'])
rxmcNew = int(out['TABLE_rx_counters']['ROW_rx_counters'][1]['eth_inmcast'])
rxbcNew = int(out['TABLE_rx_counters']['ROW_rx_counters'][1]['eth_inbcast'])
txucNew = int(out['TABLE_tx_counters']['ROW_tx_counters'][0]['eth_outucast'])
txmcNew = int(out['TABLE_tx_counters']['ROW_tx_counters'][1]['eth_outmcast'])
txbcNew = int(out['TABLE_tx_counters']['ROW_tx_counters'][1]['eth_outbcast'])
i += 1
print '%-3d %8d %8d %8d %8d %8d %8d' % \
(i, rxucNew - rxuc, rxmcNew - rxmc, rxbcNew - rxbc, txucNew - txuc, txmcNew - txmc, txbcNew - txbc)
switch# python bootflash:deltaCounters.py Ethernet1/1 1 5
row rx_ucast rx_mcast rx_bcast tx_ucast tx_mcast tx_bcast
===
0 791 1 0 212739 0
===
1 0 0 0 0 26 0
2 0 0 0 0 27 0
3 0 1 0 0 54 0
4 0 1 0 0 55 0
5 0 1 0 0 81 0
switch#
The following example shows how a source command specifies command-line arguments. In the example, policy-map is an argument to the cgrep python
script. The example also shows that a source command can follow the pipe operator ("|").
switch# show running-config | source sys/cgrep policy-map
policy-map type network-qos nw-pfc
policy-map type network-qos no-drop-2
policy-map type network-qos wred-policy
policy-map type network-qos pause-policy
policy-map type qos foo
policy-map type qos classify
policy-map type qos cos-based
policy-map type qos no-drop-2
policy-map type qos pfc-tor-port
On Cisco Nexus switches, Embedded Event Manager (EEM) policies support Python scripts.
The following example shows how to run a Python script as an EEM action:
switch# show running-config eem
!Command: show running-config eem
!Running configuration last done at: Thu Jun 25 15:29:38 2020
!Time: Thu Jun 25 15:33:19 2020
version 9.3(5) Bios:version 07.67
event manager applet a1
event cli match "show clock"
action 1 cli python bootflash:pydate.py
switch# show file logflash:vdc_1/event_archive_1 | last 33
eem_event_time:06/25/2020,15:34:24 event_type:cli event_id:24 slot:active(1) vdc
:1 severity:minor applets:a1
eem_param_info:command = "exshow clock"
Starting with policy a1
stty: standard input: Inappropriate ioctl for device
Executing the following commands succeeded:
python bootflash:pydate.py
Completed executing policy a1
Event Id:24 event type:10241 handling completed
switch# show file logflash:event_archive_1 | last 33
eem_event_time:05/01/2011,19:40:28 event_type:cli event_id:8 slot:active(1)
vdc:1 severity:minor applets:a1
eem_param_info:command = "exshow clock"
Starting with policy a1
Python
2011-05-01 19:40:28.644891
Executing the following commands succeeded:
python bootflash:pydate.py
PC_VSH_CMD_TLV(7679) with q
On Cisco Nexus switches, Python is integrated with the underlying Cisco NX-OS network interfaces. You can switch from one virtual routing context to another by setting up a context through the cisco.vrf.set_global_vrf() API.
The following example shows how to retrieve an HTML document over the management interface of a device. You can also establish a connection to an external entity over the in-band interface by switching to a desired virtual routing context.
switch# python
Python 2.7.5 (default, Oct 8 2013, 23:59:43)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import urllib2
>>> from cisco.vrf import *
>>> set_global_vrf('management')
>>> page=urllib2.urlopen('http://172.23.40.211:8000/welcome.html')
>>> print page.read()
Hello Cisco Nexus 9000
>>>
>>> import cisco
>>> help(cisco.vrf.set_global_vrf)
Help on function set global vrf in module cisco.vrf:
set global vrf(vrf)
Sets the global vrf. Any new sockets that are created (using socket.socket)
will automatically get set to this vrf (including sockets used by other
python libraries).
Arguments:
vrf: VRF name (string) or the VRF ID (int).
Returns: Nothing
>>>
Cisco NX-OS resources are protected by the Cisco NX-OS Sandbox layer of software and by the CLI role-based access control (RBAC).
All users who are associated with a Cisco NX-OS network-admin or dev-ops role are privileged users. Users who are granted access to Python with a custom role are regarded as nonprivileged users. Nonprivileged users have limited access to Cisco NX-OS resources, such as the file system, guest shell, and Bash commands. Privileged users have greater access to all the resources of Cisco NX-OS.
The following example shows how a privileged user runs commands:
switch# python
Python 2.7.5 (default, Oct 8 2013, 23:59:43)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import os
>>> os.system('whoami')
admin
0
>>> f=open('/tmp/test','w')
>>> f.write('hello from python')
>>> f.close()
>>> r=open('/tmp/test','r')
>>> print r.read()
hello from python
>>> r.close()
Python 3 example.
The following example shows a nonprivileged user being denied access:
switch# python
Python 2.7.5 (default, Oct 8 2013, 23:59:43)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import os
>>> os.system('whoami')
system(whoami): rejected!
-1
>>> f=open('/tmp/test','r')
Permission denied. Traceback (most recent call last):
File "<stdin>", line 1, in <module>
IOError: [Errno 13] Permission denied: '/tmp/test'
>>>
RBAC controls CLI access based on the login user privileges. A login user's identity is given to Python that is invoked from the CLI shell or from Bash. Python passes the login user's identity to any subprocess that is invoked from Python.
The following is an example for a privileged user:
>>> from cli import *
>>> cli('show clock')
'Warning: No NTP peer/server configured. Time may be out of sync.\n15:39:39.513 UTC Thu Jun 25 2020\nTime source is NTP\n'
>>> cli('configure terminal ; vrf context myvrf')
''
>>> clip('show running-config l3vm')
!Command: show running-config l3vm
!Running configuration last done at: Thu Jun 25 15:39:49 2020
!Time: Thu Jun 25 15:39:55 2020
version 9.3(5) Bios:version 07.67
interface mgmt0
vrf member management
vrf context blue
vrf context management
vrf context myvrf
The following is an example for a nonprivileged user:
>>> from cli import *
>>> cli('show clock')
'11:18:47.482 AM UTC Sun May 08 2011\n'
>>> cli('configure terminal ; vrf context myvrf2')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/isan/python/scripts/cli.py", line 20, in cli
raise cmd_exec_error(msg)
errors.cmd_exec_error: '% Permission denied for the role\n\nCmd exec error.\n'
The following example shows an RBAC configuration:
switch# show user-account
user:admin
this user account has no expiry date
roles:network-admin
user:pyuser
this user account has no expiry date
roles:network-operator python-role
switch# show role name python-role
The following example shows a Python script that is running the script with the scheduler feature:
#!/bin/env python
from cli import *
from nxos import *
import os
switchname = cli("show switchname")
try:
user = os.environ['USER']
except:
user = "No user"
pass
msg = user + " ran " + __file__ + " on : " + switchname
print msg
py_syslog(1, msg)
Save this script in bootflash:///scripts
Python 3 example.
Tcl (pronounced "tickle") is a scripting language that increases flexibility of CLI commands. You can use Tcl to extract certain values in the output of a show command, perform switch configurations, run Cisco NX-OS commands in a loop, or define Embedded Event Manager (EEM) policies in a script.
This section describes how to run Tcl scripts or run Tcl interactively on switches.
Command help is not available for Tcl commands. You can still access the help functions of Cisco NX-OS commands from within an interactive Tcl shell.
This example shows the lack of Tcl command help in an interactive Tcl shell:
switch# tclsh
switch-tcl# set x 1
switch-tcl# puts ?
^
% Invalid command at '^' marker.
switch-tcl# configure ?
<CR>
session Configure the system in a session
terminal Configure the system from terminal input
switch-tcl#
 Note | In the preceding example, the Cisco NX-OS command help function is still available but the Tcl puts command returns an error from the help function. |
You can use the arrow keys on your terminal to access commands you previously entered in the interactive Tcl shell.
 Note | The tclsh command history is not saved when you exit the interactive Tcl shell. |
You can use tab completion for Cisco NX-OS commands when you are running an interactive Tcl shell. Tab completion is not available for Tcl commands.
Although you can directly access Cisco NX-OS commands from within an interactive Tcl shell, you can only execute Cisco NX-OS commands in a Tcl script if they are prepended with the Tcl cli command.
In an interactive Tcl shell, the following commands are identical and execute properly:
switch-tcl# cli show module 1 | incl Mod
switch-tcl# cli "show module 1 | incl Mod"
switch-tcl# show module 1 | incl Mod
In a Tcl script, you must prepend Cisco NX-OS commands with the Tcl cli command as shown in the following example:
set x 1
cli show module $x | incl Mod
cli "show module $x | incl Mod"
If you use the following commands in your script, the script fails and the Tcl shell displays an error:
show module $x | incl Mod
"show module $x | incl Mod"
The semicolon (;) is the command separator in both Cisco NX-OS and Tcl. To execute multiple Cisco NX-OS commands in a Tcl command, you must enclose the Cisco NX-OS commands in quotes ("").
In an interactive Tcl shell, the following commands are identical and execute properly:
switch-tcl# cli "configure terminal ; interface loopback 10 ; description loop10"
switch-tcl# cli configure terminal ; cli interface loopback 10 ; cli description loop10
switch-tcl# cli configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
switch(config-tcl)# cli interface loopback 10
switch(config-if-tcl)# cli description loop10
switch(config-if-tcl)#
In an interactive Tcl shell, you can also execute Cisco NX-OS commands directly without prepending the Tcl cli command:
switch-tcl# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
switch(config-tcl)# interface loopback 10
switch(config-if-tcl)# description loop10
switch(config-if-tcl)#
You can use Tcl variables as arguments to the Cisco NX-OS commands. You can also pass arguments into Tcl scripts. Tcl variables are not persistent.
The following example shows how to use a Tcl variable as an argument to a Cisco NX-OS command:
switch# tclsh
switch-tcl# set x loop10
switch-tcl# cli "configure terminal ; interface loopback 10 ; description $x"
switch(config-if-tcl)#
The tclquit command exits the Tcl shell regardless of which Cisco NX-OS command mode is currently active. You can also press Ctrl-C to exit the Tcl shell. The exit and end commands change Cisco NX-OS command modes. The exit command terminates the Tcl shell only from the EXEC command mode.
The Tcl shell is executed in a sandbox to prevent unauthorized access to certain parts of the Cisco NX-OS system. The system monitors CPU, memory, and file system resources being used by the Tcl shell to detect events such as infinite loops, excessive memory utilization, and so on.
You configure the initial Tcl environment with the scripting tcl init init-file command.
You can define the looping limits for the Tcl environment with the scripting tcl recursion-limit iterations command. The default recursion limit is 1000 iterations.
You can run Tcl commands from either a script or on the command line using the tclsh command.
 Note | You cannot create a Tcl script file at the CLI prompt. You can create the script file on a remote device and copy it to the bootflash: directory on the Cisco NX-OS device. |
tclsh [bootflash:filename [argument ...]] Example:switch# tclsh ? Starts a Tcl shell. If you run the tclsh command with no arguments, the shell runs interactively, reading Tcl commands from standard input and printing command results and error messages to the standard output. You exit from the interactive Tcl shell by typing tclquit or Ctrl-C. If you run the tclsh command with arguments, the first argument is the name of a script file containing Tcl commands and any additional arguments are made available to the script as variables. |
The following example shows an interactive Tcl shell:
switch# tclsh
switch-tcl# set x 1
switch-tcl# cli show module $x | incl Mod
Mod Ports Module-Type Model Status
1 36 36p 40G Ethernet Module N9k-X9636PQ ok
Mod Sw Hw
Mod MAC-Address(es) Serial-Num
switch-tcl# exit
switch#
The following example shows how to run a Tcl script:
switch# show file bootflash:showmodule.tcl
set x 1
while {$x < 19} {
cli show module $x | incl Mod
set x [expr {$x + 1}]
}
switch# tclsh bootflash:showmodule.tcl
Mod Ports Module-Type Model Status
1 36 36p 40G Ethernet Module N9k-X9636PQ ok
Mod Sw Hw
Mod MAC-Address(es) Serial-Num
switch#
You can change modes in Cisco NX-OS while you are running an interactive Tcl shell.
Step 1 | tclsh Example:switch# tclsh Starts an interactive Tcl shell. | ||
Step 2 | configure terminal Example:switch-tcl# configure terminal Runs a Cisco NX-OS command in the Tcl shell, changing modes.
| ||
Step 3 | tclquit Example:switch-tcl# tclquit Terminates the Tcl shell, returning to the starting mode. |
The following example shows how to change Cisco NX-OS modes from an interactive Tcl shell:
switch# tclsh
switch-tcl# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
switch(config-tcl)# interface loopback 10
switch(config-if-tcl)# ?
description Enter description of maximum 80 characters
inherit Inherit a port-profile
ip Configure IP features
ipv6 Configure IPv6 features
logging Configure logging for interface
no Negate a command or set its defaults
rate-limit Set packet per second rate limit
shutdown Enable/disable an interface
this Shows info about current object (mode's instance)
vrf Configure VRF parameters
end Go to exec mode
exit Exit from command interpreter
pop Pop mode from stack or restore from name
push Push current mode to stack or save it under name
where Shows the cli context you are in
switch(config-if-tcl)# description loop10
switch(config-if-tcl)# tclquit
Exiting Tcl
switch#
The following titles are provided for your reference:
Mark Harrison (ed), Tcl/Tk Tools, O'Reilly Media, ISBN 1-56592-218-2, 1997
Mark Harrison and Michael McLennan, Effective Tcl/Tk Programming, Addison-Wesley, Reading, MA, USA, ISBN 0-201-63474-0, 1998
John K. Ousterhout, Tcl and the Tk Toolkit, Addison-Wesley, Reading, MA, USA, ISBN 0-201-63337-X, 1994.
Brent B. Welch, Practical Programming in Tcl and Tk, Prentice Hall, Upper Saddle River, NJ, USA, ISBN 0-13-038560-3, 2003.
J Adrian Zimmer, Tcl/Tk for Programmers, IEEE Computer Society, distributed by John Wiley and Sons, ISBN 0-8186-8515-8, 1998.
This chapter contains the following sections:
iPXE is an open source network-boot firmware. iPXE is based on gPXE, which is an open-source PXE client firmware and bootloader derived from Etherboot. Standard PXE clients use TFTP to transfer data whereas gPXE supports more protocols.
Here is a list of additional features that iPXE provides over standard PXE:
Boots from a web server via HTTP, iSCSI SAN, FCoE, and so on
Supports both IPv4 and IPv6
Netboot supports HTTP/TFTP, IPv4, and IPv6
Supports embedded scripts into the image or served by the HTTP/TFTP, and so on
Supports stateless address autoconfiguration (SLAAC) and stateful IP autoconfiguration variants for DHCPv6. iPXE supports boot URI and parameters for DHCPv6 options. This depends on IPv6 router advertisement.
In addition, we have disabled some of the existing features from iPXE for security reasons such as:
Boot support for standard Linux image format such as bzImage+initramfs/initrd, or ISO, and so on
Unused network boot options such as FCoE, iSCSI SAN, Wireless, and so on
Loading of unsupported NBP (such as syslinux/pxelinux) because these can boot system images that are not properly code-signed.
The primary requirements are:
A DHCP server with proper configuration.
A TFTP/HTTP server.
Enough space on the device's bootflash because NX-OS downloads the image when the device is PXE booted.
IPv4/IPv6 support—for better deployment flexibility
PXE has the following configuration guidelines and limitations:
Starting with NX-OS 7.0(3)F3(1), iPXE is supported on the Cisco Nexus 9508 switch.
While auto-booting through iPXE, there is a window of three seconds where you can enter Ctrl+B to exit out of the PXE boot. The system prompts you with the following options:
Please choose a bootloader shell:
1). GRUB shell
2). PXE shell
Enter your choice:
HTTP image download vs. TFTP—TFTP is UDP based and it can be problematic if packet loss starts appearing. TCP is a window-based protocol and handles bandwidth sharing/losses better. As a result, TCP-based protocols support is more suitable given the sizes of the Cisco Nexus images which are over 250 Mbytes.
iPXE only allows/boots Cisco signed NBI images. Other standard image format support is disabled for security reasons.
switch# configure terminal
switch(conf)# boot order bootflash|pxe [bootflash|pxe]
switch(conf)# end
 Note | The keyword bootflash indicates it is Grub based booting. |
For example, to do a PXE boot mode only, the configuration command is:
switch(conf)# boot order pxe
To boot Grub first, followed by PXE:
switch(conf)# boot order bootflash pxe
To boot PXE first, followed by Grub:
switch(conf)# boot order pxe bootflash
If you never use the boot order command, by default the boot order is Grub.
 Note | The following sections describe how you can toggle from Grub and iPXE. |
bootmode [-g|-p|-p2g|-g2p]
Keyword | Function |
---|---|
-g | Grub only |
-p | PXE only |
-p2g | PXE first, followed by Grub if PXE failed |
-g2p | Grub first, followed by PXE if Grub failed |
The Grub CLI is useful if you want to toggle the boot mode from the serial console without booting a full Cisco NX-OS image. It also can be used to get a box out of the continuous PXE boot state.
bootmode [-g|--grub] [-p|--pxe] [-a|--pxe2grub] [-b|--grub2pxe]
Keyword | Function |
---|---|
– – grub | Grub only |
– – pxe | PXE only |
– – pxe2grub | PXE first, followed by Grub if PXE failed |
– – grub2pxe | Grub first, followed by PXE if Grub failed |
The iPXE CLI is useful if you wish to toggle the boot mode from the serial console without booting a full Cisco NX-OS image. It also can be used to get a box out of continuous PXE boot state.
To display boot order configuration information, enter the following command:
Command | Purpose |
---|---|
show boot order | Displays the current boot order from the running configuration and the boot order value on the next reload from the startup configuration. |
This chapter contains the following sections:
Kernel Stack (kstack) uses well known Linux APIs to manage the routes and front panel ports.
Open Containers, like the Guest Shell, are Linux environments that are decoupled from the host software. You can install or modify software within that environment without impacting the host software packages.
Using the Kernel Stack has the following guidelines and limitations:
Starting with NX-OS 7.0(3)F3(1), the Kernel Stack is supported on the Cisco Nexus 9508 switch.
Guest Shell, other open containers, and the host Bash Shell use Kernel Stack (kstack).
Open containers start in the host default namespace
Other network namespaces might be accessed by using the setns system call
The nsenter and ip netns exec utilities can be used to execute within the context of a different network namespace.
The PIDs and identify options for the ip netns command do not work without modification because of the file system device check. A vrfinfo utility is provided to give the network administrator the same information.
Open containers may read the interface state from /proc/net/dev or use other normal Linux utilities such as netstat or ifconfig without modification. This provides counters for packets that have initiated / terminated on the switch.
Open containers may use ethtool –S to get extended statistics from the net devices. This includes packets switched through the interface.
Open containers may run packet capture applications like tcpdump to capture packets initiated from or terminated on the switch.
There is no support for networking state changes (interface creation/deletion, IP address configuration, MTU change, etc.) from the Open containers
IPv4 and IPv6 are supported
Raw PF_PACKET is supported
Well-known ports (0-15000) may only be used by one stack (Netstack or kstack) at a time, regardless of the network namespace.
There is no IP connectivity between Netstack and kstack applications. This is a host limitation which also applies to open containers.
Open containers are not allowed to send packets directly over an Ethernet out-of-band channel (EOBC) interface to communicate with the linecards or standby Sup.
From within an open container, direct access to the EOBC interface used for internal communication with linecards or the standby supervisor. The host bash shell should be used if this access is needed.
The management interface (mgmt0) is represented as eth1 in the kernel netdevices.
Use of the VXLAN overlay interface (NVE x) is not supported for applications utilizing the kernel stack. NX-OS features, including CLI commands, are able to use this interface via netstack.
For more information about the NVE interface, see the Cisco Nexus 9000 Series NX-OS VXLAN Configuration Guide.
Netstack and kstack divide the port range between them. The default port ranges are as follows:
Kstack—15001 to 58000
Netstack—58001 to 65535
 Note | Within this range 63536 to 65535 are reserved for NAT. |
[no] sockets local-port-range start-port end-port This command modifies the port range for kstack. This command does not modify the Netstack range. |
The following example sets the kstack port range:
switch# sockets local-port-range 15001 25000
After you have entered the command, be aware of the following issues:
Reload the switch after entering the command.
Leave a minimum of 7000 ports unallocated which are used by Netstack.
Specify the start-port as 15001 or the end-port as 65535 to avoid holes in the port range.
This chapter contains the following sections:
The RPMs for the Third-Party Applications are available in the repository at https://devhub.cisco.com/artifactory/open-nxos/7.0-3-I2-1/x86_64/. These applications are installed in the native host by using the yum command in the Bash shell or through the NX-OS CLI.
When you enter the yum install rpm command, a Cisco YUM plug-in gets executed. This plug-in copies the RPM to a hidden location. On switch reload, the system reinstalls the RPM.
For configurations in /etc, a Linux process, incrond , monitors artifacts that are created in the directory and copies them to a hidden location, which gets copied back to /etc.
RPMs for the Third-Party Applications have the following guidelines and limitations:
Starting with NX-OS 7.0(3)F3(1), the RPMs for the Third-Party Applications are supported on the Cisco Nexus 9508 switch.
The complete workflow of package installation is as follows:
Configure the repository on the switch to point to the Cisco repository where agents are stored. bash-4.2# cat /etc/yum/repos.d/open-nxos.repo An example of installation of an RPM using yum , with full install log. Example:bash-4.2# yum install splunkforwarder An example of querying the switch for successful installation of the package, and verifying that its processes or services are up and running. Example:bash-4.2# yum info splunkforwarder |
The following is the logic behind persistent third-party RPMs:
A local yum repository is dedicated to persistent third-party RPMs. The /etc/yum/repos.d/thirdparty.repo points to /bootflash/.rpmstore/thirdparty.
Whenever you enter the yum install third-party.rpm command, a copy of the RPM is saved in //bootflash/.rpmstore/thirdparty.
During a reboot, all the RPMs in the third-party repository are reinstalled on the switch.
Any change in the /etc configuration files persists under /bootflash/.rpmstore/config/etc and they are replayed during boot on /etc.
Any script that is created in the /etc directory persists across reloads. For example, a third-party service script that is created under /etc/init.d/ brings up the apps during a reload.
 Note | The rules in iptables are not persistent across reboots when they are modified in a bash-shell. To make the modified iptables persistent, see Making an Iptable Persistent Across Reloads. |
NX-OS feature RPMs can also be installed by using the VSH CLIs.
Step 1 | show install package Displays the packages and versions that already exist. |
Step 2 | install add ? Determine supported URIs. |
Step 3 | install add rpm-packagename The install add command copies the package file to a local storage device or network server. |
The following example shows how to activate the Chef RPM:
switch# show install package
switch# install add ?
WORD Package name
bootflash: Enter package uri
ftp: Enter package uri
http: Enter package uri
modflash: Enter package uri
scp: Enter package uri
sftp: Enter package uri
tftp: Enter package uri
usb1: Enter package uri
usb2: Enter package uri
volatile: Enter package uri
switch# install add bootflash:chef-12.0.0alpha.2+20150319234423.git.1608.b6eb10f-1.el5.x86_64.rpm
[####################] 100%
Install operation 314 completed successfully at Thu Aug 6 12:58:22 2015
When you are ready to activate the package, go to Package Activation.
 Note | Adding and activating an RPM package can be accomplished in a single command: switch# |
The RPM has to have been previously added.
Step 1 | show install inactive Displays the list of packages that were added and not activated. |
Step 2 | install activate rpm-packagename Activates the package. |
The following example shows how to activate a package:
switch# show install inactive
Boot image:
NXOS Image: bootflash:///yumcli6.bin
Inactive Packages:
sysinfo-1.0.0-7.0.3.x86_64
Loaded plugins: downloadonly, importpubkey, localrpmDB, patchaction, patching,
: protect-packages
Available Packages
chef.x86_64 12.0.0alpha.2+20150319234423.git.1608.b6eb10f-1.el5 thirdparty
eigrp.lib32_n9000 1.0.0-r0 groups-rep
o
sysinfo.x86_64 1.0.0-7.0.3 patching
switch# install activate chef-12.0-1.el5.x86_64.rpm
[####################] 100%
Install operation completed successfully at Thu Aug 6 12:46:53 2015
install deactivate package-name Deactivates the RPM package. |
The following example shows how to deactivate the Chef RPM package:
switch# install deactivate chef
Deactivate the package before removing it. Only deactivated RPM packages can be removed.
install remove package-name Removes the RPM package. |
The following example shows how to remove the Chef RPM package:
switch# install remove chef-12.0-1.el5.x86_64.rpm
show install packages Displays a list of the installed packages. |
The following example shows how to display a list of the installed packages:
switch# show install packages
show tech-support install Displays the detail logs. |
The following example shows how to display the detail logs:
switch# show tech-support install
install add package-name activate upgrade Upgrade a package. |
The following example shows how to upgrade a package:
switch# install add bootflash:bgp-1.0.1-r0.lib32_n9000.rpm activate ?
downgrade Downgrade package
forced Non-interactive
upgrade Upgrade package
switch# install add bootflash:bgp-1.0.1-r0.lib32_n9000.rpm activate upgrade
[####################] 100%
Install operation completed successfully at Thu Aug 6 12:46:53 2015
install add package-name activate downgrade Downgrade a package. |
The following example shows how to downgrade a package:
switch# install add bootflash:bgp-1.0.1-r0.lib32_n9000.rpm activate ?
downgrade Downgrade package
forced Non-interactive
upgrade Upgrade package
switch# install add bootflash:bgp-1.0.1-r0.lib32_n9000.rpm activate downgrade
[####################] 100%
Install operation completed successfully at Thu Aug 6 12:46:53 2015
For more information about NX-API REST API object model specifications, see https://developer.cisco.com/media/dme/index.html
For DevOps configuration management tools, refer to the following links:
Ansible 2.0 Release(Nexus Support), Ansible Release Index
Ansible NX-OS Sample Modules, Ansible NX-OS Sample Modules
Puppet, Puppet Forge Cisco Puppet
Cisco Puppet Module(Git), Cisco Network Puppet Module
Cisco Chef Cookbook(Git), Cisco Network Chef Cookbook
To download a virtual Nexus 9000 switch, for an ESX5.1/5.5, VirtualBox, Fusion, and KVM, go to https://software.cisco.com/portal/pub/download/portal/select.html?&mdfid=286312239&flowid=81422&softwareid=282088129.
