Cisco Nexus 93240YC-FX2 NX-OS Mode Switch Hardware Installation Guide

First Published: 2018-02-12
Last Modified: 2018-11-01
CONTENTS

Introduction

PREFACE
Preface vii
 Audience vii
 Documentation Conventions vii
 Related Documentation for Cisco Nexus 9000 Series NX-OS Software viii
 Documentation Feedback x
 Communications, Services, and Additional Information x

CHAPTER 1
Overview 1
 Overview 1

CHAPTER 2
Preparing the Site 5
 Temperature Requirements 5
 Humidity Requirements 5
 Altitude Requirements 5
 Dust and Particulate Requirements 6
 Minimizing Electromagnetic and Radio Frequency Interference 6
 Shock and Vibration Requirements 7
 Grounding Requirements 7
 Planning for Power Requirements 7
 Airflow Requirements 9
 Rack and Cabinet Requirements 9
 Clearance Requirements 10

CHAPTER 3
Installing the Switch Chassis 13
Safety 13
Installation Options with Rack-Mount Kits, Racks, and Cabinets 14
Airflow Considerations 14
Installation Guidelines 14
Unpacking and Inspecting the Switch 16
Installing the Switch Using the NXK-ACC-KIT-1RU Rack-Mount Kit 17
Installing the Switch Using the N3K-C3064-ACC-KIT Rack-Mount Kit 20
Grounding the Chassis 24
Installing the Airflow Sleeve (NXA-AIRFLOW-SLV3) 26
Starting the Switch 28

CHAPTER 4
Connecting the Switch to the Network 31
Overview of Network Connections 31
Connecting a Console to the Switch 31
Creating the Initial Switch Configuration 33
Setting Up the Management Interface 34
Connecting Interface Ports to Other Devices 35
Uplink Connections 35
Downlink Connections 35

CHAPTER 5
Replacing Components 37
Replacing a Fan Module 37
Removing a Fan Module 37
Installing a Fan Module 38
Replacing a Power Supply Module 38
Replacing an AC Power Supply 38
Replacing a High Voltage (HVAC/HVDC) Power Supply 40
Replacing a DC Power Supply 41

APPENDIX A
Rack Specifications 43
Overview of Racks 43
General Requirements for Cabinets and Racks 43
Requirements Specific to Standard Open Racks 44
Requirements Specific to Perforated Cabinets 44
Cable Management Guidelines 44

APPENDIX B

System Specifications 45
Environmental Specifications 45
Switch Dimensions 45
Switch and Module Weights and Quantities 46
Transceiver and Cable Specifications 46
Switch Power Input Requirements 47
Power Specifications 47
750-W AC Power Supply Specifications 47
1100-W AC Power Supply Specifications 47
1100-W HVAC/HVDC Power Supply Specifications 48
1100-W DC Power Supply Specifications 49
Power Cable Specifications 49
AC Power Cables Supported by NX-OS Mode Switches 49
HVAC/HVDC Power Cables Supported by ACI-Mode and NX-OS Mode Switches 50
DC Power Cable Specifications 52
Regulatory Standards Compliance Specifications 52

APPENDIX C

LEDs 55
Switch Chassis LEDs 55
Fan Module LEDs 56
Power Supply LEDs 56

APPENDIX D

Additional Kits 59
Rack Mount Kit NXK-ACC-KIT-1RU 59
Rack Mount Kit N3K-C3064-ACC-KIT 60
Airflow Sleeve 61
Vent Bracket 61

APPENDIX E

Site Preparation and Maintenance Records 63
Site Preparation Checklist 63
Contact and Site Information 64
Chassis and Module Information 65
Preface

- Audience, on page vii
- Documentation Conventions, on page vii
- Related Documentation for Cisco Nexus 9000 Series NX-OS Software, on page viii
- Documentation Feedback, on page x
- Communications, Services, and Additional Information, on page x

Audience

This publication is for network administrators who install, configure, and maintain Cisco Nexus switches.

Documentation Conventions

Command descriptions use the following conventions:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bold</td>
<td>Bold text indicates the commands and keywords that you enter literally as shown.</td>
</tr>
<tr>
<td>Italic</td>
<td>Italic text indicates arguments for which the user supplies the values.</td>
</tr>
<tr>
<td>[x]</td>
<td>Square brackets enclose an optional element (keyword or argument).</td>
</tr>
<tr>
<td>[x</td>
<td>y]</td>
</tr>
<tr>
<td>{x</td>
<td>y}</td>
</tr>
<tr>
<td>[x {y</td>
<td>z}]</td>
</tr>
<tr>
<td>variable</td>
<td>Indicates a variable for which you supply values, in context where italics cannot be used.</td>
</tr>
</tbody>
</table>
Convention | Description
---|---
string | A nonquoted set of characters. Do not use quotation marks around the string or the string will include the quotation marks.

Examples use the following conventions:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>screen font</td>
<td>Terminal sessions and information the switch displays are in screen font.</td>
</tr>
<tr>
<td>boldface screen font</td>
<td>Information you must enter is in boldface screen font.</td>
</tr>
<tr>
<td>italic screen font</td>
<td>Arguments for which you supply values are in italic screen font.</td>
</tr>
<tr>
<td><></td>
<td>Nonprinting characters, such as passwords, are in angle brackets.</td>
</tr>
<tr>
<td>[]</td>
<td>Default responses to system prompts are in square brackets.</td>
</tr>
<tr>
<td>!, #</td>
<td>An exclamation point (!) or a pound sign (#) at the beginning of a line of code indicates a comment line.</td>
</tr>
</tbody>
</table>

Related Documentation for Cisco Nexus 9000 Series NX-OS Software

The entire Cisco NX-OS 9000 Series documentation set is available at the following URL:

Release Notes

The release notes are available at the following URL:

Configuration Guides

These guides are available at the following URL:

The documents in this category include:

- *Cisco Nexus 9000 Series NX-OS Fundamentals Configuration Guide*
- *Cisco Nexus 9000 Series NX-OS High Availability and Redundancy Guide*
- *Cisco Nexus 9000 Series NX-OS Interfaces Configuration Guide*
- *Cisco Nexus 9000 Series NX-OS Layer 2 Switching Configuration Guide*
- *Cisco Nexus 9000 Series NX-OS Multicast Routing Configuration Guide*
• Cisco Nexus 9000 Series NX-OS Quality of Service Configuration Guide
• Cisco Nexus 9000 Series NX-OS Security Configuration Guide
• Cisco Nexus 9000 Series NX-OS System Management Configuration Guide
• Cisco Nexus 9000 Series NX-OS Unicast Routing Configuration Guide
• Cisco Nexus 9000 Series NX-OS Verified Scalability Guide
• Cisco Nexus 9000 Series NX-OS VXLAN Configuration Guide

Other Software Documents
• Cisco Nexus 7000 Series and 9000 Series NX-OS MIB Quick Reference
• Cisco Nexus 9000 Series NX-OS Programmability Guide
• Cisco Nexus 9000 Series NX-OS Software Upgrade and Downgrade Guide
• Cisco Nexus 9000 Series NX-OS System Messages Reference
• Cisco Nexus 9000 Series NX-OS Troubleshooting Guide
• Cisco NX-OS Licensing Guide
• Cisco NX-OS XML Interface User Guide

Hardware Documents
• Cisco Nexus 3000 Series Hardware Installation Guide
• Cisco Nexus 92160YC-X NX-OS Mode Switch Hardware Installation Guide
• Cisco Nexus 92300YC NX-OS Mode Switch Hardware Installation Guide
• Cisco Nexus 92304QC NX-OS Mode Switch Hardware Installation Guide
• Cisco Nexus 9236C NX-OS Mode Switch Hardware Installation Guide
• Cisco Nexus 9272Q NX-OS Mode Switch Hardware Installation Guide
• Cisco Nexus 93108TC-EX NX-OS Mode Switch Hardware Installation Guide
• Cisco Nexus 93120TX NX-OS Mode Switch Hardware Installation Guide
• Cisco Nexus 93128TX NX-OS Mode Switch Hardware Installation Guide
• Cisco Nexus 93180LC-EX NX-OS Mode Switch Hardware Installation Guide
• Cisco Nexus 93180YC-EX NX-OS Mode Switch Hardware Installation Guide
• Cisco Nexus 9332PQ NX-OS-Mode Switch Hardware Installation Guide
• Cisco Nexus 9372PX and 9372PX-E NX-OS Mode Switches Hardware Installation Guide
• Cisco Nexus 9372TX and 9372TX-E NX-OS Mode Switches Hardware Installation Guide
• Cisco Nexus 9396PX NX-OS Mode Switch Hardware Installation Guide
Documentation Feedback

To provide technical feedback on this document, or to report an error or omission, please send your comments to nexus9k-docfeedback@cisco.com. We appreciate your feedback.

Communications, Services, and Additional Information

- To receive timely, relevant information from Cisco, sign up at Cisco Profile Manager.
- To get the business impact you’re looking for with the technologies that matter, visit Cisco Services.
- To submit a service request, visit Cisco Support.
- To discover and browse secure, validated enterprise-class apps, products, solutions and services, visit Cisco Marketplace.
- To obtain general networking, training, and certification titles, visit Cisco Press.
- To find warranty information for a specific product or product family, access Cisco Warranty Finder.

Cisco Bug Search Tool

Cisco Bug Search Tool (BST) is a web-based tool that acts as a gateway to the Cisco bug tracking system that maintains a comprehensive list of defects and vulnerabilities in Cisco products and software. BST provides you with detailed defect information about your products and software.
Overview

The Cisco Nexus 93240YC-FX2 (N9K-C93240YC-FX2) is a 1.2 RU, fixed-port switch designed for deployment in data centers. This switch has 48 1/10/25-Gigabit Ethernet SFP28 ports and 12 40/100-Gigabit Ethernet QSFP28 ports. The ports on this switch can operate in multiple template configurations.

You can configure the 12 40/100-Gigabit Ethernet QSFP28 ports as downlink ports.

This switch includes the following user-replaceable components:

- Fan modules (five) with the following airflow choices:
 - Port-side exhaust airflow with blue coloring (NXA-FAN-35CFM-PE)
 - Port-side intake airflow with burgundy coloring (NXA-FAN-35CFM-PI)

 Table 1: Fan Speeds for This Switch

<table>
<thead>
<tr>
<th>Fan Speed</th>
<th>Port-Side Exhaust</th>
<th>Port-Side Intake</th>
</tr>
</thead>
<tbody>
<tr>
<td>70%</td>
<td>Typical/Minimum</td>
<td>50%</td>
</tr>
<tr>
<td>100%</td>
<td>Maximum</td>
<td>100%</td>
</tr>
</tbody>
</table>

- Power supply modules (two—One for operations and one for redundancy [1+1]) with the following choices:
 - 750-W AC power supply with port-side exhaust airflow (blue coloring) (NXA-PAC-750W-PE)
 - 750-W AC power supply with port-side intake airflow (burgundy coloring) (NXA-PAC-750W-PI)
• 1100-W AC power supply with port-side intake airflow (burgundy coloring) (NXA-PAC-1100W-PI2)
• 1100-W AC power supply with port-side exhaust airflow (blue coloring) (NXA-PAC-1100W-PE2)
• 1100-W DC power supply with port-side intake airflow (burgundy coloring) (NXA-PDC-1100W-P1)
• 1100-W DC power supply with port-side exhaust airflow (blue coloring) (NXA-PDC-1100W-PE)
• 1100-W HVAC/HVDC power supply with port-side intake airflow (burgundy coloring) (NXA-PHV-1100W-PI)
• 1100-W HVAC/HVDC power supply with port-side exhaust airflow (blue coloring) (NXA-PHV-1100W-PE)

Note

In the event that only one power supply is operating in an active system and a second power supply is inserted, the system fan will slow down to **50% of Max speed** for 12 seconds. It can take up to 10 seconds for the second power supply to become active. Please do not remove the first power supply during this time-frame, in order to avoid system shutdown.

