Cisco Nexus 5000 Series NX-OS Layer 2 Switching Configuration Guide, Release 4.2(1)N1(1)

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000
 800 553-NETS (6387)
Fax: 408 527-0883

Text Part Number: DL-20920-02
CONTENTS

Preface xiii
 Audience xiii
 Document Organization xiii
 Document Conventions xiv
 Related Documentation for Nexus 5000 Series NX-OS Software xv
 Obtaining Documentation and Submitting a Service Request xvi

New and Changed Information 1
 New and Changed Information 1

Overview 3
 VLANs 3
 Private VLANs 3
 Spanning Tree 4
 STP Overview 4
 Rapid PVST+ 4
 MST 4
 STP Extensions 5

Configuring Ethernet Interfaces 7
 Information About Ethernet Interfaces 7
 About the Interface Command 7
 About the Unidirectional Link Detection Parameter 8
 UDLD Overview 8
 Default UDLD Configuration 9
 UDLD Aggressive and Nonaggressive Modes 9
 About Interface Speed 10
 About the Cisco Discovery Protocol 10
 Default CDP Configuration 10
 About the Error-Disabled State 11
 About the Debounce Timer Parameters 11
Broadcast Traffic in Private VLANs 38
Private VLAN Port Isolation 38
Guidelines and Limitations for Private VLANs 38
Configuring a Private VLAN 38
 Enabling Private VLANs 38
 Configuring a VLAN as a Private VLAN 39
 Associating Secondary VLANs with a Primary Private VLAN 40
 Configuring an Interface as a Private VLAN Host Port 41
 Configuring an Interface as a Private VLAN Promiscuous Port 42
 Configuring a Promiscuous Trunk Port 43
 Configuring an Isolated Trunk Port 44
 Configuring the Allowed VLANs for PVLAN Trunking Ports 45
 Configuring Native 802.1Q VLANs on Private VLANs 46
Verifying Private VLAN Configuration 47

Configuring Access and Trunk Interfaces 49
 Information About Access and Trunk Interfaces 49
 Understanding Access and Trunk Interfaces 49
 Understanding IEEE 802.1Q Encapsulation 50
 Understanding Access VLANs 50
 Understanding the Native VLAN ID for Trunk Ports 51
 Understanding Allowed VLANs 51
 Understanding Native 802.1Q VLANs 51
 Configuring Access and Trunk Interfaces 52
 Configuring a LAN Interface as an Ethernet Access Port 52
 Configuring Access Host Ports 53
 Configuring Trunk Ports 54
 Configuring the Native VLAN for 802.1Q Trunking Ports 54
 Configuring the Allowed VLANs for Trunking Ports 55
 Configuring Native 802.1Q VLANs 56
Verifying Interface Configuration 57

Configuring EtherChannels 59
 Information About EtherChannels 59
 Understanding EtherChannels 59
 Compatibility Requirements 60
 Load Balancing Using EtherChannels 61
vPC Number 86
vPC Interactions with Other Features 87
 vPC and LACP 87
 vPC Peer Links and STP 87
 CFSoE 88
vPC Guidelines and Limitations 88
Configuring vPCs 89
 Enabling vPCs 89
 Disabling vPCs 89
 Creating a vPC Domain 90
 Configuring a vPC Keepalive Link 91
 Creating a vPC Peer Link 92
 Checking the Configuration Compatibility 93
 Disabling the vPC Peer Link Compatibility Check 94
 Creating an EtherChannel Host Interface 95
 Moving Other EtherChannels into a vPC 96
 Manually Configuring a vPC Domain MAC Address 97
 Manually Configuring the System Priority 98
 Manually Configuring a vPC Peer Switch Role 99
Verifying the vPC Configuration 100
vPC Example Configurations 101
 Dual Homed Fabric Extender vPC Configuration Example 101
 Single Homed Fabric Extender vPC Configuration Example 103
vPC Default Settings 105
Configuring Rapid PVST+ 107
 Information About Rapid PVST+ 107
 Understanding STP 108
 STP Overview 108
 Understanding How a Topology is Created 108
 Understanding the Bridge ID 108
 Bridge Priority Value 109
 Extended System ID 109
 STP MAC Address Allocation 109
 Understanding BPDUs 110
 Election of the Root Bridge 111
Configuring the Maximum-Aging Time 155
Configuring the Maximum-Hop Count 156
Configuring PVST Simulation Globally 157
Configuring PVST Simulation Per Port 157
Specifying the Link Type 158
Restarting the Protocol 159
Verifying MST Configurations 159

Configuring STP Extensions 161

About STP Extensions 161

Information About STP Extensions 161

Understanding STP Port Types 161

Spanning Tree Edge Ports 161
Spanning Tree Network Ports 162
Spanning Tree Normal Ports 162

Understanding Bridge Assurance 162

Understanding BPDU Guard 162
Understanding BPDU Filtering 163
Understanding Loop Guard 164
Understanding Root Guard 164

Configuring STP Extensions 165

STP Extensions Configuration Guidelines 165

Configuring Spanning Tree Port Types Globally 165
Configuring Spanning Tree Edge Ports on Specified Interfaces 166
Configuring Spanning Tree Network Ports on Specified Interfaces 167

Enabling BPDU Guard Globally 168
Enabling BPDU Guard on Specified Interfaces 169
Enabling BPDU Filtering Globally 170
Enabling BPDU Filtering on Specified Interfaces 171
Enabling Loop Guard Globally 172
Enabling Loop Guard or Root Guard on Specified Interfaces 173

Verifying STP Extension Configuration 174

Configuring LLDP 175

Configuring Global LLDP Commands 175
Configuring Interface LLDP Commands 176

Configuring the MAC Address Table 179
Preface

This preface describes the audience, organization, and conventions of the Cisco Nexus 5000 Series NX-OS Layer 2 Switching Configuration Guide. It also provides information on how to obtain related documentation.

- Audience, page xiii
- Document Organization, page xiii
- Document Conventions, page xiv
- Related Documentation for Nexus 5000 Series NX-OS Software, page xv
- Obtaining Documentation and Submitting a Service Request, page xvi

Audience

This preface describes the audience, organization, and conventions of the . It also provides information on how to obtain related documentation.

Document Organization

This document is organized into the following chapters:

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>New and Changed Information</td>
<td>Describes the new and changed information for the new Cisco NX-OS software releases.</td>
</tr>
<tr>
<td>Overview</td>
<td>Describes the layer 2 documented features.</td>
</tr>
<tr>
<td>Configuring Ethernet Interfaces</td>
<td>Describes Ethernet interfaces and provides details on how to configure them.</td>
</tr>
<tr>
<td>Configuring VLANs</td>
<td>Provides details on configuring VLANs.</td>
</tr>
<tr>
<td>Configuring Private VLANs</td>
<td>Provides information on configuring private VLANs.</td>
</tr>
<tr>
<td>Configuring Access and Trunk Interfaces</td>
<td>Provides information about access ports or trunk ports and describes configuration procedures.</td>
</tr>
<tr>
<td>Chapter</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Configuring EtherChannels</td>
<td>Provides information about EtherChannels, compatibility requirements, and configuration information.</td>
</tr>
<tr>
<td>Configuring Virtual Port Channels</td>
<td>Provides information about vPCs, domains, guidelines and limitations, peer links, and configuration information.</td>
</tr>
<tr>
<td>Configuring Rapid PVST+</td>
<td>Provides information on IEEE 802.1D STP and complete details for configuring Rapid PVST+.</td>
</tr>
<tr>
<td>Configuring Multiple Spanning Tree</td>
<td>Provides complete information on configuring MST.</td>
</tr>
<tr>
<td>Configuring STP Extensions</td>
<td>Provides details on configuring the Cisco-proprietary STP extensions Bridge Assurance, BPDU Guard, BPDU Filtering, Loop Guard, Root Guard, and PVST Simulation.</td>
</tr>
<tr>
<td>Configuring the MAC Address Table</td>
<td>Provides information about MAC addresses, how to configure static MAC addresses, and how to update the MAC address table.</td>
</tr>
<tr>
<td>Configuring IGMP Snooping</td>
<td>Provides information about IGMPv1, IGMPv2, and IGMPv3 and describes how to configure IGMP snooping parameters.</td>
</tr>
<tr>
<td>Configuring Traffic Storm Control</td>
<td>Provides information about traffic storm control, guidelines and limitations, and how to configure the traffic storm control settings.</td>
</tr>
</tbody>
</table>

Document Conventions

Command descriptions use the following conventions:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bold</td>
<td>Bold text indicates the commands and keywords that you enter literally as shown.</td>
</tr>
<tr>
<td>Italic</td>
<td>Italic text indicates arguments for which the user supplies the values.</td>
</tr>
<tr>
<td>[x]</td>
<td>Square brackets enclose an optional element(keyword or argument).</td>
</tr>
<tr>
<td>[x</td>
<td>y]</td>
</tr>
<tr>
<td>{x</td>
<td>y}</td>
</tr>
<tr>
<td>[x {y</td>
<td>z}]</td>
</tr>
<tr>
<td>variable</td>
<td>Indicates a variable for which you supply values, in context where italics cannot be used.</td>
</tr>
</tbody>
</table>
Description

Convention	**Description**
string | A nonquoted set of characters. Do not use quotation marks around the string or the string will include the quotation marks.

Screen examples use the following conventions:

Convention	**Description**
screen font | Terminal sessions and information the switch displays are in screen font.
boldface screen font | Information you must enter is in boldface screen font.
italic screen font | Arguments for which you supply values are in italic screen font.
<> | Nonprinting characters, such as passwords, are in angle brackets.
[] | Default responses to system prompts are in square brackets.
!, # | An exclamation point (!) or a pound sign (#) at the beginning of a line of code indicates a comment line.

This document uses the following conventions:

Note

Means *reader take note*. Notes contain helpful suggestions or references to material not covered in the manual.

Caution

Means *reader be careful*. In this situation, you might do something that could result in equipment damage or loss of data.

Related Documentation for Nexus 5000 Series NX-OS Software

Cisco NX-OS documentation is available at the following URL:

The documentation set for the Cisco Nexus 5000 Series NX-OS software includes the following documents:

Release Notes

* Cisco Nexus 5000 Series and Cisco Nexus 2000 Series Release Notes
* Cisco Nexus 5000 Series Switch Release Notes

Cisco Nexus 5000 Series NX-OS Configuration Guides

* Cisco Nexus 5000 Series NX-OS Fibre Channel over Ethernet Configuration Guide
Obtaining Documentation and Submitting a Service Request

For information on obtaining documentation, submitting a service request, and gathering additional information, see the monthly What's New in Cisco Product Documentation, which also lists all new and revised Cisco technical documentation, at:

Subscribe to the What's New in Cisco Product Documentation as a Really Simple Syndication (RSS) feed and set content to be delivered directly to your desktop using a reader application. The RSS feeds are a free service and Cisco currently supports RSS version 2.0.
New and Changed Information

This chapter provides release-specific information for each new and changed feature in the Cisco Nexus 5000 Series NX-OS Layer 2 Switching Configuration Guide.

- New and Changed Information, page 1

This table summarizes the new and changed features documented in the Cisco Nexus 5000 Series NX-OS Layer 2 Switching Configuration Guide, Release 4.2(1)N2(1), and tells you where they are documented.

| Feature | Description | Changed in Release | Where to find it documented...
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LACP Fast Timers</td>
<td>Added configuration information about LACP fast timers.</td>
<td>4.2(1)N2(1)</td>
<td>Configuring EtherChannels</td>
</tr>
<tr>
<td>Hardware Hashing for Multicast Traffic</td>
<td>Added configuration information about hardware hashing.</td>
<td>4.2(1)N2(1)</td>
<td>Configuring EtherChannels</td>
</tr>
</tbody>
</table>

This table summarizes the new and changed features documented in the Cisco Nexus 5000 Series NX-OS Layer 2 Switching Configuration Guide, Release 4.2(1)N1(1), and tells you where they are documented.
Table 2: New and Changed Layer 2 Switching Features for Cisco NX-OS Release 4.2(1)N1(1)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>Changed in Release</th>
<th>Where to find it documented...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error-Disabling Detection and Recovery</td>
<td>Added configuration information about the error-disabled state.</td>
<td>4.2(1)N1(1)</td>
<td>Configuring Ethernet Interfaces</td>
</tr>
<tr>
<td>VLAN Trunking Protocol</td>
<td>Added information about VTP transparent functionality.</td>
<td>4.2(1)N1(1)</td>
<td>Configuring VLANs</td>
</tr>
</tbody>
</table>

This table summarizes the new and changed features documented in the *Cisco Nexus 5000 Series NX-OS Layer 2 Switching Configuration Guide, Release 4.1(3)N2(1)*, and tells you where they are documented.

Table 3: New and Changed Layer 2 Switching Features for Cisco NX-OS Release 4.1(3)N2(1)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>Changed in Release</th>
<th>Where Documented</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disabling the vPC Peer Link Compatibility Check</td>
<td>Allows you to modify the default vPC behavior when a peer link is down.</td>
<td>4.1(3)N2(1)</td>
<td>Configuring vPC</td>
</tr>
</tbody>
</table>

Documentation Organization

As of Cisco NX-OS Release 4.1(3)N2(1), the Nexus 5000 Series configuration information is available in new feature-specific configuration guides for the following information:

- System Management
- Layer 2 Switching
- SAN Switching
- Fibre Channel over Ethernet
- Security
- Quality of Service

The information in these new guides previously existed in the *Cisco Nexus 5000 Series NX-OS Configuration Guide* which remains available on Cisco.com and should be used for all software releases prior to Cisco Nexus 5000 NX-OS Software Rel 4.1(3). Each new configuration guide addresses the features that are introduced in or are available in a particular release. Select and view the configuration guide that pertains to the software installed in your switch.

For a complete list of Nexus 5000 Series document titles, see the list of Related Documentation in the "Preface."
Overview

Cisco Nexus 5000 Series switches support the Layer 2 features that are described in this guide.

- VLANs, page 3
- Private VLANs, page 3
- Spanning Tree, page 4

VLANs

A VLAN is a switched network that is logically segmented by function, project team, or application, without regard to the physical locations of the users. VLANs have the same attributes as physical LANs, but you can group end stations even if they are not physically located on the same LAN segment.

Any switch port can belong to a VLAN, and unicast, broadcast, and multicast packets are forwarded and flooded only to end stations in that VLAN. Each VLAN is considered as a logical network, and packets destined for stations that do not belong to the VLAN must be forwarded through a bridge or a router.

All ports, including the management port, are assigned to the default VLAN (VLAN1) when the device first comes up. A VLAN interface, or switched virtual interface (SVI), is a Layer 3 interface that is created to provide communication between VLANs.

Note

Inter-Switch Link (ISL) trunking is not supported on the NX-OS software for the Cisco Nexus 5000 Series devices.

Private VLANs

Private VLANs provide traffic separation and security at the Layer 2 level.

A private VLAN is one or more pairs of a primary VLAN and a secondary VLAN, all with the same primary VLAN. The two types of secondary VLANs are isolated and community VLANs. Hosts on isolated VLANs communicate only with hosts in the primary VLAN. Hosts in a community VLAN can communicate only among themselves and with hosts in the primary VLAN but not with hosts in isolated VLANs or in other community VLANs.
Regardless of the combination of isolated and community secondary VLANs, all interfaces within the primary VLAN comprise one Layer 2 domain, and therefore, require only one IP subnet.

Spanning Tree

This section discusses the implementation of the Spanning Tree Protocol (STP).

STP Overview

STP provides a loop-free network at the Layer 2 level. Layer 2 LAN ports send and receive STP frames, which are called Bridge Protocol Data Units (BPDUs), at regular intervals. Network devices do not forward these frames but use the frames to construct a loop-free path.

802.1D is the original standard for STP, and many improvements have enhanced the basic loop-free STP. You can create a separate loop-free path for each VLAN, which is named Per VLAN Spanning Tree (PVST+). Additionally, the entire standard was reworked to make the loop-free convergence process faster to keep up with the faster equipment. This STP standard with faster convergence is the 802.1w standard, which is known as Rapid Spanning Tree (RSTP).

Finally, the 802.1s standard, Multiple Spanning Trees (MST), allows you to map multiple VLANs into a single spanning tree instance. Each instance runs an independent spanning tree topology.

Although the software can interoperate with legacy 802.1D systems, the system runs Rapid PVST+ and MST. You can use either Rapid PVST+ or MST in a given VDC; you cannot mix both in one VDC. Rapid PVST+ is the default STP protocol for Cisco NX-OS for the Nexus 5000 Series devices.

Note

Cisco NX-OS for the Nexus 5000 Series devices uses the extended system ID and MAC address reduction; you cannot disable these features.

In addition, Cisco has created some proprietary features to enhance the spanning tree activities.

Rapid PVST+

Rapid PVST+ is the default spanning tree mode for the software and is enabled by default on the default VLAN and all newly created VLANs.

A single instance, or topology, of RSTP runs on each configured VLAN, and each Rapid PVST+ instance on a VLAN has a single root device. You can enable and disable STP on a per-VLAN basis when you are running Rapid PVST+.

MST

The software also supports MST. The multiple independent spanning tree topologies enabled by MST provide multiple forwarding paths for data traffic, enable load balancing, and reduce the number of STP instances required to support a large number of VLANs.

MST incorporates RSTP, so it also allows rapid convergence. MST improves the fault tolerance of the network because a failure in one instance (forwarding path) does not affect other instances (forwarding paths).
Changing the spanning tree mode disrupts the traffic because all spanning tree instances are stopped for the previous mode and started for the new mode.

STP Extensions

The software supports the following Cisco proprietary features:

- **Spanning tree port types**—The default spanning tree port type is normal. You can configure interfaces connected to Layer 2 hosts as edge ports and interfaces connected to Layer 2 switches or bridges as network ports.

- **Bridge Assurance**—Once you configure a port as a network port, Bridge Assurance sends BPDUs on all ports and moves a port into the blocking state if it no longer receives BPDUs. This enhancement is available only when you are running Rapid PVST+ or MST.

- **BPDU Guard**—BPDU Guard shuts down the port if that port receives a BPDU.

- **BPDU Filter**—BPDU Filter suppresses sending and receiving BPDUs on the port.

- **Loop Guard**—Loop Guard prevents the nondesignated ports from transitioning to the STP forwarding state, which prevents loops in the network.

- **Root Guard**—Root Guard prevents the port from becoming the root in an STP topology.
CHAPTER 3

Configuring Ethernet Interfaces

This section describes the configuration of the Ethernet interfaces on a Cisco Nexus 5000 Series switch. It contains the following sections:

- Information About Ethernet Interfaces, page 7
- Configuring Ethernet Interfaces, page 12
- Displaying Interface Information, page 21

Information About Ethernet Interfaces

The Ethernet ports can operate as standard Ethernet interfaces connected to servers or to a LAN. The Ethernet interfaces also support Fibre Channel over Ethernet (FCoE). FCoE allows the physical Ethernet link to carry both Ethernet and Fibre Channel traffic.

On a Cisco Nexus 5000 Series switch, the Ethernet interfaces are enabled by default.

About the Interface Command

You can enable the various capabilities of the Ethernet interfaces on a per-interface basis using the interface command. When you enter the interface command, you specify the following information:

- Interface type—All physical Ethernet interfaces use the ethernet keyword.
- Slot number
 - Slot 1 includes all the fixed ports.
 - Slot 2 includes the ports on the upper expansion module (if populated).
 - Slot 3 includes the ports on the lower expansion module (if populated).
- Port number
 - Port number within the group.
The interface numbering convention is extended to support use with a Cisco Nexus 2000 Series Fabric Extender as follows:

switch(config)# interface ethernet [chassis/]slot/port

- Chassis ID is an optional entry to address the ports of a connected Fabric Extender. The chassis ID is configured on a physical Ethernet or EtherChannel interface on the switch to identify the Fabric Extender discovered via the interface. The chassis ID ranges from 100 to 199.

About the Unidirectional Link Detection Parameter

UDLD Overview

The Cisco-proprietary Unidirectional Link Detection (UDLD) protocol allows ports that are connected through fiber optics or copper (for example, Category 5 cabling) Ethernet cables to monitor the physical configuration of the cables and detect when a unidirectional link exists. When the switch detects a unidirectional link, UDLD shuts down the affected LAN port and alerts the user. Unidirectional links can cause a variety of problems, including spanning tree topology loops.

UDLD is a Layer 2 protocol that works with the Layer 1 protocols to determine the physical status of a link. At Layer 1, autonegotiation takes care of physical signaling and fault detection. UDLD performs tasks that autonegotiation cannot perform, such as detecting the identities of neighbors and shutting down misconnected LAN ports. When you enable both autonegotiation and UDLD, Layer 1 and Layer 2 detections work together to prevent physical and logical unidirectional connections and the malfunctioning of other protocols.

A unidirectional link occurs whenever traffic transmitted by the local device over a link is received by the neighbor but traffic transmitted from the neighbor is not received by the local device. If one of the fiber strands in a pair is disconnected, as long as autonegotiation is active, the link does not stay up. In this case, the logical link is undetermined, and UDLD does not take any action. If both fibers are working normally at Layer 1, then UDLD at Layer 2 determines whether those fibers are connected correctly and whether traffic is flowing bidirectionally between the correct neighbors. This check cannot be performed by autonegotiation, because autonegotiation operates at Layer 1.

A Cisco Nexus 5000 Series switch periodically transmits UDLD frames to neighbor devices on LAN ports with UDLD enabled. If the frames are echoed back within a specific time frame and they lack a specific acknowledgment (echo), the link is flagged as unidirectional and the LAN port is shut down. Devices on both ends of the link must support UDLD in order for the protocol to successfully identify and disable unidirectional links.

Note

By default, UDLD is locally disabled on copper LAN ports to avoid sending unnecessary control traffic on this type of media.
The following figure shows an example of a unidirectional link condition. Device B successfully receives traffic from Device A on the port. However, Device A does not receive traffic from Device B on the same port. UDLD detects the problem and disables the port.

Figure 1: Unidirectional Link

![Unidirectional Link Diagram](image)

Default UDLD Configuration

The following table shows the default UDLD configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDLD global enable state</td>
<td>Globally disabled</td>
</tr>
<tr>
<td>UDLD aggressive mode</td>
<td>Disabled</td>
</tr>
<tr>
<td>UDLD per-port enable state for fiber-optic media</td>
<td>Enabled on all Ethernet fiber-optic LAN ports</td>
</tr>
<tr>
<td>UDLD per-port enable state for twisted-pair (copper) media</td>
<td>Disabled on all Ethernet 10/100 and 1000BASE-TX LAN ports</td>
</tr>
</tbody>
</table>

Related Topics

- Configuring the UDLD Mode, page 12

UDLD Aggressive and Nonaggressive Modes

UDLD aggressive mode is disabled by default. You can configure UDLD aggressive mode only on point-to-point links between network devices that support UDLD aggressive mode. If UDLD aggressive mode is enabled, when a port on a bidirectional link that has a UDLD neighbor relationship established stops receiving UDLD frames, UDLD tries to reestablish the connection with the neighbor. After eight failed retries, the port is disabled.

To prevent spanning tree loops, nonaggressive UDLD with the default interval of 15 seconds is fast enough to shut down a unidirectional link before a blocking port transitions to the forwarding state (with default spanning tree parameters).

When you enable the UDLD aggressive mode, the following occurs:
• One side of a link has a port stuck (both transmission and receive)
• One side of a link remains up while the other side of the link is down

In these cases, the UDLD aggressive mode disables one of the ports on the link, which prevents traffic from being discarded.

About Interface Speed

A Cisco Nexus 5000 Series switch has a number of fixed 10-Gigabit ports, each equipped with SFP+ interface adapters. The Cisco Nexus 5010 switch has 20 fixed ports, the first 8 of which are switchable 1-Gigabit and 10-Gigabit ports. The Cisco Nexus 5020 switch has 40 fixed ports, the first 16 of which are switchable 1-Gigabit and 10-Gigabit ports.

About the Cisco Discovery Protocol

The Cisco Discovery Protocol (CDP) is a device discovery protocol that runs over Layer 2 (the data link layer) on all Cisco-manufactured devices (routers, bridges, access servers, and switches) and allows network management applications to discover Cisco devices that are neighbors of already known devices. With CDP, network management applications can learn the device type and the Simple Network Management Protocol (SNMP) agent address of neighboring devices running lower-layer, transparent protocols. This feature enables applications to send SNMP queries to neighboring devices.

CDP runs on all media that support Subnetwork Access Protocol (SNAP). Because CDP runs over the data-link layer only, two systems that support different network-layer protocols can learn about each other.

Each CDP-configured device sends periodic messages to a multicast address, advertising at least one address at which it can receive SNMP messages. The advertisements also contain time-to-live, or holdtime information, which is the length of time a receiving device holds CDP information before discarding it. Each device also listens to the messages sent by other devices to learn about neighboring devices.

The switch supports both CDP Version 1 and Version 2.

Default CDP Configuration

The following table shows the default CDP configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDP interface state</td>
<td>Enabled</td>
</tr>
<tr>
<td>CDP timer (packet update frequency)</td>
<td>60 seconds</td>
</tr>
<tr>
<td>CDP holdtime (before discarding)</td>
<td>180 seconds</td>
</tr>
<tr>
<td>CDP Version-2 advertisements</td>
<td>Enabled</td>
</tr>
</tbody>
</table>
About the Error-Disabled State

An interface is in the error-disabled (err-disabled) state when the interface is enabled administratively (using the `no shutdown` command) but disabled at runtime by any process. For example, if UDLD detects a unidirectional link, the interface is shut down at runtime. However, because the interface is administratively enabled, the interface status displays as err-disabled. Once an interface goes into the err-disabled state, you must manually reenable it or you can configure an automatic timeout recovery value. The err-disabled detection is enabled by default for all causes. The automatic recovery is not configured by default.

When an interface is in the err-disabled state, use the `errdisable detect cause` command to find information about the error.

You can configure the automatic err-disabled recovery timeout for a particular err-disabled cause by changing the time variable.

The `errdisable recovery cause` command provides automatic recovery after 300 seconds. To change the recovery period, use the `errdisable recovery interval` command to specify the timeout period. You can specify 30 to 65535 seconds.

If you do not enable the err-disabled recovery for the cause, the interface stays in the err-disabled state until you enter the `shutdown` and `no shutdown` commands. If the recovery is enabled for a cause, the interface is brought out of the err-disabled state and allowed to retry operation once all the causes have timed out. Use the `show interface status err-disabled` command to display the reason behind the error.

About the Debounce Timer Parameters

The port debounce time is the amount of time that an interface waits to notify the supervisor of a link going down. During this time, the interface waits to see if the link comes back up. The wait period is a time when traffic is stopped.

You can enable the debounce timer for each interface and specify the delay time in milliseconds.

Caution

When you enable the port debounce timer the link up and link down detections are delayed, resulting in a loss of traffic during the debounce period. This situation might affect the convergence and reconvergence of some protocols.

About MTU Configuration

The Cisco Nexus 5000 Series switch is a Layer 2 device. This means it does not fragment frames. As a result, the switch cannot have two ports in the same Layer 2 domain with different maximum transmission units (MTUs). A per-physical Ethernet interface MTU is not supported. Instead, the MTU is set according to the QoS classes. You modify the MTU by setting Class and Policy maps.

Note

When you show the interface settings, a default MTU of 1500 is displayed for physical Ethernet interfaces and a receive data field size of 2112 is displayed for Fibre Channel interfaces.
Configuring Ethernet Interfaces

Configuring the UDLD Mode

You can configure normal or aggressive unidirectional link detection (UDLD) modes for Ethernet interfaces on devices configured to run UDLD. Before you can enable a UDLD mode for an interface, you must make sure that UDLD is already enabled on the device that includes the interface. UDLD must also be enabled on the other linked interface and its device.

To use the normal UDLD mode, you must configure one of the ports for normal mode and configure the other port for the normal or aggressive mode. To use the aggressive UDLD mode, you must configure both ports for the aggressive mode.

Note

Before you begin, UDLD must be enabled for the other linked port and its device.

To configure the UDLD mode, perform this task:

SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# feature udld
3. switch(config)# no feature udld
4. switch(config)# show udld global
5. switch(config)# interface type slot/port
6. switch(config-if)# udld {enable | disable | aggressive}
7. switch(config-if)# show udld interface

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# feature udld</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config)# no feature udld</td>
</tr>
<tr>
<td>Step 4</td>
<td>switch(config)# show udld global</td>
</tr>
<tr>
<td>Step 5</td>
<td>switch(config)# interface type slot/port</td>
</tr>
<tr>
<td>Step 6</td>
<td>switch(config-if)# udld {enable</td>
</tr>
<tr>
<td>Step 7</td>
<td>switch(config-if)# show udld interface</td>
</tr>
</tbody>
</table>
This example shows how to enable the UDLD for the switch:
```
switch# configure terminal
switch(config)# feature udld
```

This example shows how to enable the normal UDLD mode for an Ethernet port:
```
switch# configure terminal
switch(config)# interface ethernet 1/4
switch(config-if)# udld enable
```

This example shows how to enable the aggressive UDLD mode for an Ethernet port:
```
switch# configure terminal
switch(config)# interface ethernet 1/4
switch(config-if)# udld aggressive
```

This example shows how to disable UDLD for an Ethernet port:
```
switch# configure terminal
switch(config)# interface ethernet 1/4
switch(config-if)# udld disable
```

This example shows how to disable UDLD for the switch:
```
switch# configure terminal
switch(config)# no feature udld
```

Configuring Interface Speed

The first 8 ports of a Cisco Nexus 5010 switch and the first 16 ports of a Cisco Nexus 5020 switch are switchable 1-Gigabit and 10-Gigabit ports. The default interface speed is 10-Gigabit. To configure these ports for 1-Gigabit Ethernet, insert a 1-Gigabit Ethernet SFP transceiver into the applicable port and then set its speed with the `speed` command.

To configure a 1-Gigabit Ethernet port, perform this task:

SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# interface type slot/port
3. switch(config-if)# speed speed

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# interface type slot/port</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config-if)# speed speed</td>
</tr>
</tbody>
</table>
The following example shows how to set the speed for a 1-Gigabit Ethernet port:

```bash
switch# configure terminal
switch(config)# interface ethernet 1/4
switch(config-if)# speed 1000
```

This command can only be applied to a physical Ethernet interface.

If the interface and transceiver speed is mismatched, the SFP validation failed message is displayed when you enter the `show interface ethernet slot/port` command. For example, if you insert a 1-Gigabit SFP transceiver into a port without configuring the speed 1000 command, you will get this error. By default, all ports are 10 Gigabits.

Configuring the Cisco Discovery Protocol

Configuring the CDP Characteristics

You can configure the frequency of Cisco Discovery Protocol (CDP) updates, the amount of time to hold the information before discarding it, and whether or not to send Version-2 advertisements.

To configure CDP characteristics for an interface, perform this task:

SUMMARY STEPS

1. `switch# configure terminal`
2. (Optional) `switch(config)# [no] cdp advertise {v1 | v2 }`
3. (Optional) `switch(config)# [no] cdp format device-id {mac-address | serial-number | system-name}`
4. (Optional) `switch(config)# [no] cdp holdtime seconds`
5. (Optional) `switch(config)# [no] cdp timer seconds`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>switch# configure terminal</code></td>
</tr>
<tr>
<td>Step 2</td>
<td>`switch(config)# [no] cdp advertise {v1</td>
</tr>
<tr>
<td>Step 3</td>
<td>`switch(config)# [no] cdp format device-id {mac-address</td>
</tr>
</tbody>
</table>
This example shows how to configure CDP characteristics:

```
switch# configure terminal
switch(config)# cdp timer 50
switch(config)# cdp holdtime 120
switch(config)# cdp advertise v2
```

Enabling or Disabling CDP

You can enable or disable CDP for Ethernet interfaces. This protocol works only when you have it enabled on both interfaces on the same link.

To enable or disable CDP for an interface, perform this task:

SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# interface type slot/port
3. switch(config-if)# cdp enable
4. switch(config-if)# no cdp enable

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# interface type slot/port</td>
</tr>
<tr>
<td></td>
<td>Enters interface configuration mode for the specified interface.</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config-if)# cdp enable</td>
</tr>
<tr>
<td></td>
<td>Enables CDP for the interface.</td>
</tr>
<tr>
<td></td>
<td>To work correctly, this parameter must be enabled for both interfaces on the same link.</td>
</tr>
<tr>
<td>Step 4</td>
<td>switch(config-if)# no cdp enable</td>
</tr>
<tr>
<td></td>
<td>Disables CDP for the interface.</td>
</tr>
</tbody>
</table>
The following example shows how to enable CDP for an Ethernet port:

```
switch# configure terminal
switch(config)# interface ethernet 1/4
switch(config-if)# cdp enable
```

This command can only be applied to a physical Ethernet interface.

Enabling the Error-Disabled Detection

You can enable error-disable (err-disabled) detection in an application. As a result, when a cause is detected on an interface, the interface is placed in an err-disabled state, which is an operational state that is similar to the link-down state.

SUMMARY STEPS

1. **config t**
2. **errdisable detect cause {all | link-flap | loopback}**
3. **shutdown**
4. **no shutdown**
5. **show interface status err-disabled**
6. **copy running-config startup-config**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 config t</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch# config t</td>
<td></td>
</tr>
<tr>
<td>switch(config)#</td>
<td></td>
</tr>
<tr>
<td>Step 2 errdisable detect cause {all</td>
<td>link-flap</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch(config)# errdisable detect cause all</td>
<td></td>
</tr>
<tr>
<td>switch(config)#</td>
<td></td>
</tr>
<tr>
<td>Step 3 shutdown</td>
<td>Brings the interface down administratively. To manually recover the interface from the err-disabled state, enter this command first.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch(config)# shutdown</td>
<td></td>
</tr>
<tr>
<td>switch(config)#</td>
<td></td>
</tr>
<tr>
<td>Step 4 no shutdown</td>
<td>Brings the interface up administratively and enables the interface to recover manually from the err-disabled state.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>switch(config)# no shutdown</td>
<td></td>
</tr>
<tr>
<td>switch(config)#</td>
<td></td>
</tr>
</tbody>
</table>
Enabling the Error-Disabled Recovery

You can specify the application to bring the interface out of the error-disabled (err-disabled) state and retry coming up. It retries after 300 seconds, unless you configure the recovery timer (see the errdisable recovery interval command).

SUMMARY STEPS

1. config t
2. errdisable recovery cause {all | udld | bpduguard | link-flap | failed-port-state | pause-rate-limit}
3. show interface status err-disabled
4. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>config t</td>
</tr>
<tr>
<td>Example:</td>
<td>switch(config)# errdisable recovery cause all</td>
</tr>
<tr>
<td></td>
<td>switch(config)#</td>
</tr>
<tr>
<td>Step 2</td>
<td>errdisable recovery cause {all</td>
</tr>
<tr>
<td>Example:</td>
<td>switch(config)# errdisable recovery cause all</td>
</tr>
<tr>
<td></td>
<td>switch(config-if)#</td>
</tr>
</tbody>
</table>

This example shows how to enable the err-disabled detection in all cases:

```
switch(config)# errdisable detect cause all
```

Enters configuration mode.

Specifies a condition under which the interface automatically recovers from the err-disabled state, and the device retries bringing the interface up. The device waits 300 seconds to retry. The default is disabled.
Configuring the Error-Disabled Recovery Interval

You can use this procedure to configure the err-disabled recovery timer value. The range is from 30 to 65535 seconds. The default is 300 seconds.

SUMMARY STEPS

1. `config t`
2. `errdisable recovery interval interval`
3. `show interface status err-disabled`
4. `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>config t</code></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Example: <code>switch(config)#config t</code> <code>switch(config)#</code></td>
<td></td>
</tr>
<tr>
<td>Step 2 <code>errdisable recovery interval interval</code></td>
<td>Specifies the interval for the interface to recover from the err-disabled state. The range is from 30 to 65535 seconds. The default is 300 seconds.</td>
</tr>
<tr>
<td>Example: <code>switch(config)#errdisable recovery interval 32</code> <code>switch(config-if)#</code></td>
<td></td>
</tr>
<tr>
<td>Step 3 <code>show interface status err-disabled</code></td>
<td>Displays information about err-disabled interfaces.</td>
</tr>
<tr>
<td>Example: <code>switch(config)#show interface status err-disabled</code></td>
<td></td>
</tr>
</tbody>
</table>
Configuring the Debounce Timer

You can enable the debounce timer for Ethernet ports by specifying a debounce time (in milliseconds) or disable the timer by specifying a debounce time of 0.

You can show the debounce times for all of the Ethernet ports by using the `show interface debounce` command.