For a free book on Open NX-OS architecture and automation, see http://www.cisco.com/c/dam/en/us/td/docs/switches/datacenter/nexus9000/sw/open_nxos/programmability/guide/Programmability_Open_NX-OS.pdf
collectd is a daemon that periodically collects system performance statistics and provides multiple means to store the values, such as RRD files. Those statistics can then be used to find current performance bottlenecks (for example, performance analysis) and predict future system load (that is, capacity planning).
For additional information, see https://collectd.org.
Ganglia is a scalable distributed monitoring system for high-performance computing systems such as clusters and grids. It is based on a hierarchical design that is targeted at federations of clusters. It leverages widely used technologies such as XML for data representation, XDR for compact, portable data transport, and RRDtool for data storage and visualization. It uses engineered data structures and algorithms to achieve low per-node overheads and high concurrency. The implementation is robust, has been ported to an extensive set of operating systems and processor architectures, and is currently in use on thousands of clusters around the world. It has been used to link clusters across university campuses and around the world and can scale to handle clusters with 2000 nodes.
For additional information, see http://ganglia.info.
Iperf was developed by NLANR/DAST to measure maximum TCP and UDP bandwidth performance. Iperf allows the tuning of various parameters and UDP characteristics. Iperf reports bandwidth, delay jitter, datagram loss.
For additional information, see http://sourceforge.net/projects/iperf/ or http://iperf.sourceforge.net.
The link layer discover protocol (LLDP) is an industry standard protocol that is designed to supplant proprietary link layer protocols such as EDP or CDP. The goal of LLDP is to provide an intervendor compatible mechanism to deliver link layer notifications to adjacent network devices.
For more information, see https://vincentbernat.github.io/lldpd/index.html.
Network services through ICMP, SNMP, SSH, FTP, HTTP, and so on
Host resources, such as CPU load, disk usage, system logs, and so on
Alert services for servers, switches, applications
Services
For more information, see https://www.nagios.org/.
OpenSSH is an open-source version of the SSH connectivity tools that encrypts all traffic (including passwords) to eliminate eavesdropping, connection hijacking, and other attacks. OpenSSH provides secure tunneling capabilities and several authentication methods, and supports all SSH protocol versions.
For more information, see http://www.openssh.com.
Quagga is a network routing software suite that implements various routing protocols. Quagga daemons are configured through a network accessible CLI called a "vty."
 Note | Only Quagga BGP has been validated. |
For more information, see http://www.nongnu.org/quagga/.
Splunk is a web-based data collection, analysis, and monitoring tool that has search, visualization, and prepackaged content for use-cases. The raw data is sent to the Splunk server using the Splunk Universal Forwarder. Universal Forwarders provide reliable, secure data collection from remote sources and forward that data into the Splunk Enterprise for indexing and consolidation. They can scale to tens of thousands of remote systems, collecting terabytes of data with a minimal impact on performance.
For additional information, see http://www.splunk.com/en_us/download/universal-forwarder.html.
tcollector is a client-side process that gathers data from local collectors and pushes the data to Open Time Series Database (OpenTSDB).
tcollector has the following features:
Runs data collectors and collates the data.
Manages connections to the time series database (TSD).
Eliminates the need to embed TSD code in collectors.
Deduplicates repeated values.
Handles wire protocol work.
For additional information, see http://opentsdb.net/docs/build/html/user_guide/utilities/tcollector.html.
tcpdump is a CLI application that prints a description of the contents of packets on a network interface that match a Boolean expression. The description is preceded by a timestamp, printed, by default, as hours, minutes, seconds, and fractions of a second since midnight.
-w, which causes it to save the packet data to a file for later analysis.
-r, which causes it to read from a saved packet file rather than to read packets from a network interface.
-V, which causes it to read a list of saved packet files.
For more information, see http://www.tcpdump.org/manpages/tcpdump.1.html.
TShark is a network protocol analyzer on the CLI. Tshar lets you capture packet data from a live network, or read packets from a previously saved capture file. You can print either a decoded form of those packets to the standard output or write the packets to a file. TShark's native capture file format is pcap, the format that is used by tcpdump and various other tools also. TShark can be used within the Guest Shell after removing the cap_net_admin file capability.
setcap
cap_net_raw=ep /sbin/dumpcap
 Note | This command must be run within the Guest Shell. |
For more information, see https://www.wireshark.org/docs/man-pages/tshark.html.
Go to https://docs.ansible.com/ansible/intro_installation.html for installation requirements for supported control environments.
Ansible is an open-source IT automation engine that automates cloud provisioning, configuration management, application deployment, intraservice orchestration, and other IT needs.
Ansible uses small programs that are called Ansible modules to make API calls to your nodes, and apply configurations that are defined in playbooks.
By default, Ansible represents what machines it manages using a simple INI file that puts all your managed machines in groups of your own choosing.
More information can be found from Ansible:
Ansible | |
Ansible Automation Solutions. Includes installation instructions, playbook instructions and examples, module lists, and so on. |
There are multiple Cisco NX-OS-supported modules and playbooks for Ansible, as per the following table of links:
NX-OS developer landing page. | |
Ansible NX-OS playbook examples | |
Ansible NX-OS network modules |
This chapter includes the following sections:
The Puppet software package, developed by Puppet Labs, is an open source automation toolset for managing servers and other resources. The Puppet software accomplishes server and resource management by enforcing device states, such as configuration settings.
Puppet components include a puppet agent which runs on the managed device (node) and a Puppet Primary (server). The Puppet Primary typically runs on a separate dedicated server and serves multiple devices. The operation of the puppet agent involves periodically connecting to the Puppet Primary, which in turn compiles and sends a configuration manifest to the agent. The agent reconciles this manifest with the current state of the node and updates state that is based on differences.
A puppet manifest is a collection of property definitions for setting the state on the device. The details for checking and setting these property states are abstracted so that a manifest can be used for more than one operating system or platform. Manifests are commonly used for defining configuration settings, but they also can be used to install software packages, copy files, and start services.
More information can be found from Puppet Labs:
Puppet Labs | |
Puppet Labs FAQ | |
Puppet Labs Documentation |
The following are prerequisites for the Puppet Agent:
You must have a Cisco Nexus switch and operating system software release that supports the installation.
Cisco Nexus 9300 Series switch.
Cisco Nexus 9500 Series switch.
Cisco NX-OS release 7.0(3)I2(5) or later.
You must have the required disk storage available on the device for virtual services installation and deployment of Puppet Agent.
A minimum of 450-MB free disk space on the bootflash.
You must have a Puppet Primary server with Puppet 4.0 or later.
You must have Puppet Agent 4.0 or later.
The Puppet Agent software must be installed on a switch in the Guest Shell (the Linux container environment running CentOS). The Guest Shell provides a secure, open execution environment that is decoupled from the host.
Starting with the Cisco NX-OS Release 9.2(1), the Bash-shell (native WindRiver Linux environment underlying Cisco NX-OS) install of Puppet Agent is no longer supported.
The following provides information about agent-software download, installation, and setup:
Puppet Agent: Installation & Setup on Cisco Nexus switches (Manual Setup) | https://github.com/cisco/cisco-network-puppet-module/blob/develop/docs/README-agent-install.md |
The ciscopuppet module is a Cisco developed open-source software module. It interfaces between the abstract resources configuration in a puppet manifest and the specific implementation details of the Cisco NX-OS operating system and platform. This module is installed on the Puppet Primary and is required for puppet agent operation on Cisco Nexus switches.
The ciscopuppet module is available on Puppet Forge.
The following provide additional information about the ciscopuppet module installation procedures:
ciscopuppet Module location (Puppet Forge) | |
Resource Type Catalog | |
ciscopuppet Module: Source Code Repository | |
ciscopuppet Module: Setup & Usage | |
Puppet Labs: Installing Modules | https://docs.puppetlabs.com/puppet/latest/reference/modules_installing.html |
Puppet NX-OS Manifest Examples | |
NX-OS developer landing page. |
This chapter includes the following sections:
Chef is an open-source software package that is developed by Chef Software, Inc. The software package is a systems and cloud infrastructure automation framework that deploys servers and applications to any physical, virtual, or cloud location, no matter the size of the infrastructure. Each organization consists of one or more workstations, a single server, and every node that the chef-client has configured and is maintaining. Cookbooks and recipes are used to tell the chef-client how each node should be configured. The chef-client, which is installed on every node, does the actual configuration.
A Chef cookbook is the fundamental unit of configuration and policy distribution. A cookbook defines a scenario and contains everything that is required to support that scenario, including libraries, recipes, files, and more. A Chef recipe is a collection of property definitions for setting state on the device. The details for checking and setting these property states are abstracted away so that a recipe may be used for more than one operating system or platform. While recipes are commonly used for defining configuration settings, they also can be used to install software packages, copy files, start services, and more.
The following references provide more information from Chef:
Topic | Link |
---|---|
Chef home | |
Chef overview | |
Chef documentation (all) |
The following are prerequisites for Chef:
You must have a Cisco device and operating system software release that supports the installation:
Cisco Nexus 9500 Series switch
Cisco Nexus 9300 Series switch
Cisco NX-OS Release 7.0(3)I2(5) or later
You must have the required disk storage available on the device for Chef deployment:
A minimum of 500 MB of free disk space on bootflash
You need a Chef server with Chef 12.4.1 or higher.
You need Chef Client 12.4.1 or higher.
The chef-client software must be installed on a switch in the Guest Shell (the Linux container environment running CentOS). This software provides a secure, open execution environment that is decoupled from the host.
Starting with the Cisco NX-OS Release 9.2(1), the Bash-shell (native WindRiver Linux environment underlying NX-OS) install of chef-client is no longer supported.
The following documents provide step-by-step guidance about agent-software download, installation, and setup:
Topic | Link |
---|---|
Chef Client: Installation and setup on Cisco Nexus platform (manual setup) | |
Chef Client: Installation and setup on a switch (automated installation using the Chef provisioner) |
cisco-cookbook is a Cisco-developed open-source interface between the abstract resources configuration in a Chef recipe and the specific implementation details of the switch. This cookbook is installed on the Chef Server and is required for proper Chef Client operation on switches.
Thecisco-cookbook can be found on Chef Supermarket.
The following documents provide more detail for cisco-cookbook and generic cookbook installation procedures:
Topic | Link |
---|---|
cisco-cookbook location | |
Resource Type Catalog | |
cisco-cookbook: Source Code Repository | |
cisco-cookbook: Setup and usage | |
Chef Supermarket | |
Chef NX-OS Manifest Examples |
This chapter contains the following sections:
The ISO image is a bootable Wind River 5 environment that includes the necessary tools, libraries, and headers to build and RPM-package third-party applications to run natively on a switch.
The content is not exhaustive, and it might be required that the user download and build any dependencies needed for any particular application.
 Note | Some applications are ready to be downloaded and used from the Cisco devhub website and do not require building. |
The ISO image is available for download at: http://devhub.cisco.com/artifactory/simple/open-nxos/7.0-3-I2-1/x86_64/satori-vm-intel-xeon-core.iso.
The ISO is intended to be installed as a virtual machine. Use instructions from your virtualization vendor to install the ISO.
Step 1 | (Optional) VMware-based installation. The ISO image installation on a VMWare virtual machine requires the virtual disk to be configured as SATA and not SCSI. |
Step 2 | (Optional) QEMU-based installation. Enter the following commands: bash$ qemu-img create satori.img 10G Once the ISO starts to boot, a menu is displayed. Choose the Graphics Console Install option. This installs to the virtual HD. Once the install is complete, the virtual machine must be rebooted. |
To login to the system, enter root as the login and root as the password.
Using the ISO to Build Applications Most of the build procedures that work with the SDK, and Linux in general, also apply to the ISO environment. However, there is no shell environment script to run. The default paths should be fine to use the toolsinstalled. The source code for applications needs to be obtained through the usual mechanisms such as a source tar file or git repository.
Build the source code:
bash$ tar --xvzf example-lib.tgz
bash$ mkdir example-lib-install
bash$ cd example-lib/
bash$./configure --prefix=/path/to/example_lib_install
bash$ make
bash$ make install
Most of the build procedures that work with the SDK, and Linux in general, also apply to the ISO environment. However, there is no shell environment script to run. The default paths should be fine to use the tools installed. The source code for applications needs to be obtained through the usual mechanisms such as a source tar file or git repository.
Build the source code.
The steps are normal Linux. Example:bash$ tar –xvzf example-lib.tgz |
If the application successfully builds using "make", then it can be packaged into an RPM.
 Note | RPM and spec files The RPM package format is designed to package up all files (binaries, libraries, configurations, documents, etc) that are needed for a complete install of the given application. The process of creating an RPM file is therefore somewhat non-trivial. To aid in the RPM build process, a .spec file is used that controls everything about the build process. |
 Note | Many third-party applications are available on the internet in the form of source code packaged into tarballs. In many cases, these tarballs will include a .spec file to help with RPM build process. Unfortunately, many of these .spec files are not updated as frequently as the source code itself. Even worse, sometimes there is no spec file at all. In these cases the spec file may need editing or even creating from scratch so that RPMs can be built. |
This chapter contains the following sections:
The Cisco SDK is a development kit based on Yocto 1.2. It contains all of the tools needed to build applications for execution on a switch running the Cisco NX-OS Release 7.0(3)I2(1) and later. The basic components are the C cross-compiler, linker, libraries, and header files that are commonly used in many applications. The list is not exhaustive, and it might be required that the you download and build any dependencies needed for any particular application. Note that some applications are ready to be downloaded and used from the Cisco devhub website and do not require building. The SDK can be used to build RPM packages which may be directly installed on a switch.
The following lists the system requirements:
The SDK can run on most modern 64-bit x86_64 Linux systems. It has been verified on CentOS 7 and Ubuntu 14.04. Install and run the SDK under the Bash shell.
The SDK includes binaries for both 32-bit and 64-bit architectures, so it must be run on an x86_64 Linux system that also has 32-bit libraries installed.
Check if the 32-bit libraries are installed: Example:bash$ ls /lib/ld-linux.so.2 If this file exists, then 32-bit libraries should be installed already. Otherwise, install 32-bit libraries as follows:
|
The SDK is available for download at: https://devhub.cisco.com/artifactory/open-nxos/10.0.1/nx-linux-x86_64-nxos-rootfs-n9k-sup-toolchain-1.1.0.sh
This file is a self-extracting archive that installs the SDK into a directory of your choice. You are prompted for a path to an SDK installation directory.
bash$./wrlinux-8.0.0.25-glibc-x86_64-n9000-nxos-image-rpm-sdk-sdk.sh
Wind River Linux SDK installer version 8.0-n9000
==
Enter target directory for SDK (default: /opt/windriver/wrlinux/8.0-n9000):
You are about to install the SDK to "/opt/windriver/wrlinux/8.0-n9000". Proceed[Y/n]? Y
Extracting SDK...done
Setting it up...done
SDK has been successfully set up and is ready to be used.
. environment-setup-corei7-64-nxos-linux
. environment-setup-corei7-32-nxosmllib32-linux
source environment-setup-corei7-64-nxos-linux
source environment-setup-corei7-32-nxosmllib32-linux
=============================
Use the source environment-setup-x86_64-wrs-linux command to add the SDK-specific paths to your shell environment. This must be done for each shell you intend to use with the SDK. This is the key to setting up the SDK in order to use the correct versions of the build tools and libraries.
Step 1 | Browse to the installation directory. |
Step 2 | Enter the following command at the Bash prompt: bash$ source environment-setup-x86_64-wrs-linux |
The source code for an application package can be retrieved in various ways. For example, you can get the source code either in tar file form or by downloading from a git repository where the package resides.
The following are examples of some of the most common cases.
(Optional) Verify that the application package builds using standard configure/make/make install.
bash$ tar --xvzf example-app.tgz
bash$ mkdir example-lib-install
bash$ cd example-app/
bash$./configure --prefix=/path/to/example-app-install
bash$ make
bash$ make install
Sometimes it is necessary to pass extra options to the ./configure script, for example to specify which optional components and dependencies are needed. Passing extra options depends entirely on the application being built.
Example - Build Ganglia and its dependencies
In this example, we build ganglia, along with the third-party libraries that it requires - libexpat, libapr, and libconfuse.
libexpat
bash$ wget 'http://downloads.sourceforge.net/project/expat/expat/2.1.0/expat-2.1.0.tar.gz'
bash$ mkdir expat-install
bash$ tar xvzf expat-2.1.0.tar.gz
bash$ cd expat-2.1.0
bash$./configure --prefix=/home/sdk-user/expat-install
bash$ make
bash$ make install
bash$ cd ..
libapr
bash$ wget 'http://www.eu.apache.org/dist/apr/apr-1.5.2.tar.gz'
bash$ mkdir apr-install
bash$ tar xvzf apr-1.5.2.tar.gz
bash$ cd apr-1.5.2
bash$./configure --prefix=/home/sdk-user/apr-install
bash$ make
bash$ make install
bash$ cd ..
libconfuse
 Note | confuse requires the extra --enable-shared option to ./configure, otherwise it builds a statically linked library instead of the required shared library. |
bash$ wget 'http://savannah.nongnu.org/download/confuse/confuse-2.7.tar.gz'
bash$ mkdir confuse-install
bash$ tar xvzf confuse-2.7.tar.gz
bash$ cd confuse-2.7
bash$./configure --prefix=/home/sdk-user/confuse-install --enable-shared
bash$ make
bash$ make install
bash$ cd ..
ganglia
 Note | The locations to all the required libraries are passed to ./configure. |
bash$ wget 'http://downloads.sourceforge.net/project/ganglia/ganglia%20monitoring%20core/3.7.2/ganglia-3.7.2.tar.gz'
bash$ mkdir ganglia-install
bash$ tar xvzf ganglia-3.7.2.tar.gz
bash$ cd ganglia-3.7.2
bash$./configure --with-libexpat=/home/sdk-user/expat-install --with-libapr=/home/sdk-user/apr-install/bin/apr-1-config --with-libconfuse=/home/sdk-user/confuse-install --prefix=/home/sdk-user/ganglia-install
bash$ make
bash$ make install
bash$ cd ..
If the application successfully builds using "make", then it can be packaged into an RPM.
 Note | RPM and spec files The RPM package format is designed to package up all files (binaries, libraries, configurations, documents, etc) that are needed for a complete install of the given application. The process of creating an RPM file is therefore somewhat non-trivial. To aid in the RPM build process, a .spec file is used that controls everything about the build process. |
 Note | Many third-party applications are available on the internet in the form of source code packaged into tarballs. In many cases, these tarballs will include a .spec file to help with RPM build process. Unfortunately, many of these .spec files are not updated as frequently as the source code itself. Even worse, sometimes there is no spec file at all. In these cases the spec file may need editing or even creating from scratch so that RPMs can be built. |
Before using the SDK to build RPMs, an RPM build directory structure must be created, and some RPM macros set.
Step 1 | Create the directory structure: bash$ mkdir rpmbuild | ||
Step 2 | Set the topdir macro to point to the directory structure created above: bash$ echo "_topdir ${PWD}" > ~/.rpmmacros
--define "_topdir ${PWD}" | ||
Step 3 | Refresh the RPM DB: bash$ rm /path/to/sdk/sysroots/x86_64-wrlinuxsdk-linux/var/lib/rpm/__db.*
|
General RPM Build procedure is as follows:
bash$ wget --no-check-certificate --directory-prefix=SOURCES http://<URL of example-app tarball>
bash$ # determine location of spec file in tarball:
bash$ tar tf SOURCES/example-app.tar.bz2 | grep '.spec$'
bash$ tar xkvf SOURCES/example-app.tar.bz2 example-app/example-app.spec
bash$ mv example-app/example-app.spec SPECS/
bash$ rm -rf example-app
bash$ rpmbuild -v --bb SPECS/example-app.spec
The result is a binary RPM in RPMS/ that can be copied to the switch and installed. Installation and configuration of applications can vary. Refer to the application documents for those instructions.
This rpmbuild and installation on the switch is required for every software package that is required to support the application. If a software dependency is required that is not already included in the SDK, the source code must be obtained and the dependencies built. On the build machine, the package can be built manually for verification of dependencies. The following example is the most common procedure:
bash$ tar xkzf example-lib.tgz
bash$ mkdir example-lib-install
bash$ cd example-lib/
bash$./configure --prefix=/path/to/example-lib-install
bash$ make
bash$ make install
These commands place the build files (binaries, headers, libraries, and so on) into the installation directory. From here, you can use standard compiler and linker flags to pick up the location to these new dependencies. Any runtime code, such as libraries, are required to be installed on the switch also, so packaging required runtime code into an RPM is required.
 Note | There are many support libraries already in RPM form on the Cisco devhub website. |
Download source tarball and extract spec file:
bash$ wget --no-check-certificate --directory-prefix=SOURCES https://collectd.org/files/collectd-5.5.0.tar.bz2
bash$ tar tf SOURCES/collectd-5.5.0.tar.bz2 | grep '.spec$'
collectd-5.5.0/contrib/redhat/collectd.spec
collectd-5.5.0/contrib/aix/collectd.spec
collectd-5.5.0/contrib/sles10.1/collectd.spec
collectd-5.5.0/contrib/fedora/collectd.spec
bash$ tar xkvf SOURCES/collectd-5.5.0.tar.bz2 collectd-5.5.0/contrib/redhat/collectd.spec
bash$ mv collectd-5.5.0/contrib/redhat/collectd.spec SPECS/
bash$ rm -rf collectd-5.5.0
There are four spec files in this tarball. The Red Hat spec file is the most comprehensive and is the only one that contains the correct collectd version. We will use it as an example.
This spec file sets the RPM up to use /sbin/chkconfig to install collectd. However on a switch, you will use the /usr/sbin/chkconfig instead. Edit the following edited in the spec file:
bash$ sed -r -i.bak 's%(^|\s)/sbin/chkconfig%\1/usr/sbin/chkconfig%' SPECS/collectd.spec
collectd has numerous optional plug-ins. This spec file enables many plug-ins by default. Many plug-ins have external dependencies, so options to disable these plug-ins must be passed to the rpmbuild command line. Instead of typing out one long command line, we can manage the options in a Bash array as follows:
bash$ rpmbuild_opts=()
bash$ for rmdep in \
> amqp apache ascent bind curl curl_xml dbi ipmi java memcachec mysql nginx \
> notify_desktop notify_email nut openldap perl pinba ping postgresql python \
> rrdtool sensors snmp varnish virt write_http write_riemann
> do
> rpmbuild_opts+=("--without")
> rpmbuild_opts+=(${rmdep})
> done
bash$ rpmbuild_opts+=(--nodeps)
bash$ rpmbuild_opts+=(--define)
bash$ rpmbuild_opts+=("_unpackaged_files_terminate_build 0")
It is then passed to rpmbuild as follows to start the entire build and RPM package process:
bash$ rpmbuild "${rpmbuild_opts[@]}" -bb SPECS/collectd.spec
You can then find the resulting RPMs for collectd in the RPMS directory.
These RPM files can now be copied to the switch and installed from the switch Bash shell:
bash$ rpm --noparentdirs -i /bootflash/collectd-5.5.0-1.ia32e.rpm
The collectd curl plug-in has libcurl as a dependency.
In order to satisfy this link dependency during the RPM build process, it is necessary to download and build curl under the SDK:
bash$ wget --no-check-certificate http://curl.haxx.se/download/curl-7.24.0.tar.gz
bash$ tar xkvf curl-7.24.0.tar.gz
bash$ cd curl-7.24.0
bash$./configure --without-ssl --prefix /path/to/curl-install
bash$ make
bash$ make install
bash$ cd ..
 Note | The curl binaries and libraries are installed to /path/to/curl-install. This directory will be created if it does not already exist, so you must have write permissions for the current user. Next, download the source tarball and extract the spec file. This step is exactly the same as in the collectd example for no plugins. |
bash$ wget --no-check-certificate --directory-prefix=SOURCES https://collectd.org/files/collectd-5.5.0.tar.bz2
bash$ tar tf SOURCES/collectd-5.5.0.tar.bz2 | grep '.spec$'
collectd-5.5.0/contrib/redhat/collectd.spec
collectd-5.5.0/contrib/aix/collectd.spec
collectd-5.5.0/contrib/sles10.1/collectd.spec
collectd-5.5.0/contrib/fedora/collectd.spec
bash$ tar xkvf SOURCES/collectd-5.5.0.tar.bz2 collectd-5.5.0/contrib/redhat/collectd.spec
bash$ mv collectd-5.5.0/contrib/redhat/collectd.spec SPECS/
bash$ rm -rf collectd-5.5.0
This spec file sets the RPM up to use /sbin/chkconfig to install collectd. However on a switch, you must use/usr/sbin/chkconfig instead, so the following can be edited in the spec file:
 Note | There are four spec files in this tarball. The Red Hat spec file is the most comprehensive, and it is the only one to contain the correct collectd version. We will use that one as an example. |
bash$ sed -r -i.bak 's%(^|\s)/sbin/chkconfig%\1/usr/sbin/chkconfig%' SPECS/collectd.spec
Here a deviation from the previous example is encountered. The collectd rpmbuild process needs to know the location of libcurl. Edit the collectd spec file to add the following.