The following figure shows the hardware features seen from the port side of the chassis.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Chassis LEDs (Beacon [BCN], Status [STS], and Environment [ENV])</td>
</tr>
<tr>
<td>2</td>
<td>10-/25-Gigabit Ethernet SFP28 ports (48)</td>
</tr>
</tbody>
</table>
Overview

3	40-/100-Gigabit Ethernet QSFP28 ports (12)	8	Screw holes (6) for attaching rack mounting brackets
4	Console port (RS232 port)	9	Grounding pad
5	Management port (RJ-45 port)		

1 10/25G-LR-S with QSA is not supported in Release 14.0(1)

To determine which transceivers, adapters, and cables this switch supports, see the [Cisco Transceiver Modules Compatibility Information](#) document.

The following figure shows the hardware features seen from the power supply side of the chassis.

| 1 | Screw holes (6) for attaching rack mounting brackets | 3 | Fan modules (5) with fan slot 1 on the left and fan slot 5 on the right |
| 2 | Grounding pad | 4 | Two power supplies (one used for operations and one used for redundancy) (AC power supplies shown). Power supply slot 1 is on the left and slot 2 is on the right. |

Note

The limit of USB support is to USB 2.0 devices that use less than 2.5 W (less than 0.5 A inclusive of surge current). There is no support for devices, such as external hard drives, that instantaneously draw more than 0.5 A.

You can order the fan and power supply modules with port-side intake or port-side exhaust airflow. The PSU you order depends on whether you plan to position the ports in a hot or cold aisle. To determine the airflow direction of the modules installed in your switch, see the following table.
The fan and power supply modules are field replaceable. You can replace one fan module or one power supply module during operations, so long as the other installed modules are operating. If you have only one power supply that is installed, you can install the replacement power supply in the open slot before removing the original power supply.

Note

Fan and power supply modules must have the same direction of airflow. Otherwise, the switch can overheat and shut down. If you are installing a dual-direction power supply, that module automatically uses the same airflow direction as the other modules in the switch.

Caution

If the switch has port-side intake airflow (burgundy coloring for fan modules), you must locate the ports in the cold aisle. If the switch has port-side exhaust airflow (blue coloring for fan modules), you must locate the ports in the hot aisle. If you locate the air intake in a hot aisle, the switch can overheat and shut down.

<table>
<thead>
<tr>
<th>Replaceable Modules</th>
<th>Port-Side Intake Airflow Coloring</th>
<th>Port-Side Exhaust Airflow Coloring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fans</td>
<td>Burgundy</td>
<td>Blue</td>
</tr>
<tr>
<td>AC power supplies</td>
<td>Burgundy</td>
<td>Blue</td>
</tr>
<tr>
<td>HVAC/HVDC power supplies</td>
<td></td>
<td>White</td>
</tr>
<tr>
<td>DC power supplies</td>
<td>Burgundy</td>
<td>Blue</td>
</tr>
</tbody>
</table>
Preparing the Site

• Temperature Requirements, on page 5
• Humidity Requirements, on page 5
• Altitude Requirements, on page 5
• Dust and Particulate Requirements, on page 6
• Minimizing Electromagnetic and Radio Frequency Interference, on page 6
• Shock and Vibration Requirements, on page 7
• Grounding Requirements, on page 7
• Planning for Power Requirements, on page 7
• Airflow Requirements, on page 9
• Rack and Cabinet Requirements, on page 9
• Clearance Requirements, on page 10

Temperature Requirements

The switch requires an operating temperature of 32 to 104 degrees Fahrenheit (0 to 40 degrees Celsius). If the switch is not operating, the temperature must be between –40 to 158 degrees Fahrenheit (–40 to 70 degrees Celsius).

Humidity Requirements

High humidity can cause moisture to enter the switch. Moisture can cause corrosion of internal components and degradation of properties such as electrical resistance, thermal conductivity, physical strength, and size. The switch is rated to withstand from 5- to 95-percent (noncondensing) relative humidity.

Buildings in which the climate is controlled by air-conditioning in the warmer months and by heat during the colder months usually maintain an acceptable level of humidity for the switch equipment. However, if the switch is located in an unusually humid location, use a dehumidifier to maintain the humidity within an acceptable range.

Altitude Requirements

Altitude rating is based on power supply installed; see critical components list in the system CB report for altitude rating.
Dust and Particulate Requirements

Exhaust fans cool power supplies and system fans cool switches by drawing in air and exhausting air out through various openings in the chassis. However, fans also ingest dust and other particles, causing contaminant buildup in the switch and increased internal chassis temperature. Dust and particles can act as insulators and interfere with the mechanical components in the switch. A clean operating environment can greatly reduce the negative effects of dust and other particles.

In addition to regular cleaning, follow these precautions to avoid contamination of your switch:

- Do not permit smoking near the switch.
- Do not permit food or drink near the switch.

Minimizing Electromagnetic and Radio Frequency Interference

Electromagnetic interference (EMI) and radio frequency interference (RFI) from the switch can adversely affect other devices, such as radio and television (TV) receivers. Radio frequencies that emanate from the switch can also interfere with cordless and low-power telephones. Conversely, RFI from high-power telephones can cause spurious characters to appear on the switch monitor.

RFI is defined as any EMI with a frequency above 10 kHz. This type of interference can travel from the switch to other devices through the power cable and power source or through the air as transmitted radio waves. The Federal Communications Commission (FCC) publishes specific regulations to limit the amount of EMI and RFI that are emitted by computing equipment. Each switch meets these FCC regulations.

To reduce the possibility of EMI and RFI, follow these guidelines:

- Cover all open expansion slots with a blank filler plate.
- Always use shielded cables with metal connector shells for attaching peripherals to the switch.

When wires are run for any significant distance in an electromagnetic field, interference can occur to the signals on the wires with the following implications:

- Bad wiring can result in radio interference emanating from the plant wiring.
- Strong EMI, especially when it is caused by lightning or radio transmitters, can destroy the signal drivers and receivers in the chassis and even create an electrical hazard by conducting power surges through lines into equipment.

Note

To predict and prevent strong EMI, you need to consult experts in radio frequency interference (RFI).

The wiring is unlikely to emit radio interference if you use a twisted-pair cable with a good distribution of grounding conductors. If you exceed the recommended distances, use a high-quality twisted-pair cable with one ground conductor for each data signal when applicable.
If the wires exceed the recommended distances, or if wires pass between buildings, give special consideration to the effect of a lightning strike in your vicinity. The electromagnetic pulse that is caused by lightning or other high-energy phenomena can easily couple enough energy into unshielded conductors to destroy electronic switches. You will want to consult experts in electrical surge suppression and shielding if you had similar problems in the past.

Caution

Shock and Vibration Requirements

The switch has been shock- and vibration-tested for operating ranges, handling, and earthquake standards.

Grounding Requirements

The switch is sensitive to variations in voltage that is supplied by the power sources. Overvoltage, undervoltage, and transients (or spikes) can erase data from memory or cause components to fail. To protect against these types of problems, ensure that there is an earth-ground connection for the switch. You can connect the grounding pad on the switch either directly to the earth-ground connection or to a fully bonded and grounded rack.

When you properly install the chassis in a grounded rack, the switch is grounded because it has a metal-to-metal connection to the rack. Alternatively, you can ground the chassis by using a customer-supplied grounding cable that meets your local and national installation requirements. For U.S. installations, we recommend 6-AWG wire. Connect your grounding cable to the chassis with a grounding lug (provided in the switch accessory kit) and to the facility ground.

Note

You automatically ground AC power supplies when you connect them to AC power sources. For DC power supplies, you must connect a grounding wire when wiring the power supply to the DC power source.

Planning for Power Requirements

The switch includes two power supplies (1-to-1 redundancy with current sharing) in one of the following combinations:

- Two 1100-W AC power supplies
- Two 1100-W DC power supplies
- Two 1100-W HVAC/HVDC power supplies

Note

Both power supplies must be the same type. Do not mix AC and DC power supplies in the same chassis.
For \(n+1 \) redundancy, you can use one or two power sources for the two power supplies. For \(n+n \) redundancy, you must use two power sources and connect each power supply to a separate power source.

The power supplies are rated to output up to 1100 W, but the switch requires less than those amounts of power from the power supply. To operate the switch, you must provision enough power from the power source to cover the requirements of both the switch and a power supply. Typically, this switch and a power supply require about 367 W of power input from the power source, but you must provision as much as 777 W power input from the power source to cover peak demand.

Some of the power supply modules have rating capabilities that exceed the switch requirements. When calculating your power requirements, use the switch requirements to determine the amount of power that is required for the power supplies.

To minimize the possibility of circuit failure, make sure that each power-source circuit that is used by the switch is dedicated to the switch.

For AC input application, please refer to the following statement:

Warning

Statement 1005—Circuit Breaker

This product relies on the building's installation for short-circuit (overcurrent) protection. Ensure that the protective devices are rated not greater than 20A (North America), 16A (Europe), and 13A (UK).

For DC input application, please refer to the following statement:

Warning

Statement 1005—Circuit Breaker

This product relies on the building's installation for short-circuit (overcurrent) protection.

- Ensure that the protective devices are rated not greater than 30A when the switch is powered with regular DC power supplies (rated 48-60VDC).
- Ensure that the protective devices are rated not greater than 10A when the switch is powered with HVDC power supplies (rated 240-350VDC).

Warning

Statement 1033

Connect the unit only to DC power source that complies with the Safety Extra-Low Voltage (SELV) requirements in IEC 60950 based safety standards.
We recommend 8-AWG wire for DC installations in the U.S.

For the power cables to use with the power supplies, see Power Cable Specifications, on page 49.

Airflow Requirements

The switch is positioned with its ports in either the front or the rear of the rack depending on your cabling and maintenance requirements. You must have fan and power supply modules that move the coolant air from the cold aisle to the hot aisle in one of the following ways:

- Port-side exhaust airflow—Cool air enters the chassis through the fan and power supply modules in the cold aisle and exhausts through the port end of the chassis in the hot aisle.
- Port-side intake airflow—Cool air enters the chassis through the port end in the cold aisle and exhausts through the fan and power supply modules in the hot aisle.

You can identify the airflow direction of each fan and power supply module by its coloring as follows:

- Blue coloring indicates port-side exhaust airflow.
- Burgundy coloring indicates port-side intake airflow.

To prevent the switch from overheating and shutting down, you must position the air intake for the switch in a cold aisle. The fan and power supply modules must have the same direction of airflow (even if their coloring is different). If you must change the airflow direction for the switch, you must shutdown the switch before changing the modules.

Rack and Cabinet Requirements

You can install the following types of racks or cabinets for your switch:

- Standard perforated cabinets
- Solid-walled cabinets with a roof fan tray (bottom-to-top cooling)
- Standard open four-post Telco racks

Work with your cabinet vendors to determine which of their cabinets meet the following requirements or see the Cisco Technical Assistance Center (TAC) for recommendations:

- Use a standard 19-inch (48.3-cm), four-post Electronic Industries Alliance (EIA) cabinet or rack with mounting rails that conform to English universal hole spacing per section 1 of the ANSI/EIA-310-D-1992 standard.
Clearance Requirements

Provide the chassis with adequate clearance between the chassis and any other rack, device, or structure so that you can properly install the chassis. Provide the chassis with adequate clearance to route cables, provide airflow, and maintain the switch. For the clearances required for an installation of this chassis in a four-post rack, see the following figure.

