CONTENTS

PREFACE

Preface xv
 Preface xv
 Audience xv
 Document Conventions xv
 Related Documentation xvi
 Documentation Feedback xvii
 Communications, Services, and Additional Information xvii

CHAPTER 1

New and Changed Information 1
 New and Changed Information 1

CHAPTER 2

Overview 3
 Layer 2 Ethernet Switching Overview 3
 VLANs 3
 Private VLANs 4
 Spanning Tree 4
 STP Overview 4
 Rapid PVST+ 5
 MST 5
 STP Extensions 5

CHAPTER 3

Configuring Ethernet Interfaces 7
 Information About Ethernet Interfaces 7
 Interface Command 7
 Information About Unified Ports 8
 Guidelines and Limitations for Unified Ports 9
Unidirectional Link Detection Parameter 9
 Default UDLD Configuration 10
 UDLD Aggressive and Nonaggressive Modes 10
Interface Speed 11
Cisco Discovery Protocol 11
 Default CDP Configuration 11
Error-Disabled State 11
About Port Profiles 12
 Guidelines and Limitations for Port Profiles 13
Debounce Timer Parameters 13
MTU Configuration 14
Information About Default Interfaces 14
Default Physical Ethernet Settings 14
Information About Access and Trunk Interfaces 15
 Understanding Access and Trunk Interfaces 15
 Understanding IEEE 802.1Q Encapsulation 16
 Understanding Access VLANs 17
 Understanding the Native VLAN ID for Trunk Ports 17
 Understanding Allowed VLANs 17
 Understanding Native 802.1Q VLANs 18
Configuring Access and Trunk Interfaces 18
 Configuring a LAN Interface as an Ethernet Access Port 18
 Configuring Access Host Ports 19
 Configuring Trunk Ports 20
 Configuring the Native VLAN for 802.1Q Trunking Ports 21
 Configuring the Allowed VLANs for Trunking Ports 21
 Configuring Native 802.1Q VLANs 22
Verifying the Interface Configuration 23
Configuring Ethernet Interfaces 23
 Configuring a Layer 3 Interface on a Cisco Nexus Device 23
 Configuring Unified Ports 24
 Configuring the UDLD Mode 26
 Configuring Interface Speed 28
 Disabling Link Negotiation 28
Configuring the CDP Characteristics 29
Enabling or Disabling CDP 30
Enabling the Error-Disabled Detection 31
Enabling the Error-Disabled Recovery 32
Configuring the Error-Disabled Recovery Interval 32
Port Profiles 33
 Creating a Port Profile 33
 Modifying a Port Profile 34
 Enabling a Specific Port Profile 35
 Inheriting a Port Profile 36
 Removing an Inherited Port Profile 37
 Assigning a Port Profile to a Range of Interfaces 38
 Removing a Port Profile from a Range of Interfaces 39
 Configuration Examples for Port Profiles 40
Configuring the Debounce Timer 41
Configuring the Description Parameter 42
Disabling and Restarting Ethernet Interfaces 42
Configuring Slow Drain Device Detection and Congestion Avoidance 43
 Fibre Channel Slow Drain Device Detection and Congestion Avoidance- An Overview 43
 Configuring a Stuck Frame Timeout Value 44
 Configuring a No-Credit Timeout Value 44
 Displaying Credit Loss Counters 45
 Displaying Credit Loss Events 45
 Displaying Timeout Drops 46
 Displaying the Average Credit Not Available Status 46
Port Monitoring 46
 Enabling Port Monitor 47
 Configuring a Port Monitor Policy 47
 Activating a Port Monitor Policy 48
 Displaying Port Monitor Policies 48
FCoE Slow Drain Device Detection and Congestion Avoidance 48
 Configuring a Pause Frame Timeout Value 50
Displaying Interface Information 51
MST Configuration Guidelines 127
Enabling MST 127
Entering MST Configuration Mode 128
Specifying the MST Name 129
Specifying the MST Configuration Revision Number 129
Specifying the Configuration on an MST Region 130
Mapping and Unmapping VLANs to MST Instances 132
Mapping Secondary VLANs to Same MSTI as Primary VLANs for Private VLANs 133
Configuring the Root Bridge 133
Configuring a Secondary Root Bridge 134
Configuring the Port Priority 135
Configuring the Port Cost 136
Configuring the Switch Priority 137
Configuring the Hello Time 138
Configuring the Forwarding-Delay Time 139
Configuring the Maximum-Aging Time 139
Configuring the Maximum-Hop Count 140
Configuring PVST Simulation Globally 140
Configuring PVST Simulation Per Port 141
Specifying the Link Type 142
Restarting the Protocol 143
Verifying the MST Configuration 143

CHAPTER 8 Configuring STP Extensions 145
Overview 145
Information About STP Extensions 145
Understanding STP Port Types 145
Understanding Bridge Assurance 146
Understanding BPDU Guard 146
Understanding BPDU Filtering 147
Understanding Loop Guard 148
Understanding Root Guard 148
Configuring STP Extensions 149
STP Extensions Configuration Guidelines 149
CHAPTER 16

Configuring VM-FEX 237

Information About VM-FEX 237

VM-FEX Overview 237

VM-FEX Components 237

VM-FEX Terminology 238

Licensing Requirements for VM-FEX 239

Default Settings for VM-FEX 239

Configuring VM-FEX 240

Overview of the VM-FEX Configuration Steps 240

Enabling Features Required for VM-FEX 241

Configuring the Fixed Static Interfaces 242

Configuring a Port Profile for the Dynamic Interfaces 244

Configuring an SVS Connection to the vCenter Server 245

Activating an SVS Connection to the vCenter Server 247

Verifying the VM-FEX Configuration 248

Verifying the Status of the Virtual Interfaces 248

Verifying the Connection to the vCenter Server 250

CHAPTER 17

Configuring MAC/ARP Hardware Resource Carving Template 253
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Information About MAC/ARP Hardware Resource Carving Template</td>
<td>253</td>
</tr>
<tr>
<td></td>
<td>Configuring the MAC/ARP Hardware Resource Template</td>
<td>254</td>
</tr>
<tr>
<td></td>
<td>Applying the Default Template</td>
<td>255</td>
</tr>
<tr>
<td></td>
<td>Verifying the MAC/ARP Hardware Resource Carving Template Configuration</td>
<td>255</td>
</tr>
<tr>
<td></td>
<td>Configuring VN-Segment</td>
<td>257</td>
</tr>
<tr>
<td>CHAPTER 18</td>
<td>Information About VN-Segment</td>
<td>257</td>
</tr>
<tr>
<td></td>
<td>Guidelines and Limitations for VN-Segment</td>
<td>259</td>
</tr>
<tr>
<td></td>
<td>Enabling VN-Segment</td>
<td>259</td>
</tr>
<tr>
<td></td>
<td>Configuring VN-Segment for a VLAN</td>
<td>260</td>
</tr>
<tr>
<td></td>
<td>Configuring VN-Segment for VLAN in Configure Sync</td>
<td>260</td>
</tr>
<tr>
<td></td>
<td>Configuring VN-Segment in Transit Mode</td>
<td>261</td>
</tr>
<tr>
<td></td>
<td>Configuring VN-Segment in Non-Transit Mode</td>
<td>262</td>
</tr>
<tr>
<td></td>
<td>Disabling VN-Segment</td>
<td>262</td>
</tr>
<tr>
<td></td>
<td>Verifying VN-Segment Configuration</td>
<td>263</td>
</tr>
<tr>
<td></td>
<td>Configuring VXLAN</td>
<td>265</td>
</tr>
<tr>
<td>CHAPTER 19</td>
<td>Information About VXLAN</td>
<td>265</td>
</tr>
<tr>
<td></td>
<td>Cisco Nexus Device Overlays</td>
<td>268</td>
</tr>
<tr>
<td></td>
<td>VXLAN Tunnel Endpoint</td>
<td>269</td>
</tr>
<tr>
<td></td>
<td>VXLAN Tunnel Endpoint Peers</td>
<td>270</td>
</tr>
<tr>
<td></td>
<td>vPC Considerations</td>
<td>271</td>
</tr>
<tr>
<td></td>
<td>QoS/ACL Support</td>
<td>271</td>
</tr>
<tr>
<td></td>
<td>TTL Handling</td>
<td>272</td>
</tr>
<tr>
<td></td>
<td>Multipathing Support</td>
<td>272</td>
</tr>
<tr>
<td></td>
<td>MTU</td>
<td>272</td>
</tr>
<tr>
<td></td>
<td>Guidelines and Limitations for VXLAN</td>
<td>272</td>
</tr>
<tr>
<td></td>
<td>Enabling VXLAN</td>
<td>275</td>
</tr>
<tr>
<td></td>
<td>Configuring a VNI</td>
<td>276</td>
</tr>
<tr>
<td></td>
<td>Configuring a Network Virtualization Endpoint Interface</td>
<td>277</td>
</tr>
<tr>
<td></td>
<td>Configuring a Switch in the Store-and-Forward Mode</td>
<td>277</td>
</tr>
<tr>
<td></td>
<td>Disabling VXLAN</td>
<td>278</td>
</tr>
<tr>
<td></td>
<td>Verifying VXLAN Configuration</td>
<td>278</td>
</tr>
<tr>
<td></td>
<td>Example of VXLAN Bridging Configuration</td>
<td>279</td>
</tr>
</tbody>
</table>
Preface

The preface contains the following sections:

- Preface, on page xv

Preface

This preface describes the audience, organization, and conventions of the Book Title. It also provides information on how to obtain related documentation.

This chapter includes the following topics:

Audience

This publication is for experienced network administrators who configure and maintain Cisco NX-OS on Cisco Nexus 5000 Series Platform switches.

Document Conventions

Note

- As part of our constant endeavor to remodel our documents to meet our customers' requirements, we have modified the manner in which we document configuration tasks. As a result of this, you may find a deviation in the style used to describe these tasks, with the newly included sections of the document following the new format.

- The Guidelines and Limitations section contains general guidelines and limitations that are applicable to all the features, and the feature-specific guidelines and limitations that are applicable only to the corresponding feature.

Command descriptions use the following conventions:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bold</td>
<td>Bold text indicates the commands and keywords that you enter literally as shown.</td>
</tr>
<tr>
<td>Italic</td>
<td>Italic text indicates arguments for which the user supplies the values.</td>
</tr>
<tr>
<td>Convention</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>[x]</td>
<td>Square brackets enclose an optional element (keyword or argument).</td>
</tr>
<tr>
<td>[x</td>
<td>y]</td>
</tr>
<tr>
<td>{x</td>
<td>y}</td>
</tr>
<tr>
<td>[x {y</td>
<td>z}]</td>
</tr>
</tbody>
</table>

variable
Indicates a variable for which you supply values, in context where italics cannot be used.

string
A nonquoted set of characters. Do not use quotation marks around the string or the string will include the quotation marks.

Examples use the following conventions:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>screen font</td>
<td>Terminal sessions and information the switch displays are in screen font.</td>
</tr>
<tr>
<td>boldface screen font</td>
<td>Information you must enter is in boldface screen font.</td>
</tr>
<tr>
<td>italic screen font</td>
<td>Arguments for which you supply values are in italic screen font.</td>
</tr>
<tr>
<td><></td>
<td>Nonprinting characters, such as passwords, are in angle brackets.</td>
</tr>
<tr>
<td>[]</td>
<td>Default responses to system prompts are in square brackets.</td>
</tr>
<tr>
<td>!, #</td>
<td>An exclamation point (!) or a pound sign (#) at the beginning of a line of code indicates a comment line.</td>
</tr>
</tbody>
</table>

This document uses the following conventions:

Note
Means reader take note. Notes contain helpful suggestions or references to material not covered in the manual.

Caution
Means reader be careful. In this situation, you might do something that could result in equipment damage or loss of data.

Related Documentation

Documentation for Cisco Nexus 5000 Series Switches is available at:

- Configuration Guides

• Command Reference Guides

• Release Notes

• Install and Upgrade Guides

• Licensing Guide

Documentation for Cisco Nexus 5000 Series Switches and Cisco Nexus 2000 Series Fabric Extenders is available at:

Documentation Feedback

Communications, Services, and Additional Information

• To receive timely, relevant information from Cisco, sign up at Cisco Profile Manager.
• To get the business impact you’re looking for with the technologies that matter, visit Cisco Services.
• To submit a service request, visit Cisco Support.
• To discover and browse secure, validated enterprise-class apps, products, solutions and services, visit Cisco Marketplace.
• To obtain general networking, training, and certification titles, visit Cisco Press.
• To find warranty information for a specific product or product family, access Cisco Warranty Finder.

Cisco Bug Search Tool
Cisco Bug Search Tool (BST) is a web-based tool that acts as a gateway to the Cisco bug tracking system that maintains a comprehensive list of defects and vulnerabilities in Cisco products and software. BST provides you with detailed defect information about your products and software.
New and Changed Information

This chapter contains the following sections:

• New and Changed Information, on page 1

New and Changed Information

The following table provides an overview of the significant changes made to this configuration guide. The table does not provide an exhaustive list of all changes made to this guide or all new features in a particular release.

<table>
<thead>
<tr>
<th>Cisco NX-OS Release Number</th>
<th>Platform Supported</th>
<th>New/Enhanced Features</th>
<th>Chapter/Topic Where Documented</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1(0)N1(1)</td>
<td>Cisco Nexus 5500, 5600, and 6000 Series Switches</td>
<td>VLAN Translation</td>
<td>Configuring VLANs</td>
</tr>
<tr>
<td>7.3(0)N1(1)</td>
<td>Cisco Nexus 5500, 5600, and 6000 Series Switches</td>
<td>VLAN Long Name support</td>
<td>Configuring VLANs</td>
</tr>
<tr>
<td>7.3(2)N1(1)</td>
<td>Cisco Nexus 5500, 5600, and 6000 Series Switches</td>
<td>Added the support to disable autonegotiation in Cisco Nexus 2248PQ 10GE Fabric Extender, Cisco Nexus 2232PP 10GE Fabric Extender, and Cisco Nexus 2348UPQ 10GE Fabric Extender with 1G-based SFP.</td>
<td>Ethernet Interfaces and Disabling Autonegotiation</td>
</tr>
<tr>
<td>7.3(2)N1(1)</td>
<td>Cisco Nexus 5500, 5600, and 6000 Series Switches</td>
<td>Added the support for speed 100 command in Cisco Nexus 2348UPQ 10GE Fabric Extender for ports with 1G Cu SFP GLC-T.</td>
<td>Ethernet Interfaces</td>
</tr>
<tr>
<td>Cisco NX-OS Release Number</td>
<td>Platform Supported</td>
<td>New/Enhanced Features</td>
<td>Chapter/Topic Where Documented</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--------------------</td>
<td>-----------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>7.3(2)N1(1)</td>
<td>Cisco Nexus 5500, 5600, and 6000 Series Switches</td>
<td>Added the support for <code>speed auto 100</code> command in Cisco Nexus 2248TP-E Fabric Extender.</td>
<td>Ethernet Interfaces</td>
</tr>
</tbody>
</table>
Overview

This chapter contains the following sections:

- Layer 2 Ethernet Switching Overview, on page 3
- VLANs, on page 3
- Private VLANs, on page 4
- Spanning Tree, on page 4

Layer 2 Ethernet Switching Overview

The device supports simultaneous, parallel connections between Layer 2 Ethernet segments. Switched connections between Ethernet segments last only for the duration of the packet. New connections can be made between different segments for the next packet.

The device assigns a domain (for example, a server) to each device to solve traffic congestion caused by high-bandwidth devices and large number of users.

Because collisions cause significant congestion in Ethernet networks, an effective solution is full-duplex communication. Typically, 10/100-Mbps Ethernet operates in half-duplex mode, which means that stations can either receive or transmit. In full-duplex mode, which is configurable on these interfaces, two stations can transmit and receive at the same time. When packets can flow in both directions simultaneously, the effective Ethernet bandwidth doubles. 1/10-Gigabit Ethernet operates in full-duplex only.

VLANs

A VLAN is a switched network that is logically segmented by function, project team, or application, without regard to the physical locations of the users. VLANs have the same attributes as physical LANs, but you can group end stations even if they are not physically located on the same LAN segment.

Any switch port can belong to a VLAN, and unicast, broadcast, and multicast packets are forwarded and flooded only to end stations in that VLAN. Each VLAN is considered as a logical network, and packets destined for stations that do not belong to the VLAN must be forwarded through a bridge or a router.

All ports are assigned to the default VLAN (VLAN1) when the device comes up.

The devices support 4094 VLANs in accordance with the IEEE 802.1Q standard. These VLANs are organized into several ranges, and you use each range slightly differently. Some of these VLANs are reserved for internal use by the device and are not available for configuration.
Private VLANs

Private VLANs provide traffic separation and security at the Layer 2 level.

A private VLAN is one or more pairs of a primary VLAN and a secondary VLAN, all with the same primary VLAN. The two types of secondary VLANs are isolated and community VLANs. Hosts on isolated VLANs communicate only with hosts in the primary VLAN. Hosts in a community VLAN can communicate only among themselves and with hosts in the primary VLAN but not with hosts in isolated VLANs or in other community VLANs.

Regardless of the combination of isolated and community secondary VLANs, all interfaces within the primary VLAN comprise one Layer 2 domain, and therefore, require only one IP subnet.

Spanning Tree

This section discusses the implementation of the Spanning Tree Protocol (STP). Spanning tree is used to refer to IEEE 802.1w and IEEE 802.1s. When the IEEE 802.1D Spanning Tree Protocol is referred to in the publication, 802.1D is stated specifically.

STP Overview

STP provides a loop-free network at the Layer 2 level. Layer 2 LAN ports send and receive STP frames, which are called Bridge Protocol Data Units (BPDUs), at regular intervals. Network devices do not forward these frames but use the frames to construct a loop-free path.

802.1D is the original standard for STP, and many improvements have enhanced the basic loop-free STP. You can create a separate loop-free path for each VLAN, which is named Per VLAN Spanning Tree (PVST+). Additionally, the entire standard was reworked to make the loop-free convergence process faster to keep up with the faster equipment. This STP standard with faster convergence is the 802.1w standard, which is known as Rapid Spanning Tree (RSTP).

Finally, the 802.1s standard, Multiple Spanning Trees (MST), allows you to map multiple VLANs into a single spanning tree instance. Each instance runs an independent spanning tree topology.

Although the software can interoperate with legacy 802.1D systems, the device runs Rapid PVST+ and MST. You can use either Rapid PVST+ or MST in a given VDC; you cannot mix both in one VDC. Rapid PVST+ is the default STP protocol.

Note

Cisco NX-OS uses the extended system ID and MAC address reduction; you cannot disable these features.

In addition, Cisco has created some proprietary features to enhance the spanning tree activities.
Rapid PVST+

Rapid PVST+ is the default spanning tree mode for the software and is enabled by default on the default VLAN and all newly created VLANs.

A single instance, or topology, of RSTP runs on each configured VLAN, and each Rapid PVST+ instance on a VLAN has a single root device. You can enable and disable STP on a per-VLAN basis when you are running Rapid PVST+.

MST

The software also supports MST. The multiple independent spanning tree topologies enabled by MST provide multiple forwarding paths for data traffic, enable load balancing, and reduce the number of STP instances required to support a large number of VLANs.

MST incorporates RSTP, so it also allows rapid convergence. MST improves the fault tolerance of the network because a failure in one instance (forwarding path) does not affect other instances (forwarding paths).

Note

Changing the spanning tree mode disrupts the traffic because all spanning tree instances are stopped for the previous mode and started for the new mode.

You can force specified interfaces to send prestandard, rather than standard, MST messages using the command-line interface.

STP Extensions

The software supports the following Cisco proprietary features:

- Spanning tree port types—The default spanning tree port type is normal. You can configure interfaces connected to Layer 2 hosts as edge ports and interfaces connected to Layer 2 switches or bridges as network ports.

- Bridge Assurance—Once you configure a port as a network port, Bridge Assurance sends BPDUs on all ports and moves a port into the blocking state if it no longer receives BPDUs. This enhancement is available only when you are running Rapid PVST+ or MST.

- BPDU Guard—BPDU Guard shuts down the port if that port receives a BPDU.

- BPDU Filter—BPDU Filter suppresses sending and receiving BPDUs on the port.

- Loop Guard—Loop guard prevents the occurrence of loop bridging because of unidirectional link failure in a point-to-point link.

- Root Guard—Root guard prevents a port from becoming a root port or a blocked port. If you configure a port with root guard then the port receives a superior BPDU and it immediately goes to root-inconsistent (blocked) state.
CHAPTER 3

Configuring Ethernet Interfaces

This chapter contains the following sections:

- Information About Ethernet Interfaces, on page 7
- Information About Default Interfaces, on page 14
- Default Physical Ethernet Settings, on page 14
- Information About Access and Trunk Interfaces, on page 15
- Configuring Access and Trunk Interfaces, on page 18
- Verifying the Interface Configuration, on page 23
- Configuring Ethernet Interfaces, on page 23
- Configuring Slow Drain Device Detection and Congestion Avoidance, on page 43
- FCoE Slow Drain Device Detection and Congestion Avoidance, on page 48
- Displaying Interface Information, on page 51

Information About Ethernet Interfaces

The Ethernet ports can operate as standard Ethernet interfaces connected to servers or to a LAN.

The Ethernet interfaces also support Fibre Channel over Ethernet (FCoE). FCoE allows the physical Ethernet link to carry both Ethernet and Fibre Channel traffic.

The Ethernet interfaces are enabled by default.

Interface Command

You can enable the various capabilities of the Ethernet interfaces on a per-interface basis using the `interface` command. When you enter the `interface` command, you specify the following information:

- Interface type—All physical Ethernet interfaces use the `ethernet` keyword.
- Slot number:
 - Slot 1 includes all the fixed ports.
 - Slot 2 includes the ports on the upper expansion module (if populated).
 - Slot 3 includes the ports on the lower expansion module (if populated).
 - Slot 4 includes the ports on the lower expansion module (if populated).
• Port number—Port number within the group.

The interface numbering convention is extended to support use with a Cisco Nexus Fabric Extender as follows:

```
switch(config)# interface ethernet [chassis/]slot/port
```

• The chassis ID is an optional entry that you can use to address the ports of a connected Fabric Extender. The chassis ID is configured on a physical Ethernet or EtherChannel interface on the switch to identify the Fabric Extender discovered through the interface. The chassis ID ranges from 100 to 199.

Note

After you perform an upgrade from Cisco NX-OS 6.0(2)A7(2) to Cisco NX-OS 6.0(2)A8(10) and later, you may see the display format of transceiver type for DACs changed to decimal format. However, there will be no change in the functionality of the device.

Information About Unified Ports

Cisco Nexus unified ports allow you to configure a physical port on a Cisco Nexus device switch as a 1/10-Gigabit Ethernet, Fibre Channel over Ethernet (FCoE), or 2-, 4-, 8-Gigabit native Fibre Channel port.

Currently, most networks have two types of switches for different types of networks. For example, LAN switches carry Ethernet traffic up to Catalyst or Nexus switches carry FC traffic from servers to MDS switches. With unified port technology, you can deploy a unified platform, unified device, and unified wire approach. Unified ports allow you to move from an existing segregated platform approach where you choose LAN and SAN port options to transition to a single, unified fabric that is transparent and consistent with existing practices and management software. A unified fabric includes the following:

• Unified platform—Uses the same hardware platform and the same software code level and certifies it once for your LAN and SAN environments.

• Unified device—Runs LAN and SAN services on the same platform switch. The unified device allows you to connect your Ethernet and Fibre Channel cables to the same device.

• Unified wire—Converges LAN and SAN networks on a single converged network adapter (CNA) and connects them to your server.

A unified fabric allows you to manage Ethernet and FCoE features independently with existing Cisco tools.
Guidelines and Limitations for Unified Ports

• All ports of same type (Fibre Channel or Ethernet) should be contiguous on the module.

• On a Cisco Nexus 5672UP switch, the Fibre Channel port range can be among 33-48, but must end at Port 48.

• On a Cisco Nexus 5672UP-16G switch, the Fibre Channel port range can be among 2/1-2/24 or 2/13-2/24.

• On a Cisco Nexus 56128P switch, only the expansion modules in slot 2 and 3 support native FC type. On each module, the Fibre Channel port range can be among 1-24, but must start from Port 1.

• On a Cisco Nexus 5696Q switch, only M20UP expansion modules support native FC type. All 20 ports can be configured as native Fibre Channel ports, but the port range must either start with 1 or end at 20.

Unidirectional Link Detection Parameter

The Cisco-proprietary Unidirectional Link Detection (UDLD) protocol allows ports that are connected through fiber optics or copper (for example, Category 5 cabling) Ethernet cables to monitor the physical configuration of the cables and detect when a unidirectional link exists. When the switch detects a unidirectional link, UDLD shuts down the affected LAN port and alerts the user. Unidirectional links can cause a variety of problems, including spanning tree topology loops.

UDLD is a Layer 2 protocol that works with the Layer 1 protocols to determine the physical status of a link. At Layer 1, autonegotiation takes care of physical signaling and fault detection. UDLD performs tasks that autonegotiation cannot perform, such as detecting the identities of neighbors and shutting down disconnected LAN ports. When you enable both autonegotiation and UDLD, Layer 1 and Layer 2 detections work together to prevent physical and logical unidirectional connections and the malfunctioning of other protocols.

A unidirectional link occurs whenever traffic transmitted by the local device over a link is received by the neighbor but traffic transmitted from the neighbor is not received by the local device. If one of the fiber strands in a pair is disconnected, and if autonegotiation is active, the link does not stay up. In this case, the logical link is undetermined, and UDLD does not take any action. If both fibers are working normally at Layer 1, then UDLD at Layer 2 determines whether those fibers are connected correctly and whether traffic is flowing bidirectionally between the correct neighbors. This check cannot be performed by autonegotiation, because autonegotiation operates at Layer 1.

A Cisco Nexus device periodically transmits UDLD frames to neighbor devices on LAN ports with UDLD enabled. If the frames are echoed back within a specific time frame and they lack a specific acknowledgment (echo), the link is flagged as unidirectional and the LAN port is shut down. Devices on both ends of the link must support UDLD in order for the protocol to successfully identify and disable unidirectional links.

The following figure shows an example of a unidirectional link condition. Device B successfully receives traffic from Device A on the port. However, Device A does not receive traffic from Device B on the same port. UDLD detects the problem and disables the port.
Default UDLD Configuration

The following table shows the default UDLD configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDLD global enable state</td>
<td>Globally disabled</td>
</tr>
<tr>
<td>UDLD aggressive mode</td>
<td>Disabled</td>
</tr>
<tr>
<td>UDLD per-port enable state for fiber-optic media</td>
<td>Enabled on all Ethernet fiber-optic LAN ports</td>
</tr>
<tr>
<td>UDLD per-port enable state for twisted-pair (copper) media</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

UDLD Aggressive and Nonaggressive Modes

UDLD aggressive mode is disabled by default. You can configure UDLD aggressive mode only on point-to-point links between network devices that support UDLD aggressive mode. If UDLD aggressive mode is enabled, when a port on a bidirectional link that has a UDLD neighbor relationship established stops receiving UDLD frames, UDLD tries to reestablish the connection with the neighbor. After eight failed retries, the port is disabled.

To prevent spanning tree loops, nonaggressive UDLD with the default interval of 15 seconds is fast enough to shut down a unidirectional link before a blocking port transitions to the forwarding state (with default spanning tree parameters).

When you enable the UDLD aggressive mode, the following occurs:

- One side of a link has a port stuck (both transmission and receive)
- One side of a link remains up while the other side of the link is down

In these cases, the UDLD aggressive mode disables one of the ports on the link, which prevents traffic from being discarded.
Interface Speed

Cisco Discovery Protocol

The Cisco Discovery Protocol (CDP) is a device discovery protocol that runs over Layer 2 (the data link layer) on all Cisco-manufactured devices (routers, bridges, access servers, and switches) and allows network management applications to discover Cisco devices that are neighbors of already known devices. With CDP, network management applications can learn the device type and the Simple Network Management Protocol (SNMP) agent address of neighboring devices that are running lower-layer, transparent protocols. This feature enables applications to send SNMP queries to neighboring devices.

CDP runs on all media that support Subnetwork Access Protocol (SNAP). Because CDP runs over the data-link layer only, two systems that support different network-layer protocols can learn about each other.

Each CDP-configured device sends periodic messages to a multicast address, advertising at least one address at which it can receive SNMP messages. The advertisements also contain time-to-live, or holdtime information, which is the length of time a receiving device holds CDP information before discarding it. Each device also listens to the messages sent by other devices to learn about neighboring devices.

The switch supports both CDP Version 1 and Version 2.

Default CDP Configuration

The following table shows the default CDP configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDP interface state</td>
<td>Enabled</td>
</tr>
<tr>
<td>CDP timer (packet update frequency)</td>
<td>60 seconds</td>
</tr>
<tr>
<td>CDP holdtime (before discarding)</td>
<td>180 seconds</td>
</tr>
<tr>
<td>CDP Version-2 advertisements</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

Error-Disabled State

An interface is in the error-disabled (err-disabled) state when the interface is enabled administratively (using the `no shutdown` command) but disabled at runtime by any process. For example, if UDLD detects a unidirectional link, the interface is shut down at runtime. However, because the interface is administratively enabled, the interface status displays as err-disabled. Once an interface goes into the err-disabled state, you must manually reenable it or you can configure an automatic timeout recovery value. The err-disabled detection is enabled by default for all causes. The automatic recovery is not configured by default.

When an interface is in the err-disabled state, use the `errdisable detect cause` command to find information about the error.

You can configure the automatic err-disabled recovery timeout for a particular err-disabled cause by changing the time variable.
The **errdisable recovery cause** command provides automatic recovery after 300 seconds. To change the recovery period, use the **errdisable recovery interval** command to specify the timeout period. You can specify 30 to 65535 seconds.

If you do not enable the err-disabled recovery for the cause, the interface stays in the err-disabled state until you enter the **shutdown** and **no shutdown** commands. If the recovery is enabled for a cause, the interface is brought out of the err-disabled state and allowed to retry operation once all the causes have timed out. Use the **show interface status err-disabled** command to display the reason behind the error.

About Port Profiles

You can create a port profile that contains many interface commands and apply that port profile to a range of interfaces on the Cisco Nexus device. Port profiles can be applied to the following interface types:

- Ethernet
- VLAN network interface
- Port channel

A command that is included in a port profile can be configured outside of the port profile. If the new configuration in the port profile conflicts with the configurations that exist outside the port profile, the commands configured for an interface in configuration terminal mode have higher priority than the commands in the port profile. If changes are made to the interface configuration after a port profile is attached to it, and the configuration conflicts with that in the port profile, the configurations in the interface will be given priority.

You inherit the port profile when you attach the port profile to an interface or range of interfaces. When you attach, or inherit, a port profile to an interface or range of interfaces, the switch applies all the commands in that port profile to the interfaces.

You can have one port profile inherit the settings from another port profile. Inheriting another port profile allows the initial port profile to assume all of the commands of the second, inherited, port profile that do not conflict with the initial port profile. Four levels of inheritance are supported. The same port profile can be inherited by any number of port profiles.

To apply the port profile configurations to the interfaces, you must enable the specific port profile. You can configure and inherit a port profile onto a range of interfaces prior to enabling the port profile; you then enable that port profile for the configurations to take effect on the specified interfaces.

When you remove a port profile from a range of interfaces, the switch undoes the configuration from the interfaces first and then removes the port profile link itself. When you remove a port profile, the switch checks the interface configuration and either skips the port profile commands that have been overridden by directly entered interface commands or returns the command to the default value.

If you want to delete a port profile that has been inherited by other port profiles, you must remove the inheritance before you can delete the port profile.

You can choose a subset of interfaces from which to remove a port profile from among that group of interfaces that you originally applied the profile. For example, if you configured a port profile and configured ten interfaces to inherit that port profile, you can remove the port profile from just some of the specified ten interfaces. The port profile continues to operate on the remaining interfaces to which it is applied.

If you delete a specific configuration for a specified range of interfaces using the interface configuration mode, that configuration is also deleted from the port profile for that range of interfaces only. For example, if you have a channel group inside a port profile and you are in the interface configuration mode and you delete that port channel, the specified port channel is also deleted from the port profile as well.
After you inherit a port profile on an interface or range of interfaces and you delete a specific configuration value, that port profile configuration will not operate on the specified interfaces.

If you attempt to apply a port profile to the wrong type of interface, the switch returns an error.

When you attempt to enable, inherit, or modify a port profile, the switch creates a checkpoint. If the port profile configuration fails, the switch rolls back to the prior configuration and returns an error. A port profile is never only partially applied.

Guidelines and Limitations for Port Profiles

Port profiles have the following configuration guidelines and limitations:

- Each port profile must have a unique name across interface types and the network.
- Commands that you enter under the interface mode take precedence over the port profile’s commands if there is a conflict. However, the port profile retains that command in the port profile.
- The port profile’s commands take precedence over the default commands on the interface, unless the default command explicitly overrides the port profile command.
- After you inherit a port profile onto an interface or range of interfaces, you can override individual configuration values by entering the new value at the interface configuration level. If you remove the individual configuration values at the interface configuration level, the interface uses the values in the port profile again.
- There are no default configurations associated with a port profile.
- A subset of commands are available under the port profile configuration mode, depending on which interface type that you specify.
- You cannot use port profiles with Session Manager.

Debounce Timer Parameters

Debounce time is the amount of time that an interface waits to notify the supervisor of a link-state change, which in turn decreases traffic loss due to network reconfiguration, or helps bring up link faster or both.

You can configure the debounce timer separately for each Ethernet port and for link up and link down event separately and specify the delay time in milliseconds.

For a link going down, the interface waits to see if the link comes back up within the debounce time. For a link coming up, the interface waits for debounce link-up time before declaring it as UP.

The wait period is a time when the traffic is stopped. By default, the debounce timer is set for 100 milliseconds.

⚠️ **Caution**

When you enable the port debounce timer the link up and link down detections are delayed, resulting in a loss of traffic during the debounce period. This situation might affect the convergence and reconvergence of some protocols.
MTU Configuration

The Cisco Nexus device switch does not fragment frames. As a result, the switch cannot have two ports in the same Layer 2 domain with different maximum transmission units (MTUs). A per-physical Ethernet interface MTU is not supported. Instead, the MTU is set according to the QoS classes. You modify the MTU by setting class and policy maps.

Note
When you show the interface settings, a default MTU of 1500 is displayed for physical Ethernet interfaces and a receive data field size of 2112 is displayed for Fibre Channel interfaces.

Information About Default Interfaces

You can use the default interface feature to clear the configured parameters for both physical and logical interfaces such as the Ethernet, loopback, VLAN network, and the port-channel interface.

The default interface feature allows you to clear the existing configuration of multiple interfaces such as Ethernet, loopback, VLAN network, and port-channel interfaces. All user configuration under a specified interface will be deleted. You can optionally create a checkpoint before clearing the interface configuration so that you can later restore the deleted configuration.

Note
The default interfaces feature is supported for management interfaces but is not recommended because the device might be in an unreachable state.

Default Physical Ethernet Settings

The following table lists the default settings for all physical Ethernet interfaces:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debounce</td>
<td>Enable, 100 milliseconds</td>
</tr>
<tr>
<td>Duplex</td>
<td>Auto (full-duplex)</td>
</tr>
<tr>
<td>Encapsulation</td>
<td>ARPA</td>
</tr>
<tr>
<td>MTU(^1)</td>
<td>1500 bytes</td>
</tr>
<tr>
<td>Port Mode</td>
<td>Access</td>
</tr>
<tr>
<td>Speed</td>
<td>Auto (10000)</td>
</tr>
</tbody>
</table>

\(^1\) MTU cannot be changed per-physical Ethernet interface. You modify MTU by selecting maps of QoS classes.
Information About Access and Trunk Interfaces

Understanding Access and Trunk Interfaces

Ethernet interfaces can be configured either as access ports or a trunk ports, as follows:

- An access port can have only one VLAN configured on the interface; it can carry traffic for only one VLAN.
- A trunk port can have two or more VLANs configured on the interface; it can carry traffic for several VLANs simultaneously.

Note

Cisco NX-OS supports only IEEE 802.1Q-type VLAN trunk encapsulation.

The following figure shows how you can use trunk ports in the network. The trunk port carries traffic for two or more VLANs.

Figure 2: Devices in a Trunking Environment

In order to correctly deliver the traffic on a trunk port with several VLANs, the device uses the IEEE 802.1Q encapsulation or tagging method.

To optimize the performance on access ports, you can configure the port as a host port. Once the port is configured as a host port, it is automatically set as an access port, and channel grouping is disabled. Use the host designation to decrease the time it takes the designated port to begin to forward packets.
Only an end station can be set as a host port; you will receive an error message if you attempt to configure other ports as hosts.

If an access port receives a packet with an 802.1Q tag in the header other than the access VLAN value, that port drops the packet without learning its MAC source address.

An Ethernet interface can function as either an access port or a trunk port; it cannot function as both port types simultaneously.

Understanding IEEE 802.1Q Encapsulation

A trunk is a point-to-point link between the device and another networking device. Trunks carry the traffic of multiple VLANs over a single link and allow you to extend VLANs across an entire network.

To correctly deliver the traffic on a trunk port with several VLANs, the device uses the IEEE 802.1Q encapsulation (tagging) method. This tag carries information about the specific VLAN to which the frame and packet belong. This method allows packets that are encapsulated for several different VLANs to traverse the same port and maintain traffic separation between the VLANs. The encapsulated VLAN tag also allows the trunk to move traffic end-to-end through the network on the same VLAN.

Figure 3: Header Without and With 802.1Q Tag Included

<table>
<thead>
<tr>
<th>Preamble (7 - bytes)</th>
<th>Start Frame Delimiter (1 - byte)</th>
<th>Dest. MAC Address (6 - bytes)</th>
<th>Source MAC Address (6 - bytes)</th>
<th>Length / Type (2 - bytes)</th>
<th>MAC Client Data (0 - n bytes)</th>
<th>Pad (0 - p bytes)</th>
<th>Frame Check Sequence (4 - bytes)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Preamble (7-bytes)</th>
<th>Start Frame Delimiter (1-byte)</th>
<th>Dest. MAC Address (6-bytes)</th>
<th>Source MAC Address (6-bytes)</th>
<th>Length-Type = 802.1Q Tag Type (2-byte)</th>
<th>Tag Control Information (2-bytes)</th>
<th>Length / Type (2-bytes)</th>
<th>MAC Client Data (0-n bytes)</th>
<th>Pad (0-p bytes)</th>
<th>Frame Check Sequence (4-bytes)</th>
</tr>
</thead>
</table>

3 bits = User Priority field
1 bit = Canonical Format Identifier (CFI)
12 bits – VLAN Identifier (VLAN ID)
Understanding Access VLANs

When you configure a port in access mode, you can specify which VLAN will carry the traffic for that interface. If you do not configure the VLAN for a port in access mode, or an access port, the interface carries traffic for the default VLAN (VLAN1).

You can change the access port membership in a VLAN by specifying the new VLAN. You must create the VLAN before you can assign it as an access VLAN for an access port. If you change the access VLAN on an access port to a VLAN that is not yet created, the system will shut that access port down.

Note

If you change the VLAN on an access port or a trunk port it will flap the interface. However, if the port is part of a vPC, then first change the native VLAN on the secondary vPC, and then to primary vPC.

If an access port receives a packet with an 802.1Q tag in the header other than the access VLAN value, that port drops the packet without learning its MAC source address.

Note

If you assign an access VLAN that is also a primary VLAN for a private VLAN, all access ports with that access VLAN will also receive all the broadcast traffic for the primary VLAN in the private VLAN mode.

Understanding the Native VLAN ID for Trunk Ports

A trunk port can carry untagged packets simultaneously with the 802.1Q tagged packets. When you assign a default port VLAN ID to the trunk port, all untagged traffic travels on the default port VLAN ID for the trunk port, and all untagged traffic is assumed to belong to this VLAN. This VLAN is referred to as the native VLAN ID for a trunk port. The native VLAN ID is the VLAN that carries untagged traffic on trunk ports.

The trunk port sends an egressing packet with a VLAN that is equal to the default port VLAN ID as untagged; all the other egressing packets are tagged by the trunk port. If you do not configure a native VLAN ID, the trunk port uses the default VLAN.

Note

Native VLAN ID numbers must match on both ends of the trunk.

Note

We recommend that you configure the native VLAN in the trunk allowed VLAN list.

Understanding Allowed VLANs

By default, a trunk port sends traffic to and receives traffic from all VLANs. All VLAN IDs are allowed on each trunk. However, you can remove VLANs from this inclusive list to prevent traffic from the specified VLANs from passing over the trunk. You can add any specific VLANs later that you may want the trunk to carry traffic for back to the list.
To partition the Spanning Tree Protocol (STP) topology for the default VLAN, you can remove VLAN1 from the list of allowed VLANs. Otherwise, VLAN1, which is enabled on all ports by default, will have a very big STP topology, which can result in problems during STP convergence. When you remove VLAN1, all data traffic for VLAN1 on this port is blocked, but the control traffic continues to move on the port.

Understanding Native 802.1Q VLANs

To provide additional security for traffic passing through an 802.1Q trunk port, the `vlan dot1q tag native` command was introduced. This feature provides a means to ensure that all packets going out of a 802.1Q trunk port are tagged and to prevent reception of untagged packets on the 802.1Q trunk port.

Without this feature, all tagged ingress frames received on a 802.1Q trunk port are accepted as long as they fall inside the allowed VLAN list and their tags are preserved. Untagged frames are tagged with the native VLAN ID of the trunk port before further processing. Only those egress frames whose VLAN tags are inside the allowed range for that 802.1Q trunk port are received. If the VLAN tag on a frame happens to match that of the native VLAN on the trunk port, the tag is stripped off and the frame is sent untagged.

This behavior could potentially be exploited to introduce "VLAN hopping" in which a hacker could try and have a frame jump to a different VLAN. It is also possible for traffic to become part of the native VLAN by sending untagged packets into an 802.1Q trunk port.

To address the above issues, the `vlan dot1q tag native` command performs the following functions:

- On the ingress side, all untagged data traffic is dropped.
- On the egress side, all traffic is tagged. If traffic belongs to native VLAN it is tagged with the native VLAN ID.

This feature is supported on all the directly connected Ethernet and Port Channel interfaces. It is also supported on all the host interface ports of any attached Fabric Extender (FEX).

Note

You can enable the `vlan dot1q tag native` command by entering the command in the global configuration mode.

Configuring Access and Trunk Interfaces

Configuring a LAN Interface as an Ethernet Access Port

You can configure an Ethernet interface as an access port. An access port transmits packets on only one, untagged VLAN. You specify which VLAN traffic that the interface carries. If you do not specify a VLAN for an access port, the interface carries traffic only on the default VLAN. The default VLAN is VLAN1.

The VLAN must exist before you can specify that VLAN as an access VLAN. The system shuts down an access port that is assigned to an access VLAN that does not exist.
Configuring Ethernet Interfaces

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config)# interface {type slot/port</td>
<td>port-channel number}</td>
</tr>
<tr>
<td>Step 3 switch(config-if)# switchport mode {access trunk}</td>
<td>Sets the interface as a nontrunking nontagged single-VLAN Ethernet interface. An access port can carry traffic in one VLAN only. By default, an access port carries traffic for VLAN 1; to set the access port to carry traffic for a different VLAN, use the switchport access vlan command.</td>
</tr>
<tr>
<td>Step 4 switch(config-if)# switchport access vlan vlan-id</td>
<td>Specifies the VLAN for which this access port will carry traffic. If you do not enter this command, the access port carries traffic on VLAN 1 only; use this command to change the VLAN for which the access port carries traffic.</td>
</tr>
</tbody>
</table>

Example

This example shows how to set an interface as an Ethernet access port that carries traffic for a specific VLAN only:

```text
switch# configure terminal
switch(config)# interface ethernet 1/10
switch(config-if)# switchport mode access
switch(config-if)# switchport access vlan 5
```

Configuring Access Host Ports

By using a switchport host, you can make an access port a spanning-tree edge port, and enable BPDU Filtering and BPDU Guard at the same time.

Before you begin

Ensure that you are configuring the correct interface; it must be an interface that is connected to an end station.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config)# interface type slot/port</td>
<td>Specifies an interface to configure, and enters interface configuration mode.</td>
</tr>
</tbody>
</table>
Configuring Trunk Ports

You can configure an Ethernet port as a trunk port; a trunk port transmits untagged packets for the native VLAN plus encapsulated, tagged, packets for multiple VLANs.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# interface {type slot/port</td>
<td>port-channel number}</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config-if)# switchport mode {access</td>
<td>trunk}</td>
</tr>
</tbody>
</table>

Example

This example shows how to set an interface as an Ethernet trunk port:

```
switch# configure terminal
switch(config)# interface ethernet 1/10
switch(config-if)# switchport mode trunk
```
Configuring the Native VLAN for 802.1Q Trunking Ports

If you do not configure this parameter, the trunk port uses the default VLAN as the native VLAN ID.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# interface {type slot/port</td>
</tr>
<tr>
<td></td>
<td>Specifies an interface to configure, and enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config-if)# switchport trunk native vlan vlan-id</td>
</tr>
<tr>
<td></td>
<td>Sets the native VLAN for the 802.1Q trunk. Valid values are from 1 to 4094, except those VLANs reserved for internal use. The default value is VLAN1.</td>
</tr>
</tbody>
</table>

Example

This example shows how to set the native VLAN for an Ethernet trunk port:

```
switch# configure terminal
switch(config)# interface ethernet 1/3
switch(config-if)# switchport trunk native vlan 5
```

Configuring the Allowed VLANs for Trunking Ports

You can specify the IDs for the VLANs that are allowed on the specific trunk port.

Before you configure the allowed VLANs for the specified trunk ports, ensure that you are configuring the correct interfaces and that the interfaces are trunks.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# interface {type slot/port</td>
</tr>
<tr>
<td></td>
<td>Specifies an interface to configure, and enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config-if)# switchport trunk allowed vlan [vlan-list all</td>
</tr>
<tr>
<td></td>
<td>Sets allowed VLANs for the trunk interface. The default is to allow all VLANs on the trunk interface: 1 to 3967 and 4048 to 4094. VLANs 3968 to 4047 are the default VLANs reserved for internal use.</td>
</tr>
</tbody>
</table>
Configuring Native 802.1Q VLANs

Typically, you configure 802.1Q trunks with a native VLAN ID, which strips tagging from all packets on that VLAN. This configuration allows all untagged traffic and control traffic to transit the Cisco Nexus device. Packets that enter the switch with 802.1Q tags that match the native VLAN ID value are similarly stripped of tagging.

To maintain the tagging on the native VLAN and drop untagged traffic, enter the `vlan dot1q tag native` command. The switch will tag the traffic received on the native VLAN and admit only 802.1Q-tagged frames, dropping any untagged traffic, including untagged traffic in the native VLAN.

Control traffic continues to be accepted untagged on the native VLAN on a trunked port, even when the `vlan dot1q tag native` command is enabled.

Note

The `vlan dot1q tag native` command is enabled on global basis.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config)# vlan dot1q tag native [tx-only]</td>
<td>Enables dot1q (IEEE 802.1Q) tagging for all native VLANs on all trunked ports on the Cisco Nexus device. By default, this feature is disabled.</td>
</tr>
</tbody>
</table>

Example

This example shows how to add VLANs to the list of allowed VLANs on an Ethernet trunk port:

```
switch# configure terminal
switch(config)# interface ethernet 1/3
switch(config-if)# switchport trunk allow vlan 15-20
```
Configuring Ethernet Interfaces

The section includes the following topics:

Configuring a Layer 3 Interface on a Cisco Nexus Device

On Cisco Nexus devices, you can configure a Layer 3 interface.

You can change a Layer 3 interface into a Layer 2 interface by using the `switchport` command. You can change a Layer 2 interface into a Layer 3 interface by using the `no switchport` command.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch# configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
</tbody>
</table>

Verifying the Interface Configuration

Use the following commands to display access and trunk interface configuration information.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch# show interface</td>
<td>Displays the interface configuration</td>
</tr>
<tr>
<td>switch# show interface switchport</td>
<td>Displays information for all Ethernet interfaces, including access and trunk interfaces.</td>
</tr>
<tr>
<td>switch# show interface brief</td>
<td>Displays interface configuration information.</td>
</tr>
</tbody>
</table>
Configuring Ethernet Interfaces

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>switch(config)# interface ethernet slot/port</td>
<td>Enters configuration mode for the specified interface. Note If this is a QSFP+ GEM or a breakout port, the port syntax is QSFP-module/port.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>switch(config-if)# no switchport</td>
<td>Selects the Layer 3 interface.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>switch(config-if)# no shutdown</td>
<td>Restarts the interface.</td>
</tr>
</tbody>
</table>

Example

This example shows how to configure a Layer 3 interface:

```
switch# configure terminal
switch(config)# interface ethernet 1/2
switch(config-if)# no switchport
switch(config-if)# no shutdown
```

Configuring Unified Ports

Before you begin

Confirm that you have a supported Cisco Nexus switch. Unified Ports are available on the following Cisco Nexus switches:

- Cisco Nexus 5672UP
- Cisco Nexus 5672UP-16G
- Cisco Nexus 56128P with N56-M24UP2Q LEMs
- Cisco Nexus 5696Q with N5696-M20UP LEMs

Note

For information about the N5672UP-16G platform details, see the *Cisco Nexus 5600 Series Hardware Installation Guide*.

If you're configuring a unified port as Fibre Channel or FCoE, confirm that you have enabled the **feature fcoe** command.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config) # slot slot number</td>
</tr>
</tbody>
</table>

Identifies the slot on the switch.
Configuring Unified Ports

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td>Configures a unified port as a native Fibre Channel port and an Ethernet port.</td>
</tr>
<tr>
<td>`switch(config-slot) # port port number type {ethernet</td>
<td>fc}`</td>
</tr>
<tr>
<td>Note</td>
<td>When configuring an FC port on N5672-16G, the fabric mode should be in the 40-G mode to support 16-G. When the ports are changed from Ethernet to FC, the fabric mode changes to 40-G on the next reload. When the ports are changed to FC for the first time, the following message is displayed: "Port type is changed. Fabric mode is also changed. Please copy configuration and reload the switch." Use <code>show fabric-mode</code> to verify the current fabric mode configuration. The FC ports can be configured only on Module 2 of Nexus 5672UP-16G. The FC port range must be in multiples of 12, either 1-24 or 13-24. Reload of the module is sufficient, when you increase or decrease the range of FC ports.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Copies the running configuration to the startup configuration.</td>
</tr>
<tr>
<td><code>switch(config-slot) # copy running-config startup-config</code></td>
<td></td>
</tr>
</tbody>
</table>

Cisco Nexus 5600 Series NX-OS Layer 2 Switching Configuration Guide, Release 7.x
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5 switch(config-slot) # reload</td>
<td>Reboots the switch.</td>
</tr>
<tr>
<td>Step 6 switch(config) # slot slot number</td>
<td>Identifies the slot on the switch.</td>
</tr>
<tr>
<td>Step 7 switch(config-slot) # no port port number type fc</td>
<td>Removes the unified port.</td>
</tr>
</tbody>
</table>

Note When all the FC ports are removed, the fabric mode changes to the 10-G mode. When all the ports are changed to Ethernet, the following message is displayed: "Port type is changed. Fabric mode is also changed. Please copy configuration and reload the switch."

Example

This example shows how to configure a unified port on a Cisco N5696-M20UP expansion module:

```
switch# configure terminal
switch(config)# slot 2
switch(config-slot)# port 1-20 type fc
switch(config-slot)# copy running-config startup-config
switch(config-slot)# poweroff module 2
switch(config-slot)# no poweroff module 2
```

This example shows how to convert ports 1-24 or 13-24 to FC ports in N5672UP-16G:

```
switch# configure terminal
switch(config)# slot 2
switch(config-slot)# port 1-24 type fc
```

```
Port type is changed. Fabric mode is also changed .. Please copy configuration and reload the switch
```

```
switch(config-slot)#
```

Or

```
switch# configure terminal
switch(config)# slot 2
switch(config-slot)# port 13-24 type fc
```

```
Port type is changed. Please power-off and no power-off the module
```

```
switch(config-slot)#
```

Configuring the UDLD Mode

You can configure normal or aggressive unidirectional link detection (UDLD) modes for Ethernet interfaces on devices configured to run UDLD. Before you can enable a UDLD mode for an interface, you must make sure that UDLD is already enabled on the device that includes the interface. UDLD must also be enabled on the other linked interface and its device.
To use the normal UDLD mode, you must configure one of the ports for normal mode and configure the other port for the normal or aggressive mode. To use the aggressive UDLD mode, you must configure both ports for the aggressive mode.

Note

Before you begin, UDLD must be enabled for the other linked port and its device.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# feature udld</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config)# no feature udld</td>
</tr>
<tr>
<td>Step 4</td>
<td>switch(config)# show udld global</td>
</tr>
<tr>
<td>Step 5</td>
<td>switch(config)# interface type slot/port</td>
</tr>
<tr>
<td>Step 6</td>
<td>**switch(config-if)# udld {enable</td>
</tr>
<tr>
<td>Step 7</td>
<td>switch(config-if)# show udld interface</td>
</tr>
</tbody>
</table>

Example

This example shows how to enable UDLD for the switch:

```bash
switch# configure terminal
switch(config)# feature udld
```

This example shows how to enable the normal UDLD mode for an Ethernet port:

```bash
switch# configure terminal
switch(config)# interface ethernet 1/4
switch(config-if)# udld enable
```

This example shows how to enable the aggressive UDLD mode for an Ethernet port:

```bash
switch# configure terminal
switch(config)# interface ethernet 1/4
switch(config-if)# udld aggressive
```

This example shows how to disable UDLD for an Ethernet port:

```bash
switch# configure terminal
switch(config)# interface ethernet 1/4
```
switch(config-if)# udld disable

This example shows how to disable UDLD for the switch:

switch# configure terminal
switch(config)# no feature udld

Configuring Interface Speed

Note
If the interface and transceiver speed is mismatched, the SFP validation failed message is displayed when you enter the `show interface ethernet slot/port` command. For example, if you insert a 1-Gigabit SFP transceiver into a port without configuring the speed 1000 command, you will get this error. By default, all ports are 10 Gigabits.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# interface type slot/port</td>
<td>Enters interface configuration mode for the specified interface. This interface must have a 1-Gigabit Ethernet SFP transceiver inserted into it.</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config-if)# speed speed</td>
<td>Sets the speed for a physical Ethernet interface.</td>
</tr>
</tbody>
</table>

Example
The following example shows how to set the speed for a 1-Gigabit Ethernet port:

switch# configure terminal
switch(config)# interface ethernet 1/4
switch(config-if)# speed 1000

Disabling Link Negotiation

You can disable link negotiation using the `no negotiate auto` command. By default, auto-negotiation is enabled on 1-Gigabit ports and disabled on 10-Gigabit ports and 40-Gigabit ports.

This command is equivalent to the Cisco IOS `speed non-negotiate` command.

Note
The auto-negotiation configuration is not applicable on 10-Gigabit or 40-Gigabit Ethernet ports. When auto-negotiation is configured on a 10-Gigabit port or 40-Gigabit port, the following error message is displayed:

ERROR: Ethernet1/40: Configuration does not match the port capability
Configuring Ethernet Interfaces

Configuring the CDP Characteristics

You can configure the frequency of Cisco Discovery Protocol (CDP) updates, the amount of time to hold the information before discarding it, and whether or not to send Version-2 advertisements.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config)# interface ethernet slot/port</td>
<td>Selects the interface and enters interface mode.</td>
</tr>
<tr>
<td>Step 3 switch(config-if)# no negotiate auto</td>
<td>Disables link negotiation on the selected Ethernet interface (1-Gigabit port).</td>
</tr>
<tr>
<td>Step 4 (Optional) switch(config-if)# negotiate auto</td>
<td>Enables link negotiation on the selected Ethernet interface. The default for 1-Gigabit Ethernet ports is enabled. Note: This command is not applicable for 10GBASE-T ports. It should not be used on 10-GBASE-T ports.</td>
</tr>
</tbody>
</table>

Example

This example shows how to disable auto-negotiation on a specified Ethernet interface (1-Gigabit port):

```bash
switch# configure terminal
switch(config)# interface ethernet 1/1
switch(config-if)# no negotiate auto
```

This example shows how to enable auto-negotiation on a specified Ethernet interface (1-Gigabit port):

```bash
switch# configure terminal
switch(config)# interface ethernet 1/5
switch(config-if)# negotiate auto
```

Cisco Nexus 5600 Series NX-OS Layer 2 Switching Configuration Guide, Release 7.x

29
Enabling or Disabling CDP

You can enable or disable CDP for Ethernet interfaces. This protocol works only when you have it enabled on both interfaces on the same link.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# interface type slot/port</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config-if)# cdp enable</td>
</tr>
<tr>
<td>Step 4</td>
<td>switch(config-if)# no cdp enable</td>
</tr>
</tbody>
</table>
Example

This example shows how to enable CDP for an Ethernet port:

```bash
switch# configure terminal
switch(config)# interface ethernet 1/4
switch(config-if)# cdp enable
```

This command can only be applied to a physical Ethernet interface.