Find the string %configure in SPECS/collectd.spec. This line and those following it define the options that rpmbuild will pass to the ./configure script.
Add the following option:
--with-libcurl=/path/to/curl-install/bin/curl-config \
Next a Bash array is built again to contain the rpmbuild command options. Note the following differences:
curl is removed from the list of plug-ins not to be built
The addition of --with curl=force
bash$ rpmbuild_opts=()
bash$ for rmdep in \
> amqp apache ascent bind curl_xml dbi ipmi java memcachec mysql nginx \
> notify_desktop notify_email nut openldap perl pinba ping postgresql python \
> rrdtool sensors snmp varnish virt write_http write_riemann
> do
> rpmbuild_opts+=("--without")
> rpmbuild_opts+=(${rmdep})
> done
bash$ rpmbuild_opts+=("--with")
bash$ rpmbuild_opts+=("curl=force")bash$ rpmbuild_opts+=(--nodeps)
bash$ rpmbuild_opts+=(--define)
bash$ rpmbuild_opts+=("_unpackaged_files_terminate_build 0")
It is then passed to rpmbuild as follows to start the entire build and RPM package process:
bash$ rpmbuild "${rpmbuild_opts[@]}" -bb SPECS/collectd.spec
The resulting RPMs in the RPMs directory will now also include collectd-curl. These RPM files can now be copied to the switch and installed from the switch Bash shell:
bash$ rpm --noparentdirs -i /bootflash/collectd-5.5.0-1.ia32e.rpm
bash$ rpm --noparentdirs -i /bootflash/collectd-curl-5.5.0-1.ia32e.rpm
The Cisco NX-OS SDK (NX-SDK) is a C++ abstraction and plugin-library layer that streamlines access to infrastructure for automation and custom application creation, such as generating custom:
CLIs
Syslogs
Event and Error managers
Inter-application communication
High availability (HA)
Route manager
You can use C++, Python, or Go for application development with NX-SDK.
The NX-SDK has the following requirements:
Docker
A Linux environment (either Ubuntu 14.04, or Centos 6.7). Cisco recommends using the provided NX-SDK Docker containers. For more information, see Cisco DevNet NX-SDK.
For more information about Cisco NX-SDK, go to:
Cisco DevNet NX-SDK. Click the versions.md link (https://github.com/CiscoDevNet/NX-SDK/blob/master/versions.md) to get information about features and details on each supported release.
Step 1 | (Optional) Build the Cisco SDK RPM to persist on switch reloads and from standby mode.
| ||
Step 2 | Clone the NX-SDK toolkit from https://github.com/CiscoDevNet/NX-SDK.git. Example:git clone https://github.com/CiscoDevNet/NX-SDK.git |
The following references to the API can be found in $PWD/nxsdk and includes the following:
The NX-SDK public C++ classes and APIs,
Example applications, and
Example Python applications.
The following instructions describes how to build and package your custom C++ NX-OS application.
Step 1 | Build your application files..
| ||||
Step 2 | (Optional) Package your application. Auto-generate RPM package Custom RPM packages for your applications are required to run on VSH and allow you to specify whether a given application persists on switch reloads or system switchovers. Use the following to create a custom specification file for your application.
Example of Auto-generate RPM package for C++ App examples/customCliApp.cpp
Manually-generate RPM Package Custom RPM packages for your applications are required to run on VSH and allow you to specify whether a given application persists on switch reloads or system switchovers. Use the following steps to create a custom specification file (*.spec) for your application.
|
You can install applications by copying binaries to the switch, or installing unpacking the binaries from the RPM package.
 Note | Only custom applications that are installed from RPM packages can persist on switch reload or system switchovers. We recommend reserving copying binaries to the switch for simple testing purposes. |
 Note | The Cisco SDK is required to start applications in VSH: VSH requires that all applications be installed through RPMs, which requires that being built in the Cisco SDK. The Cisco SDK is not required for Python application. The Cisco SDK is not required for C++ application, but is still recommended: Using g++ to build applications and then copying the built files to the switch may pose stability risks as g++ is not supported. |
To install or run custom applications on the switch, use this procedure:
Step 1 | Install your application using either VSH or Bash. To install your application using VSH, perform the following:
To install your application using Bash, run the following commands: switch(config)# run bash sudo su | ||||||
Step 2 | Start your application. C++ applications can run from VSH or Bash.
Python applications can run from VSH or Bash.
| ||||||
Step 3 | Run show nxsdk internal service to verify that your application is running Example:switch(config)# show nxsdk internal service | ||||||
Step 4 | Stop you application. You can stop your application in the following ways:
| ||||||
Step 5 | Uninstall your application. To uninstall the RPM from the switch using VSH, perform the following:
To uninstall the RPM from the switch using Bash, run yum remove app-full-path |
NX-API CLI is an enhancement to the Cisco NX-OS CLI system, which supports XML output. NX-API CLI also supports JSON output format for specific commands.
On Cisco Nexus switches, command-line interfaces (CLIs) are run only on the switch. NX-API CLI improves the accessibility of these CLIs by making them available outside of the switch by using HTTP/HTTPS. You can use this extension to the existing Cisco NX-OS CLI system on the switches. NX-API CLI supports show commands, configurations, and Linux Bash.
NX-API CLI supports JSON-RPC.
NX-API uses HTTP/HTTPS as its transport. CLIs are encoded into the HTTP/HTTPS POST body.
NX-API is also supported through UNIX Domain Sockets for applications running natively on the host or within Guest Shell.
The NX-API backend uses the Nginx HTTP server. The Nginx process, and all its children processes, are under the Linux cgroup protection where the CPU and memory usage is capped. If the Nginx memory usage exceeds the cgroup limitations, the Nginx process is restarted and the NX-API configuration (the VRF, port, and certificate configurations) is restored.
NX-API is an enhancement to the Cisco NX-OS CLI system, which supports XML output. NX-API also supports JSON output format for specific commands.
 Note |
|
NX-API supports HTTPS. All communication to the device is encrypted when you use HTTPS.
NX-API is integrated into the authentication system on the device. Users must have appropriate accounts to access the device through NX-API. NX-API uses HTTP basic authentication. All requests must contain the username and password in the HTTP header.
 Note | You should consider using HTTPS to secure your user's login credentials. |
You can enable NX-API by using the feature manager CLI command. NX-API is disabled by default.
NX-API provides a session-based cookie, nxapi_auth when users first successfully authenticate. With the session cookie, the username and password are included in all subsequent NX-API requests that are sent to the device. The username and password are used with the session cookie to bypass performing the full authentication process again. If the session cookie is not included with subsequent requests, another session cookie is required and is provided by the authentication process. Avoiding unnecessary use of the authentication process helps to reduce the workload on the device.
 Note | A nxapi_auth cookie expires in 600 seconds (10 minutes). This value is a fixed and cannot be adjusted. |
 Note | NX-API performs authentication through a programmable authentication module (PAM) on the switch. Use cookies to reduce the number of PAM authentications, which reduces the load on the PAM. |
The commands, command type, and output type for the Cisco Nexus 9000 Series switches are entered using NX-API by encoding the CLIs into the body of a HTTP/HTTPS POST. The response to the request is returned in XML or JSON output format.
 Note | For more details about NX-API response codes, see Table of NX-API Response Codes. |
NX-API CLI is enabled by default for local access. The remote HTTP access is disabled by default.
The following example shows how to configure and launch the NX-API CLI:
Enable the management interface.
switch# conf t
switch(config)# interface mgmt 0
switch(config)# ip address 192.0.20.123/24
switch(config)# vrf context managment
switch(config)# ip route 10.0.113.1/0 1.2.3.1
Enable the NX-API nxapi feature.
switch# conf t
switch(config)# feature nxapi
The following example shows a request and its response in XML format:
Request:
<?xml version="1.0" encoding="ISO-8859-1"?>
<ins_api>
<version>0.1</version>
<type>cli_show</type>
<chunk>0</chunk>
<sid>session1</sid>
<input>show switchname</input>
<output_format>xml</output_format>
</ins_api>
Response:
<?xml version="1.0"?>
<ins_api>
<type>cli_show</type>
<version>0.1</version>
<sid>eoc</sid>
<outputs>
<output>
<body>
<hostname>switch</hostname>
</body>
<input>show switchname</input>
<msg>Success</msg>
<code>200</code>
</output>
</outputs>
</ins_api>
The following example shows a request and its response in JSON format:
Request:
{
"ins_api": {
"version": "0.1",
"type": "cli_show",
"chunk": "0",
"sid": "session1",
"input": "show switchname",
"output_format": "json"
}
}
Response:
{
"ins_api": {
"type": "cli_show",
"version": "0.1",
"sid": "eoc",
"outputs": {
"output": {
"body": {
"hostname": "switch"
},
"input": "show switchname",
"msg": "Success",
"code": "200"
}
}
}
}
 Note | There is a known issue where an attempt to delete a user might fail, resulting in an error message similar to the following appearing every 12 hours or so: user delete failed for username:userdel: user username is currently logged in - securityd This issue might occur in a scenario where you try to delete a user who is still logged into a switch through NX-API. Enter the following command in this case to try to log the user out first: switch(config)# clear user username Then try to delete the user again. If the issue persists after attempting this workaround, contact Cisco TAC for further assistance. |
For NX-API, the privileges of an admin user can escalate their privileges for root access.
The following are guidelines for escalating privileges:
Only an admin user can escalate privileges to root.
Escalation to root is password protected.
The following examples show how an admin escalates privileges to root and how to verify the escalation. Note that after becoming root, the whoami command shows you as admin; however, the admin account has all the root privileges.
First example:
<?xml version="1.0"?>
<ins_api>
<version>1.0</version>
<type>bash</type>
<chunk>0</chunk>
<sid>sid</sid>
<input>sudo su root ; whoami</input>
<output_format>xml</output_format>
</ins_api>
<?xml version="1.0" encoding="UTF-8"?>
<ins_api>
<type>bash</type>
<version>1.0</version>
<sid>eoc</sid>
<outputs>
<output>
<body>admin </body>
<code>200</code>
<msg>Success</msg>
</output>
</outputs>
</ins_api>
Second example:
<?xml version="1.0"?>
<ins_api>
<version>1.0</version>
<type>bash</type>
<chunk>0</chunk>
<sid>sid</sid>
<input>sudo cat path_to_file </input>
<output_format>xml</output_format>
</ins_api>
<?xml version="1.0" encoding="UTF-8"?>
<ins_api>
<type>bash</type>
<version>1.0</version>
<sid>eoc</sid>
<outputs>
<output>
<body>[Contents of file]</body>
<code>200</code>
<msg>Success</msg>
</output>
</outputs>
</ins_api>
You can access sample scripts that demonstrate how to use a script with NX-API. To access a sample script, click the following link then choose the directory that corresponds to the required software release: Cisco Nexus 9000 NX-OS NX-API
You can enable and manage NX-API with the CLI commands listed in the following table.
NX-API Management Command | Description | ||||
---|---|---|---|---|---|
feature nxapi | Enables NX-API. | ||||
no feature nxapi | Disables NX-API. | ||||
nxapi {http | https} port port | Specifies a port. | ||||
no nxapi {http | https} | Disables HTTP/HTTPS. | ||||
show nxapi | Displays port and certificate information. | ||||
nxapi certificate {httpscrt certfile | httpskey keyfile} filename | Specifies the upload of the following:
Example of HTTPS certificate: nxapi certificate httpscrt certfile bootflash:cert.crt Example of HTTPS key: nxapi certificate httpskey keyfile bootflash:privkey.key | ||||
nxapi certificate enable | Enables a certificate. | ||||
nxapi use-vrf vrf | Specifies the default VRF, management VRF, or named VRF.
| ||||
ip netns exec management iptables | Implements any access restrictions and can be run in management VRF.
Iptables is a command-line firewall utility that uses policy chains to allow or block traffic and almost always comes pre-installed on any Linux distribution.
|
Following is an example of a successful upload of an HTTPS certificate:
switch(config)# nxapi certificate httpscrt certfile certificate.crt
Upload done. Please enable. Note cert and key must match.
switch(config)# nxapi certificate enable
switch(config)#
 Note | You must configure the certificate and key before enabling the certificate. |
Following is an example of a successful upload of an HTTPS key:
switch(config)# nxapi certificate httpskey keyfile bootflash:privkey.key
Upload done. Please enable. Note cert and key must match.
switch(config)# nxapi certificate enable
switch(config)#
To disable confirmation prompts on interactive commands and avoid timing out with an error code 500, prepend interactive commands with terminal dont-ask. Use ; to separate multiple interactive commands, where each ; is surrounded with single blank characters.
Following are several examples of interactive commands where terminal dont-ask is used to avoid timing out with an error code 500:
terminal dont-ask ; reload module 21
terminal dont-ask ; system mode maintenance
NX-API request elements are sent to the device in XML format or JSON format. The HTTP header of the request must identify the content type of the request.
You use the NX-API elements that are listed in the following table to specify a CLI command:
 Note | When JSON-RPC is the input request format, the "configure terminal" command will always be executed before any commands in the payload are executed. |
NX-API Request Element | Description | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
version | Specifies the NX-API version. | ||||||||||
type | Specifies the type of command to be executed. The following types of commands are supported:
| ||||||||||
chunk | Some show commands can return a large amount of output. For the NX-API client to start processing the output before the entire command completes, NX-API supports output chunking for show commands. Enable or disable chunk with the following settings:
| ||||||||||
rollback | Valid only for configuration CLIs, not for show commands. Specifies the configuration rollback options. Specify one of the following options.
| ||||||||||
sid | The session ID element is valid only when the response message is chunked. To retrieve the next chunk of the message, you must specify a sid to match the sid of the previous response message. | ||||||||||
input | Input can be one command or multiple commands. However, commands that belong to different message types should not be mixed. For example, show commands are cli_show message type and are not supported in cli_conf mode.
The following are examples of multiple commands:
| ||||||||||
output_format | The available output message formats are the following:
|
When JSON-RPC is the input request format, use the NX-API elements that are listed in the following table to specify a CLI command:
NX-API Request Element | Description |
---|---|
jsonrpc | A string specifying the version of the JSON-RPC protocol. Version must be 2.0. |
method | A string containing the name of the method to be invoked. NX-API supports either:
|
params | A structured value that holds the parameter values used during the invocation of a method. It must contain the following:
|
rollback | Valid only for configuration CLIs, not for show commands. Configuration rollback options. You can specify one of the following options.
|
id | An optional identifier established by the client that must contain a string, number, or null value, if it is specified. The value should not be null and numbers contain no fractional parts. If a user does not specify the id parameter, the server assumes that the request is simply a notification, resulting in a no response, for example, id : 1 |
The NX-API elements that respond to a CLI command are listed in the following table:
NX-API Response Element | Description |
---|---|
version | NX-API version. |
type | Type of command to be executed. |
sid | Session ID of the response. This element is valid only when the response message is chunked. |
outputs | Tag that encloses all command outputs. When multiple commands are in cli_show or cli_show_ascii, each command output is enclosed by a single output tag. When the message type is cli_conf or bash, there is a single output tag for all the commands because cli_conf and bash commands require context. |
output | Tag that encloses the output of a single command output. For cli_conf and bash message types, this element contains the outputs of all the commands. |
input | Tag that encloses a single command that was specified in the request. This element helps associate a request input element with the appropriate response output element. |
body | Body of the command response. |
code | Error code returned from the command execution. NX-API uses standard HTTP error codes as described by the Hypertext Transfer Protocol (HTTP) Status Code Registry (http://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml). |
msg | Error message associated with the returned error code. |
There are two methods for restricting HTTP and HTTPS access to a device: ACLs and iptables. The method that you use depends on whether you have configured a VRF for NX-API communication using the nxapi use-vrf <vrf-name>
CLI command.
Use ACLs to restrict HTTP or HTTPS access to a device only if you have not configured NXAPI to use a specific VRF. For information about configuring ACLs, see the Cisco Nexus Series NX-OS Security Configuration Guide for your switch family.
If you have configured a VRF for NX-API communication, however, ACLs will not restrict HTTP or HTTPS access. Instead, create a rule for an iptable. For more information about creating a rule, see Updating an iptable.
An iptable enables you to restrict HTTP or HTTPS access to a device when a VRF has been configured for NX-API communication. This section demonstrates how to add, verify, and remove rules for blocking HTTP and HTTPS access to an existing iptable.
Step 1 | To create a rule that blocks HTTP access: bash-4.3# ip netns exec management iptables -A INPUT -p tcp --dport 80 -j DROP |
Step 2 | To create a rule that blocks HTTPS access: bash-4.3# ip netns exec management iptables -A INPUT -p tcp --dport 443 -j DROP |
Step 3 | To verify the applied rules: bash-4.3# ip netns exec management iptables -L
|
Step 4 | To create and verify a rule that blocks all traffic with a 10.155.0.0/24 subnet to port 80:
|
Step 5 | To remove and verify previously applied rules: This example removes the first rule from INPUT.
|
The rules in iptables are not persistent across reloads when they are modified in a bash-shell. This section explains how to make a modified iptable persistent across a reload.
You have modified an iptable.
Step 1 | Create a file called iptables_init.log in the /etc directory with full permissions: bash-4.3# touch /etc/iptables_init.log; chmod 777 /etc/iptables_init.log |
Step 2 | Create the /etc/sys/iptables file where your iptables changes will be saved: bash-4.3# ip netns exec management iptables-save > /etc/sysconfig/iptables |
Step 3 | Create a startup script called iptables_init in the /etc/init.d directory with the following set of commands: |
Step 4 | Set the appropriate permissions to the startup script: bash-4.3# chmod 777 /etc/init.d/iptables_int |
Step 5 | Set the iptables_int startup script to on with the chkconfig utility: bash-4.3# chkconfig iptables_init on The iptables_init startup script will now execute each time that you perform a reload, making the iptable rules persistent. |
The following are the possible NX-API errors, error codes, and messages of an NX-API response.
 Note | The standard HTTP error codes are at the Hypertext Transfer Protocol (HTTP) Status Code Registry (http://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml). |
NX-API Response | Code | Message |
SUCCESS | 200 | Success. |
CUST_OUTPUT_PIPED | 204 | Output is piped elsewhere due to request. |
BASH_CMD_ERR | 400 | Bash command error. |
CHUNK_ALLOW_ONE_CMD_ERR | 400 | Chunking honors only one command. |
CLI_CLIENT_ERR | 400 | CLI execution error. |
CLI_CMD_ERR | 400 | Input CLI command error. |
IN_MSG_ERR | 400 | Incoming message is invalid. |
NO_INPUT_CMD_ERR | 400 | No input command. |
PERM_DENY_ERR | 401 | Permission denied. |
CONF_NOT_ALLOW_SHOW_ERR | 405 | Configuration mode does not allow show . |
SHOW_NOT_ALLOW_CONF_ERR | 405 | Show mode does not allow configuration. |
EXCEED_MAX_SHOW_ERR | 413 | Maximum number of consecutive show commands exceeded. The maximum is 10. |
MSG_SIZE_LARGE_ERR | 413 | Response size too large. |
BACKEND_ERR | 500 | Backend processing error. |
FILE_OPER_ERR | 500 | System internal file operation error. |
LIBXML_NS_ERR | 500 | System internal LIBXML NS error. This is a request format error. |
LIBXML_PARSE_ERR | 500 | System internal LIBXML parse error. This is a request format error. |
LIBXML_PATH_CTX_ERR | 500 | System internal LIBXML path context error. This is a request format error. |
MEM_ALLOC_ERR | 500 | System internal memory allocation error. |
USER_NOT_FOUND_ERR | 500 | User not found from input or cache. |
XML_TO_JSON_CONVERT_ERR | 500 | XML to JSON conversion error. |
BASH_CMD_NOT_SUPPORTED_ERR | 501 | Bash command not supported. |
CHUNK_ALLOW_XML_ONLY_ERR | 501 | Chunking allows only XML output. |
JSON_NOT_SUPPORTED_ERR | 501 | JSON not supported due to a potential large amount of output. |
MSG_TYPE_UNSUPPORTED_ERR | 501 | Message type not supported. |
PIPE_XML_NOT_ALLOWED_IN_INPUT | 501 | Pipe XML for this command is not allowed in input. |
STRUCT_NOT_SUPPORTED_ERR | 501 | Structured output unsupported. |
ERR_UNDEFINED | 600 | Unknown error. |
In Release 7.0(3)I2(1), the NX-API REST SDK has been added.
On Cisco Nexus switches, configuration is performed using command-line interfaces (CLIs) that run only on the swtich. NX-API REST improves the accessibility of the Cisco Nexus configuration by providing HTTP/HTTPS APIs that:
Make specific CLIs available outside of the switch.
Enable configurations that would require issuing many CLI commands by combining configuration actions in relatively few HTTP/HTTPS operations.
NX-API REST supports show commands, basic and advanced switch configurations, and Linux Bash.
NX-API REST uses HTTP/HTTPS as its transport. CLIs are encoded into the HTTP/HTTPS POST body. The NX-API REST backend uses the Nginx HTTP server. The Nginx process,and all of its children processes, are under Linux cgroup protection where the CPU and memory usage is capped. If the Nginx memory usage exceeds the cgroup limitations, the Nginx process is restarted and the NX-API configuration (the VRF, port, and certificate configurations) is restored.
For more information about the Cisco Nexus 3000 and 9000 Series NX-API REST SDK, see https://developer.cisco.com/docs/nx-os-n3k-n9k-api-ref/.
NX-API REST has the following guidelines and limitations:
Starting with NX-OS 7.0(3)F3(1), NX-API REST is supported on the Cisco Nexus 9508 switch.
The NX-API Developer Sandbox is a web form hosted on the switch. It translates NX-OS CLI commands into equivalent XML or JSON payloads, and converts NX-API REST payloads into their CLI equivalents.
The web form is a single screen with three panes — Command (top pane), Request, and Response — as shown in the figure.
Controls in the Command pane allow you to choose a message format for a supported API, such as NX-API REST, and a command type, such as XML or JSON. The available command type options vary depending on the selected message format.
When you type or paste one or more CLI commands into the Command pane, the web form converts the commands into an API payload, checking for configuration errors, and displays the resulting payload in the Request pane. If you then choose to post the payload directly from the Sandbox to the switch, using the POST button in the Command pane, the Response pane displays the API response.
Conversely, when you type an NX-API REST designated name (DN) and payload into the Command pane and select the nx-api rest Message format and the model Command type, Developer Sandbox checks the payload for configuration errors, then the Response pane displays the equivalent CLIs.
Clicking POST in the Sandbox commits the command to the switch, which can result in a configuration or state change.
Some feature configuration commands are not available until their associated feature has been enabled.
The Message Format and Command Type are configured in the upper right corner of the Command pane (the top pane). For Message Format, choose the format of the API protocol that you want to use. The Developer Sandbox supports the following API protocols:
Protocol | Description |
---|---|
json-rpc | A standard lightweight remote procedure call (RPC) protocol that can be used to deliver NX-OS CLI commands in a JSON payload. The JSON-RPC 2.0 specification is outlined by jsonrpc.org. |
xml | Cisco NX-API proprietary protocol for delivering NX-OS CLI or bash commands in an XML payload. |
json | Cisco NX-API proprietary protocol for delivering NX-OS CLI or bash commands in a JSON payload. |
nx-api rest | Cisco NX-API proprietary protocol for manipulating and reading managed objects (MOs) and their properties in the internal NX-OS data management engine (DME) model. For more information about the Cisco Nexus 3000 and 9000 Series NX-API REST SDK, see https://developer.cisco.com/site/cisco-nexus-nx-api-references/. |
nx yang | The YANG ("Yet Another Next Generation") data modeling language for configuration and state data. |
When the Message Format has been chosen, a set of Command Type options are presented just below the Message Format control. The Command Type setting can constrain the input CLI and can determine the Request and Response format. The options vary depending on the Message Format selection. For each Message Format, the following table describes the Command Type options:
Message format | Command type | ||
---|---|---|---|
json-rpc |
| ||
xml |
| ||
json |
| ||
nx-api rest |
| ||
nx yang |
|
In order to handle large show command output, some NX-API message formats support output chunking for show commands. In this case, an Enable chunk mode checkbox appears below the Command Type control along with a session ID (SID) type-in box.
When chunking is enabled, the response is sent in multiple "chunks," with the first chunk sent in the immediate command response. In order to retrieve the next chunk of the response message, you must send an NX-API request with SID set to the session ID of the previous response message.
