THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED "AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: http://www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

© 2012-2013 Cisco Systems, Inc. All rights reserved.
CONTENTS

Preface vii

Audience vii
Document Conventions vii
Documentation Feedback viii
Obtaining Documentation and Submitting a Service Request ix

CHAPTER 1 New and Changed Information 1

New and Changed Information for this Release 1

CHAPTER 2 Overview 3

Information About Quality of Service 3
Modular QoS CLI 3
QoS for Traffic Directed to the CPU 5

CHAPTER 3 Configuring Classification 7

Information About Classification 7
Ingress Classification Policies 8
Licensing Requirements for Classification 8
Configuring Classification 8

Configuring Class Maps 8
Configuring CoS Classification 9
Configuring Precedence Classification 10
Configuring DSCP Classification 12
Configuring Protocol Classification 13
Configuring IP RTP Classification 14
Configuring ACL Classification 15
Verifying the Classification Configuration 16
CHAPTER 8 Configuring QoS on VLANs 49

Information About VLAN QoS 49
Precedence of QoS Policies 49
 Example of Interface, System, and VLAN Policy Precedence 50
 Example of Interface and System QoS Policy Precedence 50
 Example of System and VLAN Policy Precedence 50
 Example of VLAN QoS and VACL Policy Precedence 51
Limiting TCAM Entries for VLAN QoS 52
Guidelines and Limitations for VLAN QoS 52
Configuring VLAN QoS 53
 Configuring or Changing the Interface QoS TCAM Limit 53
 Removing the Interface QoS Limit from the TCAM 54
 Configuring a Service Policy on a VLAN 54
 Removing a Service Policy from a VLAN 55
Verifying the VLAN QoS Configuration 56
Feature History for VLAN QoS 56

CHAPTER 9 Configuring Queuing and Flow Control 57

Information About Queues 57
 Ingress Queuing Policies 57
 Egress Queuing Policies 57
 Buffering and Queue Limits on the Cisco Nexus 5000 Platform 58
 Buffering and Queue Limits on the Cisco Nexus Device 59
Information About Flow Control 60
 Link-Level Flow Control 60
 Priority Flow Control 60
Configuring Queuing 61
Audience

This publication is for network administrators who configure and maintain Cisco Nexus devices and Cisco Nexus 2000 Series Fabric Extenders.

Document Conventions

Command descriptions use the following conventions:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bold</td>
<td>Bold text indicates the commands and keywords that you enter literally as shown.</td>
</tr>
<tr>
<td>Italic</td>
<td>Italic text indicates arguments for which the user supplies the values.</td>
</tr>
<tr>
<td>[x]</td>
<td>Square brackets enclose an optional element (keyword or argument).</td>
</tr>
<tr>
<td>[x</td>
<td>y]</td>
</tr>
<tr>
<td>{x</td>
<td>y}</td>
</tr>
</tbody>
</table>
Convention | Description
---|---
\[x \{y | z\}\] | Nested set of square brackets or braces indicate optional or required choices within optional or required elements. Braces and a vertical bar within square brackets indicate a required choice within an optional element.

`variable` | Indicates a variable for which you supply values, in context where italics cannot be used.

`string` | A nonquoted set of characters. Do not use quotation marks around the string or the string will include the quotation marks.

Examples use the following conventions:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
</table>
`screen font` | Terminal sessions and information the switch displays are in screen font. |
`boldface screen font` | Information you must enter is in boldface screen font. |
`italic screen font` | Arguments for which you supply values are in italic screen font. |
`<>` | Nonprinting characters, such as passwords, are in angle brackets. |
`[]` | Default responses to system prompts are in square brackets. |
`!, #` | An exclamation point (!) or a pound sign (#) at the beginning of a line of code indicates a comment line. |

This document uses the following conventions:

- **Note**
 - Means *reader take note*. Notes contain helpful suggestions or references to material not covered in the manual.

- **Caution**
 - Means *reader be careful*. In this situation, you might do something that could result in equipment damage or loss of data.

Documentation Feedback

To provide technical feedback on this document, or to report an error or omission, please send your comments to: ciscodfa-docfeedback@cisco.com.

We appreciate your feedback.
Obtaining Documentation and Submitting a Service Request

Subscribe to *What's New in Cisco Product Documentation*, which lists all new and revised Cisco technical documentation as an RSS feed and delivers content directly to your desktop using a reader application. The RSS feeds are a free service.
New and Changed Information

This chapter contains the following sections:

- New and Changed Information for this Release, page 1

New and Changed Information for this Release

The following table provides an overview of the significant changes to this guide for this current release. The table does not provide an exhaustive list of all changes made to the configuration guide or of the new features in this release.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>Where Documented</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN QoS</td>
<td>Support for QoS VLANs.</td>
<td>Configuring QoS on VLANs, on page 49</td>
</tr>
</tbody>
</table>
Overview

This chapter contains the following sections:

- Information About Quality of Service, page 3
- Modular QoS CLI, page 3
- QoS for Traffic Directed to the CPU, page 5

Information About Quality of Service

The configurable Cisco NX-OS quality of service (QoS) features allow you to classify the network traffic, prioritize the traffic flow, and provide congestion avoidance.

The default QoS configuration on the device provides lossless service for Fibre Channel and Fibre Channel over Ethernet (FCoE) traffic and best-effort service for Ethernet traffic. QoS can be configured to provide additional classes of service for Ethernet traffic. Cisco NX-OS QoS features are configured using Cisco Modular QoS CLI (MQC).

Standard Ethernet is a best-effort medium which means that it lacks any form of flow control. In the event of congestion or collisions, Ethernet will drop packets. The higher level protocols detect the missing data and retransmit the dropped packets.

Fibre Channel requires a reliable transport system that guarantees the delivery of every packet. To properly support FCoE, Ethernet has been enhanced with a priority flow control (PFC) mechanism to prevent congestion. The FCoE QoS must be configured either if native FC or FCoE or FC and FCoE are in use. The FCoE QoS must be added even if Ethernet is not configured on the switch.

The following commands will enable the default QoS configuration:

```
switch(config)# system qos
switch(config-sys-qos)# service-policy type queuing input fcoe-default-in-policy
switch(config-sys-qos)# service-policy type queuing output fcoe-default-out-policy
switch(config-sys-qos)# service-policy type qos input fcoe-default-in-policy
switch(config-sys-qos)# service-policy type network-qos fcoe-default-nq-policy
```

Modular QoS CLI

The Cisco Modular QoS CLI (MQC) provides a standard set of commands for configuring QoS.
You can use MQC to define additional traffic classes and to configure QoS policies for the whole system and for individual interfaces. Configuring a QoS policy with MQC consists of the following steps:

1. Define traffic classes.
2. Associate policies and actions with each traffic class.
3. Attach policies to logical or physical interfaces as well as at the global system level.

MQC provides two command types to define traffic classes and policies:

class-map

Defines a class map that represents a class of traffic based on packet-matching criteria. Class maps are referenced in policy maps.

The class map classifies incoming packets based on matching criteria, such as the IEEE 802.1p class of service (CoS) value. Unicast and multicast packets are classified.

policy-map

Defines a policy map that represents a set of policies to be applied on a class-by-class basis to class maps.

The policy map defines a set of actions to take on the associated traffic class, such as limiting the bandwidth or dropping packets.

You define the following class-map and policy-map object types when you create them:

network-qos

Defines MQC objects that you can use for system level related actions.

qos

Defines MQC objects that you can use for classification.

queuing

Defines MQC objects that you can use for queuing and scheduling.

Note

The qos type is the default for the class-map and policy-map commands, but not for the service-policy which requires that you specify an explicit type.

You can attach policies to interfaces or EtherChannels as well as at the global system level by using the service-policy command.

You can view all or individual values for MQC objects by using the show class-map and show policy-map commands.

An MQC target is an entity (such as an Ethernet interface) that represents a flow of packets. A service policy associates a policy map with an MQC target and specifies whether to apply the policy on incoming or outgoing packets. This mapping enables the configuration of QoS policies such as marking, bandwidth allocation, buffer allocation, and so on.
QoS for Traffic Directed to the CPU

The device automatically applies QoS policies to traffic that is directed to the CPU to ensure that the CPU is not flooded with packets. Control traffic, such as bridge protocol data units (BPDU) frames, is given higher priority to ensure delivery.
CHAPTER 3

Configuring Classification

This chapter contains the following sections:

• Information About Classification, page 7
• Ingress Classification Policies, page 8
• Licensing Requirements for Classification, page 8
• Configuring Classification, page 8
• Verifying the Classification Configuration, page 16

Information About Classification

Classification is the separation of packets into traffic classes. You configure the device to take a specific action on the specified classified traffic, such as policing or marking down, or other actions.

You can create class maps to represent each traffic class by matching packet characteristics with classification criteria.

Table 1: Classification Criteria

<table>
<thead>
<tr>
<th>Classification Criteria</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class map</td>
<td>Criteria specified in a named class-map object.</td>
</tr>
<tr>
<td>Precedence</td>
<td>Precedence value within the Type of Service (ToS) byte of the IP Header.</td>
</tr>
<tr>
<td>Differentiated Services Code Point (DSCP)</td>
<td>DSCP value within the DiffServ field of the IP Header.</td>
</tr>
<tr>
<td>Protocol</td>
<td>Selected set of protocols, including Address Resolution Protocol (ARP) and Connectionless Network Service (CLNS).</td>
</tr>
</tbody>
</table>
Ingress Classification Policies

You use classification to partition traffic into classes. You classify the traffic based on the packet property (CoS field) or the packet header fields that include IP precedence, Differentiated Services Code Point (DSCP), and Layer 2 to Layer 4 parameters. The values used to classify traffic are called match criteria.

Traffic that fails to match any class is assigned to a default class of traffic called class-default.

Licensing Requirements for Classification

This feature does not require a license. Any feature not included in a license package is bundled with the Cisco NX-OS system images and is provided at no extra charge to you. For a complete explanation of the Cisco NX-OS licensing scheme, see the Cisco NX-OS Licensing Guide.

Configuring Classification

Configuring Class Maps

You can create or modify a class map with the **class-map** command. The class map is a named object that represents a class of traffic. In the class map, you specify a set of match criteria for classifying the packets. You can then reference class maps in policy maps.

<table>
<thead>
<tr>
<th>Classification Criteria</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP RTP</td>
<td>Identify applications using Real-time Transport Protocol (RTP) by UDP port number range.</td>
</tr>
<tr>
<td>ACL</td>
<td>Traffic is classified by the criteria defined in the access control list (ACL).</td>
</tr>
</tbody>
</table>

Table 2: Supported RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 2474</td>
<td>Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers</td>
</tr>
</tbody>
</table>
Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>
| **Step 2** | switch(config)# class-map [type {network-qos | qos | queuing}] class-map name | Creates or accesses a named object that represents the specified class of traffic. Class-map names can contain alphabetic, hyphen, or underscore characters, are case sensitive, and can be up to 40 characters. The three class-map configuration modes are as follows:
 - **network-qos**—Network-wide (global) mode. CLI prompt: switch(config-cmap-nq)#
 - **qos**—Classification mode; this is the default mode. CLI prompt: switch(config-cmap-qos)#
 - **queuing**—Queuing mode. CLI prompt: switch(config-cmap-que)# |
| **Step 3** | switch(config)# class-map [type qos] [match-all | match-any] class-map name | (Optional) Specifies that packets must match any or all criteria that is defined for a class map.
 - **match-all**—Classifies traffic if packets match all criteria that is defined for a specified class map (for example, if both the defined CoS and the ACL criteria match).
 - **match-any**—Classifies traffic if packets match any criteria that is defined for a specified class map (for example, if either the CoS or the ACL criteria matches). |
| **Step 4** | switch(config)# no class-map [type {network-qos | qos | queuing}] class-name | (Optional) Deletes the specified class map. | **Note** |
| | | You cannot delete the two system-defined class maps: class-fcoe and class-default. Class-map names can contain alphabetic, hyphen, or underscore characters, are case sensitive, and can be up to 40 characters. |

Configuring CoS Classification

You can classify traffic based on the class of service (CoS) in the IEEE 802.1Q header. This 3-bit field is defined in IEEE 802.1p to support QoS traffic classes. CoS is encoded in the high order 3 bits of the VLAN ID Tag field and is referred to as **user_priority**.
The Cisco Nexus 2148 Fabric Extender does not support frames with the dot1p vlan 0 tag.

