THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB’s public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS” WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1721R)

Any Internet Protocol (IP) addresses used in this document are not intended to be actual addresses. Any examples, command display output, and figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses in illustrative content is unintentional and coincidental.

Cisco Nexus 5600 Series NX-OS Multicast Routing Configuration Guide, Release 7.x
© 2014 Cisco Systems, Inc. All rights reserved.
Verifying the IGMP Configuration 125
Configuration Examples for IGMP 126
Where to Go Next 126
Information About PIM 127
 Hello Messages 128
 Join-Prune Messages 129
 State Refreshes 130
 Rendezvous Points 130
 Static RP 130
 BSRs 130
 Auto-RP 132
 Anycast-RP 132
 PIM Register Messages 133
 Designated Routers 133
 Administratively Scoped IP Multicast 134
 BFD 134
 Virtualization Support 134
 PIM and Virtual Port Channels 134
Licensing Requirements for PIM 135
Guidelines and Limitations for PIM 135
Default Settings 135
Configuring PIM 136
 Enabling the PIM Features 137
 Configuring PIM Sparse Mode 138
 Configuring ASM and Bidir 142
 Configuring Static RPs 143
 Configuring BSRs 144
 Configuring Auto-RP 146
 Configuring a PIM Anycast-RP Set 149
 Configuring Shared Trees Only for ASM 150
Setting the Maximum Number of Entries in the Multicast Routing Table 151
 Configuring SSM 152
 Configuring RPF Routes for Multicast 153
 Configuring Route Maps to Control RP Information Distribution 154
 Configuring Message Filtering 156
 Bind-VRF Configuration to vPCs 158
 Verifying the PIM Configuration 159
Displaying Statistics 160
 Displaying PIM Statistics 160
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clearing PIM Statistics</td>
<td>161</td>
</tr>
<tr>
<td>Configuration Examples for PIM</td>
<td>161</td>
</tr>
<tr>
<td>Configuration Example for SSM</td>
<td>161</td>
</tr>
<tr>
<td>Configuration Example for BSR</td>
<td>162</td>
</tr>
<tr>
<td>Configuration Example for PIM Anycast-RP</td>
<td>163</td>
</tr>
<tr>
<td>Where to Go Next</td>
<td>164</td>
</tr>
<tr>
<td>Additional References</td>
<td>164</td>
</tr>
<tr>
<td>Related Documents</td>
<td>164</td>
</tr>
<tr>
<td>Standards</td>
<td>164</td>
</tr>
<tr>
<td>Information About IGMP Snooping</td>
<td>165</td>
</tr>
<tr>
<td>IGMPv1 and IGMPv2</td>
<td>166</td>
</tr>
<tr>
<td>IGMPv3</td>
<td>167</td>
</tr>
<tr>
<td>IGMP Snooping Querier</td>
<td>167</td>
</tr>
<tr>
<td>IGMP Filtering on Router Ports</td>
<td>167</td>
</tr>
<tr>
<td>IGMP Snooping on Virtual Port Channels</td>
<td>168</td>
</tr>
<tr>
<td>IGMP Snooping with VRFs</td>
<td>168</td>
</tr>
<tr>
<td>Licensing Requirements for IGMP Snooping</td>
<td>168</td>
</tr>
<tr>
<td>Prerequisites for IGMP Snooping</td>
<td>169</td>
</tr>
<tr>
<td>Guidelines and Limitations for IGMP Snooping</td>
<td>169</td>
</tr>
<tr>
<td>Default Settings</td>
<td>169</td>
</tr>
<tr>
<td>Configuring IGMP Snooping Parameters</td>
<td>170</td>
</tr>
<tr>
<td>Verifying the IGMP Snooping Configuration</td>
<td>173</td>
</tr>
<tr>
<td>Displaying IGMP Snooping Statistics</td>
<td>173</td>
</tr>
<tr>
<td>Configuration Examples for IGMP Snooping</td>
<td>174</td>
</tr>
<tr>
<td>Where to Go Next</td>
<td>174</td>
</tr>
<tr>
<td>Additional References</td>
<td>174</td>
</tr>
<tr>
<td>Related Documents</td>
<td>175</td>
</tr>
<tr>
<td>Standards</td>
<td>175</td>
</tr>
<tr>
<td>Information About MSDP</td>
<td>177</td>
</tr>
<tr>
<td>SA Messages and Caching</td>
<td>178</td>
</tr>
<tr>
<td>MSDP Peer-RPF Forwarding</td>
<td>179</td>
</tr>
<tr>
<td>MSDP Mesh Groups</td>
<td>179</td>
</tr>
<tr>
<td>Virtualization Support</td>
<td>179</td>
</tr>
<tr>
<td>Licensing Requirements for MSDP</td>
<td>179</td>
</tr>
<tr>
<td>Prerequisites for MSDP</td>
<td>180</td>
</tr>
</tbody>
</table>
Default Settings 180

Configuring MSDP 180
 Enabling the MSDP Feature 181
 Configuring MSDP Peers 182
 Configuring MSDP Peer Parameters 183
 Configuring MSDP Global Parameters 186
 Configuring MSDP Mesh Groups 187
 Restarting the MSDP Process 188

Verifying the MSDP Configuration 189

Displaying Statistics 190
 Displaying Statistics 190
 Clearing Statistics 190

Configuration Examples for MSDP 191

Additional References 192
 Related Documents 192
 Standards 192
Preface

This preface describes the audience, organization, and conventions of the *Cisco Nexus 6000 Series NX-OS Multicast Routing Configuration Guide, Release 7.x*. It also provides information on how to obtain related documentation.

This chapter includes the following sections:

- Audience, page v
- Document Conventions, page v
- Related Documentation, page vi
- Obtain Documentation and Submit a Service Request, page vii

Audience

This publication is for experienced users who configure and maintain Cisco NX-OS switches.

Document Conventions

Command descriptions use these conventions:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>boldface font</td>
<td>Commands and keywords are in boldface.</td>
</tr>
<tr>
<td>italic font</td>
<td>Arguments for which you supply values are in italics.</td>
</tr>
<tr>
<td>[]</td>
<td>Elements in square brackets are optional.</td>
</tr>
<tr>
<td>[x</td>
<td>y</td>
</tr>
<tr>
<td>string</td>
<td>A nonquoted set of characters. Do not use quotation marks around the string or the string will include the quotation marks.</td>
</tr>
</tbody>
</table>

Screen examples use these conventions:

<table>
<thead>
<tr>
<th>screen font</th>
<th>Terminal sessions and information that the switch displays are in screen font.</th>
</tr>
</thead>
<tbody>
<tr>
<td>boldface screen</td>
<td>Information you must enter is in boldface screen font.</td>
</tr>
<tr>
<td>font</td>
<td></td>
</tr>
</tbody>
</table>
This document uses the following conventions:

Note
Means reader *take note*. Notes contain helpful suggestions or references to material not covered in the manual.

Caution
Means reader *be careful*. In this situation, you might do something that could result in equipment damage or loss of data.

Tip
Means the following information will help you solve a problem.

Related Documentation

Documentation for Cisco Nexus 6000 switches and Cisco Nexus 2000 Series Fabric Extender is available at the following URL:

The following are related Cisco Nexus 6000 Series and Cisco Nexus 2000 Series Fabric Extender documents:

Release Notes

Cisco Nexus 6000 Series and Cisco Nexus 2000 Series Release Notes

Cisco Nexus 6000 Series Switch Release Notes

Maintain and Operate Guides

Cisco Nexus 6000 Series NX-OS Operations Guide

Licensing Guide

Cisco NX-OS Licensing Guide
Command References

Cisco Nexus 6000 Series Command Reference

Technical References

Cisco Nexus 6000 Series and Cisco Nexus 2000 Series Fabric Extender MIBs Reference

Error and System Messages

Cisco NX-OS System Messages Reference

Troubleshooting Guide

Cisco Nexus 6000 Troubleshooting Guide

Obtain Documentation and Submit a Service Request

For information on obtaining documentation, using the Cisco Bug Search Tool (BST), submitting a service request, and gathering additional information, see What’s New in Cisco Product Documentation. To receive new and revised Cisco technical content directly to your desktop, you can subscribe to the What’s New in Cisco Product Documentation RSS feed. The RSS feeds are a free service.
New and Changed Information

This chapter provides release-specific information for each new and changed feature in the Cisco Nexus 6000 Series NX-OS Multicast Routing Configuration Guide, Release 7.x. The latest version of this document is available at the following Cisco website:

To check for additional information about Cisco NX-OS Release 7.x, see the Cisco Nexus 6000 Series NX-OS Release Notes, Release 7.x available at the following Cisco website:

Table 1 summarizes the new and changed features for the Cisco Nexus 6000 Series NX-OS Multicast Routing Configuration Guide, Release 7.x, and tells you where they are documented.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>Changed in Release</th>
<th>Where Documented</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIM SSM on vPC</td>
<td>Added support for PIM SSSM on vPC.</td>
<td>7.3(0)N1(1)</td>
<td>Chapter 3, “Configuring SSM,”</td>
</tr>
<tr>
<td>ip pim spt-threshold infinity command</td>
<td>This command was introduced for PIM.</td>
<td>7.0(0)N1(1)</td>
<td>Chapter 3, “Configuring PIM Sparse Mode,”</td>
</tr>
</tbody>
</table>
Overview

This chapter describes the multicast features of Cisco NX-OS. This chapter includes the following sections:

- Information About Multicast, page 1-1
- Licensing Requirements for Multicast, page 1-10
- Additional References, page 1-10

Information About Multicast

IP multicast is a method of forwarding the same set of IP packets to a number of hosts within a network. You can use multicast in IPv4 networks to provide efficient delivery of data to multiple destinations.

Note

Tunnel interfaces do not support Protocol-Independent Multicast (PIM).

Multicast involves both a method of delivery and discovery of senders and receivers of multicast data, which is transmitted on IP multicast addresses called groups. A multicast address that includes a group and source IP address is often referred to as a channel. The Internet Assigned Number Authority (IANA) has assigned 224.0.0.0 through 239.255.255.255 as IPv4 multicast addresses. For more information, see http://www.iana.org/assignments/multicast-addresses.

Note

For a complete list of RFCs related to multicast, see Appendix A, “IETF RFCs for IP Multicast.”

The routers in the network listen for receivers to advertise their interest in receiving multicast data from selected groups. The routers then replicate and forward the data from sources to the interested receivers. Multicast data for a group is transmitted only to those LAN segments with receivers that requested it. Figure 1-1 shows one source transmitting multicast data that is delivered to two receivers. In the figure, because the center host is on a LAN segment where no receiver requested multicast data, no data is delivered to that receiver.
Multicast Distribution Trees

A multicast distribution tree represents the path that multicast data takes between the routers that connect sources and receivers. The multicast software builds different types of trees to support different multicast methods.

This section includes the following topics:
- Multicast Distribution Trees, page 1-2
- Multicast Forwarding, page 1-4
- Cisco NX-OS PIM, page 1-5
- IGMP, page 1-8
- IGMP Snooping, page 1-8
- Interdomain Multicast, page 1-8
- MRIB, page 1-9
- Virtual Port Channels and Multicast, page 1-10

Source Trees

A source tree represents the shortest path that the multicast traffic takes through the network from the sources that transmit to a particular multicast group to receivers that requested traffic from that same group. Because of the shortest path characteristic of a source tree, this tree is often referred to as a shortest path tree (SPT). Figure 1-2 shows a source tree for group 224.1.1.1 that begins at host A and connects to hosts B and C.
The notation \((S, G)\) represents the multicast traffic from source \(S\) on group \(G\). The SPT in Figure 1-2 is written \((192.1.1.1, 224.1.1.1)\). Multiple sources can be transmitting on the same group.

Shared Trees

A shared tree represents the shared distribution path that the multicast traffic takes through the network from a shared root or rendezvous point (RP) to each receiver. (The RP creates an SPT to each source.) A shared tree is also called an RP tree (RPT). Figure 1-3 shows a shared tree for group 224.1.1.1 with the RP at router D. Source hosts A and D send their data to router D, the RP, which then forwards the traffic to receiver hosts B and C.
The notation (*, G) represents the multicast traffic from any source on group G. The shared tree in Figure 1-3 is written (*, 224.2.2.2).

Multicast Forwarding

Because multicast traffic is destined for an arbitrary group of hosts, the router uses reverse path forwarding (RPF) to route data to active receivers for the group. When receivers join a group, a path is formed either toward the source (SSM mode) or the RP (ASM mode). The path from a source to a receiver flows in the reverse direction from the path that was created when the receiver joined the group.

For each incoming multicast packet, the router performs an RPF check. If the packet arrives on the interface leading to the source, the packet is forwarded out each interface in the outgoing interface (OIF) list for the group. Otherwise, the router drops the packet.

Figure 1-4 shows an example of RPF checks on packets coming in from different interfaces. The packet that arrives on E0 fails the RPF check because the unicast route table lists the source of the network on interface E1. The packet that arrives on E1 passes the RPF check because the unicast route table lists the source of that network on interface E1.
Cisco NX-OS PIM

Cisco NX-OS supports multicasting with Protocol Independent Multicast (PIM) sparse mode. PIM is IP routing protocol independent and can leverage whichever unicast routing protocols are used to populate the unicast routing table. In PIM sparse mode, multicast traffic is sent only to locations of the network that specifically request it. PIM dense mode is not supported by Cisco NX-OS.

To access multicast commands, you must enable the PIM feature. Multicast is enabled only after you enable PIM on an interface of each router in a domain. You configure PIM for an IPv4 network. By default, IGMP runs on the system.

PIM, which is used between multicast-capable routers, advertises group membership across a routing domain by constructing multicast distribution trees. PIM builds shared distribution trees on which packets from multiple sources are forwarded, as well as source distribution trees, on which packets from a single source are forwarded.

The distribution trees change automatically to reflect the topology changes due to link or router failures. PIM dynamically tracks both multicast-capable sources and receivers.

The router uses the unicast routing table and RPF routes for multicast to create multicast routing information. In Bidir mode, additional routing information is created.

In this publication, “PIM for IPv4” refer to the Cisco NX-OS implementation of PIM sparse mode. A PIM domain can include an IPv4 network.

Figure 1-5 shows two PIM domains in an IPv4 network.
Figure 1-5 shows the following elements of PIM:

- The lines with arrows show the path of the multicast data through the network. The multicast data originates from the sources at hosts A and D.
- The dashed line connects routers B and F, which are Multicast Source Discovery Protocol (MSDP) peers. MSDP supports the discovery of multicast sources in other PIM domains.
- Hosts B and C receive multicast data by using Internet Group Management Protocol (IGMP) to advertise requests to join a multicast group.
- Routers A, C, and D are designated routers (DRs). When more than one router is connected to a LAN segment, such as C and E, the PIM software chooses one router to be the DR so that only one router is responsible for putting multicast data on the segment.

Router B is the rendezvous point (RP) for one PIM domain and router F is the RP for the other PIM domain. The RP provides a common point for connecting sources and receivers within a PIM domain.

PIM supports three multicast modes for connecting sources and receivers:
- Any source multicast (ASM)
- Source-specific multicast (SSM)
Bidirectional shared trees (Bidir)
Cisco NX-OS supports a combination of these modes for different ranges of multicast groups. You can also define RPF routes for multicast.

This section includes the following topics:

- ASM, page 1-7
- Bidir, page 1-7
- SSM, page 1-7
- RPF Routes for Multicast, page 1-7

ASM
Any Source Multicast (ASM) is a PIM tree building mode that uses shared trees to discover new sources and receivers as well as source trees to form shortest paths from receivers to sources. The shared tree uses a network node as the root, called the rendezvous point (RP). The source tree is rooted at first-hop routers, directly attached to each source that is an active sender. The ASM mode requires an RP for a group range. An RP can be configured statically or learned dynamically by the Auto-RP or BSR group-to-RP discovery protocols.

The ASM mode is the default mode when you configure RPs.
For information about configuring ASM, see the “Configuring ASM and Bidir” section on page 3-42.

Bidir
Bidirectional shared trees (Bidir) is a PIM mode that, like the ASM mode, builds a shared tree between receivers and the RP, but does not support switching over to a source tree when a new receiver is added to a group. In the Bidir mode, the router that is connected to a receiver is called the designated forwarder because multicast data can be forwarded directly from the designated router (DR) to the receiver without first going to the RP. The Bidir mode requires that you configure an RP.

The Bidir mode can reduce the amount of resources required on a router when there are many multicast sources and can continue to operate whether or not the RP is operational or connected.

SSM
Source-Specific Multicast (SSM) is a PIM mode that builds a source tree that originates at the designated router on the LAN segment that receives a request to join a multicast source. Source trees are built by sending PIM join messages in the direction of the source. The SSM mode does not require you to configure RPs.

The SSM mode allows receivers to connect to sources outside the PIM domain.
For information about configuring SSM, see the “Configuring SSM” section on page 3-52.

RPF Routes for Multicast
You can configure static multicast RPF routes to override what the unicast routing table uses. This feature is used when the multicast topology is different than the unicast topology.

For information about configuring RPF routes for multicast, see the “Configuring RPF Routes for Multicast” section on page 3-53.
IGMP

By default, the Internet Group Management Protocol (IGMP) for PIM is running on the system. The IGMP protocol is used by hosts that want to receive multicast data to request membership in multicast groups. Once the group membership is established, multicast data for the group is directed to the LAN segment of the requesting host.

You can configure IGMPv2 or IGMPv3 on an interface. You will usually configure IGMPv3 to support SSM mode. By default, the software enables IGMPv2.

For information about configuring IGMP, see Chapter 2, “Configuring IGMP”.

IGMP Snooping

IGMP snooping is a feature that limits multicast traffic on VLANs to the subset of ports that have known receivers. By examining (snooping) IGMP membership report messages from interested hosts, multicast traffic is sent only to VLAN ports that interested hosts reside on. By default, IGMP snooping is running on the system.

For information about configuring IGMP snooping, see Chapter 4, “Configuring IGMP Snooping.”

Interdomain Multicast

Cisco NX-OS provides several methods that allow multicast traffic to flow between PIM domains.

This section includes the following topics:

- SSM, page 1-8
- MSDP, page 1-8

SSM

The PIM software uses SSM to construct a shortest path tree from the designated router for the receiver to a known source IP address, which may be in another PIM domain. The ASM mode cannot access sources from another PIM domain without the use of another protocol.

Once you enable PIM in your networks, you can use SSM to reach any multicast source that has an IP address known to the designated router for the receiver.

For information about configuring SSM, see the “Configuring SSM” section on page 3-52.

MSDP

Multicast Source Discovery Protocol (MSDP) is a multicast routing protocol that is used with PIM to support the discovery of multicast sources in different PIM domains.

Cisco NX-OS supports the PIM Anycast-RP, which does not require MSDP configuration. For information about PIM Anycast-RP, see the “Configuring a PIM Anycast-RP Set” section on page 3-49.

For information about MSDP, see Chapter 5, “Configuring MSDP.”
MRIB

The Cisco NX-OS IPv4 Multicast Routing Information Base (MRIB) is a repository for route information that is generated by multicast protocols such as PIM and IGMP. The MRIB does not affect the route information itself. The MRIB maintains independent route information for each virtual routing and forwarding (VRF) instance.

Figure 1-6 shows the major components of the Cisco NX-OS multicast software architecture:

- The Multicast FIB (MFIB) Distribution (MFDM) API defines an interface between the multicast Layer 2 and Layer 3 control plane modules, including the MRIB, and the platform forwarding plane. The control plane modules send the Layer 3 route update and Layer 2 lookup information using the MFDM API.
- The multicast FIB distribution process distributes the multicast update messages to the switch.
- The Layer 2 multicast client process sets up the Layer 2 multicast hardware forwarding path.
- The unicast and multicast FIB process manages the Layer 3 hardware forwarding path.

Figure 1-6 Cisco NX-OS Multicast Software Architecture
Virtual Port Channels and Multicast

A virtual port channel (vPC) allows a single switch to use a port channel across two upstream switches. When you configure a vPC, the following multicast features may be affected:

- PIM—Cisco NX-OS software for the Cisco Nexus 6000 switches does not support PIM SSM or BIDR on vPC.
- IGMP snooping—You should configure the vPC peers identically. For configuration guidelines, see Chapter 4, “Configuring IGMP Snooping.”

For more information about vPCs, see the Cisco Nexus 6000 Series NX-OS Interfaces Configuration Guide, Release 7.0.

General Multicast Restrictions

Cisco NX-OS multicast features have the following restriction:

- Cisco Nexus 5600 Series devices do not support Pragmatic General Multicast (PGM).
- Cisco Nexus 5600 Series devices do not support fragmentation on Multicast.

Licensing Requirements for Multicast

The multicast features that require a license are as follows:

- PIM
- MSDP

For information about multicast licensing, see the “Licensing Requirements for PIM” section on page 3-35 and the “Licensing Requirements for MSDP” section on page 5-79.

The multicast features that require no license are as follows:

- IGMP
- IGMP snooping

For a complete explanation of the Cisco NX-OS licensing scheme, see the Cisco NX-OS Licensing Guide.

Additional References

For additional information related to implementing multicast, see the following sections:

- Related Documents, page 1-11
- Appendix A, “IETF RFCs for IP Multicast”
- Technical Assistance, page 1-11
Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLI Commands</td>
<td>Cisco Nexus 5000 Series Command Reference, Cisco NX-OS Releases 4.x, 5.x, 6.x, 7.x</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Assistance Center (TAC) home page, containing 30,000 pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td>http://www.cisco.com/public/support/tac/home.shtml</td>
</tr>
</tbody>
</table>
Configuring IGMP

This chapter describes how to configure the Internet Group Management Protocol (IGMP) on Cisco NX-OS switches for IPv4 networks.

This chapter includes the following sections:
- Information About IGMP, page 2-13
- Licensing Requirements for IGMP, page 2-16
- Default Settings for IGMP, page 2-16
- Configuring IGMP Parameters, page 2-17
- Verifying the IGMP Configuration, page 2-25
- Configuration Examples for IGMP, page 2-26
- Where to Go Next, page 2-26

Information About IGMP

IGMP is an IPv4 protocol that a host uses to request multicast data for a particular group. Using the information obtained through IGMP, the software maintains a list of multicast group or channel memberships on a per-interface basis. The systems that receive these IGMP packets send multicast data that they receive for requested groups or channels out the network segment of the known receivers.