 Tip | Online help is available by clicking Quick Start in the upper right corner of the Sandbox window. Additional details, such as response codes and security methods, can be found in the chapter "NX-API CLI". Only configuration commands are supported. |
Step 1 | Configure the Message Format and Command Type for the API protocol you want to use. For detailed instructions, see Configuring the Message Format and Command Type. | ||
Step 2 | Type or paste NX-OS CLI configuration commands, one command per line, into the text entry box in the top pane. You can erase the contents of the text entry box (and the Request and Response panes) by clicking Reset at the bottom of the top pane. | ||
Step 3 | Click the Convert at the bottom of the top pane. If the CLI commands contain no configuration errors, the payload appears in the Request pane. If errors are present, a descriptive error message appears in the Response pane. | ||
Step 4 | When a valid payload is present in the Request pane, you can click POST to send the payload as an API call to the switch. The response from the switch appears in the Response pane.
 | ||
Step 5 | You can copy the contents of the Request or Response pane to the clipboard by clicking Copy in the pane. | ||
Step 6 | You can obtain a Python implementation of the request on the clipboard by clicking Python in the Request pane. |
 Tip | Online help is available by clicking Quick Start in the upper right corner of the Sandbox window. Additional details, such as response codes and security methods, can be found in the chapter "NX-API CLI". |
Step 1 | Select nx-api rest as the Message Format and model as the Command Type. Example: | ||||||||
Step 2 | Enter a DN and payload into the text entry box in the top pane. Then click on the Convert button below the top pane. Example:{ When you click on the Convert button, the CLI equivalent appears in the CLI pane as shown in the following image.
|
The model-driven programmability of the NX-OS device allows you to automate the configuration and control of the device.
Data modeling provides a programmatic and standards-based method of writing configurations to the network device, replacing the process of manual configuration. Data models are written in a standard, industry-defined language. Although configuration using a CLI may be more human-friendly, automating the configuration using data models results in better scalability.
The Cisco NX-OS device supports the YANG data modeling language. YANG is a data modeling language used to describe configuration and operational data, remote procedure calls, and notifications for network devices.
Three standards-based programmable interfaces are supported by NX-OS for operations on the data model: NETCONF, RESTConf, and gRPC.
This section provides a brief overview of the NX-OS Programmable Interface infrastructure.
When a request is received whether via NETCONF, RESTConf, or gRPC, the request is converted into an abstract message object. That message object is distributed to the underlying model infrastructure based on the namespace in the request. Using the namespace, the appropriate model is selected and the request is passed to it for processing. The model infrastructure executes the request (read or write) on the device datastore. The results are returned to the agent of origin for response transmission back to the requesting client.
Agents provide an interface between the Device and clients. They specify the transport, the protocol, and the encoding of the communications with the Device. NX-OS Programmable Interfaces support three agents: NETCONF, RESTConf, and gRPC, each providing different interfaces for configuration management of the Device via YANG models.
 Note | Supported YANG models for each Cisco NX-OS release are provided at https://devhub.cisco.com/artifactory/open-nxos-agents. |
Agent | Transport | Protocol | Encoding |
---|---|---|---|
NETCONF | SSH | XML | |
RESTConf | HTTP | draft-ietf-netconf-restconf-10[1 | XML or JSON |
gRPC | HTTP | gRPC Protocol Spec[2] | Google Protobuf |
The protocol specifications are described in the following documents:
[1] RESTCONF Protocol draft-ietf-netconf-restconf-10 https://tools.ietf.org/html/draft-ietf-netconf-restconf-10
[2] Cisco NX-OS gRPC Protocol Specification
The Model Infrastructure takes requests that are received from the Agent, determines the namespace that is associated with the YANG model in the request, and selects the model component matching the namespace to process the request. When the selected model component completes request processing, the processing results are sent to the requesting Agent for transmission back to the client. The Model Infrastructure is also responsible for handling protocol initiation requests involving authentication, handshaking, and so on, as specified by the Agent protocol.
The Device Configuration is described in a YANG model that is called a Device Model. The Device Model is manifested in the Model Infrastructure as another model component with the Device namespace.
A Common Model is another kind of model component that contains within its elements, YANG Paths to the equivalent Device Model elements. These equivalent Device Model elements are used to read and write Device Model data in the Device YANG context.
Additional information about YANG can be found at the YANG Central Wiki http://www.yang-central.org/twiki/bin/view/Main/WebHome (M. Bjorklund, Ed.)
 Note | Beginning with Cisco Nexus NX-OS 7.0(3)I7(1), the NX-OS Programmable Interface Base Component RPM packages (agents, the Cisco native model, the majority of other required models, and infrastructure) are included in the NX-OS image. As a result, nearly all the required software is installed automatically when the image is loaded. This means that there is no need to download and install the bulk of the software from the Cisco Artifactory. The exception is the OpenConfig model, which is required. You must explicitly download the OpenConfig models from the Cisco Artifactory. However, for Cisco Nexus NX-OS 7.0(3)I6(1) and earlier releases, or for the purpose of upgrading, the following sections describing downloading and installing the packages are required. |
NX-OS Programmable Interface Component RPM packages may be downloaded from the Cisco Artifactory. Three types of component RPM packages are needed:
NX-OS Programmable Interface Infrastructure Components
Common Model Components
Agent Components
The NX-OS Programmable Interface Infrastructure comprises two RPM packages:
mtx-infra — This RPM is platform-independent.
mtx-device-model — This RPM is platform-dependent and must be selected to match the installed NX-OS image at the time of Cisco Artifactory download.
Common Model component RPMs provides support for Openconfig and IETF defined models. In order to enable support for one or more desired Common Models, the associated Common Model component RPMs must be downloaded and installed. As with the mtx-device-model RPM, Common Model components are also platform-dependent and must be selected to match the installed NX-OS image at the time of Cisco Artifactory download.
Following is the list of supported RPMs:
mtx-openconfig-bgp
mtx-openconfig-bgp-multiprotocol
mtx-openconfig-if-ip
mtx-openconfig-interfaces
mtx-openconfig-local-routing
mtx-openconfig-routing-policy
mtx-openconfig-vlan
Three agent packages are available: NETCONF, RESTConf and gRPC. At least one agent must be installed in order to have access to the modeled NX-OS interface.
 Note | Beginning with Cisco Nexus NX-OS 7.0(3)I7(3), you can enable the agents using the feature netconf and feature restconf commmands. However, these commands are not included in prior releases, so for releases Cisco Nexus NX-OS 7.0(3)I7(1) to 7.0(3)I7(3), you must enter the bash shell using the instructions in the "Opening the Bash Shell on the Device" section in Preparing For Installation, then run the netconfctl start and restconfctl start commands. |
This section contains installation preparation and other useful information for managing NX-OS Programmable Interface components.
RPM installation on the switch is performed in the bash shell. Make sure feature bash is configured on the device.
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# feature bash-shell
Switch(config)# end
Switch# run bash sudo su
bash-4.2#
To return to the device CLI prompt from bash, type exit or Ctrl-D .
You can use the following CLI show commands to confirm the readiness of the device before installation of an RPM.
show module
— Indicates whether all modules are up.
Switch# show module
show system redundancy status
— Indicates whether the standby device is up and running and in HA mode. If a standby sync in progress, the RPM installation may fail.
Switch# show system redundancy status
If the line cards have failed to come up, enter the createrepo /rpms
command in the bash shell.
bash-4.2# createrepo /rpms
You can use SCP to copy files to the device, using a command in this form.
copy scp://username@source_ip/path_to_agent_rpm bootflash: vrf managementExample:
Switch# copy scp://jdoe@192.0.20.123//myrpms/mtx-infra.1.0.0.r082616.x86_64.rpm bootflash: vrf management
To show all installed NXOS Programmable Interface RPMs, issue the following command on the device:
bash-4.2# yum list installed | grep mtx
The NX-OS Programmable Interface Component RPMs can be downloaded from the Cisco Artifactory at the following URL:
https://devhub.cisco.com/artifactory/open-nxos-agents
The NX-OS Programmable Interface Component RPMs adhere to the following naming convention:
mtx-name.ma.mi.ma.rYYYYYY.x86_64.rpm
or
mtx-name-XXXX.ma.mi.ma.rYYYYYY.x86_64.rpm
where
name — MTX component name (such as infra, device-model, openconfig-interface, netconf, etc)
ma.mi.ma — RPM Version Number (major.minor.maintenance)
XXXX — NX-OS Image ID
rYYYYYY — RPM build ID
Select and download the desired NX-OS Programmable Interface Component RPM packages to a local server for installation on the device as described in the following sections.
From the Cisco Artifactory, download the following packages:
mtx-infra.ma.mi.ma.rYYYYYY.x86_64.rpm (Infrastructure)
mtx-device-XXXX.ma.mi.ma.rYYYYYY.x86_64.rpm RPM (Device Model)
Using the CLI commands in Verify Device Readiness, confirm that all line cards in the active and standby devices are up and ready.
Step 1 | Copy the downloaded RPMs to the device. Example:
|
Step 2 | From the bash shell, install the MTX Infra RPM. Example:
|
Step 3 | From the bash shell, install the MTX Device Model RPM. Example:
|
Step 4 | From the bash shell, verify the installation. Example:
|
Install one or more Common Model RPM Packages.
Install the Programmable Interface Infrastructure RPM packages.
Download the Common Model RPM packages from the Cisco Artifactory.
Step 1 | Copy the downloaded Common Model RPMs to the device. Example:
|
Step 2 | From the bash shell, install each Common Model RPM. Example:
|
Step 3 | From the bash shell, verify the installation. Example:
|
Install one or more NX-OS Programmable Interface Agent RPM Packages.
Install the Programmable Interface Infrastructure RPM packages.
Install one or more Common Model RPM packages.
Download the Agent RPM packages from the Cisco Artifactory.
Step 1 | Copy the downloaded Agent RPMs to the device. Example:
|
Step 2 | From the bash shell, install the Agent RPM. Example:
|
Step 3 | From the bash shell, verify the installation. Example:
|
Configure the Agent.
The Cisco NX-OS NETCONF Agent is a client-facing interface that provides secure transport for the client requests and server responses in the form of a YANG model, encoded in XML.
The NETCONF Agent supports a candidate configuration feature. The Candidate configuration datastore temporarily holds candidate configuration and any changes you make without changing the running configuration. You can then choose when to update the configuration of the device with the candidate configuration when you commit and confirm the candidate configuration.
If you do not confirm the changes, exit from a nonpersistent NETCONF client session, or choose to cancel the commit after you commit the change, a system timer then times out and rolls back the changes if you do not confirm the changes.
If you initiate a confirmed-commit operation with a persistent token, the NETCONF client session becomes a persistent process. In a persistent process, exiting the NETCONF client session will not call an automatic roll-back and the changes cannot be rolled back without the matching persistent token.
Cisco NX-OS NETCONF supports the following configuration capabilities:
Writable-Running Capability
urn:ietf:params:netconf:capability:writable-running:1.0
Rollback-on-error Capability
urn:ietf:params:netconf:capability:rollback-on-error:1.0
Candidate Configuration Capability
urn:ietf:params:netconf:capability:candidate:1.0
Validation Capability
urn:ietf:params:netconf:capability:validate:1.1
Confirmed Commit Capability
urn:ietf:params:netconf:capability:confirmed-commit:1.1
When a new session starts, the NETCONF Agent sends out a <hello> message advertising its capabilities. The following example shows a NETCONF agent sending a <hello> message to the client:
<?xml version="1.0" encoding="UTF-8"?>
<hello>
<capabilities>
<capability>urn:ietf:params:netconf:base:1.0</capability>
<capability>urn:ietf:params:netconf:base:1.1</capability>
<capability>urn:ietf:params:netconf:capability:writable-running:1.0</capability>
<capability>urn:ietf:params:netconf:capability:rollback-on-error:1.0</capability>
<capability>urn:ietf:params:netconf:capability:candidate:1.0</capability>
<capability>urn:ietf:params:netconf:capability:validate:1.1</capability>
<capability>urn:ietf:params:netconf:capability:confirmed-commit:1.1</capability>
<capability>http://cisco.com/ns/yang/cisco-nx-os-device?revision=2017-04-06&module=cisco-nx-os-device&deviations=cisco-nx-os-device-deviations</capability>
</capabilities>
<session-id>1438752697</session-id>
</hello>
The Cisco NX-OS NETCONF Agent supports the following NETCONF Protocol operations:
get
get-config
edit-config
close-session
kill-session
Candidate configuration supports the following NETCONF Protocol operations.
Operations for the candidate configuration as <source> or <target>.
get-config
edit-config
copy-config
lock
unlock
validate
Operations for the candidate configuration that do not require explicitly specifying the candidate configuration as <source> or <target>.
commit
cancel-commit
discard-changes
 Note | The delete-config operation is not allowed. |
The NETCONF Agent has the following guideline and limitation:
NETCONF does not support enhanced Role-Based Access Control (RBAC) as specified in RFC 6536. Only users with a "network-admin" role are granted access to the NETCONF agent.
NETCONF requires RPM to be installed on port 830.
The NETCONF Agent supports the following optional configuration parameters under the [netconf] section in the configuration file (/etc/mtx.conf).
Parameter | Description |
---|---|
idle_timeout | (Optional) Specifies the timeout in minutes after which idle client sessions are disconnected. The default value is 5 minutes. A value of 0 disables timeout. |
limit | (Optional) Specifies the number of maximum simultaneous client sessions. The default value is 5 sessions. The range is 1 to 10. |
The following is an example of the [netconf] section in the configuration file:
[netconf]
mtxadapter=/opt/mtx/lib/libmtxadapternetconf.1.0.1.so
idle_timeout=10
limit=1
For the modified configuration file to take effect, you must restart the NETCONF Agent using the CLI command [no] feature netconf to disable and re-enable.
The NETCONF Agent is enabled or disabled by the command [no] feature netconf.
The candidate configuration can only be initialized with the contents of the running configuration. To Initialize the candiate configuring datastore, send a Copy-Config request using SSH, with candidate as the target and running as the source.
To read from the candidate configuration, send a Get-Config request with SSH, using candidate as the source.
To write to the contents of the candidate configuration, send an Edit-Config request with SSH, using candidate as the target.
The candidate configuration workflow is as follows:
Edit the candidate configuration file.
Validate the candidate configuration.
Commit the changes to the running configuration.
This example shows initiating a session using the SSH client and sending an Edit-Config and Get request using the SSH Client.
client-host % ssh -s admin@172.19.193.152 -p 830 netconf
client-host % ssh -s admin@172.19.193.152 -p 830 netconf
User Access Verification
Password:
<?xml version="1.0" encoding="UTF-8"?>
<hello>
<capabilities>
<capability>urn:ietf:params:netconf:base:1.0</capability>
<capability>urn:ietf:params:netconf:base:1.1</capability>
<capability>urn:ietf:params:netconf:capability:writable-running:1.0</capability>
<capability>urn:ietf:params:netconf:capability:rollback-on-error:1.0</capability>
<capability>urn:ietf:params:netconf:capability:candidate:1.0</capability>
<capability>urn:ietf:params:netconf:capability:validate:1.1</capability>
<capability>urn:ietf:params:netconf:capability:confirmed-commit:1.1</capability>
<capability>http://cisco.com/ns/yang/cisco-nx-os-device?revision=2017-04-06&module=cisco-nx-os-device&deviations=cisco-nx-os-device-deviations</capability>
</capabilities>
<session-id>1912037714</session-id>
</hello>
]]>]]><hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<capabilities>
<capability>urn:ietf:params:netconf:base:1.1</capability>
</capabilities>
</hello>
]]>]]>
#794
<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
<edit-config>
<target>
<running/>
</target>
<config>
<System xmlns="http://cisco.com/ns/yang/cisco-nx-os-device">
<bgp-items>
<inst-items>
<dom-items>
<Dom-list>
<name>default</name>
<rtrId>2.2.2.2</rtrId>
</Dom-list>
</dom-items>
</inst-items>
</bgp-items>
</System>
</config>
</edit-config>
</rpc>
##
#190
<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>
##
#511
<rpc message-id="109"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<get-config>
<source>
<running/>
</source>
<filter type="subtree">
<System xmlns="http://cisco.com/ns/yang/cisco-nx-os-device">
<bgp-items>
<inst-items>
<dom-items>
<Dom-list/>
</dom-items>
</inst-items>
</bgp-items>
</System>
</filter>
</get-config>
</rpc>
##
#996
<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply message-id="109"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<System>
<bgp-items>
<inst-items>
<dom-items>
<Dom-list>
<name>default</name>
<always>disabled</always>
<bestPathIntvl>300</bestPathIntvl>
<holdIntvl>180</holdIntvl>
<kaIntvl>60</kaIntvl>
<maxAsLimit>0</maxAsLimit>
<pfxPeerTimeout>30</pfxPeerTimeout>
<pfxPeerWaitTime>90</pfxPeerWaitTime>
<reConnIntvl>60</reConnIntvl>
<rtrId>2.2.2.2</rtrId>
</Dom-list>
</dom-items>
</inst-items>
</bgp-items>
</System>
</data>
</rpc-reply>
##
Note that the operation attribute in edit-config identifies the point in configuration where the specified operation will be performed. If the operation attribute is not specified, the configuration is merged into the existing configuration data store. Operation attribute can have the following values:
create
merge
delete
The following example shows how to delete the configuration of interface Ethernet 0/0 from the running configuration.
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<edit-config>
<target>
<running/>
</target>
<default-operation>none</default-operation>
<config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
<top xmlns="http://example.com/schema/1.2/config">
<interface xc:operation="delete">
<name>Ethernet0/0</name>
</interface>
</top>
</config>
</edit-config>
</rpc>]]>]]>
If a request results in an error, the response payload includes the error.
The following are the errors defined by Cisco.
Error defined by Cisco | Description |
unknown-error-cond | Unknown error encountered. |
n-y-i | The requested operation is not supported. (not-yet-implemented). |
namespace-not-found | Error in request payload. |
namespace-already-exists | Error in request payload. |
object-not-found | Error in request payload. |
object-not-container | Error in request payload. |
object-not-property | Error in request payload. |
no-property-in-object | Error in request payload. |
invalid-dn | Internal error. |
invalid-arg | Internal error. |
already-exists | Error in request payload. |
container-not-found | Error in request payload |
container-already-exists | Error in request payload. |
property-not-found | Error in request payload. |
property-already-exists | Error in request payload. |
malformed | Error in request payload. |
alloc-failed | Internal error. |
sigint | Internal error. |
not-initialized | Internal error. |
inappropriate | Internal error. |
The following is an example of a NETCONF error response payload that reports an invalid IP address value:
<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply message-id="320" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<rpc-error>
<error-type>Protocol</error-type>
<error-tag>operation-failed</error-tag>
<error-severity>Error</error-severity>
<error-message xml:lang="en">Property Merge (set property) Failed: operation-failed value=500.500.500.500</error-message>
<error-path>/config/System/bgp-items/inst-items/dom-items/Dom-list/rtrId</error-path>
</rpc-error>
</rpc-reply>
From a client system, ping the management port of the switch to verify that the switch is reachable.
In the bash shell of the switch, execute the service netconf status command to check the agent status.
There is the XML Management Interface (also known as xmlagent), which is quite different from and often confused as the NETCONF Agent. Please ensure that you connect to the correct port 830 and receive a correct <hello> message (similar to what is shown in the Establishing a NETCONF Session section) from the server if the server does not respond with the correct NETCONF messages.
You can view NETCONF agent debugs from the Bash shell by viewing the contents of the /volatile/netconf-internal-log file. You can enable the Bash shell by using the feature bash command. After enabling the Bash shell, enter the Bash shell through the run bash command. For more information, see the chapter titled Bash in this document.
Note: The debug netconf commands cannot be used to debug NETCONF Agent operations. These debug commands will not output any NETCONF Agent-related logs.
The XMLIN tool converts CLI commands to the Network Configuration (NETCONF) protocol format. NETCONF is a network management protocol that provides mechanisms to install, manipulate, and delete the configuration of network devices. It uses XML-based encoding for configuration data and protocol messages. The NX-OS implementation of the NETCONF protocol supports the following protocol operations: <get>, <edit-config>, <close-session>, <kill-session>, and <exec-command>.
The XMLIN tool converts show, EXEC, and configuration commands to corresponding NETCONF <get>, <exec-command>, and <edit-config> requests. You can enter multiple configuration commands into a single NETCONF <edit-config> instance.
The XMLIN tool also converts the output of show commands to XML format.
Product | License Requirement |
Cisco NX-OS | XMLIN requires no license. Any feature not included in a license package is bundled with the Cisco NX-OS system images and is provided at no extra charge to you. For a complete explanation of the Cisco NX-OS licensing scheme, see the Cisco NX-OS Licensing Guide. |
You can install the XMLIN tool and then use it to convert configuration commands to NETCONF format.
The XMLIN tool can generate NETCONF instances of commands even if the corresponding feature sets or required hardware capabilities are not available on the device. But, you might still need to install some feature sets before entering the xmlin command.
Step 1 | switch# xmlin | ||
Step 2 | switch(xmlin)# configure terminal Enters global configuration mode. | ||
Step 3 | Configuration commands Converts configuration commands to NETCONF format. | ||
Step 4 | (Optional) switch(config)(xmlin)# end Generates the corresponding <edit-config> request.
| ||
Step 5 | (Optional) switch(config-if-verify)(xmlin)# show commands Converts show commands to NETCONF format. | ||
Step 6 | (Optional) switch(config-if-verify)(xmlin)# exit Returns to EXEC mode. |
You can convert the output of show commands to XML.
Make sure that all features for the commands you want to convert are installed and enabled on the device. Otherwise, the commands fail.
You can use the terminal verify-only command to verify that a feature is enabled without entering it on the device.
Make sure that all required hardware for the commands you want to convert are present on the device. Otherwise, the commands fail.
Make sure that the XMLIN tool is installed.
switch# show-command | xmlin Enters global configuration mode.
|
The following example shows how the XMLIN tool is installed on the device and used to convert a set of configuration commands to an <edit-config> instance.
switch# xmlin
**
Loading the xmlin tool. Please be patient.
**
Cisco Nexus Operating System (NX-OS) Software
TAC support: http://www.cisco.com/tac
Copyright ©) 2002-2013, Cisco Systems, Inc. All rights reserved.
The copyrights to certain works contained in this software are
owned by other third parties and used and distributed under
license. Certain components of this software are licensed under
the GNU General Public License (GPL) version 2.0 or the GNU
Lesser General Public License (LGPL) Version 2.1. A copy of each
such license is available at
http://www.opensource.org/licenses/gpl-2.0.php and
http://www.opensource.org/licenses/lgpl-2.1.php
switch(xmlin)# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
switch(config)(xmlin)# interface ethernet 2/1
% Success
switch(config-if-verify)(xmlin)# cdp enable
% Success
switch(config-if-verify)(xmlin)# end
<?xml version="1.0"?>
<nf:rpc xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:6.2.2.:configure_"
xmlns:m="http://www.cisco.com/nxos:6.2.2.:_exec"
xmlns:m1="http://www.cisco.com/nxos:6.2.2.:configure__if-eth-base" message-id="1">
<nf:edit-config>
<nf:target>
<nf:running/>
</nf:target>
<nf:config>
<m:configure>
<m:terminal>
<interface>
<__XML__PARAM__interface>
<__XML__value>Ethernet2/1</__XML__value>
<m1:cdp>
<m1:enable/>
</m1:cdp>
</__XML__PARAM__interface>
</interface>
</m:terminal>
</m:configure>
</nf:config>
</nf:edit-config>
</nf:rpc>
]]>]]>
The following example shows how to enter the end command to finish the current XML configuration before you generate an XML instance for a show command.
switch(xmlin)# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
switch(config)(xmlin)# interface ethernet 2/1
switch(config-if-verify)(xmlin)# show interface ethernet 2/1
**
Please type "end" to finish and output the current XML document before building a new one.
**
% Command not successful
switch(config-if-verify)(xmlin)# end
<?xml version="1.0"?>
<nf:rpc xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:6.2.2.:configure_"
xmlns:m="http://www.cisco.com/nxos:6.2.2.:_exec" message-id="1">
<nf:edit-config>
<nf:target>
<nf:running/>
</nf:target>
<nf:config>
<m:configure>
<m:terminal>
<interface>
<__XML__PARAM__interface>
<__XML__value>Ethernet2/1</__XML__value>
</__XML__PARAM__interface>
</interface>
</m:terminal>
</m:configure>
</nf:config>
</nf:edit-config>
</nf:rpc>
]]>]]>
switch(xmlin)# show interface ethernet 2/1
<?xml version="1.0"?>
<nf:rpc xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:6.2.2.:if_manager" message-id="1">
<nf:get>
<nf:filter type="subtree">
<show>
<interface>
<__XML__PARAM__ifeth>
<__XML__value>Ethernet2/1</__XML__value>
</__XML__PARAM__ifeth>
</interface>
</show>
</nf:filter>
</nf:get>
</nf:rpc>
]]>]]>
switch(xmlin)# exit
switch#
The following example shows how you can convert the output of the show interface brief command to XML.
switch# show interface brief | xmlin
<?xml version="1.0"?>
<nf:rpc xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:6.2.2.:if_manager"
message-id="1">
<nf:get>
<nf:filter type="subtree">
<show>
<interface>
<brief/>
</interface>
</show>
</nf:filter>
</nf:get>
</nf:rpc>
]]>]]>
Cisco NX-OS RESTCONF is an HTTP -based protocol for configuring data that are defined in YANG version 1, using datastores defined in NETCONF.
NETCONF defines configuration datastores and a set of Create, Retrieve, Update, and Delete (CRUD) operations that can be used to access these datastores. The YANG language defines the syntax and semantics of datastore content, operational data, protocol operations, and event notifications.
Cisco NX-OS RESTCONF uses HTTP operations to provide CRUD operations on a conceptual datastore containing YANG-defined data. This data is compatible with a server which implements NETCONF datastores.
The RESTCONF protocol supports both XML and JSON payload encodings. User authentication is done through the HTTP Basic Authentication.
