Configuring VLANs

You can use virtual LANs (VLANs) to divide the network into separate logical areas. VLANs can also be considered as broadcast domains.

Any switch port can belong to a VLAN, and unicast, broadcast, and multicast packets are forwarded and flooded only to end stations in that VLAN. Each VLAN is considered a logical network, and packets destined for stations that do not belong to the VLAN must be forwarded through a router.

This chapter includes the following sections:

- Information About VLANs, page 1-1
- Configuring a VLAN, page 1-4
- Verifying VLAN Configuration, page 1-6

Information About VLANs

This section includes the following topics:

- Understanding VLANs, page 1-1
- Understanding VLAN Ranges, page 1-2
- Creating, Deleting, and Modifying VLANs, page 1-3

Understanding VLANs

Note

VLAN Trunking Protocol (VTP) mode is OFF. VTP BPDUs are dropped on all interfaces of a Cisco Nexus 5000 Series switch, which partitions VTP domains if other switches have VTP turned on.

A VLAN is a group of end stations in a switched network that is logically segmented by function, project team, or application, without regard to the physical locations of the users. VLANs have the same attributes as physical LANs, but you can group end stations even if they are not physically located on the same LAN segment.

Any port can belong to a VLAN, and unicast, broadcast, and multicast packets are forwarded and flooded only to end stations in that VLAN. Each VLAN is considered a logical network. Packets destined for stations that do not belong to the VLAN must be forwarded through a router.
Figure 1-1 shows VLANs as logical networks. In this diagram, the stations in the engineering department are assigned to one VLAN, the stations in the marketing department are assigned to another VLAN, and the stations in the accounting department are assigned to yet another VLAN.

VLANs are usually associated with IP subnetworks. For example, all the end stations in a particular IP subnet belong to the same VLAN. To communicate between VLANs, you must route the traffic.

By default, a newly created VLAN is operational; that is, the VLAN is in the no shutdown condition. Additionally, you can configure VLANs to be in the active state, which is passing traffic, or the suspended state, in which the VLANs are not passing packets. By default, the VLANs are in the active state and pass traffic.

Understanding VLAN Ranges

The Cisco Nexus 5000 Series switch supports VLAN numbers 1 to 4094 in accordance with the IEEE 802.1Q standard. These VLANs are organized into ranges. You use each range slightly differently. The switch is physically limited in the number of VLANs it can support. The hardware also shares this available range with its VSANs. For details of the number of supported VLANs and VSANs, see the “Configuration Limits” section on page 1-1.
Chapter 1 Configuring VLANs

Information About VLANs

Send feedback to nx5000-docfeedback@cisco.com

Table 1-1 describes the details of the VLAN ranges.

<table>
<thead>
<tr>
<th>VLANs Numbers</th>
<th>Range</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Normal</td>
<td>Cisco default. You can use this VLAN, but you cannot modify or delete it.</td>
</tr>
<tr>
<td>2—1005</td>
<td>Normal</td>
<td>You can create, use, modify, and delete these VLANs.</td>
</tr>
</tbody>
</table>
| 1006—4094 | Extended | You can create, name, and use these VLANs. You cannot change the following parameters:
 • State is always active.
 • VLAN is always enabled. You cannot shut down these VLANs. |
| 3968—4047 and 4094 | Internally allocated | These 80 VLANs, plus VLAN 4094, are allocated for internal use. You cannot create, delete, or modify any VLANs within the block reserved for internal use. |

Note: VLANs 3968 to 4047 and 4094 are reserved for internal use; these VLANs cannot be changed or used.

Cisco NX-OS allocates a group of 80 VLAN numbers for those features, such as multicast and diagnostics, that need to use internal VLANs for their operation. By default, the system allocates VLANs numbered 3968 to 4047 for internal use. VLAN 4094 is also reserved for internal use by the switch.

You cannot use, modify, or delete any of the VLANs in the reserved group. You can display the VLANs that are allocated internally and their associated use.

Creating, Deleting, and Modifying VLANs

VLANs are numbered from 1 to 4094. All configured ports belong to the default VLAN when you first bring up the switch. The default VLAN (VLAN1) uses only default values, and you cannot create, delete, or suspend activity in the default VLAN.

You create a VLAN by assigning a number to it; you can delete VLANs as well as moving them from the active operational state to the suspended operational state. If you attempt to create a VLAN with an existing VLAN ID, the switch goes into the VLAN submode but does not create the same VLAN again.

Newly created VLANs remain unused until ports are assigned to the specific VLAN. All the ports are assigned to VLAN1 by default.

Depending on the range of the VLAN, you can configure the following parameters for VLANs (except the default VLAN):

• VLAN name
• Shutdown or not shutdown

When you delete a specified VLAN, the ports associated to that VLAN are shut down and no traffic flows. However, the system retains all the VLAN-to-port mapping for that VLAN, and when you reenable, or recreate, the specified VLAN, the system automatically reinstates all the original ports to that VLAN.
Configuring a VLAN

This section includes the following topics:
- Creating and Deleting a VLAN, page 1-4
- Entering the VLAN Submode and Configuring the VLAN, page 1-5
- Adding Ports to a VLAN, page 1-6

Creating and Deleting a VLAN

You can create or delete all VLANs except the default VLAN and those VLANs that are internally allocated for use by the switch.