If a system class is configured with a no-drop function, the **match cos** command serves an additional purpose. The switch sends the CoS value to the adapter so that the adapter will apply a PFC pause for this CoS value. The FCoE system class has a default CoS value of 3. You can add a **match cos** configuration to the FCoE system class to set a different CoS value. A PFC pause will be applied to traffic that matches the new value.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# class-map type qos class-name</td>
</tr>
<tr>
<td></td>
<td>Creates a named object that represents a class of traffic. Class-map names can contain alphabetic, hyphen, or underscore characters, are case sensitive, and can be up to 40 characters.</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config-cmap-qos)# match cos cos-value</td>
</tr>
<tr>
<td></td>
<td>Specifies the CoS value to match for classifying packets into this class. You can configure a CoS value in the range of 0 to 7.</td>
</tr>
<tr>
<td></td>
<td>Note When a Cisco Nexus 2148T Fabric Extender is connected and in use, data traffic should never be marked with a CoS value of 7. CoS 7 is reserved for control traffic transiting the Fabric Extender.</td>
</tr>
<tr>
<td>Step 4</td>
<td>switch(config-cmap-qos)# no match cos cos-value</td>
</tr>
<tr>
<td></td>
<td>(Optional) Removes the match from the traffic class.</td>
</tr>
</tbody>
</table>

This example shows how to classify traffic by matching packets based on a defined CoS value:

```
switch# configure terminal
switch(config)# class-map type qos match-any class_cos
switch(config-cmap-qos)# match cos 4, 5-6
```

Use the **show class-map** command to display the CoS value class-map configuration:

```
switch# show class-map class_cos
```

Configuring Precedence Classification

You can classify traffic based on the precedence value in the type of service (ToS) byte field of the IP header (either IPv4 or IPv6). The following table shows the precedence values:

<table>
<thead>
<tr>
<th>Value</th>
<th>List of Precedence Values</th>
</tr>
</thead>
<tbody>
<tr>
<td><0-7></td>
<td>IP precedence value</td>
</tr>
</tbody>
</table>

Note

- If a system class is configured with a no-drop function, the **match cos** command serves an additional purpose. The switch sends the CoS value to the adapter so that the adapter will apply a PFC pause for this CoS value. The FCoE system class has a default CoS value of 3. You can add a **match cos** configuration to the FCoE system class to set a different CoS value. A PFC pause will be applied to traffic that matches the new value.

Configuring Precedence Classification

You can classify traffic based on the precedence value in the type of service (ToS) byte field of the IP header (either IPv4 or IPv6). The following table shows the precedence values:

<table>
<thead>
<tr>
<th>Value</th>
<th>List of Precedence Values</th>
</tr>
</thead>
<tbody>
<tr>
<td><0-7></td>
<td>IP precedence value</td>
</tr>
<tr>
<td>Value</td>
<td>List of Precedence Values</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td>critical</td>
<td>Critical precedence (5)</td>
</tr>
<tr>
<td>flash</td>
<td>Flash precedence (3)</td>
</tr>
<tr>
<td>flash-override</td>
<td>Flash override precedence (4)</td>
</tr>
<tr>
<td>immediate</td>
<td>Immediate precedence (2)</td>
</tr>
<tr>
<td>internet</td>
<td>Internetwork control precedence (6)</td>
</tr>
<tr>
<td>network</td>
<td>Network control precedence (7)</td>
</tr>
<tr>
<td>priority</td>
<td>Priority precedence (1)</td>
</tr>
<tr>
<td>routine</td>
<td>Routine precedence (0)</td>
</tr>
</tbody>
</table>

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>switch# configure terminal</code></td>
</tr>
<tr>
<td></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>switch(config)# class-map type qos match-any class-name</code></td>
</tr>
<tr>
<td></td>
<td>Creates a named object that represents a class of traffic. Class-map</td>
</tr>
<tr>
<td></td>
<td>names can contain alphabetic, hyphen, or underscore characters, are</td>
</tr>
<tr>
<td></td>
<td>case sensitive, and can be up to 40 characters.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>switch(config-cmap-qos)#match precedence precedence-values</code></td>
</tr>
<tr>
<td></td>
<td>Configures the traffic class by matching packets based on precedence</td>
</tr>
<tr>
<td></td>
<td>values. For a list of precedence values, see the Precedence Values table.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>switch((config-cmap-qos)# no match precedence precedence-values</code></td>
</tr>
<tr>
<td></td>
<td>(Optional) Removes the match from the traffic class. For a list of</td>
</tr>
<tr>
<td></td>
<td>precedence values, see the Precedence Values table.</td>
</tr>
</tbody>
</table>

This example shows how to classify traffic by matching packets based on the precedence value in the ToS byte field of the IP header:

```shell
switch# configure terminal
switch(config)# class-map type qos match-any class_precedence
switch(config-cmap-qos)# match precedence 1-2, critical
```

Use the `show class-map` command to display the IP precedence value class-map configuration:

```shell
switch# show class-map class_precedence
```
Configuring DSCP Classification

You can classify traffic based on the Differentiated Services Code Point (DSCP) value in the DiffServ field of the IP header (either IPv4 or IPv6).

Table 4: Standard DSCP Values

<table>
<thead>
<tr>
<th>Value</th>
<th>List of DSCP Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>af11</td>
<td>AF11 dscp (001010)—decimal value 10</td>
</tr>
<tr>
<td>af12</td>
<td>AF12 dscp (001100)—decimal value 12</td>
</tr>
<tr>
<td>af13</td>
<td>AF13 dscp (001110)—decimal value 14</td>
</tr>
<tr>
<td>af21</td>
<td>AF21 dscp (010010)—decimal value 18</td>
</tr>
<tr>
<td>af22</td>
<td>AF22 dscp (010100)—decimal value 20</td>
</tr>
<tr>
<td>af23</td>
<td>AF23 dscp (010110)—decimal value 22</td>
</tr>
<tr>
<td>af31</td>
<td>AF31 dscp (011010)—decimal value 26</td>
</tr>
<tr>
<td>af32</td>
<td>AF32 dscp (011100)—decimal value 28</td>
</tr>
<tr>
<td>af33</td>
<td>AF33 dscp (011110)—decimal value 30</td>
</tr>
<tr>
<td>af41</td>
<td>AF41 dscp (100010)—decimal value 34</td>
</tr>
<tr>
<td>af42</td>
<td>AF42 dscp (100100)—decimal value 36</td>
</tr>
<tr>
<td>af43</td>
<td>AF43 dscp (100110)—decimal value 38</td>
</tr>
<tr>
<td>cs1</td>
<td>CS1 (precedence 1) dscp (001000)—decimal value 8</td>
</tr>
<tr>
<td>cs2</td>
<td>CS2 (precedence 2) dscp (010000)—decimal value 16</td>
</tr>
<tr>
<td>cs3</td>
<td>CS3 (precedence 3) dscp (011000)—decimal value 24</td>
</tr>
<tr>
<td>cs4</td>
<td>CS4 (precedence 4) dscp (100000)—decimal value 32</td>
</tr>
<tr>
<td>cs5</td>
<td>CS5 (precedence 5) dscp (101000)—decimal value 40</td>
</tr>
</tbody>
</table>
List of DSCP Values

<table>
<thead>
<tr>
<th>Value</th>
<th>List of DSCP Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>cs6</td>
<td>CS6 (precedence 6) dscp (110000)—decimal value 48</td>
</tr>
<tr>
<td>cs7</td>
<td>CS7 (precedence 7) dscp (111000)—decimal value 56</td>
</tr>
<tr>
<td>default</td>
<td>Default dscp (000000)—decimal value 0</td>
</tr>
<tr>
<td>ef</td>
<td>EF dscp (101110)—decimal value 46</td>
</tr>
</tbody>
</table>

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td>Purpose</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# class-map type qos class-name</td>
</tr>
<tr>
<td>Purpose</td>
<td>Creates a named object that represents a class of traffic. Class-map names can contain alphabetic, hyphen, or underscore characters, are case sensitive, and can be up to 40 characters.</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config-cmap-qos)# match dscp dscp-list</td>
</tr>
<tr>
<td>Purpose</td>
<td>Configures the traffic class by matching packets based on the values in the dscp-list variable. For a list of DSCP values, see the Standard DSCP Values table.</td>
</tr>
<tr>
<td>Step 4</td>
<td>switch(config-cmap-qos)# no match dscp dscp-list</td>
</tr>
<tr>
<td>Purpose</td>
<td>(Optional) Removes the match from the traffic class. For a list of DSCP values, see the Standard DSCP Values table.</td>
</tr>
</tbody>
</table>

This example shows how to classify traffic by matching packets based on the DSCP value in the DiffServ field of the IP header:

```plaintext
switch# configure terminal
switch(config)# class-map type qos match-any class_dscp
switch(config-cmap-qos)# match dscp af21, af32
```

Use the **show class-map** command to display the DSCP class-map configuration:

```plaintext
switch# show class-map class_dscp
```

Configuring Protocol Classification

You can classify traffic based on the IPv4 Protocol field or the IPv6 Next Header field in the IP header. The following table shows the protocol arguments:
Table 5: Protocol Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>arp</td>
<td>Address Resolution Protocol (ARP)</td>
</tr>
<tr>
<td>clns_es</td>
<td>CLNS End Systems</td>
</tr>
<tr>
<td>clns_is</td>
<td>CLNS Intermediate System</td>
</tr>
<tr>
<td>dhcp</td>
<td>Dynamic Host Configuration (DHCP)</td>
</tr>
<tr>
<td>ldp</td>
<td>Label Distribution Protocol (LDP)</td>
</tr>
<tr>
<td>netbios</td>
<td>NetBIOS Extended User Interface (NetBEUI)</td>
</tr>
</tbody>
</table>

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch# configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>switch(config)# class-map type qos class-name</td>
<td>Creates a named object that represents a class of traffic. Class-map names can contain alphabetic, hyphen, or underscore characters, are case sensitive, and can be up to 40 characters.</td>
</tr>
<tr>
<td>switch(config-cmap-qos)# match protocol {arp</td>
<td>clns_es</td>
</tr>
<tr>
<td>switch(config-cmap-qos)# no match protocol {arp</td>
<td>clns_es</td>
</tr>
</tbody>
</table>

This example shows how to classify traffic by matching packets based on the protocol field:

```
switch# configure terminal
switch(config)# class-map type qos class_protocol
switch(config-cmap-qos)# match protocol arp
```

Use the show class-map command to display the protocol class-map configuration:

```
switch# show class-map class_protocol
```

Configuring IP RTP Classification

The IP Real-time Transport Protocol (RTP) is a transport protocol for real-time applications that transmits data such as audio or video and is defined by RFC 3550. Although RTP does not use a common TCP or UDP
port, you typically configure RTP to use ports 16384 to 32767. UDP communications use an even port and the next higher odd port is used for RTP Control Protocol (RTCP) communications.

You can classify based on UDP port ranges, which are likely to target applications using RTP.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# class-map type qos class-name</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config-cmap-qos)# match ip rtp port-number</td>
</tr>
<tr>
<td>Step 4</td>
<td>switch(config-cmap-qos)# no match ip rtp port-number</td>
</tr>
</tbody>
</table>

The following example shows how to classify traffic by matching packets based on UDP port ranges that are typically used by RTP applications:

```
switch# configure terminal
switch(config)# class-map type qos match-any class_rtp
switch(config-cmap-qos)# match ip rtp 2000-2100, 4000-4100
```

Use the `show class-map` command to display the RTP class-map configuration:

```
switch# show class-map class_rtp
```

Configuring ACL Classification

You can classify traffic by matching packets based on an existing access control list (ACL). Traffic is classified by the criteria defined in the ACL. The `permit` and `deny` ACL keywords are ignored in the matching; even if a match criteria in the access-list has a `deny` action, it is still used for matching for this class.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# class-map type qos class-name</td>
</tr>
</tbody>
</table>
Configuring Classification

Purpose

Command or Action

Step 3

```
switch(config-cmap-qos)# match access-group name acl-name
```

Purpose

Configures a traffic class by matching packets based on the `acl-name`. The `permit` and `deny` ACL keywords are ignored in the matching.

Note

You can only define a single ACL in a class map. You cannot add any other match criteria to a class with a `match access-group` defined.

Step 4

```
switch(config-cmap-qos)# no match access-group name acl-name
```

(Optional)

Removes the match from the traffic class.

This example shows how to classify traffic by matching packets based on existing ACLs:

```
switch# configure terminal
switch(config)# class-map type qos class_acl
switch(config-cmap-qos)# match access-group name acl-01
```

Use the *show class-map* command to display the ACL class-map configuration:

```
switch# show class-map class_acl
```
Configuring Policy Maps

This chapter contains the following sections:

- Information About Policy Types, page 17
- Configuring Policy Maps, page 19
- Verifying the Policy Map Configuration, page 24

Information About Policy Types

The device supports a number of policy types. You create class maps in the policy types.

There are three policy types:

- Network-qos
- Queuing
- QoS

Before you enable FCoE on the Cisco Nexus device, you must enable class-fcoe in the three types of qos policies (network QoS, queuing, and QoS) by entering the `type qos policy maps` command and applying at least one FCoE QoS policy under system QoS.

The following QoS parameters can be specified for each type of class:

- Type network-qos—A network-qos policy is used to instantiate system classes and associate parameters with those classes that are of system-wide scope.
 - Classification—The traffic that matches this class are as follows:
 - QoS Group—A class map of type network-qos identifies a system class and is matched by its associated qos-group.
 - Policy—The actions that are performed on the matching traffic are as follows:

 \[\text{Note}\]
 A network-qos policy can only be attached to the system QoS target.
* MTU—The MTU that needs to be enforced for the traffic that is mapped to a system class. Each system class has a default MTU and the system class MTU is configurable.