Enabling the Error-Disabled Detection

You can enable error-disable (err-disabled) detection in an application. As a result, when a cause is detected on an interface, the interface is placed in an err-disabled state, which is an operational state that is similar to the link-down state.

Note

Base ports in Cisco Nexus 5500 never get error disabled due to pause rate-limit like in the Cisco Nexus 5020 or 5010 switch.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# errdisable detect cause {all</td>
<td>link-flap</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config)# shutdown</td>
<td>Brings the interface down administratively. To manually recover the interface from the err-disabled state, enter this command first.</td>
</tr>
<tr>
<td>Step 4</td>
<td>switch(config)# no shutdown</td>
<td>Brings the interface up administratively and enables the interface to recover manually from the err-disabled state.</td>
</tr>
<tr>
<td>Step 5</td>
<td>switch(config)# show interface status err-disabled</td>
<td>Displays information about err-disabled interfaces.</td>
</tr>
<tr>
<td>Step 6</td>
<td>(Optional) switch(config)# copy running-config startup-config</td>
<td>Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.</td>
</tr>
</tbody>
</table>

Example

This example shows how to enable the err-disabled detection in all cases:
Enabling the Error-Disabled Recovery

You can specify the application to bring the interface out of the error-disabled (err-disabled) state and retry coming up. It retries after 300 seconds, unless you configure the recovery timer (see the `errdisable recovery interval` command).

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# errdisable recovery cause {all</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config)# show interface status err-disabled</td>
</tr>
<tr>
<td>Step 4</td>
<td>(Optional) switch(config)# copy running-config startup-config</td>
</tr>
</tbody>
</table>

Example

This example shows how to enable err-disabled recovery under all conditions:

```
switch# configure terminal
switch(config)# errdisable detect cause all
switch(config)# shutdown
switch(config)# no shutdown
switch(config)# show interface status err-disabled
switch(config)# copy running-config startup-config
```

Configuring the Error-Disabled Recovery Interval

You can use this procedure to configure the err-disabled recovery timer value. The range is from 30 to 65535 seconds. The default is 300 seconds.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
</tr>
</tbody>
</table>
Configuring Ethernet Interfaces

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>Specifies the interval for the interface to recover from the err-disabled state. The range is from 30 to 65535 seconds. The default is 300 seconds.</td>
</tr>
<tr>
<td><code>switch(config)# errdisable recovery interval interval</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Displays information about err-disabled interfaces.</td>
</tr>
<tr>
<td><code>switch(config)# show interface status err-disabled</code></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.</td>
</tr>
<tr>
<td><code>(Optional) switch(config)# copy running-config startup-config</code></td>
<td></td>
</tr>
</tbody>
</table>

Example

This example shows how to enable err-disabled recovery under all conditions:

```bash
switch# configure terminal
switch(config)# errdisable recovery interval 32
switch(config)# show interface status err-disabled
switch(config)# copy running-config startup-config
```

Port Profiles

Creating a Port Profile

You can create a port profile on the switch. Each port profile must have a unique name across interface types and the network.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><code>Example:</code></td>
<td></td>
</tr>
<tr>
<td><code>switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><code>switch(config)#</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Creates and names a port profile for the specified type of interface and enters the port profile configuration mode.</td>
</tr>
<tr>
<td>`port-profile [type {ethernet</td>
<td>interface-vlan</td>
</tr>
<tr>
<td><code>Example:</code></td>
<td></td>
</tr>
<tr>
<td><code>switch(config)# port-profile type ethernet test</code></td>
<td></td>
</tr>
<tr>
<td><code>switch(config-port-prof)#</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Exits port profile configuration mode.</td>
</tr>
<tr>
<td><code>exit</code></td>
<td></td>
</tr>
<tr>
<td><code>Example:</code></td>
<td></td>
</tr>
<tr>
<td><code>switch(config-port-prof)# exit</code></td>
<td></td>
</tr>
<tr>
<td><code>switch(config)#</code></td>
<td></td>
</tr>
</tbody>
</table>
Modifying a Port Profile

You can modify a port profile in port-profile configuration mode.

You can remove commands from a port profile using the `no` form of the command. When you remove a command from the port profile, the corresponding command is removed from the interface that is attached to the port profile.

Procedure

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>switch(config)# configure terminal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>switch(config)# port-profile type ethernet test</td>
<td></td>
</tr>
<tr>
<td></td>
<td>switch(config-port-prof)#</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>port-profile [type {ethernet</td>
<td>interface-vlan</td>
</tr>
<tr>
<td>Example:</td>
<td>switch(config)# port-profile type ethernet test</td>
<td></td>
</tr>
<tr>
<td></td>
<td>switch(config-port-prof)#</td>
<td></td>
</tr>
</tbody>
</table>
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td>Exits the port profile configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch(config-port-prof)# exit</td>
<td></td>
</tr>
<tr>
<td>switch(config)#</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>(Optional) show port-profile</td>
<td>Displays the port profile configuration.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch(config)# show port-profile name</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td>(Optional) copy running-config startup-config</td>
<td>Copies the running configuration to the startup configuration.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch(config)# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

Example

This example shows how to remove commands from the port profile named ppEth configured for an Ethernet interface:

```
switch# configure terminal
switch(config)# port-profile ppEth
switch(config-port-prof)# switchport mode trunk
switch(config-port-prof)# switchport trunk allowed vlan 300-400
switch(config-port-prof)# flowcontrol receive on
switch(config-port-prof)# no speed 10000
```

Enabling a Specific Port Profile

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>switch(config)#</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>port-profile [type {ethernet</td>
<td>interface-vlan</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch(config)# port-profile type ethernet test</td>
<td></td>
</tr>
<tr>
<td>switch(config-port-prof)# no shutdown</td>
<td></td>
</tr>
<tr>
<td>switch(config-port-prof)#</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>state enabled name</td>
<td>Enables the port profile.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Inheriting a Port Profile

You can inherit a port profile onto an existing port profile. The switch supports four levels of inheritance.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><code>switch(config)#</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters port profile configuration mode for the specified port profile.</td>
</tr>
<tr>
<td><code>port-profile name</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>switch(config)# port-profile test</code></td>
<td></td>
</tr>
<tr>
<td><code>switch(config-port-prof)#</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Inherits another port profile onto the existing one. The original port profile assumes all the configurations of the inherited port profile.</td>
</tr>
<tr>
<td><code>inherit port-profile name</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>switch(config-port-prof)# inherit port-profile adam</code></td>
<td></td>
</tr>
<tr>
<td><code>switch(config-port-prof)#</code></td>
<td></td>
</tr>
</tbody>
</table>
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td>Exits the port profile configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch(config-port-prof)# exit</td>
<td></td>
</tr>
<tr>
<td>switch(config)#</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td>(Optional) show port-profile</td>
<td>Displays the port profile configuration.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch(config)# show port-profile name</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td></td>
</tr>
<tr>
<td>(Optional) copy running-config startup-config</td>
<td>Copies the running configuration to the startup configuration.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch(config)# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

Example

This example shows how to inherit the port profile named adam onto the port profile named test:

```
switch# configure terminal
switch(config)# port-profile test
switch(config-ppm)# inherit port-profile adam
switch(config-ppm)#
```

This example shows how to add the interface commands to a port profile named ppEth configured for Ethernet interfaces:

```
switch# configure terminal
switch(config)# port-profile ppEth
switch(config-port-prof)# switchport mode trunk
switch(config-port-prof)# switchport trunk allowed vlan 300-400
switch(config-port-prof)# flowcontrol receive on
switch(config-port-prof)# speed 10000
switch(config-port-prof)#
```

This example shows how to inherit a port profile named ppEth configured for Ethernet interfaces into an existing port profile named test:

```
switch# configure terminal
switch(config)# port-profile test
switch(config-port-prof)# inherit port-profile ppEth
switch(config-port-prof)#
```

Removing an Inherited Port Profile

You can remove an inherited port profile.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Assigning a Port Profile to a Range of Interfaces

You can assign a port profile to an interface or to a range of interfaces. All of the interfaces must be the same type.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>switch(config)#</td>
<td></td>
</tr>
</tbody>
</table>

Example

This example shows how to remove the inherited port profile named adam from the port profile named test:

```
switch# configure terminal
switch(config)# port-profile test
switch(config-port-prof)# no inherit port-profile adam
switch(config-port-prof)#
```

Assigning a Port Profile to a Range of Interfaces

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>switch(config)# port-profile test</td>
<td>Enters port profile configuration mode for the specified port profile.</td>
</tr>
<tr>
<td>switch(config-port-prof)# no inherit port-profile adam</td>
<td>Removes an inherited port profile from this port profile.</td>
</tr>
<tr>
<td>switch(config-port-prof)# exit</td>
<td>Exits the port profile configuration mode.</td>
</tr>
<tr>
<td>switch(config)# show port-profile name</td>
<td>Displays the port profile configuration.</td>
</tr>
<tr>
<td>switch(config)# copy running-config startup-config</td>
<td>Copies the running configuration to the startup configuration.</td>
</tr>
</tbody>
</table>
Purpose
Command or Action | Purpose
--- | ---
Step 2 | interface [ethernet slot/port | interface-vlan vlan-id | port-channel number] Selects the range of interfaces.
Step 3 | inherit port-profile name Assigns the specified port profile to the selected interfaces.
Step 4 | exit Exits port profile configuration mode.
Step 5 | (Optional) show port-profile name Displays the port profile configuration.
Step 6 | (Optional) switch(config)# copy running-config startup-config Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.

Example
This example shows how to assign the port profile named adam to Ethernet interfaces 2/3 to 2/5, 3/2, and 1/20 to 1/25:

```
switch# configure terminal
switch(config)# interface ethernet 2/3 to 2/5, 3/2, and 1/20 to 1/25
switch(config-if)# inherit port-profile adam
switch(config-if)# exit
switch(config)# show port-profile adam
switch(config)# copy running-config startup-config
```

Removing a Port Profile from a Range of Interfaces
You can remove a port profile from some or all of the interfaces to which you have applied the profile.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface [ethernet slot/port</td>
</tr>
<tr>
<td>Step 3</td>
<td>no inherit port-profile name Removes the specified port profile from the selected interfaces.</td>
</tr>
<tr>
<td>Step 4</td>
<td>exit Exits port profile configuration mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>(Optional) show port-profile Displays the port profile configuration.</td>
</tr>
<tr>
<td>Step 6</td>
<td>(Optional) switch(config)# copy running-config startup-config Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.</td>
</tr>
</tbody>
</table>
Example

This example shows how to remove the port profile named adam from Ethernet interfaces 1/3-5:

```
switch# configure terminal
switch(config)# interface ethernet 1/3-5
switch(config-if)# no inherit port-profile adam
switch(config-if)# exit
switch(config)# show port-profile
```

```
Configuration Examples for Port Profiles

The following example shows how to configure a port profile, inherit the port profile on an Ethernet interface, and enabling the port profile.

```
switch(config)#
switch(config)# show running-config interface Ethernet1/14

!Command: show running-config interface Ethernet1/14
!Time: Thu Aug 26 07:01:32 2010

version 5.0(2)N1(1)

interface Ethernet1/14

switch(config)# port-profile type ethernet alpha
switch(config-port-prof)# switchport mode trunk
switch(config-port-prof)# switchport trunk allowed vlan 10-15
switch(config-port-prof)#
switch(config-port-prof)# show running-config port-profile alpha

!Command: show running-config port-profile alpha
!Time: Thu Aug 26 07:02:29 2010

version 5.0(2)N1(1)
port-profile type ethernet alpha
switchport mode trunk
switchport trunk allowed vlan 10-15

switch(config-port-prof)# int eth 1/14
switch(config-if)# inherit port-profile alpha
switch(config-if)#
switch(config-if)# port-profile type ethernet alpha
switch(config-port-prof)# state enabled
switch(config-port-prof)#
switch(config-port-prof)# sh running-config interface ethernet 1/14

!Command: show running-config interface Ethernet1/14
!Time: Thu Aug 26 07:03:17 2010

version 5.0(2)N1(1)

interface Ethernet1/14

 inherit port-profile alpha

switch(config-port-prof)# sh running-config interface ethernet 1/14 expand-port-profile

!Command: show running-config interface Ethernet1/14 expand-port-profile
!Time: Thu Aug 26 07:03:21 2010
```
version 5.0(2)N1(1)

interface Ethernet1/14
  switchport mode trunk
  switchport trunk allowed vlan 10-15

switch(config-port-prof) #

Configuring the Debounce Timer

You can enable the debounce timer for Ethernet ports by specifying a debounce time (in milliseconds) or disable the timer by specifying a debounce time of 0.

To enable or disable the debounce timer, perform this task:

Procedure

Step 1  switch# configure terminal
Enters global configuration mode.

Step 2  switch(config)# interface type slot/port
Enters interface configuration mode for the specified interface.

Step 3  switch(config-if)# link debounce link-up time milliseconds
Delays link-up declaration by configured time, in milliseconds. The range is 1 to 5000 milliseconds.

Step 4  switch(config-if)# link debounce time milliseconds
Delays link-down notification by configured time, in milliseconds. The range is 1 to 5000 milliseconds.
Disables the debounce timer if you specify 0 milliseconds.

Step 5  switch(config-if)# no link debounce
Sets debounce timer to the default value of 100 milliseconds.

Step 6  switch(config-if)# no link debounce link-up
Disables link debounce link-up.

Example

This example shows how to enable the debounce timer 1000 milliseconds for an ethernet interface:

switch# configure terminal
switch(config)# interface ethernet 1/4
switch(config-if)# link debounce time 1000

This example shows how to disable debounce timer for an Ethernet interface:
Configuring the Description Parameter

You can provide textual interface descriptions for the Ethernet ports.

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> switch(config)# interface type slot/port</td>
<td>Enters interface configuration mode for the specified interface.</td>
</tr>
<tr>
<td><strong>Step 3</strong> switch(config-if)# description test</td>
<td>Specifies the description for the interface.</td>
</tr>
</tbody>
</table>

**Example**

This example shows how to set the interface description to Server 3 interface:

```plaintext
switch# configure terminal
switch(config)# interface ethernet 1/3
switch(config-if)# description Server 3 Interface
```

Disabling and Restarting Ethernet Interfaces

You can shut down and restart an Ethernet interface. This action disables all of the interface functions and marks the interface as being down on all monitoring displays. This information is communicated to other network servers through all dynamic routing protocols. When shut down, the interface is not included in any routing updates.

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> switch(config)# interface type slot/port</td>
<td>Enters interface configuration mode for the specified interface.</td>
</tr>
</tbody>
</table>
### Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 3</strong></td>
<td>switch(config-if)# shutdown</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>switch(config-if)# no shutdown</td>
</tr>
</tbody>
</table>

### Example

This example shows how to disable an Ethernet port:

```
switch# configure terminal
switch(config)# interface ethernet 1/4
switch(config-if)# shutdown
```

This example shows how to restart an Ethernet interface:

```
switch# configure terminal
switch(config)# interface ethernet 1/4
switch(config-if)# no shutdown
```

### Configuring Slow Drain Device Detection and Congestion Avoidance

#### Fibre Channel Slow Drain Device Detection and Congestion Avoidance- An Overview

All data traffic between end devices in the SAN fabric is carried by Fibre Channel Class 3, and in some cases, Class 2 services, that use link-level, per-hop-based, and buffer-to-buffer flow control. These classes of service do not support end-to-end flow control. When slow devices are attached to the fabric, the end devices do not accept the frames at the configured or negotiated rate. The slow devices lead to an Inter-Switch Link (ISL) credit shortage in the traffic that is destined for these devices and they congest the links. The credit shortage affects the unrelated flows in the fabric that use the same ISL link even though destination devices do not experience a slow drain.

This feature provides various enhancements that enable you to detect slow drain devices are cause congestion in the network and also provide congestion avoidance.

The enhancements are mainly on the edge ports that connect to the slow drain devices to minimize the frames stuck condition in the edge ports due to slow drain devices that are causing an ISL blockage. To avoid or minimize the stuck condition, configure lesser frame timeout for the ports. You can use the no-credit timeout to drop all packets after the slow drain is detected using the configured thresholds. A smaller frame timeout value helps to alleviate the slow drain condition that affects the fabric by dropping the packets on the edge ports sooner than the time they actually get timed out (358 ms). This function frees the buffer space in ISL, which can be used by other unrelated flows that do not experience slow drain condition.
This feature supports edge ports that are connected to slow edge devices. Even though you can apply this feature to ISLs as well, we recommend that you apply this feature only for edge F ports and retain the default configuration for ISLs as E and TE ports. This feature is not supported on Generation 1 modules.

Configuring a Stuck Frame Timeout Value

The default stuck frame timeout value is 358 ms. The timeout value can be incremented in steps of 10. We recommend that you retain the default configuration for ISLs and configure a value that does not exceed 500 ms (100 to 200 ms) for fabric F ports.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# system timeout congestion-drop seconds mode E</td>
</tr>
<tr>
<td></td>
<td>switch(config)# system timeout congestion-drop mode F</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switch(config)# system timeout congestion-drop default mode E</td>
</tr>
<tr>
<td></td>
<td>switch(config)# system timeout congestion-drop default mode F</td>
</tr>
</tbody>
</table>

Example

This example shows how to configure a stuck frame timeout value of 100 ms:

```
switch# configure terminal
switch(config)# system timeout congestion-drop 100 mode F
switch(config)# system timeout congestion-drop default mode F
```

Configuring a No-Credit Timeout Value

When the port does not have the credits for the configured period, you can enable a no-credit timeout on that port, which results in all frames that come to that port getting dropped in the egress. This action frees the buffer space in the ISL link, which helps to reduce the fabric slowdown and congestion on other unrelated flows that use the same link.

The dropped frames are the frames that have just entered the switch or have stayed in the switch for the configured timeout value. These drops are preemptive and clear the congestion completely.

The no-credit timeout feature is disabled by default. We recommend that you retain the default configuration for ISLs and configure a value that does not exceed 358 ms (200 to 300 ms) for fabric F ports.

You can disable this feature by entering the `no system timeout no-credit-drop mode F` command.
The no-credit timeout value and stuck frame timeout value are interlinked. The no-credit timeout value must always be greater than the stuck frame timeout value.

### Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# system timeout no-credit-drop seconds mode F</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switch(config)# system timeout no-credit-drop default mode F</td>
</tr>
</tbody>
</table>

### Example

This example shows how to configure a no-credit timeout value:

```plaintext
switch# configure terminal
switch(config)# system timeout no-credit-drop 100 mode F
switch(config)# system timeout no-credit-drop default mode F
```

### Displaying Credit Loss Counters

Use the following commands to display the credit loss counters per module per interface for the last specified minutes, hours, and days:

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>show process creditmon {credit-loss-event-history</td>
</tr>
</tbody>
</table>

### Displaying Credit Loss Events

Use one of the following commands to display the total number of credit loss events per interface with the latest three credit loss time stamps:
### Displaying Timeout Drops

Use the following command to display the timeout drops per module per interface for the last specified minutes, hours, and days:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show logging onboard flow-control timeout-drops [last mm minutes] [last hh hours] [last dd days] [module module number]</td>
<td>Displays the Onboard Failure Logging (OBFL) timeout drops log.</td>
</tr>
</tbody>
</table>

### Displaying the Average Credit Not Available Status

When the average credit nonavailable duration exceeds the set threshold, you can error-disable the port, send a trap with interface details, and generate a syslog with interface details. In addition, you can combine or more actions or turn on or off an action. The port monitor feature provides the command line interface to configure the thresholds and action. The threshold configuration can be a percentage of credit non-available duration in an interval.

The thresholds for the credit nonavailable duration can be 0 percent to 100 percent in multiples of 10, and the interval can be from 1 second to 1 hour. The default is 10 percent in 1 second and generates a syslog.

Use the following command to display the average credit-not-available status:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show system internal snmp credit-not-available {module</td>
<td>module-id}</td>
</tr>
</tbody>
</table>

### Port Monitoring

You can use port monitoring to monitor the performance of fabric devices and to detect slow drain devices. You can monitor counters and take the necessary action depending on whether the portguard is enabled or disabled. You can configure the thresholds for various counters and trigger an event when the values cross the threshold settings. Port monitoring provides a user interface that you can use to configure the thresholds and action. By default, portguard is disabled in the port monitoring policy.

Two default policies, default and default slowdrain, are created during snmpd initialization. The default slowdrain policy is activated when the switch comes online when no other policies are active at that time. The default slowdrain policy monitors only credit-loss-reco and tx-credit-not-available counters.

When you create a policy, it is created for both access and trunk links. The access link has a value of F and the trunk link has a value of E.
### Enabling Port Monitor

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td>Enters global configuration mode.</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# [no] port-monitor enable</td>
</tr>
<tr>
<td>Enables (default) the port monitoring feature.</td>
<td>Enables (default) the port monitoring feature.</td>
</tr>
<tr>
<td>The no version of this command disables the</td>
<td></td>
</tr>
<tr>
<td>port monitoring feature.</td>
<td></td>
</tr>
</tbody>
</table>

### Configuring a Port Monitor Policy

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td>Enters global configuration mode.</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# port-monitor name policyname</td>
</tr>
<tr>
<td>Specifies the policy name and enters the port</td>
<td>Specifies the policy name and enters the port</td>
</tr>
<tr>
<td>monitor policy configuration mode.</td>
<td>monitor policy configuration mode.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switch(config-port-monitor)# port-type all</td>
</tr>
<tr>
<td>Applies the policy to all ports.</td>
<td>Applies the policy to all ports.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>switch(config-port-monitor)# counter</td>
</tr>
<tr>
<td>Specifies the poll interval in seconds, the thresholds</td>
<td>Specifies the poll interval in seconds, the thresholds in absolute</td>
</tr>
<tr>
<td>in absolute numbers, and the event IDs of events to</td>
<td>numbers, and the event IDs of events to be triggered for the following</td>
</tr>
<tr>
<td>be triggered for the following reasons:</td>
<td>reasons:</td>
</tr>
<tr>
<td>• credit-loss-reco—Credit loss recovery</td>
<td></td>
</tr>
<tr>
<td>• timeout-discards—Timeout discards</td>
<td></td>
</tr>
<tr>
<td>• tx-credit-not-available—Average credit</td>
<td></td>
</tr>
<tr>
<td>non-available duration</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>switch(config-port-monitor)# [no] counter</td>
</tr>
<tr>
<td>Turns on monitoring for the specified counter.</td>
<td>Turns on monitoring for the specified counter.</td>
</tr>
<tr>
<td>The no form of this command turns off monitoring for</td>
<td></td>
</tr>
<tr>
<td>the specified counter.</td>
<td></td>
</tr>
</tbody>
</table>

### Example

This example shows how to specify the poll interval and threshold for timeout discards:

```bash
switch# configure terminal
switch(config)# port-monitor cisco
switch(config-port-monitor)# counter timeout-discards poll-interval 10
```

This example show how to specify the poll interval and threshold for credit loss recovery:

```bash
switch# configure terminal
switch(config)# port-monitor cisco
```
Activating a Port Monitor Policy

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch(config)# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# port-monitor activate policymame</td>
<td>Activates the specified port monitor policy.</td>
</tr>
<tr>
<td>Step 3</td>
<td>(Optional) switch(config)# port-monitor activate</td>
<td>Activates the default port monitor policy.</td>
</tr>
<tr>
<td>Step 4</td>
<td>(Optional) switch(config)# no port-monitor activate policymame</td>
<td>Deactivates the specified port monitor policy.</td>
</tr>
</tbody>
</table>

Example

This example shows how to activate a specific port monitor policy:

```
switch# configure terminal
switch(config)# port-monitor activate cisco
```

Displaying Port Monitor Policies

Use the following command to display port monitor policies:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch# show port-monitor policymame</td>
<td>Displays details of the specified port monitor policy.</td>
</tr>
</tbody>
</table>

Example

This example shows how to display a specific port monitor policy:

```
```

**FCoE Slow Drain Device Detection and Congestion Avoidance**

The data traffic between end devices in Fibre Channel over Ethernet (FCoE) uses link level, per-hop Priority Flow Control (PFC). This allows the FCoE class on a link to be paused independently in each direction, while other classes continue to transmit and receive on the link. When end devices transmit PFC pause frames to the switch port they prevent the switch port from being able to transmit FCoE frames to the end device. Although some of this occurs normally, if it occurs in large amounts it can cause congestion in the fabric. End devices doing this are called a slow devices, or slow drain devices. When this occurs it can cause frames to queue at the switch which results in the switch transmitting its own PFC pause frames back towards the source of the incoming frames. If the switch port where the frames are being received (the source of the incoming...
frames) is connected to an end device, then this end device will temporarily be paused. It will not be able to transmit any frames into the switch for any destination (not just for the slow device). If switch port where the frames are being received on is an Inter-Switch-Link (ISL) then all inbound traffic across that ISL will be paused. This will affect all devices transiting that ISL.

There are two ways to mitigate FCoE slowdrain on a Cisco Nexus 5500 switch:

- Congestion timeout, on page 49
- Pause timeout, on page 49

**Congestion timeout**

Congestion timeout measures the age of frames that have been received by the switch. It automatically drops the FCoE frames that have been received by the switch, but are not able to transmit for 358 milliseconds. You cannot modify the congestion timeout value for FCoE.

**Pause timeout**

Pause timeout automatically drops all the FCoE frames that have been received by the switch and queued for an egress port when the egress port is in a continual paused state for the associated time. By default this feature is off, but it can be configured to be 90 milliseconds, 180 milliseconds, 358 milliseconds, 716 milliseconds, or 1433 milliseconds. The lower the value the quicker the switch will react to a port in a continual state of a pause. When a port reaches the pause timeout threshold, all the FCoE frames queued for egress on that port are emptied from the queue regardless of their exact age. The threshold is detected by a software process that runs every 100 milliseconds. Since all the frames queued to a given egress port are dropped this can have a dramatic effect on reducing the congestion on affected ISLs (ISLs from which the frames originated). When this condition is detected it is called a "Pause Event". The switch issues the following message when a pause event is detected:

```
switchname %$ VDC-1 %$ %CARMELUSD-2-CARMEL_SYSLOG_CRIT: FCoE Pause Event Occurred on interface ethernet 1/1
```

For every pause event that lasts for the specified timeout value, a pause event is published to the Embedded Event Manager (EEM). The EEM maintains the count of pause events per port and triggers the policy action when the threshold is reached.

The following are the two EEM policies that exist by default. Use the `show event manager system-policy` command to view the EEM policies.

```
* switch# show event manager system-policy
 Name : __ethpm_slow_drain_core
 Description : 10 Pause Events in 1 minute. Action: None by default
 Overridable : Yes

* switch# show event manager system-policy
 Name : __ethpm_slow_drain_edge
 Description : 5 Pause Events in 1 minute. Action: None by default
 Overridable : Yes
```

You can override the default policy with the new thresholds and actions. If you try to override the EEM system policies _ethpm_slow_drain_edge and _ethpm_slow_drain_core, the default-action, default syslog, will also appear. We recommend that you specify action err-disable to isolate the faulty port where this condition occurs. This can be done by overriding the _ethpm_slow_drain_edge EEM policy.

The following is a sample output to override the EEM system policy:

```
switchname %$ VDC-1 %$ %CARMELUSD-2-CARMEL_SYSLOG_CRIT: FCoE Pause Event Occurred on interface ethernet 1/1
```

For every pause event that lasts for the specified timeout value, a pause event is published to the Embedded Event Manager (EEM). The EEM maintains the count of pause events per port and triggers the policy action when the threshold is reached.

The following are the two EEM policies that exist by default. Use the `show event manager system-policy` command to view the EEM policies.

```
* switch# show event manager system-policy
 Name : __ethpm_slow_drain_core
 Description : 10 Pause Events in 1 minute. Action: None by default
 Overridable : Yes

* switch# show event manager system-policy
 Name : __ethpm_slow_drain_edge
 Description : 5 Pause Events in 1 minute. Action: None by default
 Overridable : Yes
```

You can override the default policy with the new thresholds and actions. If you try to override the EEM system policies _ethpm_slow_drain_edge and _ethpm_slow_drain_core, the default-action, default syslog, will also appear. We recommend that you specify action err-disable to isolate the faulty port where this condition occurs. This can be done by overriding the _ethpm_slow_drain_edge EEM policy.

The following is a sample output to override the EEM system policy:
Configuring a Pause Frame Timeout Value

You can enable or disable a pause frame timeout value on a port. The system periodically checks the ports for a pause condition and enables a pause frame timeout on a port if it is in a continuous pause condition for a configured period of time. This situation results in all frames that come to that port getting dropped in the egress. This function empties the buffer space in the ISL link and helps to reduce the fabric slowdown and the congestion on the other unrelated flows using the same link.

When a pause condition is cleared on a port or when a port flaps, the system disables the pause frame timeout on that particular port.

The pause frame timeout is disabled by default. We recommend that you retain the default configuration for the ISLs and configure a value that does not exceed the default value for the edge ports.

For a faster recovery from the slow drain device behavior, you should configure a pause frame timeout value because it drops all the frames in the edge port that face the slow drain whether the frame is in the switch for a congested timeout or not. This process instantly clears the congestion in the ISL. You should configure a pause frame timeout value to clear the congestion completely instead of configuring a congestion frame timeout value.

Use the `no system default interface pause timeout milliseconds mode {core | edge}` command to disable the pause frame timeout value on the edge ports. The default pause timeout value is 358 milliseconds.

### Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch# system default interface pause timeout milliseconds mode {core</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switch# system default interface pause mode {core</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>switch# no system default interface pause timeout milliseconds mode {core</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>switch# no system default interface pause mode {core</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>(Optional) switch# show logging onboard flow-control pause-event</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>(Optional) switch# show logging onboard flow-control timeout-drop</td>
</tr>
</tbody>
</table>
Example

This example shows how to configure a pause frame timeout value:

```
switch# configure terminal
switch(config)# system default interface pause timeout 358 mode core
switch(config)# system default interface pause mode edge
switch(config)# no system default interface pause timeout 358 mode core
switch(config)# no system default interface pause mode edge
```

This example shows how to display the total number of the pause events for the entire switch:

```
switch# show logging onboard flow-control pause-event
```

List of Pause Events

<table>
<thead>
<tr>
<th>Ethernet</th>
<th>Timestamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>01/01/2009 10:15:20.262951</td>
</tr>
<tr>
<td>1/1</td>
<td>01/01/2009 10:15:21.462869</td>
</tr>
<tr>
<td>1/1</td>
<td>01/01/2009 10:15:22.173349</td>
</tr>
<tr>
<td>1/1</td>
<td>01/01/2009 10:15:22.902929</td>
</tr>
<tr>
<td>1/1</td>
<td>01/01/2009 10:15:23.642984</td>
</tr>
<tr>
<td>1/1</td>
<td>01/01/2009 10:15:24.382961</td>
</tr>
<tr>
<td>1/1</td>
<td>01/01/2009 10:15:25.100497</td>
</tr>
<tr>
<td>1/1</td>
<td>01/01/2009 10:15:25.842915</td>
</tr>
</tbody>
</table>

This example shows how to display the timeout drops per interface with time-stamp information for the supervisor CLI:

```
switch# show logging onboard flow-control timeout-drops
```

Number of Pause Events per Port

<table>
<thead>
<tr>
<th>Ethernet</th>
<th>Number of Pause Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>38668</td>
</tr>
<tr>
<td>1/15</td>
<td>232</td>
</tr>
<tr>
<td>2/16</td>
<td>2233</td>
</tr>
<tr>
<td>2/17</td>
<td>2423</td>
</tr>
</tbody>
</table>

Displaying Interface Information

To view configuration information about the defined interfaces, perform one of these tasks:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch# show interface type slot/port</td>
<td>Displays the detailed configuration of the specified interface.</td>
</tr>
<tr>
<td>switch# show interface type slot/port</td>
<td>Displays detailed information about the capabilities of the specified interface. This option is available only for physical interfaces.</td>
</tr>
</tbody>
</table>
### Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch# <code>show interface type slot/port transceiver</code></td>
<td>Displays detailed information about the transceiver connected to the specified interface. This option is available only for physical interfaces.</td>
</tr>
<tr>
<td>switch# <code>show interface brief</code></td>
<td>Displays the status of all interfaces.</td>
</tr>
<tr>
<td>switch# <code>show interface flowcontrol</code></td>
<td>Displays the detailed listing of the flow control settings on all interfaces.</td>
</tr>
<tr>
<td>switch# <code>show interface debounce</code></td>
<td>Displays the debounce status of all interfaces.</td>
</tr>
<tr>
<td><code>show port--profile</code></td>
<td>Displays information about the port profiles.</td>
</tr>
</tbody>
</table>

The `show interface` command is invoked from EXEC mode and displays the interface configurations. Without any arguments, this command displays the information for all the configured interfaces in the switch.

This example shows how to display the physical Ethernet interface:

```
switch# `show interface ethernet 1/1`
Ethernet1/1 is up
 Hardware is 1000/10000 Ethernet, address is 000d.eca3.5f08 (bia 000d.eca3.5f08)
 MTU 1500 bytes, BW 10000000 Kbit, DLY 10 usec,
 reliability 255/255, txload 190/255, rxload 192/255
 Encapsulation ARPA
 Port mode is trunk
 full-duplex, 10 Gb/s, media type is 1/10g
 Input flow-control is off, output flow-control is off
 Auto-mdix is turned on
 Rate mode is dedicated
 Switchport monitor is off
 Last clearing of "show interface" counters never
 5 minute input rate 942201806 bytes/sec, 14721892 packets/sec
 5 minute output rate 935840313 bytes/sec, 14622492 packets/sec
 Rx
 129141483840 input packets 0 unicast packets 129141483847 multicast packets
 0 broadcast packets 0 jumbo packets 0 storm suppression packets
 8265054965824 bytes
 0 No buffer 0 rnt 0 Overrun
 0 crc 0 Ignored 0 Bad etype drop
 0 Bad proto drop
 Tx
 119038487241 output packets 119038487245 multicast packets
 0 broadcast packets 0 jumbo packets
 7618463256471 bytes
 0 output CRC 0 ecc
 0 underrun 0 if down drop 0 output error 0 collision 0 deferred
 0 late collision 0 lost carrier 0 no carrier
 0 babble
 0 Rx pause 8031547972 Tx pause 0 reset
```

This example shows how to display the physical Ethernet capabilities:

```
switch# `show interface ethernet 1/1 capabilities`
Ethernet1/1
 Model: 734510033
 Type: 10Gbase-(unknown)
 Speed: 1000,10000
 Duplex: full
```
Trunk encap. type: 802.1Q
Channel: yes
Broadcast suppression: percentage(0-100)
Flowcontrol: rx-(off/on),tx-(off/on)
Rate mode: none
QoS scheduling: rx-(6q1t),tx-(1p6q0t)
CoS rewrite: no
ToS rewrite: no
SPAN: yes
UDLD: yes
Link Debounce: yes
Link Debounce Time: yes
MDIX: no
PEX Fabric: yes

This example shows how to display the physical Ethernet transceiver:

`switch# show interface ethernet 1/1 transceiver`

Ethernet1/1
sfp is present
name is CISCO-EXCELIGHT
part number is SPP5101SR-C1
revision is A
serial number is ECL120901AV
nominal bitrate is 10300 MBits/sec
Link length supported for 50/125mm fiber is 82 m(s)
Link length supported for 62.5/125mm fiber is 26 m(s)
cisco id is --
cisco extended id number is 4

This example shows how to display a brief interface status (some of the output has been removed for brevity):

`switch# show interface brief`

---------------------------------------------
<table>
<thead>
<tr>
<th>Ethernet Interface</th>
<th>VLAN</th>
<th>Type</th>
<th>Mode</th>
<th>Status</th>
<th>Reason</th>
<th>Speed</th>
<th>Port Ch #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eth1/1</td>
<td>200</td>
<td>eth</td>
<td>trunk</td>
<td>up</td>
<td>none</td>
<td>10G(D)</td>
<td>--</td>
</tr>
<tr>
<td>Eth1/2</td>
<td>1</td>
<td>eth</td>
<td>trunk</td>
<td>up</td>
<td>none</td>
<td>10G(D)</td>
<td>--</td>
</tr>
<tr>
<td>Eth1/3</td>
<td>300</td>
<td>eth</td>
<td>access</td>
<td>down</td>
<td>SFP not inserted</td>
<td>10G(D)</td>
<td>--</td>
</tr>
<tr>
<td>Eth1/4</td>
<td>300</td>
<td>eth</td>
<td>access</td>
<td>down</td>
<td>SFP not inserted</td>
<td>10G(D)</td>
<td>--</td>
</tr>
<tr>
<td>Eth1/5</td>
<td>300</td>
<td>eth</td>
<td>access</td>
<td>down</td>
<td>link not connected</td>
<td>1000(D)</td>
<td>--</td>
</tr>
<tr>
<td>Eth1/6</td>
<td>20</td>
<td>eth</td>
<td>access</td>
<td>down</td>
<td>link not connected</td>
<td>10G(D)</td>
<td>--</td>
</tr>
<tr>
<td>Eth1/7</td>
<td>300</td>
<td>eth</td>
<td>access</td>
<td>down</td>
<td>SFP not inserted</td>
<td>10G(D)</td>
<td>--</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This example shows how to display the link debounce status (some of the output has been removed for brevity):

`switch# show interface debounce`

---------------------------------------------
<table>
<thead>
<tr>
<th>Port</th>
<th>Debounce time</th>
<th>Value(ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eth1/1</td>
<td>enable</td>
<td>100</td>
</tr>
<tr>
<td>Eth1/2</td>
<td>enable</td>
<td>100</td>
</tr>
<tr>
<td>Eth1/3</td>
<td>enable</td>
<td>100</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This example shows how to display the CDP neighbors:
The default device ID field for CDP advertisement is the hostname and serial number, as in the example above.

```
switch# show cdp neighbors
Capability Codes: R - Router, T - Trans-Bridge, B - Source-Route-Bridge
 S - Switch, H - Host, I - IGMP, r - Repeater,
 V - VoIP-Phone, D - Remotely-Managed-Device,
 s - Supports-STD-Dispute

Device ID Local Intrfce Hldtme Capability Platform Port ID
---------- ------------ ------ -------- -------------- ----------
d13-dist-1 mgmt0 148 S I WS-C2960-24TC Fa0/9
n5k(FLC12080012) Eth1/5 8 S I s N5K-C5020P-BA Eth1/5
```
Configuring VLANs

This chapter contains the following sections:
- Information About VLANs, on page 55
- Configuring a VLAN, on page 63

Information About VLANs

Understanding VLANs

A VLAN is a group of end stations in a switched network that is logically segmented by function, project team, or application, without the limitation to the physical locations of the users. VLANs have the same attributes as physical LANs, but you can group end stations even if they are not physically located on the same LAN segment.

Any port can belong to a VLAN; all unicast, broadcast, and multicast packets are forwarded and flooded only to end stations in that VLAN. Each VLAN is considered a logical network. If a packet destination address does not belong to the VLAN, it must be forwarded through a router.

The following figure shows VLANs as logical networks. In this diagram, the stations in the engineering department are assigned to one VLAN, the stations in the marketing department are assigned to another VLAN, and the stations in the accounting department are assigned to yet another VLAN.
VLANs are usually associated with IP subnetworks. For example, all the end stations in a particular IP subnet belong to the same VLAN. To communicate between VLANs, you must route the traffic.

By default, a newly created VLAN is operational. To disable the VLAN use the `shutdown` command. Additionally, you can configure VLANs to be in the active state (passing traffic), or the suspended state (in which the VLANs are not passing packets). By default, the VLANs are in the active state and pass traffic.

Note

The VLAN Trunking Protocol (VTP) mode is OFF. VTP BPDUs are dropped on all interfaces of the switch. This process has the effect of partitioning VTP domains if other switches have VTP turned on.

A VLAN can also be configured as a switched virtual interface (SVI). In this case, the switch ports in the VLAN are represented by a virtual interface to a routing or bridging system. The SVI can be configured for routing, in which case it supports Layer 3 protocols for processing packets from all switch ports associated with the VLAN, or for in-band management of the switch.

### Understanding VLAN Ranges

The Cisco Nexus device supports VLAN numbers 1 to 4094 in accordance with the IEEE 802.1Q standard. These VLANs are organized into ranges. The switch is physically limited in the number of VLANs it can support. The hardware also shares this available range with its VSANs. For information about VLAN and VSAN configuration limits, see the configuration limits documentation for your device.

The following table describes the details of the VLAN ranges.

<table>
<thead>
<tr>
<th>VLANs Numbers</th>
<th>Range</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Normal</td>
<td>Cisco default. You can use this VLAN, but you cannot modify or delete it.</td>
</tr>
</tbody>
</table>
### Usage Range VLANs

**Numbers**

<table>
<thead>
<tr>
<th>VLANs Numbers</th>
<th>Range</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>2—1005</td>
<td>Normal</td>
<td>You can create, use, modify, and delete these VLANs.</td>
</tr>
<tr>
<td>1006—4094</td>
<td>Extended</td>
<td>You can create, name, and use these VLANs. You cannot change the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>following parameters:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• State is always active.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• VLAN is always enabled. You cannot shut down these VLANs.</td>
</tr>
<tr>
<td>3968—4049 and 4094</td>
<td>Internally</td>
<td>These 82 VLANs, plus VLAN 4094, are allocated for internal use. You</td>
</tr>
<tr>
<td></td>
<td>allocated</td>
<td>cannot create, delete, or modify any VLANs within the block reserved</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for internal use.</td>
</tr>
</tbody>
</table>

**Note**

You cannot configure the internally allocated VLANs (reserved VLANs).

**Note**

VLANs 3968 to 4049 and 4094 are reserved for internal use; these VLANs cannot be changed or used.

Cisco NX-OS allocates a group of 82 VLAN numbers for those features, such as multicast and diagnostics, that need to use internal VLANs for their operation. By default, the system allocates VLANs numbered 3968 to 4049 for internal use. VLAN 4094 is also reserved for internal use by the switch.

You cannot use, modify, or delete any of the VLANs in the reserved group. You can display the VLANs that are allocated internally and their associated use.

### Creating, Deleting, and Modifying VLANs

VLANs are numbered from 1 to 4094. All configured ports belong to the default VLAN when you first bring up the switch. The default VLAN (VLAN1) uses only default values. You cannot create, delete, or suspend activity in the default VLAN.

You create a VLAN by assigning a number to it. You can delete VLANs as well as move them from the active operational state to the suspended operational state. If you attempt to create a VLAN with an existing VLAN ID, the switch goes into the VLAN submode but does not create the same VLAN again.

Newly created VLANs remain unused until ports are assigned to the specific VLAN. All the ports are assigned to VLAN1 by default.

Depending on the range of the VLAN, you can configure the following parameters for VLANs (except the default VLAN):

- VLAN name
- Shutdown or not shutdown

When you delete a specified VLAN, the ports associated to that VLAN are shut down and no traffic flows. However, the system retains all the VLAN-to-port mapping for that VLAN, and when you reenable, or recreate, the specified VLAN, the system automatically reinstates all the original ports to that VLAN.
Commands entered in the VLAN configuration submode are immediately executed.

VLANs 3968 to 4049 and 4094 are reserved for internal use; these VLANs cannot be changed or used.

---

### About the VLAN Trunking Protocol

VLAN Trunking Protocol (VTP) is a distributed VLAN database management protocol that synchronizes the VTP VLAN database across domains. A VTP domain includes one or more network switches that share the same VTP domain name and are connected with trunk interfaces.

The following are the different VTP modes:

- **Server mode**—Allows users to perform configurations, manage the VLAN database version, and store the VLAN database.
- **Client mode**—Does not allow users to perform configurations and relies on other switches in the domain to provide configuration information.
- **Off mode**—Allows users to access the VLAN database (VTP is enabled) but does not participate in VTP.
- **Transparent mode**—Does not participate in VTP, uses local configuration, and relays VTP packets to other forward ports. VLAN changes affect only the local switch. A VTP transparent network switch does not advertise its VLAN configuration and does not synchronize its VLAN configuration based on received advertisements.

### Guidelines and Limitations for VTP

VTP has the following configuration guidelines and limitations:

- When a switch is configured as a VTP client, you cannot create VLANs on the switch in the range of 1 to 1005.

- VLAN 1 is required on all trunk ports used for switch interconnects if VTP is supported in the network. Disabling VLAN 1 from any of these ports prevents VTP from functioning properly.

- If you enable VTP, you must configure either version 1 or version 2. On the Cisco Nexus device, 512 VLANs are supported. If these switches are in a distribution network with other switches, the limit remains the same.

  On the Cisco Nexus device, 512 VLANs are supported. If these switches are in a distribution network with other switches, the VLAN limit for the VTP domain is 512. If a Cisco Nexus device client/server receives additional VLANs from a VTP server, they transition to transparent mode.

- If **system vlan long-name** knob is enabled, then VTP configurations will come up in OFF mode and users can change the mode to Transparent. However, changing the mode to Server or Client is not allowed.

- The **show running-configuration** command does not show VLAN or VTP configuration information for VLANs 1 to 1000.

- When deployed with vPC, both vPC switches must be configured identically. vPC performs a Type 2 consistency check for VTP configuration parameters.

- VTP advertisements are not sent out on Cisco Nexus Fabric Extender ports.
• Private VLANs (PVLANs) are supported only when the switch is in transparent mode.

• If you are using VTP in a Token Ring environment, you must use version 2.

• When a switch is configured in VTP client or server mode, VLANs 1002 to 1005 are reserved VLANs.

• VTPv3 pruning is supported from Cisco NX-OS Release 7.2(0)N1(1) onwards.

• You must enter the `copy running-config startup-config` command followed by a reload after changing a reserved VLAN range. For example:

  ```
 switch(config)# system vlan 2000 reserve
 This will delete all configs on vlans 2000-2081. Continue anyway? (y/n) [no] y
  ```

  After the switch reload, VLANs 2000 to 2081 are reserved for internal use, which requires that you enter the `copy running-config startup-config` command before the switch reload. Creating VLANs within this range is not allowed.

• Ensure VLAN 1 is not STP blocked for VTP interfaces in VTP transparent mode.

• In SNMP, the `vlanTrunkPortVtpEnabled` object indicates whether the VTP feature is enabled or not.

---

**About VLAN Translation**

In a data center there are often instances when you want to merge separate Layer 2 domains. For example, you might have two data centers that are connected via some form of Data Center Interconnect (DCI) such as Overlay Transport Virtualization (OTV). Both data centers might have an engineering group that has its own VLAN in each data center. Due to differences such as different administrators, the VLAN number might be different in each data center. Once the two data centers are connected via DCI, it makes sense that all engineering traffic should be visible in both data centers. In complex installations reconfiguration is not worth the collateral damage reconfiguration can cause. This is a scenario where VLAN translation would be useful to merge the two Layer 2 domains without actually changing their VLAN number.

This document describes the functionality of the VLAN translation feature on NX-OS and its interaction with other features on the Cisco Nexus device. The following diagram shows a possible datacenter application for VLAN translation.
The first datacenter on the left has an engineering VLAN with number 100 and a marketing VLAN with number 200. The second datacenter on the right has an engineering VLAN with number 101 and a marketing VLAN with number 201. For the engineering machines in the second datacenter to see data from the engineering machines in the first datacenter, the core Cisco Nexus device in the second datacenter must translate the VLAN ID in the ingress packets on the trunk port from the ingress VLAN 100 to the local VLAN 101. The local VLAN tag is a function of the port on which the traffic arrives and the ingress VLAN tag on which it arrives. Upon egress from the trunk port, the reverse translation must be to convert VLAN 101 to VLAN 100.

For example, VLAN translation can be enabled on a port such that packets with ingress VLANs V1, V2…V10 are mapped to local VLANs V101, V102,…,V110, the packets coming in to the second network are tagged as follows:

V1, V2, V10 map to V101, V102, V110 respectively (Packets are single tagged and tag is a function of ingress VLAN tag and port).

For a given port, there is a strict one-to-one mapping of the ingress VLAN to local VLAN and more than one ingress VLAN is not allowed to map to the same local VLAN.
Guidelines and Limitations for Configuring VLANs

VLANs have the following configuration guidelines and limitations:

- The maximum number of VLANs per VDC is 4094.

- You can configure a single VLAN or a range of VLANs.

  When you configure a large number of VLANs, first create the VLANs using the `vlan` command (for example, `vlan 200 to 300, 303 to 500`). After the VLANs have been successfully created, name or configure those VLANs sequentially.

- VLAN 4094 is a reserved VLAN.

- You cannot create, modify, or delete any VLANs that are within the group of VLANs reserved for internal use.

- VLAN1 is the default VLAN. You cannot create, modify, or delete this VLAN.

- VLANs 1006 to 4094 are always in the active state and are always enabled. You cannot suspend the state or shut down these VLANs.

- An interface policer and CoPP classification does not work for the Layer 2 control traffic in native VLAN in the following scenarios:
  - When the `native vlan` (ID other than 1) command is configured on the interface and the native VLAN ID is missing in the configuration.
  - If the `vlan dot1q tag native exclude control` command is configured.

VLAN translation has the following guidelines and limitations:

- A VLAN translation configuration is only applicable to Layer 2 trunks. It is inactive when applied to ports that are not Layer 2 trunks.

- Do not configure translation of ingress native VLAN traffic on an 802.1Q trunk. The 802.1Q native VLAN traffic is untagged and cannot be recognized for translation. However, you can translate traffic from other VLANs to the native VLAN of an 802.1Q trunk.

- The VLANs to which you are translating must be present in the trunk's allowed VLAN list. In addition, the VLANs that need to be forwarded on a trunk port, that are not involved in VLAN translation must also be included in the trunk ports allowed VLAN list. With per-port VLAN translation enabled, VLAN translation entries are consumed in hardware for all VLANs in the trunk ports allowed VLAN list.

- Do not change the VLAN on an access port or a trunk port it will flap the interface. However, if the port is part of a vPC, then first change the native VLAN on the secondary vPC, and then on the primary vPC.

- A VLAN translation must ensure that the original and translated VLANs are within the same MST instance.

- The number of supported VLAN translation maps is 4000. Layer 2 ports that have the same VLAN maps and the same trunk allowed VLAN list can benefit from sharing translation entries in hardware.

- For VLAN translation on a FEX, the VLAN translation maps are applicable to all FEX host interfaces and must be applied to all the FEX fabric or network interfaces. In addition, the translated VLANs specified in the FEX VLAN translation maps must be individually applied to the trunk allowed VLAN list of each of the FEX HIF interfaces. All the FEX interfaces must be configured as Layer 2 trunks.
• VLAN translation is not configurable on FEX HIF ports.

• The VLAN translation feature is only applicable to trunk ports. Hence, in the case of a FEX, all FEX HIF ports must be in trunk mode. When VLAN translation is first enabled on a FEX, a syslog is issued stating that all FEX HIF ports must be in trunk mode.

• For VLAN translation with vPC, the VLAN translation configuration on vPC primary and secondary interfaces must be consistent, otherwise the vPC interface on vPC secondary is brought down.

• If VLAN translation is enabled on a port channel, the configuration is applied to all member ports in the port channel bundle.

• SPAN is supported on trunk ports with VLAN translation enabled.

• PVLAN mode behavior cannot be overlaid on top of ports with VLAN translation enabled.

• To enable DHCP snooping on a port on which VLAN translation is enable, the translated/mapped local VLAN must be used.

• Do not configure VLAN translation on a Peer-Link.

• Do not use VLAN translation on FabricPath core ports.

• Global VLAN translation is not supported.

• To enable IGMP snooping on a VLAN, the VLAN interface must be capable of multicast routing. If VLAN translation is enabled on a port, IGMP snooping has to be enabled on the translated VLAN, that is the local VLAN.

• The following should be taken into consideration when spanning tree (STP) mode is enabled:

**Figure 6: VLAN Mapping with SSTP**

![Diagram](image)

- SW1 and SW2 are connected using trunk T that carries VLAN 101. On SW2, per port VLAN mapping is enabled on trunk port P and one of the mappings is 101 to 202. In the previous diagram, on the wire BPDU from SW1 has .1q VLAN and TLV VLAN as 101. When this BPDU reaches port P, its dot1q VLAN is changed from 101 to 202 per the VLAN mapping on Port P. However, the BPDU TLV VLAN remains 101. When it reaches the spanning tree process, spanning tree concludes that VLAN 101’s BPDU is received on VLAN 202 and spanning tree reports this as an inconsistent port. To correct the problem, spanning tree should process this BPDU in VLAN 202 and the TLV VLAN should be mapped to translate VLAN and check for consistency. Spanning tree instance 101 of SW1 is merged with spanning tree instance 202 of SW2. The same process is done on the transmit side. You should take this merging on VLANs into consideration before designing the spanning tree topology. With VLAN translation in conjunction with MST, VLAN translation must ensure that the original and translated VLANs are within the same MST instance. You should also ensure that the original VLAN (101) is not present in the trunk allowed VLAN list of local switch (SW2) on its trunk port (P), and that the translated VLAN (202) is not present in the trunk allowed VLAN list of the neighboring switch (SW1), on SW1’s trunk port.
Configuring a VLAN

Creating and Deleting a VLAN

You can create or delete all VLANs except the default VLAN and those VLANs that are internally allocated for use by the switch. Once a VLAN is created, it is automatically in the active state.

---

Note

When you delete a VLAN, ports associated to that VLAN shut down. The traffic does not flow and the packets are dropped.

---

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> switch(config)# vlan {vlan-id</td>
<td>vlan-range}</td>
</tr>
<tr>
<td></td>
<td>If you enter a number that is already assigned to a VLAN, the switch moves into the VLAN configuration submode for that VLAN. If you enter a number that is assigned to an internally allocated VLAN, the system returns an error message. However, if you enter a range of VLANs and one or more of the specified VLANs is outside the range of internally allocated VLANs, the command takes effect on only those VLANs outside the range. The range is from 2 to 4094; VLAN1 is the default VLAN and cannot be created or deleted. You cannot create or delete those VLANs that are reserved for internal use.</td>
</tr>
<tr>
<td><strong>Step 3</strong> switch(config-vlan)# no vlan {vlan-id</td>
<td>vlan-range}</td>
</tr>
</tbody>
</table>

---

Example

This example shows how to create a range of VLANs from 15 to 20:

```
switch# configure terminal
switch(config)# vlan 15-20
```
You can create and delete VLANs in the VLAN configuration submode.

**Configuring VLAN Long-Name**

*Note* If VTP is enabled, it must be in transparent or in off mode. VTP cannot be in client or server mode. For more details about VTP, see the Configuring VTP chapter.

Beginning with Cisco NX-OS Release 7.3(0)N1(1), the length of VLAN name that you can configure is increased from 32 to 128 characters. In the earlier release version, you could configure the length of VLAN name up to 32 characters.

**Procedure**

**Step 1** `configure terminal`

*Example:*

```plaintext
switch# configure terminal
```

Enters global configuration mode.

**Step 2** `system vlan long-name`

*Example:*

```plaintext
switch(config)# system vlan long-name
```

Allows you to configure the length of VLAN names up to 128 characters.

*Note* Enabling or disabling the `system vlan long-name` command will trigger a system log message that will let you know if the VLAN long name is enabled or disabled.

If you try to enable or disable the `system vlan long-name` command, when it is already enabled or disabled, the system will throw error message. We recommend you view the status of the VLAN long-name knob before enabling or disabling this command.

Use the `no` form of this command to disable this feature.

**Step 3** *(Optional)* `copy running-config startup-config`

*Example:*

```plaintext
switch(config)# copy running-config startup-config
```

Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.

**Step 4** `show running-config | sec long-name`

*Example:*

```plaintext
switch(config)# show running-config | sec long-name
```
Displays the VLAN long-name status information.

**Note** When you configure a VLAN name of more than 32 characters, the `show vlan` commands will show the output in multiple lines with each line containing a maximum of 32 characters.

---

**Example**

This example shows how to configure VLAN long-names of up to 128 characters.