To enable or disable the debounce timer, perform this task:

SUMMARY STEPS

1. `switch# configure terminal`
2. `switch(config)# interface type slot/port`
3. `switch(config-if)# link debounce time milliseconds`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>switch# configure terminal</code></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>switch(config)# interface type slot/port</code></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>switch(config-if)# link debounce time milliseconds</code></td>
</tr>
</tbody>
</table>

This example shows how to enable the debounce timer and set the debounce time to 1000 milliseconds for an Ethernet interface:

```
switch# configure terminal
switch(config)# interface ethernet 1/4
switch(config-if)# link debounce time 1000
```

This example shows how to disable the debounce timer for an Ethernet interface:

```
switch# configure terminal
switch(config)# interface ethernet 1/4
switch(config-if)# link debounce time 0
```

This command can only be applied to a physical Ethernet interface.
Configuring the Description Parameter

To provide textual interface descriptions for the Ethernet ports, perform this task:

SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# interface type slot/port
3. switch(config-if)# description test

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# interface type slot/port</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config-if)# description test</td>
</tr>
</tbody>
</table>

This example shows how to set the interface description to "Server 3 Interface."

```
switch# configure terminal
switch(config)# interface ethernet 1/3
switch(config-if)# description Server 3 Interface
```

Disabling and Restarting Ethernet Interfaces

You can shut down and restart an Ethernet interface. This action disables all of the interface functions and marks the interface as being down on all monitoring displays.

To disable an interface, perform this task:

SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# interface type slot/port
3. switch(config-if)# shutdown
4. switch(config-if)# no shutdown

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
</tr>
</tbody>
</table>
Configuring Ethernet Interfaces

Displaying Interface Information

To view configuration information about the defined interfaces, perform one of these tasks:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>switch# show interface type slot/port</code></td>
<td>Displays the detailed configuration of the specified interface.</td>
</tr>
<tr>
<td><code>switch# show interface type slot/port capabilities</code></td>
<td>Displays detailed information about the capabilities of the specified interface. This option is only available for physical interfaces.</td>
</tr>
<tr>
<td><code>switch# show interface type slot/port transceiver</code></td>
<td>Displays detailed information about the transceiver connected to the specified interface. This option is only available for physical interfaces.</td>
</tr>
<tr>
<td><code>switch# show interface brief</code></td>
<td>Displays the status of all interfaces.</td>
</tr>
<tr>
<td><code>switch# show interface debounce</code></td>
<td>Displays the debounce status of all interfaces.</td>
</tr>
<tr>
<td><code>switch# show interface flowcontrol</code></td>
<td>Displays the detailed listing of the flow control settings on all interfaces.</td>
</tr>
</tbody>
</table>

The `show interface` command is invoked from EXEC mode and displays the interface configurations. Without any arguments, this command displays the information for all the configured interfaces in the switch.
The following example shows how to display the physical Ethernet interface:

```
switch# show interface ethernet 1/1
Ethernet1/1 is up
Hardware is 1000/10000 Ethernet, address is 000d.eca3.5f08 (bia 000d.eca3.5f08)
MTU 1500 bytes, BW 10000000 Kbit, DLY 10 usec,
reliability 255/255, txload 190/255, rxload 192/255
Encapsulation ARPA
Port mode is trunk
full-duplex, 10 Gb/s, media type is 1/10g
Input flow-control is off, output flow-control is off
Auto-mdix is turned on
Rate mode is dedicated
Switchport monitor is off
Last clearing of "show interface" counters never
5 minute input rate 942201806 bytes/sec, 14721892 packets/sec
5 minute output rate 935840313 bytes/sec, 14622492 packets/sec
Rx
129141483840 input packets 0 unicast packets 129141483847 multicast packets
0 broadcast packets 0 jumbo packets 0 storm suppression packets
8265054965824 bytes
0 No buffer 0 runt 0 Overrun
0 crc 0 Ignored 0 Bad etype drop
0 Bad proto drop
Tx
119038487241 output packets 119038487245 multicast packets
0 broadcast packets 0 jumbo packets
7618463256471 bytes
0 output CRC 0 ecc
0 underun 0 if down drop 0 output error 0 collision 0 deferred
0 late collision 0 lost carrier 0 no carrier
0 babble 0 Rx pause 8031547972 Tx pause 0 reset
```

The following example shows how to display the physical Ethernet capabilities:

```
switch# show interface ethernet 1/1 capabilities
Ethernet1/1
Model: 734510033
Type: 10Gbase-(unknown)
Speed: 1000,10000
Duplex: full
Trunk encap. type: 802.1Q
Channel: yes
Broadcast suppression: percentage(0-100)
Flowcontrol: rx-(off/on),tx-(off/on)
Rate mode: none
QOS scheduling: rx-(6q1t),tx-(1p6q0t)
CoS rewrite: no
ToS rewrite: no
SPAN: yes
UDLD: yes
Link Debounce: yes
Link Debounce Time: yes
MDIX: no
FEX Fabric: yes
```

The following example shows how to display the physical Ethernet transceiver:

```
switch# show interface ethernet 1/1 transceiver
Ethernet1/1
sfp is present
name is CISCO-EXCELIGHT
part number is SPP5101SR-C1
revision is A
serial number is ECL120901AV
nominal bitrate is 10300 MBits/sec
Link length supported for 50/125mm fiber is 82 m(s)
Link length supported for 62.5/125mm fiber is 26 m(s)
cisco id is --
cisco extended id number is 4
```
The following example shows how to display a brief interface status (some of the output has been removed for brevity):

```
switch# show interface brief
```

<table>
<thead>
<tr>
<th>Ethernet Interface</th>
<th>VLAN</th>
<th>Type</th>
<th>Mode</th>
<th>Status</th>
<th>Reason</th>
<th>Speed</th>
<th>Port Ch #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eth1/1</td>
<td>200</td>
<td>eth</td>
<td>trunk</td>
<td>up</td>
<td>none</td>
<td>10G(D)</td>
<td>--</td>
</tr>
<tr>
<td>Eth1/2</td>
<td>1</td>
<td>eth</td>
<td>trunk</td>
<td>up</td>
<td>none</td>
<td>10G(D)</td>
<td>--</td>
</tr>
<tr>
<td>Eth1/3</td>
<td>300</td>
<td>eth</td>
<td>access</td>
<td>down</td>
<td>SFP not inserted</td>
<td>10G(D)</td>
<td>--</td>
</tr>
<tr>
<td>Eth1/4</td>
<td>300</td>
<td>eth</td>
<td>access</td>
<td>down</td>
<td>SFP not inserted</td>
<td>10G(D)</td>
<td>--</td>
</tr>
<tr>
<td>Eth1/5</td>
<td>300</td>
<td>eth</td>
<td>access</td>
<td>down</td>
<td>Link not connected</td>
<td>1000(D)--</td>
<td></td>
</tr>
<tr>
<td>Eth1/6</td>
<td>20</td>
<td>eth</td>
<td>access</td>
<td>down</td>
<td>Link not connected</td>
<td>10G(D)</td>
<td>--</td>
</tr>
<tr>
<td>Eth1/7</td>
<td>300</td>
<td>eth</td>
<td>access</td>
<td>down</td>
<td>SFP not inserted</td>
<td>10G(D)</td>
<td>--</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following example shows how to display the link debounce status (some of the output has been removed for brevity):

```
switch# show interface debounce
```

<table>
<thead>
<tr>
<th>Port</th>
<th>Debounce time</th>
<th>Value(ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eth1/1</td>
<td>enable</td>
<td>100</td>
</tr>
<tr>
<td>Eth1/2</td>
<td>enable</td>
<td>100</td>
</tr>
<tr>
<td>Eth1/3</td>
<td>enable</td>
<td>100</td>
</tr>
</tbody>
</table>

The following example shows how to display the CDP neighbors:

```
switch# show cdp neighbors
```

```
Capability Codes:  R - Router,  T - Trans-Bridge,  B - Source-Route-Bridge
                   S - Switch,  H - Host,  I - IGMP,  r - Repeater,
                   V - VoIP-Phone,  D - Remotely-Managed-Device,
                   s - Supports-STP-Dispute

Device ID          | Local Intrfce | Hldtme | Capability | Platform       | Port ID
--------------------|---------------|--------|------------|----------------|---------
d13-dist-1          | mgmt0         | 148    | S I        | WS-C2960-24TC  | Fas0/9  
n5k(FLC12080012)   | Eth1/5        | 8      | S I s      | NSK-C5020P-BA | Eth1/5  
```

Note

From Cisco NX-OS Release 4.0(1a)N1(1), the default value of the device ID field for CDP advertisement has been changed from the chassis serial number to the hostname and serial number, as in the example above.

Default Physical Ethernet Settings

The following table lists the default settings for all physical Ethernet interfaces:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debounce</td>
<td>Enable, 100 milliseconds</td>
</tr>
<tr>
<td>Duplex</td>
<td>Auto (full-duplex)</td>
</tr>
<tr>
<td>Encapsulation</td>
<td>ARPA</td>
</tr>
<tr>
<td>Parameter</td>
<td>Default Setting</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>MTU<sup>1</sup></td>
<td>1500 bytes</td>
</tr>
<tr>
<td>Port Mode</td>
<td>Access</td>
</tr>
<tr>
<td>Speed</td>
<td>Auto (10000)</td>
</tr>
</tbody>
</table>

¹ MTU cannot be changed per-physical Ethernet interface. You modify MTU by selecting maps of QoS classes.
Configuring VLANs

This chapter describes how to configure VLANs on the Cisco Nexus 5000 Series switch. It contains the following sections:

- Configuring VLANs, page 25

Configuring VLANs

You can use virtual LANs (VLANs) to divide the network into different logical broadcast domains. Any switch port can belong to a VLAN, and unicast, broadcast, and multicast packets are forwarded and flooded only to end stations in that VLAN. Each VLAN is considered a logical network, and packets destined for stations that do not belong to the VLAN must be forwarded through a router.

Information About VLANs

Understanding VLAN Ranges

The Cisco Nexus 5000 Series switch supports VLAN numbers 1 to 4094 in accordance with the IEEE 802.1Q standard. These VLANs are organized into ranges. You use each range slightly differently. The Nexus 5000 Series switch supports 507 VLANs and it shares this available number of VLANs with its VSANs; each VSAN consumes one VLAN.

The following table describes the details of the VLAN ranges.

Table 6: VLAN Ranges

<table>
<thead>
<tr>
<th>VLANs Numbers</th>
<th>Range</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Normal</td>
<td>Cisco default. You can use this VLAN, but you cannot modify or delete it.</td>
</tr>
<tr>
<td>2—1005</td>
<td>Normal</td>
<td>You can create, use, modify, and delete these VLANs.</td>
</tr>
</tbody>
</table>
VLANs Numbers | Range | Usage |
|--------------|--------------|--|
| 1006—4094 | Extended | You can create, name, and use these VLANs. You cannot change the following parameters:
 • State is always active.
 • VLAN is always enabled.
 You cannot shut down these VLANs. |
| 3968—4047 and 4094 | Internally allocated | These 80 VLANs, plus VLAN 4094, are allocated for internal use. You cannot create, delete, or modify any VLANs within the block reserved for internal use. |

Note
VLANs 3968 to 4047 and 4094 are reserved for internal use; these VLANs cannot be changed or used.

Cisco NX-OS allocates a group of 80 VLAN numbers for those features, such as multicast and diagnostics, that need to use internal VLANs for their operation. By default, the system allocates VLANs numbered 3968 to 4047 for internal use. VLAN 4094 is also reserved for internal use by the switch.

You cannot use, modify, or delete any of the VLANs in the reserved group. You can display the VLANs that are allocated internally and their associated use.

Creating, Deleting, and Modifying VLANs

VLANs are numbered from 1 to 4094. All configured ports belong to the default VLAN when you first bring up the switch. The default VLAN (VLAN1) uses only default values. You cannot create, delete, or suspend activity in the default VLAN.

You create a VLAN by assigning a number to it. You can delete VLANs as well as move them from the active operational state to the suspended operational state. If you attempt to create a VLAN with an existing VLAN ID, the switch goes into the VLAN submode but does not create the same VLAN again.

Newly created VLANs remain unused until ports are assigned to the specific VLAN. All the ports are assigned to VLAN1 by default.

Depending on the range of the VLAN, you can configure the following parameters for VLANs (except the default VLAN):

- VLAN name
- Shutdown or not shutdown

When you delete a specified VLAN, the ports associated to that VLAN are shut down and no traffic flows. However, the system retains all the VLAN-to-port mapping for that VLAN, and when you reenable, or recreate, the specified VLAN, the system automatically reinstates all the original ports to that VLAN.
About the VLAN Trunking Protocol

The VLAN Trunking Protocol (VTP) is a Layer 2 messaging protocol that maintains VLAN consistency by managing the addition, deletion, and renaming of VLANs within a VTP domain. A VTP domain includes one or more network switches that share the same VTP domain name and that are connected with trunk interfaces. Each switch can be in only one VTP domain.

Layer 2 trunk interfaces, Layer 2 port channels, and virtual port channels (vPCs) support VTP functionality.

Note

In the Cisco Nexus 5000 Series switches, VTP works only in transparent mode, allowing you to extend a VTP domain across the switch.

When the switch is in the VTP transparent mode, the switch relays all VTP protocol packets that it receives on a trunk port to all other trunk ports. When you create or modify a VLAN that is in VTP transparent mode, those VLAN changes affect only the local switch. A VTP transparent network switch does not advertise its VLAN configuration and does not synchronize its VLAN configuration based on received advertisements.

Note

VLAN 1 is required on all trunk ports used for switch interconnects if the VTP protocol is to be supported in the network. Removing VLAN 1 from any of these ports prevents VTP from functioning.

VTP is disabled by default on the switch. You enable and configure VTP using the command-line interface (CLI). When VTP is disabled, the switch does not relay any VTP packets.

If you enable VTP, you must configure either version 1 or version 2. If you are using VTP in a Token Ring environment, you must use version 2.

Configuring a VLAN

Creating and Deleting a VLAN

You can create or delete all VLANs except the default VLAN and those VLANs that are internally allocated for use by the switch. Once a VLAN is created, it is automatically in the active state.

Note

When you delete a VLAN, ports associated to that VLAN shut down. The traffic does not flow and the packets are dropped.
SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# vlan {vlan-id | vlan-range}
3. switch(config-vlan)# no vlan {vlan-id | vlan-range}

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# vlan {vlan-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config-vlan)# no vlan {vlan-id</td>
</tr>
</tbody>
</table>

This example shows how to create a range of VLANs from 15 to 20:

```
switch# configure terminal
switch(config)# vlan 15-20
```

Note You can also create and delete VLANs in the VLAN configuration submode.

Entering the VLAN Submode and Configuring the VLAN

To configure or modify the VLAN for the following parameters, you must be in the VLAN configuration submode:

- Name
- Shut down

Note You cannot create, delete, or modify the default VLAN or the internally allocated VLANs. Additionally, some of these parameters cannot be modified on some VLANs.
SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# vlan {vlan-id | vlan-range}
3. switch(config-vlan)# name vlan-name
4. switch(config-vlan)# state {active | suspend}
5. (Optional) switch(config-vlan)# no shutdown

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# vlan {vlan-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config-vlan)# name vlan-name</td>
</tr>
<tr>
<td>Step 4</td>
<td>switch(config-vlan)# state {active</td>
</tr>
<tr>
<td>Step 5</td>
<td>switch(config-vlan)# no shutdown</td>
</tr>
</tbody>
</table>

This example shows how to configure optional parameters for VLAN 5:

```
switch# configure terminal
switch(config)# vlan 5
switch(config-vlan)# name accounting
switch(config-vlan)# state active
switch(config-vlan)# no shutdown
```

Adding Ports to a VLAN

After you have completed the configuration of a VLAN, assign ports to it. To add ports, perform this task:

SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# interface {ethernet slot/port | port-channel number}
3. switch(config-if)# switchport access vlan vlan-id
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>switch# configure terminal</code></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>`switch(config)# interface {ethernet slot/port</td>
<td>port-channel number}`</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>switch(config-if)# switchport access vlan vlan-id</code></td>
<td>Sets the access mode of the interface to the specified VLAN.</td>
</tr>
</tbody>
</table>

This example shows how to configure an Ethernet interface to join VLAN 5:
```
switch# configure terminal
switch(config)# interface ethernet 1/13
switch(config-if)# switchport access vlan 5
```

Configuring VTP

You can enable and configure VTP to relay VTP packets. If you enable VTP, you must configure either version 1 or version 2. If you are using VTP in a Token Ring environment, you must use version 2.

Before You Begin

Ensure that you are in the correct VDC (or enter the `switchto vdc` command). VLAN names and IDs can be repeated in different VDCs, so you must confirm which VDC that you are working with.

SUMMARY STEPS

1. `config t`
2. `feature vtp`
3. `vtp domain domain-name`
4. `vtp version {1|2}`
5. `vtp mode transparent`
6. `exit`
7. `show vlan`
8. `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>config t</code></td>
<td>Enters configuration mode.</td>
</tr>
</tbody>
</table>

Example:
```
switch#config t
switch(config)#
```
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>feature vtp</td>
<td>Enables VTP on the device. The default is disabled.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>switch(config)#feature vtp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>switch(config)#</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>vtp domain domain-name</td>
<td>Enter the name of the VTP domain that you want this</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>switch to join. The default is blank.</td>
</tr>
<tr>
<td></td>
<td>switch(config)#vtp domain accounting</td>
<td></td>
</tr>
<tr>
<td></td>
<td>switch(config)#</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>vtp version 1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>is version 1.</td>
</tr>
<tr>
<td></td>
<td>switch(config)#vtp version 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>switch(config)#</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>vtp mode transparent</td>
<td>(Optional) After you enable VTP, the only available</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>mode is transparent.</td>
</tr>
<tr>
<td></td>
<td>switch(config)#vtp mode transparent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>switch(config)#</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>exit</td>
<td>Exits the configuration submode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>switch(config)#exit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>switch(config)#</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>show vlan</td>
<td>(Optional) Displays information about VTP.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>switch(config)#show vlan</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>copy running-config startup-config</td>
<td>(Optional) Copies the running configuration to the</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>startup configuration.</td>
</tr>
<tr>
<td></td>
<td>switch(config)#copy running-config startup-config</td>
<td></td>
</tr>
</tbody>
</table>

This example shows how to configure VTP in transparent mode:

```
switch#config t
switch(config)#feature vtp
switch(config)#vtp domain accounting
switch(config)#vtp version2
switch(config)#exit
switch#
```

Verifying VLAN Configuration

To display VLAN configuration information, perform one of these tasks:
Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`switch# show running-config vlan [vlan_id</td>
<td>vlan_range]`</td>
</tr>
<tr>
<td>`switch# show vlan [brief</td>
<td>id [vlan_id</td>
</tr>
</tbody>
</table>

The following example shows all VLANs defined in the range of 1 to 21.

```
switch# show running-config vlan 1-21
version 4.0(1a)N1(1)
vlan 1
vlan 5
```

The following example shows the VLANs created on the switch and their status:

```
switch# show vlan

<table>
<thead>
<tr>
<th>VLAN</th>
<th>Name</th>
<th>Status</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>default</td>
<td>active</td>
<td>Eth1/1, Eth1/2, Eth1/3, Eth1/4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Eth1/5, Eth1/6, Eth1/7, Eth1/8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Eth1/9, Eth1/10, Eth1/11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Eth1/12, Eth1/15, Eth1/16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Eth1/17, Eth1/18, Eth1/19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Eth1/20, Eth1/21, Eth1/22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Eth1/23, Eth1/24, Eth1/25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Eth1/26, Eth1/27, Eth1/28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Eth1/29, Eth1/30, Eth1/31</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Eth1/32, Eth1/33, Eth1/34</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Eth1/35, Eth1/36, Eth1/37</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Eth1/38, Eth1/39, Eth1/40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Eth3/1, Eth3/2, Eth3/3, Eth3/4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>veth1/1</td>
</tr>
<tr>
<td>13</td>
<td>VLAN0005</td>
<td>active</td>
<td>Eth1/13, Eth1/14</td>
</tr>
</tbody>
</table>
```

The following example shows the details of VLAN 13 including its member ports:

```
switch# show vlan id 13

<table>
<thead>
<tr>
<th>VLAN</th>
<th>Name</th>
<th>Status</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>VLAN0005</td>
<td>active</td>
<td>Eth1/13, Eth1/14</td>
</tr>
</tbody>
</table>
```

The following example shows the VLAN settings summary:

```
switch# show vlan summary

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of existing VLANs</td>
<td>: 2</td>
</tr>
<tr>
<td>Number of existing user VLANs</td>
<td>: 2</td>
</tr>
<tr>
<td>Number of existing extended VLANs</td>
<td>: 0</td>
</tr>
</tbody>
</table>
Configuring Private VLANs

This chapter describes how to configure private VLANs on the Cisco Nexus 5000 Series switch. It contains the following sections:

- Information About Private VLANs, page 33
- Guidelines and Limitations for Private VLANs, page 38
- Configuring a Private VLAN, page 38
- Verifying Private VLAN Configuration, page 47

Information About Private VLANs

A private VLAN partitions the Ethernet broadcast domain of a VLAN into subdomains, allowing you to isolate the ports on the switch from each other. A subdomain consists of a primary VLAN and one or more secondary VLANs (see the following figure). All VLANs in a private VLAN domain share the same primary VLAN. The secondary VLAN ID differentiates one subdomain from another. The secondary VLANs may either be isolated VLANs or community VLANs. A host on an isolated VLAN can only communicate with the associated
promiscuous port in its primary VLAN. Hosts on community VLANs can communicate among themselves and with their associated promiscuous port but not with ports in other community VLANs.

*Figure 2: Private VLAN Domain*

---

**Note**

You must first create the VLAN before you can convert it to a private VLAN, either primary or secondary.

---

**Primary and Secondary VLANs in Private VLANs**

A private VLAN domain has only one primary VLAN. Each port in a private VLAN domain is a member of the primary VLAN; the primary VLAN is the entire private VLAN domain.

Secondary VLANs provide isolation between ports within the same private VLAN domain. The following two types are secondary VLANs within a primary VLAN:

- **Isolated VLANs**—Ports within an isolated VLAN cannot communicate directly with each other at the Layer 2 level.
- **Community VLANs**—Ports within a community VLAN can communicate with each other but cannot communicate with ports in other community VLANs or in any isolated VLANs at the Layer 2 level.

**Private VLAN Ports**

The three types of private VLAN ports are as follows:
• Promiscuous—A promiscuous port belongs to the primary VLAN. The promiscuous port can communicate with all interfaces, including the community and isolated host ports, that belong to those secondary VLANs associated to the promiscuous port and associated with the primary VLAN. You can have several promiscuous ports in a primary VLAN. Each promiscuous port can have several secondary VLANs or no secondary VLANs that are associated to that port. You can associate a secondary VLAN to more than one promiscuous port, as long as the promiscuous port and secondary VLANs are within the same primary VLAN. You can also have secondary VLANs that are not associated to any promiscuous port.

A promiscuous port can be configured either as an access port or as a trunk port.

• Isolated—An isolated port is a host port that belongs to an isolated secondary VLAN. This port has complete isolation from other ports within the same private VLAN domain, except that it can communicate with associated promiscuous ports. Private VLANs block all traffic to isolated ports except traffic from promiscuous ports. Traffic received from an isolated port is forwarded only to promiscuous ports. You can have more than one isolated port in a specified isolated VLAN. Each port is completely isolated from all other ports in the isolated VLAN.

An isolated port can be configured as either an access port or a trunk port.

• Community—A community port is a host port that belongs to a community secondary VLAN. Community ports communicate with other ports in the same community VLAN and with associated promiscuous ports. These interfaces are isolated from all other interfaces in other communities and from all isolated ports within the private VLAN domain.

A community port must be configured as an access port. A community VLAN must not be enabled on an isolated trunk.

Note: Because trunks can support the VLANs that carry traffic between promiscuous, isolated, and community ports, the isolated and community port traffic might enter or leave the switch through a trunk interface.

Primary, Isolated, and Community Private VLANs

Primary VLANs and the two types of secondary VLANs (isolated and community) have these characteristics:

• Primary VLAN — The primary VLAN carries traffic from the promiscuous ports to the host ports, both isolated and community, and to other promiscuous ports.

• Isolated VLAN — An isolated VLAN is a secondary VLAN that carries unidirectional traffic upstream from the hosts toward the promiscuous ports. You can only configure one isolated VLAN in a private VLAN domain. An isolated VLAN can have several isolated ports. The traffic from each isolated port also remains completely separate.

• Community VLAN — A community VLAN is a secondary VLAN that carries upstream traffic from the community ports to the promiscuous port and to other host ports in the same community. You can configure multiple community VLANs in a private VLAN domain. The ports within one community can communicate, but these ports cannot communicate with ports in any other community or isolated VLAN in the private VLAN.
The following figure shows the traffic flows within a private VLAN, along with the types of VLANs and types of ports.

**Figure 3: Private VLAN Traffic Flows**

The private VLAN traffic flows are unidirectional from the host ports to the promiscuous ports. Traffic received on primary VLAN enforces no separation and forwarding is done as in normal VLAN.

Note

A promiscuous access port can serve only one primary VLAN and multiple secondary VLANs (community and isolated VLANs). A promiscuous trunk port can carry traffic for several primary VLANs. Multiple secondary VLANs under a given primary VLAN can be mapped to promiscuous trunk ports. With a promiscuous port, you can connect a wide range of devices as access points to a private VLAN. For example, you can use a promiscuous port to monitor or back up all the private VLAN servers from an administration workstation.

In a switched environment, you can assign an individual private VLAN and associated IP subnet to each individual or common group of end stations.

**Associating Primary and Secondary VLANs**

To allow host ports in secondary VLANs to communicate outside the private VLAN, you associate secondary VLANs to the primary VLAN. If the association is not operational, the host ports (community and isolated ports) in the secondary VLAN are brought down.
You can associate a secondary VLAN with only one primary VLAN.

For an association to be operational, the following conditions must be met:

- The primary VLAN must exist and be configured as a primary VLAN.
- The secondary VLAN must exist and be configured as either an isolated or community VLAN.

Use the `show vlan private-vlan` command to verify that the association is operational. The switch does not display an error message when the association is nonoperational.

If you delete either the primary or secondary VLAN, the ports that are associated with the VLAN become inactive. Use the `no private-vlan` command to return the VLAN to the normal mode. All primary and secondary associations on that VLAN are suspended, but the interfaces remain in private VLAN mode. When you convert the VLAN back to private VLAN mode, the original associations are reinstated.

If you enter the `no vlan` command for the primary VLAN, all private VLAN associations with that VLAN are deleted. However, if you enter the `no vlan` command for a secondary VLAN, the private VLAN associations with that VLAN are suspended and are restored when you recreate the specified VLAN and configure it as the previous secondary VLAN.

In order to change the association between a secondary and primary VLAN, you must first remove the current association and then add the desired association.

**Private VLAN Promiscuous Trunks**

A promiscuous trunk port can carry traffic for several primary VLANs. Multiple secondary VLANs under a given primary VLAN can be mapped to promiscuous trunk port. Traffic on the promiscuous port is received and transmitted with a primary VLAN tag.

**Private VLAN Isolated Trunks**

An isolated trunk port can carry traffic for multiple isolated private VLANs. Traffic for a community VLAN is not carried by isolated trunk ports. Traffic on isolated trunk ports is received and transmitted with an isolated VLAN tag. Isolated trunk ports are intended to be connected to host servers.

To support isolated private VLAN ports on a Cisco Nexus 2000 Series Fabric Extender, the Cisco Nexus 5000 Series switch must prevent communication between the isolated ports on the Fabric Extender; all forwarding occurs through the Cisco Nexus 5000 Series switch.

For unicast traffic, it is simple to prevent such a communication without any side effects.

For multicast traffic, the Fabric Extender provides replication of the frames. To prevent communication between isolated private VLAN ports on the Fabric Extender, the Cisco Nexus 5000 Series switch prevents multicast frames from being sent back through the fabric ports. This restriction prevents communication between an isolated VLAN and a promiscuous port on the Fabric Extender. However as its host interfaces are not intended to be connected to another switch or router, you cannot enable a promiscuous port on Fabric Extender.
Broadcast Traffic in Private VLANs

Broadcast traffic from ports in a private VLAN flows in the following ways:

- The broadcast traffic flows from a promiscuous port to all ports in the primary VLAN (which includes all the ports in the community and isolated VLANs). This broadcast traffic is distributed to all ports within the primary VLAN, including those ports that are not configured with private VLAN parameters.
- The broadcast traffic from an isolated port is distributed only to those promiscuous ports in the primary VLAN that are associated to that isolated port.
- The broadcast traffic from community ports is distributed to all ports within the port’s community and to all promiscuous ports that are associated to the community port. The broadcast packets are not distributed to any other communities within the primary VLAN, or to any isolated ports.

Private VLAN Port Isolation

You can use private VLANs to control access to end stations as follows:

- Configure selected interfaces connected to end stations as isolated ports to prevent any communication. For example, if the end stations are servers, this configuration prevents communication between the servers.
- Configure interfaces connected to default gateways and selected end stations (for example, backup servers) as promiscuous ports to allow all end stations access to a default gateway.

Guidelines and Limitations for Private VLANs

When configuring private VLANs, follow these guidelines:

- You must have already created the VLAN before you can assign the specified VLAN as a private VLAN.
- You must enable private VLANs before the switch can apply the private VLAN functionality.
- You cannot disable private VLANs if the switch has any operational ports in a private VLAN mode.
- Enter the `private-vlan synchronize` command from within the Multiple Spanning Tree (MST) region definition to map the secondary VLANs to the same MST instance as the primary VLAN.

Related Topics

- Mapping Secondary VLANs to Same MSTI as Primary VLANs for Private VLANs, page 149

Configuring a Private VLAN

Enabling Private VLANs

You must enable private VLANs on the switch to use the private VLAN functionality.
The private VLAN commands do not appear until you enable the private VLAN feature.

### SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# feature private-vlan
3. (Optional) switch(config)# no feature private-vlan

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# feature private-vlan</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config)# no feature private-vlan</td>
</tr>
<tr>
<td></td>
<td>Note</td>
</tr>
</tbody>
</table>

This example shows how to enable the private VLAN feature on the switch:

```
switch# configure terminal
switch(config)# feature private-vlan
```

### Configuring a VLAN as a Private VLAN

To create a private VLAN, you first create a VLAN, and then configure that VLAN to be a private VLAN.

**Before You Begin**

Ensure that the private VLAN feature is enabled.

### SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# vlan {vlan-id | vlan-range}
3. switch(config-vlan)# private-vlan {community | isolated | primary}
4. (Optional) switch(config-vlan)# no private-vlan {community | isolated | primary}
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td><code>switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Places you into the VLAN configuration submode.</td>
</tr>
<tr>
<td>`switch(config)# vlan {vlan-id</td>
<td>vlan-range}`</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Configures the VLAN as either a community, isolated, or primary private VLAN. In a private VLAN, you must have one primary VLAN. You can have multiple community and isolated VLANs.</td>
</tr>
<tr>
<td>`switch(config-vlan)# private-vlan {community</td>
<td>isolated</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>(Optional) Removes the private VLAN configuration from the specified VLAN(s) and returns it to normal VLAN mode. If you delete either the primary or secondary VLAN, the ports that are associated with the VLAN become inactive.</td>
</tr>
<tr>
<td>`switch(config-vlan)# no private-vlan {community</td>
<td>isolated</td>
</tr>
</tbody>
</table>

This example shows how to assign VLAN 5 to a private VLAN as the primary VLAN:

```
switch# configure terminal
switch(config)# vlan 5
switch(config-vlan)# private-vlan primary
```

This example shows how to assign VLAN 100 to a private VLAN as a community VLAN:

```
switch# configure terminal
switch(config)# vlan 100
switch(config-vlan)# private-vlan community
```

This example shows how to assign VLAN 200 to a private VLAN as an isolated VLAN:

```
switch# configure terminal
switch(config)# vlan 200
switch(config-vlan)# private-vlan isolated
```

**Associating Secondary VLANs with a Primary Private VLAN**

When you associate secondary VLANs with a primary VLAN, follow these guidelines:

- The `secondary-vlan-list` parameter cannot contain spaces. It can contain multiple comma-separated items. Each item can be a single secondary VLAN ID or a hyphenated range of secondary VLAN IDs.

- The `secondary-vlan-list` parameter can contain multiple community VLAN IDs and one isolated VLAN ID.

- Enter a `secondary-vlan-list` or use the add keyword with a `secondary-vlan-list` to associate secondary VLANs with a primary VLAN.

- Use the remove keyword with a `secondary-vlan-list` to clear the association between secondary VLANs and a primary VLAN.

- You change the association between a secondary and primary VLAN by removing the existing association and then adding the desired association.

If you delete either the primary or secondary VLAN, the VLAN becomes inactive on the port where the association is configured. When you enter the `no private-vlan` command, the VLAN returns to the normal
VLAN mode. All primary and secondary associations on that VLAN are suspended, but the interfaces remain in private VLAN mode. If you again convert the specified VLAN to private VLAN mode, the original associations are reinstated.

If you enter the `no vlan` command for the primary VLAN, all private VLAN associations with that VLAN are lost. However, if you enter the `no vlan` command for a secondary VLAN, the private VLAN associations with that VLAN are suspended and are reinstated when you recreate the specified VLAN and configure it as the previous secondary VLAN.

**Before You Begin**

Ensure that the private VLAN feature is enabled.

**SUMMARY STEPS**

1. `switch# configure terminal`
2. `switch(config)# vlan primary-vlan-id`
3. `switch(config-vlan)# private-vlan association { [add] secondary-vlan-list | remove secondary-vlan-list }`
4. (Optional) `switch(config-vlan)# no private-vlan association`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# vlan primary-vlan-id</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switch(config-vlan)# private-vlan association { [add] secondary-vlan-list</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>switch(config-vlan)# no private-vlan association</td>
</tr>
</tbody>
</table>

This example shows how to associate community VLANs 100 through 110 and isolated VLAN 200 with primary VLAN 5:

```
switch# configure terminal
switch(config)# vlan 5
switch(config-vlan)# private-vlan association 100-110, 200
```

**Configuring an Interface as a Private VLAN Host Port**

In private VLANs, host ports are part of the secondary VLANs, which are either community VLANs or isolated VLANs. Configuring a private VLAN host port involves two steps. First, you define the port as a private VLAN host port and then you configure a host association between the primary and secondary VLANs.

**Note**

We recommend that you enable BPDU Guard on all interfaces configured as a host ports.
Before You Begin

Ensure that the private VLAN feature is enabled.

**SUMMARY STEPS**

1. `switch# configure terminal`
2. `switch(config)# interface type [chassis/]slot/port`
3. `switch(config-if)# switchport mode private-vlan host`
4. `switch(config-if)# switchport private-vlan host-association {primary-vlan-id} {secondary-vlan-id}`
5. (Optional) `switch(config-if)# no switchport private-vlan host-association`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# interface type [chassis/]slot/port</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switch(config-if)# switchport mode private-vlan host</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>switch(config-if)# switchport private-vlan host-association {primary-vlan-id} {secondary-vlan-id}</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>switch(config-if)# no switchport private-vlan host-association</td>
</tr>
</tbody>
</table>

This example shows how to configure Ethernet port 1/12 as a host port for a private VLAN and associate it to primary VLAN 5 and secondary VLAN 101:

```
switch# configure terminal
switch(config)# interface ethernet 1/12
switch(config-if)# switchport mode private-vlan host
switch(config-if)# switchport private-vlan host-association 5 101
```

### Configuring an Interface as a Private VLAN Promiscuous Port

In a private VLAN domain, promiscuous ports are part of the primary VLAN. Configuring a promiscuous port involves two steps. First, you define the port as a promiscuous port and then you configure the mapping between a secondary VLAN and the primary VLAN.

**Before You Begin**

Ensure that the private VLAN feature is enabled.
SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# interface type slot/port
3. switch(config-if)# switchport mode private-vlan promiscuous
4. switch(config-if)# switchport private-vlan mapping {primary-vlan-id} {secondary-vlan-list | add secondary-vlan-list | remove secondary-vlan-list}
5. (Optional) switch(config-if)# no switchport private-vlan mapping

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td><strong>Purpose</strong></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# interface type slot/port</td>
</tr>
<tr>
<td><strong>Purpose</strong></td>
<td>Selects the port to configure as a private VLAN promiscuous port. A physical interface is required. This port cannot be on a Fabric Extender.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switch(config-if)# switchport mode private-vlan promiscuous</td>
</tr>
<tr>
<td><strong>Purpose</strong></td>
<td>Configures the port as a promiscuous port for a private VLAN. You can only enable a physical Ethernet port as the promiscuous port.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>switch(config-if)# switchport private-vlan mapping {primary-vlan-id} {secondary-vlan-list</td>
</tr>
<tr>
<td><strong>Purpose</strong></td>
<td>Configures the port as a promiscuous port and associates the specified port with a primary VLAN and a selected list of secondary VLANs. The secondary VLAN can be either an isolated or community VLAN.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>switch(config-if)# no switchport private-vlan mapping</td>
</tr>
<tr>
<td><strong>Purpose</strong></td>
<td>(Optional) Clears the mapping from the private VLAN.</td>
</tr>
</tbody>
</table>

This example shows how to configure Ethernet interface 1/4 as a promiscuous port associated with primary VLAN 5 and secondary isolated VLAN 200:

```
switch# configure terminal
switch(config)# interface ethernet 1/4
switch(config-if)# switchport mode private-vlan promiscuous
switch(config-if)# switchport private-vlan mapping 5 200
```

Configuring a Promiscuous Trunk Port

In a private VLAN domain, promiscuous trunks are part of the primary VLAN. Promiscuous trunk ports can carry multiple primary VLANs. Multiple secondary VLANs under a given primary VLAN can be mapped to a promiscuous trunk port.

Configuring a promiscuous port involves two steps. First, you define the port as a promiscuous port and then you configure the mapping between a secondary VLAN and the primary VLAN. Multiple primary VLANs can be enabled by configuring multiple mappings.
Before You Begin

Ensure that the private VLAN feature is enabled.

SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# interface type slot/port
3. switch(config-if)# switchport mode private-vlan trunk promiscuous
4. switch(config-if)# switchport private-vlan mapping trunk {primary-vlan-id} {secondary-vlan-id}
5. (Optional) switch(config-if)# no switchport private-vlan mapping trunk [primary-vlan-id]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config)# interface type slot/port</td>
<td>Selects the port to configure as a private VLAN promiscuous trunk port.</td>
</tr>
<tr>
<td>Step 3 switch(config-if)# switchport mode private-vlan trunk promiscuous</td>
<td>Configures the port as a promiscuous trunk port for a private VLAN. You can only enable a physical Ethernet port as the promiscuous port. This port cannot be on a Fabric Extender.</td>
</tr>
<tr>
<td>Step 4 switch(config-if)# switchport private-vlan mapping trunk {primary-vlan-id} {secondary-vlan-id}</td>
<td>Maps the trunk port with the primary and secondary VLANs of a private VLAN. The secondary VLAN can be either an isolated or community VLAN.</td>
</tr>
<tr>
<td>Step 5 switch(config-if)# no switchport private-vlan mapping trunk [primary-vlan-id]</td>
<td>(Optional) Removes the private VLAN mapping from the port. If the primary-vlan-id is not supplied, all private VLAN mappings are removed from the port.</td>
</tr>
</tbody>
</table>

This example shows how to configure Ethernet interface 1/1 as a promiscuous trunk port for a private VLAN and then map the secondary VLANs to the primary VLAN:

```
switch# configure terminal
switch(config)# interface ethernet 1/1
switch(config-if)# switchport mode private-vlan trunk promiscuous
switch(config-if)# switchport private-vlan mapping trunk 5 100
switch(config-if)# switchport private-vlan mapping trunk 5 200
switch(config-if)# switchport private-vlan mapping trunk 6 300
```

Configuring an Isolated Trunk Port

In a private VLAN domain, isolated trunks are part of a secondary VLAN. Isolated trunk ports can carry multiple isolated VLANs. Only one isolated VLAN under a given primary VLAN can be associated to an isolated trunk port. Configuring an isolated trunk port involves two steps. First, you define the port as an isolated trunk port and then you configure the association between the isolated and primary VLANs. Multiple isolated VLANs can be enabled by configuring multiple associations.
Before You Begin
Ensure that the private VLAN feature is enabled.

SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# interface type [chassis/slot/port]
3. switch(config-if)# switchport mode private-vlan trunk [secondary]
4. switch(config-if)# switchport private-vlan association trunk {primary-vlan-id} {secondary-vlan-id}
5. (Optional) switch(config-if)# no switchport private-vlan association trunk [primary-vlan-id]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Selects the port to configure as a private VLAN</td>
</tr>
<tr>
<td>switch(config)# interface type [chassis/slot/port]</td>
<td>isolated trunk port. This port can be on a Fabric Extender (identified by the chassis option).</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Configures the port as a secondary trunk port for</td>
</tr>
<tr>
<td>switch(config-if)# switchport mode private-vlan trunk</td>
<td>a private VLAN.</td>
</tr>
<tr>
<td>[secondary]</td>
<td><strong>Note</strong> The secondary keyword is assumed if it is not present.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Associates the isolated trunk port with the</td>
</tr>
<tr>
<td>switch(config-if)# switchport private-vlan association</td>
<td>primary and secondary VLANs of a private VLAN.</td>
</tr>
<tr>
<td>trunk {primary-vlan-id} {secondary-vlan-id}</td>
<td>The secondary VLAN should be an isolated VLAN.</td>
</tr>
<tr>
<td></td>
<td>Only one isolated VLAN can be mapped under a</td>
</tr>
<tr>
<td></td>
<td>given primary VLAN.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>Removes the private VLAN association from the</td>
</tr>
<tr>
<td>switch(config-if)# no switchport private-vlan association trunk [primary-vlan-id]</td>
<td>port. If the primary-vlan-id is not supplied, all private VLAN associations are removed from the port.</td>
</tr>
</tbody>
</table>

This example shows how to configure Ethernet interface 1/1 as a promiscuous trunk port for a private VLAN and then map the secondary VLANs to the primary VLAN:

```
switch# configure terminal
switch(config)# interface ethernet 1/1
switch(config-if)# switchport mode private-vlan trunk secondary
switch(config-if)# switchport private-vlan association 5 100
switch(config-if)# switchport private-vlan association 6 200
```

Configuring the Allowed VLANs for PVLAN Trunking Ports

Isolated trunk and promiscuous trunk ports can carry traffic from regular VLANs along with private VLANs.

Before You Begin
Ensure that the private VLAN feature is enabled.
### SUMMARY STEPS

1. `switch# configure terminal`
2. `switch(config)# interface type [chassis/]slot/port`
3. `switch(config-if)# switchport private-vlan trunk allowed vlan {vlan-list | all | none [add | except | none] | remove {vlan-list}}`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td><code>switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Selects the port to configure as a private VLAN host port. This port can be on a Fabric Extender (identified by the chassis option).</td>
</tr>
<tr>
<td><code>switch(config)# interface type [chassis/]slot/port</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Sets the allowed VLANs for the private trunk interface. The default is to allow only mapped/associated VLANs on the private VLAN trunk interface.</td>
</tr>
<tr>
<td>`switch(config-if)# switchport private-vlan trunk allowed vlan {vlan-list</td>
<td>all</td>
</tr>
</tbody>
</table>

This example shows how to add VLANs to the list of allowed VLANs on an Ethernet private VLAN trunk port:

```
switch# configure terminal
switch(config)# interface ethernet 1/3
switch(config-if)# switchport private-vlan trunk allowed vlan 15-20
```

### Configuring Native 802.1Q VLANs on Private VLANs

Typically, you configure 802.1Q trunks with a native VLAN ID, which strips tagging from all packets on that VLAN. This configuration allows untagged traffic and control traffic to transit the Cisco Nexus 5000 Series switch. Secondary VLANs cannot be configured with a native VLAN ID on promiscuous trunk ports. Primary VLANs cannot be configured with a native VLAN ID on isolated trunk ports.

**Note**

A trunk can carry the traffic of multiple VLANs. Traffic belonging to the native VLAN is not encapsulated to transit the trunk. Traffic for other VLANs is encapsulated with tags which identify the VLAN the traffic belongs to.

**Before You Begin**

Ensure that the private VLAN feature is enabled.
SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# interface type [chassis/]slot/port
3. switch(config-if)# switchport private-vlan trunk native {vlan vlan-id}
4. (Optional) switch(config-if)# no switchport private-vlan trunk native {vlan vlan-id}

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>switch# configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>switch(config)# interface type [chassis/]slot/port</td>
<td>Selects the port to configure as a private VLAN host port. This port can be on a Fabric Extender (identified by the chassis option).</td>
</tr>
<tr>
<td>3</td>
<td>switch(config-if)# switchport private-vlan trunk native {vlan vlan-id}</td>
<td>Sets the native VLAN ID for the private VLAN trunk. The default is VLAN 1.</td>
</tr>
<tr>
<td>4</td>
<td>switch(config-if)# no switchport private-vlan trunk native {vlan vlan-id}</td>
<td>(Optional) Removes the native VLAN ID from the private VLAN trunk.</td>
</tr>
</tbody>
</table>

Verifying Private VLAN Configuration

To display private VLAN configuration information, use the following commands:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch# show feature</td>
<td>Displays the features enabled on the switch.</td>
</tr>
<tr>
<td>switch# show interface switchport</td>
<td>Displays information on all interfaces configured as switch ports.</td>
</tr>
<tr>
<td>switch# show vlan private-vlan [type]</td>
<td>Displays the status of the private VLAN.</td>
</tr>
</tbody>
</table>
The following example shows how to display the private VLAN configuration:

```
switch# show vlan private-vlan
Primary Secondary Type Ports
------- --------- --------------- --
 100 community
 101 community Eth1/12, Eth100/1/1
 102 community
 110 community
 200 isolated Eth1/2
```

```
switch# show vlan private-vlan type
Vlan Type
---- -----------------
 5 primary
 100 community
 101 community
 102 community
 110 community
 200 isolated
```

The following example shows how to display enabled features (some of the output has been removed for brevity):

```
switch# show feature
Feature Name Instance State
-------------------- -------- --------
 fcsp 1 enabled

 interface-vlan
 private-vlan
 udld
-------------------- -------- --------

 Isolated
 private-vlan
 udld
-------------------- -------- --------
```

Configuring Access and Trunk Interfaces

Ethernet interfaces can be configured either as access ports or trunk ports. Trunks carry the traffic of multiple VLANs over a single link and allow you to extend VLANs across the network.

Note

Cisco NX-OS supports only IEEE 802.1Q-type VLAN trunk encapsulation.

This chapter describes the configuration of access or trunk ports on Cisco Nexus 5000 Series switches. It includes the following sections:

- Information About Access and Trunk Interfaces, page 49
- Configuring Access and Trunk Interfaces, page 52
- Verifying Interface Configuration, page 57

Information About Access and Trunk Interfaces

Understanding Access and Trunk Interfaces

Ethernet interfaces can be configured either as access ports or a trunk ports, as follows:

- An access port can have only one VLAN configured on the interface; it can carry traffic for only one VLAN.
- A trunk port can have two or more VLANs configured on the interface; it can carry traffic for several VLANs simultaneously.

In order to correctly deliver the traffic on a trunk port with several VLANs, the device uses the IEEE 802.1Q encapsulation or tagging method.

To optimize the performance on access ports, you can configure the port as a host port. Once the port is configured as a host port, it is automatically set as an access port.

If an access port receives a packet with an 802.1Q tag in the header other than the access VLAN value, that port drops the packet without learning its MAC source address.
Understanding IEEE 802.1Q Encapsulation

A trunk is a point-to-point link between the device and another networking device. Trunks carry the traffic of multiple VLANs over a single link and allow you to extend VLANs across an entire network.

To correctly deliver the traffic on a trunk port with several VLANs, the device uses the IEEE 802.1Q encapsulation (tagging) method. This tag carries information about the specific VLAN to which the frame and packet belong. This method allows packets that are encapsulated for several different VLANs to traverse the same port and maintain traffic separation between the VLANs.

**Figure 4: Header without and with 802.1Q Tag Included**

<table>
<thead>
<tr>
<th>Presamble (7 - bytes)</th>
<th>Start Frame Delimiter (1 - byte)</th>
<th>Dest. MAC Address (6 - bytes)</th>
<th>Source MAC Address (6 - bytes)</th>
<th>Length / Type (2 - bytes)</th>
<th>MAC Client Data (0 - n bytes)</th>
<th>Pad (0 - p bytes)</th>
<th>Frame Check Sequence (4 - bytes)</th>
</tr>
</thead>
</table>

Information About Access and Trunk Interfaces

**Understanding Access VLANs**

When you configure a port in access mode, you can specify which VLAN will carry the traffic for that interface. If you do not configure the VLAN for a port in access mode, or an access port, the interface carries traffic for the default VLAN (VLAN1).

You can change the access port membership in a VLAN by specifying the new VLAN. You must create the VLAN before you can assign it as an access VLAN for an access port. If you change the access VLAN on an access port to a VLAN that is not yet created, the system will shut that access port down.

If an access port receives a packet with an 802.1Q tag in the header other than the access VLAN value, that port drops the packet without learning its MAC source address.
If you assign an access VLAN that is also a primary VLAN for a private VLAN, all access ports with that
access VLAN will also receive all the broadcast traffic for the primary VLAN in the private VLAN mode.

**Understanding the Native VLAN ID for Trunk Ports**

A trunk port can carry untagged packets simultaneously with the 802.1Q tagged packets. When you assign a
default port VLAN ID to the trunk port, all untagged traffic travels on the default port VLAN ID for the trunk
port, and all untagged traffic is assumed to belong to this VLAN. This VLAN is referred to as the native
VLAN ID for a trunk port. The native VLAN ID is the VLAN that carries untagged traffic on trunk ports.

The trunk port sends an egressing packet with a VLAN that is equal to the default port VLAN ID as untagged;
all the other egressing packets are tagged by the trunk port. If you do not configure a native VLAN ID, the
trunk port uses the default VLAN.

Native VLAN ID numbers must match on both ends of the trunk.

**Understanding Allowed VLANs**

By default, a trunk port sends traffic to and receives traffic from all VLANs. All VLAN IDs are allowed on
each trunk. However, you can remove VLANs from this inclusive list to prevent traffic from the specified
VLANs from passing over the trunk. You can add any specific VLANs later that you may want the trunk to
carry traffic for back to the list.

To partition spanning tree protocol (STP) topology for the default VLAN, you can remove VLAN1 from the
list of allowed VLANs. Otherwise, VLAN1, which is enabled on all ports by default, will have a very big
STP topology, which can result in problems during STP convergence. When you remove VLAN1, all data
traffic for VLAN1 on this port is blocked, but the control traffic continues to move on the port.

**Understanding Native 802.1Q VLANs**

To provide additional security for traffic passing through an 802.1Q trunk port, the `vlan dot1q tag native`
command was introduced. This feature provides a means to ensure that all packets going out of a 802.1Q
trunk port are tagged and to prevent reception of untagged packets on the 802.1Q trunk port.

Without this feature, all tagged ingress frames received on a 802.1Q trunk port are accepted as long as they
fall inside the allowed VLAN list and their tags are preserved. Untagged frames are tagged with the native
VLAN ID of the trunk port before further processing. If the VLAN tag on a frame happens to match that of
the native VLAN on the trunk port, the tag is stripped off and the frame is sent untagged.

This behavior could potentially be exploited to introduce "VLAN hopping" in which a hacker could try and
have a frame jump to a different VLAN. It is also possible for traffic to become part of the native VLAN by
sending untagged packets into an 802.1Q trunk port.

To address the above issues, the `vlan dot1q tag native` command performs the following functions:

- On the ingress side, all untagged data traffic is dropped.
On the egress side, all traffic is tagged. If traffic belongs to native VLAN then it is tagged with the native VLAN ID.

This feature is supported on all the directly connected Ethernet and EtherChannel interfaces of the Cisco Nexus 5000 Series switch. It is also supported on all the host interface ports of any attached Cisco Nexus 2000 Series Fabric Extender.

### Configuring Access and Trunk Interfaces

#### Configuring a LAN Interface as an Ethernet Access Port

You can configure an Ethernet interface as an access port. An access port transmits packets on only one, untagged VLAN. You specify which VLAN traffic that the interface carries. If you do not specify a VLAN for an access port, the interface carries traffic only on the default VLAN. The default VLAN is VLAN1.

The VLAN must exist before you can specify that VLAN as an access VLAN. The system shuts down an access port that is assigned to an access VLAN that does not exist.

### SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# interface {{type slot/port} | {port-channel number}}
3. switch(config-if)# switchport mode {access | trunk}
4. switch(config-if)# switchport access vlan vlan-id

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> switch# configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> switch(config)# interface {{type slot/port}</td>
<td>Specifies an interface to configure, and enters interface configuration</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> switch(config-if)# switchport mode {access</td>
<td>Sets the interface as a nontrunking nontagged single-VLAN Ethernet</td>
</tr>
<tr>
<td></td>
<td>trunk}</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> switch(config-if)# switchport access vlan</td>
<td>Specifies the VLAN for which this access port will carry traffic. If you</td>
</tr>
<tr>
<td>vlan-id</td>
<td>do not enter this command, the access port carries traffic on VLAN1 only;</td>
</tr>
<tr>
<td></td>
<td>use this command to change the VLAN for which the access port carries</td>
</tr>
<tr>
<td></td>
<td>traffic.</td>
</tr>
</tbody>
</table>
This example shows how to set an interface as an Ethernet access port that carries traffic for a specific VLAN only:

```
switch# configure terminal
switch(config)# interface ethernet 1/10
switch(config-if)# switchport mode access
switch(config-if)# switchport access vlan 5
```

### Configuring Access Host Ports

By using `switchport host`, you can make an access port a spanning-tree edge port, and enable bpdu filtering and bpdu guard at the same time.

#### Before You Begin

Ensure that you are configuring the correct interface; it must be an interface that is connected to an end station.

#### SUMMARY STEPS

1. `switch# configure terminal`
2. `switch(config)# interface type slot/port`
3. `switch(config-if)# switchport host`

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td><code>switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Specifies an interface to configure, and enters interface configuration mode.</td>
</tr>
<tr>
<td><code>switch(config)# interface type slot/port</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Sets the interface to spanning-tree port type edge, turns on bpdu filtering and bpdu guard.</td>
</tr>
<tr>
<td><code>switch(config-if)# switchport host</code></td>
<td></td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>Apply this command only to switchports which connect to hosts.</td>
</tr>
</tbody>
</table>

This example shows how to set an interface as an Ethernet access host port with EtherChannel disabled:

```
switch# configure terminal
switch(config)# interface ethernet 1/10
switch(config-if)# switchport host
```

---

Cisco Nexus 5000 Series NX-OS Layer 2 Switching Configuration Guide, Release 4.2(1)N1(1)
Configuring Trunk Ports

You can configure an Ethernet port as a trunk port; a trunk port transmits untagged packets for the native VLAN plus encapsulated, tagged, packets for multiple VLANs.

### Note

Cisco NX-OS supports only 802.1Q encapsulation.

To configure a trunk port, perform this task:

**SUMMARY STEPS**

1. switch# configure terminal
2. switch(config)# interface {type slot/port | port-channel number}
3. switch(config-if)# switchport mode {access | trunk}

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# interface {type slot/port</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switch(config-if)# switchport mode {access</td>
</tr>
</tbody>
</table>

This example shows how to set an interface as an Ethernet trunk port:

```
switch# configure terminal
switch(config)# interface ethernet 1/3
switch(config-if)# switchport mode trunk
```

**Related Topics**

- Understanding IEEE 802.1Q Encapsulation, page 50

### Configuring the Native VLAN for 802.1Q Trunking Ports

If you do not configure this parameter, the trunk port uses the default VLAN as the native VLAN ID.
### SUMMARY STEPS

1. `switch# configure terminal`  
2. `switch(config)# interface {type slot/port | port-channel number}`  
3. `switch(config-if)# switchport trunk native vlan vlan-id`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# interface {type slot/port</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switch(config-if)# switchport trunk native vlan vlan-id</td>
</tr>
</tbody>
</table>

This example shows how to set the native VLAN for an Ethernet trunk port:
```
switch# configure terminal
switch(config)# interface ethernet 1/3
switch(config-if)# switchport trunk native vlan 5
```

### Configuring the Allowed VLANs for Trunking Ports

You can specify the IDs for the VLANs that are allowed on the specific trunk port. Before you configure the allowed VLANs for the specified trunk ports, ensure that you are configuring the correct interfaces and that the interfaces are trunks.

### SUMMARY STEPS

1. `switch# configure terminal`  
2. `switch(config)# interface {type slot/port | port-channel number}`  
3. `switch(config-if)# switchport trunk allowed vlan {vlan-list all | none [add | except | none] | remove {vlan-list}}`  

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# interface {type slot/port</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switch(config-if)# switchport trunk allowed vlan {vlan-list all</td>
</tr>
</tbody>
</table>
### Configuring Native 802.1Q VLANs

Typically, you configure 802.1Q trunks with a native VLAN ID, which strips tagging from all packets on that VLAN. This configuration allows all untagged traffic and control traffic to transit the Cisco Nexus 5000 Series switch. Packets that enter the switch with 802.1Q tags that match the native VLAN ID value are similarly stripped of tagging.

To maintain the tagging on the native VLAN and drop untagged traffic, enter the `vlan dot1q tag native` command. The switch will tag the traffic received on the native VLAN and admit only 802.1Q-tagged frames, dropping any untagged traffic, including untagged traffic in the native VLAN.

Control traffic continues to be accepted untagged on the native VLAN on a trunked port, even when the `vlan dot1q tag native` command is enabled.

**Note**

The `vlan dot1q tag native` command is enabled on global basis.

#### SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# vlan dot1q tag native
3. (Optional) switch(config)# no vlan dot1q tag native
4. (Optional) switch# show vlan dot1q tag native

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch(config-if)#</td>
<td></td>
</tr>
<tr>
<td>switchport trunk allowed</td>
<td></td>
</tr>
<tr>
<td>vlan {vlan-list all</td>
<td>none [add</td>
</tr>
<tr>
<td>remove {vlan-list</td>
<td>]}</td>
</tr>
</tbody>
</table>

Sets allowed VLANs for the trunk interface. The default is to allow all VLANs on the trunk interface: 1 to 3967 and 4048 to 4094. VLANs 3968 to 4047 are the default VLANs reserved for internal use by default; this group of VLANs is configurable. By default, all VLANs are allowed on all trunk interfaces.

**Note**

You cannot add internally allocated VLANs as allowed VLANs on trunk ports. The system returns a message if you attempt to list an internally allocated VLAN as an allowed VLAN.
Configuring Access and Trunk Interfaces

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# vlan dot1q tag native</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switch(config)# no vlan dot1q tag native</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>switch# show vlan dot1q tag native</td>
</tr>
</tbody>
</table>

The following example shows how to enable 802.1Q tagging on the switch:

```
switch# configure terminal
switch(config)# vlan dot1q tag native
switch(config)# exit
switch# show vlan dot1q tag native
vlan dot1q native tag is enabled
```

Verifying Interface Configuration

To display access and trunk interface configuration information, perform one of these tasks:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch# show interface</td>
<td>Displays the interface configuration</td>
</tr>
<tr>
<td>switch# show interface switchport</td>
<td>Displays information for all Ethernet interfaces, including access and trunk interfaces.</td>
</tr>
<tr>
<td>switch# show interface brief</td>
<td>Displays interface configuration information.</td>
</tr>
</tbody>
</table>
Configuring EtherChannels

This chapter describes how to configure EtherChannels and to apply and configure the Link Aggregation Control Protocol (LACP) for more efficient use of EtherChannels in Cisco NX-OS. It contains the following sections:

• Information About EtherChannels, page 59
• Configuring EtherChannels, page 66
• Verifying EtherChannel Configuration, page 74
• Verifying the Load-Balancing Outgoing Port ID, page 75

Information About EtherChannels

An EtherChannel bundles up to 16 individual interfaces into a group to provide increased bandwidth and redundancy. Port channeling also load balances traffic across these physical interfaces. The EtherChannel stays operational as long as at least one physical interface within the EtherChannel is operational.

You create an EtherChannel by bundling compatible interfaces. You can configure and run either static EtherChannels or EtherChannels running the Link Aggregation Control Protocol (LACP).

Any configuration changes that you apply to the EtherChannel are applied to each member interface of that EtherChannel. For example, if you configure Spanning Tree Protocol (STP) parameters on the EtherChannel, the Cisco NX-OS applies those parameters to each interface in the EtherChannel.

You can use static EtherChannels, with no associated protocol, for a simplified configuration. For more efficient use of the EtherChannel, you can use the Link Aggregation Control Protocol (LACP), which is defined in IEEE 802.3ad. When you use LACP, the link passes protocol packets.

Related Topics
• LACP Overview, page 63

Understanding EtherChannels

Using EtherChannels, Cisco NX-OS provides wider bandwidth, redundancy, and load balancing across the channels.
An EtherChannel bundles individual links into a channel group to create a single logical link that provides the aggregate bandwidth of up to 16 physical links. If a member port within an EtherChannel fails, traffic previously carried over the failed link switches to the remaining member ports within the EtherChannel. Each port can be in only one EtherChannel. All the ports in an EtherChannel must be compatible; they must use the same speed and operate in full-duplex mode. When you are running static EtherChannels, without LACP, the individual links are all in the on channel mode.

**Note**
You cannot change the mode from ON to Active or from ON to Passive.

You can create an EtherChannel directly by creating the port-channel interface, or you can create a channel group that acts to aggregate individual ports into a bundle. When you associate an interface with a channel group, Cisco NX-OS creates a matching EtherChannel automatically if the EtherChannel does not already exist. You can also create the EtherChannel first. In this instance, Cisco NX-OS creates an empty channel group with the same channel number as the EtherChannel and takes the default configuration.

**Note**
An EtherChannel is operationally up when at least one of the member ports is up and that port’s status is channeling. The EtherChannel is operationally down when all member ports are operationally down.

## Compatibility Requirements

When you add an interface to a channel group, Cisco NX-OS checks certain interface attributes to ensure that the interface is compatible with the channel group. Cisco NX-OS also checks a number of operational attributes for an interface before allowing that interface to participate in the port-channel aggregation.

The compatibility check includes the following operational attributes:

- Port mode
- Access VLAN
- Trunk native VLAN
- Allowed VLAN list
- Speed
- 802.3x flow control setting
- MTU
  - The Cisco Nexus 5000 Series switch only supports system level MTU. This attribute cannot be changed on an individual port basis.
- Broadcast/Unicast/Multicast Storm Control setting
- Priority-Flow-Control
- Untagged CoS

Use the `show port-channel compatibility-parameters` command to see the full list of compatibility checks that Cisco NX-OS uses.
You can only add interfaces configured with the channel mode set to on to static EtherChannels. You can also only add interfaces configured with the channel mode as active or passive to EtherChannels that are running LACP. You can configure these attributes on an individual member port.

When the interface joins an EtherChannel, the following individual parameters are replaced with the values on the EtherChannel:

- Bandwidth
- MAC address
- Spanning Tree Protocol

The following interface parameters remain unaffected when the interface joins an EtherChannel:

- Description
- CDP
- LACP port priority
- Debounce

Related Topics
- Channel Modes, page 65

**Load Balancing Using EtherChannels**

Cisco NX-OS load balances traffic across all operational interfaces in an EtherChannel by reducing part of the binary pattern formed from the addresses in the frame to a numerical value that selects one of the links in the channel. EtherChannels provide load balancing by default and the basic configuration uses the following criteria to select the link:

- For a Layer 2 frame, it uses the source and destination MAC addresses.
- For a Layer 3 frame, it uses the source and destination MAC addresses and the source and destination IP addresses.
- For a Layer 4 frame, it uses the source and destination MAC addresses and the source and destination IP addresses.

**Note**

You have the option to include the source and destination port number for the Layer 4 frame.

You can configure the switch to use one of the following methods to load balance across the EtherChannel:

- Destination MAC address
- Source MAC address
- Source and destination MAC address
- Destination IP address
- Source IP address
• Source and destination IP address
• Destination TCP/UDP port number
• Source TCP/UDP port number
• Source and destination TCP/UDP port number

Table 7: EtherChannel Load-Balancing Criteria for the Cisco Nexus 5000 Series

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Layer 2 Criteria</th>
<th>Layer 3 Criteria</th>
<th>Layer 4 Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination MAC</td>
<td>Destination MAC</td>
<td>Destination MAC</td>
<td>Destination MAC</td>
</tr>
<tr>
<td>Source MAC</td>
<td>Source MAC</td>
<td>Source MAC</td>
<td>Source MAC</td>
</tr>
<tr>
<td>Source and destination MAC</td>
<td>Source and destination MAC</td>
<td>Source and destination MAC</td>
<td>Source and destination MAC</td>
</tr>
<tr>
<td>Destination IP</td>
<td>Destination MAC</td>
<td>Destination MAC, destination IP</td>
<td>Destination MAC, destination IP</td>
</tr>
<tr>
<td>Source IP</td>
<td>Source MAC</td>
<td>Source MAC, source IP</td>
<td>Source MAC, source IP</td>
</tr>
<tr>
<td>Source and destination IP</td>
<td>Source and destination MAC</td>
<td>Source and destination MAC, source and destination IP</td>
<td>Source and destination MAC, source and destination IP</td>
</tr>
<tr>
<td>Destination TCP/UDP port</td>
<td>Destination MAC</td>
<td>Destination MAC, destination IP</td>
<td>Destination MAC, destination IP, destination port</td>
</tr>
<tr>
<td>Source TCP/UDP port</td>
<td>Source MAC</td>
<td>Source MAC, source IP</td>
<td>Source MAC, source IP, source port</td>
</tr>
<tr>
<td>Source and destination TCP/UDP port</td>
<td>Source and destination MAC</td>
<td>Source and destination MAC, source and destination IP</td>
<td>Source and destination MAC, source and destination IP</td>
</tr>
</tbody>
</table>

Fabric Extenders are not configurable individually. Fabric extender configurations are defined on the Nexus 5000 Series. In the case of the port-channel load balancing protocol, the table below illustrates which port-channel load balancing option is automatically configured on the fabric extender modules as a result of the configuration performed on the Nexus 5000 Series.

The following table shows the criteria used for each configuration:

Table 8: EtherChannel Load-Balancing Criteria for the Cisco Nexus 2232 and Cisco Nexus 2248 Fabric Extenders

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Layer 2 Criteria</th>
<th>Layer 3 Criteria</th>
<th>Layer 4 Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination MAC</td>
<td>Source and destination MAC</td>
<td>Source and destination MAC</td>
<td>Source and destination MAC</td>
</tr>
</tbody>
</table>

Cisco Nexus 5000 Series NX-OS Layer 2 Switching Configuration Guide, Release 4.2(1)N1(1)
Use the option that provides the balance criteria with the greatest variety in your configuration. For example, if the traffic on an EtherChannel is going only to a single MAC address and you use the destination MAC address as the basis of port-channel load balancing, the EtherChannel always chooses the same link in that EtherChannel; using source addresses or IP addresses might result in better load balancing.

### Understanding LACP

#### LACP Overview

You must enable the LACP feature before you can configure and use LACP functions.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Layer 2 Criteria</th>
<th>Layer 3 Criteria</th>
<th>Layer 4 Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source MAC</td>
<td>Source and destination MAC</td>
<td>Source and destination MAC</td>
<td>Source and destination MAC</td>
</tr>
<tr>
<td>Source and destination MAC</td>
<td>Source and destination MAC</td>
<td>Source and destination MAC</td>
<td>Source and destination MAC</td>
</tr>
<tr>
<td>Destination IP</td>
<td>Source and destination MAC</td>
<td>Source and destination MAC, and source and destination IP</td>
<td>Source and destination MAC, and source and destination IP</td>
</tr>
<tr>
<td>Source IP</td>
<td>Source and destination MAC</td>
<td>Source and destination MAC, and source and destination IP</td>
<td>Source and destination MAC, and source and destination IP</td>
</tr>
<tr>
<td>Source and destination IP</td>
<td>Source and destination MAC</td>
<td>Source and destination MAC, and source and destination IP</td>
<td>Source and destination MAC, and source and destination IP</td>
</tr>
<tr>
<td>Destination TCP/UDP port</td>
<td>Source and destination MAC</td>
<td>Source and destination MAC, and source and destination IP</td>
<td>Source and destination MAC, source and destination IP, and source and destination port</td>
</tr>
<tr>
<td>Source TCP/UDP port</td>
<td>Source and destination MAC</td>
<td>Source and destination MAC, and source and destination IP</td>
<td>Source and destination MAC, source and destination IP, and source and destination port</td>
</tr>
<tr>
<td>Source and destination TCP/UDP port</td>
<td>Source and destination MAC</td>
<td>Source and destination MAC, source and destination IP</td>
<td>Source and destination MAC, source and destination IP, and source and destination port</td>
</tr>
</tbody>
</table>
The following figure shows how individual links can be combined into LACP EtherChannels and channel groups as well as function as individual links.

**Figure 5: Individual Links Combined into an EtherChannel**

With LACP, just like with static port-channels, you can bundle up to 16 interfaces in a channel group.

**Note**
When you delete the EtherChannel, Cisco NX-OS automatically deletes the associated channel group. All member interfaces revert to their previous configuration.

You cannot disable LACP while any LACP configurations are present.

**LACP ID Parameters**

LACP uses the following parameters:

- LACP system priority—Each system that runs LACP has an LACP system priority value. You can accept the default value of 32768 for this parameter, or you can configure a value between 1 and 65535. LACP uses the system priority with the MAC address to form the system ID and also uses the system priority during negotiation with other devices. A higher system priority value means a lower priority.

**Note**
The LACP system ID is the combination of the LACP system priority value and the MAC address.

- LACP port priority—Each port configured to use LACP has an LACP port priority. You can accept the default value of 32768 for the LACP port priority, or you can configure a value between 1 and 65535. LACP uses the port priority with the port number to form the port identifier. LACP uses the port priority to decide which ports should be put in standby mode when there is a limitation that prevents all compatible ports from aggregating and which ports should be put into active mode. A higher port priority value means a lower priority for LACP. You can configure the port priority so that specified ports have a lower priority for LACP and are most likely to be chosen as active links, rather than hot-standby links.

- LACP administrative key—LACP automatically configures an administrative key value equal to the channel-group number on each port configured to use LACP. The administrative key defines the ability of a port to aggregate with other ports. A port’s ability to aggregate with other ports is determined by these factors:
Port physical characteristics, such as the data rate, the duplex capability, and the point-to-point or shared medium state

Configuration restrictions that you establish

Channel Modes

Individual interfaces in EtherChannels are configured with channel modes. When you run static EtherChannels, with no protocol, the channel mode is always set to on. After you enable LACP globally on the device, you enable LACP for each channel by setting the channel mode for each interface to active or passive. You can configure either channel mode for individual links in the LACP channel group.

Note

You must enable LACP globally before you can configure an interface in either the active or passive channel mode.

The following table describes the channel modes.

Table 9: Channel Modes for Individual Links in an EtherChannel

<table>
<thead>
<tr>
<th>Channel Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>passive</td>
<td>LACP mode that places a port into a passive negotiating state, in which the port responds to LACP packets that it receives but does not initiate LACP negotiation.</td>
</tr>
<tr>
<td>active</td>
<td>LACP mode that places a port into an active negotiating state, in which the port initiates negotiations with other ports by sending LACP packets.</td>
</tr>
<tr>
<td>on</td>
<td>All static EtherChannels, that is, that are not running LACP, remain in this mode. If you attempt to change the channel mode to active or passive before enabling LACP, the device returns an error message. You enable LACP on each channel by configuring the interface in that channel for the channel mode as either active or passive. When an LACP attempts to negotiate with an interface in the on state, it does not receive any LACP packets and becomes an individual link with that interface; it does not join the LACP channel group.</td>
</tr>
</tbody>
</table>

Both the passive and active modes allow LACP to negotiate between ports to determine if they can form an EtherChannel, based on criteria such as the port speed and the trunking state. The passive mode is useful when you do not know whether the remote system, or partner, supports LACP.

Ports can form an LACP EtherChannel when they are in different LACP modes as long as the modes are compatible as in the following examples:
• A port in active mode can form an EtherChannel successfully with another port that is in active mode.
• A port in active mode can form an EtherChannel with another port in passive mode.
• A port in passive mode cannot form an EtherChannel with another port that is also in passive mode because neither port will initiate negotiation.
• A port in on mode is not running LACP.

LACP Marker Responders
Using EtherChannels, data traffic may be dynamically redistributed due to either a link failure or load balancing. LACP uses the Marker Protocol to ensure that frames are not duplicated or reordered because of this redistribution. Cisco NX-OS supports only Marker Responders.

LACP-Enabled and Static EtherChannels Differences
The following table provides a brief summary of major differences between EtherChannels with LACP enabled and static EtherChannels.

Table 10: EtherChannels with LACP Enabled and Static EtherChannels

<table>
<thead>
<tr>
<th>Configurations</th>
<th>EtherChannels with LACP Enabled</th>
<th>Static EtherChannels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol applied</td>
<td>Enable globally.</td>
<td>Not applicable.</td>
</tr>
<tr>
<td>Channel mode of links</td>
<td>Can be either:</td>
<td>Can only be On.</td>
</tr>
<tr>
<td></td>
<td>• Active</td>
<td></td>
</tr>
<tr>
<td>Maximum number of links in channel</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

Configuring EtherChannels

Creating an EtherChannel
You can create an EtherChannel before creating a channel group. Cisco NX-OS automatically creates the associated channel group.

Note
If you want LACP-based EtherChannels, you need to enable LACP.
SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# interface port-channel channel-number
3. switch(config)# no interface port-channel channel-number

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# interface port-channel channel-number</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switch(config)# no interface port-channel channel-number</td>
</tr>
</tbody>
</table>

This example shows how to create an EtherChannel:

```
switch# configure terminal
switch (config)# interface port-channel 1
```

Adding a Port to an EtherChannel

You can add a port to a new channel group or to a channel group that already contains ports. Cisco NX-OS creates the EtherChannel associated with this channel group if the EtherChannel does not already exist.

*Note* If you want LACP-based EtherChannels, you need to enable LACP.

SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# interface type slot/port
3. (Optional) switch(config-if)# switchport mode trunk
4. (Optional) switch(config-if)# switchport trunk {allowed vlan vlan-id | native vlan vlan-id}
5. switch(config-if)# channel-group channel-number
6. (Optional) switch(config-if)# no channel-group
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# interface type slot/port</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switch(config-if)# switchport mode trunk</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>switch(config-if)# switchport trunk {allowed vlan vlan-id</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>switch(config-if)# channel-group channel-number</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>switch(config-if)# no channel-group</td>
</tr>
</tbody>
</table>

This example shows how to add an Ethernet interface 1/4 to channel group 1:

```bash
switch# configure terminal
switch (config)# interface ethernet 1/4
switch(config-if)# switchport mode trunk
switch(config-if)# channel-group 1
```

### Related Topics
- Enabling LACP, page 70

## Configuring Load Balancing Using EtherChannels

You can configure the load-balancing algorithm for EtherChannels that applies to the entire device.

### Note
If you want LACP-based EtherChannels, you need to enable LACP.

## SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# port-channel load-balance ethernet {destination-ip | destination-mac | destination-port | source-dest-ip | source-dest-mac | source-dest-port | source-ip | source-mac | source-port}
3. (Optional) switch(config)# no port-channel load-balance ethernet
4. (Optional) switch# show port-channel load-balance
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# port-channel load-balance ethernet {destination-ip</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switch(config)# no port-channel load-balance ethernet</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>switch# show port-channel load-balance</td>
</tr>
</tbody>
</table>

This example shows how to configure source IP load balancing for EtherChannels:

```plaintext
switch# configure terminal
switch (config)# port-channel load-balance ethernet source-ip
```

**Note**

Before Release 4.0(1a)N1 of Cisco NX-OS, the source-dest-ip, source-dest-mac, and source-dest-port keywords were source-destination-ip, source-destination-mac, and source-destination-port, respectively.

### Related Topics
- Enabling LACP, page 70

### Configuring Hardware Hashing for Multicast Traffic

By default, ingress multicast traffic on any port in the switch selects a particular EtherChannel member to egress the traffic. You can configure hardware hashing for multicast traffic to reduce potential bandwidth issues and to provide effective load balancing of the ingress multicast traffic. Use the **hardware multicast hw-hash** command to enable hardware hashing. To restore the default, use the **no hardware multicast hw-hash** command.

### SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# interface port-channel channel-number
3. switch(config-if)# hardware multicast hw-hash
## Enabling LACP

LACP is disabled by default; you must enable LACP before you begin LACP configuration. You cannot disable LACP while any LACP configuration is present.

LACP learns the capabilities of LAN port groups dynamically and informs the other LAN ports. Once LACP identifies correctly matched Ethernet links, it facilitates grouping the links into an EtherChannel. The EtherChannel is then added to the spanning tree as a single bridge port.

### SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# feature lacp
3. (Optional) switch(config)# show feature

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enables LACP on the switch.</td>
</tr>
<tr>
<td>switch(config)# feature lacp</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Displays enabled features.</td>
</tr>
<tr>
<td>switch(config)# show feature</td>
<td></td>
</tr>
</tbody>
</table>

This example shows how to configure hardware hashing on an EtherChannel:

```
switch# configure terminal
switch (config)# interface port-channel 21
switch(config-if)# hardware multicast hw-hash
```

This example shows how to remove hardware hashing from an EtherChannel:

```
switch# configure terminal
switch (config)# interface port-channel 21
switch(config-if)# no hardware multicast hw-hash
```
This example shows how to enable LACP:

```bash
switch# configure terminal
switch(config)# feature lacp
```

### Configuring Channel Mode for a Port

You can configure the channel mode for each individual link in the LACP EtherChannel as active or passive. This channel configuration mode allows the link to operate with LACP.

When you configure EtherChannels with no associated protocol, all interfaces on both sides of the link remain in the on channel mode.

**Before You Begin**

Ensure that you have enabled the LACP feature.

### SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# interface type slot/port
3. switch(config-if)# channel-group number mode {active | on | passive}
4. switch(config-if)# no channel-group number mode

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# interface type slot/port</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switch(config-if)# channel-group number mode {active</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>switch(config-if)# no channel-group number mode</td>
</tr>
</tbody>
</table>

This example shows how to set the LACP-enabled interface to active port-channel mode for Ethernet interface 1/4 in channel group 5:

```bash
switch# configure terminal
switch (config)# interface ethernet 1/4
switch(config-if)# channel-group 5 mode active
```
Configuring the LACP Fast Timer Rate

You can change the LACP timer rate to modify the duration of the LACP timeout. Use the `lacp rate` command to set the rate at which LACP control packets are sent to an LACP-supported interface. You can change the timeout rate from the default rate (30 seconds) to the fast rate (1 second). This command is supported only on LACP-enabled interfaces.

**Before You Begin**

Ensure that you have enabled the LACP feature.

**SUMMARY STEPS**

1. `switch# configure terminal`
2. `switch(config)# interface type slot/port`
3. `switch(config-if)# lacp rate fast`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td><code>switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Specifies the interface to configure and enters the interface configuration mode.</td>
</tr>
<tr>
<td><code>switch(config)# interface type slot/port</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Configures the fast rate (one second) at which LACP control packets are sent to an LACP-supported interface.</td>
</tr>
<tr>
<td><code>switch(config-if)# lacp rate fast</code></td>
<td></td>
</tr>
</tbody>
</table>

This example shows how to configure the LACP fast rate on Ethernet interface 1/4:

```
switch# configure terminal
switch(config)# interface ethernet 1/4
switch(config-if)# lacp rate fast
```

This example shows how to restore the LACP default rate (30 seconds) on Ethernet interface 1/4.

```
switch# configure terminal
switch(config)# interface ethernet 1/4
switch(config-if)# no lacp rate fast
```

Configuring the LACP System Priority and System ID

The LACP system ID is the combination of the LACP system priority value and the MAC address.

**Before You Begin**

Ensure that you have enabled the LACP feature.
SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# lACP system-priority priority
3. (Optional) switch# show lACP system-identifier

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Configures the system priority for use with LACP. Valid values are 1 through 65535, and higher numbers have lower priority. The default value is 32768.</td>
</tr>
<tr>
<td>Step 3</td>
<td>(Optional) Displays the LACP system identifier.</td>
</tr>
</tbody>
</table>

This example shows how to set the LACP system priority to 2500:

switch# configure terminal
switch(config)# lACP system-priority 2500

Configuring the LACP Port Priority

You can configure each link in the LACP EtherChannel for the port priority.

Before You Begin
Ensure that you have enabled the LACP feature.

SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# interface type slot/port
3. switch(config-if)# lACP port-priority priority

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Specifies the interface to configure, and enters the interface configuration mode.</td>
</tr>
</tbody>
</table>
Verifying EtherChannel Configuration

To display EtherChannel configuration information, perform one of the following tasks:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch# show interface port-channel channel-number</td>
<td>Displays the status of a EtherChannel interface.</td>
</tr>
<tr>
<td>switch# show feature</td>
<td>Displays enabled features.</td>
</tr>
<tr>
<td>switch# show resource</td>
<td>Displays the number of resources currently available in the system.</td>
</tr>
<tr>
<td>switch# show lacp {counters</td>
<td>interface type slot/port</td>
</tr>
<tr>
<td>switch# show port-channel compatibility-parameters</td>
<td>Displays the parameters that must be the same among the member ports in order to join an EtherChannel.</td>
</tr>
<tr>
<td>switch# show port-channel database [interface port-channel channel-number]</td>
<td>Displays the aggregation state for one or more port-channel interfaces.</td>
</tr>
<tr>
<td>switch# show port-channel summary</td>
<td>Displays a summary for the EtherChannel interfaces.</td>
</tr>
<tr>
<td>switch# show port-channel traffic</td>
<td>Displays the traffic statistics for EtherChannels.</td>
</tr>
<tr>
<td>switch# show port-channel usage</td>
<td>Displays the range of used and unused channel numbers.</td>
</tr>
<tr>
<td>switch# show port-channel database</td>
<td>Displays information on current running of the EtherChannel feature.</td>
</tr>
<tr>
<td>switch# show port-channel load-balance</td>
<td>Displays information about load-balancing using EtherChannels.</td>
</tr>
</tbody>
</table>
Verifying the Load-Balancing Outgoing Port ID

Command Guidelines

The `show port-channel load-balance` command allows you to verify which ports a given frame is hashed to on a port channel. You need to specify the VLAN and the destination MAC in order to get accurate results.

Note

Certain traffic flows are not subject to hashing, for example when there is a single port in a port-channel.

To display the load-balancing outgoing port ID, perform one of the tasks listed in the table below.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch# show port-channel load-balance forwarding-path interface port-channel port-channel-id vlan vlan-id dst-ip src-ip dst-mac src-mac l4-src-port port-id l4-dst-port port-id</td>
<td>Displays the outgoing port ID.</td>
</tr>
</tbody>
</table>

Example

The following example shows the output of the short `port-channel load-balance` command.

```
switch#show port-channel load-balance forwarding-path interface port-channel 10 vlan 1 dst-ip 1.225.225.225 src-ip 1.1.10.10 src-mac aa:bb:cc:dd:ee:ff l4-src-port 0 l4-dst-port 1
Missing params will be substituted by 0's.Load-balance Algorithm on switch:
source-dest-portcrc8_hash: 204 Outgoing port id: Ethernet1/1 Param(s) used to calculate load-balance:
dst-port: 1
src-port: 0
dst-ip: 1.225.225.225
src-ip: 1.1.10.10
dst-mac: 0000.0000.0000
src-mac: aabb.ccdd.eeff
```
CHAPTER 8

Configuring Virtual Port Channels

This chapter describes how to configure virtual port channels (vPCs) on Cisco Nexus 5000 Series switches. It contains the following sections:

• Information About vPCs, page 77
• vPC Guidelines and Limitations, page 88
• Configuring vPCs, page 89
• Verifying the vPC Configuration, page 100
• vPC Example Configurations, page 101
• vPC Default Settings, page 105

Information About vPCs

vPC Overview

A virtual port channel (vPC) allows links that are physically connected to two different Cisco Nexus 5000 Series switches or Cisco Nexus 2000 Series Fabric Extenders to appear as a single port channel by a third device (see the following figure). The third device can be a switch, server, or any other networking device. Beginning with Cisco NX-OS Release 4.1(3)N1(1), you can configure vPCs in topologies that include Cisco Nexus 5000 Series switches connected to the Fabric Extender. A vPC can provide multipathing, which allows
you to create redundancy by enabling multiple parallel paths between nodes and load balancing traffic where alternative paths exist.

Figure 6: vPC Architecture

You configure the EtherChannels by using one of the following:

- No protocol
- Link Aggregation Control Protocol (LACP)

When you configure the EtherChannels in a vPC—including the vPC peer link channel—each switch can have up to 16 active links in a single EtherChannel.

Note
You must enable the vPC feature before you can configure or run the vPC functionality.

To enable the vPC functionality, you must create a peer-keepalive link and a peer-link under the vPC domain for the two vPC peer switches to provide the vPC functionality.

To create a vPC peer link you configure an EtherChannel on one Cisco Nexus 5000 Series switch by using two or more Ethernet ports. On the other switch, you configure another EtherChannel again using two or more Ethernet ports. Connecting these two EtherChannels together creates a vPC peer link.

Note
We recommend that you configure the vPC peer-link EtherChannels as trunks.

The vPC domain includes both vPC peer devices, the vPC peer-keepalive link, the vPC peer link, and all of the EtherChannels in the vPC domain connected to the downstream device. You can have only one vPC domain ID on each vPC peer device.

Note
Always attach all vPC devices using EtherChannels to both vPC peer devices.

A vPC provides the following benefits:
• Allows a single device to use an EtherChannel across two upstream devices
• Eliminates Spanning Tree Protocol (STP) blocked ports
• Provides a loop-free topology
• Uses all available uplink bandwidth
• Provides fast convergence if either the link or a switch fails
• Provides link-level resiliency
• Assures high availability

**Terminology**

**vPC Terminology**

The terminology used in vPCs is as follows:

• vPC—The combined EtherChannel between the vPC peer devices and the downstream device.
• vPC peer device—One of a pair of devices that are connected with the special EtherChannel known as the vPC peer link.
• vPC peer link—The link used to synchronize states between the vPC peer devices.
• vPC member port—Interfaces that belong to the vPCs.
• Host vPC port—Fabric Extender host interfaces that belong to a vPC.
• vPC domain—This domain includes both vPC peer devices, the vPC peer-keepalive link, and all of the port channels in the vPC connected to the downstream devices. It is also associated to the configuration mode that you must use to assign vPC global parameters. The vPC domain ID must be the same on both switches.
• vPC peer-keepalive link—The peer-keepalive link monitors the vitality of a vPC peer Cisco Nexus 5000 Series device. The peer-keepalive link sends configurable, periodic keepalive messages between vPC peer devices.

No data or synchronization traffic moves over the vPC peer-keepalive link; the only traffic on this link is a message that indicates that the originating switch is operating and running vPCs.

**Fabric Extender Terminology**

The terminology used for the Cisco Nexus 2000 Series Fabric Extender is as follows:

• Fabric interface—A 10-Gigabit Ethernet uplink port designated for connection from the Fabric Extender to its parent switch. A fabric interface cannot be used for any other purpose. It must be directly connected to the parent switch.
• EtherChannel fabric interface—An EtherChannel uplink connection from the Fabric Extender to its parent switch. This connection consists of fabric interfaces bundled into a single logical channel.
• Host interface—An Ethernet interface for server or host connectivity. These ports are 1-Gigabit Ethernet interfaces or 10-Gigabit Ethernet interfaces, depending on the fabric extender model.
• EtherChannel host interface—An EtherChannel downlink connection from the Fabric Extender host interface to a server port.

For further information about the Fabric Extender, refer to the *Cisco Nexus 2000 Series Fabric Extender Software Configuration Guide*.

### Supported vPC Topologies

#### Cisco Nexus 5000 Series Switch vPC Topology

You can connect a pair of Cisco Nexus 5000 Series switches configured in a vPC directly to another switch or to a server. Up to 8 interfaces could be connected to each Cisco Nexus 5000 Series switch providing 16 interfaces bundled for the vPC pair. The topology that is shown in the following figure provides the vPC functionality to dual connected switches or servers with 10-Gigabit or 1-Gigabit Ethernet uplink interfaces.

![Figure 7: Cisco Nexus 5000 Series Switch-to-Switch vPC Topology](image)

The first 8 ports on the Cisco Nexus 5010 switch and the first 16 ports on the Cisco Nexus 5020 switch are switchable 1-Gigabit and 10-Gigabit ports. You can enable vPC functionality on these ports in 1-Gigabit mode.

The switch connected to the pair of Cisco Nexus 5000 Series switches can be any standards-based Ethernet switch. Common environments to use this configuration include Blade Chassis with dual switches connected to the pair of Cisco Nexus 5000 Series switches through vPC or Unified Computing Systems connected to the pair of Cisco Nexus 5000 Series switches.

#### Single Homed Fabric Extender vPC Topology

You can connect a server with dual or quad or more network adapters that are configured in a vPC to a pair of Cisco Nexus 2000 Series Fabric Extenders which are connected to the Cisco Nexus 5000 Series switches as depicted. Depending on the FEX model, you may be able to connect one or more network adapter interfaces to each fabric extender. As an example, Figure 10 refers to a topology built with the Cisco Nexus 2148T fabric extender, where a server has one link only to each fabric extender. A topology with Cisco Nexus 2248TP or with Cisco Nexus 2232PP fabric extender could consist of more links from the server to a single fabric extender.
The topology that is shown in the following figure provides the vPC functionality to dual homed servers with 1-Gigabit Ethernet uplink interfaces.

**Figure 8: Single Homed Fabric Extender vPC Topology**

The Cisco Nexus 5000 Series switch can support up to 12 configured single homed Fabric Extenders (576 ports) with this topology however only dual homed host servers can be configured in a vPCs with this configuration.

**Note**
The Cisco Nexus 2148T fabric extender does not support EtherChannels on its host interfaces. Therefore a maximum of two links can be configured in an EtherChannel from the server where each link is connected to a separate Fabric Extender.

**Dual Homed Fabric Extender vPC Topology**

You can connect the Cisco Nexus 2000 Series Fabric Extender to two upstream Cisco Nexus 5000 Series switches and downstream to a number of single homed servers. The topology shown in the following figure provides the vPC functionality to singly connected servers with 1-Gigabit Ethernet uplink interfaces.

**Figure 9: Dual Homed Fabric Extender vPC Topology**

The topology that is shown in the following figure provides the vPC functionality to dual homed servers with 1-Gigabit Ethernet uplink interfaces.
The Cisco Nexus 5000 Series switch can support up to 12 configured dual homed Fabric Extenders with this topology. A maximum of 576 single homed servers can be connected to this configuration.

**vPC Domain**

To create a vPC domain, you must first create a vPC domain ID on each vPC peer switch using a number from 1 to 1000. This ID must be the same on a set of vPC peer devices.

You can configure the EtherChannels and vPC peer links by using LACP or no protocol. When possible, we recommend that you use LACP on the peer-link, because LACP provides configuration checks against a configuration mismatch on the etherchannel.

The vPC peer switches use the vPC domain ID that you configure to automatically assign a unique vPC system MAC address. Each vPC domain has a unique MAC address that is used as a unique identifier for the specific vPC-related operations, although the switches use the vPC system MAC addresses only for link-scope operations, such as LACP. We recommend that you create each vPC domain within the contiguous network with a unique domain ID. You can also configure a specific MAC address for the vPC domain, rather than having the Cisco NX-OS software assign the address.

The vPC peer switches use the vPC domain ID that you configure to automatically assign a unique vPC system MAC address. The switches use the vPC system MAC addresses only for link-scope operations, such as LACP or BPDUs. You can also configure a specific MAC address for the vPC domain.

After you create a vPC domain, the Cisco NX-OS software automatically creates a system priority for the vPC domain. You can also manually configure a specific system priority for the vPC domain.

**Note**

If you manually configure the system priority, you must ensure that you assign the same priority value on both vPC peer switches. If the vPC peer switches have different system priority values, the vPC will not come up.

**Peer-Keepalive Link and Messages**

The Cisco NX-OS software uses a peer-keepalive link between the vPC peers to transmit periodic, configurable keepalive messages. You must have Layer 3 connectivity between the peer switches to transmit these messages; the system cannot bring up the vPC peer link unless a peer-keepalive link is already up and running.

If one of the vPC peer switches fails, the vPC peer switch on the other side of the vPC peer link senses the failure when it does not receive any peer-keepalive messages. The default interval time for the vPC peer-keepalive message is 1 second. You can configure the interval between 400 milliseconds and 10 seconds. You can also configure a timeout value with a range of 3 to 20 seconds; the default timeout value is 5 seconds. The peer-keepalive status is checked only when the peer-link goes down.

The vPC peer-keepalive can be carried either in the management or default VRF on the Cisco Nexus 5000 Series switch. When you configure the switches to use the management VRF, the source and destination for the keepalive messages are the mgmt 0 interface IP addresses. When you configure the switches to use the default VRF, an SVI must be created to act as the source and destination addresses for the vPC peer-keepalive messages. Ensure that both the source and destination IP addresses used for the peer-keepalive messages are unique in your network and these IP addresses are reachable from the VRF associated with the vPC peer-keepalive link.
We recommend that you configure the vPC peer-keepalive link on the Cisco Nexus 5000 Series switch to run in the management VRF using the mgmt 0 interfaces. If you configure the default VRF, ensure that the vPC peer link is not used to carry the vPC peer-keepalive messages.

**Compatibility Parameters for vPC Peer Links**

Many configuration and operational parameters must be identical on all interfaces in the vPC. After you enable the vPC feature and configure the peer link on both vPC peer switches, Cisco Fabric Services (CFS) messages provide a copy of the configuration on the local vPC peer switch configuration to the remote vPC peer switch. The system then determines whether any of the crucial configuration parameters differ on the two switches.

Enter the `show vpc consistency-parameters` command to display the configured values on all interfaces in the vPC. The displayed configurations are only those configurations that would limit the vPC peer link and vPC from coming up.

The compatibility check process for vPCs differs from the compatibility check for regular EtherChannels.

**Configuration Parameters That Must Be Identical**

The configuration parameters in this section must be configured identically on both switches at either end of the vPC peer link or the vPC is moved into suspend mode.

**Note**

You must ensure that all interfaces in the vPC have the identical operational and configuration parameters listed in this section.

Enter the `show vpc consistency-parameters` command to display the configured values on all interfaces in the vPC. The displayed configurations are only those configurations that would limit the vPC peer link and vPC from coming up.

The switch automatically check for compatibility of these parameters on the vPC interfaces. The per-interface parameters must be consistent per interface, and the global parameters must be consistent globally.

- Port-channel mode: on, off, or active
- Link speed per channel
- Duplex mode per channel
- Trunk mode per channel:
  - Native VLAN
  - VLANs allowed on trunk
  - Tagging of native VLAN traffic
- Spanning Tree Protocol (STP) mode
- STP region configuration for Multiple Spanning Tree (MST)
- Enable or disable state per VLAN
• STP global settings:
  ◦ Bridge Assurance setting
  ◦ Port type setting—We recommend that you set all vPC interfaces as normal ports
  ◦ Loop Guard settings

• STP interface settings:
  ◦ Port type setting
  ◦ Loop Guard
  ◦ Root Guard

• Maximum Transmission Unit (MTU)

• Quality of Service global settings
  ◦ System QoS policy
  ◦ System Network-QoS policy
  ◦ System Input Queuing policy
  ◦ System Output Queuing policy

• For the Fabric Extender vPC topology, all the interface level parameters mentioned above should be identically configured for host interface from both the switches.

• Fabric Extender FEX number configured on an EtherChannel fabric interface; for the Fabric Extender vPC topology.

If any of these parameters are not enabled or defined on either switch, the vPC consistency check ignores those parameters.

---

Note

To ensure that none of the vPC interfaces are in the suspend mode, enter the `show vpc brief` and `show vpc consistency-parameters` commands and check the syslog messages.

---

**Configuration Parameters That Should Be Identical**

When any of the following parameters are not configured identically on both vPC peer switches, a misconfiguration may cause undesirable behavior in the traffic flow:

• MAC aging timers

• Static MAC entries

• VLAN interface—Each switch on the end of the vPC peer link must have a VLAN interface configured for the same VLAN on both ends and they must be in the same administrative and operational mode. Those VLANs configured on only one switch of the peer link do not pass traffic using the vPC or peer link. You must create all VLANs on both the primary and secondary vPC switches, or the VLAN will be suspended.

• Private VLAN configuration
• All ACL configurations and parameters
• Quality of service (QoS) configuration and parameters—Local parameters; global parameters must be identical
• STP interface settings:
  ◦ BPDU Filter
  ◦ BPDU Guard
  ◦ Cost
  ◦ Link type
  ◦ Priority
  ◦ VLANs (Rapid PVST+)

To ensure that all the configuration parameters are compatible, we recommend that you display the configurations for each vPC peer switch once you configure the vPC.

vPC Peer Links

A vPC peer link is the link that is used to synchronize the states between the vPC peer devices.

Note
You must configure the peer-keepalive link before you configure the vPC peer link or the peer link will not come up.

vPC Peer Link Overview

You can have only two switches as vPC peers; each switch can serve as a vPC peer to only one other vPC peer. The vPC peer switches can also have non-vPC links to other switches.

To make a valid configuration, you configure an EtherChannel on each switch and then configure the vPC domain. You assign the EtherChannel on each switch as a peer link. For redundancy, we recommend that you should configure at least two dedicated ports into the EtherChannel; if one of the interfaces in the vPC peer link fails, the switch automatically falls back to use another interface in the peer link.

Note
We recommend that you configure the EtherChannels in trunk mode.

Many operational parameters and configuration parameters must be the same in each switch connected by a vPC peer link. Because each switch is completely independent on the management plane, you must ensure that the switches are compatible on the critical parameters. vPC peer switches have separate control planes. After configuring the vPC peer link, you should display the configuration on each vPC peer switch to ensure that the configurations are compatible.
You must ensure that the two switches connected by the vPC peer link have certain identical operational and configuration parameters.

When you configure the vPC peer link, the vPC peer switches negotiate that one of the connected switches is the primary switch and the other connected switch is the secondary switch. By default, the Cisco NX-OS software uses the lowest MAC address to elect the primary switch. The software takes different actions on each switch—that is, the primary and secondary—only in certain failover conditions. If the primary switch fails, the secondary switch becomes the operational primary switch when the system recovers, and the previously primary switch is now the secondary switch.

You can also configure which of the vPC switches is the primary switch. If you want to configure the role priority again to make one vPC switch the primary switch, configure the role priority on both the primary and secondary vPC switches with the appropriate values, shut down the EtherChannel that is the vPC peer link on both switches by entering the `shutdown` command, and reenable the EtherChannel on both switches by entering the `no shutdown` command.

MAC addresses that are learned over vPC links are also synchronized between the peers.

Configuration information flows across the vPC peer links using the Cisco Fabric Services over Ethernet (CFSoE) protocol. All MAC addresses for those VLANs configured on both switches are synchronized between vPC peer switches. The software uses CFSoE for this synchronization.

If the vPC peer link fails, the software checks the status of the remote vPC peer switch using the peer-keepalive link, which is a link between vPC peer switches, to ensure that both switches are up. If the vPC peer switch is up, the secondary vPC switch disables all vPC ports on its switch. The data then forwards down the remaining active links of the EtherChannel.

The software learns of a vPC peer switch failure when the keepalive messages are not returned over the peer-keepalive link.

Use a separate link (vPC peer-keepalive link) to send configurable keepalive messages between the vPC peer switches. The keepalive messages on the vPC peer-keepalive link determines whether a failure is on the vPC peer link only or on the vPC peer switch. The keepalive messages are used only when all the links in the peer link fail.

### vPC Number

Once you have created the vPC domain ID and the vPC peer link, you can create EtherChannels to attach the downstream switch to each vPC peer switch. That is, you create one single EtherChannel on the downstream switch with half of the ports to the primary vPC peer switch and the other half of the ports to the secondary peer switch.

On each vPC peer switch, you assign the same vPC number to the EtherChannel that connects to the downstream switch. You will experience minimal traffic disruption when you are creating vPCs. To simplify the configuration, you can assign the vPC ID number for each EtherChannel to be the same as the EtherChannel itself (that is, vPC ID 10 for EtherChannel 10).

**Note**

The vPC number that you assign to the EtherChannel connecting to the downstream switch from the vPC peer switch must be identical on both vPC peer switches.
vPC Interactions with Other Features

vPC and LACP

The Link Aggregation Control Protocol (LACP) uses the system MAC address of the vPC domain to form the LACP Aggregation Group (LAG) ID for the vPC.

You can use LACP on all the vPC EtherChannels, including those channels from the downstream switch. We recommend that you configure LACP with active mode on the interfaces on each EtherChannel on the vPC peer switches. This configuration allows you to more easily detect compatibility between switches, unidirectional links, and multihop connections, and provides dynamic reaction to run-time changes and link failures.

The vPC peer link supports 16 EtherChannel interfaces.

Note

When manually configuring the system priority, you must ensure that you assign the same priority value on both vPC peer switches. If the vPC peer switches have different system priority values, vPC will not come up.

vPC Peer Links and STP

When you first bring up the vPC functionality, STP reconverges. STP treats the vPC peer link as a special link and always includes the vPC peer link in the STP active topology.

We recommend that you set all the vPC peer link interfaces to the STP network port type so that Bridge Assurance is automatically enabled on all vPC peer links. We also recommend that you do not enable any of the STP enhancement features on VPC peer links.

You must configure a list of parameters to be identical on the vPC peer switches on both sides of the vPC peer link.

STP is distributed; that is, the protocol continues running on both vPC peer switches. However, the configuration on the vPC peer switch elected as the primary switch controls the STP process for the vPC interfaces on the secondary vPC peer switch.

The primary vPC switch synchronizes the STP state on the vPC secondary peer switch using Cisco Fabric Services over Ethernet (CFSoE).

The vPC manager performs a proposal/handshake agreement between the vPC peer switches that sets the primary and secondary switches and coordinates the two switches for STP. The primary vPC peer switch then controls the STP protocol for vPC interfaces on both the primary and secondary switches.

The Bridge Protocol Data Units (BPDUs) use the MAC address set for the vPC for the STP bridge ID in the designated bridge ID field. The vPC primary switch sends these BPDUs on the vPC interfaces.

Note

Display the configuration on both sides of the vPC peer link to ensure that the settings are identical. Use the `show spanning-tree` command to display information about the vPC.
CFSoE

The Cisco Fabric Services over Ethernet (CFSoE) is a reliable state transport mechanism that you can use to synchronize the actions of the vPC peer devices. CFSoE carries messages and packets for many features linked with vPC, such as STP and IGMP. Information is carried in CFS/CFSoE protocol data units (PDUs).

When you enable the vPC feature, the device automatically enables CFSoE, and you do not have to configure anything. CFSoE distributions for vPCs do not need the capabilities to distribute over IP or the CFS regions. You do not need to configure anything for the CFSoE feature to work correctly on vPCs.

You can use the `show mac address-table` command to display the MAC addresses that CFSoE synchronizes for the vPC peer link.

**Note**
Do not enter the `no cfs eth distribute` or the `no cfs distribute` command. CFSoE must be enabled for vPC functionality. If you do enter either of these commands when vPC is enabled, the system displays an error message.

When you enter the `show cfs application` command, the output displays "Physical-eth," which shows the applications that are using CFSoE.

vPC Guidelines and Limitations

vPC has the following configuration guidelines and limitations:

- **Note**
  Do not enter the `no cfs eth distribute` or the `no cfs distribute` command. CFSoE must be enabled for vPC functionality. If you do enter either of these commands when vPC is enabled, the system displays an error message.

- **Note**

- You must enable the vPC feature before you can configure vPC peer-link and vPC interfaces.
- You must configure the peer-keepalive link before the system can form the vPC peer link.
- Only EtherChannels can be in vPCs. A vPC can be configured on a normal EtherChannel (switch-to-switch vPC topology), on an EtherChannel fabric interface (fabric extender vPC topology), and on an EtherChannel host interface (host interface vPC topology).
- A Fabric Extender can be a member of a Host Interface vPC topology or a Fabric Extender vPC topology but not both simultaneously.
- You must configure both vPC peer switches; the configuration is not automatically synchronized between the vPC peer devices.
- Check that the necessary configuration parameters are compatible on both sides of the vPC peer link.
- You may experience minimal traffic disruption while configuring vPCs.
Configuring vPCs

Enabling vPCs

You must enable the vPC feature before you can configure and use vPCs.

SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# feature vpc
3. (Optional) switch# show feature
4. (Optional) switch# copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# feature vpc</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switch# show feature</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>switch# copy running-config startup-config</td>
</tr>
</tbody>
</table>

This example shows how to enable the vPC feature:

```
switch# configure terminal
switch(config)# feature vpc
```

Disabling vPCs

You can disable the vPC feature.

Note

When you disable the vPC feature, the Cisco Nexus 5000 Series switch clears all the vPC configurations.

SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# no feature vpc
3. (Optional) switch# show feature
4. (Optional) switch# copy running-config startup-config
Creating a vPC Domain

You must create identical vPC domain IDs on both the vPC peer devices. This domain ID is used to automatically form the vPC system MAC address.

Before You Begin

Ensure that you have enabled the vPC feature.

You must configure both switches on either side of the vPC peer link with the following procedure.

SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# vpc domain domain-id
3. (Optional) switch# show vpc brief
4. (Optional) switch# copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config)# no feature vpc</td>
<td>Disables vPCs on the switch.</td>
</tr>
<tr>
<td>Step 3 switch# show feature</td>
<td>(Optional) Displays which features are enabled on the switch.</td>
</tr>
<tr>
<td>Step 4 switch# copy running-config startup-config</td>
<td>(Optional) Copies the running configuration to the startup configuration.</td>
</tr>
</tbody>
</table>

This example shows how to disable the vPC feature:

switch# configure terminal
switch(config)# no feature vpc
### Configuring a vPC Keepalive Link

You can configure the destination IP for the peer-keepalive link that carries the keepalive messages. Optionally, you can configure other parameters for the keepalive messages.

#### Before You Begin

Ensure that you have enabled the vPC feature.

You must configure the vPC peer-keepalive link before the system can form the vPC peer link.

You must configure both switches on either side of the vPC peer link with the following procedure.

#### SUMMARY STEPS

1. `switch# configure terminal`
2. `switch(config)# vpc domain domain-id`
3. `switch(config-vpc-domain)# peer-keepalive destination ipaddress [hold-timeout secs | interval msecs {timeout secs}] [precedence {prec-value | network | internet | critical | flash-override | flash | immediate priority | routine} | tos {tos-value} max-reliability | max-throughput | min-delay | min-monetary-cost | normal | tos-byte tos-byte-value] | source ipaddress | vrf {name | management vpc-keepalive}]`
4. (Optional) `switch# show vpc peer-keepalive`
5. (Optional) `switch# copy running-config startup-config`

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td><strong>Purpose</strong></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# vpc domain domain-id</td>
</tr>
<tr>
<td><strong>Purpose</strong></td>
<td>Creates a vPC domain on the switch if it does not already exist, and enters the vpc-domain configuration mode.</td>
</tr>
</tbody>
</table>
| **Step 3**        | switch(config-vpc-domain)# peer-keepalive destination ipaddress [hold-timeout secs | interval msecs {timeout secs}] [precedence {prec-value | network | internet} | precedence {prec-value} | network | internet]
| **Purpose** | Configures the IPv4 address for the remote end of the vPC peer-keepalive link. |

**Note** The system does not form the vPC peer link until you configure a vPC peer-keepalive link.
Configuring vPCs

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>critical flash-override flash immediate priority routine</td>
<td>The management ports and VRF are the defaults</td>
</tr>
<tr>
<td>max-throughput min-delay min-monetary-cost normal</td>
<td></td>
</tr>
<tr>
<td>tos tos-value max-reliability</td>
<td></td>
</tr>
<tr>
<td>min-throughput min-monetary-cost min-delay min-monetary-cost</td>
<td></td>
</tr>
<tr>
<td>vrf name management vpc-keepalive</td>
<td></td>
</tr>
<tr>
<td>tos-value</td>
<td></td>
</tr>
<tr>
<td>tos-byte tos-byte-value</td>
<td></td>
</tr>
<tr>
<td>source ipaddress</td>
<td></td>
</tr>
<tr>
<td>vrf</td>
<td></td>
</tr>
<tr>
<td>name</td>
<td></td>
</tr>
<tr>
<td>management vpc-keepalive</td>
<td></td>
</tr>
</tbody>
</table>

Step 4 switch# show vpc peer-keepalive

(Optional) Displays information about the configuration for the keepalive messages.

Step 5 switch# copy running-config startup-config

(Optional) Copies the running configuration to the startup configuration.

This example shows how to configure the destination IP address for the vPC-peer-keepalive link:

```
switch# configure terminal
switch(config)# vpc domain 5
switch(config-vpc-domain)# peer-keepalive destination 10.10.10.42
```

Creating a vPC Peer Link

You can create a vPC peer link by designating the EtherChannel that you want on each switch as the peer link for the specified vPC domain. We recommend that you configure the EtherChannels that you are designating as the vPC peer link in trunk mode and that you use two ports on separate modules on each vPC peer switch for redundancy.

Before You Begin

Ensure that you have enabled the vPC feature.

You must configure both switches on either side of the vPC peer link with the following procedures

**SUMMARY STEPS**

1. switch# configure terminal
2. switch(config)# interface port-channel channel-number
3. switch(config-if)# vpc peer-link
4. (Optional) switch# show vpc brief
5. (Optional) switch# copy running-config startup-config

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
</tbody>
</table>
### Configuring Virtual Port Channels

#### Checking the Configuration Compatibility

After you have configured the vPC peer link on both vPC peer switches, check that the configurations are consistent on all vPC interfaces.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch# `show vpc consistency-parameters {global</td>
<td>interface port-channel channel-number}`</td>
</tr>
</tbody>
</table>

This example shows how to check that the required configurations are compatible across all the vPC interfaces:

```
switch# show vpc consistency-parameters global
```
This example shows how to check that the required configurations are compatible for an EtherChannel interface:

```
switch# show vpc consistency-parameters interface port-channel 20
```

Disabling the vPC Peer Link Compatibility Check

You can modify the default vPC behavior when a peer link is down on the primary vPC switch. There is no behavior change on the secondary vPC switch. The default behavior on the primary vPC switch, after a peer-link goes down, is to keep the vPCs down once they get flapped and to not bring up newly configured vPCs. This command allows newly configured vPCs and existing vPCs that are flapped to be brought up when a peer link is down.

**Note**

The command comes into effect when a peer link is down and the vPC role has been determined to be primary.

**Before You Begin**

Ensure that the vPC feature is enabled and the vPC domain has been configured.
SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# vpc domain domain-id
3. switch(config-vpc-domain)# peer-config-check-bypass
4. switch(config-vpc-domain)# no peer-config-check-bypass

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal En ters configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# vpc domain domain-id</td>
</tr>
<tr>
<td></td>
<td>Selects an existing vPC domain on the switch, or creates a new vPC domain,</td>
</tr>
<tr>
<td></td>
<td>and enters the vpc-domain configuration mode. There is no default domain-id</td>
</tr>
<tr>
<td></td>
<td>from 1 to 1000.</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config-vpc-domain)# peer-config-check-bypass</td>
</tr>
<tr>
<td></td>
<td>Disables the default vPC behavior when a peer link is down. This allows</td>
</tr>
<tr>
<td></td>
<td>newly configured vPCs (and existing vPCs that may get flapped) to be</td>
</tr>
<tr>
<td></td>
<td>brought up even when a peer link is down and the vPC switch role has</td>
</tr>
<tr>
<td></td>
<td>been determined to be primary.</td>
</tr>
<tr>
<td>Step 4</td>
<td>switch(config-vpc-domain)# no peer-config-check-bypass</td>
</tr>
<tr>
<td></td>
<td>Enables the default vPC behavior when a peer link is down. This will not</td>
</tr>
<tr>
<td></td>
<td>bring up newly configured vPCs (and existing vPCs that may get flapped)</td>
</tr>
<tr>
<td></td>
<td>when a peer link is down and the vPC switch role has been determined to</td>
</tr>
<tr>
<td></td>
<td>be primary.</td>
</tr>
</tbody>
</table>

The following message will be displayed after issuing this command when a peer-link is active:
Warning: This feature is not available if the peer link is active.

The following message will be displayed after issuing this command when a peer link is in-active:
Warning: On peer-link recovery, any inconsistency between the two systems may cause currently active links to be disabled.

Creating an EtherChannel Host Interface

To connect to a downstream server from a Cisco Nexus 2000 Series Fabric Extender you can create a EtherChannel host interface. An EtherChannel host interface can have only one host interface as a member depending on the fabric extender model. The Cisco Nexus 2148T allows only one interface member per fabric extender, newer fabric extenders allow up to 8 members of the same port-channel on a single fabric extender. You need to create an EtherChannel host interface to configure a vPC on it that uses the Fabric Extender topology.

Note: See the Cisco Nexus 2000 Series Fabric Extender Software Configuration Guide for information on attaching a Fabric Extender to a Cisco Nexus 5000 Series switch.
**Before You Begin**

Ensure that you have enabled the vPC feature.
Ensure that the connected Fabric Extender is online.
You must configure both switches on either side of the vPC peer link with the following procedure.

**SUMMARY STEPS**

1. switch# configure terminal
2. switch(config)# interface ethernet chassis/slot/port
3. switch(config-if)# channel-group channel-number mode {active | passive | on}
4. (Optional) switch# show port-channel summary
5. (Optional) switch# copy running-config startup-config

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# interface ethernet chassis/slot/port</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switch(config-if)# channel-group channel-number mode {active</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>switch# show port-channel summary</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>switch# copy running-config startup-config</td>
</tr>
</tbody>
</table>

This example shows how to configure an EtherChannel host interface:

```bash
switch# configure terminal
switch(config)# interface ethernet 101/1/20
switch(config-if)# channel-group 7 mode active
```

**Moving Other EtherChannels into a vPC**

**Before You Begin**

Ensure that you have enabled the vPC feature.
You must configure both switches on either side of the vPC peer link with the following procedure.
SUMMARY STEPS

1. `switch# configure terminal`
2. `switch(config)# interface port-channel channel-number`
3. `switch(config-if)# vpc number`
4. (Optional) `switch# show vpc brief`
5. (Optional) `switch# copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# interface port-channel channel-number</td>
</tr>
<tr>
<td></td>
<td>Selects the EtherChannel that you want to put into the vPC to connect to</td>
</tr>
<tr>
<td></td>
<td>the downstream switch, and enters the interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Note A vPC can be configured on a normal EtherChannel (physical vPC</td>
</tr>
<tr>
<td></td>
<td>topology), on an EtherChannel fabric interface (fabric extender vPC</td>
</tr>
<tr>
<td></td>
<td>topology), and on an EtherChannel host interface (host interface vPC</td>
</tr>
<tr>
<td></td>
<td>topology)</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switch(config-if)# vpc number</td>
</tr>
<tr>
<td></td>
<td>Configures the selected EtherChannel into the vPC to connect to the</td>
</tr>
<tr>
<td></td>
<td>downstream switch. The range is from 1 to 4096.</td>
</tr>
<tr>
<td></td>
<td>The vPC number that you assign to the EtherChannel connecting to the</td>
</tr>
<tr>
<td></td>
<td>downstream switch from the vPC peer switch must be identical on both vPC</td>
</tr>
<tr>
<td></td>
<td>peer switches.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>switch# show vpc brief</td>
</tr>
<tr>
<td></td>
<td>(Optional) Displays information about each vPC.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>switch# copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Copies the running configuration to the startup configuration</td>
</tr>
</tbody>
</table>

This example shows how to configure an EtherChannel that will connect to the downstream device:
```
switch# configure terminal
switch(config)# interface port-channel 20
switch(config-if)# vpc 5
```

Manually Configuring a vPC Domain MAC Address

Note: Configuring the system-mac is an optional configuration step. This section explains how to configure it in case you want to.

Before You Begin

Ensure that you have enabled the vPC feature.
You must configure both switches on either side of the vPC peer link with the following procedure.

**SUMMARY STEPS**

1. `switch# configure terminal`
2. `switch(config)# vpc domain domain-id`
3. `switch(config-vpc-domain)# system-mac mac-address`
4. (Optional) `switch# show vpc role`
5. (Optional) `switch# copy running-config startup-config`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>switch# configure terminal</code></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>switch(config)# vpc domain domain-id</code></td>
<td>Selects an existing vPC domain on the switch, or creates a new vPC domain, and enters the vpc-domain configuration mode. There is no default <code>domain-id</code>; the range is from 1 to 1000.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>switch(config-vpc-domain)# system-mac mac-address</code></td>
<td>Enters the MAC address that you want for the specified vPC domain in the following format: <code>aaaa.bbbb.cccc</code>.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>switch# show vpc role</code></td>
<td>(Optional) Displays the vPC system MAC address.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>switch# copy running-config startup-config</code></td>
<td>(Optional) Copies the running configuration to the startup configuration.</td>
</tr>
</tbody>
</table>

This example shows how to configure a vPC domain MAC address:

```
switch# configure terminal
switch(config)# vpc domain 5
switch(config)# system-mac 23fb.4ab5.4c4e
```

**Manually Configuring the System Priority**

When you create a vPC domain, the system automatically creates a vPC system priority. However, you can also manually configure a system priority for the vPC domain.

**Before You Begin**

Ensure that you have enabled the vPC feature.

You must configure both switches on either side of the vPC peer link with the following procedure.
### SUMMARY STEPS

1. `switch# configure terminal`
2. `switch(config)# vpc domain domain-id`
3. `switch(config-vpc-domain)# system-priority priority`
4. (Optional) `switch# show vpc brief`
5. (Optional) `switch# copy running-config startup-config`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# vpc domain domain-id</td>
</tr>
<tr>
<td></td>
<td>Selects an existing vPC domain on the switch, or creates a new vPC</td>
</tr>
<tr>
<td></td>
<td>domain, and enters the vpc-domain configuration mode. There is no</td>
</tr>
<tr>
<td></td>
<td>default domain-id; the range is from 1 to 1000.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switch(config-vpc-domain)# system-priority priority</td>
</tr>
<tr>
<td></td>
<td>Enters the system priority that you want for the specified vPC domain.</td>
</tr>
<tr>
<td></td>
<td>The range of values is from 1 to 65535. The default value is 32667.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>switch# show vpc brief</td>
</tr>
<tr>
<td></td>
<td>(Optional) Displays information about each vPC, including information</td>
</tr>
<tr>
<td></td>
<td>about the vPC peer link.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>switch# copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Copies the running configuration to the startup configuration.</td>
</tr>
</tbody>
</table>

This example shows how to configure a vPC peer link:
```
switch# configure terminal
switch(config)# vpc domain 5
switch(config-if)# system-priority 4000
```

### Manually Configuring a vPC Peer Switch Role

By default, the Cisco NX-OS software elects a primary and secondary vPC peer switch after you configure the vPC domain and both sides of the vPC peer link. However, you may want to elect a specific vPC peer switch as the primary switch for the vPC. Then, you would manually configure the role value for the vPC peer switch that you want as the primary switch to be lower than the other vPC peer switch.

vPC does not support role preemption. If the primary vPC peer switch fails, the secondary vPC peer switch takes over to become operationally the vPC primary switch. However, the original operational roles are not restored when the formerly primary vPC comes up again.

**Before You Begin**

Ensure that you have enabled the vPC feature.

You must configure both switches on either side of the vPC peer link with the following procedure.
SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# vpc domain domain-id
3. switch(config-vpc-domain)# role priority priority
4. (Optional) switch# show vpc brief
5. (Optional) switch# copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# vpc domain domain-id</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switch(config-vpc-domain)# role priority priority</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>switch# show vpc brief</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>switch# copy running-config startup-config</td>
</tr>
</tbody>
</table>

This example shows how to configure a vPC peer link:

`switch# configure terminal
switch(config)# vpc domain 5
switch(config-if)# role priority 4000`

Verifying the vPC Configuration

Use the following commands to display vPC configuration information:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch# show feature</td>
<td>Displays whether vPC is enabled or not.</td>
</tr>
<tr>
<td>switch# show port-channel capacity</td>
<td>Displays how many EtherChannels are configured and how many are still available on the switch.</td>
</tr>
<tr>
<td>switch# show running-config vpc</td>
<td>Displays running configuration information for vPCs.</td>
</tr>
<tr>
<td>switch# show vpc brief</td>
<td>Displays brief information on the vPCs.</td>
</tr>
</tbody>
</table>
### Command Purpose

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch# <code>show vpc consistency-parameters</code></td>
<td>Displays the status of those parameters that must be consistent across all vPC interfaces.</td>
</tr>
<tr>
<td>switch# <code>show vpc peer-keepalive</code></td>
<td>Displays information on the peer-keepalive messages.</td>
</tr>
<tr>
<td>switch# <code>show vpc role</code></td>
<td>Displays the peer status, the role of the local switch, the vPC system MAC address and system priority, and the MAC address and priority for the local vPC switch.</td>
</tr>
</tbody>
</table>
| switch# `show vpc statistics` | Displays statistics on the vPCs.  
**Note** This command displays the vPC statistics only for the vPC peer device that you are working on. |

For detailed information about the fields in the output from these commands, see the *Cisco Nexus 5000 Series Command Reference*.

### vPC Example Configurations

#### Dual Homed Fabric Extender vPC Configuration Example

The following example shows how to configure the dual homed Fabric Extender vPC topology using the management VRF to carry the peer-keepalive messages on switch NX-5000-1 as shown in following figure:

**Figure 10: vPC Configuration Example**

![vPC Configuration Example Diagram](image)

**Before You Begin**

Ensure that the Cisco Nexus 2000 Series Fabric Extender NX-2000-100 is attached and online.
SUMMARY STEPS

1. Enable vPC and LACP.
2. Create the vPC domain and add the vPC peer-keepalive link.
3. Configure the vPC peer link as a two port Etherchannel.
4. Create a Fabric Extender identifier (for example, "100").
5. Configure the fabric EtherChannel links for the Fabric Extender 100.
6. Configure each host interface port on the Fabric Extender 100 on both Nexus 5000 Series switch as for all the other steps.
7. Save the configuration.

DETAILED STEPS

Step 1  Enable vPC and LACP.

```
NX-5000-1# configure terminal
NX-5000-1(config)# feature lacp
NX-5000-1(config)# feature vpc
```

Step 2  Create the vPC domain and add the vPC peer-keepalive link.

```
NX-5000-1(config)# vpc domain 1
NX-5000-1(config-vpc-domain)# peer-keepalive destination 10.10.10.237
NX-5000-1(config-vpc-domain)# exit
```

Step 3  Configure the vPC peer link as a two port Etherchannel.

```
NX-5000-1(config)# interface ethernet 1/1-2
NX-5000-1(config-if-range)# switchport mode trunk
NX-5000-1(config-if-range)# switchport trunk allowed vlan 20-50
NX-5000-1(config-if-range)# switchport trunk native vlan 20
NX-5000-1(config-if-range)# channel-group 20 mode active
NX-5000-1(config-if-range)# exit
NX-5000-1(config)# interface port-channel 20
NX-5000-1(config-if)# switchport mode fex-fabric
NX-5000-1(config-if)# vpc 100
NX-5000-1(config-if)# fex associate 100
NX-5000-1(config-if)# exit
```

Step 4  Create a Fabric Extender identifier (for example, "100").

```
NX-5000-1(config)# fex 100
NX-5000-1(config-fex)# pinning max-links 1
NX-5000-1(config-fex)# exit
```

Step 5  Configure the fabric EtherChannel links for the Fabric Extender 100.

```
NX-5000-1(config)# interface ethernet 1/20
NX-5000-1(config-if)# channel-group 100
NX-5000-1(config-if)# exit
NX-5000-1(config)# interface port-channel 100
NX-5000-1(config-if)# switchport mode fex-fabric
NX-5000-1(config-if)# vpc 100
NX-5000-1(config-if)# fex associate 100
NX-5000-1(config-if)# exit
```
**Step 6** Configure each host interface port on the Fabric Extender 100 on both Nexus 5000 Series switch as for all the other steps.

```
NX-5000-1(config)# interface ethernet 100/1/1-48
NX-5000-1(config-if)# switchport mode access
NX-5000-1(config-if)# switchport access vlan 50
NX-5000-1(config-if)# no shutdown
NX-5000-1(config-if)# exit
```

**Step 7** Save the configuration.

```
NX-5000-1(config)# copy running-config startup-config
```

Repeat all the above steps for the NX-5000-2 switch.

---

**Single Homed Fabric Extender vPC Configuration Example**

The following example shows how to configure the single homed Fabric Extender vPC topology using the default VRF to carry the peer-keepalive messages on switch NX-5000-1 as shown in following figure:

*Figure 11: vPC Configuration Example*

The following example only shows the configuration of NX-5000-1 which is connected to the Fabric Extender NX-2000-100. You must repeat these steps on its vPC peer, NX-5000-2, which is connected to the Fabric Extender NX-2000-101.

**Before You Begin**

Ensure that the Cisco Nexus 2000 Series Fabric Extenders NX-2000-100 and NX-2000-101 are attached and online.
SUMMARY STEPS

1. Enable vPC and LACP.
2. Enable SVI interfaces, create the VLAN and SVI to be used by the vPC peer-keepalive link.
3. Create the vPC domain and add the vPC peer-keepalive link in the default VRF.
4. Configure the vPC peer link as a two port Etherchannel.
8. Save the configuration.

DETAILED STEPS

Step 1  Enable vPC and LACP.
NX-5000-1# configure terminal
NX-5000-1(config)# feature lacp
NX-5000-1(config)# feature vpc

Step 2  Enable SVI interfaces, create the VLAN and SVI to be used by the vPC peer-keepalive link.
NX-5000-1(config)# feature interface-vlan
NX-5000-1(config)# vlan 900
NX-5000-1(config-vlan)# int vlan 900
NX-5000-1(config-if)# ip address 10.10.10.236 255.255.255.0
NX-5000-1(config-if)# no shutdown
NX-5000-1(config-if)# exit

Step 3  Create the vPC domain and add the vPC peer-keepalive link in the default VRF.
NX-5000-1(config)# vpc domain 30
NX-5000-1(config-vpc-domain)# peer-keepalive destination 10.10.10.237 source 10.10.10.236 vrf default
NX-5000-1(config-vpc-domain)# exit

Note  VLAN 900 must not be trunked across the vPC peer-link because it carries the vPC peer-keepalive messages. There must be an alternative path between switches NX-5000-1 and NX-5000-2 for the vPC peer-keepalive messages.

Step 4  Configure the vPC peer link as a two port Etherchannel.
NX-5000-1(config)# interface ethernet 1/1-2
NX-5000-1(config-if-range)# switchport mode trunk
NX-5000-1(config-if-range)# switchport trunk allowed vlan 20-50
NX-5000-1(config-if-range)# switchport trunk native vlan 20
NX-5000-1(config-if-range)# channel-group 30 mode active
NX-5000-1(config-if-range)# exit
NX-5000-1(config)# interface port-channel 30
NX-5000-1(config-if)# vpc peer-link
NX-5000-1(config-if)# exit
Step 5 Configure the Fabric Extender NX-2000-100.
NX-5000-1(config)# fex 100
NX-5000-1(config-fex)# pinning max-links 1
NX-5000-1(fex)# exit

Step 6 Configure the fabric EtherChannel links for the Fabric Extender NX-2000-100.
NX-5000-1(config)# interface ethernet 1/20-21
NX-5000-1(config-if)# channel-group 100
NX-5000-1(config-if)# exit
NX-5000-1(config)# interface port-channel 100
NX-5000-1(config-if)# switchport mode fex-fabric
NX-5000-1(config-if)# fex associate 100
NX-5000-1(config-if)# exit

Step 7 Configure a vPC server port on on the Fabric Extender NX-2000-100.
NX-5000-1(config-if)# interface ethernet 100/1/1
NX-5000-1(config-if)# switchport mode trunk
NX-5000-1(config-if)# switchport trunk native vlan 100
NX-5000-1(config-if)# switchport trunk allowed vlan 100-105
NX-5000-1(config-if)# channel-group 600
NX-5000-1(config-if)# no shutdown
NX-5000-1(config-if)# exit
NX-5000-1(config)# interface port-channel 600
NX-5000-1(config-if)# vpc 600
NX-5000-1(config-if)# no shutdown
NX-5000-1(config-if)# exit

Step 8 Save the configuration.
NX-5000-1(config)# copy running-config startup-config

vPC Default Settings

The following table lists the default settings for vPC parameters.

Table 11: Default vPC Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>vPC system priority</td>
<td>32667</td>
</tr>
<tr>
<td>vPC peer-keepalive message</td>
<td>Disabled</td>
</tr>
<tr>
<td>vPC peer-keepalive interval</td>
<td>1 second</td>
</tr>
<tr>
<td>vPC peer-keepalive timeout</td>
<td>5 seconds</td>
</tr>
<tr>
<td>vPC peer-keepalive UDP port</td>
<td>3200</td>
</tr>
</tbody>
</table>
vPC Default Settings
CHAPTER 9

Configuring Rapid PVST+

Rapid per VLAN Spanning Tree (Rapid PVST+) is an updated implementation of STP that allows you to create one spanning tree topology for each VLAN. Rapid PVST+ is the default Spanning Tree Protocol (STP) mode on the switch.

Note
Spanning tree is used to refer to IEEE 802.1w and IEEE 802.1s. If the text is discussing the IEEE 802.1D Spanning Tree Protocol, 802.1D is stated specifically.

This chapter describes the configuration of Rapid PVST+ on Cisco Nexus 5000 Series switches. It includes the following sections:

- Information About Rapid PVST+, page 107
- Configuring Rapid PVST+, page 123
- Verifying Rapid PVST+ Configurations, page 132

Information About Rapid PVST+

The Rapid PVST+ protocol is the IEEE 802.1w standard, Rapid Spanning Tree Protocol (RSTP), implemented on a per VLAN basis. Rapid PVST+ interoperates with the IEEE 802.1D standard, which mandates a single STP instance for all VLANs, rather than per VLAN.

Rapid PVST+ is enabled by default on the default VLAN (VLAN1) and on all newly created VLANs in software. Rapid PVST+ interoperates with switches that run legacy IEEE 802.1D STP.

RSTP is an improvement on the original STP standard, 802.1D, which allows faster convergence.

Related Topics

- Rapid PVST+ and IEEE 802.1Q Trunks, page 122
- Rapid PVST+ Interoperation with Legacy 802.1D STP, page 122
Understanding STP

STP Overview

For an Ethernet network to function properly, only one active path can exist between any two stations. When you create fault-tolerant internetworks, you must have a loop-free path between all nodes in a network. The STP algorithm calculates the best loop-free path throughout a switched network. LAN ports send and receive STP frames, which are called Bridge Protocol Data Units (BPDUs), at regular intervals. Switches do not forward these frames, but use the frames to construct a loop-free path.

Multiple active paths between end stations cause loops in the network. If a loop exists in the network, end stations might receive duplicate messages and switches might learn end station MAC addresses on multiple LAN ports. These conditions result in a broadcast storm, which creates an unstable network.

STP defines a tree with a root bridge and a loop-free path from the root to all switches in the network. STP forces redundant data paths into a blocked state. If a network segment in the spanning tree fails and a redundant path exists, the STP algorithm recalculates the spanning tree topology and activates the blocked path.

When two LAN ports on a switch are part of a loop, the STP port priority and port path cost setting determine which port on the switch is put in the forwarding state and which port is put in the blocking state.

Understanding How a Topology is Created

All switches in an extended LAN that participate in a spanning tree gather information about other switches in the network by exchanging of BPDUs. This exchange of BPDUs results in the following actions:

- The system elects a unique root switch for the spanning tree network topology.
- The system elects a designated switch for each LAN segment.
- The system eliminates any loops in the switched network by placing redundant interfaces in a backup state; all paths that are not needed to reach the root switch from anywhere in the switched network are placed in an STP-blocked state.

The topology on an active switched network is determined by the following:

- The unique switch identifier Media Access Control (MAC) address of the switch that is associated with each switch.
- The path cost to the root that is associated with each interface.
- The port identifier that is associated with each interface.

In a switched network, the root switch is the logical center of the spanning tree topology. STP uses BPDUs to elect the root switch and root port for the switched network, as well as the root port and designated port for each switched segment.

Understanding the Bridge ID

Each VLAN on each switch has a unique 64-bit bridge ID consisting of a bridge priority value, an extended system ID (IEEE 802.1t), and an STP MAC address allocation.
Bridge Priority Value

The bridge priority is a 4-bit value when the extended system ID is enabled.

**Note**

In Cisco NX-OS, the extended system ID is always enabled; you cannot disable the extended system ID.

**Related Topics**

- Configuring the Rapid PVST+ Bridge Priority of a VLAN, page 129

Extended System ID

A 12-bit extended system ID field is part of the bridge ID.

**Figure 12: Bridge ID with Extended System ID**

The switches always use the 12-bit extended system ID.

Combined with the bridge ID, the system ID extension functions as the unique identifier for a VLAN.

**Table 12: Bridge Priority Value and Extended System ID with the Extended System ID Enabled**

<table>
<thead>
<tr>
<th>Bridge Priority Value</th>
<th>Extended System ID (Set Equal to the VLAN ID)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 16</td>
<td>Bit 15</td>
</tr>
<tr>
<td>32768</td>
<td>16384</td>
</tr>
</tbody>
</table>

STP MAC Address Allocation

**Note**

Extended system ID and MAC address reduction is always enabled on the software.

With MAC address reduction enabled on any switch, you should also enable MAC address reduction on all other connected switches to avoid undesirable root bridge election and spanning tree topology issues.

When MAC address reduction is enabled, the root bridge priority becomes a multiple of 4096 plus the VLAN ID. You can only specify a switch bridge ID (used by the spanning tree algorithm to determine the identity of the root bridge, the lowest being preferred) as a multiple of 4096. Only the following values are possible:

- 0
STP uses the extended system ID plus a MAC address to make the bridge ID unique for each VLAN.

Note
If another bridge in the same spanning tree domain does not run the MAC address reduction feature, it could achieve root bridge ownership because its bridge ID may fall between the values specified by the MAC address reduction feature.

Understanding BPDUs

Switches transmit bridge protocol data units (BPDUs) throughout the STP instance. Each switch sends configuration BPDUs to communicate and compute the spanning tree topology. Each configuration BPDU contains the following minimal information:

- The unique bridge ID of the switch that the transmitting switch determines is the root bridge
- The STP path cost to the root
- The bridge ID of the transmitting bridge
- Message age
- The identifier of the transmitting port
- Values for the hello, forward delay, and max-age protocol timer
- Additional information for STP extension protocols

When a switch transmits a Rapid PVST+ BPDU frame, all switches connected to the VLAN on which the frame is transmitted receive the BPDU. When a switch receives a BPDU, it does not forward the frame but
instead uses the information in the frame to calculate a BPDU, and, if the topology changes, initiate a BPDU transmission.

A BPDU exchange results in the following:

- One switch is elected as the root bridge.
- The shortest distance to the root bridge is calculated for each switch based on the path cost.
- A designated bridge for each LAN segment is selected. This is the switch closest to the root bridge through which frames are forwarded to the root.
- A root port is selected. This is the port providing the best path from the bridge to the root bridge.
- Ports included in the spanning tree are selected.

Related Topics
- Rapid PVST+ BPDUs, page 114

Election of the Root Bridge

For each VLAN, the switch with the lowest numerical value of the bridge ID is elected as the root bridge. If all switches are configured with the default priority (32768), the switch with the lowest MAC address in the VLAN becomes the root bridge. The bridge priority value occupies the most significant bits of the bridge ID.

When you change the bridge priority value, you change the probability that the switch will be elected as the root bridge. Configuring a lower value increases the probability; a higher value decreases the probability.

The STP root bridge is the logical center of each spanning tree topology in a network. All paths that are not needed to reach the root bridge from anywhere in the network are placed in STP blocking mode.

BPDUs contain information about the transmitting bridge and its ports, including bridge and MAC addresses, bridge priority, port priority, and path cost. STP uses this information to elect the root bridge for the STP instance, to elect the root port leading to the root bridge, and to determine the designated port for each segment.

Creating the Spanning Tree Topology

In the following figure, Switch A is elected as the root bridge because the bridge priority of all the switches is set to the default (32768) and Switch A has the lowest MAC address. However, due to traffic patterns, number of forwarding ports, or link types, Switch A might not be the ideal root bridge. By increasing the
priority (lowering the numerical value) of the ideal switch so that it becomes the root bridge, you force an
STP recalculation to form a new spanning tree topology with the ideal switch as the root.

**Figure 13: Spanning Tree Topology**

When the spanning tree topology is calculated based on default parameters, the path between source and
destination end stations in a switched network might not be ideal. For instance, connecting higher-speed links
to a port that has a higher number than the current root port can cause a root-port change. The goal is to make
the fastest link the root port.

For example, assume that one port on Switch B is a fiber-optic link, and another port on Switch B (an unshielded
twisted-pair [UTP] link) is the root port. Network traffic might be more efficient over the high-speed fiber-optic
link. By changing the STP port priority on the fiber-optic port to a higher priority (lower numerical value)
than the root port, the fiber-optic port becomes the new root port.

**Understanding Rapid PVST+**

**Rapid PVST+ Overview**

Rapid PVST+ is the IEEE 802.1w (RSTP) standard implemented per VLAN. A single instance of STP runs
on each configured VLAN (if you do not manually disable STP). Each Rapid PVST+ instance on a VLAN
has a single root switch. You can enable and disable STP on a per-VLAN basis when you are running Rapid
PVST+.

- **Note**
  Rapid PVST+ is the default STP mode for the switch.

- **Note**
  Rapid PVST+ uses point-to-point wiring to provide rapid convergence of the spanning tree. The spanning tree
  reconfiguration can occur in less than 1 second with Rapid PVST+ (in contrast to 50 seconds with the default
  settings in the 802.1D STP).

- **Note**
  Rapid PVST+ supports one STP instance for each VLAN.

Using Rapid PVST+, STP convergence occurs rapidly. Each designated or root port in the STP sends out a
BPDU every 2 seconds by default. On a designated or root port in the topology, if hello messages are missed
three consecutive times, or if the maximum age expires, the port immediately flushes all protocol information
in the table. A port considers that it loses connectivity to its direct neighbor root or designated port if it misses
three BPDUs or if the maximum age expires. This rapid aging of the protocol information allows quick failure detection. The switch automatically checks the PVID.

Rapid PVST+ provides for rapid recovery of connectivity following the failure of a network device, a switch port, or a LAN. It provides rapid convergence for edge ports, new root ports, and ports connected through point-to-point links as follows:

- Edge ports—When you configure a port as an edge port on an RSTP switch, the edge port immediately transitions to the forwarding state. (This immediate transition was previously a Cisco-proprietary feature named PortFast.) You should only configure on ports that connect to a single end station as edge ports. Edge ports do not generate topology changes when the link changes.

Enter the spanning-tree port type interface configuration command to configure a port as an STP edge port.

Note: We recommend that you configure all ports connected to a host as edge ports.

- Root ports—If Rapid PVST+ selects a new root port, it blocks the old root port and immediately transitions the new root port to the forwarding state.

- Point-to-point links—If you connect a port to another port through a point-to-point link and the local port becomes a designated port, it negotiates a rapid transition with the other port by using the proposal-agreement handshake to ensure a loop-free topology.

Rapid PVST+ achieves rapid transition to the forwarding state only on edge ports and point-to-point links. Although the link type is configurable, the system automatically derives the link type information from the duplex setting of the port. Full-duplex ports are assumed to be point-to-point ports, while half-duplex ports are assumed to be shared ports.

Edge ports do not generate topology changes, but all other designated and root ports generate a topology change (TC) BPDU when they either fail to receive three consecutive BPDUs from the directly connected neighbor or the maximum age times out. At this point, the designated or root port sends out a BPDU with the TC flag set. The BPDUs continue to set the TC flag as long as the TC While timer runs on that port. The value of the TC While timer is the value set for the hello time plus 1 second. The initial detector of the topology change immediately floods this information throughout the entire topology.

When Rapid PVST+ detects a topology change, the protocol does the following:

- Starts the TC While timer with a value equal to twice the hello time for all the non-edge root and designated ports, if necessary.

- Flushes the MAC addresses associated with all these ports.

The topology change notification floods quickly across the entire topology. The system flushes dynamic entries immediately on a per-port basis when it receives a topology change.

Note: The TCA flag is used only when the switch is interacting with switches that are running legacy 802.1D STP.

The proposal and agreement sequence then quickly propagates toward the edge of the network and quickly restores connectivity after a topology change.
Rapid PVST+ BPDUs

Rapid PVST+ and 802.1w use all six bits of the flag byte to add the role and state of the port that originates the BPDU, and the proposal and agreement handshake. The following figure shows the use of the BPDU flags in Rapid PVST+.

Figure 14: Rapid PVST+ Flag Byte in BPDU

Another important change is that the Rapid PVST+ BPDU is type 2, version 2, which makes it possible for the switch to detect connected legacy (802.1D) bridges. The BPDU for 802.1D is version 0.
Proposal and Agreement Handshake

As shown in the following figure, switch A is connected to switch B through a point-to-point link, and all of the ports are in the blocking state. Assume that the priority of switch A is a smaller numerical value than the priority of switch B.

Figure 15: Proposal and Agreement Handshaking for Rapid Convergence

Switch A sends a proposal message (a configuration BPDU with the proposal flag set) to switch B, proposing itself as the designated switch.

After receiving the proposal message, switch B selects as its new root port the port from which the proposal message was received, forces all non-edge ports to the blocking state, and sends an agreement message (a BPDU with the agreement flag set) through its new root port.

After receiving the agreement message from switch B, switch A also immediately transitions its designated port to the forwarding state. No loops in the network can form because switch B blocked all of its non-edge ports and because there is a point-to-point link between switches A and B.

When switch C connects to switch B, a similar set of handshaking messages are exchanged. Switch C selects the port connected to switch B as its root port, and both ends of the link immediately transition to the forwarding state. With each iteration of this handshaking process, one more network device joins the active topology. As the network converges, this proposal-agreement handshaking progresses from the root toward the leaves of the spanning tree.

The switch learns the link type from the port duplex mode: a full-duplex port is considered to have a point-to-point connection and a half-duplex port is considered to have a shared connection. You can override the default setting that is controlled by the duplex setting by entering the `spanning-tree link-type` interface configuration command.

This proposal/agreement handshake is initiated only when a non-edge port moves from the blocking to the forwarding state. The handshaking process then proliferates step-by-step throughout the topology.
Protocol Timers

The following table describes the protocol timers that affect the Rapid PVST+ performance.

Table 13: Rapid PVST+ Protocol Timers

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hello timer</td>
<td>Determines how often each switch broadcasts BPDUs to other switches. The default is 2 seconds, and the range is from 1 to 10.</td>
</tr>
<tr>
<td>Forward delay timer</td>
<td>Determines how long each of the listening and learning states last before the port begins forwarding. This timer is generally not used by the protocol but is used as a backup. The default is 15 seconds, and the range is from 4 to 30 seconds.</td>
</tr>
<tr>
<td>Maximum age timer</td>
<td>Determines the amount of time protocol information received on an port is stored by the switch. This timer is generally not used by the protocol, but it is used when interoperating with 802.1D spanning tree. The default is 20 seconds; the range is from 6 to 40 seconds.</td>
</tr>
</tbody>
</table>

Port Roles

Rapid PVST+ provides rapid convergence of the spanning tree by assigning port roles and learning the active topology. Rapid PVST+ builds upon the 802.1D STP to select the switch with the highest priority (lowest numerical priority value) as the root bridge. Rapid PVST+ then assigns one of these port roles to individual ports:

- Root port—Provides the best path (lowest cost) when the switch forwards packets to the root bridge.
- Designated port—Connects to the designated switch, which incurs the lowest path cost when forwarding packets from that LAN to the root bridge. The port through which the designated switch is attached to the LAN is called the designated port.
- Alternate port—Offers an alternate path toward the root bridge to the path provided by the current root port. An alternate port provides a path to another switch in the topology.
- Backup port—Acts as a backup for the path provided by a designated port toward the leaves of the spanning tree. A backup port can exist only when two ports are connected in a loopback by a point-to-point link or when a switch has two or more connections to a shared LAN segment. A backup port provides another path in the topology to the switch.
- Disabled port—Has no role within the operation of the spanning tree.
In a stable topology with consistent port roles throughout the network, Rapid PVST+ ensures that every root port and designated port immediately transition to the forwarding state while all alternate and backup ports are always in the blocking state. Designated ports start in the blocking state. The port state controls the operation of the forwarding and learning processes.

A port with the root or a designated port role is included in the active topology. A port with the alternate or backup port role is excluded from the active topology (see the following figure).

Figure 16: Sample Topology Demonstrating Port Roles

Related Topics
- Election of the Root Bridge, page 111

Port States

Rapid PVST+ Port State Overview

Propagation delays can occur when protocol information passes through a switched LAN. As a result, topology changes can take place at different times and at different places in a switched network. When a LAN port transitions directly from nonparticipation in the spanning tree topology to the forwarding state, it can create temporary data loops. Ports must wait for new topology information to propagate through the switched LAN before starting to forward frames.

Each LAN port on a software using Rapid PVST+ or MST exists in one of the following four states:

- **Blocking**—The LAN port does not participate in frame forwarding.
- **Learning**—The LAN port prepares to participate in frame forwarding.
- **Forwarding**—The LAN port forwards frames.
• Disabled—The LAN port does not participate in STP and is not forwarding frames.

When you enable Rapid PVST+, every port in the software, VLAN, and network goes through the blocking state and the transitory states of learning at power up. If properly configured, each LAN port stabilizes to the forwarding or blocking state.

When the STP algorithm places a LAN port in the forwarding state, the following process occurs:

• The LAN port is put into the blocking state while it waits for protocol information that suggests it should go to the learning state.
• The LAN port waits for the forward delay timer to expire, moves the LAN port to the learning state, and restarts the forward delay timer.
• In the learning state, the LAN port continues to block frame forwarding as it learns the end station location information for the forwarding database.
• The LAN port waits for the forward delay timer to expire and then moves the LAN port to the forwarding state, where both learning and frame forwarding are enabled.

### Blocking State

A LAN port in the blocking state does not participate in frame forwarding.

A LAN port in the blocking state performs as follows:

• Discards frames received from the attached segment.
• Discards frames switched from another port for forwarding.
• Does not incorporate the end station location into its address database. (There is no learning on a blocking LAN port, so there is no address database update.)
• Receives BPDUs and directs them to the system module.
• Receives, processes, and transmits BPDUs received from the system module.
• Receives and responds to network management messages.

### Learning State

A LAN port in the learning state prepares to participate in frame forwarding by learning the MAC addresses for the frames. The LAN port enters the learning state from the blocking state.

A LAN port in the learning state performs as follows:

• Discards frames received from the attached segment.
• Discards frames switched from another port for forwarding.
• Incorporates the end station location into its address database.
• Receives BPDUs and directs them to the system module.
• Receives, processes, and transmits BPDUs received from the system module.
• Receives and responds to network management messages.
Forwarding State

A LAN port in the forwarding state forwards frames. The LAN port enters the forwarding state from the learning state.

A LAN port in the forwarding state performs as follows:

- Forwards frames received from the attached segment.
- Forwards frames switched from another port for forwarding.
- Incorporates the end station location information into its address database.
- Receives BPDUs and directs them to the system module.
- Processes BPDUs received from the system module.
- Receives and responds to network management messages.

Disabled State

A LAN port in the disabled state does not participate in frame forwarding or STP. A LAN port in the disabled state is virtually nonoperational.

A disabled LAN port performs as follows:

- Discards frames received from the attached segment.
- Discards frames switched from another port for forwarding.
- Does not incorporate the end station location into its address database. (There is no learning, so there is no address database update.)
- Does not receive BPDUs from neighbors.
- Does not receive BPDUs for transmission from the system module.

Summary of Port States

The following table lists the possible operational and Rapid PVST+ states for ports and the corresponding inclusion in the active topology.

Table 14: Port State Active Topology

<table>
<thead>
<tr>
<th>Operational Status</th>
<th>Port State</th>
<th>Is Port Included in the Active Topology?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enabled</td>
<td>Blocking</td>
<td>No</td>
</tr>
<tr>
<td>Enabled</td>
<td>Learning</td>
<td>Yes</td>
</tr>
<tr>
<td>Enabled</td>
<td>Forwarding</td>
<td>Yes</td>
</tr>
<tr>
<td>Disabled</td>
<td>Disabled</td>
<td>No</td>
</tr>
</tbody>
</table>
Synchronization of Port Roles

When the switch receives a proposal message on one of its ports and that port is selected as the new root port, Rapid PVST+ forces all other ports to synchronize with the new root information.

The switch is synchronized with superior root information received on the root port if all other ports are synchronized. An individual port on the switch is synchronized if either of the following applies:

- That port is in the blocking state.
- It is an edge port (a port configured to be at the edge of the network).

If a designated port is in the forwarding state and is not configured as an edge port, it transitions to the blocking state when the Rapid PVST+ forces it to synchronize with new root information. In general, when the Rapid PVST+ forces a port to synchronize with root information and the port does not satisfy any of the above conditions, its port state is set to blocking.

After ensuring that all of the ports are synchronized, the switch sends an agreement message to the designated switch that corresponds to its root port. When the switches connected by a point-to-point link are in agreement about their port roles, Rapid PVST+ immediately transitions the port states to the forwarding state. The sequence of events is shown in the following figure.

![Figure 17: Sequence of Events During Rapid Convergence](image)

Processing Superior BPDU Information

A superior BPDU is a BPDU with root information (such as a lower switch ID or lower path cost) that is superior to what is currently stored for the port.

If a port receives a superior BPDU, Rapid PVST+ triggers a reconfiguration. If the port is proposed and is selected as the new root port, Rapid PVST+ forces all the other ports to synchronize.
If the received BPDU is a Rapid PVST+ BPDU with the proposal flag set, the switch sends an agreement message after all of the other ports are synchronized. The new root port transitions to the forwarding state as soon as the previous port reaches the blocking state.

If the superior information received on the port causes the port to become a backup port or an alternate port, Rapid PVST+ sets the port to the blocking state and sends an agreement message. The designated port continues sending BPDUs with the proposal flag set until the forward-delay timer expires. At that time, the port transitions to the forwarding state.

Processing Inferior BPDU Information

An inferior BPDU is a BPDU with root information (such as a higher switch ID or higher path cost) that is inferior to what is currently stored for the port.

If a designated port receives an inferior BPDU, it immediately replies with its own information.

Spanning-Tree Dispute Mechanism

The software checks the consistency of the port role and state in the received BPDUs to detect unidirectional link failures that could cause bridging loops.

When a designated port detects a conflict, it keeps its role, but reverts to a discarding state because disrupting connectivity in case of inconsistency is preferable to opening a bridging loop.

The following figure illustrates a unidirectional link failure that typically creates a bridging loop. Switch A is the root bridge, and its BPDUs are lost on the link leading to switch B. The 802.1w-standard BPDUs include the role and state of the sending port. With this information, switch A can detect that switch B does not react to the superior BPDUs it sends and that switch B is the designated, not root port. As a result, switch A blocks (or keeps blocking) its port, thus preventing the bridging loop. The block is shown as an STP dispute.

Figure 18: Detecting Unidirectional Link Failure

<table>
<thead>
<tr>
<th>Switch A</th>
<th>Superior BPDU</th>
<th>Switch B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inferior BPDU, Designated + Learning bit set</td>
<td></td>
</tr>
</tbody>
</table>

Port Cost

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rapid PVST+ uses the short (16-bit) pathcost method to calculate the cost by default. With the short pathcost method, you can assign any value in the range of 1 to 65535. However, you can configure the switch to use the long (32-bit) pathcost method, which allows you to assign any value in the range of 1 to 200,000,000. You configure the pathcost calculation method globally.</td>
</tr>
</tbody>
</table>

The STP port path-cost default value is determined from the media speed and path-cost calculation method of a LAN interface. If a loop occurs, STP considers the port cost when selecting a LAN interface to put into the forwarding state.
### Port Priority

If a loop occurs and multiple ports have the same path cost, Rapid PVST+ considers the port priority when selecting which LAN port to put into the forwarding state. You can assign lower priority values to LAN ports that you want Rapid PVST+ to select first and higher priority values to LAN ports that you want Rapid PVST+ to select last.

If all LAN ports have the same priority value, Rapid PVST+ puts the LAN port with the lowest LAN port number in the forwarding state and blocks other LAN ports. The possible priority range is from 0 through 224 (the default is 128), configurable in increments of 32. Software uses the port priority value when the LAN port is configured as an access port and uses VLAN port priority values when the LAN port is configured as a trunk port.

### Rapid PVST+ and IEEE 802.1Q Trunks

In a network of Cisco switches connected through 802.1Q trunks, the switches maintain one instance of STP for each VLAN allowed on the trunks. However, non-Cisco 802.1Q switches maintain only one instance of STP for all VLANs allowed on the trunks.

When you connect a Cisco switch to a non-Cisco switch through an 802.1Q trunk, the Cisco switch combines the STP instance of the 802.1Q VLAN of the trunk with the STP instance of the non-Cisco 802.1Q switch. However, all per-VLAN STP information that is maintained by Cisco switches is separated by a cloud of non-Cisco 802.1Q switches. The non-Cisco 802.1Q cloud that separates the Cisco switches is treated as a single trunk link between the switches.

### Rapid PVST+ Interoperation with Legacy 802.1D STP

Rapid PVST+ can interoperate with switches that are running the legacy 802.1D protocol. The switch knows that it is interoperating with equipment running 802.1D when it receives a BPDU version 0. The BPDU receive is an 802.1w BPDU version 2 with the proposal flag set.
the switch sends an agreement message after all of the other ports are synchronized. If the BPDU is an 802.1D BPDU version 0, the switch does not set the proposal flag and starts the forward-delay timer for the port. The new root port requires twice the forward-delay time to transition to the forwarding state.

The switch interoperates with legacy 802.1D switches as follows:

• Notification—Unlike 802.1D BPDUs, 802.1w does not use TCN BPDUs. However, for interoperability with 802.1D switches, Cisco NX-OS processes and generates TCN BPDUs.

• Acknowledgement—When an 802.1w switch receives a TCN message on a designated port from an 802.1D switch, it replies with an 802.1D configuration BPDU with the TCA bit set. However, if the TC-while timer (the same as the TC timer in 802.1D) is active on a root port connected to an 802.1D switch and a configuration BPDU with the TCA set is received, the TC-while timer is reset.

This method of operation is required only for 802.1D switches. The 802.1w BPDUs do not have the TCA bit set.

• Protocol migration—For backward compatibility with 802.1D switches, 802.1w selectively sends 802.1D configuration BPDUs and TCN BPDUs on a per-port basis.

When a port is initialized, the migrate-delay timer is started (specifies the minimum time during which 802.1w BPDUs are sent), and 802.1w BPDUs are sent. While this timer is active, the switch processes all BPDUs received on that port and ignores the protocol type.

If the switch receives an 802.1D BPDU after the port migration-delay timer has expired, it assumes that it is connected to an 802.1D switch and starts using only 802.1D BPDUs. However, if the 802.1w switch is using 802.1D BPDUs on a port and receives an 802.1w BPDU after the timer has expired, it restarts the timer and starts using 802.1w BPDUs on that port.

Note

If you want all switches to renegotiate the protocol, you must restart Rapid PVST+.

Related Topics

• Restarting the Protocol, page 159

Rapid PVST+ Interoperation with 802.1s MST

Rapid PVST+ interoperates seamlessly with the IEEE 802.1s Multiple Spanning Tree (MST) standard. No user configuration is needed.

Configuring Rapid PVST+

Rapid PVST+, which has the 802.1w standard applied to the Rapid PVST+ protocol, is the default STP setting in the software.

You enable Rapid PVST+ on a per-VLAN basis. The software maintains a separate instance of STP for each VLAN (except on those VLANs on which you disable STP). By default, Rapid PVST+ is enabled on the default VLAN and on each VLAN that you create.
Enabling Rapid PVST+

Once you enable Rapid PVST+ on the switch, you must enable Rapid PVST+ on the specified VLANs. Rapid PVST+ is the default STP mode. You cannot simultaneously run MST and Rapid PVST+.

**Note**
Changing the spanning tree mode disrupts traffic because all spanning tree instances are stopped for the previous mode and started for the new mode.

**SUMMARY STEPS**

1. `switch# configure terminal`
2. `switch(config)# spanning-tree mode rapid-pvst`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>switch# configure terminal</code></td>
<td>Enters configuration mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>switch(config)# spanning-tree mode rapid-pvst</code></td>
<td>Enables Rapid PVST+ on the switch. Rapid PVST+ is the default spanning tree mode.</td>
</tr>
</tbody>
</table>

**Note**
Changing the spanning tree mode disrupts traffic because all spanning tree instances are stopped for the previous mode and started for the new mode.

This example shows how to enable Rapid PVST+ on the switch:

```
switch# configure terminal
switch(config)# spanning-tree mode rapid-pvst
```

**Note**
Because STP is enabled by default, entering the `show running-config` command to view the resulting configuration does not display the command that you entered to enable Rapid PVST+.

Enabling Rapid PVST+ per VLAN

You can enable or disable Rapid PVST+ on each VLAN.

**Note**
Rapid PVST+ is enabled by default on the default VLAN and on all VLANs that you create.
SUMMARY STEPS

1. `switch# configure terminal`
2. `switch(config)# spanning-tree vlan-range`
3. (Optional) `switch(config)# no spanning-tree vlan-range`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td><code>switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Enables Rapid PVST+ (default STP) on a per VLAN basis. The <code>vlan-range</code> value can be 2 through 4094 (except reserved VLAN values).</td>
</tr>
<tr>
<td><code>switch(config)# spanning-tree vlan-range</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>(Optional) Disables Rapid PVST+ on the specified VLAN.</td>
</tr>
<tr>
<td><code>switch(config)# no spanning-tree vlan-range</code></td>
<td>Do not disable spanning tree on a VLAN unless all switches and bridges in the VLAN have spanning tree disabled. You cannot disable spanning tree on some of the switches and bridges in a VLAN and leave it enabled on other switches and bridges. This action can have unexpected results because switches and bridges with spanning tree enabled will have incomplete information regarding the physical topology of the network. Do not disable spanning tree in a VLAN without ensuring that there are no physical loops present in the VLAN. Spanning tree serves as a safeguard against misconfigurations and cabling errors.</td>
</tr>
</tbody>
</table>

This example shows how to enable STP on a VLAN:

```
switch# configure terminal
switch(config)# spanning-tree vlan 5
```

Configuring the Root Bridge ID

The software maintains a separate instance of STP for each active VLAN in Rapid PVST+. For each VLAN, the switch with the lowest bridge ID becomes the root bridge for that VLAN.

To configure a VLAN instance to become the root bridge, modify the bridge priority from the default value (32768) to a significantly lower value.

When you enter the `spanning-tree vlan vlan_ID root` command, the switch checks the bridge priority of the current root bridges for each VLAN. The switch sets the bridge priority for the specified VLANs to 24576 if this value will cause the switch to become the root for the specified VLANs. If any root bridge for the specified VLANs has a bridge priority lower than 24576, the switch sets the bridge priority for the specified VLANs to 4096 less than the lowest bridge priority.

The `spanning-tree vlan vlan_ID root` command fails if the value required to be the root bridge is less than 1.
The root bridge for each instance of STP should be a backbone or distribution switch. Do not configure an access switch as the STP primary root.

Enter the **diameter** keyword to specify the network diameter (that is, the maximum number of bridge hops between any two end stations in the network). When you specify the network diameter, the software automatically selects an optimal hello time, forward delay time, and maximum age time for a network of that diameter, which can significantly reduce the STP convergence time. You can enter the **hello-time** keyword to override the automatically calculated hello time.

With the switch configured as the root bridge, do not manually configure the hello time, forward-delay time, and maximum-age time using the `spanning-tree mst hello-time`, `spanning-tree mst forward-time`, and `spanning-tree mst max-age` configuration commands.

### SUMMARY STEPS

1. `switch# configure terminal`  
2. `switch(config)# spanning-tree vlan vlan-range root primary [diameter dia [hello-time hello-time]]`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | switch# configure terminal  
| **Step 2** | switch(config)# spanning-tree vlan vlan-range root primary [diameter dia [hello-time hello-time]] |

This example shows how to configure the switch as the root bridge for a VLAN:

```
switch# configure terminal
switch(config)# spanning-tree vlan 5 root primary diameter 4
```

### Configuring a Secondary Root Bridge

When you configure a software switch as the secondary root, the STP bridge priority is modified from the default value (32768) so that the switch is likely to become the root bridge for the specified VLANs if the primary root bridge fails (assuming the other switches in the network use the default bridge priority of 32768). STP sets the bridge priority to 28672.

Enter the **diameter** keyword to specify the network diameter (that is, the maximum number of bridge hops between any two end stations in the network). When you specify the network diameter, the software automatically selects an optimal hello time, forward delay time, and maximum age time for a network of that diameter, which can significantly reduce the STP convergence time. You can enter the **hello-time** keyword to override the automatically calculated hello time.
You configure more than one switch in this manner to have multiple backup root bridges. Enter the same network diameter and hello time values that you used when configuring the primary root bridge.

**Note**
With the switch configured as the root bridge, do not manually configure the hello time, forward-delay time, and maximum-age time using the `spanning-tree mst hello-time`, `spanning-tree mst forward-time`, and `spanning-tree mst max-age` global configuration commands.

**SUMMARY STEPS**

1. `switch# configure terminal`
2. `switch(config)# spanning-tree vlan vlan-range root secondary [diameter dia [hello-time hello-time]]`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# spanning-tree vlan vlan-range root secondary [diameter dia [hello-time hello-time]]</td>
</tr>
</tbody>
</table>

This example shows how to configure the switch as the secondary root bridge for a VLAN:

```
switch# configure terminal
switch(config)# spanning-tree vlan 5 root secondary diameter 4
```

**Configuring the Rapid PVST+ Port Priority**

You can assign lower priority values to LAN ports that you want Rapid PVST+ to select first and higher priority values to LAN ports that you want Rapid PVST+ to select last. If all LAN ports have the same priority value, Rapid PVST+ puts the LAN port with the lowest LAN port number in the forwarding state and blocks other LAN ports.

The software uses the port priority value when the LAN port is configured as an access port and uses VLAN port priority values when the LAN port is configured as a trunk port.

**SUMMARY STEPS**

1. `switch# configure terminal`
2. `switch(config)# interface type slot/port`
3. `switch(config-if)# spanning-tree [vlan vlan-list] port-priority priority`
### Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: switch# configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2: switch(config)# interface type slot/port</td>
<td>Specifies the interface to configure, and enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 3: switch(config-if)# spanning-tree [vlan vlan-list] port-priority priority</td>
<td>Configures the port priority for the LAN interface. The priority value can be from 0 to 224. The lower the value, the higher the priority. The priority values are 0, 32, 64, 96, 128, 160, 192, and 224. All other values are rejected. The default value is 128.</td>
</tr>
</tbody>
</table>

This example shows how to configure the access port priority of an Ethernet interface:
```plaintext
switch# configure terminal
switch(config)# interface ethernet 1/4
switch(config-if)# spanning-tree port-priority 160
```

You can only apply this command to a physical Ethernet interface.

### Configuring the Rapid PVST+ Pathcost Method and Port Cost

On access ports, you assign port cost by the port. On trunk ports, you assign the port cost by VLAN; you can configure the same port cost on all the VLANs on a trunk.

**Note**: In Rapid PVST+ mode, you can use either the short or long pathcost method, and you can configure the method in either the interface or configuration submode. The default pathcost method is short.

### Summary Steps

1. switch# configure terminal
2. switch(config)# spanning-tree pathcost method {long | short}
3. switch(config)# interface type slot/port
4. switch(config-if)# spanning-tree [vlan vlan-id] cost [value | auto]

### Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: switch# configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2: switch(config)# spanning-tree pathcost method {long</td>
<td>short}</td>
</tr>
</tbody>
</table>
### Configuring the Rapid PVST+ Bridge Priority of a VLAN

You can configure the Rapid PVST+ bridge priority of a VLAN.

**Note**  
Be careful when using this configuration. For most situations, we recommend that you configure the primary root and secondary root to modify the bridge priority.

#### SUMMARY STEPS

1. switch# configure terminal  
2. switch(config)# spanning-tree vlan vlan-range priority value

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# spanning-tree vlan vlan-range priority value</td>
</tr>
</tbody>
</table>
This example shows how to configure the bridge priority of a VLAN:

```bash
switch# configure terminal
switch(config)# spanning-tree vlan 5 priority 8192
```

## Configuring the Rapid PVST+ Hello Time for a VLAN

You can configure the Rapid PVST+ hello time for a VLAN.

**Note**
Be careful when using this configuration. For most situations, we recommend that you configure the primary root and secondary root to modify the hello time.

### SUMMARY STEPS

1. ```bash
   switch# configure terminal
   ```
2. ```bash
 switch(config)# spanning-tree vlan vlan-range hello-time hello-time
   ```

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>switch# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Configures the hello time of a VLAN. The hello time value can be from 1 to 10 seconds. The default is 2 seconds.</td>
</tr>
<tr>
<td>switch(config)# spanning-tree vlan vlan-range hello-time hello-time</td>
<td></td>
</tr>
</tbody>
</table>

This example shows how to configure the hello time for a VLAN:

```bash
switch# configure terminal
switch(config)# spanning-tree vlan 5 hello-time 7
```

## Configuring the Rapid PVST+ Forward Delay Time for a VLAN

You can configure the forward delay time per VLAN when using Rapid PVST+.

### SUMMARY STEPS

1. ```bash
   switch# configure terminal
   ```
2. ```bash
 switch(config)# spanning-tree vlan vlan-range forward-time forward-time
   ```

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>switch# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>
Configuring the Rapid PVST+ Maximum Age Time for a VLAN

You can configure the maximum age time per VLAN when using Rapid PVST+.

SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# spanning-tree vlan vlan-range max-age max-age

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# spanning-tree vlan vlan-range max-age max-age</td>
</tr>
</tbody>
</table>

This example shows how to configure the maximum aging time for a VLAN:

switch# configure terminal
switch(config)# spanning-tree vlan 5 max-age 36

Specifying the Link Type

Rapid connectivity (802.1w standard) is established only on point-to-point links. By default, the link type is controlled from the duplex mode of the interface. A full-duplex port is considered to have a point-to-point connection; a half-duplex port is considered to have a shared connection.

If you have a half-duplex link physically connected point-to-point to a single port on a remote switch, you can override the default setting on the link type and enable rapid transitions.

If you set the link to shared, STP moves back to 802.1D.
SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# interface type slot/port
3. switch(config-if)# spanning-tree link-type {auto | point-to-point | shared}

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch# configure terminal</td>
<td>Enters configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# interface type slot/port</td>
<td>Specifies the interface to configure, and enters the interface configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config-if)# spanning-tree link-type {auto</td>
<td>point-to-point</td>
</tr>
</tbody>
</table>

This example shows how to configure the link type as a point-to-point link:

```
switch# configure terminal
switch(config)# interface ethernet 1/4
switch(config-if)# spanning-tree link-type point-to-point
```

You can only apply this command to a physical Ethernet interface.

Restarting the Protocol

A bridge running Rapid PVST+ can send 802.1D BPDUs on one of its ports when it is connected to a legacy bridge. However, the STP protocol migration cannot determine whether the legacy switch has been removed from the link unless the legacy switch is the designated switch. You can restart the protocol negotiation (force the renegotiation with neighboring switches) on the entire switch or on specified interfaces.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch# clear spanning-tree detected-protocol [interface interface [interface-num</td>
<td>port-channel]]</td>
</tr>
</tbody>
</table>

The following example shows how to restart Rapid PVST+ on an Ethernet interface:

```
switch# clear spanning-tree detected-protocol interface ethernet 1/8
```

Verifying Rapid PVST+ Configurations

To display Rapid PVST+ configuration information, perform one of these tasks:
### Command and Purpose

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch# show running-config spanning-tree [all]</td>
<td>Displays the current spanning tree configuration.</td>
</tr>
<tr>
<td>switch# show spanning-tree [options]</td>
<td>Displays selected detailed information for the current spanning tree configuration.</td>
</tr>
</tbody>
</table>

This example shows how to display spanning tree status:

```plaintext
switch# show spanning-tree brief

VLAN0001
Spanning tree enabled protocol rstp
Root ID Priority 32768
 Address 001c.b05a.5447
 Cost 2
 Port 131 (Ethernet1/3)
 Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
Bridge ID Priority 32769 (priority 32768 sys-id-ext 1)
 Address 000d.ec6d.7841
 Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

<table>
<thead>
<tr>
<th>Interface</th>
<th>Role</th>
<th>Sts</th>
<th>Cost</th>
<th>Prio.Nbr</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eth1/3</td>
<td>Root</td>
<td>FWD</td>
<td>2</td>
<td>128.131</td>
<td>P2p Peer(STP)</td>
</tr>
<tr>
<td>veth1/1</td>
<td>Desg</td>
<td>FWD</td>
<td>2</td>
<td>128.129</td>
<td>Edge P2p</td>
</tr>
</tbody>
</table>
```
Verifying Rapid PVST+ Configurations
Configuring Multiple Spanning Tree

Multiple Spanning Tree (MST), which is the IEEE 802.1s standard, allows you to assign two or more VLANs to a spanning tree instance. MST is not the default spanning tree mode; Rapid per VLAN Spanning Tree (Rapid PVST+) is the default mode. MST instances with the same name, revision number, and VLAN-to-instance mapping combine to form an MST region. The MST region appears as a single bridge to spanning tree configurations outside the region. MST fails over to IEEE 802.1D Spanning Tree Protocol (STP) when it receives an 802.1D message from a neighboring switch.

**Note**
Spanning tree is used to refer to IEEE 802.1w and IEEE 802.1s. If the text is discussing the IEEE 802.1D Spanning Tree Protocol, 802.1D is stated specifically.

This chapter describes how to configure MST on Cisco Nexus 5000 Series switches. It contains the following sections:

- Information About MST, page 135
- Configuring MST, page 143
- Verifying MST Configurations, page 159

Information About MST

**MST Overview**

**Note**
You must enable MST; Rapid PVST+ is the default spanning tree mode.

MST maps multiple VLANs into a spanning tree instance, with each instance having a spanning tree topology independent of other spanning tree instances. This architecture provides multiple forwarding paths for data traffic, enables load balancing, and reduces the number of STP instances required to support a large number of VLANs.
MST provides rapid convergence through explicit handshaking as each MST instance uses the IEEE 802.1w standard, which eliminates the 802.1D forwarding delay and quickly transitions root bridge ports and designated ports to the forwarding state.

MAC address reduction is always enabled while you are using MST. You cannot disable this feature.

MST improves spanning tree operation and maintains backward compatibility with these STP versions:

- Original 802.1D spanning tree
- Rapid per-VLAN spanning tree (Rapid PVST+)
  
  IEEE 802.1w defined the Rapid Spanning Tree Protocol (RSTP) and was incorporated into IEEE 802.1D.
- IEEE 802.1s defined MST and was incorporated into IEEE 802.1Q.

### MST Regions

To allow switches to participate in MST instances, you must consistently configure the switches with the same MST configuration information.

A collection of interconnected switches that have the same MST configuration is an MST region. An MST region is a linked group of MST bridges with the same MST configuration.

The MST configuration controls the MST region to which each switch belongs. The configuration includes the name of the region, the revision number, and the MST VLAN-to-instance assignment map.

A region can have one or multiple members with the same MST configuration. Each member must be capable of processing 802.1w bridge protocol data units (BPDUs). There is no limit to the number of MST regions in a network.

Each region can support up to 65 MST instances (MSTIs). Instances are identified by any number in the range from 1 to 4094. The system reserves Instance 0 for a special instance, which is the IST. You can assign a VLAN to only one MST instance at a time.

The MST region appears as a single bridge to adjacent MST regions and to other Rapid PVST+ regions and 802.1D spanning tree protocols.

---

**Note**

We recommend that you do not partition the network into a large number of regions.

### MST BPDUs

Each region has only one MST BPDU, and that BPDU carries an M-record for each MSTI within the region (see the following figure). Only the IST sends BPDUs for the MST region; all M-records are encapsulated in
that one BPDU that the IST sends. Because the MST BPDU carries information for all instances, the number of BPDUs that need to be processed to support MSTIs is significantly reduced.

**Figure 19: MST BPDU with M-Records for MSTIs**

---

**MST Configuration Information**

The MST configuration that must be identical on all switches within a single MST region is configured by the user.

You can configure the following three parameters of the MST configuration:

- **Name**—32-character string, null padded and null terminated, identifying the MST region
- **Revision number**—Unsigned 16-bit number that identifies the revision of the current MST configuration

---

**Note**

You must set the revision number when required as part of the MST configuration. The revision number is not incremented automatically each time that the MST configuration is committed.

- **MST configuration table**—4096-element table that associates each of the potential 4094 VLANs supported to a given instance with the first (0) and last element (4095) set to 0. The value of element number X represents the instance to which VLAN X is mapped.

---

**Caution**

When you change the VLAN-to-MSTI mapping, the system restarts MST.

MST BPDUs contain these three configuration parameters. An MST bridge accepts an MST BPDU into its own region only if these three configuration parameters match exactly. If one configuration attribute differs, the MST bridge considers the BPDU to be from another MST region.

---

**IST, CIST, and CST Overview**

Unlike Rapid PVST+, in which all the STP instances are independent, MST establishes and maintains IST, CIST, and CST spanning trees, as follows:
• An IST is the spanning tree that runs in an MST region.

MST establishes and maintains additional spanning trees within each MST region; these spanning trees are called, multiple spanning tree instances (MSTIs).

Instance 0 is a special instance for a region, known as the IST. The IST always exists on all ports; you cannot delete the IST, or Instance 0. By default, all VLANs are assigned to the IST. All other MST instances are numbered from 1 to 4094.

The IST is the only STP instance that sends and receives BPDUs. All of the other MSTI information is contained in MST records (M-records), which are encapsulated within MST BPDUs.

All MSTIs within the same region share the same protocol timers, but each MSTI has its own topology parameters, such as the root bridge ID, the root path cost, and so forth.

An MSTI is local to the region; for example, MSTI 9 in region A is independent of MSTI 9 in region B, even if regions A and B are interconnected.

• The CST interconnects the MST regions and any instance of 802.1D and 802.1w STP that may be running on the network. The CST is the one STP instance for the entire bridged network and encompasses all MST regions and 802.1w and 802.1D instances.

• A CIST is a collection of the ISTs in each MST region. The CIST is the same as an IST inside an MST region, and the same as a CST outside an MST region.

The spanning tree computed in an MST region appears as a subtree in the CST that encompasses the entire switched domain. The CIST is formed by the spanning tree algorithm running among switches that support the 802.1w, 802.1s, and 802.1D standards. The CIST inside an MST region is the same as the CST outside a region.

Spanning Tree Operation Within an MST Region

The IST connects all the MST switches in a region. When the IST converges, the root of the IST becomes the CIST regional root. The CIST regional root is also the CIST root if there is only one region in the network. If the CIST root is outside the region, the protocol selects one of the MST switches at the boundary of the region as the CIST regional root.

When an MST switch initializes, it sends BPDUs that identify itself as the root of the CIST and the CIST regional root, with both the path costs to the CIST root and to the CIST regional root set to zero. The switch also initializes all of its MSTIs and claims to be the root for all of them. If the switch receives superior MST root information (lower switch ID, lower path cost, and so forth) than the information that is currently stored for the port, it relinquishes its claim as the CIST regional root.

During initialization, an MST region might have many subregions, each with its own CIST regional root. As switches receive superior MST information from a neighbor in the same region, they leave their old subregions and join the new subregion that contains the true CIST regional root. This action causes all subregions to shrink except for the subregion that contains the true CIST regional root.

All switches in the MST region must agree on the same CIST regional root. Any two switches in the region will only synchronize their port roles for an MSTI if they converge to a common CIST regional root.

Spanning Tree Operations Between MST Regions

If you have multiple regions or 802.1w or 802.1D STP instances within a network, MST establishes and maintains the CST, which includes all MST regions and all 802.1w and 802.1D STP switches in the network. The MSTIs combine with the IST at the boundary of the region to become the CST.
The IST connects all the MST switches in the region and appears as a subtree in the CIST that encompasses the entire switched domain. The root of the subtree is the CIST regional root. The MST region appears as a virtual switch to adjacent STP switches and MST regions.

The following figure shows a network with three MST regions and an 802.1D switch (D). The CIST regional root for region 1 (A) is also the CIST root. The CIST regional root for region 2 (B) and the CIST regional root for region 3 (C) are the roots for their respective subtrees within the CIST.

**Figure 20: MST Regions, CIST Regional Roots, and CST Root**

![Diagram showing MST regions and CIST roots](image)

Only the CST instance sends and receives BPDUs. MSTIs add their spanning tree information into the BPDUs (as M-records) to interact with neighboring switches and compute the final spanning tree topology. Because of this, the spanning tree parameters related to the BPDU transmission (for example, hello time, forward time, max-age, and max-hops) are configured only on the CST instance but affect all MSTIs. You can configure the parameters related to the spanning tree topology (for example, the switch priority, the port VLAN cost, and the port VLAN priority) on both the CST instance and the MSTI.

MST switches use Version 3 BPDUs or 802.1D STP BPDUs to communicate with 802.1D-only switches. MST switches use MST BPDUs to communicate with MST switches.

### MST Terminology

MST naming conventions include identification of some internal or regional parameters. These parameters are used only within an MST region, compared to external parameters that are used throughout the whole network. Because the CIST is the only spanning tree instance that spans the whole network, only the CIST
parameters require the external qualifiers and not the internal or regional qualifiers. The MST terminology is as follows:

- The CIST root is the root bridge for the CIST, which is the unique instance that spans the whole network.
- The CIST external root path cost is the cost to the CIST root. This cost is left unchanged within an MST region. An MST region looks like a single switch to the CIST. The CIST external root path cost is the root path cost calculated between these virtual switches and switches that do not belong to any region.
- If the CIST root is in the region, the CIST regional root is the CIST root. Otherwise, the CIST regional root is the closest switch to the CIST root in the region. The CIST regional root acts as a root bridge for the IST.
- The CIST internal root path cost is the cost to the CIST regional root in a region. This cost is only relevant to the IST, instance 0.

### Hop Count

MST does not use the message-age and maximum-age information in the configuration BPDU to compute the STP topology inside the MST region. Instead, the protocol uses the path cost to the root and a hop-count mechanism similar to the IP time-to-live (TTL) mechanism.

By using the `spanning-tree mst max-hops` global configuration command, you can configure the maximum hops inside the region and apply it to the IST and all MST instances in that region.

The hop count achieves the same result as the message-age information (triggers a reconfiguration). The root bridge of the instance always sends a BPDU (or M-record) with a cost of 0 and the hop count set to the maximum value. When a switch receives this BPDU, it decrements the received remaining hop count by one and propagates this value as the remaining hop count in the BPDU that it generates. When the count reaches zero, the switch discards the BPDU and ages the information held for the port.

The message-age and maximum-age information in the 802.1w portion of the BPDU remain the same throughout the region (only on the IST), and the same values are propagated by the region-designated ports at the boundary.

You configure a maximum aging time as the number of seconds that a switch waits without receiving spanning tree configuration messages before attempting a reconfiguration.

### Boundary Ports

A boundary port is a port that connects one region to another. A designated port knows that it is on the boundary if it detects an STP bridge or receives an agreement proposal from an MST bridge with a different configuration or a Rapid PVST+ bridge. This definition allows two ports that are internal to a region to share a segment...
with a port that belongs to a different region, creating the possibility of receiving both internal and external messages on a port (see the following figure).

**Figure 21: MST Boundary Ports**

At the boundary, the roles of MST ports do not matter; the system forces their state to be the same as the IST port state. If the boundary flag is set for the port, the MST port-role selection process assigns a port role to the boundary and assigns the same state as the state of the IST port. The IST port at the boundary can take up any port role except a backup port role.

**Spanning-Tree Dispute Mechanism**

Currently, this feature is not present in the IEEE MST standard, but it is included in the standard-compliant implementation. The software checks the consistency of the port role and state in the received BPDUs to detect unidirectional link failures that could cause bridging loops.

When a designated port detects a conflict, it keeps its role, but reverts to a discarding state because disrupting connectivity in case of inconsistency is preferable to opening a bridging loop.

The following figure shows a unidirectional link failure that typically creates a bridging loop. Switch A is the root bridge, and its BPDUs are lost on the link leading to switch B. Rapid PVST+ (802.1w) and MST BPDUs include the role and state of the sending port. With this information, switch A can detect that switch B does not react to the superior BPDUs that it sends and that switch B is the designated, not root port. As a result, switch A blocks (or keeps blocking) its port, which prevents the bridging loop. The block is shown as an STP dispute.

**Figure 22: Detecting a Unidirectional Link Failure**
Port Cost and Port Priority

Spanning tree uses port costs to break a tie for the designated port. Lower values indicate lower port costs, and spanning tree chooses the least costly path. Default port costs are taken from the bandwidth of the interface, as follows:

- 10 Mbps—2,000,000
- 100 Mbps—200,000
- 1 Gigabit Ethernet—20,000
- 10 Gigabit Ethernet—2,000

You can configure the port costs in order to influence which port is chosen.

Note
MST always uses the long path cost calculation method, so the range of valid values is between 1 and 200,000,000.

The system uses port priorities to break ties among ports with the same cost. A lower number indicates a higher priority. The default port priority is 128. You can configure the priority to values between 0 and 224, in increments of 32.

Interoperability with IEEE 802.1D

A switch that runs MST supports a built-in protocol migration feature that enables it to interoperate with 802.1D STP switches. If this switch receives an 802.1D configuration BPDU (a BPDU with the protocol version set to 0), it sends only 802.1D BPDUs on that port. In addition, an MST switch can detect that a port is at the boundary of a region when it receives an 802.1D BPDU, an MST BPDU (Version 3) associated with a different region, or an 802.1w BPDU (Version 2).

However, the switch does not automatically revert to the MST mode if it no longer receives 802.1D BPDUs because it cannot detect whether the 802.1D switch has been removed from the link unless the 802.1D switch is the designated switch. A switch might also continue to assign a boundary role to a port when the switch to which this switch is connected has joined the region.

To restart the protocol migration process (force the renegotiation with neighboring switches), enter the clear spanning-tree detected-protocols command.

All Rapid PVST+ switches (and all 802.1D STP switches) on the link can process MST BPDUs as if they are 802.1w BPDU. MST switches can send either Version 0 configuration and topology change notification (TCN) BPDU or Version 3 MST BPDU on a boundary port. A boundary port connects to a LAN, the designated switch of which is either a single spanning tree switch or a switch with a different MST configuration.

Note
MST interoperates with the Cisco prestandard MSTP whenever it receives prestandard MSTP on an MST port; no explicit configuration is necessary.
Interoperability with Rapid PVST+: Understanding PVST Simulation

MST interoperates with Rapid PVST+ with no need for user configuration. The PVST simulation feature enables this seamless interoperability.

Note
PVST simulation is enabled by default. That is, by default, all interfaces on the switch interoperate between MST and Rapid PVST+.

However, you may want to control the connection between MST and Rapid PVST+ to protect against accidentally connecting an MST-enabled port to a Rapid PVST+-enabled port. Because Rapid PVST+ is the default STP mode, you may encounter many Rapid PVST+-enabled connections.

Disabling Rapid PVST+ simulation, which can be done per port or globally for the entire switch, moves the MST-enabled port to the blocking state once it detects it is connected to a Rapid PVST+-enabled port. This port remains in the inconsistent state until the port stops receiving Rapid PVST+/SSTP BPDUs, and then the port resumes the normal STP transition process.

Configuring MST

MST Configuration Guidelines

When configuring MST, follow these guidelines:

• When you work with private VLANs, enter the `private-vlan synchronize` command to map the secondary VLANs to the same MST instance as the primary VLAN.

• When you are in the MST configuration mode, the following guidelines apply:
  ◦ Each command reference line creates its pending regional configuration.
  ◦ The pending region configuration starts with the current region configuration.
  ◦ To leave the MST configuration mode without committing any changes, enter the `abort` command.
  ◦ To leave the MST configuration mode and commit all the changes that you made before you left the mode, enter the `exit` command.

Enabling MST

You must enable MST; Rapid PVST+ is the default.

Caution
Changing the spanning tree mode disrupts traffic because all spanning tree instances are stopped for the previous mode and started for the new mode. Also, having two different spanning-tree modes on vPC peer switches is an inconsistency, hence this operation is disruptive.
SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# spanning-tree mode mst
3. (Optional) switch(config)# no spanning-tree mode mst

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config)# spanning-tree mode mst</td>
<td>Enables MST on the switch.</td>
</tr>
<tr>
<td>Step 3 switch(config)# no spanning-tree mode mst</td>
<td>(Optional) Disables MST on the switch and returns you to Rapid PVST+.</td>
</tr>
</tbody>
</table>

This example shows how to enable MST on the switch:
switch# configure terminal
switch(config)# spanning-tree mode mst

Note
Because STP is enabled by default, entering a show running-config command to view the resulting configuration does not display the command that you entered to enable STP.

Entering MST Configuration Mode

You enter MST configuration mode to configure the MST name, VLAN-to-instance mapping, and MST revision number on the switch.

For two or more switches to be in the same MST region, they must have the identical MST name, VLAN-to-instance mapping, and MST revision number.

Note
Each command reference line creates its pending regional configuration in MST configuration mode. In addition, the pending region configuration starts with the current region configuration.

When you are working in MST configuration mode, note the difference between the exit and abort commands.

SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# spanning-tree mst configuration
3. switch(config-mst)# exit or switch(config-mst)# abort
4. (Optional) switch(config)# no spanning-tree mst configuration
**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# spanning-tree mst configuration</td>
</tr>
<tr>
<td></td>
<td>Enters MST configuration mode on the system. You must be in the MST</td>
</tr>
<tr>
<td></td>
<td>configuration mode to assign the MST configuration parameters, as</td>
</tr>
<tr>
<td></td>
<td>follows:</td>
</tr>
<tr>
<td></td>
<td>• MST name</td>
</tr>
<tr>
<td></td>
<td>• Instance-to-VLAN mapping</td>
</tr>
<tr>
<td></td>
<td>• MST revision number</td>
</tr>
<tr>
<td></td>
<td>• Synchronize primary and secondary VLANs in private VLANs</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switch(config-mst)# exit or switch(config-mst)# abort</td>
</tr>
<tr>
<td></td>
<td>• The first form commits all the changes and exits MST configuration</td>
</tr>
<tr>
<td></td>
<td>mode.</td>
</tr>
<tr>
<td></td>
<td>• The second form exits the MST configuration mode without committing</td>
</tr>
<tr>
<td></td>
<td>any of the changes.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>switch(config)# no spanning-tree mst configuration</td>
</tr>
<tr>
<td></td>
<td>(Optional)</td>
</tr>
<tr>
<td></td>
<td>Returns the MST region configuration to the following default values:</td>
</tr>
<tr>
<td></td>
<td>• The region name is an empty string.</td>
</tr>
<tr>
<td></td>
<td>• No VLANs are mapped to any MST instance (all VLANs are mapped</td>
</tr>
<tr>
<td></td>
<td>to the CIST instance).</td>
</tr>
<tr>
<td></td>
<td>• The revision number is 0.</td>
</tr>
</tbody>
</table>

**Specifying the MST Name**

You configure a region name on the bridge. For two or more bridges to be in the same MST region, they must have the identical MST name, VLAN-to-instance mapping, and MST revision number.

**SUMMARY STEPS**

1. switch# configure terminal
2. switch(config)# spanning-tree mst configuration
3. switch(config-mst)# name name

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
</tbody>
</table>
Specifying the MST Configuration Revision Number

You configure the revision number on the bridge. For two or more bridges to be in the same MST region, they must have the identical MST name, VLAN-to-instance mapping, and MST revision number.

**SUMMARY STEPS**

1. `switch# configure terminal`
2. `switch(config)# spanning-tree mst configuration`
3. `switch(config-mst)# revision version`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td><code>switch# configure terminal</code></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td><code>switch(config)# spanning-tree mst configuration</code></td>
<td>Enters MST configuration submode.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
</tr>
<tr>
<td><code>switch(config-mst)# revision version</code></td>
<td>Specifies the revision number for the MST region. The range is from 0 to 65535, and the default value is 0.</td>
</tr>
</tbody>
</table>

This example shows how to configure the revision number of the MSTI region for 5:

```
switch# configure terminal
switch(config)# spanning-tree mst configuration
switch(config-mst)# revision 5
```

Specifying the Configuration on an MST Region

For two or more switches to be in the same MST region, they must have the same VLAN-to-instance mapping, the same configuration revision number, and the same MST name.

A region can have one member or multiple members with the same MST configuration; each member must be capable of processing IEEE 802.1w RSTP BPDUs. There is no limit to the number of MST regions in a
network, but each region can support only up to 65 MST instances. You can assign a VLAN to only one MST instance at a time.

**SUMMARY STEPS**

1. `switch# configure terminal`
2. `switch(config)# spanning-tree mst configuration`
3. `switch(config-mst)# instance instance-id vlan vlan-range`
4. `switch(config-mst)# name name`
5. `switch(config-mst)# revision version`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# spanning-tree mst configuration</td>
</tr>
</tbody>
</table>
| **Step 3** | switch(config-mst)# instance instance-id vlan vlan-range | Maps VLANs to an MST instance as follows:
  - For `instance-id`, the range is from 1 to 4094.
  - For `vlan vlan-range`, the range is from 1 to 4094.
  - When you map VLANs to an MST instance, the mapping is incremental, and the VLANs specified in the command are added to or removed from the VLANs that were previously mapped.
  - To specify a VLAN range, enter a hyphen; for example, enter the `instance 1 vlan 1-63` command to map VLANs 1 through 63 to MST instance 1.
  - To specify a VLAN series, enter a comma; for example, enter the `instance 1 vlan 10, 20, 30` command to map VLANs 10, 20, and 30 to MST instance 1. |
| **Step 4** | switch(config-mst)# name name | Specifies the instance name. The `name` string has a maximum length of 32 characters and is case sensitive. |
| **Step 5** | switch(config-mst)# revision version | Specifies the configuration revision number. The range is from 0 to 65535. |

To return to defaults, do the following:

- To return to the default MST region configuration settings, enter the `no spanning-tree mst configuration` configuration command.
- To return to the default VLAN-to-instance map, enter the `no instance instance-id vlan vlan-range` MST configuration command.
- To return to the default name, enter the `no name` MST configuration command.
- To return to the default revision number, enter the `no revision` MST configuration command.
• To reenable Rapid PVST+, enter the `no spanning-tree mode` or the `spanning-tree mode rapid-pvst` global configuration command.

This example shows how to enter MST configuration mode, map VLANs 10 to 20 to MST instance 1, name the region `region1`, set the configuration revision to 1, display the pending configuration, apply the changes, and return to global configuration mode:

```
switch(config)# spanning-tree mst configuration
switch(config-mst)# instance 1 vlan 10-20
switch(config-mst)# name region1
switch(config-mst)# revision 1
switch(config-mst)# show pending
Pending MST configuration
Name [region1]
Revision 1
Instances configured 2
Instance Vlans Mapped
-------- ---------------------
0 1-9,21-4094
1 10-20

```

Mapping and Unmapping VLANs to MST Instances

Caution
When you change the VLAN-to-MSTI mapping, the system restarts MST.

Note
You cannot disable an MSTI.

For two or more bridges to be in the same MST region, they must have the identical MST name, VLAN-to-instance mapping, and MST revision number.

SUMMARY STEPS

1. `switch# configure terminal`
2. `switch(config)# spanning-tree mst configuration`
3. `switch(config-mst)# instance instance-id vlan vlan-range`
4. `switch(config-mst)# no instance instance-id vlan vlan-range`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td><code>switch# configure terminal</code></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>2.</td>
<td><code>switch(config)# spanning-tree mst configuration</code></td>
<td>Enters MST configuration submode.</td>
</tr>
<tr>
<td>3.</td>
<td><code>switch(config-mst)# instance instance-id vlan vlan-range</code></td>
<td>Maps VLANs to an MST instance, as follows:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For <code>instance-id</code> the range is from 1 to 4094.</td>
</tr>
</tbody>
</table>
Mapping Secondary VLANs to Same MSTI as Primary VLANs for Private VLANs

When you are working with private VLANs on the system, all secondary VLANs must be in the same MSTI and their associated primary VLAN.

SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# spanning-tree mst configuration
3. switch(config-mst)# private-vlan synchronize

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# spanning-tree mst configuration</td>
<td>Enters MST configuration submode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config-mst)# private-vlan synchronize</td>
<td>Automatically maps all secondary VLANs to the same MSTI and their associated primary VLAN for all private VLANs.</td>
</tr>
</tbody>
</table>

This example shows how to automatically map all the secondary VLANs to the same MSTI as their associated primary VLANs in all private VLANs:

```
switch# configure terminal
switch(config)# spanning-tree mst configuration
switch(config-mst)# private-vlan synchronize
```
Configuring the Root Bridge

You can configure the switch to become the root bridge.

The root bridge for each MSTI should be a backbone or distribution switch. Do not configure an access switch as the spanning tree primary root bridge.

Enter the diameter keyword, which is available only for MSTI 0 (or the IST), to specify the network diameter (that is, the maximum number of hops between any two end stations in the network). When you specify the network diameter, the switch automatically sets an optimal hello time, forward-delay time, and maximum-age time for a network of that diameter, which can significantly reduce the convergence time. You can enter the hello keyword to override the automatically calculated hello time.

With the switch configured as the root bridge, do not manually configure the hello time, forward-delay time, and maximum-age time using the `spanning-tree mst hello-time`, `spanning-tree mst forward-time`, and `spanning-tree mst max-age` global configuration commands.

**SUMMARY STEPS**

1. `switch# configure terminal`
2. `switch(config)# spanning-tree mst instance-id root {primary | secondary} [diameter dia [hello-time]]`
3. (Optional) `switch(config)# no spanning-tree mst instance-id root`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><code>switch# configure terminal</code></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>`switch(config)# spanning-tree mst instance-id root {primary</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Configuring a Secondary Root Bridge

You can execute this command on more than one switch to configure multiple backup root bridges. Enter the same network diameter and hello-time values that you used when you configured the primary root bridge with the `spanning-tree mst root primary` configuration command.

**SUMMARY STEPS**

1. switch# configure terminal
2. switch(config)# spanning-tree mst instance-id root {primary | secondary} [diameter dia [hello-time hello-time]]
3. (Optional) switch(config)# no spanning-tree mst instance-id root

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>En ters configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Configures a switch as the secondary root bridge as follows:</td>
</tr>
<tr>
<td>switch(config)# spanning-tree mst instance-id root {primary</td>
<td>secondary} [diameter dia [hello-time hello-time]]</td>
</tr>
<tr>
<td></td>
<td>• For <code>instance-id</code>, you can specify a single instance, a range of instances separated by a hyphen, or a series of instances separated by a comma. The range is from 1 to 4094.</td>
</tr>
<tr>
<td></td>
<td>• For diameter <code>net-diameter</code>, specify the maximum number of hops between any two end stations. The default is 7. This keyword is available only for MST instance 0.</td>
</tr>
<tr>
<td></td>
<td>• For hello-time <code>seconds</code>, specify the interval in seconds between the generation of configuration messages by the root bridge. The range is from 1 to 10 seconds; the default is 2 seconds.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>(Optional) Returns the switch priority, diameter, and hello-time to default values.</td>
</tr>
<tr>
<td>switch(config)# no spanning-tree mst instance-id root</td>
<td></td>
</tr>
</tbody>
</table>

This example shows how to configure the switch as the secondary root switch for MSTI 5:

```
switch# configure terminal
switch(config)# spanning-tree mst 5 root secondary
```
Configuring the Port Priority

If a loop occurs, MST uses the port priority when selecting an interface to put into the forwarding state. You can assign lower priority values to interfaces that you want selected first and higher priority values to the interface that you want selected last. If all interfaces have the same priority value, MST puts the interface with the lowest interface number in the forwarding state and blocks the other interfaces.

SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# interface {{type slot/port} | {port-channel number}}
3. switch(config-if)# spanning-tree mst instance-id port-priority priority

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config)# interface {{type slot/port}</td>
<td>{port-channel number}}</td>
</tr>
</tbody>
</table>
| Step 3 switch(config-if)# spanning-tree mst instance-id port-priority priority | Configures the port priority as follows:  
  - For instance-id, you can specify a single MSTI, a range of MSTIs separated by a hyphen, or a series of MSTIs separated by a comma. The range is from 1 to 4094.  
  - For priority, the range is 0 to 224 in increments of 32. The default is 128. A lower number indicates a higher priority.  
  The priority values are 0, 32, 64, 96, 128, 160, 192, and 224. The system rejects all other values. |

This example shows how to set the MST interface port priority for MSTI 3 on Ethernet port 3/1 to 64:

```
switch# configure terminal
switch(config)# interface ethernet 3/1
switch(config-if)# spanning-tree mst 3 port-priority 64
```

You can only apply this command to a physical Ethernet interface.

Configuring the Port Cost

The MST path cost default value is derived from the media speed of an interface. If a loop occurs, MST uses the cost when selecting an interface to put in the forwarding state. You can assign lower cost values to interfaces that you want selected first and higher cost to interfaces values that you want selected last. If all interfaces have the same cost value, MST puts the interface with the lowest interface number in the forwarding state and blocks the other interfaces.
MST uses the long pathcost calculation method.

### SUMMARY STEPS

1. `switch# configure terminal`
2. `switch(config)# interface {{type slot/port} | {port-channel number}}`
3. `switch(config-if)# spanning-tree mst instance-id cost [cost | auto]`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# interface {{type slot/port}</td>
</tr>
</tbody>
</table>
| **Step 3**        | switch(config-if)# spanning-tree mst instance-id cost [cost | auto] | Configures the cost. If a loop occurs, MST uses the path cost when selecting an interface to place into the forwarding state. A lower path cost represents higher-speed transmission as follows:  
  - For `instance-id`, you can specify a single instance, a range of instances separated by a hyphen, or a series of instances separated by a comma. The range is from 1 to 4094.  
  - For `cost`, the range is from 1 to 200000000. The default value is auto, which is derived from the media speed of the interface. |

This example shows how to set the MST interface port cost on Ethernet 3/1 for MSTI 4:

```
switch# configure terminal
switch(config)# interface ethernet 3/1
switch(config-if)# spanning-tree mst 4 cost 17031970
```

### Configuring the Switch Priority

You can configure the switch priority for an MST instance so that it is more likely that the specified switch is chosen as the root bridge.

**Note**  
Exercise care when using this command. For most situations, we recommend that you enter the `spanning-tree mst root primary` and the `spanning-tree mst root secondary` global configuration commands to modify the switch priority.
SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# spanning-tree mst instance-id priority priority-value

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Configures a switch priority as follows:</td>
</tr>
<tr>
<td></td>
<td>• For instance-id, you can specify a single instance, a range of instances separated by a hyphen, or a series of instances separated by a comma. The range is from 1 to 4094.</td>
</tr>
<tr>
<td></td>
<td>• For priority, the range is from 0 to 61440 in increments of 4096; the default is 32768. A lower number indicates that the switch will most likely be chosen as the root bridge.</td>
</tr>
<tr>
<td></td>
<td>Priority values are 0, 4096, 8192, 12288, 16384, 20480, 24576, 28672, 32768, 36864, 40960, 45056, 49152, 53248, 57344, and 61440. The system rejects all other values.</td>
</tr>
</tbody>
</table>

This example shows how to configure the priority of the bridge to 4096 for MSTI 5:

```
switch# configure terminal
switch(config)# spanning-tree mst 5 priority 4096
```

Configuring the Hello Time

You can configure the interval between the generation of configuration messages by the root bridge for all instances on the switch by changing the hello time.

**Note**

Exercise care when using this command. For most situations, we recommend that you enter the `spanning-tree mst instance-id root primary` and the `spanning-tree mst instance-id root secondary` configuration commands to modify the hello time.

SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# spanning-tree mst hello-time seconds
### Configuring the Forwarding-Delay Time

You can set the forward delay timer for all MST instances on the switch with one command.

#### SUMMARY STEPS

1. `switch# configure terminal`
2. `switch(config)# spanning-tree mst forward-time seconds`

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# spanning-tree mst forward-time seconds</td>
</tr>
</tbody>
</table>

This example shows how to configure the forward-delay time of the switch to 10 seconds:

```
switch# configure terminal
switch(config)# spanning-tree mst forward-time 10
```

### Configuring the Maximum-Aging Time

The maximum-aging timer is the number of seconds that a switch waits without receiving spanning tree configuration messages before attempting a reconfiguration.

You set the maximum-aging timer for all MST instances on the switch with one command (the maximum age time only applies to the IST).
Configuring MST

SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# spanning-tree mst max-age seconds

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config)# spanning-tree mst max-age seconds</td>
<td>Configures the maximum-aging time for all MST instances. The maximum-aging time is the number of seconds that a switch waits without receiving spanning tree configuration messages before attempting a reconfiguration. For seconds, the range is from 6 to 40, and the default is 20 seconds.</td>
</tr>
</tbody>
</table>

This example shows how to configure the maximum-aging timer of the switch to 40 seconds:

switch# configure terminal
switch(config)# spanning-tree mst max-age 40

Configuring the Maximum-Hop Count

MST uses the path cost to the IST regional root and a hop-count mechanism similar to the IP time-to-live (TTL) mechanism. You configure the maximum hops inside the region and apply it to the IST and all MST instances in that region. The hop count achieves the same result as the message-age information (triggers a reconfiguration).

SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# spanning-tree mst max-hops hop-count

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config)# spanning-tree mst max-hops hop-count</td>
<td>Specifies the number of hops in a region before the BPDU is discarded, and the information held for a port is aged. For hop-count, the range is from 1 to 255, and the default value is 20 hops.</td>
</tr>
</tbody>
</table>

This example shows how to set the maximum hops to 40:

switch# configure terminal
switch(config)# spanning-tree mst max-hops 40
Configuring PVST Simulation Globally

You can block this automatic feature either globally or per port. You can enter the global command, and change the PVST simulation setting for the entire switch while you are in interface command mode.

**SUMMARY STEPS**

1. `switch# configure terminal`
2. `switch(config)# no spanning-tree mst simulate pvst global`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config)# no spanning-tree mst simulate pvst global</td>
<td>Disables all interfaces on the switch from automatically interoperating with connected switch that is running in Rapid PVST+ mode. The default for this is enabled; that is, by default, all interfaces on the switch operate seamlessly between Rapid PVST+ and MST.</td>
</tr>
</tbody>
</table>

This example shows how to prevent the switch from automatically interoperating with a connecting switch that is running Rapid PVST+:

```
switch# configure terminal
switch(config)# no spanning-tree mst simulate pvst global
```

Configuring PVST Simulation Per Port

MST interoperates seamlessly with Rapid PVST+. However, to prevent an accidental connection to a switch that does not run MST as the default STP mode, you may want to disable this automatic feature. If you disable PVST simulation, the MST-enabled port moves to the blocking state once it detects it is connected to a Rapid PVST+-enabled port. This port remains in the inconsistent state until the port stops receiving BPDUs, and then the port resumes the normal STP transition process.

You can block this automatic feature either globally or per port.

**SUMMARY STEPS**

1. `switch# configure terminal`
2. `switch(config)# interface {{type slot/port} | {port-channel number}}`
3. `switch(config-if)# spanning-tree mst simulate pvst disable`
4. `switch(config-if)# spanning-tree mst simulate pvst`
5. `switch(config-if)# no spanning-tree mst simulate pvst`
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><code>switch# configure terminal</code> Enters configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><code>switch(config)# interface</code> `{type slot/port</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><code>switch(config-if)# spanning-tree mst simulate pvst disable</code> Disables specified interfaces from automatically interoperating with connected switch that is running in Rapid PVST+ mode. By default, all interfaces on the switch operate seamlessly between Rapid PVST+ and MST.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><code>switch(config-if)# spanning-tree mst simulate pvst</code> Re-enables seamless operation between MST and Rapid PVST+ on specified interfaces.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><code>switch(config-if)# no spanning-tree mst simulate pvst</code> Sets the interface to the switch-wide MST and Rapid PVST+ interoperation that you configured using the <code>spanning-tree mst simulate pvst global</code> command.</td>
</tr>
</tbody>
</table>

This example shows how to prevent the specified interfaces from automatically inter-operating with a connecting switch that is not running MST:

```
switch# configure terminal
switch(config)# interface ethernet 1/4
switch(config-if)# spanning-tree mst simulate pvst disable
```

### Specifying the Link Type

Rapid connectivity (802.1w standard) is established only on point-to-point links. By default, the link type is controlled from the duplex mode of the interface. A full-duplex port is considered to have a point-to-point connection; a half-duplex port is considered to have a shared connection.

If you have a half-duplex link physically connected point-to-point to a single port on a remote switch, you can override the default setting on the link type and enable rapid transitions.

If you set the link to shared, STP reverts to 802.1D.

### SUMMARY STEPS

1. `switch# configure terminal`
2. `switch(config)# interface type slot/port`
3. `switch(config-if)# spanning-tree link-type {auto | point-to-point | shared}`
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enters configuration mode.</td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td>Specifies the interface to configure, and enters interface configuration mode.</td>
<td>switch(config)# interface type slot/port</td>
</tr>
<tr>
<td>Configures the link type to be either point to point or shared. The system reads the default value from the switch connection. Half-duplex links are shared and full-duplex links are point to point. If the link type is shared, the STP reverts to 802.1D. The default is auto, which sets the link type based on the duplex setting of the interface.</td>
<td>switch(config-if)# spanning-tree link-type {auto</td>
</tr>
</tbody>
</table>

This example shows how to configure the link type as point to point:

```
switch# configure terminal
switch (config)# interface ethernet 1/4
switch(config-if)# spanning-tree link-type point-to-point
```

### Restarting the Protocol

An MST bridge can detect that a port is at the boundary of a region when it receives a legacy BPDU or an MST BPDU that is associated with a different region. However, the STP protocol migration cannot determine whether the legacy switch, which is a switch that runs only IEEE 802.1D, has been removed from the link unless the legacy switch is the designated switch. Enter this command to restart the protocol negotiation (force the renegotiation with neighboring switches) on the entire switch or on specified interfaces.

### SUMMARY STEPS

1. switch# clear spanning-tree detected-protocol [interface interface [interface-num | port-channel]]

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restarts MST on entire switch or specified interfaces.</td>
<td>switch# clear spanning-tree detected-protocol [interface interface [interface-num</td>
</tr>
</tbody>
</table>

This example shows how to restart MST on the Ethernet interface on slot 2, port 8:

```
switch# clear spanning-tree detected-protocol interface ethernet 2/8
```

### Verifying MST Configurations

To display MST configuration information, perform one of the following tasks:
The following example shows how to display current MST configuration:

```
switch# show spanning-tree mst configuration
% Switch is not in mst mode
Name [mist-attempt]
Revision 1 Instances configured 2
Instance Vlans mapped
-------- --
 0 1-12,14-41,43-4094
 1 13,42
```
CHAPTER 11

Configuring STP Extensions

This chapter describes the configuration of extensions to the Spanning Tree Protocol (STP) on Cisco Nexus 5000 Series switches. It includes the following sections:

- About STP Extensions, page 161

About STP Extensions

Cisco has added extensions to STP that make convergence more efficient. In some cases, even though similar functionality may be incorporated into the IEEE 802.1w Rapid Spanning Tree Protocol (RSTP) standard, we recommend using these extensions. All of these extensions can be used with both RPVST+ and MST.

The available extensions are spanning tree port types, Bridge Assurance, BPDU Guard, BPDU Filtering, Loop Guard, and Root Guard. Many of these features can be applied either globally or on specified interfaces.

Note

Information About STP Extensions

Understanding STP Port Types

You can configure a spanning tree port as an edge port, a network port, or a normal port. A port can be in only one of these states at a given time. The default spanning tree port type is normal. Depending on the type of device to which the interface is connected, you can configure a spanning tree port as one of these port types.

Spanning Tree Edge Ports

Edge ports, which are connected to hosts, can be either an access port or a trunk port. The edge port interface immediately transitions to the forwarding state, without moving through the blocking or learning states. (This immediate transition was previously configured as the Cisco-proprietary feature PortFast.) Interfaces that are connected to hosts should not receive STP Bridge Protocol Data Units (BPDUs).
If you configure a port connected to another switch as an edge port, you might create a bridging loop.

**Spanning Tree Network Ports**

Network ports are connected only to switches or bridges. Configuring a port as "network" while Bridge Assurance is enabled globally, enables Bridge Assurance on that port.

**Note**

If you mistakenly configure ports that are connected to hosts or other edge devices, as spanning tree network ports, those ports will automatically move into the blocking state.

**Spanning Tree Normal Ports**

Normal ports can be connected to either hosts, switches, or bridges. These ports function as normal spanning tree ports.

The default spanning tree interface is a normal port.

Understanding **Bridge Assurance**

You can use Bridge Assurance to protect against certain problems that can cause bridging loops in the network. Specifically, you use Bridge Assurance to protect against a unidirectional link failure and a device that continues to forward data traffic when it is no longer running the spanning tree algorithm.

**Note**

Bridge Assurance is supported only by Rapid PVST+ and MST. Legacy 802.1D spanning tree does not support Bridge Assurance.

Bridge Assurance is enabled by default and can only be disabled globally. Also, Bridge Assurance can be enabled only on spanning tree network ports that are point-to-point links. Finally, both ends of the link must have Bridge Assurance enabled.

With Bridge Assurance enabled, BPDUs are sent out on all operational network ports, including alternate and backup ports, for each hello time period. If the port does not receive a BPDU for a specified period, the port moves into the blocking state and is not used in the root port calculation. Once that port receives a BPDU, it resumes the normal spanning tree transitions.

Understanding **BPDU Guard**

Enabling BPDU Guard shuts down that interface if a BPDU is received.

You can configure BPDU Guard at the interface level. When configured at the interface level, BPDU Guard shuts the port down as soon as the port receives a BPDU, regardless of the port type configuration.

When you configure BPDU Guard globally, it is effective only on operational spanning tree edge ports. In a valid configuration, LAN edge interfaces do not receive BPDUs. A BPDU that is received by an edge LAN interface signals an invalid configuration, such as the connection of an unauthorized host or switch. BPDU Guard, when enabled globally, shuts down all spanning tree edge ports when they receive a BPDU.
BPDU Guard provides a secure response to invalid configurations, because you must manually put the LAN interface back in service after an invalid configuration.

**Note**
When enabled globally, BPDU Guard applies to all operational spanning tree edge interfaces.

**Understanding BPDU Filtering**

You can use BPDU Filtering to prevent the switch from sending or even receiving BPDUs on specified ports. When configured globally, BPDU Filtering applies to all operational spanning tree edge ports. You should connect edge ports only to hosts, which typically drop BPDUs. If an operational spanning tree edge port receives a BPDU, it immediately returns to a normal spanning tree port type and moves through the regular transitions. In that case, BPDU Filtering is disabled on this port, and spanning tree resumes sending BPDUs on this port.

In addition, you can configure BPDU Filtering by the individual interface. When you explicitly configure BPDU Filtering on a port, that port does not send any BPDUs and drops all BPDUs that it receives. You can effectively override the global BPDU Filtering setting on individual ports by configuring the specific interface. This BPDU Filtering command on the interface applies to the entire interface, whether the interface is trunking or not.

**Caution**
Use care when configuring BPDU Filtering per interface. If you explicitly configuring BPDU Filtering on a port that is not connected to a host, it can result in bridging loops because the port will ignore any BPDU that it receives and go to forwarding.

If the port configuration is not set to default BPDU Filtering, then the edge configuration will not affect BPDU Filtering. The following table lists all the BPDU Filtering combinations.

**Table 16: BPDU Filtering Configurations**

<table>
<thead>
<tr>
<th>BPDU Filtering Per Port Configuration</th>
<th>BPDU Filtering Global Configuration</th>
<th>STP Edge Port Configuration</th>
<th>BPDU Filtering State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Enable</td>
<td>Enable</td>
<td>EnableThe port transmits at least 10 BPDUs. If this port receives any BPDUs, the port returns to the spanning tree normal port state and BPDU Filtering is disabled.</td>
</tr>
<tr>
<td>Default</td>
<td>Enable</td>
<td>Disable</td>
<td>Disable</td>
</tr>
<tr>
<td>Default</td>
<td>Disable</td>
<td>Enabled/Disabled</td>
<td>Disable</td>
</tr>
<tr>
<td>Disable</td>
<td>Enabled/Disabled</td>
<td>Enabled/Disabled</td>
<td>Disable</td>
</tr>
</tbody>
</table>
Understanding Loop Guard

Loop Guard protects networks from loops that are caused by the following:

- Network interfaces that malfunction
- Busy CPUs
- Anything that prevents the normal forwarding of BPDUs

An STP loop occurs when a blocking port in a redundant topology erroneously transitions to the forwarding state. This transition usually happens because one of the ports in a physically redundant topology (not necessarily the blocking port) stops receiving BPDUs.

Loop Guard is only useful in switched networks where devices are connected by point-to-point links. On a point-to-point link, a designated bridge cannot disappear unless it sends an inferior BPDU or brings the link down.

Note

Loop Guard can be enabled only on network and normal spanning tree port types.

You can use Loop Guard to determine if a root port or an alternate/backup root port receives BPDUs. If the port does not receive BPDUs, Loop Guard puts the port into an inconsistent state (blocking) until the port starts to receive BPDUs again. A port in the inconsistent state does not transmit BPDUs. If the port receives BPDUs again, the protocol removes its loop-inconsistent condition, and the STP determines the port state because such recovery is automatic.

Loop Guard isolates the failure and allows STP to converge to a stable topology without the failed link or bridge. Disabling Loop Guard moves all loop-inconsistent ports to the listening state.

You can enable Loop Guard on a per-port basis. When you enable Loop Guard on a port, it is automatically applied to all of the active instances or VLANs to which that port belongs. When you disable Loop Guard, it is disabled for the specified ports.

Understanding Root Guard

When you enable Root Guard on a port, Root Guard does not allow that port to become a root port. If a received BPDU triggers an STP convergence that makes that designated port become a root port, that port is put into a root-inconsistent (blocked) state. After the port stops send superior BPDUs, the port is unblocked again. Through STP, the port moves to the forwarding state. Recovery is automatic.
Root Guard enabled on an interface applies this functionality to all VLANs to which that interface belongs. You can use Root Guard to enforce the root bridge placement in the network. Root Guard ensures that the port on which Root Guard is enabled is the designated port. Normally, root bridge ports are all designated ports, unless two or more of the ports of the root bridge are connected. If the bridge receives superior BPDUs on a Root Guard-enabled port, the bridge moves this port to a root-inconsistent STP state. In this way, Root Guard enforces the position of the root bridge.

You cannot configure Root Guard globally.

Note: You can enable Root Guard on all spanning tree port types: normal, edge, and network ports.

Configuring STP Extensions

STP Extensions Configuration Guidelines

When configuring STP extensions, follow these guidelines:

• Configure all access and trunk ports connected to hosts as edge ports.

• Bridge Assurance runs only on point-to-point spanning tree network ports. You must configure each side of the link for this feature.

• Loop Guard does not run on spanning tree edge ports.

• Enabling Loop Guard on ports that are not connected to a point-to-point link will not work.

• You cannot enable Loop Guard if Root Guard is enabled.

Configuring Spanning Tree Port Types Globally

The spanning tree port type designation depends on the type of device the port is connected to, as follows:

• Edge—Edge ports are connected to hosts and can be either an access port or a trunk port.

• Network—Network ports are connected only to switches or bridges.

• Normal—Normal ports are neither edge ports nor network ports; they are normal spanning tree ports. These ports can be connected to any type of device.

You can configure the port type either globally or per interface. By default, the spanning tree port type is normal.

Before You Begin

Ensure that STP is configured.

Ensure that you are configuring the ports correctly for the type of device to which the interface is connected.
SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# spanning-tree port type edge default
3. switch(config)# spanning-tree port type network default

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td>Enters configuration mode.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# spanning-tree port type edge default</td>
</tr>
<tr>
<td>Configures all interfaces as edge ports. This assumes all ports are connected to hosts/servers. Edge ports immediately transition to the forwarding state without passing through the blocking or learning state at linkup. By default, spanning tree ports are normal port types.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switch(config)# spanning-tree port type network default</td>
</tr>
<tr>
<td>Configures all interfaces as spanning tree network ports. This assumes all ports are connected to switches and bridges. If you enable Bridge Assurance, it automatically runs on network ports. By default, spanning tree ports are normal port types.</td>
<td></td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>If you configure interfaces connected to hosts as network ports, those ports automatically move into the blocking state.</td>
</tr>
</tbody>
</table>

This example shows how to configure all access and trunk ports connected to hosts as spanning tree edge ports:

```
switch# configure terminal
switch(config)# spanning-tree port type edge default
```

This example shows how to configure all ports connected to switches or bridges as spanning tree network ports:

```
switch# configure terminal
switch(config)# spanning-tree port type network default
```

Configuring Spanning Tree Edge Ports on Specified Interfaces

You can configure spanning tree edge ports on specified interfaces. Interfaces configured as spanning tree edge ports immediately transition to the forwarding state, without passing through the blocking or learning states, on linkup.

This command has four states:

- **spanning-tree port type edge**—This command explicitly enables edge behavior on the access port.
- **spanning-tree port type edge trunk**—This command explicitly enables edge behavior on the trunk port.
If you enter the `spanning-tree port type edge trunk` command, the port is configured as an edge port even in the access mode.

- **spanning-tree port type normal**—This command explicitly configures the port as a normal spanning tree port and the immediate transition to the forwarding state is not enabled.

- **no spanning-tree port type**—This command implicitly enables edge behavior if you define the `spanning-tree port type edge default` command in global configuration mode. If you do not configure the edge ports globally, the `no spanning-tree port type` command is equivalent to the `spanning-tree port type disable` command.

**Before You Begin**

Ensure that STP is configured.

Ensure that the interface is connected to hosts.

**SUMMARY STEPS**

1. `switch# configure terminal`
2. `switch(config)# interface type slot/port`
3. `switch(config-if)# spanning-tree port type edge`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# interface type slot/port</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config-if)# spanning-tree port type edge</td>
</tr>
</tbody>
</table>

This example shows how to configure the Ethernet access interface 1/4 to be a spanning tree edge port:

```
switch# configure terminal
switch(config)# interface ethernet 1/4
switch(config-if)# spanning-tree port type edge
```

**Configuring Spanning Tree Network Ports on Specified Interfaces**

You can configure spanning tree network ports on specified interfaces.

Bridge Assurance runs only on spanning tree network ports.

This command has three states:
• **spanning-tree port type network**—This command explicitly configures the port as a network port. If you enable Bridge Assurance globally, it automatically runs on a spanning tree network port.

• **spanning-tree port type normal**—This command explicitly configures the port as a normal spanning tree port and Bridge Assurance cannot run on this interface.

• **no spanning-tree port type**—This command implicitly enables the port as a spanning tree network port if you define the **spanning-tree port type network default** command in global configuration mode. If you enable Bridge Assurance globally, it automatically runs on this port.

---

**Note**

A port connected to a host that is configured as a network port automatically moves into the blocking state.

---

**Before You Begin**

Ensure that STP is configured.

Ensure that the interface is connected to switches or routers.

---

**SUMMARY STEPS**

1. switch# **configure terminal**
2. switch(config)# **interface** type slot/port
3. switch(config-if)# **spanning-tree port type network**

---

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# <strong>configure terminal</strong></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# <strong>interface</strong> type slot/port</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switch(config-if)# <strong>spanning-tree port type network</strong></td>
</tr>
</tbody>
</table>

This example shows how to configure the Ethernet interface 1/4 to be a spanning tree network port:

```
switch# **configure terminal**
switch(config)# **interface** ethernet 1/4
switch(config-if)# **spanning-tree port type network**
```

---

**Enabling BPDU Guard Globally**

You can enable BPDU Guard globally by default. In this condition, the system shuts down an edge port that receives a BPDU.
We recommend that you enable BPDU Guard on all edge ports.

Before You Begin

Ensure that STP is configured.

Ensure that you have configured some spanning tree edge ports.

SUMMARY STEPS

1. `switch# configure terminal`  
2. `switch(config)# spanning-tree port type edge bpduguard default`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>switch# configure terminal</code></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2 <code>switch(config)# spanning-tree port type edge bpduguard default</code></td>
<td>Enables BPDU Guard by default on all spanning tree edge ports. By default, global BPDU Guard is disabled.</td>
</tr>
</tbody>
</table>

This example shows how to enable BPDU Guard on all spanning tree edge ports:

```plaintext
switch# configure terminal
switch(config)# spanning-tree port type edge bpduguard default
```

Enabling BPDU Guard on Specified Interfaces

You can enable BPDU Guard on specified interfaces. Enabling BPDU Guard shuts down the port if it receives a BPDU.

You can configure BPDU Guard on specified interfaces as follows:

- `spanning-tree bpduguard enable` — Unconditionally enables BPDU Guard on the interface.
- `spanning-tree bpduguard disable` — Unconditionally disables BPDU Guard on the interface.
- `no spanning-tree bpduguard` — Enables BPDU Guard on the interface if it is an operational edge port and if the `spanning-tree port type edge bpduguard default` command is configured.

Before You Begin

Ensure that STP is configured.
SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# interface type slot/port
3. switch(config-if)# spanning-tree bpduguard {enable | disable}
4. (Optional) switch(config-if)# no spanning-tree bpduguard

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# interface type slot/port</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switch(config-if)# spanning-tree bpduguard {enable</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>switch(config-if)# no spanning-tree bpduguard</td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>Enables BPDU Guard on the interface if it is an operational edge port and if you enter the spanning-tree port type edge bpduguard default command.</td>
</tr>
</tbody>
</table>

This example shows how to explicitly enable BPDU Guard on the Ethernet edge port 1/4:

```
switch# configure terminal
switch (config)# interface ethernet 1/4
switch(config-if)# spanning-tree bpduguard enable
switch(config-if)# no spanning-tree bpduguard
```

Enabling BPDU Filtering Globally

You can enable BPDU Filtering globally by default on spanning tree edge ports.

If an edge port with BPDU Filtering enabled receives a BPDU, it loses its operation status and as edge port and resumes the regular STP transitions. However, this port maintains it configuration as an edge port.

**Caution**

Be careful when using this command: using it incorrectly can cause bridging loops.

**Note**

When enabled globally, BPDU Filtering is applied only on ports that are operational edge ports. Ports send a few BPDUs at linkup before they effectively filter outbound BPDUs. If a BPU is received on an edge port, it immediately loses its operational edge port status and BPDU Filtering is disabled.
Before You Begin

Ensure that STP is configured.
Ensure that you have configured some spanning tree edge ports.

SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# spanning-tree port type edge bpdufilter default

DETAIL STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config)# spanning-tree port type edge bpdufilter default</td>
<td>Enables BPDU Filtering by default on all operational spanning tree edge ports. Global BPDU Filtering is disabled by default.</td>
</tr>
</tbody>
</table>

This example shows how to enable BPDU Filtering on all operational spanning tree edge ports:

switch# configure terminal
switch(config)# spanning-tree port type edge bpdufilter default

Enabling BPDU Filtering on Specified Interfaces

You can apply BPDU Filtering to specified interfaces. When enabled on an interface, that interface does not send any BPDUs and drops all BPDUs that it receives. This BPDU Filtering functionality applies to the entire interface, whether trunking or not.

Caution

Be careful when you enter the spanning-tree bpdufilter enable command on specified interfaces. Explicitly configuring BPDU Filtering on a port that is not connected to a host can result in bridging loops as the port will ignore any BPDU it receives and go to forwarding.

You can enter this command to override the port configuration on specified interfaces.

This command has three states:

- spanning-tree bpdufilter enable—Unconditionally enables BPDU Filtering on the interface.
- spanning-tree bpdufilter disable—Unconditionally disables BPDU Filtering on the interface.
- no spanning-tree bpdufilter—Enables BPDU Filtering on the interface if the interface is in operational edge port and if you configure the spanning-tree port type edge bpdufilter default command.

Note

When you enable BPDU Filtering locally on a port, this feature prevents the device from receiving or sending BPDUs on this port.
Before You Begin
Ensure that STP is configured.

SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# interface type slot/port
3. switch(config-if)# spanning-tree bpdufilter {enable | disable}
4. (Optional) switch(config-if)# no spanning-tree bpdufilter

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# interface type slot/port</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config-if)# spanning-tree bpdufilter {enable</td>
</tr>
<tr>
<td>Step 4</td>
<td>switch(config-if)# no spanning-tree bpdufilter</td>
</tr>
</tbody>
</table>

Note: Enables BPDU Filtering on the interface if the interface is an operational spanning tree edge port and if you enter the spanning-tree port type edge bpdufilter default command.

This example shows how to explicitly enable BPDU Filtering on the Ethernet spanning tree edge port 1/4:

```
switch# configure terminal
switch (config)# interface ethernet 1/4
switch(config-if)# spanning-tree bpdufilter enable
```

Enabling Loop Guard Globally

You can enable Loop Guard globally by default on all point-to-point spanning tree normal and network ports. Loop Guard does not run on edge ports.

Loop Guard provides additional security in the bridge network. Loop Guard prevents alternate or root ports from becoming the designated port because of a failure that could lead to a unidirectional link.

Note: Entering the Loop Guard command for the specified interface overrides the global Loop Guard command.

Before You Begin
Ensure that STP is configured.
Ensure that you have spanning tree normal ports or have configured some network ports.
SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# spanning-tree loopguard default

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# spanning-tree loopguard default</td>
<td>Enables Loop Guard by default on all spanning tree normal and network ports. By default, global Loop Guard is disabled.</td>
</tr>
</tbody>
</table>

This example shows how to enable Loop Guard on all spanning tree normal or network ports:

```
switch# configure terminal
switch(config)# spanning-tree loopguard default
```

Enabling Loop Guard or Root Guard on Specified Interfaces

You can enable either Loop Guard or Root Guard on specified interfaces.

Enabling Root Guard on a port means that port cannot become a root port, and LoopGuard prevents alternate or root ports from becoming the designated port because of a failure that could lead to a unidirectional link.

Both Loop Guard and Root Guard enabled on an interface apply to all VLANs to which that interface belongs.

Note

Entering the Loop Guard command for the specified interface overrides the global Loop Guard command.

Before You Begin

Ensure that STP is configured.

Ensure that you are configuring Loop Guard on spanning tree normal or network ports.

SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# interface type slot/port
3. switch(config-if)# spanning-tree guard {loop | root | none}

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
</tbody>
</table>
Enabling Loop Guard or Root Guard on Specified Interfaces

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 2</strong></td>
<td>switch(config)# interface type slot/port</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switch(config-if)# spanning-tree guard {loop</td>
</tr>
</tbody>
</table>

This example shows how to enable Root Guard on Ethernet port 1/4:

```
switch# configure terminal
switch (config)# interface ethernet 1/4
switch(config-if)# spanning-tree guard root
```

Verifying STP Extension Configuration

To display the configuration information for the STP extensions, perform one of the following tasks:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch# show running-config spanning-tree [all]</td>
<td>Displays the current status of spanning tree on the switch</td>
</tr>
<tr>
<td>switch# show spanning-tree [options]</td>
<td>Displays selected detailed information for the current spanning tree configuration.</td>
</tr>
</tbody>
</table>
CHAPTER 12

Configuring LLDP

This chapter describes the LLDP feature on the Cisco Nexus 5000 Series switches. It includes the following sections:

- Configuring Global LLDP Commands, page 175
- Configuring Interface LLDP Commands, page 176

Configuring Global LLDP Commands

You can set global LLDP settings. These settings include the length of time before discarding LLDP information received from peers, the length of time to wait before performing LLDP initialization on any interface, and the rate at which LLDP packets are sent.

To configure LLDP settings, perform this task:

SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# lldp {holdtime seconds | reinit seconds | timer seconds}
3. switch(config)# no lldp {holdtime | reinit | timer}
4. (Optional) switch# show lldp

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# lldp {holdtime seconds</td>
</tr>
<tr>
<td></td>
<td>Configures LLDP options.</td>
</tr>
<tr>
<td></td>
<td>Use the holdtime option to set the length of time (10 to 255 seconds, default 120 seconds) that a device should save LLDP information received before discarding it.</td>
</tr>
<tr>
<td></td>
<td>Use the reinit option to set the length of time (1 to 10 seconds, default 2 seconds) to wait before performing LLDP initialization on any interface.</td>
</tr>
</tbody>
</table>
Configuring Interface LLDP Commands

To configure the LLDP feature for a physical Ethernet interface, perform this task:

**SUMMARY STEPS**

1. `switch# configure terminal`
2. `switch(config)# interface type slot/port`
3. `switch(config-if)# [no] lldp {receive | transmit}`
4. `(Optional) switch# show lldp`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><code>switch# configure terminal</code></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><code>switch(config)# interface type slot/port</code></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>`switch(config-if)# [no] lldp {receive</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><code>(Optional) switch# show lldp</code></td>
</tr>
</tbody>
</table>

This example shows how to set an interface to transmit LLDP packets:
```
switch# configure terminal
switch(config)# interface ethernet 1/2
switch(config-if)# lldp transmit
```

This example shows how to configure an interface to disable LLDP:
```
switch# configure terminal
switch(config)# interface ethernet 1/2
switch(config-if)# no lldp transmit
switch(config-if)# no lldp receive
```
This example shows how to display LLDP interface information:

```plaintext
switch# show lldp interface ethernet 1/2
tx_enabled: TRUE
rx_enabled: TRUE
dcbx_enabled: TRUE
Port MAC address: 00:0d:ec:a3:5f:48
Remote Peers Information
No remote peers exist
```

This example shows how to display LLDP neighbor information:

```plaintext
switch# show lldp neighbors
LLDP Neighbors
Remote Peers Information on interface Eth1/40
Remote peer's MSAP: length 12 Bytes:
00 c0 dd 0e 5f 3a 00 c0 dd 0e 5f 3a
LLDP TLV's
LLDP TLV type:Chassis ID LLDP TLV Length: 7
LLDP TLV type:Port ID LLDP TLV Length: 7
LLDP TLV type:Time to Live LLDP TLV Length: 2
LLDP TLV type:LLDP Organizationally Specific LLDP TLV Length: 55
LLDP TLV type:LLDP Organizationally Specific LLDP TLV Length: 5
LLDP TLV type:END of LLDPDU LLDP TLV Length: 0
Remote Peers Information on interface Eth1/34
Remote peer's MSAP: length 12 Bytes:
00 0d ec a3 27 40 00 0d ec a3 27 40
LLDP TLV's
LLDP TLV type:Chassis ID LLDP TLV Length: 7
LLDP TLV type:Port ID LLDP TLV Length: 7
LLDP TLV type:Time to Live LLDP TLV Length: 2
LLDP TLV type:LLDP Organizationally Specific LLDP TLV Length: 55
LLDP TLV type:LLDP Organizationally Specific LLDP TLV Length: 5
LLDP TLV type:END of LLDPDU LLDP TLV Length: 0
Remote Peers Information on interface Eth1/33
Remote peer's MSAP: length 12 Bytes:
00 0d ec a3 27 40 00 0d ec a3 27 40
LLDP TLV's
LLDP TLV type:Chassis ID LLDP TLV Length: 7
LLDP TLV type:Port ID LLDP TLV Length: 7
LLDP TLV type:Time to Live LLDP TLV Length: 2
LLDP TLV type:LLDP Organizationally Specific LLDP TLV Length: 55
LLDP TLV type:LLDP Organizationally Specific LLDP TLV Length: 5
LLDP TLV type:END of LLDPDU LLDP TLV Length: 0

This example shows how to display LLDP timer information:

```plaintext
switch# show lldp timers
LLDP Timers
holdtime 120 seconds
reinit 2 seconds
msg_tx_interval 30 seconds
```

This example shows how to display LLDP counters:

```plaintext
switch# show lldp traffic
LLDP traffic statistics:
  Total frames out: 8464
  Total Entries aged: 6
  Total frames in: 6342
  Total frames received in error: 2
  Total frames discarded: 2
  Total TLVs unrecognized: 0
```
Configuring the MAC Address Table

All Ethernet interfaces on Cisco Nexus 5000 Series switches maintain media access control (MAC) address tables. This chapter describes the configuration of the MAC address tables. It includes the following sections:

- Information About MAC Addresses, page 179
- Configuring MAC Addresses, page 179
- Verifying the MAC Address Configuration, page 181

Information About MAC Addresses

To switch frames between LAN ports, the switch maintains an address table. When the switch receives a frame, it associates the media access control (MAC) address of the sending network device with the LAN port on which it was received.

The switch dynamically builds the address table by using the MAC source address of the frames received. When the switch receives a frame for a MAC destination address not listed in its address table, it floods the frame to all LAN ports of the same VLAN except the port that received the frame. When the destination station replies, the switch adds its relevant MAC source address and port ID to the address table. The switch then forwards subsequent frames to a single LAN port without flooding all LAN ports.

You can also enter a MAC address, which is termed a static MAC address, into the table. These static MAC entries are retained across a reboot of the switch.

In addition, you can enter a multicast address as a statically configured MAC address. A multicast address can accept more than one interface as its destination.

The address table can store a number of unicast and multicast address entries without flooding any frames. The switch uses an aging mechanism, defined by a configurable aging timer, so if an address remains inactive for a specified number of seconds, it is removed from the address table.

Configuring MAC Addresses

Configuring a Static MAC Address

You can configure MAC addresses for the switch. These addresses are static MAC addresses.
You can also configure a static MAC address in interface configuration mode or VLAN configuration mode.

SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# mac-address-table static mac_address vlan vlan-id {drop | interface {type slot/port} | port-channel number} [auto-learn]
3. (Optional) switch(config)# no mac-address-table static mac_address vlan vlan-id

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 switch# configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2 switch(config)# mac-address-table static mac_address vlan vlan-id {drop</td>
<td>interface {type slot/port}</td>
</tr>
<tr>
<td>Step 3 switch(config)# no mac-address-table static mac_address vlan vlan-id</td>
<td>(Optional) Deletes the static entry from the MAC address table.</td>
</tr>
</tbody>
</table>

This example shows how to put a static entry in the MAC address table:
```
switch# configure terminal
switch(config)# mac-address-table static 12ab.47dd.ff89 vlan 3 interface ethernet 2/1
```
You can use the `mac-address-table static` command to assign a static MAC address to a virtual interface.

Configuring the Aging Time for the MAC Table

You can configure the amount of time that an entry (the packet source MAC address and port that packet ingresses) remain in the MAC table.

Note

You can also configure MAC aging time in interface configuration mode or VLAN configuration mode.

SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# mac-address-table aging-time seconds [vlan vlan_id]
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>switch# configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>switch(config)# mac-address-table aging-time seconds [vlan vlan_id]</td>
<td>Specifies the time before an entry ages out and is discarded from the MAC address table. The range is from 0 to 1000000; the default is 300 seconds. Entering the value 0 disables the MAC aging. If a VLAN is not specified, the aging specification applies to all VLANs.</td>
</tr>
</tbody>
</table>

This example shows how to set the aging time for entries in the MAC address table to 600 seconds (10 minutes):

```
switch# configure terminal
switch(config)# mac-address-table aging-time 600
```

Clearing Dynamic Addresses from the MAC Table

You can clear all dynamic entries in the MAC address table.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch(config)# clear mac-address-table dynamic {address mac-addr} {interface [type slot/port</td>
<td>port-channel number] {vlan vlan-id}</td>
</tr>
</tbody>
</table>

This example shows how to clear the dynamic entries in the MAC address table:

```
switch# clear mac-address-table dynamic
```

Verifying the MAC Address Configuration

To display MAC address configuration information, perform one of these tasks:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch# show mac-address-table aging-time</td>
<td>Displays the MAC address aging time for all VLANs defined in the switch.</td>
</tr>
<tr>
<td>switch# show mac-address-table</td>
<td>Displays the contents of the MAC address table.</td>
</tr>
</tbody>
</table>
This example shows how to display the MAC address table:

```
switch# show mac-address-table
```

<table>
<thead>
<tr>
<th>VLAN</th>
<th>MAC Address</th>
<th>Type</th>
<th>Age</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0018.b967.3cd0</td>
<td>dynamic</td>
<td>10</td>
<td>Eth1/3</td>
</tr>
<tr>
<td>1</td>
<td>001c.b05a.5380</td>
<td>dynamic</td>
<td>200</td>
<td>Eth1/3</td>
</tr>
</tbody>
</table>

Total MAC Addresses: 2

This example shows how to display the current aging time:

```
switch# show mac-address-table aging-time
```

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Aging Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>300</td>
</tr>
<tr>
<td>13</td>
<td>300</td>
</tr>
<tr>
<td>42</td>
<td>300</td>
</tr>
</tbody>
</table>
Configuring IGMP Snooping

By examining (snooping), Internet Group Management Protocol (IGMP) membership report messages from interested hosts, multicast traffic is limited to the subset of VLAN interfaces on which the hosts reside.

This chapter describes the configuration of IGMP snooping on Cisco Nexus 5000 Series switches. It includes the following sections:

- Information About IGMP Snooping, page 183
- Configuring IGMP Snooping Parameters, page 186
- Verifying IGMP Snooping Configuration, page 188

Information About IGMP Snooping

The IGMP snooping software examines IGMP protocol messages within a VLAN to discover which interfaces are connected to hosts or other devices interested in receiving this traffic. Using the interface information, IGMP snooping can reduce bandwidth consumption in a multi-access LAN environment to avoid flooding the entire VLAN. The IGMP snooping feature tracks which ports are attached to multicast-capable routers to help it manage the forwarding of IGMP membership reports. The IGMP snooping software responds to topology change notifications.

Note

IGMP snooping is supported on all Ethernet interfaces. The term snooping is used because Layer 3 control plane packets are intercepted and influence Layer 2 forwarding decisions.

Cisco NX-OS supports IGMPv2 and IGMPv3. IGMPv2 supports IGMPv1, and IGMPv3 supports IGMPv2. Although not all features of an earlier version of IGMP are supported, the features related to membership query and membership report messages are supported for all IGMP versions.
The following figure shows an IGMP snooping switch that is located between the host and the IGMP router. The IGMP snooping switch snoops the IGMP membership reports and leave messages and forwards them only when necessary to the connected IGMP routers.

Figure 23: IGMP Snooping Switch

![IGMP Snooping Switch Diagram]

Note
The switch supports IGMPv3 snooping based only on the destination multicast MAC address. It does not support snooping based on the source MAC address or on proxy reports.

The Cisco NX-OS IGMP snooping software supports optimized multicast flooding (OMF) that forwards unknown traffic to routers only and performs no data driven state creation. For more information about IGMP snooping, see http://tools.ietf.org/wg/magma/draft-ietf-magma-snoop/rfc4541.txt.

IGMPv1 and IGMPv2

Both IGMPv1 and IGMPv2 support membership report suppression, which means that if two hosts on the same subnet want to receive multicast data for the same group, then the host that receives a member report from the other host suppresses sending its report. Membership report suppression occurs for hosts that share a port.

If no more than one host is attached to each VLAN switch port, then you can configure the fast leave feature in IGMPv2. The fast leave feature does not send last member query messages to hosts. As soon as the software receives an IGMP leave message, the software stops forwarding multicast data to that port.

IGMPv1 does not provide an explicit IGMP leave message, so the software must rely on the membership message timeout to indicate that no hosts remain that want to receive multicast data for a particular group.

Note
Cisco NX-OS ignores the configuration of last member query interval when you enable the fast leave feature because it does not check for remaining hosts.
IGMPv3

The IGMPv3 snooping implementation on the switch forwards IGMPv3 reports to allow the upstream multicast router do source-based filtering.

By default, the software tracks hosts on each VLAN port. The explicit tracking feature provides a fast leave mechanism. Because every IGMPv3 host sends membership reports, a report suppression feature limits the amount of traffic the switch sends to other multicast capable routers. When report suppression is enabled, and no IGMPv1 or IGMPv2 hosts requested the same group, the software provides proxy reporting. The proxy feature builds group state from membership reports from the downstream hosts and generates membership reports in response to queries from upstream queriers.

Even though the IGMPv3 membership reports provide a full accounting of group members on a LAN segment, when the last host leaves, the software sends a membership query. You can configure the parameter last member query interval. If no host responds before the timeout, the software removes the group state.

IGMP Snooping Querier

When there is no multicast router in the VLAN to originate the queries, you must configure an IGMP snooping querier to send membership queries.

When an IGMP snooping querier is enabled, it sends out periodic IGMP queries that trigger IGMP report messages from hosts that want to receive IP multicast traffic. IGMP snooping listens to these IGMP reports to establish appropriate forwarding.

IGMP Forwarding

The control plane of the Cisco Nexus 5000 Series switch is able to detect IP addresses but forwarding occurs using the MAC address only.

When a host connected to the switch wants to join an IP multicast group, it sends an unsolicited IGMP join message, specifying the IP multicast group to join. Alternatively, when the switch receives a general query from a connected router, it forwards the query to all interfaces, physical and virtual, in the VLAN. Hosts wanting to join the multicast group respond by sending a join message to the switch. The switch CPU creates a multicast forwarding table entry for the group if it is not already present. The CPU also adds the interface where the join message was received to the forwarding table entry. The host associated with that interface receives multicast traffic for that multicast group.

The router sends periodic multicast general queries and the switch forwards these queries through all ports in the VLAN. Interested hosts respond to the queries. If at least one host in the VLAN wants to receive multicast traffic, the router continues forwarding the multicast traffic to the VLAN. The switch forwards multicast group traffic to only those hosts listed in the forwarding table for that multicast group.

When hosts want to leave a multicast group, they can either silently leave, or they can send a leave message. When the switch receives a leave message from a host, it sends a group-specific query to determine if any other devices connected to that interface are interested in traffic for the specific multicast group. The switch then updates the forwarding table for that MAC group so that only those hosts interested in receiving multicast traffic for the group are listed in the forwarding table. If the router receives no reports from a VLAN, it removes the group for the VLAN from its IGMP cache.
Configuring IGMP Snooping Parameters

To manage the operation of the IGMP snooping process, you can configure the optional IGMP snooping parameters described in the following table.

Table 17: IGMP Snooping Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGMP snooping</td>
<td>Enables IGMP snooping on a per-VLAN basis. The default is enabled.</td>
</tr>
<tr>
<td></td>
<td>Note If the global setting is disabled, then all VLANs are treated as disabled, whether they are enabled or not.</td>
</tr>
<tr>
<td>Explicit tracking</td>
<td>Tracks IGMPv3 membership reports from individual hosts for each port on a per-VLAN basis. The default is enabled.</td>
</tr>
<tr>
<td>Fast leave</td>
<td>Enables the software to remove the group state when it receives an IGMP Leave report without sending an IGMP query message. This parameter is used for IGMPv2 hosts when no more than one host is present on each VLAN port. The default is disabled.</td>
</tr>
<tr>
<td>Last member query interval</td>
<td>Sets the interval that the software waits after sending an IGMP query to verify that no hosts that want to receive a particular multicast group remain on a network segment. If no hosts respond before the last member query interval expires, the software removes the group from the associated VLAN port. Values range from 1 to 25 seconds. The default is 1 second.</td>
</tr>
<tr>
<td>Snooping querier</td>
<td>Configures a snooping querier on an interface when there is no multicast router in the VLAN to generate queries. The default is disabled.</td>
</tr>
<tr>
<td>Report suppression</td>
<td>Limits the membership report traffic sent to multicast-capable routers. When you disable report suppression, all IGMP reports are sent as is to multicast-capable routers. The default is enabled.</td>
</tr>
<tr>
<td>Multicast router</td>
<td>Configures a static connection to a multicast router. The interface to the router must be in the selected VLAN.</td>
</tr>
<tr>
<td>Static group</td>
<td>Configures an interface belonging to a VLAN as a static member of a multicast group.</td>
</tr>
</tbody>
</table>
You can disable IGMP snooping either globally or for a specific VLAN.

SUMMARY STEPS

1. `switch# configure terminal`
2. `switch(config)# ip igmp snooping`
3. `switch(config)# vlan vlan-id`
4. `switch(config-vlan)# ip igmp snooping`
5. `switch(config-vlan)# ip igmp snooping explicit-tracking`
6. `switch(config-vlan)# ip igmp snooping fast-leave`
7. `switch(config-vlan)# ip igmp snooping last-member-query-interval seconds`
8. `switch(config-vlan)# ip igmp snooping querier IP-address`
9. `switch(config-vlan)# ip igmp snooping report-suppression`
10. `switch(config-vlan)# ip igmp snooping mrouter interface interface`
11. `switch(config-vlan)# ip igmp snooping static-group group-ip-addr [source source-ip-addr] interface interface`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>switch# configure terminal</code></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>switch(config)# ip igmp snooping</code></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>switch(config)# vlan vlan-id</code></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>switch(config-vlan)# ip igmp snooping</code></td>
</tr>
<tr>
<td>Step 5</td>
<td><code>switch(config-vlan)# ip igmp snooping explicit-tracking</code></td>
</tr>
<tr>
<td>Step 6</td>
<td><code>switch(config-vlan)# ip igmp snooping fast-leave</code></td>
</tr>
<tr>
<td>Step 7</td>
<td><code>switch(config-vlan)# ip igmp snooping last-member-query-interval seconds</code></td>
</tr>
<tr>
<td>Step 8</td>
<td><code>switch(config-vlan)# ip igmp snooping querier IP-address</code></td>
</tr>
</tbody>
</table>
Configuring IGMP Snooping

Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 9 switch(config-vlan)# ip igmp snooping report-suppression</td>
<td>Limits the membership report traffic sent to multicast-capable routers. When you disable report suppression, all IGMP reports are sent as is to multicast-capable routers. The default is enabled.</td>
</tr>
<tr>
<td>Step 10 switch(config-vlan)# ip igmp snooping mrouter interface interface</td>
<td>Configures a static connection to a multicast router. The interface to the router must be in the selected VLAN. You can specify the interface by type and number.</td>
</tr>
<tr>
<td>Step 11 switch(config-vlan)# ip igmp snooping static-group group-ip-addr [source source-ip-addr] interface interface</td>
<td>Configures an interface belonging to a VLAN as a static member of a multicast group. You can specify the interface by type and number.</td>
</tr>
</tbody>
</table>

The following example shows configuring IGMP snooping parameters for a VLAN:

```
switch# configure terminal
switch(config)# vlan 5
switch(config-vlan)# ip igmp snooping last-member-query-interval 3
switch(config-vlan)# ip igmp snooping querier 172.20.52.106
switch(config-vlan)# ip igmp snooping explicit-tracking
switch(config-vlan)# ip igmp snooping fast-leave
switch(config-vlan)# ip igmp snooping report-suppression
switch(config-vlan)# ip igmp snooping mrouter interface ethernet 1/10
switch(config-vlan)# ip igmp snooping static-group 230.0.0.1 interface ethernet 1/10
switch(config-vlan)# end
```

Verifying IGMP Snooping Configuration

To verify the IGMP snooping configuration, perform one of these tasks:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch# show ip igmp snooping [[vlan] vlan-id]</td>
<td>IGMP snooping configuration by VLAN.</td>
</tr>
<tr>
<td>switch# show ip igmp snooping groups [[vlan] vlan-id] [detail]</td>
<td>IGMP snooping information about groups by VLAN.</td>
</tr>
<tr>
<td>switch# show ip igmp snooping querier [[vlan] vlan-id]</td>
<td>IGMP snooping queriers by VLAN.</td>
</tr>
<tr>
<td>switch# show ip igmp snooping mrouter [[vlan] vlan-id]</td>
<td>Multicast router ports by VLAN.</td>
</tr>
<tr>
<td>switch# show ip igmp snooping explicit-tracking vlan vlan-id</td>
<td>IGMP snooping explicit tracking information by VLAN.</td>
</tr>
</tbody>
</table>

The following example shows how to verify the IGMP snooping parameters:

```
switch# show ip igmp snooping
Global IGMP Snooping Information:
   IGMP Snooping enabled
```
IGMP Snooping information for vlan 1
IGMP snooping enabled
IGMP querier none
Switch-querier disabled
Explicit tracking enabled
Fast leave disabled
Report suppression enabled
Router port detection using PIM Hellos, IGMP Queries
Number of router-ports: 0
Number of groups: 0

IGMP Snooping information for vlan 5
IGMP snooping enabled
IGMP querier present, address: 172.16.24.1, version: 3
Querier interval: 125 secs
Querier last member query interval: 10 secs
Querier robustness: 2
Switch-querier enabled, address 172.16.24.1, currently running
Explicit tracking enabled
Fast leave enabled
Report suppression enabled
Router port detection using PIM Hellos, IGMP Queries
Number of router-ports: 1
Number of groups: 1
Configuring Traffic Storm Control

This chapter describes how to configure traffic storm control on Cisco Nexus 5000 Series switches. It contains the following sections:

- Information About Traffic Storm Control, page 191
- Traffic Storm Guidelines and Limitations, page 192
- Configuring Traffic Storm Control, page 193
- Traffic Storm Control Example Configuration, page 194
- Default Traffic Storm Settings, page 194

Information About Traffic Storm Control

A traffic storm occurs when packets flood the LAN, creating excessive traffic and degrading network performance. You can use the traffic storm control feature to prevent disruptions on Ethernet interfaces by a broadcast, multicast, or unknown unicast traffic storm.

Traffic storm control (also called traffic suppression) allows you to monitor the levels of the incoming broadcast, multicast, and unicast traffic over a 10-microsecond interval. During this interval, the traffic level, which is a percentage of the total available bandwidth of the port, is compared with the traffic storm control level that you configured. When the ingress traffic reaches the traffic storm control level that is configured on the port, traffic storm control drops the traffic until the interval ends.
The following figure shows the broadcast traffic patterns on an Ethernet interface during a specified time interval. In this example, traffic storm control occurs between times T1 and T2 and between T4 and T5. During those intervals, the amount of broadcast traffic exceeded the configured threshold.

Figure 24: Broadcast Suppression

The traffic storm control threshold numbers and the time interval allow the traffic storm control algorithm to work with different levels of packet granularity. For example, a higher threshold allows more packets to pass through.

Traffic storm control on the Cisco Nexus 5000 Series switch is implemented in the hardware. The traffic storm control circuitry monitors packets that pass from an Ethernet interface to the switching bus. Using the Individual/Group bit in the packet destination address, the circuitry determines if the packet is unicast or broadcast, tracks the current count of packets within the 10-microsecond interval, and filters out subsequent packets when a threshold is reached.

Traffic storm control uses a bandwidth-based method to measure traffic. You set the percentage of total available bandwidth that the controlled traffic can use. Because packets do not arrive at uniform intervals, the 10-microsecond interval can affect the operation of traffic storm control.

The following are examples of how traffic storm control operation is affected:

- If you enable broadcast traffic storm control, and broadcast traffic exceeds the level within the 10-microsecond interval, traffic storm control drops all broadcast traffic until the end of the interval.
- If you enable multicast traffic storm control, and the multicast traffic exceeds the level within the 10-microsecond interval, traffic storm control drops all multicast traffic until the end of the interval.
- If you enable broadcast and multicast traffic storm control, and broadcast traffic exceeds the level within the 10-microsecond interval, traffic storm control drops all broadcast traffic until the end of the interval.
- If you enable broadcast and multicast traffic storm control, and multicast traffic exceeds the level within the 10-microsecond interval, traffic storm control drops all multicast traffic until the end of the interval.

By default, Cisco NX-OS takes no corrective action when the traffic exceeds the configured level.

Traffic Storm Guidelines and Limitations

When configuring the traffic storm control level, follow these guidelines and limitations:

- You can configure traffic storm control on a port-channel interface.
• Specify the level as a percentage of the total interface bandwidth:
 ◦ The level can be from 0 to 100.
 ◦ The optional fraction of a level can be from 0 to 99.
 ◦ 100 percent means no traffic storm control.
 ◦ 0.0 percent suppresses all traffic.

Because of hardware limitations and the method by which packets of different sizes are counted, the level percentage is an approximation. Depending on the sizes of the frames that make up the incoming traffic, the actual enforced level might differ from the configured level by several percentage points.

Configuring Traffic Storm Control

You can set the percentage of total available bandwidth that the controlled traffic can use.

Note
Traffic storm control uses a 10-microsecond interval that can affect the operation of traffic storm control.

SUMMARY STEPS

1. switch# configure terminal
2. switch(config)# interface {ethernet slot/port | port-channel number}
3. switch(config-if)# storm-control {broadcast | multicast | unicast} level percentage[fraction]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>switch# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>switch(config)# interface {ethernet slot/port</td>
</tr>
<tr>
<td>Step 3</td>
<td>switch(config-if)# storm-control {broadcast</td>
</tr>
</tbody>
</table>

This example shows how to configure unicast traffic storm control for Ethernet interface 1/4:

```plaintext
switch# configure terminal
switch(config)# interface ethernet 1/4
switch(config-if)# storm-control unicast level 40
```

Verifying Traffic Storm Control Configuration

To display traffic storm control configuration information, perform one of these tasks:
Traffic storm control uses a 10-microsecond interval that can affect the operation of traffic storm control.

Traffic Storm Control Example Configuration

The following example shows how to configure traffic storm control:

```
switch# configure terminal
switch(config)# interface ethernet 1/4
switch(config-if)# storm-control broadcast level 40
switch(config-if)# storm-control multicast level 40
switch(config-if)# storm-control unicast level 40
```

Default Traffic Storm Settings

The following table lists the default settings for traffic storm control parameters.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic storm control</td>
<td>Disabled</td>
</tr>
<tr>
<td>Threshold percentage</td>
<td>100</td>
</tr>
</tbody>
</table>
INDEX

B
blocking state, STP 118
BPDU guard 162
bridge ID 108
broadcast storms 191

C
changed information
description 1
CIST regional root 138
CIST root 139
community ports 34
community VLANs 34, 35
configuring LACP 70

D
debounce timer 11

E
EtherChannel
 STP 59
extended range VLANs 25

H
host ports
 kinds of 34

I
ICMPv2 184
IEEE 802.1w 135

IGMP forwarding
 MAC address 185
IGMP snooping
 queries 185
IGMPv1 184
IGMPv3 185
interface speed 10
interfaces
 chassis ID 7
 options 7
 UDLD 8
isolated port 34
isolated VLANs 34, 35

L
LACP 59, 64, 70
 system ID 64
Link Aggregation Control Protocol 59
Link Failure
 detecting unidirectional 121

M
MST
 CIST regional root 138
 setting to default values 146
MSTP
 boundary ports
 described 140
 CIST regional root 138
 CIST root 139
 CIST, described 137
 CST
 defined 137
 operations between regions 138
 IEEE 802.1s
 terminology 138
MSTP (continued)
- IST 137, 138
 operations within a region 137
- mapping VLANs to MST instance 146
- MST region
 CIST 137
 described 135
 hop-count mechanism 139
 supported spanning-tree instances 136
- multicast storms 191

R
- Rapid Spanning Tree Protocol 135
- reduced MAC address 108
- reserved-range VLANs 25
- root guard 164
- RSTP 112, 116, 120, 135
 active topology 116
 BPDU processing 120

S
- secondary VLANs 34
- SFP+ transceiver 10
- Small form-factor pluggable (plus) transceiver 10

STP
- edge ports 112, 161
- EtherChannel 59
- network ports 162
- normal ports 162
- port types 161
- PortFast 112, 161
- understanding
 Blocking State 118
 disabled state 119
 forwarding state 119
 learning state 118
- STP bridge ID 108
- STP root guard 164

U
- UDLD
 aggressive mode 9
 defined 8
 nonaggressive mode 9
- unicast storms 191
- Unidirectional Link Detection 8

V
- VLANs
 extended range 25
 reserved range 25