The following table shows the Protocol operations that the Cisco NX-OS RESTCONF Agent supports:
RESTCONF | NETCONF Equivalent |
---|---|
OPTIONS | NETCONF: none |
HEAD | NETCONF: none |
GET | NETCONF: <get-config>, <get> |
POST | NETCONF: <edit-config> (operation="create") |
PUT | NETCONF: <edit-config> (operation="create/replace") |
PATCH | NETCONF: <edit-config> (operation="merge") |
DELETE | NETCONF: <edit-config> (operation="delete") |
The RESTCONF Agent has the following guideline and limitation:
Cisco NX-OS RESTCONF is based on an RFC draft entitled RESTCONF Protocol draft-ietf-netconf-restconf-10 (https://tools.ietf.org/html/draft-ietf-netconf-restconf-10).
RESTCONF does not support enhanced Role-Based Access Control (RBAC) as specified in RFC 6536. Only users with a "network-admin" role are granted access to the RESTCONF agent.
Configure the following commands to enable HTTP or HTTPS access:
feature nxapi
nxapi http port 80
nxapi https port 443
You can enable or disable the RESTCONF Agent [no] feature restconf command.
switch-1# show feature | grep restconf
restconf 1 enabled
switch-1#
client-host % curl -X POST -H "Authorization: Basic YWRtaW46Y2lzY28=" -H "Content-Type: application/yang.data+xml" -d '<always>enabled</always><rtrId>2.2.2.2</rtrId>' "http://192.0.20.123/restconf/data/Cisco-NX-OS-device:System/bgp-items/inst-items/dom-items/Dom-list=default" -i
HTTP/1.1 201 Created
Server: nginx/1.7.10
Date: Tue, 27 Sep 2016 20:25:31 GMT
Transfer-Encoding: chunked
Connection: keep-alive
Set-Cookie: nxapi_auth=admin:147500853169574134
Status: 201 Created
Location: /System/bgp-items/inst-items/dom-items/Dom-list=default/always/rtrId/
client-host % curl -X GET -H "Authorization: Basic YWRtaW46Y2lzY28=" -H "Accept: application/yang.data+xml" "http://192.0.20.123/restconf/data/Cisco-NX-OS-device:System/bgp-items/inst-items/dom-items/Dom-list?content=config" -i
HTTP/1.1 200 OK
Server: nginx/1.7.10
Date: Tue, 27 Sep 2016 20:26:03 GMT
Content-Type: application/yang.data+xml
Content-Length: 395
Connection: keep-alive
Set-Cookie: nxapi_auth=admin:147500856185650327
Status: 200 OK
<Dom-list>
<name>default</name>
<always>enabled</always>
<bestPathIntvl>300</bestPathIntvl>
<holdIntvl>180</holdIntvl>
<kaIntvl>60</kaIntvl>
<maxAsLimit>0</maxAsLimit>
<pfxPeerTimeout>30</pfxPeerTimeout>
<pfxPeerWaitTime>90</pfxPeerWaitTime>
<reConnIntvl>60</reConnIntvl>
<rtrId>2.2.2.2</rtrId>
</Dom-list>
client-host %
Enable the web server by issuing the feature nxapi command.
Ensure that the nxapi http port 80 command is configured to open up the port for HTTP
Ensure that the nxapi https port 443 command is configured to open up the port for HTTPS.
Ping the management port of the switch to verify that the switch is reachable.
The Cisco NX-OS gRPC protocol defines a mechanism through which a network device can be managed and its configuration data can be retrieved and installed. The protocol exposes a complete and formal Application Programming Interface (API) that clients can use to manage device configurations.
The Cisco NX-OS gRPC protocol uses a remote procedure call (RPC) paradigm where an external client manipulates device configurations utilizing Google Protocol Buffer (GPB)-defined API calls along with their service- specific arguments. These GPB-defined APIs transparently cause an RPC call to the device that return replies in the same GPB-defined API context.
The gRPC Agent provides a secure transport through TLS and user authentication and authorization through AAA.
The functional objective of the Cisco NX-OS gRPC protocol is to mirror that provided by NETCONF, particularly in terms of both stateless and stateful configuration manipulation for maximum operational flexibility.
The Cisco NX-OS gRPC Agent supports the following protocol operations:
Get
GetConfig
GetOper
EditConfig
StartSession
CloseSession
KillSession
The gRPC Agent supports two types of operations:
Stateless operations are performed entirely within a single message without creating a session.
Stateful operations are performed using multiple messages. The following is the sequence of operations that are performed:
Start the session. This action acquires a unique session ID.
Perform session tasks using the session ID.
Close the session. This action invalidates the session ID.
The following are the supported operations. See the Appendix for their RPC definitions in the .proto file that is exported by the gRPC Agent.
Operation | Description |
---|---|
StartSession | Starts a new session between the client and server and acquires a unique session ID. |
EditConfig | Writes the specified YANG data subset to the target datastore. |
GetConfig | Retrieves the specified YANG configuration data subset from the source datastore. |
GetOper | Retrieves the specified YANG operational data from the source datastore. |
Get | Retrieves the specified YANG configuration and operational data from the source datastore. |
KillSession | Forces the termination of a session. |
CloseSession | Requests graceful termination of a session. |
GetConfig, GetOper, and Get are stateless operations so don’t require a session ID.
EditConfig can be either stateless or stateful. For a stateless operation, specify the SessionID as 0. For a stateful operation, a valid (nonzero) SessionID is required.
The gRPC Agent supports timeout for the sessions. The idle timeout for sessions can be configured on the device, after which idle sessions are closed and deleted.
The gRPC Agent has the following guideline and limitation:
gRPC does not support enhanced Role-Based Access Control (RBAC) as specified in RFC 6536. Only users with a "network-admin" role are granted access to the gRPC agent.
The gRPC Agent supports the following configuration parameters under the [grpc] section in the configuration file (/etc/mtx.conf).
Parameter | Description |
---|---|
idle_timeout | (Optional) Specifies the timeout in minutes after which idle client sessions are disconnected. The default timeout is 5 minutes. A value of 0 disables timeout. |
limit | (Optional) Specifies the number of maximum simultaneous client sessions. The default limit is 5 sessions. The range is from 1 through 50. |
lport | (Optional) Specifies the port number on which the gRPC Agent listens. The default port is 50051. |
key | Specifies the key file location for TLS authentication. The default location is /opt/mtx/etc/grpc.key. |
cert | Specifies the certificate file location for TLS authentication. The default location is /opt/mtx/etc/grpc.pem. |
security | Specifies the type of secure connection. Valid choices are:
|
You can enable or disable the gRPC Agent by issuing the [no] feature grpc command.
client-host % cat payload.json
{
"namespace": "http://cisco.com/ns/yang/cisco-nx-os-device",
"System": {
"bgp-items": {
"inst-items": {
"dom-items": {
"Dom-list": {
"name": "default",
"rtrId": "7.7.7.7",
"holdIntvl": "100"
}
}
}
}
}
}
 Note | The JSON structure has been pretty-formatted here for readability. |
client-host % ./grpc_client -username=admin -password=cisco -operation=EditConfig -e_oper=Merge -def_op=Merge -err_op=stop-on-error -infile=payload.json -reqid=1 -source=running -tls=true -serverAdd=192.0.20.123 -lport=50051
##
Starting the client service
##
TLS set true for client requests1ems.cisco.com
TLS FLAG:1
192.0.20.123:50051
All the client connections are secured
Sending EditConfig request to the server
sessionid is
0
reqid:1
{"rpc-reply":{"ok":""}}
client-host % ./grpc_client -username=admin -password=cisco -operation=GetConfig -infile=payload.json -reqid=1 -source=running -tls=true -serverAdd=192.0.20.123 -lport=50051
##
Starting the client service
##
TLS set true for client requests1ems.cisco.com
TLS FLAG:1
192.0.20.123:50051
All the client connections are secured
Sending GetConfig request to the server
in get config
Got the response from the server
###
Yang Json is:
###
{"rpc-reply":{"data":{"System":{"bgp-items":{"inst-items":{"dom-items":{"Dom-list":{"name":"default","rtrId":"7.7.7.7","holdIntvl":"100"}}}}}}}}
###
client-host %
From a client system, verify that the agent is listening on the port. For example:
client-host % nc –z 192.0.20.222 50051
Connection to 192.0.20.222 50051 port [tcp/*] succeeded!
client-host % echo $?
0
client-host %
In the NX-OS, check the gRPC agent status by issuing show feature | grep grpc.
The gRPC Agent exports the supported operations and data structures in the proto definition file at /opt/mtx/etc/nxos_grpc.proto
. The file is included in the gRPC Agent RPM. The following shows the definitions:
// Copyright 2016, Cisco Systems Inc.
// All rights reserved.
syntax = "proto3";
package NXOSExtensibleManagabilityService;
// Service provided by Cisco NX-OS gRPC Agent
service gRPCConfigOper {
// Retrieves the specified YANG configuration data subset from the
// source datastore
rpc GetConfig(GetConfigArgs) returns(stream GetConfigReply) {};
// Retrieves the specified YANG operational data from the source datastore
rpc GetOper(GetOperArgs) returns(stream GetOperReply) {};
// Retrieves the specified YANG configuration and operational data
// subset from the source datastore
rpc Get(GetArgs) returns(stream GetReply){};
// Writes the specified YANG data subset to the target datastore
rpc EditConfig(EditConfigArgs) returns(EditConfigReply) {};
// Starts a new session between the client and server and acquires a
// unique session ID
rpc StartSession(SessionArgs) returns(SessionReply) {};
// Requests graceful termination of a session
rpc CloseSession(CloseSessionArgs) returns (CloseSessionReply) {};
// Forces the termination of a session
rpc KillSession(KillArgs) returns(KillReply) {};
// Unsupported; reserved for future
rpc DeleteConfig(DeleteConfigArgs) returns(DeleteConfigReply) {};
// Unsupported; reserved for future
rpc CopyConfig(CopyConfigArgs) returns(CopyConfigReply) {};
// Unsupported; reserved for future
rpc Lock(LockArgs) returns(LockReply) {};
// Unsupported; reserved for future
rpc UnLock(UnLockArgs) returns(UnLockReply) {};
// Unsupported; reserved for future
rpc Commit(CommitArgs) returns(CommitReply) {};
// Unsupported; reserved for future
rpc Validate(ValidateArgs) returns(ValidateReply) {};
// Unsupported; reserved for future
rpc Abort(AbortArgs) returns(AbortReply) {};
}
message GetConfigArgs
{
// JSON-encoded YANG data to be retrieved
string YangPath = 1;
// (Optional) Specifies the request ID. Default value is 0.
int64 ReqID = 2;
// (Optional) Specifies the source datastore; only "running" is supported.
// Default is "running".
string Source = 3;
}
message GetConfigReply
{
// The request ID specified in the request.
int64 ReqID = 1;
// JSON-encoded YANG data that was retrieved
string YangData = 2;
// JSON-encoded error information when request fails
string Errors = 3;
}
message GetOperArgs
{
// JSON-encoded YANG data to be retrieved
string YangPath = 1;
// (Optional) Specifies the request ID. Default value is 0.
int64 ReqID = 2;
}
message GetOperReply
{
// The request ID specified in the request.
int64 ReqID = 1;
// JSON-encoded YANG data that was retrieved
string YangData = 2;
// JSON-encoded error information when request fails
string Errors = 3;
}
message GetArgs
{
// JSON-encoded YANG data to be retrieved
string YangPath=1;
// (Optional) Specifies the request ID. Default value is 0.
int64 ReqID = 2;
}
message GetReply
{
// The request ID specified in the request.
int64 ReqID = 1;
// JSON-encoded YANG data that was retrieved
string YangData = 2;
// JSON-encoded error information when request fails
string Errors = 3;
}
message EditConfigArgs
{
// JSON-encoded YANG data to be edited
string YangPath = 1;
// Specifies the operation to perform on teh configuration datastore with
// the YangPath data. Possible values are:
// create
// merge
// replace
// delete
// remove
// If not specified, default value is "merge".
string Operation = 2;
// A unique session ID acquired from a call to StartSession().
// For stateless operation, this value should be set to 0.
int64 SessionID = 3;
// (Optional) Specifies the request ID. Default value is 0.
int64 ReqID = 4;
// (Optional) Specifies the target datastore; only "running" is supported.
// Default is "running".
string Target = 5;
// Specifies the default operation on the given object while traversing
// the configuration tree.
// The following operations are possible:
// merge: merges the configuration data with the target datastore;
// this is the default.
// replace: replaces the configuration data with the target datastore.
// none: target datastore is unaffected during the traversal until
// the specified object is reached.
string DefOp = 6;
// Specifies the action to be performed in the event of an error during
// configuration. Possible values are:
// stop
// roll-back
// continue
// Default is "roll-back".
string ErrorOp = 7;
}
message EditConfigReply
{
// The request ID specified in the request.
int64 ReqID = 1;
// If EditConfig is successful, YangData contains a JSON-encoded "ok" response.
string YangData = 2;
// JSON-encoded error information when request fails
string Errors = 3;
}
message DeleteConfigArgs
{
// A unique session ID acquired from a call to StartSession().
// For stateless operation, this value should be set to 0.
int64 SessionID = 1;
// (Optional) Specifies the request ID. Default value is 0.
int64 ReqID = 2;
// (Optional) Specifies the target datastore; only "running" is supported.
// Default is "running".
string Target = 3;
}
message DeleteConfigReply
{
// The request ID specified in the request.
int64 ReqID = 1;
// If DeleteConfig is successful, YangData contains a JSON-encoded "ok" response.
string YangData = 2;
// JSON-encoded error information when request fails
string Errors = 3;
}
message CopyConfigArgs
{
// A unique session ID acquired from a call to StartSession().
// For stateless operation, this value should be set to 0.
int64 SessionID = 1;
// (Optional) Specifies the request ID. Default value is 0.
int64 ReqID = 2;
// (Optional) Specifies the source datastore; only "running" is supported.
// Default is "running".
string Source = 3;
// (Optional) Specifies the target datastore; only "running" is supported.
// Default is "running".
string Target = 4;
}
message CopyConfigReply
{
// The request ID specified in the request.
int64 ReqID = 1;
// If CopyConfig is successful, YangData contains a JSON-encoded "ok" response.
string YangData = 2;
// JSON-encoded error information when request fails
string Errors = 3;
}
message LockArgs
{
// A unique session ID acquired from a call to StartSession().
int64 SessionID = 1;
// (Optional) Specifies the request ID. Default value is 0.
int64 ReqID=2;
// (Optional) Specifies the target datastore; only "running" is supported.
// Default is "running".
string Target = 3;
}
message LockReply
{
// The request ID specified in the request.
int64 ReqID = 1;
// If Lock is successful, YangData contains a JSON-encoded "ok" response.
string YangData = 2;
// JSON-encoded error information when request fails
string Errors = 3;
}
message UnLockArgs
{
// A unique session ID acquired from a call to StartSession().
int64 SessionID = 1;
// (Optional) Specifies the request ID. Default value is 0.
int64 ReqID = 2;
// (Optional) Specifies the target datastore; only "running" is supported.
// Default is "running".
string Target = 3;
}
message UnLockReply
{
// The request ID specified in the request.
int64 ReqID = 1;
// If UnLock is successful, YangData contains a JSON-encoded "ok" response.
string YangData = 2;
// JSON-encoded error information when request fails
string Errors = 3;
}
message SessionArgs
{
// (Optional) Specifies the request ID. Default value is 0.
int64 ReqID = 1;
}
message SessionReply
{
// The request ID specified in the request.
int64 ReqID = 1;
int64 SessionID = 2;
// JSON-encoded error information when request fails
string Errors = 3;
}
message CloseSessionArgs
{
// (Optional) Specifies the request ID. Default value is 0.
int64 ReqID = 1;
// A unique session ID acquired from a call to StartSession().
int64 SessionID = 2;
}
message CloseSessionReply
{
// The request ID specified in the request.
int64 ReqID = 1;
// If CloseSession is successful, YangData contains a JSON-encoded "ok" response.
string YangData = 2;
// JSON-encoded error information when request fails
string Errors = 3;
}
message KillArgs
{
// A unique session ID acquired from a call to StartSession().
int64 SessionID = 1;
int64 SessionIDToKill = 2;
// (Optional) Specifies the request ID. Default value is 0.
int64 ReqID = 3;
}
message KillReply
{
// The request ID specified in the request.
int64 ReqID = 1;
// If Kill is successful, YangData contains a JSON-encoded "ok" response.
string YangData = 2;
// JSON-encoded error information when request fails
string Errors = 3;
}
message ValidateArgs
{
// A unique session ID acquired from a call to StartSession().
int64 SessionID = 1;
// (Optional) Specifies the request ID. Default value is 0.
int64 ReqID = 2;
}
message ValidateReply
{
// The request ID specified in the request.
int64 ReqID = 1;
// If Validate is successful, YangData contains a JSON-encoded "ok" response.
string YangData = 2;
// JSON-encoded error information when request fails
string Errors = 3;
}
message CommitArgs
{
// A unique session ID acquired from a call to StartSession().
int64 SessionID = 1;
// (Optional) Specifies the request ID. Default value is 0.
int64 ReqID = 2;
}
message CommitReply
{
// (Optional) Specifies the request ID. Default value is 0.
int64 ReqID = 1;
// If Commit is successful, YangData contains a JSON-encoded "ok" response.
string YangData = 2;
// JSON-encoded error information when request fails
string Errors = 3;
}
message AbortArgs
{
// A unique session ID acquired from a call to StartSession().
int64 SessionID = 1;
// (Optional) Specifies the request ID. Default value is 0.
int64 ReqID = 2;
}
message AbortReply
{
// (Optional) Specifies the request ID. Default value is 0.
int64 ReqID = 1;
// If Abort is successful, YangData contains a JSON-encoded "ok" response.
string YangData = 2;
// JSON-encoded error information when request fails
string Errors = 3;
}
Before using dynamic logging, confirm that the following are on your switch:
The libmtxlogmgr*.so library is installed /opt/mtx/lib/. The libmtxlogmgr*.so library is part of the mtx_infra RPM.
The mtx.conf file that is located in /etc/ contains:
[mtxlogger]
config=/opt/mtx/conf/mtxlogger.cfg
The mtxlogger.cfg file is in /opt/mtx/conf/.
The configuration file has the following structure:
<config name="nxos-device-mgmt">
<container name="mgmtConf">
<container name="logging">
<leaf name="enabled" type="boolean" default="false"></leaf>
<leaf name="allActive" type="boolean" default="false"></leaf>
<container name="format">
<leaf name="content" type="string" default="$DATETIME$ $COMPONENTID$ $TYPE$: MSG"></leaf>
<container name="componentID">
<leaf name="enabled" type="boolean" default="true"></leaf>
</container>
<container name="dateTime">
<leaf name="enabled" type="boolean" default="true"></leaf>
<leaf name="format" type="string" default="%y%m%d.%H%M%S"></leaf>
</container>
<container name="fcn">
<leaf name="enabled" type="boolean" default="true"></leaf>
<leaf name="format" type="string" default="$CLASS$::$FCNNAME$($ARGS$)@$LINE$"></leaf>
</container>
</container>
<container name="dest">
<container name="console">
<leaf name="enabled" type="boolean" default="false"></leaf>
</container>
<container name="file">
<leaf name="enabled" type="boolean" default="false"></leaf>
<leaf name="name" type="string" default="mtx-internal.log"></leaf>
<leaf name="location" type="string" default="./mtxlogs"></leaf>
<leaf name="mbytes-rollover" type="uint32" default="10"></leaf>
<leaf name="hours-rollover" type="uint32" default="24"></leaf>
<leaf name="startup-rollover" type="boolean" default="false"></leaf>
<leaf name="max-rollover-files" type="uint32" default="10"></leaf>
</container>
</container>
<list name="logitems" key="id">
<listitem>
<leaf name="id" type="string"></leaf>
<leaf name="active" type="boolean" default="true"></leaf>
</listitem>
</list>
</container>
</container>
</config>
The <list> tag defines the log filters by <componentID> .
The following table describes some of the containers and their leaves.
Container | Container Description | Contained Containers | Contained Leaf and Description | ||
---|---|---|---|---|---|
logging | Contains all logging data types | format dest file
| enabled: Boolean that determines whether logging is on or off. Default off. allActive: Boolean that activates all defined logging items for logging. Default off | ||
format | Contains the log message format information | componentID dateTime type fcn | content: String listing data types included in log messages. Includes:
| ||
componentID | Name of logged component. | NA | enabled: Boolean that determines if the log message includes the component ID. Default to "true." Value of "false" returns a "" string in log message. | ||
dateTime | Date or time of log message | NA | enabled: Boolean whether to include date or time information in log message. Default is enabled. format: String of values to include in log message. Format of %y%m%d.%H%M%S. | ||
dest | Holds destination logger's configuration settings. | console: Destination console. Only one allowed. file: destination file. Multiple allowed. | NA | ||
console | Destination console | NA | enabled: Boolean that determines whether the console is enabled for logging. Default of "false." | ||
file | Determines the settings of the destination file. | NA | enabled: Boolean that determines whether the destination is enabled. Default is "false." name: String of the destination log file. Default of "mtx-internal.log" location: String of destination file path. Default at "./mtxlogs." mbytes-rollover: uint32 that determines the length of the log file before the system overwrites the oldest data. Default is 10 Mbytes. hours-rollover: uint32 that determines the length of the log file in terms of hours. Default is 24 hours. startup-rollover: Boolean that determines if the log file is rolled over upon agent start or restart. Default value of "false." max-rollover-files: uint32 that determines the maximum number of rollover files; deletes the oldest file when the max-rollover-files value exceeded. Default value of 10. |
<config name="nxos-device-mgmt">
<container name="mgmtConf">
<container name="logging">
<leaf name="enabled" type="boolean" default="false">true</leaf>
<leaf name="allActive" type="boolean" default="false">false</leaf>
<container name="format">
<leaf name="content" type="string" default="$DATETIME$ $COMPONENTID$ $TYPE$: MSG">$DATETIME$ $COMPONENTID$ $TYPE$ $SRCFILE$ @ $SRCLINE$ $FCNINFO$:MSG</leaf>
<container name="componentID">
<leaf name="enabled" type="boolean" default="true"></leaf>
</container>
<container name="dateTime">
<leaf name="enabled" type="boolean" default="true"></leaf>
<leaf name="format" type="string" default="%y%m%d.%H%M%S"></leaf>
</container>
<container name="fcn">
<leaf name="enabled" type="boolean" default="true"></leaf>
<leaf name="format" type="string" default="$CLASS$::$FCNNAME$($ARGS$)@$LINE$"></leaf>
</container>
</container>
<container name="dest">
<container name="console">
<leaf name="enabled" type="boolean" default="false">true</leaf>
</container>
<container name="file">
<leaf name="enabled" type="boolean" default="false">true</leaf>
<leaf name="name" type="string" default="mtx-internal.log"></leaf>
<leaf name="location" type="string" default="./mtxlogs">/volatile</leaf>
<leaf name="mbytes-rollover" type="uint32" default="10">50</leaf>
<leaf name="hours-rollover" type="uint32" default="24">24</leaf>
<leaf name="startup-rollover" type="boolean" default="false">true</leaf>
<leaf name="max-rollover-files" type="uint32" default="10">10</leaf>
</container>
</container>
<list name="logitems" key="id">
<listitem>
<leaf name="id" type="string">*</leaf>
<leaf name="active" type="boolean" default="false">false</leaf>
</listitem>
<listitem>
<leaf name="id" type="string">SYSTEM</leaf>
<leaf name="active" type="boolean" default="true">true</leaf>
</listitem>
<listitem>
<leaf name="id" type="string">LIBUTILS</leaf>
<leaf name="active" type="boolean" default="true">true</leaf>
</listitem>
<listitem>
<leaf name="id" type="string">MTX-API</leaf>
<leaf name="active" type="boolean" default="true">true</leaf>
</listitem>
<listitem>
<leaf name="id" type="string">Model-*</leaf>
<leaf name="active" type="boolean" default="true">true</leaf>
</listitem>
<listitem>
<leaf name="id" type="string">Model-Cisco-NX-OS-device</leaf>
<leaf name="active" type="boolean" default="true">false</leaf>
</listitem>
<listitem>
<leaf name="id" type="string">Model-openconfig-bgp</leaf>
<leaf name="active" type="boolean" default="true">false</leaf>
</listitem>
<listitem>
<leaf name="id" type="string">INST-MTX-API</leaf>
<leaf name="active" type="boolean" default="true">false</leaf>
</listitem>
<listitem>
<leaf name="id" type="string">INST-ADAPTER-NC</leaf>
<leaf name="active" type="boolean" default="true">false</leaf>
</listitem>
<listitem>
<leaf name="id" type="string">INST-ADAPTER-RC</leaf>
<leaf name="active" type="boolean" default="true">false</leaf>
</listitem>
<listitem>
<leaf name="id" type="string">INST-ADAPTER-GRPC</leaf>
<leaf name="active" type="boolean" default="true">false</leaf>
</listitem>
</list>
</container>
</container>
</config>
Collecting data for analyzing and troubleshooting has always been an important aspect in monitoring the health of a network.
Cisco NX-OS provides several mechanisms such as SNMP, CLI, and Syslog to collect data from a network. These mechanisms have limitations that restrict automation and scale. One limitation is the use of the pull model, where the initial request for data from network elements originates from the client. The pull model does not scale when there is more than one network management station (NMS) in the network. With this model, the server sends data only when clients request it. To initiate such requests, continual manual intervention is required. This continual manual intervention makes the pull model inefficient.
A push model continuously streams data out of the network and notifies the client. Telemetry enables the push model, which provides near-real-time access to monitoring data.