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Chassis</td>
</tr>
<tr>
<td>2</td>
<td>Vertical rack-mount posts and rails</td>
</tr>
<tr>
<td>3</td>
<td>Chassis width</td>
</tr>
<tr>
<td>4</td>
<td>Depth of the front clearance area (equal to the depth of the chassis).</td>
</tr>
<tr>
<td>5</td>
<td>Depth of the chassis</td>
</tr>
<tr>
<td>6</td>
<td>Maximum extension of the bottom-support rails</td>
</tr>
<tr>
<td>7</td>
<td>Depth of the front clearance area (equal to the depth of the chassis).</td>
</tr>
</tbody>
</table>

Warning

Statement 1048—Rack Stabilization

The rack stabilizing mechanism must be in place, or the rack must be bolted to the floor before installation or servicing. Failure to stabilize the rack can cause bodily injury.

Clearance Requirements

- The depth of a four-post rack must be 24 to 32 inches (61.0 to 81.3 cm) between the front and rear mounting rails (for proper mounting of the bottom-support brackets or other mounting hardware).

Also, you must have power receptacles that are located within reach of the power cords that are used with the switch.
Clearance Requirements

| Width of the front clearance area (equal to the width of the chassis with two rack-mount brackets that are attached to it). |

Note

Both the front and rear of the chassis must be open to both aisles for airflow.
CHAPTER 3

Installing the Switch Chassis

- Safety, on page 13
- Installation Options with Rack-Mount Kits, Racks, and Cabinets, on page 14
- Airflow Considerations, on page 14
- Installation Guidelines, on page 14
- Unpacking and Inspecting the Switch, on page 16
- Installing the Switch Using the NXK-ACC-KIT-1RU Rack-Mount Kit, on page 17
- Installing the Switch Using the N3K-C3064-ACC-KIT Rack-Mount Kit, on page 20
- Grounding the Chassis, on page 24
- Installing the Airflow Sleeve (NXA-AIRFLOW-SLV3), on page 26
- Starting the Switch, on page 28

Safety

Before you install, operate, or service the switch, see the Regulatory, Compliance, and Safety Information for the Cisco Nexus 3000 and 9000 Series for important Safety Information.

⚠️ Warning

Statement 1071—Warning Definition

IMPORTANT SAFETY INSTRUCTIONS

This warning symbol means danger. You are in a situation that could cause bodily injury. Before you work on any equipment, be aware of the hazards involved with electrical circuitry and be familiar with standard practices for preventing accidents. Use the statement number provided at the end of each warning to locate its translation in the translated safety warnings that accompanied this device.

SAVE THESE INSTRUCTIONS

⚠️ Warning

Statement 1017—Restricted Area

This unit is intended for installation in restricted access areas. A restricted access area can be accessed by skilled, instructed or qualified personnel.
Warning

Statement 1030—Equipment Installation

Only trained and qualified personnel should be allowed to install, replace, or service this equipment.

Installation Options with Rack-Mount Kits, Racks, and Cabinets

The rack-mount kit enables you to install the switch into racks of varying depths. You can position the switch with easy access to either the port connections or the fan and power supply modules.

You can install the switch using the following rack-mount options:

- Rack-mount kit (NXK-ACC-KIT-1RU) which you can order from Cisco. This option offers you easy installation, greater stability, increased weight capacity, added accessibility, and improved removability with front and rear removal.
- Rack-mount kit (N3K-C3064-ACC-KIT) which you can order from Cisco.

You can install the switch in the following types of racks:

- Open EIA rack
- Perforated EIA cabinet

The rack or cabinet that you use must meet the requirements listed the in General Requirements for Cabinets and Racks, on page 43 section.

Note

You are responsible for verifying that your rack and rack-mount hardware comply with the guidelines that are described in this doc.

Airflow Considerations

The switch comes with fan and power supply modules that have either port-side intake or port-side exhaust airflow for cooling the switch. If you are positioning the port end of the switch in a cold aisle, make sure that the switch has port-side intake fan modules with burgundy coloring. If you are positioning the fan and power supply modules in a cold aisle, make sure that the switch has port-side exhaust fan modules with blue colorings. All fan modules must have the same direction of airflow.

Installation Guidelines

When installing the switch, follow these guidelines:

- Ensure that there is adequate clearance space around the switch to allow for servicing the switch and for adequate airflow.
- Ensure that you are positioning the switch in a rack so that it takes in cold air from the cold aisle and exhausts air to the hot aisle. If there is blue coloring on the fan modules, the switch is configured for
port-side exhaust airflow and you must position the module side of the switch in a cold aisle. If there is burgundy coloring on the fan modules, the switch is configured for port-side intake airflow and you must position the port side of the switch in a cold aisle.

- Ensure that the chassis can be adequately grounded. If the switch is not mounted in a grounded rack, we recommend connecting the system ground on the chassis directly to an earth ground.

- Ensure that the site power meets the power requirements for the switch. If available, you can use an uninterruptible power supply (UPS) to protect against power failures.

⚠️ **Caution**
Avoid UPS types that use ferroresonant technology. These UPS types can become unstable with the switch, which can have substantial current draw fluctuations because of fluctuating data traffic patterns.

- Ensure that circuits are sized according to local and national codes. Typically, this often requires one or both of the following:

 - AC power supplies typically require at least a 15-A or 20-A AC circuit, 100 to 240 VAC, and a frequency of 50 to 60 Hz.

 - HVAC/HVDC power supplies require the following:

 - HVAC input voltage range of 100 to 277 VAC with a frequency of 50 to 60 Hz

 - HVDC input voltage range of -240 to -380 VDC

⚠️ **Caution**
To prevent loss of input power, ensure the total maximum loads on the circuits supplying power to the switch are within the current ratings for the wiring and breakers.

📝 **Note**
For AC input application, please refer to the statement below:

⚠️ **Warning**
Statement 1005—Circuit Breaker

This product relies on the building's installation for short-circuit (overcurrent) protection. Ensure that the protective devices is rated not greater than 20A (North America), 16A (Europe), and 13A (UK).

📝 **Note**
For DC input application, please refer to the statement below:
Statement 1005—Circuit Breaker

This product relies on the building's installation for short-circuit (overcurrent) protection. Ensure that the protective devices is rated not greater than 40A for the regular DC power supplies (rated 48-60VDC) and 10A for the HVDC power supplies.

Unpacking and Inspecting the Switch

Before you install the switch, be sure to unpack and inspect the switch for damage or missing components. If anything is missing or damaged, contact your customer service representative immediately.

Tip

Keep the shipping container in case the chassis requires shipping at a later time.

Before you begin

Before you unpack the switch and before you handle any switch components, be sure that you are wearing a grounded electrostatic discharge (ESD) strap. To ground the strap, attach it directly to an earth ground or to a grounded rack or grounded chassis (there must be a metal-to-metal connection to the earth ground).

Step 1

Compare the shipment to the equipment list provided by your customer service representative and verify that you have received all items, including the following:

• Accessory Kit

Step 2

Check for damage and report any discrepancies or damage to your customer service representative. Have the following information ready:

• Invoice number of shipper (see packing slip)
• Model and serial number of the damaged unit
• Description of damage
• Effect of damage on the installation

Step 3

Check to be sure that each of the power supply and the fan tray modules have the expected direction of airflow as follows:

• Port-side intake airflow modules
 • Burgundy (fan modules and power supplies)

• Port-side exhaust airflow modules
 • Blue (fan modules and power supplies)
All power supplies and fan modules must have the same direction of airflow.

Installing the Switch Using the NXK-ACC-KIT-1RU Rack-Mount Kit

To install the switch, you must attach front and rear mounting brackets to the switch, install slider rails on the rear of the rack, slide the switch onto the slider rails, and secure the switch to the front of the rack. Typically, the front of the rack is the side easiest to access for maintenance.

Before you begin

- You have inspected the switch shipment to ensure that you have everything ordered.

- Make sure that the switch rack-mount kit includes the following parts:
 - Front rack-mount brackets (2)
 - Rear rack-mount brackets (2)
 - Slider rails (2)
 - M4 x 0.7 x 8-mm Phillips countersink screws (12)

- The rack is installed and secured to its location.

Step 1

Install two front rack-mount brackets and the two rear rack-mount brackets to the switch as follows:

a) Determine which end of the chassis is to be located in the cold aisle as follows:
 - If the switch has port-side intake modules (fan modules with burgundy coloring), position the switch so that its ports will be in the cold aisle.
 - If the switch has port-side exhaust modules (fan modules with blue coloring), position the switch so that its fan and power supply modules will be in the cold aisle.

b) Position the front rack-mount bracket and the rear rack-mount bracket so that its screw holes are aligned to the screw holes on the side of the chassis.

Note

You can align the holes in the rack-mount bracket to the holes on the side of the chassis (see the two ways to mount these brackets on a typical chassis, in following figure). The holes that you use depend on the requirements of your rack and the amount of clearance required for interface cables (3 inches [7.6 mm] minimum) and module handles (1 inch [2.5 mm] minimum).
c) Secure the front-mount bracket and the back-mount bracket to the chassis using four M4 screws and tighten each screw to 12 in-lb (1.36 N·m) of torque.

d) Repeat Step 1 for the other front rack-mount bracket and the other back-mount bracket on the other side of the switch and be sure to position that bracket the same distance from the front of the switch.

Note Depending on the chassis depth, the back rack-mount bracket may not fit. In that case the back rack-mount bracket is not needed.

Step 2 If you are not installing the chassis into a grounded rack, you must attach a customer-supplied grounding wire to the chassis as explained in the Grounding the Chassis, on page 24 section. If you are installing the chassis into a grounded rack, you can skip this step.

Step 3 Install the slider rails on the rack or cabinet as follows:

a) Determine which two posts of the rack or cabinet you should use for the slider rails. Of the four vertical posts in the rack or cabinet, two will be used for the front mount brackets attached to the easiest accessed end of the chassis, and the other two posts will have the slider rails.

b) Position a slider rail at the desired level on the back side of the rack and use 12-24 screws or 10-32 screws, depending on the rack thread type, to attach the rails to the rack (see the following figure). Tighten 12-24 screws to 30 in-lb (3.39 N·m) of torque and tighten 10-32 screws to 20 in-lb (2.26 N·m) of torque.
c) Repeat Step 3 to attach the other slider rail to the other side of the rack.

To make sure that the slider rails are at the same level, you should use a level tool, tape measure, or carefully count the screw holes in the vertical mounting rails.

Step 4 Insert the switch into the rack and attach it as follows:

a) Holding the switch with both hands, position the two rear rack-mount brackets on the switch between the rack or cabinet posts that do not have slider rails attached to them (see the following figure).

b) Align the two rear rack-mount guides on either side of the switch with the slider rails installed in the rack. Slide the rack-mount guides onto the slider rails, and then gently slide the switch all the way into the rack until the front rack-mount brackets come in contact with two rack or cabinet posts.

Note If you attached a grounding cable to the chassis, you will need to bend one of the rack-mount rails slightly to allow the grounding lug to go behind the rail.
c) Holding the chassis level, insert screws (12-24 or 10-32, depending on the rack type) in each of the two front rack-mount brackets (using a total of six screws) and into the cage nuts or threaded holes in the vertical rack-mounting rails (see the following figure).

![Image of rack-mounting rails and screws](image)

d) Tighten the 10-32 screws to 20 in-lb (2.26 N·m) or tighten the 12-24 screws to 30 in-lb (3.39 N·m).