```
switch# configure terminal
switch(config)# system vlan long-name
!2001 Sep 29 02:24:11 N72-3 %$ VDC-1 %$ VLAN_MGR-2-CRITICAL_MSG: VLAN long name is Enabled!
switch(config)# copy running config startup config
switch(config)# show running-config | sec long-name
switch(config)# configure terminal
switch(config)# vlan 2
switch(config-vlan)# name
VLAN128Char000000000000000040002

switch(config-vlan)# exit
switch# show vlan id 2
VLAN Name Status Ports
---- ---------------------------- --------- -------------------------------
2 VLAN128Char000000000000000040000 active
002

The following example displays the error output if you try to configure a VLAN long name of more than 128 characters.

```
switch# system vlan long-name
switch(config)# vlan 2
switch(config-vlan)# name
129Char1234567890987CiscoBangalore

%! String exceeded max length of (128) at '^' marker.!
Switch(config-vlan)# exit

The following example displays the error output if you try to configure VLAN name (more than 32 characters) without enabling the `system vlan long-name` command.

```
switch# configure terminal
switch(config)# vlan 2
switch(config-vlan)# name 33Char1234567890987CiscoBangalore
!ERROR: Long VLAN name is not enabled: Vlan name greater than 32 is not allowed!
Switch(config-vlan)# exit
```

---

**Changing the Range of Reserved VLANS**

To change the range of reserved VLANS, you must be in global configuration mode. After entering this command, you must do the following tasks:
• Enter the **copy running-config startup-config** command
• Reload the device

### Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td><code>config t</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>switch# config t</code></td>
<td></td>
</tr>
<tr>
<td><code>switch(config)#</code></td>
<td></td>
</tr>
</tbody>
</table>

**Step 2**	
`system vlan start-vlan reserve`	Allows you to change the reserved VLAN range by specifying the starting VLAN ID for your desired range.
**Example:**	
`switch(config)# system vlan 3968 reserve`	You can change the reserved VLANs to any other 82 contiguous VLAN ranges. When you reserve such a range, it frees up the range of VLANs that were allocated for internal use by default, and all of those VLANs are available for user configuration except for VLAN 4094.
**Note**	
To return to the default range of reserved VLANs (3968-4049 and 4094), you must enter the **no system vlan start-vlan reserve** command.	

**Step 3**	
`copy running-config startup-config`	Copies the running configuration to the startup configuration.
**Example:**	
`switch(config)# copy running-config startup-config`	**Note** You must enter this command if you change the reserved block.

**Step 4**	
`reload`	Reloads the software, and modifications to VLAN ranges become effective.
**Example:**	
`switch(config)# reload`	For more details about this command, see the *Cisco Nexus 7000 Series NX-OS Fundamentals Configuration Guide, Release 6.x*.

**Step 5**	
`(Optional) show system vlan reserved`	Displays the configured changes to the VLAN range.
**Example:**	
`switch(config)# show system vlan reserved`	

### Example
This example shows how to change the range of reserved VLANs:

```
switch# configuration terminal
```
Configuring VLANs

```
switch(config)# system vlan 1006 reserve
This will delete all configs on vlans 1006-1087. Continue anyway? (y/n) [no] yes
Note: After switch reload, VLANs 1006-1087 will be reserved for internal use.
This requires copy running-config to startup-config before
switch reload. Creating VLANs within this range is not allowed.
switch(config)# copy running-config startup-config
switch(config)# reload
switch(config)# show system vlan reserved
```

---

**Note**
You must reload the device for this change to take effect.

---

### Configuring a VLAN

To configure or modify the VLAN for the following parameters, you must be in the VLAN configuration submode:

- **Name**

  - Note: VLAN name can be either a short name (up to 32 characters) or long name (up to 128 characters). To configure VLAN long-name of up to 128 characters, you must enable `system vlan long-name` command.

- **Shut down**

  - Note: You cannot create, delete, or modify the default VLAN or the internally allocated VLANs. Additionally, some of these parameters cannot be modified on some VLANs.

---

### Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1  switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2  switch(config)# vlan {vlan-id</td>
<td>vlan-range}</td>
</tr>
<tr>
<td>Step 3  switch(config-vlan)# name vlan-name</td>
<td>Names the VLAN. You can enter up to 32 alphanumeric characters to name the VLAN. You cannot change the name of VLAN1 or the internally allocated VLANs. The default value is VLANxxxx where xxxx represents four numeric digits (including leading zeroes) equal to the VLAN ID number.</td>
</tr>
</tbody>
</table>
### Configuring VLANs

**Adding Ports to a VLAN**

After you have completed the configuration of a VLAN, assign ports to it.

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal entraes global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# interface {ethernet slot/port</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switch(config-if)# switchport access vlan vlan-id</td>
</tr>
</tbody>
</table>

**Example**

This example shows how to configure an Ethernet interface to join VLAN 5:

switch# configure terminal

---

| Step 4 | switch(config-vlan)# state {active | suspend} |
|--------|-----------------------------------------------|
| Purpose | Sets the state of the VLAN to active or suspend. While the VLAN state is suspended, the ports associated with this VLAN are shut down, and that VLAN does not pass any traffic. The default state is active. You cannot suspend the state for the default VLAN or VLANs 1006 to 4094. |

**Step 5**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Optional) switch(config-vlan)# no shutdown</td>
<td></td>
</tr>
<tr>
<td>Enables the VLAN. The default value is no shutdown (or enabled). You cannot shut down the default VLAN, VLAN1, or VLANs 1006 to 4094.</td>
<td></td>
</tr>
</tbody>
</table>

---

### Example

This example shows how to configure optional parameters for VLAN 5:

switch# configure terminal
switch(config)# vlan 5
switch(config-vlan)# name accounting
switch(config-vlan)# state active
switch(config-vlan)# no shutdown
Configuring VTP

You can configure VTP in the client or server mode on Cisco Nexus devices.

You can enable VTP and then configure the VTP mode (server [default], client, transparent, or off). If you enable VTP, you must configure either version 1 or version 2. If you are using VTP in a Token Ring environment, you must use version 2.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>switch(config)# feature vtp</td>
<td>Enables VTP on the device. The default is disabled.</td>
</tr>
<tr>
<td>3</td>
<td>switch(config)# vtp domain domain-name</td>
<td>Specifies the name of the VTP domain that you want this device to join. The default is blank.</td>
</tr>
<tr>
<td>4</td>
<td>switch(config)# vtp version {1</td>
<td>2}</td>
</tr>
<tr>
<td>5</td>
<td>switch(config)# vtp file file-name</td>
<td>Specifies the ASCII filename of the IFS file system file where the VTP configuration is stored.</td>
</tr>
<tr>
<td>6</td>
<td>switch(config)# vtp password password-value</td>
<td>Specifies the password for the VTP administrative domain.</td>
</tr>
<tr>
<td>7</td>
<td>switch(config)# exit</td>
<td>Exits the configuration submode.</td>
</tr>
<tr>
<td>8</td>
<td>(Optional) switch# show vtp status</td>
<td>Displays information about the VTP configuration on the device, such as the version, mode, and revision number.</td>
</tr>
<tr>
<td>9</td>
<td>(Optional) switch# show vtp counters</td>
<td>Displays information about VTP advertisement statistics on the device.</td>
</tr>
<tr>
<td>10</td>
<td>(Optional) switch# show vtp interface</td>
<td>Displays the list of VTP-enabled interfaces.</td>
</tr>
<tr>
<td>11</td>
<td>(Optional) switch# show vtp password</td>
<td>Displays the password for the management VTP domain.</td>
</tr>
<tr>
<td>12</td>
<td>(Optional) switch# copy running-config startup-config</td>
<td>Copies the running configuration to the startup configuration.</td>
</tr>
</tbody>
</table>
Example

This example shows the VTP status and that the switch is capable of supporting Version 2 and that the switch is running Version 1:

```
switch(config)# show vtp status
VTP Status Information

VTP Version : 2 (capable)
Configuration Revision : 0
Maximum VLANs supported locally : 1005
Number of existing VLANs : 502
VTP Operating Mode : Transparent
VTP Domain Name :
VTP Pruning Mode : Disabled (Operationally Disabled)
VTP V2 Mode : Disabled
VTP Traps Generation : Disabled
MD5 Digest : 0xF5 0xF1 0xEC 0xE7 0x29 0x0C 0x2D 0x01
Configuration last modified by 60.10.10.1 at 0-0-00 00:00:00
VTP version running : 1
```

Configuring VLAN Translation on a Trunk Port

You can configure VLAN translation between the ingress VLAN and a local VLAN on a port. The traffic arriving on the ingress VLAN maps to the local VLAN at the ingress of the trunk port and the traffic that is internally tagged with the translated VLAN ID is mapped back to the original VLAN ID before leaving the switch port.

Before you begin

- Ensure that the physical or port channel on which you want to implement VLAN translation is configured as a Layer 2 trunk port.
- Ensure that the translated VLANs are created on the switch and are also added to the Layer 2 trunk ports trunk-allowed VLAN vlan-list.
- For FEX port-channel trunk interfaces, the last VLAN in the allowed VLAN list must be associated with a translated VLAN in one of the VLAN maps configured on the FEX fabric interface.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# interface type port</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>(Optional) switch(config-if)# [no] switchport vlan mapping enable</td>
</tr>
</tbody>
</table>
### Command or Action

<table>
<thead>
<tr>
<th>Step 4</th>
<th>switch(config-if)# [no] switchport vlan mapping vlan-id translated-vlan-id</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Translates a VLAN to another VLAN.</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>• The range for both the <code>vlan-id</code> and <code>translated-vlan-id</code> arguments is from 1 to 4094.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• When you configure a VLAN mapping between a VLAN and a (local) VLAN on a port, traffic arriving on the VLAN gets mapped or translated to the local VLAN at the ingress of the switch port, and the traffic internally tagged with the translated VLAN ID gets mapped to the original VLAN ID before leaving the switch port. This method of VLAN mapping is a two-way mapping.</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong> Use the <code>no</code> form of this command to clear the mappings between a pair of VLANs.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 5</th>
<th>switch(config-if)# [no] switchport vlan translation all</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Removes all VLAN translations configured on the interface.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 6</th>
<th>(Optional) switch(config-if)# copy running-config startup-config</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Copies the running configuration to the startup configuration.</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong> The VLAN translation configuration does not become effective until the switch port becomes an operational trunk port</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 7</th>
<th>(Optional) switch(config-if)# show interface [if-identifier] vlan mapping</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Displays VLAN mapping information for all interfaces or for the specified interface.</td>
<td></td>
</tr>
</tbody>
</table>

### Example

This example shows how to configure VLAN translation between (the ingress) VLAN 10 and (the local) VLAN 100:

```
switch# config t
switch(config))# interface ethernet1/1
switch(config-if)# switchport vlan mapping 10 100
switch(config-if)# show interface ethernet1/1 vlan mapping
```

<table>
<thead>
<tr>
<th>Interface eth1/1:</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Original VLAN</strong></td>
</tr>
<tr>
<td>10</td>
</tr>
</tbody>
</table>
Configuring VLAN Translation with a FEX

VLAN translation on a FEX operates on a per-FEX basis. The VLAN translation enable and mapping configurations must be applied to all the fabric interfaces for a FEX and take effect on all FEX host trunk ports.

You can configure VLAN translation between the ingress/original VLAN and a translated/local VLAN on a FEX trunk port.

For traffic ingressing a FEX trunk port, the original VLAN is mapped to the local VLAN based on the VLAN translations configured on the FEX fabric interfaces. Similarly for traffic egressing a FEX trunk port, the local VLAN is translated to the original VLAN based on the VLAN translation configured on the FEX fabric interfaces.

**Note**
The vlan-list must include the translated VLANs that need to be translated on a FEX trunk interface.

**Before you begin**
- Ensure that all operational FEX interfaces are configured as Layer 2 trunk ports.
- Ensure that the translated VLANs are created on the switch and that the FEX Layer 2 trunk ports specify the translated VLANs in their trunk allowed vlan-list.

**Procedure**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# interface type port</td>
<td>Specifies an Ethernet interface to configure.</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config-if)# channel-group number</td>
<td>Configures port channel parameters.</td>
</tr>
<tr>
<td>Step 4</td>
<td>switch(config-if)# exit</td>
<td>Exits the configuration submode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>switch(config)# interface type port</td>
<td>Specifies an Ethernet interface to configure.</td>
</tr>
<tr>
<td>Step 6</td>
<td>switch(config-if)# switchport mode fex-fabric</td>
<td>Set the interface to support an external Fabric Extender.</td>
</tr>
<tr>
<td>Step 7</td>
<td>switch(config-if)# switchport vlan map vlan-id translated-id</td>
<td>vlan-id is the ingress. Range is from 1 to 4094. translated-id is the local VLAN. Range is from 1 to 4094.</td>
</tr>
<tr>
<td>Step 8</td>
<td>switch(config-if)# fex associate number</td>
<td>Associates a Fabric Extender with a fabric interface.</td>
</tr>
<tr>
<td>Step 9</td>
<td>switch(config-if)# exit</td>
<td>Exits the configuration submode.</td>
</tr>
<tr>
<td>Step 10</td>
<td>switch(config)# interface type port</td>
<td>Specifies an Ethernet interface to configure.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td>Note</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>switch(config-if)# switchport mode trunk</td>
<td>Configures the interface as a trunk port.</td>
<td>Applies to the FEX trunk interfaces.</td>
</tr>
<tr>
<td>switch(config-if)# switchport trunk allowed vlan vlan-id</td>
<td>Configures the allowed VLANs for a virtual Ethernet interface.</td>
<td>Applies to the FEX trunk interfaces. For FEX port-channel trunk interfaces, the last vlan in the allowed vlan list must be associated with a translated vlan in one of the vlan maps configured on the FEX fabric interface.</td>
</tr>
</tbody>
</table>

**Example**

This example shows how to configure VLAN translation with a FEX.

```
switch# configure terminal
switch(config)# interface ethernet1/1
switch(config-if)# channel-group 100
switch(config-if)# exit
switch(config)# interface Po100
switch(config-if)# switchport mode fex-fabric
switch(config-if)# switchport vlan map 10 20
switch(config-if)# fex associate 100
switch(config-if)# exit
switch(config)# interface ethernet100/1/1
switch(config-if)# switchport mode trunk
switch(config-if)# switchport trunk allowed vlan 20
```

**Verifying the VLAN Configuration**

Use one of the following commands to verify the configuration:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch# show running-config vlan [vlan_id</td>
<td>vlan_range]</td>
</tr>
<tr>
<td>switch# show vlan [brief</td>
<td>id [vlan_id</td>
</tr>
<tr>
<td>switch# show system vlan reserved</td>
<td>Displays the system reserved VLAN range.</td>
</tr>
</tbody>
</table>
Feature History for Configuring VLANs

This table lists the release history for this feature.

**Note** The feature history table is added/updated in this guide from Cisco Nexus Release 7.3(0)N1(1) onwards.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configure VLAN long-name</td>
<td>7.3(0)N1(1)</td>
<td>You can configure VLAN long-names of up to 128 characters. The following command was introduced:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• system vlan long-name</td>
</tr>
</tbody>
</table>
Configuring Private VLANs

This chapter contains the following sections:

- Guidelines and Limitations for Private VLANs, on page 75
- Information About Private VLANs, on page 76
- Configuring a Private VLAN, on page 82
- Verifying the Private VLAN Configuration, on page 91

Guidelines and Limitations for Private VLANs

When configuring PVLANs, follow these guidelines:

- You must create a VLAN before you can assign the specified VLAN as a private VLAN.
- You must enable PVLANs before the switch can apply the PVLAN functionality.
- You cannot disable PVLANs if the switch has any operational ports in a PVLAN mode.
- Enter the `private-vlan synchronize` command from within the Multiple Spanning Tree (MST) region definition to map the secondary VLANs to the same MST instance as the primary VLAN.
- You must disable all the FEX isolated trunk ports before configuring FEX trunk ports.
- You cannot connect a second switch to a promiscuous or isolated PVLAN trunk. The promiscuous or isolated PVLAN trunk is supported only on host-switch.
- You cannot configure promiscuous ports and promiscuous trunk ports on the FEX interfaces (HIF) ports.
- If you configure a `private-vlan association` under a VLAN, but do not configure the `private-vlan type` as primary, this association will reappear in the running configuration under the same VLAN when the VLAN is deleted and re-created. Note that this earlier association cannot be removed by using the `no private-vlan association` command. It can be removed only by performing either of the following tasks:
  - Disable the PVLAN feature.
  - Or
  - Configure the `private-vlan type` as primary, configure the same `private-vlan association` under that VLAN, and then remove the association using the `no private-vlan association` command.
Limitations with Other Features

Consider the following configuration limitations with other features when configuring private VLANs:

- IGMP snooping runs only on the primary VLAN and uses the configuration of the primary VLAN for all secondary VLANs.

Any IGMP snooping join request in the secondary VLAN is treated as if it is received in the primary VLAN.

Information About Private VLANs

A private VLAN (PVLAN) partitions the Ethernet broadcast domain of a VLAN into subdomains, allowing you to isolate the ports on the switch from each other. A subdomain consists of a primary VLAN and one or more secondary VLANs (see the following figure). All VLANs in a PVLAN domain share the same primary VLAN. The secondary VLAN ID differentiates one subdomain from another. The secondary VLAN can either be isolated VLAN or community VLAN. A host on an isolated VLAN can communicate only with the associated promiscuous port in its primary VLAN. Hosts on community VLAN can communicate among themselves and with their associated promiscuous port but not with ports in other community VLANs.

Figure 7: Private VLAN Domain

- Note

You must first create the VLAN before converting it to a PVLAN, either a primary VLAN or secondary VLAN.
Primary and Secondary VLANs in Private VLANs

A private VLAN domain has only one primary VLAN. Each port in a private VLAN domain is a member of the primary VLAN; the primary VLAN is the entire private VLAN domain.

Secondary VLAN provide isolation between the ports within the same private VLAN domain. The following two types are secondary VLANs within a primary VLAN:

- Isolated VLANs—Ports within an isolated VLAN cannot communicate directly with each other at the Layer 2 level.
- Community VLANs—Ports within a community VLAN can communicate with each other but cannot communicate with ports in other community VLANs or in any isolated VLANs at the Layer 2 level.

Baseboard Ports and HIF Ports

The following figure shows the baseboard and host interface (HIF) ports on a Cisco Nexus switch.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Baseboard ports are ports on a baseboard module in a Cisco Nexus switch.</td>
</tr>
<tr>
<td>2</td>
<td>FEX HIF ports are ports on the FEX module.</td>
</tr>
</tbody>
</table>

Associating Secondary VLANs with a Primary Private VLAN

When you associate secondary VLANs with a primary VLAN, follow these guidelines:

- The `secondary-vlan-list` parameter cannot contain spaces. It can contain multiple comma-separated items. Each item can be a single secondary VLAN ID or a hyphenated range of secondary VLAN IDs.
- The `secondary-vlan-list` parameter can contain multiple community VLAN IDs and one isolated VLAN ID.
- Enter a `secondary-vlan-list` or use the `add` keyword with a `secondary-vlan-list` to associate secondary VLANs with a primary VLAN.
- Use the `remove` keyword with a `secondary-vlan-list` to clear the association between secondary VLANs and a primary VLAN.
- You can change the association between a secondary and primary VLAN by removing the existing association, and then adding the desired association.

If you delete either the primary or secondary VLAN, the VLAN becomes inactive on the port where the association is configured. When you enter the `no private-vlan` command, the VLAN returns to the normal VLAN mode. All primary and secondary associations on that VLAN are suspended, but the interfaces remain in PVLAN mode. If you convert the specified VLAN to PVLAN mode again, the original associations are reinstated.

If you enter the `no vlan` command for the primary VLAN, all the PVLAN associations with that VLAN are lost. However, if you enter the `no vlan` command for a secondary VLAN, the PVLAN associations with that VLAN are suspended and are reinstated when you recreate the specified VLAN and configure it as the previous secondary VLAN.

**Before you begin**

Ensure that the PVLAN feature is enabled.

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> switch(config)# vlan primary-vlan-id</td>
<td>Enters the number of the primary VLAN that you are working in for the PVLAN configuration.</td>
</tr>
<tr>
<td><strong>Step 3</strong> switch(config-vlan)# private-vlan association {%[add] secondary-vlan-list</td>
<td>remove secondary-vlan-list}</td>
</tr>
<tr>
<td><strong>Step 4</strong> (Optional) switch(config-vlan)# no private-vlan association</td>
<td>Removes all associations from the primary VLAN and returns it to normal VLAN mode.</td>
</tr>
</tbody>
</table>

**Example**

The following example shows how to associate community VLANs 100 through 110 and isolated VLAN 200 with primary VLAN 5:

```
switch# configure terminal
switch(config)# vlan 5
switch(config-vlan)# private-vlan association 100-110, 200
```

**Private VLAN Ports**

The following are three types of PVLAN ports:

- Promiscuous port—A promiscuous port belongs to a primary VLAN. The promiscuous port can communicate with all interfaces, including the community and isolated host ports, that belong to those
secondary VLANs associated to the promiscuous port and associated with the primary VLAN. You can have several promiscuous ports in a primary VLAN. Each promiscuous port can have several secondary VLANs or no secondary VLANs that are associated to that port. You can associate a secondary VLAN to more than one promiscuous port, as long as the promiscuous port and secondary VLANs are within the same primary VLAN. You may want to do this for load-balancing or redundancy purposes. You can also have secondary VLANs that are not associated to any promiscuous port.

A promiscuous port can be configured either as an access port or as a trunk port.

- Isolated port—An isolated port is a host port that belongs to an isolated secondary VLAN. This port has complete isolation from other ports within the same PVLAN domain, except that it can communicate with associated promiscuous ports. PVLANs block all the traffic to isolated ports except traffic from promiscuous ports. Traffic received from an isolated port is forwarded only to promiscuous ports. You can have more than one isolated port in a specified isolated VLAN. Each port is completely isolated from all other ports in the isolated VLAN.

An isolated port can be configured as either an access port or a trunk port.

- Community port—A community port is a host port that belongs to a community secondary VLAN. Community ports communicate with other ports in the same community VLAN and with associated promiscuous ports. These interfaces are isolated from all other interfaces in other communities and from all isolated ports within the PVLAN domain.

A community port must be configured as an access port. A community VLAN must not be enabled on an isolated trunk port.

---

**Note**

Because trunks can support VLANs that carry traffic between promiscuous, isolated, and community ports, the isolated and community port traffic might enter or leave the switch through a trunk interface.

---

**Primary, Isolated, and Community Private VLANs**

Primary VLANs and the two types of secondary VLANs (isolated and community) have the following characteristics:

- **Primary VLAN**—The primary VLAN carries traffic from the promiscuous ports to the host ports, both isolated and community, and to other promiscuous ports.

- **Isolated VLAN**—An isolated VLAN is a secondary VLAN that carries unidirectional traffic upstream from the hosts toward the promiscuous ports. You can configure only one isolated VLAN in a PVLAN domain. An isolated VLAN can have several isolated ports. The traffic from each isolated port also remains completely separate.

- **Community VLAN**—A community VLAN is a secondary VLAN that carries upstream traffic from the community ports to the promiscuous port and to other host ports in the same community. You can configure multiple community VLANs in a PVLAN domain. The ports within one community can communicate, but these ports cannot communicate with ports in any other community or isolated VLAN in the private VLAN.

The following figure shows the traffic flow within a PVLAN, along with the types of VLANs and types of ports.
Figure 8: Private VLAN Traffic Flows

The PVLAN traffic flows are unidirectional from the host ports to the promiscuous ports. Traffic received on primary VLAN enforces no separation and forwarding is done as in a normal VLAN.

Note
A promiscuous access port can serve only one primary VLAN and multiple secondary VLANs (community and isolated VLANs). A promiscuous trunk port can carry traffic for several primary VLANs. Multiple secondary VLANs under a given primary VLAN can be mapped to promiscuous trunk ports. With a promiscuous port, you can connect a wide range of devices as access points to a PVLAN. For example, you can use a promiscuous port to monitor or back up all the PVLAN servers from an administration workstation.

In a switched environment, you can assign an individual PVLAN and associated IP subnet to each individual or common group of end stations. The end stations need to communicate only with a default gateway to communicate outside the private VLAN.

Associating Primary and Secondary VLANs

To allow host ports in secondary VLANs to communicate outside the PVLAN, you associate secondary VLANs to the primary VLAN. If the association is not operational, the host ports (community and isolated ports) in the secondary VLAN are brought down.

Note
You can associate a secondary VLAN with only one primary VLAN.

For an association to be operational, the following conditions must be met:

- The primary VLAN must exist and be configured as a primary VLAN.
- The secondary VLAN must exist and be configured as either an isolated or community VLAN.
Use the `show vlan private-vlan` command to verify that the association is operational. The switch does not display an error message when the association is nonoperational.

If you delete either the primary or secondary VLAN, the ports that are associated with the VLAN become inactive. Use the `no private-vlan` command to return the VLAN to the normal mode. All primary and secondary associations on that VLAN are suspended, but the interfaces remain in PVLAN mode. When you convert the VLAN back to PVLAN mode, the original associations are reinstated.

If you enter the `no vlan` command for the primary VLAN, all PVLAN associations with that VLAN are deleted. However, if you enter the `no vlan` command for a secondary VLAN, the PVLAN associations with that VLAN are suspended and are restored when you recreate the specified VLAN and configure it as the previous secondary VLAN.

In order to change the association between a secondary and primary VLAN, you must first remove the current association and then add the desired association.

**Private VLAN Promiscuous Trunks**

A promiscuous trunk port can carry traffic for several primary VLANs. Multiple secondary VLANs under a given primary VLAN can be mapped to a promiscuous trunk port. Traffic on the promiscuous port is received and transmitted with a primary VLAN tag.

**Private VLAN Isolated Trunks**

An isolated trunk port can carry traffic for multiple isolated PVLANs. Traffic for a community VLAN is not carried by isolated trunk ports. Traffic on isolated trunk ports is received and transmitted with an isolated VLAN tag. Isolated trunk ports are intended to be connected to host servers.

To support isolated PVLAN ports on a Cisco Nexus Fabric Extender, the Cisco Nexus device must prevent communication between the isolated ports on the FEX; all forwarding occurs through the switch.

**Caution**

You must disable all the FEX isolated trunk ports before configuring PVLANs on the FEX trunk ports. If the FEX isolated trunk ports and the FEX trunk ports are both enabled, unwanted network traffic might occur.

For unicast traffic, you can prevent such a communication without any side effects.

For multicast traffic, the FEX provides replication of the frames. To prevent communication between isolated PVLAN ports on the FEX, the switch prevents multicast frames from being sent back through the fabric ports. This restriction prevents communication between an isolated VLAN and a promiscuous port on the FEX. However, as host interfaces are not intended to be connected to another switch or router, you cannot enable a promiscuous port on a FEX.

**Broadcast Traffic in Private VLANs**

Broadcast traffic from ports in a private VLAN flows in the following ways:
• The broadcast traffic flows from a promiscuous port to all ports in the primary VLAN (which includes all the ports in the community and isolated VLANs). This broadcast traffic is distributed to all ports within the primary VLAN, including those ports that are not configured with private VLAN parameters.

• The broadcast traffic from an isolated port is distributed only to those promiscuous ports in the primary VLAN that are associated to that isolated port.

• The broadcast traffic from community ports is distributed to all ports within the port’s community and to all promiscuous ports that are associated to the community port. The broadcast packets are not distributed to any other communities within the primary VLAN or to any isolated ports.

Private VLAN Port Isolation

You can use PVLANs to control access to end stations as follows:

• Configure selected interfaces connected to end stations as isolated ports to prevent any communication. For example, if the end stations are servers, this configuration prevents communication between the servers.

• Configure interfaces connected to default gateways and selected end stations (for example, backup servers) as promiscuous ports to allow all end stations access to a default gateway.

Configuring a Private VLAN

Enabling Private VLANs

You must enable PVLANs on the switch to use the PVLAN functionality.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config)# feature private-vlan</td>
<td>Enables the PVLAN feature on the switch.</td>
</tr>
<tr>
<td>Step 3 (Optional) switch(config)# no feature private-vlan</td>
<td>Disables the PVLAN feature on the switch.</td>
</tr>
</tbody>
</table>

Note: You cannot disable PVLANs if there are operational ports on the switch that are in PVLAN mode.
Example
This example shows how to enable the PVLAN feature on the switch:

```
switch# configure terminal
switch(config)# feature private-vlan
```

Configuring a VLAN as a Private VLAN

To create a PVLAN, you must first create a VLAN, and then configure that VLAN to be a PVLAN.

Before you begin
Ensure that the PVLAN feature is enabled.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# vlan {vlan-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config-vlan)# private-vlan {community</td>
</tr>
<tr>
<td>Step 4</td>
<td>(Optional) switch(config-vlan)# no private-vlan {community</td>
</tr>
</tbody>
</table>

Example

The following example shows how to assign VLAN 5 to a PVLAN as the primary VLAN:

```
switch# configure terminal
switch(config)# vlan 5
switch(config-vlan)# private-vlan primary
```

The following example shows how to assign VLAN 100 to a PVLAN as a community VLAN:

```
switch# configure terminal
switch(config)# vlan 100
switch(config-vlan)# private-vlan community
```

The following example shows how to assign VLAN 200 to a PVLAN as an isolated VLAN:

```
switch# configure terminal
switch(config)# vlan 200
switch(config-vlan)# private-vlan isolated
```
Configuring an Interface as a Private VLAN Host Port

In PVLANs, host ports are part of the secondary VLANs, which are either community VLANs or isolated VLANs. Configuring a PVLAN host port involves two steps. First, you define the port as a PVLAN host port and then you configure a host association between the primary and secondary VLANs.

**Note**

We recommend that you enable BPDU Guard on all interfaces configured as a host ports.

**Before you begin**

Ensure that the PVLAN feature is enabled.

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> switch(config)# interface type [chassis/slot/port]</td>
<td>Selects the port to configure as a PVLAN host port. This port can be on a FEX (identified by the chassis option).</td>
</tr>
<tr>
<td><strong>Step 3</strong> switch(config-if)# switchport</td>
<td>Configures the interface as a Layer 2 interface and deletes any configuration specific to Layer 3 on this interface.</td>
</tr>
<tr>
<td><strong>Step 4</strong> switch(config-if)# switchport mode private-vlan host</td>
<td>Configures the port as a host port for a PVLAN.</td>
</tr>
<tr>
<td><strong>Step 5</strong> switch(config-if)# switchport private-vlan host-association {primary-vlan-id} {secondary-vlan-id}</td>
<td>Associates the port with the primary and secondary VLANs of a PVLAN. The secondary VLAN can be either an isolated or community VLAN.</td>
</tr>
<tr>
<td><strong>Step 6</strong> (Optional) switch(config-if)# no switchport private-vlan host-association</td>
<td>Removes the PVLAN association from the port.</td>
</tr>
</tbody>
</table>

**Example**

This example shows how to configure Ethernet port 1/12 as a host port for a PVLAN and associate it to primary VLAN 5 and secondary VLAN 101:

```
switch# configure terminal
switch(config)# interface ethernet 1/12
switch(config-if)# switchport
switch(config-if)# switchport mode private-vlan host
switch(config-if)# switchport private-vlan host-association 5 101
```
### Configuring an Interface as a Private VLAN Promiscuous Port

In a PVLAN domain, promiscuous ports are part of the primary VLAN. Configuring a promiscuous port involves two steps. First, you define the port as a promiscuous port and then you configure the mapping between a secondary VLAN and the primary VLAN.

**Before you begin**

Ensure that the PVLAN feature is enabled.

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>enters global configuration mode.</td>
</tr>
</tbody>
</table>
| **Step 2** | selects the port to configure as a PVLAN promiscuous port. A base-board interface is required. This port cannot be on a FEX interface (HIF interface).  
**Note** If this is a QSFP+ GEM or a breakout port, the port syntax is QSFP-module/port. |
| **Step 3** | configures the interface as a Layer 2 interface and deletes any configuration specific to Layer 3 on this interface. |
| **Step 4** | configures the port as a promiscuous port for a PVLAN. You can enable promiscuous ports and promiscuous trunk ports only on base-board ports (base-board ports are the ports on the switch). You cannot configure promiscuous ports on FEX (HIF) ports.  
**Note** If you try to configure promiscuous ports on FEX (HIF) ports, the device will display an error. |
| **Step 5** | configures the port as a promiscuous port and associates the specified port with a primary VLAN and a selected list of secondary VLANs. The secondary VLAN can be either an isolated or community VLAN. |
| **Step 6** | clears the mapping from the PVLAN. (Optional) |
Example

The following example shows how to configure Ethernet interface 1/4 as a promiscuous port associated with primary VLAN 5 and secondary VLAN 200:

```plaintext
switch# configure terminal
switch(config)# interface ethernet 1/4
switch(config-if)# switchport
switch(config-if)# switchport mode private-vlan promiscuous
switch(config-if)# switchport private-vlan mapping 5 200
```

Configuring a Promiscuous Trunk Port

In a PVLAN domain, promiscuous trunks are part of the primary VLAN. Promiscuous trunk ports can carry multiple primary VLANs. Multiple secondary VLANs under a given primary VLAN can be mapped to a promiscuous trunk port.

Configuring a promiscuous port involves two steps. First, you define the port as a promiscuous port and then you configure the mapping between a secondary VLAN and the primary VLAN. Multiple primary VLANs can be enabled by configuring multiple mappings.

---

**Note**

The number of mappings on a PVLAN trunk port is limited to 128.

---

**Before you begin**

Ensure that the PVLAN feature is enabled.

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# interface type slot/port</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switch(config-if)# switchport</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>switch(config-if)# switchport mode private-vlan trunk promiscuous</td>
</tr>
</tbody>
</table>

Note: If this is a QSFP+ GEM or a breakout port, the `port` syntax is `QSFP-module/port`.

Configuring Private VLANs
### Configuring Private VLANs

#### Configuring an Isolated Trunk Port

In a PVLAN domain, isolated trunks are part of a secondary VLAN. Isolated trunk ports can carry multiple isolated VLANs. Configuring an isolated trunk port involves two steps. First, you define the port as an isolated trunk port and then you configure the association between the isolated and primary VLANs. Multiple isolated VLANs can be enabled by configuring multiple associations.

**Before you begin**
Ensure that the PVLAN feature is enabled.

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> switch(config)# interface type [chassis/]slot/port</td>
<td>Selects the port to configure as a PVLAN isolated trunk port. This port can be on a FEX (identified by the chassis option). The PVLAN isolated trunk port can be configured on an Ethernet port and on a FEX port.</td>
</tr>
</tbody>
</table>

---

#### Example

The following example shows how to configure Ethernet interface 1/1 as a promiscuous trunk port for a PVLAN and then map the secondary VLANs to the primary VLAN:

```
switch# configure terminal
switch(config)# interface ethernet 1/1
switch(config-if)# switchport
switch(config-if)# switchport mode private-vlan trunk promiscuous
switch(config-if)# switchport private-vlan mapping trunk 5 100
switch(config-if)# switchport private-vlan mapping trunk 5 200
switch(config-if)# switchport private-vlan mapping trunk 6 300
```

---

#### Configuring an Isolated Trunk Port

### Purpose Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure promiscuous trunk ports on FEX (HIF) ports.</td>
<td><strong>Step 5</strong> switch(config-if)# switchport private-vlan mapping trunk {primary-vlan-id} {secondary-vlan-id}</td>
</tr>
<tr>
<td>If you try to configure promiscuous trunk ports on FEX (HIF) ports, the device will display an error.</td>
<td></td>
</tr>
<tr>
<td>Maps the trunk port with the primary and secondary VLANs of a PVLAN. The secondary VLAN can be either an isolated or community VLAN.</td>
<td><strong>Step 6</strong> (Optional) switch(config-if)# no switchport private-vlan mapping trunk [primary-vlan-id]</td>
</tr>
<tr>
<td>Removes the PVLAN mapping from the port. If the primary-vlan-id is not supplied, all PVLAN mappings are removed from the port.</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Note</td>
<td>If this is a QSFP+ GEM or a breakout port, the port syntax is QSFP-module/port.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switch(config-if)# switchport</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>switch(config-if)# switchport mode private-vlan trunk [secondary]</td>
</tr>
<tr>
<td>Note</td>
<td>The secondary keyword is assumed if it is not present.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>switch(config-if)# switchport private-vlan association trunk {primary-vlan-id} {secondary-vlan-id}</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>(Optional) switch(config-if)# no switchport private-vlan association trunk [primary-vlan-id]</td>
</tr>
</tbody>
</table>

**Example**

The following example shows how to configure Ethernet interface 1/1 as an isolated trunk port for a PVLAN and then associate the secondary VLANs to the primary VLAN:

```
switch# configure terminal
switch(config)# interface ethernet 1/1
switch(config-if)# switchport
switch(config-if)# switchport mode private-vlan trunk secondary
switch(config-if)# switchport private-vlan association trunk 5 100
switch(config-if)# switchport private-vlan association trunk 6 200
```

**Configuring Private VLANs on FEX Trunk Ports**

To enable a FEX HIF configured as a normal dot1q trunk port, the **system private-vlan fex trunk** command must be enabled to allow this interface to forward both primary and secondary VLAN traffic. FEX trunk ports extend the PVLAN domain to all the hosts connected to it and when configured, globally affects all FEX ports connected to the Cisco Nexus device.

**Note**

The FEX interface does not support configurations that include promiscuous ports. Also, the FEX interface does not support connections to devices that have promiscuous ports. When promiscuous functionally is required, the device, such as a Cisco Nexus 1000V, must connect to the base ports of the Cisco Nexus device.
You must disable all the FEX isolated trunk ports and isolated host ports before configuring PVLANs on the FEX trunk ports. If the FEX isolated trunk ports and the FEX trunk ports are both enabled, unwanted network traffic might occur. If the `system private-vlan fex trunk` command and the FEX isolated trunk ports are both enabled, then traffic coming on primary VLAN is not translated to secondary VLAN, when the traffic goes out of the FEX isolated trunk port.

**Before you begin**

Ensure that the PVLAN feature is enabled.

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config)# system private-vlan fex trunk</td>
<td>Enables PVLANs on FEX trunk ports.</td>
</tr>
<tr>
<td>Step 3 (Optional) switch(config)# copy running-config startup-config</td>
<td>Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.</td>
</tr>
</tbody>
</table>

**Example**

The following example shows how to configure a PVLAN over a FEX trunk port:

```
switch# configure terminal
switch(config)# system private-vlan fex trunk
switch(config)# copy running-config startup-config
```

**Configuring the Allowed VLANs for PVLAN Trunking Ports**

Isolated trunk and promiscuous trunk ports can carry traffic from regular VLANs along with PVLANs.

**Before you begin**

Ensure that the PVLAN feature is enabled.

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config)# interface type [chassis/]slot/port</td>
<td>Selects the port to configure as a PVLAN host port. This port can be on a FEX (identified by the chassis option).</td>
</tr>
</tbody>
</table>
### Configuring Native 802.1Q VLANs on Private VLANs

Typically, you configure 802.1Q trunks with a native VLAN ID, which strips tagging from all packets on that VLAN. This configuration allows untagged traffic and control traffic to transit the Cisco Nexus device. Secondary VLANs cannot be configured with a native VLAN ID on promiscuous trunk ports. Primary VLANs cannot be configured with a native VLAN ID on isolated trunk ports.

A trunk can carry the traffic of multiple VLANs. Traffic that belongs to the native VLAN is not encapsulated to transit the trunk. Traffic for other VLANs is encapsulated with tags that identify the VLAN that the traffic belongs to.

### Before you begin

Ensure that the PVLAN feature is enabled.

### Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
</tbody>
</table>
Verifying the Private VLAN Configuration

Use the following commands to display PVLAN configuration information.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch# show feature</td>
<td>Displays the features enabled on the switch.</td>
</tr>
<tr>
<td>switch# show interface switchport</td>
<td>Displays information on all interfaces configured as switch ports.</td>
</tr>
<tr>
<td>switch# show vlan private-vlan [type]</td>
<td>Displays the status of the PVLAN.</td>
</tr>
</tbody>
</table>

This example shows how to display the PVLAN configuration:

```
switch# show vlan private-vlan
Primary Secondary Type Ports
-------- --------- --------------- ---
5 100 community
5 101 community Eth1/12, Eth100/1/1
5 102 community
5 110 community
5 200 isolated Eth1/2
switch# show vlan private-vlan type
Vlan Type
---- ------------
5 primary
100 community
101 community
102 community
110 community
```
200 isolated

This example shows how to display enabled features (some of the output has been removed for brevity):