By default, the IGMP process is running. You cannot enable IGMP manually on an interface. IGMP is automatically enabled when you perform one of the following configuration tasks on an interface:

- Enable PIM
- Statically bind a local multicast group
- Enable link-local group reports

This section includes the following topics:
- IGMP Versions, page 2-13
- IGMP Basics, page 2-14
- Virtualization Support, page 2-16

IGMP Versions

The switch supports IGMPv2 and IGMPv3, as well as IGMPv1 report reception.
By default, the software enables IGMPv2 when it starts the IGMP process. You can enable IGMPv3 on interfaces where you want its capabilities.

IGMPv3 includes the following key changes from IGMPv2:

- Support for Source-Specific Multicast (SSM), which builds shortest path trees from each receiver to the source, through the following features:
 - Host messages that can specify both the group and the source.
 - The multicast state that is maintained for groups and sources, not just for groups as in IGMPv2.
- Hosts no longer perform report suppression, which means that hosts always send IGMP membership reports when an IGMP query message is received.

For detailed information about IGMPv2, see RFC 2236.
For detailed information about IGMPv3, see RFC 3376.

IGMP Basics

The basic IGMP process of a router that discovers multicast hosts is shown in Figure 2-1. Hosts 1, 2, and 3 send unsolicited IGMP membership report messages to initiate receiving multicast data for a group or channel.

Figure 2-1 IGMPv1 and IGMPv2 Query-Response Process

In Figure 2-1, router A, which is the IGMP designated querier on the subnet, sends query messages to the all-hosts multicast group at 224.0.0.1 periodically to discover whether any hosts want to receive multicast data. You can configure the group membership timeout value that the router uses to determine that no members of a group or source exist on the subnet. For more information about configuring the IGMP parameters, see the “Configuring IGMP Interface Parameters” section on page 2-17.

The software elects a router as the IGMP querier on a subnet if it has the lowest IP address. As long as a router continues to receive query messages from a router with a lower IP address, it resets a timer that is based on its querier timeout value. If the querier timer of a router expires, it becomes the designated querier. If that router later receives a host query message from a router with a lower IP address, it drops its role as the designated querier and sets its querier timer again.
In Figure 2-1, host 1’s membership report is suppressed and host 2 sends its membership report for group 224.1.1.1 first. Host 1 receives the report from host 2. Because only one membership report per group needs to be sent to the router, other hosts suppress their reports to reduce network traffic. Each host waits for a random time interval to avoid sending reports at the same time. You can configure the query maximum response time parameter to control the interval in which hosts randomize their responses.

Note

IGMPv1 and IGMPv2 membership report suppression occurs only on hosts that are connected to the same port.

In Figure 2-2, router A sends the IGMPv3 group-and-source-specific query to the LAN. Hosts 2 and 3 respond to the query with membership reports that indicate that they want to receive data from the advertised group and source. This IGMPv3 feature supports SSM. For information about configuring SSM translation to support SSM for IGMPv1 and IGMPv2 hosts, see the “Configuring an IGMP SSM Translation” section on page 2-23.

Figure 2-2 IGMPv3 Group-and-Source-Specific Query

Router A

Host 1

Host 2

Host 3

No report sent

Membership report for group 232.0.0.1, source 192.0.2.3

Membership report for group 232.0.0.1, source 192.0.2.3

Router B

IGMPv3 hosts do not perform IGMP membership report suppression.

Messages sent by the designated querier have a time-to-live (TTL) value of 1, which means that the messages are not forwarded by the directly connected routers on the subnet. You can configure the frequency and number of query messages sent specifically for IGMP startup, and you can configure a short query interval at startup so that the group state is established as quickly as possible. Although usually unnecessary, you can tune the query interval used after startup to a value that balances the responsiveness to host group membership messages and the traffic created on the network.

Caution

Changing the query interval can severely impact multicast forwarding.

When a multicast host leaves a group, a host that runs IGMPv2 or later sends an IGMP leave message. To check if this host is the last host to leave the group, the software sends an IGMP query message and starts a timer that you can configure called the last member query response interval. If no reports are received before the timer expires, the software removes the group state. The router continues to send multicast traffic for a group until its state is removed.
You can configure a robustness value to compensate for packet loss on a congested network. The robustness value is used by the IGMP software to determine the number of times to send messages.

Link local addresses in the range 224.0.0.0/24 are reserved by the Internet Assigned Numbers Authority (IANA). Network protocols on a local network segment use these addresses; routers do not forward these addresses because they have a TTL of 1. By default, the IGMP process sends membership reports only for nonlink local addresses, but you can configure the software to send reports for link local addresses.

For more information about configuring the IGMP parameters, see the “Configuring IGMP Interface Parameters” section on page 2-17.

Virtualization Support

Cisco NX-OS supports virtual routing and forwarding (VRF). You can define multiple VRF instances. A VRF configured with IGMP supports the following IGMP features:

- IGMP is enabled or disabled on per interface
- IGMPv1, IGMPv2, and IGMPv3 provide router-side support
- IGMPv2 and IGMPv3 provide host-side support
- Supports configuration of IGMP querier parameters
- IGMP reporting is supported for link local multicast groups
- IGMP SSM-translation supports mapping of IGMPv2 groups to a set of sources
- Supports multicast trace-route (Mtrace) server functionality to process Mtrace requests

For information about configuring VRFs, see the *Cisco Nexus 6000 Series NX-OS Unicast Routing Configuration Guide, Release 7.0*.

Licensing Requirements for IGMP

The following table shows the licensing requirements for this feature:

<table>
<thead>
<tr>
<th>Product</th>
<th>License Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco NX-OS</td>
<td>IGMP requires no license. Any feature not included in a license package is bundled with the Cisco NX-OS system images and is provided at no extra charge to you. For a complete explanation of the Cisco NX-OS licensing scheme, see the Cisco NX-OS Licensing Guide.</td>
</tr>
</tbody>
</table>

Note Make sure the LAN Base Services license is installed on the switch to enable the Layer 3 interfaces.

Default Settings for IGMP

Table 2-1 lists the default settings for IGMP parameters.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGMP version</td>
<td>2</td>
</tr>
<tr>
<td>Startup query interval</td>
<td>30 seconds</td>
</tr>
</tbody>
</table>
You can configure the IGMP global and interface parameters to affect the operation of the IGMP process. This section includes the following topics:

- Configuring IGMP Interface Parameters, page 2-17
- Configuring an IGMP SSM Translation, page 2-23
- Configuring the Enforce Router Alert Option Check, page 2-24

Note

If you are familiar with the Cisco IOS CLI, be aware that the Cisco NX-OS commands for this feature might differ from the Cisco IOS commands that you would use.

Configuring IGMP Interface Parameters

You can configure the optional IGMP interface parameters described in Table 2-2.
Configuring IGMP Parameters

Table 2-2 IGMP Interface Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGMP version</td>
<td>IGMP version that is enabled on the interface. The IGMP version can be 2 or 3. The default is 2.</td>
</tr>
<tr>
<td>Static multicast groups</td>
<td>Multicast groups that are statically bound to the interface. You can configure the groups to join the interface with the (*, G) state or specify a source IP to join with the (S, G) state. You can specify a route-map policy name that lists the group prefixes, group ranges, and source prefixes to use with the <code>match ip multicast</code> command. Note Although you can configure the (S, G) state, the source tree is built only if you enable IGMPv3. For information about SSM translation, see the “Configuring an IGMP SSM Translation” section on page 2-23. You can configure a multicast group on all the multicast-capable routers on the network so that pinging the group causes all the routers to respond.</td>
</tr>
<tr>
<td>Static multicast groups on OIF</td>
<td>Multicast groups that are statically bound to the output interface. You can configure the groups to join the output interface with the (*, G) state or specify a source IP to join with the (S, G) state. You can specify a route-map policy name that lists the group prefixes, group ranges, and source prefixes to use with the <code>match ip multicast</code> command. Note Although you can configure the (S, G) state, the source tree is built only if you enable IGMPv3. For information about SSM translation, see the “Configuring an IGMP SSM Translation” section on page 2-23.</td>
</tr>
<tr>
<td>Startup query interval</td>
<td>Startup query interval. By default, this interval is shorter than the query interval so that the software can establish the group state as quickly as possible. Values range from 1 to 18,000 seconds. The default is 31 seconds.</td>
</tr>
<tr>
<td>Startup query count</td>
<td>Number of queries sent at startup that are separated by the startup query interval. Values range from 1 to 10. The default is 2.</td>
</tr>
<tr>
<td>Robustness value</td>
<td>Robustness variable that you can tune to reflect expected packet loss on a congested network. You can increase the robustness variable to increase the number of times that packets are resent. Values range from 1 to 7. The default is 2.</td>
</tr>
<tr>
<td>Querier timeout</td>
<td>Number of seconds that the software waits after the previous querier has stopped querying and before it takes over as the querier. Values range from 1 to 65,535 seconds. The default is 255 seconds.</td>
</tr>
<tr>
<td>Query max response time</td>
<td>Maximum response time advertised in IGMP queries. You can tune the burstiness of IGMP messages on the network by setting a larger value so that host responses are spread out over a longer time. This value must be less than the query interval. Values range from 1 to 25 seconds. The default is 10 seconds.</td>
</tr>
</tbody>
</table>
Configuring IGMP Parameters

For information about configuring multicast route maps, see the “Configuring Route Maps to Control RP Information Distribution” section on page 3-54.

Table 2-2 IGMP Interface Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Query interval</td>
<td>Frequency at which the software sends IGMP host query messages. You can tune the number of IGMP messages on the network by setting a larger value so that the software sends IGMP queries less often. Values range from 1 to 18,000 seconds. The default is 125 seconds.</td>
</tr>
<tr>
<td>Last member query response interval</td>
<td>Interval in which the software sends a response to an IGMP query after receiving a host leave message from the last known active host on the subnet. If no reports are received in the interval, the group state is deleted. You can use this value to tune how quickly the software stops transmitting on the subnet. The software can detect the loss of the last member of a group or source more quickly when the values are smaller. Values range from 1 to 25 seconds. The default is 1 second.</td>
</tr>
<tr>
<td>Last member query count</td>
<td>Number of times that the software sends an IGMP query, separated by the last member query response interval, in response to a host leave message from the last known active host on the subnet. Values range from 1 to 5. The default is 2.</td>
</tr>
<tr>
<td>Group membership timeout</td>
<td>Group membership interval that must pass before the router decides that no members of a group or source exist on the network. Values range from 3 to 65,535 seconds. The default is 260 seconds.</td>
</tr>
<tr>
<td>Report link local multicast groups</td>
<td>Option that enables sending reports for groups in 224.0.0.0/24. Link local addresses are used only by protocols on the local network. Reports are always sent for nonlink local groups. The default is disabled.</td>
</tr>
<tr>
<td>Report policy</td>
<td>Access policy for IGMP reports that is based on a route-map policy.</td>
</tr>
<tr>
<td>Access groups</td>
<td>Option that configures a route-map policy to control the multicast groups that hosts on the subnet serviced by an interface can join. Only the <code>match ip multicast group</code> command is supported in this route map policy. The <code>match ip address</code> command for matching an ACL is not supported.</td>
</tr>
<tr>
<td>Immediate leave</td>
<td>Option that minimizes the leave latency of IGMPv2 group memberships on a given IGMP interface because the switch does not send group-specific queries. When immediate leave is enabled, the switch removes the group entry from the multicast routing table immediately upon receiving a leave message for the group. The default is disabled. Use this command only when there is one receiver behind the interface for a given group.</td>
</tr>
</tbody>
</table>

1. To configure route-map policies, see the *Cisco Nexus 6000 Series NX-OS Unicast Routing Configuration Guide, Release 7.0*.
Chapter 2 Configuring IGMP

SUMMARY STEPS

1. configure terminal
2. interface interface
3. no switchport
4. ip igmp version value
 ip igmp join-group {group [source source] | route-map policy-name}
 ip igmp static-oif {group [source source] | route-map policy-name}
 ip igmp startup-query-interval seconds
 ip igmp startup-query-count count
 ip igmp robustness-variable value
 ip igmp querier-timeout seconds
 ip igmp query-timeout seconds
 ip igmp query-max-response-time seconds
 ip igmp query-interval interval
 ip igmp last-member-query-response-time seconds
 ip igmp last-member-query-count count
 ip igmp group-timeout seconds
 ip igmp report-link-local-groups
 ip igmp report-policy policy
 ip igmp access-group policy
 ip igmp immediate-leave
5. (Optional) show ip igmp interface [interface] [vrf vrf-name | all] [brief]
6. (Optional) copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Example: switch(config-if)#</td>
<td></td>
</tr>
<tr>
<td>Step 2 interface type slot/port</td>
<td>Enters interface mode on the interface type and number, such as ethernet slot/port.</td>
</tr>
<tr>
<td>Example: switch(config-if)# interface ethernet 2/1</td>
<td>Note If this is a 10G breakout port, the slot/port syntax is slot/QSFP-module/port.</td>
</tr>
<tr>
<td>Step 3 no switchport</td>
<td>Configures the interface as a Layer 3 interface.</td>
</tr>
<tr>
<td>Example: switch(config-if)# no switchport</td>
<td></td>
</tr>
<tr>
<td>Step 4 ip igmp version value</td>
<td>Sets the IGMP version to the value specified. Values can be 2 or 3. The default is 2.</td>
</tr>
<tr>
<td>Example: switch(config-if)# ip igmp version 3</td>
<td>The no form of the command sets the version to 2.</td>
</tr>
</tbody>
</table>
Chapter 2 Configuring IGMP

Configuring IGMP Parameters

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 5 | ip igmp join-group {group [source source] | route-map policy-name} | Statically binds a multicast group to the interface. If you specify only the group address, the (*, G) state is created. If you specify the source address, the (S, G) state is created. You can specify a route-map policy name that lists the group prefixes, group ranges, and source prefixes to use with the match ip multicast command.
Note A source tree is built for the (S, G) state only if you enable IGMPv3.
Caution The switch CPU must be able to handle the traffic generated by using this command. |
| 6 | ip igmp static-oif {group [source source] | route-map policy-name} | Statically binds a multicast group to the outgoing interface, which is handled by the switch hardware. If you specify only the group address, the (*, G) state is created. If you specify the source address, the (S, G) state is created. You can specify a route-map policy name that lists the group prefixes, group ranges, and source prefixes to use with the match ip multicast command.
Note A source tree is built for the (S, G) state only if you enable IGMPv3. |
| 7 | ip igmp startup-query-interval seconds | Sets the query interval used when the software starts up. Values can range from 1 to 18,000 seconds. The default is 31 seconds. |
| 8 | ip igmp startup-query-count count | Sets the query count used when the software starts up. Values can range from 1 to 10. The default is 2. |
| 9 | ip igmp robustness-variable value | Sets the robustness variable. You can use a larger value for a lossy network. Values can range from 1 to 7. The default is 2. |
| 10 | ip igmp querier-timeout seconds | Sets the querier timeout that the software uses when deciding to take over as the querier. Values can range from 1 to 65,535 seconds. The default is 255 seconds. |
| 11 | ip igmp query-timeout seconds | Sets the query timeout that the software uses when deciding to take over as the querier. Values can range from 1 to 65,535 seconds. The default is 255 seconds.
Note This command has the same functionality as the ip igmp querier-timeout command. |
Configuring IGMP Parameters

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 12 ip igmp query-max-response-time seconds</td>
<td>Sets the response time advertised in IGMP queries. Values can range from 1 to 25 seconds. The default is 10 seconds.</td>
</tr>
<tr>
<td>Example: switch(config-if)# ip igmp query-max-response-time 15</td>
<td></td>
</tr>
<tr>
<td>Step 13 ip igmp query-interval interval</td>
<td>Sets the frequency at which the software sends IGMP host query messages. Values can range from 1 to 18,000 seconds. The default is 125 seconds.</td>
</tr>
<tr>
<td>Example: switch(config-if)# ip igmp query-interval 100</td>
<td></td>
</tr>
<tr>
<td>Step 14 ip igmp last-member-query-response-time seconds</td>
<td>Sets the query interval waited after sending membership reports before the software deletes the group state. Values can range from 1 to 25 seconds. The default is 1 second.</td>
</tr>
<tr>
<td>Example: switch(config-if)# ip igmp last-member-query-response-time 3</td>
<td></td>
</tr>
<tr>
<td>Step 15 ip igmp last-member-query-count count</td>
<td>Sets the number of times that the software sends an IGMP query in response to a host leave message. Values can range from 1 to 5. The default is 2.</td>
</tr>
<tr>
<td>Example: switch(config-if)# ip igmp last-member-query-count 3</td>
<td></td>
</tr>
<tr>
<td>Step 16 ip igmp group-timeout seconds</td>
<td>Sets the group membership timeout for IGMPv2. Values can range from 3 to 65,535 seconds. The default is 260 seconds.</td>
</tr>
<tr>
<td>Example: switch(config-if)# ip igmp group-timeout 300</td>
<td></td>
</tr>
<tr>
<td>Step 17 ip igmp report-link-local-groups</td>
<td>Enables sending reports for groups in 224.0.0.0/24. Reports are always sent for nonlink local groups. By default, reports are not sent for link local groups.</td>
</tr>
<tr>
<td>Example: switch(config-if)# ip igmp report-link-local-groups</td>
<td></td>
</tr>
<tr>
<td>Step 18 ip igmp report-policy policy</td>
<td>Configures a route-map policy to control the multicast groups that a PIM-enabled interface can join.</td>
</tr>
<tr>
<td>Example: switch(config-if)# ip igmp report-policy my_report_policy</td>
<td></td>
</tr>
<tr>
<td>Step 19 ip igmp access-group policy</td>
<td>Configures a route-map policy to control the multicast groups that a PIM-enabled interface can join.</td>
</tr>
<tr>
<td>Note Only the match ip multicast group command is supported in this route map policy. The match ip address command for matching an ACL is not supported.</td>
<td></td>
</tr>
<tr>
<td>Example: switch(config-if)# ip igmp access-group my_access_policy</td>
<td></td>
</tr>
<tr>
<td>Step 20 ip igmp immediate-leave</td>
<td>Enables the switch to remove the group entry from the multicast routing table immediately upon receiving a leave message for the group. This command allows you to minimize the leave latency of IGMPv2 group memberships on a given IGMP interface because the switch does not send group-specific queries. The default is disabled.</td>
</tr>
<tr>
<td>Note Use this command only when there is one receiver behind the interface for a given group.</td>
<td></td>
</tr>
<tr>
<td>Example: switch(config-if)# ip igmp immediate-leave</td>
<td></td>
</tr>
</tbody>
</table>
Configuring a IGMP SSM Translation

You can configure an SSM translation to provide SSM support when the router receives IGMPv1 or IGMPv2 membership reports. Only IGMPv3 provides the capability to specify group and source addresses in membership reports. By default, the group prefix range is 232.0.0.0/8. To modify the PIM SSM range, see the “Configuring SSM” section on page 3-52.

Table 2-3 lists the example SSM translations.

<table>
<thead>
<tr>
<th>Group Prefix</th>
<th>Source Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>232.0.0.0/8</td>
<td>10.1.1.1</td>
</tr>
<tr>
<td>232.0.0.0/8</td>
<td>10.2.2.2</td>
</tr>
<tr>
<td>232.1.0.0/16</td>
<td>10.3.3.3</td>
</tr>
<tr>
<td>232.1.1.0/24</td>
<td>10.4.4.4</td>
</tr>
</tbody>
</table>

Table 2-4 shows the resulting MRIB routes that the IGMP process creates when it applies an SSM translation to the IGMP membership report. If more than one translation applies, the router creates the (S, G) state for each translation.

<table>
<thead>
<tr>
<th>IGMPv2 Membership Report</th>
<th>Resulting MRIB Route</th>
</tr>
</thead>
<tbody>
<tr>
<td>232.1.1.1</td>
<td>(10.4.4.4, 232.1.1.1)</td>
</tr>
<tr>
<td>232.2.2.2</td>
<td>(10.1.1.1, 232.2.2.2)</td>
</tr>
<tr>
<td></td>
<td>(10.2.2.2, 232.2.2.2)</td>
</tr>
</tbody>
</table>

Note

This feature is similar to SSM mapping found in some Cisco IOS software.

SUMMARY STEPS

1. configure terminal
2. ip igmp ssm-translate group-prefix source-addr
3. (Optional) show running-configuration igmp
Configuring IGMP Parameters

Configuring the Enforce Router Alert Option Check

You can configure the enforce router alert option check for IGMPv2 and IGMPv3 packets.