Step 5
If you attached a grounding wire to the chassis grounding pad, connect the other end of the wire to the facility ground.

Installing the Switch Using the N3K-C3064-ACC-KIT Rack-Mount Kit

To install the switch, you must attach front and rear mounting brackets to the switch, install slider rails on the rear of the rack, slide the switch onto the slider rails, and secure the switch to the front of the rack. Typically, the front of the rack is the side easiest to access for maintenance.

Note
You must supply the eight 10-32 or 12-24 screws required to mount the slider rails and switch to the rack.

Before you begin

- You have inspected the switch shipment to ensure that you have everything ordered.
- Make sure that the switch rack-mount kit includes the following parts:
 - Front rack-mount brackets (2)
 - Rear rack-mount brackets (2)
 - Slider rails (2)
 - M4 x 0.7 x 8-mm Phillips countersink screws (12)
The rack is installed and secured to its location.

Step 1

Install two front-mount brackets to the switch as follows:

a) Determine which end of the chassis is to be located in the cold aisle as follows:
 - If the switch has port-side intake modules (fan modules with burgundy coloring), position the switch so that its ports will be in the cold aisle.
 - If the switch has port-side exhaust modules (fan modules with blue coloring), position the switch so that its fan and power supply modules will be in the cold aisle.

b) Position a front-mount bracket so that four of its screw holes are aligned to the screw holes on the side of the chassis.

Note You can align any four of the holes in the front rack-mount bracket to four of the six screw holes on the side of the chassis (see the two ways to mount these brackets on a typical chassis, in following figure). The holes that you use depend on the requirements of your rack and the amount of clearance required for interface cables (3 inches [7.6 mm] minimum) and module handles (1 inch [2.5 mm] minimum).

![Diagram of switch chassis with brackets and screws](image)

<table>
<thead>
<tr>
<th>1</th>
<th>Front rack-mount bracket aligned to the port end of the chassis</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Four M4 screws used to attach the bracket to the chassis</td>
</tr>
<tr>
<td>3</td>
<td>Front rack-mount bracket aligned to the module end of the chassis</td>
</tr>
<tr>
<td>4</td>
<td>Four M4 screws used to attach the bracket to the chassis</td>
</tr>
</tbody>
</table>

Cisco Nexus 93240YC-FX2 NX-OS Mode Switch Hardware Installation Guide 21
c) Secure the front-mount bracket to the chassis using four M4 screws and tighten each screw to 12 in-lb (1.36 N·m) of torque.

d) Repeat Step 1 for the other front rack-mount bracket on the other side of the switch and be sure to position that bracket the same distance from the front of the switch.

Step 2

Install the two rear rack-mount brackets on the chassis as follows:

a) Align the two screw holes on a rear rack-mount bracket to the middle two screw holes in the remaining six screw holes on a side of the chassis. If you are aligning the guide to holes that are near the port connections end of the chassis, see Callout 3 in the previous figure. Otherwise, see Callout 7 in the previous figure.

b) Attach the guide to the chassis using two M4 screws (see Callout 4 or 8 in the previous figure). Tighten the screws to 12 in-lb (1.36 N·m) of torque.

c) Repeat Step 2 for the other rear rack-mount bracket on the other side of the switch.

Step 3

If you are not installing the chassis into a grounded rack, you must attach a customer-supplied grounding wire to the chassis as explained in the **Grounding the Chassis, on page 24** section. If you are installing the chassis into a grounded rack, you can skip this step.

Step 4

Install the slider rails on the rack or cabinet as follows:

a) Determine which two posts of the rack or cabinet you should use for the slider rails. Of the four vertical posts in the rack or cabinet, two will be used for the front mount brackets attached to the easiest accessed end of the chassis, and the other two posts will have the slider rails.

b) Position a slider rail at the desired level on the back side of the rack and use two 12-24 screws or two 10-32 screws, depending on the rack thread type, to attach the rails to the rack (see the following figure). Tighten 12-24 screws to 30 in-lb (3.39 N·m) of torque and tighten 10-32 screws to 20 in-lb (2.26 N·m) of torque.

Table of Screws Used

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Quantity</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Rear rack-mount guide aligned to the module end of the chassis</td>
<td>2</td>
<td>M4 screws</td>
</tr>
<tr>
<td>4</td>
<td>Two M4 screws used to attach the bracket to the chassis</td>
<td>8</td>
<td>M4 screws</td>
</tr>
<tr>
<td>7</td>
<td>Two M4 screws used to attach the bracket to the chassis</td>
<td>7</td>
<td>M4 screws</td>
</tr>
<tr>
<td>8</td>
<td>Rear rack-mount guide aligned to the port end of the chassis</td>
<td>8</td>
<td>M4 screws</td>
</tr>
<tr>
<td></td>
<td>c) Secure the front-mount bracket to the chassis using four M4 screws and tighten each screw to 12 in-lb (1.36 N·m) of torque.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>d) Repeat Step 1 for the other front rack-mount bracket on the other side of the switch and be sure to position that bracket the same distance from the front of the switch.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Step 2 Install the two rear rack-mount brackets on the chassis as follows:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a) Align the two screw holes on a rear rack-mount bracket to the middle two screw holes in the remaining six screw holes on a side of the chassis. If you are aligning the guide to holes that are near the port connections end of the chassis, see Callout 3 in the previous figure. Otherwise, see Callout 7 in the previous figure.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b) Attach the guide to the chassis using two M4 screws (see Callout 4 or 8 in the previous figure). Tighten the screws to 12 in-lb (1.36 N·m) of torque.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c) Repeat Step 2 for the other rear rack-mount bracket on the other side of the switch.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Step 3 If you are not installing the chassis into a grounded rack, you must attach a customer-supplied grounding wire to the chassis as explained in the Grounding the Chassis, on page 24 section. If you are installing the chassis into a grounded rack, you can skip this step.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Step 4 Install the slider rails on the rack or cabinet as follows:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a) Determine which two posts of the rack or cabinet you should use for the slider rails. Of the four vertical posts in the rack or cabinet, two will be used for the front mount brackets attached to the easiest accessed end of the chassis, and the other two posts will have the slider rails.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b) Position a slider rail at the desired level on the back side of the rack and use two 12-24 screws or two 10-32 screws, depending on the rack thread type, to attach the rails to the rack (see the following figure). Tighten 12-24 screws to 30 in-lb (3.39 N·m) of torque and tighten 10-32 screws to 20 in-lb (2.26 N·m) of torque.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
c) Repeat Step 3 to attach the other slider rail to the other side of the rack.

To make sure that the slider rails are at the same level, you should use a level tool, tape measure, or carefully count the screw holes in the vertical mounting rails.

Step 5 Insert the switch into the rack and attach it as follows:

a) Holding the switch with both hands, position the two rear rack-mount brackets on the switch between the rack or cabinet posts that do not have slider rails attached to them (see the following figure).

b) Align the two rear rack-mount guides on either side of the switch with the slider rails installed in the rack. Slide the rack-mount guides onto the slider rails, and then gently slide the switch all the way into the rack until the front rack-mount brackets come in contact with the front rack-mount rails.

Note If you attached a grounding cable to the chassis, you will need to bend one of the rack-mount rails slightly to allow the grounding lug to go behind the rail.

c) Holding the chassis level, insert two screws (12-24 or 10-32, depending on the rack type) in each of the two front rack-mount brackets (using a total of four screws) and into the cage nuts or threaded holes in the vertical rack-mounting rails (see the following figure).
Mounting rails on rack or cabinet posts.

1. Fasten the chassis to the front of the rack with two 12-24 or 10-32 screws on each side.
2. Mounting rails on rack or cabinet posts.
3. Front-mount bracket.

d) Tighten the 10-32 screws to 20 in-lb (2.26 N·m) or tighten the 12-24 screws to 30 in-lb (3.39 N·m).

Step 6 If you attached a grounding wire to the chassis grounding pad, connect the other end of the wire to the facility ground.

Grounding the Chassis

The switch chassis is automatically grounded when you properly install the switch in a grounded rack with metal-to-metal connections between the switch and rack.

You can also ground the chassis, which is required if the rack is not grounded, by attaching a customer-supplied grounding cable. Attach the cable to the chassis grounding pad and the facility ground.

Warning

Statement 1024—Ground Conductor

This equipment must be grounded. To reduce the risk of electric shock, never defeat the ground conductor or operate the equipment in the absence of a suitably installed ground conductor. Contact the appropriate electrical inspection authority or an electrician if you are uncertain that suitable grounding is available.
Statement 1046—Installing or Replacing the Unit

To reduce risk of electric shock, when installing or replacing the unit, the ground connection must always be made first and disconnected last.

Before you begin

Before you can ground the chassis, you must have a connection to the earth ground for the data center building.

Step 1

Use a wire-stripping tool to remove approximately 0.75 inch (19 mm) of the covering from the end of the grounding wire. We recommend 6-AWG wire for the U.S. installations.

Step 2

Insert the stripped end of the grounding wire into the open end of the grounding lug. Use a crimping tool to crimp the lug to the wire, see the following figure. Verify that the ground wire is securely attached to the grounding lug by attempting to pull the wire out of the crimped lug.

![Image of grounding lug and wire](image)

<table>
<thead>
<tr>
<th></th>
<th>Chassis grounding pad</th>
<th></th>
<th>2 M4 screws are used to secure the grounding lug to the chassis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Grounding cable, with 0.75 in. (19 mm) of insulation that is stripped from one end, which is inserted into the grounding lug and crimped in place</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Step 3

Secure the grounding lug to the chassis grounding pad with two M4 screws, see the previous figure. Tighten the screws to 11 to 15 in-lb (1.24 to 1.69 N·m) of torque.

Step 4

Prepare the other end of the grounding wire and connect it to the facility ground.
Installing the Airflow Sleeve (NXA-AIRFLOW-SLV3)

The airflow sleeve (NXA-AIRFLOW-SLV3) is installed one of two ways. The first way is to install the airflow sleeve alone. The second way is to install the vent bracket (NXA-ACC-BAV2) along with the airflow sleeve. If you choose to install them both, then you will install the vent bracket first and then the airflow sleeve.

Note
You require the vent bracket (NXA-ACC-BAV2) for NEBS (Network Equipment-Building System) compliance only.

Note
You supply the 10-32 or 12-24 screws to mount the vent bracket and airflow sleeve.

Before you begin
• Verify that your shipment is complete.
• Install your rack in a secure location.

Step 1
Insert the vent bracket and attach it as follows:

a) Holding the vent bracket (NXA-ACC-BAV2), position it in front and above the switch (see item 1 in the following figure).

b) Holding the vent bracket level, insert screws (12-24 or 10-32, depending on the rack type) in each of the front rack-mount flanges (using a total of two screws) and into the cage nuts or threaded holes in the vertical rack-mounting rails (see item 2 in the following figure).
c) Tighten the 10-32 screws to 20 in-lb (2.26 N·m) or tighten the 12-24 screws to 30 in-lb (3.39 N·m).

Step 2

Insert the airflow sleeve into the rack and attach it as follows:

a) Holding the airflow sleeve (NXA-AIRFLOW-SLV3) with both hands, position it above the switch and between the rack or cabinet posts (see item 1 in the following figure).

b) Holding the airflow sleeve level, insert screws (12-24 or 10-32, depending on the rack type) in each of the two front rack-mount flanges (using a total of four screws) and into the cage nuts or threaded holes in the vertical rack-mounting rails (see item 2 in the following figure).
c) Tighten the 10-32 screws to 20 in-lb (2.26 N·m) or tighten the 12-24 screws to 30 in-lb (3.39 N·m).