```
switch# show feature
Feature Name Instance State
-------------------- -------- --------
fcsp 1 enabled
... ...
interface-vlan 1 enabled
private-vlan 1 enabled
udld 1 disabled
... ...
```
Configuring Rapid PVST+

This chapter contains the following sections:

- Information About Rapid PVST+, on page 93
- Configuring Rapid PVST+, on page 108
- Verifying the Rapid PVST+ Configuration, on page 117

Information About Rapid PVST+

The Rapid PVST+ protocol is the IEEE 802.1w standard, Rapid Spanning Tree Protocol (RSTP), implemented on a per VLAN basis. Rapid PVST+ interoperates with the IEEE 802.1D standard, which mandates a single STP instance for all VLANs, rather than per VLAN.

Rapid PVST+ is enabled by default on the default VLAN (VLAN1) and on all newly created VLANs in the software. Rapid PVST+ interoperates with switches that run legacy IEEE 802.1D STP.

RSTP is an improvement on the original STP standard, 802.1D, which allows faster convergence.

---

Note

Spanning tree is used to refer to IEEE 802.1w and IEEE 802.1s. If the text is discussing the IEEE 802.1D Spanning Tree Protocol, 802.1D is stated specifically.

Understanding STP

STP Overview

For an Ethernet network to function properly, only one active path can exist between any two stations.

When you create fault-tolerant internetworks, you must have a loop-free path between all nodes in a network. The STP algorithm calculates the best loop-free path throughout a switched network. LAN ports send and receive STP frames, which are called Bridge Protocol Data Units (BPDUs), at regular intervals. Switches do not forward these frames but use the frames to construct a loop-free path.

Multiple active paths between end stations cause loops in the network. If a loop exists in the network, end stations might receive duplicate messages and switches might learn end station MAC addresses on multiple LAN ports. These conditions result in a broadcast storm, which creates an unstable network.
STP defines a tree with a root bridge and a loop-free path from the root to all switches in the network. STP forces redundant data paths into a blocked state. If a network segment in the spanning tree fails and a redundant path exists, the STP algorithm recalculates the spanning tree topology and activates the blocked path.

When two LAN ports on a switch are part of a loop, the STP port priority and port path cost setting determine which port on the switch is put in the forwarding state and which port is put in the blocking state.

**Understanding How a Topology is Created**

All switches in an extended LAN that participate in a spanning tree gather information about other switches in the network by exchanging of BPDUs. This exchange of BPDUs results in the following actions:

- The system elects a unique root switch for the spanning tree network topology.
- The system elects a designated switch for each LAN segment.
- The system eliminates any loops in the switched network by placing redundant interfaces in a backup state; all paths that are not needed to reach the root switch from anywhere in the switched network are placed in an STP-blocked state.

The topology on an active switched network is determined by the following:

- The unique switch identifier Media Access Control (MAC) address of the switch that is associated with each switch
- The path cost to the root that is associated with each interface
- The port identifier that is associated with each interface

In a switched network, the root switch is the logical center of the spanning tree topology. STP uses BPDUs to elect the root switch and root port for the switched network, as well as the root port and designated port for each switched segment.

**Understanding the Bridge ID**

Each VLAN on each switch has a unique 64-bit bridge ID that consists of a bridge priority value, an extended system ID (IEEE 802.1t), and an STP MAC address allocation.

**Bridge Priority Value**

The bridge priority is a 4-bit value when the extended system ID is enabled.

---

**Note**

In Cisco NX-OS, the extended system ID is always enabled; you cannot disable the extended system ID.

**Extended System ID**

A 12-bit extended system ID field is part of the bridge ID.
The switches always use the 12-bit extended system ID.

Combined with the bridge ID, the system ID extension functions as the unique identifier for a VLAN.

Table 5: Bridge Priority Value and Extended System ID with the Extended System ID Enabled

<table>
<thead>
<tr>
<th>Bridge Priority Value</th>
<th>Extended System ID (Set Equal to the VLAN ID)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 16</td>
<td>Bit 15 Bit 14 Bit 13</td>
</tr>
<tr>
<td>32768</td>
<td>16384</td>
</tr>
<tr>
<td>16384</td>
<td>8192</td>
</tr>
<tr>
<td>8192</td>
<td>4096</td>
</tr>
<tr>
<td>4096</td>
<td>2048</td>
</tr>
<tr>
<td>2048</td>
<td>1024</td>
</tr>
<tr>
<td>1024</td>
<td>512</td>
</tr>
<tr>
<td>512</td>
<td>256</td>
</tr>
<tr>
<td>256</td>
<td>128</td>
</tr>
<tr>
<td>128</td>
<td>64</td>
</tr>
<tr>
<td>64</td>
<td>32</td>
</tr>
<tr>
<td>32</td>
<td>16</td>
</tr>
<tr>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

STP MAC Address Allocation

Extended system ID and MAC address reduction is always enabled on the software.

With MAC address reduction enabled on any switch, you should also enable MAC address reduction on all other connected switches to avoid undesirable root bridge election and spanning tree topology issues.

When MAC address reduction is enabled, the root bridge priority becomes a multiple of 4096 plus the VLAN ID. You can only specify a switch bridge ID (used by the spanning tree algorithm to determine the identity of the root bridge, the lowest being preferred) as a multiple of 4096. Only the following values are possible:

- 0
- 4096
- 8192
- 12288
- 16384
- 20480
- 24576
- 28672
- 32768
- 36864
- 40960
- 45056
STP uses the extended system ID plus a MAC address to make the bridge ID unique for each VLAN.

Note
If another bridge in the same spanning tree domain does not run the MAC address reduction feature, it could achieve root bridge ownership because its bridge ID may fall between the values specified by the MAC address reduction feature.

Understanding BPDUs

Switches transmit bridge protocol data units (BPDUs) throughout the STP instance. Each switch sends configuration BPDUs to communicate and compute the spanning tree topology. Each configuration BPDU contains the following minimal information:

- The unique bridge ID of the switch that the transmitting switch determines is the root bridge
- The STP path cost to the root
- The bridge ID of the transmitting bridge
- Message age
- The identifier of the transmitting port
- Values for the hello, forward delay, and max-age protocol timer
- Additional information for STP extension protocols

When a switch transmits a Rapid PVST+ BPDU frame, all switches connected to the VLAN on which the frame is transmitted receive the BPDU. When a switch receives a BPDU, it does not forward the frame but instead uses the information in the frame to calculate a BPDU, and, if the topology changes, initiate a BPDU transmission.

A BPDU exchange results in the following:

- One switch is elected as the root bridge.
- The shortest distance to the root bridge is calculated for each switch based on the path cost.
- A designated bridge for each LAN segment is selected. This is the switch closest to the root bridge through which frames are forwarded to the root.
- A root port is selected. This is the port providing the best path from the bridge to the root bridge.
- Ports included in the spanning tree are selected.
Election of the Root Bridge

For each VLAN, the switch with the lowest numerical value of the bridge ID is elected as the root bridge. If all switches are configured with the default priority (32768), the switch with the lowest MAC address in the VLAN becomes the root bridge. The bridge priority value occupies the most significant bits of the bridge ID.

When you change the bridge priority value, you change the probability that the switch will be elected as the root bridge. Configuring a lower value increases the probability; a higher value decreases the probability.

The STP root bridge is the logical center of each spanning tree topology in a network. All paths that are not needed to reach the root bridge from anywhere in the network are placed in STP blocking mode.

BPDUs contain information about the transmitting bridge and its ports, including bridge and MAC addresses, bridge priority, port priority, and path cost. STP uses this information to elect the root bridge for the STP instance, to elect the root port leading to the root bridge, and to determine the designated port for each segment.

Creating the Spanning Tree Topology

In the following figure, Switch A is elected as the root bridge because the bridge priority of all the switches is set to the default (32768) and Switch A has the lowest MAC address. However, due to traffic patterns, the number of forwarding ports, or link types, Switch A might not be the ideal root bridge. By increasing the priority (lowering the numerical value) of the ideal switch so that it becomes the root bridge, you force an STP recalculation to form a new spanning tree topology with the ideal switch as the root.

When the spanning tree topology is calculated based on default parameters, the path between source and destination end stations in a switched network might not be ideal. For instance, connecting higher-speed links to a port that has a higher number than the current root port can cause a root-port change. The goal is to make the fastest link the root port.

For example, assume that one port on Switch B is a fiber-optic link, and another port on Switch B (an unshielded twisted-pair [UTP] link) is the root port. Network traffic might be more efficient over the high-speed fiber-optic link. By changing the STP port priority on the fiber-optic port to a higher priority (lower numerical value) than the root port, the fiber-optic port becomes the new root port.

Understanding Rapid PVST+

Rapid PVST+ Overview

Rapid PVST+ is the IEEE 802.1w (RSTP) standard implemented per VLAN. A single instance of STP runs on each configured VLAN (if you do not manually disable STP). Each Rapid PVST+ instance on a VLAN
has a single root switch. You can enable and disable STP on a per-VLAN basis when you are running Rapid PVST+.

**Note**

Rapid PVST+ is the default STP mode for the switch.

Rapid PVST+ uses point-to-point wiring to provide rapid convergence of the spanning tree. The spanning tree reconfiguration can occur in less than 1 second with Rapid PVST+ (in contrast to 50 seconds with the default settings in the 802.1D STP).

**Note**

Rapid PVST+ supports one STP instance for each VLAN.

Using Rapid PVST+, STP convergence occurs rapidly. Each designated or root port in the STP sends out a BPDU every 2 seconds by default. On a designated or root port in the topology, if hello messages are missed three consecutive times, or if the maximum age expires, the port immediately flushes all protocol information in the table. A port considers that it loses connectivity to its direct neighbor root or designated port if it misses three BPDUs or if the maximum age expires. This rapid aging of the protocol information allows quick failure detection. The switch automatically checks the PVID.

Rapid PVST+ provides for rapid recovery of connectivity following the failure of a network device, a switch port, or a LAN. It provides rapid convergence for edge ports, new root ports, and ports connected through point-to-point links as follows:

- **Edge ports**—When you configure a port as an edge port on an RSTP switch, the edge port immediately transitions to the forwarding state. (This immediate transition was previously a Cisco-proprietary feature named PortFast.) You should only configure on ports that connect to a single end station as edge ports. Edge ports do not generate topology changes when the link changes.

  Enter the `spanning-tree port type` interface configuration command to configure a port as an STP edge port.

  **Note**

  We recommend that you configure all ports connected to a host as edge ports.

- **Root ports**—If Rapid PVST+ selects a new root port, it blocks the old root port and immediately transitions the new root port to the forwarding state.

- **Point-to-point links**—If you connect a port to another port through a point-to-point link and the local port becomes a designated port, it negotiates a rapid transition with the other port by using the proposal-agreement handshake to ensure a loop-free topology.

Rapid PVST+ achieves rapid transition to the forwarding state only on edge ports and point-to-point links. Although the link type is configurable, the system automatically derives the link type information from the duplex setting of the port. Full-duplex ports are assumed to be point-to-point ports, while half-duplex ports are assumed to be shared ports.

Edge ports do not generate topology changes, but all other designated and root ports generate a topology change (TC) BPDU when they either fail to receive three consecutive BPDUs from the directly connected neighbor or the maximum age times out. At this point, the designated or root port sends out a BPDU with the TC flag set. The BPDUs continue to set the TC flag as long as the TC While timer runs on that port. The value
of the TC While timer is the value set for the hello time plus 1 second. The initial detector of the topology change immediately floods this information throughout the entire topology.

When Rapid PVST+ detects a topology change, the protocol does the following:

- Starts the TC While timer with a value equal to twice the hello time for all the non-edge root and designated ports, if necessary.
- Flushes the MAC addresses associated with all these ports.

The topology change notification floods quickly across the entire topology. The system flushes dynamic entries immediately on a per-port basis when it receives a topology change.

---

**Note**
The TCA flag is used only when the switch is interacting with switches that are running legacy 802.1D STP.

The proposal and agreement sequence then quickly propagates toward the edge of the network and quickly restores connectivity after a topology change.

### Rapid PVST+ BPDUs

Rapid PVST+ and 802.1w use all six bits of the flag byte to add the role and state of the port that originates the BPDU and the proposal and agreement handshake. The following figure shows the use of the BPDU flags in Rapid PVST+.

**Figure 11: Rapid PVST+ Flag Byte in BPDU**

Another important change is that the Rapid PVST+ BPDU is type 2, version 2, which makes it possible for the switch to detect connected legacy (802.1D) bridges. The BPDU for 802.1D is version 0.

### Proposal and Agreement Handshake

As shown in the following figure, Switch A is connected to Switch B through a point-to-point link, and all of the ports are in the blocking state. Assume that the priority of Switch A is a smaller numerical value than the priority of Switch B.
Switch A sends a proposal message (a configuration BPDU with the proposal flag set) to Switch B, proposing itself as the designated switch.

After receiving the proposal message, Switch B selects as its new root port the port from which the proposal message was received, forces all non-edge ports to the blocking state, and sends an agreement message (a BPDU with the agreement flag set) through its new root port.

After receiving the agreement message from Switch B, Switch A also immediately transitions its designated port to the forwarding state. No loops in the network can form because Switch B blocked all of its non-edge ports and because there is a point-to-point link between Switches A and B.

When Switch C connects to Switch B, a similar set of handshaking messages are exchanged. Switch C selects the port connected to Switch B as its root port, and both ends of the link immediately transition to the forwarding state. With each iteration of this handshaking process, one more network device joins the active topology. As the network converges, this proposal-agreement handshaking progresses from the root toward the leaves of the spanning tree.

The switch learns the link type from the port duplex mode: a full-duplex port is considered to have a point-to-point connection and a half-duplex port is considered to have a shared connection. You can override the default setting that is controlled by the duplex setting by entering the `spanning-tree link-type` interface configuration command.

This proposal/agreement handshake is initiated only when a non-edge port moves from the blocking to the forwarding state. The handshaking process then proliferates step-by-step throughout the topology.

### Protocol Timers

The following table describes the protocol timers that affect the Rapid PVST+ performance.
Table 6: Rapid PVST+ Protocol Timers

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hello timer</td>
<td>Determines how often each switch broadcasts BPDUs to other switches. The default is 2 seconds, and the range is from 1 to 10.</td>
</tr>
<tr>
<td>Forward delay timer</td>
<td>Determines how long each of the listening and learning states last before the port begins forwarding. This timer is generally not used by the protocol but is used as a backup. The default is 15 seconds, and the range is from 4 to 30 seconds.</td>
</tr>
<tr>
<td>Maximum age timer</td>
<td>Determines the amount of time protocol information received on an port is stored by the switch. This timer is generally not used by the protocol, but it is used when interoperating with 802.1D spanning tree. The default is 20 seconds; the range is from 6 to 40 seconds.</td>
</tr>
</tbody>
</table>

Port Roles

Rapid PVST+ provides rapid convergence of the spanning tree by assigning port roles and learning the active topology. Rapid PVST+ builds upon the 802.1D STP to select the switch with the highest priority (lowest numerical priority value) as the root bridge. Rapid PVST+ then assigns one of these port roles to individual ports:

- Root port—Provides the best path (lowest cost) when the switch forwards packets to the root bridge.
- Designated port—Connects to the designated switch, which incurs the lowest path cost when forwarding packets from that LAN to the root bridge. The port through which the designated switch is attached to the LAN is called the designated port.
- Alternate port—Offers an alternate path toward the root bridge to the path provided by the current root port. An alternate port provides a path to another switch in the topology.
- Backup port—Acts as a backup for the path provided by a designated port toward the leaves of the spanning tree. A backup port can exist only when two ports are connected in a loopback by a point-to-point link or when a switch has two or more connections to a shared LAN segment. A backup port provides another path in the topology to the switch.
- Disabled port—Has no role within the operation of the spanning tree.

In a stable topology with consistent port roles throughout the network, Rapid PVST+ ensures that every root port and designated port immediately transition to the forwarding state while all alternate and backup ports are always in the blocking state. Designated ports start in the blocking state. The port state controls the operation of the forwarding and learning processes.

A port with the root or a designated port role is included in the active topology. A port with the alternate or backup port role is excluded from the active topology (see the following figure).
Port States

Rapid PVST+ Port State Overview

Propagation delays can occur when protocol information passes through a switched LAN. As a result, topology changes can take place at different times and at different places in a switched network. When a LAN port transitions directly from nonparticipation in the spanning tree topology to the forwarding state, it can create temporary data loops. Ports must wait for new topology information to propagate through the switched LAN before starting to forward frames.

Each LAN port on a software using Rapid PVST+ or MST exists in one of the following four states:

- **Blocking**—The LAN port does not participate in frame forwarding.
- **Learning**—The LAN port prepares to participate in frame forwarding.
- **Forwarding**—The LAN port forwards frames.
- **Disabled**—The LAN port does not participate in STP and is not forwarding frames.

When you enable Rapid PVST+, every port in the software, VLAN, and network goes through the blocking state and the transitory states of learning at power up. If properly configured, each LAN port stabilizes to the forwarding or blocking state.

When the STP algorithm places a LAN port in the forwarding state, the following process occurs:

- The LAN port is put into the blocking state while it waits for protocol information that suggests it should go to the learning state.
- The LAN port waits for the forward delay timer to expire, moves the LAN port to the learning state, and restarts the forward delay timer.
• In the learning state, the LAN port continues to block frame forwarding as it learns the end station location information for the forwarding database.
• The LAN port waits for the forward delay timer to expire and then moves the LAN port to the forwarding state, where both learning and frame forwarding are enabled.

### Blocking State

A LAN port in the blocking state does not participate in frame forwarding.

A LAN port in the blocking state performs as follows:

• Discards frames received from the attached segment.
• Discards frames switched from another port for forwarding.
• Does not incorporate the end station location into its address database. (There is no learning on a blocking LAN port, so there is no address database update.)
• Receives BPDUs and directs them to the system module.
• Receives, processes, and transmits BPDUs received from the system module.
• Receives and responds to network management messages.

### Learning State

A LAN port in the learning state prepares to participate in frame forwarding by learning the MAC addresses for the frames. The LAN port enters the learning state from the blocking state.

A LAN port in the learning state performs as follows:

• Discards frames received from the attached segment.
• Discards frames switched from another port for forwarding.
• Incorporates the end station location into its address database.
• Receives BPDUs and directs them to the system module.
• Receives, processes, and transmits BPDUs received from the system module.
• Receives and responds to network management messages.

### Forwarding State

A LAN port in the forwarding state forwards frames. The LAN port enters the forwarding state from the learning state.

A LAN port in the forwarding state performs as follows:

• Forwards frames received from the attached segment.
• Forwards frames switched from another port for forwarding.
• Incorporates the end station location information into its address database.
• Receives BPDUs and directs them to the system module.
• Processes BPDUs received from the system module.
• Receives and responds to network management messages.

Disabled State

A LAN port in the disabled state does not participate in frame forwarding or STP. A LAN port in the disabled state is virtually nonoperational.

A disabled LAN port performs as follows:

• Discards frames received from the attached segment.
• Discards frames switched from another port for forwarding.
• Does not incorporate the end station location into its address database. (There is no learning, so there is no address database update.)
• Does not receive BPDUs from neighbors.
• Does not receive BPDUs for transmission from the system module.

Summary of Port States

The following table lists the possible operational and Rapid PVST+ states for ports and the corresponding inclusion in the active topology.

<table>
<thead>
<tr>
<th>Operational Status</th>
<th>Port State</th>
<th>Is Port Included in the Active Topology?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enabled</td>
<td>Blocking</td>
<td>No</td>
</tr>
<tr>
<td>Enabled</td>
<td>Learning</td>
<td>Yes</td>
</tr>
<tr>
<td>Enabled</td>
<td>Forwarding</td>
<td>Yes</td>
</tr>
<tr>
<td>Disabled</td>
<td>Disabled</td>
<td>No</td>
</tr>
</tbody>
</table>

Synchronization of Port Roles

When the switch receives a proposal message on one of its ports and that port is selected as the new root port, Rapid PVST+ forces all other ports to synchronize with the new root information.

The switch is synchronized with superior root information received on the root port if all other ports are synchronized. An individual port on the switch is synchronized if either of the following applies:

• That port is in the blocking state.
• It is an edge port (a port configured to be at the edge of the network).

If a designated port is in the forwarding state and is not configured as an edge port, it transitions to the blocking state when the Rapid PVST+ forces it to synchronize with new root information. In general, when the Rapid PVST+ forces a port to synchronize with root information and the port does not satisfy any of the above conditions, its port state is set to blocking.
After ensuring that all of the ports are synchronized, the switch sends an agreement message to the designated switch that corresponds to its root port. When the switches connected by a point-to-point link are in agreement about their port roles, Rapid PVST+ immediately transitions the port states to the forwarding state. The sequence of events is shown in the following figure.

Figure 14: Sequence of Events During Rapid Convergence

Processing Superior BPDU Information

A superior BPDU is a BPDU with root information (such as a lower switch ID or lower path cost) that is superior to what is currently stored for the port.

If a port receives a superior BPDU, Rapid PVST+ triggers a reconfiguration. If the port is proposed and is selected as the new root port, Rapid PVST+ forces all the other ports to synchronize.

If the received BPDU is a Rapid PVST+ BPDU with the proposal flag set, the switch sends an agreement message after all of the other ports are synchronized. The new root port transitions to the forwarding state as soon as the previous port reaches the blocking state.

If the superior information received on the port causes the port to become a backup port or an alternate port, Rapid PVST+ sets the port to the blocking state and sends an agreement message. The designated port continues sending BPDUs with the proposal flag set until the forward-delay timer expires. At that time, the port transitions to the forwarding state.

Processing Inferior BPDU Information

An inferior BPDU is a BPDU with root information (such as a higher switch ID or higher path cost) that is inferior to what is currently stored for the port.

If a designated port receives an inferior BPDU, it immediately replies with its own information.

Spanning-Tree Dispute Mechanism

The software checks the consistency of the port role and state in the received BPDUs to detect unidirectional link failures that could cause bridging loops.
When a designated port detects a conflict, it keeps its role, but reverts to a discarding state because disrupting connectivity in case of inconsistency is preferable to opening a bridging loop.

The following figure illustrates a unidirectional link failure that typically creates a bridging loop. Switch A is the root bridge, and its BPDUs are lost on the link leading to Switch B. The 802.1w-standard BPDUs include the role and state of the sending port. With this information, Switch A can detect that Switch B does not react to the superior BPDUs it sends and that Switch B is the designated, not root port. As a result, Switch A blocks (or keeps blocking) its port, which prevents the bridging loop. The block is shown as an STP dispute.

*Figure 15: Detecting Unidirectional Link Failure*

| Port Cost |

---

Rapid PVST+ uses the short (16-bit) path-cost method to calculate the cost by default. With the short path-cost method, you can assign any value in the range of 1 to 65535. However, you can configure the switch to use the long (32-bit) path-cost method, which allows you to assign any value in the range of 1 to 200,000,000.

You configure the path-cost calculation method globally.

Note

The STP port path-cost default value is determined from the media speed and path-cost calculation method of a LAN interface. If a loop occurs, STP considers the port cost when selecting a LAN interface to put into the forwarding state.

| Table 8: Default Port Cost |

<table>
<thead>
<tr>
<th>Bandwidth</th>
<th>Short Path-Cost Method of Port Cost</th>
<th>Long Path-Cost Method of Port Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Mbps</td>
<td>100</td>
<td>2,000,000</td>
</tr>
<tr>
<td>100 Mbps</td>
<td>19</td>
<td>200,000</td>
</tr>
<tr>
<td>1 Gigabit Ethernet</td>
<td>4</td>
<td>20,000</td>
</tr>
<tr>
<td>10 Gigabit Ethernet</td>
<td>2</td>
<td>2,000</td>
</tr>
</tbody>
</table>

You can assign lower cost values to LAN interfaces that you want STP to select first and higher cost values to LAN interfaces that you want STP to select last. If all LAN interfaces have the same cost value, STP puts the LAN interface with the lowest LAN interface number in the forwarding state and blocks other LAN interfaces.

On access ports, you assign the port cost by the port. On trunk ports, you assign the port cost by the VLAN; you can configure the same port cost to all the VLANs on a trunk port.
Port Priority

If a loop occurs and multiple ports have the same path cost, Rapid PVST+ considers the port priority when selecting which LAN port to put into the forwarding state. You can assign lower priority values to LAN ports that you want Rapid PVST+ to select first and higher priority values to LAN ports that you want Rapid PVST+ to select last.

If all LAN ports have the same priority value, Rapid PVST+ puts the LAN port with the lowest LAN port number in the forwarding state and blocks other LAN ports. The possible priority range is from 0 through 224 (the default is 128), configurable in increments of 32. The software uses the port priority value when the LAN port is configured as an access port and uses the VLAN port priority values when the LAN port is configured as a trunk port.

Rapid PVST+ and IEEE 802.1Q Trunks

In a network of Cisco switches connected through 802.1Q trunks, the switches maintain one instance of STP for each VLAN allowed on the trunks. However, non-Cisco 802.1Q switches maintain only one instance of STP for all VLANs allowed on the trunks.

When you connect a Cisco switch to a non-Cisco switch through an 802.1Q trunk, the Cisco switch combines the STP instance of the 802.1Q VLAN of the trunk with the STP instance of the non-Cisco 802.1Q switch. However, all per-VLAN STP information that is maintained by Cisco switches is separated by a cloud of non-Cisco 802.1Q switches. The non-Cisco 802.1Q cloud that separates the Cisco switches is treated as a single trunk link between the switches.

Rapid PVST+ Interoperation with Legacy 802.1D STP

Rapid PVST+ can interoperate with switches that are running the legacy 802.1D protocol. The switch knows that it is interoperating with equipment running 802.1D when it receives a BPDU version 0. The BPDU for Rapid PVST+ are version 2. If the BPDU received is an 802.1w BPDU version 2 with the proposal flag set, the switch sends an agreement message after all of the other ports are synchronized. If the BPDU is an 802.1D BPDU version 0, the switch does not set the proposal flag and starts the forward-delay timer for the port. The new root port requires twice the forward-delay time to transition to the forwarding state.

The switch interoperates with legacy 802.1D switches as follows:

- Notification—Unlike 802.1D BPDUs, 802.1w does not use TCN BPDUs. However, for interoperability with 802.1D switches, Cisco NX-OS processes and generates TCN BPDUs.

- Acknowledgement—When an 802.1w switch receives a TCN message on a designated port from an 802.1D switch, it replies with an 802.1D configuration BPDU with the TCA bit set. However, if the TC-while timer (the same as the TC timer in 802.1D) is active on a root port connected to an 802.1D switch and a configuration BPDU with the TCA set is received, the TC-while timer is reset.

This method of operation is required only for 802.1D switches. The 802.1w BPDUs do not have the TCA bit set.

- Protocol migration—For backward compatibility with 802.1D switches, 802.1w selectively sends 802.1D configuration BPDUs and TCN BPDUs on a per-port basis.

When a port is initialized, the migrate-delay timer is started (specifies the minimum time during which 802.1w BPDUs are sent), and 802.1w BPDUs are sent. While this timer is active, the switch processes all BPDUs received on that port and ignores the protocol type.
If the switch receives an 802.1D BPDU after the port migration-delay timer has expired, it assumes that it is connected to an 802.1D switch and starts using only 802.1D BPDUs. However, if the 802.1w switch is using 802.1D BPDUs on a port and receives an 802.1w BPDU after the timer has expired, it restarts the timer and starts using 802.1w BPDUs on that port.

Note
If you want all switches to renegotiate the protocol, you must restart Rapid PVST+.

Rapid PVST+ Interoperation with 802.1s MST

Rapid PVST+ interoperates seamlessly with the IEEE 802.1s Multiple Spanning Tree (MST) standard. No user configuration is needed.

Configuring Rapid PVST+

Rapid PVST+, which has the 802.1w standard applied to the Rapid PVST+ protocol, is the default STP setting in the software.

You enable Rapid PVST+ on a per-VLAN basis. The software maintains a separate instance of STP for each VLAN (except on those VLANs on which you disable STP). By default, Rapid PVST+ is enabled on the default VLAN and on each VLAN that you create.

Enabling Rapid PVST+

Once you enable Rapid PVST+ on the switch, you must enable Rapid PVST+ on the specified VLANs. Rapid PVST+ is the default STP mode. You cannot simultaneously run MST and Rapid PVST+.

Note
Changing the spanning tree mode disrupts traffic because all spanning tree instances are stopped for the previous mode and started for the new mode.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# spanning-tree mode rapid-pvst</td>
</tr>
</tbody>
</table>

Note
Changing the spanning tree mode disrupts traffic because all spanning tree instances are stopped for the previous mode and started for the new mode.
Example

This example shows how to enable Rapid PVST+ on the switch:

switch# configure terminal
switch(config)# spanning-tree mode rapid-pvst

---

**Note**

Because STP is enabled by default, entering the `show running-config` command to view the resulting configuration does not display the command that you entered to enable Rapid PVST+.

---

**Enabling Rapid PVST+ per VLAN**

You can enable or disable Rapid PVST+ on each VLAN.

---

**Note**

Rapid PVST+ is enabled by default on the default VLAN and on all VLANs that you create.

---

**Procedure**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# spanning-tree vlan-range</td>
<td>Enables Rapid PVST+ (default STP) on a per VLAN basis. The <code>vlan-range</code> value can be 2 through 4094 (except reserved VLAN values).</td>
</tr>
<tr>
<td>Step 3</td>
<td>(Optional) switch(config)# no spanning-tree vlan-range</td>
<td>Disables Rapid PVST+ on the specified VLAN.</td>
</tr>
</tbody>
</table>
Purpose

Command or Action	Purpose
Caution | Do not disable spanning tree on a VLAN unless all switches and bridges in the VLAN have spanning tree disabled. You cannot disable spanning tree on some of the switches and bridges in a VLAN and leave it enabled on other switches and bridges. This action can have unexpected results because switches and bridges with spanning tree enabled will have incomplete information regarding the physical topology of the network.

Do not disable spanning tree in a VLAN without ensuring that there are no physical loops present in the VLAN. Spanning tree serves as a safeguard against misconfigurations and cabling errors.

Example

This example shows how to enable STP on a VLAN:

```plaintext
switch# configure terminal
switch(config)# spanning-tree vlan 5
```

Configuring the Root Bridge ID

The software maintains a separate instance of STP for each active VLAN in Rapid PVST+. For each VLAN, the switch with the lowest bridge ID becomes the root bridge for that VLAN.

To configure a VLAN instance to become the root bridge, modify the bridge priority from the default value (32768) to a significantly lower value.

When you enter the `spanning-tree vlan vlan_ID root` command, the switch checks the bridge priority of the current root bridges for each VLAN. The switch sets the bridge priority for the specified VLANs to 24576 if this value will cause the switch to become the root for the specified VLANs. If any root bridge for the specified VLANs has a bridge priority lower than 24576, the switch sets the bridge priority for the specified VLANs to 4096 less than the lowest bridge priority.

Note

The `spanning-tree vlan vlan_ID root` command fails if the value required to be the root bridge is less than 1.
The root bridge for each instance of STP should be a backbone or distribution switch. Do not configure an access switch as the STP primary root.

Enter the `diameter` keyword to specify the network diameter (that is, the maximum number of bridge hops between any two end stations in the network). When you specify the network diameter, the software automatically selects an optimal hello time, forward delay time, and maximum age time for a network of that diameter, which can significantly reduce the STP convergence time. You can enter the `hello-time` keyword to override the automatically calculated hello time.

With the switch configured as the root bridge, do not manually configure the hello time, forward-delay time, and maximum-age time using the `spanning-tree mst hello-time`, `spanning-tree mst forward-time`, and `spanning-tree mst max-age` configuration commands.

### Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> switch(config)# spanning-tree vlan vlan-range root primary [diameter dia [hello-time hello-time]]</td>
<td>Configures a software switch as the primary root bridge. The <code>vlan-range</code> value can be 2 through 4094 (except reserved VLAN values.) The <code>dia</code> default is 7. The <code>hello-time</code> can be from 1 to 10 seconds, and the default value is 2 seconds.</td>
</tr>
</tbody>
</table>

### Example

This example shows how to configure the switch as the root bridge for a VLAN:

```
switch# configure terminal
switch(config)# spanning-tree vlan 5 root primary diameter 4
```

### Configuring a Secondary Root Bridge

When you configure a software switch as the secondary root, the STP bridge priority is modified from the default value (32768) so that the switch is likely to become the root bridge for the specified VLANs if the primary root bridge fails (assuming the other switches in the network use the default bridge priority of 32768). STP sets the bridge priority to 28672.

Enter the `diameter` keyword to specify the network diameter (that is, the maximum number of bridge hops between any two end stations in the network). When you specify the network diameter, the software automatically selects an optimal hello time, forward delay time, and maximum age time for a network of that diameter, which can significantly reduce the STP convergence time. You can enter the `hello-time` keyword to override the automatically calculated hello time.
You configure more than one switch in this manner to have multiple backup root bridges. Enter the same network diameter and hello time values that you used when configuring the primary root bridge.

**Note**
With the switch configured as the root bridge, do not manually configure the hello time, forward-delay time, and maximum-age time using the `spanning-tree mst hello-time`, `spanning-tree mst forward-time`, and `spanning-tree mst max-age` global configuration commands.

### Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> switch(config)# spanning-tree vlan vlan-range root secondary [diameter dia [hello-time hello-time]]</td>
<td>Configures a software switch as the secondary root bridge. The <code>vlan-range</code> value can be 2 through 4094 (except reserved VLAN values). The <code>dia</code> default is 7. The <code>hello-time</code> can be from 1 to 10 seconds, and the default value is 2 seconds.</td>
</tr>
</tbody>
</table>

### Example

This example shows how to configure the switch as the secondary root bridge for a VLAN:

```
switch# configure terminal
switch(config)# spanning-tree vlan 5 root secondary diameter 4
```

### Configuring the Rapid PVST+ Port Priority

You can assign lower priority values to LAN ports that you want Rapid PVST+ to select first and higher priority values to LAN ports that you want Rapid PVST+ to select last. If all LAN ports have the same priority value, Rapid PVST+ puts the LAN port with the lowest LAN port number in the forwarding state and blocks other LAN ports.

The software uses the port priority value when the LAN port is configured as an access port and uses VLAN port priority values when the LAN port is configured as a trunk port.

### Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> switch(config)# interface type slot/port</td>
<td>Specifies the interface to configure, and enters interface configuration mode.</td>
</tr>
<tr>
<td><strong>Step 3</strong> switch(config-if)# spanning-tree [vlan vlan-list] port-priority priority</td>
<td>Configures the port priority for the LAN interface. The <code>priority</code> value can be from 0 to</td>
</tr>
</tbody>
</table>
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>224. The lower the value indicates the higher the priority. The priority values are 0, 32, 64, 96, 128, 160, 192, and 224. All other values are rejected. The default value is 128.</td>
<td></td>
</tr>
</tbody>
</table>

Example

This example shows how to configure the access port priority of an Ethernet interface:

```
switch# configure terminal
switch(config)# interface ethernet 1/4
switch(config-if)# spanning-tree port-priority 160
```

You can only apply this command to a physical Ethernet interface.

Configuring the Rapid PVST+ Path-Cost Method and Port Cost

On access ports, you assign port cost by the port. On trunk ports, you assign the port cost by VLAN; you can configure the same port cost on all the VLANs on a trunk.

Note

In Rapid PVST+ mode, you can use either the short or long path-cost method, and you can configure the method in either the interface or configuration submode. The default path-cost method is short.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config)# spanning-tree pathcost method {long</td>
<td>short}</td>
</tr>
<tr>
<td>Step 3 switch(config)# interface type slot/port</td>
<td>Specifies the interface to configure, and enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 4 switch(config-if)# spanning-tree [vlan vlan-id] cost [value</td>
<td>auto]</td>
</tr>
<tr>
<td></td>
<td>• short—1 to 65535</td>
</tr>
<tr>
<td></td>
<td>• long—1 to 200000000</td>
</tr>
</tbody>
</table>

Note You configure this parameter per interface on access ports and per VLAN on trunk ports.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The default is <code>auto</code>, which sets the port cost on both the path-cost calculation method and the media speed.</td>
</tr>
</tbody>
</table>

**Example**

This example shows how to configure the access port cost of an Ethernet interface:

```
switch# configure terminal
switch (config)# spanning-tree pathcost method long
switch (config)# interface ethernet 1/4
switch(config-if)# spanning-tree cost 1000
```

You can only apply this command to a physical Ethernet interface.

**Configuring the Rapid PVST+ Bridge Priority of a VLAN**

You can configure the Rapid PVST+ bridge priority of a VLAN.

**Note**

Be careful when using this configuration. For most situations, we recommend that you configure the primary root and secondary root to modify the bridge priority.

**Procedure**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>switch(config)# spanning-tree vlan vlan-range priority value</td>
<td>Configures the bridge priority of a VLAN. Valid values are 0, 4096, 8192, 12288, 16384, 20480, 24576, 28672, 32768, 36864, 40960, 45056, 49152, 53248, 57344, and 61440. All other values are rejected. The default value is 32768.</td>
</tr>
</tbody>
</table>

**Example**

This example shows how to configure the bridge priority of a VLAN:

```
switch# configure terminal
switch(config)# spanning-tree vlan 5 priority 8192
```
Configuring the Rapid PVST+ Hello Time for a VLAN

You can configure the Rapid PVST+ hello time for a VLAN.

Note

Be careful when using this configuration. For most situations, we recommend that you configure the primary root and secondary root to modify the hello time.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config)# spanning-tree vlan</td>
<td>Configures the hello time of a VLAN. The hello</td>
</tr>
<tr>
<td>vlan-range hello-time hello-time</td>
<td>time value can be from 1 to 10 seconds. The default is 2 seconds.</td>
</tr>
</tbody>
</table>

Example

This example shows how to configure the hello time for a VLAN:

```
switch# configure terminal
switch(config)# spanning-tree vlan 5 hello-time 7
```

Configuring the Rapid PVST+ Forward Delay Time for a VLAN

You can configure the forward delay time per VLAN when using Rapid PVST+.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config)# spanning-tree vlan</td>
<td>Configures the forward delay time of a VLAN. The forward delay time value can be from 4 to 30 seconds, and the default is 15 seconds.</td>
</tr>
<tr>
<td>vlan-range forward-time forward-time</td>
<td></td>
</tr>
</tbody>
</table>

Example

This example shows how to configure the forward delay time for a VLAN:

```
switch# configure terminal
switch(config)# spanning-tree vlan 5 forward-time 21
```
Configuring the Rapid PVST+ Maximum Age Time for a VLAN

You can configure the maximum age time per VLAN when using Rapid PVST+.

### Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> switch# configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> switch(config)# spanning-tree vlan vlan-range max-age max-age</td>
<td>Configures the maximum aging time of a VLAN. The maximum aging time value can be from 6 to 40 seconds, and the default is 20 seconds.</td>
</tr>
</tbody>
</table>

### Example

This example shows how to configure the maximum aging time for a VLAN:

```plaintext
switch# configure terminal
switch(config)# spanning-tree vlan 5 max-age 36
```

### Specifying the Link Type

Rapid connectivity (802.1w standard) is established only on point-to-point links. By default, the link type is controlled from the duplex mode of the interface. A full-duplex port is considered to have a point-to-point connection; a half-duplex port is considered to have a shared connection.

If you have a half-duplex link physically connected point-to-point to a single port on a remote switch, you can override the default setting on the link type and enable rapid transitions.

If you set the link to shared, STP reverts to 802.1D. The default is auto, which sets the link type based on the duplex setting of the interface.

### Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> switch(config)# interface type slot/port</td>
<td>Specifies the interface to configure, and enters the interface configuration mode.</td>
</tr>
<tr>
<td><strong>Step 3</strong> switch(config-if)# spanning-tree link-type {auto</td>
<td>point-to-point</td>
</tr>
</tbody>
</table>
Example
This example shows how to configure the link type as a point-to-point link:

```
switch# configure terminal
switch(config)# interface ethernet 1/4
switch(config-if)# spanning-tree link-type point-to-point
```

You can only apply this command to a physical Ethernet interface.

Restarting the Protocol
A bridge running Rapid PVST+ can send 802.1D BPDUs on one of its ports when it is connected to a legacy bridge. However, the STP protocol migration cannot determine whether the legacy switch has been removed from the link unless the legacy switch is the designated switch. You can restart the protocol negotiation (force the renegotiation with neighboring switches) on the entire switch or on specified interfaces.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch# clear spanning-tree detected-protocol [interface interface [interface-num</td>
<td>port-channel]]</td>
</tr>
</tbody>
</table>

This example shows how to restart Rapid PVST+ on an Ethernet interface:

```
switch# clear spanning-tree detected-protocol interface ethernet 1/8
```

Verifying the Rapid PVST+ Configuration
Use the following commands to display Rapid PVST+ configuration information.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show running-config spanning-tree [all]</td>
<td>Displays the current spanning tree configuration.</td>
</tr>
<tr>
<td>show spanning-tree [options]</td>
<td>Displays selected detailed information for the current spanning tree configuration.</td>
</tr>
</tbody>
</table>

This example shows how to display spanning tree status:

```
switch# show spanning-tree brief
```

```
VLAN0001
 Spanning tree enabled protocol rstp
 Root ID Priority 32768
 Address 001c.b05a.5447
 Cost 2
 Port 131 (Ethernet1/3)
 Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
 Bridge ID Priority 32769 (priority 32768 sys-id-ext 1)
 Address 000d.ec6d.7841
 Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
 Interface Role Sts Cost Prio.Nbr Type
 ---------------- ---- --- -------- -------------------
```
<table>
<thead>
<tr>
<th>Interface</th>
<th>Role</th>
<th>VLAN</th>
<th>IP Address</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eth1/3</td>
<td>Root</td>
<td>FWD 2</td>
<td>128.131</td>
<td>P2p  Peer(STP)</td>
</tr>
<tr>
<td>veth1/1</td>
<td>Desg</td>
<td>FWD 2</td>
<td>128.129</td>
<td>Edge P2p</td>
</tr>
</tbody>
</table>
CHAPTER 7

Configuring Multiple Spanning Tree

This chapter contains the following sections:

• Information About MST, on page 119
• Configuring MST, on page 127
• Verifying the MST Configuration, on page 143

Information About MST

MST Overview

Note

Spanning tree is used to refer to IEEE 802.1w and IEEE 802.1s. If the text is discussing the IEEE 802.1D Spanning Tree Protocol, 802.1D is stated specifically.

MST maps multiple VLANs into a spanning tree instance with each instance having a spanning tree topology independent of other spanning tree instances. This architecture provides multiple forwarding paths for data traffic, enables load balancing, and reduces the number of STP instances required to support a large number of VLANs.

MST provides rapid convergence through explicit handshaking as each MST instance uses the IEEE 802.1w standard, which eliminates the 802.1D forwarding delay and quickly transitions root bridge ports and designated ports to the forwarding state.

MAC address reduction is always enabled while you are using MST. You cannot disable this feature.

MST improves spanning tree operation and maintains backward compatibility with these STP versions:

• Original 802.1D spanning tree
• Rapid per-VLAN spanning tree (Rapid PVST+)

IEEE 802.1w defined the Rapid Spanning Tree Protocol (RSTP) and was incorporated into IEEE 802.1D.
• IEEE 802.1s defined MST and was incorporated into IEEE 802.1Q.
MST Regions

To allow switches to participate in MST instances, you must consistently configure the switches with the same MST configuration information.

A collection of interconnected switches that have the same MST configuration is an MST region. An MST region is a linked group of MST bridges with the same MST configuration.

The MST configuration controls the MST region to which each switch belongs. The configuration includes the name of the region, the revision number, and the MST VLAN-to-instance assignment map.

A region can have one or multiple members with the same MST configuration. Each member must be capable of processing 802.1w bridge protocol data units (BPDUs). There is no limit to the number of MST regions in a network.

Each region can support up to 65 MST instances (MSTIs). Instances are identified by any number in the range from 1 to 4094. The system reserves Instance 0 for a special instance, which is the IST. You can assign a VLAN to only one MST instance at a time.

The MST region appears as a single bridge to adjacent MST regions and to other Rapid PVST+ regions and 802.1D spanning tree protocols.

Note: We recommend that you do not partition the network into a large number of regions.

MST BPDUs

Each region has only one MST BPDU, and that BPDU carries an M-record for each MSTI within the region (see the following figure). Only the IST sends BPDUs for the MST region; all M-records are encapsulated in that one BPDU that the IST sends. Because the MST BPDU carries information for all instances, the number of BPDUs that need to be processed to support MSTIs is significantly reduced.

Figure 16: MST BPDU with M-Records for MSTIs
MST Configuration Information

The MST configuration that must be identical on all switches within a single MST region is configured by the user.

You can configure the following three parameters of the MST configuration:

- **Name**—32-character string, null padded and null terminated, identifying the MST region
- **Revision number**—Unsigned 16-bit number that identifies the revision of the current MST configuration

You must set the revision number when required as part of the MST configuration. The revision number is not incremented automatically each time that the MST configuration is committed.

- **MST configuration table**—4096-element table that associates each of the potential 4094 VLANs supported to a given instance with the first (0) and last element (4095) set to 0. The value of element number X represents the instance to which VLAN X is mapped.

When you change the VLAN-to-MSTI mapping, the system restarts MST.

MST BPDUs contain these three configuration parameters. An MST bridge accepts an MST BPDU into its own region only if these three configuration parameters match exactly. If one configuration attribute differs, the MST bridge considers the BPDU to be from another MST region.

IST, CIST, and CST

IST, CIST, and CST Overview

Unlike Rapid PVST+, in which all the STP instances are independent, MST establishes and maintains IST, CIST, and CST spanning trees, as follows:

- An IST is the spanning tree that runs in an MST region.

MST establishes and maintains additional spanning trees within each MST region; these spanning trees are called multiple spanning tree instances (MSTIs).

Instance 0 is a special instance for a region, known as the IST. The IST always exists on all ports; you cannot delete the IST, or instance 0. By default, all VLANs are assigned to the IST. All other MST instances are numbered from 1 to 4094.

The IST is the only STP instance that sends and receives BPDUs. All of the other MSTI information is contained in MST records (M-records), which are encapsulated within MST BPDUs.

All MSTIs within the same region share the same protocol timers, but each MSTI has its own topology parameters, such as the root bridge ID, the root path cost, and so forth.

An MSTI is local to the region; for example, MSTI 9 in region A is independent of MSTI 9 in region B, even if regions A and B are interconnected.
Spanning Tree Operation Within an MST Region

The IST connects all the MST switches in a region. When the IST converges, the root of the IST becomes the CIST regional root. The CIST regional root is also the CIST root if there is only one region in the network. If the CIST root is outside the region, the protocol selects one of the MST switches at the boundary of the region as the CIST regional root.

When an MST switch initializes, it sends BPDUs that identify itself as the root of the CIST and the CIST regional root, with both the path costs to the CIST root and to the CIST regional root set to zero. The switch also initializes all of its MSTIs and claims to be the root for all of them. If the switch receives superior MST root information (lower switch ID, lower path cost, and so forth) than the information that is currently stored for the port, it relinquishes its claim as the CIST regional root.

During initialization, an MST region might have many subregions, each with its own CIST regional root. As switches receive superior IST information from a neighbor in the same region, they leave their old subregions and join the new subregion that contains the true CIST regional root. This action causes all subregions to shrink except for the subregion that contains the true CIST regional root.

All switches in the MST region must agree on the same CIST regional root. Any two switches in the region will only synchronize their port roles for an MSTI if they converge to a common CIST regional root.

Spanning Tree Operations Between MST Regions

If you have multiple regions or 802.1w or 802.1D STP instances within a network, MST establishes and maintains the CST, which includes all MST regions and all 802.1w and 802.1D STP switches in the network. The MSTIs combine with the IST at the boundary of the region to become the CST.

The IST connects all the MST switches in the region and appears as a subtree in the CIST that encompasses the entire switched domain. The root of the subtree is the CIST regional root. The MST region appears as a virtual switch to adjacent STP switches and MST regions.

The following figure shows a network with three MST regions and an 802.1D switch (D). The CIST regional root for region 1 (A) is also the CIST root. The CIST regional root for region 2 (B) and the CIST regional root for region 3 (C) are the roots for their respective subtrees within the CIST.
Only the CST instance sends and receives BPDUs. MSTIs add their spanning tree information into the BPDUs (as M-records) to interact with neighboring switches and compute the final spanning tree topology. Because of this process, the spanning tree parameters related to the BPDU transmission (for example, hello time, forward time, max-age, and max-hops) are configured only on the CST instance but affect all MSTIs. You can configure the parameters related to the spanning tree topology (for example, the switch priority, the port VLAN cost, and the port VLAN priority) on both the CST instance and the MSTI.

MST switches use Version 3 BPDUs or 802.1D STP BPDUs to communicate with 802.1D-only switches. MST switches use MST BPDUs to communicate with MST switches.

**MST Terminology**

MST naming conventions include identification of some internal or regional parameters. These parameters are used only within an MST region, compared to external parameters that are used throughout the whole network. Because the CIST is the only spanning tree instance that spans the whole network, only the CIST parameters require the external qualifiers and not the internal or regional qualifiers. The MST terminology is as follows:

- The CIST root is the root bridge for the CIST, which is the unique instance that spans the whole network.
- The CIST external root path cost is the cost to the CIST root. This cost is left unchanged within an MST region. An MST region looks like a single switch to the CIST. The CIST external root path cost is the root path cost calculated between these virtual switches and switches that do not belong to any region.
• If the CIST root is in the region, the CIST regional root is the CIST root. Otherwise, the CIST regional
root is the closest switch to the CIST root in the region. The CIST regional root acts as a root bridge for
the IST.

• The CIST internal root path cost is the cost to the CIST regional root in a region. This cost is only relevant
to the IST, instance 0.

### Hop Count

MST does not use the message-age and maximum-age information in the configuration BPDU to compute
the STP topology inside the MST region. Instead, the protocol uses the path cost to the root and a hop-count
mechanism similar to the IP time-to-live (TTL) mechanism.

By using the `spanning-tree mst max-hops` global configuration command, you can configure the maximum
hops inside the region and apply it to the IST and all MST instances in that region.

The hop count achieves the same result as the message-age information (triggers a reconfiguration). The root
bridge of the instance always sends a BPDU (or M-record) with a cost of 0 and the hop count set to the
maximum value. When a switch receives this BPDU, it decrements the received remaining hop count by one
and propagates this value as the remaining hop count in the BPDU that it generates. When the count reaches
zero, the switch discards the BPDU and ages the information held for the port.

The message-age and maximum-age information in the 802.1w portion of the BPDU remain the same throughout
the region (only on the IST), and the same values are propagated by the region-designated ports at the boundary.

You configure a maximum aging time as the number of seconds that a switch waits without receiving spanning
tree configuration messages before attempting a reconfiguration.

### Boundary Ports

A boundary port is a port that connects one region to another. A designated port knows that it is on the boundary
if it detects an STP bridge or receives an agreement proposal from an MST bridge with a different configuration
or a Rapid PVST+ bridge. This definition allows two ports that are internal to a region to share a segment
with a port that belongs to a different region, creating the possibility of receiving both internal and external
messages on a port (see the following figure).

*Figure 18: MST Boundary Ports*

At the boundary, the roles of MST ports do not matter; the system forces their state to be the same as the IST
port state. If the boundary flag is set for the port, the MST port-role selection process assigns a port role to
the boundary and assigns the same state as the state of the IST port. The IST port at the boundary can take up
any port role except a backup port role.
Spanning-Tree Dispute Mechanism

Currently, this feature is not present in the IEEE MST standard, but it is included in the standard-compliant implementation. The software checks the consistency of the port role and state in the received BPDUs to detect unidirectional link failures that could cause bridging loops.

When a designated port detects a conflict, it keeps its role but reverts to a discarding state because disrupting connectivity in case of inconsistency is preferable to opening a bridging loop.

The following figure shows a unidirectional link failure that typically creates a bridging loop. Switch A is the root bridge, and its BPDUs are lost on the link leading to Switch B. Rapid PVST+ (802.1w) and MST BPDUs include the role and state of the sending port. With this information, Switch A can detect that Switch B does not react to the superior BPDUs that it sends and that Switch B is the designated, not root port. As a result, Switch A blocks (or keeps blocking) its port, which prevents the bridging loop. The block is shown as an STP dispute.

Figure 19: Detecting a Unidirectional Link Failure

Port Cost and Port Priority

Spanning tree uses port costs to break a tie for the designated port. Lower values indicate lower port costs, and spanning tree chooses the least costly path. Default port costs are taken from the bandwidth of the interface, as follows:

- 10 Mbps—2,000,000
- 100 Mbps—200,000
- 1 Gigabit Ethernet—20,000
- 10 Gigabit Ethernet—2,000

You can configure the port costs in order to influence which port is chosen.

Note

MST always uses the long path-cost calculation method, so the range of valid values is between 1 and 200,000,000.

The system uses port priorities to break ties among ports with the same cost. A lower number indicates a higher priority. The default port priority is 128. You can configure the priority to values between 0 and 224, in increments of 32.
Interoperability with IEEE 802.1D

A switch that runs MST supports a built-in protocol migration feature that enables it to interoperate with 802.1D STP switches. If this switch receives an 802.1D configuration BPDU (a BPDU with the protocol version set to 0), it sends only 802.1D BPDUs on that port. In addition, an MST switch can detect that a port is at the boundary of a region when it receives an 802.1D BPDU, an MST BPDU (Version 3) associated with a different region, or an 802.1w BPDU (Version 2).

However, the switch does not automatically revert to the MST mode if it no longer receives 802.1D BPDUs because it cannot detect whether the 802.1D switch has been removed from the link unless the 802.1D switch is the designated switch. A switch might also continue to assign a boundary role to a port when the switch to which this switch is connected has joined the region.

To restart the protocol migration process (force the renegotiation with neighboring switches), enter the `clear spanning-tree detected-protocols` command.

All Rapid PVST+ switches (and all 802.1D STP switches) on the link can process MST BPDUs as if they are 802.1w BPDUs. MST switches can send either Version 0 configuration and topology change notification (TCN) BPDUs or Version 3 MST BPDUs on a boundary port. A boundary port connects to a LAN, the designated switch of which is either a single spanning tree switch or a switch with a different MST configuration.

---

**Note**

MST interoperates with the Cisco prestandard Multiple Spanning Tree Protocol (MSTP) whenever it receives prestandard MSTP on an MST port; no explicit configuration is necessary.

Interoperability with Rapid PVST+: Understanding PVST Simulation

MST interoperates with Rapid PVST+ with no need for user configuration. The PVST simulation feature enables this seamless interoperability.

---

**Note**

PVST simulation is enabled by default. That is, by default, all interfaces on the switch interoperate between MST and Rapid PVST+.

However, you may want to control the connection between MST and Rapid PVST+ to protect against accidentally connecting an MST-enabled port to a Rapid PVST+-enabled port. Because Rapid PVST+ is the default STP mode, you may encounter many Rapid PVST+-enabled connections.

Disabling Rapid PVST+ simulation, which can be done per port or globally for the entire switch, moves the MST-enabled port to the blocking state once it detects it is connected to a Rapid PVST+-enabled port. This port remains in the inconsistent state until the port stops receiving Rapid PVST+/SSTP BPDUs, and then the port resumes the normal STP transition process.
Configuring MST

MST Configuration Guidelines

When configuring MST, follow these guidelines:

• When you work with private VLANs, enter the `private-vlan synchronize` command to map the secondary VLANs to the same MST instance as the primary VLAN.

• When you are in the MST configuration mode, the following guidelines apply:
  • Each command reference line creates its pending regional configuration.
  • The pending region configuration starts with the current region configuration.
  • To leave the MST configuration mode without committing any changes, enter the `abort` command.
  • To leave the MST configuration mode and commit all the changes that you made before you left the mode, enter the `exit` command.

Enabling MST

You must enable MST; Rapid PVST+ is the default.

Caution

Changing the spanning tree mode disrupts traffic because all spanning tree instances are stopped for the previous mode and started for the new mode. Also, having two different spanning-tree modes on Virtual Port Channel (vPC) peer switches is an inconsistency, so this operation is disruptive.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>switch# configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>switch# configure terminal</code></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>switch(config)# spanning-tree mode mst</code></td>
<td>Enables MST on the switch.</td>
</tr>
<tr>
<td>Step 4</td>
<td>(Optional) <code>switch(config)# no spanning-tree mode mst</code></td>
<td>Disables MST on the switch and returns you to Rapid PVST+.</td>
</tr>
</tbody>
</table>

Example

This example shows how to enable MST on the switch:

```
switch# configure terminal
switch(config)# spanning-tree mode mst
```
Because STP is enabled by default, entering a `show running-config` command to view the resulting configuration does not display the command that you entered to enable STP.

### Entering MST Configuration Mode

You enter MST configuration mode to configure the MST name, VLAN-to-instance mapping, and MST revision number on the switch.

For two or more switches to be in the same MST region, they must have the identical MST name, VLAN-to-instance mapping, and MST revision number.

**Note**
Each command reference line creates its pending regional configuration in MST configuration mode. In addition, the pending region configuration starts with the current region configuration.

When you are working in MST configuration mode, note the difference between the `exit` and `abort` commands.

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><code>switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Enters MST configuration mode on the system.</td>
</tr>
<tr>
<td><code>switch(config)# spanning-tree mst configuration</code></td>
<td>You must be in the MST configuration mode to assign the MST configuration parameters, as follows:</td>
</tr>
<tr>
<td></td>
<td>• MST name</td>
</tr>
<tr>
<td></td>
<td>• Instance-to-VLAN mapping</td>
</tr>
<tr>
<td></td>
<td>• MST revision number</td>
</tr>
<tr>
<td></td>
<td>• Synchronize primary and secondary VLANs in private VLANs</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Exits or aborts.</td>
</tr>
<tr>
<td><code>switch(config-mst)# exit</code> or</td>
<td>• The <code>exit</code> command commits all the changes and exits MST configuration</td>
</tr>
<tr>
<td><code>switch(config-mst)# abort</code></td>
<td>mode.</td>
</tr>
<tr>
<td></td>
<td>• The <code>abort</code> command exits the MST configuration mode without committing</td>
</tr>
<tr>
<td></td>
<td>any of the changes.</td>
</tr>
</tbody>
</table>
Specifying the MST Name

You configure a region name on the bridge. For two or more bridges to be in the same MST region, they must have the identical MST name, VLAN-to-instance mapping, and MST revision number.

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# spanning-tree mst configuration</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switch(config-mst)# name name</td>
</tr>
</tbody>
</table>

**Example**

This example shows how to set the name of the MST region:

```
switch# configure terminal

switch(config)# spanning-tree mst configuration

switch(config-mst)# name accounting
```

Specifying the MST Configuration Revision Number

You configure the revision number on the bridge. For two or more bridges to be in the same MST region, they must have the identical MST name, VLAN-to-instance mapping, and MST revision number.
Specifying the Configuration on an MST Region

For two or more switches to be in the same MST region, they must have the same VLAN-to-instance mapping, the same configuration revision number, and the same MST name.

A region can have one member or multiple members with the same MST configuration; each member must be capable of processing IEEE 802.1w RSTP BPDUs. There is no limit to the number of MST regions in a network, but each region can support only up to 65 MST instances. You can assign a VLAN to only one MST instance at a time.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enters global configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Enters MST configuration submode.</td>
<td></td>
</tr>
<tr>
<td>Specifies the revision number for the MST region. The range is from 0 to 65535, and the default value is 0.</td>
<td></td>
</tr>
</tbody>
</table>

Example

This example shows how to configure the revision number of the MSTI region for 5:

```
switch# configure terminal
switch(config)# spanning-tree mst configuration
switch(config-mst)# revision 5
```

Specifying the Configuration on an MST Region

For two or more switches to be in the same MST region, they must have the same VLAN-to-instance mapping, the same configuration revision number, and the same MST name.

A region can have one member or multiple members with the same MST configuration; each member must be capable of processing IEEE 802.1w RSTP BPDUs. There is no limit to the number of MST regions in a network, but each region can support only up to 65 MST instances. You can assign a VLAN to only one MST instance at a time.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enters global configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Enters MST configuration submode.</td>
<td></td>
</tr>
<tr>
<td>Maps VLANs to an MST instance as follows:</td>
<td></td>
</tr>
<tr>
<td>* For <code>instance-id</code> , the range is from 1 to 4094.</td>
<td></td>
</tr>
<tr>
<td>* For <code>vlan vlan-range</code> , the range is from 1 to 4094.</td>
<td></td>
</tr>
</tbody>
</table>

When you map VLANs to an MST instance, the mapping is incremental, and the VLANs specified in the command are added to or
### Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>removed from the VLANs that were previously mapped.</td>
<td>To specify a VLAN range, enter a hyphen; for example, enter the <code>instance 1 vlan 1-63</code> command to map VLANs 1 through 63 to MST instance 1.</td>
</tr>
<tr>
<td></td>
<td>To specify a VLAN series, enter a comma; for example, enter the <code>instance 1 vlan 10, 20, 30</code> command to map VLANs 10, 20, and 30 to MST instance 1.</td>
</tr>
<tr>
<td>Specifies the instance name. The <code>name</code> string has a maximum length of 32 case-sensitive characters.</td>
<td>Specifies the instance name. The <code>name</code> string has a maximum length of 32 case-sensitive characters.</td>
</tr>
<tr>
<td>Specifies the configuration revision number. The range is from 0 to 65535.</td>
<td>Specifies the configuration revision number. The range is from 0 to 65535.</td>
</tr>
</tbody>
</table>

### Step 4

```
switch(config-mst)# name name
```

**Purpose:**
Specifies the instance name. The `name` string has a maximum length of 32 case-sensitive characters.

### Step 5

```
switch(config-mst)# revision version
```

**Purpose:**
Specifies the configuration revision number. The range is from 0 to 65535.

### Example

To return to defaults, do the following:

- To return to the default MST region configuration settings, enter the `no spanning-tree mst configuration` configuration command.
- To return to the default VLAN-to-instance map, enter the `no instance instance-id vlan vlan-range` MST configuration command.
- To return to the default name, enter the `no name` MST configuration command.
- To return to the default revision number, enter the `no revision` MST configuration command.
- To reenable Rapid PVST+, enter the `no spanning-tree mode rapid-pvst` or the `spanning-tree mode rapid-pvst` global configuration command.

This example shows how to enter MST configuration mode, map VLANs 10 to 20 to MST instance 1, name the region region1, set the configuration revision to 1, display the pending configuration, apply the changes, and return to global configuration mode:

```
switch(config)# spanning-tree mst configuration
switch(config-mst)# instance 1 vlan 10-20
switch(config-mst)# name region1
switch(config-mst)# revision 1
switch(config-mst)# show pending
Pending MST configuration
Name [region1]
Revision 1
Instances configured 2
```
Mapping and Unmapping VLANs to MST Instances

<table>
<thead>
<tr>
<th>Caution</th>
<th>When you change the VLAN-to-MSTI mapping, the system restarts MST.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note</td>
<td>You cannot disable an MSTI.</td>
</tr>
<tr>
<td></td>
<td>For two or more bridges to be in the same MST region, they must have the identical MST name, VLAN-to-instance mapping, and MST revision number.</td>
</tr>
</tbody>
</table>

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# spanning-tree mst configuration</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switch(config-mst)# instance instance-id vlan vlan-range</td>
</tr>
<tr>
<td></td>
<td>• For instance-id the range is from 1 to 4094.</td>
</tr>
<tr>
<td></td>
<td>• For vlan-range the range is from 1 to 4094.</td>
</tr>
<tr>
<td></td>
<td>When you map VLANs to an MSTI, the mapping is incremental, and the VLANs specified in the command are added to or removed from the VLANs that were previously mapped.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>switch(config-mst)# no instance instance-id vlan vlan-range</td>
</tr>
</tbody>
</table>
Example

This example shows how to map VLAN 200 to MSTI 3:

```
switch# configure terminal
switch(config)# spanning-tree mst configuration
switch(config-mst)# instance 3 vlan 200
```

Mapping Secondary VLANs to Same MSTI as Primary VLANs for Private VLANs

When you are working with private VLANs on the system, all secondary VLANs must be in the same MSTI and their associated primary VLAN.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# spanning-tree mst configuration</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switch(config-mst)# private-vlan synchronize</td>
</tr>
</tbody>
</table>

Example

This example shows how to automatically map all the secondary VLANs to the same MSTI as their associated primary VLANs in all private VLANs:

```
switch# configure terminal
switch(config)# spanning-tree mst configuration
switch(config-mst)# private-vlan synchronize
```

Configuring the Root Bridge

You can configure the switch to become the root bridge.

Note

The root bridge for each MSTI should be a backbone or distribution switch. Do not configure an access switch as the spanning tree primary root bridge.

Enter the **diameter** keyword, which is available only for MSTI 0 (or the IST), to specify the network diameter (that is, the maximum number of hops between any two end stations in the network). When you specify the network diameter, the switch automatically sets an optimal hello time, forward-delay time, and maximum-age...
time for a network of that diameter, which can significantly reduce the convergence time. You can enter the `hello` keyword to override the automatically calculated hello time.

---

**Note**

With the switch configured as the root bridge, do not manually configure the hello time, forward-delay time, and maximum-age time using the `spanning-tree mst hello-time`, `spanning-tree mst forward-time`, and `spanning-tree mst max-age` global configuration commands.

---

## Procedure

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>

**Step 2**

- For `instance-id root`, you can specify a single instance, a range of instances separated by a hyphen, or a series of instances separated by a comma. The range is from 1 to 4094.
- For `diameter net-diameter`, specify the maximum number of hops between any two end stations. The default is 7. This keyword is available only for MST instance 0.
- For `hello-time seconds`, specify the interval in seconds between the generation of configuration messages by the root bridge. The range is from 1 to 10 seconds; the default is 2 seconds.

**Step 3**

(Optional) `switch(config)# no spanning-tree mst instance-id root` Returns the switch priority, diameter, and hello time to default values.

---

**Example**

This example shows how to configure the switch as the root switch for MSTI 5:

```
switch# configure terminal
switch(config)# spanning-tree mst 5 root primary
```

---

## Configuring a Secondary Root Bridge

You can execute this command on more than one switch to configure multiple backup root bridges. Enter the same network diameter and hello-time values that you used when you configured the primary root bridge with the `spanning-tree mst root primary` configuration command.
### Configuring Multiple Spanning Tree

#### Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>
| Step 2 | switch(config)# spanning-tree mst instance-id root {primary | secondary} [diameter dia [hello-time hello-time]] | Configures a switch as the secondary root bridge as follows:  
- For `instance-id`, you can specify a single instance, a range of instances separated by a hyphen, or a series of instances separated by a comma. The range is from 1 to 4094.  
- For `diameter net-diameter`, specify the maximum number of hops between any two end stations. The default is 7. This keyword is available only for MST instance 0.  
- For `hello-time seconds`, specify the interval in seconds between the generation of configuration messages by the root bridge. The range is from 1 to 10 seconds; the default is 2 seconds. |
| Step 3 | (Optional) switch(config)# no spanning-tree mst instance-id root | Returns the switch priority, diameter, and hello-time to default values. |

#### Example

This example shows how to configure the switch as the secondary root switch for MSTI 5:

```
switch# configure terminal
switch(config)# spanning-tree mst 5 root secondary
```

### Configuring the Port Priority

If a loop occurs, MST uses the port priority when selecting an interface to put into the forwarding state. You can assign lower priority values to interfaces that you want selected first and higher priority values to the interface that you want selected last. If all interfaces have the same priority value, MST puts the interface with the lowest interface number in the forwarding state and blocks the other interfaces.

#### Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# interface {type slot/port</td>
<td>port-channel number}</td>
</tr>
</tbody>
</table>
### Configuring the Port Cost

The MST path-cost default value is derived from the media speed of an interface. If a loop occurs, MST uses the cost when selecting an interface to put in the forwarding state. You can assign lower cost values to interfaces that you want selected first and higher cost to interfaces values that you want selected last. If all interfaces have the same cost value, MST puts the interface with the lowest interface number in the forwarding state and blocks the other interfaces.

MST uses the long path-cost calculation method.

### Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Specifies an interface to configure, and enters interface configuration mode.</td>
</tr>
<tr>
<td>switch(config)# interface {{type slot/port}</td>
<td>{port-channel number}</td>
</tr>
</tbody>
</table>
Purpose

Command or Action	Purpose
**Step 3** switch(config-if)# spanning-tree mst instance-id cost [cost | auto] | Configures the cost. If a loop occurs, MST uses the path cost when selecting an interface to place into the forwarding state. A lower path cost represents higher-speed transmission as follows:

- For *instance-id*, you can specify a single instance, a range of instances separated by a hyphen, or a series of instances separated by a comma. The range is from 1 to 4094.
- For *cost*, the range is from 1 to 200000000. The default value is auto, which is derived from the media speed of the interface.

**Example**

This example shows how to set the MST interface port cost on Ethernet 3/1 for MSTI 4:

```plaintext
switch# configure terminal
switch(config)# interface ethernet 3/1
switch(config-if)# spanning-tree mst 4 cost 17031970
```

**Configuring the Switch Priority**

You can configure the switch priority for an MST instance so that it is more likely that the specified switch is chosen as the root bridge.

**Note**

Exercise care when using this command. For most situations, we recommend that you enter the `spanning-tree mst root primary` and the `spanning-tree mst root secondary` global configuration commands to modify the switch priority.

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>
| **Step 2** switch(config)# spanning-tree mst instance-id priority priority-value | Configures a switch priority as follows:

  - For *instance-id*, you can specify a single instance, a range of instances separated by a hyphen, or a series of instances separated by a comma. The range is from 1 to 4094. |
### Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• For priority, the range is from 0 to 61440 in increments of 4096; the default is 32768. A lower number indicates that the switch will most likely be chosen as the root bridge.</td>
<td></td>
</tr>
</tbody>
</table>

Priority values are 0, 4096, 8192, 12288, 16384, 20480, 24576, 28672, 32768, 36864, 40960, 45056, 49152, 53248, 57344, and 61440. The system rejects all other values.

---

### Example

This example shows how to configure the priority of the bridge to 4096 for MSTI 5:

```
switch# configure terminal
switch(config)# spanning-tree mst 5 priority 4096
```

---

## Configuring the Hello Time

You can configure the interval between the generation of configuration messages by the root bridge for all instances on the switch by changing the hello time.

---

### Note

Exercise care when using this command. For most situations, we recommend that you enter the `spanning-tree mst instance-id root primary` and the `spanning-tree mst instance-id root secondary` configuration commands to modify the hello time.

---

### Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enters global configuration mode.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 1</th>
<th>switch# configure terminal</th>
<th>Enters global configuration mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>switch(config)# spanning-tree mst hello-time seconds</td>
<td>Configures the hello time for all MST instances. The hello time is the interval between the generation of configuration messages by the root bridge. These messages mean that the switch is alive. For <em>seconds</em>, the range is from 1 to 10, and the default is 2 seconds.</td>
</tr>
</tbody>
</table>

---

### Example

This example shows how to configure the hello time of the switch to 1 second:

```
switch# configure terminal
```

---
Configuring the Forwarding-Delay Time

You can set the forward delay timer for all MST instances on the switch with one command.

### Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Configures the forward time for all MST instances. The forward delay is the number of seconds that a port waits before changing from its spanning tree blocking and learning states to the forwarding state. For seconds, the range is from 4 to 30, and the default is 15 seconds.</td>
</tr>
<tr>
<td>switch(config)# spanning-tree mst forward-time seconds</td>
<td></td>
</tr>
</tbody>
</table>

### Example

This example shows how to configure the forward-delay time of the switch to 10 seconds:

```
switch# configure terminal
switch(config)# spanning-tree mst forward-time 10
```

Configuring the Maximum-Aging Time

The maximum-aging timer is the number of seconds that a switch waits without receiving spanning tree configuration messages before attempting a reconfiguration.

You set the maximum-aging timer for all MST instances on the switch with one command (the maximum age time only applies to the IST).

### Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Configures the maximum-aging time for all MST instances. The maximum-aging time is the number of seconds that a switch waits without receiving spanning tree configuration messages before attempting a reconfiguration. For seconds, the range is from 6 to 40, and the default is 20 seconds.</td>
</tr>
<tr>
<td>switch(config)# spanning-tree mst max-age seconds</td>
<td></td>
</tr>
</tbody>
</table>
Example

This example shows how to configure the maximum-aging timer of the switch to 40 seconds:

```
switch# configure terminal
switch(config)# spanning-tree mst max-age 40
```

### Configuring the Maximum-Hop Count

MST uses the path cost to the IST regional root and a hop-count mechanism similar to the IP time-to-live (TTL) mechanism. You configure the maximum hops inside the region and apply it to the IST and all MST instances in that region. The hop count achieves the same result as the message-age information (triggers a reconfiguration).

#### Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# spanning-tree mst max-hops hop-count</td>
<td>Specifies the number of hops in a region before the BPDU is discarded, and the information held for a port is aged. For hop-count, the range is from 1 to 255, and the default value is 20 hops.</td>
</tr>
</tbody>
</table>

Example

This example shows how to set the maximum hops to 40:

```
switch# configure terminal
switch(config)# spanning-tree mst max-hops 40
```

### Configuring PVST Simulation Globally

You can block this automatic feature either globally or per port. You can enter the global command and change the PVST simulation setting for the entire switch while you are in interface command mode.

#### Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# no spanning-tree mst simulate pvst global</td>
<td>Disables all interfaces on the switch from automatically interoperating with connected switch that is running in Rapid PVST+ mode.</td>
</tr>
</tbody>
</table>
Configuring PVST Simulation Per Port

MST interopes seamlessly with Rapid PVST+. However, to prevent an accidental connection to a switch that does not run MST as the default STP mode, you may want to disable this automatic feature. If you disable PVST simulation, the MST-enabled port moves to the blocking state once it detects it is connected to a Rapid PVST+-enabled port. This port remains in the inconsistent state until the port stops receiving BPDUs, and then the port resumes the normal STP transition process.

You can block this automatic feature either globally or per port.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Specifies an interface to configure, and enters interface configuration mode.</td>
</tr>
<tr>
<td>switch(config)# interface {type slot/port</td>
<td>port-channel number}</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Disables specified interfaces from automatically interoperating with a connected switch that is running in Rapid PVST+ mode. By default, all interfaces on the switch operate seamlessly between Rapid PVST+ and MST.</td>
</tr>
<tr>
<td>switch(config-if)# spanning-tree mst simulate pvst disable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Reenables the seamless operation between MST and Rapid PVST+ on specified interfaces.</td>
</tr>
<tr>
<td>switch(config-if)# spanning-tree mst simulate pvst</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>Sets the interface to the switch-wide MST and Rapid PVST+ interoperation that you configured using the spanning-tree mst simulate pvst global command.</td>
</tr>
<tr>
<td>switch(config-if)# no spanning-tree mst simulate pvst</td>
<td></td>
</tr>
</tbody>
</table>
Specifying the Link Type

Rapid connectivity (802.1w standard) is established only on point-to-point links. By default, the link type is controlled from the duplex mode of the interface. A full-duplex port is considered to have a point-to-point connection; a half-duplex port is considered to have a shared connection.

If you have a half-duplex link physically connected point-to-point to a single port on a remote switch, you can override the default setting on the link type and enable rapid transitions.

If you set the link to shared, STP reverts to 802.1D.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# interface type slot/port</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switch(config-if)# spanning-tree link-type {auto</td>
</tr>
</tbody>
</table>

Example

This example shows how to configure the link type as point to point:

```bash
switch# configure terminal
switch (config)# interface ethernet 1/4
switch (config-if)# spanning-tree link-type point-to-point
```
Restarting the Protocol

An MST bridge can detect that a port is at the boundary of a region when it receives a legacy BPDU or an MST BPDU that is associated with a different region. However, the STP protocol migration cannot determine whether the legacy switch, which is a switch that runs only IEEE 802.1D, has been removed from the link unless the legacy switch is the designated switch. Enter this command to restart the protocol negotiation (force the renegotiation with neighboring switches) on the entire switch or on specified interfaces.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>switch# clear spanning-tree detected-protocol [interface interface [interface-num</td>
<td>port-channel]]</td>
</tr>
</tbody>
</table>

Example

This example shows how to restart MST on the Ethernet interface on slot 2, port 8:

```
switch# clear spanning-tree detected-protocol interface ethernet 2/8
```

Verifying the MST Configuration

Use the following commands to display MST configuration information.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show running-config spanning-tree [all]</td>
<td>Displays the current spanning tree configuration.</td>
</tr>
<tr>
<td>show spanning-tree mst [options]</td>
<td>Displays detailed information for the current MST configuration.</td>
</tr>
</tbody>
</table>

This example shows how to display the current MST configuration:

```
switch# show spanning-tree mst configuration
% Switch is not in mst mode
Name [mist-attempt]
Revision 1 Instances configured 2
Instance Vlans mapped
-------- ---
0 1-12,14-41,43-4094
1 13,42
```
CHAPTER 8

Configuring STP Extensions

This chapter contains the following sections:

• Overview, on page 145

Overview

Cisco has added extensions to Spanning Tree Protocol (STP) that make convergence more efficient. In some cases, even though similar functionality may be incorporated into the IEEE 802.1w Rapid Spanning Tree Protocol (RSTP) standard, we recommend using these extensions. All of these extensions can be used with both RPVST+ and Multiple Spanning Tree Protocol (MST).

The available extensions are spanning tree port types, Bridge Assurance, BPDU Guard, BPDU Filtering, Loop Guard, and Root Guard. Many of these features can be applied either globally or on specified interfaces.

Note

Spanning tree is used to refer to IEEE 802.1w and IEEE 802.1s. If the text is discussing the IEEE 802.1D Spanning Tree Protocol, 802.1D is stated specifically.

Information About STP Extensions

Understanding STP Port Types

You can configure a spanning tree port as an edge port, a network port, or a normal port. A port can be in only one of these states at a given time. The default spanning tree port type is normal. Depending on the type of device to which the interface is connected, you can configure a spanning tree port as one of these port types.

Spanning Tree Edge Ports

Edge ports, which are connected to hosts, can be either an access port or a trunk port. The edge port interface immediately transitions to the forwarding state, without moving through the blocking or learning states. (This immediate transition was previously configured as the Cisco-proprietary feature PortFast.)

Interfaces that are connected to hosts should not receive STP bridge protocol data units (BPDUs).
If you configure a port connected to another switch as an edge port, you might create a bridging loop.

**Spanning Tree Network Ports**

Network ports are connected only to switches or bridges. Configuring a port as a network port while Bridge Assurance is enabled globally, enables Bridge Assurance on that port.

**Note**

If you mistakenly configure ports that are connected to hosts or other edge devices as spanning tree network ports, those ports automatically move into the blocking state.

**Spanning Tree Normal Ports**

Normal ports can be connected to either hosts, switches, or bridges. These ports function as normal spanning tree ports.

The default spanning tree interface is a normal port.

**Understanding Bridge Assurance**

You can use Bridge Assurance to protect against certain problems that can cause bridging loops in the network. Specifically, you use Bridge Assurance to protect against a unidirectional link failure and a device that continues to forward data traffic when it is no longer running the spanning tree algorithm.

**Note**

Bridge Assurance is supported only by Rapid PVST+ and MST. Legacy 802.1D spanning tree does not support Bridge Assurance.

Bridge Assurance is enabled by default and can only be disabled globally. Also, Bridge Assurance can be enabled only on spanning tree network ports that are point-to-point links. Finally, both ends of the link must have Bridge Assurance enabled.

With Bridge Assurance enabled, BPDUs are sent out on all operational network ports, including alternate and backup ports, for each hello time period. If the port does not receive a BPDU for a specified period, the port moves into the blocking state and is not used in the root port calculation. Once that port receives a BPDU, it resumes the normal spanning tree transitions.

**Understanding BPDU Guard**

Enabling BPDU Guard shuts down that interface if a BPDU is received.

You can configure BPDU Guard at the interface level. When configured at the interface level, BPDU Guard shuts the port down as soon as the port receives a BPDU, regardless of the port type configuration.

When you configure BPDU Guard globally, it is effective only on operational spanning tree edge ports. In a valid configuration, LAN edge interfaces do not receive BPDUs. A BPDU that is received by an edge LAN interface signals an invalid configuration, such as the connection of an unauthorized host or switch. BPDU Guard, when enabled globally, shuts down all spanning tree edge ports when they receive a BPDU.
On the edge trunk interface level, if the remote side of the disabled VLAN is configured as an access port then the BPDUs will be ignored.

BPDU Guard provides a secure response to invalid configurations, because you must manually put the LAN interface back in service after an invalid configuration.

When enabled globally, BPDU Guard applies to all operational spanning tree edge interfaces.

### Understanding BPDU Filtering

You can use BPDU Filtering to prevent the switch from sending or even receiving BPDUs on specified ports. When configured globally, BPDU Filtering applies to all operational spanning tree edge ports. You should connect edge ports only to hosts, which typically drop BPDUs. If an operational spanning tree edge port receives a BPDU, it immediately returns to a normal spanning tree port type and moves through the regular transitions. In that case, BPDU Filtering is disabled on this port, and spanning tree resumes sending BPDUs on this port.

In addition, you can configure BPDU Filtering by the individual interface. When you explicitly configure BPDU Filtering on a port, that port does not send any BPDUs and drops all BPDUs that it receives. You can effectively override the global BPDU Filtering setting on individual ports by configuring the specific interface. This BPDU Filtering command on the interface applies to the entire interface, whether the interface is trunking or not.

Use care when configuring BPDU Filtering per interface. If you explicitly configuring BPDU Filtering on a port that is not connected to a host, it can result in bridging loops because the port ignores any BPDU that it receives and goes to forwarding.

If the port configuration is not set to default BPDU Filtering, the edge configuration does not affect BPDU Filtering. The following table lists all the BPDU Filtering combinations.

#### Table 8: BPDU Filtering Configurations

<table>
<thead>
<tr>
<th>BPDU Filtering Per Port Configuration</th>
<th>BPDU Filtering Global Configuration</th>
<th>STP Edge Port Configuration</th>
<th>BPDU Filtering State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Enabled</td>
<td>Enabled</td>
<td>Enabled The port transmits at least 10 BPDUs. If this port receives any BPDUs, the port returns to the spanning tree normal port state and BPDU Filtering is disabled.</td>
</tr>
<tr>
<td>Default</td>
<td>Enabled</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>Default</td>
<td>Disabled</td>
<td>Enabled/Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>Disable</td>
<td>Enabled/Disabled</td>
<td>Enabled/Disabled</td>
<td>Disabled</td>
</tr>
</tbody>
</table>
Understanding Loop Guard

Loop Guard protects networks from loops that are caused by the following:

- Network interfaces that malfunction
- Busy CPUs
- Anything that prevents the normal forwarding of BPDUs

An STP loop occurs when a blocking port in a redundant topology erroneously transitions to the forwarding state. This transition usually happens because one of the ports in a physically redundant topology (not necessarily the blocking port) stops receiving BPDUs.

Loop Guard is useful only in switched networks where devices are connected by point-to-point links. On a point-to-point link, a designated bridge cannot disappear unless it sends an inferior BPDU or brings the link down.

Note

Loop Guard can be enabled only on network and normal spanning tree port types.

You can use Loop Guard to determine if a root port or an alternate/backup root port receives BPDUs. If the port does not receive BPDUs, Loop Guard puts the port into an inconsistent state (blocking) until the port starts to receive BPDUs again. A port in the inconsistent state does not transmit BPDUs. If the port receives BPDUs again, the protocol removes its loop-inconsistent condition, and the STP determines the port state because such recovery is automatic.

Loop Guard isolates the failure and allows STP to converge to a stable topology without the failed link or bridge. Disabling Loop Guard moves all loop-inconsistent ports to the listening state.

You can enable Loop Guard on a per-port basis. When you enable Loop Guard on a port, it is automatically applied to all of the active instances or VLANs to which that port belongs. When you disable Loop Guard, it is disabled for the specified ports.

Understanding Root Guard

When you enable Root Guard on a port, Root Guard does not allow that port to become a root port. If a received BPDU triggers an STP convergence that makes that designated port become a root port, that port is put into a root-inconsistent (blocked) state. After the port stops sending superior BPDUs, the port is unblocked again. Through STP, the port moves to the forwarding state. Recovery is automatic.

Root Guard enabled on an interface applies this functionality to all VLANs to which that interface belongs.
You can use Root Guard to enforce the root bridge placement in the network. Root Guard ensures that the port on which Root Guard is enabled is the designated port. Normally, root bridge ports are all designated ports, unless two or more of the ports of the root bridge are connected. If the bridge receives superior BPDUs on a Root Guard-enabled port, the bridge moves this port to a root-inconsistent STP state. In this way, Root Guard enforces the position of the root bridge.

You cannot configure Root Guard globally.

---

Note

You can enable Root Guard on all spanning tree port types: normal, edge, and network ports.

---

**Configuring STP Extensions**

**STP Extensions Configuration Guidelines**

When configuring STP extensions, follow these guidelines:

- Configure all access and trunk ports connected to hosts as edge ports.
- Bridge Assurance runs only on point-to-point spanning tree network ports. You must configure each side of the link for this feature.
- Loop Guard does not run on spanning tree edge ports.
- Enabling Loop Guard on ports that are not connected to a point-to-point link will not work.
- You cannot enable Loop Guard if Root Guard is enabled.

**Configuring Spanning Tree Port Types Globally**

The spanning tree port type designation depends on the type of device the port is connected to, as follows:

- **Edge**—Edge ports are connected to hosts and can be either an access port or a trunk port.
- **Network**—Network ports are connected only to switches or bridges.
- **Normal**—Normal ports are neither edge ports nor network ports; they are normal spanning tree ports. These ports can be connected to any type of device.

You can configure the port type either globally or per interface. By default, the spanning tree port type is normal.

**Before you begin**

Ensure that STP is configured.

Ensure that you are configuring the ports correctly for the type of device to which the interface is connected.

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# spanning-tree port type edge default</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config)# spanning-tree port type network default</td>
</tr>
</tbody>
</table>

**Example**

This example shows how to configure all access and trunk ports connected to hosts as spanning tree edge ports:

```bash
switch# configure terminal
switch(config)# spanning-tree port type edge default
```

This example shows how to configure all ports connected to switches or bridges as spanning tree network ports:

```bash
switch# configure terminal
switch(config)# spanning-tree port type network default
```

**Configuring Spanning Tree Edge Ports on Specified Interfaces**

You can configure spanning tree edge ports on specified interfaces. Interfaces configured as spanning tree edge ports immediately transition to the forwarding state without passing through the blocking or learning states on linkup.

This command has four states:

- `spanning-tree port type edge`—This command explicitly enables edge behavior on the access port.
- `spanning-tree port type edge trunk`—This command explicitly enables edge behavior on the trunk port.
If you enter the `spanning-tree port type edge trunk` command, the port is configured as an edge port even in the access mode.

- **spanning-tree port type normal**—This command explicitly configures the port as a normal spanning tree port and the immediate transition to the forwarding state is not enabled.

- **no spanning-tree port type**—This command implicitly enables edge behavior if you define the `spanning-tree port type edge default` command in global configuration mode. If you do not configure the edge ports globally, the `no spanning-tree port type` command is equivalent to the `spanning-tree port type disable` command.

**Before you begin**

Ensure that STP is configured.

Ensure that the interface is connected to hosts.

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config)# interface type slot/port</td>
<td>Specifies the interface to configure, and enters the interface configuration mode.</td>
</tr>
<tr>
<td>Step 3 switch(config-if)# spanning-tree port type edge</td>
<td>Configures the specified access interfaces to be spanning edge ports. Edge ports immediately transition to the forwarding state without passing through the blocking or learning state at linkup. By default, spanning tree ports are normal port types.</td>
</tr>
</tbody>
</table>

**Example**

This example shows how to configure the Ethernet access interface 1/4 to be a spanning tree edge port:

```bash
switch# configure terminal
switch(config)# interface ethernet 1/4
switch(config-if)# spanning-tree port type edge
```

**Configuring Spanning Tree Network Ports on Specified Interfaces**

You can configure spanning tree network ports on specified interfaces.

Bridge Assurance runs only on spanning tree network ports.

This command has three states:
Enabling BPDU Guard Globally

You can enable BPDU Guard globally by default. In this condition, the system shuts down an edge port that receives a BPDU.
We recommend that you enable BPDU Guard on all edge ports.

**Before you begin**

Ensure that STP is configured.

Ensure that you have configured some spanning tree edge ports.

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> switch(config)# spanning-tree port type edge bpduguard default</td>
<td>Enables BPDU Guard by default on all spanning tree edge ports. By default, global BPDU Guard is disabled.</td>
</tr>
</tbody>
</table>

**Example**

This example shows how to enable BPDU Guard on all spanning tree edge ports:

```
switch# configure terminal
switch(config)# spanning-tree port type edge bpduguard default
```

**Enabling BPDU Guard on Specified Interfaces**

You can enable BPDU Guard on specified interfaces. Enabling BPDU Guard shuts down the port if it receives a BPDU.

You can configure BPDU Guard on specified interfaces as follows:

- **spanning-tree bpduguard enable**—Unconditionally enables BPDU Guard on the interface.
- **spanning-tree bpduguard disable**—Unconditionally disables BPDU Guard on the interface.
- **no spanning-tree bpduguard**—Enables BPDU Guard on the interface if it is an operational edge port and if the `spanning-tree port type edge bpduguard default` command is configured.

**Before you begin**

Ensure that STP is configured.

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>
Enabling BPDU Filtering Globally

Enabling BPDU Filtering Globally

You can enable BPDU Filtering globally by default on spanning tree edge ports.

If an edge port with BPDU Filtering enabled receives a BPDU, it loses its operation status and as edge port and resumes the regular STP transitions. However, this port maintains it configuration as an edge port.

Caution

Be careful when using this command: using it incorrectly can cause bridging loops.

Note

When enabled globally, BPDU Filtering is applied only on ports that are operational edge ports. Ports send a few BPDUs at linkup before they effectively filter outbound BPDUs. If a BPDU is received on an edge port, it immediately loses its operational edge port status and BPDU Filtering is disabled.

Before you begin

Ensure that STP is configured.

Ensure that you have configured some spanning tree edge ports.
### Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# spanning-tree port type edge bpdufilter default</td>
</tr>
<tr>
<td></td>
<td>Global BPDU Filtering is disabled by default.</td>
</tr>
</tbody>
</table>

### Example

This example shows how to enable BPDU Filtering on all operational spanning tree edge ports:

```text
switch# configure terminal
switch(config)# spanning-tree port type edge bpdufilter default
```

### Enabling BPDU Filtering on Specified Interfaces

You can apply BPDU Filtering to specified interfaces. When enabled on an interface, that interface does not send any BPDUs and drops all BPDUs that it receives. This BPDU Filtering functionality applies to the entire interface, whether trunking or not.

**Caution**

Be careful when you enter the `spanning-tree bpdufilter enable` command on specified interfaces. Explicitly configuring BPDU Filtering on a port that is not connected to a host can result in bridging loops because the port ignores any BPDU it receives and goes to forwarding.

You can enter this command to override the port configuration on specified interfaces.

This command has three states:

- **spanning-tree bpdufilter enable**—Unconditionally enables BPDU Filtering on the interface.
- **spanning-tree bpdufilter disable**—Unconditionally disables BPDU Filtering on the interface.
- **no spanning-tree bpdufilter**—Enables BPDU Filtering on the interface if the interface is an operational edge port and if you configure the `spanning-tree port type edge bpdufilter default` command.

**Note**

When you enable BPDU Filtering locally on a port, this feature prevents the device from receiving or sending BPDUs on this port.

**Before you begin**

Ensure that STP is configured.
Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td>switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td>switch(config)# interface type slot/port</td>
<td>Specifies the interface to configure, and enters the interface configuration mode.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
</tr>
<tr>
<td>switch(config-if)# spanning-tree bpdusfilter {enable</td>
<td>disable}</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td></td>
</tr>
<tr>
<td>(Optional) switch(config-if)# no spanning-tree bpdusfilter</td>
<td>Disables BPDUs Filtering on the interface.</td>
</tr>
</tbody>
</table>

**Example**

This example shows how to explicitly enable BPDUs Filtering on the Ethernet spanning tree edge port 1/4:

```
switch# configure terminal
switch (config)# interface ethernet 1/4
switch(config-if)# spanning-tree bpdusfilter enable
```

**Enabling Loop Guard Globally**

You can enable Loop Guard globally by default on all point-to-point spanning tree normal and network ports. Loop Guard does not run on edge ports.

Loop Guard provides additional security in the bridge network. Loop Guard prevents alternate or root ports from becoming the designated port because of a failure that could lead to a unidirectional link.

---

**Note**

Entering the Loop Guard command for the specified interface overrides the global Loop Guard command.

**Before you begin**

Ensure that STP is configured.

Ensure that you have spanning tree normal ports or have configured some network ports.
Enabling Loop Guard or Root Guard on Specified Interfaces

You can enable either Loop Guard or Root Guard on specified interfaces. Enabling Root Guard on a port means that port cannot become a root port, and LoopGuard prevents alternate or root ports from becoming the designated port because of a failure that could lead to a unidirectional link. Both Loop Guard and Root Guard enabled on an interface apply to all VLANs to which that interface belongs.

Note
Entering the Loop Guard command for the specified interface overrides the global Loop Guard command.

Before you begin
Ensure that STP is configured.
Ensure that you are configuring Loop Guard on spanning tree normal or network ports.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config)# spanning-tree loopguard default</td>
<td>Enables Loop Guard by default on all spanning tree normal and network ports. By default, global Loop Guard is disabled.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config)# interface type slot/port</td>
<td>Specifies the interface to configure, and enters the interface configuration mode.</td>
</tr>
<tr>
<td>Step 3 switch(config-if)# spanning-tree guard {loop</td>
<td>root</td>
</tr>
</tbody>
</table>

Note Loop Guard runs only on spanning tree normal and network interfaces.
Example
This example shows how to enable Root Guard on Ethernet port 1/4:

```
switch# configure terminal
switch (config)# interface ethernet 1/4
switch(config-if)# spanning-tree guard root
```

Configuring FEX Port Spanning Tree BPDU Transmit Interval

You can configure the number of seconds between generation of the config Bridge Protocol Data Units (BPDUs) for FEX ports when they are connected to Cisco Nexus devices.

Before you begin
Enter the `spanning-tree bpdufilter disable` command if the FEX ports are connected to a Cisco Nexus device.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Configures the number of seconds between generation of config BPDUs for FEX ports. The <code>fex-hello-time-value</code> range is from 2 to 12.</td>
</tr>
<tr>
<td>switch(config)# spanning-tree vlan vlan-id fex-hello-time fex-hello-time-value</td>
<td></td>
</tr>
</tbody>
</table>

**Note**
- If the global `hello-time` is two seconds (default) and the `fex-hello-time` is two seconds, FEX port BPDU is not sent.

Example
The following examples show how to configure the number of seconds between generation of config BPDUs to 5 for VLAN 10.

```
switch# configure terminal
switch(config)# spanning-tree vlan 10 fex-hello-time 5
```

Verifying the STP Extension Configuration

Use the following commands to display the configuration information for the STP extensions.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show running-config spanning-tree [all]</td>
<td>Displays the current status of spanning tree on the switch.</td>
</tr>
</tbody>
</table>
### Verifying the STP Extension Configuration

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show spanning-tree [options]</code></td>
<td>Displays selected detailed information for the current spanning tree configuration.</td>
</tr>
</tbody>
</table>
Verifying the STP Extension Configuration
## Configuring LLDP

This chapter contains the following sections:

- **Configuring LLDP**, on page 161
- **Configuring Interface LLDP**, on page 162

### Configuring LLDP

**Before you begin**

Ensure that the Link Layer Discovery Protocol (LLDP) feature is enabled on the switch.

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><strong>switch# configure terminal</strong></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>**switch(config)# lldp {holdtime seconds</td>
</tr>
</tbody>
</table>
### Configuring Interface LLDP

#### Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>switch(config)# no lldp</code></td>
<td>No command specifies the Data Center Ethernet Parameter Exchange (DCBX) TLV messages.</td>
</tr>
<tr>
<td><code>switch(config)# lldp holdtime</code></td>
<td>Use the <code>management-address</code> option to specify the management address TLV messages.</td>
</tr>
<tr>
<td><code>switch(config)# lldp port-description</code></td>
<td>Use the <code>port-description</code> option to specify the port description TLV messages.</td>
</tr>
<tr>
<td><code>switch(config)# lldp port-vlan</code></td>
<td>Use the <code>port-vlan</code> option to specify the port VLAN ID TLV messages.</td>
</tr>
<tr>
<td><code>switch(config)# lldp system-capabilities</code></td>
<td>Use the <code>system-capabilities</code> option to specify the system capabilities TLV messages.</td>
</tr>
<tr>
<td><code>switch(config)# lldp system-description</code></td>
<td>Use the <code>system-description</code> option to specify the system description TLV messages.</td>
</tr>
<tr>
<td><code>switch(config)# lldp system-name</code></td>
<td>Use the <code>system-name</code> option to specify the system name TLV messages.</td>
</tr>
</tbody>
</table>

#### Step 3

- `switch(config)# no lldp {holdtime | reinit | timer}`
  - Resets the LLDP values to their defaults.

#### Step 4

- (Optional) `switch# show lldp`
  - Displays LLDP configurations.

#### Example

This example shows how to configure the global LLDP hold time to 200 seconds:

```
switch# configure terminal
switch(config)# lldp holdtime 200
```

This example shows how to enable LLDP to send or receive the management address TLVs:

```
switch# configure terminal
switch(config)# lldp tlv-select management-address
```

### Configuring Interface LLDP

#### Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>switch# configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><code>switch(config)# interface type slot/port</code></td>
<td>Selects the interface to change.</td>
</tr>
</tbody>
</table>
### Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 3</strong></td>
<td>switch(config-if)# [no] lldp {receive</td>
</tr>
<tr>
<td></td>
<td>Sets the selected interface to either receive or transmit. The no form of the command disables the LLDP transmit or receive.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>(Optional) switch# show lldp {interface</td>
</tr>
<tr>
<td></td>
<td>Displays LLDP configurations.</td>
</tr>
</tbody>
</table>

### Example

This example shows how to set an interface to transmit LLDP packets:

```
switch# configure terminal
switch(config)# interface ethernet 1/2
switch(config-if)# lldp transmit
```

This example shows how to configure an interface to disable LLDP:

```
switch# configure terminal
switch(config)# interface ethernet 1/2
switch(config-if)# no lldp transmit
switch(config-if)# no lldp receive
```

This example shows how to display LLDP interface information:

```
switch# show lldp interface ethernet 1/2
tx_enabled: TRUE
rx_enabled: TRUE
dcbx_enabled: TRUE
Port MAC address: 00:0d:ec:a3:5f:48
Remote Peers Information
No remote peers exist
```

This example shows how to display LLDP neighbor information:

```
switch# show lldp neighbors
LLDP Neighbors
Remote Peers Information on interface Eth1/40
Remote peer's MSAP: length 12 Bytes:
00 c0 dd 0e 5f 3a 00 c0 dd 0e 5f 3a
LLDP TLV's
LLDP TLV type:Chassis ID LLDP TLV Length: 7
LLDP TLV type:Port ID LLDP TLV Length: 7
LLDP TLV type:Time to Live LLDP TLV Length: 2
LLDP TLV type:LLDP Organizationally Specific LLDP TLV Length: 55
LLDP TLV type:LLDP Organizationally Specific LLDP TLV Length: 5
LLDP TLV type:END of LLDPDU LLDP TLV Length: 0
Remote Peers Information on interface Eth1/34
```
Remote peer’s MSAP: length 12 Bytes:
00 0d ec a3 27 40 00 0d ec a3 27 69
LLDP TLV’s
LLDP TLV type:Chassis ID LLDP TLV Length: 7
LLDP TLV type:Port ID LLDP TLV Length: 7
LLDP TLV type:Time to Live LLDP TLV Length: 2
LLDP TLV type:LLDP Organizationally Specific LLDP TLV Length: 55
LLDP TLV type:LLDP Organizationally Specific LLDP TLV Length: 5
LLDP TLV type:END of LLDPDU LLDP TLV Length: 0
Remote Peers Information on interface Eth1/33
Remote peer’s MSAP: length 12 Bytes:
00 0d ec a3 27 40 00 0d ec a3 27 68
LLDP TLV’s
LLDP TLV type:Chassis ID LLDP TLV Length: 7
LLDP TLV type:Port ID LLDP TLV Length: 7
LLDP TLV type:Time to Live LLDP TLV Length: 2
LLDP TLV type:LLDP Organizationally Specific LLDP TLV Length: 55
LLDP TLV type:LLDP Organizationally Specific LLDP TLV Length: 5
LLDP TLV type:END of LLDPDU LLDP TLV Length: 0
This example shows how to display the system details about LLDP neighbors:

```
switch# sh lldp neighbors system-detail
Capability codes:
 (R) Router, (B) Bridge, (T) Telephone, (C) DOCSIS Cable Device
 (W) WLAN Access Point, (P) Repeater, (S) Station, (O) Other
Device ID Local Intf Chassis ID PortID Hold-time Capability
switch-2 Eth1/7 0005.73b7.37ce Eth1/7 120 B
switch-3 Eth/9 0005.73b7.37d0 Eth1/9 120 B
switch-4 Eth1/10 0005.73b7.37d1 Eth1/10 120 B
Total entries displayed: 3
```

This example shows how to display LLDP timer information:
```
switch# show lldp timers
LLDP Timers
 holdtime 120 seconds
 reinit 2 seconds
 msg_tx_interval 30 seconds
```

This example shows how to display information about LLDP counters:
```
switch# show lldp traffic
LLDP traffic statistics:
 Total frames out: 8464
 Total Entries aged: 6
 Total frames in: 6342
 Total frames received in error: 2
 Total frames discarded: 2
 Total TLVs unrecognized: 0
```
CHAPTER 10

Configuring MAC Address Tables

This chapter contains the following sections:

• Information About MAC Addresses, on page 165
• Configuring MAC Addresses, on page 166
• Verifying the MAC Address Configuration, on page 168
• Verifying RMAC Learning Feature, on page 169

Information About MAC Addresses

To switch frames between LAN ports, the switch maintains an address table. When the switch receives a frame, it associates the media access control (MAC) address of the sending network device with the LAN port on which it was received.

The switch dynamically builds the address table by using the MAC source address of the frames received. When the switch receives a frame for a MAC destination address not listed in its address table, it floods the frame to all LAN ports of the same VLAN except the port that received the frame. When the destination station replies, the switch adds its relevant MAC source address and port ID to the address table. The switch then forwards subsequent frames to a single LAN port without flooding all LAN ports.

You can also enter a MAC address, which is termed a static MAC address, into the table. These static MAC entries are retained across a reboot of the switch.

RMAC Learning

Starting with Cisco NX-OS Release 7.2(0)N1(1), the RMAC Learning feature is supported on Cisco Nexus 5600 and 6000 series switches. This feature allows the default MAC address (RMAC) of a VLAN interface to be dynamically learned on another VLAN over a bridged interface on the switch. For example, consider two VLANs—VLAN X and VLAN Y—bridged over an external device. If a customer has a VLAN interface configured on VLAN Y, the MAC address of the interface will be dynamically learned on VLAN X.
Configuring MAC Addresses

Configuring Static MAC Addresses

You can configure static MAC addresses for the switch. These addresses can be configured in interface configuration mode or in VLAN configuration mode.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1
switch# configure terminal | Enters global configuration mode. |
| Step 2
switch(config)# mac address-table static mac_address vlan vlan-id {drop | interface {type slot/port} | port-channel number} [auto-learn] | Specifies a static address to add to the MAC address table. If you enable the auto-learn option, the switch will update the entry if the same MAC address is seen on a different port. |
| Step 3
(Optional) switch(config)# no mac address-table static mac_address vlan vlan-id | Deletes the static entry from the MAC address table. Use the mac address-table static command to assign a static MAC address to a virtual interface. |

Example

This example shows how to put a static entry in the MAC address table:

```
switch# configure terminal
switch(config)# mac address-table static 12ab.47dd.ff89 vlan 3 interface ethernet 1/4
```

Configuring the Aging Time for the MAC Table

You can configure the amount of time that an entry (the packet source MAC address and port that packet ingresses) remains in the MAC table. MAC aging time can be configured in either interface configuration mode or in VLAN configuration mode.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1
switch# configure terminal | Enters global configuration mode. |
| Step 2
switch(config)# mac address-table aging-time seconds [vlan vlan_id] | Specifies the time before an entry ages out and is discarded from the MAC address table. |
### Configuring MAC Move Loop Detection

When the number of MAC address moves between two ports exceeds a threshold, it forms a loop. From Cisco NX-OS release 6.0(2)N2(1), you can configure the action of bringing down the port with the lower interface index when such a loop is detected by using the `mac address-table loop-detect port-down` command. To revert to the default action of disabling MAC learning, use the `no` form of this command.

**Note**
If only the loop-detect port-down configuration is enabled, the last port on which MAC loop is detected is err-disabled.

### Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> switch(config)# [no] mac address-table loop-detect port-down</td>
<td>Specifies the port-down action for MAC move loop detection. The <code>no</code> form of this command reverts to the default action of disabling MAC learning for 180 seconds.</td>
</tr>
<tr>
<td><strong>Step 3</strong> switch(config)# mac address-table loop-detect port-down edge-port</td>
<td>Enables the err-disabled detection for the edge-port on the MAC move loop detection.</td>
</tr>
</tbody>
</table>

### Example

This example shows how to configure port-down as the action for MAC move loop detection.

```
switch# configure terminal
switch(config)# mac address-table loop-detect port-down
```
This example shows how to enable the err-disabled detection for the edge-port on the MAC move loop detection.

```
switch# configure terminal
switch(config)# mac address-table loop-detect port-down edge-port
```

### Clearing Dynamic Addresses from the MAC Table

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> switch(config)# clear mac address-table dynamic {address mac-addr} {interface [type slot/port</td>
<td>port-channel number] {vlan vlan-id}}</td>
</tr>
</tbody>
</table>

### Enabling RMAC Learning Feature

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> switch(config)# [no] mac address-table router-mac learn-enable</td>
<td>Enables/disables the RMAC learning feature.</td>
</tr>
</tbody>
</table>

- You can use the *clear mac address-table dynamic* command to clear the learned MAC addresses.

### Verifying the MAC Address Configuration

Use one of the following commands to verify the configuration:

**Table 10: MAC Address Configuration Verification Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show mac address-table aging-time</td>
<td>Displays the MAC address aging time for all VLANs defined in the switch.</td>
</tr>
<tr>
<td>show mac address-table</td>
<td>Displays the contents of the MAC address table.</td>
</tr>
<tr>
<td><strong>Note</strong> IGMP snooping learned MAC addresses are not displayed.</td>
<td></td>
</tr>
<tr>
<td>show mac address-table loop-detect</td>
<td>Displays the currently configured action.</td>
</tr>
</tbody>
</table>
This example shows how to display the MAC address table:

```
switch# show mac address-table
VLAN MAC Address Type Age Port

 1 0018.b967.3cd0 dynamic 10 Eth1/3
 1 001c.b05a.5380 dynamic 200 Eth1/3
Total MAC Addresses: 2
```

This example shows how to display the current aging time:

```
switch# show mac address-table aging-time
Vlan Aging Time
----- ---------
 1 300
13 300
42 300
```

This example shows how to display the currently configured action:

```
switch# configure terminal
switch(config)# show mac address-table loop-detect
Port Down Action Mac Loop Detect : enabled

switch# configure terminal
switch(config)# no mac address-table loop-detect port-down
switch(config)# show mac address-table loop-detect
Port Down Action Mac Loop Detect : disabled
```

**Verifying RMAC Learning Feature**

Use the `show mac address-table interface type slot/port vlan vlan_id` command to display the information about the MAC address table. In the sample output given below, RMAC is learned on Ethernet 1/33.

```
switch# show mac address-table interface ethernet 1/33 vlan 2
Legend:
* - primary entry, G - Gateway MAC, (R) - Routed MAC, O - Overlay MAC
age - seconds since last seen, + - primary entry using vPC Peer-Link
VLAN MAC Address Type age Secure NTFY Ports/SWID.SSID.LID

 2 002a.6aca.b6bc dynamic 20 F F Eth1/33
```
CHAPTER 11

Configuring IGMP Snooping

This chapter contains the following sections:

• Information About IGMP Snooping, on page 171
• Guidelines and Limitations for IGMP Snooping, on page 173
• Configuring IGMP Snooping Parameters, on page 174
• Verifying the IGMP Snooping Configuration, on page 177

Information About IGMP Snooping

The IGMP snooping software examines IGMP protocol messages within a VLAN to discover which interfaces are connected to hosts or other devices interested in receiving this traffic. Using the interface information, IGMP snooping can reduce bandwidth consumption in a multiaccess LAN environment to avoid flooding the entire VLAN. The IGMP snooping feature tracks which ports are attached to multicast-capable routers to help manage the forwarding of IGMP membership reports. The IGMP snooping software responds to topology change notifications.

Note

IGMP snooping is supported on all Ethernet interfaces. The term snooping is used because Layer 3 control plane packets are intercepted and influence Layer 2 forwarding decisions.

Cisco NX-OS supports IGMPv2 and IGMPv3. IGMPv2 supports IGMPv1, and IGMPv3 supports IGMPv2. Although not all features of an earlier version of IGMP are supported, the features related to membership query and membership report messages are supported for all IGMP versions.

The following figure shows an IGMP snooping switch that is located between the host and the IGMP router. The IGMP snooping switch snoops the IGMP membership reports and leave messages and forwards them only when necessary to the connected IGMP routers.
The switch supports IGMPv3 snooping based only on the destination multicast MAC address. It does not support snooping based on the source MAC address or on proxy reports.

The Cisco NX-OS IGMP snooping software supports optimized multicast flooding (OMF) that forwards unknown traffic to routers only and performs no data driven state creation. For more information about IGMP snooping, see [http://tools.ietf.org/wg/magma/draft-ietf-magma-snoop/rfc4541.txt](http://tools.ietf.org/wg/magma/draft-ietf-magma-snoop/rfc4541.txt).

IGMPv1 and IGMPv2

Both IGMPv1 and IGMPv2 support membership report suppression, which means that if two hosts on the same subnet want to receive multicast data for the same group, the host that receives a member report from the other host suppresses sending its report. Membership report suppression occurs for hosts that share a port.

If no more than one host is attached to each VLAN switch port, you can configure the fast leave feature in IGMPv2. The fast leave feature does not send last member query messages to hosts. As soon as the software receives an IGMP leave message, the software stops forwarding multicast data to that port.

IGMPv1 does not provide an explicit IGMP leave message, so the software must rely on the membership message timeout to indicate that no hosts remain that want to receive multicast data for a particular group.

Note

Cisco NX-OS ignores the configuration of the last member query interval when you enable the fast leave feature because it does not check for remaining hosts.

IGMPv3

The IGMPv3 snooping implementation on the switch forwards IGMPv3 reports to allow the upstream multicast router to do source-based filtering.

By default, the software tracks hosts on each VLAN port. The explicit tracking feature provides a fast leave mechanism. Because every IGMPv3 host sends membership reports, a report suppression feature limits the amount of traffic the switch sends to other multicast-capable routers. When report suppression is enabled, and no IGMPv1 or IGMPv2 hosts request the same group, the software provides proxy reporting. The proxy...
feature builds the group state from membership reports from the downstream hosts and generates membership reports in response to queries from upstream queriers.

Even though the IGMPv3 membership reports provide a full accounting of group members on a LAN segment, when the last host leaves, the software sends a membership query. You can configure the parameter last member query interval. If no host responds before the timeout, the software removes the group state.

**IGMP Snooping Querier**

When there is no multicast router in the VLAN to originate the queries, you must configure an IGMP snooping querier to send membership queries.

When an IGMP snooping querier is enabled, it sends out periodic IGMP queries that trigger IGMP report messages from hosts that want to receive IP multicast traffic. IGMP snooping listens to these IGMP reports to establish appropriate forwarding.

Currently, you can configure the same SVI IP address for the switch querier and the IGMP snooping querier. Both queriers will then be active at the same time, and both queriers will send general queries to the VLAN periodically. To prevent this from happening, ensure that you use different IP addresses for the IGMP snooping querier and the switch querier.

**IGMP Forwarding**

The Cisco Nexus device supports snooping based on (S,G)/(*,G) IP addresses. Multicast MAC aliasing does not apply for Cisco Nexus devices and the snooped entries are programmed in the FIB tables and not in MAC table.

When a host connected to the switch wants to join an IP multicast group, it sends an unsolicited IGMP join message, specifying the IP multicast group to join. Alternatively, when the switch receives a general query from a connected router, it forwards the query to all interfaces, physical and virtual, in the VLAN. Hosts that want to join the multicast group respond by sending a join message to the switch. The switch CPU creates a multicast forwarding table entry for the group if it is not already present. The CPU also adds the interface where the join message was received to the forwarding table entry. The host associated with that interface receives multicast traffic for that multicast group.

The router sends periodic multicast general queries and the switch forwards these queries through all ports in the VLAN. Interested hosts respond to the queries. If at least one host in the VLAN wants to receive multicast traffic, the router continues forwarding the multicast traffic to the VLAN. The switch forwards multicast group traffic to only those hosts listed in the forwarding table for that multicast group.

When hosts want to leave a multicast group, they can either silently leave, or they can send a leave message. When the switch receives a leave message from a host, it sends a group-specific query to determine if any other devices connected to that interface are interested in traffic for the specific multicast group. The switch then updates the forwarding table for that (S,G) or (*,G) group so that only those hosts interested in receiving multicast traffic for the group are listed in the forwarding table. If the router receives no reports from a VLAN, it removes the group for the VLAN from its IGMP cache.

**Guidelines and Limitations for IGMP Snooping**

Consider the following configuration limitations with other features when configuring IGMP Snooping:
- IGMP snooping runs only on the primary VLAN and uses the configuration of the primary VLAN for all secondary VLANs.

Any IGMP snooping join request in the secondary VLAN is treated as if it is received in the primary VLAN.

### Configuring IGMP Snooping Parameters

To manage the operation of the IGMP snooping process, you can configure the optional IGMP snooping parameters described in the following table.

#### Table 11: IGMP Snooping Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGMP snooping</td>
<td>Enables IGMP snooping on a per-VLAN basis. The default is enabled.</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong> If the global setting is disabled, all VLANs are treated as disabled, whether they are enabled or not.</td>
</tr>
<tr>
<td>Explicit tracking</td>
<td>Tracks IGMPv2 and IPMPv3 membership reports from individual hosts for each port on a per-VLAN basis. The default is enabled.</td>
</tr>
<tr>
<td>Fast leave</td>
<td>Enables the software to remove the group state when it receives an IGMP Leave report without sending an IGMP query message. This parameter is used for IGMPv2 hosts when no more than one host is present on each VLAN port. The default is disabled.</td>
</tr>
<tr>
<td>Last member query interval</td>
<td>Sets the interval that the software waits after sending an IGMP query to verify that no hosts that want to receive a particular multicast group remain on a network segment. If no hosts respond before the last member query interval expires, the software removes the group from the associated VLAN port. Values range from 1 to 25 seconds. The default is 1 second.</td>
</tr>
<tr>
<td>Snooping querier</td>
<td>Configures a snooping querier on an interface when there is no multicast router in the VLAN to generate queries. The default is disabled.</td>
</tr>
<tr>
<td>Report suppression</td>
<td>Limits the membership report traffic sent to multicast-capable routers. When you disable report suppression, all IGMP reports are sent as is to multicast-capable routers. The default is enabled.</td>
</tr>
<tr>
<td>Multicast router</td>
<td>Configures a static connection to a multicast router. The interface to the router must be in the selected VLAN.</td>
</tr>
</tbody>
</table>
### Configuring IGMP Snooping Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multicast router vpc-peer-link</td>
<td>Configures a static connection to a virtual port channel (vPC) peer link. By default, the vPC peer link is considered a multicast router port and the multicast packet is sent to the peer link for each receiver VLAN. To send the multicast traffic over a vPC peer link to each receiver VLAN that has orphan ports, use the <code>no ip igmp snooping mrouter vpc-peer-link</code> command. If you use the <code>no ip igmp snooping mrouter vpc-peer-link</code> command, the multicast traffic is not sent over to a peer link for the source VLAN and receiver VLAN unless there is an orphan port in the VLAN. The IGMP snooping mrouter VPC peer link should also be globally disabled on the peer VPC switch.</td>
</tr>
<tr>
<td>Static group</td>
<td>Configures an interface that belongs to a VLAN as a static member of a multicast group.</td>
</tr>
</tbody>
</table>

You can disable IGMP snooping either globally or for a specific VLAN.

### Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# ip igmp snooping</td>
<td>Globally enables IGMP snooping. The default is enabled. Note If the global setting is disabled, all VLANs are treated as disabled, whether they are enabled or not.</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config)# vlan configuration vlan-id</td>
<td>Enters VLAN configuration mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>switch(config-vlan)# ip igmp snooping</td>
<td>Enables IGMP snooping for the current VLAN. The default is enabled. Note If IGMP snooping is enabled globally, this command is not required.</td>
</tr>
<tr>
<td>Step 5</td>
<td>switch(config-vlan)# ip igmp snooping</td>
<td>Tracks IGMPv2 and IGMPv3 membership reports from individual hosts for each port on a per-VLAN basis. The default is enabled on all VLANs.</td>
</tr>
<tr>
<td>Step 6</td>
<td>switch(config-vlan)# ip igmp snooping</td>
<td>Supports IGMPv2 hosts that cannot be explicitly tracked because of the host report suppression mechanism of the IGMPv2 protocol. When you enable fast leave, the IGMP software assumes that no more than one host is present on each VLAN port. The default is disabled for all VLANs.</td>
</tr>
</tbody>
</table>
### Purpose

**Step 7**
```
switch(config-vlan)# ip igmp snooping last-member-query-interval seconds
```
Removes the group from the associated VLAN port if no hosts respond to an IGMP query message before the last member query interval expires. Values range from 1 to 25 seconds. The default is 1 second.

**Step 8**
```
switch(config-vlan)# ip igmp snooping querier IP-address
```
Configures a snooping querier when you do not enable PIM because multicast traffic does not need to be routed. The IP address is used as the source in messages. The default is disabled.

**Step 9**
```
switch(config-vlan)# ip igmp snooping report-suppression
```
Limits the membership report traffic sent to multicast-capable routers. When you disable report suppression, all IGMP reports are sent as is to multicast-capable routers. The default is enabled.

**Step 10**
```
switch(config-vlan)# ip igmp snooping mrouter interface interface
```
Configures a static connection to a multicast router. The interface to the router must be in the selected VLAN. You can specify the interface by type and number.

**Step 11**
```
switch(config-vlan)# ip igmp snooping mrouter vpc-peer-link
```
Configures a static connection to a virtual port channel (vPC) peer link. By default, the vPC peer link is considered as a multicast router port and the multicast packet is sent to the peer link for each receiver VLAN. To send the multicast traffic over a vPC peer link to each receiver VLAN that has orphan ports, use the `no ip igmp snooping mrouter vpc-peer-link` command. The IGMP snooping mrouter VPC peer link should also be globally disabled on the peer VPC switch.

**Step 12**
```
switch(config-vlan)# ip igmp snooping static-group group-ip-addr [source source-ip-addr] interface interface
```
Configures an interface belonging to a VLAN as a static member of a multicast group. You can specify the interface by type and number.

### Example

This example shows how to configure IGMP snooping parameters for a VLAN:

```
switch# configure terminal
switch(config)# vlan configuration 5
switch(config-vlan)# ip igmp snooping last-member-query-interval 3
switch(config-vlan)# ip igmp snooping querier 172.20.52.106
switch(config-vlan)# ip igmp snooping explicit-tracking
switch(config-vlan)# ip igmp snooping fast-leave
switch(config-vlan)# ip igmp snooping report-suppression
switch(config-vlan)# ip igmp snooping mrouter interface ethernet 1/10
```
switch(config-vlan)# ip igmp snooping mrouter vpc-peer-link
switch(config-vlan)# ip igmp snooping static-group 230.0.0.1 interface ethernet 1/10
switch(config-vlan)# end

This example shows how to configure a static connection to a vPC peer link and how to remove the static connection to a vPC peer link:

switch(config)# ip igmp snooping mrouter vpc-peer-link
switch(config)# no ip igmp snooping mrouter vpc-peer-link
Warning: IGMP Snooping mrouter vpc-peer-link should be globally disabled on peer VPC switch as well.
switch(config)#

Verifying the IGMP Snooping Configuration

Use the following commands to verify the IGMP snooping configuration.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip igmp snooping</td>
<td>Displays IGMP snooping configuration by VLAN.</td>
</tr>
<tr>
<td>[[vlan] vlan-id]</td>
<td></td>
</tr>
<tr>
<td>show ip igmp snooping groups</td>
<td>Displays IGMP snooping information about groups by VLAN.</td>
</tr>
<tr>
<td>[[vlan] vlan-id] [detail]</td>
<td></td>
</tr>
<tr>
<td>show ip igmp snooping querier</td>
<td>Displays IGMP snooping queriers by VLAN.</td>
</tr>
<tr>
<td>[[vlan] vlan-id]</td>
<td></td>
</tr>
<tr>
<td>show ip igmp snooping mrouter</td>
<td>Displays multicast router ports by VLAN.</td>
</tr>
<tr>
<td>[[vlan] vlan-id]</td>
<td></td>
</tr>
<tr>
<td>show ip igmp snooping explicit-tracking vlan</td>
<td>Displays IGMP snooping explicit tracking information by VLAN.</td>
</tr>
<tr>
<td>vlan-id</td>
<td></td>
</tr>
</tbody>
</table>

Note

VPC behavior for v2 EHT: In a VPC scenario, the explicit host tracking is not synced to the VPC peer. However in a VPC peer, the EHT is also learned by cfs sync and is displayed by using the detail option.

This example shows how to verify the IGMP snooping parameters:

switch# show ip igmp snooping
Global IGMP Snooping Information:
   IGMP Snooping enabled
IGMP Snooping information for vlan 1
   IGMP snooping enabled
   IGMP querier none
   Switch-querier disabled
   Explicit tracking enabled
   Fast leave disabled
   Report suppression enabled
   Router port detection using PIM Hellos, IGMP Queries
   Number of router-ports: 0
   Number of groups: 0
IGMP Snooping information for vlan 5
   IGMP snooping enabled
   IGMP querier present, address: 192.0.2.1, version: 3
   Querier interval: 125 secs
   Querier last member query interval: 10 secs
Querier robustness: 2
Switch-querier enabled, address 192.0.2.1, currently running
Explicit tracking enabled
Fast leave enabled
Report suppression enabled
Router port detection using PIM Hellos, IGMP Queries
Number of router-ports: 1
Number of groups: 1

This example shows how to display the IGMP snooping configuration for explicit tracking on an IGMPv2 host:

```
switch# show ip igmp snooping explicit tracking
IGMP Snooping Explicit-tracking information
Vlan Source/Group Intf Reporter Uptime Last-Join Expires Ver Reports
100 */225.1.1.69 Eth1/43 10.1.1.2 00:00:02 00:00:02 00:04:17 v2 1
100 */225.1.1.70 Eth1/43 10.1.1.2 00:00:02 00:00:02 00:04:17 v2 1
100 */225.1.1.71 Eth1/43 10.1.1.2 00:00:02 00:00:02 00:04:17 v2 1
100 */225.1.1.72 Eth1/43 10.1.1.2 00:00:02 00:00:02 00:04:17 v2 1
100 */225.1.1.73 Eth1/43 10.1.1.2 00:00:02 00:00:02 00:04:17 v2 1
100 */225.1.1.74 Eth1/43 10.1.1.2 00:00:02 00:00:02 00:04:17 v2 1
100 */225.1.1.75 Eth1/43 10.1.1.2 00:00:02 00:00:02 00:04:17 v2 1
100 */225.1.1.76 Eth1/43 10.1.1.2 00:00:02 00:00:02 00:04:17 v2 1
100 */225.1.1.77 Eth1/43 10.1.1.2 00:00:02 00:00:02 00:04:17 v2 1
100 */225.1.1.78 Eth1/43 10.1.1.2 00:00:02 00:00:02 00:04:17 v2 1
switch#:
```
Configuring MVR

This chapter contains the following sections:

- Information About MVR, on page 179
- Licensing Requirements for MVR, on page 180
- Guidelines and Limitations for MVR, on page 180
- Default MVR Settings, on page 181
- Configuring MVR, on page 181
- Verifying the MVR Configuration, on page 184

Information About MVR

MVR Overview

In a typical Layer 2 multi-VLAN network, subscribers to a multicast group can be on multiple VLANs. To maintain data isolation between these VLANs, the multicast stream on the source VLAN must be passed to a router, which replicates the stream on all subscriber VLANs, wasting upstream bandwidth.

Multicast VLAN Registration (MVR) allows a Layer 2 switch to forward the multicast data from a source on a common assigned VLAN to the subscriber VLANs, conserving upstream bandwidth by bypassing the router. The switch forwards multicast data for MVR IP multicast streams only to MVR ports on which hosts have joined, either by IGMP reports or by MVR static configuration. The switch forwards IGMP reports received from MVR hosts only to the source port. For other traffic, VLAN isolation is preserved.

MVR requires at least one VLAN to be designated as the common VLAN to carry the multicast stream from the source. More than one such multicast VLAN (MVR VLAN) can be configured in the system, and you can configure a global default MVR VLAN as well as interface-specific default MVR VLANs. Each multicast group using MVR is assigned to an MVR VLAN.

MVR allows a subscriber on a port to subscribe and unsubscribe to a multicast stream on the MVR VLAN by sending IGMP join and leave messages. IGMP leave messages from an MVR group are handled according to the IGMP configuration of the VLAN on which the leave message is received. If IGMP fast leave is enabled on the VLAN, the port is removed immediately; otherwise, an IGMP query is sent to the group to determine whether other hosts are present on the port.
MVR and IGMP Snooping

Although MVR operates on the underlying mechanism of IGMP snooping, the two features operate independently of each other. One feature can be enabled or disabled without affecting the operation of the other feature. If IGMP snooping is disabled globally or on a VLAN, and if MVR is enabled on the VLAN, IGMP snooping is internally enabled on the VLAN. Joins received for MVR groups on non-MVR receiver ports, or joins received for non-MVR groups on MVR receiver ports, are processed by IGMP snooping.

MVR and vPC

- As with IGMP snooping, IGMP control messages received by virtual port channel (vPC) peer switches are exchanged between the peers, allowing synchronization of MVR group information.
- MVR configuration must be consistent between the peers.
- The `no ip igmp snooping mrouter vpc-peer-link` command applies to MVR. With this command, multicast traffic is not sent over to a peer link for the source VLAN and receiver VLAN unless there is an orphan port in the VLAN.
- The `show mvr member` command shows the multicast group on the vPC peer switch. However, the vPC peer switch does not show the multicast groups if it does not receive the IGMP membership report of the groups.

Licensing Requirements for MVR

The following table shows the licensing requirements for this feature:

<table>
<thead>
<tr>
<th>Product</th>
<th>License Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco NX-OS</td>
<td>This feature does not require a license. Any feature not included in a license package is bundled with the Cisco NX-OS system images and is provided at no extra charge to you. For a complete explanation of the Cisco NX-OS licensing scheme, see the <em>Cisco NX-OS Licensing Guide</em>.</td>
</tr>
</tbody>
</table>

Guidelines and Limitations for MVR

When configuring MVR, follow these guidelines:

- MVR is supported only on Layer 2 Ethernet ports, such as individual ports, port channels, and virtual Ethernet (vEth) ports.
- MVR receiver ports can only be access ports; they cannot be trunk ports. MVR source ports can be either access or trunk ports.
- MVR configuration on Flex Link ports is not supported.
- Priority tagging is not supported on MVR receiver ports.
- When using private VLANs (PVLANs), you cannot configure a secondary VLAN as the MVR VLAN.
The total number of MVR VLANs cannot exceed 250.

During and in-service software upgrade (ISSU), MVR IGMP membership for the MVR receiver ports may timeout because the joins are not forwarded to the upstream router. In order to avoid a timeout, the querier timer on the upstream router or the network querier should be increased to accommodate an ISSU.

### Default MVR Settings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVR</td>
<td>Disabled globally and per interface</td>
</tr>
<tr>
<td>Global MVR VLAN</td>
<td>None configured</td>
</tr>
<tr>
<td>Interface (per port) default</td>
<td>Neither a receiver nor a source port</td>
</tr>
</tbody>
</table>

### Configuring MVR

#### Configuring MVR Global Parameters

**Procedure**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>switch(config)# [no] mvr</td>
<td>Globally enables MVR. The default is disabled. Use the no form of the command to disable MVR.</td>
</tr>
<tr>
<td>3</td>
<td>switch(config)# [no] mvr-vlan vlan-id</td>
<td>Specifies the global default MVR VLAN. The MVR VLAN is the source of the multicast message that subsequent receivers subscribe to. The range is 1 to 4094. Use the no form of the command to clear the MVR VLAN.</td>
</tr>
<tr>
<td>4</td>
<td>switch(config)# [no] mvr-group addr[/mask] [count groups] [vlan vlan-id]</td>
<td>Adds a multicast group at the specified IPv4 address and (optional) netmask length to the global default MVR VLAN. You can repeat this command to add additional groups to the MVR VLAN.</td>
</tr>
</tbody>
</table>
Purpose

The IP address is entered in the format \( a.b.c.d/m \), where \( m \) is the number of bits in the netmask, from 1 to 31.

(Optional) You can specify a number of MVR groups using contiguous multicast IP addresses starting with the specified IP address. Use the `count` keyword followed by a number from 1 to 64.

(Optional) You can explicitly specify an MVR VLAN for the group by using the `vlan` keyword; otherwise, the group is assigned to the default MVR VLAN.

Use the `no` form of the command to clear the group configuration.

<table>
<thead>
<tr>
<th>Step 5</th>
<th>(Optional) switch(config)# <code>end</code></th>
<th>Returns to privileged EXEC mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6</td>
<td>(Optional) switch# <code>clear mvr counters</code> `[source-ports</td>
<td>receiver-ports]`</td>
</tr>
<tr>
<td>Step 7</td>
<td>(Optional) switch# <code>show mvr</code></td>
<td>Displays the global MVR configuration.</td>
</tr>
<tr>
<td>Step 8</td>
<td>(Optional) switch# <code>copy running-config startup-config</code></td>
<td>Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.</td>
</tr>
</tbody>
</table>

Example

This example shows how to globally enable MVR and configure the global parameters:

```
switch# configure terminal
switch(config)# mvr
switch(config-mvr)# mvr-vlan 100
switch(config-mvr)# mvr-group 230.1.1.1 count 4
switch(config-mvr)# mvr-group 228.1.2.240/28 vlan 101
switch(config-mvr)# mvr-group 235.1.1.6 vlan 340
switch(config-mvr)# end
switch# show mvr
MVR Status : enabled
Global MVR VLAN : 100
Number of MVR VLANs : 3
switch# copy running-config startup-config
```
# Configuring MVR Interfaces

## Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>mvr</td>
<td>Globally enables MVR. The default is disabled.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: If MVR is enabled globally, then this command is not required.</td>
</tr>
<tr>
<td>Step 3</td>
<td>interface {ethernet type slot/port</td>
<td>port-channel channel-number</td>
</tr>
<tr>
<td>Step 4</td>
<td>[no] mvr-type {source</td>
<td>receiver}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• source—An uplink port that sends and receives multicast data is configured as an MVR source. The port automatically becomes a static receiver of MVR multicast groups. A source port should be a member of the MVR VLAN.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• receiver—An access port that is connected to a host that wants to subscribe to an MVR multicast group is configured as an MVR receiver. A receiver port receives data only when it becomes a member of the multicast group by using IGMP leave and join messages.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If you attempt to configure a non-MVR port with MVR characteristics, the configuration is cached and does not take effect until the port becomes an MVR port. The default port mode is non-MVR.</td>
</tr>
<tr>
<td>Step 5</td>
<td>(Optional) [no] mvr-vlan vlan-id</td>
<td>Specifies an interface default MVR VLAN that overrides the global default MVR VLAN for joins received on the interface. The MVR VLAN is the source of the multicast message that subsequent receivers subscribe to. The range is 1 to 4094.</td>
</tr>
<tr>
<td>Step 6</td>
<td>(Optional) [no] mvr-group addr[/mask] [vlan vlan-id]</td>
<td>Adds a multicast group at the specified IPv4 address and (optional) netmask length to the interface MVR VLAN, overriding the global MVR group configuration. You can repeat this</td>
</tr>
</tbody>
</table>
### Configuring MVR

#### Verifying the MVR Configuration

Use the following commands to verify the MVR configuration:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show mvr</td>
<td>Displays the MVR subsystem configuration and status.</td>
</tr>
<tr>
<td>show mvr groups</td>
<td>Displays the MVR group configuration.</td>
</tr>
<tr>
<td>show ip igmp snooping [vlan vlan-id]</td>
<td>Displays information about IGMP snooping on the specified VLAN.</td>
</tr>
<tr>
<td>show mvr interface {ethernet type slot/port</td>
<td>port-channel number}</td>
</tr>
</tbody>
</table>
### Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>show mvr members [count]</strong></td>
<td>Displays the number and details of all MVR receiver members.</td>
</tr>
<tr>
<td>**show mvr members interface {ethernet type slot/port</td>
<td>port-channel number**</td>
</tr>
<tr>
<td><strong>show mvr members vlan vlan-id</strong></td>
<td>Displays details of MVR members on the specified VLAN.</td>
</tr>
<tr>
<td>**show mvr receiver-ports {ethernet type slot/port</td>
<td>port-channel number**</td>
</tr>
<tr>
<td>**show mvr source-ports {ethernet type slot/port</td>
<td>port-channel number**</td>
</tr>
</tbody>
</table>

This example shows how to verify the MVR parameters:

```
switch# show mvr
MVR Status : enabled
Global MVR VLAN : 100
Number of MVR VLANs : 4
```

This example shows how to verify the MVR group configuration:

```
switch# show mvr groups
* - Global default MVR VLAN.