Once a VLAN is created, it is automatically in the active state.

Note When you delete a VLAN, ports associated to that VLAN shut down. The traffic does not flow and the packets are dropped.

To create a VLAN, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
switch# configure terminal | Enters configuration mode. |
| **Step 2**
switch(config)# vlan {vlan-id | vlan-range} | Creates a VLAN or a range or VLANs. If you enter a number that is already assigned to a VLAN, the switch puts you into the VLAN configuration submode for that VLAN. If you enter a number that is assigned to an internally allocated VLAN, the system returns an error message. However, if you enter a range of VLANs and one or more of the specified VLANs is outside the range of internally allocated VLANs, the command takes effect on only those VLANs outside the range. The range is from 2 to 4094; VLAN1 is the default VLAN and cannot be created or deleted. You cannot create or delete those VLANs that are reserved for internal use. |

This example shows how to create a range of VLANs from 15 to 20:
Configuring a VLAN

Send feedback to nx5000-docfeedback@cisco.com

```bash
switch# configure terminal
switch(config)# vlan 15-20
```

Note
You can also create and delete VLANs in the VLAN configuration submode.

To delete a VLAN, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`switch(config-vlan)# no vlan {vlan-id</td>
<td>vlan-range}`</td>
</tr>
</tbody>
</table>

Entering the VLAN Submode and Configuring the VLAN

To configure or modify the VLAN for the following parameters, you must be in the VLAN configuration submode:

- Name
- Shut down

Note
You cannot create, delete, or modify the default VLAN or the internally allocated VLANs. Additionally, some of these parameters cannot be modified on some VLANs; see the “Understanding VLAN Ranges” section on page 1-2 for complete information.

To enter the submode and configure the VLAN, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>switch# configure terminal</code></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2 `switch(config)# vlan {vlan-id</td>
<td>vlan-range}`</td>
</tr>
<tr>
<td>Step 3 <code>switch(config-vlan)# name vlan-name</code></td>
<td>Names the VLAN. You can enter up to 32 alphanumeric characters to name the VLAN. You cannot change the name of VLAN1 or the internally allocated VLANs. The default value is VLANxxxx where xxxx represent four numeric digits (including leading zeroes) equal to the VLAN ID number.</td>
</tr>
<tr>
<td>Step 4 <code>switch(config-vlan)# no shutdown</code></td>
<td>Enables the VLAN. The default value is <code>no shutdown</code> (or enabled). You cannot shut down the default VLAN, VLAN1, or VLANs 1006 to 4094.</td>
</tr>
</tbody>
</table>

This example shows how to configure optional parameters for VLAN 5:

```bash
switch# configure terminal
switch(config)# vlan 5
switch(config)# name accounting
switch(config)# state active
```
Adding Ports to a VLAN

After you have completed the configuration of a VLAN, assign ports to it. To add ports, perform this task:

```
switch(config-vlan)# no shutdown
```

Command Purpose

Step 1

```switch# configure terminal```

Enters configuration mode.

**Step 2**

```switch(config)# interface {type slot/port | port-channel number}```

Specifies the interface to configure, and enters the interface configuration mode. The interface can be a physical Ethernet port or a port channel.

Step 3

```switch(config-if)# switchport access vlan vlan-id```

Sets the access mode of the interface to the specified VLAN.

This example shows how to configure an Ethernet interface to join VLAN 5:

```
switch# configure terminal
switch(config)# interface ethernet 1/13
switch(config-if)# switchport access vlan 5
```

### Verifying VLAN Configuration

To display VLAN configuration information, perform one of these tasks:

**Command**

```
switch# show running-config vlan [vlan_id | vlan_range]

switch# show vlan [brief | id [vlan_id | vlan_range] | name name | summary]
```

**Purpose**

Displays VLAN information.

Displays selected configuration information for the defined VLAN(s).

The following example shows all VLANs defined in the range of 1-21.

```
switch# show running-config vlan 1-21
version 4.0(0)
vlan 1
vlan 5
```

The following example shows the VLANs created on the switch and their status:

```
switch# show vlan
```

<table>
<thead>
<tr>
<th>VLAN</th>
<th>Name</th>
<th>Status</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>default</td>
<td>active</td>
<td>Eth1/1, Eth1/2, Eth1/3, Eth1/4, Eth1/5, Eth1/6, Eth1/7, Eth1/8, Eth1/9, Eth1/10, Eth1/11, Eth1/12, Eth1/13, Eth1/14, Eth1/15, Eth1/16, Eth1/17, Eth1/18, Eth1/19, Eth1/20, Eth1/21, Eth1/22</td>
</tr>
</tbody>
</table>
Chapter 1 Configuring VLANs

Verifying VLAN Configuration

The following example shows the details of VLAN 13 including its member ports:

```
switch# show vlan id 13

VLAN Name Status Ports
--------------------- ------------- -------------------------------
13 VLAN0005 active Eth1/13, Eth1/14

VLAN Type MTU

13 enet 576

Remote SPAN VLAN

Disabled

Primary Secondary Type Ports
------- --------- --------------- ---
```

The following example shows the VLAN settings summary:

```
switch# show vlan summary

Number of existing VLANs : 2
Number of existing VTP VLANs : 2
Number of existing extended VLANs : 0
```