Starting the Switch

You start the switch by connecting it to its dedicated power source. If you need $n+1$ redundancy, you must connect each of the power supplies to one or two power sources. If you need $n+n$ redundancy, you must connect each power supply in a switch to a different power source.

Before you begin

- The switch must be installed and secured to a rack or cabinet.
- The switch must be adequately grounded.
Installing the Switch Chassis

Starting the Switch

• The rack must be close enough to the dedicated power source so that you can connect the switch to the power source by using a designated power cables.

• You have the designated power cables for the power supplies that you are connecting to the dedicated power sources.

Note: Depending on the outlet receptacle on your AC power distribution unit, you might need an optional jumper power cord to connect the switch to your outlet receptacle.

• The switch is not connected to the network (this includes any management or interface connections).

• The fan and power supply modules are fully secured in their chassis slots.

Step 1

For each AC power supply, do the following:

a) Using the recommended AC power cable for your country or region, connect one end to the AC power supply.

b) Connect the other end of the power cable to the AC power source.

Step 2

For each HVAC/HVDC power supply, connect it to a power source as follows:

a) Using the recommended high voltage power cable for your country or region, connect the Anderson Power Saf-D-Grid connector on the power cable to the power receptacle on the power supply. Make sure that the connector clicks when fully pushed into the receptacle.

b) Connect the other end of the power cable to a power source.

• When connecting to an HVAC power source, insert the C14 or LS-25 plug in a receptacle for the HVAC power source.

• When connecting to an HVDC power source, do the following:

1. Verify that the power is turned off at a circuit breaker for the power source terminals.

2. Remove the nuts from each of the terminal posts for the power supply.

3. Place the power cable negative-wire terminal ring on the negative terminal for the power source and secure them with a terminal nut.

4. Place the power cable positive-wire terminal ring on the positive terminal for the power source and secure them with a terminal nut.

5. Place the power cable ground-wire terminal ring on the ground terminal for the power source and secure them with a terminal nut.

6. If there is a safety cover for the power source terminals, place and secure it over the terminals to avoid an electrical shock hazard.

7. Turn on the power at the power source circuit breaker.

Step 3

For each DC power supply, do the following:

a) Turn off the circuit breaker for the power source to avoid an electrical shock hazard.

b) Verify that the power cable wires from the power source are connected to a connector block.
c) Insert the connector block into the receptacle on the power supply. Make sure that the connector block clicks when fully inserted in the receptacle and does not pull out.

d) If there is a safety cover for the terminals, place and secure it over the terminals to avoid an electrical shock hazard.

e) Turn on the power at the circuit breaker for the DC power source.

Step 4 Verify that the power supply LED is on and green.

Step 5 Listen for the fans; they should begin operating when the power supply is powered.

Step 6 After the switch boots, verify that the following LEDs are lit:

 • On the fan modules, the Status (STA or STS) LED is green.
 If a fan module Status LED is not green, try reinstalling the fan module.

 • After initialization, the switch chassis Status (labeled as STA or STS) LED is green.

Step 7 Verify that the system software has booted and the switch has initialized without error messages.

A setup utility automatically launches the first time that you access the switch and guides you through the basic configuration. For instructions on how to configure the switch and check module connectivity, see the appropriate Cisco Nexus 9000 Series configuration guide.
Connecting the Switch to the Network

- Overview of Network Connections, on page 31
- Connecting a Console to the Switch, on page 31
- Creating the Initial Switch Configuration, on page 33
- Setting Up the Management Interface, on page 34
- Connecting Interface Ports to Other Devices, on page 35
- Uplink Connections, on page 35
- Downlink Connections, on page 35

Overview of Network Connections

After you install the switch in a rack and power it up, you are ready to make the following network connections:

- Console connection—This is a direct local management connection that you use to initially configure the switch. You must make this connection first to initially configure the switch and determine its IP address, which is needed for the other connections.

- Management connection—After you complete the initial configuration using a console, you can make this connection to manage all future switch configurations.

- Uplink and downlink interface connections—These are connections to hosts and servers in the network.

Each of these connection types is explained in one of the sections that follow.

When running cables in overhead or subfloor cable trays, we strongly recommend that you locate power cables and other potential noise sources as far away as practical from network cabling that terminates on Cisco equipment. In situations where long parallel cable runs cannot be separated by at least 3.3 feet (1 meter), we recommend that you shield any potential noise sources by housing them in a grounded metallic conduit.

Connecting a Console to the Switch

Before you create a network management connection for the switch or connect the switch to the network, you must create a local management connection through a console terminal. And then configure an IP address for
the switch. You can use the console to perform the following functions, each of which can be performed through the management interface after you make that connection:

- Configure the switch using the command-line interface (CLI).
- Monitor network statistics and errors.
- Configure Simple Network Management Protocol (SNMP) agent parameters.
- Download software updates.

You make this local management connection between the asynchronous serial port on a supervisor module and a console device capable of asynchronous transmission. Typically, you can use a computer terminal as the console device. On the supervisor modules, you use the console serial port.

Note

Before you can connect the console port to a computer terminal, make sure that the computer terminal supports VT100 terminal emulation. The terminal emulation software makes communication between the switch and computer possible during setup and configuration.

Before you begin

- The switch must be fully installed in its rack, which is connected to a power source, and grounded.
- The necessary cabling for the console, management, and network connections must be available.
 - An RJ-45 rollover cable provided in the switch accessory kit.
 - Network cabling is routed to the location of the installed switch.

Step 1

Configure the console device to match the following default port characteristics:

- 9600 baud
- 8 data bits
- 1 stop bit
- No parity

Step 2

Connect an RJ-45 rollover cable to the console port on the switch.

You can find this cable in the accessory kit.

Step 3

Route the RJ-45 rollover cable to the console or modem.

Step 4

Connect the other end of the RJ-45 rollover cable to the console or to a modem.

What to do next

You are ready to create the initial switch configuration (see Creating the Initial Switch Configuration, on page 33).
Creating the Initial Switch Configuration

You assign an IP address to the switch management interface so that you can then connect the switch to the network.

When you initially power up the switch, it boots up and asks you a series of questions to configure the switch. To connect the switch to the network, you can use the default choices for each configuration except the IP address, which you must provide. You can perform the other configurations later as described in the Cisco Nexus 9000 Series NX-OS Fundamentals Configuration Guide.

Note

Know the unique name that is needed to identify the switch among the devices in the network.

Before you begin

- A console device must be connected with the switch.
- The switch must be connected to a power source.
- Determine the IP address and the netmask that is needed for the Management (Mgmt0) interface.

Step 1

Power up the switch by connecting each installed power supply to an AC circuit.

If you are using the combined or power-supply \((n+1)\) power mode, connect all the power supplies to the same AC circuit. If you are using the input-source \((n+n)\) power mode, connect half of the power supplies to one AC circuit. And connect the other half of the power supplies to another AC circuit.

The Input and Output LEDs on each power supply light up (green) when the power supply units are sending power to the switch, and the software asks you to specify a password to use with the switch.

Step 2

Enter a new password to use for this switch.

The software checks the security strength of your password and rejects your password if it is not considered to be a strong password. To increase the security strength of your password, make sure that it adheres to the following guidelines:

- At least eight characters
- Minimizes or avoids the use of consecutive characters (such as "abcd").
- Minimizes or avoids repeating characters (such as "aaabbb").
- Does not contain recognizable words from the dictionary.
- Does not contain proper names.
- Contains both uppercase and lowercase characters
- Contains numbers and letters

Examples of strong passwords include the following:

- If2CoM18
- 2004AsdfLkj30
• Cb1955S21

Note Clear text passwords cannot include the dollar sign ($) special character.

Tip If a password is trivial (such as a short, easy-to-decipher password), the software will reject your password configuration. Be sure to configure a strong password as explained in this step. Passwords are case-sensitive.

If you enter a strong password, the software asks you to confirm the password.

Step 3 Enter the same password again.

If you enter the same password, the software accepts the password and begins asking a series of configuration questions.

Step 4 Until you are asked for an IP address, you can enter the default configuration for each question.

Repeat this step for each question until you are asked for the Mgmt0 IPv4 address.

Step 5 Enter the IP address for the management interface.

The software asks for the Mgmt0 IPv4 netmask.

Step 6 Enter a network mask for the management interface.

The software asks if you need to edit the configuration.

Step 7 Enter no not to edit the configuration.

The software asks if you need to save the configuration.

Step 8 Enter yes to save the configuration.

What to do next

You can now set up the management interface for each supervisor module on the switch.

Setting Up the Management Interface

The RJ-45 and/or SFP management ports provide out-of-band management, which enables you to use the command-line interface (CLI) to manage the switch by its IP address. You can use one of these ports depending on the cable and connectors that you are using to connect the management interface to the network.

Before you begin

• The switch must be powered on.

• The switch must be initially configured using a console.

Step 1 Connect the management cable into the management port on the switch. For shorter connections, you can use a cable with RJ-45 connectors. For longer connections, you can use an optical cable with SFP transceivers (LH or SX type).

Note Use only one of these management ports—the switch does not support the use of both management ports.
Connecting Interface Ports to Other Devices

After you perform the initial configuration for the switch and create a management connection, you are ready to connect the interface ports on the switch to other devices. Depending on the types of interface ports on the switch, you will need to use interface cables with QSFP28, QSFP+, SFP+, SFP transceivers, or RJ-45 connectors to connect the switch to other devices.

Note

If you need to use SFP+ or SFP transceivers in a QSFP+ or QSFP28 uplink port, install a QSFP-to-SFP adapter, such as the CVR-QSFP-SFP10G adapter, in the QSFP port and then install the SFP+ or SFP transceiver. The switch automatically sets the port speed to the speed of the installed transceiver.

If the transceivers that you are using can be separated from their optical cables, install the transceivers without their cables before inserting the cables into the transceivers. This helps to prolong the life of both the transceiver and cables. When removing transceivers from the switch, it is best to remove the optical cable first and then remove the transceiver.

To determine which transceivers, adapters, and cables are supported by this switch, see the Cisco Transceiver Modules Compatibility Information document.

Uplink Connections

For a list of transceivers and cables used by this switch for uplink connections, see http://www.cisco.com/c/en/us/support/interfaces-modules/transceiver-modules/products-device-support-tables-list.html.

The 18 uplink ports support 40- and 100-Gigabit Ethernet using QSFP28 transceivers.

By default, the 40-Gigabit uplink ports operate at 40 Gbps, but you can use the `speed-group 10000` command to change the administrative speed to 10 Gbps. If you change the speed, you must also use a QSFP-to-SFP adapter and a supported SFP+ transceiver in each of the converted SFP+ ports. All of the ports in a group of ports must operate at the same speed or you will see an error with a "check speed-group config" message. To return the administrative speed to 40 Gigabits, use the `no speed-group 10000` command.

Statement 1051—Laser Radiation

Invisible laser radiation may be emitted from disconnected fibers or connectors. Do not stare into beams or view directly with optical instruments.

Downlink Connections

The Cisco Nexus 92240YCFX2 switch has 48 downlink ports that connect to servers. Each of these ports supports 1-Gigabit, 10-Gigabit, and 25-Gigabit speeds over 10-Gigabit optical cables using SFP+ transceivers.
For a listing of the transceivers and cables that the optical downlink ports support, see http://www.cisco.com/c/en/us/support/interfaces-modules/transceiver-modules/products-device-support-tables-list.html
Replacing Components

- Replacing a Fan Module, on page 37
- Replacing a Power Supply Module, on page 38

Replacing a Fan Module

You can replace a fan module while the switch is operating so long as you perform the replacement within one minute. If you cannot perform the replacement within one minute, leave the original fan module in the chassis to maintain the designed airflow until you have the replacement fan module on hand and can perform the replacement.