SUMMARY STEPS

1. `configure terminal`
2. `ip igmp enforce-router-alert`
 - `no ip igmp enforce-router-alert`
3. (Optional) `show running-configuration igmp`
4. (Optional) `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>configure terminal</code></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2 <code>ip igmp ssm-translate group-prefix source-addr</code></td>
<td>Configures the translation of IGMPv1 or IGMPv2 membership reports by the IGMP process to create the (S,G) state as if the router had received an IGMPv3 membership report.</td>
</tr>
<tr>
<td>Step 3 <code>show running-configuration igmp</code></td>
<td>(Optional) Shows the running-configuration information, including <code>ssm-translate</code> command lines.</td>
</tr>
<tr>
<td>Step 4 <code>copy running-config startup-config</code></td>
<td>(Optional) Saves configuration changes.</td>
</tr>
</tbody>
</table>
Verifying the IGMP Configuration

To display the IGMP configuration information, perform one of the following tasks:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>**show ip igmp interface [interface] [vrf vrf-name</td>
<td>all] [brief]**</td>
</tr>
<tr>
<td>**show ip igmp groups [group</td>
<td>interface] [vrf vrf-name</td>
</tr>
<tr>
<td>**show ip igmp route [group</td>
<td>interface] [vrf vrf-name</td>
</tr>
<tr>
<td>show ip igmp local-groups</td>
<td>Displays the IGMP local group membership.</td>
</tr>
<tr>
<td>show running-configuration igmp</td>
<td>Displays the IGMP running-configuration information.</td>
</tr>
<tr>
<td>show startup-configuration igmp</td>
<td>Displays the IGMP startup-configuration information.</td>
</tr>
</tbody>
</table>

For detailed information about the fields in the output from these commands, see the *Cisco Nexus 5000 Series Command Reference, Cisco NX-OS Releases 4.x, 5.x.*
Configuration Examples for IGMP

This example shows how to configure the IGMP parameters:

```
switch# configure terminal
switch(config)# ip igmp ssm-translate 232.0.0.0/8 10.1.1.1
switch(config)# interface ethernet 2/1
switch(config-if)# no switchport
switch(config-if)# ip igmp version 3
switch(config-if)# ip igmp join-group 230.0.0.0
switch(config-if)# ip igmp startup-query-interval 25
switch(config-if)# ip igmp startup-query-count 3
switch(config-if)# ip igmp robustness-variable 3
switch(config-if)# ip igmp querier-timeout 300
switch(config-if)# ip igmp query-timeout 300
switch(config-if)# ip igmp query-max-response-time 15
switch(config-if)# ip igmp query-interval 100
switch(config-if)# ip igmp last-member-query-response-time 3
switch(config-if)# ip igmp last-member-query-count 3
switch(config-if)# ip igmp group-timeout 300
switch(config-if)# ip igmp report-link-local-groups
switch(config-if)# ip igmp report-policy my_report_policy
switch(config-if)# ip igmp access-group my_access_policy
```

This example shows how to configure a route map that accepts all multicast reports (joins):

```
switch(config)# route-map foo
switch(config-route-map)# exit
switch(config)# interface vlan 10
switch(config-if)# no switchport
switch(config-if)# ip pim sparse-mode
switch(config-if)# ip igmp report-policy foo
```

This example shows how to configure a route map that denies all multicast reports (joins):

```
switch(config)# route-map foo deny 10
switch(config-route-map)# exit
switch(config)# interface vlan 5
switch(config-if)# ip pim sparse-mode
switch(config-if)# ip igmp report-policy foo
```

Where to Go Next

You can enable the following features that work with PIM and IGMP:

- Chapter 4, “Configuring IGMP Snooping”
- Chapter 5, “Configuring MSDP”
CHAPTER 3

Configuring PIM

This chapter describes how to configure the Protocol Independent Multicast (PIM) features on Cisco NX-OS switches in your IPv4 networks.

This chapter includes the following sections:

- Information About PIM, page 3-27
- Guidelines and Limitations for PIM, page 3-35
- Default Settings, page 3-36
- Configuring PIM, page 3-37
- Verifying the PIM Configuration, page 3-60
- Displaying Statistics, page 3-61
- Configuration Examples for PIM, page 3-62
- Where to Go Next, page 3-65
- Additional References, page 3-65

Information About PIM

PIM, which is used between multicast-capable routers, advertises group membership across a routing domain by constructing multicast distribution trees. PIM builds shared distribution trees on which packets from multiple sources are forwarded, as well as source distribution trees on which packets from a single source are forwarded. For more information about multicast, see the “Information About Multicast” section on page 1-1.

Cisco NX-OS supports PIM sparse mode for IPv4 networks (PIM). (In PIM sparse mode, multicast traffic is sent only to locations of the network that specifically request it.) You can configure PIM to run simultaneously on a router. You can use PIM global parameters to configure rendezvous points (RPs), message packet filtering, and statistics. You can use PIM interface parameters to enable multicast, identify PIM borders, set the PIM hello message interval, and set the designated router (DR) priority. For more information, see the “Configuring PIM Sparse Mode” section on page 3-39.

Note

Cisco NX-OS does not support PIM dense mode.

In Cisco NX-OS, multicast is enabled only after you enable the PIM feature on each router and then enable PIM sparse mode on each interface that you want to participate in multicast. You can configure PIM for an IPv4 network. In an IPv4 network, if you have not already enabled IGMP on the router, PIM
enables it automatically. For information about configuring IGMP, see Chapter 2, “Configuring IGMP”.

You use the PIM global configuration parameters to configure the range of multicast group addresses to be handled by each of the two distribution modes:

- **Any Source Multicast (ASM)** provides discovery of multicast sources. It builds a shared tree between sources and receivers of a multicast group and supports switching over to a source tree when a new receiver is added to a group. ASM mode requires that you configure an RP.

- **Single Source Multicast (SSM)** builds a source tree originating at the designated router on the LAN segment that receives a request to join a multicast source. SSM mode does not require you to configure RPs. Source discovery must be accomplished through other means.

- **Bidirectional shared Trees (Bidir)** build a shared tree between sources and receivers of a multicast group but do not support switching over to a source tree when a new receiver is added to a group. Bidir mode requires that you configure a RP. Bidir forwarding does not require source discovery because only the shared tree is used.

You can combine the modes to cover different ranges of group addresses. For more information, see the “Configuring PIM” section on page 3-37.

For more information about PIM sparse mode and shared distribution trees used by the ASM mode, see RFC 4601.

For more information about PIM SSM mode, see RFC 3569.

Note

Multicast equal-cost multipathing (ECMP) is on by default in the Cisco NX-OS for the Cisco Nexus 6000 switches; you cannot turn ECMP off. If multiple paths exist for a prefix, PIM selects the path with the lowest administrative distance in the routing table. Cisco NX-OS supports up to 16 paths to a destination.

This section includes the following topics:

- **Hello Messages**, page 3-28
- **Join-Prune Messages**, page 3-29
- **State Refreshes**, page 3-30
- **Rendezvous Points**, page 3-30
- **PIM Register Messages**, page 3-33
- **Designated Routers**, page 3-33
- **Administratively Scoped IP Multicast**, page 3-34
- **BFD**, page 3-34
- **PIM and Virtual Port Channels**, page 3-34
- **PIM SSM with vPC**, page 3-35

Hello Messages

The PIM process begins when the router establishes PIM neighbor adjacencies by sending PIM hello messages to the multicast address 224.0.0.13. Hello messages are sent periodically at the interval of 30 seconds. When all neighbors have replied, then the PIM software chooses the router with the highest priority in each LAN segment as the designated router (DR). The DR priority is based on a DR priority value in the PIM hello message. If the DR priority value is not supplied by all routers, or the priorities match, the highest IP address is used to elect the DR.
Caution
If you change the PIM hello interval to a lower value, we recommend that you ensure it is appropriate for your network environment.

The hello message also contains a hold-time value, which is typically 3.5 times the hello interval. If this hold time expires without a subsequent hello message from its neighbor, the switch detects a PIM failure on that link.

For added security, you can configure an MD5 hash value that the PIM software uses to authenticate PIM hello messages with PIM neighbors.

Note
If PIM is disabled on the switch, the IGMP snooping software processes the PIM hello messages.

For information about configuring hello message authentication, see the “Configuring PIM Sparse Mode” section on page 3-39.

Join-Prune Messages

When the DR receives an IGMP membership report message from a receiver for a new group or source, the DR creates a tree to connect the receiver to the source by sending a PIM join message out the interface toward the rendezvous point (ASM or Bidir mode) or source (SSM mode). The rendezvous point (RP) is the root of a shared tree, which is used by all sources and hosts in the PIM domain in the ASM or Bidir mode. SSM does not use an RP but builds a shortest path tree (SPT) that is the lowest cost path between the source and the receiver.

When the DR determines that the last host has left a group or source, it sends a PIM prune message to remove the path from the distribution tree.

The routers forward the join or prune action hop by hop up the multicast distribution tree to create (join) or tear down (prune) the path.

Note
In this publication, the terms “PIM join message” and “PIM prune message” are used to simplify the action taken when referring to the PIM join-prune message with only a join or prune action.

Join-prune messages are sent as quickly as possible by the software. You can filter the join-prune messages by defining a routing policy. For information about configuring the join-prune message policy, see the “Configuring PIM Sparse Mode” section on page 3-39.

You can prebuild the SPT for all known (S,G) in the routing table by triggering PIM joins upstream. To prebuild the SPT for all known (S,G)s in the routing table by triggering PIM joins upstream, even in the absence of any receivers, use the `ip pim pre-build-spt` command. By default, PIM (S,G) joins are triggered upstream only if the OIF-list for the (S,G) is not empty. It is useful in certain scenarios—for example, on the virtual port-channel (vPC) nonforwarding router—to prebuild the SPTs and maintain the (S,G) states even when the system is not forwarding on these routes. Prebuilding the SPT ensures faster convergence when a vPC failover occurs. When you are running virtual port channels (vPCs), enabling this feature causes both vPC peer switches to join the SPT, even though only one vPC peer switch actually routes the multicast traffic into the vPC domain. This behavior results in the multicast traffic passing over two parallel paths from the source to the vPC switch pair, consuming bandwidth on both paths. Additionally, when both vPC peer switches join the SPT, one or more upstream switches in the network may be required to perform additional multicast replications to deliver the traffic on both parallel paths toward the receivers in the vPC domain.
State Refreshes

PIM requires that multicast entries are refreshed within a 3.5-minute timeout interval. The state refresh ensures that traffic is delivered only to active listeners, and it keeps routers from using unnecessary resources.

To maintain the PIM state, the last-hop DR sends join-prune messages once per minute. State creation applies to both (*, G) and (S, G) states as follows:

- (*, G) state creation example—An IGMP (*, G) report triggers the DR to send a (*, G) PIM join message toward the RP.
- (S, G) state creation example—An IGMP (S, G) report triggers the DR to send an (S, G) PIM join message toward the source.

If the state is not refreshed, the PIM software tears down the distribution tree by removing the forwarding paths in the multicast outgoing interface list of the upstream routers.

Rendezvous Points

A rendezvous point (RP) is a router that you select in a multicast network domain that acts as a shared root for a multicast shared tree. You can configure as many RPs as you like, and you can configure them to cover different group ranges.

This section includes the following topics:

- Static RP, page 3-30
- BSRs, page 3-30
- Auto-RP, page 3-32
- Anycast-RP, page 3-32

Static RP

You can statically configure an RP for a multicast group range. You must configure the address of the RP on every router in the domain.

You can define static RPs for the following reasons:

- To configure routers with the Anycast-RP address
- To manually configure an RP on a switch

For information about configuring static RPs, see the “Configuring Static RPs” section on page 3-44.

BSRs

The bootstrap router (BSR) ensures that all routers in the PIM domain have the same RP cache as the BSR. You can configure the BSR to help you select an RP set from BSR candidate RPs. The function of the BSR is to broadcast the RP set to all routers in the domain. You select one or more candidate BSRs to manage the RPs in the domain. Only one candidate BSR is elected as the BSR for the domain.

Caution: Do not configure both Auto-RP and BSR protocols in the same network.
Figure 3-1 shows where the BSR mechanism. router A, the software-elected BSR, sends BSR messages out all enabled interfaces (shown by the solid lines in the figure). The messages, which contain the RP set, are flooded hop by hop to all routers in the network. Routers B and C are candidate RPs that send their candidate-RP advertisements directly to the elected BSR (shown by the dashed lines in the figure).

The elected BSR receives candidate-RP messages from all the candidate RPs in the domain. The bootstrap message sent by the BSR includes information about all of the candidate RPs. Each router uses a common algorithm to select the same RP address for a given multicast group.

In the RP selection process, the RP address with the best priority is determined by the software. If the priorities match for two or more RP addresses, the software may use the RP hash in the selection process. Only one RP address is assigned to a group.

By default, routers are not enabled to listen or forward BSR messages. You must enable the BSR listening and forwarding feature so that the BSR mechanism can dynamically inform all routers in the PIM domain of the RP set assigned to multicast group ranges.

For more information about bootstrap routers, see RFC 5059.

The BSR mechanism is a nonproprietary method of defining RPs that can be used with third-party routers.

For information about configuring BSRs and candidate RPs, see the “Configuring BSRs” section on page 3-44.

Auto-RP

Auto-RP is a Cisco protocol that was prior to the Internet standard bootstrap router mechanism. You configure Auto-RP by selecting candidate mapping agents and RPs. Candidate RPs send their supported group range in RP-Announce messages to the Cisco RP-Announce multicast group 224.0.1.39.
Auto-RP mapping agent listens for RP-Announce messages from candidate RPs and forms a Group-to-RP mapping table. The mapping agent multicasts the Group-to-RP mapping table in RP-Discovery messages to the Cisco RP-Discovery multicast group 224.0.1.40.

Caution
Do not configure both Auto-RP and BSR protocols in the same network.

Figure 3-2 shows the Auto-RP mechanism. Periodically, the RP mapping agent multicasts the RP information that it receives to the Cisco-RP-Discovery group 224.0.1.40 (shown by the solid lines in the figure).

![Auto-RP Mechanism Diagram](image)

By default, routers are not enabled to listen or forward Auto-RP messages. You must enable the Auto-RP listening and forwarding feature so that the Auto-RP mechanism can dynamically inform routers in the PIM domain of the Group-to-RP mapping.

For information about configuring Auto-RP, see the “Configuring Auto-RP” section on page 3-47.

Anycast-RP

Anycast-RP has two implementations: one uses Multicast Source Discovery Protocol (MSDP) and the other is based on RFC 4610, *Anycast-RP Using Protocol Independent Multicast (PIM)*. This section describes how to configure PIM Anycast-RP.

You can use PIM Anycast-RP to assign a group of routers, called the Anycast-RP set, to a single RP address that is configured on multiple routers. The set of routers that you configure as Anycast-RPs is called the Anycast-RP set. This method is the only RP method that supports more than one RP per multicast group, which allows you to load balance across all RPs in the set. The Anycast RP supports all multicast groups.
PIM register messages are sent to the closest RP and PIM join-prune messages are sent in the direction of the closest RP as determined by the unicast routing protocols. If one of the RPs goes down, unicast routing ensures these messages will be sent in the direction of the next-closest RP.

For more information about PIM Anycast-RP, see RFC 4610.

For information about configuring Anycast-RPs, see the “Configuring a PIM Anycast-RP Set” section on page 3-49.

PIM Register Messages

PIM register messages are unicast to the RP by designated routers (DRs) that are directly connected to multicast sources. The PIM register message has the following functions:

- To notify the RP that a source is actively sending to a multicast group.
- To deliver multicast packets sent by the source to the RP for delivery down the shared tree.

The DR continues to send PIM register messages to the RP until it receives a Register-Stop message from the RP. The RP sends a Register-Stop message in either of the following cases:

- The RP has no receivers for the multicast group being transmitted.
- The RP has joined the SPT to the source but has not started receiving traffic from the source.

Note

In Cisco NX-OS, PIM register messages are rate limited to avoid overwhelming the RP.

You can filter PIM register messages by defining a routing policy. For information about configuring the PIM register message policy, see the “Configuring Shared Trees Only for ASM” section on page 3-51.

Designated Routers

In PIM ASM and SSM modes, the software chooses a designated router (DR) from the routers on each network segment. The DR is responsible for forwarding multicast data for specified groups and sources on that segment.

The DR for each LAN segment is determined as described in the “Hello Messages” section on page 3-28.

In ASM mode, the DR is responsible for unicasting PIM register packets to the RP. When a DR receives an IGMP membership report from a directly connected receiver, the shortest path is formed to the RP, which may or may not go through the DR. The result is a shared tree that connects all sources transmitting on the same multicast group to all receivers of that group.

In SSM mode, the DR triggers (*, G) or (S, G) PIM join messages toward the RP or the source. The path from the receiver to the source is determined hop by hop. The source must be known to the receiver or the DR.

For information about configuring the DR priority, see the “Configuring PIM Sparse Mode” section on page 3-39.

Administratively Scoped IP Multicast

The administratively scoped IP multicast method allows you to set boundaries on the delivery of multicast data. For more information, see RFC 2365.
You can configure an interface as a PIM boundary so that PIM messages are not sent out that interface. For information about configuring the domain border parameter, see the “Configuring PIM Sparse Mode” section on page 3-39.

You can use the Auto-RP scope parameter to set a time-to-live (TTL) value. For more information, see the “Configuring Shared Trees Only for ASM” section on page 3-51.

BFD

PIM supports bidirectional forwarding detection (BFD). BFD is a detection protocol designed to provide fast forwarding-path failure detection times. BFD provides subsecond failure detection between two adjacent devices and can be less CPU-intensive than protocol hello messages because some of the BFD load can be distributed onto the data plane on supported modules. See the Cisco Nexus 6000 Series NX-OS Interfaces Configuration Guide, Release 7.0 for more information.

Virtualization Support

You can define multiple virtual routing and forwarding (VRF) instances. For each VRF, independent multicast system resources are maintained, including the MRIB.

You can use the PIM show commands with a VRF argument to provide a context for the information displayed. The default VRF is used if no VRF argument is supplied.

For information about configuring VRFs, see the Cisco Nexus 6000 Series NX-OS Unicast Routing Configuration Guide, Release 7.0.

PIM and Virtual Port Channels

When a PIM hello message is received by the vPC peer link on a non-vPC port, the vPC peer link on the switch acts as an output interface (OIF) for a multicast group or router port and floods the packet on the vPC peer link, vPC links, and non-vPC links. The peer vPC switch that receives this packet on the vPC peer link floods it on all non-vPC links and adds the peer link to the router port list.

When a PIM hello message is received by the vPC peer link on a vPC port, the vPC port acts as the router port list and the switch floods the packet on the vPC link, vPC peer link, and non-vPC links using Cisco Fabric Services (CFS), which means the packets are encapsulated as CFS packets and sent over the vPC peer link. The peer vPC switch that receives this packet on the vPC peer link will flood it on all non-vPC links and adds the vPC port to the router port list. If, however, the vPC port is down, the PIM software on the switch forwards the packet to the vPC peer link and the peer vPC switch then forwards the packets to all VLANs.

If switch virtual interfaces (SVIs) are enabled on the VLANs of the vPC peers, each vPC peer will act as a designated router (DR) to forward the multicast traffic. If the vPC peer link fails, the SVIs and vPC peer links on the vPC secondary switch also goes down. The primary vPC switch will then forward all multicast traffic.
PIM SSM with vPC

Starting from Cisco NX-OS Release 7.3(0)N1(1), as shown in Figure 3-3, you can enable PIM Source Specific Multicast (SSM) with an upstream Layer 3 cloud along with the vPC feature. You can form PIM neighborship between two switches over a vPC VLAN via a vPC peer link as long as there are no downstream PIM neighbors.

Licensing Requirements for PIM

The following table shows the licensing requirements for this feature:

<table>
<thead>
<tr>
<th>Product</th>
<th>License Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco NX-OS</td>
<td>PIM require a LAN Base Services license. For a complete explanation of the Cisco NX-OS licensing scheme and how to obtain and apply licenses, see the Cisco NX-OS Licensing Guide.</td>
</tr>
</tbody>
</table>

Guidelines and Limitations for PIM

PIM has the following guidelines and limitations:

- Cisco NX-OS PIM does not interoperate with any version of PIM dense mode or PIM sparse mode version 1.
- Do not configure both Auto-RP and BSR protocols in the same network.
• Configure candidate RP intervals to a minimum of 15 seconds.
• If a switch is configured with a BSR policy that should prevent it from being elected as the BSR, the switch ignores the policy. This behavior results in the following undesirable conditions:
 – If a switch receives a BSM that is permitted by the policy, the switch, which incorrectly elected itself as the BSR, drops that BSM so that routers downstream fail to receive it. Downstream switches correctly filter the BSM from the incorrect BSR so that they do not receive RP information.
 – A BSM received by a BSR from a different switch sends a new BSM but ensures that downstream switches do not receive the correct BSM.
• A vPC peer link is a valid link for IGMP multicast forwarding.
• If the vPC link on a switch is configured as an output interface (OIF) for a multicast group or router port, the vPC link on the peer switch must also be configured as an output interface for a multicast group or router port.
• In SVI VLANs, the vPC peers must have the multicast forwarding state configured for the vPC VLANs to forward multicast traffic directly through the vPC link instead of the peer link.
• Starting from Cisco NX-OS Release 7.3(0)N1(1), Cisco NX-OS supports PIM SSM with vPCs.
• Cisco Nexus 5000 Series switches do not support PIM adjacency with a vPC leg or with a router behind a vPC. However, from Cisco NX-OS Release 6.0(2), PIM adjacency is supported on vPC+ for multicast routing in PIM Sparse Mode.
• Cisco Nexus 5000 series devices do not support per route packet counters. Hence the show ip mroute summary command and show forwarding distribution multicast route group command do not show correct count of packets sent out. The packets per second (pps) count is shown as zero.

Default Settings

Table 3-1 lists the default settings for PIM parameters.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use shared trees only</td>
<td>Disabled</td>
</tr>
<tr>
<td>Flush routes on restart</td>
<td>Disabled</td>
</tr>
<tr>
<td>Log Neighbor changes</td>
<td>Disabled</td>
</tr>
<tr>
<td>Auto-RP message action</td>
<td>Disabled</td>
</tr>
<tr>
<td>BSR message action</td>
<td>Disabled</td>
</tr>
<tr>
<td>SSM multicast group range or policy</td>
<td>232.0.0.0/8 for IPv4</td>
</tr>
<tr>
<td>PIM sparse mode</td>
<td>Disabled</td>
</tr>
<tr>
<td>Designated router priority</td>
<td>0</td>
</tr>
<tr>
<td>Hello authentication mode</td>
<td>Disabled</td>
</tr>
<tr>
<td>Domain border</td>
<td>Disabled</td>
</tr>
<tr>
<td>RP address policy</td>
<td>No message filtering</td>
</tr>
<tr>
<td>PIM register message policy</td>
<td>No message filtering</td>
</tr>
<tr>
<td>BSR candidate RP policy</td>
<td>No message filtering</td>
</tr>
</tbody>
</table>
Chapter 3 Configuring PIM

Configuring PIM

You can configure PIM for each interface.

Note Cisco NX-OS supports only PIM sparse mode version 2. In this publication, “PIM” refers to PIM sparse mode version 2.

You can configure separate ranges of addresses in the PIM domain using the multicast distribution modes described in Table 3-2.