* Multicast optimization—This configuration specifies if the performance of multicast traffic mapped to this class will be optimized.

* Pause no-drop—No drop specifies lossless service for the system class. Drop specifies that tail drop is used (arriving packets are dropped when the queue reaches its allocated size) when a queue for this system class is full.

An additional parameter pfc-cos can be configured. This parameter identifies the class of service (CoS) values to assert priority flow control (PFC) when traffic for a no-drop system class is not mapped based purely on CoS experiences congestion.

* You can change the buffer for the no-drop class.

* Queue Limit—This configuration specifies the number of buffers that need to be reserved to the queues of this system class. This option is not configurable for no-drop system classes.

• Type queuing—A type queuing policy is used to define the scheduling characteristics of the queues associated with system classes.

* Classification—The traffic that matches this class are as follows:

 * QoS Group—A class map of type queuing identifies a system class and is matched by its associated QoS group.

* Policy—The actions that are performed on the matching traffic are as follows:

 These policies can be attached to the system qos target or to any interface. The output queuing policy is used to configure output queues on the device associated with system classes. The input queuing policy is used to configure scheduling for queues in the CNA. The input queuing policy parameters are signaled to the CNA over the DCBX protocol.

 * Bandwidth—Sets the guaranteed scheduling deficit weighted round robin (DWRR) percentage for the system class.

 * Priority—Sets a system class for strict-priority scheduling. Only one system class can be configured for priority in a given queuing policy.

 * Type qos—A type QoS policy is used to classify traffic that is based on various Layer 2, Layer 3, and Layer 4 fields in the frame and to map it to system classes.
Configuring Policy Maps

Creating Policy Maps

The **policy-map** command is used to create a named object that represents a set of policies that are to be applied to a set of traffic classes.

The device provides two default system classes: a no-drop class for lossless service (class-fcoe) and a drop class for best-effort service (class-default). You can define up to four additional system classes for Ethernet traffic.

The following predefined policy maps are used as default service policies:

- **network-qos**: default-nq-policy
- **Input qos**: default-in-policy
- **Input queuing**: default-in-policy
- **Output queuing**: default-out-policy
• service-policy type qos input fcoe-default-in-policy
• service-policy type queuing input fcoe-default-in-policy
• service-policy type queuing output fcoe-default-out-policy
• service-policy type network-qos fcoe-default-nq-policy

When class-fcoe is not included in the qos policies, vFC interfaces do not come up and increased drops occur. You need to create a policy map to specify the policies for any user-defined class. In the policy map, you can configure the QoS parameters for each class. You can use the same policy map to modify the configuration of the default classes.

The device distributes all the policy-map configuration values to the attached network adapters.

Before You Begin

Before creating the policy map, define a class map for each new system class.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# policy-map [type {network-qos</td>
</tr>
<tr>
<td></td>
<td>Creates a named object representing a set of policies that are to be applied to a set of traffic classes. Policy-map names can contain alphabetic, hyphen, or underscore characters, are case sensitive, and can be up to 40 characters.</td>
</tr>
<tr>
<td></td>
<td>The three policy-map configuration modes are as follows:</td>
</tr>
<tr>
<td></td>
<td>• network-qos—Network-wide (global) mode. CLI prompt: switch(config-pmap-nq)#</td>
</tr>
<tr>
<td></td>
<td>• qos—Classification mode; this is the default mode. CLI prompt: switch(config-pmap-qos)#</td>
</tr>
<tr>
<td></td>
<td>• queuing—Queuing mode. CLI prompt: switch(config-pmap-que)#</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config)# no policy-map [type {network-qos</td>
</tr>
<tr>
<td></td>
<td>(Optional) Deletes the specified policy map.</td>
</tr>
<tr>
<td>Step 4</td>
<td>switch(config-pmap)# class [type {network-qos</td>
</tr>
<tr>
<td></td>
<td>Associates a class map with the policy map, and enters configuration mode for the specified system class. The three class-map configuration modes are as follows:</td>
</tr>
<tr>
<td></td>
<td>• network-qos—Network-wide (global) mode. CLI prompt: switch(config-pmap-c-nq)#</td>
</tr>
<tr>
<td></td>
<td>• qos—Classification mode; this is the default mode. CLI prompt: switch(config-pmap-c-qos)#</td>
</tr>
<tr>
<td></td>
<td>• queuing—Queuing mode. CLI prompt: switch(config-pmap-c-que)#</td>
</tr>
</tbody>
</table>
Configuring Type QoS Policies

Type qos policies are used for classifying the traffic of a specific system class identified by a unique qos-group value. A type qos policy can be attached to the system or to individual interfaces (including Fabric Extender host interfaces) for ingress traffic only.

You can set a maximum of five QoS groups for ingress traffic.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# policy-map type qos policy-name</td>
<td>Creates a named object that represents a set of policies that are to be applied to a set of traffic classes. Policy-map names can contain alphabetic, hyphen, or underscore characters, are case sensitive, and can be up to 40 characters.</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config-pmap-qos)# [class</td>
<td>Associates a class map with the policy map, and enters configuration mode for the specified system class.</td>
</tr>
<tr>
<td></td>
<td>class-default] type qos class-name</td>
<td>Note</td>
</tr>
<tr>
<td>Step 4</td>
<td>switch(config-pmap-c-qos)# set qos-group qos-group-value</td>
<td>Configures one or more qos-group values to match on for classification of traffic into this class map. The list below identifies the ranges of the qos-group-value. There is no default value.</td>
</tr>
</tbody>
</table>

This example shows how to define a type qos policy map:

```plaintext
switch# configure terminal
switch(config)# policy-map type qos policy-s1
switch(config-pmap-qos)# class type qos class-s1
switch(config-pmap-c-qos)# set qos-group 2
```
Configuring Type Network QoS Policies

Type network qos policies can only be configured on the system qos attachment point. They are applied to the entire switch for a particular class.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# policy-map type network-qos policy-name</td>
<td>Creates a named object that represents a set of policies that are to be applied to a set of traffic classes. Policy-map names can contain alphabetic, hyphen, or underscore characters, are case sensitive, and can be up to 40 characters.</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config-pmap-nq)# class type network-qos class-name</td>
<td>Associates a class map with the policy map, and enters configuration mode for the specified system class. Note The associated class map must be the same type as the policy map type.</td>
</tr>
<tr>
<td>Step 4</td>
<td>switch(config-pmap-c-nq)# mtu mtu-value</td>
<td>Specifies the MTU value in bytes. Note The mtu-value that you configure must be less than the value set by the <code>system jumbomtu</code> command.</td>
</tr>
<tr>
<td>Step 5</td>
<td>switch(config-pmap-c-nq)# no mtu</td>
<td>(Optional) Resets the MTU value in this class.</td>
</tr>
<tr>
<td>Step 6</td>
<td>switch(config-pmap-c-nq)# pause no-drop</td>
<td>Configures a no-drop class.</td>
</tr>
<tr>
<td>Step 7</td>
<td>switch(config-pmap-c-nq)# multicast-optimize</td>
<td>Enables multicast optimization. Multicast traffic in this class will be served by all available multicast queues. Note Only one class in a policy map can be configured for multicast optimization. Note For the Cisco Nexus device, multicast optimization is enabled by default on class-default. You must remove it from class-default before enabling it on a user-defined class.</td>
</tr>
<tr>
<td>Step 8</td>
<td>switch(config-pmap-c-nq)# no multicast-optimize</td>
<td>(Optional) Disables multicast optimization.</td>
</tr>
<tr>
<td>Step 9</td>
<td>switch(config-pmap-c)# pause no-drop [pfc-cos pfc-cos-value]</td>
<td>Configures a no-drop class. If you do not specify this command, the default policy is drop. Note The operation for the drop policy is a simple tail drop, where arriving packets will be dropped if the queue increases to its allocated size. The pfc-cos-value range is from 0 to 7. This option is supported only for a ACL-based system class (which filters traffic using criteria other than cos-based matches).</td>
</tr>
</tbody>
</table>
Configuring Type Queuing Policies

Type queuing policies are used for scheduling and buffering the traffic of a specific system class. A type queuing policy is identified by its QoS group and can be attached to the system or to individual interfaces (except for Fabric Extender host interfaces) for input or output traffic.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# policy-map type queuing policy-name</td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>names can contain alphabetic, hyphen, or underscore characters, are case sensitive, and can be up to 40 characters.</td>
</tr>
</tbody>
</table>

Step 3

```
switch(config-pmap-que)# class type queuing class-name
```

Associates a class map with the policy map, and enters configuration mode for the specified system class.

Step 4

```
switch(config-pmap-c-que)# priority
```

Specifies that traffic in this class is mapped to a strict priority queue.

Note Only one class in each policy map can have strict priority set on it.

Step 5

```
switch(config-pmap-c-que)# no priority
```

(Optional) Removes the strict priority queuing from the traffic in this class.

Step 6

```
switch(config-pmap-c-que)# bandwidth percent [percentage]
```

Specifies the guaranteed percentage of interface bandwidth allocated to this class. By default, no bandwidth is specified for a class.

Note Before you can successfully allocate bandwidth to the class, you must first reduce the default bandwidth configuration on class-default and class-fcoe.

Step 7

```
switch(config-pmap-c-que)# no bandwidth percent [percentage]
```

(Optional) Removes the bandwidth specification from this class.

Verifying the Policy Map Configuration

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show policy-map [name]</td>
<td>Displays the policy maps defined on the switch. Optionally, you can display the named policy only.</td>
</tr>
<tr>
<td>show policy-map interface [interface number]</td>
<td>Displays the policy map settings for an interface or all interfaces.</td>
</tr>
<tr>
<td>show policy-map system</td>
<td>Displays the policy map settings attached to the system qos.</td>
</tr>
<tr>
<td>**show policy-map type {network-qos</td>
<td>qos</td>
</tr>
<tr>
<td>running-config ipqos</td>
<td>Displays information about the running configuration for QoS.</td>
</tr>
</tbody>
</table>
Command Purpose

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>startup-config ipqos</code></td>
<td>Displays information about the startup configuration for QoS.</td>
</tr>
</tbody>
</table>
Configuring Marking

This chapter contains the following sections:

- Information About Marking, page 27
- Configuring Marking, page 27
- Verifying the Marking Configuration, page 32

Information About Marking

Marking is a method that you use to modify the QoS fields of the incoming and outgoing packets. You can use marking commands in traffic classes that are referenced in a policy map. The marking features that you can configure are listed below:

- DSCP
- IP precedence
- CoS

Configuring Marking

Configuring DSCP Marking

For Cisco Nexus devices, you can set the DSCP value in the six most significant bits of the DiffServ field of the IP header to a specified value. You can enter numeric values from 0 to 63, in addition to the standard DSCP values shown in the table below:

Note

You can set DSCP or IP Precedence but you can not set both values because they modify the same field in the IP packet.
Table 6: Standard DSCP Values

<table>
<thead>
<tr>
<th>Value</th>
<th>List of DSCP Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>af11</td>
<td>AF11 dscp (001010)—decimal value 10</td>
</tr>
<tr>
<td>af12</td>
<td>AF12 dscp (001100)—decimal value 12</td>
</tr>
<tr>
<td>af13</td>
<td>AF13 dscp (001110)—decimal value 14</td>
</tr>
<tr>
<td>af21</td>
<td>AF21 dscp (010010)—decimal value 18</td>
</tr>
<tr>
<td>af22</td>
<td>AF22 dscp (010100)—decimal value 20</td>
</tr>
<tr>
<td>af23</td>
<td>AF23 dscp (010110)—decimal value 22</td>
</tr>
<tr>
<td>af31</td>
<td>AF31 dscp (011010)—decimal value 26</td>
</tr>
<tr>
<td>af32</td>
<td>AF40 dscp (011100)—decimal value 28</td>
</tr>
<tr>
<td>af33</td>
<td>AF33 dscp (011110)—decimal value 30</td>
</tr>
<tr>
<td>af41</td>
<td>AF41 dscp (100010)—decimal value 34</td>
</tr>
<tr>
<td>af42</td>
<td>AF42 dscp (100100)—decimal value 36</td>
</tr>
<tr>
<td>af43</td>
<td>AF43 dscp (100110)—decimal value 38</td>
</tr>
<tr>
<td>cs1</td>
<td>CS1 (precedence 1) dscp (001000)—decimal value 8</td>
</tr>
<tr>
<td>cs2</td>
<td>CS2 (precedence 2) dscp (010000)—decimal value 16</td>
</tr>
<tr>
<td>cs3</td>
<td>CS3 (precedence 3) dscp (011000)—decimal value 24</td>
</tr>
<tr>
<td>cs4</td>
<td>CS4 (precedence 4) dscp (100000)—decimal value 32</td>
</tr>
<tr>
<td>cs5</td>
<td>CS5 (precedence 5) dscp (101000)—decimal value 40</td>
</tr>
<tr>
<td>cs6</td>
<td>CS6 (precedence 6) dscp (110000)—decimal value 48</td>
</tr>
<tr>
<td>cs7</td>
<td>CS7 (precedence 7) dscp (111000)—decimal value 56</td>
</tr>
<tr>
<td>default</td>
<td>Default dscp (000000)—decimal value 0</td>
</tr>
</tbody>
</table>
List of DSCP Values