Caution

If you are replacing a module during operations, be sure that the replacement fan module has the correct direction of airflow, which means that it has the same airflow direction as the other modules in the chassis. Also, be sure that the airflow direction takes in air from a cold aisle and exhausts to a hot aisle. Otherwise, the switch can overheat and shutdown.

If you are changing the airflow direction of all the modules in the chassis, you must shutdown the switch before replacing all the fan and power supply modules with modules using the other airflow direction. During operations, all of the modules must have the same direction of airflow.

Removing a Fan Module

Statement 263—Fan Warning

The fans might still be turning when you remove the fan assembly from the chassis. Keep fingers, screwdrivers, and other objects away from the openings in the fan assembly’s housing.

Step 1

On the fan module that you are removing, press the two sides of the fan module handle next to where it connects to the fan module and pull on the handles enough to unseat it from its connectors.

Step 2

Holding the handle, pull the module out of the chassis.
Caution Do not touch the electrical connectors on the back side of the module and prevent anything else from coming into contact with and damaging the connectors.

Installing a Fan Module

Before you begin

• A fan slot must be open and ready for the new fan module to be installed.
• You must have a new fan module on hand and ready to install within one minute of removing the original fan module if the switch is operating.
• The new fan module must have the same airflow direction as the other fan and power supply modules installed in the switch. All of these modules must have either burgundy coloring (port-side intake airflow) or they must all have blue coloring (port-side exhaust airflow).

Step 1 Holding the fan module by its handle, align the back of the fan module (the side with the electrical connectors) to the open fan slot in the chassis.
Step 2 Slide the fan module into the slot until it clicks in place.
Step 3 Verify that the Status (STS) LED turns on and becomes green.

Replacing a Power Supply Module

The switch requires two power supplies for redundancy. With one power supply providing the necessary power for operations, you can replace the other power supply during operations so long as the new power supply has the same airflow direction as the other modules in the chassis.

You can replace a power supply with another supported power supply that has the same power source type and the same wattage rating as the other installed power supply. Additionally, the airflow direction of the power supply must match or conform to the airflow direction of the installed fan modules.

Replacing an AC Power Supply

You can replace an AC power supply during operations so long as the other power supply provides to the switch.

Before you begin

• The replacement power supply must have the same wattage and airflow direction as the power supply being replaced.
You can determine the airflow direction by looking at the coloring of the latch on each power supply. AC power supplies with burgundy latches have port-side intake airflow direction, and power supplies with blue latches have port-side exhaust airflow direction.

- An AC power source must be within reach of the power cable that will be used with the replacement power supply. If you are using $n+n$ power redundancy, there must be a separate power source for each power supply installed in the chassis.

- There must be an earth ground connection to the chassis that you are installing the replacement module. AC power supplies connected to AC power sources are automatically grounded through their power cable.

Step 1
Remove an AC power supply as follows:

a) Holding the plug for the power cable, pull the plug out from the power receptacle on the power supply and verify that both power supply LEDs are off.

b) Grasp the power supply handle while pressing the colored release latch towards the power supply handle.

c) Place your other hand under the power supply to support it while you slide it out of the chassis.

Caution Do not touch the electrical connections on the back side of the module and prevent anything else from coming into contact with and damaging the connectors.

Step 2
Install the replacement power supply as follows:

a) Holding the replacement power supply with one hand underneath the module and the other hand holding the handle, turn the power supply so that its release latch is on the right side and align the back end of the power supply (the end with the electrical connections) to the open power supply slot before carefully sliding the power supply all the way into the slot until it clicks into place.

Note If the power supply does not fit into the open slot, turn the module over before sliding it carefully into the open slot.

b) Test the installation by trying to pull the power supply out of the slot without using the release latch.

If the power supply does not move out of place, it is secured in the slot. If the power supply moves, carefully press it all the way into the slot until it clicks in place.

c) Attach the power cable to the electrical outlet on the front of the power supply.

d) Make sure that the other end of the power cable is attached to the appropriate power source for the power supply.

Note Depending on the outlet receptacle on your power distribution unit, you might need the optional jumper cable to connect the switch to your outlet receptacle.

e) Verify that the power supply is operational by making sure that the power supply LED is green.
Replacing a High Voltage (HVAC/HVDC) Power Supply

You can replace an HVACHVDC power supply during operations so long as the other power supply provides power to the switch.

Before you begin

- The replacement power supply must have the same wattage and airflow direction as the power supply being replaced.

Note: You can determine the airflow direction by looking at the coloring of the latch on each power supply. The high voltage power supplies have either burgundy latches for port-side intake airflow or they have blue latches for port-side exhaust airflow.

- An HVAC/HVDC power source must be within reach of the power cable that will be used with the replacement power supply. If you are using \(n+n \) power redundancy, there must be a separate power source for each power supply installed in the chassis.

- There must be an earth ground connection to the chassis in which you are installing the replacement power supply. HVAC/HVDC power supplies connected to AC power sources are automatically grounded by their power cable when connected to the power supply and AC power source. HVAC/HVDC power supplies connected to DC power sources have Saf-D-Grid power cables with three connectors on the power source end—you connect one of those connectors to the earth ground.

Step 1: Remove an HVAC/HVDC power supply as follows:

a) Turn off the circuit breaker for the power feed to the power supply that you are replacing. Be sure that the LEDs turn off on the power supply that you are removing.

b) Remove the power cable from the power supply by pressing the tab on the top of the Anderson Power SAF-D-Grid connector and pull the cable and connector out of the power supply.

c) Grasp the power supply handle while pressing the colored release latch towards the power supply handle.

d) Place your other hand under the power supply to support it while you slide it out of the chassis.

Caution: Do not touch the electrical connections on the back side of the module and prevent anything else from coming into contact with and damaging the connectors.

Step 2: Install the replacement power supply as follows:

a) Holding the replacement power supply with one hand underneath the module and the other hand holding the handle, turn the power supply so that its release latch is on the right side and align the back end of the power supply (the end with the electrical connections) to the open power supply slot before carefully sliding the power supply all the way into the slot until it clicks into place.

Note: If the power supply does not fit into the open slot, turn the module over before sliding it carefully into the open slot.

b) Test the installation by trying to pull the power supply out of the slot without using the release latch.
If the power supply does not move out of place, it is secured in the slot. If the power supply moves, carefully press it all the way into the slot until it clicks in place.

c) Attach the Saf-D-Grid end of the power cable to the electrical outlet on the front of the power supply.

d) Make sure that the other end of the power cable is attached to the appropriate power source for the power supply.
 • For an HVAC power source, plug the other end of the power cable into the power source.
 • For a HVDC power source, verify that the circuit breaker is turned off and then connect each of the three cable connectors to the appropriate DC and grounding terminals on the power source. If there is a cover plate for the DC terminals, install the plate to prevent accidental contact with the terminals.

e) If using an HVDC power source, turn on the circuit breaker for the power source.

f) Verify that the power supply is operational by making sure that the power supply LED is green.

Replacing a DC Power Supply

You can replace an DC power supply during operations so long as the other power supply provides power to the switch.

Before you begin

- The replacement power supply must have the same wattage and airflow direction as the power supply being replaced.

 Note
 You can determine the airflow direction by looking at the coloring of the latch on each power supply. AC power supplies with burgundy latches have port-side intake airflow direction, and power supplies with blue latches have port-side exhaust airflow direction.

- An DC power source must be within reach of the power cables that will be used with the replacement power supply. If you are using $n+n$ power redundancy, there must be a separate power source for each power supply installed in the chassis.

- There must be an earth ground connection to the chassis in which you are installing the replacement power supply. DC power supplies connected to DC power sources have three power cables (two for DC power and one for grounding).

- We recommend 8-AWG wire for DC installation in the U.S.

Step 1
Remove a DC power supply as follows:

a) Turn off the circuit breaker for the power feed to the power supply that you are replacing.

 Be sure that the LEDs turn off on the power supply that you are removing.

b) Remove the DC power connector block from the power supply by doing the following:

 1. Push the orange plastic button on the top of the connector block inward toward the power supply.
2. Pull the connector block out of the power supply.

c) Grasp the power supply handle while pressing the release latch towards the power supply handle.
d) Place your other hand under the power supply to support it while you slide it out of the chassis.

Caution Do not touch the electrical connections on the back side of the module and prevent anything else from coming into contact with and damaging the connectors.

Step 2 Install the replacement power supply as follows:

a) Holding the replacement power supply with one hand underneath the module and the other hand holding the handle, turn the power supply so that its release latch is on the right side and align the back end of the power supply (the end with the electrical connections) to the open power supply slot before carefully sliding the power supply all the way into the slot until it clicks into place.

Note If the power supply does not fit into the open slot, turn the module over before sliding it carefully into the open slot.

b) Test the installation by trying to pull the power supply out of the slot without using the release latch.

If the power supply does not move out of place, it is secured in the slot. If the power supply moves, carefully press it all the way into the slot until it clicks in place.

c) Attach the power connector block end of the power cable to the electrical outlet on the front of the power supply.
d) Turn on the circuit breaker for the power source.
e) Verify that the power supply is operational by making sure that the power supply LED is green.
Rack Specifications

- Overview of Racks, on page 43
- General Requirements for Cabinets and Racks, on page 43
- Requirements Specific to Standard Open Racks, on page 44
- Requirements Specific to Perforated Cabinets, on page 44
- Cable Management Guidelines, on page 44

Overview of Racks

You can install the switch in the following types of cabinets and racks, assuming an external ambient air temperature range of 0 to 104°F (0 to 40°C):

- Standard perforated cabinets
- Solid-walled cabinets with a roof fan tray (bottom to top cooling)
- Standard open racks

Note

If you are selecting an enclosed cabinet, we recommend one of the thermally validated types, either standard perforated or solid-walled with a fan tray.

Note

We do not recommend that you use racks that have obstructions (such as power strips), because the obstructions could impair access to field-replaceable units (FRUs).

General Requirements for Cabinets and Racks

The cabinet or rack must also meet the following requirements:

- Standard 19-inch (48.3 cm) (two- or four-post EIA cabinet or rack, with mounting rails that conform to English universal hole spacing per section 1 of ANSI/EIA-310-D-1992). For more information, see Requirements Specific to Perforated Cabinets, on page 44.
• The minimum vertical rack space requirement per chassis is:
 • For a one RU (rack unit) switch, 1.75 inches (4.4 cm)
 • For a one and a half RU (rack unit) switch, 2.63 (6.68 cm)
 • For a two RU (rack unit) switch, 3.5 inches (8.8 cm)
 • For a three RU (rack unit) switch, 5.25 inches (13.3 cm)

• The width between the rack-mounting rails must be at least 17.75 inches (45.0 cm) if the rear of the device is not attached to the rack. For four-post EIA racks, this measurement is the distance between the two front rails.

Four-post EIA cabinets (perforated or solid-walled) must meet the following requirements:
• The minimum spacing for the bend radius for fiber-optic cables should have the front-mounting rails of the cabinet offset from the front door by a minimum of 3 inches (7.6 cm).
• The distance between the outside face of the front mounting rail and the outside face of the back mounting rail should be 23.0 to 30.0 inches (58.4 to 76.2 cm) to allow for rear-bracket installation.