Table 3-2 PIM Multicast Distribution Modes

<table>
<thead>
<tr>
<th>Multicast Distribution Mode</th>
<th>Requires RP Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASM</td>
<td>Yes</td>
<td>Any source multicast</td>
</tr>
<tr>
<td>Bidir</td>
<td>Yes</td>
<td>Bidirectional shared trees</td>
</tr>
<tr>
<td>SSM</td>
<td>No</td>
<td>Single source multicast</td>
</tr>
<tr>
<td>RPF routes for multicast</td>
<td>No</td>
<td>RPF routes for multicast</td>
</tr>
</tbody>
</table>

To configure PIM, follow these steps:

Step 1 From the multicast distribution modes described in Table 3-2, select the range of multicast groups that you want to configure in each mode.

Step 2 Enable the PIM features. See the “Enabling the PIM Features” section on page 3-38.

Step 3 Configure PIM sparse mode on each interface that you want to participate in a PIM domain. See the “Configuring PIM Sparse Mode” section on page 3-39.

Step 4 Follow the configuration steps for the multicast distribution modes that you selected in Step 1 as follows:
 • For ASM mode, see the “Configuring ASM and Bidir” section on page 3-43.
 • For SSM mode, see the “Configuring SSM” section on page 3-53.
 • For RPF routes for multicast, see the “Configuring RPF Routes for Multicast” section on page 3-54.

Step 5 Configure message filtering. See the “Configuring Message Filtering” section on page 3-56.

Table 3-1 Default PIM Parameters (continued)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSR policy</td>
<td>No message filtering</td>
</tr>
<tr>
<td>Auto-RP mapping agent policy</td>
<td>No message filtering</td>
</tr>
<tr>
<td>Auto-RP RP candidate policy</td>
<td>No message filtering</td>
</tr>
<tr>
<td>Join-prune policy</td>
<td>No message filtering</td>
</tr>
<tr>
<td>Neighbor adjacency policy</td>
<td>Become adjacent with all PIM neighbors</td>
</tr>
</tbody>
</table>

Table 3-2 PIM Multicast Distribution Modes

<table>
<thead>
<tr>
<th>Multicast Distribution Mode</th>
<th>Requires RP Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASM</td>
<td>Yes</td>
<td>Any source multicast</td>
</tr>
<tr>
<td>Bidir</td>
<td>Yes</td>
<td>Bidirectional shared trees</td>
</tr>
<tr>
<td>SSM</td>
<td>No</td>
<td>Single source multicast</td>
</tr>
<tr>
<td>RPF routes for multicast</td>
<td>No</td>
<td>RPF routes for multicast</td>
</tr>
</tbody>
</table>
Configuring PIM

Step 6 Bind VRF. See the “Bind-VRF Configuration to vPCs” section on page 3-59.

This section includes the following topics:

- Enabling the PIM Features, page 3-38
- Configuring PIM Sparse Mode, page 3-39
- Configuring ASM and Bidir, page 3-43
- Configuring SSM, page 3-53
- Configuring RPF Routes for Multicast, page 3-54
- Configuring Route Maps to Control RP Information Distribution, page 3-55
- Configuring Message Filtering, page 3-56
- Bind-VRF Configuration to vPCs, page 3-59
- Verifying the PIM Configuration, page 3-60

Note If you are familiar with the Cisco IOS CLI, be aware that the Cisco NX-OS commands for this feature might differ from the Cisco IOS commands that you would use.

Enabling the PIM Features

Before you can access the PIM commands, you must enable the PIM feature.

BEFORE YOU BEGIN

Ensure that you have installed the LAN Base Services license.

SUMMARY STEPS

1. configure terminal
2. feature pim
3. (Optional) show running-configuration pim
4. (Optional) copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td></td>
<td>switch(config)#</td>
</tr>
<tr>
<td>feature pim</td>
<td>Enables PIM. By default, PIM is disabled.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>switch(config)# feature pim</td>
</tr>
</tbody>
</table>
Configuring PIM Sparse Mode

You configure PIM sparse mode on every switch interface that you want to participate in a sparse mode domain. You can configure the sparse mode parameters described in Table 3-3.

Table 3-3 PIM Sparse Mode Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global to the switch</td>
<td></td>
</tr>
<tr>
<td>Auto-RP message action</td>
<td>Enables listening and forwarding of Auto-RP messages. The default is</td>
</tr>
<tr>
<td></td>
<td>disabled, which means that the router does not listen or forward Auto-RP</td>
</tr>
<tr>
<td></td>
<td>messages unless it is configured as a candidate RP or mapping agent.</td>
</tr>
<tr>
<td>BSR message action</td>
<td>Enables listening and forwarding of BSR messages. The default is</td>
</tr>
<tr>
<td></td>
<td>disabled, which means that the router does not listen or forward BSR</td>
</tr>
<tr>
<td></td>
<td>messages unless it is configured as a candidate RP or BSR candidate.</td>
</tr>
<tr>
<td>Register rate limit</td>
<td>Configures the IPv4 register rate limit in packets per second. The range is</td>
</tr>
<tr>
<td></td>
<td>from 1 to 65,535. The default is no limit.</td>
</tr>
<tr>
<td>Shared Tree</td>
<td>Specifies that the router never moves to the shortest-path tree; it remains</td>
</tr>
<tr>
<td></td>
<td>on the shared tree.</td>
</tr>
<tr>
<td>Initial holddown period</td>
<td>Configures the IPv4 initial holddown period in seconds. This holddown</td>
</tr>
<tr>
<td></td>
<td>period is the time it takes for the MRIB to come up initially. If you want</td>
</tr>
<tr>
<td></td>
<td>faster convergence, enter a lower value. The range is from 90 to 210.</td>
</tr>
<tr>
<td></td>
<td>Specify 0 to disable the holddown period. The default is 210.</td>
</tr>
<tr>
<td>Per switch interface</td>
<td></td>
</tr>
<tr>
<td>PIM sparse mode</td>
<td>Enables PIM on an interface.</td>
</tr>
<tr>
<td>Designated router priority</td>
<td>Sets the designated router (DR) priority that is advertised in PIM hello</td>
</tr>
<tr>
<td></td>
<td>messages on this interface. On a multi-access network with multiple PIM</td>
</tr>
<tr>
<td></td>
<td>enabled routers, the router with the highest DR priority is elected as the</td>
</tr>
<tr>
<td></td>
<td>DR router. If the priorities match, the software elects the DR with the</td>
</tr>
<tr>
<td></td>
<td>highest IP address. The DR originates PIM register messages for the</td>
</tr>
<tr>
<td></td>
<td>directly connected multicast sources and sends PIM join messages toward the</td>
</tr>
<tr>
<td></td>
<td>rendezvous point (RP) for directly connected receivers. Values range from</td>
</tr>
<tr>
<td></td>
<td>1 to 4294967295. The default is 1.</td>
</tr>
</tbody>
</table>

Step 3

Command or Action: `show running-configuration pim`

Example: `switch(config)# show running-configuration pim`

(Optional) Shows the running-configuration information for PIM, including the `feature` command.

Step 4

Command or Action: `copy running-config startup-config`

Example: `switch(config)# copy running-config startup-config`

(Optional) Saves configuration changes.
Chapter 3 Configuring PIM

Configuring PIM

For information about configuring multicast route maps, see the “Configuring Route Maps to Control RP Information Distribution” section on page 3-55.

BEFORE YOU BEGIN

Ensure that you have installed the LAN Base Services license and enabled PIM.

SUMMARY STEPS

1. configure terminal
2. (Optional) ip pim auto-rp {listen [forward] | forward [listen]}
3. (Optional) ip pim bsr {listen [forward] | forward [listen]}
4. (Optional) show ip pim rp [ip-prefix] [vrf vrf-name | all]
5. (Optional) ip pim register-rate-limit rate
6. (Optional) ip pim spt-threshold infinity group-list route-map-name

Table 3-3 PIM Sparse Mode Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| Hello authentication mode | Enables an MD5 hash authentication key, or password, in PIM hello messages on the interface so that directly connected neighbors can authenticate each other. The PIM hello messages are IPsec encoded using the Authentication Header (AH) option. You can enter an unencrypted (cleartext) key, or one of these values followed by a space and the MD5 authentication key:
 • 0—Specifies an unencrypted (cleartext) key
 • 3—Specifies a 3-DES encrypted key
 • 7—Specifies a Cisco Type 7 encrypted key
The authentication key can be up to 16 characters. The default is disabled. |
| Hello interval | Configures the interval at which hello messages are sent in milliseconds. The range is from 1 to 4294967295. The default is 30000. |
| Domain border | Enables the interface to be on the border of a PIM domain so that no bootstrap, candidate-RP, or Auto-RP messages are sent or received on the interface. The default is disabled. |
| Neighbor policy | Configures which PIM neighbors to become adjacent to based on a route-map policy where you can specify IP addresses to become adjacent to with the match ip address command. If the policy name does not exist, or no IP addresses are configured in a policy, then adjacency is established with all neighbors. The default is to become adjacent with all PIM neighbors.
 Note We recommend that you should configure this feature only if you are an experienced network administrator. |

For information about configuring multicast route maps, see the “Configuring Route Maps to Control RP Information Distribution” section on page 3-55.

Note To configure the join-prune policy, see the “Configuring Message Filtering” section on page 3-56.
7. (Optional) [ip | ipv4] routing multicast holddown holddown-period
8. (Optional) show running-configuration pim
9. interface interface
10. no switchport
11. ip pim sparse-mode
12. (Optional) ip pim dr-priority priority
13. (Optional) ip pim hello-authentication ah-md5 auth-key
14. (Optional) ip pim hello-interval interval
15. (Optional) ip pim border
16. (Optional) ip pim neighbor-policy policy-name
17. (Optional) show ip pim interface [interface | brief] [vrf vrf-name | all]
18. (Optional) copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>switch(config)#</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>ip pim auto-rp {listen [forward]</td>
</tr>
<tr>
<td>Example:</td>
<td>(Optional) Enables listening or forwarding of Auto-RP messages. The default is disabled, which means that the software does not listen to or forward Auto-RP messages.</td>
</tr>
<tr>
<td>switch(config)# ip pim auto-rp listen</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>ip pim bsr {listen [forward]</td>
</tr>
<tr>
<td>Example:</td>
<td>(Optional) Enables listening or forwarding of BSR messages. The default is disabled, which means that the software does not listen or forward BSR messages.</td>
</tr>
<tr>
<td>switch(config)# ip pim bsr forward</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>show ip pim rp [ip-prefix] [vrf vrf-name</td>
</tr>
<tr>
<td>Example:</td>
<td>(Optional) Displays PIM RP information, including Auto-RP and BSR listen and forward states.</td>
</tr>
<tr>
<td>switch(config)# show ip pim rp</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>ip pim register-rate-limit rate</td>
</tr>
<tr>
<td>Example:</td>
<td>(Optional) Configures the rate limit in packets per second. The range is from 1 to 65,535. The default is no limit.</td>
</tr>
<tr>
<td>switch(config)# ip pim register-rate-limit 1000</td>
<td></td>
</tr>
</tbody>
</table>
Command Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6</td>
<td><code>ip pim spt-threshold infinity group-list route-map-name</code></td>
<td>(Optional) Create the IPv4 PIM (*, G) state only, for the group prefixes defined in the specified route map. This command is not supported for virtual port channels (vPC/vPC+). Note The <code>ip pim use-shared-tree-only group-list</code> command performs the same function as the <code>ip pim spt-threshold infinity group-list</code> command. You can choose to use either command to implement this step.</td>
</tr>
<tr>
<td>Step 7</td>
<td>`[ip</td>
<td>ipv4] routing multicast holddown holddown-period`</td>
</tr>
<tr>
<td>Step 8</td>
<td><code>show running-configuration pim</code></td>
<td>(Optional) Displays PIM running-configuration information, including the register rate limit.</td>
</tr>
<tr>
<td>Step 9</td>
<td><code>interface interface</code></td>
<td>Enters interface mode on the interface type and number, such as <code>ethernet slot/port</code>.</td>
</tr>
<tr>
<td>Step 10</td>
<td><code>no switchport</code></td>
<td>Configures the interface as a Layer 3 routed interface.</td>
</tr>
<tr>
<td>Step 11</td>
<td><code>ip pim sparse-mode</code></td>
<td>Enables PIM sparse mode on this interface. The default is disabled.</td>
</tr>
<tr>
<td>Step 12</td>
<td><code>ip pim dr-priority priority</code></td>
<td>(Optional) Sets the designated router (DR) priority that is advertised in PIM hello messages. Values range from 1 to 4294967295. The default is 1.</td>
</tr>
</tbody>
</table>
| Step 13 | `ip pim hello-authentication ah-md5 auth-key` | *(Optional)* Enables an MD5 hash authentication key in PIM hello messages. You can enter an unencrypted (cleartext) key or one of these values followed by a space and the MD5 authentication key:

- 0—Specifies an unencrypted (cleartext) key
- 3—Specifies a 3-DES encrypted key
- 7—Specifies a Cisco Type 7 encrypted key

The key can be up to 16 characters. The default is disabled. |
Configuring ASM and Bidir

Any Source Multicast (ASM) and bidirectional shared trees (Bidir) are multicast distribution modes that require the use of RPs to act as a shared root between sources and receivers of multicast data.

To configure ASM or Bidir mode, you configure sparse mode and the RP selection method, where you indicate the distribution mode and assign the range of multicast groups.

This section includes the following topics:

- Configuring Static RPs, page 3-44
- Configuring BSRs, page 3-44
- Configuring Auto-RP, page 3-47
- Configuring a PIM Anycast-RP Set, page 3-49
- Configuring Shared Trees Only for ASM, page 3-51

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 14</td>
<td>ip pim hello-interval interval</td>
</tr>
<tr>
<td>Example:</td>
<td>switch(config-if)# ip pim hello-interval 25000</td>
</tr>
<tr>
<td>Purpose:</td>
<td>(Optional) Configures the interval at which hello messages are sent in milliseconds. The range is from 1 to 4294967295. The default is 30000.</td>
</tr>
<tr>
<td>Note:</td>
<td>We do not support aggressive values for the hello interval; any value less than 3000 milliseconds is an aggressive hello-interval value.</td>
</tr>
</tbody>
</table>

Step 15	ip pim border
Example:	switch(config-if)# ip pim border
Purpose:	(Optional) Enables the interface to be on the border of a PIM domain so that no bootstrap, candidate-RP, or Auto-RP messages are sent or received on the interface. The default is disabled.

Step 16	ip pim neighbor-policy *policy-name*
Example:	switch(config-if)# ip pim neighbor-policy my_neighbor_policy
Purpose:	(Optional) Configures which PIM neighbors to become adjacent to based on a route-map policy with the *match ip address* command. The policy name can be up to 63 characters. The default is to become adjacent with all PIM neighbors.
Note:	We recommend that you should configure this feature only if you are an experienced network administrator.

Step 17	show ip pim interface [interface	brief] [vrf vrf-name	all]
Example:	switch(config-if)# show ip pim interface		
Purpose:	(Optional) Displays PIM interface information.		

Step 18	copy running-config startup-config
Example:	switch(config-if)# copy running-config startup-config
Purpose:	(Optional) Saves configuration changes.
Configuring Static RPs

You can configure an RP statically by configuring the RP address on every router that will participate in the PIM domain.

You can specify a route-map policy name that lists the group prefixes to use with the `match ip multicast` command.

BEFORE YOU BEGIN

Ensure that you have installed the LAN Base Services license and enabled PIM.

SUMMARY STEPS

1. `configure terminal`
2. `ip pim rp-address rp-address [group-list ip-prefix | route-map policy-name] [bidir]`
3. (Optional) `show ip pim group-range [ip-prefix] [vrf vrf-name | all]`
4. (Optional) `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code></td>
</tr>
<tr>
<td></td>
<td>Example: switch# configure terminal switch(config)#</td>
</tr>
<tr>
<td>Step 2</td>
<td>`ip pim rp-address rp-address [group-list ip-prefix</td>
</tr>
<tr>
<td></td>
<td>Example: switch(config)# ip pim rp-address 192.0.2.33 group-list 224.0.0.0/9 bidir</td>
</tr>
<tr>
<td>Step 3</td>
<td>`show ip pim group-range [ip-prefix] [vrf vrf-name</td>
</tr>
<tr>
<td></td>
<td>Example: switch(config)# show ip pim group-range</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>copy running-config startup-config</code></td>
</tr>
<tr>
<td></td>
<td>Example: switch(config)# copy running-config startup-config</td>
</tr>
</tbody>
</table>

Configuring BSRs

You configure BSRs by selecting candidate BSRs and RPs.
Chapter 3 Configuring PIM

Caution
Do not configure both Auto-RP and BSR protocols in the same network.

You can configure a candidate BSR with the arguments described in Table 3-4.

Table 3-4 Candidate BSR Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface</td>
<td>Interface type and number used to derive the BSR source IP address used in bootstrap messages.</td>
</tr>
<tr>
<td>hash-length</td>
<td>Hash length is the number of high order 1s used to form a mask that is ANDed with group address ranges of candidate RPs to form a hash value. The mask determines the number of consecutive addresses to assign across RPs with the same group range. For PIM, this value ranges from 0 to 32 and has a default of 30.</td>
</tr>
<tr>
<td>priority</td>
<td>Priority assigned to this BSR. The software elects the BSR with the highest priority, or if the BSR priorities match, the software elects the BSR with the highest IP address. This value ranges from 0, the lowest priority, to 255 and has a default of 64.</td>
</tr>
</tbody>
</table>

You can configure a candidate RP with the arguments described in Table 3-5.

Table 3-5 BSR Candidate RP Arguments and Keywords

<table>
<thead>
<tr>
<th>Argument or Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface</td>
<td>Interface type and number used to derive the BSR source IP address used in Bootstrap messages.</td>
</tr>
<tr>
<td>group-list</td>
<td>Multicast groups handled by this RP specified in a prefix format.</td>
</tr>
<tr>
<td>ip-prefix</td>
<td>Multicast groups handled by this RP specified in a prefix format.</td>
</tr>
<tr>
<td>interval</td>
<td>Number of seconds between sending candidate-RP messages. This value ranges from 1 to 65,535 and has a default of 60 seconds.</td>
</tr>
<tr>
<td>Note</td>
<td>We recommend that you configure the candidate RP interval to a minimum of 15 seconds.</td>
</tr>
<tr>
<td>priority</td>
<td>Priority assigned to this RP. The software elects the RP with the highest priority for a range of groups, or if the priorities match, the highest IP address. This value ranges from 0, the highest priority, to 65,535 and has a default of 192.</td>
</tr>
</tbody>
</table>

Tip
You should choose the candidate BSRs and candidate RPs that have good connectivity to all parts of the PIM domain.

You can configure the same router to be both a BSR and a candidate RP. In a domain with many routers, you can select multiple candidate BSRs and RPs to automatically fail over to alternates if a BSR or an RP fails.

To configure candidate BSRs and RPs, follow these steps:
Step 1 Configure whether each router in the PIM domain should listen and forward BSR messages. A router configured as either a candidate RP or a candidate BSR will automatically listen to and forward all bootstrap router protocol messages, unless an interface is configured with the domain border feature. For more information, see the “Configuring PIM Sparse Mode” section on page 3-39.

Step 2 Select the routers to act as candidate BSRs and RPs.

Step 3 Configure each candidate BSR and candidate RP as described in this section.

Step 4 Configure BSR message filtering. See the “Configuring Message Filtering” section on page 3-56.

BEFORE YOU BEGIN

Ensure that you have installed the LAN Base Services license and enabled PIM.

SUMMARY STEPS

1. configure terminal
2. ip pim [bsr] bsr-candidate interface [hash-len hash-length] [priority priority]
3. ip pim [bsr] rp-candidate interface group-list ip-prefix [priority priority] [interval interval] [bidir]
4. (Optional) show ip pim group-range [ip-prefix] [vrf vrf-name | all]
5. (Optional) copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2 ip pim [bsr] bsr-candidate interface [hash-len hash-length] [priority priority]</td>
<td>Configures a candidate bootstrap router (BSR). The source IP address used in a bootstrap message is the IP address of the interface. The hash length ranges from 0 to 32 and has a default of 30. The priority ranges from 0 to 255 and has a default of 64. For parameter details, see Table 3-4.</td>
</tr>
<tr>
<td>Step 3 ip pim [bsr] rp-candidate interface group-list ip-prefix [priority priority] [interval interval] [bidir]</td>
<td>Configures a candidate RP for BSR. The priority ranges from 0, the highest priority, to 65,535 and has a default of 192. The interval ranges from 1 to 65,535 seconds and has a default of 60.</td>
</tr>
</tbody>
</table>

Note We recommend that you configure the candidate RP interval to a minimum of 15 seconds.

The example configures an ASM candidate RP.
Configuring Auto-RP

You can configure Auto-RP by selecting candidate mapping agents and RPs. You can configure the same router to be both a mapping agent and a candidate RP.

Caution

Do not configure both Auto-RP and BSR protocols in the same network.

You can configure an Auto-RP mapping agent with the arguments described in Table 3-6.

Table 3-6 Auto-RP Mapping Agent Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface</td>
<td>Interface type and number used to derive the IP address of the Auto-RP mapping agent used in bootstrap messages.</td>
</tr>
<tr>
<td>scope</td>
<td>Time-To-Live (TTL) value that represents the maximum number of hops that RP-Discovery messages are forwarded. This value can range from 1 to 255 and has a default of 32.</td>
</tr>
<tr>
<td>ttl</td>
<td>Time-To-Live (TTL) value that represents the maximum number of hops that RP-Discovery messages are forwarded. This value can range from 1 to 255 and has a default of 32.</td>
</tr>
</tbody>
</table>

Note

See the border domain feature in the “Configuring PIM Sparse Mode” section on page 3-39.

If you configure multiple Auto-RP mapping agents, only one is elected as the mapping agent for the domain. The elected mapping agent ensures that all candidate RP messages are sent out. All mapping agents receive the candidate RP messages and advertise the same RP cache in their RP-discovery messages.

You can configure a candidate RP with the arguments described in Table 3-7.