Group start Group end Count MVR-VLAN Interface
------------- ------------- ----- -------------------
228.1.2.240 228.1.2.255 /28 101
230.1.1.1 230.1.1.4 4 *100
235.1.1.6 235.1.1.6 1 340
225.1.3.1 225.1.3.1 1 *100 Eth1/10
```

This example shows how to verify the MVR interface configuration and status:

```
switch# show mvr interface
Port VLAN Type Status MVR-VLAN
----- ----- ------- --------
Po10 100 SOURCE ACTIVE 100-101
Po201 201 RECEIVER ACTIVE 100-101,340
Po202 202 RECEIVER ACTIVE 100-101,340
Po203 203 RECEIVER ACTIVE 100-101,340
Po204 204 RECEIVER INACTIVE 100-101,340
Po205 205 RECEIVER ACTIVE 100-101,340
Po206 206 RECEIVER ACTIVE 100-101,340
Po207 207 RECEIVER ACTIVE 100-101,340
Po208 208 RECEIVER ACTIVE 2000-2001
Eth1/9 340 SOURCE ACTIVE 340
Eth1/10 20 RECEIVER ACTIVE 100-101,340
Eth2/2 20 RECEIVER ACTIVE 100-101,340
Eth102/1/1 102 RECEIVER ACTIVE 100-101,340
Eth102/1/2 102 RECEIVER INACTIVE 100-101,340
Eth103/1/1 103 RECEIVER ACTIVE 100-101,340
Eth103/1/2 103 RECEIVER ACTIVE 100-101,340
```

Status INVALID indicates one of the following misconfiguration:

---

This example shows how to verify the MVR interface configuration and status:
a) Interface is not a switchport.
b) MVR receiver is not in access, pvlan host or pvlan promiscuous mode.
c) MVR source is in fex-fabric mode.

This example shows how to display all MVR members:

```
switch# show mvr members
MVR-VLAN Group Address Status Members
-------- ------------- ------- -------
100 230.1.1.1 ACTIVE Po201 Po202 Po203 Po205 Po206
100 230.1.1.2 ACTIVE Po205 Po206 Po207 Po208
340 235.1.1.6 ACTIVE Eth102/1/1
101 225.1.3.1 ACTIVE Eth1/10 Eth2/2
101 228.1.2.241 ACTIVE Eth103/1/1 Eth103/1/2
```

This example shows how to display all MVR receiver ports on all interfaces:

```
switch# show mvr receiver-ports
Port MVR-VLAN Status Joins (v1,v2,v3) Leaves
---------- -------- ------------ ------------
Po201 100 ACTIVE 8 2
Po202 100 ACTIVE 8 2
Po203 100 ACTIVE 8 2
Po204 100 INACTIVE 0 0
Po205 100 ACTIVE 10 6
Po206 100 ACTIVE 10 6
Po207 100 ACTIVE 5 0
Po208 100 ACTIVE 6 0
Eth1/10 101 ACTIVE 12 2
Eth2/2 101 ACTIVE 12 2
Eth102/1/1 340 ACTIVE 16 15
Eth102/1/2 340 INACTIVE 16 16
Eth103/1/1 101 ACTIVE 33 0
Eth103/1/2 101 ACTIVE 33 0
```

This example shows how to display all MVR source ports on all interfaces:

```
switch# show mvr source-ports
Port MVR-VLAN Status
---------- -------- --------
Po10 100 ACTIVE
Eth1/9 340 ACTIVE
CHAPTER 13

Configuring VTP V3

This chapter contains the following sections:

- Configuring VTP V3, on page 187

Configuring VTP V3

From Cisco NX-OS Release 7.2(0)N1(1), VLAN Trunk Protocol (VTP) V3 supports PVLAN integration, 4K VLAN integration, generic database transport mechanism, and VTP authentication mechanism.

VTP V3 Overview

VTP V3 allows each router or LAN device to transmit advertisements in frames on its trunk ports. These frames are sent to a multicast address where they can be received by all neighboring devices. They are not forwarded by normal bridging procedures. An advertisement lists the sending device's VTP management domain, its configuration revision number, the VLANs which it knows about, and certain parameters for each known VLAN. By hearing these advertisements, all devices in the same management domain learn about any new VLANs that are configured in the transmitting device. This process allows you to create and configure a new VLAN only on one device in the management domain, and then that information is automatically learned by all the other devices in the same management domain.

Once a device learns about a VLAN, the device receives all frames on that VLAN from any trunk port by default, and if appropriate, forwards them to each of its other trunk ports, if any. This process prevents unnecessary VLAN traffic from being sent to a device. An extension of VTP called VTP pruning has been defined to limit the scope of broadcast traffic and save bandwidth. Beginning with Release 5.1(1), the Cisco NX-OS software supports VTP pruning.

VTP also publishes information about the domain and the mode in a shared local database that can be read by other processes such as Cisco Discovery Protocol (CDP).

VTP V3 Modes

From Cisco NX-OS Release 7.2(0)N1(1), VTP V3 supports the following modes:

- Transparent—Allows you to relay all VTP protocol packets that it receives on a trunk port to all other trunk ports. When you create or modify a VLAN that is in VTP transparent mode, those VLAN changes affect only the local device. A VTP transparent network device does not advertise its VLAN configuration
and does not synchronize its VLAN configuration based on received advertisements. You cannot configure VLANs 1002 to 1005 in VTP client/server mode because these VLANs are reserved for Token Ring.

- **Server**—Allows you to create, remove, and modify VLANs over the entire network. You can set other configuration options like the VTP version and also turn on or off VTP pruning for the entire VTP domain. VTP servers advertise their VLAN configuration to other switches in the same VTP domain and synchronize their VLAN configuration with other switches based on messages received over trunk links. Beginning with Release 5.1(1), the server mode is the default mode. The VLAN information is stored on the bootflash and is not erased after a reboot.

- **Client**—Allows you to create, change, and delete VLANs on the local device. In VTP client mode, a switch stores the last known VTP information including the configuration revision number, on the bootflash. A VTP client might or might not start with a new configuration when it powers up.

- **Off**—Behaves similarly to the transparent mode but does not forward any VTP packets. The off mode allows you to monitor VLANs by using the CISCO-VTP-MIB without having to run VTP. On Cisco Nexus 7000 Series devices, because VTP is a conditional service, its MIB is loaded only when the corresponding feature is enabled. The CISCO-VTP-MIB does not follow this convention. It is loaded by the VLAN manager and will always return the correct values whether the VTP process is enabled or disabled.

Note: VTP client will move to transparent mode if there is any failure during updating VLAN database received from server. Following syslog message is displayed on console. “VTP-2-VTP_MODE_TRANSPARENT_CREATE_SEQ_FAILED: VTP Mode changed to transparent since VTP vlan create/update failed”. User need to change back the VTP mode to client to get latest database from server.

VTP V3 Pruning

The VLAN architecture requires all flooded traffic for a VLAN to be sent across a trunk port even if it leads to switches that have no devices that are active in the VLAN. This method leads to wasted network bandwidth. VTP V3 Pruning optimizes the usage of network bandwidth by restricting the flooded traffic to only those trunk ports that can reach all the active network devices. When this protocol is in use, a trunk port does not receive the flooded traffic that is meant for a certain VLAN unless an appropriate join message is received.

A join message is defined as a new message type in addition to the ones already supported by version 1 of the VTP V3 protocol. A VTP V3 implementation indicates that it supports this extension by appending a special TLV at the end of the summary advertisement messages that it generates. In VTP V3 transparent mode, VTP relays all VTP packets, and pruning requires that the switch processes TLVs in the VTP V3 summary packets.

VTP V3 Per Interface

VTP allows you to enable or disable the VTP protocol on a per-port basis to control the VTP traffic. When a trunk is connected to a switch or end device, it drops incoming VTP packets and prevents VTP advertisements on this particular trunk. By default, VTP is enabled on all the switch ports.
VTP V3 Pruning and Spanning Tree Protocol

VTP maintains a list of trunk ports in the Spanning Tree Protocol (STP) forwarding state by querying STP at bootup and listening to the notifications that are generated by STP.

VTP sets a trunk port into the pruned or joined state by interacting with STP. STP notifies VTP V3 when a trunk port goes to the blocking or forwarding state. VTP V3 notifies STP when a trunk port becomes pruned or joined.

Configuring VTP V3

Note

• VLAN 1 is required on all trunk ports used for switch interconnects if VTP V3 is used in transparent mode in the network. Disabling VLAN 1 from any of these ports prevents VTP from functioning properly in transparent mode.

• The overlapping of system reserved VLANs between Cisco Nexus 6000 Series Switches and Cisco Nexus 5000 Series Switches causes interoperability issues. When a Cisco Catalyst 6000 Switch sends a VLAN reserved in the Cisco Nexus switch, it causes the Cisco Nexus 5000 and 6000 Series Switches to move to VTP Transparent Mode.

Check the generated syslog messages in the Cisco Nexus Switches for information on the VLAN that caused the interoperability issue.

Before you begin

Ensure that you are in the correct virtual device context (VDC) (or enter the switchto vdc command). VLAN names and IDs can be repeated in different VDCs, so you must confirm which VDC that you are working in.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>switch(config)# feature vtp</td>
<td>Enables VTP on the device. The default is disabled.</td>
</tr>
<tr>
<td>3</td>
<td>switch(config)# vtp domain domain-name</td>
<td>Specifies the name of the VTP domain that you want this device to join. The default is blank.</td>
</tr>
<tr>
<td>4</td>
<td>switch(config)# vtp version {1</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>Required: switch(config)# vtp mode {client</td>
<td>server</td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>6</td>
<td>switch(config)# vtp interface interface-name [only]</td>
<td>Configures the interface name used by the VTP updater for this device.</td>
</tr>
<tr>
<td>7</td>
<td>switch(config)# vtp file file-name</td>
<td>Specifies the ASCII filename of the IFS file system file where the VTP configuration is stored.</td>
</tr>
</tbody>
</table>
| 8 | switch(config)# vtp password password-value [hidden | secret] | Specifies the password for the VTP administrative domain. Default value is taken from vlan.dat. The following options are applicable only on VTP V3:
- **Hidden**–Password is not saved as clear text in vlan.data file. Instead, a hexadecimal secret key generated from the password is saved. This is displayed as the output of the `show vtp password`.
- **Secret**–Use this keyword to directly configure the 32-character hexadecimal secret key. System administrators can distribute this secret key instead of the clear text password.
Note This command is applicable for VTP version 3 only. |
| 9 | switch(config)# exit | Exits the configuration submode. |
| 10 | switch# vtp primary [feature] [force] | This command changes the operational state of a secondary server to primary and advertises the information to the entire VTP domain. If the password is configured as hidden, the user is prompted to re-enter the password after this command. Before the device takes over the role of primary, it attempts to discover servers that conflict this information and follows another primary server. If conflicting servers are discovered, the user must reconfirm the takeover of operational state and the subsequent overwriting of configuration.
- **feature**–Configures the device as primary server for a specific feature database. For example, the MST database. Possible values are MST and VLAN. By default, the VLAN database is chosen. |
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 11 (Optional) switch# show vtp status</td>
<td>Displays information about the VTP configuration on the device, such as the version, mode, and revision number.</td>
</tr>
<tr>
<td>Step 12 (Optional) switch# show vtp counters</td>
<td>Displays information about VTP advertisement statistics on the device.</td>
</tr>
<tr>
<td>Step 13 (Optional) switch# show vtp interface</td>
<td>Displays the list of VTP-enabled interfaces.</td>
</tr>
<tr>
<td>Step 14 (Optional) switch# show vtp password</td>
<td>Displays the password for the management VTP domain.</td>
</tr>
<tr>
<td>Step 15 (Optional) switch# show vtp devices [conflict]</td>
<td>This is a VTP version 3 command that displays information about neighbor switches. The information is not learned from the summary packet used for regular VTP packets. This command sends out a separate packet to collect information regarding neighbor switches running VTP version 3.</td>
</tr>
<tr>
<td>Step 16 (Optional) switch# copy running-config startup-config</td>
<td>Copies the running configuration to the startup configuration.</td>
</tr>
</tbody>
</table>

Example

This example shows how to configure VTP in transparent mode for the device:

```
switch# configure terminal
switch(config)# feature vtp
switch(config)# vtp domain accounting
switch(config)# vtp version 2
switch(config)# vtp mode transparent
switch(config)# exit
switch#
```
Configuring VTP V3 Pruning

Follow the steps given below to configure VTP V3 Pruning.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>switch(config)# vtp pruning</td>
<td>Enables VTP pruning on the device. The default is disabled.</td>
</tr>
<tr>
<td>3</td>
<td>(Optional) switch(config)# no vtp pruning</td>
<td>Disables VTP pruning on the device. The default is disabled.</td>
</tr>
<tr>
<td>4</td>
<td>(Optional) switch(config)# show interface interface-identifier switchport</td>
<td>Displays the VTP pruning eligibility of the trunk port. The default is that all the VLANs from 2 to 1001 are pruning eligible.</td>
</tr>
<tr>
<td>5</td>
<td>switch(config)# interface port-channel channel-number</td>
<td>Creates a port-channel interface and enter interface configuration mode.</td>
</tr>
<tr>
<td>6</td>
<td>Required: switch(config-if)# switchport trunk pruning vlan [add</td>
<td>remove</td>
</tr>
<tr>
<td>7</td>
<td>switch(config-if)# end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>8</td>
<td>(Optional) switch# show vtp counters</td>
<td>Displays VTP pruning information and counters.</td>
</tr>
<tr>
<td>9</td>
<td>(Optional) switch# clear vtp counters</td>
<td>Resets all the VTP pruning counter values.</td>
</tr>
</tbody>
</table>
Configuring Traffic Storm Control

This chapter contains the following sections:

- Information About Traffic Storm Control, on page 193
- Guidelines and Limitations for Traffic Storm Control, on page 194
- Configuring Traffic Storm Control, on page 195
- Verifying the Traffic Storm Control Configuration, on page 196
- Traffic Storm Control Example Configuration, on page 196
- Default Settings for Traffic Storm Control, on page 196

Information About Traffic Storm Control

A traffic storm occurs when packets flood the LAN, creating excessive traffic and degrading network performance. You can use the traffic storm control feature to prevent disruptions on Ethernet interfaces by a broadcast, multicast, or unknown unicast traffic storm.

Traffic storm control (also called traffic suppression) allows you to monitor the levels of the incoming broadcast, multicast, or unknown unicast traffic over a 10-microsecond interval. During this interval, the traffic level, which is a percentage of the total available bandwidth of the port, is compared with the traffic storm control level that you configured. When the ingress traffic reaches the traffic storm control level that is configured on the port, traffic storm control drops the traffic until the interval ends.

The following figure shows the broadcast traffic patterns on an Ethernet interface during a specified time interval. In this example, traffic storm control occurs between times T1 and T2 and between T4 and T5. During those intervals, the amount of broadcast traffic exceeded the configured threshold.

Figure 21: Broadcast Suppression
The traffic storm control threshold numbers and the time interval allow the traffic storm control algorithm to work with different levels of packet granularity. For example, a higher threshold allows more packets to pass through.

Traffic storm control is implemented in the hardware. The traffic storm control circuitry monitors packets that pass from an Ethernet interface to the switching bus. Using the Individual/Group bit in the packet destination address, the circuitry determines if the packet is unicast or broadcast, tracks the current count of packets within the 10-microsecond interval, and filters out subsequent packets when a threshold is reached.

Traffic storm control uses a bandwidth-based method to measure traffic. You set the percentage of total available bandwidth that the controlled traffic can use. Because packets do not arrive at uniform intervals, the 10-microsecond interval can affect the operation of traffic storm control.

The following are examples of how traffic storm control operation is affected:

- If you enable broadcast traffic storm control, and broadcast traffic exceeds the level within the 10-microsecond interval, traffic storm control drops all exceeding broadcast traffic until the end of the interval.

- If you enable multicast traffic storm control, and the multicast traffic exceeds the level within the 10-microsecond interval, traffic storm control drops all exceeding multicast traffic until the end of the interval.

- If you enable broadcast and multicast traffic storm control, and broadcast traffic exceeds the level within the 10-microsecond interval, traffic storm control drops all exceeding broadcast traffic until the end of the interval.

- If you enable broadcast and multicast traffic storm control, and multicast traffic exceeds the level within the 10-microsecond interval, traffic storm control drops all exceeding multicast traffic until the end of the interval.

By default, Cisco NX-OS takes no corrective action when traffic exceeds the configured level.

Guidelines and Limitations for Traffic Storm Control

When configuring the traffic storm control level, follow these guidelines and limitations:

- You can configure traffic storm control on a port-channel interface or on any physical interface.

- You can configure traffic storm control on a fabric port or a fabric port channel that connects the switch to a Fabric Extender (FEX). Storm control configured on a FEX applies to the aggregate traffic coming in on all the ports on that FEX.

 Note

 The NIF storm control feature applies on all traffic coming in on a FEX fabric port. Traffic that comes on the FEX fabric port with the VNTAG header has an additional 6 bytes added to the original traffic. Due to these additional 6 bytes of overhead, the rate at which the traffic is policed by the storm control policer is skewed depending on the packet size of the original traffic that is ingressing on the HIF ports. The skew is larger for the smaller packet sizes compared to the larger packet sizes.

 • Specify the level as a percentage of the total interface bandwidth:
• The level can be from 0 to 100.
• The optional fraction of a level can be from 0 to 99.
• 100 percent means no traffic storm control.
• 0.0 percent suppresses all traffic.

• There are local link and hardware limitations that prevent storm-control drops from being counted separately. Instead, storm-control drops are counted with other drops in the discards counter.

• Because of hardware limitations and the method by which packets of different sizes are counted, the level percentage is an approximation. Depending on the sizes of the frames that make up the incoming traffic, the actual enforced level might differ from the configured level by several percentage points.

• Applying storm control over a HIF range is not recommended. The configuration might fail for one or more interfaces in the range depending on the hardware resource availability. The result of the command is partial success in some cases.

• In the Cisco Nexus 5000 switch, storm-control does not distinguish between IP, non-IP, registered, or unregistered multicast traffic. All multicast traffic is subject to a single-multicast storm control policer when configured.

• In the Cisco Nexus 5500 switch, storm-control is applied only to unregistered or unknown multicast MAC address.

• The link-level control protocols (LACP, LLDP and so on) are not affected in case of a traffic storm. The storm control is applied to data plane traffic only.

• The burst size values are:
 • For a 10G port, 48.68 Mbytes/390Mbits
 • For a 1G port, 25 Mbytes/200Mbits

Configuring Traffic Storm Control

You can set the percentage of total available bandwidth that the controlled traffic can use.

Traffic storm control uses a 10-microsecond interval that can affect the operation of traffic storm control.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# interface {ethernet slot/port</td>
<td>port-channel number}</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config-if)# storm-control [broadcast</td>
<td>multicast] level percentage[fraction]</td>
</tr>
</tbody>
</table>
Example

This example shows how to configure traffic storm control for port channels 122 and 123:

```
switch# configure terminal
switch(config)# interface port-channel 122, port-channel 123
switch(config-if-range)# storm-control multicast level 66.75
switch(config-if-range)# storm-control broadcast level 66.75
```

Verifying the Traffic Storm Control Configuration

Use the following commands to display traffic storm control configuration information:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| show interface [ethernet slot/port | Displays the traffic storm control configuration for the Note interfaces.
| port-channel number] counters storm-control Traffic storm control uses a 10-microsecond interval that can affect the operation of traffic storm control. |
| show running-config interface | Displays the traffic storm control configuration. |

Note: When a storm event occurs on a port and the packets are dropped due to storm control configuration, a syslog message is generated to indicate that the storm event has started. An additional syslog message is generated when the storm event ends and the packet are no longer dropped.

Traffic Storm Control Example Configuration

This example shows how to configure traffic storm control:

Default Settings for Traffic Storm Control

The following table lists the default settings for traffic storm control parameters.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic storm control</td>
<td>Disabled</td>
</tr>
<tr>
<td>Threshold percentage</td>
<td>100</td>
</tr>
</tbody>
</table>
Chapter 15

Configuring the Fabric Extender

This chapter contains the following sections:

- Information About the Cisco Nexus 2000 Series Fabric Extender, on page 197
- Fabric Extender Terminology, on page 198
- Fabric Extender Features, on page 199
- Management Model, on page 203
- Forwarding Model, on page 203
- Connection Model, on page 204
- Fabric Extender Image Management, on page 206
- Fabric Extender Hardware, on page 207
- Speed and Duplex Mode, on page 208
- Disabling Autonegotiation, on page 211
- Associating a Fabric Extender to a Fabric Interface, on page 212
- Configuring Fabric Extender Global Features, on page 215
- Enabling the Fabric Extender Locator LED, on page 217
- Redistributing the Links, on page 217
- Verifying the Fabric Extender Configuration, on page 219
- Verifying the Chassis Management Information, on page 222
- Configuring the Cisco Nexus N2248TP-E Fabric Extender, on page 227
- Configuring the Cisco Nexus N2248PQ Fabric Extender, on page 231

Information About the Cisco Nexus 2000 Series Fabric Extender

The Cisco Nexus 2000 Series Fabric Extender, also known as FEX, is a highly scalable and flexible server networking solution that works with Cisco Nexus Series devices to provide high-density, low-cost connectivity for server aggregation. Scaling across 1-Gigabit Ethernet, 10-Gigabit Ethernet, unified fabric, rack, and blade server environments, the Fabric Extender is designed to simplify data center architecture and operations.

The Fabric Extender integrates with its parent switch, which is a Cisco Nexus Series device, to allow automatic provisioning and configuration taken from the settings on the parent device. This integration allows large numbers of servers and hosts to be supported by using the same feature set as the parent device, including security and quality-of-service (QoS) configuration parameters, with a single management domain. The Fabric Extender and its parent switch enable a large multipath, loop-free, active-active data center topology without the use of the Spanning Tree Protocol (STP).
The Cisco Nexus 2000 Series Fabric Extender forwards all traffic to its parent Cisco Nexus Series device over 10-Gigabit Ethernet fabric uplinks, which allows all traffic to be inspected by policies established on the Cisco Nexus Series device.

No software is included with the Fabric Extender. The software is automatically downloaded and upgraded from its parent device.

Note

When you configure a Cisco Nexus 2248 port to 100mbps speed (instead of auto-negotiation), FEX does not auto negotiate with the peer. You must manually set the peer not to auto negotiate and set the peer to 100mbps speed.

Fabric Extender Terminology

Some terms used in this document are as follows:

- **Fabric interface**—A 10-Gigabit Ethernet uplink port that is designated for connection from the Fabric Extender to its parent switch. A fabric interface cannot be used for any other purpose. It must be directly connected to the parent switch.
A fabric interface includes the corresponding interface on the parent switch. This interface is enabled when you enter the `switchport mode fex-fabric` command.

- Port channel fabric interface—A port channel uplink connection from the Fabric Extender to its parent switch. This connection consists of fabric interfaces that are bundled into a single logical channel.
- Host interface—An Ethernet host interface for connection to a server or host system.

Do not connect a bridge or switch to a host interface. These interfaces are designed to provide end host or server connectivity.

On Cisco Nexus 2348TQ and Nexus 2348UPQ FEX, if a port channel is used to connect a parent switch with a Fabric Extender device, the port channels can have maximum of 8 ports.

The Nexus 2348 FEX devices have a total of 6 * 40 Gigabit Ethernet uplink ports towards the parent switch. If these are used with native 40G uplinks port on a parent switch, then there is no limitation. All 6 ports can be used in either single homed or dual homed configuration. You can also use 40 Gigabit Ethernet uplink ports on the N2348 Fabric Extender device with 10 Gigabit Ethernet ports on the parent switch when used with the appropriate cabling. A maximum of 8 ports can be added to the port channel between the parent switch and Fabric Extender device. If it is a dual homed setup, VPC to the Fabric Extender device, only 4 ports per switch are allowed in the port channel.

- Port channel host interface—A port channel host interface for connection to a server or host system.

Fabric Extender Features

The Cisco Nexus 2000 Series Fabric Extender allows a single switch—and a single consistent set of switch features—to be supported across a large number of hosts and servers. By supporting a large server-domain under a single management entity, policies can be enforced more efficiently.

Some of the features of the parent switch cannot be extended onto the Fabric Extender.

Layer 2 Host Interfaces

The Fabric Extender provides connectivity for computer hosts and other edge devices in the network fabric. Follow these guidelines when connecting devices to Fabric Extender host interfaces:

- All Fabric Extender host interfaces run as spanning tree edge ports with BPDU Guard enabled and you cannot configure them as spanning tree network ports.
You can connect servers that use active/standby teaming, 802.3ad port channels, or other host-based link redundancy mechanisms to Fabric Extender host interfaces.

Any device that is running spanning tree connected to a Fabric Extender host interface results in that host interface being placed in an error-disabled state when a BPDU is received.

You can connect only virtual switches that leverages a link redundancy mechanism not dependent on spanning tree such as Cisco FlexLink or vPC (with the BPDU Filter enabled) to a Fabric Extender host interface. Because spanning tree is not used to eliminate loops, you should ensure a loop-free topology below the Fabric Extender host interfaces.

You can enable host interfaces to accept Cisco Discovery Protocol (CDP) packets. This protocol only works when it is enabled for both ends of a link.

Note

CDP is not supported on fabric interfaces when the Fabric Extender is configured in a virtual port channel (vPC) topology.

Ingress and egress packet counters are provided on each host interface.

For more information about BPDU Guard, see Understanding BPDU Guard, on page 146.

Host Port Channel

The following fabric extenders support port channel host interface configurations. Up to eight interfaces can be combined in a port channel. The port channel can be configured with or without Link Aggregation Control Protocol (LACP).

- Cisco Nexus 2248TP
- Cisco Nexus 2348UPQ
- Cisco Nexus 2348TQ
- Cisco Nexus 2232PP
- Cisco Nexus 2332TQ
- Cisco Nexus 2224TP
- Cisco Nexus 2248PQ
- Cisco Nexus B22 Fabric Extender for Fujitsu (N2K-B22FTS-P)
- Cisco Nexus B22 Fabric Extender for Dell (N2K-B22DELL-P)
- Cisco Nexus B22 Fabric Extender for HP (N2K-B22HP-P)
- Cisco Nexus B22 Fabric Extender for IBM (N2K-B22IBM-P)

VLANs and Private VLANs

The Fabric Extender supports Layer 2 VLAN trunks and IEEE 802.1Q VLAN encapsulation. Host interfaces can be members of private VLANs with the following restrictions:
• You can configure a host interface as an isolated or community access port only.
• You cannot configure a host interface as a promiscuous port.
• You cannot configure a host interface as a private VLAN trunk port.

For more information about VLANs, see the chapter in this guide on Configuring VLANs.

Virtual Port Channels

With a virtual port channel (vPC), you can configure topologies where a Cisco Nexus Fabric Extender is connected to a pair of parent switches or a pair of Fabric Extenders are connected to a single parent switch. The vPC can provide multipath connections, which allow you to create redundancy between the nodes on your network.

Note

A port channel between two FEXs that are connected to the same Cisco Nexus device is not supported. Virtual port channels (vPCs) cannot span two different FEXs when connected to the same Cisco Nexus device.

The following vPC topologies are possible with the Fabric Extender:

• The parent switches are connected single homed to Fabric Extenders that are subsequently connected to servers with dual interfaces (see the following figure).

Figure 23: Single Homed Fabric Extender vPC Topology

• The Fabric Extender is connected dual homed to two upstream parent switches and connected downstream to single homed servers (see the following figure).
Figure 24: Dual Homed Fabric Extender vPC Topology

This configuration is also called an Active-Active topology.

Note
Port channels between two Fabric Extenders connected to the same Cisco Nexus device is not supported vPCs cannot span two different Fabric Extenders that are connected to the same physical Cisco Nexus device.

Fibre Channel over Ethernet Support

The Cisco Nexus 2232PP and Cisco Nexus 2248PQ support Fibre Channel over Ethernet (FCoE) with the following restrictions:

- Only FCoE Initialization Protocol (FIP) enabled converged network adapters (CNAs) are supported on the Fabric Extender.
- Binding to a port channel is limited to only one member in the port channel.

For configuration details, see the Fibre Channel over Ethernet Configuration Guide for the Nexus software release that you are using. The available versions of this document can be found at the following URL:

Protocol Offload

To reduce the load on the control plane of the Cisco Nexus Series device, Cisco NX-OS allows you to offload link-level protocol processing to the Fabric Extender CPU. The following protocols are supported:

- Link Layer Discovery Protocol (LLDP)
- Cisco Discovery Protocol (CDP)
- Link Aggregation Control Protocol (LACP)
Quality of Service

Access Control Lists
The Fabric Extender supports the full range of ingress access control lists (ACLs) that are available on its parent Cisco Nexus Series device.

For more information about ACLs, see the Security Configuration Guide for your device.

Fabric Interface Features

Note
Flow control is not supported on Cisco Nexus 2348TQ fabric extender.

Management Model
The Cisco Nexus 2000 Series Fabric Extender is managed by its parent switch over the fabric interfaces through a zero-touch configuration model. The switch discovers the Fabric Extender by detecting the fabric interfaces of the Fabric Extender.

After discovery, if the Fabric Extender has been correctly associated with the parent switch, the following operations are performed:

1. The switch checks the software image compatibility and upgrades the Fabric Extender if necessary.
2. The switch and Fabric Extender establish in-band IP connectivity with each other.
 The switch assigns an IP address in the range of loopback addresses (127.15.1.0/24) to the Fabric Extender to avoid conflicts with IP addresses that might be in use on the network.
3. The switch pushes the configuration data to the Fabric Extender. The Fabric Extender does not store any configuration locally.
4. The Fabric Extender updates the switch with its operational status. All Fabric Extender information is displayed using the switch commands for monitoring and troubleshooting.

Forwarding Model
The Cisco Nexus 2000 Series Fabric Extender does not perform any local switching. All traffic is sent to the parent switch that provides central forwarding and policy enforcement, including host-to-host communications between two systems that are connected to the same Fabric Extender as shown in the following figure.
The forwarding model facilitates feature consistency between the Fabric Extender and its parent Cisco Nexus Series device.

Note

The Fabric Extender provides end-host connectivity into the network fabric. As a result, BPDU Guard is enabled on all its host interfaces. If you connect a bridge or switch to a host interface, that interface is placed in an error-disabled state when a BPDU is received.

You cannot disable BPDU Guard on the host interfaces of the Fabric Extender.

The Fabric Extender supports egress multicast replication from the network to the host. Packets that are sent from the parent switch for multicast addresses attached to the Fabric Extender are replicated by the Fabric Extender ASICs and are then sent to corresponding hosts.

Connection Model

Two methods (the static pinning fabric interface connection and the Port Channel fabric interface connection) allow the traffic from an end host to the parent switch to be distributed when going through the Cisco Nexus 2000 Series Fabric Extender.

Note

The Cisco Nexus 2248PQ Fabric Extender does not support the static pinning fabric interface connection.

Static Pinning Fabric Interface Connection

To provide a deterministic relationship between the host interfaces and the parent switch, you can configure the Fabric Extender to use individual fabric interface connections. This configuration connects the 10-Gigabit
Ethernet fabric interfaces as shown in the following figure. You can use any number of fabric interfaces up to the maximum available on the model of the Fabric Extender.

Figure 26: Static Pinning Fabric Interface Connections

![Static Pinning Fabric Interface Connections Diagram]

When the Fabric Extender is brought up, its host interfaces are distributed equally among the available fabric interfaces. As a result, the bandwidth that is dedicated to each end host toward the parent switch is never changed by the switch but instead is always specified by you.

- **Note**

 If a fabric interface fails, all its associated host interfaces are brought down and remain down until the fabric interface is restored.

You must use the `pinning max-links` command to create a number of pinned fabric interface connections so that the parent switch can determine a distribution of host interfaces. The host interfaces are divided by the number of the max-links and distributed accordingly. The default value is max-links 1.

- **Caution**

 Changing the value of the `max-links` is disruptive; all the host interfaces on the Fabric Extender are brought down and back up as the parent switch reassigns its static pinning.

The pinning order of the host interfaces is initially determined by the order in which the fabric interfaces were configured. When the parent switch is restarted, the configured fabric interfaces are pinned to the host interfaces in an ascending order by the port number of the fabric interface.

To guarantee a deterministic and sticky association across a reboot, you can manually redistribute the pinning.

- **Note**

 The redistribution of the host interfaces will always be in an ascending order by the port number of the fabric interface.
Port Channel Fabric Interface Connection

To provide load balancing between the host interfaces and the parent switch, you can configure the Fabric Extender to use a port channel fabric interface connection. This connection bundles 10-Gigabit Ethernet fabric interfaces into a single logical channel as shown in the following figure.

Figure 27: Port Channel Fabric Interface Connection

When you configure the Fabric Extender to use a port channel fabric interface connection to its parent switch, the switch load balances the traffic from the hosts that are connected to the host interface ports by using the following load-balancing criteria to select the link:

- For a Layer 2 frame, the switch uses the source and destination MAC addresses.
- For a Layer 3 frame, the switch uses the source and destination MAC addresses and the source and destination IP addresses.

Note

A fabric interface that fails in the port channel does not trigger a change to the host interfaces. Traffic is automatically redistributed across the remaining links in the port channel fabric interface. If all links in the fabric port channel go down, all host interfaces on the FEX are set to the down state.

Fabric Extender Image Management

No software ships with the Cisco Nexus 2000 Series Fabric Extender. The Fabric Extender image is bundled into the system image of the parent switch. The image is automatically verified and updated (if required) during the association process between the parent switch and the Fabric Extender.

When you enter the `install all` command, it upgrades the software on the parent Cisco Nexus Series switch and also upgrades the software on any attached Fabric Extender. To minimize downtime as much as possible, the Fabric Extender remains online while the installation process loads its new software image. Once the software image has successfully loaded, the parent switch and the Fabric Extender both automatically reboot. This process is required to maintain version compatibility between the parent switch and the Fabric Extender.
Fabric Extender Hardware

The Cisco Nexus 2000 Series Fabric Extender architecture allows hardware configurations with various host interface counts and speeds.

Chassis

The Cisco Nexus 2000 Series Fabric Extender is a 1 RU chassis that is designed for rack mounting. The chassis supports redundant hot-swappable fans and power supplies.

Ethernet Interfaces

There are 8 models of the Cisco Nexus 2000 Series Fabric Extender:

• The Cisco Nexus 2148T has 48 1000BASE-T Ethernet host interfaces for its downlink connection to servers or hosts and 4 10-Gigabit Ethernet fabric interfaces with SFP+ interface adapters for its uplink connection to the parent switch.

• The Cisco Nexus 2224TP has 24 100BASE-T/1000Base-T Ethernet host interfaces for its downlink connection to servers or hosts and 2 10-Gigabit Ethernet fabric interfaces with SFP+ interface adapters for its uplink connection to the parent switch.

• The Cisco Nexus 2248PQ has 48 10-Gigabit Ethernet host interfaces with SFP+ interface adapters and 16 10-Gigabit Ethernet fabric interfaces corresponding to 4 QSFP interface adapters for its uplink connection to the parent switch.

• The Cisco Nexus 2232PP has 32 10-Gigabit Ethernet host interfaces with SFP+ interface adapters and 8 10-Gigabit Ethernet fabric interfaces with SFP+ interface adapters for its uplink connection to the parent switch.

• Cisco Nexus 2348UPQ—FEX for QSA (FET-10G, SFP-10G-SR, SFP-10G-ER). From Cisco NX-OS Release 7.3(2)N1(1), Cisco Nexus 2348UPQ 10GE Fabric Extender for ports using 1G Cu SFP GLC-T supports the **speed 100** command.

Note

From Cisco NX-OS Release 7.3(2)N1(1), Cisco Nexus 2248PQ 10GE Fabric Extender, Cisco Nexus 2232PP 10GE Fabric Extender, and Cisco Nexus 2348UPQ 10GE Fabric Extender with 1G-based SFP support the **no negotiate auto** command.

• Cisco Nexus N2332TQ—FEX supporting 32 10GBaseT host ports and 4 QSFP+ network ports.

• Cisco Nexus 2348TQ FEX (N2K-C2348TQ-10GE)

• The Cisco Nexus 2248TP has 48 100BASE-T/1000Base-T Ethernet host interfaces for its downlink connection to servers or hosts and 4 10-Gigabit Ethernet fabric interfaces with SFP+ interface adapters for its uplink connection to the parent switch.

The Cisco Nexus 2248TP-E has all the features of the Cisco Nexus 2248TP with these additional features:

• A larger buffer to absorb large bursts.
• Support for an ingress and egress queue-limit per port.
• Support for debug counters.
• Support for pause no-drop behavior over a cable distance of 3000 meters between the Fabric Extender and switch.
• Support for a user configurable shared-buffer.
• Support for the speed auto 100 command from Cisco NX-OS Release 7.3(2)N1(1).

• The Cisco Nexus B22 Fabric Extender for HP (NB22HP) has 16 1G/10-Gigabit Ethernet host interfaces. All host interfaces use all of the available fabric interfaces.
• The Cisco Nexus B22 Fabric Extender for Fujitsu (NB22FTS) has 16 10-Gigabit Ethernet host interfaces. All host interfaces use all of the available fabric interfaces.
• The Cisco Nexus B22 Fabric Extender for Dell (NB22DELL) has 16 1G/10-Gigabit Ethernet host interfaces. All host interfaces use all of the available fabric interfaces.
• The Cisco Nexus B22 Fabric Extender for IBM (NB22IBM) has 14 1G/10-Gigabit Ethernet host interfaces. All host interfaces use all of the available fabric interfaces.

Speed and Duplex Mode

The table listed below shows the autonegotiation matrix for N2K-C2348TQ-10GE and N2K-C2332TQ-10GE fabric extenders.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Configuration NIC (Speed/Duplex)</th>
<th>Resulting HIF status (Speed/Duplex)</th>
<th>Resulting NIC status (Speed/Duplex)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO</td>
<td>AUTO</td>
<td>UP, 100 Mbps, Full duplex</td>
<td>UP, 100 Mbps, Full duplex</td>
<td>Assuming maximum capability of NIC is 100 Mbps, Full duplex</td>
</tr>
<tr>
<td>100 Mbps, Full duplex (force mode)</td>
<td>100 Mbps, Full duplex</td>
<td>UP, 100 Mbps, Full duplex</td>
<td>UP, 100 Mbps, Full duplex</td>
<td>Link DOWN in some scenarios.</td>
</tr>
<tr>
<td>100 Mbps, Full duplex (force mode)</td>
<td>100 Mbps, Half duplex</td>
<td>UP, 100 Mbps, Full duplex</td>
<td>UP, 100 Mbps, Half duplex</td>
<td>Duplex mismatch as per standard; results in collision errors. Hence, not a functional scenario.</td>
</tr>
</tbody>
</table>

Table for 100 Mbps
<table>
<thead>
<tr>
<th>Configuration NIC (Speed/Duplex)</th>
<th>Resulting HIF status (Speed/Duplex)</th>
<th>Resulting NIC status (Speed/Duplex)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 Mbps, Full duplex (force mode)</td>
<td>AUTO UP, 100 Mbps, Full duplex</td>
<td>UP, 100 Mbps, Half Duplex</td>
<td>Duplex mismatch as per standard; results in collision errors. Hence, not a functional scenario. (Link will be DOWN if NIC is not 100 Mbps, Half Duplex capable)</td>
</tr>
<tr>
<td>AUTO</td>
<td>100 Mbps, Full duplex</td>
<td>DOWN</td>
<td>DOWN</td>
</tr>
<tr>
<td>AUTO</td>
<td>100 Mbps, Half duplex</td>
<td>DOWN</td>
<td>DOWN</td>
</tr>
</tbody>
</table>

Table for 1G (1000 Mbps)

<table>
<thead>
<tr>
<th>Configuration NIC (Speed/Duplex)</th>
<th>Resulting HIF status (Speed/Duplex)</th>
<th>Resulting NIC status (Speed/Duplex)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO</td>
<td>AUTO UP, 1000 Mbps, Full duplex</td>
<td>UP, 1000 Mbps, Full duplex</td>
<td>Assuming maximum capability of NIC is 1000 Mbps, Full duplex</td>
</tr>
<tr>
<td>1000 Mbps, Full duplex</td>
<td>AUTO UP, 1000 Mbps, Full duplex</td>
<td>UP, 1000 Mbps, Full duplex</td>
<td>Assuming maximum capability of NIC is 1000 Mbps, Full duplex</td>
</tr>
<tr>
<td>AUTO</td>
<td>1000 Mbps, Full duplex</td>
<td>UP, 1000 Mbps, Full duplex</td>
<td>—</td>
</tr>
<tr>
<td>1000 Mbps, Full duplex</td>
<td>1000 Mbps, Full duplex UP, 1000 Mbps, Full duplex</td>
<td>UP, 1000 Mbps, Full duplex</td>
<td>—</td>
</tr>
<tr>
<td>100 Mbps, Full duplex</td>
<td>1000 Mbps, Full duplex DOWN</td>
<td>DOWN</td>
<td>Speed Mismatch</td>
</tr>
<tr>
<td>100 Mbps, Full duplex</td>
<td>100 Mbps, Full duplex DOWN</td>
<td>DOWN</td>
<td>Speed Mismatch</td>
</tr>
<tr>
<td>1000 Mbps, Full duplex</td>
<td>100 Mbps, Half duplex DOWN</td>
<td>DOWN</td>
<td>Speed Mismatch</td>
</tr>
<tr>
<td>10000 Mbps, Full duplex</td>
<td>1000 Mbps, Full duplex DOWN</td>
<td>DOWN</td>
<td>Speed Mismatch</td>
</tr>
<tr>
<td>10000 Mbps, Full duplex</td>
<td>100 Mbps, Full duplex DOWN</td>
<td>DOWN</td>
<td>Speed Mismatch</td>
</tr>
</tbody>
</table>
Example: Configuring the Interface Speed Parameters

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Configuration NIC (Speed/Duplex)</th>
<th>Resulting HIF status (Speed/Duplex)</th>
<th>Resulting NIC status (Speed/Duplex)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>N2K-C2348TQ-10GE and N2K-C2332TQ-10GE HIF (Speed/Duplex)</td>
<td>100 Mbps, Half duplex</td>
<td>DOWN</td>
<td>DOWN</td>
<td>Speed Mismatch</td>
</tr>
</tbody>
</table>

Table for 10G (10000 Mbps)

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Configuration NIC (Speed/Duplex)</th>
<th>Resulting HIF status (Speed/Duplex)</th>
<th>Resulting NIC status (Speed/Duplex)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO</td>
<td>AUTO</td>
<td>UP, 10000 Mbps, Full duplex</td>
<td>UP, 10000 Mbps, Full duplex</td>
<td>Assuming maximum capability of NIC is 10000 Mbps, Full duplex</td>
</tr>
<tr>
<td>10000 Mbps, Full duplex</td>
<td>AUTO</td>
<td>UP, 10000 Mbps, Full duplex</td>
<td>UP, 10000 Mbps, Full duplex</td>
<td>Assuming maximum capability of NIC is 10000 Mbps, Full duplex</td>
</tr>
<tr>
<td>AUTO</td>
<td>10000 Mbps, Full duplex</td>
<td>UP, 10000 Mbps, Full duplex</td>
<td>UP, 10000 Mbps, Full duplex</td>
<td>—</td>
</tr>
<tr>
<td>10000 Mbps, Full duplex</td>
<td>10000 Mbps, Full duplex</td>
<td>UP, 10000 Mbps, Full duplex</td>
<td>UP, 10000 Mbps, Full duplex</td>
<td>—</td>
</tr>
<tr>
<td>100 Mbps, Full duplex</td>
<td>10000 Mbps, Full duplex</td>
<td>DOWN</td>
<td>DOWN</td>
<td>Speed Mismatch</td>
</tr>
<tr>
<td>1000 Mbps, Full duplex</td>
<td>10000 Mbps, Full duplex</td>
<td>DOWN</td>
<td>DOWN</td>
<td>Speed Mismatch</td>
</tr>
</tbody>
</table>

\(^2\) Refer to CSCut35369 for more details.

Example: Configuring the Interface Speed Parameters

Configuration: AUTO

Configuring speed as AUTO (advertises all speeds and Full Duplex only)

```
switch(config)# interface ethernet 101/1/1
switch(config-if)# speed auto
```

Configuration: AUTO 100

Configuring speed as AUTO 100 Mbps (autonegotiates the advertised speed to 100 Mbps)

```
switch(config)# interface ethernet 101/1/1
switch(config-if)# speed auto 100
```

Configuration: 100 (Force Mode)

Configuring speed as 100 Mbps
Disabling Autonegotiation

The `negotiate auto` command enables the autonegotiation protocol to configure the speed, duplex, and automatic flow-control of the Gigabit Ethernet interface. Use the `no negotiate auto` command to disable autonegotiation. The `no negotiate auto` command is supported only in Cisco Nexus 2248PQ 10GE Fabric Extender, Cisco Nexus 2232PP 10GE Fabric Extender, and Cisco Nexus 2348UPQ 10GE Fabric Extender with 1G-based SFP.

Procedure

Step 1 Enter global configuration mode:
```
switch# configure terminal
```

Step 2 Specify an Ethernet interface to configure:
```
switch(config)# interface ethernet slot/port
```

Step 3 Disable the autonegotiation:
```
switch(config-if)# no negotiate auto
```

Step 4 Exit interface and global configuration modes:
```
switch(config-if)# exit
switch(config)# exit
```

Disabling Autonegotiation

This example shows a running configuration to disable autonegotiation. Replace the placeholders with relevant values for your setup.
configure terminal
interface ethernet <1>/<40>
no negotiate auto
exit
exit

Associating a Fabric Extender to a Fabric Interface

Associating a Fabric Extender to an Ethernet Interface

Before you begin
Ensure that you have enabled the Fabric Extender feature.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>
| **Example:**
 switch# configure terminal
 switch(config)# | |
| **Step 2** interface ethernet *slot*/port | Specifies an Ethernet interface to configure. |
| **Example:**
 switch(config)# interface ethernet 1/40
 switch(config)# | |
| **Step 3** switchport mode fex-fabric | Sets the interface to support an external Fabric Extender. |
| **Example:**
 switch(config-if)# switchport mode fex-fabric
 switch(config-if)# | |
| **Step 4** fex associate *FEX-number* | Associates the FEX number to the Fabric Extender unit attached to the interface. The range of the FEX number is from 100 to 199. |
| **Example:**
 switch(config-if)# fex associate 101
 switch# | |
| **Step 5** (Optional) show interface ethernet *port*/slot fex-intf | Displays the association of a Fabric Extender to an Ethernet interface. |
| **Example:**
 switch# show interface ethernet 1/40 fex-intf
 switch# | |
Example

This example shows how to associate the Fabric Extender to an Ethernet interface on the parent device:

```
switch# configure terminal
switch(config)# interface ethernet 1/40
switch(config-if)# switchport mode fex-fabric
switch(config-if)# fex associate 101
```

This example shows how to display the association of the Fabric Extender and the parent device:

```
switch# show interface ethernet 1/40 fex-intf
```

Associating a Fabric Extender to a Port Channel

Before you begin

Ensure that you have enabled the Fabric Extender feature.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>switch(config)#</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>interface port-channel channel</td>
<td>Specifies a port channel to configure.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch(config)# interface port-channel</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>switch(config-if)#</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>switchport mode fex-fabric</td>
<td>Sets the port channel to support an external</td>
</tr>
<tr>
<td>Example:</td>
<td>Fabric Extender.</td>
</tr>
</tbody>
</table>

Cisco Nexus 5600 Series NX-OS Layer 2 Switching Configuration Guide, Release 7.x
Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>switch(config-if)# switchport mode fex-fabric</code></td>
<td></td>
</tr>
</tbody>
</table>

Step 4

fex associate *FEX-number*

Example:

```
switch(config-if)# fex associate 101
```

Associates a FEX number to the Fabric Extender unit attached to the interface. The range is from 100 to 199.

Step 5

(Optional) **show interface port-channel channel fex-intf**

Example:

```
switch# show interface port-channel 4 fex-intf
```

Displays the association of a Fabric Extender to a port channel interface.

Example

This example shows how to associate the Fabric Extender to a port channel interface on the parent device:

```
switch# configure terminal
switch(config)# interface ethernet 1/28
switch(config-if)# channel-group 4
switch(config-if)# no shutdown
switch(config-if)# exit
switch(config)# interface ethernet 1/29
switch(config-if)# channel-group 4
switch(config-if)# no shutdown
switch(config-if)# exit
switch(config)# interface ethernet 1/30
switch(config-if)# channel-group 4
switch(config-if)# no shutdown
switch(config-if)# exit
switch(config)# interface ethernet 1/31
switch(config-if)# channel-group 4
switch(config-if)# no shutdown
switch(config-if)# exit
switch(config)# interface port-channel 4
switch(config-if)# switchport
switch(config-if)# switchport mode fex-fabric
switch(config-if)# fex associate 101
```

Tip

As a best practice, only enter the **fex associate** command from the port channel interface, not from the physical interface.

Note

When adding physical interfaces to port channels, all configurations on the port channel and physical interface must match.