Telemetry consists of four key elements:
Data Collection — Telemetry data is collected from the Data Management Engine (DME) database in branches of the object model specified using distinguished name (DN) paths. The data can be retrieved periodically (frequency-based) or only when a change occurs in any object on a specified path (event-based). You can use the NX-API to collect frequency-based data.
Data Encoding — The telemetry encoder encapsulates the collected data into the desired format for transporting.
NX-OS encodes telemetry data in the Google Protocol Buffers (GPB) and JSON format.
Data Transport — NX-OS transports telemetry data using HTTP for JSON encoding and the Google remote procedure call (gRPC) protocol for GPB encoding. The gRPC receiver supports message sizes greater than 4 MB. (Telemetry data using HTTPS is also supported if a certificate is configured.)
Starting with Cisco NX-OS Release 7.0(3)I7(1), UDP and secure UDP (DTLS) are supported as telemetry transport protocols. You can add destinations that receive UDP. The encoding for UDP and secure UDP can be GPB or JSON.
destination-group num
ip address xxx.xxx.xxx.xxx port xxxx protocol UDP encoding {JSON | GPB }
destination-group 100
ip address 171.70.55.69 port 50001 protocol UDP encoding GPB
typedef enum tm_encode_ {
TM_ENCODE_DUMMY,
TM_ENCODE_GPB,
TM_ENCODE_JSON,
TM_ENCODE_XML,
TM_ENCODE_MAX,
} tm_encode_type_t;
typedef struct tm_pak_hdr_ {
uint8_t version; /* 1 */
uint8_t encoding;
uint16_t msg_size;
uint8_t secure;
uint8_t padding;
}__attribute__ ((packed, aligned (1))) tm_pak_hdr_t;
Use the first 6 bytes in the payload to process telemetry data using UDP, using one of the following methods:
Read the information in the header to determine which decoder to use to decode the data, JSON or GPB, if the receiver is meant to receive different types of data from multiple endpoints.
Remove the header if you are expecting one decoder (JSON or GPB) but not the other.
 Note | Depending on the receiving operation system and the network load, using the UDP protocol may result in packet drops. |
Telemetry Receiver — A telemetry receiver is a remote management system or application that stores the telemetry data.
The GPB encoder stores data in a generic key-value format. The encoder requires metadata in the form of a compiled .proto
file to translate the data into GPB format.
In order to receive and decode the data stream correctly, the receiver requires the .proto
file that describes the encoding and the transport services. The encoding decodes the binary stream into a key value string pair.
A telemetry .proto
file that describes the GPB encoding and gRPC transport is available on Cisco's GitLab: https://github.com/CiscoDevNet/nx-telemetry-proto
High availability of the telemetry process is supported with the following behaviors:
System Reload — During a system reload, any telemetry configuration and streaming services are restored.
Supervisor Failover — Although telemetry is not on hot standby, telemetry configuration and streaming services are restored when the new active supervisor is running.
Process Restart — If the telemetry process freezes or restarts for any reason, configuration and streaming services are restored when telemetry is restarted.
Product | License Requirement |
---|---|
Cisco NX-OS | Telemetry requires no license. Any feature not included in a license package is bundled with the Cisco NX-OS image and is provided at no extra charge to you. For a complete explanation of the Cisco NX-OS licensing scheme, see the Cisco NX-OS Licensing Guide. |
The telemetry application is packaged as a feature RPM and included with the NX-OS release. The RPM is installed by default as part of the image bootup. After installation, you can start the application using the feature telemetry command. The RPM file is located in the /rpms
directory and is named as follows:
telemetry-version-build_ID.libn32_n9000.rpm
As in the following example:
telemetry-2.0.0-7.0.3.I5.1.lib32_n9000.rpm
Copy the RPM to the device bootflash and use the following commands from the bash
prompt:
feature bash
run bash sudo su
Then copy the RPM to the device bootflash. Use the following commands from the bash
prompt:
yum upgrade telemetry_new_version.rpm
The application is upgraded and the change appears when the application is started again.
bash
prompt: yum downgrade telemetry
To verify the active version, run the following command from the switch exec
prompt:
show install active
 Note | The show install active command will only show the active installed RPM after an upgrade has occurred. The default RPM that comes bundled with the NX-OS will not be displayed. |
Telemetry has the following configuration guidelines and limitations:
Telemetry is supported in Cisco NX-OS releases starting from 7.0(3)I5(1) for releases that support the data management engine (DME) Native Model.
Release 7.0(3)I6(1) supports DME data collection, NX-API data sources, Google protocol buffer (GPB) encoding over Google Remote Procedure Call (gRPC) transport, and JSON encoding over HTTP.
The smallest sending interval (cadence) supported is five seconds for a depth of 0. The minimum cadence values for depth values greater than 0 depends on the size of the data being streamed out. Configuring cadences below the minimum value may result in undesirable system behavior.
Up to five remote management receivers (destinations) are supported. Configuring more than five remote receivers may result in undesirable system behavior.
In the event that a telemetry receiver goes down, other receivers will see data flow interrupted. The failed receiver must be restarted. Then start a new connection with the switch by unconfiguring then reconfiguring the failer receiver's IP address under the destination group.
Telemetry can consume up to 20% of the CPU resource.
To configure SSL certificate based authentication and the encryption of streamed data, you can provide a self signed SSL certificate with certificate ssl cert path hostname "CN" command. (NX-OS 7.0(3)I7(1) and later).
QoS Explicit Congestion Notification (ECN) statistics are supported only on Cisco Nexus 9364C, 9336C-FX, and 93240YC-FX switches.
After a downgrade to an older release, some configuration commands or command options might fail because the older release may not support them. As a best practice when downgrading to an older release, unconfigure and reconfigure the telemetry feature after the new image comes up to avoid the failure of unsupported commands or command options.
The following example shows this procedure:
switch# show running-config | section telemetry
feature telemetry
telemetry
destination-group 100
ip address 1.2.3.4 port 50004 protocol gRPC encoding GPB
sensor-group 100
path sys/bgp/inst/dom-default depth 0
subscription 600
dst-grp 100
snsr-grp 100 sample-interval 7000
switch# show running-config | section telemetry > telemetry_running_config
switch# show file bootflash:telemetry_running_config
feature telemetry
telemetry
destination-group 100
ip address 1.2.3.4 port 50004 protocol gRPC encoding GPB
sensor-group 100
path sys/bgp/inst/dom-default depth 0
subscription 600
dst-grp 100
snsr-grp 100 sample-interval 7000
switch#
switch# copy telemetry_running_config running-config echo-commands
`switch# config terminal`
`switch(config)# feature telemetry`
`switch(config)# telemetry`
`switch(config-telemetry)# destination-group 100`
`switch(conf-tm-dest)# ip address 1.2.3.4 port 50004 protocol gRPC encoding GPB `
`switch(conf-tm-dest)# sensor-group 100`
`switch(conf-tm-sensor)# path sys/bgp/inst/dom-default depth 0`
`switch(conf-tm-sensor)# subscription 600`
`switch(conf-tm-sub)# dst-grp 100`
`switch(conf-tm-sub)# snsr-grp 100 sample-interval 7000`
`switch(conf-tm-sub)# end`
Copy complete, now saving to disk (please wait)...
Copy complete.
switch#
The switch client will disable the connection to the gRPC receiver if the gRPC receiver sends 20 errors. You will then need to unconfigure then reconfigure the receiver's IP address under the destination group to enable the gRPC receiver. Errors include:
The gRPC client sends the wrong certificate for secure connections,
The gRPC receiver takes too long to handle client messages and incurs a timeout. Avoid timeouts by processing messages using a separate message processing thread.
Starting with Cisco NX-OS 7.0(3)I7(1), telemetry compression support is available for gRPC transport. You can use the use-compression gzip command to enable compression. (Disable compression with the no use-compression gzip command.)
The following example enables compression:
switch(config)# telemetry
switch(config-telemetry)# destination-profile
switch(config-tm-dest-profile)# use-compression gzip
The following example shows compression is enabled:
switch(conf-tm-dest)# show telemetry transport 0 stats
Session Id: 0
Connection Stats
Connection Count 0
Last Connected: Never
Disconnect Count 0
Last Disconnected: Never
Transmission Stats
Compression: gzip
Transmit Count: 0
Last TX time: None
Min Tx Time: 0 ms
Max Tx Time: 0 ms
Avg Tx Time: 0 ms
Cur Tx Time: 0 ms
switch2(config-if)# show telemetry transport 0 stats
Session Id: 0
Connection Stats
Connection Count 0
Last Connected: Never
Disconnect Count 0
Last Disconnected: Never
Transmission Stats
Compression: disabled
Source Interface: loopback1(1.1.3.4)
Transmit Count: 0
Last TX time: None
Min Tx Time: 0 ms
Max Tx Time: 0 ms
Avg Tx Time: 0 ms
Cur Tx Time: 0 ms
switch2(config-if)#
{
"telemetryDestProfile": {
"attributes": {
"adminSt": "enabled"
},
"children": [
{
"telemetryDestOptCompression": {
"attributes": {
"name": "gzip"
}
}
}
]
}
}
NX-API can collect and stream switch information not yet in the DME using show commands. However, using the NX-API instead of streaming data from the DME has inherent scale limitations as outlined:
The switch backend dynamically processes NX-API calls such as show commands,
NX-API spawns several processes that can consume up to a maximum of 20% of the CPU.
NX-API data translates from the CLI to XML to JSON.
The following is a suggested user flow to help limit excessive NX-API sensor path bandwidth consumption:
Check whether the show command has NX-API support. You can confirm whether NX-API supports the command from the VSH with the pipe option: show <command> | json
or show <command> | json pretty
.
 Note | Avoid commands that take the switch more than 30 seconds to return JSON output. |
Refine the show command to include any filters or options.
Avoid enumerating the same command for individual outputs; i.e., show vlan id 100, show vlan id 101, etc.. Instead, use the CLI range options; i.e., show vlan id 100-110,204, whenever possible to improve performance.
If only the summary/counter is needed, then avoid dumping a whole show command output to limit the bandwidth and data storage required for data collection.
Configure telemetry with sensor groups that use NX-API as their data sources. Add the show commands as sensor paths
Configure telemetry with a cadence of 5 times the processing time of the respective show command to limit CPI usage.
Receive and process the streamed NX-API output as part of the existing DME collection.
Starting with Cisco NX-OS 7.0(3)I7(1), telemetry VRF support allows you to specify a transport VRF. This means that the telemetry data stream can egress via front-panel ports and avoid possible competition between SSH/NGINX control sessions.
You can use the use-vrf vrf-name command to specify the transport VRF.
The following example specifies the transport VRF:
switch(config)# telemetry
switch(config-telemetry)# destination-profile
switch(config-tm-dest-profile)# use-vrf test_vrf
{
"telemetryDestProfile": {
"attributes": {
"adminSt": "enabled"
},
"children": [
{
"telemetryDestOptVrf": {
"attributes": {
"name": "default"
}
}
}
]
}
}
Your switch must be running Cisco NX-OS Release 7.3(0)I5(1) or a later release.
Step 1 | (Optional) openssl argument Create an SSL or TLS certificate on the server that receives the data, where the private.key file is the private key and the public.crt is the public key. Example:Generate an SSL/TLS certificate using a specific argument, such as the following:
| ||||
Step 2 | configure terminal Enter the global configuration mode. Example:switch# configure terminal | ||||
Step 3 | feature telemetry Enable the streaming telemetry feature. | ||||
Step 4 | feature nxapi Enable NX-API. | ||||
Step 5 | nxapi use-vrf management Enable the VRF management to be used for NX-API communication. | ||||
Step 6 | telemetry Enter configuration mode for streaming telemetry. Example:switch(config)# telemetry | ||||
Step 7 | (Optional) certificate certificate_path host_URL Use an existing SSL/TLS certificate. Example:switch(config-telemetry)# certificate /bootflash/server.key localhost | ||||
Step 8 | (Optional) Specify a transport VRF or enable telemetry compression for gRPC transport.
Example:
| ||||
Step 9 | sensor-group sgrp_id Create a sensor group with ID srgp_id and enter sensor group configuration mode. Currently only numeric ID values are supported. The sensor group defines nodes that will be monitored for telemetry reporting. Example:switch(config-telemetry)# sensor-group 100 | ||||
Step 10 | (Optional) data-source data-source-type Select a data source. Select from either DME or NX-API as the data source.
Example:switch(config-telemetry)# data-source NX-API | ||||
Step 11 | path sensor_path depth 0 [filter-condition filter] [alias path_alias] Add a sensor path to the sensor group.
Example:
| ||||
Step 12 | destination-group dgrp_id Create a destination group and enter destination group configuration mode. Currently dgrp_id only supports numeric ID values. Example:switch(conf-tm-sensor)# destination-group 100 | ||||
Step 13 | (Optional) ip address ip_address port port protocol procedural-protocol encoding encoding-protocol Specify an IPv4 IP address and port to receive encoded telemetry data.
Example:switch(conf-tm-sensor)# ip address 171.70.55.69 port 50001 protocol gRPC encoding GPB switch(conf-tm-sensor)# ip address 171.70.55.69 port 50009 protocol UDP encoding JSON | ||||
Step 14 | ip_version address ip_address port portnum Create a destination profile for the outgoing data. When the destination group is linked to a subscription, telemetry data is sent to the IP address and port that is specified by this profile. Example:
| ||||
Step 15 | subscription sub_id Create a subscription node with ID and enter the subscription configuration mode. Currently sub_id only supports numeric ID values.
Example:switch(conf-tm-dest)# subscription 100 | ||||
Step 16 | snsr-grp sgrp_id sample-interval interval Link the sensor group with ID sgrp_id to this subscription and set the data sampling interval in milliseconds. An interval value of 0 creates an event-based subscription, in which telemetry data is sent only upon changes under the specified MO. An interval value greater than 0 creates a frequency-based subscription, in which telemetry data is sent periodically at the specified interval. For example, an interval value of 15000 results in the sending of telemetry data every 15 seconds. Example:switch(conf-tm-sub)# snsr-grp 100 sample-interval 15000 | ||||
Step 17 | dst-grp dgrp_id Link the destination group with ID dgrp_id to this subscription. Example:switch(conf-tm-sub)# dst-grp 100 |
The following steps describe how to configure a single telemetry DME stream with a ten second cadence with GPB encoding.
switch# configure terminal
switch(config)# feature telemetry
switch(config)# telemetry
switch(config-telemetry)# destination-group 1
switch(config-tm-dest)# ip address 171.70.59.62 port 50051 protocol gRPC encoding GPB
switch(config-tm-dest)# exit
switch(config-telemetry)# sensor group sg1
switch(config-tm-sensor)# data-source DME
switch(config-tm-dest)# path interface depth unbounded query-condition keep-data-type
switch(config-tm-dest)# subscription 1
switch(config-tm-dest)# dst-grp 1
switch(config-tm-dest)# snsr grp 1 sample interval 10000
This example creates a subscription that streams data for the sys/bgp root MO every 5 seconds to the destination IP 1.2.3.4 port 50003.
switch(config)# telemetry
switch(config-telemetry)# sensor-group 100
switch(conf-tm-sensor)# path sys/bgp depth 0
switch(conf-tm-sensor)# destination-group 100
switch(conf-tm-dest)# ip address 1.2.3.4 port 50003
switch(conf-tm-dest)# subscription 100
switch(conf-tm-sub)# snsr-grp 100 sample-interval 5000
switch(conf-tm-sub)# dst-grp 100
This example creates a subscription that streams data for sys/intf every 5 seconds to destination IP 1.2.3.4 port 50003, and encrypts the stream using GPB encoding verified using the test.pem.
switch(config)# telemetry
switch(config-telemetry)# certificate /bootflash/test.pem foo.test.google.fr
switch(conf-tm-telemetry)# destination-group 100
switch(conf-tm-dest)# ip address 1.2.3.4 port 50003 protocol gRPC encoding GPB
switch(config-dest)# sensor-group 100
switch(conf-tm-sensor)# path sys/bgp depth 0
switch(conf-tm-sensor)# subscription 100
switch(conf-tm-sub)# snsr-grp 100 sample-interval 5000
switch(conf-tm-sub)# dst-grp 100
This example creates a subscription that streams data for sys/cdp every 15 seconds to destination IP 1.2.3.4 port 50004.
switch(config)# telemetry
switch(config-telemetry)# sensor-group 100
switch(conf-tm-sensor)# path sys/cdp depth 0
switch(conf-tm-sensor)# destination-group 100
switch(conf-tm-dest)# ip address 1.2.3.4 port 50004
switch(conf-tm-dest)# subscription 100
switch(conf-tm-sub)# snsr-grp 100 sample-interval 15000
switch(conf-tm-sub)# dst-grp 100
This example creates a cadence-based collection of show command data every 750 seconds.
switch(config)# telemetry
switch(config-telemetry)# destination-group 1
switch(conf-tm-dest)# ip address 172.27.247.72 port 60001 protocol gRPC encoding GPB
switch(conf-tm-dest)# sensor-group 1
switch(conf-tm-sensor# data-source NX-API
switch(conf-tm-sensor)# path "show system resources" depth 0
switch(conf-tm-sensor)# path "show version" depth 0
switch(conf-tm-sensor)# path "show environment power" depth 0
switch(conf-tm-sensor)# path "show environment fan" depth 0
switch(conf-tm-sensor)# path "show environment temperature" depth 0
switch(conf-tm-sensor)# path "show process cpu" depth 0
switch(conf-tm-sensor)# path "show nve peers" depth 0
switch(conf-tm-sensor)# path "show nve vni" depth 0
switch(conf-tm-sensor)# path "show nve vni 4002 counters" depth 0
switch(conf-tm-sensor)# path "show int nve 1 counters" depth 0
switch(conf-tm-sensor)# path "show policy-map vlan" depth 0
switch(conf-tm-sensor)# path "show ip access-list test" depth 0
switch(conf-tm-sensor)# path "show system internal access-list resource utilization" depth 0
switch(conf-tm-sensor)# subscription 1
switch(conf-tm-sub)# dst-grp 1
switch(conf-tm-dest)# snsr-grp 1 sample-interval 750000
This example creates an event-based subscription for sys/fm. Data is streamed to the destination only if there is a change under the sys/fm MO.
switch(config)# telemetry
switch(config-telemetry)# sensor-group 100
switch(conf-tm-sensor)# path sys/fm depth 0
switch(conf-tm-sensor)# destination-group 100
switch(conf-tm-dest)# ip address 1.2.3.4 port 50005
switch(conf-tm-dest)# subscription 100
switch(conf-tm-sub)# snsr-grp 100 sample-interval 0
switch(conf-tm-sub)# dst-grp 100
During operation, you can change a sensor group from frequency-based to event-based, and change event-based to frequency-based by changing the sample-interval. This example changes the sensor-group from the previous example to frequency-based. After the following commands, the telemetry application will begin streaming the sys/fm data to the destination every 7 seconds.
switch(config)# telemetry
switch(config-telemetry)# subscription 100
switch(conf-tm-sub)# snsr-grp 100 sample-interval 7000
Multiple sensor groups and destinations can be linked to a single subscription. The subscription in this example streams the data for Ethernet port 1/1 to four different destinations every 10 seconds.
switch(config)# telemetry
switch(config-telemetry)# sensor-group 100
switch(conf-tm-sensor)# path sys/intf/phys-[eth1/1] depth 0
switch(conf-tm-sensor)# destination-group 100
switch(conf-tm-dest)# ip address 1.2.3.4 port 50004
switch(conf-tm-dest)# ip address 1.2.3.4 port 50005
switch(conf-tm-sensor)# destination-group 200
switch(conf-tm-dest)# ip address 5.6.7.8 port 50001 protocol HTTP encoding JSON
switch(conf-tm-dest)# ip address 1.4.8.2 port 60003
switch(conf-tm-dest)# subscription 100
switch(conf-tm-sub)# snsr-grp 100 sample-interval 10000
switch(conf-tm-sub)# dst-grp 100
switch(conf-tm-sub)# dst-grp 200
A sensor group can contain multiple paths, a destination group can contain multiple destination profiles, and a subscription can be linked to multiple sensor groups and destination groups, as shown in this example.
switch(config)# telemetry
switch(config-telemetry)# sensor-group 100
switch(conf-tm-sensor)# path sys/intf/phys-[eth1/1] depth 0
switch(conf-tm-sensor)# path sys/epId-1 depth 0
switch(conf-tm-sensor)# path sys/bgp/inst/dom-default depth 0
switch(config-telemetry)# sensor-group 200
switch(conf-tm-sensor)# path sys/cdp depth 0
switch(conf-tm-sensor)# path sys/ipv4 depth 0
switch(config-telemetry)# sensor-group 300
switch(conf-tm-sensor)# path sys/fm depth 0
switch(conf-tm-sensor)# path sys/bgp depth 0
switch(conf-tm-sensor)# destination-group 100
switch(conf-tm-dest)# ip address 1.2.3.4 port 50004
switch(conf-tm-dest)# ip address 4.3.2.5 port 50005
switch(conf-tm-dest)# destination-group 200
switch(conf-tm-dest)# ip address 5.6.7.8 port 50001
switch(conf-tm-dest)# destination-group 300
switch(conf-tm-dest)# ip address 1.2.3.4 port 60003
switch(conf-tm-dest)# subscription 600
switch(conf-tm-sub)# snsr-grp 100 sample-interval 7000
switch(conf-tm-sub)# snsr-grp 200 sample-interval 20000
switch(conf-tm-sub)# dst-grp 100
switch(conf-tm-sub)# dst-grp 200
switch(conf-tm-dest)# subscription 900
switch(conf-tm-sub)# snsr-grp 200 sample-interval 7000
switch(conf-tm-sub)# snsr-grp 300 sample-interval 0
switch(conf-tm-sub)# dst-grp 100
switch(conf-tm-sub)# dst-grp 300
You can verify the telemetry configuration using the show running-config telemetry command, as shown in this example.
switch(config)# telemetry
switch(config-telemetry)# destination-group 100
switch(conf-tm-dest)# ip address 1.2.3.4 port 50003
switch(conf-tm-dest)# ip address 1.2.3.4 port 50004
switch(conf-tm-dest)# end
switch# show run telemetry
!Command: show running-config telemetry
!Time: Thu Oct 13 21:10:12 2016
version 7.0(3)I5(1)
feature telemetry
telemetry
destination-group 100
ip address 1.2.3.4 port 50003 protocol gRPC encoding GPB
ip address 1.2.3.4 port 50004 protocol gRPC encoding GPB
You can specify transport VRF and telemetry data compression for gRPC using the use-vrf and use-compression gzip commands, as shown in this example.
switch(config)# telemetry
switch(config-telemetry)# destination-profile
switch(conf-tm-dest-profile)# use-vrf default
switch(conf-tm-dest-profile)# use-compression gzip
switch(conf-tm-dest-profile)# sensor-group 1
switch(conf-tm-sensor)# path sys/bgp depth unbounded
switch(conf-tm-sensor)# destination-group 1
switch(conf-tm-dest)# ip address 1.2.3.4 port 50004
switch(conf-tm-dest)# subscription 1
switch(conf-tm-sub)# dst-grp 1
switch(conf-tm-sub)# snsr-grp 1 sample-interval 10000
Use the following NX-OS CLI show commands to display telemetry configuration, statistics, errors, and session information.
This command displays the internal databases that reflect the configuration of telemetry.
switch# show telemetry control database ?