Table 3-7 Auto-RP Candidate RP Arguments and Keywords

<table>
<thead>
<tr>
<th>Argument or Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface</td>
<td>Interface type and number used to derive the IP address of the candidate RP used in Bootstrap messages.</td>
</tr>
<tr>
<td>group-list</td>
<td>Multicast groups handled by this RP. Specified in a prefix format.</td>
</tr>
<tr>
<td>ip-prefix</td>
<td>Multicast groups handled by this RP. Specified in a prefix format.</td>
</tr>
</tbody>
</table>
Configuring PIM

Configuring PIM

Tip

You should choose mapping agents and candidate RPs that have good connectivity to all parts of the PIM domain.

To configure Auto-RP mapping agents and candidate RPs, follow these steps:

Step 1 For each router in the PIM domain, configure whether that router should listen and forward Auto-RP messages. A router configured as either a candidate RP or an Auto-RP mapping agent will automatically listen to and forward all Auto-RP protocol messages, unless an interface is configured with the domain border feature. For more information, see the “Configuring PIM Sparse Mode” section on page 3-39.

Step 2 Select the routers to act as mapping agents and candidate RPs.

Step 3 Configure each mapping agent and candidate RP as described in this section.

Step 4 Configure Auto-RP message filtering. See the “Configuring Message Filtering” section on page 3-56.

BEFORE YOU BEGIN

Ensure that you have installed the LAN Base Services license and enabled PIM.

SUMMARY STEPS

1. `configure terminal`
2. `ip pim {send-rp-discovery | {auto-rp mapping-agent}} interface [scope ttl]`
3. `ip pim {send-rp-announce | {auto-rp rp-candidate}} interface group-list ip-prefix [scope ttl] [interval interval] [bidir]`
4. (Optional) `show ip pim group-range [ip-prefix] [vrf vrf-name | all]`
5. (Optional) `copy running-config startup-config`

Table 3-7 Auto-RP Candidate RP Arguments and Keywords (continued)

<table>
<thead>
<tr>
<th>Argument or Keyword</th>
<th>Description</th>
</tr>
</thead>
</table>
| `scope ttl` | Time-To-Live (TTL) value that represents the maximum number of hops that RP-Discovery messages are forwarded. This value can range from 1 to 255 and has a default of 32.
 Note See the border domain feature in the “Configuring PIM Sparse Mode” section on page 3-39. |
| `interval` | Number of seconds between sending RP-Announce messages. This value can range from 1 to 65,535 and has a default of 60.
 Note We recommend that you configure the candidate RP interval to a minimum of 15 seconds. |
| `bidir` | If not specified, this RP will be in ASM mode. If specified, this RP will be in bidir mode. |
Chapter 3 Configuring PIM

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Example: switch# configure terminal switch(config)#</td>
<td></td>
</tr>
<tr>
<td>Step 2 ip pim {send-rp-discovery</td>
<td>Configures an Auto-RP mapping agent. The source IP address used in Auto-RP Discovery messages is the IP address of the interface. The default scope is 32. For parameter details, see Table 3-6.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>auto-rp</td>
<td></td>
</tr>
<tr>
<td>mapping-agent} interface {scope ttl}</td>
<td></td>
</tr>
<tr>
<td>Example: switch(config)# ip pim auto-rp mapping-agent ethernet 2/1</td>
<td></td>
</tr>
<tr>
<td>Step 3 ip pim {send-rp-announce</td>
<td>Configures an Auto-RP candidate RP. The default scope is 32. The default interval is 60 seconds. By default, the command creates an ASM candidate RP. For parameter details, see Table 3-7.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Note We recommend that you configure the candidate RP interval to a minimum of 15 seconds.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>auto-rp</td>
<td>The example configures an ASM candidate RP.</td>
</tr>
<tr>
<td>rp-candidate} interface {group-list ip-prefix</td>
<td>route-map policy-name} [scope ttl] [interval interval]</td>
</tr>
<tr>
<td>Example: switch(config)# ip pim auto-rp rp-candidate ethernet 2/1 group-list 239.0.0.0/24 bidir</td>
<td></td>
</tr>
<tr>
<td>Step 4 show ip pim group-range [ip-prefix] [vrf vrf-name</td>
<td>(Optional) Displays PIM modes and group ranges.</td>
</tr>
<tr>
<td>all]</td>
<td></td>
</tr>
<tr>
<td>Example: switch(config)# show ip pim group-range</td>
<td></td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Saves configuration changes.</td>
</tr>
<tr>
<td>Example: switch(config)# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

Configuring a PIM Anycast-RP Set

To configure a PIM Anycast-RP set, follow these steps:

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Select the routers in the PIM Anycast-RP set.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Select an IP address for the PIM Anycast-RP set.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Configure each peer RP in the PIM Anycast-RP set as described in this section.</td>
</tr>
</tbody>
</table>

BEFORE YOU BEGIN

Ensure that you have installed the LAN Base Services license and enabled PIM.

SUMMARY STEPS

1. configure terminal
2. `interface loopback number`
3. `ip address ip-prefix`
4. `exit`
5. `ip pim anycast-rp anycast-rp-address anycast-rp-peer-address`
6. Repeat Step 5 using the same `anycast-rp` for each peer RP in the RP set.
7. (Optional) `show ip pim group-range [ip-prefix] [vrf vrf-name | all]`
8. (Optional) `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>configure terminal</code></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Example: switch# configure terminal switch(config)#</td>
<td></td>
</tr>
<tr>
<td>Step 2 <code>interface loopback number</code></td>
<td>Configures an interface loopback.</td>
</tr>
<tr>
<td>Example: switch(config)# interface loopback 0</td>
<td>This example configures interface loopback 0.</td>
</tr>
<tr>
<td>Step 3 <code>ip address ip-prefix</code></td>
<td>Configures an IP address for this interface.</td>
</tr>
<tr>
<td>Example: switch(config-if)# ip address 192.0.2.3/32</td>
<td>This example configures an IP address for the Anycast-RP.</td>
</tr>
<tr>
<td>Step 4 <code>exit</code></td>
<td>Returns to configuration mode.</td>
</tr>
<tr>
<td>Example: switch(config)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 5 <code>ip pim anycast-rp anycast-rp-address anycast-rp-peer-address</code></td>
<td>Configures a PIM Anycast-RP peer address for the specified Anycast-RP address. Each command with the same Anycast-RP address forms an Anycast-RP set. The IP addresses of RPs are used for communication with RPs in the set.</td>
</tr>
<tr>
<td>Example: switch(config)# ip pim anycast-rp 192.0.2.3 192.0.2.31</td>
<td></td>
</tr>
<tr>
<td>Step 6 Repeat Step 5 using the same Anycast-RP address for each peer RP in the Anycast-RP set.</td>
<td>—</td>
</tr>
<tr>
<td>Step 7 `show ip pim group-range [ip-prefix] [vrf vrf-name</td>
<td>all]`</td>
</tr>
<tr>
<td>Example: switch(config)# show ip pim group-range</td>
<td></td>
</tr>
<tr>
<td>Step 8 <code>copy running-config startup-config</code></td>
<td>(Optional) Saves configuration changes.</td>
</tr>
<tr>
<td>Example: switch(config)# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Shared Trees Only for ASM

You can configure shared trees only on the last-hop router for Any Source Multicast (ASM) groups, which means that the router never switches over from the shared tree to the SPT when a receiver joins an active group. You can specify a group range where the use of shared trees is to be enforced with the `match ip multicast` command. This option does not affect the normal operation of the router when a source tree join-prune message is received.

The default is disabled, which means that the software can switch over to source trees.

Note

In ASM mode, only the last-hop router switches from the shared tree to the SPT.

BEFORE YOU BEGIN

Ensure that you have installed the LAN Base Services license and enabled PIM.

SUMMARY STEPS

1. configure terminal
2. `ip pim use-shared-tree-only group-list policy-name`
3. (Optional) `show ip pim group-range [ip-prefix] [vrf vrf-name | all]`
4. (Optional) `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td></td>
<td>switch(config)#</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip pim use-shared-tree-only group-list policy-name</td>
</tr>
<tr>
<td>Example:</td>
<td>switch(config)# ip pim use-shared-tree-only group-list my_group_policy</td>
</tr>
</tbody>
</table>

Builds only shared trees, which means that the software never switches over from the shared tree to the SPT. You specify a route-map policy name that lists the groups to use with the `match ip multicast` command. By default, the software triggers a PIM (S, G) join toward the source when it receives multicast packets for a source for which it has the (*, G) state.

Note

The `ip pim use-shared-tree-only group-list` command performs the same function as the `ip pim spt-threshold infinity group-list` command. You can choose to use either command to implement this step.
Setting the Maximum Number of Entries in the Multicast Routing Table

You can set the maximum number of entries in the multicast routing table (MRT).

BEFORE YOU BEGIN

Ensure that you have installed the LAN Base Services license and enabled PIM.

SUMMARY STEPS

1. `configure terminal`
2. `hardware profile multicast max-limit max-entries`
3. (Optional) `show hardware profile status`
4. (Optional) `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code></td>
</tr>
<tr>
<td>Example:</td>
<td><code>switch# configure terminal</code> <code>switch(config)#</code></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>hardware profile multicast max-limit max-entries</code></td>
</tr>
<tr>
<td>Example:</td>
<td><code>switch(config)# hardware profile multicast max-limit 3000</code></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>show hardware profile status</code></td>
</tr>
<tr>
<td>Example:</td>
<td><code>switch(config)# show hardware profile status</code></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>copy running-config startup-config</code></td>
</tr>
<tr>
<td>Example:</td>
<td><code>switch(config)# copy running-config startup-config</code></td>
</tr>
</tbody>
</table>
Configuring SSM

Source-Specific Multicast (SSM) is a multicast distribution mode where the software on the DR connected to a receiver that is requesting data for a multicast source builds a shortest path tree (SPT) to that source.

Note
Starting Release 7.3(0)N1(1), Cisco NX-OS software supports PIM SSM on vPCs. For more information about vPCs, see the Cisco Nexus 5600 Series NX-OS Interfaces Configuration Guide.

On an IPv4 network, a host can request multicast data for a specific source only if it is running IGMPv3 and the DR for that host is running IGMPv3. You will usually enable IGMPv3 when you configure an interface for PIM in the SSM mode. For hosts running IGMPv1 or IGMPv2, you can configure group to source mapping using SSM translation. For more information, see Chapter 2, “Configuring IGMP.”

You can configure the group range that is used by SSM by specifying values on the command line. By default, the SSM group range for PIM is 232.0.0.0/8.

You can specify a route-map policy name that lists the group prefixes to use with the `match ip multicast` command.

Note
If you want to use the default SSM group range, you do not need to configure the SSM group range.

BEFORE YOU BEGIN
Ensure that you have installed the LAN Base Services license and enabled PIM.

SUMMARY STEPS

1. configure terminal
2. ip pim ssm range
 - range {ip-prefix | none} | route-map policy-name
 - no ip pim ssm range {ip-prefix | none} | route-map policy-name
3. (Optional) show ip pim group-range [ip-prefix] [vrf vrf-name | all]
4. (Optional) copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
</tbody>
</table>

Example:
```
switch# configure terminal
switch(config)#
```
Chapter 3 Configuring PIM

Configuring RPF Routes for Multicast

You can define RPF routes for multicast when you want multicast data to diverge from the unicast traffic path. You can define RPF routes for multicast on border routers to enable reverse path forwarding (RPF) to an external network.

Multicast routes are used not to directly forward traffic but to make RPF checks. RPF routes for multicast cannot be redistributed. For more information about multicast forwarding, see the “Multicast Forwarding” section on page 1-4.

BEFORE YOU BEGIN

Ensure that you have installed the LAN Base Services license and enabled PIM.

SUMMARY STEPS

1. configure terminal
2. ip mroute {ip-addr mask | ip-prefix} {next-hop | nh-prefix | interface} [route-preference] [vrf vrf-name]
3. (Optional) show ip static-route [vrf vrf-name]
4. (Optional) copy running-config startup-config
Chapter 3 Configuring PIM

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
</tbody>
</table>
| Example: | switch# configure terminal
| | switch(config)# |
| **Step 2** | ip mroute {ip-addr mask | ip-prefix}
| | {next-hop | nh-prefix | interface}
| | [route-preference] [vrf vrf-name]
| Example: | switch(config)# ip mroute 192.0.2.33/24
| | 192.0.2.1 |
| **Step 3** | show ip static-route [vrf vrf-name]
| Example: | switch(config)# show ip static-route |
| **Step 4** | copy running-config startup-config
| Example: | switch(config)# copy running-config startup-config |

Command Purpose
Step 1 configure terminal
Example: switch# configure terminal
switch(config)#
Enters configuration mode.

Step 2 ip mroute {ip-addr mask | ip-prefix} {next-hop | nh-prefix | interface} [route-preference] [vrf vrf-name]
Example: switch(config)# ip mroute 192.0.2.33/24 192.0.2.1
Configures an RPF route for multicast for use in RPF calculations. Route preference values range from 1 to 255. The default preference is 1.

Step 3 show ip static-route [vrf vrf-name]
Example: switch(config)# show ip static-route
(Optional) Displays configured static routes.

Step 4 copy running-config startup-config
Example: switch(config)# copy running-config startup-config
(Optional) Saves configuration changes.

Configuring Route Maps to Control RP Information Distribution

You can configure route maps to help protect against some RP configuration errors and malicious attacks. You use route maps in commands that are described in the “Configuring Message Filtering” section on page 3-56.

By configuring route maps, you can control distribution of RP information that is distributed throughout the network. You specify the BSRs or mapping agents to be listened to on each client router and the list of candidate RPs to be advertised (listened to) on each BSR and mapping agent to ensure that what is advertised is what you expect.

Note Only the match ip multicast command has an effect in the route map.

BEFORE YOU BEGIN

Ensure that you have installed the LAN Base Services license and enabled PIM.

SUMMARY STEPS

1. configure terminal
2. route-map map-name [permit | deny] [sequence-number]
3. match ip multicast {rp ip-address [rp-type rp-type] [group ip-prefix]} | {group ip-prefix [rp ip-address [rp-type rp-type]]}
4. (Optional) show route-map
5. (Optional) copy running-config startup-config
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
</tbody>
</table>
| **Example:** | switch# configure terminal
switch(config)# | |
| **Step 2** | route-map map-name {permit | deny} [sequence-number] | Enters route-map configuration mode. This configuration method uses the permit keyword. |
| **Example:** | switch(config)# route-map ASM_only
permit 10
switch(config-route-map)# | |
| **Step 3** | match ip multicast {rp ip-address
{rp-type rp-type}
(group-range gadrr_start to gadrr_end)
{group ip-prefix}
(source source-ip-address)} | Matches the group, RP, and RP type specified. You can specify the RP type (ASM). This configuration method requires the group and RP specified as shown in the examples. |
| **Example:** | switch(config)# match ip multicast group 224.0.0.0/4 rp 0.0.0.0/0 rp-type ASM | |
| **Step 4** | show route-map | (Optional) Displays configured route maps. |
| **Example:** | switch(config-route-map)# show route-map | |
| **Step 5** | copy running-config startup-config | (Optional) Saves configuration changes. |
| **Example:** | switch(config-route-map)# copy running-config startup-config | |

Configuring Message Filtering

You can configure filtering of the PIM messages described in Table 3-8.

<table>
<thead>
<tr>
<th>Message Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global to the switch</td>
<td></td>
</tr>
<tr>
<td>Log Neighbor changes</td>
<td>Enables syslog messages that list the neighbor state changes to be generated. The default is disabled.</td>
</tr>
<tr>
<td>PIM register policy</td>
<td>Enables PIM register messages to be filtered based on a route-map policy where you can specify group or group and source addresses with the match ip multicast command. This policy applies to routers that act as an RP. The default is disabled, which means that the software does not filter PIM register messages.</td>
</tr>
</tbody>
</table>
3-57
Cisco Nexus 6000 Series NX-OS Multicast Routing Configuration Guide, Release 7.x

Chapter 3 Configuring PIM

Configuring PIM

For information about configuring multicast route maps, see the “Configuring Route Maps to Control
RP Information Distribution” section on page 3-55.

BEFORE YOU BEGIN

Ensure that you have installed the LAN Base Services license and enabled PIM.

SUMMARY STEPS

1. configure terminal
2. (Optional) ip pim log-neighbor-changes
3. (Optional) ip pim register-policy policy-name
4. (Optional) ip pim bsr rp-candidate-policy policy-name
5. (Optional) ip pim bsr bsr-policy policy-name
6. (Optional) ip pim auto-rp rp-candidate-policy policy-name
7. (Optional) ip pim auto-rp mapping-agent-policy policy-name

Table 3-8 PIM Message Filtering (continued)

<table>
<thead>
<tr>
<th>Message Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSR candidate RP policy</td>
<td>Enables BSR candidate RP messages to be filtered by the router based on a route-map policy where you can specify the RP and group addresses,</td>
</tr>
<tr>
<td>----------------------------</td>
<td>and the type ASM with the match ip multicast command. This command can be used on routers that are eligible for BSR election. The default is no</td>
</tr>
<tr>
<td>----------------------------</td>
<td>filtering of BSR messages.</td>
</tr>
<tr>
<td>BSR policy</td>
<td>Enables BSR messages to be filtered by the BSR client routers based on a route-map policy where you can specify BSR source addresses with the</td>
</tr>
<tr>
<td>----------------------------</td>
<td>match ip multicast command. This command can be used on client routers that listen to BSR messages. The default is no filtering of BSR</td>
</tr>
<tr>
<td>----------------------------</td>
<td>messages.</td>
</tr>
<tr>
<td>Auto-RP candidate RP policy</td>
<td>Enables Auto-RP announce messages to be filtered by the Auto-RP mapping agents based on a route-map policy where you can specify the RP and</td>
</tr>
<tr>
<td>----------------------------</td>
<td>group addresses, and the type ASM with the match ip multicast command. This command can be used on a mapping agent. The default is no filtering</td>
</tr>
<tr>
<td>----------------------------</td>
<td>of Auto-RP messages.</td>
</tr>
<tr>
<td>Auto-RP mapping agent policy</td>
<td>Enables Auto-RP discover messages to be filtered by client routers based on a route-map policy where you can specify mapping agent source</td>
</tr>
<tr>
<td>----------------------------</td>
<td>addresses with the match ip multicast command. This command can be used on client routers that listen to discover messages. The default is no</td>
</tr>
<tr>
<td>----------------------------</td>
<td>filtering of Auto-RP messages.</td>
</tr>
<tr>
<td>Per switch interface</td>
<td></td>
</tr>
<tr>
<td>Join-prune policy</td>
<td>Enables join-prune messages to be filtered based on a route-map policy where you can specify group, group and source, or group and RP</td>
</tr>
<tr>
<td>----------------------------</td>
<td>addresses with the match ip multicast command. The default is no filtering of join-prune messages.</td>
</tr>
</tbody>
</table>

1. For information about configuring route-map policies, see the Cisco Nexus 6000 Series NX-OS Unicast Routing

For information about configuring multicast route maps, see the “Configuring Route Maps to Control
RP Information Distribution” section on page 3-55.
8. **interface interface**
9. **no switchport**
10. (Optional) **ip pim jp-policy policy-name [in | out]**
11. (Optional) **show run pim**
12. (Optional) **copy running-config startup-config**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**

 `configure terminal`

 Example:

 switch# configure terminal
 switch(config)#

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**

 `configure terminal`

 Example:

 switch(config)# configure terminal
 switch(config)#

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 2**

 `ip pim log-neighbor-changes`

 Example:

 switch(config)# ip pim log-neighbor-changes

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 2**

 `ip pim log-neighbor-changes`

 Example:

 switch(config)# ip pim log-neighbor-changes

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 3**

 `ip pim register-policy policy-name`

 Example:

 switch(config)# ip pim register-policy my_register_policy

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 3**

 `ip pim register-policy policy-name`

 Example:

 switch(config)# ip pim register-policy my_register_policy

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 4**

 `ip pim bsr rp-candidate-policy policy-name`

 Example:

 switch(config)# ip pim bsr rp-candidate-policy my_bsr_rp_candidate_policy

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 4**

 `ip pim bsr rp-candidate-policy policy-name`

 Example:

 switch(config)# ip pim bsr rp-candidate-policy my_bsr_rp_candidate_policy

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 5**

 `ip pim bsr bsr-policy policy-name`

 Example:

 switch(config)# ip pim bsr bsr-policy my_bsr_policy

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 5**

 `ip pim bsr bsr-policy policy-name`

 Example:

 switch(config)# ip pim bsr bsr-policy my_bsr_policy

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 6**

 `ip pim auto-rp rp-candidate-policy policy-name`

 Example:

 switch(config)# ip pim auto-rp rp-candidate-policy my_auto_rp_candidate_policy

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 6**

 `ip pim auto-rp rp-candidate-policy policy-name`

 Example:

 switch(config)# ip pim auto-rp rp-candidate-policy my_auto_rp_candidate_policy

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 6**

 `ip pim auto-rp rp-candidate-policy policy-name`

 Example:

 switch(config)# ip pim auto-rp rp-candidate-policy my_auto_rp_candidate_policy

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
Chapter 3 Configuring PIM

Configuring PIM

Bind-VRF Configuration to vPCs

In a virtual Port Channel (vPC) topology, multicast traffic from a vPC port arrives on either of the vPC peers due to port-channel hashing.

If there are layer 3 receivers on a layer 3 port or a non-vPC VLAN, bind-vrf must be configured per VRF in order for those receivers to receive the Multicast traffic. The non-vPC VLANs represent the VLANs that are not trunked over a vPC peer-link.

The `vpc bind-vrf` command is required only for vPC and not for vPC+ configuration. The `vpc bind-vrf` command specifies an internal VLAN that is used to carry multicast traffic over vPC peer-links. The VLAN id specified in the CLI must be a VLAN id that is not being configured by another user. The `vpc bind-vrf` command must be configured for each VRF. The default name for a configured VRF is “default”.