This example shows how to display the association of the Fabric Extender and the parent device:
Disassociating a Fabric Extender from an Interface

Before you begin

Ensure that you have enabled the Fabric Extender feature.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: switch# configure terminal switch(config)#</td>
<td></td>
</tr>
<tr>
<td>Step 2 interface { ethernet slot/port</td>
<td>port-channel channel}</td>
</tr>
<tr>
<td>Example: switch(config)# interface port-channel 4 switch(config-if)#</td>
<td></td>
</tr>
<tr>
<td>Step 3 no fex associate</td>
<td>Disassociates the Fabric Extender unit attached to the interface.</td>
</tr>
<tr>
<td>Example: switch(config-if)# no fex associate</td>
<td></td>
</tr>
</tbody>
</table>

Configuring Fabric Extender Global Features

You can configure global features on the Fabric Extender.

Before you begin

Ensure that you have enabled the Fabric Extender feature set.
Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>
| Example: switch# configure terminal
switch(config)# | |
| **Step 2** fex FEX-number | Enters FEX configuration mode for the specified Fabric Extender. The range of the FEX-number is from 100 to 199. |
| Example: switch(config)# fex 101
switch(config-fex)# | |
| **Step 3** (Optional) description desc | Specifies the description. The default is the string FEXxxxx where xxxx is the FEX number. If the FEX number is 123, the description is FEX0123. |
| Example: switch(config-fex)# description Rack7A-N2K | |
| **Step 4** (Optional) no description | Deletes the description. |
| Example: switch(config-fex)# no description | |
| **Step 5** (Optional) no type | Deletes the FEX type. When a Fabric Extender is connected to the fabric interfaces and does not match the configured type that is saved in the binary configuration on the parent switch, all configurations for all interfaces on the Fabric Extender are deleted. |
| Example: switch(config-fex)# no type | |
| **Step 6** (Optional) pinning max-links uplinks | Defines the number of uplinks. The default is 1. The range is from 1 to 4. |
| Example: switch(config-fex)# pinning max-links 2 | |
| **Step 7** (Optional) no pinning max-links | Resets the number of uplinks to the default. |
| Example: switch(config-fex)# no pinning max-links | |

Caution Changing the number of uplinks with the `no pinning max-links` command disrupts all the host interface ports of the Fabric Extender.
<table>
<thead>
<tr>
<th>Step 8</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Optional) serial serial</td>
<td>Defines a serial number string. If this command is configured, a switch allows the corresponding chassis ID to associate (using the <code>fex associate</code> command) only if the Fabric Extender reports a matching serial number string.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>switch(config-fex)# serial JAF1339BDK</code></td>
<td></td>
</tr>
</tbody>
</table>

Caution Configuring a serial number that does not match the specified Fabric Extender forces the Fabric Extender offline.

<table>
<thead>
<tr>
<th>Step 9</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Optional) no serial</td>
<td>Deletes the serial number string.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>switch(config-fex)# no serial</code></td>
<td></td>
</tr>
</tbody>
</table>

Enabling the Fabric Extender Locator LED

The locator beacon LED on the Fabric Extender allows you to locate a specific Fabric Extender in a rack.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Turns on the locator beacon LED for a specific Fabric Extender.</td>
</tr>
<tr>
<td><code>locator-led fex FEX-number</code></td>
<td></td>
</tr>
<tr>
<td>Example: <code>switch# locator-led fex 101</code></td>
<td></td>
</tr>
</tbody>
</table>

| **Step 2** | Turns off the locator beacon LED for a specific Fabric Extender. |
| `no locator-led fex FEX-number` | |
| Example: `switch# no locator-led fex 101` | |

Redistributing the Links

When you provision the Fabric Extender with statically pinned interfaces, the downlink host interfaces on the Fabric Extender are pinned to the fabric interfaces in the order that they were initially configured. If you want to maintain a specific relationship of host interfaces to fabric interface across reboots, you should repin the links.

You may want to perform this function in these two situations:

- A change in the max-links configuration.
- If you need to maintain the pinning order of host interfaces to fabric interfaces.
The Cisco Nexus 2248PQ Fabric Extender does not support the static pinning fabric interface connection.

Changing the Number of Links

If you initially configured a specific port on the parent switch, for example port 33, as your only fabric interface, all 48 host interfaces are pinned to this port. If you provision another port, for example 35, you must enter the `pinning max-links 2` command to redistribute the host interfaces. All host interfaces are brought down and host interfaces 1 to 24 are pinned to fabric interface 33 and host interfaces 25 to 48 are pinned to fabric interface 35.

Maintaining the Pinning Order

The pinning order of the host interfaces is initially determined by the order in which the fabric interfaces were configured. In this example, four fabric interfaces were configured in the following order:

```
switch# show interface ethernet 1/35 fex-intf
Fabric FEX
Interface Interfaces
-----------------------------------------------
Eth1/35 Eth101/1/12 Eth101/1/11 Eth101/1/10 Eth101/1/9
Eth101/1/8 Eth101/1/7 Eth101/1/6 Eth101/1/5
Eth101/1/4 Eth101/1/3 Eth101/1/2 Eth101/1/1

switch# show interface ethernet 1/33 fex-intf
Fabric FEX
Interface Interfaces
-----------------------------------------------
Eth1/33 Eth101/1/24 Eth101/1/23 Eth101/1/22 Eth101/1/21
Eth101/1/20 Eth101/1/19 Eth101/1/18 Eth101/1/17
Eth101/1/16 Eth101/1/15 Eth101/1/14 Eth101/1/13

switch# show interface ethernet 1/38 fex-intf
Fabric FEX
Interface Interfaces
-----------------------------------------------
Eth1/38 Eth101/1/36 Eth101/1/35 Eth101/1/34 Eth101/1/33
Eth101/1/32 Eth101/1/31 Eth101/1/30 Eth101/1/29
Eth101/1/28 Eth101/1/27 Eth101/1/26 Eth101/1/25

switch# show interface ethernet 1/40 fex-intf
Fabric FEX
Interface Interfaces
-----------------------------------------------
Eth1/40 Eth101/1/48 Eth101/1/47 Eth101/1/46 Eth101/1/45
Eth101/1/44 Eth101/1/43 Eth101/1/42 Eth101/1/41
Eth101/1/40 Eth101/1/39 Eth101/1/38 Eth101/1/37
```

The next time that you reboot the Fabric Extender, the configured fabric interfaces are pinned to the host interfaces in an ascending order by port number of the fabric interface. If you want to configure the same fixed distribution of host interfaces without restarting the Fabric Extender, enter the `fex pinning redistribute` command.
It is a misconfiguration to have more fabric ports than pinning number even if the extra port is in DOWN state.

Redistributing Host Interfaces

This command disrupts all the host interface ports of the Fabric Extender.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>switch(config)#</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Redistributes the host connections. The range of the FEX-number is from 100 to 199.</td>
</tr>
<tr>
<td>fex pinning redistribute FEX-number</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch(config) # fex pinning redistribute 101</td>
<td></td>
</tr>
<tr>
<td>switch(config) #</td>
<td></td>
</tr>
</tbody>
</table>

Verifying the Fabric Extender Configuration

Use the following commands to display configuration information about the defined interfaces on a Fabric Extender:

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show fex [FEX-number] [detail]</td>
<td>Displays information about a specific Fabric Extender or all attached units.</td>
</tr>
<tr>
<td>show interface type number fex-intf</td>
<td>Displays the Fabric Extender ports that are pinned to a specific switch interface.</td>
</tr>
<tr>
<td>show interface fex-fabric</td>
<td>Displays the switch interfaces that have detected a Fabric Extender uplink.</td>
</tr>
<tr>
<td>show interface ethernet number transceiver [fex-fabric]</td>
<td>Displays the SFP+ transceiver and diagnostic optical monitoring (DOM) information for the Fabric Extender uplinks.</td>
</tr>
<tr>
<td>show feature-set</td>
<td>Displays the status of the feature sets on the device.</td>
</tr>
</tbody>
</table>
Configuration Examples for the Fabric Extender

This example shows how to display all the attached Fabric Extender units:

```
switch# show fex
```

<table>
<thead>
<tr>
<th>FEX Number</th>
<th>Description</th>
<th>State</th>
<th>Model</th>
<th>Serial</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>FEX0100</td>
<td>Online</td>
<td>N2K-C2248TP-1GE</td>
<td>JAF1339BDSK</td>
</tr>
<tr>
<td>101</td>
<td>FEX0101</td>
<td>Online</td>
<td>N2K-C2232P-10GE</td>
<td>JAF1333ADDD</td>
</tr>
<tr>
<td>102</td>
<td>FEX0102</td>
<td>Online</td>
<td>N2K-C2232P-10GE</td>
<td>JAS12334ABC</td>
</tr>
</tbody>
</table>

This example shows how to display the detailed status of a specific Fabric Extender:

```
switch# show fex 100 detail
```

FEX: 100 Description: FEX0100 state: Online
FEX version: 5.0(2)N1(1) [Switch version: 5.0(2)N1(1)]
FEX Interim version: 5.0(2)N1(0.205)
Switch Interim version: 5.0(2)N1(0.205)
Extender Model: N2K-C2224TP-1GE, Extender Serial: JAF1427BQLG
Part No: 73-13373-01
Module Sw Gen: 21 [Switch Sw Gen: 21]
post level: complete
pinning-mode: static Max-links: 1
Fabric port for control traffic: Eth1/29

Fabric interface state:
- Po100 - Interface Up. State: Active
- Eth1/29 - Interface Up. State: Active
- Eth1/30 - Interface Up. State: Active

<table>
<thead>
<tr>
<th>Fex Port</th>
<th>State</th>
<th>Fabric Port</th>
<th>Primary Fabric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eth100/1/1</td>
<td>Up</td>
<td>Po100</td>
<td>Po100</td>
</tr>
<tr>
<td>Eth100/1/2</td>
<td>Up</td>
<td>Po100</td>
<td>Po100</td>
</tr>
<tr>
<td>Eth100/1/3</td>
<td>Up</td>
<td>Po100</td>
<td>Po100</td>
</tr>
<tr>
<td>Eth100/1/4</td>
<td>Up</td>
<td>Po100</td>
<td>Po100</td>
</tr>
<tr>
<td>Eth100/1/5</td>
<td>Up</td>
<td>Po100</td>
<td>Po100</td>
</tr>
<tr>
<td>Eth100/1/6</td>
<td>Up</td>
<td>Po100</td>
<td>Po100</td>
</tr>
<tr>
<td>Eth100/1/7</td>
<td>Up</td>
<td>Po100</td>
<td>Po100</td>
</tr>
<tr>
<td>Eth100/1/8</td>
<td>Up</td>
<td>Po100</td>
<td>Po100</td>
</tr>
<tr>
<td>Eth100/1/9</td>
<td>Up</td>
<td>Po100</td>
<td>Po100</td>
</tr>
<tr>
<td>Eth100/1/10</td>
<td>Up</td>
<td>Po100</td>
<td>Po100</td>
</tr>
<tr>
<td>Eth100/1/11</td>
<td>Up</td>
<td>Po100</td>
<td>Po100</td>
</tr>
<tr>
<td>Eth100/1/12</td>
<td>Up</td>
<td>Po100</td>
<td>Po100</td>
</tr>
<tr>
<td>Eth100/1/13</td>
<td>Up</td>
<td>Po100</td>
<td>Po100</td>
</tr>
<tr>
<td>Eth100/1/14</td>
<td>Up</td>
<td>Po100</td>
<td>Po100</td>
</tr>
<tr>
<td>Eth100/1/15</td>
<td>Up</td>
<td>Po100</td>
<td>Po100</td>
</tr>
<tr>
<td>Eth100/1/16</td>
<td>Up</td>
<td>Po100</td>
<td>Po100</td>
</tr>
<tr>
<td>Eth100/1/17</td>
<td>Up</td>
<td>Po100</td>
<td>Po100</td>
</tr>
<tr>
<td>Eth100/1/18</td>
<td>Up</td>
<td>Po100</td>
<td>Po100</td>
</tr>
<tr>
<td>Eth100/1/19</td>
<td>Up</td>
<td>Po100</td>
<td>Po100</td>
</tr>
<tr>
<td>Eth100/1/20</td>
<td>Up</td>
<td>Po100</td>
<td>Po100</td>
</tr>
<tr>
<td>Eth100/1/21</td>
<td>Up</td>
<td>Po100</td>
<td>Po100</td>
</tr>
<tr>
<td>Eth100/1/22</td>
<td>Up</td>
<td>Po100</td>
<td>Po100</td>
</tr>
<tr>
<td>Eth100/1/23</td>
<td>Up</td>
<td>Po100</td>
<td>Po100</td>
</tr>
<tr>
<td>Eth100/1/24</td>
<td>Up</td>
<td>Po100</td>
<td>Po100</td>
</tr>
<tr>
<td>Eth100/1/25</td>
<td>Up</td>
<td>Po100</td>
<td>Po100</td>
</tr>
<tr>
<td>Eth100/1/26</td>
<td>Up</td>
<td>Po100</td>
<td>Po100</td>
</tr>
<tr>
<td>Eth100/1/27</td>
<td>Up</td>
<td>Po100</td>
<td>Po100</td>
</tr>
<tr>
<td>Eth100/1/28</td>
<td>Up</td>
<td>Po100</td>
<td>Po100</td>
</tr>
<tr>
<td>Eth100/1/29</td>
<td>Up</td>
<td>Po100</td>
<td>Po100</td>
</tr>
<tr>
<td>Eth100/1/30</td>
<td>Up</td>
<td>Po100</td>
<td>Po100</td>
</tr>
<tr>
<td>Eth100/1/31</td>
<td>Up</td>
<td>Po100</td>
<td>Po100</td>
</tr>
</tbody>
</table>
This example shows how to display the Fabric Extender interfaces pinned to a specific switch interface:

```
switch# show interface port-channel 100 fex-intf
```

```
Fabric	Interface
Po100   | Eth100/1/48, Eth100/1/47, Eth100/1/46, Eth100/1/45
Eth100/1/44, Eth100/1/43, Eth100/1/42, Eth100/1/41
Eth100/1/40, Eth100/1/39, Eth100/1/38, Eth100/1/37
Eth100/1/36, Eth100/1/35, Eth100/1/34, Eth100/1/33
Eth100/1/32, Eth100/1/31, Eth100/1/30, Eth100/1/29
Eth100/1/28, Eth100/1/27, Eth100/1/26, Eth100/1/25
Eth100/1/24, Eth100/1/22, Eth100/1/20, Eth100/1/19
Eth100/1/18, Eth100/1/17, Eth100/1/16, Eth100/1/15
Eth100/1/14, Eth100/1/13, Eth100/1/12, Eth100/1/11
Eth100/1/10, Eth100/1/9, Eth100/1/8, Eth100/1/7
Eth100/1/6, Eth100/1/5, Eth100/1/4, Eth100/1/3
Eth100/1/2
```

This example shows how to display the switch interfaces that are connected to a Fabric Extender uplink:

```
switch# show interface fex-fabric
```

```
Fex	Port	Fabric	Port State	Fex	Uplink	Model	Serial
100  | Eth1/29 | Active | 3 | N2K-C2248TP-1GE | JAF1339BDSK
100  | Eth1/30 | Active | 4 | N2K-C2248TP-1GE | JAF1339BDSK
102  | Eth1/33 | Active | 1 | N2K-C2232P-10GE | JAS12334ABC
102  | Eth1/34 | Active | 2 | N2K-C2232P-10GE | JAS12334ABC
102  | Eth1/35 | Active | 3 | N2K-C2232P-10GE | JAS12334ABC
102  | Eth1/36 | Active | 4 | N2K-C2232P-10GE | JAS12334ABC
101  | Eth1/37 | Active | 5 | N2K-C2232P-10GE | JAF1333ADDD
101  | Eth1/38 | Active | 6 | N2K-C2232P-10GE | JAF1333ADDD
101  | Eth1/39 | Active | 7 | N2K-C2232P-10GE | JAF1333ADDD
101  | Eth1/40 | Active | 8 | N2K-C2232P-10GE | JAF1333ADDD
```
Verifying the Chassis Management Information

Use the following to display configuration information used on the switch supervisor to manage the Fabric Extender.

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show diagnostic result fex FEX-number</td>
<td>Displays results from the diagnostic test for a Fabric Extender.</td>
</tr>
<tr>
<td>show environment fex {all</td>
<td>FEX-number} [temperature</td>
</tr>
<tr>
<td>show inventory fex FEX-number</td>
<td>Displays inventory information for a Fabric Extender.</td>
</tr>
<tr>
<td>show module fex [FEX-number]</td>
<td>Displays module information about a Fabric Extender.</td>
</tr>
<tr>
<td>show sprom fex FEX-number {all</td>
<td>backplane</td>
</tr>
</tbody>
</table>
Configuration Examples for Chassis Management

This example shows how to display the module information about all connected Fabric Extender units:

```
switch# show module fex
```

<table>
<thead>
<tr>
<th>FEX Mod</th>
<th>Sw</th>
<th>Hw</th>
<th>Model</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 1</td>
<td>48</td>
<td>4.2(1)N1(1)</td>
<td>N2K-C2248TP-1GE</td>
<td>present</td>
</tr>
<tr>
<td>101 1</td>
<td>32</td>
<td>4.2(1)N1(1)</td>
<td>N2K-C2232P-10GE</td>
<td>present</td>
</tr>
<tr>
<td>102 1</td>
<td>32</td>
<td>4.2(1)N1(1)</td>
<td>N2K-C2232P-10GE</td>
<td>present</td>
</tr>
</tbody>
</table>

This example shows how to display the module information about a specific Fabric Extender:

```
switch# show module fex 100
```

<table>
<thead>
<tr>
<th>FEX Mod</th>
<th>Sw</th>
<th>Hw</th>
<th>Model</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 1</td>
<td>48</td>
<td>4.2(1)N1(1)</td>
<td>N2K-C2248TP-1GE</td>
<td>present</td>
</tr>
</tbody>
</table>

This example shows how to display the inventory information about a specific Fabric Extender:

```
switch# show inventory fex 101
```

NAME: "FEX 101 CHASSIS", DESCR: "N2K-C2248TP-1GE CHASSIS"

NAME: "FEX 101 Module 1", DESCR: "Fabric Extender Module: 48x1GE, 4x10GE Supervisor"

NAME: "FEX 101 Fan 1", DESCR: "Fabric Extender Fan module"

NAME: "FEX 101 Power Supply 2", DESCR: "Fabric Extender AC power supply"

This example shows how to display diagnostic test results for a specific Fabric Extender:

```
switch# show diagnostic result fex 101
```

Test results: (. = Pass, F = Fail, U = Untested)
This example shows how to display the environment status for a specific Fabric Extender:

```
switch# show environment fex 101
```

Temperature Fex 101:

<table>
<thead>
<tr>
<th>Module</th>
<th>Sensor</th>
<th>MajorThresh (Celsius)</th>
<th>MinorThresh (Celsius)</th>
<th>CurTemp (Celsius)</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Outlet-1</td>
<td>60</td>
<td>50</td>
<td>33</td>
<td>ok</td>
</tr>
<tr>
<td>1</td>
<td>Outlet-2</td>
<td>60</td>
<td>50</td>
<td>38</td>
<td>ok</td>
</tr>
<tr>
<td>1</td>
<td>Inlet-1</td>
<td>50</td>
<td>40</td>
<td>35</td>
<td>ok</td>
</tr>
<tr>
<td>1</td>
<td>Die-1</td>
<td>100</td>
<td>90</td>
<td>44</td>
<td>ok</td>
</tr>
</tbody>
</table>

Fan Fex: 101:

- **Chassis**: N2K-C2148-FAN -- ok
- **PS-1**: -- -- absent
- **PS-2**: NXK-PAC-400W -- ok

Power Supply Fex 101:

- **Voltage**: 12 Volts

<table>
<thead>
<tr>
<th>PS</th>
<th>Model</th>
<th>Power (Watts)</th>
<th>Power (Amp)</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>NXK-PAC-400W</td>
<td>4.32</td>
<td>0.36</td>
<td>ok</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mod</th>
<th>Model</th>
<th>Power Requested (Watts)</th>
<th>Power Requested (Amp)</th>
<th>Power Allocated (Watts)</th>
<th>Power Allocated (Amp)</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N2K-C2248TP-1GE</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>powered-up</td>
</tr>
</tbody>
</table>
Power Usage Summary:

Power Supply redundancy mode: redundant
Total Power Capacity 4.32 W
Power reserved for Supervisor(s) 0.00 W
Power currently used by Modules 0.00 W

Total Power Available 4.32 W

This example shows how to display the SPROM for a specific Fabric Extender:

```bash
switch# show sprom fex 101 all
DISPLAY FEX 101 SUP sprom contents
Common block:
  Block Signature : 0xabab
  Block Version : 3
  Block Length : 160
  Block Checksum : 0x1a1e
  EEPROM Size : 65535
  Block Count : 3
  FRU Major Type : 0x6002
  FRU Minor Type : 0x0
  OEM String : Cisco Systems, Inc.
  Product Number : N2K-C2248TP-1GE
  Serial Number : JAF1339BDSK
  Part Number : 73-12748-01
  Part Revision : 11
  Mfg Deviation : 0
  H/W Version : 0.103
  Mfg Bits : 0
  Engineer Use : 0
  snmpOID : 9.12.3.1.9.78.3.0
  Power Consump : 1666
  RMA Code : 0-0-0-0
  CLEI Code : XXXXXXXXXTBDV00
  VID : V00
  Supervisor Module specific block:
  Block Signature : 0x6002
  Block Version : 2
  Block Length : 103
  Block Checksum : 0x2686
  Feature Bits : 0x0
  HW Changes Bits : 0x0
  Card Index : 11016
  MAC Addresses : 00-00-00-00-00-00
  Number of MACs : 0
  Number of EPLD : 0
  Port Type-Num : 1-48;2-4
  Sensor #1 : 60,50
  Sensor #2 : 60,50
  Sensor #3 : -128,-128
  Sensor #4 : -128,-128
  Sensor #5 : 50,40
  Sensor #6 : -128,-128
  Sensor #7 : -128,-128
  Sensor #8 : -128,-128
  Max Connector Power: 4000
  Cooling Requirement: 65
  Ambient Temperature: 40
```
DISPLAY FEX 101 backplane sprom contents:

Common block:
- **Block Signature:** 0xabab
- **Block Version:** 3
- **Block Length:** 160
- **Block Checksum:** 0x1947
- **EEPROM Size:** 65535
- **Block Count:** 5
- **FRU Major Type:** 0x6001
- **FRU Minor Type:** 0x0
- **OEM String:** Cisco Systems, Inc.
- **Product Number:** N2K-C2248TP-1GE
- **Serial Number:** SSI13380FSM
- **Part Number:** 68-3601-01
- **Part Revision:** 03
- **Mfg Deviation:** 0
- **H/W Version:** 1.0
- **Mfg Bits:** 0
- **Engineer Use:** 0
- **snmpOID:** 9.12.3.1.3.914.0.0
- **Power Consump:** 0
- **RMA Code:** 0-0-0-0
- **CLEI Code:** XXXXXXXXTDBV00
- **VID:** V00

Chassis specific block:
- **Block Signature:** 0x6001
- **Block Version:** 3
- **Block Length:** 39
- **Block Checksum:** 0x2cf
- **Feature Bits:** 0x0
- **HW Changes Bits:** 0x0
- **Stackmib OID:** 0
- **MAC Addresses:** 00-0d-ec-e3-28-00
- **Number of MACs:** 64
- **OEM Enterprise:** 0
- **OEM MIB Offset:** 0
- **MAX Connector Power:** 0

WWN software-module specific block:
- **Block Signature:** 0x6005
- **Block Version:** 1
- **Block Length:** 0
- **Block Checksum:** 0x66

wwn usage bits:
- `00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 ...`
Configuring the Cisco Nexus N2248TP-E Fabric Extender

The Cisco Nexus 2248TP-E Fabric Extender supports all of the CLI commands of the Cisco Nexus 2248TP Fabric Extender with additional commands to configure the following:

- Shared buffer (FEX global level)
- Queue limit in ingress direction (FEX global level and interface level)
• Queue limit in egress direction (FEX global level and interface level)
• No drop class over a distance of 3000 meters between the FEX and switch (FEX global level)

Configuring the Shared Buffer

The following are guidelines for the configuration of the shared buffer:

• Configuring the shared buffer is done at the FEX global level.
• The total available buffer is 32 MB which is shared in both the ingress and egress directions.
• The default size of the shared buffer is 25392KB.

However, when configuring an Ethernet-based pause no-drop class, the shared buffer size changes to 10800 KB. This change is required to increase the dedicated buffer that supports the pause no-drop class. The pause no-drop class does not use buffer space from the shared-pool.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>switch(config)#</td>
<td></td>
</tr>
<tr>
<td>Step 2 fex chassis_id</td>
<td>Enters configuration mode for the specified FEX.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch(config)# fex 100</td>
<td></td>
</tr>
<tr>
<td>switch(config-fex)#</td>
<td></td>
</tr>
<tr>
<td>Step 3 hardware N2248TP-E shared-buffer-size</td>
<td>Specifies the shared buffer size (KB).</td>
</tr>
<tr>
<td>buffer-size</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch(config-fex)# hardware N2248TP-E shared-buffer-size 25000</td>
<td></td>
</tr>
</tbody>
</table>

Example

This example shows how to configure the shared buffer.

```
switch# configure terminal
switch(config)# fex 100
```
Configuring the Queue Limit at the Global Level

The following are guidelines for the configuration of the queue limit:

- The tx queue limit specifies the buffer size used for each queue in the egress (n2h) direction.
- The rx queue limit specifies the buffer size used for each port in the ingress (h2n) direction.
- You can adjust the ingress queue limit when the FEX uplink experiences temporary congestion.
- You can adjust the egress queue limit for improved burst absorption or in a situation where there is a many to one traffic pattern.
- When you disable the tx queue limit, any output port is able to use the entire shared buffer.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>switch(config)#</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>fex chassis_id</td>
<td>Enters configuration mode for the specified FEX.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch(config)# fex 100</td>
<td>The range of the <code>chassis_id</code> value is 100 to 199.</td>
</tr>
<tr>
<td>switch(config)#</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>hardware N2248TP-E queue-limit tx</td>
<td>rx</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch(config-fex)# hardware N2248TP-E queue-limit 83000 tx</td>
<td></td>
</tr>
</tbody>
</table>
Example
This example shows how to configure the queue limit.

```
switch# configure terminal
switch(config)# fex 100
switch(config-fex)# hardware N2248TP-E queue-limit 83000 tx
switch(config-fex)#
```

Configuring the Queue Limit at the Port Level

You can overwrite the global level configuration by configuring the queue limit at the port level.
You can also disable the queue limit at the port level.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>switch(config)#</td>
<td></td>
</tr>
<tr>
<td>Step 2 interface ethernet chassis_id / slot/port</td>
<td>Enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch(config)# interface ethernet 100/1/1</td>
<td></td>
</tr>
<tr>
<td>Step 3 hardware N2248TP-E queue-limit queue-limit tx</td>
<td>rx</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch(config-if)# hardware N2248TP-E queue-limit 83000 tx</td>
<td></td>
</tr>
</tbody>
</table>

Example

This example shows how to configure the queue limit.

```
switch# configure terminal
switch(config)# interface ethernet 100/1/1
switch(config-if)# hardware N2248TP-E queue-limit 83000 tx
switch(config-if)#
```
Configuring the Uplink Distance

The Cisco Nexus N2248TP-E FEX supports a pause no-drop class up to a distance of 3000 meters between the FEX and the switch.

The default cable length between the FEX and the switch is 300 meters.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: switch# configure terminal switch{config}#</td>
<td></td>
</tr>
<tr>
<td>Step 2 fex chassis_id</td>
<td>Enters configuration mode for the specified FEX. The range of the chassis_id value is 100 to 199.</td>
</tr>
<tr>
<td>Example: switch(config)# fex 100 switch(config-fex)#</td>
<td></td>
</tr>
<tr>
<td>Step 3 hardware N2248TP-E uplink-pause-no-drop distance distance-value</td>
<td>Specifies the no-drop distance between the FEX and the switch. The maximum distance is 3000 meters.</td>
</tr>
<tr>
<td>Example: switch(config-fex)# hardware N2248TP-E uplink-pause-no-drop distance 3000</td>
<td></td>
</tr>
<tr>
<td>Note The hardware N2248TP-E uplink-pause-no-drop distance command specifies the default 300 meter cable length.</td>
<td></td>
</tr>
</tbody>
</table>

Example

This example shows how to configure the uplink distance.

```
switch# configure terminal
switch(config)# fex 100
switch(config-fex)# hardware N2248TP-E uplink-pause-no-drop distance 3000
switch(config-fex)#
```

Configuring the Cisco Nexus N2248PQ Fabric Extender

The Cisco Nexus 2248PQ Fabric Extender supports all of the CLI commands of the Cisco Nexus 2248TP Fabric Extender with additional commands to configure the following:

- Shared buffer (FEX global level)
Configuring the Shared Buffer

The following are guidelines for the configuration of the shared buffer:

- Configuring the shared buffer is done at the FEX global level.
- The total available buffer is 16 MB which is shared in both the ingress and egress directions.
- The default size of the shared buffer is 10240 KB.

Performing these commands might result in traffic disruption on all ports.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>
| Example: | switch# configure terminal
switch(config)# | |
| Step 2 | `fex chassis_id` | Enters configuration mode for the specified FEX.
The range of the `chassis_id` value is 100 to 199. |
| Example: | switch(config)# fex 100
switch(config-fex)# | |
| Step 3 | `hardware N2248PQ shared-buffer-size buffer-size` | Specifies the shared buffer size (KB).
The range of the `buffer-size` value is 3072 KB to 10240 KB.
Note: The `hardware N2248PQ shared-buffer-size` command specifies the default shared buffer size of 10240 KB. |
| Example: | switch(config-fex)# hardware N2248PQ shared-buffer-size 8096 | |

Example

This example shows how to configure the shared buffer.

```
switch# configure terminal
switch(config)# fex 100
switch(config-fex)# hardware N2248PQ shared-buffer-size 8096
switch(config-fex)#
```
Configuring the Uplink Distance

The Cisco Nexus N2248PQ FEX supports a pause no-drop class up to a distance of 3000 meters between the FEX and the switch.

The default cable length between the FEX and the switch is 300 meters.

Note
When the pause no-drop class is not configured, the uplink distance configuration has no effect.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: switch# configure terminal switch(config)#</td>
<td></td>
</tr>
<tr>
<td>Step 2 fex chassis_id</td>
<td>Enters configuration mode for the specified FEX.</td>
</tr>
<tr>
<td>Example: switch(config)# fex 100 switch(config-fex)#</td>
<td>The range of the chassis_id value is 100 to 199.</td>
</tr>
<tr>
<td>Step 3 hardware N2248PQ uplink-pause-no-drop distance distance-value</td>
<td>Specifies the no-drop distance between the FEX and the switch.</td>
</tr>
<tr>
<td>Example: switch(config-fex)# hardware N2248PQ uplink-pause-no-drop distance 3000</td>
<td>The maximum distance is 3000 meters.</td>
</tr>
<tr>
<td>Note The hardware N2248PQ uplink-pause-no-drop distance command specifies the default 300 meter cable length.</td>
<td></td>
</tr>
</tbody>
</table>

Example

This example shows how to configure the uplink distance.

```
switch# configure terminal
switch(config)# fex 100
switch(config-fex)# hardware N2248PQ uplink-pause-no-drop distance 3000
switch(config-fex)#
```
Configuring Slow Drain

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>switch# configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>switch(config)# fex chassis_id</code></td>
<td>Enters configuration mode for the specified FEX. The range of the <code>chassis_id</code> value is 100 to 199.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>switch(config-fex)# hardware fex slow-port-error-disable-time val</code></td>
<td>Specifies the FEX and the time threshold. The value of <code>fex</code> is the PID of the configured FEX. The range of <code>val</code> is from 200ms to 1000ms. The default value is 1000 ms.</td>
</tr>
</tbody>
</table>

Example

This example shows how to configure the slow drain feature on the N2232P FEX:

```
switch# configure terminal
switch(config)# fex N2232P
switch(config-fex)# hardware N2232P slow-port-error-disable-time 500
```

Load-balancing queues at the FEX global level

The Cisco Nexus 2248PQ provides 8 load balancing queues. These load balancing queues are designed to resolve port congestion.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>

Example:

```
switch# configure terminal
switch(config)#
```

| Step 2 | `fex chassis_id` | Enters configuration mode for the specified FEX. The range of the `chassis_id` value is 100 to 199. |

Example:

```
switch(config)# fex 100
switch(config)#
```

| Step 3 | `hardware N2248PQ uplink-load-balance-mode` | Enables and disables load balancing queues at the FEX global level. |

Example:

```
switch(config-fex)# hardware N2248PQ uplink-load-balance-mode
```
Example

This example shows how to configure the load balance queues.

switch# configure terminal
switch(config)# fex 100
switch(config-fex)# hardware N2248PQ uplink-load-balance-mode
switch(config-fex)#
Load-balancing queues at the FEX global level
CHAPTER 16

Configuring VM-FEX

This chapter contains the following sections:

- Information About VM-FEX, on page 237
- Licensing Requirements for VM-FEX, on page 239
- Default Settings for VM-FEX, on page 239
- Configuring VM-FEX, on page 240
- Verifying the VM-FEX Configuration, on page 248

Information About VM-FEX

VM-FEX Overview

Based on the (prestandard) IEEE 802.1Qbh port extender technology, Cisco Virtual Machine Fabric Extender (VM-FEX) extends the fabric from the switch chassis to the Virtual Machine (VM). Each VM is associated with a network adapter vNIC, which is associated with a virtual Ethernet (vEthernet or vEth) port on the parent switch. This dedicated virtual interface can be managed, monitored, and spanned in the same way as a physical interface. Local switching in the hypervisor is eliminated, with all switching being performed by the physical switch.

VM-FEX Components

Server

VM-FEX is supported by Cisco UCS C-Series rack-mount servers with the VMware virtualization environment as the hypervisor.

The configuration of the server is performed using the Cisco Integrated Management Controller (CIMC) interface, which provides both a GUI and a CLI interface. The configuration of the hypervisor and virtualization services is performed using the VMware vSphere client.

For information about CIMC and VM-FEX configuration, see the following documents:

- Cisco UCS C-Series Servers Integrated Management Controller GUI Configuration Guide
- Cisco UCS Manager VM-FEX for VMware GUI Configuration Guide
Virtual Interface Card Adapter

VM-FEX is supported by the Cisco UCS P81E Virtual Interface Card (VIC), a dual-port 10 Gigabit Ethernet PCIe adapter that supports static or dynamic virtualized interfaces, including up to 128 virtual network interface cards (vNICs).

The configuration of the VIC and its vNICs is performed using the CIMC interface on the Cisco UCS C-Series servers.

FEX

The physical ports of the server can be connected directly to the switch or to a fabric extender (FEX) connected to the switch. VM-FEX is supported by the Cisco Nexus Fabric Extender.

VM-FEX and AFEX require that the FEX is connected with a fabric PO and not individual links.

Switch

VM-FEX is supported by the Cisco Nexus device. Although a single switch chassis can be connected with VM-FEX, a typical application uses a pair of switches deployed as a virtual port channel (vPC) domain.

On the switch, a vEthernet interface represents the vNIC. All operations performed by the network administrator are performed on the vEthernet interface.

VM-FEX Terminology

The following terms are used in describing VM-FEX components and interfaces:

virtual Ethernet interface

A virtual Ethernet interface (vEthernet or vEth) represents the switch port that is connected to the vNIC of a virtual machine. Unlike a traditional switch interface, a vEth interface's name does not indicate the module with which the port is associated. Where a traditional physical switch port is specified as GigX/Y, where X is the module number and Y is the port number on the module, a vEth interface is specified as vEthY. This notation allows the interface to keep the same name when the VM migrates to another physical server.

dynamic interface

A dynamic interface is a vEthernet interface that is configured automatically as a result of adapter and switch communications. The provisioning model of a dynamic interface consists of the configuration on the switch of a vEthernet port profile, which is propagated to the network adapter as a port group, followed by the association of the port group with the vNIC. The port profile is created in the switch by the network administrator, while the association with the vNIC is performed on the adapter by the server administrator.

static interface

A static interface is configured manually on the switch and the adapter. A static virtual adapter can be a vNIC or a virtual host adapter bus (vHBA). A static interface can be a vEthernet or a virtual Fibre Channel (vFC) interface bound to a static vEthernet interface.

In one method of creating a static vEthernet, the network administrator assigns a channel number (equivalent to a VN-Tag or prestandard IEEE 802.1BR tag number) to the vEthernet. The server administrator must be sure to define a vNIC on the adapter with the same channel number.

In another method, the network administrator can create a static floating vEthernet by configuring the vEthernet with a virtual switching instance (VSI) MAC address and DVPort ID.
floating vEthernet interface

In a hypervisor environment, each vNIC on the network adapter is associated with one virtual machine (VM). VMs can migrate from one physical server to another. A virtual interface that migrates with a VM and virtual network link is called a floating vEthernet interface.

fixed vEthernet interface

A fixed vEthernet interface is a virtual interface that does not support migration across physical interfaces. For fixed vEthernet (static or dynamic), an administrator can change configurations at any time. The binding of the vEthernet interface number to a channel number is persistent unless the administrator changes it.

Licensing Requirements for VM-FEX

The following table shows the licensing requirements for this feature:

<table>
<thead>
<tr>
<th>Product</th>
<th>License Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco NX-OS</td>
<td>A VM-FEX license is required for each Cisco Nexus device. The license package name is VMFEX_FEATURE_PKG. A grace period of 120 days starts when you first configure the licensed feature. For a complete explanation of the Cisco NX-OS licensing scheme and how to obtain and apply licenses, see the Cisco NX-OS Licensing Guide.</td>
</tr>
</tbody>
</table>

Default Settings for VM-FEX

The following table lists the default settings for parameters that are relevant to VM-FEX:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtualization feature set</td>
<td>Disabled</td>
</tr>
<tr>
<td>FEX</td>
<td>Disabled</td>
</tr>
<tr>
<td>VM-FEX</td>
<td>Disabled</td>
</tr>
<tr>
<td>LLDP</td>
<td>Enabled</td>
</tr>
<tr>
<td>vPC</td>
<td>Disabled</td>
</tr>
<tr>
<td>svs vethernet auto-setup</td>
<td>Enabled</td>
</tr>
<tr>
<td>FCoE</td>
<td>Disabled</td>
</tr>
</tbody>
</table>
Configuring VM-FEX

Overview of the VM-FEX Configuration Steps

The following steps outline the necessary sequence of procedures for configuring VM-FEX between the switch and the server hosting the VMs. Procedures to be performed on the switch are described in this document. For procedures to be performed on the server or the VMware vCenter, refer to the server and vCenter documentation.

Procedure

Step 1
Server: Create vNICs on VIC adapter.
 a) Create two static vNICs to be used as uplinks from the host.
 b) Create up to 112 VM-FEX interfaces.
 c) Reboot the server.

Step 2
Switch: Enable VM-FEX and other required services.
See Enabling Features Required for VM-FEX, on page 241.

Step 3
Switch: Configure two static vEthernet interfaces and bind them to the physical port and channel.
See Configuring the Fixed Static Interfaces, on page 242.

Step 4
Switch: Define port profiles to be associated with the VMs.
See Configuring a Port Profile for the Dynamic Interfaces, on page 244.

Step 5
Switch: Verify that the two static vEthernet interfaces are active and associated with the vEthernet interfaces of the switch.
See Verifying the Status of the Virtual Interfaces, on page 248.

Step 6
Switch and vCenter: Install XML certificate from switch to vCenter.
 a) Switch: Enable HTTP using the `feature http` command in global configuration mode.
 b) From a web browser, access the IP address of the switch and download the displayed XML certificate.
 c) Switch: Disable HTTP using the `no feature http` command in global configuration mode.
 d) vCenter: Install the XML certificate plugin.

Step 7
Switch: Enable vPC and register the vPC system to the vCenter as a distributed virtual switch (DVS).
See Configuring an SVS Connection to the vCenter Server, on page 245.

Step 8
vCenter: Create a datacenter on the vCenter.

Step 9
Switch: Activate and verify the SVS connection to the vCenter.
See Activating an SVS Connection to the vCenter Server, on page 247 and Verifying the Connection to the vCenter Server, on page 250.

Step 10
vCenter: Verify that the port profiles (port groups) are propagated to the vCenter.

Step 11
Server: Add resources to the DVS.
a) Add the ESX host to the DVS.
b) Add the static vNICs as uplinks to the DVS.
c) Associate VMs to the port groups defined by the switch.
d) Activate the VMs.

Step 12
Switch: Verify that the dynamic vNICs are active, assigned to VMs, and connected to the vEthernet interfaces of the switch.

See Verifying the Status of the Virtual Interfaces, on page 248.

Step 13
Server: Verify that the interfaces are active and assigned to the VMs.

Step 14
vCenter: Verify that the dynamic vNICs are active.

Enabling Features Required for VM-FEX

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>install feature-set virtualization</td>
<td>Installs the virtualization feature set on the switch.</td>
</tr>
<tr>
<td>Step 3</td>
<td>feature-set virtualization</td>
<td>Enables the virtualization feature set on the switch. This feature set enables the use of static vEthernet interfaces.</td>
</tr>
<tr>
<td>Step 4</td>
<td>feature fex</td>
<td>Enables FEX features on the switch.</td>
</tr>
<tr>
<td>Step 5</td>
<td>feature vmfex</td>
<td>Enables VM-FEX features on the switch. This feature set enables the use of dynamic vEthernet interfaces.</td>
</tr>
<tr>
<td>Step 6</td>
<td>feature vpc</td>
<td>Enables a virtual port channel (vPC) on the switch.</td>
</tr>
<tr>
<td>Step 7</td>
<td>(Optional) vethernet auto-create</td>
<td>Globally enables the automatic creation of virtual Ethernet interfaces. This feature is not required if the fixed vEthernet interfaces are statically configured.</td>
</tr>
<tr>
<td>Step 8</td>
<td>(Optional) feature fcoe</td>
<td>Enables Fibre Channel over Ethernet (FCoE) on the switch.</td>
</tr>
<tr>
<td>Step 9</td>
<td>(Optional) end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 10</td>
<td>(Optional) copy running-config startup-config</td>
<td>Copies the running configuration to the startup configuration.</td>
</tr>
<tr>
<td>Step 11</td>
<td>(Optional) reload</td>
<td>Reloads the switch.</td>
</tr>
</tbody>
</table>
Example

This example shows how to enable the features required for VM-FEX:

```
switch# configure terminal
switch(config)# install feature-set virtualization
switch(config)# feature-set virtualization
switch(config)# feature fex
switch(config)# feature vmfex
switch(config)# feature vpc
switch(config)# vethernet auto-create
switch(config)# feature fcce
switch(config)# end
switch# copy running-config startup-config
switch# reload
```
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 7</td>
<td><code>switchport mode vntag</code></td>
<td>Enables port extender support on the interface.</td>
</tr>
<tr>
<td>Step 8</td>
<td><code>interface vethernet interface-number</code></td>
<td>Enters configuration mode for the first virtual interface for the first Ethernet port.</td>
</tr>
<tr>
<td>Step 9</td>
<td><code>bind interface ethernet slot/port channel channel-number</code></td>
<td>Binds the virtual interface to the physical interface and the specified port channel.</td>
</tr>
<tr>
<td></td>
<td>Note</td>
<td>The port channel numbers of the virtual interfaces must match those configured on the vNICs.</td>
</tr>
<tr>
<td>Step 10</td>
<td><code>no shutdown</code></td>
<td>Enables local traffic on the interface.</td>
</tr>
<tr>
<td>Step 11</td>
<td><code>interface vethernet interface-number</code></td>
<td>Enters configuration mode for the second virtual interface for the first Ethernet port.</td>
</tr>
<tr>
<td>Step 12</td>
<td><code>bind interface ethernet slot/port channel channel-number</code></td>
<td>Binds the virtual interface to the physical interface and the specified port channel.</td>
</tr>
<tr>
<td>Step 13</td>
<td><code>no shutdown</code></td>
<td>Enables local traffic on the interface.</td>
</tr>
<tr>
<td>Step 14</td>
<td><code>interface vethernet interface-number</code></td>
<td>Enters configuration mode for the second virtual interface for the second Ethernet port.</td>
</tr>
<tr>
<td>Step 15</td>
<td><code>bind interface ethernet slot/port channel channel-number</code></td>
<td>Binds the virtual interface to the physical interface and the specified port channel.</td>
</tr>
<tr>
<td>Step 16</td>
<td><code>no shutdown</code></td>
<td>Enables local traffic on the interface.</td>
</tr>
<tr>
<td>Step 17</td>
<td><code>interface vethernet interface-number</code></td>
<td>Enters configuration mode for the second virtual interface for the second Ethernet port.</td>
</tr>
<tr>
<td>Step 18</td>
<td><code>bind interface ethernet slot/port channel channel-number</code></td>
<td>Binds the virtual interface to the physical interface and the specified port channel.</td>
</tr>
<tr>
<td>Step 19</td>
<td><code>no shutdown</code></td>
<td>Enables local traffic on the interface.</td>
</tr>
<tr>
<td>Step 20</td>
<td><code>interface ethernet slot/port</code></td>
<td>Enters configuration mode for the first Ethernet port.</td>
</tr>
<tr>
<td>Step 21</td>
<td><code>no shutdown</code></td>
<td>Enables local traffic on the interface.</td>
</tr>
<tr>
<td>Step 22</td>
<td><code>interface ethernet slot/port</code></td>
<td>Enters configuration mode for the second Ethernet port.</td>
</tr>
<tr>
<td>Step 23</td>
<td><code>no shutdown</code></td>
<td>Enables local traffic on the interface.</td>
</tr>
<tr>
<td>Step 24</td>
<td></td>
<td>With redundant switches, repeat this procedure with identical settings on the secondary switch.</td>
</tr>
</tbody>
</table>
Example
This example shows how to configure two physical interfaces, binds two virtual interfaces to each physical interface, and enables the interfaces:

```
switch-1# configure terminal
switch-1(config)# interface ethernet 1/17
switch-1(config-if)# shutdown
switch-1(config-if)# switchport mode vntag
switch-1(config-if)# interface ethernet 1/18
switch-1(config-if)# shutdown
switch-1(config-if)# switchport mode vntag

switch-1(config-if)# interface vethernet 1
switch-1(config-if)# bind interface ethernet 1/17 channel 10
switch-1(config-if)# no shutdown
switch-1(config-if)# interface vethernet 3
switch-1(config-if)# bind interface ethernet 1/17 channel 11
switch-1(config-if)# no shutdown

switch-1(config-if)# interface vethernet 2
switch-1(config-if)# bind interface ethernet 1/18 channel 10
switch-1(config-if)# no shutdown
switch-1(config-if)# interface vethernet 4
switch-1(config-if)# bind interface ethernet 1/18 channel 11
switch-1(config-if)# no shutdown

switch-1(config-if)# interface ethernet 1/17
switch-1(config-if)# no shutdown
switch-1(config-if)# interface ethernet 1/18
switch-1(config-if)# no shutdown
```

What to do next
Verify the status of the connection between the static interfaces and the static vNICs on the host server.

Configuring a Port Profile for the Dynamic Interfaces
You can configure a port profile for dynamic virtual interfaces. This port profile is exported to the VMware vCenter distributed virtual switch (DVS) as a port-group.

With redundant switches, you can perform the following procedure with identical settings on both the primary and secondary switches.

Before you begin
- Dynamic vNICs must be configured on the VIC adapter installed in the host server.
- The VLAN specified in the port profile must be created.
Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 port-profile type vethernet profilename</td>
<td>Enters configuration mode for the specified port profile, creating it if necessary.</td>
</tr>
<tr>
<td>Step 3 (Optional) switchport mode access</td>
<td>Configures the interface to be in access mode.</td>
</tr>
<tr>
<td>Step 4 (Optional) switchport access vlan vlan-id</td>
<td>Specifies the VLAN when the interface is in access mode.</td>
</tr>
<tr>
<td>Step 5 dvs-name {all</td>
<td>name}</td>
</tr>
<tr>
<td>Step 6 (Optional) port-binding dynamic</td>
<td>Specifies dynamic port binding. The port is connected when the VM is powered on and disconnected when the VM is powered off. Max-port limits are enforced. The default is static port binding.</td>
</tr>
<tr>
<td>Step 7 state enabled</td>
<td>Enables the port profile.</td>
</tr>
</tbody>
</table>

Example

This example configures a port profile for dynamic virtual interfaces:

```plaintext
switch-1# configure terminal
switch-1(config)# port-profile type vethernet vm-fex-vlan-60
switch-1(config-port-prof)# switchport mode access
switch-1(config-port-prof)# switchport access vlan 60
switch-1(config-port-prof)# dvs-name all
switch-1(config-port-prof)# port-binding dynamic
switch-1(config-port-prof)# state enabled
switch-1(config-port-prof)#
```

Configuring an SVS Connection to the vCenter Server

You can configure a secure connection from the switch to the vCenter Server.

With redundant switches, perform this procedure on both the primary and the secondary switches. In normal operation, only the primary switch connects to the vCenter, with the secondary switch connecting only upon a failure of the primary.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>
Configuring an SVS Connection to the vCenter Server

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>svS connection svS-name</td>
<td>Enables and enters configuration mode for an SVS connection from the switch to the vCenter Server.</td>
<td></td>
</tr>
</tbody>
</table>

| Step 3 | Protocol vmware-vim | Enables the VMware Infrastructure Software Development Kit (VI SDK), which allows clients to communicate with the vCenter. |

| Step 4 | Vmware dvs datacenter-name dc-name | Creates a VMware distributed virtual switch (DVS) in the specified datacenter. |

| Step 5 | Dvs-name dvs-name | Configures a name for the DVS in the vCenter Server. |

<table>
<thead>
<tr>
<th>Step 6</th>
<th>Choose one:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• remote ip address ipv4-addr [port port-num] [vrf [vrf-name</td>
<td>default</td>
</tr>
<tr>
<td>• remote hostname host-name [port port-num] [vrf [vrf-name</td>
<td>default</td>
</tr>
</tbody>
</table>

| Step 7 | Install certificate {bootflash://server/ | default} | Installs a certificate that is used to connect to the vCenter Server. |

The server argument specifies the boot flash memory location to install the certificate. The argument value can be module-1, sup-1, sup-active, or sup-local.

| Step 8 | Extension-key: extn-ld | Configures the extension key to be used to connect to the vCenter Server. |

Note With redundant switches, perform this step only on the primary switch. The key is automatically synchronized with the secondary switch.

Example

This example shows how to configure the SVS connection on the primary switch and the secondary switch:

```
switch-1# configure terminal
switch-1(config)# svS connection 2VC
switch-1(config-svs-conn)# protocol vmware-vim
switch-1(config-svs-conn)# vmware dvs datacenter-name DC1
switch-1(config-svs-conn)# dvs-name Pod1
switch-1(config-svs-conn)# remote ip address 192.0.20.125 port 80 vrf management
switch-1(config-svs-conn)# install certificate default
```
switch-1(config-svs-conn)# extension-key: Cisco_Nexus_6004_1543569268
switch-1(config-svs-conn)#

switch-2# configure terminal
switch-2(config)# svs connection 2VC
switch-2(config-svs-conn)# protocol vmware-vim
switch-2(config-svs-conn)# vmware dvs datacenter-name DC1
switch-2(config-svs-conn)# dvs-name Pod1
switch-2(config-svs-conn)# remote ip address 192.0.20.125 port 80 vrf管理
switch-2(config-svs-conn)# install certificate default
switch-2(config-svs-conn)#

What to do next
Activate the connection on the primary switch only.

Activating an SVS Connection to the vCenter Server

You can activate a connection from the switch to the vCenter Server.

Before you begin

- The vCenter Server must be running and reachable.
- You must have already registered an extension with the vCenter Server.
- The SVS connection must be configured on the switch.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>svs connection svs-name</td>
<td>Enables and enters configuration mode for an SVS connection from the switch to the vCenter Server.</td>
</tr>
<tr>
<td>3</td>
<td>[no] connect</td>
<td>Initiates a connection with the vCenter Server.</td>
</tr>
</tbody>
</table>

Note

With redundant switches, perform this step on both the primary and secondary switches. Only the primary will connect.

The switch connects to the vCenter and becomes a DVS.