Requirements Specific to Standard Open Racks

If you are mounting the chassis in an open rack (no side panels or doors), ensure that the rack meets the following requirements:
• The minimum vertical rack space per chassis must be .
• The distance between the chassis air vents and any walls should be 2.5 inches (6.4 cm).

Requirements Specific to Perforated Cabinets

A perforated cabinet has perforations in its front and rear doors and side walls. Perforated cabinets must meet the following requirements:
• The front and rear doors must have at least a 60 percent open area perforation pattern, with at least 15 square inches (96.8 square cm) of open area per rack unit of door height.
• The roof should be perforated with at least a 20 percent open area.
• The cabinet floor should be open or perforated to enhance cooling.

The Cisco R Series rack conforms to these requirements.

Cable Management Guidelines

To help with cable management, you might want to allow additional space in the rack above and below the chassis to make it easier to route all of the fiber optic or copper cables through the rack.
System Specifications

- Environmental Specifications, on page 45
- Switch Dimensions, on page 45
- Switch and Module Weights and Quantities, on page 46
- Transceiver and Cable Specifications, on page 46
- Switch Power Input Requirements, on page 47
- Power Specifications, on page 47
- Power Cable Specifications, on page 49
- Regulatory Standards Compliance Specifications, on page 52

Environmental Specifications

<table>
<thead>
<tr>
<th>Environment</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>Ambient operating temperature</td>
</tr>
<tr>
<td></td>
<td>32 to 104°F (0 to 40°C)</td>
</tr>
<tr>
<td></td>
<td>Ambient nonoperating</td>
</tr>
<tr>
<td></td>
<td>–40 to 158°F (–40 to 70°C)</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>Nonoperating</td>
</tr>
<tr>
<td></td>
<td>5 to 85%</td>
</tr>
<tr>
<td>Altitude</td>
<td>Operating</td>
</tr>
<tr>
<td></td>
<td>0 to 13,123 feet (0 to 4,000 meters)</td>
</tr>
</tbody>
</table>

Switch Dimensions

<table>
<thead>
<tr>
<th>Switch</th>
<th>Width</th>
<th>Depth</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco Nexus 93240YC-FX2</td>
<td>17.3 inches (43.9 cm)</td>
<td>23.3 inches (59.1 cm)</td>
<td>2.1 inches (5.3 cm) (1.2 RU)</td>
</tr>
</tbody>
</table>
Switch and Module Weights and Quantities

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight per Unit</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco Nexus 93240YC-FX2 Chassis (N9K-C93240YCFX2)</td>
<td>22.0 lb (10.0 kg)</td>
<td>1</td>
</tr>
<tr>
<td>Fan Module</td>
<td>0.26 lb (0.12 kg)</td>
<td>5 (4 for operations and 1 for redundancy)</td>
</tr>
<tr>
<td>Power Supply Module</td>
<td>2.42 lb (1.1 kg)</td>
<td>2 (1 for operations and 1 for redundancy)</td>
</tr>
</tbody>
</table>

Transceiver and Cable Specifications

To determine which transceivers, adapters, and cables are supported by this switch, see https://www.cisco.com/c/en/us/support/interfaces-modules/transceiver-modules/products-device-support-tables-list.html.

Switch Power Input Requirements

The following table lists the typical amount of power that the switch consumes. It also lists the maximum amount of power that you must provision for the switch and power supply for peak conditions.

![Image](116x616 to 132x632)

Note

Some power supplies have capabilities that are greater than the maximum power requirements for a switch. To determine the power consumption characteristics for the switch, use the typical and maximum requirements that are listed in the following table.

<table>
<thead>
<tr>
<th>Switch</th>
<th>Typical Power Consumption (AC or DC)</th>
<th>Maximum Power Consumption (AC or DC)</th>
<th>Heat Dissipation Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco Nexus 93240YC-FX2</td>
<td>298 W</td>
<td>708 W</td>
<td>2415.796 BTUs per hour</td>
</tr>
</tbody>
</table>

Power Specifications

Power specifications include the specifications for each type of power supply module.

750-W AC Power Supply Specifications

These specifications apply to the following power supplies:

- NXA-PAC-750W-PE
- NXA-PAC-750W-PI

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum output power</td>
<td>750 W</td>
</tr>
<tr>
<td>Maximum input current</td>
<td>10 Amps at 100 VAC</td>
</tr>
<tr>
<td>Rated input voltage</td>
<td>115 to 240 VAC nominal (Range: 90 to 264 VAC)</td>
</tr>
<tr>
<td>Rated input frequency</td>
<td>50 to 60 Hz nominal (Range: 47 to 63 Hz)</td>
</tr>
</tbody>
</table>

1100-W AC Power Supply Specifications

These specifications apply to the following power supplies:

- NXA-PAC-1100W-PE2
- NXA-PAC-1100W-PI2
### Characteristic	Specification
AC input voltage	Nominal range: 100 and 240 VAC (Range: 90-132 VAC, 180-264 VAC)
AC input frequency	Nominal range: 50 to 60 Hz (Range: 47-63 Hz)
Maximum AC input current	12 A at 115 VAC
6 A at 240 VAC	
Maximum input volt-amperes | 760 A at 100 VAC
Maximum output power per power supply | 1100 W
Maximum inrush current | 33 A (sub-cycle duration)
Maximum hold-up time | 12 ms at 1100 W
Power supply output voltage | 12 VDC
Power supply standby voltage | 12 VDC
Efficiency rating | Climate Savers Platinum Efficiency (80Plus Platinum certified)
Form factor | RSP1

1100-W HVAC/HVDC Power Supply Specifications

These specifications apply to the following power supplies:
- NXA-PHV-1100W-PE
- NXA-PHV-1100W-PI

### Characteristic	Specification
Efficiency | 94%
Input voltage | 100VAC – 277VAC, 240VDC – 380VDC
Nominal frequency | 50, 60Hz
Maximum input current | 100-277VAC 13A Max, 240VDC – 380VDC 5.5A Max
Maximum inrush current | 35A (cold turn on); 50A (hot turn on)
Maximum continuous total output power | 1100W @ 100 – 277VAC, 240VDC – 380VDC
Output voltage | 12V/ 90A
Standby output voltage | 3.3V/ 3A
Efficiency | 80 Plus Platinum
1100-W DC Power Supply Specifications

These specifications apply to the following power supplies:
- NXA-PDC-1100W-PE
- NXA-PDC-1100W-PI

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC input voltage range</td>
<td>Nominal range: -54VDC (Range: -40 to -72 VDC)</td>
</tr>
<tr>
<td>Maximum DC input current</td>
<td>32 A at -40 VDC</td>
</tr>
<tr>
<td>Maximum output power per power supply</td>
<td>1100 W</td>
</tr>
<tr>
<td>Maximum inrush current</td>
<td>90 A (cold turn on)</td>
</tr>
<tr>
<td>Maximum hold-up time</td>
<td>4 ms at 100% load</td>
</tr>
<tr>
<td>Power supply output voltage</td>
<td>12 V/ 90A</td>
</tr>
<tr>
<td>Power supply standby voltage</td>
<td>3.3 V/ 3A</td>
</tr>
<tr>
<td>Efficiency rating @ -48VDC</td>
<td>94% at 50% load</td>
</tr>
</tbody>
</table>

Power Cable Specifications

The following sections specify the power cables that you can order and use with this switch.

AC Power Cables Supported by NX-OS Mode Switches

<table>
<thead>
<tr>
<th>Power Type</th>
<th>Power Cord Part Number</th>
<th>Cord Set Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CAB-C13-C14-2M</td>
<td>Power Cord Jumper, C13-C14 Connectors, 6.6 feet (2.0 m)</td>
</tr>
<tr>
<td></td>
<td>CAB-C13-C14-AC</td>
<td>Power cord, C13 to C14 (recessed receptacle), 10 A, 9.8 feet (3 m)</td>
</tr>
<tr>
<td></td>
<td>CAB-C13-CBN</td>
<td>Cabinet jumper power cord, 250 VAC, 10 A, C14-C13 connectors, 2.3 feet (0.7 m)</td>
</tr>
<tr>
<td>Argentina</td>
<td>CAB-250V-10A-AR</td>
<td>250 V, 10 A, 8.2 feet (2.5 m)</td>
</tr>
<tr>
<td>Australia</td>
<td>CAB-9K10A-AU</td>
<td>250 VAC, 10 A, 3112 plug, 8.2 feet (2.5 m)</td>
</tr>
<tr>
<td>Brazil</td>
<td>CAB-250V-10A-BR</td>
<td>250 V, 10 A, 6.9 feet (2.1 m)</td>
</tr>
</tbody>
</table>
Power Type | Power Cord Part Number | Cord Set Description | |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>European Union</td>
<td>CAB-9K10A-EU</td>
<td>250 VAC, 10 A, CEE 7/7 plug, 8.2 feet (2.5 m)</td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>CAB-IND-10A</td>
<td>10 A, 8.2 feet (2.5 m)</td>
<td></td>
</tr>
<tr>
<td>Israel</td>
<td>CAB-250V-10A-IS</td>
<td>250 V, 10 A, 8.2 feet (2.5 m)</td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>CAB-9K10A-IT</td>
<td>250 VAC, 10 A, CEI 23-16/VII plug, 8.2 feet (2.5 m)</td>
<td></td>
</tr>
<tr>
<td>North America</td>
<td>CAB-9K12A-NA</td>
<td>125 VAC, 13 A, NEMA 5-15 plug, 8.2 feet (2.5 m)</td>
<td></td>
</tr>
<tr>
<td>North America</td>
<td>CAB-AC-L620-C13</td>
<td>NEMA L6-20-C13, 6.6 feet (2.0 m)</td>
<td></td>
</tr>
<tr>
<td>North America</td>
<td>CAB-N5K6A-NA</td>
<td>200/240V, 6A, 8.2 feet (2.5 m)</td>
<td></td>
</tr>
<tr>
<td>Peoples Republic of China</td>
<td>CAB-250V-10A-CN</td>
<td>250 V, 10 A, 8.2 feet (2.5 m)</td>
<td></td>
</tr>
<tr>
<td>South Africa</td>
<td>CAB-250V-10A-ID</td>
<td>250 V, 10 A, 8.2 feet (2.5 m)</td>
<td></td>
</tr>
<tr>
<td>Switzerland</td>
<td>CAB-9K10A-SW</td>
<td>250 VAC, 10 A, MP232 plug, 8.2 feet (2.5 m)</td>
<td></td>
</tr>
<tr>
<td>United Kingdom</td>
<td>CAB-9K10A-UK</td>
<td>250 VAC, 10 A, BS1363 plug (13 A fuse), 8.2 (2.5 m)</td>
<td></td>
</tr>
<tr>
<td>All except Argentina, Brazil, and Japan</td>
<td>NO-POWER-CORD</td>
<td>No power cord included with switch</td>
<td></td>
</tr>
</tbody>
</table>

HVAC/HVDC Power Cables Supported by ACI-Mode and NX-OS Mode Switches

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Cord Set Description</th>
<th>Photo</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAB-HVAC-SD-0.6M</td>
<td>HVAC 2-foot (0.6 m) cable with Saf-D-Grid and SD connectors</td>
<td></td>
</tr>
<tr>
<td>Part Number</td>
<td>Cord Set Description</td>
<td>Photo</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>CAB-HVAC-C14-2M</td>
<td>HVAC 6.6-foot (2.0 m) cable with Saf-D-Grid and C14 connector (use for up to 240 V)</td>
<td></td>
</tr>
<tr>
<td>CAB-HVAC-RT-0.6M</td>
<td>HVAC 2-foot (0.6 m) cable with Saf-D-Grid and RT connector</td>
<td></td>
</tr>
<tr>
<td>CAB-HVDC-3T-2M</td>
<td>HVDC 6.6-foot (2.0 m) cable with Saf-D-Grid and three terminal connectors</td>
<td></td>
</tr>
<tr>
<td>NO-POWER-CORD</td>
<td>All except Argentina, Brazil, and Japan No power cord included with switch</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

Table 2: HVAC/HVDC Power Cables Callout Table

| 1 | Connect this end to the power supply unit. |

Cisco Nexus 93240YC-FX2 NX-OS Mode Switch Hardware Installation Guide
DC Power Cable Specifications

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Photo</th>
</tr>
</thead>
<tbody>
<tr>
<td>NXA-PDC-1100W-PE/PI</td>
<td>The 1100W DC power supply (NXA-PDC-1100W-PE/PI) is shipped with a connector already plugged into the power supply.</td>
<td></td>
</tr>
</tbody>
</table>

Regulatory Standards Compliance Specifications

The following table lists the regulatory standards compliance for the switch.