BEFORE YOU BEGIN

Ensure that you have configured the vPC peers.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 7</td>
<td>ip pim auto-rp mapping-agent-policy policy-name</td>
</tr>
<tr>
<td>Example:</td>
<td>switch(config)# ip pim auto-rp mapping-agent-policy my_auto_rp_mapping_policy</td>
</tr>
<tr>
<td>Step 8</td>
<td>interface interface</td>
</tr>
<tr>
<td>Example:</td>
<td>switch(config)# interface ethernet 2/1 switch(config-if)#</td>
</tr>
<tr>
<td>Step 9</td>
<td>no switchport</td>
</tr>
<tr>
<td>Example:</td>
<td>switch(config-if)# no switchport</td>
</tr>
<tr>
<td>Step 10</td>
<td>ip pim jp-policy policy-name [in</td>
</tr>
<tr>
<td>Example:</td>
<td>switch(config-if)# ip pim jp-policy my_jp_policy</td>
</tr>
<tr>
<td>Step 11</td>
<td>show run pim</td>
</tr>
<tr>
<td>Example:</td>
<td>switch(config-if)# show run pim</td>
</tr>
<tr>
<td>Step 12</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td>Example:</td>
<td>switch(config-if)# copy running-config startup-config</td>
</tr>
</tbody>
</table>
Ensure that you have configured a VRF.

SUMMARY STEPS

1. configure terminal
2. vpc bind-vrf vrf-name vlan vlan-id
3. (Optional) show vpc
4. (Optional) show running-configuration pim
5. (Optional) copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>switch(config)#</td>
<td></td>
</tr>
<tr>
<td>Step 2 vpc bind-vrf vrf-name vlan vlan-id</td>
<td>Specifies a specific VLAN for the VRF.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch(config)# vpc bind-vrf vrf default vlan 100</td>
<td>Note The specified VLAN can need be a VLAN that has been configred by the user.</td>
</tr>
<tr>
<td>Step 3 show vpc</td>
<td>(Optional) Shows the vPC configuration information.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch(config)# show vpc</td>
<td></td>
</tr>
<tr>
<td>Step 4 show running-configuration pim</td>
<td>(Optional) Shows the running-configuration information for PIM, including the feature command.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch(config)# show running-configuration pim</td>
<td></td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Saves configuration changes.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch(config)# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

Verifying the PIM Configuration

To display the PIM configuration information, perform one of the following tasks:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip mroute {source group</td>
<td>group [source]} [vrf vrf-name</td>
</tr>
<tr>
<td>show ip pim df [vrf vrf-name</td>
<td>all]</td>
</tr>
</tbody>
</table>
Displaying Statistics

You can display and clear PIM statistics by using the commands in this section.

This section has the following topics:

- Displaying PIM Statistics, page 3-61
- Clearing PIM Statistics, page 3-62

Displaying PIM Statistics

You can display the PIM statistics and memory usage using the commands listed in Table 3-9. Use the show ip form of the command for PIM.
Table 3-9 PIM Statistics Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip pim policy statistics</td>
<td>Displays policy statistics for Register, RP, and join-prune message policies.</td>
</tr>
<tr>
<td>show ip pim statistics [vrf vrf-name</td>
<td>all]</td>
</tr>
</tbody>
</table>

For detailed information about the fields in the output from these commands, see the *Cisco Nexus 5000 Series Command Reference, Cisco NX-OS Releases 4.x, 5.x*.

Clearing PIM Statistics

You can clear the PIM statistics using the commands listed in Table 3-10. Use the `show ip` form of the command for PIM.

Table 3-10 PIM Commands to Clear Statistics

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear ip pim interface statistics interface</td>
<td>Clears counters for the specified interface.</td>
</tr>
<tr>
<td>clear ip pim policy statistics</td>
<td>Clears policy counters for Register, RP, and join-prune message policies.</td>
</tr>
<tr>
<td>clear ip pim statistics [vrf vrf-name</td>
<td>all]</td>
</tr>
</tbody>
</table>

Configuration Examples for PIM

This section describes how to configure PIM using different data distribution modes and RP selection methods.

This section includes the following topics:

- Configuration Example for SSM, page 3-62
- Configuration Example for BSR, page 3-63
- Configuration Example for PIM Anycast-RP, page 3-64

Configuration Example for SSM

To configure PIM in SSM mode, follow these steps for each router in the PIM domain:

1. Configure PIM sparse mode parameters on the interfaces that you want to participate in the domain. We recommend that you enable PIM on all interfaces.

```plaintext
switch# configure terminal
switch(config)# interface ethernet 2/1
switch(config-if)# no switchport
switch(config-if)# ip pim sparse-mode
```
Step 2 Configure the parameters for IGMP that support SSM. See Chapter 2, “Configuring IGMP” Usually, you configure IGMPv3 on PIM interfaces to support SSM.

```bash
switch# configure terminal
switch(config)# interface ethernet 2/1
switch(config-if)# no switchport
switch(config-if)# ip igmp version 3
```

Step 3 Configure the SSM range if you do not want to use the default range.

```bash
switch# configure terminal
switch(config)# ip pim ssm range 239.128.1.0/24
```

Step 4 Configure message filtering.

```bash
switch# configure terminal
switch(config)# ip pim log-neighbor-changes
```

This example shows how to configure PIM SSM mode:

```bash
configure terminal
interface ethernet 2/1
no switchport
ip pim sparse-mode
ip igmp version 3
exit
ip pim ssm range 239.128.1.0/24
ip pim log-neighbor-changes
```

Configuration Example for BSR

To configure PIM in ASM mode using the BSR mechanism, follow these steps for each router in the PIM domain:

Step 1 Configure PIM sparse mode parameters on the interfaces that you want to participate in the domain. We recommend that you enable PIM on all interfaces.

```bash
switch# configure terminal
switch(config)# interface ethernet 2/1
switch(config-if)# no switchport
switch(config-if)# ip pim sparse-mode
```

Step 2 Configure whether that router should listen and forward BSR messages.

```bash
switch# configure terminal
switch(config)# ip pim bsr forward listen
```

Step 3 Configure the BSR parameters for each router that you want to act as a BSR.

```bash
switch# configure terminal
switch(config)# ip pim bsr-candidate ethernet 2/1 hash-len 30
```

Step 4 Configure the RP parameters for each router that you want to act as a candidate RP.

```bash
switch# configure terminal
switch(config)# ip pim rp-candidate ethernet 2/1 group-list 239.0.0.0/24
```

Step 5 Configure message filtering.
This example shows how to configure PIM ASM mode using the BSR mechanism and how to configure the BSR and RP on the same router:

```
configure terminal
interface ethernet 2/1
   no switchport
   ip pim sparse-mode
   exit
   ip pim bsr forward listen
   ip pim bsr-candidate ethernet 2/1 hash-len 30
   ip pim rp-candidate ethernet 2/1 group-list 239.0.0.0/24
   ip pim log-neighbor-changes
```

Configuration Example for PIM Anycast-RP

To configure ASM mode using the PIM Anycast-RP method, follow these steps for each router in the PIM domain:

Step 1 Configure PIM sparse mode parameters on the interfaces that you want to participate in the domain. We recommend that you enable PIM on all interfaces.

```
switch# configure terminal
switch(config)# interface ethernet 2/1
switch(config-if)# no switchport
switch(config-if)# ip pim sparse-mode
```

Step 2 Configure the RP address that you configure on all routers in the Anycast-RP set.

```
switch# configure terminal
switch(config)# interface loopback 0
switch(config-if)# ip address 192.0.2.3/32
```

Step 3 Configure a loopback with an address to use in communication between routers in the Anycast-RP set for each router that you want to be in the Anycast-RP set.

```
switch# configure terminal
switch(config)# interface loopback 1
switch(config-if)# ip address 192.0.2.31/32
```

Step 4 Configure the Anycast-RP parameters and repeat with the IP address of each Anycast-RP for each router that you want to be in the Anycast-RP set. This example shows two Anycast-RPs.

```
switch# configure terminal
switch(config)# ip pim anycast-rp 192.0.2.3 193.0.2.31
switch(config)# ip pim anycast-rp 192.0.2.3 193.0.2.32
```

Step 5 Configure message filtering.

```
switch# configure terminal
switch(config)# ip pim log-neighbor-changes
```

This example shows how to configure PIM ASM mode using two Anycast-RPs:

```
configure terminal
```
interface ethernet 2/1
 no switchport
 ip pim sparse-mode
exit
interface loopback 0
 ip address 192.0.2.3/32
exit
ip pim anycast-rp 192.0.2.3 192.0.2.31
ip pim anycast-rp 192.0.2.3 192.0.2.32
ip pim log-neighbor-changes

Where to Go Next

You can configure the following features that work with PIM:

- Chapter 2, “Configuring IGMP”
- Chapter 4, “Configuring IGMP Snooping”
- Chapter 5, “Configuring MSDP”

Additional References

For additional information related to implementing PIM, see the following sections:

- Related Documents, page 3-65
- Standards, page 3-65
- Appendix A, “IETF RFCs for IP Multicast”

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLI commands</td>
<td>Cisco Nexus 5000 Series Command Reference, Cisco NX-OS Releases 4.x, 5.x, 6.x, 7.x</td>
</tr>
<tr>
<td>Configuring VRFs</td>
<td>Cisco Nexus 6000 Series NX-OS Unicast Routing Configuration Guide, Release 7.0</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>
Configuring IGMP Snooping

This chapter describes how to configure Internet Group Management Protocol (IGMP) snooping on a Cisco NX-OS switch.

This chapter includes the following sections:

- Information About IGMP Snooping, page 4-65
- Licensing Requirements for IGMP Snooping, page 4-68
- Guidelines and Limitations for IGMP Snooping, page 4-69
- Default Settings, page 4-69
- Configuring IGMP Snooping Parameters, page 4-70
- Verifying the IGMP Snooping Configuration, page 4-73
- Displaying IGMP Snooping Statistics, page 4-73
- Configuration Examples for IGMP Snooping, page 4-74
- Where to Go Next, page 4-74
- Additional References, page 4-74

Information About IGMP Snooping

Note

We recommend that you do not disable IGMP snooping on the switch. If you disable IGMP snooping, you may see reduced multicast performance because of excessive false flooding within the switch.

The Internet Group Management Protocol (IGMP) snooping software examines Layer 2 IP multicast traffic within a VLAN to discover the ports where interested receivers reside. Using the port information, IGMP snooping can reduce bandwidth consumption in a multi-access LAN environment to avoid flooding the entire VLAN. The IGMP snooping feature tracks which ports are attached to multicast-capable routers to help the routers forward IGMP membership reports. The IGMP snooping software responds to topology change notifications. By default, IGMP snooping is enabled on the switch.

Figure 4-1 shows an IGMP snooping switch that sits between the host and the IGMP router. The IGMP snooping switch snoops the IGMP membership reports and Leave messages and forwards them only when necessary to the connected IGMP routers.
Information About IGMP Snooping

The IGMP snooping software operates upon IGMPv1, IGMPv2, and IGMPv3 control plane packets where Layer 3 control plane packets are intercepted and influence the Layer 2 forwarding behavior.

For more information about IGMP, see Chapter 2, “Configuring IGMP.”

The Cisco NX-OS IGMP snooping software has the following proprietary features:

- Source filtering that allows forwarding of multicast packets based on destination and source IP.
- Multicast forwarding based on IP address rather than MAC address.
- Optimized multicast flooding (OMF) that forwards unknown traffic to routers only and performs no data driven state creation.

For more information about IGMP snooping, see RFC 4541.

This section includes the following topics:

- IGMPv1 and IGMPv2, page 4-66
- IGMPv3, page 4-67
- IGMP Snooping Querier, page 4-67
- IGMP Filtering on Router Ports, page 4-67
- IGMP Snooping on Virtual Port Channels, page 4-68

IGMPv1 and IGMPv2

Both IGMPv1 and IGMPv2 support membership report suppression, which means that if two hosts on the same subnet want to receive multicast data for the same group, then the host that receives a member report from the other host suppresses sending its report. Membership report suppression occurs for hosts that share a port.

If no more than one host is attached to each VLAN switch port, then you can configure the fast leave feature in IGMPv2. The fast leave feature does not send last member query messages to hosts. As soon as the software receives an IGMP leave message, the software stops forwarding multicast data to that port.
IGMPv1 does not provide an explicit IGMP leave message, so the software must rely on the membership message timeout to indicate that no hosts remain that want to receive multicast data for a particular group.

Note
The software ignores the configuration of the last member query interval when you enable the fast leave feature because it does not check for remaining hosts.

IGMPv3

The IGMPv3 snooping implementation on Cisco NX-OS supports full IGMPv3 snooping, which provides constrained flooding based on the (S, G) information in the IGMPv3 reports. This source-based filtering enables the switch to constrain multicast traffic to a set of ports based on the source that sends traffic to the multicast group.

By default, the software tracks hosts on each VLAN port. The explicit tracking feature provides a fast leave mechanism. Because every IGMPv3 host sends membership reports, report suppression limits the amount of traffic that the switch sends to other multicast-capable routers. When report suppression is enabled, and no IGMPv1 or IGMPv2 hosts requested the same group, the software provides proxy reporting. The proxy feature builds the group state from membership reports from the downstream hosts and generates membership reports in response to queries from upstream queriers.

Even though the IGMPv3 membership reports provide a full accounting of group members on a LAN segment, when the last host leaves, the software sends a membership query. You can configure the parameter last member query interval. If no host responds before the timeout, the software removes the group state.

IGMP Snooping Querier

When PIM is not enabled on an interface because the multicast traffic does not need to be routed, you must configure an IGMP snooping querier to send membership queries. You define the querier in a VLAN that contains multicast sources and receivers but no other active querier.

When an IGMP snooping querier is enabled, it sends out periodic IGMP queries that trigger IGMP report messages from hosts that want to receive IP multicast traffic. IGMP snooping listens to these IGMP reports to establish appropriate forwarding.

IGMP Filtering on Router Ports

IGMP filtering allows users to configure a router port on the switch that leads the switch to a Layer 3 multicast switch. The switch stores all manually configured static router ports in its router port list.

When an IGMP packet is received, the switch forwards the traffic through the router port in the VLAN. The switch recognizes a port as a router port through the PIM hello message or the IGMP query received by the switch.

IGMP filtering is typically used in a virtual port channel (vPC) topology or in a small network with a simple topology where the network traffic is predictable.
IGMP Snooping on Virtual Port Channels

IGMP snooping on a vPC switch is determined by the vPC peer link that receives an IGMP report or query. The multicast control packets required for IGMP snooping need to be seen by IGMP in both the vPC switches.

When an IGMP report or query is received by the vPC peer link on a non-vPC port, the vPC peer link on the switch acts as an output interface (OIF) for a multicast group or router port and floods the packet on the vPC peer link, vPC links, and non-vPC links using Cisco Fabric Services (CFS), which means that the individual packets are encapsulated as CFS packets and sent over the vPC peer link. The peer vPC switch that receives this packet on the vPC peer link floods it on all non-vPC links and adds the peer link to the router port list.

When an IGMP report or query is received by the vPC peer link on a vPC port, the VPC port acts as the router port list and the switch floods the packet on the vPC link, vPC peer link, and non-vPC links using CFS. The peer vPC switch that receives this packet on the vPC peer link floods it on all non-vPC links and adds the vPC port to the router port list. If the vPC port is down, the IGMP snooping software on the switch forwards the packet to the vPC peer link and the peer vPC switch then forwards the packets to all VLANs.

When IGMP snooping on a VPC switch goes down or is not enabled, the IGMP report or query is sent through the vPC peer link to the peer vPC switch that is running IGMP snooping. The vPC peer link is set as an OIF for a multicast group or router port.

If switch virtual interfaces (SVIs) are enabled on the VLANs of the vPC peers, each vPC peer acts as a designated router (DR) to forward the multicast traffic. If the vPC peer link fails, the SVIs and vPC peer links on the vPC secondary switch also goes down. The primary vPC switch then forwards all traffic.

IGMP Snooping with VRFs

You can define multiple virtual routing and forwarding (VRF) instances. An IGMP process supports all VRFs.

You can use the `show` commands with a VRF argument to provide a context for the information displayed. The default VRF is used if no VRF argument is supplied.

For information about configuring VRFs, see the *Cisco Nexus 6000 Series NX-OS Unicast Routing Configuration Guide, Release 7.0.*

Licensing Requirements for IGMP Snooping

The following table shows the licensing requirements for this feature:

<table>
<thead>
<tr>
<th>Product</th>
<th>License Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco NX-OS</td>
<td>IGMP snooping requires no license. Any feature not included in a license package is bundled with the Cisco NX-OS system images and is provided at no extra charge to you. For a complete explanation of the Cisco NX-OS licensing scheme, see the Cisco NX-OS Licensing Guide.</td>
</tr>
<tr>
<td></td>
<td>Note Make sure the LAN Base Services license is installed on the switch to enable the Layer 3 interfaces.</td>
</tr>
</tbody>
</table>
Prerequisites for IGMP Snooping

IGMP snooping has the following prerequisites:

- You are logged onto the switch.
- For global commands, you are in the correct virtual routing and forwarding (VRF) mode. The default configuration mode shown in the examples in this chapter applies to the default VRF.

Guidelines and Limitations for IGMP Snooping

IGMP snooping has the following guidelines and limitations:

- If you are configuring vPC peers, the differences in the IGMP snooping configuration options between the two switches have the following results:
 - If IGMP snooping is enabled on one switch but not the other, then the switch on which snooping is disabled floods all multicast traffic.
 - A difference in multicast router or static group configuration can cause traffic loss.
 - The fast leave, explicit tracking, and report suppression options can differ if they are used for forwarding traffic.
 - If a query parameter is different between the switches, one switch expires the multicast state faster while the other switch continues to forward. This difference results in either traffic loss or forwarding for an extended period.
 - If an IGMP snooping querier is configured on both switches, only one of them will be active because an IGMP snooping querier shuts down if a query is seen in the traffic.
 - A vPC peer link is a valid link for IGMP multicast forwarding.
 - If the vPC link on a switch is configured as an output interface (OIF) for a multicast group or router port, the vPC link on the peer switch must also be configured as an output interface for a multicast group or router port.
 - In SVI VLANs, the vPC peers must have the multicast forwarding state configured for the vPC VLANs to forward multicast traffic directly through the vPC link instead of the peer link.
 - Fabric Extenders do not support mrouter ports.

Default Settings

Table 4-1 lists the default settings for IGMP snooping parameters.
Configuring IGMP Snooping Parameters

To affect the operation of the IGMP snooping process, you can configure the optional IGMP snooping parameters described in Table 4-2.

Table 4-2 IGMP Snooping Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGMP snooping</td>
<td>Enables IGMP snooping on the switch or on a per-VLAN basis. The default is enabled.</td>
</tr>
<tr>
<td></td>
<td>Note If the global setting is disabled, then all VLANs are treated as disabled, whether they are enabled or not.</td>
</tr>
<tr>
<td>Explicit tracking</td>
<td>Tracks IGMPv3 membership reports from individual hosts for each port on a per-VLAN basis. The default is enabled.</td>
</tr>
<tr>
<td>Fast leave</td>
<td>Enables the software to remove the group state when it receives an IGMP Leave report without sending an IGMP query message. This parameter is used for IGMPv2 hosts when no more than one host is present on each VLAN port. The default is disabled.</td>
</tr>
<tr>
<td>Last member query interval</td>
<td>Sets the interval that the software waits after sending an IGMP query to verify that no hosts that want to receive a particular multicast group remain on a network segment. If no hosts respond before the last member query interval expires, the software removes the group from the associated VLAN port. Values range from 1 to 25 seconds. The default is 1 second.</td>
</tr>
<tr>
<td>Snooping querier</td>
<td>Configures a snooping querier on an interface when you do not enable PIM because multicast traffic does not need to be routed.</td>
</tr>
<tr>
<td>Report suppression</td>
<td>Limits the membership report traffic sent to multicast-capable routers on the switch or on a per-VLAN basis. When you disable report suppression, all IGMP reports are sent as is to multicast-capable routers. The default is enabled.</td>
</tr>
</tbody>
</table>
Table 4-2 IGMP Snooping Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multicast router</td>
<td>Configures a static connection to a multicast router. The interface to the router must be in the selected VLAN.</td>
</tr>
<tr>
<td>Static group</td>
<td>Configures a Layer 2 port of a VLAN as a static member of a multicast group.</td>
</tr>
<tr>
<td>Link-local groups suppression</td>
<td>Configures link-local groups suppression on the switch or on a per-VLAN basis. The default is enabled.</td>
</tr>
<tr>
<td>IGMPv3 report suppression</td>
<td>Configures IGMPv3 report suppression and proxy reporting on the switch or on a per-VLAN basis. The default is disabled for the entire switch and enabled per VLAN.</td>
</tr>
</tbody>
</table>

SUMMARY STEPS

1. `configure terminal`
2. `ip igmp snooping`
3. `vlan configuration vlan-id`
4. `ip igmp snooping`
 - `ip igmp snooping explicit-tracking`
 - `ip igmp snooping fast-leave`
 - `ip igmp snooping last-member-query-interval seconds`
 - `ip igmp snooping querier ip-address`
 - `ip igmp snooping report-suppression`
 - `ip igmp snooping mrouter interface interface`
 - `ip igmp snooping static-group group-ip-addr [source source-ip-addr] interface interface`
 - `ip igmp snooping link-local-groups-suppression`
 - `ip igmp snooping v3-report-suppression`
 - `no ip igmp snooping mrouter vpc-peer-link`
5. (Optional) `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>switch(config)#</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>ip igmp snooping</code></td>
<td>Enables IGMP snooping. The default is enabled.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch(config)# ip igmp snooping</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If the global setting is disabled with the <code>no</code> form of this command, then IGMP snooping on all VLANs is disabled, whether IGMP snooping is enabled on a VLAN or not. If you disable IGMP snooping, Layer 2 multicast frames flood to all modules.</td>
</tr>
</tbody>
</table>
Configuring IGMP Snooping Parameters