<table>
<thead>
<tr>
<th>Value</th>
<th>List of DSCP Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>ef</td>
<td>EF dscp (101110)—decimal value 46</td>
</tr>
</tbody>
</table>

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>config t</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>policy-map type qos qos-policy-map-name</td>
<td>Creates or accesses the policy map named policy-map-name, and then enters policy-map mode. The policy-map name can contain alphabetic, hyphen, or underscore characters, is case sensitive, and can be up to 40 characters.</td>
</tr>
<tr>
<td>Step 3</td>
<td>class [type qos] {class-map-name</td>
<td>Creates a reference to class-map-name, and enters policy-map class configuration mode. Use the class-default keyword to select all traffic that is not currently matched by classes in the policy map.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>class-default}</td>
</tr>
<tr>
<td></td>
<td>set dscp dscp-value</td>
<td>Sets the DSCP value to dscp-value. See the Standards DSCP Values table.</td>
</tr>
<tr>
<td>Step 5</td>
<td>set qos-group y</td>
<td>Specifies the qos-group. The group value can be from 1 to 5. Note Traffic in the class-default system class (qos-group 0), cannot be marked with DSCP.</td>
</tr>
</tbody>
</table>

This example shows how to set the DSCP value to 10 and specify the qos-group to 2.

```plaintext
policy-map type qos test-buldata
class type qos buldata
  set dscp 10
  set qos-group 2
```

Configuring IP Precedence Marking

You can set the value of the IP precedence field in bits 0 to 2 of the IPv4 type of service (ToS) field or the equivalent Traffic Class field for IPv6 of the IP header. The following table shows the precedence values:

<table>
<thead>
<tr>
<th>Value</th>
<th>List of Precedence Values</th>
</tr>
</thead>
<tbody>
<tr>
<td><0-7></td>
<td>IP precedence value</td>
</tr>
</tbody>
</table>

Note

You can set IP Precedence or DSCP but you can not set both values because they modify the same field in the IP packet.
<table>
<thead>
<tr>
<th>Value</th>
<th>List of Precedence Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>critical</td>
<td>Critical precedence (5)</td>
</tr>
<tr>
<td>flash</td>
<td>Flash precedence (3)</td>
</tr>
<tr>
<td>flash-override</td>
<td>Flash override precedence (4)</td>
</tr>
<tr>
<td>immediate</td>
<td>Immediate precedence (2)</td>
</tr>
<tr>
<td>internet</td>
<td>Internetwork control precedence (6)</td>
</tr>
<tr>
<td>network</td>
<td>Network control precedence (7)</td>
</tr>
<tr>
<td>priority</td>
<td>Priority precedence (1)</td>
</tr>
<tr>
<td>routine</td>
<td>Routine precedence (0)</td>
</tr>
</tbody>
</table>

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>config t</td>
</tr>
<tr>
<td></td>
<td>Enters configuration mode.</td>
</tr>
</tbody>
</table>
| **Step 2** | *policy-map [type qos]*
| | *qos-policy-map-name* |
| | Creates or accesses the policy map named *policy-map-name*, and then |
| | enters policy-map mode. The policy-map name can contain alphabetic, |
| | hyphen, or underscore characters, is case sensitive, and can be up to |
| | 40 characters. |
| **Step 3** | *class [type qos]*
| | *{class-map-name | class-default}* |
| | Creates a reference to *class-map-name*, and enters policy-map class |
| | configuration mode. Use the *class-default* keyword to select all |
| | traffic that is not currently matched by classes in the policy map. |
| **Step 4** | *set precedence*
| | *precedence-value* |
| | Sets the IP precedence value to *precedence-value*. You can enter one |
| | of the values shown in the Precedence Values table. |

```
switch(config)# policy-map type qos my_policy
switch(config-pmap-qos)# class type qos my_class
switch(config-pmap-c-qos)# set precedence 5

```

Configuring CoS Marking

The value of the CoS field is recorded in the high-order three bits of the VLAN ID Tag field in the IEEE 802.1Q header.
Configuring Marking

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config) # policy-map [type network-qos] policy-map name</td>
<td>Creates or accesses the policy map named policy-map-name and enters policy-map mode. The policy-map name can contain alphabetic, hyphen, or underscore characters, is case sensitive, and can be up to 40 characters.</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config-pmap-nq) # class [type network-qos] {class-map name</td>
<td>Creates a reference to the class-map-name and enters policy-map class configuration mode. Use the class-default keyword to select all traffic that is not currently matched by classes in the policy map.</td>
</tr>
<tr>
<td>Step 4</td>
<td>switch(config-pmap-c-nq) # set cos cos-value</td>
<td>Specifies the CoS value to cos-value. The cos-value can range from 0 to 7. Note This command is supported only for egress policies.</td>
</tr>
</tbody>
</table>

Required CoS Marking Configuration in a Layer 3 Topology

In Layer 3 topologies, you must configure each QoS group in the network-qos policy with a unique cos value.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# show policy-map system</td>
<td>Displays the already configured policy maps and CoS values. In Layer 3 topologies, each qosgroup must have a unique CoS value. Use the show policy-map system command to view CoS values that have been used and that are unavailable for QoS groups.</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config) # policy-map [type network-qos] policy-map name</td>
<td>Creates or accesses the policy map named policy-map-name and enters policy-map mode. The policy-map name can contain alphabetic, hyphen, or underscore characters, is case sensitive, and can be up to 40 characters.</td>
</tr>
<tr>
<td>Step 4</td>
<td>switch(config-pmap-nq) # class [type network-qos] {class-map name</td>
<td>Creates a reference to the class-map-name and enters policy-map class configuration mode.</td>
</tr>
</tbody>
</table>
Configuring Marking

Step 5

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch(config-pmap-nq-c) # set cos cos-value</td>
<td>Use the <code>class-default</code> keyword to select all traffic that is not currently matched by classes in the policy map.</td>
</tr>
</tbody>
</table>

Step 5

This example shows how to set the CoS value to 4 in a Layer 3 topology:

`switch# show policy-map system`
Type network-qos policy-maps

```
policy-map type network-qos pn-01
    class type network-qos cn-01              match qos-group 1
        mtu 8500                               
        pause no-drop                         
        set cos 2                             
    class type network-qos cn-02              match qos-group 2
        set cos 4                             
    class type network-qos cn-03              match qos-group 3
        mtu 8800                               
        set cos 6                             
    class type network-qos cn-04              match qos-group 4
        mtu 8750                               
        set cos 7                             
    class type network-qos cn-ip-multicast    match qos-group 5
        set cos 5                             
        mtu 7500                               
    class type network-qos class-default      match qos-group 0
        mtu 1500                               
        multicast-optimize                    
        set cos 1                             
...```

`switch# configure terminal`  
`switch(config)# policy-map type network-qos pn-01`  
`switch(config-pmap-nq)# class type network-qos cn-05`  
`switch(config-pmap-c-nq)# set cos 3`

### Verifying the Marking Configuration

Use one of the following commands to verify the configuration:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show class-map</td>
<td>Displays the class maps defined on the switch.</td>
</tr>
<tr>
<td>show policy-map [name]</td>
<td>Displays the policy maps defined on the switch. Optionally, you can display the named policy only.</td>
</tr>
<tr>
<td>running-config ipqos</td>
<td>Displays information about the running configuration for QoS.</td>
</tr>
<tr>
<td>Command</td>
<td>Purpose</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------------------------------------------------------------------</td>
</tr>
<tr>
<td>startup-config ipqos</td>
<td>Displays information about the startup configuration for QoS.</td>
</tr>
</tbody>
</table>
CHAPTER 6

Configuring QoS on the System

This chapter contains the following sections:

- Information About System Classes, page 35
- Configuring System QoS, page 37
- Verifying the System QoS Configuration, page 41

Information About System Classes

System Classes

The system qos is a type of MQC target. You use a service policy to associate a policy map with the system qos target. A system qos policy applies to all interfaces on the switch unless a specific interface has an overriding service-policy configuration. The system qos policies are used to define system classes, the classes of traffic across the entire switch, and their attributes. To ensure QoS consistency (and for ease of configuration), the device distributes the system class parameter values to all its attached network adapters using the Data Center Bridging Exchange (DCBX) protocol.

If service policies are configured at the interface level, the interface-level policy always takes precedence over system class configuration or defaults.

On the Cisco Nexus device, a system class is uniquely identified by a qos-group value. A total of six system classes are supported. Two of the six system classes are defaults and are always present on the device. Up to four additional system classes can be created by the administrator.

Default System Classes

The device provides the following system classes:

- Drop system class

  By default, the software classifies all unicast and multicast Ethernet traffic into the default drop system class. This class is identified by qos-group 0.
This class is created automatically when the system starts up (the class is named **class-default** in the CLI). You cannot delete this class and you cannot change the match criteria associated with the default class.

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>If congestion occurs when data traffic (class-default) and FCoE traffic (class-fcoe) is flowing at the same time, then the queuing percentage configuration starts up. The FCoE traffic is a no-drop class and does not get policed to the bandwidth assigned as per the queuing class. FCoE traffic cannot be dropped as it expects a lossless medium. When congestion occurs PFC frames are generated at FCoE ingress interfaces and dropping only occurs on the data traffic, even if data traffic is below the assigned bandwidth. For optimizing the throughput you can spread the data traffic load for a longer duration.</td>
</tr>
</tbody>
</table>

- **FCoE system class (For the Cisco Nexus 5500 Series device)**

For the Cisco Nexus 5500 Series device, the class-fcoe is not automatically created. Before you enable FCoE on the Cisco Nexus 5500 Series device running Cisco NX-OS Release 5.0(2)N1(1), you must enable class-fcoe in the three types of qos policies:

- type qos policy maps
- type network-qos policy map (attached to system qos)
- type queuing policy map (class-fcoe must be configured with a non-zero bandwidth percentage for input queuing policy maps.

  When class-fcoe is not included in the qos policies, vFC interfaces do not come up and increased drops occur.

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Nexus 5500 Series device supports five user-defined classes and one default drop system class.</td>
</tr>
</tbody>
</table>

## MTU

The Cisco Nexus device is a Layer 2 switch, and it does not support packet fragmentation. A maximum transmission unit (MTU) configuration mismatch between ingress and egress interfaces may result in packets being truncated.

When configuring MTU, follow these guidelines:

- **MTU is specified per system class.** The system class allows a different MTU for each class of traffic but they must be consistent on all ports across the entire switch. You cannot configure MTU on the interfaces.

- **Fibre Channel and FCoE payload MTU is 2158 bytes across the switch.** As a result, the rxbufsize for Fibre Channel interfaces is fixed at 2158 bytes. If the Cisco Nexus device receives an rxbufsize from a peer that is different than 2158 bytes, it will fail the exchange of link parameters (ELP) negotiation and not bring the link up.
• Enter the `system jumbomtu` command to define the upper bound of any MTU in the system. The system jumbo MTU has a default value of 9216 bytes. The minimum MTU is 2158 bytes and the maximum MTU is 9216 bytes.

• The system class MTU sets the MTU for all packets in the class. The system class MTU cannot be configured larger than the global jumbo MTU.

• The FCoE system class (for Fibre Channel and FCoE traffic) has a default MTU of 2158 bytes. This value cannot be modified.

• The switch sends the MTU configuration to network adapters that support DCBX.

Note: MTU is not supported in Converged Enhanced Ethernet (CEE) mode for DCBX.

### Configuring System QoS

#### Attaching the System Service Policy

The `service-policy` command specifies the system class policy map as the service policy for the system.

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> switch(config)# system qos</td>
<td>Enters system class configuration mode.</td>
</tr>
<tr>
<td><strong>Step 3</strong> switch(config-sys-qos)# service-policy type (network-qos</td>
<td>Specifies the policy map to use as the service policy for the system. There are three policy-map configuration modes:</td>
</tr>
<tr>
<td>qos</td>
<td>network-qos—Network-wide (system qos) mode.</td>
</tr>
<tr>
<td>[input</td>
<td>qos—Classification mode (system qos input or interface input only).</td>
</tr>
<tr>
<td>output] policy-name</td>
<td>queuing—Queuing mode (input and output at system qos and interface).</td>
</tr>
</tbody>
</table>

Note: There is no default policy-map configuration mode; you must specify the `type`. The `input` keyword specifies that this policy map should be applied to traffic received on an interface. The `output` keyword specifies that this policy-map should be applied to traffic transmitted from an interface. You can only apply `input` to a qos policy; you can apply both `input` and `output` to a queuing policy.
### Purpose

Command or Action | Purpose
--- | ---

**Step 4** | **(Optional)** Specifies the default FCoE policy map to use as the service policy for the system. There are four pre-defined policy-maps for FCoE:

- service-policy type qos input fcme-default-in-policy
- service-policy type queuing input fcme-default-in-policy
- service-policy type queuing output fcme-default-out-policy
- service-policy type network-qos fcme-default-nq-policy

**Note** Before enabling FCoE on a Cisco Nexus device, you must attach the pre-defined FCoE policy maps to the type qos, type network-qos, and type queuing policy maps.

---

This example shows how to set a no-drop Ethernet policy map as the system class:

```
switch(config)# class-map type network-qos ethCoS4
switch(config-cmap-nq)# match qos-group
switch(config-cmap-nq)# exit
switch(config)# policy-map type network-qos ethNoDrop
switch(config-pmap-nq)# class type network-qos ethCoS4
switch(config-pmap-c-nq)# pause no-drop
switch(config-pmap-c-nq)# exit
switch(config-pmap-nq)# exit
switch(config)# system qos
switch(config-sys-qos)# service-policy type network-qos ethNoDrop
```

### Restoring the Default System Service Policies

If you have created and attached new policies to the system QoS configuration, enter the `no` form of the command to reapply the default policies.

#### Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><code>switch# configure terminal</code> Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><code>switch(config)# system qos</code> Enters system class configuration mode.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><code>switch(config-sys-qos)# no service-policy type qos input policy-map name</code> Resets the classification mode policy map. This policy-map configuration is for system QoS input or interface input only:</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><code>switch(config-sys-qos)# no service-policy type network-qos policy-map name</code> Resets the network-wide policy map.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><code>switch(config-sys-qos)# no service-policy type queuing output policy-map name</code> Resets the output queuing mode policy map.</td>
</tr>
</tbody>
</table>
Configuring QoS on the System

Configuring the Queue Limit for a Specified Fabric Extender

At the Fabric Extender configuration level, you can control the queue limit for a specified Fabric Extender for egress direction (from the network to the host). You can use a lower queue limit value on the Fabric Extender to prevent one blocked receiver from affecting traffic that is sent to other noncongested receivers ("head-of-line blocking"). A higher queue limit provides better burst absorption and less head-of-line blocking protection. You can use the no form of this command to allow the Fabric Extender to use all available hardware space.

Note

At the system level, you can set the queue limit for Fabric Extenders by using the fex queue-limit command. However, configuring the queue limit for a specific Fabric Extender will override the queue limit configuration set at the system level for that Fabric Extender.

You can specify the queue limit for the following Fabric Extenders:

- Cisco Nexus 2148T Fabric Extender (48x1G 4x10G SFP+ Module)
- Cisco Nexus 2224TP Fabric Extender (24x1G 2x10G SFP+ Module)
- Cisco Nexus 2232P Fabric Extender (32x10G SFP+ 8x10G SFP+ Module)
- Cisco Nexus 2248T Fabric Extender (48x1G 4x10G SFP+ Module)
- Cisco Nexus N2248TP-E Fabric Extender (48x1G 4x10G Module)
- Cisco Nexus N2348UPQ Fabric Extender (48x10G SFP+ 6x40G QSFP Module)

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch(config)# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config)# fex fex-id</td>
<td>Specifies the Fabric Extender and enters the Fabric Extender mode.</td>
</tr>
</tbody>
</table>
### Enabling the Jumbo MTU

You can enable the jumbo Maximum Transmission Unit (MTU) for the whole switch by setting the MTU to its maximum size (9216 bytes) in the policy map for the default Ethernet system class (class-default).

When you configure jumbo MTU on a port-channel subinterface you must first enable MTU 9216 on the base interface and then configure it again on the subinterface. If you enable the jumbo MTU on the subinterface before you enable it on the base interface then the following error will be displayed on the console:

```
switch(config)# int po 502.4
switch(config-subif)# mtu 9216
ERROR: Incompatible MTU values
```

For Layer 3 routing on Cisco Nexus devices, you need to configure the MTU on the Layer 3 interfaces (SVIs and physical interfaces with IP addresses) in addition to the global QoS configuration below.

To use FCoE on switch, add class-fcoe in the custom network-qos policy. If already using FCoE, make sure to add the below lines in the config so that the FCoE does not go down on the switch after enabling the jumbo qos policy.

```
switch# conf t
switch(config)# policy-map type network-qos jumbo
switch(config-pmap-nq)# class type network-qos class-fcoe
switch(config-pmap-nq-c)# end
```

This example shows how to change qos to enable the jumbo MTU:

```
switch# conf t
switch(config)# policy-map type network-qos jumbo
switch(config-pmap-nq)# class type network-qos class-default
switch(config-pmap-c-nq)# mtu 9216
```

**Note**

The `system jumbomtu` command defines the maximum MTU size for the switch. However, jumbo MTU is supported only for system classes that have MTU configured.
Verifying the Jumbo MTU

On the Cisco Nexus device, traffic is classified into one of eight QoS groups. The MTU is configured at the QoS group level. By default, all Ethernet traffic is in QoS group 0. To verify the jumbo MTU for Ethernet traffic, use the `show queueing interface ethernet slot/chassis_number` command and find "HW MTU" in the command output to check the MTU for QoS group 0. The value should be 9216.

The `show interface` command always displays 1500 as the MTU. Because the Cisco Nexus device supports different MTUs for different QoS groups, it is not possible to represent the MTU as one value on a per interface level.

For Layer 3 routing on the Cisco Nexus device, you must verify the MTU on the Layer 3 interfaces (SVIs and physical interfaces with IP addresses) in addition to the global QoS MTU. You can verify the Layer 3 MTU by using the `show interface vlan vlan_number` or `show interface slot/chassis_number`.

This example shows how to display jumbo MTU information for Ethernet 1/19:

```
switch# show queuing interface ethernet1/19
Ethernet1/19 queuing information:
TX Queuing
 qos-group sched-type oper-bandwidth
 0 WRR 50
 1 WRR 50

RX Queuing
 qos-group 0
 q-size: 243200, HW MTU: 9280 (9216 configured)
 drop-type: drop, xon: 0, xoff: 1520
 Statistics:
 Pkts received over the port : 2119963420
 Ucast pkts sent to the cross-bar : 2115648336
 Mcast pkts sent to the cross-bar : 4315084
 Ucast pkts received from the cross-bar : 2592447431
 Pkts sent to the port : 2672878113
 Pkts discarded on ingress : 0
 Per-priority-pause status : Rx (Inactive), Tx (Inactive)
 qos-group 1
 q-size: 76800, HW MTU: 2240 (2158 configured)
 drop-type: no-drop, xon: 128, xoff: 240
 Statistics:
 Pkts received over the port : 0
 Ucast pkts sent to the cross-bar : 0
 Mcast pkts sent to the cross-bar : 0
 Ucast pkts received from the cross-bar : 0
 Pkts sent to the port : 0
 Pkts discarded on ingress : 0
 Per-priority-pause status : Rx (Inactive), Tx (Inactive)

Total Multicast crossbar statistics:
 Mcast pkts received from the cross-bar : 80430744
```

Verifying the System QoS Configuration

Use one of the following commands to verify the configuration:
<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show policy-map system</code></td>
<td>Displays the policy map settings attached to the system QoS.</td>
</tr>
<tr>
<td><code>show policy-map [name]</code></td>
<td>Displays the policy maps defined on the switch. Optionally, you can display the named policy only.</td>
</tr>
<tr>
<td><code>show class-map</code></td>
<td>Displays the class maps defined on the switch.</td>
</tr>
<tr>
<td><code>running-config ipqos</code></td>
<td>Displays information about the running configuration for QoS.</td>
</tr>
<tr>
<td><code>startup-config ipqos</code></td>
<td>Displays information about the startup configuration for QoS.</td>
</tr>
</tbody>
</table>
CHAPTER 7

Configuring QoS on Interfaces

This chapter contains the following sections:

- Information About Interface QoS, page 43
- Configuring Interface QoS, page 45
- Verifying the Interface QoS Configuration, page 47

Information About Interface QoS

Trust Boundaries

The trust boundary is enforced by the incoming interface as follows:

- All Fibre Channel and virtual Fibre Channel interfaces are automatically classified into the FCoE system class.

- By default, all Ethernet interfaces are trusted interfaces. The 802.1p CoS and DSCP are preserved unless the marking is configured. There is no default CoS to queue and DSCP to queue mapping. You can define and apply a policy to create these mappings. By default, without a user defined policy, all traffic is assigned to the default queue.

- Any packet that is not tagged with an 802.1p CoS value is classified into the default drop system class. If the untagged packet is sent over a trunk, it is tagged with the default untagged CoS value, which is zero.

- You can override the default untagged CoS value for an Ethernet interface or port channel.

- You can override the default untagged CoS value for an Ethernet interface or a port channel interface using the untagged cos cos-value command.

After the system applies the untagged CoS value, QoS functions the same as for a packet that entered the system tagged with the CoS value.
Policy for Fibre Channel Interfaces

The egress queues are not configurable for native Fibre Channel interfaces. Two queues are available as follows:

- A strict priority queue to serve high-priority control traffic.
- A queue to serve all data traffic and low-priority control traffic.

QoS for Multicast Traffic

By default, all multicast Ethernet traffic is classified into the default drop system class. This traffic is serviced by one multicast queue.

Optimized multicasting allows use of the unused multicast queues to achieve better throughput for multicast frames. If optimized multicast is enabled for the default drop system class, the system will use all 128 queues to service the multicast traffic. When optimized multicast is enabled for the default drop system class, all 128 queues are given equal priority.

If you define a new system class, a dedicated multicast queue is assigned to that class. This queue is removed from the set of queues available for the optimized multicast class.

The system provides two predefined class maps for matching broadcast or multicast traffic. These class maps are convenient for creating separate policy maps for unicast and multicast traffic.

The predefined class maps are as follows:

class-all-flood

The class-all-flood class map matches all broadcast, multicast, and unknown unicast traffic (across all CoS values). If you configure a policy map with the class-all-flood class map, the system automatically uses all available multicast queues for this traffic.

class-ip-multicast

The class-ip-multicast class map matches all IP multicast traffic. Policy options configured in this class map apply to traffic across all Ethernet CoS values. For example, if you enable optimized multicast for this class, the IP multicast traffic for all CoS values is optimized.

Note

If you configure either of these predefined class maps as a no-drop class, the priority flow control capability is applied across all Ethernet CoS values. In this configuration, pause will be applied to unicast and multicast traffic.
**Configuring Interface QoS**

**Configuring Untagged CoS**

Any incoming packet not tagged with an 802.1p CoS value is assigned the default untagged CoS value of zero (which maps to the default Ethernet drop system class). You can override the default untagged CoS value for an Ethernet or EtherChannel interface.

You can configure flow control on a Layer 2 or Layer 3 interface. Use the no switchport command to configure a Layer 3 interface.

On a Cisco Nexus device, you can configure a type qos policy map and untagged CoS on the same interface.

**Procedure**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# interface {ethernet [chassis[slot</td>
<td>port</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config-if)# untagged cos cos-value</td>
<td>Configures the untagged CoS value. Values can be from 1 to 7.</td>
</tr>
</tbody>
</table>

The following example shows how to set the CoS value to 4 for untagged frames received on an interface:

```
switch# configure terminal
switch(config)# interface ethernet 1/2
switch(config-if)# untagged cos 4
```

**Configuring an Interface Service Policy**

An input qos policy is a service policy applied to incoming traffic on an Ethernet interface for classification. For type queuing, the output policy is applied to all outgoing traffic that matches the specified class. When you configure an input queuing policy on an interface or EtherChannel, the switch sends the configuration data to the adapter using the DCBX protocol.

**Note**

Type qos policies can be activated only on Cisco Nexus device interfaces and Cisco Nexus Fabric Extender interfaces. Type qos policies on Fabric Extender fabric interfaces or Fabric Extender fabric EtherChannel interfaces are ineffective, though the Cisco NX-OS CLI does not reject the configuration.

We recommend that you do not configure type qos policy-maps on Fabric Extender fabric interfaces or Fabric Extender fabric EtherChannel interfaces to avoid wasting hardware resources.
**Configuring a Service Policy for a Layer 3 Interface**

You can configure a service policy for a Layer 3 interface.

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# interface ethernet [chassis/slot/port</td>
</tr>
</tbody>
</table>
| **Step 3** | switch(config-if)# service-policy [type {qos | queuing}] [input | output]policy-name | Specifies the policy map to use as the service policy for the system. There are two policy-map configuration modes:  
  * qos—Classification mode; this is the default mode.  
  * queuing—Queuing mode. |
| **Step 4** | switch(config-if)# service-policy input policy-name | Applies the policy map to the interface. |

This example shows how to apply a policy to an Ethernet interface:

```
switch# configure terminal
switch(config)# interface ethernet 1/1
switch(config-if)# service-policy type qos input policy1
```
### Configuring QoS on Interfaces

#### Verifying the Interface QoS Configuration

Use one of the following commands to verify the configuration:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show class-map</td>
<td>Displays the class maps defined on the switch.</td>
</tr>
<tr>
<td>show policy-map [name]</td>
<td>Displays the policy maps defined on the switch. Optionally, you can display the named policy only.</td>
</tr>
<tr>
<td>show policy-map interface [interface number]</td>
<td>Displays the policy map settings for an interface or all interfaces.</td>
</tr>
<tr>
<td>show queuing interface [interface slot/port]</td>
<td>Displays the queue configuration and statistics.</td>
</tr>
<tr>
<td>show interface flowcontrol [module numbef]</td>
<td>Displays the detailed listing of the flow control settings on all interfaces.</td>
</tr>
</tbody>
</table>

---

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 4</strong> switch(config-if)# service-policy [type qos queuing] [input</td>
<td>output] policy-name</td>
</tr>
<tr>
<td></td>
<td>• qos—Classification mode (this is the default mode).</td>
</tr>
<tr>
<td></td>
<td>• queuing—Queuing mode.</td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>The input keyword specifies that this policy map should be applied to traffic received on an interface. The output keyword specifies that this policy map should be applied to traffic transmitted from an interface. You can only apply input to a qos policy; you can apply both input and output to a queuing policy.</td>
</tr>
</tbody>
</table>

The following example shows how to attach a queuing policy map to a Layer 3 interface:

```
switch# configure terminal
switch(config)# interface ethernet 1/5
switch(config-if)# no switchport
switch(config-if)# service-policy type queuing output my_output_q_policy
```

The following example shows how to attach an input qos policy map to a Layer 3 interface:

```
switch# configure terminal
switch(config)# interface ethernet 1/5
switch(config-if)# no switchport
switch(config-if)# service-policy type qos input my_input_qos_policy
```
<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **show interface [interface slot/port]**
| **priority-flow-control [module number]** | Displays the priority flow control details for a specified interface. |
| **show interface untagged-cos [module number]** | Displays the untagged CoS values for all interfaces. |
| **running-config ipqos** | Displays information about the running configuration for QoS. |
| **startup-config ipqos** | Displays information about the startup configuration for QoS. |
CHAPTER 8

Configuring QoS on VLANs

This chapter contains the following sections:

- Information About VLAN QoS, page 49
- Precedence of QoS Policies, page 49
- Limiting TCAM Entries for VLAN QoS, page 52
- Guidelines and Limitations for VLAN QoS, page 52
- Configuring VLAN QoS, page 53
- Verifying the VLAN QoS Configuration, page 56
- Feature History for VLAN QoS, page 56

Information About VLAN QoS

On Cisco Nexus devices, you can configure quality of service (QoS) policies for classification and marking on VLANs. The policies that you apply to a VLAN are applied to the traffic on the VLAN's Layer 2 and switch virtual interface (SVI) ports.

Precedence of QoS Policies

The marking requirements in a QoS policy determine its precedence. Interface QoS policies take the highest precedence, the VLAN QoS policies are next, and the System QoS policies have the lowest precedence.

However, if a VLAN is assigned both a VLAN QoS policy and a VLAN ACL (VACL), the VACL takes the highest precedence.
Example of Interface, System, and VLAN Policy Precedence

This example shows a configuration where the traffic on interface 1/1 with CoS 5 goes to qos-group 3. Traffic on the other interfaces with VLAN 10 and CoS 5 go to qos-group 4. Traffic on interfaces other than VLAN 10 and CoS 5 go to qos-group 5.

class-map type qos match-all cm1
   match cos 5
policy-map type qos pm-ifc
   class cm1
   set qos-group 3
   class class-default
policy-map type qos pm-vlan
   class cm1
   set qos-group 4
   class class-default
policy-map type qos pm-sys
   class cm1
   set qos-group 5
   class class-default

system qos
   service-policy type qos input pm-sys
vlan configuration 10
   service-policy type qos input pm-vlan
interface Ethernet1/1
   service-policy type qos input pm-ifc

Example of Interface and System QoS Policy Precedence

This example shows a configuration where the traffic on interface 1/1 with CoS 5 goes to qos-group 3. Traffic on the other interfaces with CoS 5 go to qos-group 5.

class-map type qos match-all cm1
   match cos 5
policy-map type qos pm-ifc
   class cm1
   set qos-group 3
   class class-default
policy-map type qos pm-sys
   class cm1
   set qos-group 5
   class class-default

system qos
   service-policy type qos input pm-sys
interface Ethernet1/1
   service-policy type qos input pm-ifc

Example of System and VLAN Policy Precedence

This example shows a configuration where the traffic on VLAN 10 with CoS 5 goes to qos-group 4. Traffic on the other VLANs with CoS 5 go to qos-group 5.

class-map type qos match-all cm1
   match cos 5
policy-map type qos pm-vlan
   class cm1
   set qos-group 4
Example of VLAN QoS and VACL Policy Precedence

In this example, the packets with source IP address 10.10.10.1 are dropped. However, the other packets with VLAN 10 and CoS 5 go to qos-group 4.

```plaintext
class class-default
policy-map type qos pm-sys
 class cm1
 set qos-group 5
 class class-default

system qos
 service-policy type qos input pm-sys
vlan configuration 10
 service-policy type qos input pm-vlan
```

```plaintext
ip access-list al1
 10 permit ip 10.10.10.1/24 any
vlan access-map v-am1
 match ip address al1
 action drop
 vlan filter v-am1 vlan-list 10

class-map type qos match-all cm1
 match cos 5
policy-map type qos pm-vlan
 class cm1
 set qos-group 4
 class class-default

vlan configuration 10
 service-policy type qos input pm-vlan
```
Limiting TCAM Entries for VLAN QoS

The QoS TCAM region is shared by the interface QoS, system QoS, and VLAN QoS policies. You need to limit the number of TCAM entries for the interface QoS policies in order to define VLAN QoS policies. Use the `hardware profile tcam feature interface-qos limit tcam-size` to configure this limit.

Figure 1: QoS TCAM Region

Guidelines and Limitations for VLAN QoS

- A VLAN must have at least one active member port for a service policy to be configured on. If a VLAN does not have at least one active member, and you configure a service policy on it, the configuration is accepted; however, the TCAM is not programmed.
- If a VLAN is removed with the `no vlan number` command, the service policy that is configured on that VLAN is still present, but it is not active.
- The TCAM must have enough free entries to configure the service policy on the VLAN.
- A rollback might fail if the interface QoS limit is different in the running configuration than in the rollback configuration.
- If a VLAN with a QoS policy is configured on an interface with no QoS policy, the `show policy-map interface number` command does not display the QoS policy configured on the VLAN.
• Remove all interface QoS policies before changing the interface QoS limit.
• Acllogs can only support logging levels of 3 or later.
• We support only logging denials on the ACL, permits will not be logged.
• Only one log message will be displayed until the flow stops and the rest is displayed later.

**Configuring VLAN QoS**

**Configuring or Changing the Interface QoS TCAM Limit**

To configure the interface_qos_limit to a specific number, the QoS region of the TCAMs in all of the ASICs cannot have any interfaces policies configured beyond the offset of that number. For example, to configure the interface_qos_limit to 1000, the QoS regions of the TCAMs in all of the ASICs cannot have any interface policies configured beyond offset 1000.

**Procedure**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# hardware profile tcam feature interface-qos limit tcam-size</td>
<td>Configures the interface QoS TCAM limit. The tcam-size range is from 7 to 446 entries.</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config)# show hardware profile tcam feature qos</td>
<td>Displays the limits of the QoS TCAMs.</td>
</tr>
<tr>
<td>Step 4</td>
<td>switch(config)# copy running-config startup-config</td>
<td>(Optional) Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.</td>
</tr>
</tbody>
</table>

This example shows how to set the interface QoS TCAM limit to 20 entries:

```
switch(config)# configure terminal
switch(config)# hardware profile tcam feature interface-qos limit 20
switch(config)# show hardware profile tcam feature qos
Feature Limit (number of tcam entries)

interface-qos 20
vlan-qos + global-qos 428

switch(config)# copy running-config startup-config
```
Removing the Interface QoS Limit from the TCAM

Before You Begin

- Remove all VLAN QoS policies.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Displays the limits of the QoS TCAMs.</td>
</tr>
<tr>
<td>switch(config)# show hardware profile tcam feature qos</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Configures the interface QoS TCAM limit. The <code>tcam-size</code> range is from 7 to 446 entries.</td>
</tr>
<tr>
<td>switch(config)# no hardware profile tcam feature interface-qos limit tcam-size</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>(Optional) Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.</td>
</tr>
<tr>
<td>switch(config)# copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

This example shows how to remove the interface QoS TCAM limit:

```
switch(config)# configure terminal
switch(config)# show hardware profile tcam feature qos
Feature Limit (number of tcam entries)

interface-qos 20
vlan-qos + global-qos 428

switch(config)# no hardware profile tcam feature interface-qos limit 20
switch(config)# copy running-config startup-config
```

Configuring a Service Policy on a VLAN

Before You Begin

- You must configure the interface QoS limit.
- You must configure a policy map.
- The TCAM must have enough free entries to configure the service policy on the VLAN.
### Configuring QoS on VLANs

#### Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# vlan configuration vlan-number</td>
</tr>
<tr>
<td></td>
<td>Creates a VLAN and enters VLAN configuration mode. The <code>vlan-number</code> range is from 1 to 4094.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switch(config-vlan)# service-policy type qos input policy-name</td>
</tr>
<tr>
<td></td>
<td>Assigns a policy map to the VLAN. The <code>policy-name</code> is the name assigned to the policy map. The name can be a maximum of 40 alphanumeric characters.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>switch(config-vlan)# copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Saves the change persistently through reboots and restarts by copying the running configuration to the startup configuration.</td>
</tr>
</tbody>
</table>

This example shows how to create a service policy and assign it to VLAN 10:

```
switch# configure terminal
switch(config)# class-map type qos cm1
switch(config-cmap-qos)# match cos 5
switch(config-pmap-qos)# policy-map type qos pm-vlan
switch(config-pmap-qos)# class cm1
switch(config-pmap-c-qos)# set qos-group 4
switch(config-pmap-c-qos)# exit
switch(config-pmap-qos)# exit
switch(config)# vlan configuration 10
switch(config-vlan-config)# service-policy type qos input pm-vlan
switch(config-vlan-config)#
```

### Removing a Service Policy from a VLAN

#### Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# vlan configuration vlan-number</td>
</tr>
<tr>
<td></td>
<td>Enters VLAN configuration mode for the specified VLAN. The <code>vlan-number</code> range is from 1 to 4094.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switch(config-vlan-config)# no service-policy type qos input policy-name</td>
</tr>
<tr>
<td></td>
<td>Removes the policy from the VLAN. The <code>policy-name</code> is the name assigned to the policy map. The name can be a maximum of 40 alphanumeric characters.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>switch(config-vlan-config)# copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Saves the changes persistently through reboots and restarts by copying the running configuration to the startup configuration.</td>
</tr>
</tbody>
</table>
This example shows how to remove the pm-vlan policy map from VLAN 10:

```
switch# configure terminal
switch(config)# vlan configuration 10
switch(config-vlan-config)# no service-policy type qos input pm-vlan
switch(config-vlan-config)# copy running-config startup-config
```

## Verifying the VLAN QoS Configuration

Use one of the following commands to verify the configuration:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show policy-map vlan vlan-number</code></td>
<td>Displays the QoS policies configured on the specified VLAN.</td>
</tr>
<tr>
<td><code>show policy-map [name]</code></td>
<td>Displays the policy maps defined on the switch. Optionally, you can display the named policy only.</td>
</tr>
<tr>
<td><code>running-config ipqos</code></td>
<td>Displays information about the running configuration for QoS.</td>
</tr>
<tr>
<td><code>startup-config ipqos</code></td>
<td>Displays information about the startup configuration for QoS.</td>
</tr>
</tbody>
</table>

## Feature History for VLAN QoS

### Table 8: Feature History for VLAN QoS

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Release</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN QoS</td>
<td>5.1(3)N2(1)</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>
Configuring Queuing and Flow Control

This chapter contains the following sections:

- Information About Queues, page 57
- Information About Flow Control, page 60
- Configuring Queuing, page 61
- Configuring Flow Control, page 65
- Verifying the Queue and Flow Control Configurations, page 67

Information About Queues

Ingress Queuing Policies

You can associate an ingress policy map with an Ethernet interface to guarantee bandwidth for the specified traffic class or to specify a priority queue.

The ingress policy is applied in the adapter to all outgoing traffic that matches the specified CoS value.

When you configure an ingress policy for an interface, the switch sends the configuration data to the adapter. If the adapter does not support the DCBX protocol or the ingress policy type-length-value (TLV), the ingress policy configuration is ignored.

Egress Queuing Policies

You can associate an egress policy map with an Ethernet interface to guarantee the bandwidth for the specified traffic class or to configure the egress queues.

The bandwidth allocation limit applies to all traffic on the interface including any FCoE traffic.

Each Ethernet interface supports up to eight queues, one for each system class. The queues have the following default configuration:

- In addition to these queues, control traffic that is destined for the CPU uses strict priority queues. These queues are not accessible for user configuration.
FCoE traffic (traffic that maps to the FCoE system class) is assigned a queue. This queue uses weighted round-robin (WRR) scheduling with 50 percent of the bandwidth.

Standard Ethernet traffic in the default drop system class is assigned a queue. This queue uses WRR scheduling with 100 percent of the bandwidth.

If you add a system class, a queue is assigned to the class. You must reconfigure the bandwidth allocation on all affected interfaces. Bandwidth is not dedicated automatically to user-defined system classes.

You can configure one strict priority queue. This queue is serviced before all other queues except the control traffic queue (which carries control rather than data traffic).

Buffering and Queue Limits on the Cisco Nexus 5000 Platform

The following buffering limits exist for the Cisco Nexus 5000 Platform:

- Maximum ingress port buffering: 320KB per port.
- Maximum egress port buffering: 160KB per port.

The following default buffer allocations per port exist for the Cisco Nexus 5000 Platform:

<table>
<thead>
<tr>
<th>Traffic Class</th>
<th>Ingress Buffer (KB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class-fcoe</td>
<td>76.8</td>
</tr>
<tr>
<td>User-defined no-drop class of service with an MTU less than 2240</td>
<td>76.8</td>
</tr>
<tr>
<td>User-defined no-drop class of service with an MTU greater than 2240</td>
<td>81.9</td>
</tr>
<tr>
<td>Tail drop class of service</td>
<td>20.48</td>
</tr>
<tr>
<td>Class-default</td>
<td>All of the remaining buffer (243.2KB with the default QoS configuration)</td>
</tr>
</tbody>
</table>

The default buffer allocation varies depending on the type of class. For example, if you create a regular tail drop traffic class the default allocation is 20.48KB, unless you specify a larger size using the queue-limit command.

To increase the buffer space available to a user-created qos-group, from a network-qos policy-map, use the queue-limit command.

All of the available buffer is allocated to the class-default. When you define a new qos-group, the required buffer for the new qos-group is taken from the class-default buffer.

Note

Each new class requires an additional 18.880KB, so the exact amount of buffer that is left in the class default is 243.2KB minus the buffer used by other qos-groups minus 18.880KB times the number of qos-groups.
The default QoS configuration for the Nexus 5000 platform creates the class-fcoe and class-default. The show queuing interface command displays the configured qos-group and the ingress buffer allocated for each qos-group.

### Buffering and Queue Limits on the Cisco Nexus Device

On the Nexus 5500 platform, the packet buffer per port is 640KB. The Nexus 5548P, Nexus 5548UP, and the Nexus 5596UP switch share the same buffer architecture. The Nexus 5500 platform implements Virtual Output Queueing (VOQ) and ingress buffer architecture with the majority of the buffer allocated at ingress. The architecture allows the switch to store packets at multiple ingress ports when there are multiple ports sending traffic to one egress port which causes congestion.

The following default buffer allocations per port exist for the Cisco Nexus 5500 Platform:

<table>
<thead>
<tr>
<th>Traffic Class</th>
<th>Ingress Buffer (KB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class-fcoe</td>
<td>79.360</td>
</tr>
<tr>
<td>User-defined no-drop with an MTU less than 2240</td>
<td>79.360</td>
</tr>
<tr>
<td>User-defined no-drop class with an MTU greater than 2240</td>
<td>90.204</td>
</tr>
<tr>
<td>Tail drop traffic class</td>
<td>22.720</td>
</tr>
<tr>
<td>Class-default</td>
<td>All of the remaining buffer (470 with default QoS configuration)</td>
</tr>
</tbody>
</table>

The default buffer allocation varies depending on the type of class. For example, if you create a regular tail drop traffic class the default allocation is 22.7KB, unless you specify a larger size using the `queue-limit` command.

To increase the ingress buffer space available to a user-created qos-group, from a network-qos policy-map, use the `queue-limit` command.

In addition to ingress buffer allocated for each user-created qos-group there is an additional 29.76KB buffer required at egress for each qos-group.

With the default QoS configuration, all of the available buffer (470KB) is allocated to the class-default. When you create a new qos-group, the buffer required for the new qos-group will be taken away from class-default. The amount of buffer that is left for class-default equals 470 minus the ingress buffer used by other qos-groups minus 29.76KB and times the number of qos-groups.

- **Note**

  Each new class requires an additional 29.76KB, so the exact amount of buffer that is left in the class default equals 478 minus the buffer used by other qos-groups minus 18.880KB times the number of qos-groups.

  The default QoS policy for the Cisco Nexus device does not create class-fcoe and does not reserve buffer and qos-group for FCoE traffic.

  The `show queuing interface` command can display the amount of ingress buffer allocated for each qos-group.
Information About Flow Control

Link-Level Flow Control

IEEE 802.3x link-level flow control allows a congested receiver to communicate a transmitter at the other end of the link to pause its data transmission for a short period of time. The link-level flow control feature applies to all the traffic on the link.

The transmit and receive directions are separately configurable. By default, link-level flow control is disabled for both directions.

On the Cisco Nexus device, Ethernet interfaces do not automatically detect the link-level flow control capability. You must configure the capability explicitly on the Ethernet interfaces.

On each Ethernet interface, the switch can enable either priority flow control or link-level flow control (but not both).

Priority Flow Control

Priority flow control (PFC) allows you to apply pause functionality to specific classes of traffic on a link instead of all the traffic on the link. PFC applies pause functionality based on the IEEE 802.1p CoS value. When the switch enables PFC, it communicates to the adapter which CoS values to apply the pause.

Ethernet interfaces use PFC to provide lossless service to no-drop system classes. PFC implements pause frames on a per-class basis and uses the IEEE 802.1p CoS value to identify the classes that require lossless service.

In the switch, each system class has an associated IEEE 802.1p CoS value that is assigned by default or configured on the system class. If you enable PFC, the switch sends the no-drop CoS values to the adapter, which then applies PFC to these CoS values.

The default CoS value for the FCoE system class is 3. This value is configurable.

By default, the switch negotiates to enable the PFC capability. If the negotiation succeeds, PFC is enabled and link-level flow control remains disabled regardless of its configuration settings. If the PFC negotiation fails, you can either force PFC to be enabled on the interface or you can enable IEEE 802.3x link-level flow control.

If you do not enable PFC on an interface, you can enable IEEE 802.3x link-level pause.

Note

Ensure that pause no-drop is configured on a class map for link-level pause.

By default, link-level pause is disabled.
Configuring Queuing

Configuring the Queue Limit for a Specified Fabric Extender

At the Fabric Extender configuration level, you can control the queue limit for a specified Fabric Extender for egress direction (from the network to the host). You can use a lower queue limit value on the Fabric Extender to prevent one blocked receiver from affecting traffic that is sent to other noncongested receivers ("head-of-line blocking"). A higher queue limit provides better burst absorption and less head-of-line blocking protection. You can use the no form of this command to allow the Fabric Extender to use all available hardware space.

Note

At the system level, you can set the queue limit for Fabric Extenders by using the fex queue-limit command. However, configuring the queue limit for a specific Fabric Extender will override the queue limit configuration set at the system level for that Fabric Extender.

You can specify the queue limit for the following Fabric Extenders:

- Cisco Nexus 2148T Fabric Extender (48x1G 4x10G SFP+ Module)
- Cisco Nexus 2224TP Fabric Extender (24x1G 2x10G SFP+ Module)
- Cisco Nexus 2232P Fabric Extender (32x10G SFP+ 8x10G SFP+ Module)
- Cisco Nexus 2248T Fabric Extender (48x1G 4x10G SFP+ Module)
- Cisco Nexus N2248TP-E Fabric Extender (48x1G 4x10G Module)
- Cisco Nexus N2348UPQ Fabric Extender (48x10G SFP+ 6x40G QSFP Module)

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config)# fex fex-id</td>
<td>Specifies the Fabric Extender and enters the Fabric Extender mode.</td>
</tr>
<tr>
<td>Step 3 switch(config-fex)# hardware fex_card_type queue-limit queue-limit</td>
<td>Configures the queue limit for the specified Fabric Extender. The queue limit is specified in bytes. The range is from 81920 to 652800 for a Cisco Nexus 2148T Fabric Extender and from 2560 to 652800 for all other supported Fabric Extenders.</td>
</tr>
</tbody>
</table>

This example shows how to restore the default queue limit on a Cisco Nexus 2248T Fabric Extender:

```
switch# configure terminal
switch(config-if)# fex 101
switch(config-fex)# hardware N2248T queue-limit 327680
```
This example shows how to remove the queue limit that is set by default on a Cisco Nexus 2248T Fabric Extender:

```
switch# configure terminal
switch(config)# fex 101
switch(config-fex)# no hardware N2248T queue-limit 327680
```

## Configuring No-Drop Buffer Thresholds

You can configure the no-drop buffer threshold settings for 3000m lossless Ethernet.

**Note**

To achieve lossless Ethernet for both directions, the devices connected to the Cisco Nexus device must have the similar capability. The default buffer and threshold value for the no-drop can ensure lossless Ethernet for up to 300 meters.

### Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# policy-map type network-qos policy-map name</td>
</tr>
<tr>
<td></td>
<td>Enters policy-map network-qos class mode and identifies the policy map</td>
</tr>
<tr>
<td></td>
<td>assigned to the type network-qos policy map.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switch(config-pmap-nq)# class type network-qos class-map</td>
</tr>
<tr>
<td></td>
<td>References an existing network QoS class map in a policy map and</td>
</tr>
<tr>
<td></td>
<td>enters class mode.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>switch(config-pmap-nq-c)# pause no-drop buffer-size buffer-size</td>
</tr>
<tr>
<td></td>
<td>pause-threshold xoff-size xon-size</td>
</tr>
<tr>
<td></td>
<td>Specifies the buffer threshold settings for pause and resume for</td>
</tr>
<tr>
<td></td>
<td>3000m lossless Ethernet:</td>
</tr>
<tr>
<td></td>
<td>• buffer-size—Buffer size for ingress traffic, in bytes. Valid values</td>
</tr>
<tr>
<td></td>
<td>are from 10240 to 490880.</td>
</tr>
<tr>
<td></td>
<td>Note: On a Cisco Nexus 5020 switch, you can configure a maximum buffer</td>
</tr>
<tr>
<td></td>
<td>size of 143680 bytes.</td>
</tr>
<tr>
<td></td>
<td>On a Cisco Nexus 5500 Series device, you can configure a maximum</td>
</tr>
<tr>
<td></td>
<td>buffer size of 152000 bytes.</td>
</tr>
<tr>
<td></td>
<td>• pause-threshold—Specifies the buffer limit at which the port pauses</td>
</tr>
<tr>
<td></td>
<td>the peer.</td>
</tr>
<tr>
<td></td>
<td>• xoff-size—Buffer limit for pausing, in bytes. Valid values are 0 to</td>
</tr>
<tr>
<td></td>
<td>490880.</td>
</tr>
<tr>
<td></td>
<td>Note: On a Cisco Nexus 5020 switch, you can configure a maximum</td>
</tr>
<tr>
<td></td>
<td>pause-threshold value of 58860 bytes.</td>
</tr>
<tr>
<td></td>
<td>On a Cisco Nexus 5500 Series device, you can configure a maximum</td>
</tr>
<tr>
<td></td>
<td>pause-threshold value of 103360 bytes.</td>
</tr>
</tbody>
</table>
### Configuring the Buffer Threshold for the Cisco Nexus 2148T Fabric Extender

In the Fabric Extender configuration mode, you can configure the buffer threshold for the Cisco Nexus 2148T Fabric Extender. The buffer threshold sets the consumption level of input buffers before an indication is sent to the egress queue to start observing the tail drop threshold. If the buffer usage is lower than the configured buffer threshold, the tail drop threshold is ignored.

#### Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
</tr>
</tbody>
</table>
Enabling Virtual Output Queuing Limits for Unicast Traffic on the Cisco Nexus Device

You can enable the Virtual Output Queuing (VOQ) limit for unicast traffic. To alleviate congestion and blocking, use VOQ to prevent one blocked receiver from affecting traffic that is sent to other noncongested blocking receivers.

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# hardware unicast voq-limit</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switch(config)# no hardware unicast voq-limit</td>
</tr>
</tbody>
</table>

This example shows how to enable the VOQ limits for unicast packets on a switch:

```
switch(config)# hardware unicast voq-limit
switch(config)#
```
Configuring Flow Control

Link-Level Flow Control

IEEE 802.3x link-level flow control allows a congested receiver to communicate a transmitter at the other end of the link to pause its data transmission for a short period of time. The link-level flow control feature applies to all the traffic on the link.

The transmit and receive directions are separately configurable. By default, link-level flow control is disabled for both directions.

On the Cisco Nexus device, Ethernet interfaces do not automatically detect the link-level flow control capability. You must configure the capability explicitly on the Ethernet interfaces.

On each Ethernet interface, the switch can enable either priority flow control or link-level flow control (but not both).

Configuring Priority Flow Control

By default, Ethernet interfaces negotiate PFC with the network adapter using the DCBX protocol. When PFC is enabled, PFC is applied to traffic that matches the CoS value configured for the no-drop class.

You can override the negotiation result by forcing the interface to enable PFC.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# interface type slot/port</td>
</tr>
<tr>
<td></td>
<td>Specifies the interface to be changed.</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config-if)# priority-flow-control mode {auto</td>
</tr>
<tr>
<td></td>
<td>Sets PFC mode for the selected interface.</td>
</tr>
<tr>
<td></td>
<td>Specifies auto to negotiate PFC capability. This is the default.</td>
</tr>
<tr>
<td></td>
<td>Specifies on to force-enable PFC.</td>
</tr>
<tr>
<td>Step 4</td>
<td>switch(config-if)# no priority-flow-control mode on</td>
</tr>
<tr>
<td></td>
<td>(Optional)</td>
</tr>
<tr>
<td></td>
<td>Disables the PFC setting for the selected interface.</td>
</tr>
</tbody>
</table>

This example shows how to force-enable PFC on an interface:

```
switch# configure terminal
switch(config)# interface ethernet 1/2
switch(config-if)# priority-flow-control mode on
```
Configuring Link-Level Flow Control

By default, LLC on Ethernet interfaces is disabled. You can enable LLC for the transmit and receive directions.

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> switch# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> switch(config)# interface <em>type</em> <em>slot</em>/port</td>
<td>Specifies the interface to be changed.</td>
</tr>
<tr>
<td><strong>Step 3</strong> switch(config-if)# flowcontrol [receive {on</td>
<td>off}] [transmit {on</td>
</tr>
<tr>
<td><strong>Step 4</strong> switch(config-if)# no flowcontrol [receive {on</td>
<td>off}] [transmit {on</td>
</tr>
</tbody>
</table>

This example shows how to enable LLC on an interface:

```plaintext
switch# configure terminal
switch(config)# interface ethernet 1/2
switch(config-if)# flowcontrol receive on transmit on
```

Disabling Slow Port Pruning on Multicast Traffic on the Cisco Nexus 5500 Series Device

You can disable slow port pruning on multicast packets.

An interface on the Cisco Nexus 5500 Series device can become congested when it receives excessive multicast traffic or when the mixed unicast and multicast traffic rate exceeds the port bandwidth. When multiple interfaces receive the same multicast flow and one or more ports experience congestion, the slow port pruning feature allows the switch to drop only the multicast packets for the congested port. This feature is turned on by default. To turn the slow port pruning feature off, enter the `hardware multicast disable-slow-port-pruning` command.

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> switch# configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> switch(config)# hardware multicast disable-slow-port-pruning</td>
<td>Disables slow port pruning on multicast packets. The default is enabled.</td>
</tr>
<tr>
<td><strong>Step 3</strong> switch(config)# no hardware multicast disable-slow-port-pruning</td>
<td>Enables the slow port pruning feature.</td>
</tr>
</tbody>
</table>
This example shows how to disable slow port pruning on a Cisco Nexus 5548 switch:

```
switch(config)# hardware multicast disable-slow-port-pruning
switch(config)#
```

### Verifying the Queue and Flow Control Configurations

Use one of the following commands to verify the configuration:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show queuing interface [interface slot/port]</code></td>
<td>Displays the queue configuration and statistics.</td>
</tr>
<tr>
<td><code>show interface flowcontrol [module numbef ]</code></td>
<td>Displays the detailed listing of the flow control settings on all interfaces.</td>
</tr>
<tr>
<td><code>show interface [interface slot/port] priority-flow-control [module number]</code></td>
<td>Displays the priority flow control details for a specified interface.</td>
</tr>
<tr>
<td><code>show wrr-queue cos-map [var]</code></td>
<td></td>
</tr>
<tr>
<td><code>running-config ipqos</code></td>
<td>Displays information about the running configuration for QoS.</td>
</tr>
<tr>
<td><code>startup-config ipqos</code></td>
<td>Displays information about the startup configuration for QoS.</td>
</tr>
</tbody>
</table>
Verifying the Queue and Flow Control Configurations
QoS Configuration Examples

This chapter contains the following sections:

- QoS Example 1, page 69
- QoS Example 2, page 70
- QoS Example 3, page 72

QoS Example 1

This example shows how to configure traffic in the entire system matching an access control list to have the frame CoS fields rewritten to the value 5.
### Procedure

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set up the ingress classification policy (the access control list was defined previously).</td>
<td>(config)# class-map type qos cmap-qos-acl (config-cmap-qos)# match access-group ACL-CoS (config-cmap-qos)# exit (config)# policy-map type qos pmap-qos-acl (config-pmap-qos)# class cmap-qos-acl (config-pmap-c-qos)# set qos-group 4 (config-pmap-c-qos)# exit (config-pmap-qos)# exit</td>
<td>(the access control list was defined previously).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attach the classification policy to the system.</td>
<td>(config)# system qos (config-sys-qos)# service-policy type qos input pmap-qos-acl (config-sys-qos)# exit</td>
<td>Attach the classification policy to the system.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set up the system class allocation and rewrite policy. Allocate the system class for qos-group 4 and define the rewrite action.</td>
<td>(config)# class-map type network-qos cmap-nq-acl (config-cmap-nq)# match qos-group 4 (config-cmap-nq)# exit (config)# policy-map type network-qos pmap-nq-acl (config-pmap-nq)# class type network-qos cmap-nq-acl (config-pmap-c-nq)# set cos 5 (config-pmap-c-nq)# exit (config-pmap-nq)# exit</td>
<td>Set up the system class allocation and rewrite policy. Allocate the system class for qos-group 4 and define the rewrite action.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attach the allocation and rewrite policy to the system.</td>
<td>(config)# system qos (config-sys-qos)# service-policy type network-qos pmap-nq-acl (config-sys-qos)# exit</td>
<td>Attach the allocation and rewrite policy to the system.</td>
</tr>
</tbody>
</table>

### QoS Example 2

This example shows how to use an access control list to apply 50% bandwidth to traffic on Ethernet interface 1/3 that matches traffic on Ethernet interface 1/1.
# Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | Set up the ingress classification policy. | (config)# class-map type qos cmap-qos-bandwidth
(config-cmap-qos)# match access-group ACL-bandwidth
(config-cmap-qos)# exit
(config)# policy-map type qos pmap-qos-eth1-1
(config-pmap-qos)# class cmap-qos-bandwidth
(config-pmap-c-qos)# set qos-group 2
(config-pmap-c-qos)# exit |
| Step 2 | Attach the classification policy to the interface Ethernet 1/1. | (config)# interface ethernet 1/1
(config-if)# service-policy type qos input pmap-qos-eth1-1
(config-if)# exit |
| Step 3 | Set up the system-wide definition of the qos-group first. | (config)# class-map type queuing cmap-que-bandwidth
(config-cmap-que)# match qos-group 2
(config-cmap-que)# exit |
| Step 4 | Set up the egress bandwidth policy. | **Note** Before you can successfully allocate bandwidth to the user-defined class cmap-que-bandwidth, you must first reduce the default bandwidth configuration on class-default and class-fcoe.
(config)# policy-map type queuing pmap-que-eth1-2
(config-pmap-que)# class type queuing class-default
(config-pmap-c-que)# bandwidth percent 10
(config-pmap-c-que)# exit
(config-pmap-que)# class type queuing class-fcoe
(config-pmap-c-que)# bandwidth percent 40
(config-pmap-c-que)# exit
(config-pmap-que)# class type queuing cmap-que-bandwidth
(config-pmap-c-que)# bandwidth percent 50
(config-pmap-c-que)# exit |

---

**QoS Example 2**

Cisco Nexus 5000 NX-OS Quality of Service Configuration Guide, Release 5.1(3)N2(1)
QoS Example 3

This example shows how to attach a 802.1p tag with a CoS value of 3 to incoming untagged packets, and force priority-flow-control negotiation on Ethernet interface 1/15.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Set up the ingress classification policy (the access control list was defined previously).</td>
</tr>
<tr>
<td>(config)# interface Ethernet 1/15</td>
<td></td>
</tr>
<tr>
<td>(config-if)# untagged cos 3</td>
<td></td>
</tr>
<tr>
<td>(config-if)# priority-flow-control mode on</td>
<td></td>
</tr>
<tr>
<td>(config-if)# exit</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 5</strong></td>
<td>Attach the bandwidth policy to the egress interface.</td>
</tr>
<tr>
<td>(config)# interface ethernet 1/3</td>
<td></td>
</tr>
<tr>
<td>(config-if)# service-policy type queuing output pmap-que-eth1-2</td>
<td></td>
</tr>
<tr>
<td>(config-if)# exit</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>Allocate the system class for qos-group 2.</td>
</tr>
<tr>
<td>(config)# class-map type network-qos cmap-nq-bandwidth</td>
<td></td>
</tr>
<tr>
<td>(config-cmap-nq)# match qos-group 2</td>
<td></td>
</tr>
<tr>
<td>(config-cmap-nq)# exit</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>Set up the network-qos policy.</td>
</tr>
<tr>
<td>(config)# policy-map type network-qos pmap-nq-bandwidth</td>
<td></td>
</tr>
<tr>
<td>(config-pmap-nq)# class type network-qos cmap-nq-bandwidth</td>
<td></td>
</tr>
<tr>
<td>(config-pmap-c-nq)# exit</td>
<td></td>
</tr>
<tr>
<td>(config-pmap-nq)# exit</td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>Attach the network-qos policy to the system.</td>
</tr>
<tr>
<td>(config)# system qos</td>
<td></td>
</tr>
<tr>
<td>(config-sys-qos)# service-policy type network-qos pmap-nq-bandwidth</td>
<td></td>
</tr>
<tr>
<td>(config-sys-qos)# exit</td>
<td></td>
</tr>
</tbody>
</table>
INDEX

A
attaching 37
   system service policy 37

C
class maps 8
   configuring 8
classification 7, 8
   information about 7
   licensing requirements 8
classification configuration 16
   verifying 16
classification policies 8
   ingress 8
   configuring 22, 27, 29, 45, 62, 65, 66
DSCP marking 27
   configuring 27
interface service policies 45
IP precedence marking 29
link-level flow control 66
no-drop buffer thresholds 62
priority flow control 65
type network QoS policies 22
Configuring type queuing policies 23
CoS marking 30, 31
   configuring 30
   layer 3 31
CPU traffic 5
QoS 5
DSCP classification 12
   configuring 12

E
enabling 40
   jumbo MTU 40

F
feature history 56
   VLAN QoS 56
Fibre Channel interfaces 44
   policy 44
flow control 67
   verifying 67

G
guidelines and limitations 52
   VLAN QoS 52

I
information about 7, 17, 35, 49
   classification 7
   policy types 17
   system classes 35
   VLAN QoS 49
   ingress 8
   classification policies 8
   interface QoS configuration 47
   verifying 47
   interface QoS policies 50
   precedence of 50
   interface QoS TCAM limit 53, 54
   changing 53

DSCP classification
configuring

enabling
jumbo MTU
feature history
VLAN QoS
Fibre Channel interfaces
policy
flow control
verifying
guidelines and limitations
VLAN QoS
information about
classification
policy types
system classes
VLAN QoS
ingress
classification policies
interface QoS configuration
verifying
interface QoS policies
precedence of
interface QoS TCAM limit
changing
interface QoS TCAM limit *(continued)*
  configuring 53
  removing 54
IP precedence marking 29
  configuring 29

J
jumbo MTU 41
  verifying 41

L
layer 3 31
  CoS marking 31
licensing requirements 8
  classification 8

M
marking 27
  information about 27
marking configuration 32
  verifying 32
modular QoS CLI 3
MQC 3
MTU 36
multicast traffic 44
  QoS 44

N
new information 1
  description 1

O
overview 3
  quality of service 3

P
policy 44
  Fibre Channel interfaces 44
policy map configuration 24
  verifying 24

Q
Qos 5, 44
  CPU traffic 5
  multicast traffic 44
QoS 10, 12
  DSCP classification 12
    configuring 12
    configuring 10
  precedence classification 10
    configuring 10
quality of service 3
  overview 3
Quality of Service, See QoS
queue configuration 67
  verifying 67

R
restoring 38
  default system service policies 38

S
service policies 55
  removing from a VLAN 55
system classes 35
  information about 35
system QoS configuration 41
  verifying 41
system QoS policies 50
  precedence of 50
system service policy 37
  attaching 37
T
TCAM carving 52
   VLAN QoS 52
   type QoS polices, configuring 21

U
unicast traffic 64
   virtual output queuing limits 64

V
VACLs 51
   precedence of 51
   verifying 16, 24, 32, 41, 47, 56, 67
      classification configuration 16
      flow control 67
   VLAN QoS configuration 56
      verifying (continued)
         interface QoS configuration 47
         marking configuration 32
         policy map configuration 24
         queue configuration 67
         system QoS configuration 41
         VLAN QoS configuration 56
   virtual output queuing limits 64
   unicast traffic 64
   VLAN QoS 52, 56
      feature history 56
      guidelines and limitations 52
      TCAM carving 52
   VLAN QoS configuration 56
      verifying 56
   VLAN QoS policies 50, 51
      precedence of 50, 51
   VLANs 49, 55
      QoS 49
      removing a service policy from 55