<CR>
> Redirect it to a file
>> Redirect it to a file in append mode
destination-groups Show destination-groups
destinations Show destinations
sensor-groups Show sensor-groups
sensor-paths Show sensor-paths
subscriptions Show subscriptions
| Pipe command output to filter
switch# show telemetry control database
Subscription Database size = 1
--
Subscription ID Data Collector Type
--
100 DME NX-API
Sensor Group Database size = 1
--
Sensor Group ID Sensor Group type Sampling interval(ms) Linked subscriptions
--
100 Timer 10000(Running) 1
Sensor Path Database size = 1
--
Subscribed Query Filter Linked Groups Sec Groups Retrieve level Sensor Path
--
No 1 0 Full sys/fm
Destination group Database size = 2
--
Destination Group ID Refcount
--
100 1
Destination Database size = 2
--
Dst IP Addr Dst Port Encoding Transport Count
--
192.168.20.111 12345 JSON HTTP 1
192.168.20.123 50001 GPB gRPC 1
This command displays the statistics about the internal databases about configuration of telemetry.
switch# show telemetry control stats
show telemetry control stats entered
--
Error Description Error Count
--
Chunk allocation failures 0
Sensor path Database chunk creation failures 0
Sensor Group Database chunk creation failures 0
Destination Database chunk creation failures 0
Destination Group Database chunk creation failures 0
Subscription Database chunk creation failures 0
Sensor path Database creation failures 0
Sensor Group Database creation failures 0
Destination Database creation failures 0
Destination Group Database creation failures 0
Subscription Database creation failures 0
Sensor path Database insert failures 0
Sensor Group Database insert failures 0
Destination Database insert failures 0
Destination Group Database insert failures 0
Subscription insert to Subscription Database failures 0
Sensor path Database delete failures 0
Sensor Group Database delete failures 0
Destination Database delete failures 0
Destination Group Database delete failures 0
Delete Subscription from Subscription Database failures 0
Sensor path delete in use 0
Sensor Group delete in use 0
Destination delete in use 0
Destination Group delete in use 0
Delete destination(in use) failure count 0
Failed to get encode callback 0
Sensor path Sensor Group list creation failures 0
Sensor path prop list creation failures 0
Sensor path sec Sensor path list creation failures 0
Sensor path sec Sensor Group list creation failures 0
Sensor Group Sensor path list creation failures 0
Sensor Group Sensor subs list creation failures 0
Destination Group subs list creation failures 0
Destination Group Destinations list creation failures 0
Destination Destination Groups list creation failures 0
Subscription Sensor Group list creation failures 0
Subscription Destination Groups list creation failures 0
Sensor Group Sensor path list delete failures 0
Sensor Group Subscriptions list delete failures 0
Destination Group Subscriptions list delete failures 0
Destination Group Destinations list delete failures 0
Subscription Sensor Groups list delete failures 0
Subscription Destination Groups list delete failures 0
Destination Destination Groups list delete failures 0
Failed to delete Destination from Destination Group 0
Failed to delete Destination Group from Subscription 0
Failed to delete Sensor Group from Subscription 0
Failed to delete Sensor path from Sensor Group 0
Failed to get encode callback 0
Failed to get transport callback 0
switch# Destination Database size = 1
--
Dst IP Addr Dst Port Encoding Transport Count
--
192.168.20.123 50001 GPB gRPC 1
This command displays the brief statistics about the data collection.
switch# show telemetry data collector brief
--
Collector Type Successful Collections Failed Collections
--
DME 143 0
This command displays detailed statistics about the data collection which includes breakdown of all sensor paths.
switch# show telemetry data collector details
--
Succ Collections Failed Collections Sensor Path
--
150 0 sys/fm
This command displays the errors statistic about the event collection.
switch# show telemetry event collector errors
--
Error Description Error Count
--
APIC-Cookie Generation Failures - 0
Authentication Failures - 0
Authentication Refresh Failures - 0
Authentication Refresh Timer Start Failures - 0
Connection Timer Start Failures - 0
Connection Attempts - 3
Dme Event Subscription Init Failures - 0
Event Data Enqueue Failures - 0
Event Subscription Failures - 0
Event Subscription Refresh Failures - 0
Pending Subscription List Create Failures - 0
Subscription Hash Table Create Failures - 0
Subscription Hash Table Destroy Failures - 0
Subscription Hash Table Insert Failures - 0
Subscription Hash Table Remove Failures - 0
Subscription Refresh Timer Start Failures - 0
Websocket Connect Failures - 0
This command displays the statistics about the event collection which includes breakdown of all sensor paths.
switch# show telemetry event collector stats
--
Collection Count Latest Collection Time Sensor Path
--
This command displays the statistics for the telemetry pipeline.
switch# show telemetry pipeline stats
Main Statistics:
Timers:
Errors:
Start Fail = 0
Data Collector:
Errors:
Node Create Fail = 0
Event Collector:
Errors:
Node Create Fail = 0 Node Add Fail = 0
Invalid Data = 0
Memory:
Allowed Memory Limit = 1181116006 bytes
Occupied Memory = 93265920 bytes
Queue Statistics:
Request Queue:
High Priority Queue:
Info:
Actual Size = 50 Current Size = 0
Max Size = 0 Full Count = 0
Errors:
Enqueue Error = 0 Dequeue Error = 0
Low Priority Queue:
Info:
Actual Size = 50 Current Size = 0
Max Size = 0 Full Count = 0
Errors:
Enqueue Error = 0 Dequeue Error = 0
Data Queue:
High Priority Queue:
Info:
Actual Size = 50 Current Size = 0
Max Size = 0 Full Count = 0
Errors:
Enqueue Error = 0 Dequeue Error = 0
Low Priority Queue:
Info:
Actual Size = 50 Current Size = 0
Max Size = 0 Full Count = 0
Errors:
Enqueue Error = 0 Dequeue Error = 0
This command displays all configured transport sessions.
switch# show telemetry transport
Session Id IP Address Port Encoding Transport Status

0 192.168.20.123 50001 GPB gRPC Connected
This command displays detailed session information for a specific transport session.
switch# show telemetry transport 0
Session Id: 0
IP Address:Port 192.168.20.123:50001
Transport: gRPC
Status: Disconnected
Last Connected: Fri Sep 02 11:45:57.505 UTC
Last Disconnected: Never
Tx Error Count: 224
Last Tx Error: Fri Sep 02 12:23:49.555 UTC
switch# show telemetry transport 1
Session Id: 1
IP Address:Port 10.30.218.56:51235
Transport: HTTP
Status: Disconnected
Last Connected: Never
Last Disconnected: Never
Tx Error Count: 3
Last Tx Error: Wed Apr 19 15:56:51.617 PDT
This command displays details of a specific transport session.
Session Id: 0
Transmission Stats
Compression: disabled
Source Interface: not set()
Transmit Count: 319297
Last TX time: Fri Aug 02 03:51:15.287 UTC
Min Tx Time: 1 ms
Max Tx Time: 3117 ms
Avg Tx Time: 3 ms
Cur Tx Time: 1 ms
This command displays detailed error statistics for a specific transport session.
switch# show telemetry transport 0 errors
Session Id: 0
Connection Errors
Connection Error Count: 0
Transmission Errors
Tx Error Count: 30
Last Tx Error: Thu Aug 01 04:39:47.083 UTC
Last Tx Return Code: No error
Use the following NX-OS CLI commands to display the log and trace information.
This NX-OS CLI command collects the telemetry log contents from the tech-support log. In this example, the command output is redirected into a file in bootflash.
switch# show tech-support telemetry > bootflash:tmst.log
This BASH shell command collects telemetry traces and prints them out.
switch# configure terminal
switch(config)# feature bash
switch(config)# run bash
bash-4.2$ tmtrace.bin -d tm-errors
bash-4.2$ tmtrace.bin -d tm-logs
bash-4.2$ tmtrace.bin -d tm-events
For example:
bash-4.2$ tmtrace.bin -d tm-logs
[01/25/17 22:52:24.563 UTC 1 29130] [3944724224][tm_ec_dme_auth.c:59] TM_EC: Authentication refresh url http://127.0.0.1/api/aaaRefresh.json
[01/25/17 22:52:24.565 UTC 2 29130] [3944724224][tm_ec_dme_rest_util.c:382] TM_EC: Performed POST request on http://127.0.0.1/api/aaaRefresh.json
[01/25/17 22:52:24.566 UTC 3 29130] [3944724224][tm_mgd_timers.c:114] TM_MGD_TIMER: Starting leaf timer for leaf:0x11e17ea4 time_in_ms:540000
[01/25/17 22:52:45.317 UTC 4 29130] [3944724224][tm_ec_dme_event_subsc.c:790] TM_EC: Event subscription database size 0
[01/25/17 22:52:45.317 UTC 5 29130] [3944724224][tm_mgd_timers.c:114] TM_MGD_TIMER: Starting leaf timer for leaf:0x11e17e3c time_in_ms:50000
bash-4.2#
 Note | The tm-logs option is not enabled by default because it is verbose. Enable tm-logs with the Disable tm-logs with the |
The show system internal telemetry trace [tm-events | tm-errors |tm-logs | all] command displays system internal telemetry trace information.
switch# show system internal telemetry trace all
Telemetry All Traces:
Telemetry Error Traces:
[07/26/17 15:22:29.156 UTC 1 28577] [3960399872][tm_cfg_api.c:367] Not able to destroy dest profile list for config node rc:-1610612714 reason:Invalid argument
[07/26/17 15:22:44.972 UTC 2 28577] [3960399872][tm_stream.c:248] No subscriptions for destination group 1
[07/26/17 15:22:49.463 UTC 3 28577] [3960399872][tm_stream.c:576] TM_STREAM: Subscriptoin 1 does not have any sensor groups
3 entries printed
Telemetry Event Traces:
[07/26/17 15:19:40.610 UTC 1 28577] [3960399872][tm_debug.c:41] Telemetry xostrace buffers initialized successfully!
[07/26/17 15:19:40.610 UTC 2 28577] [3960399872][tm.c:744] Telemetry statistics created successfully!
[07/26/17 15:19:40.610 UTC 3 28577] [3960399872][tm_init_n9k.c:97] Platform intf: grpc_traces:compression,channel
switch#
switch# show system internal telemetry trace tm-logs
Telemetry Log Traces:
0 entries printed
switch#
switch# show system internal telemetry trace tm-events
Telemetry Event Traces:
[07/26/17 15:19:40.610 UTC 1 28577] [3960399872][tm_debug.c:41] Telemetry xostrace buffers initialized successfully!
[07/26/17 15:19:40.610 UTC 2 28577] [3960399872][tm.c:744] Telemetry statistics created successfully!
[07/26/17 15:19:40.610 UTC 3 28577] [3960399872][tm_init_n9k.c:97] Platform intf: grpc_traces:compression,channel
[07/26/17 15:19:40.610 UTC 4 28577] [3960399872][tm_init_n9k.c:207] Adding telemetry to cgroup
[07/26/17 15:19:40.670 UTC 5 28577] [3960399872][tm_init_n9k.c:215] Added telemetry to cgroup successfully!
switch# show system internal telemetry trace tm-errors
Telemetry Error Traces:
0 entries printed
switch#
In the object model of the switch DME, the configuration of the telemetry feature is defined in a hierarchical structure of objects as shown in the section "Telemetry Model in the DME." Following are the main objects to be configured:
fmEntity — Contains the NX-API and Telemetry feature states.
fmNxapi — Contains the NX-API state.
fmTelemetry — Contains the Telemetry feature state.
telemetryEntity — Contains the telemetry feature configuration.
telemetrySensorGroup — Contains the definitions of one or more sensor paths or nodes to be monitored for telemetry. The telemetry entity can contain one or more sensor groups.
telemetryRtSensorGroupRel — Associates the sensor group with a telemetry subscription.
telemetrySensorPath — A path to be monitored. The sensor group can contain multiple objects of this type.
telemetryDestGroup — Contains the definitions of one or more destinations to receive telemetry data. The telemetry entity can contain one or more destination groups.
telemetryRtDestGroupRel — Associates the destination group with a telemetry subscription.
telemetryDest — A destination address. The destination group can contain multiple objects of this type.
telemetrySubscription — Specifies how and when the telemetry data from one or more sensor groups is sent to one or more destination groups.
telemetryRsDestGroupRel — Associates the telemetry subscription with a destination group.
telemetryRsSensorGroupRel — Associates the telemetry subscription with a sensor group.
telemetryCertificate — Associates the telemetry subscription with a certificate and hostname.
To configure the telemetry feature using the NX-API, you must construct a JSON representation of the telemetry object structure and push it to the DME with an HTTP or HTTPS POST operation.
 Note | For detailed instructions on using the NX-API, see the Cisco Nexus 3000 and 9000 Series NX-API REST SDK User Guide and API Reference. |
Your switch must be running Cisco NX-OS Release 7.3(0)I5(1) or a later release.
Your switch must be configured to run the NX-API from the CLI:
switch(config)# feature nxapi
NX-API sends telemetry data over management VRF:
switch(config)# nxapi use-vrf management
Step 1 | Enable the telemetry feature. The root element is fmTelemetry and the base path for this element is Example:
|
Step 2 | Create the root level of the JSON payload to describe the telemetry configuration. The root element is telemetryEntity and the base path for this element is Example:
|
Step 3 | Create a sensor group to contain the defined sensor paths. A telemetry sensor group is defined in an object of class telemetrySensorGroup . Configure the following attributes of the object:
Children of the sensor group object will include sensor paths and one or more relation objects (telemetryRtSensorGroupRel) to associate the sensor group with a telemetry subscription. Example:
|
Step 4 | (Optional) Add an SSL/TLS certificate and a host. The telemetryCertificate defines the location of the SSL/TLS certificate with the telemetry subscription/destination. Example:{ |
Step 5 | Define a telemetry destination group. A telemetry destination group is defined in telemetryEntity . Configure the id attribute. Example:{ |
Step 6 | Define a telemetry destination profile. A telemetry destination profile is defined in telemetryDestProfile .
Example:
|
Step 7 | Define one or more telemetry destinations, consisting of an IP address and port number to which telemetry data will be sent. A telemetry destination is defined in an object of class telemetryDest . Configure the following attributes of the object:
Example:
|
Step 8 | Create a telemetry subscription to configure the telemetry behavior. A telemetry subscription is defined in an object of class telemetrySubscription . Configure the following attributes of the object:
Children of the subscription object will include relation objects for sensor groups (telemetryRsSensorGroupRel) and destination groups (telemetryRsDestGroupRel). Example:
|
Step 9 | Add the sensor group object as a child object to the telemetrySubscription element under the root element (telemetryEntity). Example:{ |
Step 10 | Create a relation object as a child object of the subscription to associate the subscription to the telemetry sensor group and to specify the data sampling behavior. The relation object is of class telemetryRsSensorGroupRel and is a child object of telemetrySubscription . Configure the following attributes of the relation object:
Example:
|
Step 11 | Define one or more sensor paths or nodes to be monitored for telemetry. A sensor path is defined in an object of class telemetrySensorPath . Configure the following attributes of the object:
Example:
Example:
Example:
Example:
|
Step 12 | Add sensor paths as child objects to the sensor group object (telemetrySensorGroup). |
Step 13 | Add destinations as child objects to the destination group object (telemetryDestGroup). |
Step 14 | Add the destination group object as a child object to the root element (telemetryEntity). |
Step 15 | Create a relation object as a child object of the telemetry sensor group to associate the sensor group to the subscription. The relation object is of class telemetryRtSensorGroupRel and is a child object of telemetrySensorGroup . Configure the following attributes of the relation object:
Example:
|
Step 16 | Create a relation object as a child object of the telemetry destination group to associate the destination group to the subscription. The relation object is of class telemetryRtDestGroupRel and is a child object of telemetryDestGroup . Configure the following attributes of the relation object:
Example:
|
Step 17 | Create a relation object as a child object of the subscription to associate the subscription to the telemetry destination group. The relation object is of class telemetryRsDestGroupRel and is a child object of telemetrySubscription . Configure the following attributes of the relation object:
Example:
|
Step 18 | Send the resulting JSON structure as an HTTP/HTTPS POST payload to the NX-API endpoint for telemetry configuration. The base path for the telemetry entity is {{URL}}/api/node/mo/sys/tm.json |
{
"telemetryEntity": {
"children": [{
"telemetrySensorGroup": {
"attributes": {
"id": "10"
}
"children": [{
"telemetrySensorPath": {
"attributes": {
"excludeFilter": "",
"filterCondition": "",
"path": "sys/fm/bgp",
"secondaryGroup": "0",
"secondaryPath": "",
"depth": "0"
}
}
}
]
}
},
{
"telemetryDestGroup": {
"attributes": {
"id": "20"
}
"children": [{
"telemetryDest": {
"attributes": {
"addr": "10.30.217.80",
"port": "50051",
"enc": "GPB",
"proto": "gRPC"
}
}
}
]
}
},
{
"telemetrySubscription": {
"attributes": {
"id": "30"
}
"children": [{
"telemetryRsSensorGroupRel": {
"attributes": {
"sampleIntvl": "5000",
"tDn": "sys/tm/sensor-10"
}
}
},
{
"telemetryRsDestGroupRel": {
"attributes": {
"tDn": "sys/tm/dest-20"
}
}
}
]
}
}
]
}
}
This example creates a subscription that streams paths sys/cdp
and sys/ipv4
to a destination 1.2.3.4 port 50001
every five seconds.
POST https://192.168.20.123/api/node/mo/sys/tm.json
Payload:
{
"telemetryEntity": {
"attributes": {
"dn": "sys/tm"
},
"children": [{
"telemetrySensorGroup": {
"attributes": {
"id": "10",
"rn": "sensor-10"
}, "children": [{
"telemetryRtSensorGroupRel": {
"attributes": {
"rn": "rtsensorGroupRel-[sys/tm/subs-30]",
"tCl": "telemetrySubscription",
"tDn": "sys/tm/subs-30"
}
}
}, {
"telemetrySensorPath": {
"attributes": {
"path": "sys/cdp",
"rn": "path-[sys/cdp]",
"excludeFilter": "",
"filterCondition": "",
"secondaryGroup": "0",
"secondaryPath": "",
"depth": "0"
}
}
}, {
"telemetrySensorPath": {
"attributes": {
"path": "sys/ipv4",
"rn": "path-[sys/ipv4]",
"excludeFilter": "",
"filterCondition": "",
"secondaryGroup": "0",
"secondaryPath": "",
"depth": "0"
}
}
}]
}
}, {
"telemetryDestGroup": {
"attributes": {
"id": "20",
"rn": "dest-20"
},
"children": [{
"telemetryRtDestGroupRel": {
"attributes": {
"rn": "rtdestGroupRel-[sys/tm/subs-30]",
"tCl": "telemetrySubscription",
"tDn": "sys/tm/subs-30"
}
}
}, {
"telemetryDest": {
"attributes": {
"addr": "1.2.3.4",
"enc": "GPB",
"port": "50001",
"proto": "gRPC",
"rn": "addr-[1.2.3.4]-port-50001"
}
}
}]
}
}, {
"telemetrySubscription": {
"attributes": {
"id": "30",
"rn": "subs-30"
},
"children": [{
"telemetryRsDestGroupRel": {
"attributes": {
"rType": "mo",
"rn": "rsdestGroupRel-[sys/tm/dest-20]",
"tCl": "telemetryDestGroup",
"tDn": "sys/tm/dest-20",
"tType": "mo"
}
}
}, {
"telemetryRsSensorGroupRel": {
"attributes": {
"rType": "mo",
"rn": "rssensorGroupRel-[sys/tm/sensor-10]",
"sampleIntvl": "5000",
"tCl": "telemetrySensorGroup",
"tDn": "sys/tm/sensor-10",
"tType": "mo"
}
}
}]
}
}]
}
}
The following example payload enables notifications that trigger when the BFP feature is disabled as per the filterCondition
attribute in the telemetrySensorPath
MO. The data is streamed to10.30.217.80 port 50055
.
POST https://192.168.20.123/api/node/mo/sys/tm.json
Payload:
{
"telemetryEntity": {
"children": [{
"telemetrySensorGroup": {
"attributes": {
"id": "10"
}
"children": [{
"telemetrySensorPath": {
"attributes": {
"excludeFilter": "",
"filterCondition": "eq(fmBgp.operSt,\"disabled\")",
"path": "sys/fm/bgp",
"secondaryGroup": "0",
"secondaryPath": "",
"depth": "0"
}
}
}
]
}
},
{
"telemetryDestGroup": {
"attributes": {
"id": "20"
}
"children": [{
"telemetryDest": {
"attributes": {
"addr": "10.30.217.80",
"port": "50055",
"enc": "GPB",
"proto": "gRPC"
}
}
}
]
}
},
{
"telemetrySubscription": {
"attributes": {
"id": "30"
}
"children": [{
"telemetryRsSensorGroupRel": {
"attributes": {
"sampleIntvl": "0",
"tDn": "sys/tm/sensor-10"
}
}
},
{
"telemetryRsDestGroupRel": {
"attributes": {
"tDn": "sys/tm/dest-20"
}
}
}
]
}
}
]
}
}
An example Postman collection is an easy way to start configuring the telemetry feature, and can run all telemetry CLI equivalents in a single payload. Modify the file in the preceding link using your preferred text editor to update the payload to your needs, then open the collection in Postman and run the collection.
The telemetry application is modeled in the DME with the following structure:
model
|----package [name:telemetry]
| @name:telemetry
|----objects
|----mo [name:Entity]
| @name:Entity
| @label:Telemetry System
|--property
| @name:adminSt
| @type:AdminState
|
|----mo [name:SensorGroup]
| | @name:SensorGroup
| | @label:Sensor Group
| |--property
| | @name:id [key]
| | @type:string:Basic
| | @name:dataSrc
| | @type:DataSource
| |
| |----mo [name:SensorPath]
| | @name:SensorPath
| | @label:Sensor Path
| |--property
| | @name:path [key]
| | @type:string:Basic
| | @name:filterCondition
| | @type:string:Basic
| | @name:excludeFilter
| | @type:string:Basic
| | @name:depth
| | @type:RetrieveDepth
|
|----mo [name:DestGroup]
| | @name:DestGroup
| | @label:Destination Group
| |--property
| | @name:id
| | @type:string:Basic
| |
| |----mo [name:Dest]
| | @name:Dest
| | @label:Destination
| |--property
| | @name:addr [key]
| | @type:address:Ip
| | @name:port [key]
| | @type:scalar:Uint16
| | @name:proto
| | @type:Protocol
| | @name:enc
| | @type:Encoding
|
|----mo [name:Subscription]
| @name:Subscription
| @label:Subscription
|--property
| @name:id
| @type:scalar:Uint64
|----reldef
| | @name:SensorGroupRel
| | @to:SensorGroup
| | @cardinality:ntom
| | @label:Link to sensorGroup entry
| |--property
| @name:sampleIntvl
| @type:scalar:Uint64
|
|----reldef
| @name:DestGroupRel
| @to:DestGroup
| @cardinality:ntom
| @label:Link to destGroup entry
For a list of DNs available to the telemetry feature, see Model-Driven Telemetry.
Related Topic | Document Title |
---|---|
Example configurations of telemetry deployment for VXLAN EVPN. |
This section contains the following topics:
This section contains the following topics:
You can use the XML management interface to configure a device. The interface uses the XML-based Network Configuration Protocol (NETCONF), which allows you to manage devices and communicate over the interface with an XML management tool or program. The Cisco NX-OS implementation of NETCONF requires you to use a Secure Shell (SSH) session for communication with a device.
NETCONF is implemented with an XML Schema (XSD) that allows you to enclose device configuration elements within a remote procedure call (RPC) message. From within an RPC message, select one of the NETCONF operations that matches the type of command that you want the device to execute. You can configure the entire set of CLI commands on the device with NETCONF. For information about using NETCONF, see the Creating NETCONF XML Instances and RFC 4741.
For more information about using NETCONF over SSH, see RFC 4742.
This section includes the following topics:
The following table lists the NETCONF layers:
Layer | Example |
---|---|
Transport protocol | SSHv2 |
RPC | RPC, RPC-reply |
Operations | get-config, edit-config |
Content | show or configuration command |
The following is a description of the four NETCONF layers:
SSH transport protocol—Provides an encrypted connection between a client and the server.
RPC tag—Introduces a configuration command from the requestor and the corresponding reply from the XML server.
NETCONF operation tag—Indicates the type of configuration command.
Content—Indicates the XML representation of the feature that you want to configure.
The device software provides an SSH service that is called xmlagent that supports NETCONF over SSH Version 2.
 Note | The xmlagent service is referred to as the XML server in Cisco NX-OS software. |
NETCONF over SSH starts with the exchange of a Hello message between the client and the XML server. After the initial exchange, the client sends XML requests, which the server responds to with XML responses. The client and server terminate requests and responses with the character sequence >. Because this character sequence is not valid in XML, the client and the server can interpret when messages end, which keeps communication in sync.
The XML schemas that define the XML configuration instances that you can use are described in Creating NETCONF XML Instances.
Product | License Requirement |
---|---|
Cisco NX-OS | The XML management interface requires no license. Any feature that is not included in a license package is bundled with the Cisco NX-OS image and is provided at no extra charge to you. For a complete explanation of the Cisco NX-OS licensing scheme, see the Cisco NX-OS Licensing Guide. |
Using the XML management interface has the following prerequisites:
You must install SSHv2 on the client PC.
You must install an XML management tool that supports NETCONF over SSH on the client PC.
You must set the appropriate options for the XML server on the device.
This section describes how to manually configure and use the XML management interface.
 Note | Use the XML management interface with the default settings on the device. |
By default, the SSH server is enabled on your device. If you disable SSH, you must enable it before you start an SSH session on the client PC.
You can configure the XML server options to control the number of concurrent sessions and the timeout for active sessions. You can also enable XML document validation and terminate XML sessions.
 Note | The XML server timeout applies only to active sessions. |
For more information about configuring SSH, see the Cisco NX-OS security configuration guide for your platform.
For more information about the XML commands, see the Cisco NX-OS system management configuration guide for your platform.
Step 1 | Enter global configuration mode. configure terminal |
Step 2 | (Optional) Display information about XML server settings and active XML server sessions. You can find session numbers in the command output. show xml server status |
Step 3 | Validate XML documents for the specified server session. xml server validate all |
Step 4 | Terminate the specified XML server session. xml server terminate session |
Step 5 | (Optional) Disable the SSH server so that you can generate keys. no feature ssh |
Step 6 | Enable the SSH server. (The default is enabled.) feature ssh |
Step 7 | (Optional) Display the status of the SSH server. show ssh server |
Step 8 | Set the number of XML server sessions allowed. xml server max-session sessions The range is from 1 to 8. The default is 8. |
Step 9 | Set the number of seconds after which an XML server session is terminated. xml server timeout seconds The range is from 1 to 1200. The default is 1200 seconds. |
Step 10 | (Optional) Display information about the XML server settings and active XML server sessions. show xml server status |
Step 11 | (Optional) Saves the running configuration to the startup configuration. copy running-config startup-config |
The following example shows how to configure SSH and XML server options through the CLI:
switch# configure terminal
switch(config)# xml server validate all
switch(config)# xml server terminate 8665
switch(config)# no feature ssh
switch(config)# feature ssh server
switch(config)# xml server max-session 6
switch(config)# xml server timeout 2400
switch(config)# copy running-config startup-config
You can start an SSHv2 session on a client PC with the ssh2 command that is similar to the following:
ssh2 username@ip-address -s xmlagent
Enter the login username, the IP address of the device, and the service to connect to. The xmlagent service is referred to as the XML server in the device software.
 Note | The SSH command syntax can differ based on the SSH software on the client PC. |
If you do not receive a Hello message from the XML server, verify the following conditions:
The SSH server is enabled on the device.
The max-sessions option of the XML server is adequate to support the number of SSH connections to the device.
The active XML server sessions on the device are not all in use.