Command

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td><code>vlan configuration vlan-id</code></td>
<td>Enters VLAN configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:
<code>switch(config)# vlan configuration 2</code>
<code>switch(config-vlan)#</code></td>
<td>Enables IGMP snooping for the current VLAN. The default is enabled.</td>
</tr>
<tr>
<td></td>
<td><code>ip igmp snooping</code></td>
<td>Enables IGMP snooping for the current VLAN. The default is enabled.</td>
</tr>
<tr>
<td></td>
<td>Example:
<code>switch(config-vlan)# ip igmp snooping</code></td>
<td>Enables IGMP snooping for the current VLAN. The default is enabled.</td>
</tr>
<tr>
<td></td>
<td><code>ip igmp snooping explicit-tracking</code></td>
<td>Tracks IGMPv3 membership reports from individual hosts for each port on a per-VLAN basis. The default is enabled on all VLANs.</td>
</tr>
<tr>
<td></td>
<td>Example:
<code>switch(config-vlan)# ip igmp snooping explicit-tracking</code></td>
<td>Tracks IGMPv3 membership reports from individual hosts for each port on a per-VLAN basis. The default is enabled on all VLANs.</td>
</tr>
<tr>
<td></td>
<td><code>ip igmp snooping fast-leave</code></td>
<td>Supports IGMPv2 hosts that cannot be explicitly tracked because of the host report suppression mechanism of the IGMPv2 protocol. When you enable fast leave, the IGMP software assumes that no more than one host is present on each VLAN port. The default is disabled for all VLANs.</td>
</tr>
<tr>
<td></td>
<td>Example:
<code>switch(config-vlan)# ip igmp snooping fast-leave</code></td>
<td>Supports IGMPv2 hosts that cannot be explicitly tracked because of the host report suppression mechanism of the IGMPv2 protocol. When you enable fast leave, the IGMP software assumes that no more than one host is present on each VLAN port. The default is disabled for all VLANs.</td>
</tr>
<tr>
<td></td>
<td><code>ip igmp snooping last-member-query-interval seconds</code></td>
<td>Removes the group from the associated VLAN port if no hosts respond to an IGMP query message before the last member query interval expires. Values range from 1 to 25 seconds. The default is 1 second.</td>
</tr>
<tr>
<td></td>
<td>Example:
<code>switch(config-vlan)# ip igmp snooping last-member-query-interval 3</code></td>
<td>Removes the group from the associated VLAN port if no hosts respond to an IGMP query message before the last member query interval expires. Values range from 1 to 25 seconds. The default is 1 second.</td>
</tr>
<tr>
<td></td>
<td><code>ip igmp snooping querier ip-address</code></td>
<td>Configures a snooping querier when you do not enable PIM because multicast traffic does not need to be routed. The IP address is used as the source in messages.</td>
</tr>
<tr>
<td></td>
<td>Example:
<code>switch(config-vlan)# ip igmp snooping querier 172.20.52.106</code></td>
<td>Configures a snooping querier when you do not enable PIM because multicast traffic does not need to be routed. The IP address is used as the source in messages.</td>
</tr>
<tr>
<td></td>
<td><code>ip igmp snooping report-suppression</code></td>
<td>Limits the membership report traffic sent to multicast-capable routers. When you disable report suppression, all IGMP reports are sent as is to multicast-capable routers. The default is enabled.</td>
</tr>
<tr>
<td></td>
<td>Example:
<code>switch(config-vlan)# ip igmp snooping report-suppression</code></td>
<td>Limits the membership report traffic sent to multicast-capable routers. When you disable report suppression, all IGMP reports are sent as is to multicast-capable routers. The default is enabled.</td>
</tr>
<tr>
<td></td>
<td>Note This command can also be entered in global configuration mode to affect all interfaces.</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>ip igmp snooping mrouter interface interface</code></td>
<td>Configures a static connection to a multicast router. The interface to the router must be in the selected VLAN. You can specify the interface by the type and the number, such as <code>ethernet slot/port</code>.</td>
</tr>
<tr>
<td></td>
<td>Example:
<code>switch(config-vlan)# ip igmp snooping mrouter interface ethernet 2/1</code></td>
<td>Configures a static connection to a multicast router. The interface to the router must be in the selected VLAN. You can specify the interface by the type and the number, such as <code>ethernet slot/port</code>.</td>
</tr>
<tr>
<td></td>
<td>Note If this is a 10G breakout port, the <code>slot/port</code> syntax is <code>slot/QSFP-module/port</code>.</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>ip igmp snooping static-group group-ip-addr [source source-ip-addr] interface interface</code></td>
<td>Configures a Layer 2 port of a VLAN as a static member of a multicast group. You can specify the interface by the type and the number, such as <code>ethernet slot/port</code>.</td>
</tr>
<tr>
<td></td>
<td>Example:
<code>switch(config-vlan)# ip igmp snooping static-group 230.0.0.1 interface ethernet 2/1</code></td>
<td>Configures a Layer 2 port of a VLAN as a static member of a multicast group. You can specify the interface by the type and the number, such as <code>ethernet slot/port</code>.</td>
</tr>
<tr>
<td></td>
<td>Note If this is a 10G breakout port, the <code>slot/port</code> syntax is <code>slot/QSFP-module/port</code>.</td>
<td></td>
</tr>
</tbody>
</table>
Verifying the IGMP Snooping Configuration

To display the IGMP snooping configuration information, perform one of the following tasks:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| `ip igmp snooping link-local-groups-suppression` | Configures link-local groups suppression. The default is enabled.
 Note This command can also be entered in global configuration mode to affect all interfaces. |
| `ip igmp snooping v3-report-suppression` | Configures IGMPv3 report suppression and proxy reporting. The default is disabled for the global command for the entire switch and enabled per VLAN.
 Note This command can also be entered in global configuration mode to affect all interfaces. |
| `no ip igmp snooping mrouter vpc-peer-link` | Sends multicast traffic over a vPC peer-link to each receiver VLAN that does not have orphan ports. |

Step 5

(Optional) Saves configuration changes.

Command

```
switch(config)# copy running-config startup-config
```

For detailed information about the fields in the output from these commands, see the *Cisco Nexus 5000 Series Command Reference, Cisco NX-OS Releases 4.x, 5.x.*

Displaying IGMP Snooping Statistics

Use the `show ip igmp snooping statistics vlan` command to display IGMP snooping statistics. You can see the virtual port channel (vPC) statistics in this output.

Use the `clear ip igmp snooping statistics vlan` command to clear IGMP snooping statistics.
For detailed information about using these commands, see the Cisco Nexus 5000 Series Command Reference, Cisco NX-OS Releases 4.x, 5.x.

Configuration Examples for IGMP Snooping

This example shows how to configure the IGMP snooping parameters:

```
configure terminal
ip igmp snooping
vlan 2
  ip igmp snooping
  ip igmp snooping explicit-tracking
  ip igmp snooping fast-leave
  ip igmp snooping last-member-query-interval 3
  ip igmp snooping querier 172.20.52.106
  ip igmp snooping report-suppression
  ip igmp snooping mrouter interface ethernet 2/1
  ip igmp snooping static-group 230.0.0.1 interface ethernet 2/1
  ip igmp snooping link-local-groups-suppression
  ip igmp snooping v3-report-suppression
no ip igmp snooping mrouter vpc-peer-link
```

Where to Go Next

You can enable the following features that work with PIM:

- Chapter 2, “Configuring IGMP”
- Chapter 5, “Configuring MSDP”

Additional References

For additional information related to implementing IGMP snooping, see the following sections:

- Related Documents, page 4-75
- Standards, page 4-75
Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLI commands</td>
<td>Cisco Nexus 5000 Series Command Reference, Cisco NX-OS Releases 4.x, 5.x, 6.x, 7.x</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>
Configuring MSDP

This chapter describes how to configure Multicast Source Discovery Protocol (MSDP) on a Cisco NX-OS switch.

This chapter includes the following sections:
- Information About MSDP, page 5-77
- Licensing Requirements for MSDP, page 5-79
- Prerequisites for MSDP, page 5-80
- Default Settings, page 5-80
- Configuring MSDP, page 5-80
- Verifying the MSDP Configuration, page 5-89
- Displaying Statistics, page 5-90
- Configuration Examples for MSDP, page 5-91
- Additional References, page 5-92

Information About MSDP

You can use MSDP to exchange multicast source information between multiple BGP-enabled Protocol Independent Multicast (PIM) sparse-mode domains. For information about PIM, see Chapter 3, “Configuring PIM.” For information about BGP, see the Cisco Nexus 6000 Series NX-OS Unicast Routing Configuration Guide, Release 7.0.

When a receiver for a group matches the group transmitted by a source in another domain, the rendezvous point (RP) sends PIM join messages in the direction of the source to build a shortest path tree. The designated router (DR) sends packets on the source-tree within the source domain, which may travel through the RP in the source domain and along the branches of the source-tree to other domains. In domains where there are receivers, RPs in those domains can be on the source-tree. The peering relationship is conducted over a TCP connection.

Figure 5-1 shows four PIM domains. The connected RPs (routers) are called MSDP peers because each RP maintains its own set of multicast sources. Source host 1 sends the multicast data to group 224.1.1.1. On RP 6, the MSDP process learns about the source through PIM register messages and generates Source-Active (SA) messages to its MSDP peers that contain information about the sources in its domain. When RP 3 and RP 5 receive the SA messages, they forward them to their MSDP peers. When RP 5 receives the request from host 2 for the multicast data on group 224.1.1.1, it builds a shortest path tree to the source by sending a PIM join message in the direction of host 1 at 192.1.1.1.
When you configure MSDP peering between each RP, you create a full mesh. Full MSDP meshing is typically done within an autonomous system, as shown between RPs 1, 2, and 3, but not across autonomous systems. You use BGP to do loop suppression and MSDP peer-RPF to suppress looping SA messages. For more information about mesh groups, see the “MSDP Mesh Groups” section on page 5-79.

Note
You do not need to configure MSDP in order to use Anycast-RP (a set of RPs that can perform load balancing and failover) within a PIM domain. For more information, see the “Configuring a PIM Anycast-RP Set” section on page 3-49.

For detailed information about MSDP, see RFC 3618.

This section includes the following topics:

- SA Messages and Caching, page 5-78
- MSDP Peer-RPF Forwarding, page 5-79
- MSDP Mesh Groups, page 5-79
- Virtualization Support, page 5-79

SA Messages and Caching

MSDP peers exchange Source-Active (SA) messages that the MSDP software uses to propagate information about active sources. SA messages contain the following information:

- Source address of the data source
- Group address that the data source uses
• IP address of the RP or the configured originator ID

When a PIM register message advertises a new source, the MSDP process reencapsulates the message in an SA message that is immediately forwarded to all MSDP peers.

The SA cache holds the information for all sources learned through SA messages. Caching reduces the join latency for new receivers of a group because the information for all known groups can be found in the cache. You can limit the number of cached source entries by configuring the SA limit peer parameter. You can limit the number of cached source entries for a specific group prefix by configuring the group limit global parameter.

The MSDP software sends SA messages for each group in the SA cache every 60 seconds or at the configured SA interval global parameter. An entry in the SA cache is removed if an SA message for that source and group is not received within SA interval plus 3 seconds.

MSDP Peer-RPF Forwarding

MSDP peers forward the SA messages that they receive away from the originating RP. This action is called peer-RPF flooding. The router examines the BGP routing table to determine which peer is the next hop in the direction of the originating RP of the SA message. This peer is called a reverse path forwarding (RPF) peer.

If the MSDP peer receives the same SA message from a non-RPF peer in the direction of the originating RP, it drops the message. Otherwise, it forwards the message to all its MSDP peers.

MSDP Mesh Groups

You can use MSDP mesh groups to reduce the number of SA messages that are generated by peer-RPF flooding. In Figure 5-1, RPs 1, 2, and 3 receive SA messages from RP 6. By configuring a peering relationship between all the routers in a mesh and then configuring a mesh group of these routers, the SA messages that originate at a peer are sent by that peer to all other peers. SA messages received by peers in the mesh are not forwarded. An SA message that originates at RP 3 is forwarded to RP 1 and RP 2, but these RPs do not forward those messages to other RPs in the mesh.

A router can participate in multiple mesh groups. By default, no mesh groups are configured.

Virtualization Support

You can define multiple virtual routing and forwarding (VRF) instances. The MSDP configuration applies to the selected VRF.

You can use the show commands with a VRF argument to provide a context for the information displayed. The default VRF is used if no VRF argument is supplied.

For information about configuring VRFs, see the Cisco Nexus 6000 Series NX-OS Unicast Routing Configuration Guide, Release 7.0.

Licensing Requirements for MSDP

The following table shows the licensing requirements for this feature:
Prerequisites for MSDP

MSDP has the following prerequisites:

- You are logged onto the switch.
- For global commands, you are in the correct virtual routing and forwarding (VRF) mode. The default configuration mode shown in the examples in this chapter applies to the default VRF.
- You configured PIM for the networks where you want to configure MSDP.
- You configured BGP for the PIM domains where you want to configure MSDP.

Default Settings

Table 5-1 lists the default settings for MSDP parameters.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Peer has no description</td>
</tr>
<tr>
<td>Administrative shutdown</td>
<td>Peer is enabled when it is defined</td>
</tr>
<tr>
<td>MD5 password</td>
<td>No MD5 password is enabled</td>
</tr>
<tr>
<td>SA policy IN</td>
<td>All SA messages are received</td>
</tr>
<tr>
<td>SA policy OUT</td>
<td>All registered sources are sent in SA messages</td>
</tr>
<tr>
<td>SA limit</td>
<td>No limit is defined</td>
</tr>
<tr>
<td>Originator interface name</td>
<td>RP address of the local system</td>
</tr>
<tr>
<td>Group limit</td>
<td>No group limit is defined</td>
</tr>
<tr>
<td>SA interval</td>
<td>60 seconds</td>
</tr>
</tbody>
</table>

Configuring MSDP

You can establish MSDP peering by configuring the MSDP peers within each PIM domain.

To configure MSDP peering, follow these steps:

Step 1 Select the routers to act as MSDP peers.
Step 2 Enable the MSDP feature. See the “Enabling the MSDP Feature” section on page 5-81.
Step 3 Configure the MSDP peers for each router identified in Step 1. See the “Configuring MSDP Peers” section on page 5-82.
Step 4 Configure the optional MSDP peer parameters for each MSDP peer. See the “Configuring MSDP Peer Parameters” section on page 5-83.

Step 5 Configure the optional global parameters for each MSDP peer. See the “Configuring MSDP Global Parameters” section on page 5-86.

Step 6 Configure the optional mesh groups for each MSDP peer. See the “Configuring MSDP Mesh Groups” section on page 5-87.

Note The MSDP commands that you enter before you enable MSDP are cached and then run when MSDP is enabled. Use the `ip msdp peer` or `ip msdp originator-id` command to enable MSDP.

This section includes the following topics:
- Enabling the MSDP Feature, page 5-81
- Configuring MSDP Peers, page 5-82
- Configuring MSDP Peer Parameters, page 5-83
- Configuring MSDP Global Parameters, page 5-86
- Configuring MSDP Mesh Groups, page 5-87
- Restarting the MSDP Process, page 5-88

Note If you are familiar with the Cisco IOS CLI, be aware that the Cisco NX-OS commands for this feature might differ from the Cisco IOS commands that you would use.

Enabling the MSDP Feature

Before you can access the MSDP commands, you must enable the MSDP feature.

SUMMARY STEPS

1. `configure terminal`
2. `feature msdp`
3. (Optional) `show running-configuration | grep feature`
4. (Optional) `copy running-config startup-config`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
</tbody>
</table>
| Example: | switch# configure terminal
switch(config)# | Enters configuration mode. |
| **Step 2** | feature msdp | | |
| Example: | switch# feature msdp | Enables the MSDP feature so that you can enter MSDP commands. By default, the MSDP feature is disabled. |
| **Step 3** | show running-configuration | grep feature |
| Example: | switch# show running-configuration | grep feature | (Optional) Shows feature commands that you specified. |
| **Step 4** | copy running-config startup-config |
| Example: | switch(config)# copy running-config startup-config | (Optional) Saves configuration changes. |

Configuring MSDP Peers

You can configure an MSDP peer when you configure a peering relationship with each MSDP peer that resides either within the current PIM domain or in another PIM domain. MSDP is enabled on the router when you configure the first MSDP peering relationship.

BEFORE YOU BEGIN

Ensure that you have installed the LAN Base Services license and enabled PIM and MSDP.

Ensure that you configured BGP and PIM in the domains of the routers that you will configure as MSDP peers.

SUMMARY STEPS

1. configure terminal
2. ip msdp peer peer-ip-address connect-source interface [remote-as as-number]
3. Repeat Step 2 for each MSDP peering relationship.
4. (Optional) show ip msdp summary [vrf vrf-name | known-vrf-name | all]
5. (Optional) copy running-config startup-config
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal
Example:
switch# configure terminal
switch(config)#
Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip msdp peer peer-ip-address connect-source interface [remote-as as-number]
Example:
switch(config)# ip msdp peer 192.168.1.10 connect-source ethernet 2/1 remote-as 8
Configures an MSDP peer with the specified peer IP address. The software uses the source IP address of the interface for the TCP connection with the peer. The interface can take the form of type slot/port. If the AS number is the same as the local AS, then the peer is within the PIM domain; otherwise, this peer is external to the PIM domain. By default, MSDP peering is disabled.
Note: MSDP peering is enabled when you use this command.
Note: If this is a 10G breakout port, the slot/port syntax is slot/QSFP-module/port.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Repeat Step 2 for each MSDP peering relationship by changing the peer IP address, the interface, and the AS number as appropriate.</td>
</tr>
<tr>
<td>Step 4</td>
<td>**show ip msdp summary [vrf vrf-name</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config
Example:
switch(config)# copy running-config startup-config
(Optional) Saves configuration changes.</td>
</tr>
</tbody>
</table>

Configuring MSDP Peer Parameters

You can configure the optional MSDP peer parameters described in Table 5-2. You configure these parameters in global configuration mode for each peer based on its IP address.
Table 5-2 MSDP Peer Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Description string for the peer. By default, the peer has no description.</td>
</tr>
<tr>
<td>Administrative shutdown</td>
<td>Method to shut down the MSDP peer. The configuration settings are not affected by this command. You can use this parameter to allow configuration of multiple parameters to occur before making the peer active. The TCP connection with other peers is terminated by the shutdown. By default, a peer is enabled when it is defined.</td>
</tr>
<tr>
<td>MD5 password</td>
<td>MD5-shared password key used for authenticating the peer. By default, no MD5 password is enabled.</td>
</tr>
<tr>
<td>SA policy IN</td>
<td>Route-map policy(^1) for incoming SA messages. By default, all SA messages are received.</td>
</tr>
<tr>
<td>SA policy OUT</td>
<td>Route-map policy(^1) for outgoing SA messages. By default, all registered sources are sent in SA messages.</td>
</tr>
<tr>
<td>SA limit</td>
<td>Number of ((S,G)) entries accepted from the peer and stored in the SA cache. By default, there is no limit.</td>
</tr>
</tbody>
</table>

\(^1\) To configure route-map policies, see the *Cisco Nexus 6000 Series NX-OS Unicast Routing Configuration Guide, Release 7.0*.

For information about configuring multicast route maps, see the “Configuring Route Maps to Control RP Information Distribution” section on page 3-55.

Note

For information about configuring mesh groups, see the “Configuring MSDP Mesh Groups” section on page 5-87.

BEFORE YOU BEGIN

Ensure that you have installed the LAN Base Services license and enabled PIM and MSDP.

SUMMARY STEPS

1. `configure terminal`
2. `ip msdp description peer-ip-address string`
 - `ip msdp shutdown peer-ip-address`
 - `ip msdp password peer-ip-address password`
 - `ip msdp sa-policy peer-ip-address policy-name in`
 - `ip msdp sa-policy peer-ip-address policy-name out`
 - `ip msdp sa-limit peer-ip-address limit`
3. (Optional) `show ip msdp peer [peer-address] [vrfl vrf-name | known-vrf-name | all]`
4. (Optional) `copy running-config startup-config`
Chapter 5 Configuring MSDP

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1
configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2
ip msdp description peer-ip-address string</td>
<td>Sets a description string for the peer. By default, the peer has no description.</td>
</tr>
<tr>
<td>Step 3
show ip msdp peer [peer-address] [vrf vrf-name</td>
<td>known-vrf-name</td>
</tr>
<tr>
<td>Step 4
copy running-config startup-config</td>
<td>(Optional) Saves configuration changes.</td>
</tr>
</tbody>
</table>

Example:
- `switch# configure terminal`
Enters configuration mode.
- `switch(config)# ip msdp description 192.168.1.10 peer in Engineering network`
Sets a description string for the peer.
- `switch(config)# ip msdp shutdown 192.168.1.10`
Shuts down the peer.
- `switch(config)# ip msdp password 192.168.1.10 my_md5_password`
Enables an MD5 password for the peer.
- `switch(config)# ip msdp sa-policy peer-ip-address policy-name in`
Enables a route-map policy for incoming SA messages.
- `switch(config)# ip msdp sa-policy peer-ip-address policy-name out`
Enables a route-map policy for outgoing SA messages.
- `switch(config)# ip msdp sa-limit peer-ip-address limit`
Sets a limit on the number of (S, G) entries accepted from the peer.
- `switch# show ip msdp peer 1.1.1.1`
Displays detailed MDSP peer information.
- `switch(config)# copy running-config startup-config`
Saves configuration changes.
Configuring MSDP Global Parameters

You can configure the optional MSDP global parameters described in Table 5-3.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| Originator interface name | IP address used in the RP field of an SA message entry. When Anycast RPs are used, all RPs use the same IP address. You can use this parameter to define a unique IP address for the RP of each MSDP peer. By default, the software uses the RP address of the local system. *
| | **Note** We recommend that you use a loopback interface for the RP address. |
| Group limit | Maximum number of (S, G) entries that the software creates for the specified prefix. The software ignores groups when the group limit is exceeded and logs a violation. By default, no group limit is defined. |
| SA interval | Interval at which the software transmits Source-Active (SA) messages. The range is from 60 to 65,535 seconds. The default is 60 seconds. |

BEFORE YOU BEGIN

Ensure that you have installed the LAN Base Services license and enabled PIM and MSDP.