Table 3: Regulatory Standards Compliance: Safety and EMC

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulatory compliance</td>
<td>Products should comply with CE Markings according to directives 2004/108/EC and 2006/95/EC.</td>
</tr>
<tr>
<td>Safety</td>
<td>• CAN/CSA-C22.2 No. 60950-1 Second Edition</td>
</tr>
<tr>
<td></td>
<td>• EN 60950-1 Second Edition</td>
</tr>
<tr>
<td></td>
<td>• IEC 60950-1 Second Edition</td>
</tr>
<tr>
<td></td>
<td>• AS/NZS 60950-1</td>
</tr>
<tr>
<td></td>
<td>• GB4943</td>
</tr>
</tbody>
</table>
System Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
</table>
| **EMC: Emissions** | • 47CFR Part 15 (CFR 47) Class A
• AS/NZS CISPR22 Class A
• CISPR22 Class A
• EN55022 Class A
• ICES003 Class A
• VCCI Class A
• EN61000-3-2
• EN61000-3-3
• KN22 Class A
• CNS13438 Class A |
| **EMC: Immunity** | • EN55024
• CISPR24
• EN300386
• KN 61000-4 series |
| **RoHS** | The product is RoH-6 compliant with exceptions for leaded-ball grid-array (BGA) balls and lead press-fit connectors. |
LEDs

- Switch Chassis LEDs, on page 55
- Fan Module LEDs, on page 56
- Power Supply LEDs, on page 56

Switch Chassis LEDs

The BCN, STS, and ENV, LEDs are located on the left side of the front of the switch. The port LEDs appear as triangles pointing up or down to the nearest port.

<table>
<thead>
<tr>
<th>LED</th>
<th>Color</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCN</td>
<td>Flashing blue</td>
<td>The operator has activated this LED to identify this switch in the chassis.</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>This switch is not being identified.</td>
</tr>
<tr>
<td>STS</td>
<td>Green</td>
<td>The switch is operational.</td>
</tr>
<tr>
<td></td>
<td>Flashing amber</td>
<td>The switch is booting up.</td>
</tr>
<tr>
<td></td>
<td>Amber</td>
<td>Temperature exceeds the minor alarm threshold.</td>
</tr>
<tr>
<td></td>
<td>Red</td>
<td>Temperature exceeds the minor alarm threshold.</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>The switch is not receiving power.</td>
</tr>
<tr>
<td>ENV</td>
<td>Green</td>
<td>Fans and power supply modules are operational.</td>
</tr>
<tr>
<td></td>
<td>Amber</td>
<td>At least one fan or power supply module is not operating.</td>
</tr>
</tbody>
</table>
Fan Module LEDs

The fan module LED is located below the air holes on the front of the module.

<table>
<thead>
<tr>
<th>LED</th>
<th>Color</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>STS</td>
<td>Green</td>
<td>The fan module is operational.</td>
</tr>
<tr>
<td></td>
<td>Red</td>
<td>The fan module is not operational (fan is probably not functional).</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>Fan module is not receiving power.</td>
</tr>
</tbody>
</table>

Power Supply LEDs

The power supply LEDs are located on the left front portion of the power supply. Combinations of states indicated by the Okay (⊙) and Fault (△) LEDs indicate the status for the module as shown in the following table.

<table>
<thead>
<tr>
<th>⊗ LED</th>
<th>△ LED</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Off</td>
<td>Power supply is on and outputting power to the switch.</td>
</tr>
<tr>
<td>Flashing green</td>
<td>Off</td>
<td>Power supply is connected to a power source but not outputting power to the switch—power supply might not be installed in the chassis.</td>
</tr>
<tr>
<td>Off</td>
<td>Off</td>
<td>Power supply is not receiving power or is in shut mode.</td>
</tr>
<tr>
<td>LED</td>
<td>LED</td>
<td>Status</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>--------</td>
</tr>
</tbody>
</table>
| Green | Flashing amber | Power supply warning—possibly one of the following conditions:
 - High voltage
 - High power
 - Low voltage
 - Power supply warning condition
 - Slow power supply fan |
| Green | Amber | Power supply failure |
Additional Kits

• Rack Mount Kit NXK-ACC-KIT-1RU, on page 59
• Rack Mount Kit N3K-C3064-ACC-KIT, on page 60
• Airflow Sleeve, on page 61
• Vent Bracket, on page 61

Rack Mount Kit NXK-ACC-KIT-1RU

The following table lists and illustrates the contents for the 1-RU rack-mount kit (NXK-ACC-KIT-1RU).

<table>
<thead>
<tr>
<th>Illustration</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>un kit</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2t brackets</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2r brackets</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2er rails</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phillips pan-head screws</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ground lug kit</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1Two-hole lug</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2M4 x 8-mm Phillips pan-head screws</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EAC Compliance document</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Hazardous substances list for</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>customers in China</td>
<td></td>
</tr>
</tbody>
</table>

The following table lists and illustrates the console cable (CAB-CONSOLE-RJ45) that can be ordered.
The following table lists and illustrates the contents for the 1-RU rack-mount kit (N3K-C3064-ACC-KIT).

<table>
<thead>
<tr>
<th>Illustration</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 Rack-mount kit</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>• Front-mount angled bracket</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Rear-mount slider bracket</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Slider rails (2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• M4 x 7 mm mounting screws (16)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Ground lug kit</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>• Two-hole lug (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• M4 x 8-mm Phillips pan-head screws (2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EAC Compliance document</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Hazardous substances list for customers in China</td>
<td>1</td>
</tr>
</tbody>
</table>

The following table lists and illustrates the console cable (CAB-CONSOLE-RJ45) that can be ordered.

<table>
<thead>
<tr>
<th>Illustration</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 Console cable with DB-9F and RJ-45F connectors</td>
<td>1</td>
</tr>
</tbody>
</table>
Airflow Sleeve

The following table lists and illustrates the airflow sleeve (NXA-AIRFLOW-SLV3).

<table>
<thead>
<tr>
<th>Illustration</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Airflow sleeve</td>
<td>1</td>
</tr>
</tbody>
</table>

Vent Bracket

The following table lists and illustrates the vent bracket (NXA-ACC-BAV2).

Note

You require the vent bracket (NXA-ACC-BAV2) for NEBS (Network Equipment-Building System) compliance only.

<table>
<thead>
<tr>
<th>Illustration</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vent bracket</td>
<td>1</td>
</tr>
</tbody>
</table>
Additional Kits

<table>
<thead>
<tr>
<th>Vent Bracket</th>
<th></th>
</tr>
</thead>
</table>
Site Preparation and Maintenance Records

• Site Preparation Checklist, on page 63
• Contact and Site Information, on page 64
• Chassis and Module Information, on page 65

Site Preparation Checklist

Planning the location and layout of your equipment rack or cabinet is essential for successful switch operation, ventilation, and accessibility.

The following table lists the site planning tasks that we recommend that you complete before you install the switch. Your completion of each task ensures a successful switch installation.

<table>
<thead>
<tr>
<th>Planning Activity</th>
<th>Verification Time and Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space evaluation:</td>
<td></td>
</tr>
<tr>
<td>Space and layout</td>
<td></td>
</tr>
<tr>
<td>Floor covering</td>
<td></td>
</tr>
<tr>
<td>Impact and vibration</td>
<td></td>
</tr>
<tr>
<td>Lighting</td>
<td></td>
</tr>
<tr>
<td>Physical access</td>
<td></td>
</tr>
<tr>
<td>Maintenance access</td>
<td></td>
</tr>
<tr>
<td>Environmental evaluation:</td>
<td></td>
</tr>
<tr>
<td>Ambient temperature</td>
<td></td>
</tr>
<tr>
<td>Humidity</td>
<td></td>
</tr>
<tr>
<td>Altitude</td>
<td></td>
</tr>
<tr>
<td>Atmospheric contamination</td>
<td></td>
</tr>
<tr>
<td>Airflow</td>
<td></td>
</tr>
<tr>
<td>Planning Activity</td>
<td>Verification Time and Date</td>
</tr>
<tr>
<td>---</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Power evaluation:</td>
<td></td>
</tr>
<tr>
<td>Input power type</td>
<td></td>
</tr>
<tr>
<td>Power receptacles</td>
<td></td>
</tr>
<tr>
<td>Receptacle proximity to the equipment</td>
<td></td>
</tr>
<tr>
<td>Dedicated (separate) circuits for power redundancy</td>
<td></td>
</tr>
<tr>
<td>UPS for power failures</td>
<td></td>
</tr>
<tr>
<td>Grounding: proper wire gauge and lugs</td>
<td></td>
</tr>
<tr>
<td>Circuit breaker size</td>
<td></td>
</tr>
<tr>
<td>Grounding evaluation:</td>
<td></td>
</tr>
<tr>
<td>Data center ground</td>
<td></td>
</tr>
<tr>
<td>Cable and interface equipment evaluation:</td>
<td></td>
</tr>
<tr>
<td>Cable type</td>
<td></td>
</tr>
<tr>
<td>Connector type</td>
<td></td>
</tr>
<tr>
<td>Cable distance limitations</td>
<td></td>
</tr>
<tr>
<td>Interface equipment (transceivers)</td>
<td></td>
</tr>
<tr>
<td>EMI evaluation:</td>
<td></td>
</tr>
<tr>
<td>Distance limitations for signaling</td>
<td></td>
</tr>
<tr>
<td>Site wiring</td>
<td></td>
</tr>
<tr>
<td>RFI levels</td>
<td></td>
</tr>
</tbody>
</table>

Contact and Site Information

Use the following worksheet to record contact and site information for the installation.

<table>
<thead>
<tr>
<th>Contact person</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact phone</td>
<td></td>
</tr>
</tbody>
</table>
Chassis and Module Information

Use the following worksheet to record information about the switch.

<table>
<thead>
<tr>
<th>Contract number</th>
<th>Chassis serial number</th>
<th>Product number</th>
</tr>
</thead>
</table>

Use the following worksheet to record network-related information.

<table>
<thead>
<tr>
<th>Switch IP address</th>
<th>Switch IP netmask</th>
<th>Hostname</th>
<th>Domain name</th>
<th>IP broadcast address</th>
<th>Gateway/router address</th>
<th>DNS address</th>
</tr>
</thead>
</table>

Use the following worksheet to record information about the modules in the switch.

<table>
<thead>
<tr>
<th>Module Slot</th>
<th>Module Type</th>
<th>Module Serial Number</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fan module 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module Slot</td>
<td>Module Type</td>
<td>Module Serial Number</td>
<td>Notes</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------</td>
<td>----------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Fan module 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fan module 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fan module 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Supply 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Supply 2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>