You must advertise your capabilities to the server with a Hello message before the server processes any other requests. When you start an SSH session to the XML server, the server responds immediately with a Hello message. This message informs the client of the capabilities of the server. The XML server supports only base capabilities and, in turn, expects that the client supports only these base capabilities.
The following are sample Hello messages from the server and the client:
 Note | You must end all XML documents with]]>]]> to support synchronization in NETCONF over SSH. |
<?xml version="1.0"?>
<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<capabilities>
<capability>urn:ietf:params:xml:ns:netconf:base:1.0</capability>
</capabilities>
<session-id>25241</session-id>
</hello>]]>]]>
<?xml version="1.0"?>
<nc:hello xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
<nc:capabilities>
<nc:capability>urn:ietf:params:xml:ns:netconf:base:1.0</nc:capability>
</nc:capabilities>
</nc:hello>]]>]]>
To send an XML document to the XML server through an SSH session that you opened in a command shell, copy the XML text from an editor and paste it into the SSH session. Although typically you use an automated method to send XML documents to the XML server, you can verify the SSH connection to the XML server through this copy-paste method.
The following are the guidelines to follow when sending an XML document to the XML server:
Verify that the XML server has sent the Hello message immediately after you started the SSH session, by looking for the Hello message text in the command shell output.
Send the client Hello message before you send XML requests. Note that the XML server sends the Hello response immediately, and no additional response is sent after you send the client Hello message.
Always terminate the XML document with the character sequence]]>]]>.
You can create NETCONF XML instances by enclosing the XML device elements within an RPC tag and NETCONF operation tags. The XML device elements are defined in feature-based XML schema definition (XSD) files, which enclose available CLI commands in an XML format.
The following are the tags that are used in the NETCONF XML request in a framework context. Tag lines are marked with the following letter codes:
X —XML declaration
R—RPC request tag
N—NETCONF operation tags
D—Device tags
X <?xml version="1.0"?>
R <nc:rpc message-id="1" xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
R xmlns="http://www.cisco.com/nxos:1.0:nfcli”>
N <nc:get>
N <nc:filter type="subtree">
D <show>
D <xml>
D <server>
D <status/>
D </server>
D </xml>
D </show>
N </nc:filter>
N </nc:get>
R </nc:rpc>]]>]]>
 Note | You must use your own XML editor or XML management interface tool to create XML instances. |
All NETCONF XML instances must begin with the RPC request tag <rpc>. The <rpc> element has a message ID (message-id) attribute. This message-id attribute is replicated in the <rpc-reply> and can be used to correlate requests and replies. The <rpc> node also contains the following XML namespace declarations:
NETCONF namespace declaration—The <rpc> and NETCONF tags that are defined in the urn:ietf:params:xml:ns:netconf:base:1.0 namespace, are present in the netconf.xsd schema file.
Device namespace declaration—Device tags encapsulated by the <rpc> and NETCONF tags are defined in other namespaces. Device namespaces are feature-oriented. Cisco NX-OS feature tags are defined in different namespaces. RPC Request Tag <rpc> is an example that uses the NFCLI feature. It declares that the device namespace is xmlns=http://www.cisco.com/nxos:1.0:nfcli. nfcli.xsd contains this namespace definition. For more information, see Obtaining XML Schema Definition (XSD) Files.
<nc:rpc message-id="315" xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns=http://www.cisco.com/nxos:1.0:nfcli">
...
</nc:rpc>]]>]]>
<?xml version="1.0"?>
<nc:rpc message-id="16" xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:1.0:if_manager">
<nc:edit-config>
<nc:target>
<nc:running/>
</nc:target>
<nc:config>
<configure>
<__XML__MODE__exec_configure>
<interface>
<ethernet>
<interface>2/30</interface>
<__XML__MODE_if-ethernet>
<__XML__MODE_if-eth-base>
<description>
<desc_line>Marketing Network</desc_line>
</description>
</__XML__MODE_if-eth-base>
</__XML__MODE_if-ethernet>
</ethernet>
</interface>
</__XML__MODE__exec_configure>
</configure>
</nc:config>
</nc:edit-config>
</nc:rpc>]]>]]>
 Note | __XML__MODE tags are used internally by the NETCONF agent. Some tags are present only as children of a certain __XML__MODE. By examining the schema file, you can find the correct mode tag that leads to the tags representing the CLI command in XML. |
NETCONF provides the following configuration operations:
NETCONF Operation | Description | Example |
---|---|---|
close-session | Closes the current XML server session. | |
commit | Sets the running configuration to the current contents of candidate configuration. | |
confirmed-commit | Provides the parameters to commit the configuration for a specified time. If a commit operation does not follow this operation within the confirm-timeout period, the configuration is reverted to the state before the confirmed-commit operation. | |
copy-config | Copies the contents of the source configuration datastore to the target datastore. | |
delete-config | Operation not supported. | — |
edit-config | Configures the features in the running configuration of the device. You use this operation for configuration commands. | |
get | Receives configuration information from a device. You use this operation for show commands. The source of the data is the running configuration. | |
get-config | Retrieves all or part of a configuration. | |
kill-session | Closes the specified XML server session. You cannot close your own session. | |
lock | Allows a client to lock the configuration system of a device. | |
unlock | Releases the configuration lock that the session issued. | |
validate | Checks the configuration of a candidate for syntactical and semantic errors before applying the configuration to a device. |
The XML device elements represent the available CLI commands in XML format. The feature-specific schema files contain the XML tags for CLI commands of that particular feature. See Obtaining XML Schema Definition (XSD) Files.
Using this schema, it is possible to build an XML instance. The relevant portions of the nfcli.xsd schema file that was used to build the NETCONF instances. See (Creating NETCONF XML Instances).
<xs:element name="show" type="show_type_Cmd_show_xml"/>
<xs:complexType name="show_type_Cmd_show_xml">
<xs:annotation>
<xs:documentation>to display xml agent information</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:choice maxOccurs="1">
<xs:element name="xml" minOccurs="1" type="xml_type_Cmd_show_xml"/>
<xs:element name="debug" minOccurs="1" type="debug_type_Cmd_show_debug"/>
</xs:choice>
</xs:sequence>
<xs:attribute name="xpath-filter" type="xs:string"/>
<xs:attribute name="uses-namespace" type="nxos:bool_true"/>
</xs:complexType>
<xs:complexType name="xml_type_Cmd_show_xml">
<xs:annotation>
<xs:documentation>xml agent</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="server" minOccurs="1" type="server_type_Cmd_show_xml"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="server_type_Cmd_show_xml">
<xs:annotation>
<xs:documentation>xml agent server</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:choice maxOccurs="1">
<xs:element name="status" minOccurs="1" type="status_type_Cmd_show_xml"/>
<xs:element name="logging" minOccurs="1" type="logging_type_Cmd_show_logging_facility"/>
</xs:choice>
</xs:sequence>
</xs:complexType>
<xs:complexType name="status_type_Cmd_show_xml">
<xs:annotation>
<xs:documentation>display xml agent information</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="__XML__OPT_Cmd_show_xml___readonly__" minOccurs="0">
<xs:complexType>
<xs:sequence>
<xs:group ref="og_Cmd_show_xml___readonly__" minOccurs="0" maxOccurs="1"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
<xs:group name="og_Cmd_show_xml___readonly__">
<xs:sequence>
<xs:element name="__readonly__" minOccurs="1" type="__readonly___type_Cmd_show_xml"/>
</xs:sequence>
</xs:group>
<xs:complexType name="__readonly___type_Cmd_show_xml">
<xs:sequence>
<xs:group ref="bg_Cmd_show_xml_operational_status" maxOccurs="1"/>
<xs:group ref="bg_Cmd_show_xml_maximum_sessions_configured" maxOccurs="1"/>
<xs:group ref="og_Cmd_show_xml_TABLE_sessions" minOccurs="0" maxOccurs="1"/>
</xs:sequence>
</xs:complexType>
 Note | The __XML__OPT_Cmd_show_xml___readonly__ tag is optional. This tag represents the response. For more information on responses, see RPC Response Tag. |
You can use the | XML option to find the tags that you can use to execute a <get> operation. The following is an example of the | XML option. This example shows you that the namespace-defining tag to execute operations on this device is http://www.cisco.com/nxos:1.0:nfcli, and that the nfcli.xsd file can be used to build requests.
You can enclose the NETCONF operation tags and the device tags within the RPC tag. The </rpc> end tag is followed by the XML termination character sequence.
Switch#> show xml server status | xml
<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:1.0:nfcli">
<nf:data>
<show>
<xml>
<server>
<status>
<__XML__OPT_Cmd_show_xml___readonly__>
<__readonly__>
<operational_status>
<o_status>enabled</o_status>
</operational_status>
<maximum_sessions_configured>
<max_session>8</max_session>
</maximum_sessions_configured>
</__readonly__>
</__XML__OPT_Cmd_show_xml___readonly__>
</status>
</server>
</xml>
</show>
</nf:data>
</nf:rpc-reply>
]]>]]>
Cisco NX-OS supports an <rpc> operation named <exec-command>. The operation allows client applications to send CLI configuration and show commands and to receive responses to those commands as XML tags.
The following is an example of the tags that are used to configure an interface. Tag lines are marked with the following letter codes:
X —XML declaration
R—RPC request tag
EO—Extended operation
The following table provides a detailed explanation of the operation tags:
Tag | Description |
---|---|
<exec-command> | Executes a CLI command. |
<cmd> | Contains the CLI command. A command can be a show command or configuration command. Separate multiple configuration commands by using a semicolon (;). Although multiple show commands are not supported, you can send multiple configuration commands in different <cmd> tags as part of the same request. For more information, see the Example on Configuration CLI Commands Sent Through <exec-command>. |
Replies to configuration commands that are sent through the <cmd> tag are as follows:
<nf:ok>̶̶—̶All configuration commands are executed successfully.
<nf:rpc-error>—Some commands have failed. The operation stops at the first error, and the <nf:rpc-error> subtree provides more information about which configuration has failed. Configurations that are executed before the failed command would have been applied to the running configuration.
The show command must be sent in its own <exec-command> instance as shown in the following example:
X <?xml version="1.0"?>
R <nf:rpc xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nxos="http://www.cisco.com/nxos:1.0" message-id="3">
EO <nxos:exec-command>
EO <nxos:cmd>conf t ; interface ethernet 2/1 </nxos:cmd>
EO <nxos:cmd>channel-group 2000 ; no shut; </nxos:cmd>
EO </nxos:exec-command>
R </nf:rpc>]]>]]>
The following is the response to a send operation:
<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nxos="http://www.cisco.com/nxos:1.0" message-id="3">
<nf:ok/>
</nf:rpc-reply>
]]>]]>
The following example shows how the show CLI commands that are sent through the <exec-command> can be used to retrieve data:
<?xml version="1.0"?>
<nf:rpc xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nxos="http://www.cisco.com/nxos:1.0" message-id="110">
<nxos:exec-command>
<nxos:cmd>show interface brief</nxos:cmd>
</nxos:exec-command>
</nf:rpc>]]>]]>
<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nxos="http://www.cisco.com/nxos:1.0"
xmlns:mod="http://www.cisco.com/nxos:1.0:if_manager" message-id="110">
<nf:data>
<mod:show>
<mod:interface>
<mod:__XML__OPT_Cmd_show_interface_brief___readonly__>
<mod:__readonly__>
<mod:TABLE_interface>
<mod:ROW_interface>
<mod:interface>mgmt0</mod:interface>
<mod:state>up</mod:state>
<mod:ip_addr>192.0.2.20</mod:ip_addr>
<mod:speed>1000</mod:speed>
<mod:mtu>1500</mod:mtu>
</mod:ROW_interface>
<mod:ROW_interface>
<mod:interface>Ethernet2/1</mod:interface>
<mod:vlan>--</mod:vlan>
<mod:type>eth</mod:type>
<mod:portmode>routed</mod:portmode>
<mod:state>down</mod:state>
<mod:state_rsn_desc>Administratively down</mod:state_rsn_desc>
<mod:speed>auto</mod:speed>
<mod:ratemode>D</mod:ratemode>
</mod:ROW_interface>
</mod:TABLE_interface>
</mod:__readonly__>
</mod:__XML__OPT_Cmd_show_interface_brief___readonly__>
</mod:interface>
</mod:show>
</nf:data>
</nf:rpc-reply>
]]>]]>
<?xml version="1.0"?>
<nf:rpc xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nxos="http://www.cisco.com/nxos:1.0" message-id="3">
<nxos:exec-command>
<nxos:cmd>configure terminal ; interface ethernet2/1 </nxos:cmd>
<nxos:cmd>ip address 192.0.2.2/24 </nxos:cmd>
<nxos:cmd>no channel-group 2000 ; no shut; </nxos:cmd>
</nxos:exec-command>
</nf:rpc>]]>]]>
<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nxos="http://www.cisco.com/nxos:1.0" message-id="3">
<nf:rpc-error>
<nf:error-type>application</nf:error-type>
<nf:error-tag>invalid-value</nf:error-tag>
<nf:error-severity>error</nf:error-severity>
<nf:error-message>Ethernet2/1: not part of port-channel 2000
</nf:error-message>
<nf:error-info>
<nf:bad-element>cmd</nf:bad-element>
</nf:error-info>
</nf:rpc-error>
</nf:rpc-reply>
]]>]]>
After a command is executed, the interface IP address is set, but the administrative state is not modified (the no shut command is not executed. The administrative state is not modified because the no port-channel 2000 command results in an error.
The <rpc-reply> is due to a show command that is sent through the <cmd> tag that contains the XML output of the show command.
You cannot combine configuration and show commands on the same <exec-command> instance. The following example shows config and show commands that are combined in the same instance.
<?xml version="1.0"?>
<nf:rpc xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nxos="http://www.cisco.com/nxos:1.0" message-id="110">
<nxos:exec-command>
<nxos:cmd>conf t ; interface ethernet 2/1 ; ip address 1.1.1.4/24 ; show xml
server status </nxos:cmd>
</nxos:exec-command>
</nf:rpc>]]>]]>
<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nxos="http://www.cisco.com/nxos:1.0" message-id="110">
<nf:rpc-error>
<nf:error-type>application</nf:error-type>
<nf:error-tag>invalid-value</nf:error-tag>
<nf:error-severity>error</nf:error-severity>
<nf:error-message>Error: cannot mix config and show in exec-command. Config cmds
before the show were executed.
Cmd:show xml server status</nf:error-message>
<nf:error-info>
<nf:bad-element>cmd</nf:bad-element>
</nf:error-info>
</nf:rpc-error>
</nf:rpc-reply>
]]>]]>
<?xml version="1.0"?>
<nf:rpc xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nxos="http://www.cisco.com/nxos:1.0" message-id="110">
<nxos:exec-command>
<nxos:cmd>show xml server status ; show xml server status </nxos:cmd>
</nxos:exec-command>
</nf:rpc>]]>]]>
<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nxos="http://www.cisco.com/nxos:1.0" message-id="110">
<nf:rpc-error>
<nf:error-type>application</nf:error-type>
<nf:error-tag>invalid-value</nf:error-tag>
<nf:error-severity>error</nf:error-severity>
<nf:error-message>Error: show cmds in exec-command shouldn't be followed by anything
</nf:error-message>
<nf:error-info>
<nf:bad-element><cmd></nf:bad-element>
</nf:error-info>
</nf:rpc-error>
</nf:rpc-reply>
]]>]]>
For every XML request sent by a client, the XML server sends an XML response that is enclosed in the RPC response tag <rpc-reply>.
The following example shows the RPC response tag <rpc-reply>:
<nc:rpc-reply message-id=”315” xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns=http://www.cisco.com/nxos:1.0:nfcli">
<ok/>
</nc:rpc-reply>]]>]]>
The elements <ok>, <data>, and <rpc-error> can appear in the RPC response. The following table describes the RPC response elements that can appear in the <rpc-reply> tag:
Element | Description |
---|---|
<ok> | The RPC request completed successfully. This element is used when no data is returned in the response. |
<data> | The RPC request completed successfully. The data that are associated with the RPC request is enclosed in the <data> element. |
<rpc-error> | The RPC request failed. Error information is enclosed in the <rpc-error> element. |
The device tags encapsulated in the <data> tag contain the request, followed by the response. A client application can safely ignore all the tags before the <readonly> tag, as show in the following example:
<?xml version="1.0" encoding="ISO-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:1.0:if_manager">
<nf:data>
<show>
<interface>
<__XML__OPT_Cmd_show_interface_brief___readonly__>
<__readonly__>
<TABLE_interface>
<ROW_interface>
<interface>mgmt0</interface>
<state>up</state>
<ip_addr>xx.xx.xx.xx</ip_addr>
<speed>1000</speed>
<mtu>1500</mtu>
</ROW_interface>
<ROW_interface>
<interface>Ethernet2/1</interface>
<vlan>--</vlan>
<type>eth</type>
<portmode>routed</portmode>
<state>down</state>
<state_rsn_desc>Administratively down</state_rsn_desc>
<speed>auto</speed>
<ratemode>D</ratemode>
</ROW_interface>
</TABLE_interface>
</__readonly__>
</__XML__OPT_Cmd_show_interface_brief___readonly__>
</interface>
</show>
</nf:data>
</nf:rpc-reply>
]]>]]>
 Note | <__XML__OPT.*> and <__XML__BLK.*> appear in responses and are sometimes used in requests. These tags are used by the NETCONF agent and are present in responses after the <__readonly__> tag. They are necessary in requests, and should be added according to the schema file to reach the XML tag that represents the CLI command. |
This section provides examples of the following XML instances:
The following examples show the close-session request, followed by the close-session response:
<?xml version="1.0"?>
<nc:rpc message-id="101" xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:1.0">
<nc:close-session/>
</nc:rpc>]]>]]>
<nc:rpc-reply xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:1.0" message-id="101">
<nc:ok/>
</nc:rpc-reply>]]>]]>
The following examples show the kill session request, followed by the kill session response:
<nc:rpc message-id="101" xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:1.0">
<nc:kill-session>
<nc:session-id>25241</nc:session-id>
</nc:kill-session>
</nc:rpc>]]>]]>
<?xml version="1.0"?>
<nc:rpc-reply xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:1.0" message-id="101">
<nc:ok/>
</nc:rpc-reply>]]>]]>
The following examples show the copy config request, followed by the copy config response:
<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<copy-config>
<target>
<running/>
</target>
<source>
<url>https://user@example.com:passphrase/cfg/new.txt</url>
</source>
</copy-config>
</rpc>
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>
The following examples show the use of NETCONF edit config:
<?xml version="1.0"?>
<nc:rpc message-id="16" xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:1.0:if_manager">
<nc:edit-config>
<nc:target>
<nc:running/>
</nc:target>
<nc:config>
<configure>
<__XML__MODE__exec_configure>
<interface>
<ethernet>
<interface>2/30</interface>
<__XML__MODE_if-ethernet>
<__XML__MODE_if-eth-base>
<description>
<desc_line>Marketing Network</desc_line>
</description>
</__XML__MODE_if-eth-base>
</__XML__MODE_if-ethernet>
</ethernet>
</interface>
</__XML__MODE__exec_configure>
</configure>
</nc:config>
</nc:edit-config>
</nc:rpc>]]>]]>
<?xml version="1.0"?>
<nc:rpc-reply xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="http://www.cisco.com/nxos:1.0:if_manager" message-id="16">
<nc:ok/>
</nc:rpc-reply>]]>]]>
The operation attribute in edit config identifies the point in configuration where the specified operation is performed. If the operation attribute is not specified, the configuration is merged into the existing configuration data store. The operation attribute can have the following values:
create
merge
delete
The following example shows how to delete the configuration of interface Ethernet 0/0 from the running configuration:
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<edit-config>
<target>
<running/>
</target>
<default-operation>none</default-operation>
<config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
<top xmlns="http://example.com/schema/1.2/config">
<interface xc:operation="delete">
<name>Ethernet0/0</name>
</interface>
</top>
</config>
</edit-config>
</rpc>]]>]]>
The following example shows how to edit the configuration of interface Ethernet 0/0 from the running configuration:
<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>]]>]]>
The following examples show the use of NETCONF get config:
<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<get-config>
<source>
<running/>
</source>
<filter type="subtree">
<top xmlns="http://example.com/schema/1.2/config">
<users/>
</top>
</filter>
</get-config>
</rpc>]]>]]>
<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<top xmlns="http://example.com/schema/1.2/config">
<users>
<user>
<name>root</name>
<type>superuser</type>
<full-name>Charlie Root</full-name>
<company-info>
<dept>1</dept>
<id>1</id>
</company-info>
</user>
<!-- additional <user> elements appear here... -->
</users>
</top>
</data>
</rpc-reply>]]>]]>
The following examples show a lock request, a success response, and a response to an unsuccessful attempt:
<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<lock>
<target>
<running/>
</target>
</lock>
</rpc>]]>]]>
<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/> <!-- lock succeeded -->
</rpc-reply>]]>]]>
<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<rpc-error> <!-- lock failed -->
<error-type>protocol</error-type>
<error-tag>lock-denied</error-tag>
<error-severity>error</error-severity>
<error-message>
Lock failed, lock is already held
</error-message>
<error-info>
<session-id>454</session-id>
<!-- lock is held by NETCONF session 454 -->
</error-info>
</rpc-error>
</rpc-reply>]]>]]>
The following examples show the use of NETCONF unlock:
<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<unlock>
<target>
<running/>
</target>
</unlock>
</rpc>
<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>
The following examples show a commit operation and a commit reply:
<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<commit/>
</rpc>
<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>
The following examples show a confirmed commit operation and a confirmed commit reply:
<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<commit>
<confirmed/>
<confirm-timeout>120</confirm-timeout>
</commit>
</rpc>]]>]]>
<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>]]>]]>
The following examples show how to configure rollback on error and the response to this request:
<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<edit-config>
<target>
<running/>
</target>
<error-option>rollback-on-error</error-option>
<config>
<top xmlns="http://example.com/schema/1.2/config">
<interface>
<name>Ethernet0/0</name>
<mtu>100000</mtu>
</interface>
</top>
</config>
</edit-config>
</rpc>]]>]]>
<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>]]>]]>
The following examples show the use of NETCONF validate capability. The string urn:ietf:params:netconf:capability:validate:1.0 identifies the NETCONF validate capability.
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<validate>
<source>
<candidate/>
</source>
</validate>
</rpc>]]>]]>
<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>]]>]]>
The streaming telemetry feature of Cisco Nexus switches continuously streams data out of the network and notifies the client, providing near-real-time access to monitoring data.
Following are the guideline and limitations for streaming telemetry:
The telemetry feature is available in Cisco Nexus 3000 and 9000 switches.
Switches with less than 8 GB of memory do not support telemetry.
Software streaming telemetry does not support the TCP protocol. The tcp option is displayed in the Help text, but is not accepted during configuration.
For each component group, the distinguished names (DNs) in the appendix of the NX-API DME Model Reference can provide the listed properties as data for telemetry.
This preface includes the following sections:
This publication is for network administrators who install, configure, and maintain Cisco Nexus switches.
Command descriptions use the following conventions:
Convention | Description |
---|---|
bold | Bold text indicates the commands and keywords that you enter literally as shown. |
Italic | Italic text indicates arguments for which you supply the values. |
[x] | Square brackets enclose an optional element (keyword or argument). |
[x | y] | Square brackets enclosing keywords or arguments that are separated by a vertical bar indicate an optional choice. |
{x | y} | Braces enclosing keywords or arguments that are separated by a vertical bar indicate a required choice. |
[x {y | z}] | Nested set of square brackets or braces indicate optional or required choices within optional or required elements. Braces and a vertical bar within square brackets indicate a required choice within an optional element. |
variable | Indicates a variable for which you supply values, in context where italics cannot be used. |
string | A nonquoted set of characters. Do not use quotation marks around the string or the string includes the quotation marks. |
Examples use the following conventions:
Convention | Description |
---|---|
screen font | Terminal sessions and information the switch displays are in screen font. |
boldface screen font | Information that you must enter is in boldface screen font. |
italic screen font | Arguments for which you supply values are in italic screen font. |
< > | Nonprinting characters, such as passwords, are in angle brackets. |
[] | Default responses to system prompts are in square brackets. |
!, # | An exclamation point (!) or a pound sign (#) at the beginning of a line of code indicates a comment line. |
The entire Cisco Nexus 9000 Series switch documentation set is available at the following URL:
http://www.cisco.com/en/US/products/ps13386/tsd_products_support_series_home.html
To provide technical feedback on this document, or to report an error or omission, please send your comments to nexus9k-docfeedback@cisco.com. We appreciate your feedback.
To receive timely, relevant information from Cisco, sign up at Cisco Profile Manager.
To get the business impact you’re looking for with the technologies that matter, visit Cisco Services.
To submit a service request, visit Cisco Support.
To discover and browse secure, validated enterprise-class apps, products, solutions and services, visit Cisco Marketplace.
To obtain general networking, training, and certification titles, visit Cisco Press.
To find warranty information for a specific product or product family, access Cisco Warranty Finder.
Cisco Bug Search Tool (BST) is a web-based tool that acts as a gateway to the Cisco bug tracking system that maintains a comprehensive list of defects and vulnerabilities in Cisco products and software. BST provides you with detailed defect information about your products and software.
THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.
THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.
The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.
NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.
IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.
All printed copies and duplicate soft copies of this document are considered uncontrolled. See the current online version for the latest version.
Cisco has more than 200 offices worldwide. Addresses and phone numbers are listed on the Cisco website at www.cisco.com/go/offices.
Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: https://www.cisco.com/c/en/us/about/legal/trademarks.html. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1721R)