SUMMARY STEPS

1. `configure terminal`
2. `ip msdp originator-id interface`
 `ip msdp group-limit limit source source-prefix`
 `ip msdp sa-interval seconds`
3. (Optional) `show ip msdp summary [vrf vrf-name | known-vrf-name | all]`
4. (Optional) `copy running-config startup-config`
Configuring MSDP Mesh Groups

You can configure optional MSDP mesh groups in global configuration mode by specifying each peer in the mesh. You can configure multiple mesh groups on the same router and multiple peers per mesh group.

BEFORE YOU BEGIN

Ensure that you have installed the LAN Base Services license and enabled PIM and MSDP.

SUMMARY STEPS

1. configure terminal
2. ip msdp mesh-group peer-ip-addr mesh-name

Detailed Steps

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enters configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Example:
<code>switch# configure terminal</code>
<code>switch(config)#</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>sets the IP address used in the RP field of an SA message entry. The interface can take the form of type slot/port. By default, the software uses the RP address of the local system.</td>
</tr>
<tr>
<td><code>ip msdp originator-id interface</code></td>
<td></td>
</tr>
<tr>
<td>Example:
<code>switch(config)# ip msdp originator-id loopback0</code></td>
<td></td>
</tr>
<tr>
<td><code>ip msdp group-limit limit source source-prefix</code></td>
<td>maximum number of (S, G) entries that the software creates for the specified prefix. The software ignores groups when the group limit is exceeded and logs a violation. By default, no group limit is defined.</td>
</tr>
<tr>
<td>Example:
<code>switch(config)# ip msdp group-limit 1000 source 192.168.1.0/24</code></td>
<td></td>
</tr>
<tr>
<td><code>ip msdp sa-interval seconds</code></td>
<td>interval at which the software transmits Source-Active (SA) messages. The range is from 60 to 65,535 seconds. The default is 60 seconds.</td>
</tr>
<tr>
<td>Example:
<code>switch(config)# ip msdp sa-interval 80</code></td>
<td></td>
</tr>
<tr>
<td>`show ip msdp summary [vrf vrf-name</td>
<td>known-vrf-name</td>
</tr>
<tr>
<td>Example:
<code>switch# show ip msdp summary</code></td>
<td></td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) saves configuration changes.</td>
</tr>
<tr>
<td>Example:
<code>switch(config)# copy running-config startup-config</code></td>
<td></td>
</tr>
</tbody>
</table>
Configuring MSDP

3. Repeat Step 2 for each MSDP peer in the mesh.
4. (Optional) `show ip msdp mesh-group [mesh-group] [vrf vrf-name | known-vrf-name | all]`
5. (Optional) `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1
configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2
<code>ip msdp mesh-group peer-ip-addr mesh-name</code></td>
<td>Configures an MSDP mesh with the peer IP address specified. You can configure multiple meshes on the same router and multiple peers per mesh group. By default, no mesh groups are configured.</td>
</tr>
<tr>
<td>Step 3
Repeat Step 2 for each MSDP peer in the mesh by changing the peer IP address.</td>
<td>—</td>
</tr>
<tr>
<td>Step 4
`show ip msdp mesh-group [mesh-group] [vrf vrf-name</td>
<td>known-vrf-name</td>
</tr>
<tr>
<td>Step 5
<code>copy running-config startup-config</code></td>
<td>(Optional) Saves configuration changes.</td>
</tr>
</tbody>
</table>

Restarting the MSDP Process

You can restart the MSDP process and optionally flush all routes.

BEFORE YOU BEGIN

Ensure that you have installed the LAN Base Services license and enabled PIM and MSDP.

SUMMARY STEPS

1. `restart msdp`
2. `configure terminal`
3. `ip msdp flush-routes`
4. (Optional) `show running-configuration | include flush-routes`
5. (Optional) `copy running-config startup-config`
Chapter 5 Configuring MSDP

Verifying the MSDP Configuration

To display the MSDP configuration information, perform one of the following tasks:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip msdp count [as-number] [vrf vrf-name</td>
<td>known-vrf-name</td>
</tr>
<tr>
<td>show ip msdp mesh-group [mesh-group] [vrf vrf-name</td>
<td>known-vrf-name</td>
</tr>
<tr>
<td>show ip msdp peer [peer-address] [vrf vrf-name</td>
<td>known-vrf-name</td>
</tr>
<tr>
<td>show ip msdp rpf [rp-address] [vrf vrf-name</td>
<td>known-vrf-name</td>
</tr>
<tr>
<td>show ip msdp sources [vrf vrf-name</td>
<td>known-vrf-name</td>
</tr>
<tr>
<td>show ip msdp summary [vrf vrf-name</td>
<td>known-vrf-name</td>
</tr>
</tbody>
</table>

For detailed information about the fields in the output from these commands, see the Cisco Nexus 5000 Series Command Reference, Cisco NX-OS Releases 4.x, 5.x.
Displaying Statistics

You can display and clear MSDP statistics by using the features in this section.

This section has the following topics:

- Displaying Statistics, page 5-90
- Clearing Statistics, page 5-90

Displaying Statistics

You can display MSDP statistics using the commands listed in Table 5-4.

Table 5-4 MSDP Statistics Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`show ip msdp [as-number] internal event-history {errors</td>
<td>messages}`</td>
</tr>
<tr>
<td>`show ip msdp policy statistics sa-policy peer-address {in</td>
<td>out} [vrf vrf-name</td>
</tr>
<tr>
<td>`show ip msdp [sa-cache</td>
<td>route] [source-address] [group-address] [vrf vrf-name</td>
</tr>
</tbody>
</table>

Clearing Statistics

You can clear the MSDP statistics using the commands listed in Table 5-5.

Table 5-5 MSDP Clear Statistics Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>`clear ip msdp peer [peer-address] [vrf vrf-name</td>
<td>known-vrf-name]`</td>
</tr>
<tr>
<td>`clear ip msdp policy statistics sa-policy peer-address {in</td>
<td>out} [vrf vrf-name</td>
</tr>
<tr>
<td>`clear ip msdp statistics [peer-address] [vrf vrf-name</td>
<td>known-vrf-name]`</td>
</tr>
<tr>
<td>`clear ip msdp [sa-cache</td>
<td>route] [group-address] [vrf vrf-name</td>
</tr>
</tbody>
</table>
Configuration Examples for MSDP

To configure MSDP peers, some of the optional parameters, and a mesh group, follow these steps for each MSDP peer:

Step 1 Configure the MSDP peering relationship with other routers.

```
switch# configure terminal
switch(config)# ip msdp peer 192.168.1.10 connect-source ethernet 1/0 remote-as 8
```

Step 2 Configure the optional peer parameters.

```
switch# configure terminal
switch(config)# ip msdp password 192.168.1.10 my_peer_password_AB
```

Step 3 Configure the optional global parameters.

```
switch# configure terminal
switch(config)# ip msdp sa-interval 80
```

Step 4 Configure the peers in each mesh group.

```
switch# configure terminal
switch(config)# ip msdp mesh-group 192.168.1.10 mesh_group_1
```

This example shows how to configure a subset of the MSDP peering that is shown in Figure 5-1.

- **RP 3: 192.168.3.10 (AS 7)**

  ```
  configure terminal
  ip msdp peer 192.168.1.10 connect-source ethernet 1/1
  ip msdp peer 192.168.2.10 connect-source ethernet 1/2
  ip msdp peer 192.168.6.10 connect-source ethernet 1/3 remote-as 9
  ip msdp password 192.168.6.10 my_peer_password_36
  ip msdp sa-interval 80
  ip msdp mesh-group 192.168.1.10 mesh_group_123
  ip msdp mesh-group 192.168.2.10 mesh_group_123
  ip msdp mesh-group 192.168.3.10 mesh_group_123
  ```

- **RP 5: 192.168.5.10 (AS 8)**

  ```
  configure terminal
  ip msdp peer 192.168.4.10 connect-source ethernet 1/1
  ip msdp peer 192.168.6.10 connect-source ethernet 1/2 remote-as 9
  ip msdp password 192.168.6.10 my_peer_password_56
  ip msdp sa-interval 80
  ```

- **RP 6: 192.168.6.10 (AS 9)**

  ```
  configure terminal
  ip msdp peer 192.168.7.10 connect-source ethernet 1/1
  ip msdp peer 192.168.3.10 connect-source ethernet 1/2 remote-as 7
  ip msdp peer 192.168.5.10 connect-source ethernet 1/3 remote-as 8
  ip msdp password 192.168.3.10 my_peer_password_36
  ip msdp password 192.168.5.10 my_peer_password_56
  ip msdp sa-interval 80
  ```
Additional References

For additional information related to implementing MSDP, see the following sections:

- Related Documents, page 5-92
- Standards, page 5-92
- Appendix A, “IETF RFCs for IP Multicast”

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLI commands</td>
<td>Cisco Nexus 5000 Series Command Reference, Cisco NX-OS Releases 4.x, 5.x</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>
IETF RFCs for IP Multicast

This appendix contains Internet Engineering Task Force (IETF) RFCs related to IP multicast. For information about IETF RFCs, see http://www.ietf.org/rfc.html.

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 2236</td>
<td>Internet Group Management Protocol, Version 2</td>
</tr>
<tr>
<td>RFC 2365</td>
<td>Administratively Scoped IP Multicast</td>
</tr>
<tr>
<td>RFC 2858</td>
<td>Multiprotocol Extensions for BGP-4</td>
</tr>
<tr>
<td>RFC 3376</td>
<td>Internet Group Management Protocol, Version 3</td>
</tr>
<tr>
<td>RFC 3446</td>
<td>Anycast Rendezvous Point (RP) mechanism using Protocol Independent Multicast (PIM) and Multicast Source Discovery Protocol (MSDP)</td>
</tr>
<tr>
<td>RFC 3569</td>
<td>An Overview of Source-Specific Multicast (SSM)</td>
</tr>
<tr>
<td>RFC 3618</td>
<td>Multicast Source Discovery Protocol (MSDP)</td>
</tr>
<tr>
<td>RFC 4541</td>
<td>Considerations for Internet Group Management Protocol (IGMP) Snooping Switches</td>
</tr>
<tr>
<td>RFC 4610</td>
<td>Anycast-RP Using Protocol Independent Multicast (PIM)</td>
</tr>
<tr>
<td>RFC 5059</td>
<td>Bootstrap Router (BSR) Mechanism for Protocol Independent Multicast (PIM)</td>
</tr>
<tr>
<td>RFC 5132</td>
<td>IP Multicast MIB</td>
</tr>
</tbody>
</table>
Symbols

(*, G)
- description 14
- state creation 130
- static groups 118
- static groups on the OIF 118

(S, G)
- description 13
- IGMPv3 snooping 167
- state creation 130
- static groups 118
- static groups on the OIF 118

A

Anycast-RP
- configuring an Anycast-RP set 149
- description 132
- MSDP (Note) 178

Any Source Multicast. See ASM mode

ASM mode
- configuring shared trees only 150
- description 128
- join-prune messages 129

autonomous systems
- MSDP 178

Auto-RP
- candidate RP configuration steps 147
- candidate RPs, configuring 147
- configuring 146
- description 132
- mapping agent configuration steps 147
- mapping agents
 - configuring 146
 - configuring route maps 154
 - RP-Announce messages 132
 - RP-Discovery messages 132

B

BFD
- PIM 134

BGP
- autonomous systems
 - MSDP 178
 - MSDP 178

bootstrap router. See BSRs

BSRs
- candidate BSR configuration steps 145
- candidate BSRs
 - configuring 144
 - description 130
- candidate RP configuration steps 145
- candidate-RP messages
 - description 131
- candidate RPs, configuring 144
 - configuring 144
 - description 130
 - messages
 - description 131
 - enabling listen and forward 131
- route maps, configuring 154
- RP configuration steps 145
designated routers. See DRs

documentation

related documents iv

DRs

description 133
PIM domains 16
priority and PIM hello message 129
SSM mode 152

ECMP 128
equal-cost multipathing 128

IGMP

all-hosts multicast group 114
collection, example 126
description 113
enabling 113
IGMPv3

changes from IGMPv2 114
description 115
SSM 115
licensing requirements 116
parameters

configuring 117
default settings 116
PIM domains 16
queriers

description 114
designated 114
TTL 115
version, default (IGMPv2) 114
versions, description 113
IGMP commands

iip igmp enforce-router-alert 125
ip igmp access-group 122
ip igmp flush-routes 125
ip igmp group-timeout 122
ip igmp immediate-leave 122
ip igmp join-group 121
ip igmp last-member-query-count 122
ip igmp last-member-query-response-time 122
ip igmp querier-timeout 121
ip igmp query-interval 122
ip igmp query-max-response-time 122
ip igmp query-timeout 121
ip igmp report-link-local-groups 122
ip igmp report-policy 122
ip igmp robustness-variable 121
ip igmp ssm-translate 124
ip igmp startup-query-count 121
ip igmp startup-query-interval 121
ip igmp static-oif 121
ip igmp version 120

IGMP configuration

access groups 119
example 126
group membership timeout 114, 119
immediate leave 119
last member query count 119
last member query response interval 119
member query response interval 115
number of query messages 115
parameters 117
parameters, default settings 116
querier timeout 118
query interval 119
query maximum response time 115
query max response time 118
report link local multicast groups 119
report policy 119
reports for link local addresses 116
robustness value 116, 118
startup query count 118
startup query interval 118
static multicast groups 118
Static multicast groups on OIF 118
version 118

IGMP membership reports
IGMPv3 suppression 115
initiating receipt of multicast data 114
SSM translation 123
suppressing 115

IGMP queriers
description 114
designated 114
TTL 115

IGMP show commands
show ip igmp groups 125
show ip igmp interface 125
show ip igmp local-groups 125
show ip igmp route 125
show running-configuration igmp 125
show startup-configuration igmp 125

IGMP snooping
configuration, example 174
description 165
licensing requirements 168
membership report suppression 166
parameters, configuring 170
parameters, default settings 169
prerequisites 169
proprietary features 166
querier, description 167
statistics 173
switch example 165
vPC 168
vPC statistics 173

IGMP snooping commands
ip igmp snooping 171, 172
ip igmp snooping explicit-tracking 172
ip igmp snooping fast-leave 172
ip igmp snooping last-member-query-interval 172
ip igmp snooping link-local-groups-suppression 173
ip igmp snooping mrouter interface 172
ip igmp snooping querier 172
ip igmp snooping report-suppression 172
ip igmp snooping static-group 172
ip igmp snooping v3-report-suppression 173

IGMP snooping configuration
enabling 170
example 174
explicit tracking 170
fast leave 170
IGMPv3 report suppression 171
last member query interval 170
Link-local groups suppression 171
multicast routers 171
parameters
configuring 170
default settings 169
report suppression 170
snooping querier 170
static groups 171

IGMP snooping show commands
show ip igmp snooping 173
show ip igmp snooping explicit-tracking 173
show ip igmp snooping groups 173
show ip igmp snooping mroute 173
show ip igmp snooping querier 173

IGMPv3
changes from IGMPv2 114
description 115
SSM 115

interdomain multicast protocols
MSDP 18
SSM 18

Internet Group Management Protocol. See IGMP
licensing requirements, multicast 110

M

mapping agents. See Auto-RP

MFIB
description 19

MRIB and M6RIB
description 19

MSDP

Anycast-RP (Note) 178
collection, example 191
description 177
full mesh, description 178
interdomain multicast protocol 18
licensing requirements 179
mesh groups, description 179
parameters, default settings 180
peering, steps to configure 180
peer-RPF flooding, description 179
peers, description 177
PIM domains 16, 177
prerequisites 180
SA cache, description 179
SA messages, and PIM register messages 179
SA messages, description 177, 178
statistics
 clearing 190
displaying 190

MSDP commands

 feature msdp 182
 ip msdp description 185
 ip msdp flush-routes 189
 ip msdp group-limit 187
 ip msdp mesh-group 188
 ip msdp originator-id 187
 ip msdp password 185
 ip msdp peer 183
 ip msdp sa-interval 187
 ip msdp sa-limit 185
 ip msdp sa-policy 185
 ip msdp shutdown 185

MSDP configuration

administrative shutdown 184
commands, cached (Note) 181
description field 184
enabling 181
eexample 191
group limit 186
MD5 password 184
mesh groups 187
originator interface name 186
parameters, default settings 180
peering, steps to configure 180
peers and peering relationship 182
restarting the MSDP process 188
SA messages
 interval 186
 limit 184
 policy IN 184
 policy OUT 184

MSDP show commands

 show ip msdp 190
 show ip msdp count 189
 show ip msdp mesh-group 189
 show ip msdp peer 189
 show ip msdp policy statistics sa-policy 190
 show ip msdp route 190
 show ip msdp rpf 189
 show ip msdp sa-cache 190
 show ip msdp sources 189
 show ip msdp summary 189

MSDP statistics commands

 clear ip msdp peer 190
 clear ip msdp policy statistics sa-policy 190
clear ip msdp route 190
clear ip msdp sa-cache 190
clear ip msdp statistics 190

multicast
 administratively scoped IP, description 134
 channel 11
 description 11
 distribution modes
 ASM 128
 SSM 128
 forwarding 14
 group 11
 interdomain protocols
 MSDP 18
 SSM 18
 IPv4 addresses 11
 licensing requirements 110
 protocols
 IGMP 113
 IGMP snooping 165
 MSDP 177
 PIM 15
 restarting processes
 MSDP 188
 troubleshooting 11
 tunnel interfaces 11
 multicast distribution trees
 description 12
 PIM 15
 shared 13, 127
 source 12, 127
 SPTs, description 12

Multicast Forwarding Information Base. See MFIB
Multicast Routing Information Base. See MRIB

multicast routing table (MRT)
 limit 151

Multicast Source Discovery Protocol. See MSDP

N
new and changed features (table) 1ix

O
OIF
 RPF check 14
 outgoing interface. See OIF

P
PIM
 BFD 134
 bind VRF 158
 configuration steps 137
 configuring, description 136
 dense mode 15
 description 15, 127
 enabling 128
 failure detection 129
 guidelines and limitations 135
 licensing requirements 135
 message filtering 156
 parameters, default settings 135
 refreshing state 130
 sparse mode 15, 127
 troubleshooting 11
 vPC 134

PIM commands
 feature pim 138
 ip mroute 154
 ip pim anycast-rp 150
 ip pim auto-rp listen 140
 ip pim auto-rp mapping-agent 148
 ip pim auto-rp mapping-agent-policy 158
Index

ip pim auto-rp rp-candidate 148
ip pim auto-rp rp-candidate-policy 158
ip pim border 142
ip pim bsr bsr-policy 157
ip pim bsr-candidate 146
ip pim bsr listen 140
ip pim bsr rp-candidate-policy 157
ip pim dr-priority 141
ip pim hello-authentication ah-md5 142
ip pim hello-interval 142
ip pim jp-policy 158
ip pim log-neighbor-changes 157
ip pim neighbor-policy 142
ip pim register-policy 157
ip pim register-rate-limit 141
ip pim rp-address 143
ip pim rp-candidate 146
ip pim send-rp-announce 148
ip pim send-rp-discovery 148
ip pim sparse-mode 141
ip pim ssm range 153
ip pim use-shared-tree-only 151
ip pim hello-interval 139
Initial holddown period 138
join-prune policy 156
logging neighbor changes 156
neighbor policy 139
parameters, default settings 135
PIM register policy 156
Register rate limit 138
sparse mode, enabling 139
sparse mode parameters 138
steps to configure 137

PIM domains
border parameter 134
description PIM 15
MSDP (PIM) 177

PIM messages
Anycast-RP 133
authenticating hello with MD5 hash value 129
DR priority 129
filtering join-prune 129
hello, description 128
join and state creation 130
join-prune, description 129
join-prune and join or prune (Note) 129
MSDP SA messages 179
register
description 133
filtering 133
MSDP 177

PIM show commands
show ip mroute 160
show ip pim df 160
show ip pim group-range 160
show ip pim interface 160
show ip pim neighbor 160
show ip pim oif-list 160
show ip pim policy statistics 161
show ip pim route 160

PIM configuration
Auto-RP candidate RP policy (PIM only) 156
Auto-RP mapping agent policy (PIM only) 156
Auto-RP message action (PIM only) 138
BSR candidate RP policy 156
BSR message action 138
BSR policy 156
description 136
designated router priority 139
domain border 139
designated router priority 139
examples
ASM mode using BSR 162
ASM mode using PIM Anycast-RP 163
SSM mode 161
feature, enabling 137
hello authentication mode 139
show ip pim rp 160
show ip pim rp-hash 160
show ip pim statistics 161
show ip pim vrf 160
show running-configuration pim 160
show startup-configuration pim 160

PIM statistics commands
 clear ip pim interface statistics 161
 clear ip pim policy statistics 161
 clear ip pim statistics 161

Protocol Independent Multicast. See PIM 15

rendezvous points. See RPs
restarting multicast processes
 MSDP 188
reverse path forwarding. See RPF
route maps
 Auto-RP mapping agent configuration 154
 BSR configuration 154
 RP configuration 154
RP-Announce messages, and Auto-RP 132
RP-Discovery messages, and Auto-RP 132
RPF
 check 14
 configuring routes 153
 static multicast 17

RPs
 address selection 131
 Anycast-RP, description 133
 Auto-RP, description 132
 BSRs, description 130
 default mode (ASM) 17
 description 130
 MSDP 177
 PIM domains 16
 route maps, configuring 154
 selection process 131

static, description 130
static addresses, configuring 143
RP trees. See multicast distribution trees, shared
RPTs. See multicast distribution trees, shared

S

shortest path trees. See SPTs
SPT
 prebuild 129
SPTs
 description 12
 SSM mode 129
SSM mapping. See SSM translation
SSM mode
 configuring 152
 description 17, 128
 DRs 152
 group range, configuring 152
 IGMPv3 115
 interdomain multicast protocol 18
 join-prune messages 129
SSM translation
 description 123
 IGMPv1 and IGMPv2 115

T

troubleshooting 11, 129, 165
tunnel interfaces 11

V

virtual port channels. See vPCs.
vPCs 129
 and multicast 110
 displaying statistics 173
 IGMP snooping configuration guidelines 169