Example

This example shows how to connect to a vCenter Server:
Verifying the VM-FEX Configuration

Verifying the Status of the Virtual Interfaces

Use the following commands to display status information for virtual interfaces.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show interface vethernet interface-number [detail]</code></td>
<td>Displays the status of the virtual interface. Perform this procedure on each static virtual interface to verify that the interface is active and bound to the physical interface.</td>
</tr>
<tr>
<td><code>show interface virtual status vm-fex</code></td>
<td>Displays information about all floating virtual interfaces.</td>
</tr>
<tr>
<td><code>show interface virtual summary vm-fex</code></td>
<td>Displays summary information about virtual Ethernet interfaces.</td>
</tr>
<tr>
<td><code>show interface virtual status bound interface ethernet port/slot</code></td>
<td>Displays information about virtual interfaces on a bound Ethernet interface.</td>
</tr>
<tr>
<td><code>show interface virtual summary bound interface ethernet port/slot</code></td>
<td>Displays summary information about virtual interfaces on a bound Ethernet interface.</td>
</tr>
</tbody>
</table>

This example shows how to display status and configuration information about a static interface:

```
switch-1# show interface vethernet 1
Vethernet1 is up
Bound Interface is Ethernet1/17
Hardware is Virtual, address is 0005.73fc.24a0
Port mode is access
Speed is auto-speed
Duplex mode is auto
300 seconds input rate 0 bits/sec, 0 packets/sec
300 seconds output rate 0 bits/sec, 0 packets/sec
Rx
 0 unicast packets 0 multicast packets 0 broadcast packets
 0 input packets 0 bytes
 0 input packet drops
Tx
 0 unicast packets 0 multicast packets 0 broadcast packets
 0 output packets 0 bytes
 0 flood packets
 0 output packet drops
```

```
switch-1# show interface vethernet 1 detail
```

vif_index: 20

-veth is bound to interface Ethernet1/17 (0x1a010000)
-priority: 0
-vntag: 16
-status: active
-channel id: 10

registered mac info:
-vlan 0 - mac 00:00:00:00:00:00
-vlan 0 - mac 58:8d:09:0f:0b:3c
-vlan 0 - mac ff:ff:ff:ff:ff:ff

switch-1#

This example shows how to display status and summary information about all virtual interfaces:

switch-1# show interface virtual status vm-fex

<table>
<thead>
<tr>
<th>Interface</th>
<th>VIF-index</th>
<th>Bound If</th>
<th>Chan</th>
<th>Vlan</th>
<th>Status</th>
<th>Mode</th>
<th>Vntag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Veth32769</td>
<td>VIF-37</td>
<td>Eth1/20</td>
<td>-----</td>
<td>101</td>
<td>Up</td>
<td>Active</td>
<td>7</td>
</tr>
<tr>
<td>Veth32770</td>
<td>VIF-39</td>
<td>Eth1/20</td>
<td>-----</td>
<td>1</td>
<td>Up</td>
<td>Active</td>
<td>8</td>
</tr>
<tr>
<td>Veth32771</td>
<td>VIF-41</td>
<td>Eth1/20</td>
<td>-----</td>
<td>1</td>
<td>Up</td>
<td>Standby</td>
<td>9</td>
</tr>
<tr>
<td>Veth32772</td>
<td>VIF-43</td>
<td>Eth1/20</td>
<td>-----</td>
<td>1</td>
<td>Up</td>
<td>Active</td>
<td>10</td>
</tr>
<tr>
<td>Veth32773</td>
<td>VIF-47</td>
<td>Eth1/20</td>
<td>-----</td>
<td>1</td>
<td>Up</td>
<td>Active</td>
<td>12</td>
</tr>
<tr>
<td>Veth32774</td>
<td>VIF-48</td>
<td>Eth1/20</td>
<td>-----</td>
<td>1</td>
<td>Up</td>
<td>Standby</td>
<td>13</td>
</tr>
<tr>
<td>Veth32775</td>
<td>VIF-49</td>
<td>Eth1/20</td>
<td>-----</td>
<td>1</td>
<td>Up</td>
<td>Active</td>
<td>14</td>
</tr>
</tbody>
</table>

switch-1# show interface virtual summary vm-fex

<table>
<thead>
<tr>
<th>Veth</th>
<th>Bound</th>
<th>Channel/ Port Profile</th>
<th>Mac Address</th>
<th>VM Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Veth32769</td>
<td>Eth1/20</td>
<td>7415 Unused_Or_Quarantine_Veth</td>
<td>00:50:56:9b:33:a7</td>
<td>ESX145_1_RH55.</td>
</tr>
<tr>
<td>Veth32770</td>
<td>Eth1/20</td>
<td>7575 Unused_Or_Quarantine_Veth</td>
<td>00:50:56:9b:33:a8</td>
<td>ESX145_1_RH55.</td>
</tr>
<tr>
<td>Veth32771</td>
<td>Eth1/20</td>
<td>7576 Unused_Or_Quarantine_Veth</td>
<td>00:50:56:9b:33:a9</td>
<td>ESX145_1_RH55.</td>
</tr>
<tr>
<td>Veth32772</td>
<td>Eth1/20</td>
<td>7577 Unused_Or_Quarantine_Veth</td>
<td>00:50:56:9b:33:aa</td>
<td>ESX145_1_RH55.</td>
</tr>
<tr>
<td>Veth32773</td>
<td>Eth1/20</td>
<td>7578 Unused_Or_Quarantine_Veth</td>
<td>00:50:56:9b:33:ac</td>
<td>ESX145_1_RH55.</td>
</tr>
<tr>
<td>Veth32774</td>
<td>Eth1/20</td>
<td>7579 Unused_Or_Quarantine_Veth</td>
<td>00:50:56:9b:33:ad</td>
<td>ESX145_1_RH55.</td>
</tr>
<tr>
<td>Veth32775</td>
<td>Eth1/20</td>
<td>7580 Unused_Or_Quarantine_Veth</td>
<td>00:50:56:9b:33:ae</td>
<td>ESX145_1_RH55.</td>
</tr>
<tr>
<td>Veth32776</td>
<td>Eth1/20</td>
<td>7607 Unused_Or_Quarantine_Veth</td>
<td>00:50:56:9b:33:ab</td>
<td>ESX145_1_RH55.</td>
</tr>
</tbody>
</table>

switch-1#

This example shows how to display status and summary information about fixed vEthernet interfaces:

switch-1# show interface virtual status bound interface ethernet 1/20

<table>
<thead>
<tr>
<th>Interface</th>
<th>VIF-index</th>
<th>Bound If</th>
<th>Chan</th>
<th>Vlan</th>
<th>Status</th>
<th>Mode</th>
<th>Vntag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Veth32769</td>
<td>VIF-16</td>
<td>Eth1/20</td>
<td>1</td>
<td>1</td>
<td>Up</td>
<td>Active</td>
<td>2</td>
</tr>
<tr>
<td>Veth32770</td>
<td>VIF-17</td>
<td>Eth1/20</td>
<td>1</td>
<td>1</td>
<td>Up</td>
<td>Active</td>
<td>46</td>
</tr>
<tr>
<td>Veth32771</td>
<td>VIF-18</td>
<td>Eth1/20</td>
<td>1</td>
<td>1</td>
<td>Up</td>
<td>Active</td>
<td>49</td>
</tr>
<tr>
<td>Veth32772</td>
<td>VIF-19</td>
<td>Eth1/20</td>
<td>1</td>
<td>1</td>
<td>Up</td>
<td>Active</td>
<td>50</td>
</tr>
<tr>
<td>Veth32773</td>
<td>VIF-20</td>
<td>Eth1/20</td>
<td>1</td>
<td>1</td>
<td>Up</td>
<td>Active</td>
<td>52</td>
</tr>
<tr>
<td>Veth32774</td>
<td>VIF-21</td>
<td>Eth1/20</td>
<td>1</td>
<td>1</td>
<td>Up</td>
<td>Active</td>
<td>53</td>
</tr>
<tr>
<td>Veth32775</td>
<td>VIF-22</td>
<td>Eth1/20</td>
<td>1</td>
<td>1</td>
<td>Up</td>
<td>Active</td>
<td>54</td>
</tr>
<tr>
<td>Veth32776</td>
<td>VIF-23</td>
<td>Eth1/20</td>
<td>1</td>
<td>1</td>
<td>Up</td>
<td>Active</td>
<td>55</td>
</tr>
<tr>
<td>Veth32777</td>
<td>VIF-24</td>
<td>Eth1/20</td>
<td>1</td>
<td>1</td>
<td>Up</td>
<td>Active</td>
<td>56</td>
</tr>
</tbody>
</table>

Total 9 Veth interfaces

Cisco Nexus 5600 Series NX-OS Layer 2 Switching Configuration Guide, Release 7.x

249
Verifying the Connection to the vCenter Server

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>show svs connections [svs-name]</td>
</tr>
<tr>
<td></td>
<td>Displays the current SVS connections.</td>
</tr>
</tbody>
</table>

Example

This example shows how to display the details of the SVS connection:

```
switch-1# configure terminal
switch-1(config)# show svs connections

Local Info:
-----------
connection 2VC:
   ip address: 192.0.20.125
   remote port: 80
   vrf: management
   protocol: vmware-vim https
   certificate: default
   datacenter name: DC1
   extension key: Cisco_Nexus_6004_1945593678
   dvs name: Pod1
   DVS uuid: cd 05 25 50 6d a9 a5 c4-eb 9c 8f 6b fa 51 b1 aa
   config status: Enabled
   operational status: Connected
   sync status: in progress
   version: VMware vCenter Server 6.0.2 build-388657

Peer Info:
---------
   hostname: -
   ip address: -
   vrf: 
```

```
```
protocol: -
extension key: Cisco_Nexus_6004_1945593678
certificate: default
 certificate match: TRUE
datacenter name: DC1
dvs name: Pod1
DVS uuid: cd 05 25 50 6d a9 a5 c4-eb 9c 8f 6b fa 51 b1 aa
config status: Disabled
operational status: Connected

switch-1(config)#
CHAPTER 17

Configuring MAC/ARP Hardware Resource Carving Template

This chapter contains the following sections:

- Information About MAC/ARP Hardware Resource Carving Template, on page 253
- Configuring the MAC/ARP Hardware Resource Template, on page 254
- Applying the Default Template, on page 255
- Verifying the MAC/ARP Hardware Resource Carving Template Configuration, on page 255

Information About MAC/ARP Hardware Resource Carving Template

On the Cisco Nexus device, the IPv4/IPv6 and unicast/multicast entries share the same tables. In addition, the same tables are shared by Station Table Management (STM) and the Host Route Table (HRT). STM is the part of the host table that holds the MAC entries. HRT is the part of the host table that holds ARP, IPv6 ND and /32 host routes. The STM/HRT template profile feature is specific to the Cisco Nexus device. This feature provides you with a flexibility to carve STM & HRT table sizes per their requirements. The total table size is 256k. You can apply any of the following four pre-defined templates:

<table>
<thead>
<tr>
<th>Template Profiles</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>hrt-128-stm-128</td>
<td>HRT size: 128k, STM size: 128k (default size)</td>
</tr>
<tr>
<td>hrt-96-stm-160</td>
<td>HRT size: 96k, STM size: 160k</td>
</tr>
<tr>
<td>hrt-64-stm-192</td>
<td>HRT size: 64k, STM size: 192k</td>
</tr>
<tr>
<td>hrt-32-stm-224</td>
<td>HRT size: 32k, STM size: 224k</td>
</tr>
</tbody>
</table>
The hrt-96-stm-160 and hrt-32-stm-224 template profiles are not recommended in the presence of IPv6 entries. This is because these two profiles result in an odd number of SRAMs available for the HRT table. Insertion of IPv6 entries need free spaces in 2 consecutive SRAMs.

The recommended maximum ARP percentage of the configured value is 50%. The recommended maximum MAC percentage of the configured value is 90%. For example, if the profile is set to hrt-96-stm-160, 50% of 96k (48k) is the recommended maximum ARP entries that a switch can have.

When applying or unapplying a template profile, you need to enter the `copy running-config startup-config` command and reload the switch in order to activate the newly applied/default template. These commands are per-switch based, therefore they need to be configured explicitly on a vPC peer switch.

Configuring the MAC/ARP Hardware Resource Template

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Commits a specified pre-defined template.</td>
</tr>
<tr>
<td>switch(config)# hardware profile route resource service-template template-name</td>
<td>Four pre-defined stm/hrt templates exist:</td>
</tr>
<tr>
<td></td>
<td>• hrt-128-stm-128</td>
</tr>
<tr>
<td></td>
<td>Default value</td>
</tr>
<tr>
<td></td>
<td>• hrt-96-stm-160</td>
</tr>
<tr>
<td></td>
<td>• hrt-64-stm-192</td>
</tr>
<tr>
<td></td>
<td>• hrt-32-stm-224</td>
</tr>
<tr>
<td></td>
<td>When entering this command, a message is displayed telling you the applied stm/hrt template will be activated upon switch reload.</td>
</tr>
<tr>
<td></td>
<td>Upon rebooting, this pre-defined template is applied. If this command is issued multiple times, the latest stm/hrt template is applied.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.</td>
</tr>
<tr>
<td>(Optional) switch(config)# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

Example

This example shows how to configure the hrt-96-stm-160 template:
Applying the Default Template

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>no hardware profile route resource service-template</td>
<td>Applies the default template.</td>
</tr>
<tr>
<td>Step 3</td>
<td>copy running-config startup-config</td>
<td>Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.</td>
</tr>
</tbody>
</table>

Example

This example shows how to apply the default template.

```
switch# configure terminal
switch(config)# hardware profile route resource service-template hrt-96-stm-160
switch(config)# copy running-config startup-config
```

What to do next

Rebooting the switch applies the default template (hrt-128-stm-128).

Verifying the MAC/ARP Hardware Resource Carving Template Configuration

To display MAC/ARP Hardware Resource Carving Template configuration information, enter one of the following commands:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show hardware profile route resource template</td>
<td>Displays all existing templates including the default.</td>
</tr>
<tr>
<td>show hardware profile route resource template</td>
<td>Displays the details of a specific pre-defined template.</td>
</tr>
<tr>
<td>template-name</td>
<td></td>
</tr>
</tbody>
</table>
Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show hardware profile route resource template default</td>
<td>Displays the details of the default template.</td>
</tr>
<tr>
<td>show running-config hardware profile route resource template</td>
<td>Displays the running configuration information related to the template manager. Displays the currently applied non-default stm/hrt template. If the default template is applied, nothing is displayed here.</td>
</tr>
<tr>
<td>show startup-config hardware profile route resource template</td>
<td>Displays the startup configuration information related to the template manager. When entering the <code>copy running-config startup-config</code> command, the currently applied non-default stm/hrt template is displayed. If the default template is applied, nothing is displayed.</td>
</tr>
</tbody>
</table>
CHAPTER 18

Configuring VN-Segment

This chapter contains the following sections:

• Information About VN-Segment, on page 257
• Guidelines and Limitations for VN-Segment, on page 259
• Enabling VN-Segment, on page 259
• Configuring VN-Segment for a VLAN, on page 260
• Configuring VN-Segment for VLAN in Configure Sync, on page 260
• Configuring VN-Segment in Transit Mode, on page 261
• Configuring VN-Segment in Non-Transit Mode, on page 262
• Disabling VN-Segment, on page 262
• Verifying VN-Segment Configuration, on page 263

Information About VN-Segment

The VN-Segment feature defines a new way to "tag" packets on the wire replacing the traditional 802.1Q VLAN tag. This feature uses a 24-bit tag also referred to as a Virtual Network Identifier (VNI). CE links (access and trunk) carry traditional VLAN tagged/untagged frames. These are the VN-Segment Edge ports.

FabricPath links (switchport mode fabricpath) carry VN-Segment tagged frames for VLANs that have VNIs defined. These are the VN-Segment core ports.
The previous figure shows a typical Cisco FabricPath network. Switches S1 and S2 are the spine switches. Switches S3 and S4 are the leaf switches and are connected to the spines over FabricPath interfaces. The VN-Segment feature is enabled on all leaf switches.

Server A is connected to leaf switch S3 and server B is connected to leaf switch S4 through normal Layer 2 trunk/access ports. These interfaces are also referred to as the "VNSeg Edge" ports. The servers send and receive traditional 1Q tagged or untagged frames. No new configurations are needed on the servers. The spines forward the VN-Segment tagged frames to the intended leafs.

Assume that servers A and B need to be in the same Layer 2 flood domain.

On the leaf switches, VLAN 333 is mapped to an available VN-Segment ID 16535. This VN-Segment ID identifies the VLAN 333 on the FabricPath network.

Here is a typical packet flow:

1. A data packet from server A to server B tagged with VLAN 333 is received on the VNSEG port of S3.
2. S3 does the packet lookup and sends the packet on the FabricPath port towards the spine. The switch S3 uses the VN-Segment ID corresponding to the VLAN.
3. S1 and S2 performs FabricPath forwarding towards the intended leafs.
4. S4 receives the VN-Segment ID tagged packet and performs packet lookups. Once the packet destination port is identified as a VNSEG edge port, S4 uses the VLAN ID corresponding to the VN-Segment ID in the packet and sends the packet.

Note If the VN-Segment ID to VLAN mapping does not exist, the packet is dropped.
5. Server B receives the .1Q data packet from Server A.

The same process is followed in the data packets from server B to server A.

Guidelines and Limitations for VN-Segment

VN-Segment has the following guidelines and limitations:

- The VN-Segment tag is added to traffic egressing FabricPath (FP) links only.
- Data forwarding semantics is the same as that of the VLANs.
- The devices must be VN-Segment aware with appropriate hardware support.
- Leaf switches must be configured for VN-Segment.
- The Virtual Network Identifier (VNI) is the network global ID, not the VLAN ID.
- Up to 4K VN-Segments and global VLANs are supported per leaf switch. There are only 4K VLANs.
- Different leafs can have different mapping to up to support 50K tenants on the fabric, depending on hardware and software limitations.
- If compatibility checks fail for the image, ISSD might be rejected.
- The VLAN-to-VN-Segment mapping must be consistent on the vPC+ peer switches for correct traffic flow. vPC type 1 consistency checks suspend VLANs on vPC peer switches with inconsistent mappings.

Enabling VN-Segment

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config)# install feature-set fabricpath</td>
<td>Installs the FabricPath feature set on the switch.</td>
</tr>
<tr>
<td>Step 3 switch(config)# feature-set fabricpath</td>
<td>Enables the FabricPath feature set on the switch.</td>
</tr>
<tr>
<td>Step 4 switch(config)# feature</td>
<td>Enables the VN-Segment feature on the switch.</td>
</tr>
<tr>
<td>vn-segment-vlan-based</td>
<td></td>
</tr>
<tr>
<td>Step 5 (Optional) switch(config)# copy</td>
<td>Saves the change persistently through reboots</td>
</tr>
<tr>
<td>running-config startup-config</td>
<td>and restarts by copying the running</td>
</tr>
<tr>
<td></td>
<td>configuration to the startup configuration.</td>
</tr>
</tbody>
</table>

Example

This example shows how to enable VN-Segment:
Configuring VN-Segment for a VLAN

Before you begin
The VN-Segment feature must be enabled.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config)# vlan vlan-id</td>
<td>Creates a VLAN.</td>
</tr>
<tr>
<td>Step 3 switch(config-vlan)# mode fabricpath</td>
<td>Configures the VLAN as a FabricPath VLAN. VN-Segments for a VLAN must be configured in FabricPath mode on the Leaf.</td>
</tr>
<tr>
<td>Step 4 switch(config-vlan)# vn-segment segmentation-id</td>
<td>Defines the network global ID. The segmentation-id range is from 4096 to 16,773,119.</td>
</tr>
<tr>
<td>Step 5 (Optional) switch(config-vlan)# copy running-config startup-config</td>
<td>Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.</td>
</tr>
</tbody>
</table>

Example
This example shows how to configure VN-Segment for VLAN:

```
switch# configure terminal
switch(config)# install feature-set fabricpath
switch(config)# feature-set fabricpath
switch(config)# feature vn-segment-vlan-based
switch(config)# copy running-config startup-config
```

Configuring VN-Segment for VLAN in Configure Sync

VN-Segments can be configured with the `configure sync` command for VPCs.
Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>switch# configure sync</td>
<td>Enter configuration sync mode.</td>
</tr>
<tr>
<td>2</td>
<td>switch(config-sync)# switch-profile test</td>
<td>Creates a switch profile that contains a predetermined configuration.</td>
</tr>
<tr>
<td>3</td>
<td>switch(config-sync-sp)# vlan vlan-id</td>
<td>Creates a VLAN.</td>
</tr>
<tr>
<td>4</td>
<td>switch(config-sync-sp-vlan)# vn-segment segmentation-id</td>
<td>Defines the network global ID. The <code>segmentation-id</code> range is from 4096 to 16,773,119.</td>
</tr>
<tr>
<td>5</td>
<td>(Optional) switch(config-sync-sp-vlan)# commit</td>
<td>Synchronizes the configuration with the peer switch and applies the configuration locally.</td>
</tr>
<tr>
<td>6</td>
<td>switch(config-sync-sp-vlan)# copy running-config startup-config</td>
<td>Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.</td>
</tr>
</tbody>
</table>

Example

This example shows how to configure VN-Segment for a VLAN in configure sync mode:

```bash
switch# configure sync
switch(config-sync)# switch-profile test
Switch-Profile started, Profile ID is 1
switch(config-sync-sp)# vlan 3500
switch(config-sync-sp-vlan)# vn-segment 40001
switch(config-sync-sp-vlan)#
```

Configuring VN-Segment in Transit Mode

Before you begin

The FabricPath feature set must be enabled.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>switch(config)# fabricpath mode transit</td>
<td>Enables transit mode. You need to save the configuration and reload the spine. Note This command is disallowed if <code>vn-segment-vlan-based</code> is configured because they are mutually exclusive.</td>
</tr>
</tbody>
</table>
Example
The example shows how to configure VN-Segment in transit mode:

```
switch# configure terminal
switch(config)# fabricpath mode transit
Enabling transit mode. Please save configuration and reload.
```

What to do next
Enter the `show fabricpath mode` command to show the status of the mode.

Configuring VN-Segment in Non-Transit Mode
You need to enter the `feature vn-segment-vlan-based` command on the spine to enable the spine in non-transit mode.

Before you begin
The FabricPath feature set must be enabled.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# feature vn-segment-vlan-based</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config)# vni vni-id</td>
</tr>
</tbody>
</table>

Example
This example shows how to configure VN-Segment in non-transit mode:

```
switch# configure terminal
switch(config)# feature vn-segment-vlan-based
switch(config)# vni 16896
```

Disabling VN-Segment

Before you begin
VN-Segment configurations must be removed manually prior to disabling the feature.
Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# no feature vn-segment-vlan-based</td>
<td>Disables VN-Segment.</td>
</tr>
<tr>
<td>Step 3</td>
<td>(Optional) switch(config)# copy running-config startup-config</td>
<td>Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.</td>
</tr>
</tbody>
</table>

Example

This example shows how to disable VN-Segment:

```
switch# configure terminal
switch(config)# no feature vn-segment-vlan-based
```

Verifying VN-Segment Configuration

Use the following commands to display VN-Segment configuration information:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show vlan id vland-id-list vn-segment</td>
<td>Displays the configured VLAN-to-VN-Segment mappings for the specified list of VLANs.</td>
</tr>
<tr>
<td>show vpc consistency-parameters global</td>
<td>Displays information on the number of VLANs and VN-Segment mappings on each VPC switch to help determine any mismatches.</td>
</tr>
<tr>
<td>show vpc consistency-parameters vlans</td>
<td>Displays information to identify the VLAN and VN-Segment configuration mismatches.</td>
</tr>
</tbody>
</table>
Verifying VN-Segment Configuration
Configuring VXLANs

This chapter contains the following sections:

- Information About VXLAN, on page 265
- Guidelines and Limitations for VXLAN, on page 272
- Enabling VXLAN, on page 275
- Configuring a VNI, on page 276
- Configuring a Network Virtualization Endpoint Interface, on page 277
- Configuring a Switch in the Store-and-Forward Mode, on page 277
- Disabling VXLAN, on page 278
- Verifying VXLAN Configuration, on page 278
- Example of VXLAN Bridging Configuration, on page 279

Information About VXLAN

You can use Virtual Extensible Local Area Networks (VXLANs) to extend reachability of a VLAN within a data center over Layer 3. When you use VXLANs, you are no longer restricted to using only 4096 VLANs in a data center.

A Layer 2 VLAN is mapped into a larger (24-bit) ID VXLAN Network Identifier (VNI). All frames on that VLAN are encapsulated in an IP/UDP frame for transport. An additional VXLAN header is added to carry the VNI information. The VNI identifies the Layer 2 segment that the frame belongs to and is used to define a much larger Layer 2 broadcast domain for that frame. Typically, a Layer 2 domain (VLAN) confines the VM’s mobility. With a VXLAN, the Layer 2 domain is extended throughout the data center, increasing the VM’s mobility by extending the Layer 2 broadcast domain across Layer 3. The 24-bit VNI provides for about 16 million different Layer 2 segments that support a large number of tenants, and their VLANs, in a multitenant data center.

VXLAN Layer 2 Gateway

A VXLAN gateway is a device that encapsulates a classical Ethernet (CE) frame into a VXLAN frame and decapsulates a VXLAN frame into a CE frame. A gateway device transparently provides VXLAN benefits to the physical hosts and virtual machines. The physical hosts or VMs are completely unaware of VXLAN encapsulation. The gateway function can be implemented in a physical network device such as the Cisco Nexus 5600 Series Switch or a vSwitch such as the Cisco Nexus 1000V.
VXLAN Router

Similar to traditional routing between different VLANs, a VXLAN router is required for communication between devices that are in different VXLAN segments. The VXLAN router translates frames from one VNI to another. Depending on the source and destination, this process might require decapsulation and reencapsulation of a frame. The Cisco Nexus device supports all combinations of decapsulation, route, and encapsulation. The routing can also be done across native Layer 3 interfaces and VXLAN segments.

You can enable VXLAN routing at the aggregation layer or on Cisco Nexus device aggregation nodes. The spine only forwards based IP and ignores the encapsulated packets. To help scaling, a few leaf nodes (a pair of border leaves) perform routing between VNIs. A set of VNIs can be grouped into a virtual routing and forwarding (VRF) instance (tenant VRF) to enable routing among those VNIs. If routing must be enabled among a large number of VNIs, you might need to split the VNIs between several VXLAN routers. Each router is responsible for a set of VNIs and a respective subnet. Redundancy is achieved with FHRP.

The following figure shows a configuration example with two Cisco Nexus leaf nodes (each node is a virtual port channel [vPC] pair) that acts as VXLAN routers. Node A routes VNIs 1 to 100 while node B routes VNIs 201 to 300. You must configure a separate VNI (555) per tenant VRF to carry traffic between VXLAN routers and for routing protocols to exchange routing information between the VXLAN routers.
The figure shows two flows. vni-1 to vni-201 and vni-20 to vni-8.

1. **vni-1 to vni-201**: The packet in vNI1 at G1 is sent to the default router for vni-1 (L1 and L2). The router finds that the destination address is in vni-201 which is reachable over interface vni-555. The packet is encapsulated with vni-555 and sent to the L3 and L4 pair. The router pair (L3 and L4) routes the packet from vni-555 to vni-201 where the final destination is reachable. The packet is then sent to G2, which uses vni-201 to be delivered to the final destination. This packet takes two router hops.

2. **vni-20 to vni-8**: The packet at G3 in vni-20 is sent to the default router (L1 and L2). The final destination is reachable on vni-8. Router (L1 and L2) reencapsulates the packet with vni-8 and sends it to G1 where the final destination resides.

Any packet that originates in vni 1 to 100, but is destined to go outside of its VNI, must come to node A to get routed. Similarly, any packet delivered to vni 201 to 300 whose source is different from the destination VNI is routed into its destination VNI on node B. Packets from vni-1 to vni-201 take two hops (the first hop on node A and the second on node B).

The traffic that is routed between a VNI and outside (nonvirtualized) world might have to go through an external router that is connected to the VXLAN router. This router might need to provide Network Address Translation (NAT) and firewall services as well.

The VXLAN routers can use any routing protocol, for example Open Shortest Path First (OSPF), for routing within the tenant VRF. The routers must form neighbor adjacencies over the transit-VNI, because the tenant VRFs are not visible in the core. The core routers only know about the underlay VRF that is used for routing the packets between VXLAN Tunnel Endpoints (VTEPs) that are based on the outer header.

VXLAN Overlay Network for Broadcast/Unknown-Unicast/Multicast Overlay Traffic

All broadcast/unknown-unicast/multicast overlay traffic must be sent to multiple VTEPs. To identify all the VTEPs that are interested in traffic for a specific VNI, VTEPs build a multicast tree which is identified as the VXLAN Overlay Network for each VNI. This is achieved by mapping the VNI to a multicast group on all the VTEPs that are interested in the VNI. A multicast tree is built using the PIM protocol and all non-unicast traffic is distributed to all the interested VTEPs that join the multicast tree. This is achieved by mapping any given VNI to a multicast group address, which is also called the Delivery Group (DG) for that VNI. When
VTEP sends a non-unicast packet on a VNI over the overlay network, the packet is encapsulated in a VXLAN header and is sent to the DG address instead of sending it to single destination VTEP IP address as in the case of unicast traffic. The VXLAN encapsulated packets destined to the DG get routed in the overlay network by using the PIM tree built for the DG. All the VTEPs that join the PIM tree built for that DG receive the traffic.

Cisco Nexus devices use PIM BIDIR only to build this VXLAN Overlay Network. PIM ASM/SSM is not supported currently, so any multicast group defined as DG to carry VXLAN overlay traffic for a VNI must always be defined as a BIDIR group. The rendezvous point (RP) for this BIDIR group can be anywhere in the Layer 3 overlay network. Multiple VNIs can map to the same DG, and so the overlay traffic for these VNIs is sent across the Overlay Network using the same PIM BIDIR tree. Cisco Nexus devices can support a maximum of 200 DGs on a given VTEP.

VXLAN Multicast Routing

You can configure the VXLAN router as a multicast router for inner (user) multicast groups. Multicast routing must be configured within a tenant VRF. The multicast routing protocol for the inner groups does not have to be PIM BIDIR even though PIM BIDIR is used for the outer multicast. The inner multicast group can use PIM-Any Source Multicast (ASM), ASM, or BIDIR as supported by the platform. If VTEP is a part of a vPC pair, the inner group cannot be a BIDIR group. In a vPC setup, BIDIR can be used only as a DG to build the VXLAN overlay network and cannot be used to carry inner multicast traffic. Similar to VXLAN unicast routing, multicast routing is done among the VNI interfaces that are in a tenant VRF. The VXLAN gateway nodes deliver the multicast data and control frames to the VXLAN multicast router using an outer delivery group (DG).

PIM routers for the inner multicast group exchange the PIM messages over a VXLAN network that connects them on all VNIs that are part of the tenant VRF.

Cisco Nexus Device Overlays

The following figure shows a topology with a virtual port channel (vPC), fabric extenders (FEXes), VXLAN hypervisors, and gateway ports that are supported by the Cisco Nexus device. All FEX topologies (AA-FEX, ST-FEX, and 2LvPC) are supported.

The figure below shows the supported topologies. A VXLAN Tunnel Endpoint (VTEP) hypervisor can be connected through switch vPC as shown in diagrams 2 and 3. Diagram 4 shows that the hypervisor can be connected through Straight-through (ST) FEX (without vPC).
VXLAN Tunnel Endpoint

A VXLAN Tunnel Endpoint (VTEP) performs the VXLAN gateway function. A VTEP is represented as an interface in the Cisco NX-OS. All VTEPs are managed by the VXLAN manager. The Cisco Nexus device requires one VTEP for each encapsulation type.
VTEP IP Addresses and VRF Instances

Each VTEP must have at least one IP address. This IP address is used for encapsulation or decapsulation. For vPC configurations, a separate IP address is used for encapsulation or decapsulation of the traffic to and from vPC connected hosts. The emulated IP address must be the same on both switches in a vPC pair. The emulated IP address allows the network to load balance the traffic destined to the vPC-connected devices without using MCT. Similarly, a distinct non-emulated IP address that is used for encapsulation or decapsulation for a singly connected host ensures that traffic to that host arrives on the correct switch in the pair without going through a vPC Peer-Link, also known as Multichassis EtherChannel Trunk (MCT).

The VRF instance specified for the VTEP carries all the encapsulated traffic within the data center.

The Cisco Nexus device supports a single infrastructure (infra)-VRF and multiple tenant VRFs. The infra-VRF carries the VXLAN traffic through the core Layer 3 network. A tenant VRF is not visible to the routing devices in the core. The tenant VRFs are used by VXLAN routers. The Cisco Nexus device supports the default VRF as the infra-VRF.

VTEP IP Multicast Addresses

A VXLAN gateway uses an IP delivery group (DG) to flood multidestination frames within a VNI. Layer 2 broadcast, unknown unicast, and multicast frames are flooded to other VTEPs using the IP multicast DG address. Only one flood-DG address can be used per VNI. To reduce the amount of BUM traffic that reaches all VTEPs, each VNI should be given its own DG address so that the flood domain is contained within the VTEPs that are a gateway for the VNI. The number of VNIs might exceed the distinct DG trees that can be supported by the network. In that case, multiple VNIs must share a DG address for flooding. The user (inner or overlay) multicast frames are also encapsulated using a DG.

VXLAN Tunnel Endpoint Peers

VTEP-Peer Learning

The Cisco Nexus device discovers VXLAN Tunnel Endpoint Peers (VTEPs) using the flood-and-learn technique which is when a VTEP peer is learned when the first VXLAN encapsulated packet is received from the peer.

A gateway device must identify only those VTEP peers that support any of the locally configured VNIs or delivery groups (DG).

The Cisco Nexus device has the capability to snoop unicast, as well as, multicast packets sent by unknown peers. If an unknown VTEP-peer sends packets using any of the multicast DGs configured locally, a notification is received from the hardware, which provides the information about the new peer. In addition to monitoring the multicast DG addresses, the Cisco Nexus device also monitors frames sent to its own VTEP addresses. The multicast and unicast frames snooped by the hardware are not de-capsulated until the sender is a known VTEP-peer.

The VXLAN manager adds the sender VTEP as a new peer. After the VTEP peer is added in the hardware, the hardware would then stop sending the VTEP peer discovery notification for it.

Due to the sharing of DG addresses, the VNI in the packet might not be configured as a gateway VNI. In that case, the VTEP peer avoids further VTEP peer discovery indications.
VTEP-Peer Aging/Removal

A VTEP-peer might shut down, be removed from the network, become unreachable, or just become dormant. In many situations, there is no direct indication to remove the VTEP-peer. Therefore, you must employ an aging mechanism to clean up the VTEP peers that were dynamically learned. The cleanup is essential because the total number of active VTEP peers present at any given time is limited by the hardware. The ageout time is set to 10 minutes.

vPC Considerations

vPC Consistency Checks

<table>
<thead>
<tr>
<th>Parameter</th>
<th>vPC Check Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN-VNI mapping</td>
<td>Type-1—nongraceful</td>
<td>Brings down the affected VLANs on vPC ports on both sides.</td>
</tr>
<tr>
<td>VTEP-Member-VNI</td>
<td>Type-1—nongraceful</td>
<td>Member VNIs must be the same on both nodes. VNIs that are not common bring down the corresponding VLANs on vPC ports on both sides.</td>
</tr>
<tr>
<td>VTEP-emulated IP</td>
<td>Type-1—graceful</td>
<td>If an emulated IP address is not the same on both nodes, all gateway vPC ports on one side (secondary) are brought down. Alternatively, one side of all vPC ports is brought down.</td>
</tr>
<tr>
<td>VTEP-node IP address</td>
<td>Type 2</td>
<td>vPC manager issues a warning.</td>
</tr>
</tbody>
</table>

vPC and Multicast

For each outer destination group (DG), you must select one of the vPC peers as a designated Affinity Forwarder (AF). The AF switch forwards the multidestination traffic to the vPC connected devices while a non-AF switch only forwards traffic to singly connected devices. The selection of an AF is done by a multicast group that is based on a vPC permanent role.

QoS/ACL Support

Quality of Service (QoS) and Access Control Lists (ACLs) are applied to the ingress packets for packets from VLAN to VXLAN (encapsulation). During encapsulation, the outer Class of Service (CoS) and differentiated services code point (DSCP) values are derived from the final inner COS and DSCP values. When a packet is decapsulated, the outer CoS is used as the inner CoS, because there is no inner .1Q, or .1P tag carried with the inner frame. The rest of the processing is done on the inner frame.

If traffic is decapsulated and reencapsulated, the inner CoS value is used to derive the outer DSCP value. The CoS is preserved from the ingress frame.

For overlay transit traffic (traffic that is not decapsulated), QoS and ACLs are applied to the outer headers.
TTL Handling

When a native classical Ethernet (CE) packet is encapsulated, the outer Time To Live (TTL) is selected based on a configured value. The default is 32. The outer TTL is decremented based on the outer IP routing and discarded when it goes to zero. The inner TTL is unchanged as the packet traverses the overlay network. After decapsulation, the inner TTL is preserved if the inner packet is Layer 2 switched. The inner TTL is decremented whenever an inner packet is routed.

When a multicast packet is decapsulated and reencapsulated, the outer TTL is decremented by 1 while the inner TTL is preserved. If the inner packet is multicast routed, the inner TTL is decremented whenever an unencapsulated inner packet is delivered to the end station.

Multipathing Support

When a CE packet is encapsulated using VXLAN encapsulation, a 16-bit hash value is created using the Layer 2 and Layer 3 addresses and Layer 4 source and destination ports if available. The hash value is then used as an outer UDP src_port. This hash value represents the inner-packet flow (with some aliasing due to the 16-bit hash result). The outer UDP source port is used by core routers to load balance traffic between two VTEPs based on inner flows.

When the packet is first encapsulated, inner packet headers are used to select one of many available equal cost paths to the destination VTEP.

MTU

The Cisco Nexus device does not support fragmentation or re-assembly of VXLAN traffic. As VXLAN encapsulation adds 50 bytes to the packet, the MTU of the tenant devices must be at least 50 bytes smaller than the MTU of the network devices. The Cisco VXLAN device supports an MTU configuration on a physical interface as well as an SVI interface. Ensure that the MTU on the VNI-mapped SVI is 50 bytes smaller than the physical interface's MTU when configuring VXLAN routing. For a VXLAN Layer 2 gateway, the default MTU is 1500. The recommended method is to increase the MTU to 1550.

Guidelines and Limitations for VXLAN

The VXLAN configuration guidelines and limitations are as follows:

- A VXLAN device must be configured in the store-and-forward mode.
- The classical Ethernet (CE) packet on an edge interface is mapped to a Virtual Network Identifier (VNI) based on the VLAN to which it is associated. The VLAN to VNI mapping is created under the VLAN configuration, which limits the number of supported VNIs on a switch to 4000.
- The multicast delivery group used to build the VXLAN overlay network for VNIs must be configured as a Protocol-Independent Multicast (PIM) Bidirectional (BIDIR) group. The VXLAN overlay network cannot be built using PIM SM or PIM SSM.
- PIM-BDIR in a vPC configuration for non-VXLAN traffic is not supported.
- The Cisco Nexus device does not support Layer 3 links on southbound interfaces that are connected to a fabric extender (FEX).
- Only loopback interfaces are supported as the source interface for the NVE interface under an Network Virtualization Edge (NVE) configuration. NVE is equal to VTEP.

- For any protocols that work over inner switched virtual interfaces (SVIs), you should increase the maximum transmission unit (MTU) of that SVI by 50 to allow VXLAN encapsulation. If you use the default MTU, you might get unexpected results.

- A VXLAN Tunnel Endpoint (VTEP) hypervisor cannot be connected through Straight-Through FEX (ST-FEX-VPC), Active-Active FEX (AA-FEX), and 2-Layer vPC.

- The Cisco Nexus device can only support Layer 3 routed port links to carry overlay traffic to the core.

- A Layer 2 trunk cannot be used to carry overlay traffic to the core. Layer 2 trunks with SVIs can be used on southbound interfaces that connect to hypervisors. The overlay traffic that originates to and from hypervisors is carried using an SVI.

- The IP routing protocol must be configured for the underlay network.

- PIM-BIDIR multicast routing must be configured for the underlay network.

- The vn-segment-vlan-based feature must be configured on the VXLAN gateway and router devices.

- IGMP snooping is not supported on VXLAN VLANs.

- Hypervisor VTEPs (such as Cisco Nexus 1000V) cannot be connected using Layer 3 interfaces. They must be connected through Layer 2 interfaces.

- Only one NVE interface is supported on a switch.

- SNMP is not supported on the NVE interface.

- Policy-based routing (PBR) is not supported for tenant traffic.

- Ingress and egress ACLs cannot be applied to the outer header of the VXLAN packet on the VXLAN gateway device.

- A physical port cannot be used as a tenant (gateway) port and overlay port at the same time. Mix of VLANs with and without a VNI is not supported on the same trunk interface.

Note

- Gateway Port—Physical port on which VLAN-VNI mapping is configured.
- Overlay Port—Encapsulated traffic is received and sent on an overlay port. This includes the core (network) facing ports as well as local edge ports where VTEPs (hypervisors) are connected.

- The maximum transmission unit (MTU) must configured throughout the network to accommodate 50 bytes of VXLAN encapsulation.

- Tenant ports and overlay ports that connect to VTEP hypervisors cannot be on the same fabric extender (FEX).

- When you are connecting VTEP hypervisors to FEX ports, all VTEP hypervisors that are connected to a FEX must use the same outer VLAN.
• When a device is running in VXLAN flood and learn mode and packets reach decapsulate VXLAN tunnel endpoint (VTEP) as unicast, after decapsulation, the destination MAC is not known to the decapsualte VTEP and packets are dropped. This helps to avoid flooding back to the core.

Clear the affected MAC on remote VTEP or stop topology change notifications to avoid traffic loss. This issue is not seen when VXLAN is running in EVPN mode.

• Refer to supported and un-supported topology diagrams when connecting hosts and VTEP hypervisors to a Cisco Nexus device.

• Configured store and forward mode with reload.

• Connecting hypervisors with different overlay encapsulation to the same FEX is not allowed.

• VLAN 1 cannot be used to carry VXLAN traffic.

• There is no support for originating Hot Standby Router Protocol (HSRP) packets with the source MAC as a user-configured HSRP MAC. Support is limited to using standard HSRP MAC addresses (v1 and v2) as the source MAC addresses for HSRP packets.

• The show interface nve 1 counters command does not display statistics of VXLAN incoming and outgoing packets.

• DHCP snooping on VXLAN-enabled VLANs is not supported.

• A non-VNI enabled VLAN, with an SVI in the same VRF as the underlay interfaces, is considered as an overlay port. If this VLAN is configured on a FEX HIF, VXLAN encapsulated traffic will egress this port. To avoid this, the non-VNI enabled VLANs should be configured in a VRF that is separate from the VRF that the underlay interfaces belong to.

• When you perform a disruptive upgrade from Cisco NX-OS release 7.0.x to 7.1.x, 7.2.x, or 7.3.x, with the hardware ethernet store-and-fwd-switching command configured, there might be some traffic loss. To avoid the above scenario, we recommend that you create a /mnt/pss/qd_sf_sdb file with content as 1 before upgrading. If you have upgraded from Cisco NX-OS release 7.0.x to 7.1.x, 7.2.x, or 7.3.x, with the hardware ethernet store-and-fwd-switching command configured, after the upgrade, remove the hardware ethernet store-and-fwd-switching command configuration, reconfigure the command again, and reload the switch.

vPC Considerations

• A virtual IP must be configured for the vPC pair

• A virtual IP must be configured for loopback purposes.

• A peer-link switched virtual interfaces (SVI) must be only on a peer-link in external communication. A configuration example:

```plaintext
vpc nve peer-link-vlan 99
interface vlan99
no shutdown
no ip redirects
ip address 99.1.1.1/24
ip ospf cost 10
```
ip router ospf 1 area 0.0.0.0
ip pim sparse-mode

• A special peer-link SVI must be configured on the VPC pair.

• VPC peers must have identical configurations:
 • Consistent VLAN to VN-segment mapping.
 • Consistent NVE1 binding to the same loopback interface.
 • Using the same secondary IP address.
 • Using different primary IP addresses.
 • Consistent VNI to group mapping.

• A VTEP hypervisor cannot be connected to AA-FEX, EVPC, or ST-FEX vPC.

• Supports a line-rate encapsulation or decapsulation of VXLAN switched traffic.

Note
VXLAN introduces a 50-byte overhead to the original packet due to VXLAN encapsulation. For example, for a 1000 byte packet, there is a 5% overhead per packet. Overhead varies depending on the packet size and it is expected for VXLAN.

VTP Considerations
On fabric path or EVPN, when feature VTP is enabled and there is a switch reload, the auto-configured VLAN profile information is not saved in the running or start up configuration. We recommend not to enable feature VTP on fabric path or EVPN leaf nodes to avoid getting into VLAN auto-configuration issues.

Enabling VXLAN

Before you begin
You must configure underlay and PIM-bidir multicast.

Configure the switch in the store-and-forward mode. See Configuring a Switch in the Store-and-Forward Mode, on page 277.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# feature nv overlay</td>
</tr>
</tbody>
</table>
Configuring VXLANs

Configuring a VNI

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# vlan vlan-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config)# vn-segment vni-id</td>
</tr>
<tr>
<td>Step 4</td>
<td>(Optional) switch(config)# copy running-config startup-config</td>
</tr>
</tbody>
</table>

Example

This example shows how to configure a VNI:

```
switch# configure terminal
switch(config)# vlan 1001
switch(config)# vn-segment 8000
```
Configuring a Network Virtualization Endpoint Interface

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config)# interface nve nve-id</td>
<td>Creates the NVE.</td>
</tr>
<tr>
<td>Step 3 switch(config-if-nve)# source interface src-if</td>
<td>Determines the source interface.</td>
</tr>
<tr>
<td>Step 4 switch(config-if-nve)# member vni range mcast-group</td>
<td>Assigns a multicast group for BUM traffic.</td>
</tr>
<tr>
<td>Step 5 switch(config-if-nve)# no shutdown</td>
<td>Returns the interface to its default operational state.</td>
</tr>
<tr>
<td>Step 6 switch(config-if-nve)# copy running-config startup-config</td>
<td>Saves the changes persistently through reboots and restarts by copying the running configuration to the startup configuration.</td>
</tr>
</tbody>
</table>

Example

This examples shows how to configure a network virtualization interface:

```
switch# configure terminal
switch(config)# interface nve 1
switch(config-if-nve)# source-interface loopback 0
switch(config-if-nve)# member vni 21000 mcast-group 239.3.5.1
switch(config-if-nve)# no shutdown
switch(config-if-nve)# copy running-config startup-config
```

Configuring a Switch in the Store-and-Forward Mode

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config)# hardware ethernet store-and-fwd-switching</td>
<td>Enables store-and-foward switching.</td>
</tr>
<tr>
<td>Step 3 (Optional) switch(config)# copy running-config startup-config</td>
<td>Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.</td>
</tr>
</tbody>
</table>
Example
This example shows how to configure a switch in the store-and-forward mode:

```
switch# configure terminal
switch(config)# hardware ethernet store-and-fwd-switching
switch(config)# copy running-config startup-config
```

What to do next
Switch must now be reloaded.

Disabling VXLAN

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# no feature nv overlay</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config)# no feature vn-segment-vlan-based</td>
</tr>
<tr>
<td>Step 4</td>
<td>(Optional) switch(config)# copy running-config startup-config</td>
</tr>
</tbody>
</table>

Example
This example shows how to disable a VXLAN:

```
switch# configure terminal
switch(config)# no feature nv overlay
switch(config)# no feature vn-segment-vlan-based
```

Verifying VXLAN Configuration

Use one of the following commands to verify the configuration:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch# show interface nve id</td>
<td>Displays details of the NVE interface.</td>
</tr>
</tbody>
</table>
Purpose

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch# show platform fwm info nve peer [all]</td>
<td>Displays a list of NVE peers detected by using their IP address.</td>
</tr>
<tr>
<td>switch# show mac address-table nve [count] [encap_type]</td>
<td>Displays MAC addresses behind NVE peers.</td>
</tr>
<tr>
<td>switch# show vlan counters</td>
<td>Displays packet counters for a VLAN.</td>
</tr>
<tr>
<td>switch# show nve peer</td>
<td>Displays a list of discovered peers participating in the same VNIs.</td>
</tr>
<tr>
<td>switch# show nve vni</td>
<td>Displays a list of the configured VNIs.</td>
</tr>
<tr>
<td>switch# show platform fwm info nve vni</td>
<td>Displays a list of configured VNIs.</td>
</tr>
<tr>
<td>switch# show nve conflict all</td>
<td>Displays conflicts due to misconfiguration.</td>
</tr>
<tr>
<td>switch# show run</td>
<td>grep "vpc nve"</td>
</tr>
<tr>
<td>switch# show platform fwm info global</td>
<td>grep -i "NVE peer"</td>
</tr>
</tbody>
</table>

Example of VXLAN Bridging Configuration

An example of loopback interface configuration and routing protocol configuration:
Example of VXLAN Bridging Configuration

Cisco Nexus device VTEP-1 configuration:

```
switch-vtep-1(config)# feature ospf
switch-vtep-1(config)# feature pim
switch-vtep-1(config)# router ospf 1
switch-vtep-1(config-router)# router-id 100.100.100.1
switch-vtep-1(config)# ip pim rp-address 10.1.1.1 group-list 224.0.0.0/4 bidir
switch-vtep-1(config)# interface loopback0
switch-vtep-1(config-if)# ip address 100.100.100.1/32
switch-vtep-1(config-if)# ip router ospf 1 area 0.0.0.0
switch-vtep-1(config-if)# ip pim sparse-mode
switch-vtep-1(config)# interface e2/1
switch-vtep-1(config-if)# ip address 20.1.1.1/30
switch-vtep-1(config-if)# ip router ospf 1 area 0.0.0.0
switch-vtep-1(config-if)# ip pim sparse-mode
switch-vtep-1(config)# feature nv overlay
switch-vtep-1(config)# interface e1/1
switch-vtep-1(config-if)# switchport
switch-vtep-1(config-if)# switchport access vlan 10
switch-vtep-1(config-if)# no shutdown
switch-vtep-1(config)# interface loopback0
switch-vtep-1(config)# source-interface loopback0
switch-vtep-1(config)# member vni 10000 mcast-group 230.1.1.1
```

Cisco Nexus device VTEP-2 configuration:

```
switch-vtep-2(config)# feature ospf
```
switch-vtep-2(config)# feature pim
switch-vtep-2(config)# router ospf 1
switch-vtep-2(config-router)# router-id 100.100.100.2
switch-vtep-2(config)# ip pim rp-address 10.1.1.1 group-list 224.0.0.0/4 bidir
switch-vtep-2(config)# interface loopback0
switch-vtep-2(config-if)# ip address 100.100.100.2/32
switch-vtep-2(config-if)# ip router ospf 1 area 0.0.0.0
switch-vtep-2(config-if)# ip pim sparse-mode
switch-vtep-2(config)# interface e2/1
switch-vtep-2(config-if)# ip address 30.1.1.1/30
switch-vtep-2(config-if)# ip router ospf 1 area 0.0.0.0
switch-vtep-2(config-if)# ip pim sparse-mode
switch-vtep-2(config)# feature nv overlay
switch-vtep-2(config)# feature vn-segment-vlan-based
switch-vtep-2(config)# interface e1/1
switch-vtep-2(config-if)# switchport
switch-vtep-2(config-if)# switchport access vlan 10
switch-vtep-2(config-if)# no shutdown
switch-vtep-2(config)# interface nve1
switch-vtep-2(config-if)# no shutdown
switch-vtep-2(config-if)# source-interface loopback0
switch-vtep-2(config-if)# member vni 10000 mcast-group 230.1.1.1
switch-vtep-2(config)# vlan 10
switch-vtep-2(config)# exit

An example of the results of a VXLAN configuration:

switch(config)# show nve vni

<table>
<thead>
<tr>
<th>Interface</th>
<th>VNI</th>
<th>Multicast-group</th>
<th>VNI State</th>
</tr>
</thead>
<tbody>
<tr>
<td>nve1</td>
<td>10000</td>
<td>230.1.1.1</td>
<td>up</td>
</tr>
</tbody>
</table>

switch(config)# show nve peers

<table>
<thead>
<tr>
<th>Interface</th>
<th>Peer-IP</th>
<th>VNI</th>
<th>Up Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>nve1</td>
<td>100.100.100.2</td>
<td>10000</td>
<td>06:13:07</td>
</tr>
</tbody>
</table>

switch(config)# show mac address-table

Legend:
* - primary entry, G - Gateway MAC, (R) - Routed MAC, O - Overlay MAC, age - seconds since last seen, + - primary entry using VPC Peer-Link, (T) - True, (F) - False

<table>
<thead>
<tr>
<th>VLAN</th>
<th>MAC Address</th>
<th>Type</th>
<th>age</th>
<th>Secure NTFY Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0000.0b01.0001</td>
<td>dynamic</td>
<td>0</td>
<td>F</td>
</tr>
<tr>
<td>100</td>
<td>0000.0b01.0002</td>
<td>dynamic</td>
<td>0</td>
<td>F</td>
</tr>
<tr>
<td>100</td>
<td>0000.0b01.0003</td>
<td>dynamic</td>
<td>0</td>
<td>F</td>
</tr>
<tr>
<td>100</td>
<td>0000.0b01.0004</td>
<td>dynamic</td>
<td>0</td>
<td>F</td>
</tr>
<tr>
<td>100</td>
<td>0000.0b01.0005</td>
<td>dynamic</td>
<td>0</td>
<td>F</td>
</tr>
<tr>
<td>100</td>
<td>0000.0b01.0006</td>
<td>dynamic</td>
<td>0</td>
<td>F</td>
</tr>
</tbody>
</table>

For a vPC VTEP configuration, the loopback address requires a secondary IP.

An example of a vPC VTEP configuration:
Figure 34:

Cisco Nexus device VTEP-1 configuration:

```bash
switch-vtep-1(config)# feature nv overlay
switch-vtep-1(config)# feature vn-segment-vlan-based
switch-vtep-1(config)# feature ospf
switch-vtep-1(config)# feature pim
switch-vtep-1(config)# router ospf 1
switch-vtep-1(config-router)# router-id 200.200.200.1
switch-vtep-1(config)# ip pim rp-address 10.1.1.1 group-list 224.0.0.0/4 bidir
switch-vtep-1(config)# interface loopback0
switch-vtep-1(config-if)# ip address 200.200.200.1/32
switch-vtep-1(config-if)# ip address 100.100.100.1/32 secondary
switch-vtep-1(config-if)# ip router ospf 1 area 0.0.0.0
switch-vtep-1(config-if)# ip pim sparse-mode
switch-vtep-1(config)# interface e2/1
switch-vtep-1(config-if)# ip address 20.1.1.1/30
switch-vtep-1(config-if)# ip router ospf 1 area 0.0.0.0
switch-vtep-1(config-if)# ip pim sparse-mode
switch-vtep-1(config)# interface port-channel 10
switch-vtep-1(config-if)# vpc 10
switch-vtep-1(config-if)# switchport
switch-vtep-1(config-if)# switchport mode access
switch-vtep-1(config-if)# switchport access vlan 10
switch-vtep-1(config-if)# no shutdown
switch-vtep-1(config)# interface e1/1
switch-vtep-1(config-if)# channel-group 10 mode active
switch-vtep-1(config-if)# no shutdown
switch-vtep-1(config-if)# interface nve1
switch-vtep-1(config-if)# no shutdown
switch-vtep-1(config-if)# source-interface loopback0

switch-vtep-1(config-if)# member vni 10000 mcast-group 230.1.1.1
```

Cisco Nexus 5600 Series NX-OS Layer 2 Switching Configuration Guide, Release 7.x
switch-vtep-1(config)# vlan 10
switch-vtep-1(config-vlan)# vn-segment 10000
switch-vtep-1(config-vlan)# exit

interface Vlan99
 no shutdown
 no ip redirects
 ip address 99.1.1.1/24
 ip ospf cost 10
 ip router ospf 1 area 0.0.0.0
 ip pim sparse-mode

Cisco Nexus device VTEP-2 configuration:

switch-vtep-2(config)# feature nv overlay
switch-vtep-2(config)# feature vn-segment-vlan-based
switch-vtep-2(config)# feature ospf
switch-vtep-2(config)# feature pim
switch-vtep-2(config)# router ospf 1
switch-vtep-2(config-router)# router-id 200.200.200.2
switch-vtep-2(config)# ip pim rp-address 10.1.1.1 group-list 224.0.0.0/4 bidir
switch-vtep-2(config)# interface loopback0
 ip address 200.200.200.2/32
switch-vtep-2(config-if)# ip address 100.100.100.1/32 secondary
switch-vtep-2(config-if)# ip router ospf 1 area 0.0.0.0
switch-vtep-2(config-if)# ip pim sparse-mode
switch-vtep-2(config)# interface e2/1
 ip address 20.1.1.5/30
switch-vtep-2(config-if)# ip router ospf 1 area 0.0.0.0
switch-vtep-2(config-if)# ip pim sparse-mode
switch-vtep-2(config)# interface port-channel 10
switch-vtep-2(config-if)# vpc 10
switch-vtep-2(config-if)# switchport
switch-vtep-2(config-if)# switchport mode access
switch-vtep-2(config-if)# switchport access vlan 10
switch-vtep-2(config)# interface e1/1
switch-vtep-2(config)# channel-group 10 mode active
switch-vtep-2(config-if)# no shutdown
switch-vtep-2(config-if)# interface nve1
switch-vtep-2(config-if)# no shutdown
switch-vtep-2(config-if)# source-interface loopback0

switch-vtep-2(config-if)# member vni 10000 mcast-group 230.1.1.1
switch-vtep-2(config)# vlan 10
switch-vtep-2(config-vlan)# vn-segment 10000
switch-vtep-2(config-vlan)# exit

interface Vlan99
 no shutdown
 no ip redirects
 ip address 99.1.1.2/24
 ip ospf cost 10
 ip router ospf 1 area 0.0.0.0
 ip pim sparse-mode

Cisco Nexus device VTEP-3 configuration:

switch-vtep-2(config)# feature nv overlay
switch-vtep-2(config)# feature vn-segment-vlan-based
switch-vtep-2(config)#feature ospf
switch-vtep-2(config)#feature pim
switch-vtep-2(config)#router ospf 1
switch-vtep-2(config-router)#router-id 100.100.100.2
switch-vtep-2(config)#ip pim rp-address 10.1.1.1 group-list 224.0.0.0/4 bidir
switch-vtep-2(config)#interface loopback0
switch-vtep-2(config-if)#ip address 100.100.100.2/32
switch-vtep-2(config-if)#ip route ospf 1 area 0.0.0.0
switch-vtep-2(config-if)#ip pim sparse-mode
switch-vtep-2(config)#interface e2/1
switch-vtep-2(config-if)#ip address 30.1.1.1/30
switch-vtep-2(config-if)#ip route ospf 1 area 0.0.0.0
switch-vtep-2(config-if)#ip pim sparse-mode
switch-vtep-2(config)# interface e1/1
switch-vtep-2(config-if)#switchport
switch-vtep-2(config-if)#switchport mode access
switch-vtep-2(config-if)#switchport access vlan 10
switch-vtep-2(config-if)#no shutdown
switch-vtep-2(config)#interface nve1
switch-vtep-2(config-if)#no shutdown
switch-vtep-2(config-if)#source-interface loopback0

switch-vtep-2(config-if)#member vni 10000 mcast-group 230.1.1.1
switch-vtep-2(config)#vlan 10
switch-vtep-2(config-vlan)#vn-segment 10000
switch-vtep-2(config-vlan)#exit

Note
The secondary IP is used by the emulated VTEP for VXLAN.

Note
Ensure that all configurations are identical between the VPC primary and VPC secondary.